
Red Hat Integration 2023.q4

Installing Debezium on RHEL

For use with Red Hat Integration 2.3.4 on Red Hat Enterprise Linux (RHEL)

Last Updated: 2023-11-17

Red Hat Integration 2023.q4 Installing Debezium on RHEL

For use with Red Hat Integration 2.3.4 on Red Hat Enterprise Linux (RHEL)

Legal Notice

Copyright © 2023 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide describes how to install Red Hat Integration on RHEL with AMQ Streams.

. .

. .

. .

. .

Table of Contents

PREFACE
MAKING OPEN SOURCE MORE INCLUSIVE
PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

CHAPTER 1. DEBEZIUM OVERVIEW

CHAPTER 2. INSTALLING DEBEZIUM CONNECTORS ON RHEL
2.1. KAFKA TOPIC CREATION RECOMMENDATIONS
2.2. PLANNING THE DEBEZIUM CONNECTOR CONFIGURATION
2.3. DEPLOYING DEBEZIUM WITH AMQ STREAMS ON RED HAT ENTERPRISE LINUX
2.4. VERIFYING THE DEPLOYMENT
2.5. UPDATING DEBEZIUM CONNECTOR PLUG-INS IN THE KAFKA CONNECT CLUSTER

APPENDIX A. USING YOUR SUBSCRIPTION
Accessing your account
Activating a subscription
Downloading zip and tar files

3
3
3

4

5
5
5
7

10
12

13
13
13
13

Table of Contents

1

Red Hat Integration 2023.q4 Installing Debezium on RHEL

2

PREFACE

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
We appreciate your feedback on our documentation.

To propose improvements, open a Jira issue and describe your suggested changes. Provide as much
detail as possible to enable us to address your request quickly.

Prerequisite

You have a Red Hat Customer Portal account. This account enables you to log in to the Red Hat
Jira Software instance.
If you do not have an account, you will be prompted to create one.

Procedure

1. Click the following link: Create issue.

2. In the Summary text box, enter a brief description of the issue.

3. In the Description text box, provide the following information:

The URL of the page where you found the issue.

A detailed description of the issue.
You can leave the information in any other fields at their default values.

4. Click Create to submit the Jira issue to the documentation team.

Thank you for taking the time to provide feedback.

PREFACE

3

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language
https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12317320&issuetype=1&components=12333058&priority=3&description=URL where issue was found%3A%C2%A0%0A%0ADescription of issue%3A%C2%A0&12368953

CHAPTER 1. DEBEZIUM OVERVIEW
Debezium for Red Hat Integration is a distributed platform that captures database operations, creates
data change event records for row-level operations, and streams change event records to Apache
Kafka topics. Debezium is built on Apache Kafka and is deployed and integrated with AMQ Streams.

Debezium captures row-level changes to a database table and passes corresponding change events to
AMQ Streams. Applications can read these change event streams and access the change events in the
order in which they occurred.

Debezium is the upstream community project for Debezium for Red Hat Integration.

Debezium has multiple uses, including:

Data replication

Updating caches and search indexes

Simplifying monolithic applications

Data integration

Enabling streaming queries

Debezium provides Apache Kafka Connect connectors for the following common databases:

Db2

MySQL

MongoDB

Oracle

PostgreSQL

SQL Server

Red Hat Integration 2023.q4 Installing Debezium on RHEL

4

https://github.com/debezium/debezium
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q4/html-single/debezium_user_guide/index#debezium-connector-for-db2
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q4/html-single/debezium_user_guide/index#debezium-connector-for-mysql
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q4/html-single/debezium_user_guide/index#debezium-connector-for-mongodb
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q4/html-single/debezium_user_guide/index#debezium-connector-for-oracle
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q4/html-single/debezium_user_guide/index#debezium-connector-for-postgresql
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q4/html-single/debezium_user_guide/index#debezium-connector-for-sql-server

CHAPTER 2. INSTALLING DEBEZIUM CONNECTORS ON RHEL
Install Debezium connectors through AMQ Streams by extending Kafka Connect with connector
plugins. Following a deployment of AMQ Streams, you can deploy Debezium as a connector
configuration through Kafka Connect.

2.1. KAFKA TOPIC CREATION RECOMMENDATIONS

Debezium stores data in multiple Apache Kafka topics. The topics must either be created in advance by
an administrator, or you can configure Kafka Connect to configure topics automatically .

The following list describes limitations and recommendations to consider when creating topics:

Database schema history topics for the Debezium Db2, MySQL, Oracle, and SQL Server connectors

For each of the preceding connectors a database schema history topic is required. Whether you
manually create the database schema history topic, use the Kafka broker to create the topic
automatically, or use Kafka Connect to create the topic , ensure that the topic is configured with the
following settings:

Infinite or very long retention.

Replication factor of at least three in production environments.

Single partition.

Other topics

When you enable Kafka log compaction so that only the last change event for a given record
is saved, set the following topic properties in Apache Kafka:

min.compaction.lag.ms

delete.retention.ms
To ensure that topic consumers have enough time to receive all events and delete
markers, specify values for the preceding properties that are larger than the maximum
downtime that you expect for your sink connectors. For example, consider the downtime
that might occur when you apply updates to sink connectors.

Replicated in production.

Single partition.
You can relax the single partition rule, but your application must handle out-of-order events
for different rows in the database. Events for a single row are still totally ordered. If you use
multiple partitions, the default behavior is that Kafka determines the partition by hashing the
key. Other partition strategies require the use of single message transformations (SMTs) to
set the partition number for each record.

2.2. PLANNING THE DEBEZIUM CONNECTOR CONFIGURATION

Before you deploy a Debezium connector, determine how you want to configure the connector. The
configuration provides information that specifies the behavior of the connector and enables Debezium
to connect to the source database.

You specify the connector configuration as JSON, and when you are ready to register the connector,

CHAPTER 2. INSTALLING DEBEZIUM CONNECTORS ON RHEL

5

https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q4/html-single/debezium_user_guide/index#customization-of-kafka-connect-automatic-topic-creation
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q4/html-single/debezium_user_guide/index#customization-of-kafka-connect-automatic-topic-creation
https://kafka.apache.org/documentation
https://kafka.apache.org/documentation#topicconfigs_min.compaction.lag.ms
https://kafka.apache.org/documentation#topicconfigs_delete.retention.ms

1

2

3

You specify the connector configuration as JSON, and when you are ready to register the connector,
you use curl to submit the configuration to the Kafka Connect API endpoint.

Prerequisites

A source database is deployed and the Debezium connector can access the database.

You know the following information, which the connector requires to access the source
database:

Name or IP address of the database host.

Port number for connecting to the database.

Name of the account that the connector can use to sign in to the database.

Password of the database user account.

Name of the database.

The names of the tables from which you want the connector to capture information.

The name of the Kafka broker to which you want the connector to emit change events.

The name of the Kafka topic to which you want the connector to send database history
information.

Procedure

Specify the configuration that you want to apply to the Debezium connector in JSON format.
The following example shows a simple configuration for a Debezium MySQL connector:

The name of the connector to register with the Kafka Connect cluster.

The name of the connector class.

The number of tasks that can operate concurrently. Only one task should operate at a time.

{
 "name": "inventory-connector", 1
 "config": {
 "connector.class": "io.debezium.connector.mysql.MySqlConnector", 2
 "tasks.max": "1", 3
 "database.hostname": "mysql", 4
 "database.port": "3306", 5
 "database.user": "debezium", 6
 "database.password": "dbz", 7
 "database.server.id": "184054", 8
 "topic.prefix": "dbserver1", 9
 "table.include.list": "public.inventory", 10
 "schema.history.internal.kafka.bootstrap.servers": "kafka:9092", 11
 "schema.history.internal.kafka.topic": "dbhistory.inventory" 12
 }
}

Red Hat Integration 2023.q4 Installing Debezium on RHEL

6

4

5

6

7

8

9

10

11

12

The host name or IP address of the host database instance.

The port number of the database instance.

The name of the user account through which Debezium connects to the database.

The password for the database user account.

A unique numeric ID for the connector.
This property is used for the MySQL connector only.

A string that serves as the logical identifier for the database server or cluster of servers
from which the connector captures changes. The specified string designates a namespace.
Debezium prefixes this name to each Kafka topic that the connector writes to, as well as to
the names of Kafka Connect schemas, and the namespaces of the corresponding Avro
schema, when the Avro converter is used.

The list of tables from which the connector captures change events.

The name of the Kafka broker where the connector sends the database schema history.
The specified broker also receives the change events that the connector emits.

The name of the Kafka topic that stores the schema history.
After a connector restart, the connector resumes reading the database log from the point
at which it stopped, emitting events for any transactions that occurred while it was offline.
Before the connector writes change events for an unread transaction to Kafka, it checks
the schema history and then applies the schema that was in effect when the original
transaction occurred.

Additional information

For information about the configuration properties that you can set for each type of connector,
see the deployment documentation for the connector in the Debezium User Guide.

Next steps

Section 2.3, “Deploying Debezium with AMQ Streams on Red Hat Enterprise Linux” .

2.3. DEPLOYING DEBEZIUM WITH AMQ STREAMS ON RED HAT
ENTERPRISE LINUX

This procedure describes how to set up connectors for Debezium on Red Hat Enterprise Linux.
Connectors are deployed to an AMQ Streams cluster using Apache Kafka Connect, a framework for
streaming data between Apache Kafka and external systems. Kafka Connect must be run in distributed
mode rather than standalone mode.

Prerequisites

The host environment to which you want to deploy Debezium runs Red Hat Enterprise Linux,
AMQ Streams, and Java in a supported configuration.

For information about how to install AMQ Streams, see Installing AMQ Streams .

For information about how to install a basic, non-production AMQ Streams cluster that

CHAPTER 2. INSTALLING DEBEZIUM CONNECTORS ON RHEL

7

https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q4/html-single/debezium_user_guide/index
https://access.redhat.com/articles/4938181
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/using_amq_streams_on_rhel/index#proc-installing-amq-streams-str

For information about how to install a basic, non-production AMQ Streams cluster that
contains a single ZooKeeper node, and a single Kafka node, see Running a single node AMQ
Streams cluster.

NOTE

If you are running an earlier version of AMQ Streams, you must first upgrade to AMQ
Streams 2.5. For information about the upgrade process, see AMQ Streams and Kafka
upgrades.

You have administrative privileges (sudo access) on the host.

Apache ZooKeeper and the Apache Kafka broker are running.

Kafka Connect is running in distributed mode, and not in standalone mode.

You know the credentials of the kafka user that was created when AMQ Streams was installed.

A source database is deployed and the host where you deploy Debezium has access to the
database.

You know how you want to configure the connector.

Procedure

1. Download the Debezium connector or connectors that you want to use from the Red Hat
Integration download site. For example, to use Debezium with a MySQL database, download the
Debezium 2.3.4 MySQL Connector.

2. On the Red Hat Enterprise Linux host where you deployed AMQ Streams, open a terminal
window and create a connector-plugins directory in /opt/kafka, if it does not already exist:

3. Enter the following command to extract the contents of the Debezium connector archive that
you downloaded to the /opt/kafka/connector-plugins directory.

4. Repeat Steps 1 -3 for each connector that you want to install.

5. From a terminal window, sign in as the kafka user:

6. Stop the Kafka Connect process if it is running.

a. Check whether Kafka Connect is running in distributed mode by entering the following
command:

If the process is running, the command returns the process ID, for example:

$ sudo mkdir /opt/kafka/connector-plugins

$ sudo unzip debezium-connector-mysql-2.3.4.Final.zip -d /opt/kafka/connector-plugins

$ su - kafka
$ Password:

$ jcmd | grep ConnectDistributed

Red Hat Integration 2023.q4 Installing Debezium on RHEL

8

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/using_amq_streams_on_rhel/index#proc-running-single-node-amq-streams-cluster-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/using_amq_streams_on_rhel/index#assembly-upgrade-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/using_amq_streams_on_rhel/index#assembly-kafka-connect-distributed-str
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=red.hat.integration&downloadType=distributions

18514 org.apache.kafka.connect.cli.ConnectDistributed /opt/kafka/config/connect-
distributed.properties

b. Stop the process by entering the kill command with the process ID, for example,

7. Edit the connect-distributed.properties file in /opt/kafka/config/ and set the value of
plugin.path to the location of the parent directory for the Debezium connector plug-ins:

8. Start Kafka Connect in distributed mode.

9. After Kafka Connect is running, use the Kafka Connect API to register the connector.
Enter a curl command to submit a POST request that sends the connector configuration JSON
that you specified in Section 2.2, “Planning the Debezium connector configuration” to the Kafka
Connect REST API endpoint at localhost:8083/connectors.
For example:

To register multiple connectors, submit a separate request for each one.

10. Restart Kafka Connect to implement your changes.
As Kafka Connect starts, it loads the configured Debezium connectors from the connector-
plugins directory.

After you complete the configuration, the deployed connector connects to the source database
and produces events for each inserted, updated, or deleted row or document.

11. Repeat Steps 5–10 for each Kafka Connect worker node.

Next steps

Verify the deployment.

Additional resources

$ kill 18514

plugin.path=/opt/kafka/connector-plugins

$ /opt/kafka/bin/connect-distributed.sh /opt/kafka/config/connect-distributed.properties

curl -i -X POST -H "Accept:application/json" -H "Content-Type:application/json"
localhost:8083/connectors/ \
-d '{"name": "inventory-connector", "config": \
{ "connector.class": "io.debezium.connector.mysql.MySqlConnector", \
"tasks.max": "1", \
"database.hostname": "mysql", \
"database.port": "3306", \
"database.user": "debezium", \
"database.password": "dbz", \
"database.server.id": "184054", \
"topic.prefix": "dbserver1", \
"table.include.list": "public.inventory", \
"schema.history.internal.kafka.bootstrap.servers": "kafka:9092", \
"schema.history.internal.kafka.topic": "dbhistory.inventory" } }'

CHAPTER 2. INSTALLING DEBEZIUM CONNECTORS ON RHEL

9

Adding connector plugins

2.4. VERIFYING THE DEPLOYMENT

After the connector starts, it performs a snapshot of the configured database, and creates topics for
each table that you specify.

Prerequisites

You deployed a connector on Red Hat Enterprise Linux, based on the instructions in Section 2.3,
“Deploying Debezium with AMQ Streams on Red Hat Enterprise Linux”. .Procedure

1. From a terminal window on the host, enter the following command to request the list of
connectors from the Kafka Connect API:

The query returns the name of the deployed connector, for example:

["inventory-connector"]

2. From a terminal window on the host, enter the following command to view the tasks that the
connector is running:

The command returns output that is similar to the following example:

3. Display a list of topics in the Kafka cluster.
From a terminal window, navigate to /opt/kafka/bin/ and run the following shell script:

The Kafka broker returns a list of topics that the connector creates. The available topics
depends on the settings of the connector’s
snapshot.mode,snapshot.include.collection.list, and table.include.list configuration

$ curl -H "Accept:application/json" localhost:8083/connectors/

$ curl -i -X GET -H "Accept:application/json" localhost:8083/connectors/inventory-
connector

HTTP/1.1 200 OK
Date: Thu, 06 Feb 2020 22:12:03 GMT
Content-Type: application/json
Content-Length: 531
Server: Jetty(9.4.20.v20190813)

{
 "name": "inventory-connector",
 ...
 "tasks": [
 {
 "connector": "inventory-connector",
 "task": 0
 }
]
}

./kafka-topics.sh --bootstrap-server=localhost:9092 --list

Red Hat Integration 2023.q4 Installing Debezium on RHEL

10

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/using_amq_streams_on_rhel/index#proc-adding-connector-plugins-str

properties. By default, the connector creates a topic for each non-system table in the
database.

4. View the contents of a topic.
From a terminal window, navigate to /opt/kafka/bin/, and run the kafka-console-
consumer.sh shell script to display the contents of one of the topics returned by the
preceding command:
For example:

For each event in the topic, the command returns information that is similar to the following
output:

Example 2.1. Content of a Integration change event

{"schema":{"type":"struct","fields":
[{"type":"int32","optional":false,"field":"product_id"}],"optional":false,"name":"dbserver1.in
ventory.products_on_hand.Key"},"payload":{"product_id":101}} {"schema":
{"type":"struct","fields":[{"type":"struct","fields":
[{"type":"int32","optional":false,"field":"product_id"},
{"type":"int32","optional":false,"field":"quantity"}],"optional":true,"name":"dbserver1.inven
tory.products_on_hand.Value","field":"before"},{"type":"struct","fields":
[{"type":"int32","optional":false,"field":"product_id"},
{"type":"int32","optional":false,"field":"quantity"}],"optional":true,"name":"dbserver1.inven
tory.products_on_hand.Value","field":"after"},{"type":"struct","fields":
[{"type":"string","optional":false,"field":"version"},
{"type":"string","optional":false,"field":"connector"},
{"type":"string","optional":false,"field":"name"},
{"type":"int64","optional":false,"field":"ts_ms"},
{"type":"string","optional":true,"name":"io.debezium.data.Enum","version":1,"parameters
":{"allowed":"true,last,false"},"default":"false","field":"snapshot"},
{"type":"string","optional":false,"field":"db"},
{"type":"string","optional":true,"field":"sequence"},
{"type":"string","optional":true,"field":"table"},
{"type":"int64","optional":false,"field":"server_id"},
{"type":"string","optional":true,"field":"gtid"},{"type":"string","optional":false,"field":"file"},
{"type":"int64","optional":false,"field":"pos"},
{"type":"int32","optional":false,"field":"row"},
{"type":"int64","optional":true,"field":"thread"},
{"type":"string","optional":true,"field":"query"}],"optional":false,"name":"io.debezium.conn
ector.mysql.Source","field":"source"},{"type":"string","optional":false,"field":"op"},
{"type":"int64","optional":true,"field":"ts_ms"},{"type":"struct","fields":
[{"type":"string","optional":false,"field":"id"},
{"type":"int64","optional":false,"field":"total_order"},
{"type":"int64","optional":false,"field":"data_collection_order"}],"optional":true,"field":"tran
saction"}],"optional":false,"name":"dbserver1.inventory.products_on_hand.Envelope"},
"payload":{"before":null,"after":{"product_id":101,"quantity":3},"source":
{"version":"2.3.4.Final-redhat-
00001","connector":"mysql","name":"inventory_connector_mysql","ts_ms":16389852478
05,"snapshot":"true","db":"inventory","sequence":null,"table":"products_on_hand","serve

./kafka-console-consumer.sh \
> --bootstrap-server localhost:9092 \
> --from-beginning \
> --property print.key=true \
> --topic=dbserver1.inventory.products_on_hand

CHAPTER 2. INSTALLING DEBEZIUM CONNECTORS ON RHEL

11

r_id":0,"gtid":null,"file":"mysql-
bin.000003","pos":156,"row":0,"thread":null,"query":null},"op":"r","ts_ms":16389852478
05,"transaction":null}}

In the preceding example, the payload value shows that the connector snapshot generated
a read ("op" ="r") event from the table inventory.products_on_hand. The "before" state
of the product_id record is null, indicating that no previous value exists for the record. The
"after" state shows a quantity of 3 for the item with product_id 101.

Next Steps

For information about the configuration settings that are available for each connector, and to learn how
to configure source databases to enable change data capture, see the Debezium User Guide.

2.5. UPDATING DEBEZIUM CONNECTOR PLUG-INS IN THE KAFKA
CONNECT CLUSTER

To replace the version of a Debezium connector that is deployed on Red Hat Enterprise Linux, you
update the connector plug-in.

Procedure

1. Download a copy of the Debezium connector plug-in that you want to replace from the Red Hat
Integration download site.

2. Extract the contents of the Debezium connector archive to the /opt/kafka/connector-plugins
directory.

3. Restart Kafka Connect.

$ sudo unzip debezium-connector-mysql-2.3.4.Final.zip -d /opt/kafka/connector-plugins

Red Hat Integration 2023.q4 Installing Debezium on RHEL

12

LinkDebeziumUserGuide
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=red.hat.integration&downloadType=distributions

APPENDIX A. USING YOUR SUBSCRIPTION
Integration is provided through a software subscription. To manage your subscriptions, access your
account at the Red Hat Customer Portal.

Accessing your account

1. Go to access.redhat.com.

2. If you do not already have an account, create one.

3. Log in to your account.

Activating a subscription

1. Go to access.redhat.com.

2. Navigate to My Subscriptions.

3. Navigate to Activate a subscription and enter your 16-digit activation number.

Downloading zip and tar files
To access zip or tar files, use the customer portal to find the relevant files for download. If you are using
RPM packages, this step is not required.

1. Open a browser and log in to the Red Hat Customer Portal Product Downloads page at
access.redhat.com/downloads.

2. Scroll down to INTEGRATION AND AUTOMATION.

3. Click Red Hat Integration to display the Red Hat Integration downloads page.

4. Click the Download link for your component.

Revised on 2023-11-17 04:11:22 UTC

APPENDIX A. USING YOUR SUBSCRIPTION

13

https://access.redhat.com
https://access.redhat.com
https://access.redhat.com/downloads

	Table of Contents
	PREFACE
	MAKING OPEN SOURCE MORE INCLUSIVE
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

	CHAPTER 1. DEBEZIUM OVERVIEW
	CHAPTER 2. INSTALLING DEBEZIUM CONNECTORS ON RHEL
	2.1. KAFKA TOPIC CREATION RECOMMENDATIONS
	2.2. PLANNING THE DEBEZIUM CONNECTOR CONFIGURATION
	2.3. DEPLOYING DEBEZIUM WITH AMQ STREAMS ON RED HAT ENTERPRISE LINUX
	2.4. VERIFYING THE DEPLOYMENT
	2.5. UPDATING DEBEZIUM CONNECTOR PLUG-INS IN THE KAFKA CONNECT CLUSTER

	APPENDIX A. USING YOUR SUBSCRIPTION
	Accessing your account
	Activating a subscription
	Downloading zip and tar files

