
Red Hat Integration 2023.q4

Service Registry User Guide

Manage schemas and APIs in Service Registry 2.5

Last Updated: 2024-02-22

Red Hat Integration 2023.q4 Service Registry User Guide

Manage schemas and APIs in Service Registry 2.5

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide introduces Service Registry and explains how to manage event schemas and API designs
using the Service Registry web console, REST API, Maven plug-in, or Java client. This guide also
explains how to to use Kafka client serializers and deserializers in your Java consumer and producer
applications. It also describes the supported Service Registry content types, and optional rule
configuration.

. .

. .

. .

. .

. .

. .

Table of Contents

PREFACE
MAKING OPEN SOURCE MORE INCLUSIVE
PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

CHAPTER 1. INTRODUCTION TO SERVICE REGISTRY
1.1. WHAT IS SERVICE REGISTRY?

Service Registry capabilities
1.2. SCHEMA AND API ARTIFACTS IN SERVICE REGISTRY

Groups of schemas and APIs
References to other schemas and APIs

Supported artifact types
1.3. MANAGE CONTENT USING THE SERVICE REGISTRY WEB CONSOLE
1.4. SERVICE REGISTRY REST API FOR CLIENTS

Compatibility with other schema registry REST APIs
1.5. SERVICE REGISTRY STORAGE OPTIONS
1.6. VALIDATE KAFKA MESSAGES USING SCHEMAS AND JAVA CLIENT SERIALIZERS/DESERIALIZERS
1.7. STREAM DATA TO EXTERNAL SYSTEMS WITH KAFKA CONNECT CONVERTERS
1.8. SERVICE REGISTRY DEMONSTRATION EXAMPLES
1.9. SERVICE REGISTRY AVAILABLE DISTRIBUTIONS

CHAPTER 2. SERVICE REGISTRY CONTENT RULES
2.1. GOVERN SERVICE REGISTRY CONTENT USING RULES

2.1.1. When rules are applied
2.1.2. Order of precedence of rules
2.1.3. How rules work
2.1.4. Content rule configuration

Configure artifact rules
Configure global rules

CHAPTER 3. MANAGING SERVICE REGISTRY CONTENT USING THE WEB CONSOLE
3.1. VIEWING ARTIFACTS USING THE SERVICE REGISTRY WEB CONSOLE
3.2. ADDING ARTIFACTS USING THE SERVICE REGISTRY WEB CONSOLE
3.3. CONFIGURING CONTENT RULES USING THE SERVICE REGISTRY WEB CONSOLE
3.4. GENERATING CLIENT SDKS FOR OPENAPI ARTIFACTS USING THE SERVICE REGISTRY WEB CONSOLE

3.5. CHANGING AN ARTIFACT OWNER USING THE SERVICE REGISTRY WEB CONSOLE
3.6. CONFIGURING SERVICE REGISTRY INSTANCE SETTINGS USING THE WEB CONSOLE
3.7. EXPORTING AND IMPORTING DATA USING THE SERVICE REGISTRY WEB CONSOLE

CHAPTER 4. MANAGING SERVICE REGISTRY CONTENT USING THE REST API
4.1. MANAGING SCHEMA AND API ARTIFACTS USING SERVICE REGISTRY REST API COMMANDS
4.2. MANAGING SCHEMA AND API ARTIFACT VERSIONS USING SERVICE REGISTRY REST API COMMANDS

4.3. MANAGING SCHEMA AND API ARTIFACT REFERENCES USING SERVICE REGISTRY REST API
COMMANDS
4.4. EXPORTING AND IMPORTING REGISTRY DATA USING SERVICE REGISTRY REST API COMMANDS

CHAPTER 5. MANAGING SERVICE REGISTRY CONTENT USING THE MAVEN PLUG-IN
5.1. ADDING SCHEMA AND API ARTIFACTS USING THE MAVEN PLUG-IN
5.2. DOWNLOADING SCHEMA AND API ARTIFACTS USING THE MAVEN PLUG-IN
5.3. TESTING SCHEMA AND API ARTIFACTS USING THE MAVEN PLUG-IN
5.4. ADDING ARTIFACT REFERENCES MANUALLY USING THE SERVICE REGISTRY MAVEN PLUG-IN
5.5. ADDING ARTIFACT REFERENCES AUTOMATICALLY USING THE SERVICE REGISTRY MAVEN PLUG-IN

5
5
5

6
6
6
7
7
8
9

10
10
11

12
12
13
14
15

16
16
16
16
17
17
17
17

19
19
21
23

24
26
27
29

31
31

32

33
36

38
38
39
41

42

Table of Contents

1

. .

. .

. .

. .

. .

CHAPTER 6. MANAGING SERVICE REGISTRY CONTENT USING A JAVA CLIENT
6.1. SERVICE REGISTRY JAVA CLIENT
6.2. WRITING SERVICE REGISTRY JAVA CLIENT APPLICATIONS
6.3. SERVICE REGISTRY JAVA CLIENT CONFIGURATION

Custom header configuration
TLS configuration options

CHAPTER 7. VALIDATING KAFKA MESSAGES USING SERIALIZERS/DESERIALIZERS IN JAVA CLIENTS
7.1. KAFKA CLIENT APPLICATIONS AND SERVICE REGISTRY

Service Registry schema technologies
Producer schema configuration
Consumer schema configuration

7.2. STRATEGIES TO LOOK UP A SCHEMA IN SERVICE REGISTRY
Artifact resolver strategy
Strategies to return a reference to an artifact
DefaultSchemaResolver interface
Configuration for registry lookup options

7.3. REGISTERING A SCHEMA IN SERVICE REGISTRY
Service Registry web console
Curl command example
Maven plug-in example
Configuration using a producer client example

7.4. USING A SCHEMA FROM A KAFKA CONSUMER CLIENT
7.5. USING A SCHEMA FROM A KAFKA PRODUCER CLIENT
7.6. USING A SCHEMA FROM A KAFKA STREAMS APPLICATION

CHAPTER 8. CONFIGURING KAFKA SERIALIZERS/DESERIALIZERS IN JAVA CLIENTS
8.1. SERVICE REGISTRY SERIALIZER/DESERIALIZER CONFIGURATION IN CLIENT APPLICATIONS

Configuration for SerDes services
Configuration for SerDes lookup strategies
Configuration for Kafka converters
Configuration for different schema types

8.2. SERVICE REGISTRY SERIALIZER/DESERIALIZER CONFIGURATION PROPERTIES
SchemaResolver interface
DefaultSchemaResolver class

Configuration for registry API access options
Configuration for registry lookup options
Configuration to read/write registry artifacts in Kafka
Configuration for deserializer fall-back options

8.3. HOW TO CONFIGURE DIFFERENT CLIENT SERIALIZER/DESERIALIZER TYPES
Kafka application configuration for serializers/deserializers
8.3.1. Configure Avro SerDes with Service Registry
8.3.2. Configure JSON Schema SerDes with Service Registry
8.3.3. Configure Protobuf SerDes with Service Registry

CHAPTER 9. SERVICE REGISTRY ARTIFACT REFERENCE
9.1. SERVICE REGISTRY ARTIFACT TYPES
9.2. SERVICE REGISTRY ARTIFACT STATES
9.3. SERVICE REGISTRY ARTIFACT METADATA

CHAPTER 10. SERVICE REGISTRY CONTENT RULE REFERENCE
10.1. SERVICE REGISTRY CONTENT RULE TYPES

45

48
48
48
49
49
50

51
51
51
52
52
53
53
54
54
54
55
55
55
55
56
57
57
58

60
60
60
61
61
61
61

62
62
62
64
66
67
69
69
70
73
75

78
78
78
79

82
82

Red Hat Integration 2023.q4 Service Registry User Guide

2

. .

10.2. SERVICE REGISTRY CONTENT RULE MATURITY
10.3. SERVICE REGISTRY CONTENT RULE PRECEDENCE

APPENDIX A. USING YOUR SUBSCRIPTION
Accessing your account
Activating a subscription
Downloading ZIP and TAR files

84
84

86
86
86
86

Table of Contents

3

Red Hat Integration 2023.q4 Service Registry User Guide

4

PREFACE

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
We appreciate your feedback on our documentation.

To propose improvements, open a Jira issue and describe your suggested changes. Provide as much
detail as possible to enable us to address your request quickly.

Prerequisite

You have a Red Hat Customer Portal account. This account enables you to log in to the Red Hat
Jira Software instance.
If you do not have an account, you will be prompted to create one.

Procedure

1. Click the following link: Create issue.

2. In the Summary text box, enter a brief description of the issue.

3. In the Description text box, provide the following information:

The URL of the page where you found the issue.

A detailed description of the issue.
You can leave the information in any other fields at their default values.

4. Click Create to submit the Jira issue to the documentation team.

Thank you for taking the time to provide feedback.

PREFACE

5

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language
https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12323824&issuetype=1&components=12334781&priority=3&description=URL where issue was found%3A%C2%A0%0A%0ADescription of issue%3A%C2%A0&12368953

CHAPTER 1. INTRODUCTION TO SERVICE REGISTRY
This chapter introduces Service Registry concepts and features and provides details on the supported
artifact types that are stored in the registry:

Section 1.1, “What is Service Registry?”

Section 1.2, “Schema and API artifacts in Service Registry”

Section 1.3, “Manage content using the Service Registry web console”

Section 1.4, “Service Registry REST API for clients”

Section 1.5, “Service Registry storage options”

Section 1.6, “Validate Kafka messages using schemas and Java client serializers/deserializers”

Section 1.7, “Stream data to external systems with Kafka Connect converters”

Section 1.8, “Service Registry demonstration examples”

Section 1.9, “Service Registry available distributions”

1.1. WHAT IS SERVICE REGISTRY?

Service Registry is a datastore for sharing standard event schemas and API designs across event-driven
and API architectures. You can use Service Registry to decouple the structure of your data from your
client applications, and to share and manage your data types and API descriptions at runtime using a
REST interface.

Client applications can dynamically push or pull the latest schema updates to or from Service Registry at
runtime without needing to redeploy. Developer teams can query Service Registry for existing schemas
required for services already deployed in production, and can register new schemas required for new
services in development.

You can enable client applications to use schemas and API designs stored in Service Registry by
specifying the Service Registry URL in your client application code. Service Registry can store schemas
used to serialize and deserialize messages, which are referenced from your client applications to ensure
that the messages that they send and receive are compatible with those schemas.

Using Service Registry to decouple your data structure from your applications reduces costs by
decreasing overall message size, and creates efficiencies by increasing consistent reuse of schemas and
API designs across your organization. Service Registry provides a web console to make it easy for
developers and administrators to manage registry content.

You can configure optional rules to govern the evolution of your Service Registry content. These
include rules to ensure that uploaded content is valid, or is compatible with other versions. Any
configured rules must pass before new versions can be uploaded to Service Registry, which ensures that
time is not wasted on invalid or incompatible schemas or API designs.

Service Registry is based on the Apicurio Registry open source community project. For details, see
https://github.com/apicurio/apicurio-registry.

Service Registry capabilities

Multiple payload formats for standard event schema and API specifications such as Apache

Red Hat Integration 2023.q4 Service Registry User Guide

6

https://github.com/apicurio/apicurio-registry

Multiple payload formats for standard event schema and API specifications such as Apache
Avro, JSON Schema, Google Protobuf, AsyncAPI, OpenAPI, and more.

Pluggable Service Registry storage options in AMQ Streams or PostgreSQL database.

Rules for content validation, compatibility, and integrity to govern how Service Registry content
evolves over time.

Service Registry content management using web console, REST API, command line, Maven
plug-in, or Java client.

Full Apache Kafka schema registry support, including integration with Kafka Connect for
external systems.

Kafka client serializers/deserializers (SerDes) to validate message types at runtime.

Compatibility with existing Confluent schema registry client applications.

Cloud-native Quarkus Java runtime for low memory footprint and fast deployment times.

Operator-based installation of Service Registry on OpenShift.

OpenID Connect (OIDC) authentication using Red Hat Single Sign-On.

1.2. SCHEMA AND API ARTIFACTS IN SERVICE REGISTRY

The items stored in Service Registry, such as event schemas and API designs, are known as registry
artifacts. The following shows an example of an Apache Avro schema artifact in JSON format for a
simple share price application:

Example Avro schema

When a schema or API design is added as an artifact in Service Registry, client applications can then use
that schema or API design to validate that the client messages conform to the correct data structure at
runtime.

Groups of schemas and APIs
An artifact group is an optional named collection of schema or API artifacts. Each group contains a
logically related set of schemas or API designs, typically managed by a single entity, belonging to a
particular application or organization.

{
 "type": "record",
 "name": "price",
 "namespace": "com.example",
 "fields": [
 {
 "name": "symbol",
 "type": "string"
 },
 {
 "name": "price",
 "type": "string"
 }
]
}

CHAPTER 1. INTRODUCTION TO SERVICE REGISTRY

7

You can create optional artifact groups when adding your schemas and API designs to organize them in
Service Registry. For example, you could create groups to match your development and production
application environments, or your sales and engineering organizations.

Schema and API groups can contain multiple artifact types. For example, you could have Protobuf, Avro,
JSON Schema, OpenAPI, or AsyncAPI artifacts all in the same group.

You can create schema and API artifacts and groups using the Service Registry web console, REST API,
command line, Maven plug-in, or Java client application. The following simple example shows using the
Core Registry REST API:

This example creates an artifact group named my-group and adds an Avro schema with an artifact ID of
share-price.

NOTE

Specifying a group is optional when using the Service Registry web console, and a default
group is created automatically. When using the REST API or Maven plug-in, specify the
default group in the API path if you do not want to create a unique group.

Additional resources

For information on supported artifact types, see Chapter 9, Service Registry artifact reference .

For information on the Core Registry API, see the Apicurio Registry REST API documentation .

References to other schemas and APIs
Some Service Registry artifact types can include artifact references from one artifact file to another.
You can create efficiencies by defining reusable schema or API components, and then referencing them
from multiple locations. For example, you can specify a reference in JSON Schema or OpenAPI using a
$ref statement, or in Google Protobuf using an import statement, or in Apache Avro using a nested
namespace.

The following example shows a simple Avro schema named TradeKey that includes a reference to
another schema named Exchange using a nested namespace:

Tradekey schema with nested Exchange schema

$ curl -X POST -H "Content-type: application/json; artifactType=AVRO" \
 -H "X-Registry-ArtifactId: share-price" \
 --data '{"type":"record","name":"price","namespace":"com.example", \
 "fields":[{"name":"symbol","type":"string"},{"name":"price","type":"string"}]}' \
 https://my-registry.example.com/apis/registry/v2/groups/my-group/artifacts

{
 "namespace": "com.kubetrade.schema.trade",
 "type": "record",
 "name": "TradeKey",
 "fields": [
 {
 "name": "exchange",
 "type": "com.kubetrade.schema.common.Exchange"
 },
 {
 "name": "key",

Red Hat Integration 2023.q4 Service Registry User Guide

8

files/registry-rest-api.htm

Exchange schema

An artifact reference is stored in Service Registry as a collection of artifact metadata that maps from an
artifact type-specific reference to an internal Service Registry reference. Each artifact reference in
Service Registry is composed of the following:

Group ID

Artifact ID

Artifact version

Artifact reference name

You can manage artifact references using the Service Registry core REST API, Maven plug-in, and Java
serializers/deserializers (SerDes). Service Registry stores the artifact references along with the artifact
content. Service Registry also maintains a collection of all artifact references so you can search them or
list all references for a specific artifact.

Supported artifact types
Service Registry currently supports artifact references for the following artifact types only:

Avro

Protobuf

JSON Schema

OpenAPI

AsyncAPI

Additional resources

For details on managing artifact references, see:

Chapter 4, Managing Service Registry content using the REST API .

Chapter 5, Managing Service Registry content using the Maven plug-in .

For a Java example, see the Apicurio Registry SerDes with references demonstration .

1.3. MANAGE CONTENT USING THE SERVICE REGISTRY WEB

 "type": "string"
 }
]
}

{
 "namespace": "com.kubetrade.schema.common",
 "type": "enum",
 "name": "Exchange",
 "symbols" : ["GEMINI"]
}

CHAPTER 1. INTRODUCTION TO SERVICE REGISTRY

9

https://github.com/Apicurio/apicurio-registry-examples/tree/main/serdes-with-references

1.3. MANAGE CONTENT USING THE SERVICE REGISTRY WEB
CONSOLE

You can use the Service Registry web console to browse and search the schema and API artifacts and
optional groups stored in the registry, and to add new schema and API artifacts, groups, and versions.
You can search for artifacts by label, name, group, and description. You can view an artifact’s content or
its available versions, or download an artifact file locally.

You can also configure optional rules for registry content, both globally and for each schema and API
artifact. These optional rules for content validation and compatibility are applied when new schema and
API artifacts or versions are uploaded to the registry.

For more details, see Chapter 10, Service Registry content rule reference .

Figure 1.1. Service Registry web console

The Service Registry web console is available from http://MY_REGISTRY_URL/ui.

Additional resources

Chapter 3, Managing Service Registry content using the web console

1.4. SERVICE REGISTRY REST API FOR CLIENTS

Client applications can use the Core Registry API v2 to manage the schema and API artifacts in Service
Registry. This API provides operations for the following features:

Red Hat Integration 2023.q4 Service Registry User Guide

10

Admin

Export or import Service Registry data in a .zip file, and manage logging levels for the Service
Registry instance at runtime.

Artifacts

Manage schema and API artifacts stored in Service Registry. You can also manage the lifecycle state
of an artifact: enabled, disabled, or deprecated.

Artifact metadata

Manage details about a schema or API artifact. You can edit details such as artifact name,
description, or labels. Details such as artifact group, and when the artifact was created or modified
are read-only.

Artifact rules

Configure rules to govern the content evolution of a specific schema or API artifact to prevent invalid
or incompatible content from being added to Service Registry. Artifact rules override any global rules
configured.

Artifact versions

Manage versions that are created when a schema or API artifact is updated. You can also manage the
lifecycle state of an artifact version: enabled, disabled, or deprecated.

Global rules

Configure rules to govern the content evolution of all schema and API artifacts to prevent invalid or
incompatible content from being added to Service Registry. Global rules are applied only if an
artifact does not have its own specific artifact rules configured.

Search

Browse or search for schema and API artifacts and versions, for example, by name, group,
description, or label.

System

Get the Service Registry version and the limits on resources for the Service Registry instance.

Users

Get the current Service Registry user.

Compatibility with other schema registry REST APIs
Service Registry also provides compatibility with the following schema registries by including
implementations of their respective REST APIs:

Service Registry Core Registry API v1

Confluent Schema Registry API v6

Confluent Schema Registry API v7

CNCF CloudEvents Schema Registry API v0

Applications using Confluent client libraries can use Service Registry as a drop-in replacement. For more
details, see Replacing Confluent Schema Registry .

Additional resources

For more information on the Core Registry API v2, see the Apicurio Registry REST API
documentation.

For API documentation on the Core Registry API v2 and all compatible APIs, browse to the /apis

CHAPTER 1. INTRODUCTION TO SERVICE REGISTRY

11

https://developers.redhat.com/blog/2019/12/17/replacing-confluent-schema-registry-with-red-hat-integration-service-registry/
files/registry-rest-api.htm

For API documentation on the Core Registry API v2 and all compatible APIs, browse to the /apis
endpoint of your Service Registry instance, for example, http://MY-REGISTRY-URL/apis.

1.5. SERVICE REGISTRY STORAGE OPTIONS

Service Registry provides the following options for the underlying storage of registry data:

Table 1.1. Service Registry data storage options

Storage option Description

PostgreSQL database PostgreSQL is the recommended data storage option for performance, stability,
and data management (backup/restore, and so on) in a production environment.

AMQ Streams Kafka storage is provided for production environments where database
management expertise is not available, or where storage in Kafka is a specific
requirement.

Additional resources

For more details on storage options, see Installing and deploying Service Registry on OpenShift .

1.6. VALIDATE KAFKA MESSAGES USING SCHEMAS AND JAVA CLIENT
SERIALIZERS/DESERIALIZERS

Kafka producer applications can use serializers to encode messages that conform to a specific event
schema. Kafka consumer applications can then use deserializers to validate that messages have been
serialized using the correct schema, based on a specific schema ID.

Figure 1.2. Service Registry and Kafka client SerDes architecture

Service Registry provides Kafka client serializers/deserializers (SerDes) to validate the following

Red Hat Integration 2023.q4 Service Registry User Guide

12

https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q4/html-single/installing_and_deploying_service_registry_on_openshift/index

Service Registry provides Kafka client serializers/deserializers (SerDes) to validate the following
message types at runtime:

Apache Avro

Google Protobuf

JSON Schema

The Service Registry Maven repository and source code distributions include the Kafka SerDes
implementations for these message types, which Kafka client application developers can use to
integrate with Service Registry.

These implementations include custom Java classes for each supported message type, for example,
io.apicurio.registry.serde.avro, which client applications can use to pull schemas from Service Registry
at runtime for validation.

Additional resources

Chapter 7, Validating Kafka messages using serializers/deserializers in Java clients

1.7. STREAM DATA TO EXTERNAL SYSTEMS WITH KAFKA CONNECT
CONVERTERS

You can use Service Registry with Apache Kafka Connect to stream data between Kafka and external
systems. Using Kafka Connect, you can define connectors for different systems to move large volumes
of data into and out of Kafka-based systems.

Figure 1.3. Service Registry and Kafka Connect architecture

Service Registry provides the following features for Kafka Connect:

Storage for Kafka Connect schemas

Kafka Connect converters for Apache Avro and JSON Schema

Core Registry API to manage schemas

You can use the Avro and JSON Schema converters to map Kafka Connect schemas into Avro or JSON
schemas. These schemas can then serialize message keys and values into the compact Avro binary

CHAPTER 1. INTRODUCTION TO SERVICE REGISTRY

13

format or human-readable JSON format. The converted JSON is less verbose because the messages
do not contain the schema information, only the schema ID.

Service Registry can manage and track the Avro and JSON schemas used in the Kafka topics. Because
the schemas are stored in Service Registry and decoupled from the message content, each message
must only include a tiny schema identifier. For an I/O bound system like Kafka, this means more total
throughput for producers and consumers.

The Avro and JSON Schema serializers and deserializers (SerDes) provided by Service Registry are used
by Kafka producers and consumers in this use case. Kafka consumer applications that you write to
consume change events can use the Avro or JSON SerDes to deserialize these events. You can install
the Service Registry SerDes in any Kafka-based system and use them along with Kafka Connect, or with
a Kafka Connect-based system such as Debezium.

Additional resources

Configuring Debezium to use Avro serialization and Service Registry

Example of using Debezium to monitor the PostgreSQL database used by Apicurio Registry

Apache Kafka Connect documentation

1.8. SERVICE REGISTRY DEMONSTRATION EXAMPLES

Service Registry provides open source example applications that demonstrate how to use Service
Registry in different use case scenarios. For example, these include storing schemas used by Kafka
serializer and deserializer (SerDes) Java classes. These classes fetch the schema from Service Registry
for use when producing or consuming operations to serialize, deserialize, or validate the Kafka message
payload.

These applications demonstrate use cases such as the following examples:

Apache Avro Kafka SerDes

Apache Avro Maven plug-in

Apache Camel Quarkus and Kafka

CloudEvents

Confluent Kafka SerDes

Custom ID strategy

Event-driven architecture with Debezium

Google Protobuf Kafka SerDes

JSON Schema Kafka SerDes

REST clients

Additional resources

For more details, see https://github.com/Apicurio/apicurio-registry-examples

Red Hat Integration 2023.q4 Service Registry User Guide

14

https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q2/html-single/debezium_user_guide/index#configuring-debezium-connectors-to-use-avro-serialization
https://github.com/Apicurio/apicurio-registry-examples/tree/main/event-driven-architecture
https://kafka.apache.org/documentation/#connect
https://github.com/Apicurio/apicurio-registry-examples

1.9. SERVICE REGISTRY AVAILABLE DISTRIBUTIONS

Service Registry provides the following distribution options.

Table 1.2. Service Registry Operator and images

Distribution Location Release category

Service Registry Operator OpenShift web console under
Operators → OperatorHub

General Availability

Container image for Service Registry
Operator

Red Hat Ecosystem Catalog General Availability

Container image for Kafka storage in
AMQ Streams

Red Hat Ecosystem Catalog General Availability

Container image for database storage
in PostgreSQL

Red Hat Ecosystem Catalog General Availability

Table 1.3. Service Registry zip downloads

Distribution Location Release category

Example custom resource definitions
for installation

Red Hat Software Downloads General Availability

Service Registry v1 to v2 migration tool Red Hat Software Downloads General Availability

Maven repository Red Hat Software Downloads General Availability

Source code Red Hat Software Downloads General Availability

Kafka Connect converters Red Hat Software Downloads General Availability

NOTE

You must have a subscription for Red Hat Integration and be logged into the Red Hat
Customer Portal to access the available Service Registry distributions.

CHAPTER 1. INTRODUCTION TO SERVICE REGISTRY

15

https://catalog.redhat.com/software/containers/search
https://catalog.redhat.com/software/containers/search
https://catalog.redhat.com/software/containers/search
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=red.hat.integration
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=red.hat.integration
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=red.hat.integration
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=red.hat.integration
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=red.hat.integration

CHAPTER 2. SERVICE REGISTRY CONTENT RULES
This chapter introduces the optional rules used to govern Service Registry content and provides details
on the available rule configuration:

Section 2.1, “Govern Service Registry content using rules”

Section 2.1.1, “When rules are applied”

Section 2.1.2, “Order of precedence of rules”

Section 2.1.3, “How rules work”

Section 2.1.4, “Content rule configuration”

2.1. GOVERN SERVICE REGISTRY CONTENT USING RULES

To govern the evolution of artifact content added to Service Registry, you can configure optional rules.
All configured global rules or artifact-specific rules must pass before a new artifact version can be
uploaded to Service Registry. Configured artifact-specific rules override any configured global rules.

The goal of these rules is to prevent invalid content from being added to Service Registry. For example,
content can be invalid for the following reasons:

Invalid syntax for a given artifact type, for example, AVRO or PROTOBUF.

Valid syntax, but semantics violate a specification.

Incompatibility, when new content includes breaking changes relative to the current artifact
version.

Artifact reference integrity, for example, a duplicate or non-existent artifact reference mapping.

You can enable optional content rules using the Service Registry web console, REST API commands, or
a Java client application.

2.1.1. When rules are applied

Rules are applied only when content is added to Service Registry. This includes the following REST
operations:

Adding an artifact

Updating an artifact

Adding an artifact version

If a rule is violated, Service Registry returns an HTTP error. The response body includes the violated rule
and a message showing what went wrong.

2.1.2. Order of precedence of rules

The order of precedence for artifact-specific and global rules is as follows:

If you enable an artifact-specific rule, and the equivalent global rule is enabled, the artifact rule
overrides the global rule.

Red Hat Integration 2023.q4 Service Registry User Guide

16

If you disable an artifact-specific rule, and the equivalent global rule is enabled, the global rule
applies.

If you disable an artifact-specific rule, and the equivalent global rule is disabled, the rule is
disabled for all artifacts.

If you set a rule value to NONE at the artifact level, you override the enabled global rule. In this
case, the artifact rule value of NONE takes precedence for this artifact, but the enabled global
rule continues to apply to any other artifacts that have the rule disabled at the artifact level.

2.1.3. How rules work

Each rule has a name and configuration information. Service Registry maintains the list of rules for each
artifact and the list of global rules. Each rule in the list consists of a name and configuration for the rule
implementation.

A rule is provided with the content of the current version of the artifact (if one exists) and the new
version of the artifact being added. The rule implementation returns true or false depending on whether
the artifact passes the rule. If not, Service Registry reports the reason why in an HTTP error response.
Some rules might not use the previous version of the content. For example, compatibility rules use
previous versions, but syntax or semantic validity rules do not.

Additional resources

For more details, see Chapter 10, Service Registry content rule reference .

2.1.4. Content rule configuration

Administrators can configure Service Registry global rules and artifact-specific rules. Developers can
configure artifact-specific rules only.

Service Registry applies the rules configured for the specific artifact. If no rules are configured at that
level, Service Registry applies the globally configured rules. If no global rules are configured, no rules are
applied.

Configure artifact rules
You can configure artifact rules using the Service Registry web console or REST API. For details, see the
following:

Chapter 3, Managing Service Registry content using the web console

Apicurio Registry REST API documentation

Configure global rules
Administrators can configure global rules in several ways:

Use the admin/rules operations in the REST API

Use the Service Registry web console

Set default global rules using Service Registry application properties

Configure default global rules

Administrators can configure Service Registry at the application level to enable or disable global rules.

CHAPTER 2. SERVICE REGISTRY CONTENT RULES

17

files/registry-rest-api.htm

Administrators can configure Service Registry at the application level to enable or disable global rules.
You can configure default global rules at installation time without post-install configuration using the
following application property format:

registry.rules.global.<ruleName>

The following rule names are currently supported:

compatibility

validity

integrity

The value of the application property must be a valid configuration option that is specific to the rule
being configured.

NOTE

You can configure these application properties as Java system properties or include
them in the Quarkus application.properties file. For more details, see the Quarkus
documentation.

Red Hat Integration 2023.q4 Service Registry User Guide

18

https://quarkus.io/guides/config#overriding-properties-at-runtime

CHAPTER 3. MANAGING SERVICE REGISTRY CONTENT
USING THE WEB CONSOLE

You can manage schema and API artifacts stored in Service Registry by using the Service Registry web
console. This includes uploading and browsing Service Registry content, configuring optional rules for
content, and generating client sdk code:

Section 3.1, “Viewing artifacts using the Service Registry web console”

Section 3.2, “Adding artifacts using the Service Registry web console”

Section 3.3, “Configuring content rules using the Service Registry web console”

Section 3.4, “Generating client SDKs for OpenAPI artifacts using the Service Registry web
console”

Section 3.5, “Changing an artifact owner using the Service Registry web console”

Section 3.6, “Configuring Service Registry instance settings using the web console”

Section 3.7, “Exporting and importing data using the Service Registry web console”

3.1. VIEWING ARTIFACTS USING THE SERVICE REGISTRY WEB
CONSOLE

You can use the Service Registry web console to browse the schema and API artifacts stored in Service
Registry. This section shows a simple example of viewing Service Registry artifacts, groups, versions, and
artifact rules.

Prerequisites

Service Registry is installed and running in your environment.

You are logged in to the Service Registry web console:
http://MY_REGISTRY_URL/ui

Artifacts have been added to Service Registry using the web console, command line, Maven
plug-in, or a Java client application.

Procedure

1. On the Artifacts tab, browse the list of artifacts stored in Service Registry, or enter a search
string to find an artifact. You can select from the list to search by specific criteria such as name,
group, labels, or global ID.

Figure 3.1. Artifacts in Service Registry web console

CHAPTER 3. MANAGING SERVICE REGISTRY CONTENT USING THE WEB CONSOLE

19

Figure 3.1. Artifacts in Service Registry web console

2. Click an artifact to view the following details:

Overview: Displays artifact version metadata such as artifact name, artifact ID, global ID,
content ID, labels, properties, and so on. Also displays rules for validity and compatibility
that you can configure for artifact content.

Documentation (OpenAPI and AsyncAPI only): Displays automatically-generated REST API
documentation.

Content: Displays a read-only view of the full artifact content. For JSON content, you can
click JSON or YAML to display your preferred format.

References: Displays a read-only view of all artifacts referenced by this artifact. You can
also click View artifacts that reference this artifact.

3. If additional versions of this artifact have been added, you can select them from the Version list
in page header.

4. To save the artifact contents to a local file, for example, my-openapi.json or my-protobuf-
schema.proto, and click Download at the end of the page.

Additional resources

Section 3.2, “Adding artifacts using the Service Registry web console”

Section 3.3, “Configuring content rules using the Service Registry web console”

Chapter 10, Service Registry content rule reference

Red Hat Integration 2023.q4 Service Registry User Guide

20

3.2. ADDING ARTIFACTS USING THE SERVICE REGISTRY WEB
CONSOLE

You can use the Service Registry web console to upload schema and API artifacts to Service Registry.
This section shows simple examples of uploading Service Registry artifacts and adding new artifact
versions.

Prerequisites

Service Registry is installed and running in your environment.

You are logged in to the Service Registry web console:
http://MY_REGISTRY_URL/ui

Procedure

1. On the Artifacts tab, click Upload artifact, and specify the following details:

Group & ID: Use the default empty settings to automatically generate an artifact ID and add
the artifact to the default artifact group. Alternatively, you can enter an optional artifact
group name or ID.

Type: Use the default Auto-Detect setting to automatically detect the artifact type, or
select the artifact type from the list, for example, Avro Schema or OpenAPI. You must
manually select the Kafka Connect Schema artifact type, which cannot be automatically
detected.

Artifact: Specify the artifact location using either of the following options:

From file: Click Browse, and select a file, or drag and drop a file. For example, my-
openapi.json or my-schema.proto. Alternatively, you can enter the file contents in the
text box.

From URL: Enter a valid and accessible URL, and click Fetch. For example:
https://petstore3.swagger.io/api/v3/openapi.json.

2. Click Upload and view the artifact details:

Overview: Displays artifact version metadata such as artifact name, artifact ID, global ID,
content ID, labels, properties, and so on. Also displays rules for validity and compatibility
that you can configure for artifact content.

Documentation (OpenAPI and AsyncAPI only): Displays automatically-generated REST API
documentation.

Content: Displays a read-only view of the full artifact content. For JSON content, you can
click JSON or YAML to display your preferred format.

References: Displays a read-only view of all artifacts referenced by this artifact. You can
also click View artifacts that reference this artifact. You can add artifact references using
the Service Registry Maven plug-in or REST API only.
The following example shows an example OpenAPI artifact:

Figure 3.2. Artifact details in Service Registry web console

CHAPTER 3. MANAGING SERVICE REGISTRY CONTENT USING THE WEB CONSOLE

21

Figure 3.2. Artifact details in Service Registry web console

3. On the Overview tab, click the Edit pencil icon to edit artifact metadata such as name or
description.
You can also enter an optional comma-separated list of labels for searching, or add key-value
pairs of arbitrary properties associated with the artifact. To add properties, perform the
following steps:

a. Click Add property.

b. Enter the key name and the value.

c. Repeat the first two steps to add multiple properties.

d. Click Save.

4. To save the artifact contents to a local file, for example, my-protobuf-schema.proto or my-
openapi.json, click Download at the end of the page.

Red Hat Integration 2023.q4 Service Registry User Guide

22

5. To add a new artifact version, click Upload new version in the page header, and drag and drop
or click Browse to upload the file, for example, my-avro-schema.json or my-openapi.json.

6. To delete an artifact, click Delete in the page header.

WARNING

Deleting an artifact deletes the artifact and all of its versions, and cannot be
undone.

Additional resources

Section 3.1, “Viewing artifacts using the Service Registry web console”

Section 3.3, “Configuring content rules using the Service Registry web console”

Chapter 10, Service Registry content rule reference

3.3. CONFIGURING CONTENT RULES USING THE SERVICE REGISTRY
WEB CONSOLE

You can use the Service Registry web console to configure optional rules to prevent invalid or
incompatible content from being added to Service Registry. All configured artifact-specific rules or
global rules must pass before a new artifact version can be uploaded to Service Registry. Configured
artifact-specific rules override any configured global rules. This section shows a simple example of
configuring global and artifact-specific rules.

Prerequisites

Service Registry is installed and running in your environment.

You are logged in to the Service Registry web console:
http://MY_REGISTRY_URL/ui

Artifacts have been added to Service Registry using the web console, command line, Maven
plug-in, or a Java client application.

When role-based authorization is enabled, you have administrator access for global rules and
artifact-specific rules, or developer access for artifact-specific rules only.

Procedure

1. On the Artifacts tab, browse the list of artifacts in Service Registry, or enter a search string to
find an artifact. You can select from the list to search by specific criteria such as artifact name,
group, labels, or global ID.

2. Click an artifact to view its version details and content rules.

3. In Artifact-specific rules, click Enable to configure a validity, compatibility, or integrity rule for

CHAPTER 3. MANAGING SERVICE REGISTRY CONTENT USING THE WEB CONSOLE

23

3. In Artifact-specific rules, click Enable to configure a validity, compatibility, or integrity rule for
artifact content, and select the appropriate rule configuration from the list. For example, for
Validity rule, select Full.

Figure 3.3. Artifact content rules in Service Registry web console

4. To access global rules, click the Global rules tab. Click Enable to configure global validity,
compatibility, or integrity rules for all artifact content, and select the appropriate rule
configuration from the list.

5. To disable an artifact rule or global rule, click the trash icon next to the rule.

Additional resources

Section 3.2, “Adding artifacts using the Service Registry web console”

Chapter 10, Service Registry content rule reference

3.4. GENERATING CLIENT SDKS FOR OPENAPI ARTIFACTS USING
THE SERVICE REGISTRY WEB CONSOLE

You can use the Service Registry web console to configure, generate, and download client software
development kits (SDKs) for OpenAPI artifacts. You can then use the generated client SDKs to build
your client applications for specific platforms based on the OpenAPI.

Service Registry generates client SDKs for the following programming languages:

C#

Go

Red Hat Integration 2023.q4 Service Registry User Guide

24

Java

PHP

Python

Ruby

Swift

TypeScript

NOTE

Client SDK generation for OpenAPI artifacts runs in your browser only, and cannot be
automated by using an API. You must regenerate the client SDK each time a new artifact
version is added in Service Registry.

Prerequisites

Service Registry is installed and running in your environment.

You are logged in to the Service Registry web console:
http://MY_REGISTRY_URL/ui

An OpenAPI artifact has been added to Service Registry using the web console, command line,
Maven plug-in, or a Java client application.

Procedure

1. On the Artifacts tab, browse the list of artifacts stored in Service Registry, or enter a search
string to find a specific OpenAPI artifact. You can select from the list to search by criteria such
as name, group, labels, or global ID.

2. Click the OpenAPI artifact in the list to view its details.

3. In the Version metadata section, click Generate client SDK, and configure the following
settings in the dialog:

Language: Select the programming language in which to generate the client SDK, for
example, Java.

Generated client class name: Enter the class name for the client SDK, for example,
MyJavaClientSDK.

Generated client package name: Enter the package name for the client SDK, for example,
io.my.example.sdk

4. Click Show advanced settings to configure optional comma-separated lists of path patterns to
include or exclude:

Include path patterns: Enter specific paths to include when generating the client SDK, for
example, **/.*, **/my-path/*. If this field is empty, all paths are included.

Exclude path patterns: Enter specific paths to exclude when generating the client SDK, for
example, **/my-other-path/*. If this field is empty, no paths are excluded.

Figure 3.4. Generate a Java client SDK in Service Registry web console

CHAPTER 3. MANAGING SERVICE REGISTRY CONTENT USING THE WEB CONSOLE

25

Figure 3.4. Generate a Java client SDK in Service Registry web console

5. When you have configured the settings in the dialog, click Generate and download.

6. Enter a file name for the client SDK in the dialog, for example, my-client-java.zip, and click
Save to download.

Additional resources

Service Registry uses Kiota from Microsoft to generate the client SDKs. For more information,
see the Kiota project in GitHub .

For more details and examples of using the generated SDKs to build client applications, see the
Kiota documentation.

3.5. CHANGING AN ARTIFACT OWNER USING THE SERVICE REGISTRY
WEB CONSOLE

As an administrator or as an owner of a schema or API artifact, you can use the Service Registry web
console to change the artifact owner to another user account.

For example, this feature is useful if the Artifact owner-only authorization option is set for the Service
Registry instance on the Settings tab so that only owners or administrators can modify artifacts. You
might need to change owner if the owner user leaves the organization or the owner account is deleted.

NOTE

Red Hat Integration 2023.q4 Service Registry User Guide

26

https://github.com/microsoft/kiota
https://learn.microsoft.com/en-us/openapi/kiota

NOTE

The Artifact owner-only authorization setting and the artifact Owner field are displayed
only if authentication was enabled when the Service Registry instance was deployed. For
more details, see Installing and deploying Service Registry on OpenShift .

Prerequisites

The Service Registry instance is deployed and the artifact is created.

You are logged in to the Service Registry web console as the artifact’s current owner or as an
administrator:
http://MY_REGISTRY_URL/ui

Procedure

1. On the Artifacts tab, browse the list of artifacts stored in Service Registry, or enter a search
string to find the artifact. You can select from the list to search by criteria such as name, group,
labels, or global ID.

2. Click the artifact that you want to reassign.

3. In the Version metadata section, click the pencil icon next to the Owner field.

4. In the New owner field, select or enter an account name.

5. Click Change owner.

Additional resources

Installing and deploying Service Registry on OpenShift

3.6. CONFIGURING SERVICE REGISTRY INSTANCE SETTINGS USING
THE WEB CONSOLE

As an administrator, you can use the Service Registry web console to configure dynamic settings for
Service Registry instances at runtime. You can manage configuration options for features such as
authentication, authorization, and API compatibility.

NOTE

Authentication and authorization settings are only displayed in the web console if
authentication was already enabled when the Service Registry instance was deployed. For
more details, see the Installing and deploying Service Registry on OpenShift .

Prerequisites

The Service Registry instance is already deployed.

You are logged in to the Service Registry web console with administrator access:
http://MY_REGISTRY_URL/ui

Procedure

CHAPTER 3. MANAGING SERVICE REGISTRY CONTENT USING THE WEB CONSOLE

27

https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q4/html-single/installing_and_deploying_service_registry_on_openshift/index
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q4/html-single/installing_and_deploying_service_registry_on_openshift/index
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q4/html-single/installing_and_deploying_service_registry_on_openshift/index

1. In the Service Registry web console, click the Settings tab.

2. Select the settings that you want to configure for this Service Registry instance:

Table 3.1. Authentication settings

Setting Description

HTTP basic authentication Displayed only when authentication is already enabled. When
selected, Service Registry users can authenticate using HTTP basic
authentication, in addition to OAuth. Not selected by default.

Table 3.2. Authorization settings

Setting Description

Anonymous read access Displayed only when authentication is already selected. When
selected, Service Registry grants read-only access to requests
from anonymous users without any credentials. This setting is
useful if you want to use this instance to publish schemas or APIs
externally. Not selected by default.

Artifact owner-only
authorization

Displayed only when authentication is already enabled. When
selected, only the user who created an artifact can modify that
artifact. Not selected by default.

Artifact group owner-only
authorization

Displayed only when authentication is already enabled and
Artifact owner-only authorization is selected. When selected,
only the user who created an artifact group has write access to
that artifact group, for example, to add or remove artifacts in that
group. Not selected by default.

Authenticated read access Displayed only when authentication is already enabled. When
selected, Service Registry grants at least read-only access to
requests from any authenticated user regardless of their user role.
Not selected by default.

Table 3.3. Compatibility settings

Setting Description

Legacy ID mode
(compatibility API)

When selected, the Confluent Schema Registry compatibility API
uses globalId instead of contentId as an artifact identifier. This
setting is useful when migrating from legacy Service Registry
instances based on the v1 Core Registry API. Not selected by
default.

Table 3.4. Web console settings

Red Hat Integration 2023.q4 Service Registry User Guide

28

Setting Description

Download link expiry The number of seconds that a generated link to a .zip download
file is active before expiring for security reasons, for example, when
exporting artifact data from the instance. Defaults to 30 seconds.

UI read-only mode When selected, the Service Registry web console is set to read-
only, preventing create, read, update, or delete operations.
Changes made using the Core Registry API are not affected by this
setting. Not selected by default.

Table 3.5. Additional properties

Setting Description

Delete artifact version When selected, users are permitted to delete artifact versions in
this instance by using the Core Registry API. Not selected by
default.

Additional resources

Installing and deploying Service Registry on OpenShift

3.7. EXPORTING AND IMPORTING DATA USING THE SERVICE
REGISTRY WEB CONSOLE

As an administrator, you can use the Service Registry web console to export data from one Service
Registry instance, and import this data into another Service Registry instance. You can use this feature
to easily migrate data between different instances.

The following example shows how to export and import existing data in a .zip file from one Service
Registry instance to another instance. All of the artifact data contained in the Service Registry instance
is exported in the .zip file.

NOTE

You can import only Service Registry data that has been exported from another Service
Registry instance.

Prerequisites

Service Registry instances have been created as follows:

The source instance that you are exporting from contains at least one schema or API
artifact

The target instance that you are importing into is empty to preserve unique IDs

You are logged into the Service Registry web console with administrator access:

CHAPTER 3. MANAGING SERVICE REGISTRY CONTENT USING THE WEB CONSOLE

29

https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q4/html-single/installing_and_deploying_service_registry_on_openshift/index

http://MY_REGISTRY_URL/ui

Procedure

1. In the web console for the source Service Registry instance, view the Artifacts tab.

2. Click the options icon (three vertical dots) next to Upload artifact, and select Download all
artifacts (.zip file) to export the data for this Service Registry instance to a .zip download file.

3. In the the web console for the target Service Registry instance, view the Artifacts tab.

4. Click the options icon next to Upload artifact, and select Upload multiple artifacts.

5. Drag and drop or browse to the .zip download file that you exported earlier.

6. Click Upload and wait for the data to be imported.

Red Hat Integration 2023.q4 Service Registry User Guide

30

CHAPTER 4. MANAGING SERVICE REGISTRY CONTENT
USING THE REST API

Client applications can use Service Registry REST API operations to manage schema and API artifacts in
Service Registry, for example, in a CI/CD pipeline deployed in production. The Core Registry API v2
provides operations for artifacts, versions, metadata, and rules stored in Service Registry. For detailed
information, see the Apicurio Registry REST API documentation .

This chapter shows examples of how to use the Core Registry API v2 to perform the following tasks:

Section 4.1, “Managing schema and API artifacts using Service Registry REST API commands”

Section 4.2, “Managing schema and API artifact versions using Service Registry REST API
commands”

Section 4.3, “Managing schema and API artifact references using Service Registry REST API
commands”

Section 4.4, “Exporting and importing registry data using Service Registry REST API
commands”

Prerequisites

Chapter 1, Introduction to Service Registry

Additional resources

Apicurio Registry REST API documentation

4.1. MANAGING SCHEMA AND API ARTIFACTS USING SERVICE
REGISTRY REST API COMMANDS

This section shows a simple curl-based example of using the Core Registry API v2 to add and retrieve a
simple schema artifact in Service Registry.

Prerequisites

Service Registry is installed and running in your environment.

Procedure

1. Add an artifact to Service Registry using the /groups/{group}/artifacts operation. The following
example curl command adds a simple schema artifact for a share price application:

This example adds an Apache Avro schema artifact with an artifact ID of share-price. If you
do not specify a unique artifact ID, Service Registry generates one automatically as a UUID.

MY-REGISTRY-URL is the host name on which Service Registry is deployed. For example:

$ curl -X POST -H "Content-Type: application/json; artifactType=AVRO" \
 -H "X-Registry-ArtifactId: share-price" \
 -H "Authorization: Bearer $ACCESS_TOKEN" \
 --data '{"type":"record","name":"price","namespace":"com.example", \
 "fields":[{"name":"symbol","type":"string"},{"name":"price","type":"string"}]}' \
 MY-REGISTRY-URL/apis/registry/v2/groups/my-group/artifacts

CHAPTER 4. MANAGING SERVICE REGISTRY CONTENT USING THE REST API

31

files/registry-rest-api.htm
files/registry-rest-api.htm

MY-REGISTRY-URL is the host name on which Service Registry is deployed. For example:
my-cluster-service-registry-myproject.example.com.

This example specifies a group ID of my-group in the API path. If you do not specify a
unique group ID, you must specify ../groups/default in the API path.

2. Verify that the response includes the expected JSON body to confirm that the artifact was
added. For example:

No version was specified when adding the artifact, so the default version 1 is created
automatically.

This was the second artifact added to Service Registry, so the global ID and content ID have
a value of 2.

3. Retrieve the artifact content from Service Registry using its artifact ID in the API path. In this
example, the specified ID is share-price:

Additional resources

For more details, see the Apicurio Registry REST API documentation .

4.2. MANAGING SCHEMA AND API ARTIFACT VERSIONS USING
SERVICE REGISTRY REST API COMMANDS

If you do not specify an artifact version when adding schema and API artifacts using the Core Registry
API v2, Service Registry generates a version automatically. The default version when creating a new
artifact is 1.

Service Registry also supports custom versioning where you can specify a version using the X-Registry-
Version HTTP request header as a string. Specifying a custom version value overrides the default
version normally assigned when creating or updating an artifact. You can then use this version value
when executing REST API operations that require a version.

This section shows a simple curl-based example of using the Core Registry API v2 to add and retrieve a
custom Apache Avro schema version in Service Registry. You can specify custom versions to add or
update artifacts, or to add artifact versions.

Prerequisites

Service Registry is installed and running in your environment.

Procedure

1. Add an artifact version in the registry using the /groups/{group}/artifacts operation. The

{"createdBy":"","createdOn":"2021-04-16T09:07:51+0000","modifiedBy":"",
"modifiedOn":"2021-04-16T09:07:51+0000","id":"share-price","version":"1",
"type":"AVRO","globalId":2,"state":"ENABLED","groupId":"my-group","contentId":2}

$ curl -H "Authorization: Bearer $ACCESS_TOKEN" \
 MY-REGISTRY-URL/apis/registry/v2/groups/my-group/artifacts/share-price
 {"type":"record","name":"price","namespace":"com.example",
 "fields":[{"name":"symbol","type":"string"},{"name":"price","type":"string"}]}

Red Hat Integration 2023.q4 Service Registry User Guide

32

files/registry-rest-api.htm

1. Add an artifact version in the registry using the /groups/{group}/artifacts operation. The
following example curl command adds a simple artifact for a share price application:

This example adds an Avro schema artifact with an artifact ID of my-share-price and
version of 1.1.1. If you do not specify a version, Service Registry automatically generates a
default version of 1.

MY-REGISTRY-URL is the host name on which Service Registry is deployed. For example:
my-cluster-service-registry-myproject.example.com.

This example specifies a group ID of my-group in the API path. If you do not specify a
unique group ID, you must specify ../groups/default in the API path.

2. Verify that the response includes the expected JSON body to confirm that the custom artifact
version was added. For example:

A custom version of 1.1.1 was specified when adding the artifact.

This was the third artifact added to the registry, so the global ID and content ID have a value
of 3.

3. Retrieve the artifact content from the registry using its artifact ID and version in the API path. In
this example, the specified ID is my-share-price and the version is 1.1.1:

Additional resources

For more details, see the Apicurio Registry REST API documentation .

4.3. MANAGING SCHEMA AND API ARTIFACT REFERENCES USING
SERVICE REGISTRY REST API COMMANDS

Some Service Registry artifact types can include artifact references from one artifact file to another.
You can create efficiencies by defining reusable schema or API artifacts, and then referencing them
from multiple locations in artifact references.

The following artifact types support artifact references:

Apache Avro

$ curl -X POST -H "Content-Type: application/json; artifactType=AVRO" \
 -H "X-Registry-ArtifactId: my-share-price" -H "X-Registry-Version: 1.1.1" \
 -H "Authorization: Bearer $ACCESS_TOKEN" \
 --data '{"type":"record","name":" p","namespace":"com.example", \
 "fields":[{"name":"symbol","type":"string"},{"name":"price","type":"string"}]}' \
 MY-REGISTRY-URL/apis/registry/v2/groups/my-group/artifacts

{"createdBy":"","createdOn":"2021-04-16T10:51:43+0000","modifiedBy":"",
"modifiedOn":"2021-04-16T10:51:43+0000","id":"my-share-price","version":"1.1.1",
"type":"AVRO","globalId":3,"state":"ENABLED","groupId":"my-group","contentId":3}

$ curl -H "Authorization: Bearer $ACCESS_TOKEN" \
MY-REGISTRY-URL/apis/registry/v2/groups/my-group/artifacts/my-share-
price/versions/1.1.1
{"type":"record","name":"price","namespace":"com.example",
 "fields":[{"name":"symbol","type":"string"},{"name":"price","type":"string"}]}

CHAPTER 4. MANAGING SERVICE REGISTRY CONTENT USING THE REST API

33

files/registry-rest-api.htm

Google Protobuf

JSON Schema

OpenAPI

AsyncAPI

This section shows a simple curl-based example of using the Core Registry API v2 to add and retrieve an
artifact reference to a simple Avro schema artifact in Service Registry.

This example first creates a schema artifact named ItemId:

ItemId schema

This example then creates a schema artifact named Item, which includes a reference to the nested
ItemId artifact.

Item schema with nested ItemId schema

Prerequisites

Service Registry is installed and running in your environment.

Procedure

1. Add the ItemId schema artifact that you want to create the nested artifact reference to using
the /groups/{group}/artifacts operation:

{
 "namespace":"com.example.common",
 "name":"ItemId",
 "type":"record",
 "fields":[
 {
 "name":"id",
 "type":"int"
 }
]
}

{
 "namespace":"com.example.common",
 "name":"Item",
 "type":"record",
 "fields":[
 {
 "name":"itemId",
 "type":"com.example.common.ItemId"
 },
]
}

$ curl -X POST MY-REGISTRY-URL/apis/registry/v2/groups/my-group/artifacts \
 -H "Content-Type: application/json; artifactType=AVRO" \

Red Hat Integration 2023.q4 Service Registry User Guide

34

This example adds an Avro schema artifact with an artifact ID of ItemId. If you do not specify
a unique artifact ID, Service Registry generates one automatically as a UUID.

MY-REGISTRY-URL is the host name on which Service Registry is deployed. For example:
my-cluster-service-registry-myproject.example.com.

This example specifies a group ID of my-group in the API path. If you do not specify a
unique group ID, you must specify ../groups/default in the API path.

2. Verify that the response includes the expected JSON body to confirm that the artifact was
added. For example:

3. Add the Item schema artifact that includes the artifact reference to the ItemId schema using
the /groups/{group}/artifacts operation:

For artifact references, you must specify the custom content type of
application/create.extended+json, which extends the application/json content type.

4. Verify that the response includes the expected JSON body to confirm that the artifact was
created with the reference. For example:

 -H "X-Registry-ArtifactId: ItemId" \
 -H "Authorization: Bearer $ACCESS_TOKEN" \
 --data '{"namespace": "com.example.common", "type": "record", "name": "ItemId", "fields":
[{"name":"id", "type":"int"}]}'

{"name":"ItemId","createdBy":"","createdOn":"2022-04-
14T10:50:09+0000","modifiedBy":"","modifiedOn":"2022-04-
14T10:50:09+0000","id":"ItemId","version":"1","type":"AVRO","globalId":1,"state":"ENABLED",
"groupId":"my-group","contentId":1,"references":[]}

$ curl -X POST MY-REGISTRY-URL/apis/registry/v2/groups/my-group/artifacts \
-H 'Content-Type: application/create.extended+json' \
-H "X-Registry-ArtifactId: Item" \
-H 'X-Registry-ArtifactType: AVRO' \
-H "Authorization: Bearer $ACCESS_TOKEN" \
--data-raw '{
 "content": "{\r\n \"namespace\":\"com.example.common\",\r\n \"name\":\"Item\",\r\n
\"type\":\"record\",\r\n \"fields\":[\r\n {\r\n \"name\":\"itemId\",\r\n
\"type\":\"com.example.common.ItemId\"\r\n }\r\n]\r\n}",
 "references": [
 {
 "groupId": "my-group",
 "artifactId": "ItemId",
 "name": "com.example.common.ItemId",
 "version": "1"
 }
]
}'

{"name":"Item","createdBy":"","createdOn":"2022-04-
14T11:52:15+0000","modifiedBy":"","modifiedOn":"2022-04-
14T11:52:15+0000","id":"Item","version":"1","type":"AVRO","globalId":2,"state":"ENABLED","g
roupId":"my-group","contentId":2, "references":[{"artifactId":"ItemId","groupId":"my-
group","name":"ItemId","version":"1"}] }

CHAPTER 4. MANAGING SERVICE REGISTRY CONTENT USING THE REST API

35

5. Retrieve the artifact reference from Service Registry by specifying the global ID of the artifact
that includes the reference. In this example, the specified global ID is 2:

6. Verify that the response includes the expected JSON body for this artifact reference. For
example:

Additional resources

For more details, see the Apicurio Registry REST API documentation .

For more examples of artifact references, see the section on configuring each artifact type in
Chapter 8, Configuring Kafka serializers/deserializers in Java clients .

4.4. EXPORTING AND IMPORTING REGISTRY DATA USING SERVICE
REGISTRY REST API COMMANDS

As an administrator, you can use the Core Registry API v2 to export data from one Service Registry
instance and import into another Service Registry instance, so you can migrate data between different
instances.

This section shows a simple curl-based example of using the Core Registry API v2 to export and import
existing data in .zip format from one Service Registry instance to another. All of the artifact data
contained in the Service Registry instance is exported in the .zip file.

NOTE

You can import only Service Registry data that has been exported from another Service
Registry instance.

Prerequisites

Service Registry is installed and running in your environment.

Service Registry instances have been created:

The source instance that you want to export data from contains at least one schema or API
artifact.

The target instance that you want to import data into is empty to preserve unique IDs.

Procedure

1. Export the Service Registry data from your existing source Service Registry instance:

$ curl -H "Authorization: Bearer $ACCESS_TOKEN" MY-REGISTRY-
URL/apis/registry/v2/ids/globalIds/2/references

[{"groupId":"my-
group","artifactId":"ItemId","version":"1","name":"com.example.common.ItemId"}]

$ curl MY-REGISTRY-URL/apis/registry/v2/admin/export \
 -H "Authorization: Bearer $ACCESS_TOKEN" \
 --output my-registry-data.zip

Red Hat Integration 2023.q4 Service Registry User Guide

36

files/registry-rest-api.htm

MY-REGISTRY-URL is the host name on which the source Service Registry is deployed. For
example: my-cluster-source-registry-myproject.example.com.

2. Import the registry data into your target Service Registry instance:

MY-REGISTRY-URL is the host name on which the target Service Registry is deployed. For
example: my-cluster-target-registry-myproject.example.com.

Additional resources

For more details, see the admin endpoint in the Apicurio Registry REST API documentation .

For details on export tools for migrating from Service Registry version 1.x to 2.x, see Apicurio
Registry export utility for 1.x versions.

$ curl -X POST "MY-REGISTRY-URL/apis/registry/v2/admin/import" \
 -H "Content-Type: application/zip" -H "Authorization: Bearer $ACCESS_TOKEN" \
 --data-binary @my-registry-data.zip

CHAPTER 4. MANAGING SERVICE REGISTRY CONTENT USING THE REST API

37

files/registry-rest-api.htm
https://github.com/Apicurio/apicurio-registry/tree/main/utils/exportV1

CHAPTER 5. MANAGING SERVICE REGISTRY CONTENT
USING THE MAVEN PLUG-IN

When developing client applications, you can use the Service Registry Maven plug-in to manage schema
and API artifacts stored in Service Registry:

Section 5.1, “Adding schema and API artifacts using the Maven plug-in”

Section 5.2, “Downloading schema and API artifacts using the Maven plug-in”

Section 5.3, “Testing schema and API artifacts using the Maven plug-in”

Section 5.4, “Adding artifact references manually using the Service Registry Maven plug-in”

Section 5.5, “Adding artifact references automatically using the Service Registry Maven plug-in”

Prerequisites

Service Registry is installed and running in your environment.

Apache Maven is installed and configured in your environment.

5.1. ADDING SCHEMA AND API ARTIFACTS USING THE MAVEN PLUG-
IN

The most common use case for the Maven plug-in is adding artifacts during a build of your client
application. You can accomplish this by using the register execution goal.

Prerequisites

You have created a Maven project for your client application. For more details, see the Apache
Maven documentation.

Procedure

1. Update your Maven pom.xml file to use the apicurio-registry-maven-plugin to register an
artifact. The following example shows registering Apache Avro and GraphQL schemas:

<plugin>
 <groupId>io.apicurio</groupId>
 <artifactId>apicurio-registry-maven-plugin</artifactId>
 <version>${apicurio.version}</version>
 <executions>
 <execution>
 <phase>generate-sources</phase>
 <goals>
 <goal>register</goal> 1
 </goals>
 <configuration>
 <registryUrl>MY-REGISTRY-URL/apis/registry/v2</registryUrl> 2
 <authServerUrl>MY-AUTH-SERVER</authServerUrl>
 <clientId>MY-CLIENT-ID</clientId>
 <clientSecret>MY-CLIENT-SECRET</clientSecret> 3

Red Hat Integration 2023.q4 Service Registry User Guide

38

https://maven.apache.org/index.html

1

2

3

4

5

Specify register as the execution goal to upload the schema artifact to Service Registry.

Specify the Service Registry URL with the ../apis/registry/v2 endpoint.

If authentication is required, you can specify your authentication server and client
credentials.

Specify the Service Registry artifact group ID. You can specify the default group if you do
not want to use a unique group ID.

You can register multiple artifacts using the specified group ID, artifact ID, and location.

2. Build your Maven project, for example, by using the mvn package command.

Additional resources

For more details on using Apache Maven, see the Apache Maven documentation.

For open source examples of using the Service Registry Maven plug-in, see the Apicurio
Registry demonstration examples.

5.2. DOWNLOADING SCHEMA AND API ARTIFACTS USING THE
MAVEN PLUG-IN

You can use the Maven plug-in to download artifacts from Service Registry. This is often useful, for
example, when generating code from a registered schema.

Prerequisites

You have created a Maven project for your client application. For more details, see the Apache
Maven documentation.

 <clientScope>MY-CLIENT-SCOPE</clientScope>
 <artifacts>
 <artifact>
 <groupId>TestGroup</groupId> 4
 <artifactId>FullNameRecord</artifactId>
 <file>${project.basedir}/src/main/resources/schemas/record.avsc</file>
 <ifExists>FAIL</ifExists>
 </artifact>
 <artifact>
 <groupId>TestGroup</groupId>
 <artifactId>ExampleAPI</artifactId> 5
 <type>GRAPHQL</type>
 <file>${project.basedir}/src/main/resources/apis/example.graphql</file>
 <ifExists>RETURN_OR_UPDATE</ifExists>
 <canonicalize>true</canonicalize>
 </artifact>
 </artifacts>
 </configuration>
 </execution>
 </executions>
 </plugin>

CHAPTER 5. MANAGING SERVICE REGISTRY CONTENT USING THE MAVEN PLUG-IN

39

https://maven.apache.org/index.html
https://github.com/Apicurio/apicurio-registry-examples
https://maven.apache.org/index.html

1

2

3

4

5

Procedure

1. Update your Maven pom.xml file to use the apicurio-registry-maven-plugin to download an
artifact. The following example shows downloading Apache Avro and GraphQL schemas.

Specify download as the execution goal.

Specify the Service Registry URL with the ../apis/registry/v2 endpoint.

If authentication is required, you can specify your authentication server and client
credentials.

Specify the Service Registry artifact group ID. You can specify the default group if you do
not want to use a unique group.

You can download multiple artifacts to a specified directory using the artifact ID.

2. Build your Maven project, for example, by using the mvn package command.

<plugin>
 <groupId>io.apicurio</groupId>
 <artifactId>apicurio-registry-maven-plugin</artifactId>
 <version>${apicurio.version}</version>
 <executions>
 <execution>
 <phase>generate-sources</phase>
 <goals>
 <goal>download</goal> 1
 </goals>
 <configuration>
 <registryUrl>MY-REGISTRY-URL/apis/registry/v2</registryUrl> 2
 <authServerUrl>MY-AUTH-SERVER</authServerUrl>
 <clientId>MY-CLIENT-ID</clientId>
 <clientSecret>MY-CLIENT-SECRET</clientSecret> 3
 <clientScope>MY-CLIENT-SCOPE</clientScope>
 <artifacts>
 <artifact>
 <groupId>TestGroup</groupId> 4
 <artifactId>FullNameRecord</artifactId> 5
 <file>${project.build.directory}/classes/record.avsc</file>
 <overwrite>true</overwrite>
 </artifact>
 <artifact>
 <groupId>TestGroup</groupId>
 <artifactId>ExampleAPI</artifactId>
 <version>1</version>
 <file>${project.build.directory}/classes/example.graphql</file>
 <overwrite>true</overwrite>
 </artifact>
 </artifacts>
 </configuration>
 </execution>
 </executions>
</plugin>

Red Hat Integration 2023.q4 Service Registry User Guide

40

Additional resources

For more details on using Apache Maven, see the Apache Maven documentation.

For open source examples of using the Service Registry Maven plug-in, see the Apicurio
Registry demonstration examples.

5.3. TESTING SCHEMA AND API ARTIFACTS USING THE MAVEN
PLUG-IN

You might want to verify that an artifact can be registered without actually making any changes. This is
often useful when rules are configured in Service Registry. Testing the artifact results in a failure if the
artifact content violates any of the configured rules.

NOTE

When testing artifacts using the Maven plug-in, even if the artifact passes the test, no
content is added to Service Registry.

Prerequisites

You have created a Maven project for your client application. For more details, see the Apache
Maven documentation.

Procedure

1. Update your Maven pom.xml file to use the apicurio-registry-maven-plugin to test an artifact.
The following example shows testing an Apache Avro schema:

<plugin>
 <groupId>io.apicurio</groupId>
 <artifactId>apicurio-registry-maven-plugin</artifactId>
 <version>${apicurio.version}</version>
 <executions>
 <execution>
 <phase>generate-sources</phase>
 <goals>
 <goal>test-update</goal> 1
 </goals>
 <configuration>
 <registryUrl>MY-REGISTRY-URL/apis/registry/v2</registryUrl> 2
 <authServerUrl>MY-AUTH-SERVER</authServerUrl>
 <clientId>MY-CLIENT-ID</clientId>
 <clientSecret>MY-CLIENT-SECRET</clientSecret> 3
 <clientScope>MY-CLIENT-SCOPE</clientScope>
 <artifacts>
 <artifact>
 <groupId>TestGroup</groupId> 4
 <artifactId>FullNameRecord</artifactId>
 <file>${project.basedir}/src/main/resources/schemas/record.avsc</file> 5
 </artifact>
 </artifacts>
 </configuration>

CHAPTER 5. MANAGING SERVICE REGISTRY CONTENT USING THE MAVEN PLUG-IN

41

https://maven.apache.org/index.html
https://github.com/Apicurio/apicurio-registry-examples
https://maven.apache.org/index.html

1

2

3

4

5

Specify test-update as the execution goal to test the schema artifact.

Specify the Service Registry URL with the ../apis/registry/v2 endpoint.

If authentication is required, you can specify your authentication server and client
credentials.

Specify the Service Registry artifact group ID. You can specify the default group if you do
not want to use a unique group.

You can test multiple artifacts from a specified directory using the artifact ID.

2. Build your Maven project, for example, by using the mvn package command.

Additional resources

For more details on using Apache Maven, see the Apache Maven documentation.

For open source examples of using the Service Registry Maven plug-in, see the Apicurio
Registry demonstration examples.

5.4. ADDING ARTIFACT REFERENCES MANUALLY USING THE
SERVICE REGISTRY MAVEN PLUG-IN

Some Service Registry artifact types can include artifact references from one artifact file to another.
You can create efficiencies by defining reusable schema or API artifacts, and then referencing them
from multiple locations in artifact references.

The following artifact types support artifact references:

Apache Avro

Google Protobuf

JSON Schema

OpenAPI

AsyncAPI

This section shows a simple example of using the Service Registry Maven plug-in to manually register an
artifact reference to a simple Avro schema artifact stored in Service Registry. This example assumes
that the following Exchange schema artifact has already been created in Service Registry:

Exchange schema

 </execution>
 </executions>
 </plugin>

{
 "namespace": "com.kubetrade.schema.common",
 "type": "enum",

Red Hat Integration 2023.q4 Service Registry User Guide

42

https://maven.apache.org/index.html
https://github.com/Apicurio/apicurio-registry-examples

This example then creates a TradeKey schema artifact, which includes a reference to the nested
Exchange schema artifact:

TradeKey schema with nested reference to Exchange schema

Prerequisites

You have created a Maven project for your client application. For more details, see the Apache
Maven documentation.

The referenced Exchange schema artifact is already created in Service Registry.

Procedure

1. Update your Maven pom.xml file to use the apicurio-registry-maven-plugin to register the
TradeKey schema, which includes a nested reference to the Exchange schema as follows:

 "name": "Exchange",
 "symbols" : ["GEMINI"]
}

{
 "namespace": "com.kubetrade.schema.trade",
 "type": "record",
 "name": "TradeKey",
 "fields": [
 {
 "name": "exchange",
 "type": "com.kubetrade.schema.common.Exchange"
 },
 {
 "name": "key",
 "type": "string"
 }
]
}

<plugin>
 <groupId>io.apicurio</groupId>
 <artifactId>apicurio-registry-maven-plugin</artifactId>
 <version>${apicurio-registry.version}</version>
 <executions>
 <execution>
 <phase>generate-sources</phase>
 <goals>
 <goal>register</goal> 1
 </goals>
 <configuration>
 <registryUrl>MY-REGISTRY-URL/apis/registry/v2</registryUrl> 2
 <authServerUrl>MY-AUTH-SERVER</authServerUrl>
 <clientId>MY-CLIENT-ID</clientId>
 <clientSecret>MY-CLIENT-SECRET</clientSecret> 3
 <clientScope>MY-CLIENT-SCOPE</clientScope>
 <artifacts>

CHAPTER 5. MANAGING SERVICE REGISTRY CONTENT USING THE MAVEN PLUG-IN

43

https://maven.apache.org/index.html

1

2

3

4

5

Specify register as the execution goal to upload the schema artifacts to Service Registry.

Specify the Service Registry URL by using the ../apis/registry/v2 endpoint.

If authentication is required, you can specify your authentication server and client
credentials.

Specify the Service Registry artifact group ID. You can specify the default group if you do
not want to use a unique group ID.

Specify the Service Registry artifact reference using its group ID, artifact ID, version, type,
and location. You can register multiple artifact references in this way.

2. Build your Maven project, for example, by using the mvn package command.

Additional resources

For more details on using Apache Maven, see the Apache Maven documentation.

For an open source example of using the Service Registry Maven plug-in to manually register an
artifact reference, see the avro-maven-with-references demonstration example .

For more examples of artifact references, see the section on configuring each artifact type in
Chapter 8, Configuring Kafka serializers/deserializers in Java clients .

 <artifact>
 <groupId>test-group</groupId> 4
 <artifactId>TradeKey</artifactId>
 <version>2.0</version>
 <type>AVRO</type>
 <file>
 ${project.basedir}/src/main/resources/schemas/TradeKey.avsc
 </file>
 <ifExists>RETURN_OR_UPDATE</ifExists>
 <canonicalize>true</canonicalize>
 <references>
 <reference> 5
 <name>com.kubetrade.schema.common.Exchange</name>
 <groupId>test-group</groupId>
 <artifactId>Exchange</artifactId>
 <version>2.0</version>
 <type>AVRO</type>
 <file>
 ${project.basedir}/src/main/resources/schemas/Exchange.avsc
 </file>
 <ifExists>RETURN_OR_UPDATE</ifExists>
 <canonicalize>true</canonicalize>
 </reference>
 </references>
 </artifact>
 </artifacts>
 </configuration>
 </execution>
 </executions>
</plugin>

Red Hat Integration 2023.q4 Service Registry User Guide

44

https://maven.apache.org/index.html
https://github.com/Apicurio/apicurio-registry-examples/tree/main/avro-maven-with-references

5.5. ADDING ARTIFACT REFERENCES AUTOMATICALLY USING THE
SERVICE REGISTRY MAVEN PLUG-IN

Some Service Registry artifact types can include artifact references from one artifact file to another.
You can create efficiencies by defining reusable schema or API artifacts, and then referencing them
from multiple locations in artifact references.

The following artifact types support artifact references:

Apache Avro

Google Protobuf

JSON Schema

OpenAPI

AsyncAPI

You can specify a single artifact and configure the Service Registry Maven plugin to automatically
detect all references to artifacts located in the same directory, and to automatically register those
references. This is a Technology Preview feature.

IMPORTANT

Technology Preview features are not supported with RedHat production service level
agreements (SLAs) and might not be functionally complete. RedHat does not
recommend using them in production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during
the development process.

For more information about the support scope of RedHat Technology Preview features,
see Technology Preview Features Support Scope .

This section shows a simple example of using the Maven plug-in to register an Avro schema and
automatically detect and register an artifact reference to a simple schema artifact. This example
assumes that the parent TradeKey artifact and the nested Exchange schema artifact are both available
in the same directory:

TradeKey schema with nested reference to Exchange schema

{
 "namespace": "com.kubetrade.schema.trade",
 "type": "record",
 "name": "TradeKey",
 "fields": [
 {
 "name": "exchange",
 "type": "com.kubetrade.schema.common.Exchange"
 },
 {
 "name": "key",
 "type": "string"

CHAPTER 5. MANAGING SERVICE REGISTRY CONTENT USING THE MAVEN PLUG-IN

45

https://access.redhat.com/support/offerings/techpreview/

Exchange schema

Prerequisites

You have created a Maven project for your client application. For more details, see the Apache
Maven documentation.

The TradeKey schema artifact and the nested Exchange schema artifact files are both located
in the same directory.

Procedure

1. Update your Maven pom.xml file to use the apicurio-registry-maven-plugin to register the
TradeKey schema, which includes a nested reference to the Exchange schema as follows:

 }
]
}

{
 "namespace": "com.kubetrade.schema.common",
 "type": "enum",
 "name": "Exchange",
 "symbols" : ["GEMINI"]
}

<plugin>
 <groupId>io.apicurio</groupId>
 <artifactId>apicurio-registry-maven-plugin</artifactId>
 <version>${apicurio-registry.version}</version>
 <executions>
 <execution>
 <phase>generate-sources</phase>
 <goals>
 <goal>register</goal> 1
 </goals>
 <configuration>
 <registryUrl>MY-REGISTRY-URL/apis/registry/v2</registryUrl> 2
 <authServerUrl>MY-AUTH-SERVER</authServerUrl>
 <clientId>MY-CLIENT-ID</clientId>
 <clientSecret>MY-CLIENT-SECRET</clientSecret> 3
 <clientScope>MY-CLIENT-SCOPE</clientScope>
 <artifacts>
 <artifact>
 <groupId>test-group</groupId> 4
 <artifactId>TradeKey</artifactId>
 <version>2.0</version>
 <type>AVRO</type>
 <file>
 ${project.basedir}/src/main/resources/schemas/TradeKey.avsc 5
 </file>
 <ifExists>RETURN_OR_UPDATE</ifExists>
 <canonicalize>true</canonicalize>
 <autoRefs>true</autoRefs> 6

Red Hat Integration 2023.q4 Service Registry User Guide

46

https://maven.apache.org/index.html

1

2

3

4

5

6

Specify register as the execution goal to upload the schema artifacts to Service Registry.

Specify the Service Registry URL by using the ../apis/registry/v2 endpoint.

If authentication is required, you can specify your authentication server and client
credentials.

Specify the parent artifact group ID that contains the references. You can specify the
default group if you do not want to use a unique group ID.

Specify the location of the parent artifact file. All referenced artifacts must also be located
in the same directory.

Set the <autoRefs> option to true to automatically detect and register all references to
artifacts in the same directory. You can register multiple artifact references in this way.

2. Build your Maven project, for example, by using the mvn package command.

Additional resources

For more details on using Apache Maven, see the Apache Maven documentation.

For an open source example of using the Service Registry Maven plug-in to automatically
register multiple artifact references, see the avro-maven-with-references-auto demonstration
example.

For more examples of artifact references, see the section on configuring each artifact type in
Chapter 8, Configuring Kafka serializers/deserializers in Java clients .

 </artifact>
 </artifacts>
 </configuration>
 </execution>
 </executions>
</plugin>

CHAPTER 5. MANAGING SERVICE REGISTRY CONTENT USING THE MAVEN PLUG-IN

47

https://maven.apache.org/index.html
https://github.com/Apicurio/apicurio-registry-examples/tree/main/avro-maven-with-references-auto

CHAPTER 6. MANAGING SERVICE REGISTRY CONTENT
USING A JAVA CLIENT

You can write a Service Registry Java client application and use it to manage artifacts stored in Service
Registry:

Section 6.1, “Service Registry Java client”

Section 6.2, “Writing Service Registry Java client applications”

Section 6.3, “Service Registry Java client configuration”

6.1. SERVICE REGISTRY JAVA CLIENT

You can manage artifacts stored in Service Registry by using a Java client application. You can create,
read, update, or delete artifacts by using the Service Registry Java client classes. You can also use the
Service Registry Java client to perform administrator functions, such as managing global rules or
importing and exporting Service Registry data.

You can access the Service Registry Java client by adding the correct dependency to your Apache
Maven project. For more details, see Section 6.2, “Writing Service Registry Java client applications” .

The Service Registry client is implemented by using the HTTP client provided by the JDK, which you can
customize as needed. For example, you can add custom headers or enable configuration options for
Transport Layer Security (TLS) authentication. For more details, see Section 6.3, “Service Registry Java
client configuration”.

6.2. WRITING SERVICE REGISTRY JAVA CLIENT APPLICATIONS

You can write a Java client application to manage artifacts stored in Service Registry by using the
Service Registry Java client classes.

Prerequisites

Service Registry is installed and running in your environment.

You have created a Maven project for your Java client application. For more details, see Apache
Maven.

Procedure

1. Add the following dependency to your Maven project:

2. Create the Service Registry client as follows:

<dependency>
 <groupId>io.apicurio</groupId>
 <artifactId>apicurio-registry-client</artifactId>
 <version>${apicurio-registry.version}</version>
</dependency>

public class ClientExample {

Red Hat Integration 2023.q4 Service Registry User Guide

48

https://maven.apache.org/index.html

1

2

If you specify an example Service Registry URL of https://my-registry.my-domain.com,
the client will automatically append /apis/registry/v2.

For more options when creating a Service Registry client, see the Java client configuration
in the next section.

When the client is created, you can use all of the operations available in the Service Registry REST API in
the client. For more details, see the Apicurio Registry REST API documentation .

Additional resources

For an open source example of how to use and customize the Service Registry client, see the
Apicurio Registry REST client demonstration .

For details on how to use the Service Registry Kafka client serializers/deserializers (SerDes) in
producer and consumer applications, see Chapter 7, Validating Kafka messages using
serializers/deserializers in Java clients.

6.3. SERVICE REGISTRY JAVA CLIENT CONFIGURATION

The Service Registry Java client includes the following configuration options, based on the client
factory:

Table 6.1. Service Registry Java client configuration options

Option Description Arguments

Plain client Basic REST client used to interact with a running
Service Registry instance.

baseUrl

Client with custom
configuration

Service Registry client using the configuration
provided by the user.

baseUrl, Map<String
Object> configs

Client with custom
configuration and
authentication

Service Registry client that accepts a map containing
custom configuration. For example, this is useful to
add custom headers to the calls. You must also
provide an authentication server to authenticate the
requests.

baseUrl, Map<String
Object> configs,
Auth auth

Custom header configuration
To configure custom headers, you must add the apicurio.registry.request.headers prefix to the
configs map key. For example, a configs map key of apicurio.registry.request.headers.Authorization
with a value of Basic: YWxhZGRpbjpvcGVuc2VzYW1 sets the Authorization header with the same
value.

 public static void main(String[] args) throws Exception {
 // Create a registry client
 String registryUrl = "https://my-registry.my-domain.com/apis/registry/v2"; 1
 RegistryClient client = RegistryClientFactory.create(registryUrl); 2
 }
}

CHAPTER 6. MANAGING SERVICE REGISTRY CONTENT USING A JAVA CLIENT

49

files/registry-rest-api.htm
https://github.com/Apicurio/apicurio-registry-examples

TLS configuration options
You can configure Transport Layer Security (TLS) authentication for the Service Registry Java client
using the following properties:

apicurio.registry.request.ssl.truststore.location

apicurio.registry.request.ssl.truststore.password

apicurio.registry.request.ssl.truststore.type

apicurio.registry.request.ssl.keystore.location

apicurio.registry.request.ssl.keystore.password

apicurio.registry.request.ssl.keystore.type

apicurio.registry.request.ssl.key.password

Additional resources

For details on how to configure authentication for Service Registry Kafka client
serializers/deserializers (SerDes), see Chapter 7, Validating Kafka messages using
serializers/deserializers in Java clients.

Red Hat Integration 2023.q4 Service Registry User Guide

50

CHAPTER 7. VALIDATING KAFKA MESSAGES USING
SERIALIZERS/DESERIALIZERS IN JAVA CLIENTS

Service Registry provides client serializers/deserializers (SerDes) for Kafka producer and consumer
applications written in Java. Kafka producer applications use serializers to encode messages that
conform to a specific event schema. Kafka consumer applications use deserializers to validate that
messages have been serialized using the correct schema, based on a specific schema ID. This ensures
consistent schema use and helps to prevent data errors at runtime.

This chapter explains how to use Kafka client SerDes in your producer and consumer client applications:

Section 7.1, “Kafka client applications and Service Registry”

Section 7.2, “Strategies to look up a schema in Service Registry”

Section 7.3, “Registering a schema in Service Registry”

Section 7.4, “Using a schema from a Kafka consumer client”

Section 7.5, “Using a schema from a Kafka producer client”

Section 7.6, “Using a schema from a Kafka Streams application”

Prerequisites

You have read Chapter 1, Introduction to Service Registry .

You have installed Service Registry.

You have created Kafka producer and consumer client applications.
For more details on Kafka client applications, see Deploying and Managing AMQ Streams on
OpenShift.

7.1. KAFKA CLIENT APPLICATIONS AND SERVICE REGISTRY

Service Registry decouples schema management from client application configuration. You can enable a
Java client application to use a schema from Service Registry by specifying its URL in your client code.

You can store the schemas in Service Registry to serialize and deserialize messages, which are
referenced from your client applications to ensure that the messages that they send and receive are
compatible with those schemas. Kafka client applications can push or pull their schemas from Service
Registry at runtime.

Schemas can evolve, so you can define rules in Service Registry, for example, to ensure that schema
changes are valid and do not break previous versions used by applications. Service Registry checks for
compatibility by comparing a modified schema with previous schema versions.

Service Registry schema technologies
Service Registry provides schema registry support for schema technologies such as:

Avro

Protobuf

JSON Schema

CHAPTER 7. VALIDATING KAFKA MESSAGES USING SERIALIZERS/DESERIALIZERS IN JAVA CLIENTS

51

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.6/html-single/deploying_and_managing_amq_streams_on_openshift/index

These schema technologies can be used by client applications through the Kafka client
serializer/deserializer (SerDes) services provided by Service Registry. The maturity and usage of the
SerDes classes provided by Service Registry might vary. The sections that follow provide more details
about each schema type.

Producer schema configuration
A producer client application uses a serializer to put the messages that it sends to a specific broker topic
into the correct data format.

To enable a producer to use Service Registry for serialization:

Define and register your schema with Service Registry (if it does not already exist).

Configure your producer client code with the following:

URL of Service Registry

Service Registry serializer to use with messages

Strategy to map the Kafka message to a schema artifact in Service Registry

Strategy to look up or register the schema used for serialization in Service Registry

After registering your schema, when you start Kafka and Service Registry, you can access the schema to
format messages sent to the Kafka broker topic by the producer. Alternatively, depending on
configuration, the producer can automatically register the schema on first use.

If a schema already exists, you can create a new version using the registry REST API based on
compatibility rules defined in Service Registry. Versions are used for compatibility checking as a schema
evolves. A group ID, artifact ID, and version represents a unique tuple that identifies a schema.

Consumer schema configuration
A consumer client application uses a deserializer to get the messages that it consumes from a specific
broker topic into the correct data format.

To enable a consumer to use Service Registry for deserialization:

Define and register your schema with Service Registry (if it does not already exist)

Configure the consumer client code with the following:

URL of Service Registry

Service Registry deserializer to use with the messages

Input data stream for deserialization

Retrieve schemas using a global ID

By default, the schema is retrieved from Service Registry by the deserializer using a global ID, which is
specified in the message being consumed. The schema global ID can be located in the message headers
or in the message payload, depending on the configuration of the producer application.

When locating the global ID in the message payload, the format of the data begins with a magic byte,
used as a signal to consumers, followed by the global ID, and the message data as normal. For example:

...
[MAGIC_BYTE]

Red Hat Integration 2023.q4 Service Registry User Guide

52

Then when you start Kafka and Service Registry, you can access the schema to format messages
received from the Kafka broker topic.

Retrieve schemas using a content ID

Alternatively, you can configure to retrieve schemas from Service Registry based on the content ID,
which is the unique ID of the artifact content. While the global ID is the unique ID of an artifact version.

The content ID does not uniquely identify a version, but uniquely identifies the version content only. If
multiple versions share the exact same content, they have a different global ID but the same content ID.
Confluent Schema Registry uses content ID by default.

7.2. STRATEGIES TO LOOK UP A SCHEMA IN SERVICE REGISTRY

The Kafka client serializer uses lookup strategies to determine the artifact ID and global ID under which
the message schema is registered in Service Registry. For a given topic and message, you can use
different implementations of the ArtifactReferenceResolverStrategy Java interface to return a
reference to an artifact in the registry.

The classes for each strategy are in the io.apicurio.registry.serde.strategy package. Specific strategy
classes for Avro SerDes are in the io.apicurio.registry.serde.avro.strategy package. The default
strategy is the TopicIdStrategy, which looks for Service Registry artifacts with the same name as the
Kafka topic receiving messages.

Example

The topic parameter is the name of the Kafka topic receiving the message.

The isKey parameter is true when the message key is serialized, and false when the message
value is serialized.

The schema parameter is the schema of the message serialized or deserialized.

The ArtifactReference returned contains the artifact ID under which the schema is registered.

Which lookup strategy you use depends on how and where you store your schema. For example, you
might use a strategy that uses a record ID if you have different Kafka topics with the same Avro
message type.

Artifact resolver strategy
The artifact resolver strategy provides a way to map the Kafka topic and message information to an
artifact in Service Registry. The common convention for the mapping is to combine the Kafka topic
name with the key or value, depending on whether the serializer is used for the Kafka message key or
value.

However, you can use alternative conventions for the mapping by using a strategy provided by Service

[GLOBAL_ID]
[MESSAGE DATA]

public ArtifactReference artifactReference(String topic, boolean isKey, T schema) {
 return ArtifactReference.builder()
 .groupId(null)
 .artifactId(String.format("%s-%s", topic, isKey ? "key" : "value"))
 .build();

CHAPTER 7. VALIDATING KAFKA MESSAGES USING SERIALIZERS/DESERIALIZERS IN JAVA CLIENTS

53

However, you can use alternative conventions for the mapping by using a strategy provided by Service
Registry, or by creating a custom Java class that implements
io.apicurio.registry.serde.strategy.ArtifactReferenceResolverStrategy.

Strategies to return a reference to an artifact
Service Registry provides the following strategies to return a reference to an artifact based on an
implementation of ArtifactReferenceResolverStrategy:

RecordIdStrategy

Avro-specific strategy that uses the full name of the schema.

TopicRecordIdStrategy

Avro-specific strategy that uses the topic name and the full name of the schema.

TopicIdStrategy

Default strategy that uses the topic name and key or value suffix.

SimpleTopicIdStrategy

Simple strategy that only uses the topic name.

DefaultSchemaResolver interface
The default schema resolver locates and identifies the specific version of the schema registered under
the artifact reference provided by the artifact resolver strategy. Every version of every artifact has a
single globally unique identifier that can be used to retrieve the content of that artifact. This global ID is
included in every Kafka message so that a deserializer can properly fetch the schema from Apicurio
Registry.

The default schema resolver can look up an existing artifact version, or it can register one if not found,
depending on which strategy is used. You can also provide your own strategy by creating a custom Java
class that implements io.apicurio.registry.resolver.SchemaResolver. However, it is recommended to
use the DefaultSchemaResolver and specify configuration properties instead.

Configuration for registry lookup options
When using the DefaultSchemaResolver, you can configure its behavior using application properties.
The following table shows some commonly used examples:

Table 7.1. Service Registry lookup configuration options

Property Type Description Default

apicurio.registry.find-latest boolean Specify whether the serializer
tries to find the latest artifact in
the registry for the corresponding
group ID and artifact ID.

false

apicurio.registry.use-id String Instructs the serializer to write the
specified ID to Kafka and instructs
the deserializer to use this ID to
find the schema.

None

apicurio.registry.auto-
register

boolean Specify whether the serializer
tries to create an artifact in the
registry. The JSON Schema
serializer does not support this.

false

Red Hat Integration 2023.q4 Service Registry User Guide

54

1

2

apicurio.registry.check-
period-ms

String Specify how long to cache the
global ID in milliseconds. If not
configured, the global ID is
fetched every time.

None

Property Type Description Default

7.3. REGISTERING A SCHEMA IN SERVICE REGISTRY

After you have defined a schema in the appropriate format, such as Apache Avro, you can add the
schema to Service Registry.

You can add the schema using the following approaches:

Service Registry web console

curl command using the Service Registry REST API

Maven plug-in supplied with Service Registry

Schema configuration added to your client code

Client applications cannot use Service Registry until you have registered your schemas.

Service Registry web console
When Service Registry is installed, you can connect to the web console from the ui endpoint:

http://MY-REGISTRY-URL/ui

From the console, you can add, view and configure schemas. You can also create the rules that prevent
invalid content being added to the registry.

Curl command example

Simple Avro schema artifact.

OpenShift route name that exposes Service Registry.

Maven plug-in example

 curl -X POST -H "Content-type: application/json; artifactType=AVRO" \
 -H "X-Registry-ArtifactId: share-price" \ 1
 --data '{
 "type":"record",
 "name":"price",
 "namespace":"com.example",
 "fields":[{"name":"symbol","type":"string"},
 {"name":"price","type":"string"}]}'
 https://my-cluster-my-registry-my-project.example.com/apis/registry/v2/groups/my-group/artifacts -s
2

<plugin>

CHAPTER 7. VALIDATING KAFKA MESSAGES USING SERIALIZERS/DESERIALIZERS IN JAVA CLIENTS

55

1

2

3

4

Specify register as the execution goal to upload the schema artifact to the registry.

Specify the Service Registry URL with the ../apis/registry/v2 endpoint.

Specify the Service Registry artifact group ID.

You can upload multiple artifacts using the specified group ID, artifact ID, and location.

Configuration using a producer client example

 <groupId>io.apicurio</groupId>
 <artifactId>apicurio-registry-maven-plugin</artifactId>
 <version>${apicurio.version}</version>
 <executions>
 <execution>
 <phase>generate-sources</phase>
 <goals>
 <goal>register</goal> 1
 </goals>
 <configuration>
 <registryUrl>http://REGISTRY-URL/apis/registry/v2</registryUrl> 2
 <artifacts>
 <artifact>
 <groupId>TestGroup</groupId> 3
 <artifactId>FullNameRecord</artifactId>
 <file>${project.basedir}/src/main/resources/schemas/record.avsc</file>
 <ifExists>FAIL</ifExists>
 </artifact>
 <artifact>
 <groupId>TestGroup</groupId>
 <artifactId>ExampleAPI</artifactId> 4
 <type>GRAPHQL</type>
 <file>${project.basedir}/src/main/resources/apis/example.graphql</file>
 <ifExists>RETURN_OR_UPDATE</ifExists>
 <canonicalize>true</canonicalize>
 </artifact>
 </artifacts>
 </configuration>
 </execution>
 </executions>
 </plugin>

String registryUrl_node1 = PropertiesUtil.property(clientProperties, "registry.url.node1",
 "https://my-cluster-service-registry-myproject.example.com/apis/registry/v2"); 1
try (RegistryService service = RegistryClient.create(registryUrl_node1)) {
 String artifactId = ApplicationImpl.INPUT_TOPIC + "-value";
 try {
 service.getArtifactMetaData(artifactId); 2
 } catch (WebApplicationException e) {
 CompletionStage <ArtifactMetaData> csa = service.createArtifact(
 "AVRO",
 artifactId,
 new ByteArrayInputStream(LogInput.SCHEMA$.toString().getBytes())
);

Red Hat Integration 2023.q4 Service Registry User Guide

56

1

2

1

2

You can register properties against more than one URL node.

Check to see if the schema already exists based on the artifact ID.

7.4. USING A SCHEMA FROM A KAFKA CONSUMER CLIENT

This procedure describes how to configure a Kafka consumer client written in Java to use a schema from
Service Registry.

Prerequisites

Service Registry is installed

The schema is registered with Service Registry

Procedure

1. Configure the client with the URL of Service Registry. For example:

2. Configure the client with the Service Registry deserializer. For example:

The deserializer provided by Service Registry.

The deserialization is in Apache Avro JSON format.

7.5. USING A SCHEMA FROM A KAFKA PRODUCER CLIENT

This procedure describes how to configure a Kafka producer client written in Java to use a schema from
Service Registry.

Prerequisites

 csa.toCompletableFuture().get();
 }
}

String registryUrl = "https://registry.example.com/apis/registry/v2";
Properties props = new Properties();
props.putIfAbsent(SerdeConfig.REGISTRY_URL, registryUrl);

// Configure Kafka settings
props.putIfAbsent(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, SERVERS);
props.putIfAbsent(ConsumerConfig.GROUP_ID_CONFIG, "Consumer-" + TOPIC_NAME);
props.putIfAbsent(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "true");
props.putIfAbsent(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG, "1000");
props.putIfAbsent(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");
// Configure deserializer settings
props.putIfAbsent(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG,
 AvroKafkaDeserializer.class.getName()); 1
props.putIfAbsent(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,
 AvroKafkaDeserializer.class.getName()); 2

CHAPTER 7. VALIDATING KAFKA MESSAGES USING SERIALIZERS/DESERIALIZERS IN JAVA CLIENTS

57

1

2

3

Service Registry is installed

The schema is registered with Service Registry

Procedure

1. Configure the client with the URL of Service Registry. For example:

2. Configure the client with the serializer, and the strategy to look up the schema in Service
Registry. For example:

The serializer for the message key provided by Service Registry.

The serializer for the message value provided by Service Registry.

The lookup strategy to find the global ID for the schema.

7.6. USING A SCHEMA FROM A KAFKA STREAMS APPLICATION

This procedure describes how to configure a Kafka Streams client written in Java to use an Apache Avro
schema from Service Registry.

Prerequisites

Service Registry is installed

The schema is registered with Service Registry

Procedure

1. Create and configure a Java client with the Service Registry URL:

2. Configure the serializer and deserializer:

String registryUrl = "https://registry.example.com/apis/registry/v2";
Properties props = new Properties();
props.putIfAbsent(SerdeConfig.REGISTRY_URL, registryUrl);

props.put(CommonClientConfigs.BOOTSTRAP_SERVERS_CONFIG, "my-cluster-kafka-
bootstrap:9092");
props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,
AvroKafkaSerializer.class.getName()); 1
props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,
AvroKafkaSerializer.class.getName()); 2
props.put(SerdeConfig.FIND_LATEST_ARTIFACT, Boolean.TRUE); 3

String registryUrl = "https://registry.example.com/apis/registry/v2";

RegistryService client = RegistryClient.cached(registryUrl);

Serializer<LogInput> serializer = new AvroKafkaSerializer<LogInput>(); 1

Red Hat Integration 2023.q4 Service Registry User Guide

58

1

2

3

The Avro serializer provided by Service Registry.

The Avro deserializer provided by Service Registry.

Configures the Service Registry URL and the Avro reader for deserialization in Avro
format.

3. Create the Kafka Streams client:

Deserializer<LogInput> deserializer = new AvroKafkaDeserializer <LogInput>(); 2

Serde<LogInput> logSerde = Serdes.serdeFrom(
 serializer,
 deserializer
);

Map<String, Object> config = new HashMap<>();
config.put(SerdeConfig.REGISTRY_URL, registryUrl);
config.put(AvroKafkaSerdeConfig.USE_SPECIFIC_AVRO_READER, true);
logSerde.configure(config, false); 3

KStream<String, LogInput> input = builder.stream(
 INPUT_TOPIC,
 Consumed.with(Serdes.String(), logSerde)
);

CHAPTER 7. VALIDATING KAFKA MESSAGES USING SERIALIZERS/DESERIALIZERS IN JAVA CLIENTS

59

CHAPTER 8. CONFIGURING KAFKA
SERIALIZERS/DESERIALIZERS IN JAVA CLIENTS

This chapter provides detailed information on how to configure Kafka serializers/deserializers (SerDes)
in your producer and consumer Java client applications:

Section 8.1, “Service Registry serializer/deserializer configuration in client applications”

Section 8.2, “Service Registry serializer/deserializer configuration properties”

Section 8.3, “How to configure different client serializer/deserializer types”

Section 8.3.1, “Configure Avro SerDes with Service Registry”

Section 8.3.2, “Configure JSON Schema SerDes with Service Registry”

Section 8.3.3, “Configure Protobuf SerDes with Service Registry”

Prerequisites

You have read Chapter 7, Validating Kafka messages using serializers/deserializers in Java
clients.

8.1. SERVICE REGISTRY SERIALIZER/DESERIALIZER CONFIGURATION
IN CLIENT APPLICATIONS

You can configure specific client serializer/deserializer (SerDes) services and schema lookup strategies
directly in a client application using the example constants shown in this section. Alternatively, you can
configure the corresponding Service Registry application properties in a file or an instance.

The following sections show examples of commonly used SerDes constants and configuration options.

Configuration for SerDes services

1. The required URL of Service Registry.

2. Extends ID handling to support other ID formats and make them compatible with Service
Registry SerDes services. For example, changing the default ID format from Long to Integer
supports the Confluent ID format.

3. Simplifies the handling of Confluent IDs. If set to true, an Integer is used for the global ID
lookup. The setting should not be used with the ID_HANDLER option.

Additional resources

For more details on configuration options, see Section 8.2, “Service Registry
serializer/deserializer configuration properties”

public class SerdeConfig {

 public static final String REGISTRY_URL = "apicurio.registry.url"; 1
 public static final String ID_HANDLER = "apicurio.registry.id-handler"; 2
 public static final String ENABLE_CONFLUENT_ID_HANDLER = "apicurio.registry.as-confluent";
3

Red Hat Integration 2023.q4 Service Registry User Guide

60

1 1

2 2

Configuration for SerDes lookup strategies

Java class that implements the artifact resolver strategy and maps between the Kafka SerDes and
artifact ID. Defaults to the topic ID strategy. This is only used by the serializer class.

Java class that implements the schema resolver. Defaults to DefaultSchemaResolver. This is
used by the serializer and deserializer classes.

Additional resources

For more details on look up strategies, see Chapter 7, Validating Kafka messages using
serializers/deserializers in Java clients

For more details on configuration options, see Section 8.2, “Service Registry
serializer/deserializer configuration properties”

Configuration for Kafka converters

1. The required serializer to use with the Service Registry Kafka converter.

2. The required deserializer to use with the Service Registry Kafka converter.

Additional resources

For more details, see the SerdeBasedConverter Java class

Configuration for different schema types
For details on how to configure SerDes for different schema technologies, see the following:

Section 8.3.1, “Configure Avro SerDes with Service Registry”

Section 8.3.2, “Configure JSON Schema SerDes with Service Registry”

Section 8.3.3, “Configure Protobuf SerDes with Service Registry”

8.2. SERVICE REGISTRY SERIALIZER/DESERIALIZER CONFIGURATION
PROPERTIES

This section provides reference information on Java configuration properties for Service Registry Kafka

public class SerdeConfig {

 public static final String ARTIFACT_RESOLVER_STRATEGY = "apicurio.registry.artifact-resolver-
strategy"; 1
 public static final String SCHEMA_RESOLVER = "apicurio.registry.schema-resolver"; 2
...

public class SerdeBasedConverter<S, T> extends SchemaResolverConfigurer<S, T> implements
Converter, Closeable {

 public static final String REGISTRY_CONVERTER_SERIALIZER_PARAM =
"apicurio.registry.converter.serializer"; 1
 public static final String REGISTRY_CONVERTER_DESERIALIZER_PARAM =
"apicurio.registry.converter.deserializer"; 2

CHAPTER 8. CONFIGURING KAFKA SERIALIZERS/DESERIALIZERS IN JAVA CLIENTS

61

https://github.com/Apicurio/apicurio-registry/blob/main/utils/converter/src/main/java/io/apicurio/registry/utils/converter/SerdeBasedConverter.java

This section provides reference information on Java configuration properties for Service Registry Kafka
serializers/deserializers (SerDes).

SchemaResolver interface
Service Registry SerDes are based on the SchemaResolver interface, which abstracts access to the
registry and applies the same lookup logic for the SerDes classes of all supported formats.

Table 8.1. Configuration property for SchemaResolver interface

Constant Property Description Type Default

SCHEMA_RESOL
VER

apicurio.registry.
schema-resolver

Used by serializers
and deserializers.
Fully-qualified Java
classname that
implements
SchemaResolver.

String io.apicurio.registr
y.resolver.Default
SchemaResolver

NOTE

The DefaultSchemaResolver is recommended and provides useful features for most
use cases. For some advanced use cases, you might use a custom implementation of
SchemaResolver.

DefaultSchemaResolver class
You can use the DefaultSchemaResolver to configure features such as:

Access to the registry API

How to look up artifacts in the registry

How to write and read artifact information to and from Kafka

Fall-back options for deserializers

Configuration for registry API access options
The DefaultSchemaResolver provides the following properties to configure access to the core registry
API:

Table 8.2. Configuration properties for access to registry API

Constant Property Description Type Default

REGISTRY_URL apicurio.registry.url Used by serializers and
deserializers. URL to
access the registry API.

String None

Red Hat Integration 2023.q4 Service Registry User Guide

62

AUTH_SERVICE_
URL

apicurio.auth.service.
url

Used by serializers and
deserializers. URL of the
authentication service.
Required when accessing
a secure registry using
the OAuth client
credentials flow.

String None

AUTH_TOKEN_E
NDPOINT

apicurio.auth.service.
token.endpoint

Used by serializers and
deserializers. URL of the
token endpoint. Required
when accessing a secure
registry and
AUTH_SERVICE_URL
is not specified.

String None

AUTH_REALM apicurio.auth.realm Used by serializers and
deserializers. Realm to
access the authentication
service. Required when
accessing a secure
registry using the OAuth
client credentials flow.

String None

AUTH_CLIENT_I
D

apicurio.auth.client.id Used by serializers and
deserializers. Client ID to
access the authentication
service. Required when
accessing a secure
registry using the OAuth
client credentials flow.

String None

AUTH_CLIENT_S
ECRET

apicurio.auth.client.se
cret

Used by serializers and
deserializers. Client
secret to access the
authentication service.
Required when accessing
a secure registry using
the OAuth client
credentials flow.

String None

AUTH_USERNA
ME

apicurio.auth.userna
me

Used by serializers and
deserializers. Username
to access the registry.
Required when accessing
a secure registry using
HTTP basic
authentication.

String None

Constant Property Description Type Default

CHAPTER 8. CONFIGURING KAFKA SERIALIZERS/DESERIALIZERS IN JAVA CLIENTS

63

AUTH_PASSWO
RD

apicurio.auth.passwo
rd

Used by serializers and
deserializers. Password to
access the registry.
Required when accessing
a secure registry using
HTTP basic
authentication.

String None

Constant Property Description Type Default

Configuration for registry lookup options
The DefaultSchemaResolver uses the following properties to configure how to look up artifacts in
Service Registry.

Table 8.3. Configuration properties for registry artifact lookup

Constant Property Description Type Default

ARTIFACT_RESOL
VER_STRATEGY

apicurio.registry.ar
tifact-resolver-
strategy

Used by serializers
only. Fully-qualified
Java classname that
implements
ArtifactReference
ResolverStrategy
and maps each Kafka
message to an
ArtifactReference
(groupId, artifactId,
and version). For
example, the default
strategy uses the
topic name as the
schema artifactId.

String io.apicurio.re
gistry.serde.s
trategy.TopicI
dStrategy

EXPLICIT_ARTIFA
CT_GROUP_ID

apicurio.registry.ar
tifact.group-id

Used by serializers
only. Sets the
groupId used for
querying or creating
an artifact. Overrides
the groupId returned
by the
ArtifactResolverSt
rategy.

String None

Red Hat Integration 2023.q4 Service Registry User Guide

64

EXPLICIT_ARTIFA
CT_ID

apicurio.registry.ar
tifact.artifact-id

Used by serializers
only. Sets the
artifactId used for
querying or creating
an artifact. Overrides
the artifactId
returned by the
ArtifactResolverSt
rategy.

String None

EXPLICIT_ARTIFA
CT_VERSION

apicurio.registry.ar
tifact.version

Used by serializers
only. Sets the artifact
version used for
querying or creating
an artifact. Overrides
the version returned
by the
ArtifactResolverSt
rategy.

String None

FIND_LATEST_AR
TIFACT

apicurio.registry.fi
nd-latest

Used by serializers
only. Specifies
whether the serializer
tries to find the latest
artifact in the registry
for the corresponding
group ID and artifact
ID.

boolean false

AUTO_REGISTER
_ARTIFACT

apicurio.registry.a
uto-register

Used by serializers
only. Specifies
whether the serializer
tries to create an
artifact in the registry.
The JSON Schema
serializer does not
support this feature.

boolean,
boolean
String

false

AUTO_REGISTER
_ARTIFACT_IF_EX
ISTS

apicurio.registry.a
uto-register.if-
exists

Used by serializers
only. Configures the
behavior of the client
when there is a
conflict creating an
artifact because the
artifact already exists.
Available values are
FAIL, UPDATE,
RETURN, or
RETURN_OR_UPD
ATE.

String RETURN_OR
_UPDATE

Constant Property Description Type Default

CHAPTER 8. CONFIGURING KAFKA SERIALIZERS/DESERIALIZERS IN JAVA CLIENTS

65

CHECK_PERIOD_
MS

apicurio.registry.c
heck-period-ms

Used by serializers
and deserializers.
Specifies how long to
cache artifacts before
auto-eviction
(milliseconds). If set
to zero, artifacts are
fetched every time.

java.time.
Duration,
non-
negative
Number,
or integer
String

30000

RETRY_BACKOFF
_MS

apicurio.registry.re
try-backoff-ms

Used by serializers
and deserializers. If a
schema can not be be
retrieved from the
Registry, it may retry
a number of times.
This configuration
option controls the
delay between the
retry attempts
(milliseconds).

java.time.
Duration,
non-
negative
Number,
or integer
String

300

RETRY_COUNT apicurio.registry.re
try-count

Used by serializers
and deserializers. If a
schema can not be be
retrieved from the
Registry, it may retry
a number of times.
This configuration
option controls the
number of retry
attempts.

non-
negative
Number,
or integer
String

3

USE_ID apicurio.registry.u
se-id

Used by serializers
and deserializers.
Configures to use the
specified IdOption as
the identifier for
artifacts. Options are
globalId and
contentId. Instructs
the serializer to write
the specified ID to
Kafka, and instructs
the deserializer to use
this ID to find the
schema.

String globalId

Constant Property Description Type Default

Configuration to read/write registry artifacts in Kafka
The DefaultSchemaResolver uses the following properties to configure how artifact information is
written to and read from Kafka.

Red Hat Integration 2023.q4 Service Registry User Guide

66

Table 8.4. Configuration properties to read/write artifact information in Kafka

Constant Property Description Type Default

ENABLE_HEADE
RS

apicurio.registry.
headers.enabled

Used by serializers
and deserializers.
Configures to
read/write the
artifact identifier to
Kafka message
headers instead of in
the message
payload.

boolean true

HEADERS_HAND
LER

apicurio.registry.
headers.handler

Used by serializers
and deserializers.
Fully-qualified Java
classname that
implements
HeadersHandler
and writes/reads the
artifact identifier
to/from the Kafka
message headers.

String io.apicurio.registr
y.serde.headers.
DefaultHeadersH
andler

ID_HANDLER apicurio.registry.i
d-handler

Used by serializers
and deserializers.
Fully-qualified Java
classname of a class
that implements
IdHandler and
writes/reads the
artifact identifier
to/from the
message payload.
Only used if
apicurio.registry.
headers.enabled
is set to false.

String io.apicurio.registr
y.serde.DefaultId
Handler

ENABLE_CONFL
UENT_ID_HANDL
ER

apicurio.registry.
as-confluent

Used by serializers
and deserializers.
Shortcut for enabling
the legacy
Confluent-
compatible
implementation of
IdHandler. Only
used if
apicurio.registry.
headers.enabled
is set to false.

boolean true

Configuration for deserializer fall-back options

CHAPTER 8. CONFIGURING KAFKA SERIALIZERS/DESERIALIZERS IN JAVA CLIENTS

67

The DefaultSchemaResolver uses the following property to configure a fall-back provider for all
deserializers.

Table 8.5. Configuration property for deserializer fall-back provider

Constant Property Description Type Default

FALLBACK_ARTI
FACT_PROVIDER

apicurio.registry.f
allback.provider

Only used by
deserializers. Sets a
custom
implementation of
FallbackArtifactPr
ovider for resolving
the artifact used for
deserialization.
FallbackArtifactPr
ovider configures a
fallback artifact to
fetch from the
registry in case the
lookup fails.

String io.apicurio.registr
y.serde.fallback.D
efaultFallbackArti
factProvider

The DefaultFallbackArtifactProvider uses the following properties to configure deserializer fall-back
options:

Table 8.6. Configuration properties for deserializer fall-back options

Constant Property Description Type Defaul
t

FALLBACK_ARTIFA
CT_ID

apicurio.registry.fall
back.artifact-id

Used by deserializers
only. Sets the artifactId
used as fallback for
resolving the artifact
used for deserialization.

String None

FALLBACK_ARTIFA
CT_GROUP_ID

apicurio.registry.fall
back.group-id

Used by deserializers
only. Sets the groupId
used as fallback for
resolving the group used
for deserialization.

String None

FALLBACK_ARTIFA
CT_VERSION

apicurio.registry.fall
back.version

Used by deserializers
only. Sets the version
used as fallback for
resolving the artifact
used for deserialization.

String None

Additional resources

For more details, see the SerdeConfig Java class .

You can configure application properties as Java system properties or include them in the

Red Hat Integration 2023.q4 Service Registry User Guide

68

https://github.com/Apicurio/apicurio-registry/blob/main/serdes/serde-common/src/main/java/io/apicurio/registry/serde/SerdeConfig.java

You can configure application properties as Java system properties or include them in the
Quarkus application.properties file. For more details, see the Quarkus documentation.

8.3. HOW TO CONFIGURE DIFFERENT CLIENT
SERIALIZER/DESERIALIZER TYPES

When using schemas in your Kafka client applications, you must choose which specific schema type to
use, depending on your use case. Service Registry provides SerDe Java classes for Apache Avro, JSON
Schema, and Google Protobuf. The following sections explain how to configure Kafka applications to
use each type.

You can also use Kafka to implement custom serializer and deserializer classes, and leverage Service
Registry functionality using the Service Registry REST Java client.

Kafka application configuration for serializers/deserializers
Using the SerDe classes provided by Service Registry in your Kafka application involves setting the
correct configuration properties. The following simple Avro examples show how to configure a serializer
in a Kafka producer application and how to configure a deserializer in a Kafka consumer application.

Example serializer configuration in a Kafka producer

Example deserializer configuration in a Kafka consumer

// Create the Kafka producer
private static Producer<Object, Object> createKafkaProducer() {
 Properties props = new Properties();

 // Configure standard Kafka settings
 props.putIfAbsent(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, SERVERS);
 props.putIfAbsent(ProducerConfig.CLIENT_ID_CONFIG, "Producer-" + TOPIC_NAME);
 props.putIfAbsent(ProducerConfig.ACKS_CONFIG, "all");

 // Use Service Registry-provided Kafka serializer for Avro
 props.putIfAbsent(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,
StringSerializer.class.getName());
 props.putIfAbsent(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,
AvroKafkaSerializer.class.getName());

 // Configure the Service Registry location
 props.putIfAbsent(SerdeConfig.REGISTRY_URL, REGISTRY_URL);

 // Register the schema artifact if not found in the registry.
 props.putIfAbsent(SerdeConfig.AUTO_REGISTER_ARTIFACT, Boolean.TRUE);

 // Create the Kafka producer
 Producer<Object, Object> producer = new KafkaProducer<>(props);
 return producer;
}

// Create the Kafka consumer
private static KafkaConsumer<Long, GenericRecord> createKafkaConsumer() {
 Properties props = new Properties();

 // Configure standard Kafka settings
 props.putIfAbsent(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, SERVERS);

CHAPTER 8. CONFIGURING KAFKA SERIALIZERS/DESERIALIZERS IN JAVA CLIENTS

69

https://quarkus.io/guides/config#overriding-properties-at-runtime

Additional resources

For an example application, see the Simple Avro example

8.3.1. Configure Avro SerDes with Service Registry

This topic explains how to use the Kafka client serializer and deserializer (SerDes) classes for Apache
Avro.

Service Registry provides the following Kafka client SerDes classes for Avro:

io.apicurio.registry.serde.avro.AvroKafkaSerializer

io.apicurio.registry.serde.avro.AvroKafkaDeserializer

Configure the Avro serializer

You can configure the Avro serializer class with the following:

Service Registry URL

Artifact resolver strategy

ID location

ID encoding

Avro datum provider

Avro encoding

ID location

The serializer passes the unique ID of the schema as part of the Kafka message so that consumers can

 props.putIfAbsent(ConsumerConfig.GROUP_ID_CONFIG, "Consumer-" + TOPIC_NAME);
 props.putIfAbsent(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "true");
 props.putIfAbsent(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG, "1000");
 props.putIfAbsent(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");

 // Use Service Registry-provided Kafka deserializer for Avro
 props.putIfAbsent(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG,
StringDeserializer.class.getName());
 props.putIfAbsent(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,
AvroKafkaDeserializer.class.getName());

 // Configure the Service Registry location
 props.putIfAbsent(SerdeConfig.REGISTRY_URL, REGISTRY_URL);

 // No other configuration needed because the schema globalId the deserializer uses is sent
 // in the payload. The deserializer extracts the globalId and uses it to look up the schema
 // from the registry.

 // Create the Kafka consumer
 KafkaConsumer<Long, GenericRecord> consumer = new KafkaConsumer<>(props);
 return consumer;
}

Red Hat Integration 2023.q4 Service Registry User Guide

70

https://github.com/Apicurio/apicurio-registry-examples

use the correct schema for deserialization. The ID can be in the message payload or in the message
headers. The default location is the message payload. To send the ID in the message headers, set the
following configuration property:

props.putIfAbsent(SerdeConfig.ENABLE_HEADERS, "true")

The property name is apicurio.registry.headers.enabled.

ID encoding

You can customize how the schema ID is encoded when passing it in the Kafka message body. Set the
apicurio.registry.id-handler configuration property to a class that implements the
io.apicurio.registry.serde.IdHandler interface. Service Registry provides the following
implementations:

io.apicurio.registry.serde.DefaultIdHandler: Stores the ID as an 8-byte long

io.apicurio.registry.serde.Legacy4ByteIdHandler: Stores the ID as an 4-byte integer

Service Registry represents the schema ID as a long, but for legacy reasons, or for compatibility with
other registries or SerDe classes, you might want to use 4 bytes when sending the ID.

Avro datum provider

Avro provides different datum writers and readers to write and read data. Service Registry supports
three different types:

Generic

Specific

Reflect

The Service Registry AvroDatumProvider is the abstraction of which type is used, where
DefaultAvroDatumProvider is used by default.

You can set the following configuration options:

apicurio.registry.avro-datum-provider: Specifies a fully-qualified Java class name of the
AvroDatumProvider implementation, for example
io.apicurio.registry.serde.avro.ReflectAvroDatumProvider

apicurio.registry.use-specific-avro-reader: Set to true to use a specific type when using
DefaultAvroDatumProvider

Avro encoding

When using Avro to serialize data, you can use the Avro binary encoding format to ensure the data is
encoded in as efficient a format as possible. Avro also supports encoding the data as JSON, which
makes it easier to inspect the payload of each message, for example, for logging or debugging.

You can set the Avro encoding by configuring the apicurio.registry.avro.encoding property with a
value of JSON or BINARY. The default is BINARY.

Configure the Avro deserializer

You must configure the Avro deserializer class to match the following configuration settings of the
serializer:

CHAPTER 8. CONFIGURING KAFKA SERIALIZERS/DESERIALIZERS IN JAVA CLIENTS

71

Service Registry URL

ID encoding

Avro datum provider

Avro encoding

See the serializer section for these configuration options. The property names and values are the same.

NOTE

The following options are not required when configuring the deserializer:

Artifact resolver strategy

ID location

The deserializer class can determine the values for these options from the message. The strategy is not
required because the serializer is responsible for sending the ID as part of the message.

The ID location is determined by checking for the magic byte at the start of the message payload. If that
byte is found, the ID is read from the message payload using the configured handler. If the magic byte is
not found, the ID is read from the message headers.

Avro SerDes and artifact references

When working with Avro messages and a schema with nested records, a new artifact is registered per
nested record. For example, the following TradeKey schema includes a nested Exchange schema:

TradeKey schema with nested Exchange schema

Exchange schema

{
 "namespace": "com.kubetrade.schema.trade",
 "type": "record",
 "name": "TradeKey",
 "fields": [
 {
 "name": "exchange",
 "type": "com.kubetrade.schema.common.Exchange"
 },
 {
 "name": "key",
 "type": "string"
 }
]
}

{
 "namespace": "com.kubetrade.schema.common",
 "type": "enum",

Red Hat Integration 2023.q4 Service Registry User Guide

72

When using these schemas with Avro SerDes, two artifacts are created in Service Registry, one for the
TradeKey schema and one for the Exchange schema. Whenever a message using the TradeKey
schema is serialized or deserialized, both schemas are retrieved, allowing you to split your definitions into
different files.

Additional resources

For more details on Avro configuration, see the AvroKafkaSerdeConfig Java class

For Java example applications, see:

Simple Avro example

SerDes with references example

8.3.2. Configure JSON Schema SerDes with Service Registry

This topic explains how to use the Kafka client serializer and deserializer (SerDes) classes for JSON
Schema.

Service Registry provides the following Kafka client SerDes classes for JSON Schema:

io.apicurio.registry.serde.jsonschema.JsonSchemaKafkaSerializer

io.apicurio.registry.serde.jsonschema.JsonSchemaKafkaDeserializer

Unlike Apache Avro, JSON Schema is not a serialization technology, but is instead a validation
technology. As a result, configuration options for JSON Schema are quite different. For example, there
is no encoding option, because data is always encoded as JSON.

Configure the JSON Schema serializer

You can configure the JSON Schema serializer class as follows:

Service Registry URL

Artifact resolver strategy

Schema validation

The only non-standard configuration property is JSON Schema validation, which is enabled by default.
You can disable this by setting apicurio.registry.serde.validation-enabled to "false". For example:

props.putIfAbsent(SerdeConfig.VALIDATION_ENABLED, Boolean.FALSE)

Configure the JSON Schema deserializer

You can configure the JSON Schema deserializer class as follows:

Service Registry URL

Schema validation

 "name": "Exchange",
 "symbols" : ["GEMINI"]
}

CHAPTER 8. CONFIGURING KAFKA SERIALIZERS/DESERIALIZERS IN JAVA CLIENTS

73

https://github.com/Apicurio/apicurio-registry/blob/main/serdes/avro-serde/src/main/java/io/apicurio/registry/serde/avro/AvroKafkaSerdeConfig.java
https://github.com/Apicurio/apicurio-registry-examples
https://github.com/Apicurio/apicurio-registry-examples

Class for deserializing data

You must provide the location of Service Registry so that the schema can be loaded. The other
configuration is optional.

NOTE

Deserializer validation only works if the serializer passes the global ID in the Kafka
message, which will only happen when validation is enabled in the serializer.

JSON Schema SerDes and artifact references

The JSON Schema SerDes cannot discover the schema from the message payload, so the schema
artifact must be registered beforehand, and this also applies artifact references.

Depending on the content of the schema, if the $ref value is a URL, the SerDes try to resolve the
referenced schema using that URL, and then validation works as usual, validating the data against the
main schema, and validating the nested value against the nested schema. Support for referencing
artifacts in Service Registry has also been implemented.

For example, the following citizen.json schema references the city.json schema:

citizen.json schema with reference to city.json schema

city.json schema

{
 "$id": "https://example.com/citizen.schema.json",
 "$schema": "http://json-schema.org/draft-07/schema#",
 "title": "Citizen",
 "type": "object",
 "properties": {
 "firstName": {
 "type": "string",
 "description": "The citizen's first name."
 },
 "lastName": {
 "type": "string",
 "description": "The citizen's last name."
 },
 "age": {
 "description": "Age in years which must be equal to or greater than zero.",
 "type": "integer",
 "minimum": 0
 },
 "city": {
 "$ref": "city.json"
 }
 }
}

{
 "$id": "https://example.com/city.schema.json",
 "$schema": "http://json-schema.org/draft-07/schema#",
 "title": "City",

Red Hat Integration 2023.q4 Service Registry User Guide

74

In this example, a given citizen has a city. In Service Registry, a citizen artifact with a reference to the city
artifact is created using the name city.json. In the SerDes, when the citizen schema is fetched, the city
schema is also fetched because it is referenced from the citizen schema. When serializing/deserializing
data, the reference name is used to resolve the nested schema, allowing validation against the citizen
schema and the nested city schema.

Additional resources

For more details, see the JsonSchemaKafkaDeserializerConfig Java class

For Java example applications, see:

Simple JSON Schema example

SerDes with references example

8.3.3. Configure Protobuf SerDes with Service Registry

This topic explains how to use the Kafka client serializer and deserializer (SerDes) classes for Google
Protobuf.

Service Registry provides the following Kafka client SerDes classes for Protobuf:

io.apicurio.registry.serde.protobuf.ProtobufKafkaSerializer

io.apicurio.registry.serde.protobuf.ProtobufKafkaDeserializer

Configure the Protobuf serializer

You can configure the Protobuf serializer class as follows:

Service Registry URL

Artifact resolver strategy

ID location

ID encoding

Schema validation

For details on these configuration options, see the following sections:

 "type": "object",
 "properties": {
 "name": {
 "type": "string",
 "description": "The city's name."
 },
 "zipCode": {
 "type": "integer",
 "description": "The zip code.",
 "minimum": 0
 }
 }
}

CHAPTER 8. CONFIGURING KAFKA SERIALIZERS/DESERIALIZERS IN JAVA CLIENTS

75

https://github.com/Apicurio/apicurio-registry/blob/main/serdes/jsonschema-serde/src/main/java/io/apicurio/registry/serde/jsonschema/JsonSchemaKafkaDeserializerConfig.java
https://github.com/Apicurio/apicurio-registry-examples
https://github.com/Apicurio/apicurio-registry-examples

Section 8.1, “Service Registry serializer/deserializer configuration in client applications”

Section 8.3.1, “Configure Avro SerDes with Service Registry”

Configure the Protobuf deserializer

You must configure the Protobuf deserializer class to match the following configuration settings in the
serializer:

Service Registry URL

ID encoding

The configuration property names and values are the same as for the serializer.

NOTE

The following options are not required when configuring the deserializer:

Artifact resolver strategy

ID location

The deserializer class can determine the values for these options from the message. The strategy is not
required because the serializer is responsible for sending the ID as part of the message.

The ID location is determined by checking for the magic byte at the start of the message payload. If that
byte is found, the ID is read from the message payload using the configured handler. If the magic byte is
not found, the ID is read from the message headers.

NOTE

The Protobuf deserializer does not deserialize to your exact Protobuf Message
implementation, but rather to a DynamicMessage instance. There is no appropriate API
to do otherwise.

Protobuf SerDes and artifact references

When a complex Protobuf message with an import statement is used, the imported Protobuf messages
are stored in Service Registry as separate artifacts. Then when Service Registry gets the main schema to
check a Protobuf message, the referenced schemes are also retrieved so the full message schema can
be checked and serialized.

For example, the following table_info.proto schema file includes the imported mode.proto schema file:

table_info.proto file with imported mode.proto file

syntax = "proto3";
package sample;
option java_package = "io.api.sample";
option java_multiple_files = true;

import "sample/mode.proto";

message TableInfo {

Red Hat Integration 2023.q4 Service Registry User Guide

76

mode.proto file

In this example, two Protobuf artifacts are stored in Service Registry, one for TableInfo and one for
Mode. However, because Mode is part of TableInfo, whenever TableInfo is fetched to check a message
in the SerDes, Mode is also returned as an artifact referenced by TableInfo.

Additional resources

For Java example applications, see:

Protobuf Bean and Protobuf Find Latest examples

SerDes with references example

 int32 winIndex = 1;
 Mode mode = 2;
 int32 min = 3;
 int32 max = 4;
 string id = 5;
 string dataAdapter = 6;
 string schema = 7;
 string selector = 8;
 string subscription_id = 9;
}

syntax = "proto3";
package sample;
option java_package = "io.api.sample";
option java_multiple_files = true;

enum Mode {

MODE_UNKNOWN = 0;
RAW = 1;
MERGE = 2;
DISTINCT = 3;
COMMAND = 4;
}

CHAPTER 8. CONFIGURING KAFKA SERIALIZERS/DESERIALIZERS IN JAVA CLIENTS

77

https://github.com/Apicurio/apicurio-registry-examples
https://github.com/Apicurio/apicurio-registry-examples

CHAPTER 9. SERVICE REGISTRY ARTIFACT REFERENCE
This chapter provides reference information on the supported artifact types, states, and metadata that
are stored in Service Registry.

Section 9.1, “Service Registry artifact types”

Section 9.2, “Service Registry artifact states”

Section 9.3, “Service Registry artifact metadata”

Additional resources

For more information, see the Apicurio Registry REST API documentation .

9.1. SERVICE REGISTRY ARTIFACT TYPES

You can store and manage a wide range of schema and API artifact types in Service Registry.

Table 9.1. Service Registry artifact types

Type Description

ASYNCAPI AsyncAPI specification

AVRO Apache Avro schema

GRAPHQL GraphQL schema

JSON JSON Schema

KCONNECT Apache Kafka Connect schema

OPENAPI OpenAPI specification

PROTOBUF Google protocol buffers schema

WSDL Web Services Definition Language

XML Extensible Markup Language

XSD XML Schema Definition

9.2. SERVICE REGISTRY ARTIFACT STATES

The valid artifact states in Service Registry are ENABLED, DISABLED, and DEPRECATED.

Table 9.2. Service Registry artifact states

Red Hat Integration 2023.q4 Service Registry User Guide

78

files/registry-rest-api.htm

State Description

ENABLED Basic state, all the operations are available.

DISABLED The artifact and its metadata is viewable and
searchable using the Service Registry web console,
but its content cannot be fetched by any client.

DEPRECATED The artifact is fully usable but a header is added to
the REST API response whenever the artifact
content is fetched. The Service Registry Rest Client
will also log a warning whenever it sees deprecated
content.

9.3. SERVICE REGISTRY ARTIFACT METADATA

When an artifact is added to Service Registry, a set of metadata properties is created and stored along
with the artifact content. This metadata consists of system-generated or user-generated properties
that are read-only, and editable properties that you can update after the artifact is created.

Table 9.3. Service Registry system-generated metadata

Property Type Description

contentId integer Unique identifier of artifact content in Service
Registry. The same content ID can be shared by
multiple artifact versions when artifact versions have
identical content. For example, a content ID of 4 can
be used by multiple artifact versions with the same
content.

createdBy string The name of the user who created the artifact.

createdOn date The date and time when the artifact was created, for
example, 2023-10-11T14:15:28Z.

globalId integer Globally unique identifier of an artifact version in
Service Registry. For example, a global ID of 1 is
assigned to the first artifact version created in
Service Registry.

modifiedBy string The name of the user who modified the artifact.

modifiedOn date The date and time at which the artifact was modified,
for example, 2023-10-11T14:15:28Z.

type ArtifactType The supported artifact type, for example, AVRO,
OPENAPI, or PROTOBUF.

Table 9.4. Service Registry user-provided or system-generated metadata

CHAPTER 9. SERVICE REGISTRY ARTIFACT REFERENCE

79

Property Type Description

groupId string Unique identifier of an artifact group in Service
Registry, for example, development or
production. When creating an artifact by using the
Service Registry web console, if you do not provide a
group ID, this is set to default. You must provide a
group ID when using the Apicurio Registry REST API,
Java client, or Maven plug-in.

id string Unique identifier of an artifact in Service Registry.
You can provide an artifact ID or use the UUID
generated by Service Registry, for example,
8d168cad-1865-4e6c-bb7e-04e8be005bea.
Different versions of an artifact use the same artifact
ID, but have different global IDs.

references array of
ArtifactReference

Optional set of artifact references contained in the
artifact, which you can provide when creating the
artifact. The following simple example shows a single
artifact reference: [{"groupId":"my-
group","artifactId":"ItemId","version":"1","na
me":"com.example.common.ItemId"}].

version integer The latest version of the artifact. You can use the
generated version, for example, 3, or provide a
version by using the Service Registry REST API or
Maven plug-in, for example, 2.1.6.

Table 9.5. Service Registry editable metadata

Property Type Description

description string Optional meaningful description of the artifact, for
example, This is a simple OpenAPI for testing.
You can provide a description, or it can be
automatically discovered from the info section of
OpenAPI and AsyncAPI artifacts, if already provided.

labels array of string Optional comma-separated list of labels used to
filter and search for the artifact, for example,
test,protobuf. Provided by the user.

name string Optional human-readable name of the artifact, for
example, My first Avro schema. You can provide a
description, or it can be automatically discovered
from the info section of OpenAPI and AsyncAPI
artifacts, if the title field has a value.

Red Hat Integration 2023.q4 Service Registry User Guide

80

properties map Optional list of user-defined name-value pairs
associated with the artifact. The name and value
must be strings, for example, my-key and my-
value.

state ArtifactState The latest state of the artifact: ENABLED,
DISABLED, or DEPRECATED. Defaults to
ENABLED.

Property Type Description

Updating artifact metadata

You can use the Service Registry REST API or web console to update the set of editable
metadata properties.

You can update the state property only by using the Service Registry REST API.

Additional resources

For more details, see the /artifacts/{artifactId}/meta endpoint in the Apicurio Registry REST API
documentation.

CHAPTER 9. SERVICE REGISTRY ARTIFACT REFERENCE

81

files/registry-rest-api.htm

CHAPTER 10. SERVICE REGISTRY CONTENT RULE
REFERENCE

This chapter provides reference information on the supported content rule types, their level of support
for artifact types, and order of precedence of artifact-specific and global rules.

Section 10.1, “Service Registry content rule types”

Section 10.2, “Service Registry content rule maturity”

Section 10.3, “Service Registry content rule precedence”

Additional resources

For more information, see the Apicurio Registry REST API documentation .

10.1. SERVICE REGISTRY CONTENT RULE TYPES

You can specify VALIDITY, COMPATIBILITY, and INTEGRITY rule types to govern content evolution in
Service Registry. Theses rule types apply to both global rules and artifact-specific rules.

Table 10.1. Service Registry content rule types

Type Description

VALIDITY Validate content before adding it to Service Registry.
The possible configuration values for this rule are as
follows:

FULL: The validation is both syntax and
semantic.

SYNTAX_ONLY: The validation is syntax
only.

NONE: All validation checks are disabled.

Red Hat Integration 2023.q4 Service Registry User Guide

82

files/registry-rest-api.htm

COMPATIBILITY Enforce a compatibility level when updating artifacts
(for example, select BACKWARD for backwards
compatibility). Ensures that new artifacts are
compatible with previously added artifact versions or
clients. The possible configuration values for this rule
are as follows:

FULL: The new artifact is forward and
backward compatible with the most recently
added artifact.

FULL_TRANSITIVE: The new artifact is
forward and backward compatible with all
previously added artifacts.

BACKWARD: Clients using the new
artifact can read data written using the most
recently added artifact.

BACKWARD_TRANSITIVE: Clients
using the new artifact can read data written
using all previously added artifacts.

FORWARD: Clients using the most
recently added artifact can read data
written using the new artifact.

FORWARD_TRANSITIVE: Clients using
all previously added artifacts can read data
written using the new artifact.

NONE: All backward and forward
compatibility checks are disabled.

INTEGRITY Enforce artifact reference integrity when creating or
updating artifacts. Enable and configure this rule to
ensure that any artifact references provided are
correct. The possible configuration values for this
rule are as follows:

FULL: All artifact reference integrity checks
are enabled.

NO_DUPLICATES: Detect if there are any
duplicate artifact references.

REFS_EXIST: Detect if there are any
references to non-existent artifacts.

ALL_REFS_MAPPED: Ensure that all
artifact references are mapped.

NONE: All artifact reference integrity
checks are disabled.

Type Description

CHAPTER 10. SERVICE REGISTRY CONTENT RULE REFERENCE

83

10.2. SERVICE REGISTRY CONTENT RULE MATURITY

Not all content rules are fully implemented for every artifact type supported by Service Registry. The
following table shows the current maturity level for each rule and artifact type:

Table 10.2. Service Registry content rule maturity matrix

Artifact type Validity rule Compatibility rule Integrity rule

Avro Full Full Full

Protobuf Full Full Full

JSON Schema Full Full Mapping detection not
supported

OpenAPI Full None Full

AsyncAPI Syntax Only None Full

GraphQL Syntax Only None Mapping detection not
supported

Kafka Connect Syntax Only None Mapping detection not
supported

WSDL Full None Mapping detection not
supported

XML Full None Mapping detection not
supported

XSD Full None Mapping detection not
supported

10.3. SERVICE REGISTRY CONTENT RULE PRECEDENCE

When you add or update an artifact, Service Registry applies rules to check the validity, compatibility, or
integrity of the artifact content. Configured artifact-specific rules override the equivalent configured
global rules, as shown in the following table.

Table 10.3. Service Registry content rule precedence

Artifact-specific rule Global rule Rule applied to this
artifact

Global rule available for
other artifacts?

Enabled Enabled Artifact-specific Yes

Disabled Enabled Global Yes

Red Hat Integration 2023.q4 Service Registry User Guide

84

Disabled Disabled None No

Enabled, set to None Enabled None Yes

Disabled Enabled, set to None None No

Artifact-specific rule Global rule Rule applied to this
artifact

Global rule available for
other artifacts?

CHAPTER 10. SERVICE REGISTRY CONTENT RULE REFERENCE

85

APPENDIX A. USING YOUR SUBSCRIPTION
Service Registry is provided through a software subscription. To manage your subscriptions, access your
account at the Red Hat Customer Portal.

Accessing your account

1. Go to access.redhat.com.

2. If you do not already have an account, create one.

3. Log in to your account.

Activating a subscription

1. Go to access.redhat.com.

2. Navigate to My Subscriptions.

3. Navigate to Activate a subscription and enter your 16-digit activation number.

Downloading ZIP and TAR files
To access ZIP or TAR files, use the customer portal to find the relevant files for download. If you are
using RPM packages, this step is not required.

1. Open a browser and log in to the Red Hat Customer Portal Product Downloads page at
access.redhat.com/downloads.

2. Locate the Red Hat Integration entries in the Integration and Automation category.

3. Select the desired Service Registry product. The Software Downloads page opens.

4. Click the Download link for your component.

Revised on 2024-02-22 17:15:23 UTC

Red Hat Integration 2023.q4 Service Registry User Guide

86

https://access.redhat.com
https://access.redhat.com
https://access.redhat.com/downloads

	Table of Contents
	PREFACE
	MAKING OPEN SOURCE MORE INCLUSIVE
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

	CHAPTER 1. INTRODUCTION TO SERVICE REGISTRY
	1.1. WHAT IS SERVICE REGISTRY?
	Service Registry capabilities

	1.2. SCHEMA AND API ARTIFACTS IN SERVICE REGISTRY
	Groups of schemas and APIs
	References to other schemas and APIs
	Supported artifact types

	1.3. MANAGE CONTENT USING THE SERVICE REGISTRY WEB CONSOLE
	1.4. SERVICE REGISTRY REST API FOR CLIENTS
	Compatibility with other schema registry REST APIs

	1.5. SERVICE REGISTRY STORAGE OPTIONS
	1.6. VALIDATE KAFKA MESSAGES USING SCHEMAS AND JAVA CLIENT SERIALIZERS/DESERIALIZERS
	1.7. STREAM DATA TO EXTERNAL SYSTEMS WITH KAFKA CONNECT CONVERTERS
	1.8. SERVICE REGISTRY DEMONSTRATION EXAMPLES
	1.9. SERVICE REGISTRY AVAILABLE DISTRIBUTIONS

	CHAPTER 2. SERVICE REGISTRY CONTENT RULES
	2.1. GOVERN SERVICE REGISTRY CONTENT USING RULES
	2.1.1. When rules are applied
	2.1.2. Order of precedence of rules
	2.1.3. How rules work
	2.1.4. Content rule configuration
	Configure artifact rules
	Configure global rules

	CHAPTER 3. MANAGING SERVICE REGISTRY CONTENT USING THE WEB CONSOLE
	3.1. VIEWING ARTIFACTS USING THE SERVICE REGISTRY WEB CONSOLE
	3.2. ADDING ARTIFACTS USING THE SERVICE REGISTRY WEB CONSOLE
	3.3. CONFIGURING CONTENT RULES USING THE SERVICE REGISTRY WEB CONSOLE
	3.4. GENERATING CLIENT SDKS FOR OPENAPI ARTIFACTS USING THE SERVICE REGISTRY WEB CONSOLE
	3.5. CHANGING AN ARTIFACT OWNER USING THE SERVICE REGISTRY WEB CONSOLE
	3.6. CONFIGURING SERVICE REGISTRY INSTANCE SETTINGS USING THE WEB CONSOLE
	3.7. EXPORTING AND IMPORTING DATA USING THE SERVICE REGISTRY WEB CONSOLE

	CHAPTER 4. MANAGING SERVICE REGISTRY CONTENT USING THE REST API
	4.1. MANAGING SCHEMA AND API ARTIFACTS USING SERVICE REGISTRY REST API COMMANDS
	4.2. MANAGING SCHEMA AND API ARTIFACT VERSIONS USING SERVICE REGISTRY REST API COMMANDS
	4.3. MANAGING SCHEMA AND API ARTIFACT REFERENCES USING SERVICE REGISTRY REST API COMMANDS
	4.4. EXPORTING AND IMPORTING REGISTRY DATA USING SERVICE REGISTRY REST API COMMANDS

	CHAPTER 5. MANAGING SERVICE REGISTRY CONTENT USING THE MAVEN PLUG-IN
	5.1. ADDING SCHEMA AND API ARTIFACTS USING THE MAVEN PLUG-IN
	5.2. DOWNLOADING SCHEMA AND API ARTIFACTS USING THE MAVEN PLUG-IN
	5.3. TESTING SCHEMA AND API ARTIFACTS USING THE MAVEN PLUG-IN
	5.4. ADDING ARTIFACT REFERENCES MANUALLY USING THE SERVICE REGISTRY MAVEN PLUG-IN
	5.5. ADDING ARTIFACT REFERENCES AUTOMATICALLY USING THE SERVICE REGISTRY MAVEN PLUG-IN

	CHAPTER 6. MANAGING SERVICE REGISTRY CONTENT USING A JAVA CLIENT
	6.1. SERVICE REGISTRY JAVA CLIENT
	6.2. WRITING SERVICE REGISTRY JAVA CLIENT APPLICATIONS
	6.3. SERVICE REGISTRY JAVA CLIENT CONFIGURATION
	Custom header configuration
	TLS configuration options

	CHAPTER 7. VALIDATING KAFKA MESSAGES USING SERIALIZERS/DESERIALIZERS IN JAVA CLIENTS
	7.1. KAFKA CLIENT APPLICATIONS AND SERVICE REGISTRY
	Service Registry schema technologies
	Producer schema configuration
	Consumer schema configuration

	7.2. STRATEGIES TO LOOK UP A SCHEMA IN SERVICE REGISTRY
	Artifact resolver strategy
	Strategies to return a reference to an artifact
	DefaultSchemaResolver interface
	Configuration for registry lookup options

	7.3. REGISTERING A SCHEMA IN SERVICE REGISTRY
	Service Registry web console
	Curl command example
	Maven plug-in example
	Configuration using a producer client example

	7.4. USING A SCHEMA FROM A KAFKA CONSUMER CLIENT
	7.5. USING A SCHEMA FROM A KAFKA PRODUCER CLIENT
	7.6. USING A SCHEMA FROM A KAFKA STREAMS APPLICATION

	CHAPTER 8. CONFIGURING KAFKA SERIALIZERS/DESERIALIZERS IN JAVA CLIENTS
	8.1. SERVICE REGISTRY SERIALIZER/DESERIALIZER CONFIGURATION IN CLIENT APPLICATIONS
	Configuration for SerDes services
	Configuration for SerDes lookup strategies
	Configuration for Kafka converters
	Configuration for different schema types

	8.2. SERVICE REGISTRY SERIALIZER/DESERIALIZER CONFIGURATION PROPERTIES
	SchemaResolver interface
	DefaultSchemaResolver class
	Configuration for registry API access options
	Configuration for registry lookup options
	Configuration to read/write registry artifacts in Kafka
	Configuration for deserializer fall-back options

	8.3. HOW TO CONFIGURE DIFFERENT CLIENT SERIALIZER/DESERIALIZER TYPES
	Kafka application configuration for serializers/deserializers
	8.3.1. Configure Avro SerDes with Service Registry
	8.3.2. Configure JSON Schema SerDes with Service Registry
	8.3.3. Configure Protobuf SerDes with Service Registry

	CHAPTER 9. SERVICE REGISTRY ARTIFACT REFERENCE
	9.1. SERVICE REGISTRY ARTIFACT TYPES
	9.2. SERVICE REGISTRY ARTIFACT STATES
	9.3. SERVICE REGISTRY ARTIFACT METADATA

	CHAPTER 10. SERVICE REGISTRY CONTENT RULE REFERENCE
	10.1. SERVICE REGISTRY CONTENT RULE TYPES
	10.2. SERVICE REGISTRY CONTENT RULE MATURITY
	10.3. SERVICE REGISTRY CONTENT RULE PRECEDENCE

	APPENDIX A. USING YOUR SUBSCRIPTION
	Accessing your account
	Activating a subscription
	Downloading ZIP and TAR files

