
Red Hat Integration 2023.q4

Getting Started with Debezium

For use with Red Hat Integration 2.3.4

Last Updated: 2023-11-17

Red Hat Integration 2023.q4 Getting Started with Debezium

For use with Red Hat Integration 2.3.4

Legal Notice

Copyright © 2023 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide describes how to get started using Red Hat Integration.

. .

. .

. .

. .

. .

. .

Table of Contents

PREFACE
MAKING OPEN SOURCE MORE INCLUSIVE
PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

CHAPTER 1. ABOUT THIS TUTORIAL

CHAPTER 2. INTRODUCTION TO DEBEZIUM

CHAPTER 3. STARTING THE SERVICES
3.1. DEPLOYING A MYSQL DATABASE
3.2. DEPLOYING KAFKA CONNECT
3.3. VERIFYING THE CONNECTOR DEPLOYMENT

CHAPTER 4. VIEWING CHANGE EVENTS
4.1. VIEWING A CREATE EVENT
4.2. UPDATING THE DATABASE AND VIEWING THE UPDATE EVENT
4.3. DELETING A RECORD IN THE DATABASE AND VIEWING THE DELETE EVENT
4.4. RESTARTING THE KAFKA CONNECT SERVICE

CHAPTER 5. NEXT STEPS

3
3
3

4

5

6
6
7
11

16
16
22
24
26

29

Table of Contents

1

Red Hat Integration 2023.q4 Getting Started with Debezium

2

PREFACE
This tutorial demonstrates how to use Debezium to capture updates in a MySQL database. As the data
in the database changes, you can see the resulting event streams.

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
We appreciate your feedback on our documentation.

To propose improvements, open a Jira issue and describe your suggested changes. Provide as much
detail as possible to enable us to address your request quickly.

Prerequisite

You have a Red Hat Customer Portal account. This account enables you to log in to the Red Hat
Jira Software instance.
If you do not have an account, you will be prompted to create one.

Procedure

1. Click the following link: Create issue.

2. In the Summary text box, enter a brief description of the issue.

3. In the Description text box, provide the following information:

The URL of the page where you found the issue.

A detailed description of the issue.
You can leave the information in any other fields at their default values.

4. Click Create to submit the Jira issue to the documentation team.

Thank you for taking the time to provide feedback.

PREFACE

3

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language
https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12317320&issuetype=1&components=12333058&priority=3&description=URL where issue was found%3A%C2%A0%0A%0ADescription of issue%3A%C2%A0&12368953

CHAPTER 1. ABOUT THIS TUTORIAL
The tutorial includes the following steps:

Deploy a MySQL database server with a simple example database to OpenShift.

Apply a custom resource in AMQ Streams to automatically build a Kafka Connect container
image that includes the Debezium MySQL connector plug-in.

Create the Debezium MySQL connector resource to capture changes in the database.

Verify the connector deployment.

View the change events that the connector emits to a Kafka topic from the database.

Prerequisites

You are familiar with OpenShift and AMQ Streams.

You have access to an OpenShift cluster on which the cluster Operator is installed.

The AMQ Streams Operator is running.

An Apache Kafka cluster is deployed as documented in Deploying and Managing AMQ Streams
on OpenShift.

You have a Red Hat Integration license.

You know how to use OpenShift administration tools. The OpenShift oc CLI client is installed or
you have access to the OpenShift Container Platform web console.

Depending on how you intend to store the Kafka Connect build image, you must either have
permission to access a container registry, or you must create an ImageStream resource on
OpenShift:

To store the build image in an image registry, such as Red Hat Quay.io or Docker Hub

An account and permissions to create and manage images in the registry.

To store the build image as a native OpenShift ImageStream

An ImageStream resource is deployed to the cluster for storing new container images.
You must explicitly create an ImageStream for the cluster. ImageStreams are not
available by default.

Additional resources:

Managing image streams on OpenShift Container Platform .

Red Hat Integration 2023.q4 Getting Started with Debezium

4

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/deploying_and_managing_amq_streams_on_openshift/index#kafka-cluster-str
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.13/html-single/cli_tools/index#installing-openshift-cli
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.13/html-single/images/index#managing-image-streams

CHAPTER 2. INTRODUCTION TO DEBEZIUM
Debezium is a distributed platform that converts information from your existing databases into event
streams, enabling applications to detect, and immediately respond to row-level changes in the
databases.

Debezium is built on top of Apache Kafka and provides a set of Kafka Connect compatible connectors.
Each of the connectors works with a specific database management system (DBMS). Connectors
record the history of data changes in the DBMS by detecting changes as they occur, and streaming a
record of each change event to a Kafka topic. Consuming applications can then read the resulting event
records from the Kafka topic.

By taking advantage of Kafka’s reliable streaming platform, Debezium makes it possible for applications
to consume changes that occur in a database correctly and completely. Even if your application stops
unexpectedly, or loses its connection, it does not miss events that occur during the outage. After the
application restarts, it resumes reading from the topic from the point where it left off.

The tutorial that follows shows you how to deploy and use the Debezium MySQL connector with a
simple configuration. For more information about deploying and using Debezium connectors, see the
connector documentation.

Additional resources

Debezium connector for Db2

Debezium connector for MongoDB

Debezium connector for MySQL

Debezium connector for Oracle Database

Debezium connector for PostgreSQL

Debezium connector for SQL Server

CHAPTER 2. INTRODUCTION TO DEBEZIUM

5

http://kafka.apache.org
https://kafka.apache.org/documentation.html#connect
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q4/html-single/debezium_user_guide/index#debezium-connector-for-mysql
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q4/html-single/debezium_user_guide/index#debezium-connector-for-db2
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q4/html-single/debezium_user_guide/index#debezium-connector-for-mongodb
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q4/html-single/debezium_user_guide/index#debezium-connector-for-mysql
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q4/html-single/debezium_user_guide/index#debezium-connector-for-oracle
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q4/html-single/debezium_user_guide/index#debezium-connector-for-postgresql
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q4/html-single/debezium_user_guide/index#debezium-connector-for-sql-server

CHAPTER 3. STARTING THE SERVICES
Using Debezium requires AMQ Streams with Kafka and Kafka Connect, a database, and the Debezium
connector service. To run the services for this tutorial, you must:

1. Deploy a MySQL database

2. Deploy Kafka Connect with the Debezium MySQL Connector plug-in

3. Verify the connector deployment

3.1. DEPLOYING A MYSQL DATABASE

Deploy a MySQL database server that includes an example inventory database that includes several
tables that are pre-populated with data. The Debezium MySQL connector will capture changes that
occur in the sample tables and transmit the change event records to an Apache Kafka topic.

Procedure

1. Start a MySQL database by running the following command, which starts a MySQL database
server configured with an example inventory database:

2. Configure credentials for the MySQL database by running the following command, which
updates the deployment configuration for the MySQL database to add the user name and
password:

3. Verify that the MySQL database is running by invoking the following command, which is
followed by the output that shows that the MySQL database is running, and that the pod is
ready:

4. Open a new terminal and log into the sample inventory database.
This command opens a MySQL command line client in the pod that is running the MySQL
database. The client uses the user name and password that you previously configured:

$ oc new-app -l app=mysql --name=mysql quay.io/debezium/example-mysql:latest

$ oc set env deployment/mysql MYSQL_ROOT_PASSWORD=debezium
MYSQL_USER=mysqluser MYSQL_PASSWORD=mysqlpw

$ oc get pods -l app=mysql
NAME READY STATUS RESTARTS AGE
mysql-1-2gzx5 1/1 Running 1 23s

$ oc exec mysql-1-2gzx5 -it -- mysql -u mysqluser -pmysqlpw inventory
mysql: [Warning] Using a password on the command line interface can be insecure.
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 7
Server version: 5.7.29-log MySQL Community Server (GPL)

Copyright (c) 2000, 2020, Oracle and/or its affiliates. All rights reserved.

Red Hat Integration 2023.q4 Getting Started with Debezium

6

5. List the tables in the inventory database:

6. Explore the database and view the data that it contains, for example, view the customers table:

3.2. DEPLOYING KAFKA CONNECT

After you deploy the MySQL database, use AMQ Streams to build a Kafka Connect container image that
includes the Debezium MySQL connector plug-in. During the deployment process, you create and use
the following custom resources (CRs):

A KafkaConnect CR that defines your Kafka Connect instance and includes information about
the MySQL connector artifacts to include in the image.

A KafkaConnector CR that provides details that include information that the MySQL
connector uses to access the source database. After AMQ Streams starts the Kafka Connect
pod, you start the connector by applying the KafkaConnector CR.

During the build process, the AMQ Streams Operator transforms input parameters in the
KafkaConnect custom resource, including Debezium connector definitions, into a Kafka Connect
container image. The build downloads the necessary artifacts from the Red Hat Maven repository, and
incorporates them into the image. The newly created container is pushed to the container registry that
is specified in .spec.build.output, and is used to deploy a Kafka Connect pod. After AMQ Streams builds
the Kafka Connect image, use the KafkaConnector custom resource to start the connector.

Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

mysql>

mysql> show tables;
+---------------------+
| Tables_in_inventory |
+---------------------+
| addresses |
| customers |
| geom |
| orders |
| products |
| products_on_hand |
+---------------------+
6 rows in set (0.00 sec)

mysql> select * from customers;
+------+------------+-----------+-----------------------+
| id | first_name | last_name | email |
+------+------------+-----------+-----------------------+
1001	Sally	Thomas	sally.thomas@acme.com
1002	George	Bailey	gbailey@foobar.com
1003	Edward	Walker	ed@walker.com
1004	Anne	Kretchmar	annek@noanswer.org
+------+------------+-----------+-----------------------+
4 rows in set (0.00 sec)

CHAPTER 3. STARTING THE SERVICES

7

Prerequisites

AMQ Streams is running on an OpenShift cluster.

The AMQ Streams Cluster Operator is installed to the OpenShift cluster.

Apache Kafka and Kafka Connect are running on AMQ Streams.

Procedure

1. Log in to the OpenShift cluster and create or open a project, for example debezium.

2. Create a Debezium KafkaConnect custom resource (CR) for the connector, or modify an
existing one.
The following example shows an excerpt from a dbz-connect.yaml file that describes a
KafkaConnect custom resource.
The metadata.annotations and spec.build properties are required.

Example 3.1. A dbz-connect.yaml file that defines a KafkaConnect custom resource that
includes a Debezium connector

Table 3.1. Descriptions of Kafka Connect configuration settings

Item Description

1 Sets the strimzi.io/use-connector-resources annotation to "true" to enable
the Cluster Operator to use KafkaConnector resources to configure connectors in
this Kafka Connect cluster.

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
 name: my-connect-cluster
 annotations:
 strimzi.io/use-connector-resources: "true" 1
spec:
 replicas: 1
 version: 3.5.0
 build: 2
 output: 3
 type: imagestream 4
 image: debezium-streams-connect:latest
 plugins: 5
 - name: debezium-connector-mysql
 artifacts:
 - type: zip 6
 url: https://maven.repository.redhat.com/ga/io/debezium/debezium-connector-
mysql/2.3.4.Final-redhat-00001/debezium-connector-mysql-2.3.4.Final-redhat-00001-
plugin.zip 7
 bootstrapServers: my-cluster-kafka-bootstrap:9093

...

Red Hat Integration 2023.q4 Getting Started with Debezium

8

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/getting_started_with_amq_streams_on_openshift/index#proc-deploying-cluster-operator-hub-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/deploying_and_managing_amq_streams_on_openshift/index#kafka-cluster-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/deploying_and_managing_amq_streams_on_openshift/index#deploying-kafka-connect-str

2 The spec.build configuration specifies where to store the build image and lists the
plug-ins to include in the image, along with the location of the plug-in artifacts.

3 The build.output specifies the registry in which the newly built image is stored.

4 Specifies the name and image name for the image output. Valid values for
output.type are docker to push into a container registry like Docker Hub or Quay,
or imagestream to push the image to an internal OpenShift ImageStream. To use
an ImageStream, an ImageStream resource must be deployed to the cluster. For
more information about specifying the build.output in the KafkaConnect
configuration, see the AMQ Streams Build schema reference documentation.

5 The plugins configuration lists all of the connectors that you want to include in the
Kafka Connect image. For each entry in the list, specify a plug-in name, and
information for about the artifacts that are required to build the connector.
Optionally, for each connector plug-in, you can include other components that you
want to be available for use with the connector. For example, you can add Service
Registry artifacts, or the Debezium scripting component.

6 The value of artifacts.type specifies the file type of the artifact specified in the
artifacts.url. Valid types are zip, tgz, or jar. Debezium connector archives are
provided in .zip file format. JDBC driver files are in .jar format. The type value must
match the type of the file that is referenced in the url field.

7 The value of artifacts.url specifies the address of an HTTP server, such as a Maven
repository, that stores the file for the connector artifact. The OpenShift cluster must
have access to the specified server.

Item Description

3. Apply the KafkaConnect build specification to the OpenShift cluster by entering the following
command:

Based on the configuration specified in the custom resource, the AMQ Streams Operator
prepares a Kafka Connect image to deploy.
After the build completes, the Operator pushes the image to the specified registry or
ImageStream, and starts the Kafka Connect cluster. The connector artifacts that you listed in
the configuration are available in the cluster.

4. Create a KafkaConnector resource to define an instance of the MySQL connector.
For example, create the following KafkaConnector CR, and save it as debezium-inventory-
connector.yaml

Example 3.2. A mysql-inventory-connector.yaml file that defines the KafkaConnector
custom resource for a Debezium connector

oc create -f dbz-connect.yaml

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnector
metadata:

CHAPTER 3. STARTING THE SERVICES

9

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/configuring_amq_streams_on_openshift/index#type-Build-reference

Table 3.2. Descriptions of connector configuration settings

Item Description

1 The name of the connector to register with the Kafka Connect cluster.

2 The name of the connector class.

3 Only one task should operate at any one time. Use a single connector task to ensure
proper order and event handling as the MySQL connector reads the MySQL server’s
binlog. The Kafka Connect service uses connectors to start one or more tasks to
complete the work. It automatically distributes the running tasks across the cluster of
Kafka Connect services. If services stop or crash, tasks are redistributed to running
services.

4 The connector’s configuration.

5 The hostname or address of the MySQL database instance.

6 The port number of the database instance.

7 The name of the user account through which Debezium connects to the database.

8 The password that Debezium uses to connect to the database user account.

9 Topic prefix for the MySQL server or cluster. This string prefixes the names of every
Kafka topic that the connector sends event records to.

10 The list of tables from which the connector captures change events. The connector
detects changes only if they occur in the inventory table.

 labels:
 strimzi.io/cluster: my-connect-cluster
 name: inventory-connector 1
spec:
 class: io.debezium.connector.mysql.MySqlConnector 2
 tasksMax: 1 3
 config: 4
 database.hostname: mysql 5
 database.port: 3306 6
 database.user: debezium 7
 database.password: dbz 8
 database.server.id: 184054
 topic.prefix: dbserver1 9
 table.include.list: inventory.* 10
 schema.history.internal.kafka.bootstrap.servers: 'my-cluster-kafka-bootstrap:9092' 11
 schema.history.internal.kafka.topic: schema-changes.inventory 12

Red Hat Integration 2023.q4 Getting Started with Debezium

10

11 List of Kafka brokers that the connector uses to write and recover DDL statements to
the database schema history topic. This is the same broker that the connector sends
change event records to. After a restart, the connector recovers the database schemas
that existed at the point in the binlog when the connector resumes reading.

12 Name of the database schema history topic. This topic is for internal use only and
should not be used by consumers.

Item Description

5. Create the connector resource by running the following command:

For example,

The connector is registered to the Kafka Connect cluster and starts to run against the database
that is specified by spec.config.database.dbname in the KafkaConnector CR. After the
connector pod is ready, Debezium is running.

You are now ready to verify that the connector was created and has started to capture changes in the
inventory database.

3.3. VERIFYING THE CONNECTOR DEPLOYMENT

If the connector starts correctly without errors, it creates a topic for each table that the connector is
configured to capture. Downstream applications can subscribe to these topics to retrieve information
events that occur in the source database.

To verify that the connector is running, you perform the following operations from the OpenShift
Container Platform web console, or through the OpenShift CLI tool (oc):

Verify the connector status.

Verify that the connector generates topics.

Verify that topics are populated with events for read operations ("op":"r") that the connector
generates during the initial snapshot of each table.

Prerequisites

A Debezium connector is deployed to AMQ Streams on OpenShift.

The OpenShift oc CLI client is installed.

You have access to the OpenShift Container Platform web console.

Procedure

1. Check the status of the KafkaConnector resource by using one of the following methods:

oc create -n <namespace> -f <kafkaConnector>.yaml

oc create -n debezium -f mysql-inventory-connector.yaml

CHAPTER 3. STARTING THE SERVICES

11

From the OpenShift Container Platform web console:

a. Navigate to Home → Search.

b. On the Search page, click Resources to open the Select Resource box, and then type
KafkaConnector.

c. From the KafkaConnectors list, click the name of the connector that you want to
check, for example inventory-connector.

d. In the Conditions section, verify that the values in the Type and Status columns are set
to Ready and True.

From a terminal window:

a. Enter the following command:

For example,

The command returns status information that is similar to the following output:

Example 3.3. KafkaConnector resource status

oc describe KafkaConnector <connector-name> -n <project>

oc describe KafkaConnector inventory-connector -n debezium

Name: inventory-connector
Namespace: debezium
Labels: strimzi.io/cluster=my-connect-cluster
Annotations: <none>
API Version: kafka.strimzi.io/v1beta2
Kind: KafkaConnector

...

Status:
 Conditions:
 Last Transition Time: 2021-12-08T17:41:34.897153Z
 Status: True
 Type: Ready
 Connector Status:
 Connector:
 State: RUNNING
 worker_id: 10.131.1.124:8083
 Name: inventory-connector
 Tasks:
 Id: 0
 State: RUNNING
 worker_id: 10.131.1.124:8083
 Type: source
 Observed Generation: 1
 Tasks Max: 1
 Topics:
 dbserver1
 dbserver1.inventory.addresses

Red Hat Integration 2023.q4 Getting Started with Debezium

12

2. Verify that the connector created Kafka topics:

From the OpenShift Container Platform web console.

a. Navigate to Home → Search.

b. On the Search page, click Resources to open the Select Resource box, and then type
KafkaTopic.

c. From the KafkaTopics list, click the name of the topic that you want to check, for
example, dbserver1.inventory.orders---
ac5e98ac6a5d91e04d8ec0dc9078a1ece439081d.

d. In the Conditions section, verify that the values in the Type and Status columns are set
to Ready and True.

From a terminal window:

a. Enter the following command:

The command returns status information that is similar to the following output:

Example 3.4. KafkaTopic resource status

 dbserver1.inventory.customers
 dbserver1.inventory.geom
 dbserver1.inventory.orders
 dbserver1.inventory.products
 dbserver1.inventory.products_on_hand
Events: <none>

oc get kafkatopics

NAME CLUSTER PARTITIONS REPLICATION FACTOR READY
connect-cluster-configs my-cluster 1 1 True
connect-cluster-offsets my-cluster 25 1 True
connect-cluster-status my-cluster 5 1 True
consumer-offsets---84e7a678d08f4bd226872e5cdd4eb527fadc1c6a my-cluster
50 1 True
dbserver1---a96f69b23d6118ff415f772679da623fbbb99421 my-cluster 1 1 True
dbserver1.inventory.addresses---
1b6beaf7b2eb57d177d92be90ca2b210c9a56480 my-cluster 1 1 True
dbserver1.inventory.customers---9931e04ec92ecc0924f4406af3fdace7545c483b
my-cluster 1 1 True
dbserver1.inventory.geom---9f7e136091f071bf49ca59bf99e86c713ee58dd5 my-
cluster 1 1 True
dbserver1.inventory.orders---ac5e98ac6a5d91e04d8ec0dc9078a1ece439081d
my-cluster 1 1 True
dbserver1.inventory.products---df0746db116844cee2297fab611c21b56f82dcef
my-cluster 1 1 True
dbserver1.inventory.products-on-hand---
8649e0f17ffcc9212e266e31a7aeea4585e5c6b5 my-cluster 1 1 True
schema-changes.inventory my-cluster 1 1 True
strimzi-store-topic---effb8e3e057afce1ecf67c3f5d8e4e3ff177fc55 my-

CHAPTER 3. STARTING THE SERVICES

13

3. Check topic content.

From a terminal window, enter the following command:

For example,

The format for specifying the topic name is the same as the oc describe command returns in
Step 1, for example, dbserver1.inventory.addresses.

For each event in the topic, the command returns information that is similar to the following
output:

Example 3.5. Content of a Debezium change event

{"schema":{"type":"struct","fields":
[{"type":"int32","optional":false,"field":"product_id"}],"optional":false,"name":"dbserver1.invent
ory.products_on_hand.Key"},"payload":{"product_id":101}} {"schema":
{"type":"struct","fields":[{"type":"struct","fields":
[{"type":"int32","optional":false,"field":"product_id"},
{"type":"int32","optional":false,"field":"quantity"}],"optional":true,"name":"dbserver1.inventory.
products_on_hand.Value","field":"before"},{"type":"struct","fields":
[{"type":"int32","optional":false,"field":"product_id"},
{"type":"int32","optional":false,"field":"quantity"}],"optional":true,"name":"dbserver1.inventory.
products_on_hand.Value","field":"after"},{"type":"struct","fields":
[{"type":"string","optional":false,"field":"version"},
{"type":"string","optional":false,"field":"connector"},
{"type":"string","optional":false,"field":"name"},
{"type":"int64","optional":false,"field":"ts_ms"},
{"type":"string","optional":true,"name":"io.debezium.data.Enum","version":1,"parameters":
{"allowed":"true,last,false"},"default":"false","field":"snapshot"},
{"type":"string","optional":false,"field":"db"},
{"type":"string","optional":true,"field":"sequence"},
{"type":"string","optional":true,"field":"table"},
{"type":"int64","optional":false,"field":"server_id"},
{"type":"string","optional":true,"field":"gtid"},{"type":"string","optional":false,"field":"file"},
{"type":"int64","optional":false,"field":"pos"},{"type":"int32","optional":false,"field":"row"},
{"type":"int64","optional":true,"field":"thread"},
{"type":"string","optional":true,"field":"query"}],"optional":false,"name":"io.debezium.connecto

cluster 1 1 True
strimzi-topic-operator-kstreams-topic-store-changelog---
b75e702040b99be8a9263134de3507fc0cc4017b my-cluster 1 1 True

oc exec -n <project> -it <kafka-cluster> -- /opt/kafka/bin/kafka-console-consumer.sh \
> --bootstrap-server localhost:9092 \
> --from-beginning \
> --property print.key=true \
> --topic=<topic-name>

 oc exec -n debezium -it my-cluster-kafka-0 -- /opt/kafka/bin/kafka-console-consumer.sh \
> --bootstrap-server localhost:9092 \
> --from-beginning \
> --property print.key=true \
> --topic=dbserver1.inventory.products_on_hand

Red Hat Integration 2023.q4 Getting Started with Debezium

14

r.mysql.Source","field":"source"},{"type":"string","optional":false,"field":"op"},
{"type":"int64","optional":true,"field":"ts_ms"},{"type":"struct","fields":
[{"type":"string","optional":false,"field":"id"},
{"type":"int64","optional":false,"field":"total_order"},
{"type":"int64","optional":false,"field":"data_collection_order"}],"optional":true,"field":"transacti
on"}],"optional":false,"name":"dbserver1.inventory.products_on_hand.Envelope"},"payload
":{"before":null,"after":{"product_id":101,"quantity":3},"source":{"version":"2.3.4.Final-
redhat-
00001","connector":"mysql","name":"dbserver1","ts_ms":1638985247805,"snapshot":"true",
"db":"inventory","sequence":null,"table":"products_on_hand","server_id":0,"gtid":null,"file":"m
ysql-
bin.000003","pos":156,"row":0,"thread":null,"query":null},"op":"r","ts_ms":1638985247805,"t
ransaction":null}}

In the preceding example, the payload value shows that the connector snapshot generated a
read ("op" ="r") event from the table dbserver1.products_on_hand. The "before" state of
the product_id record is null, indicating that no previous value exists for the record. The "after"
state shows a quantity of 3 for the item with product_id 101.

You are now ready to view change events that the Debezium connector captures from the inventory
database.

CHAPTER 3. STARTING THE SERVICES

15

CHAPTER 4. VIEWING CHANGE EVENTS
After deploying the Debezium MySQL connector, it starts capturing changes to the inventory database.

When the connector starts, it writes events to a set of Apache Kafka topics, each of which represents
one of the tables in the MySQL database. The name of each topic begins with the name of the database
server, dbserver1.

The connector writes to the following Kafka topics:

dbserver1

The schema change topic to which DDL statements that apply to the tables for which changes are
being captured are written.

dbserver1.inventory.products

Receives change event records for the products table in the inventory database.

dbserver1.inventory.products_on_hand

Receives change event records for the products_on_hand table in the inventory database.

dbserver1.inventory.customers

Receives change event records for the customers table in the inventory database.

dbserver1.inventory.orders

Receives change event records for the orders table in the inventory database.

The remainder of this tutorial examines the dbserver1.inventory.customers Kafka topic. As you look
more closely at the topic, you’ll see how it represents different types of change events, and find
information about the connector captured each event.

The tutorial contains the following sections:

Viewing a create event

Updating the database and viewing the update event

Deleting a record in the database and viewing the delete event

Restarting Kafka Connect and changing the database

4.1. VIEWING A CREATE EVENT

By viewing the dbserver1.inventory.customers topic, you can see how the MySQL connector
captured create events in the inventory database. In this case, the create events capture new
customers being added to the database.

Procedure

1. Open a new terminal and use kafka-console-consumer to consume the
dbserver1.inventory.customers topic from the beginning of the topic.
This command runs a simple consumer (kafka-console-consumer.sh) in the Pod that is
running Kafka (my-cluster-kafka-0):

$ oc exec -it my-cluster-kafka-0 -- /opt/kafka/bin/kafka-console-consumer.sh \
 --bootstrap-server localhost:9092 \
 --from-beginning \

Red Hat Integration 2023.q4 Getting Started with Debezium

16

The consumer returns four messages (in JSON format), one for each row in the customers
table. Each message contains the event records for the corresponding table row.

There are two JSON documents for each event: a key and a value. The key corresponds to the
row’s primary key, and the value shows the details of the row (the fields that the row contains,
the value of each field, and the type of operation that was performed on the row).

2. For the last event, review the details of the key.
Here are the details of the key of the last event (formatted for readability):

The event has two parts: a schema and a payload. The schema contains a Kafka Connect
schema describing what is in the payload. In this case, the payload is a struct named
dbserver1.inventory.customers.Key that is not optional and has one required field (id of type
int32).

The payload has a single id field, with a value of 1004.

By reviewing the key of the event, you can see that this event applies to the row in the
inventory.customers table whose id primary key column had a value of 1004.

3. Review the details of the same event’s value.
The event’s value shows that the row was created, and describes what it contains (in this case,
the id, first_name, last_name, and email of the inserted row).

Here are the details of the value of the last event (formatted for readability):

 --property print.key=true \
 --topic dbserver1.inventory.customers

{
 "schema":{
 "type":"struct",
 "fields":[
 {
 "type":"int32",
 "optional":false,
 "field":"id"
 }
],
 "optional":false,
 "name":"dbserver1.inventory.customers.Key"
 },
 "payload":{
 "id":1004
 }
}

{
 "schema": {
 "type": "struct",
 "fields": [
 {
 "type": "struct",
 "fields": [
 {
 "type": "int32",

CHAPTER 4. VIEWING CHANGE EVENTS

17

 "optional": false,
 "field": "id"
 },
 {
 "type": "string",
 "optional": false,
 "field": "first_name"
 },
 {
 "type": "string",
 "optional": false,
 "field": "last_name"
 },
 {
 "type": "string",
 "optional": false,
 "field": "email"
 }
],
 "optional": true,
 "name": "dbserver1.inventory.customers.Value",
 "field": "before"
 },
 {
 "type": "struct",
 "fields": [
 {
 "type": "int32",
 "optional": false,
 "field": "id"
 },
 {
 "type": "string",
 "optional": false,
 "field": "first_name"
 },
 {
 "type": "string",
 "optional": false,
 "field": "last_name"
 },
 {
 "type": "string",
 "optional": false,
 "field": "email"
 }
],
 "optional": true,
 "name": "dbserver1.inventory.customers.Value",
 "field": "after"
 },
 {
 "type": "struct",
 "fields": [
 {
 "type": "string",

Red Hat Integration 2023.q4 Getting Started with Debezium

18

 "optional": true,
 "field": "version"
 },
 {
 "type": "string",
 "optional": false,
 "field": "name"
 },
 {
 "type": "int64",
 "optional": false,
 "field": "server_id"
 },
 {
 "type": "int64",
 "optional": false,
 "field": "ts_sec"
 },
 {
 "type": "string",
 "optional": true,
 "field": "gtid"
 },
 {
 "type": "string",
 "optional": false,
 "field": "file"
 },
 {
 "type": "int64",
 "optional": false,
 "field": "pos"
 },
 {
 "type": "int32",
 "optional": false,
 "field": "row"
 },
 {
 "type": "boolean",
 "optional": true,
 "field": "snapshot"
 },
 {
 "type": "int64",
 "optional": true,
 "field": "thread"
 },
 {
 "type": "string",
 "optional": true,
 "field": "db"
 },
 {
 "type": "string",
 "optional": true,

CHAPTER 4. VIEWING CHANGE EVENTS

19

This portion of the event is much longer, but like the event’s key, it also has a schema and a
payload. The schema contains a Kafka Connect schema named
dbserver1.inventory.customers.Envelope (version 1) that can contain five fields:

op

A required field that contains a string value describing the type of operation. Values for the

 "field": "table"
 }
],
 "optional": false,
 "name": "io.debezium.connector.mysql.Source",
 "field": "source"
 },
 {
 "type": "string",
 "optional": false,
 "field": "op"
 },
 {
 "type": "int64",
 "optional": true,
 "field": "ts_ms"
 }
],
 "optional": false,
 "name": "dbserver1.inventory.customers.Envelope",
 "version": 1
 },
 "payload": {
 "before": null,
 "after": {
 "id": 1004,
 "first_name": "Anne",
 "last_name": "Kretchmar",
 "email": "annek@noanswer.org"
 },
 "source": {
 "version": "2.3.4.Final",
 "name": "dbserver1",
 "server_id": 0,
 "ts_sec": 0,
 "gtid": null,
 "file": "mysql-bin.000003",
 "pos": 154,
 "row": 0,
 "snapshot": true,
 "thread": null,
 "db": "inventory",
 "table": "customers"
 },
 "op": "r",
 "ts_ms": 1486500577691
 }
}

Red Hat Integration 2023.q4 Getting Started with Debezium

20

A required field that contains a string value describing the type of operation. Values for the
MySQL connector are c for create (or insert), u for update, d for delete, and r for read (in
the case of a snapshot).

before

An optional field that, if present, contains the state of the row before the event occurred.
The structure will be described by the dbserver1.inventory.customers.Value Kafka
Connect schema, which the dbserver1 connector uses for all rows in the
inventory.customers table.

after

An optional field that, if present, contains the state of the row after the event occurred. The
structure is described by the same dbserver1.inventory.customers.Value Kafka Connect
schema used in before.

source

A required field that contains a structure describing the source metadata for the event,
which in the case of MySQL, contains several fields: the connector name, the name of the
binlog file where the event was recorded, the position in that binlog file where the event
appeared, the row within the event (if there is more than one), the names of the affected
database and table, the MySQL thread ID that made the change, whether this event was
part of a snapshot, and, if available, the MySQL server ID, and the timestamp in seconds.

ts_ms

An optional field that, if present, contains the time (using the system clock in the JVM
running the Kafka Connect task) at which the connector processed the event.

NOTE

The JSON representations of the events are much longer than the rows they
describe. This is because, with every event key and value, Kafka Connect ships
the schema that describes the payload. Over time, this structure may change.
However, having the schemas for the key and the value in the event itself makes
it much easier for consuming applications to understand the messages, especially
as they evolve over time.

The Debezium MySQL connector constructs these schemas based upon the
structure of the database tables. If you use DDL statements to alter the table
definitions in the MySQL databases, the connector reads these DDL statements
and updates its Kafka Connect schemas. This is the only way that each event is
structured exactly like the table from where it originated at the time the event
occurred. However, the Kafka topic containing all of the events for a single table
might have events that correspond to each state of the table definition.

The JSON converter includes the key and value schemas in every message, so it
does produce very verbose events.

4. Compare the event’s key and value schemas to the state of the inventory database. In the
terminal that is running the MySQL command line client, run the following statement:

mysql> SELECT * FROM customers;
+------+------------+-----------+-----------------------+
| id | first_name | last_name | email |
+------+------------+-----------+-----------------------+
1001	Sally	Thomas	sally.thomas@acme.com
1002	George	Bailey	gbailey@foobar.com
1003	Edward	Walker	ed@walker.com

CHAPTER 4. VIEWING CHANGE EVENTS

21

This shows that the event records you reviewed match the records in the database.

4.2. UPDATING THE DATABASE AND VIEWING THE UPDATE EVENT

Now that you have seen how the Debezium MySQL connector captured the create events in the
inventory database, you will now change one of the records and see how the connector captures it.

By completing this procedure, you will learn how to find details about what changed in a database
commit, and how you can compare change events to determine when the change occurred in relation to
other changes.

Procedure

1. In the terminal that is running the MySQL command line client, run the following statement:

2. View the updated customers table:

3. Switch to the terminal running kafka-console-consumer to see a new fifth event.
By changing a record in the customers table, the Debezium MySQL connector generated a
new event. You should see two new JSON documents: one for the event’s key, and one for the
new event’s value.

Here are the details of the key for the update event (formatted for readability):

| 1004 | Anne | Kretchmar | annek@noanswer.org |
+------+------------+-----------+-----------------------+
4 rows in set (0.00 sec)

mysql> UPDATE customers SET first_name='Anne Marie' WHERE id=1004;
Query OK, 1 row affected (0.05 sec)
Rows matched: 1 Changed: 1 Warnings: 0

mysql> SELECT * FROM customers;
+------+------------+-----------+-----------------------+
| id | first_name | last_name | email |
+------+------------+-----------+-----------------------+
1001	Sally	Thomas	sally.thomas@acme.com
1002	George	Bailey	gbailey@foobar.com
1003	Edward	Walker	ed@walker.com
1004	Anne Marie	Kretchmar	annek@noanswer.org
+------+------------+-----------+-----------------------+
4 rows in set (0.00 sec)

 {
 "schema": {
 "type": "struct",
 "name": "dbserver1.inventory.customers.Key"
 "optional": false,
 "fields": [
 {
 "field": "id",
 "type": "int32",
 "optional": false
 }

Red Hat Integration 2023.q4 Getting Started with Debezium

22

1 1 1

2 2 2

3 3 3

This key is the same as the key for the previous events.

Here is that new event’s value. There are no changes in the schema section, so only the
payload section is shown (formatted for readability):

The before field now has the state of the row with the values before the database
commit.

The after field now has the updated state of the row, and the first_name value is now
Anne Marie.

The source field structure has many of the same values as before, except that the
ts_sec and pos fields have changed (the file might have changed in other

circumstances).

]
 },
 "payload": {
 "id": 1004
 }
 }

{
 "schema": {...},
 "payload": {
 "before": { 1
 "id": 1004,
 "first_name": "Anne",
 "last_name": "Kretchmar",
 "email": "annek@noanswer.org"
 },
 "after": { 2
 "id": 1004,
 "first_name": "Anne Marie",
 "last_name": "Kretchmar",
 "email": "annek@noanswer.org"
 },
 "source": { 3
 "name": "2.3.4.Final",
 "name": "dbserver1",
 "server_id": 223344,
 "ts_sec": 1486501486,
 "gtid": null,
 "file": "mysql-bin.000003",
 "pos": 364,
 "row": 0,
 "snapshot": null,
 "thread": 3,
 "db": "inventory",
 "table": "customers"
 },
 "op": "u", 4
 "ts_ms": 1486501486308 5
 }
}

CHAPTER 4. VIEWING CHANGE EVENTS

23

4 4 4

5 5 5

The op field value is now u, signifying that this row changed because of an update.

The ts_ms field shows the time stamp for when Debezium processed this event.

By viewing the payload section, you can learn several important things about the update event:

By comparing the before and after structures, you can determine what actually changed in
the affected row because of the commit.

By reviewing the source structure, you can find information about MySQL’s record of the
change (providing traceability).

By comparing the payload section of an event to other events in the same topic (or a
different topic), you can determine whether the event occurred before, after, or as part of
the same MySQL commit as another event.

4.3. DELETING A RECORD IN THE DATABASE AND VIEWING THE
DELETE EVENT

Now that you have seen how the Debezium MySQL connector captured the create and update events in
the inventory database, you will now delete one of the records and see how the connector captures it.

By completing this procedure, you will learn how to find details about delete events, and how Kafka uses
log compaction to reduce the number of delete events while still enabling consumers to get all of the
events.

Procedure

1. In the terminal that is running the MySQL command line client, run the following statement:

NOTE

If the above command fails with a foreign key constraint violation, then you must
remove the reference of the customer address from the addresses table using
the following statement:

2. Switch to the terminal running kafka-console-consumer to see two new events.
By deleting a row in the customers table, the Debezium MySQL connector generated two new
events.

3. Review the key and value for the first new event.
Here are the details of the key for the first new event (formatted for readability):

mysql> DELETE FROM customers WHERE id=1004;
Query OK, 1 row affected (0.00 sec)

mysql> DELETE FROM addresses WHERE customer_id=1004;

{
 "schema": {
 "type": "struct",
 "name": "dbserver1.inventory.customers.Key"

Red Hat Integration 2023.q4 Getting Started with Debezium

24

1

2

3

4

This key is the same as the key in the previous two events you looked at.

Here is the value of the first new event (formatted for readability):

The before field now has the state of the row that was deleted with the database commit.

The after field is null because the row no longer exists.

The source field structure has many of the same values as before, except the ts_sec and
pos fields have changed (the file might have changed in other circumstances).

The op field value is now d, signifying that this row was deleted.

 "optional": false,
 "fields": [
 {
 "field": "id",
 "type": "int32",
 "optional": false
 }
]
 },
 "payload": {
 "id": 1004
 }
}

{
 "schema": {...},
 "payload": {
 "before": { 1
 "id": 1004,
 "first_name": "Anne Marie",
 "last_name": "Kretchmar",
 "email": "annek@noanswer.org"
 },
 "after": null, 2
 "source": { 3
 "name": "2.3.4.Final",
 "name": "dbserver1",
 "server_id": 223344,
 "ts_sec": 1486501558,
 "gtid": null,
 "file": "mysql-bin.000003",
 "pos": 725,
 "row": 0,
 "snapshot": null,
 "thread": 3,
 "db": "inventory",
 "table": "customers"
 },
 "op": "d", 4
 "ts_ms": 1486501558315 5
 }
}

CHAPTER 4. VIEWING CHANGE EVENTS

25

5 The ts_ms field shows the time stamp for when Debezium processes this event.

Thus, this event provides a consumer with the information that it needs to process the removal
of the row. The old values are also provided, because some consumers might require them to
properly handle the removal.

4. Review the key and value for the second new event.
Here is the key for the second new event (formatted for readability):

Once again, this key is exactly the same key as in the previous three events you looked at.

Here is the value of that same event (formatted for readability):

If Kafka is set up to be log compacted , it will remove older messages from the topic if there is at
least one message later in the topic with same key. This last event is called a tombstone event,
because it has a key and an empty value. This means that Kafka will remove all prior messages
with the same key. Even though the prior messages will be removed, the tombstone event
means that consumers can still read the topic from the beginning and not miss any events.

4.4. RESTARTING THE KAFKA CONNECT SERVICE

Now that you have seen how the Debezium MySQL connector captures create, update, and delete
events, you will now see how it can capture change events even when it is not running.

The Kafka Connect service automatically manages tasks for its registered connectors. Therefore, if it
goes offline, when it restarts, it will start any non-running tasks. This means that even if Debezium is not
running, it can still report changes in a database.

In this procedure, you will stop Kafka Connect, change some data in the database, and then restart Kafka
Connect to see the change events.

Procedure

 {
 "schema": {
 "type": "struct",
 "name": "dbserver1.inventory.customers.Key"
 "optional": false,
 "fields": [
 {
 "field": "id",
 "type": "int32",
 "optional": false
 }
]
 },
 "payload": {
 "id": 1004
 }
 }

{
 "schema": null,
 "payload": null
}

Red Hat Integration 2023.q4 Getting Started with Debezium

26

Procedure

1. Stop the Kafka Connect service.

a. Open the configuration for the Kafka Connect deployment:

The deployment configuration opens:

b. Change the spec.replicas value to 0.

c. Save the configuration.

d. Verify that the Kafka Connect service has stopped.
This command shows that the Kafka Connect service is completed, and that no pods are
running:

2. While the Kafka Connect service is down, switch to the terminal running the MySQL client, and
add a new record to the database.

3. Restart the Kafka Connect service.

a. Open the deployment configuration for the Kafka Connect service.

The deployment configuration opens:

b. Change the spec.replicas value to 1.

c. Save the deployment configuration.

$ oc edit deployment/my-connect-cluster-connect

apiVersion: apps.openshift.io/v1
kind: Deployment
metadata:
 ...
spec:
 replicas: 1
...

$ oc get pods -l strimzi.io/name=my-connect-cluster-connect
NAME READY STATUS RESTARTS AGE
my-connect-cluster-connect-1-dxcs9 0/1 Completed 0 7h

mysql> INSERT INTO customers VALUES (default, "Sarah", "Thompson", "kitt@acme.com");

$ oc edit deployment/my-connect-cluster-connect

apiVersion: apps.openshift.io/v1
kind: Deployment
metadata:
 ...
spec:
 replicas: 0
...

CHAPTER 4. VIEWING CHANGE EVENTS

27

d. Verify that the Kafka Connect service has restarted.
This command shows that the Kafka Connect service is running, and that the pod is ready:

4. Switch to the terminal that is running kafka-console-consumer.sh. New events pop up as they
arrive.

5. Examine the record that you created when Kafka Connect was offline (formatted for
readability):

$ oc get pods -l strimzi.io/name=my-connect-cluster-connect
NAME READY STATUS RESTARTS AGE
my-connect-cluster-connect-2-q9kkl 1/1 Running 0 74s

{
 ...
 "payload":{
 "id":1005
 }
}
{
 ...
 "payload":{
 "before":null,
 "after":{
 "id":1005,
 "first_name":"Sarah",
 "last_name":"Thompson",
 "email":"kitt@acme.com"
 },
 "source":{
 "version":"2.3.4.Final",
 "connector":"mysql",
 "name":"dbserver1",
 "ts_ms":1582581502000,
 "snapshot":"false",
 "db":"inventory",
 "table":"customers",
 "server_id":223344,
 "gtid":null,
 "file":"mysql-bin.000004",
 "pos":364,
 "row":0,
 "thread":5,
 "query":null
 },
 "op":"c",
 "ts_ms":1582581502317
 }
}

Red Hat Integration 2023.q4 Getting Started with Debezium

28

CHAPTER 5. NEXT STEPS
After completing the tutorial, consider the following next steps:

Explore the tutorial further.
Use the MySQL command line client to add, modify, and remove rows in the database tables,
and see the effect on the topics. Keep in mind that you cannot remove a row that is referenced
by a foreign key.

Plan a Debezium deployment.
You can install Debezium in OpenShift or on Red Hat Enterprise Linux. For more information,
see the following:

Installing Debezium on OpenShift

Installing Debezium on RHEL

Revised on 2023-11-17 04:10:18 UTC

CHAPTER 5. NEXT STEPS

29

https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q4/html-single/installing_debezium_on_openshift/
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q4/html-single/installing_debezium_on_rhel/

	Table of Contents
	PREFACE
	MAKING OPEN SOURCE MORE INCLUSIVE
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

	CHAPTER 1. ABOUT THIS TUTORIAL
	CHAPTER 2. INTRODUCTION TO DEBEZIUM
	CHAPTER 3. STARTING THE SERVICES
	3.1. DEPLOYING A MYSQL DATABASE
	3.2. DEPLOYING KAFKA CONNECT
	3.3. VERIFYING THE CONNECTOR DEPLOYMENT

	CHAPTER 4. VIEWING CHANGE EVENTS
	4.1. VIEWING A CREATE EVENT
	4.2. UPDATING THE DATABASE AND VIEWING THE UPDATE EVENT
	4.3. DELETING A RECORD IN THE DATABASE AND VIEWING THE DELETE EVENT
	4.4. RESTARTING THE KAFKA CONNECT SERVICE

	CHAPTER 5. NEXT STEPS

