
Red Hat Integration 2023.q1

Getting Started with Camel K

Develop and run your first Camel K application

Last Updated: 2023-02-28

Red Hat Integration 2023.q1 Getting Started with Camel K

Develop and run your first Camel K application

Legal Notice

Copyright © 2023 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

How to install Camel K, set up your development environment, and run example applications.

. .

. .

. .

. .

. .

. .

Table of Contents

PREFACE
MAKING OPEN SOURCE MORE INCLUSIVE

CHAPTER 1. INTRODUCTION TO CAMEL K
1.1. CAMEL K OVERVIEW
1.2. CAMEL K FEATURES

1.2.1. Platform and component versions
1.2.2. Camel K features
1.2.3. Kamelets

1.3. CAMEL K DEVELOPMENT TOOLING
1.4. CAMEL K DISTRIBUTIONS

CHAPTER 2. PREPARING YOUR OPENSHIFT CLUSTER
2.1. INSTALLING CAMEL K

2.1.1. Specifying Camel K resource limits
2.2. INSTALLING OPENSHIFT SERVERLESS
2.3. CONFIGURING MAVEN REPOSITORY FOR CAMEL K

CHAPTER 3. DEVELOPING AND RUNNING CAMEL K INTEGRATIONS
3.1. SETTING UP YOUR CAMEL K DEVELOPMENT ENVIRONMENT
3.2. DEVELOPING CAMEL K INTEGRATIONS IN JAVA
3.3. DEVELOPING CAMEL K INTEGRATIONS IN YAML
3.4. RUNNING CAMEL K INTEGRATIONS
3.5. RUNNING CAMEL K INTEGRATIONS IN DEVELOPMENT MODE
3.6. RUNNING CAMEL K INTEGRATIONS USING MODELINE

CHAPTER 4. UPGRADING CAMEL K
4.1. UPGRADING CAMEL K OPERATOR
4.2. UPGRADING CAMEL K INTEGRATIONS
4.3. DOWNGRADING CAMEL K

CHAPTER 5. CAMEL K QUICK START DEVELOPER TUTORIALS
5.1. DEPLOYING A BASIC CAMEL K JAVA INTEGRATION
5.2. DEPLOYING A CAMEL K SERVERLESS INTEGRATION WITH KNATIVE
5.3. DEPLOYING A CAMEL K TRANSFORMATIONS INTEGRATION
5.4. DEPLOYING A CAMEL K SERVERLESS EVENT STREAMING INTEGRATION
5.5. DEPLOYING A CAMEL K SERVERLESS API-BASED INTEGRATION
5.6. DEPLOYING A CAMEL K SAAS INTEGRATION
5.7. DEPLOYING A CAMEL K JDBC INTEGRATION
5.8. DEPLOYING A CAMEL K JMS INTEGRATION
5.9. DEPLOYING A CAMEL K KAFKA INTEGRATION

3
3

4
4
4
4
5
5
6
7

9
9

10
11

12

14
14
16
16
17

20
23

25
25
25
26

27
27
28
29
30
31
32
33
33
34

Table of Contents

1

Red Hat Integration 2023.q1 Getting Started with Camel K

2

PREFACE

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

PREFACE

3

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

CHAPTER 1. INTRODUCTION TO CAMEL K
This chapter introduces the concepts, features, and cloud-native architecture provided by Red Hat
Integration - Camel K:

Section 1.1, “Camel K overview”

Section 1.2, “Camel K features”

Section 1.2.3, “Kamelets”

Section 1.3, “Camel K development tooling”

Section 1.4, “Camel K distributions”

1.1. CAMEL K OVERVIEW

Red Hat Integration - Camel K is a lightweight integration framework built from Apache Camel K that
runs natively in the cloud on OpenShift. Camel K is specifically designed for serverless and microservice
architectures. You can use Camel K to instantly run your integration code written in Camel Domain
Specific Language (DSL) directly on OpenShift. Camel K is a subproject of the Apache Camel open
source community: https://github.com/apache/camel-k.

Camel K is implemented in the Go programming language and uses the Kubernetes Operator SDK to
automatically deploy integrations in the cloud. For example, this includes automatically creating services
and routes on OpenShift. This provides much faster turnaround times when deploying and redeploying
integrations in the cloud, such as a few seconds or less instead of minutes.

The Camel K runtime provides significant performance optimizations. The Quarkus cloud-native Java
framework is enabled by default to provide faster start up times, and lower memory and CPU footprints.
When running Camel K in developer mode, you can make live updates to your integration DSL and view
results instantly in the cloud on OpenShift, without waiting for your integration to redeploy.

Using Camel K with OpenShift Serverless and Knative Serving, containers are created only as needed
and are autoscaled under load up and down to zero. This reduces cost by removing the overhead of
server provisioning and maintenance and enables you to focus on application development instead.

Using Camel K with OpenShift Serverless and Knative Eventing, you can manage how components in
your system communicate in an event-driven architecture for serverless applications. This provides
flexibility and creates efficiencies through decoupled relationships between event producers and
consumers using a publish-subscribe or event-streaming model.

Additional resources

Apache Camel K website

Getting started with OpenShift Serverless

1.2. CAMEL K FEATURES

The Camel K includes the following main platforms and features:

1.2.1. Platform and component versions

OpenShift Container Platform 4.6, 4.9, 4.10, 4.11

Red Hat Integration 2023.q1 Getting Started with Camel K

4

https://github.com/apache/camel-k
https://camel.apache.org/camel-k/latest/index.html
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/serverless/index

OpenShift Serverless 1.27.0

Red Hat Build of Quarkus 2.7.6

Red Hat Camel Extensions for Quarkus 2.7.1

Apache Camel K 1.8.0

Apache Camel 3.14.2

OpenJDK 11

1.2.2. Camel K features

Knative Serving for autoscaling and scale-to-zero

Knative Eventing for event-driven architectures

Performance optimizations using Quarkus runtime by default

Camel integrations written in Java or YAML DSL

Development tooling with Visual Studio Code

Monitoring of integrations using Prometheus in OpenShift

Quickstart tutorials

Kamelet Catalog of connectors to external systems such as AWS, Jira, and Salesforce

The following diagram shows a simplified view of the Camel K cloud-native architecture:

Additional resources

Apache Camel architecture

1.2.3. Kamelets

Kamelets hide the complexity of connecting to external systems behind a simple interface, which
contains all the information needed to instantiate them, even for users who are not familiar with Camel.

CHAPTER 1. INTRODUCTION TO CAMEL K

5

https://camel.apache.org/camel-k/latest/architecture/architecture.html

Kamelets are implemented as custom resources that you can install on an OpenShift cluster and use in
Camel K integrations. Kamelets are route templates that use Camel components designed to connect to
external systems without requiring deep understanding of the component. Kamelets abstract the details
of connecting to external systems. You can also combine Kamelets to create complex Camel
integrations, just like using standard Camel components.

Additional resources

Integrating Applications with Kamelets

1.3. CAMEL K DEVELOPMENT TOOLING

The Camel K provides development tooling extensions for Visual Studio (VS) Code, Red Hat
CodeReady WorkSpaces, and Eclipse Che. The Camel-based tooling extensions include features such
as automatic completion of Camel DSL code, Camel K modeline configuration, and Camel K traits. While
Didact tutorial tooling extensions provide automatic execution of Camel K quick start tutorial
commands.

The following VS Code development tooling extensions are available:

VS Code Extension Pack for Apache Camel by Red Hat

Tooling for Apache Camel K extension

Language Support for Apache Camel extension

Debug Adapter for Apache Camel K

Additional extensions for OpenShift, Java and more

Didact Tutorial Tools for VS Code extension

For details on how to set up these VS Code extensions for Camel K, see Setting up your Camel K
development environment.

IMPORTANT

The following plugin VS Code Language support for Camel - a part of the Camel
extension pack provides support for content assist when editing Camel routes
and application.properties.

To install a supported Camel K tooling extension for VS code to create, run and
operate Camel K integrations on OpenShift, see VS Code Tooling for Apache
Camel K by Red Hat extension

To install a supported Camel debug tool extension for VS code to debug Camel
integrations written in Java, YAML or XML locally, see Debug Adapter for
Apache Camel by Red Hat

For details about configurations and components to use the developer tool with
specific product versions, see Camel K Supported Configurations and Camel K
Component Details

Note: The Camel K VS Code extensions are community features.

Eclipse Che also provides these features using the vscode-camelk plug-in.

Red Hat Integration 2023.q1 Getting Started with Camel K

6

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q3/html-single/integrating_applications_with_kamelets
https://marketplace.visualstudio.com/items?itemName=redhat.apache-camel-extension-pack
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/getting_started_with_camel_k#setting-up-environment
https://marketplace.visualstudio.com/items?itemName=redhat.vscode-apache-camel
https://marketplace.visualstudio.com/items?itemName=redhat.apache-camel-extension-pack
https://marketplace.visualstudio.com/items?itemName=redhat.vscode-camelk
https://marketplace.visualstudio.com/items?itemName=redhat.vscode-debug-adapter-apache-camel
https://access.redhat.com/articles/6241991
https://access.redhat.com/articles/6241971

For more information about scope of development support, see Development Support Scope of
Coverage

Additional resources

VS Code tooling for Apache Camel K example

Eclipse Che tooling for Apache Camel K

1.4. CAMEL K DISTRIBUTIONS

Table 1.1. Red Hat Integration - Camel K distributions

Distribution Description Location

Operator image Container image for the Red Hat
Integration - Camel K Operator:
integration/camel-k-rhel8-
operator

OpenShift web console
under Operators →
OperatorHub

registry.redhat.io

Maven repository Maven artifacts for Red Hat
Integration - Camel K

Red Hat provides Maven
repositories that host the content
we ship with our products. These
repositories are available to
download from the software
downloads page.

For Red Hat Integration - Camel K
the following repositories are
required:

rhi-common

rhi-camel-quarkus

rhi-camel-k

Installation of Red Hat Integration
- Camel K in offline mode is not
supported in this release.

Software Downloads for Red Hat
Integration

Source code Source code for Red Hat
Integration - Camel K

Software Downloads for Red Hat
Integration

CHAPTER 1. INTRODUCTION TO CAMEL K

7

https://access.redhat.com/support/offerings/developer/soc
https://developers.redhat.com/blog/2019/09/30/sending-a-telegram-with-apache-camel-k-and-visual-studio-code/
https://developers.redhat.com/blog/2020/01/24/apache-camel-k-development-inside-eclipse-che-iteration-1/
https://catalog.redhat.com/software/containers/detail/60d1981b4924e14519331a1b?container-tabs=gti>i-tabs=registry-tokens
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=red.hat.integration&downloadType=distributions
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=red.hat.integration&downloadType=distributions

Quickstarts Quick start tutorials:

Basic Java integration

Event streaming
integration

JDBC integration

JMS integration

Kafka integration

Knative integration

SaaS integration

Serverless API
integration

Transformations
integration

https://github.com/openshift-
integration

Distribution Description Location

NOTE

You must have a subscription for Red Hat Integration and be logged into the Red Hat
Customer Portal to access the Red Hat Integration - Camel K distributions.

Red Hat Integration 2023.q1 Getting Started with Camel K

8

https://github.com/openshift-integration

CHAPTER 2. PREPARING YOUR OPENSHIFT CLUSTER
This chapter explains how to install Red Hat Integration - Camel K and OpenShift Serverless on
OpenShift, and how to install the required Camel K and OpenShift Serverless command-line client tools
in your development environment.

Section 2.1, “Installing Camel K”

Section 2.2, “Installing OpenShift Serverless”

2.1. INSTALLING CAMEL K

You can install the Red Hat Integration - Camel K Operator on your OpenShift cluster from the
OperatorHub. The OperatorHub is available from the OpenShift Container Platform web console and
provides an interface for cluster administrators to discover and install Operators.

After you install the Camel K Operator, you can install the Camel K CLI tool for command line access to
all Camel K features.

Prerequisites

You have access to an OpenShift 4.6 (or later) cluster with the correct access level, the ability
to create projects and install operators, and the ability to install CLI tools on your local system.

NOTE

You do not need to create a pull secret when installing Camel K from the
OpenShift OperatorHub. The Camel K Operator automatically reuses the
OpenShift cluster-level authentication to pull the Camel K image from
registry.redhat.io.

You installed the OpenShift CLI tool (oc) so that you can interact with the OpenShift cluster at
the command line. For details on how to install the OpenShift CLI, see Installing the OpenShift
CLI.

Procedure

1. In the OpenShift Container Platform web console, log in by using an account with cluster
administrator privileges.

2. Create a new OpenShift project:

a. In the left navigation menu, click Home > Project > Create Project.

b. Enter a project name, for example, my-camel-k-project, and then click Create.

3. In the left navigation menu, click Operators > OperatorHub.

4. In the Filter by keyword text box, type Camel K and then click the Red Hat Integration -
Camel K Operator card.

5. Read the information about the operator and then click Install. The Operator installation page
opens.

6. Select the following subscription settings:

Update Channel > latest

CHAPTER 2. PREPARING YOUR OPENSHIFT CLUSTER

9

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/cli_tools/index#installing-openshift-cli

Update Channel > latest

Installation Mode > A specific namespace on the cluster > my-camel-k-project

Approval Strategy > Automatic

NOTE

The Installation mode > All namespaces on the cluster and Approval
Strategy > Manual settings are also available if required by your
environment.

7. Click Install, and then wait a few moments until the Camel K Operator is ready for use.

8. Download and install the Camel K CLI tool:

a. From the Help menu (?) at the top of the OpenShift web console, select Command line
tools.

b. Scroll down to the kamel - Red Hat Integration - Camel K - Command Line Interface
section.

c. Click the link to download the binary for your local operating system (Linux, Mac, Windows).

d. Unzip and install the CLI in your system path.

e. To verify that you can access the Kamel K CLI, open a command window and then type the
following:
kamel --help

This command shows information about Camel K CLI commands.

Next step

(optional) Specifying Camel K resource limits

2.1.1. Specifying Camel K resource limits

When you install Camel K, the OpenShift pod for Camel K does not have any limits set for CPU and
memory (RAM) resources. If you want to define resource limits for Camel K, you must edit the Camel K
subscription resource that was created during the installation process.

Prerequisite

You have cluster administrator access to an OpenShift project in which the Camel K Operator is
installed as described in Installing Camel K .

You know the resource limits that you want to apply to the Camel K subscription. For more
information about resource limits, see the following documentation:

Setting deployment resources in the OpenShift documentation.

Managing Resources for Containers in the Kubernetes documentation.

Procedure

Red Hat Integration 2023.q1 Getting Started with Camel K

10

https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/getting_started_with_camel_k#specifying-camel-k-resource-limits
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/getting_started_with_camel_k#installing-camel-k
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/building_applications/index#deployments-setting-resources_deployment-operations
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/#requests-and-limits

1. Log in to the OpenShift Web console.

2. Select Operators > Installed Operators > Operator Details > Subscription.

3. Select Actions > Edit Subscription.
The file for the subscription opens in the YAML editor.

4. Under the spec section, add a config.resources section and provide values for memory and
cpu as shown in the following example:

spec:
 channel: default
 config:
 resources:
 limits:
 memory: 512Mi
 cpu: 500m
 requests:
 cpu: 200m
 memory: 128Mi

5. Save your changes.

OpenShift updates the subscription and applies the resource limits that you specified.

2.2. INSTALLING OPENSHIFT SERVERLESS

You can install the OpenShift Serverless Operator on your OpenShift cluster from the OperatorHub.
The OperatorHub is available from the OpenShift Container Platform web console and provides an
interface for cluster administrators to discover and install Operators.

The OpenShift Serverless Operator supports both Knative Serving and Knative Eventing features. For
more details, see installing OpenShift Serverless Operator.

Prerequisites

You have cluster administrator access to an OpenShift project in which the Camel K Operator is
installed.

You installed the OpenShift CLI tool (oc) so that you can interact with the OpenShift cluster at
the command line. For details on how to install the OpenShift CLI, see Installing the OpenShift
CLI.

Procedure

1. In the OpenShift Container Platform web console, log in by using an account with cluster
administrator privileges.

2. In the left navigation menu, click Operators > OperatorHub.

3. In the Filter by keyword text box, enter Serverless to find the OpenShift Serverless
Operator.

4. Read the information about the Operator and then click Install to display the Operator
subscription page.

CHAPTER 2. PREPARING YOUR OPENSHIFT CLUSTER

11

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/serverless/index#install
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/cli_tools/index#installing-openshift-cli

5. Select the default subscription settings:

Update Channel > Select the channel that matches your OpenShift version, for example,
4.12

Installation Mode > All namespaces on the cluster

Approval Strategy > Automatic

NOTE

The Approval Strategy > Manual setting is also available if required by your
environment.

6. Click Install, and wait a few moments until the Operator is ready for use.

7. Install the required Knative components using the steps in the OpenShift documentation:

Installing Knative Serving

Installing Knative Eventing

8. (Optional) Download and install the OpenShift Serverless CLI tool:

a. From the Help menu (?) at the top of the OpenShift web console, select Command line
tools.

b. Scroll down to the kn - OpenShift Serverless - Command Line Interface section.

c. Click the link to download the binary for your local operating system (Linux, Mac, Windows)

d. Unzip and install the CLI in your system path.

e. To verify that you can access the kn CLI, open a command window and then type the
following:
kn --help

This command shows information about OpenShift Serverless CLI commands.

For more details, see the OpenShift Serverless CLI documentation.

Additional resources

Installing OpenShift Serverless in the OpenShift documentation

2.3. CONFIGURING MAVEN REPOSITORY FOR CAMEL K

For Camel K operator, you can provide the Maven settings in a ConfigMap or a secret.

Procedure

1. To create a ConfigMap from a file, run the following command.

oc create configmap maven-settings --from-file=settings.xml

Created ConfigMap can be then referenced in the IntegrationPlatform resource, from the

Red Hat Integration 2023.q1 Getting Started with Camel K

12

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/serverless/index#installing-knative-serving
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/serverless/index#installing-knative-eventing
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/cli_tools/index#kn-cli-tools-installing-kn
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/serverless/index#install-serverless-operator

Created ConfigMap can be then referenced in the IntegrationPlatform resource, from the
spec.build.maven.settings field.

Example

apiVersion: camel.apache.org/v1
kind: IntegrationPlatform
metadata:
 name: camel-k
spec:
 build:
 maven:
 settings:
 configMapKeyRef:
 key: settings.xml
 name: maven-settings

Or you can edit the IntegrationPlatform resource directly to reference the ConfigMap that
contains the Maven settings using following command:

oc edit ip camel-k

Configuring CA certificates for remote Maven repositories

You can provide the CA certificates, used by the Maven commands to connect to the remote Maven
repositories, in a Secret.

Procedure

1. Create a Secret from file using following command:

oc create secret generic maven-ca-certs --from-file=ca.crt

2. Reference the created Secret in the IntegrationPlatform resource, from the
spec.build.maven.caSecret field as shown below.

apiVersion: camel.apache.org/v1
kind: IntegrationPlatform
metadata:
 name: camel-k
spec:
 build:
 maven:
 caSecret:
 key: tls.crt
 name: tls-secret

CHAPTER 2. PREPARING YOUR OPENSHIFT CLUSTER

13

CHAPTER 3. DEVELOPING AND RUNNING CAMEL K
INTEGRATIONS

This chapter explains how to set up your development environment and how to develop and deploy
simple Camel K integrations written in Java and YAML. It also shows how to use the kamel command
line to manage Camel K integrations at runtime. For example, this includes running, describing, logging,
and deleting integrations.

Section 3.1, “Setting up your Camel K development environment”

Section 3.2, “Developing Camel K integrations in Java”

Section 3.3, “Developing Camel K integrations in YAML”

Section 3.4, “Running Camel K integrations”

Section 3.5, “Running Camel K integrations in development mode”

Section 3.6, “Running Camel K integrations using modeline”

3.1. SETTING UP YOUR CAMEL K DEVELOPMENT ENVIRONMENT

You must set up your environment with the recommended development tooling before you can
automatically deploy the Camel K quick start tutorials. This section explains how to install the
recommended Visual Studio (VS) Code IDE and the extensions that it provides for Camel K.

NOTE

The Camel K VS Code extensions are community features.

VS Code is recommended for ease of use and the best developer experience of
Camel K. This includes automatic completion of Camel DSL code and Camel K
traits, and automatic execution of tutorial commands. However, you can manually
enter your code and tutorial commands using your chosen IDE instead of VS
Code.

Prerequisites

You must have access to an OpenShift cluster on which the Camel K Operator and OpenShift
Serverless Operator are installed:

Installing Camel K

Installing OpenShift Serverless from the OperatorHub

Procedure

1. Install VS Code on your development platform. For example, on Red Hat Enterprise Linux:

a. Install the required key and repository:

$ sudo rpm --import https://packages.microsoft.com/keys/microsoft.asc
$ sudo sh -c 'echo -e "[code]\nname=Visual Studio
Code\nbaseurl=https://packages.microsoft.com/yumrepos/vscode\nenabled=1\ngpgcheck=1

Red Hat Integration 2023.q1 Getting Started with Camel K

14

https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/getting_started_with_camel_k#installing-camel-k
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/getting_started_with_camel_k#installing-serverless

b. Update the cache and install the VS Code package:

For details on installing on other platforms, see the VS Code installation documentation .

2. Enter the code command to launch the VS Code editor. For more details, see the VS Code
command line documentation.

3. Install the VS Code Camel Extension Pack, which includes the extensions required for Camel K.
For example, in VS Code:

a. In the left navigation bar, click Extensions.

b. In the search box, enter Apache Camel.

c. Select the Extension Pack for Apache Camel by Red Hat, and click Install.

For more details, see the instructions for the Extension Pack for Apache Camel by Red Hat .

4. Install the VS Code Didact extension, which you can use to automatically run quick start tutorial
commands by clicking links in the tutorial. For example, in VS Code:

a. In the left navigation bar, click Extensions.

b. In the search box, enter Didact.

c. Select the extension, and click Install.
For more details, see the instructions for the Didact extension.

Additional resources

VS Code Getting Started documentation

VS Code Tooling for Apache Camel K by Red Hat extension

VS Code Language Support for Apache Camel by Red Hat extension

\ngpgkey=https://packages.microsoft.com/keys/microsoft.asc" >
/etc/yum.repos.d/vscode.repo'

$ yum check-update
$ sudo yum install code

CHAPTER 3. DEVELOPING AND RUNNING CAMEL K INTEGRATIONS

15

https://code.visualstudio.com/docs/setup/setup-overview
https://code.visualstudio.com/docs/editor/command-line
https://marketplace.visualstudio.com/items?itemName=redhat.apache-camel-extension-pack
https://marketplace.visualstudio.com/items?itemName=redhat.vscode-didact
https://code.visualstudio.com/docs
https://marketplace.visualstudio.com/items?itemName=redhat.vscode-camelk
https://marketplace.visualstudio.com/items?itemName=redhat.vscode-apache-camel

Apache Camel K and VS Code tooling example

3.2. DEVELOPING CAMEL K INTEGRATIONS IN JAVA

This section shows how to develop a simple Camel K integration in Java DSL. Writing an integration in
Java to be deployed using Camel K is the same as defining your routing rules in Camel. However, you do
not need to build and package the integration as a JAR when using Camel K.

You can use any Camel component directly in your integration routes. Camel K automatically handles
the dependency management and imports all the required libraries from the Camel catalog using code
inspection.

Prerequisites

Setting up your Camel K development environment

Procedure

1. Enter the kamel init command to generate a simple Java integration file. For example:

2. Open the generated integration file in your IDE and edit as appropriate. For example, the
HelloCamelK.java integration automatically includes the Camel timer and log components to
help you get started:

Next steps

Running Camel K integrations

3.3. DEVELOPING CAMEL K INTEGRATIONS IN YAML

This section explains how to develop a simple Camel K integration in YAML DSL. Writing an integration in
YAML to be deployed using Camel K is the same as defining your routing rules in Camel.

You can use any Camel component directly in your integration routes. Camel K automatically handles

$ kamel init HelloCamelK.java

// camel-k: language=java

import org.apache.camel.builder.RouteBuilder;

public class HelloCamelK extends RouteBuilder {
 @Override
 public void configure() throws Exception {

 // Write your routes here, for example:
 from("timer:java?period=1s")
 .routeId("java")
 .setBody()
 .simple("Hello Camel K from ${routeId}")
 .to("log:info");

 }
}

Red Hat Integration 2023.q1 Getting Started with Camel K

16

https://developers.redhat.com/blog/2019/09/30/sending-a-telegram-with-apache-camel-k-and-visual-studio-code/
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/getting_started_with_camel_k#setting-up-environment
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/getting_started_with_camel_k#running-camel-k-integrations

You can use any Camel component directly in your integration routes. Camel K automatically handles
the dependency management and imports all the required libraries from the Camel catalog using code
inspection.

Prerequisites

Setting up your Camel K development environment

Procedure

1. Enter the kamel init command to generate a simple YAML integration file. For example:

2. Open the generated integration file in your IDE and edit as appropriate. For example, the
hello.camelk.yaml integration automatically includes the Camel timer and log components to
help you get started:

3.4. RUNNING CAMEL K INTEGRATIONS

You can run Camel K integrations in the cloud on your OpenShift cluster from the command line using
the kamel run command.

Prerequisites

Setting up your Camel K development environment .

You must already have a Camel integration written in Java or YAML DSL.

Procedure

1. Log into your OpenShift cluster using the oc client tool, for example:

2. Ensure that the Camel K Operator is running, for example:

3. Enter the kamel run command to run your integration in the cloud on OpenShift. For example:

$ kamel init hello.camelk.yaml

Write your routes here, for example:
- from:
 uri: "timer:yaml"
 parameters:
 period: "1s"
 steps:
 - set-body:
 constant: "Hello Camel K from yaml"
 - to: "log:info"

$ oc login --token=my-token --server=https://my-cluster.example.com:6443

$ oc get pod
NAME READY STATUS RESTARTS AGE
camel-k-operator-86b8d94b4-pk7d6 1/1 Running 0 6m28s

CHAPTER 3. DEVELOPING AND RUNNING CAMEL K INTEGRATIONS

17

https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/getting_started_with_camel_k#setting-up-environment
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/getting_started_with_camel_k#setting-up-environment

Java example

YAML example

4. Enter the kamel get command to check the status of the integration:

When the integration runs for the first time, Camel K builds the integration kit for the container
image, which downloads all the required Camel modules and adds them to the image classpath.

5. Enter kamel get again to verify that the integration is running:

6. Enter the kamel log command to print the log to stdout:

7. Press Ctrl-C to terminate logging in the terminal.

$ kamel run HelloCamelK.java
integration "hello-camel-k" created

$ kamel run hello.camelk.yaml
integration "hello" created

$ kamel get
NAME PHASE KIT
hello Building Kit myproject/kit-bq666mjej725sk8sn12g

$ kamel get
NAME PHASE KIT
hello Running myproject/kit-bq666mjej725sk8sn12g

$ kamel log hello
[1] 2021-08-11 17:58:40,573 INFO [org.apa.cam.k.Runtime] (main) Apache Camel K
Runtime 1.7.1.fuse-800025-redhat-00001
[1] 2021-08-11 17:58:40,653 INFO [org.apa.cam.qua.cor.CamelBootstrapRecorder] (main)
bootstrap runtime: org.apache.camel.quarkus.main.CamelMainRuntime
[1] 2021-08-11 17:58:40,844 INFO [org.apa.cam.k.lis.SourcesConfigurer] (main) Loading
routes from: SourceDefinition{name='camel-k-embedded-flow', language='yaml',
location='file:/etc/camel/sources/camel-k-embedded-flow.yaml', }
[1] 2021-08-11 17:58:41,216 INFO [org.apa.cam.imp.eng.AbstractCamelContext] (main)
Routes startup summary (total:1 started:1)
[1] 2021-08-11 17:58:41,217 INFO [org.apa.cam.imp.eng.AbstractCamelContext] (main)
Started route1 (timer://yaml)
[1] 2021-08-11 17:58:41,217 INFO [org.apa.cam.imp.eng.AbstractCamelContext] (main)
Apache Camel 3.10.0.fuse-800010-redhat-00001 (camel-1) started in 136ms (build:0ms
init:100ms start:36ms)
[1] 2021-08-11 17:58:41,268 INFO [io.quarkus] (main) camel-k-integration 1.6.6 on JVM
(powered by Quarkus 1.11.7.Final-redhat-00009) started in 2.064s.
[1] 2021-08-11 17:58:41,269 INFO [io.quarkus] (main) Profile prod activated.
[1] 2021-08-11 17:58:41,269 INFO [io.quarkus] (main) Installed features: [camel-bean,
camel-core, camel-k-core, camel-k-runtime, camel-log, camel-support-common, camel-timer,
camel-yaml-dsl, cdi]
[1] 2021-08-11 17:58:42,423 INFO [info] (Camel (camel-1) thread #0 - timer://yaml)
Exchange[ExchangePattern: InOnly, BodyType: String, Body: Hello Camel K from yaml]
...

Red Hat Integration 2023.q1 Getting Started with Camel K

18

Additional resources

For more details on the kamel run command, enter kamel run --help

For faster deployment turnaround times, see Running Camel K integrations in development
mode

For details of development tools to run integrations, see VS Code Tooling for Apache Camel K
by Red Hat

See also Managing Camel K integrations

Running An Integration Without CLI

You can run an integration without a CLI (Command Line Interface) and create an Integration Custom
Resource with the configuration to run your application.

For example, execute the following sample route.

kamel run Sample.java -o yaml

It returns the expected Integration Custom Resource.

apiVersion: camel.apache.org/v1
kind: Integration
metadata:
 creationTimestamp: null
 name: my-integration
 namespace: default
spec:
 sources:
 - content: "
 import org.apache.camel.builder.RouteBuilder;
 public class Sample extends RouteBuilder {
 @Override
 public void configure()
 throws Exception {
 from(\"timer:tick\")
 .log(\"Hello Integration!\");
 }
 }"
 name: Sample.java
status: {}

Save this custom resource in a yaml file, my-integration.yaml. Now, run the integration that contains
the Integration Custom Resource using the oc command line, the UI, or the API to call the OpenShift
cluster. In the following example, oc CLI is used from the command line.

oc apply -f my-integration.yaml
...
integration.camel.apache.org/my-integration created

The operator runs the Integration.

NOTE

CHAPTER 3. DEVELOPING AND RUNNING CAMEL K INTEGRATIONS

19

https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/getting_started_with_camel_k#running-camel-k-integrations-dev-mode
https://marketplace.visualstudio.com/items?itemName=redhat.vscode-camelk
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/developing_and_managing_integrations_using_camel_k#managing-camel-k-integrations
https://camel.apache.org/camel-k/1.11.x/apis/camel-k.html#_camel_apache_org_v1_Integration

NOTE

Kubernetes supports Structural Schemas for CustomResourceDefinitions.

For more details about Camel K traits see, Camel K trait configuration reference .

Schema changes on Custom Resources

The strongly-typed Trait API imposes changes on the following CustomResourceDefinitions:
integrations, integrationkits', and `integrationplatforms.

Trait properties under spec.traits.<trait-id>.configuration are now defined directly under spec.traits.
<trait-id>.

traits:
 container:
 configuration:
 enabled: true
 name: my-integration

↓↓↓

traits:
 container:
 enabled: true
 name: my-integration

Backward compatibility is possible in this implementation. To achieve backward compatibility, the
Configuration field with RawMessage type is provided for each trait type, so that the existing
integrations and resources are read from the new Camel K version.

When the old integrations and resources are read, the legacy configuration in each trait (if any) is
migrated to the new Trait API fields. If the values are predefined on the new API fields, they precede the
legacy ones.

type Trait struct {
 // Can be used to enable or disable a trait. All traits share this common property.
 Enabled *bool `property:"enabled" json:"enabled,omitempty"`

 // Legacy trait configuration parameters.
 // Deprecated: for backward compatibility.
 Configuration *Configuration `json:"configuration,omitempty"`
}

// Deprecated: for backward compatibility.
type Configuration struct {
 RawMessage `json:",inline"`
}

3.5. RUNNING CAMEL K INTEGRATIONS IN DEVELOPMENT MODE

You can run Camel K integrations in development mode on your OpenShift cluster from the command
line. Using development mode, you can iterate quickly on integrations in development and get fast
feedback on your code.

Red Hat Integration 2023.q1 Getting Started with Camel K

20

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html/operators/understanding-operators#crds
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q4/html/developing_and_managing_integrations_using_camel_k/camel-k-traits-reference

When you specify the kamel run command with the --dev option, this deploys the integration in the
cloud immediately and shows the integration logs in the terminal. You can then change the code and see
the changes automatically applied instantly to the remote integration Pod on OpenShift. The terminal
automatically displays all redeployments of the remote integration in the cloud.

NOTE

The artifacts generated by Camel K in development mode are identical to those that you
run in production. The purpose of development mode is faster development.

Prerequisites

Setting up your Camel K development environment .

You must already have a Camel integration written in Java or YAML DSL.

Procedure

1. Log into your OpenShift cluster using the oc client tool, for example:

2. Ensure that the Camel K Operator is running, for example:

3. Enter the kamel run command with --dev to run your integration in development mode on
OpenShift in the cloud. The following shows a simple Java example:

$ oc login --token=my-token --server=https://my-cluster.example.com:6443

$ oc get pod
NAME READY STATUS RESTARTS AGE
camel-k-operator-86b8d94b4-pk7d6 1/1 Running 0 6m28s

$ kamel run HelloCamelK.java --dev
Condition "IntegrationPlatformAvailable" is "True" for Integration hello-camel-k: test/camel-k
Integration hello-camel-k in phase "Initialization"
Integration hello-camel-k in phase "Building Kit"
Condition "IntegrationKitAvailable" is "True" for Integration hello-camel-k: kit-
c49sqn4apkb4qgn55ak0
Integration hello-camel-k in phase "Deploying"
Progress: integration "hello-camel-k" in phase Initialization
Progress: integration "hello-camel-k" in phase Building Kit
Progress: integration "hello-camel-k" in phase Deploying
Integration hello-camel-k in phase "Running"
Condition "DeploymentAvailable" is "True" for Integration hello-camel-k: deployment name is
hello-camel-k
Progress: integration "hello-camel-k" in phase Running
Condition "CronJobAvailable" is "False" for Integration hello-camel-k: different controller
strategy used (deployment)
Condition "KnativeServiceAvailable" is "False" for Integration hello-camel-k: different
controller strategy used (deployment)
Condition "Ready" is "False" for Integration hello-camel-k
Condition "Ready" is "True" for Integration hello-camel-k
[1] Monitoring pod hello-camel-k-7f85df47b8-js7cb
...
...

CHAPTER 3. DEVELOPING AND RUNNING CAMEL K INTEGRATIONS

21

https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/getting_started_with_camel_k#setting-up-environment

4. Edit the content of your integration DSL file, save your changes, and see the changes displayed
instantly in the terminal. For example:

[1] 2021-08-11 18:34:44,069 INFO [org.apa.cam.k.Runtime] (main) Apache Camel K
Runtime 1.7.1.fuse-800025-redhat-00001
[1] 2021-08-11 18:34:44,167 INFO [org.apa.cam.qua.cor.CamelBootstrapRecorder] (main)
bootstrap runtime: org.apache.camel.quarkus.main.CamelMainRuntime
[1] 2021-08-11 18:34:44,362 INFO [org.apa.cam.k.lis.SourcesConfigurer] (main) Loading
routes from: SourceDefinition{name='HelloCamelK', language='java',
location='file:/etc/camel/sources/HelloCamelK.java', }
[1] 2021-08-11 18:34:46,180 INFO [org.apa.cam.imp.eng.AbstractCamelContext] (main)
Routes startup summary (total:1 started:1)
[1] 2021-08-11 18:34:46,180 INFO [org.apa.cam.imp.eng.AbstractCamelContext] (main)
Started java (timer://java)
[1] 2021-08-11 18:34:46,180 INFO [org.apa.cam.imp.eng.AbstractCamelContext] (main)
Apache Camel 3.10.0.fuse-800010-redhat-00001 (camel-1) started in 243ms (build:0ms
init:213ms start:30ms)
[1] 2021-08-11 18:34:46,190 INFO [io.quarkus] (main) camel-k-integration 1.6.6 on JVM
(powered by Quarkus 1.11.7.Final-redhat-00009) started in 3.457s.
[1] 2021-08-11 18:34:46,190 INFO [io.quarkus] (main) Profile prod activated.
[1] 2021-08-11 18:34:46,191 INFO [io.quarkus] (main) Installed features: [camel-bean,
camel-core, camel-java-joor-dsl, camel-k-core, camel-k-runtime, camel-log, camel-support-
common, camel-timer, cdi]
[1] 2021-08-11 18:34:47,200 INFO [info] (Camel (camel-1) thread #0 - timer://java)
Exchange[ExchangePattern: InOnly, BodyType: String, Body: Hello Camel K from java]
[1] 2021-08-11 18:34:48,180 INFO [info] (Camel (camel-1) thread #0 - timer://java)
Exchange[ExchangePattern: InOnly, BodyType: String, Body: Hello Camel K from java]
[1] 2021-08-11 18:34:49,180 INFO [info] (Camel (camel-1) thread #0 - timer://java)
Exchange[ExchangePattern: InOnly, BodyType: String, Body: Hello Camel K from java]
...

...
integration "hello-camel-k" updated
...
[2] 2021-08-11 18:40:54,173 INFO [org.apa.cam.k.Runtime] (main) Apache Camel K
Runtime 1.7.1.fuse-800025-redhat-00001
[2] 2021-08-11 18:40:54,209 INFO [org.apa.cam.qua.cor.CamelBootstrapRecorder] (main)
bootstrap runtime: org.apache.camel.quarkus.main.CamelMainRuntime
[2] 2021-08-11 18:40:54,301 INFO [org.apa.cam.k.lis.SourcesConfigurer] (main) Loading
routes from: SourceDefinition{name='HelloCamelK', language='java',
location='file:/etc/camel/sources/HelloCamelK.java', }
[2] 2021-08-11 18:40:55,796 INFO [org.apa.cam.imp.eng.AbstractCamelContext] (main)
Routes startup summary (total:1 started:1)
[2] 2021-08-11 18:40:55,796 INFO [org.apa.cam.imp.eng.AbstractCamelContext] (main)
Started java (timer://java)
[2] 2021-08-11 18:40:55,797 INFO [org.apa.cam.imp.eng.AbstractCamelContext] (main)
Apache Camel 3.10.0.fuse-800010-redhat-00001 (camel-1) started in 174ms (build:0ms
init:147ms start:27ms)
[2] 2021-08-11 18:40:55,803 INFO [io.quarkus] (main) camel-k-integration 1.6.6 on JVM
(powered by Quarkus 1.11.7.Final-redhat-00009) started in 3.025s.
[2] 2021-08-11 18:40:55,808 INFO [io.quarkus] (main) Profile prod activated.
[2] 2021-08-11 18:40:55,809 INFO [io.quarkus] (main) Installed features: [camel-bean,
camel-core, camel-java-joor-dsl, camel-k-core, camel-k-runtime, camel-log, camel-support-
common, camel-timer, cdi]
[2] 2021-08-11 18:40:56,810 INFO [info] (Camel (camel-1) thread #0 - timer://java)
Exchange[ExchangePattern: InOnly, BodyType: String, Body: Hello Camel K from java]

Red Hat Integration 2023.q1 Getting Started with Camel K

22

1

5. Press Ctrl-C to terminate logging in the terminal.

Additional resources

For more details on the kamel run command, enter kamel run --help

For details of development tools to run integrations, see VS Code Tooling for Apache Camel K
by Red Hat

Managing Camel K integrations

Configuring Camel K integration dependencies

3.6. RUNNING CAMEL K INTEGRATIONS USING MODELINE

You can use the Camel K modeline to specify multiple configuration options in a Camel K integration
source file, which are executed at runtime. This creates efficiencies by saving you the time of re-
entering multiple command line options and helps to prevent input errors.

The following example shows a modeline entry from a Java integration file that enables 3scale and limits
the integration container memory.

Prerequisites

Setting up your Camel K development environment

You must already have a Camel integration written in Java or YAML DSL.

Procedure

1. Add a Camel K modeline entry to your integration file. For example:

ThreeScaleRest.java

Enables both the container and 3scale traits, to expose the route through 3scale and to
limit the container memory.

[2] 2021-08-11 18:40:57,793 INFO [info] (Camel (camel-1) thread #0 - timer://java)
Exchange[ExchangePattern: InOnly, BodyType: String, Body: Hello Camel K from java]
...

// camel-k: trait=3scale.enabled=true trait=container.limit-memory=256Mi 1
import org.apache.camel.builder.RouteBuilder;

public class ThreeScaleRest extends RouteBuilder {

 @Override
 public void configure() throws Exception {
 rest().get("/")
 .route()
 .setBody().constant("Hello");
 }
}

CHAPTER 3. DEVELOPING AND RUNNING CAMEL K INTEGRATIONS

23

https://marketplace.visualstudio.com/items?itemName=redhat.vscode-camelk
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/developing_and_managing_integrations_using_camel_k#managing-camel-k-integrations
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/developing_and_managing_integrations_using_camel_k#configuring-camel-k-properties-dependencies
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/getting_started_with_camel_k#setting-up-environment

2. Run the integration, for example:

kamel run ThreeScaleRest.java

The kamel run command outputs any modeline options specified in the integration, for
example:

Additional resources

Camel K modeline options

For details of development tools to run modeline integrations, see Introducing IDE support for
Apache Camel K Modeline.

Modeline options have been loaded from source files
Full command: kamel run ThreeScaleRest.java --trait=3scale.enabled=true --
trait=container.limit-memory=256Mi

Red Hat Integration 2023.q1 Getting Started with Camel K

24

https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/developing_and_managing_integrations_using_camel_k#camel-k-cli-modeline-options
https://developers.redhat.com/blog/2020/08/31/introducing-ide-support-for-apache-camel-k-modeline

CHAPTER 4. UPGRADING CAMEL K
You can upgrade installed Camel K operator automatically, but it does not automatically upgrade the
Camel K integrations. You must manually trigger the upgrade for the Camel K integrations. This chapter
explains how to upgrade both Camel K operator and Camel K integrations.

4.1. UPGRADING CAMEL K OPERATOR

The subscription of an installed Camel K operator specifies an update channel, for example, 1.6.0
channel, which is used to track and receive updates for the operator. To upgrade the operator to start
tracking and receiving updates from a newer channel, you can change the update channel in the
subscription. See Upgrading installed operators for more information about changing the update
channel for installed operator.

NOTE

Installed Operators cannot change to a channel that is older than the current
channel.

If the approval strategy in the subscription is set to Automatic, the upgrade process initiates as soon as a
new Operator version is available in the selected channel. If the approval strategy is set to Manual, you
must manually approve pending upgrades.

Prerequisites

Camel K operator is installed using Operator Lifecycle Manager (OLM).

Procedure

1. In the Administrator perspective of the OpenShift Container Platform web console, navigate
to Operators → Installed Operators.

2. Click the Camel K Operator.

3. Click the Subscription tab.

4. Click the name of the update channel under Channel.

5. Click the newer update channel that you want to change to. For example, latest. Click Save. This
will start the upgrade to the latest Camel K version.

For subscriptions with an Automatic approval strategy, the upgrade begins automatically. Navigate back
to the Operators → Installed Operators page to monitor the progress of the upgrade. When complete,
the status changes to Succeeded and Up to date.

For subscriptions with a Manual approval strategy, you can manually approve the upgrade from the
Subscription tab.

4.2. UPGRADING CAMEL K INTEGRATIONS

When you trigger the upgrade for Camel K operator, the operator prepares the integrations to be
upgraded, but does not trigger an upgrade for each one, to avoid service interruptions. When upgrading
the operator, integration custom resources are not automatically upgraded to the newer version, so for

CHAPTER 4. UPGRADING CAMEL K

25

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/operators/index#olm-upgrading-operators

example, the operator may be at version 1.6.0, while integrations report the status.version field of the
custom resource the previous version 1.4.1.

Prerequisites

Camel K operator is installed and upgraded using Operator Lifecycle Manager (OLM).

Procedure

Open the terminal and run the following command to upgrade the Camel K intergations.

kamel rebuild myintegration

This will clear the status of the integration resource and the operator will start the deployment of the
integration using the artifacts from upgraded version, for example, version 1.6.0.

4.3. DOWNGRADING CAMEL K

You can downgrade to older version of Camel K operator by installing a previous version of the operator.
This needs to be triggered manually using OC CLI. For more infromation about installing specific version
of the operator using CLI see Installing a specific version of an Operator .

IMPORTANT

You must remove the existing Camel K operator and then install the specifc version of
the operator as downgrading is not supported in OLM.

Once you install the older version of operator, use the kamel rebuild command to downgrade the
integrations to the operator version. For example,

kamel rebuild myintegration

Red Hat Integration 2023.q1 Getting Started with Camel K

26

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/operators/index#olm-installing-specific-version-cli_olm-adding-operators-to-a-cluster

CHAPTER 5. CAMEL K QUICK START DEVELOPER TUTORIALS
Red Hat Integration - Camel K provides quick start developer tutorials based on integration use cases
available from https://github.com/openshift-integration. This chapter provides details on how to set up
and deploy the following tutorials:

Section 5.1, “Deploying a basic Camel K Java integration”

Section 5.2, “Deploying a Camel K Serverless integration with Knative”

Section 5.3, “Deploying a Camel K transformations integration”

Section 5.4, “Deploying a Camel K Serverless event streaming integration”

Section 5.5, “Deploying a Camel K Serverless API-based integration”

Section 5.6, “Deploying a Camel K SaaS integration”

Section 5.7, “Deploying a Camel K JDBC integration”

Section 5.8, “Deploying a Camel K JMS integration”

Section 5.9, “Deploying a Camel K Kafka integration”

5.1. DEPLOYING A BASIC CAMEL K JAVA INTEGRATION

This tutorial demonstrates how to run a simple Java integration in the cloud on OpenShift, apply
configuration and routing to an integration, and run an integration as a Kubernetes CronJob.

Prerequisites

See the tutorial readme in GitHub: https://github.com/openshift-integration/camel-k-
example-basic/tree/1.6.x.

You must have installed the Camel K operator and the kamel CLI. See Installing Camel K .

Visual Studio (VS) Code is optional but recommended for the best developer experience. See
link:Setting up your Camel K development environment .

Procedure

1. Clone the tutorial Git repository:

2. In VS Code, select File → Open Folder → camel-k-example-basic .

3. In the VS Code navigation tree, right-click the readme.didact.md file and select Didact: Start
Didact Tutorial from File. For example:

$ git clone git@github.com:openshift-integration/camel-k-example-basic.git

CHAPTER 5. CAMEL K QUICK START DEVELOPER TUTORIALS

27

https://github.com/openshift-integration
https://github.com/openshift-integration/camel-k-example-basic/tree/1.6.x
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/getting_started_with_camel_k#installing-camel-k
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/getting_started_with_camel_k#setting-up-environment

This opens a new Didact tab in VS Code to display the tutorial instructions.

4. Follow the tutorial instructions and click the provided links to run the commands automatically.
Alternatively, if you do not have VS Code installed with the Didact extension, you can manually
enter the commands from https://github.com/openshift-integration/camel-k-example-basic.

Additional resources

Developing Camel K integrations in Java

5.2. DEPLOYING A CAMEL K SERVERLESS INTEGRATION WITH
KNATIVE

This tutorial demonstrates how to deploy Camel K integrations with OpenShift Serverless in an event-
driven architecture. This tutorial uses a Knative Eventing broker to communicate using an event publish-
subscribe pattern in a Bitcoin trading demonstration.

Red Hat Integration 2023.q1 Getting Started with Camel K

28

https://github.com/openshift-integration/camel-k-example-basic
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/getting_started_with_camel_k#writing-camel-k-integrations-in-java

This tutorial also shows how to use Camel K integrations to connect to a Knative event mesh with
multiple external systems. The Camel K integrations also use Knative Serving to automatically scale up
and down to zero as needed.

Prerequisites

See the tutorial readme in GitHub: https://github.com/openshift-integration/camel-k-
example-knative/tree/1.6.x.

You must have cluster administrator access to an OpenShift cluster to install Camel K and
OpenShift Serverless:

Installing Camel K

Installing OpenShift Serverless from the OperatorHub

Visual Studio (VS) Code is optional but recommended for the best developer experience. See
Setting up your Camel K development environment .

Procedure

1. Clone the tutorial Git repository:

2. In VS Code, select File → Open Folder → camel-k-example-knative .

3. In the VS Code navigation tree, right-click the readme.didact.md file and select Didact: Start
Didact Tutorial from File. This opens a new Didact tab in VS Code to display the tutorial
instructions.

4. Follow the tutorial instructions and click the provided links to run the commands automatically.
Alternatively, if you do not have VS Code installed with the Didact extension, you can manually
enter the commands from https://github.com/openshift-integration/camel-k-example-knative.

Additional resources

About Knative Eventing

About Knative Serving

5.3. DEPLOYING A CAMEL K TRANSFORMATIONS INTEGRATION

This tutorial demonstrates how to run a Camel K Java integration on OpenShift that transforms data
such as XML to JSON, and stores it in a database such as PostgreSQL.

The tutorial example uses a CSV file to query an XML API and uses the data collected to build a valid
GeoJSON file, which is stored in a PostgreSQL database.

Prerequisites

See the tutorial readme in GitHub: https://github.com/openshift-integration/camel-k-
example-transformations/tree/1.6.x.

You must have cluster administrator access to an OpenShift cluster to install Camel K. See

$ git clone git@github.com:openshift-integration/camel-k-example-knative.git

CHAPTER 5. CAMEL K QUICK START DEVELOPER TUTORIALS

29

https://github.com/openshift-integration/camel-k-example-knative/tree/1.6.x
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/getting_started_with_camel_k#installing-camel-k
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/getting_started_with_camel_k#installing-serverless
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/getting_started_with_camel_k#setting-up-environment
https://github.com/openshift-integration/camel-k-example-knative
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/serverless#about-knative-eventing_about-serverless
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/serverless#about-knative-serving_about-serverless
https://github.com/openshift-integration/camel-k-example-transformations/tree/1.6.x

You must have cluster administrator access to an OpenShift cluster to install Camel K. See
Installing Camel K .

You must follow the instructions in the tutorial readme to install the PostgreSQL Operator by
Dev4Ddevs.com, which is required on your OpenShift cluster

Visual Studio (VS) Code is optional but recommended for the best developer experience. See
Setting up your Camel K development environment .

Procedure

1. Clone the tutorial Git repository:

2. In VS Code, select File → Open Folder → camel-k-example-transformations.

3. In the VS Code navigation tree, right-click the readme.didact.md file and select Didact: Start
Didact Tutorial from File. This opens a new Didact tab in VS Code to display the tutorial
instructions.

4. Follow the tutorial instructions and click the provided links to run the commands automatically.
Alternatively, if you do not have VS Code installed with the Didact extension, you can manually
enter the commands from https://github.com/openshift-integration/camel-k-example-
transformations.

Additional resources

https://operatorhub.io/operator/postgresql-operator-dev4devs-com

https://geojson.org/

5.4. DEPLOYING A CAMEL K SERVERLESS EVENT STREAMING
INTEGRATION

This tutorial demonstrates using Camel K and OpenShift Serverless with Knative Eventing for an event-
driven architecture.

The tutorial shows how to install Camel K and Serverless with Knative in an AMQ Streams cluster with an
AMQ Broker cluster, and how to deploy an event streaming project to run a global hazard alert
demonstration application.

Prerequisites

See the tutorial readme in GitHub: https://github.com/openshift-integration/camel-k-
example-event-streaming/tree/1.6.x.

You must have cluster administrator access to an OpenShift cluster to install Camel K and
OpenShift Serverless:

Installing Camel K

Installing OpenShift Serverless from the OperatorHub

You must follow the instructions in the tutorial readme to install the additional required

$ git clone git@github.com:openshift-integration/camel-k-example-transformations.git

Red Hat Integration 2023.q1 Getting Started with Camel K

30

https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/getting_started_with_camel_k#installing-camel-k
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/getting_started_with_camel_k#setting-up-environment
https://github.com/openshift-integration/camel-k-example-transformations
https://operatorhub.io/operator/postgresql-operator-dev4devs-com
https://geojson.org/
https://github.com/openshift-integration/camel-k-example-event-streaming/tree/1.6.x
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/getting_started_with_camel_k#installing-camel-k
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/getting_started_with_camel_k#installing-serverless

You must follow the instructions in the tutorial readme to install the additional required
Operators on your OpenShift cluster:

AMQ Streams Operator

AMQ Broker Operator

Visual Studio (VS) Code is optional but recommended for the best developer experience. See
Setting up your Camel K development environment .

Procedure

1. Clone the tutorial Git repository:

2. In VS Code, select File → Open Folder → camel-k-example-event-streaming .

3. In the VS Code navigation tree, right-click the readme.didact.md file and select Didact: Start
Didact Tutorial from File. This opens a new Didact tab in VS Code to display the tutorial
instructions.

4. Follow the tutorial instructions and click the provided links to run the commands automatically.
Alternatively, if you do not have VS Code installed with the Didact extension, you can manually
enter the commands from https://github.com/openshift-integration/camel-k-example-event-
streaming.

Additional resources

Red Hat AMQ documentation

OpenShift Serverless documentation

5.5. DEPLOYING A CAMEL K SERVERLESS API-BASED INTEGRATION

This tutorial demonstrates using Camel K and OpenShift Serverless with Knative Serving for an API-
based integration, and managing an API with 3scale API Management on OpenShift.

The tutorial shows how to configure Amazon S3-based storage, design an OpenAPI definition, and run
an integration that calls the demonstration API endpoints.

Prerequisites

See the tutorial readme in GitHub: https://github.com/openshift-integration/camel-k-
example-api/tree/1.6.x.

You must have cluster administrator access to an OpenShift cluster to install Camel K and
OpenShift Serverless:

Installing Camel K

Installing OpenShift Serverless from the OperatorHub

You can also install the optional Red Hat Integration - 3scale Operator on your OpenShift
system to manage the API. See Deploying 3scale using the Operator.

Visual Studio (VS) Code is optional but recommended for the best developer experience. See

$ git clone git@github.com:openshift-integration/camel-k-example-event-streaming.git

CHAPTER 5. CAMEL K QUICK START DEVELOPER TUTORIALS

31

https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/getting_started_with_camel_k#setting-up-environment
https://github.com/openshift-integration/camel-k-example-event-streaming
https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q4
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/serverless/index
https://github.com/openshift-integration/camel-k-example-api/tree/1.6.x
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/getting_started_with_camel_k#installing-camel-k
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/getting_started_with_camel_k#installing-serverless
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.10/html/installing_3scale/install-threescale-on-openshift-guide#deploying-threescale-using-the-operator

Visual Studio (VS) Code is optional but recommended for the best developer experience. See
Setting up your Camel K development environment .

Procedure

1. Clone the tutorial Git repository:

2. In VS Code, select File → Open Folder → camel-k-example-api .

3. In the VS Code navigation tree, right-click the readme.didact.md file and select Didact: Start
Didact Tutorial from File. This opens a new Didact tab in VS Code to display the tutorial
instructions.

4. Follow the tutorial instructions and click the provided links to run the commands automatically.
Alternatively, if you do not have VS Code installed with the Didact extension, you can manually
enter the commands from https://github.com/openshift-integration/camel-k-example-api.

Additional resources

Red Hat 3scale API Management documentation

OpenShift Serverless documentation

5.6. DEPLOYING A CAMEL K SAAS INTEGRATION

This tutorial demonstrates how to run a Camel K Java integration on OpenShift that connects two
widely-used Software as a Service (SaaS) providers.

The tutorial example shows how to integrate the Salesforce and ServiceNow SaaS providers using
REST-based Camel components. In this simple example, each new Salesforce Case is copied to a
corresponding ServiceNow Incident that includes the Salesforce Case Number.

Prerequisites

See the tutorial readme in GitHub: https://github.com/openshift-integration/camel-k-
example-saas/tree/1.6.x.

You must have cluster administrator access to an OpenShift cluster to install Camel K. See
Installing Camel K .

You must have Salesforce login credentials and ServiceNow login credentials.

Visual Studio (VS) Code is optional but recommended for the best developer experience. See
Setting up your Camel K development environment .

Procedure

1. Clone the tutorial Git repository:

2. In VS Code, select File → Open Folder → camel-k-example-saas .

$ git clone git@github.com:openshift-integration/camel-k-example-api.git

$ git clone git@github.com:openshift-integration/camel-k-example-saas.git

Red Hat Integration 2023.q1 Getting Started with Camel K

32

https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/getting_started_with_camel_k#setting-up-environment
https://github.com/openshift-integration/camel-k-example-api
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.10/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/serverless/index
https://github.com/openshift-integration/camel-k-example-saas/tree/1.6.x
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/getting_started_with_camel_k#installing-camel-k
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/getting_started_with_camel_k#setting-up-environment

3. In the VS Code navigation tree, right-click the readme.didact.md file and select Didact: Start
Didact Tutorial from File. This opens a new Didact tab in VS Code to display the tutorial
instructions.

4. Follow the tutorial instructions and click the provided links to run the commands automatically.
Alternatively, if you do not have VS Code installed with the Didact extension, you can manually
enter the commands from https://github.com/openshift-integration/camel-k-example-saas.

Additional resources

https://www.salesforce.com/

https://www.servicenow.com/

5.7. DEPLOYING A CAMEL K JDBC INTEGRATION

This tutorial demonstrates how to get started with Camel K and an SQL database via JDBC drivers. This
tutorial shows how to set up an integration producing data into a Postgres database (you can use any
relational database of your choice) and also how to read data from the same database.

Prerequisites

See the tutorial readme in GitHub: https://github.com/openshift-integration/camel-k-
example-jdbc/tree/1.6.x.

You must have cluster administrator access to an OpenShift cluster to install Camel K.

Installing Camel K

Visual Studio (VS) Code is optional but recommended for the best developer experience. See
Setting up your Camel K development environment .

Procedure

1. Clone the tutorial Git repository:

2. In VS Code, select File → Open Folder → camel-k-example-jdbc .

3. In the VS Code navigation tree, right-click the readme.didact.md file and select Didact: Start
Didact Tutorial from File. This opens a new Didact tab in VS Code to display the tutorial
instructions.

4. Follow the tutorial instructions and click the provided links to run the commands automatically.
Alternatively, if you do not have VS Code installed with the Didact extension, you can manually
enter the commands from https://github.com/openshift-integration/camel-k-example-jdbc.

Additional resources

Create your own Postgres sample database .

5.8. DEPLOYING A CAMEL K JMS INTEGRATION

This tutorial demonstrates how to use JMS to connect to a message broker in order to consume and

$ git clone git@github.com:openshift-integration/camel-k-example-jdbc.git

CHAPTER 5. CAMEL K QUICK START DEVELOPER TUTORIALS

33

https://github.com/openshift-integration/camel-k-example-saas
https://www.salesforce.com/
https://www.servicenow.com/
https://github.com/openshift-integration/camel-k-example-jdbc/tree/1.6.x
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/getting_started_with_camel_k#installing-camel-k
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/getting_started_with_camel_k#setting-up-environment
https://github.com/openshift-integration/camel-k-example-jdbc
https://docs.openshift.com/online/pro/using_images/db_images/postgresql.html

This tutorial demonstrates how to use JMS to connect to a message broker in order to consume and
produce messages. There are two examples:

JMS Sink: this tutorial demonstrates how to produce a message to a JMS broker.

JMS Source: this tutorial demonstrates how to consume a message from a JMS broker.

Prerequisites

See the tutorial readme in GitHub: https://github.com/openshift-integration/camel-k-
example-jms/tree/1.6.x.

You must have cluster administrator access to an OpenShift cluster to install Camel K.

Installing Camel K

Visual Studio (VS) Code is optional but recommended for the best developer experience. See
Setting up your Camel K development environment .

Procedure

1. Clone the tutorial Git repository:

2. In VS Code, select File → Open Folder → camel-k-example-jms .

3. In the VS Code navigation tree, right-click the readme.didact.md file and select Didact: Start
Didact Tutorial from File. This opens a new Didact tab in VS Code to display the tutorial
instructions.

4. Follow the tutorial instructions and click the provided links to run the commands automatically.
Alternatively, if you do not have VS Code installed with the Didact extension, you can manually
enter the commands from https://github.com/openshift-integration/camel-k-example-jms.

Additional resources

JMS Sink

JMS Source

5.9. DEPLOYING A CAMEL K KAFKA INTEGRATION

This tutorial demonstrates how to use Camel K with Apache Kafka. This tutorial demonstrates how to
set up a Kafka Topic via Red Hat OpenShift Streams for Apache Kafka and to use it in conjunction with
Camel K.

Prerequisites

See the tutorial readme in GitHub: https://github.com/openshift-integration/camel-k-
example-kafka/tree/1.6.x.

You must have cluster administrator access to an OpenShift cluster to install Camel K.

Installing Camel K

$ git clone git@github.com:openshift-integration/camel-k-example-jms.git

Red Hat Integration 2023.q1 Getting Started with Camel K

34

https://github.com/openshift-integration/camel-k-example-jms/tree/1.6.x
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/getting_started_with_camel_k#installing-camel-k
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/getting_started_with_camel_k#setting-up-environment
https://github.com/openshift-integration/camel-k-example-jms
https://github.com/openshift-integration/camel-k-example-jms/tree/1.6.x/jms-sink/
https://github.com/openshift-integration/camel-k-example-jms/tree/1.6.x/jms-source
https://github.com/openshift-integration/camel-k-example-kafka/tree/1.6.x
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/getting_started_with_camel_k#installing-camel-k

Visual Studio (VS) Code is optional but recommended for the best developer experience. See
Setting up your Camel K development environment .

Procedure

1. Clone the tutorial Git repository:

2. In VS Code, select File → Open Folder → camel-k-example-kafka.

3. In the VS Code navigation tree, right-click the readme.didact.md file and select Didact: Start
Didact Tutorial from File. This opens a new Didact tab in VS Code to display the tutorial
instructions.

4. Follow the tutorial instructions and click the provided links to run the commands automatically.
Alternatively, if you do not have VS Code installed with the Didact extension, you can manually
enter the commands from https://github.com/openshift-integration/camel-k-example-kafka.

$ git clone git@github.com:openshift-integration/camel-k-example-kafka.git

CHAPTER 5. CAMEL K QUICK START DEVELOPER TUTORIALS

35

https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/getting_started_with_camel_k#setting-up-environment
https://github.com/openshift-integration/camel-k-example-kafka

	Table of Contents
	PREFACE
	MAKING OPEN SOURCE MORE INCLUSIVE

	CHAPTER 1. INTRODUCTION TO CAMEL K
	1.1. CAMEL K OVERVIEW
	1.2. CAMEL K FEATURES
	1.2.1. Platform and component versions
	1.2.2. Camel K features
	1.2.3. Kamelets

	1.3. CAMEL K DEVELOPMENT TOOLING
	1.4. CAMEL K DISTRIBUTIONS

	CHAPTER 2. PREPARING YOUR OPENSHIFT CLUSTER
	2.1. INSTALLING CAMEL K
	2.1.1. Specifying Camel K resource limits

	2.2. INSTALLING OPENSHIFT SERVERLESS
	2.3. CONFIGURING MAVEN REPOSITORY FOR CAMEL K

	CHAPTER 3. DEVELOPING AND RUNNING CAMEL K INTEGRATIONS
	3.1. SETTING UP YOUR CAMEL K DEVELOPMENT ENVIRONMENT
	3.2. DEVELOPING CAMEL K INTEGRATIONS IN JAVA
	3.3. DEVELOPING CAMEL K INTEGRATIONS IN YAML
	3.4. RUNNING CAMEL K INTEGRATIONS
	3.5. RUNNING CAMEL K INTEGRATIONS IN DEVELOPMENT MODE
	3.6. RUNNING CAMEL K INTEGRATIONS USING MODELINE

	CHAPTER 4. UPGRADING CAMEL K
	4.1. UPGRADING CAMEL K OPERATOR
	4.2. UPGRADING CAMEL K INTEGRATIONS
	4.3. DOWNGRADING CAMEL K

	CHAPTER 5. CAMEL K QUICK START DEVELOPER TUTORIALS
	5.1. DEPLOYING A BASIC CAMEL K JAVA INTEGRATION
	5.2. DEPLOYING A CAMEL K SERVERLESS INTEGRATION WITH KNATIVE
	5.3. DEPLOYING A CAMEL K TRANSFORMATIONS INTEGRATION
	5.4. DEPLOYING A CAMEL K SERVERLESS EVENT STREAMING INTEGRATION
	5.5. DEPLOYING A CAMEL K SERVERLESS API-BASED INTEGRATION
	5.6. DEPLOYING A CAMEL K SAAS INTEGRATION
	5.7. DEPLOYING A CAMEL K JDBC INTEGRATION
	5.8. DEPLOYING A CAMEL K JMS INTEGRATION
	5.9. DEPLOYING A CAMEL K KAFKA INTEGRATION

