
Red Hat Integration 2023.q1

Camel Spring Boot Reference 3.14

Camel Spring Boot Reference

Last Updated: 2023-02-02

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

Camel Spring Boot Reference

Legal Notice

Copyright © 2023 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide describes the settings for Camel Spring Boot components.

. .

. .

. .

. .

Table of Contents

PREFACE
MAKING OPEN SOURCE MORE INCLUSIVE

CHAPTER 1. AWS CLOUDWATCH
1.1. URI FORMAT
1.2. CONFIGURING OPTIONS

1.2.1. Configuring Component Options
1.2.2. Configuring Endpoint Options

1.3. COMPONENT OPTIONS
1.4. ENDPOINT OPTIONS

1.4.1. Path Parameters (1 parameters)
1.4.2. Query Parameters (16 parameters)

1.5. USAGE
1.5.1. Static credentials vs Default Credential Provider
1.5.2. Message headers evaluated by the CW producer
1.5.3. Advanced CloudWatchClient configuration

1.6. DEPENDENCIES
1.7. EXAMPLES

1.7.1. Producer Example
1.8. SPRING BOOT AUTO-CONFIGURATION

CHAPTER 2. AWS DYNAMODB
2.1. URI FORMAT
2.2. CONFIGURING OPTIONS

2.2.1. Configuring Component Options
2.2.2. Configuring Endpoint Options

2.3. COMPONENT OPTIONS
2.4. ENDPOINT OPTIONS

2.4.1. Path Parameters (1 parameters)
2.4.2. Query Parameters (20 parameters)

2.5. USAGE
2.5.1. Static credentials vs Default Credential Provider
2.5.2. Message headers evaluated by the DDB producer
2.5.3. Message headers set during BatchGetItems operation
2.5.4. Message headers set during DeleteItem operation
2.5.5. Message headers set during DeleteTable operation
2.5.6. Message headers set during DescribeTable operation
2.5.7. Message headers set during GetItem operation
2.5.8. Message headers set during PutItem operation
2.5.9. Message headers set during Query operation
2.5.10. Message headers set during Scan operation
2.5.11. Message headers set during UpdateItem operation
2.5.12. Advanced AmazonDynamoDB configuration

2.6. SUPPORTED PRODUCER OPERATIONS
2.7. EXAMPLES

2.7.1. Producer Examples
2.8. SPRING BOOT AUTO-CONFIGURATION

CHAPTER 3. AWS KINESIS
3.1. URI FORMAT
3.2. CONFIGURING OPTIONS

3.2.1. Configuring Component Options

29
29

30
30
30
30
30
31
32
33
33
34
34
35
35
35
36
36
36

39
39
39
39
39
39
42
42
42
45
45
45
47
47
47
48
48
49
49
49
50
50
50
50
50
51

57
57
57
57

Table of Contents

1

. .

. .

3.2.2. Configuring Endpoint Options
3.3. COMPONENT OPTIONS
3.4. ENDPOINT OPTIONS

3.4.1. Path Parameters (1 parameters)
3.4.2. Query Parameters (38 parameters)

3.5. BATCH CONSUMER
3.6. USAGE

3.6.1. Static credentials vs Default Credential Provider
3.6.2. Message headers set by the Kinesis consumer
3.6.3. AmazonKinesis configuration
3.6.4. Providing AWS Credentials
3.6.5. Message headers used by the Kinesis producer to write to Kinesis. The producer expects that the
message body is a byte[].
3.6.6. Message headers set by the Kinesis producer on successful storage of a Record

3.7. DEPENDENCIES
3.8. SPRING BOOT AUTO-CONFIGURATION

CHAPTER 4. AWS 2 LAMBDA
4.1. URI FORMAT
4.2. CONFIGURING OPTIONS

4.2.1. Configuring Component Options
4.2.2. Configuring Endpoint Options

4.3. COMPONENT OPTIONS
4.4. ENDPOINT OPTIONS

4.4.1. Path Parameters (1 parameters)
4.4.2. Query Parameters (14 parameters)

4.5. USAGE
4.5.1. Static credentials vs Default Credential Provider
4.5.2. Message headers evaluated by the Lambda producer

4.6. LIST OF AVALAIBLE OPERATIONS
4.7. EXAMPLES

4.7.1. Producer Example
4.7.2. Producer Examples

4.8. USING A POJO AS BODY
4.9. DEPENDENCIES
4.10. SPRING BOOT AUTO-CONFIGURATION

CHAPTER 5. AWS S3 STORAGE SERVICE
5.1. URI FORMAT
5.2. CONFIGURING OPTIONS

5.2.1. Configuring Component Options
5.2.2. Configuring Endpoint Options

5.3. COMPONENT OPTIONS
5.4. ENDPOINT OPTIONS

5.4.1. Path Parameters (1 parameters)
5.4.2. Query Parameters (68 parameters)

5.5. BATCH CONSUMER
5.6. USAGE

5.6.1. Message headers evaluated by the S3 producer
5.6.2. Message headers set by the S3 producer
5.6.3. Message headers set by the S3 consumer
5.6.4. S3 Producer operations
5.6.5. Advanced AmazonS3 configuration

57
58
60
61
61

66
66
66
66
67
67

67
67
68
68

74
74
74
74
74
75
77
78
78
80
80
81

84
85
85
85
85
86
86

89
89
89
89
89
90
96
96
96

104
104
104
106
106
107
108

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

2

. .

. .

5.6.6. Use KMS with the S3 component
5.6.7. Static credentials vs Default Credential Provider
5.6.8. S3 Producer Operation examples

5.7. STREAMING UPLOAD MODE
5.8. BUCKET AUTOCREATION
5.9. MOVING STUFF BETWEEN A BUCKET AND ANOTHER BUCKET
5.10. MOVEAFTERREAD CONSUMER OPTION
5.11. USING CUSTOMER KEY AS ENCRYPTION
5.12. USING A POJO AS BODY
5.13. CREATE S3 CLIENT AND ADD COMPONENT TO REGISTRY
5.14. DEPENDENCIES
5.15. SPRING BOOT AUTO-CONFIGURATION

CHAPTER 6. AWS SIMPLE NOTIFICATION SYSTEM (SNS)
6.1. URI FORMAT
6.2. URI OPTIONS

6.2.1. Configuring Options
6.2.1.1. Configuring Component Options
6.2.1.2. Configuring Endpoint Options

6.3. COMPONENT OPTIONS
6.4. ENDPOINT OPTIONS

6.4.1. Path Parameters (1 parameters)
6.4.2. Query Parameters (23 parameters)

6.5. USAGE
6.5.1. Static credentials vs Default Credential Provider
6.5.2. Message headers evaluated by the SNS producer
6.5.3. Message headers set by the SNS producer
6.5.4. Advanced AmazonSNS configuration
6.5.5. Create a subscription between an AWS SNS Topic and an AWS SQS Queue

6.6. TOPIC AUTOCREATION
6.7. SNS FIFO

6.7.1. SNS Fifo Topic Message group Id Strategy and message Deduplication Id Strategy
6.8. EXAMPLES

6.8.1. Producer Examples
6.9. DEPENDENCIES
6.10. SPRING BOOT AUTO-CONFIGURATION

CHAPTER 7. AWS SIMPLE QUEUE SERVICE (SQS)
7.1. URI FORMAT
7.2. CONFIGURING OPTIONS

7.2.1. Configuring Component Options
7.2.2. Configuring Endpoint Options

7.3. COMPONENT OPTIONS
7.4. ENDPOINT OPTIONS

7.4.1. Path Parameters (1 parameters)
7.4.2. Query Parameters (61 parameters)

7.5. BATCH CONSUMER
7.6. USAGE

7.6.1. Static credentials vs Default Credential Provider
7.6.2. Message headers set by the SQS producer
7.6.3. Message headers set by the SQS consumer
7.6.4. Advanced AmazonSQS configuration
7.6.5. Creating or updating an SQS Queue

108
108
109

111
113
113
113
114
114
114
115
115

122
122
122
122
122
122
123
125
126
126
128
128
129
129
129
129
130
130
131
131
131
131
131

135
135
135
135
135
136
140
141
141

148
148
148
149
149
149
149

Table of Contents

3

. .

. .

7.6.6. DelayQueue VS Delay for Single message
7.6.7. Server Side Encryption

7.7. JMS-STYLE SELECTORS
7.8. AVAILABLE PRODUCER OPERATIONS
7.9. SEND MESSAGE
7.10. SEND BATCH MESSAGE
7.11. DELETE SINGLE MESSAGE
7.12. LIST QUEUES
7.13. PURGE QUEUE
7.14. QUEUE AUTOCREATION
7.15. SEND BATCH MESSAGE AND MESSAGE DEDUPLICATION STRATEGY
7.16. DEPENDENCIES
7.17. SPRING BOOT AUTO-CONFIGURATION

CHAPTER 8. AZURE STORAGE BLOB SERVICE
8.1. URI FORMAT
8.2. CONFIGURING OPTIONS

8.2.1. Configuring Component Options
8.2.2. Configuring Endpoint Options

8.3. COMPONENT OPTIONS
8.4. ENDPOINT OPTIONS

8.4.1. Path Parameters (2 parameters)
8.4.2. Query Parameters (48 parameters)

8.5. USAGE
8.5.1. Message headers evaluated by the component producer
8.5.2. Message headers set by either component producer or consumer
8.5.3. Advanced Azure Storage Blob configuration
8.5.4. Automatic detection of BlobServiceClient client in registry
8.5.5. Azure Storage Blob Producer operations
8.5.6. Consumer Examples
8.5.7. Producer Operations Examples
8.5.8. Development Notes (Important)

8.6. SPRING BOOT AUTO-CONFIGURATION

CHAPTER 9. AZURE STORAGE QUEUE SERVICE
9.1. URI FORMAT
9.2. CONFIGURING OPTIONS

9.2.1. Configuring Component Options
9.2.2. Configuring Endpoint Options

9.3. COMPONENT OPTIONS
9.4. ENDPOINT OPTIONS

9.4.1. Path Parameters (2 parameters)
9.4.2. Query Parameters (31 parameters)

9.5. USAGE
9.5.1. Message headers evaluated by the component producer
9.5.2. Message headers set by either component producer or consumer
9.5.3. Advanced Azure Storage Queue configuration
9.5.4. Automatic detection of QueueServiceClient client in registry
9.5.5. Azure Storage Queue Producer operations
9.5.6. Consumer Examples
9.5.7. Producer Operations Examples
9.5.8. Development Notes (Important)

9.6. SPRING BOOT AUTO-CONFIGURATION

150
150
150
151
151
151
151
152
152
152
152
152
153

159
159
159
159
160
160
165
165
165
173
173
179
182
182
182
185
186
191
191

196
196
196
196
197
197
199
199

200
205
205
207
208
208
208
209
209
212
212

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

4

. .

. .

. .

. .

CHAPTER 10. BEAN
10.1. URI FORMAT
10.2. CONFIGURING OPTIONS

10.2.1. Configuring Component Options
10.2.2. Configuring Endpoint Options

10.3. COMPONENT OPTIONS
10.4. ENDPOINT OPTIONS

10.4.1. Path Parameters (1 parameters)
10.4.2. Query Parameters (5 parameters)

10.5. USING
10.6. BEAN AS ENDPOINT
10.7. JAVA DSL BEAN SYNTAX
10.8. BEAN BINDING
10.9. SPRING BOOT AUTO-CONFIGURATION

CHAPTER 11. BEAN VALIDATOR
11.1. URI FORMAT
11.2. CONFIGURING OPTIONS

11.2.1. Configuring Component Options
11.2.2. Configuring Endpoint Options

11.3. COMPONENT OPTIONS
11.4. ENDPOINT OPTIONS

11.4.1. Path Parameters (1 parameters)
11.4.2. Query Parameters (8 parameters)

11.5. OSGI DEPLOYMENT
11.6. EXAMPLE
11.7. SPRING BOOT AUTO-CONFIGURATION

CHAPTER 12. BROWSE
12.1. URI FORMAT
12.2. CONFIGURING OPTIONS

12.2.1. Configuring Component Options
12.2.2. Configuring Endpoint Options

12.3. COMPONENT OPTIONS
12.4. ENDPOINT OPTIONS

12.4.1. Path Parameters (1 parameters)
12.4.2. Query Parameters (4 parameters)

12.5. SAMPLE
12.6. SPRING BOOT AUTO-CONFIGURATION

CHAPTER 13. CASSANDRA CQL
13.1. CONFIGURING OPTIONS

13.1.1. Configuring Component Options
13.1.2. Configuring Endpoint Options

13.2. COMPONENT OPTIONS
13.3. ENDPOINT OPTIONS

13.3.1. Path Parameters (4 parameters)
13.3.2. Query Parameters (30 parameters)

13.4. ENDPOINT CONNECTION SYNTAX
13.5. MESSAGES

13.5.1. Incoming Message
13.5.2. Outgoing Message

13.6. REPOSITORIES
13.7. IDEMPOTENT REPOSITORY

216
216
216
216
216
216
218
218
218
219

220
220
220
221

225
225
225
225
225
226
227
227
227
228
228
231

233
233
233
233
233
233
234
234
234
235
236

238
238
238
238
238
239
239
240
244
244
244
244
245
245

Table of Contents

5

. .

. .

. .

13.8. AGGREGATION REPOSITORY
13.9. EXAMPLES
13.10. SPRING BOOT AUTO-CONFIGURATION

CHAPTER 14. CONTROL BUS
14.1. COMMANDS
14.2. CONFIGURING OPTIONS

14.2.1. Configuring Component Options
14.2.2. Configuring Endpoint Options

14.3. COMPONENT OPTIONS
14.4. ENDPOINT OPTIONS

14.4.1. Path Parameters (2 parameters)
14.4.1.1. Query Parameters (6 parameters)

14.5. USING ROUTE COMMAND
14.6. GETTING PERFORMANCE STATISTICS
14.7. USING SIMPLE LANGUAGE
14.8. SPRING BOOT AUTO-CONFIGURATION

CHAPTER 15. CRON
15.1. CONFIGURING OPTIONS

15.1.1. Configuring Component Options
15.1.2. Configuring Endpoint Options

15.2. COMPONENT OPTIONS
15.3. ENDPOINT OPTIONS

15.3.1. Path Parameters (1 parameters)
15.3.2. Query Parameters (4 parameters)

15.4. USAGE
15.5. SPRING BOOT AUTO-CONFIGURATION

CHAPTER 16. CXF
16.1. URI FORMAT
16.2. CONFIGURING OPTIONS

16.2.1. Configuring Component Options
16.2.2. Configuring Endpoint Options

16.3. COMPONENT OPTIONS
16.4. ENDPOINT OPTIONS

16.4.1. Path Parameters (2 parameters)
16.4.2. Query Parameters (35 parameters)
16.4.3. Descriptions of the dataformats
16.4.4. How to enable CXF’s LoggingOutInterceptor in RAW mode
16.4.5. Description of relayHeaders option
16.4.6. Available only in POJO mode

16.5. CONFIGURE THE CXF ENDPOINTS WITH SPRING
16.6. HOW TO MAKE THE CAMEL-CXF COMPONENT USE LOG4J INSTEAD OF JAVA.UTIL.LOGGING
16.7. HOW TO LET CAMEL-CXF RESPONSE START WITH XML PROCESSING INSTRUCTION
16.8. HOW TO OVERRIDE THE CXF PRODUCER ADDRESS FROM MESSAGE HEADER
16.9. HOW TO CONSUME A MESSAGE FROM A CAMEL-CXF ENDPOINT IN POJO DATA FORMAT
16.10. HOW TO PREPARE THE MESSAGE FOR THE CAMEL-CXF ENDPOINT IN POJO DATA FORMAT
16.11. HOW TO DEAL WITH THE MESSAGE FOR A CAMEL-CXF ENDPOINT IN PAYLOAD DATA FORMAT
16.12. HOW TO GET AND SET SOAP HEADERS IN POJO MODE
16.13. HOW TO GET AND SET SOAP HEADERS IN PAYLOAD MODE
16.14. SOAP HEADERS ARE NOT AVAILABLE IN RAW MODE
16.15. HOW TO THROW A SOAP FAULT FROM CAMEL
16.16. HOW TO PROPAGATE A CAMEL-CXF ENDPOINT’S REQUEST AND RESPONSE CONTEXT

245
246
247

249
249
249
249
250
250
250
250
251

253
253
254
254

256
256
256
256
257
257
257
258
258
259

261
261
261
261
262
262
263
263
263
267
268
268
269
271

274
274
275
275
276
276
277
279
280
280
281

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

6

. .

. .

. .

. .

16.17. ATTACHMENT SUPPORT
16.18. STREAMING SUPPORT IN PAYLOAD MODE
16.19. USING THE GENERIC CXF DISPATCH MODE
16.20. SPRING BOOT AUTO-CONFIGURATION

CHAPTER 17. DATA FORMAT
17.1. URI FORMAT
17.2. DATAFORMAT OPTIONS

17.2.1. Configuring Options
17.2.1.1. Configuring Component Options
17.2.1.2. Configuring Endpoint Options

17.3. COMPONENT OPTIONS
17.4. ENDPOINT OPTIONS

17.4.1. Path Parameters (2 parameters)
17.4.2. Query Parameters (1 parameters)

17.5. SAMPLES
17.6. SPRING BOOT AUTO-CONFIGURATION

CHAPTER 18. DATASET
18.1. URI FORMAT
18.2. CONFIGURING OPTIONS

18.2.1. Configuring Component Options
18.2.2. Configuring Endpoint Options

18.3. COMPONENT OPTIONS
18.4. ENDPOINT OPTIONS

18.4.1. Path Parameters (1 parameters)
18.4.2. Query Parameters (21 parameters)

18.5. CONFIGURING DATASET
18.6. EXAMPLE
18.7. DATASETSUPPORT (ABSTRACT CLASS)

18.7.1. Properties on DataSetSupport
18.8. SIMPLEDATASET

18.8.1. Additional Properties on SimpleDataSet
18.9. LISTDATASET

18.9.1. Additional Properties on ListDataSet
18.10. FILEDATASET

18.10.1. Additional Properties on FileDataSet
18.11. SPRING BOOT AUTO-CONFIGURATION

CHAPTER 19. DIRECT
19.1. URI FORMAT
19.2. CONFIGURING OPTIONS

19.2.1. Configuring Component Options
19.2.2. Configuring Endpoint Options

19.3. COMPONENT OPTIONS
19.4. ENDPOINT OPTIONS

19.4.1. Path Parameters (1 parameters)
19.4.2. Query Parameters (8 parameters)

19.5. SAMPLES
19.6. SPRING BOOT AUTO-CONFIGURATION

CHAPTER 20. FHIR
20.1. URI FORMAT
20.2. CONFIGURING OPTIONS

281
284
284
285

288
288
288
288
288
288
288
289
289
289
290
290

292
292
292
292
292
293
294
294
294
298
298
299
299
299
299
300
300
300
300
300

303
303
303
303
303
304
304
305
305
306
307

309
309
309

Table of Contents

7

20.2.1. Configuring Component Options
20.2.2. Configuring Endpoint Options

20.3. COMPONENT OPTIONS
20.4. ENDPOINT OPTIONS

20.4.1. Path Parameters (2 parameters)
20.4.2. Query Parameters (44 parameters)

20.5. API PARAMETERS (13 APIS)
20.5.1. API: capabilities

20.5.1.1. Method ofType
20.5.2. API: create

20.5.2.1. Method resource
20.5.3. API: delete

20.5.3.1. Method resource
20.5.3.2. Method resourceById
20.5.3.3. Method resourceConditionalByUrl

20.5.4. API: history
20.5.4.1. Method onInstance
20.5.4.2. Method onServer
20.5.4.3. Method onType

20.5.5. API: load-page
20.5.5.1. Method byUrl
20.5.5.2. Method next
20.5.5.3. Method previous

20.5.6. API: meta
20.5.6.1. Method add
20.5.6.2. Method delete
20.5.6.3. Method getFromResource
20.5.6.4. Method getFromServer
20.5.6.5. Method getFromType

20.5.7. API: operation
20.5.7.1. Method onInstance
20.5.7.2. Method onInstanceVersion
20.5.7.3. Method onServer
20.5.7.4. Method onType
20.5.7.5. Method processMessage

20.5.8. API: patch
20.5.8.1. Method patchById
20.5.8.2. Method patchByUrl

20.5.9. API: read
20.5.9.1. Method resourceById
20.5.9.2. Method resourceByUrl

20.5.10. API: search
20.5.10.1. Method searchByUrl

20.5.11. API: transaction
20.5.11.1. Method withBundle
20.5.11.2. Method withResources

20.5.12. API: update
20.5.12.1. Method resource
20.5.12.2. Method resourceBySearchUrl

20.5.13. API: validate
20.5.13.1. Method resource

20.6. SPRING BOOT AUTO-CONFIGURATION

310
310
310
313
314
314
319

320
321
321
321

322
323
323
324
324
325
325
326
327
327
328
328
328
329
329
330
330
331
331
332
332
333
334
335
335
336
336
337
338
339
340
340
341
341

342
342
343
343
344
344
345

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

8

. .

. .

CHAPTER 21. FILE
21.1. URI FORMAT
21.2. CONFIGURING OPTIONS

21.2.1. Configuring Component Options
21.2.2. Configuring Endpoint Options

21.3. COMPONENT OPTIONS
21.4. ENDPOINT OPTIONS

21.4.1. Path Parameters (1 parameters)
21.4.2. Query Parameters (94 parameters)

21.5. MOVE AND DELETE OPERATIONS
21.6. FINE GRAINED CONTROL OVER MOVE AND PREMOVE OPTION
21.7. ABOUT MOVEFAILED
21.8. MESSAGE HEADERS

21.8.1. File producer only
21.8.2. File consumer only

21.9. BATCH CONSUMER
21.10. EXCHANGE PROPERTIES, FILE CONSUMER ONLY
21.11. USING CHARSET
21.12. COMMON GOTCHAS WITH FOLDER AND FILENAMES
21.13. FILENAME EXPRESSION
21.14. CONSUMING FILES FROM FOLDERS WHERE OTHERS DROP FILES DIRECTLY
21.15. USING DONE FILES
21.16. WRITING DONE FILES
21.17. SAMPLES

21.17.1. Read from a directory and write to another directory
21.17.2. Read from a directory and write to another directory using a overrule dynamic name
21.17.3. Reading recursively from a directory and writing to another

21.18. USING FLATTEN
21.19. READING FROM A DIRECTORY AND THE DEFAULT MOVE OPERATION
21.20. READ FROM A DIRECTORY AND PROCESS THE MESSAGE IN JAVA
21.21. WRITING TO FILES

21.21.1. Write to subdirectory using Exchange.FILE_NAME
21.21.2. Writing file through the temporary directory relative to the final destination

21.22. USING EXPRESSION FOR FILENAMES
21.23. AVOIDING READING THE SAME FILE MORE THAN ONCE (IDEMPOTENT CONSUMER)
21.24. USING A FILE BASED IDEMPOTENT REPOSITORY
21.25. USING A JPA BASED IDEMPOTENT REPOSITORY
21.26. FILTER USING ORG.APACHE.CAMEL.COMPONENT.FILE.GENERICFILEFILTER
21.27. FILTERING USING ANT PATH MATCHER

21.27.1. Sorting using Comparator
21.27.2. Sorting using sortBy

21.28. USING GENERICFILEPROCESSSTRATEGY
21.29. USING FILTER
21.30. USING BRIDGEERRORHANDLER
21.31. DEBUG LOGGING
21.32. SPRING BOOT AUTO-CONFIGURATION

CHAPTER 22. FTP
22.1. URI FORMAT
22.2. CONFIGURING OPTIONS

22.2.1. Configuring Component Options
22.2.2. Configuring Endpoint Options

22.3. COMPONENT OPTIONS

353
353
353
353
353
354
354
355
355
371
372
372
373
373
373
374
374
374
375
376
376
376
377
377
377
378
378
378
378
379
379
379
379
380
380
380
381
381
382
382
383
384
384
384
385
385

387
387
387
388
388
388

Table of Contents

9

. .

22.4. ENDPOINT OPTIONS
22.4.1. Path Parameters (3 parameters)
22.4.2. Query Parameters (111 parameters)

22.5. FTPS COMPONENT DEFAULT TRUST STORE
22.6. EXAMPLES
22.7. CONCURRENCY
22.8. MORE INFORMATION
22.9. DEFAULT WHEN CONSUMING FILES

22.9.1. limitations
22.10. MESSAGE HEADERS

22.10.1. Exchange Properties
22.11. ABOUT TIMEOUTS
22.12. USING LOCAL WORK DIRECTORY
22.13. STEPWISE CHANGING DIRECTORIES
22.14. USING STEPWISE=TRUE (DEFAULT MODE)
22.15. USING STEPWISE=FALSE
22.16. SAMPLES

22.16.1. Consuming a remote FTPS server (implicit SSL) and client authentication
22.16.2. Consuming a remote FTPS server (explicit TLS) and a custom trust store configuration

22.17. CUSTOM FILTERING
22.18. FILTERING USING ANT PATH MATCHER
22.19. USING A PROXY WITH SFTP
22.20. SETTING PREFERRED SFTP AUTHENTICATION METHOD
22.21. CONSUMING A SINGLE FILE USING A FIXED NAME
22.22. DEBUG LOGGING
22.23. SPRING BOOT AUTO-CONFIGURATION

CHAPTER 23. HTTP
23.1. URI FORMAT
23.2. CONFIGURING OPTIONS

23.2.1. Configuring Component Options
23.2.2. Configuring Endpoint Options

23.3. COMPONENT OPTIONS
23.4. ENDPOINT OPTIONS

23.4.1. Path Parameters (1 parameters)
23.4.2. Query Parameters (51 parameters)

23.5. MESSAGE HEADERS
23.6. MESSAGE BODY
23.7. USING SYSTEM PROPERTIES
23.8. RESPONSE CODE
23.9. EXCEPTIONS
23.10. WHICH HTTP METHOD WILL BE USED
23.11. HOW TO GET ACCESS TO HTTPSERVLETREQUEST AND HTTPSERVLETRESPONSE
23.12. CONFIGURING URI TO CALL
23.13. CONFIGURING URI PARAMETERS
23.14. HOW TO SET THE HTTP METHOD (GET/PATCH/POST/PUT/DELETE/HEAD/OPTIONS/TRACE) TO
THE HTTP PRODUCER
23.15. USING CLIENT TIMEOUT - SO_TIMEOUT
23.16. CONFIGURING A PROXY

23.16.1. Using proxy settings outside of URI
23.17. CONFIGURING CHARSET

23.17.1. Sample with scheduled poll
23.17.2. URI Parameters from the endpoint URI

389
389
389
408
409
409
409
409
409
410
410
411
411
411

412
413
414
414
415
415
415
415
416
416
416
417

420
420
420
420
420
421

424
425
425
431

432
432
432
433
433
433
433
434

434
435
435
435
435
436
436

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

10

. .

. .

. .

23.17.3. URI Parameters from the Message
23.17.4. Getting the Response Code

23.18. DISABLING COOKIES
23.19. BASIC AUTH WITH THE STREAMING MESSAGE BODY
23.20. ADVANCED USAGE

23.20.1. Setting up SSL for HTTP Client
23.21. SPRING BOOT AUTO-CONFIGURATION

CHAPTER 24. INFINISPAN
24.1. URI FORMAT
24.2. CONFIGURING OPTIONS

24.2.1. Configuring Component Options
24.2.2. Configuring Endpoint Options

24.3. COMPONENT OPTIONS
24.4. ENDPOINT OPTIONS

24.4.1. Path Parameters (1 parameters)
24.4.2. Query Parameters (26 parameters)

24.5. CAMEL OPERATIONS
24.6. MESSAGE HEADERS
24.7. EXAMPLES
24.8. USING THE INFINISPAN BASED IDEMPOTENT REPOSITORY
24.9. USING THE INFINISPAN BASED AGGREGATION REPOSITORY
24.10. SPRING BOOT AUTO-CONFIGURATION

CHAPTER 25. JIRA
25.1. URI FORMAT
25.2. CONFIGURING OPTIONS

25.2.1. Configuring Component Options
25.2.2. Configuring Endpoint Options

25.3. COMPONENT OPTIONS
25.4. ENDPOINT OPTIONS

25.4.1. Path Parameters (1 parameters)
25.4.2. Query Parameters (16 parameters)

25.5. CLIENT FACTORY
25.6. AUTHENTICATION

25.6.1. Basic authentication requirements:
25.6.2. OAuth authentication requirements:

25.7. JQL
25.8. OPERATIONS
25.9. ADDISSUE
25.10. ADDCOMMENT
25.11. ATTACH
25.12. DELETEISSUE
25.13. TRANSITIONISSUE
25.14. UPDATEISSUE
25.15. WATCHER
25.16. WATCHUPDATES (CONSUMER)
25.17. SPRING BOOT AUTO-CONFIGURATION

CHAPTER 26. JMS
26.1. URI FORMAT

26.1.1. Using ActiveMQ
26.1.2. Transactions and Cache Levels
26.1.3. Durable Subscriptions

436
436
436
436
437
437
439

445
445
445
445
445
446
450
450
450
453
457
458
459
461

462

466
466
467
467
467
467
469
469
470
472
472
473
473
473
473
474
474
474
474
474
475
475
475
475

478
478
479
479
479

Table of Contents

11

. .

26.1.4. Message Header Mapping
26.2. CONFIGURING OPTIONS

26.2.1. Configuring Component Options
26.2.2. Configuring Endpoint Options

26.3. COMPONENT OPTIONS
26.4. ENDPOINT OPTIONS

26.4.1. Path Parameters (2 parameters)
26.4.2. Query Parameters (95 parameters)

26.5. SAMPLES
26.5.1. Receiving from JMS
26.5.2. Sending to JMS
26.5.3. Using Annotations
26.5.4. Spring DSL sample
26.5.5. Other samples
26.5.6. Using JMS as a Dead Letter Queue storing Exchange
26.5.7. Using JMS as a Dead Letter Channel storing error only

26.6. MESSAGE MAPPING BETWEEN JMS AND CAMEL
26.6.1. Disabling auto-mapping of JMS messages
26.6.2. Using a custom MessageConverter
26.6.3. Controlling the mapping strategy selected

26.7. MESSAGE FORMAT WHEN SENDING
26.8. MESSAGE FORMAT WHEN RECEIVING
26.9. ABOUT USING CAMEL TO SEND AND RECEIVE MESSAGES AND JMSREPLYTO

26.9.1. JmsProducer
26.9.2. JmsConsumer

26.10. REUSE ENDPOINT AND SEND TO DIFFERENT DESTINATIONS COMPUTED AT RUNTIME
26.11. CONFIGURING DIFFERENT JMS PROVIDERS

26.11.1. Using JNDI to find the ConnectionFactory
26.12. CONCURRENT CONSUMING

26.12.1. Concurrent Consuming with async consumer
26.13. REQUEST-REPLY OVER JMS

26.13.1. Request-reply over JMS and using a shared fixed reply queue
26.13.2. Request-reply over JMS and using an exclusive fixed reply queue

26.14. SYNCHRONIZING CLOCKS BETWEEN SENDERS AND RECEIVERS
26.15. ABOUT TIME TO LIVE
26.16. ENABLING TRANSACTED CONSUMPTION
26.17. USING JMSREPLYTO FOR LATE REPLIES
26.18. USING A REQUEST TIMEOUT
26.19. SENDING AN INONLY MESSAGE AND KEEPING THE JMSREPLYTO HEADER
26.20. SETTING JMS PROVIDER OPTIONS ON THE DESTINATION
26.21. SPRING BOOT AUTO-CONFIGURATION

CHAPTER 27. KAFKA
27.1. URI FORMAT
27.2. CONFIGURING OPTIONS

27.2.1. Configuring Component Options
27.2.2. Configuring Endpoint Options

27.3. COMPONENT OPTIONS
27.4. ENDPOINT OPTIONS

27.4.1. Path Parameters (1 parameters)
27.4.2. Query Parameters (102 parameters)

27.5. MESSAGE HEADERS
27.5.1. Consumer headers

479
480
480
480
481

499
500
500
518
518
519
519
519
519
519

520
520
521
521
521

522
522
523
523
524
525
525
526
526
526
527
529
529
530
530
531
531
532
532
532
533

551
551
551
551
551

552
568
568
568
585
585

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

12

. .

. .

. .

27.5.2. Producer headers
27.6. CONSUMER ERROR HANDLING
27.7. SAMPLES

27.7.1. Consuming messages from Kafka
27.7.2. Producing messages to Kafka

27.8. SSL CONFIGURATION
27.9. USING THE KAFKA IDEMPOTENT REPOSITORY
27.10. USING MANUAL COMMIT WITH KAFKA CONSUMER
27.11. KAFKA HEADERS PROPAGATION
27.12. SPRING BOOT AUTO-CONFIGURATION

CHAPTER 28. KAMELET
28.1. URI FORMAT
28.2. CONFIGURING OPTIONS

28.2.1. Configuring Component Options
28.2.2. Configuring Endpoint Options

28.3. COMPONENT OPTIONS
28.4. ENDPOINT OPTIONS

28.4.1. Path Parameters (2 parameters)
28.4.2. Query Parameters (8 parameters)

28.5. DISCOVERY
28.6. SAMPLES
28.7. SPRING BOOT AUTO-CONFIGURATION

CHAPTER 29. LANGUAGE
29.1. URI FORMAT
29.2. CONFIGURING OPTIONS

29.2.1. Configuring Component Options
29.2.2. Configuring Endpoint Options

29.3. COMPONENT OPTIONS
29.4. ENDPOINT OPTIONS

29.4.1. Path Parameters (2 parameters)
29.4.2. Query Parameters (7 parameters)

29.5. MESSAGE HEADERS
29.6. EXAMPLES
29.7. LOADING SCRIPTS FROM RESOURCES
29.8. SPRING BOOT AUTO-CONFIGURATION

CHAPTER 30. LOG
30.1. URI FORMAT
30.2. CONFIGURING OPTIONS

30.2.1. Configuring Component Options
30.2.2. Configuring Endpoint Options

30.3. COMPONENT OPTIONS
30.4. ENDPOINT OPTIONS

30.4.1. Path Parameters (1 parameters)
30.4.2. Query Parameters (27 parameters)

30.5. REGULAR LOGGER SAMPLE
30.6. REGULAR LOGGER WITH FORMATTER SAMPLE
30.7. THROUGHPUT LOGGER WITH GROUPSIZE SAMPLE
30.8. THROUGHPUT LOGGER WITH GROUPINTERVAL SAMPLE
30.9. MASKING SENSITIVE INFORMATION LIKE PASSWORD
30.10. FULL CUSTOMIZATION OF THE LOGGING OUTPUT

30.10.1. Convention over configuration

586
587
588
588
589
589
590
593
593
594

611
611
611
611
611
611

613
613
613
614
615
615

618
618
618
618
618
619
619
619

620
621
622
622
622

624
624
624
625
625
625
626
626
626
629
629
629
629
630
630
631

Table of Contents

13

. .

. .

. .

30.11. SPRING BOOT AUTO-CONFIGURATION

CHAPTER 31. MAIL
31.1. URI FORMAT
31.2. CONFIGURING OPTIONS

31.2.1. Configuring Component Options
31.2.2. Configuring Endpoint Options

31.3. COMPONENT OPTIONS
31.4. ENDPOINT OPTIONS

31.4.1. Path Parameters (2 parameters)
31.4.2. Query Parameters (66 parameters)
31.4.3. Sample endpoints
31.4.4. Component alias names
31.4.5. Default ports

31.5. SSL SUPPORT
31.5.1. Using the JSSE Configuration Utility
31.5.2. Configuring JavaMail Directly

31.6. MAIL MESSAGE CONTENT
31.7. HEADERS TAKE PRECEDENCE OVER PRE-CONFIGURED RECIPIENTS
31.8. MULTIPLE RECIPIENTS FOR EASIER CONFIGURATION
31.9. SETTING SENDER NAME AND EMAIL
31.10. JAVAMAIL API (EX SUN JAVAMAIL)
31.11. SAMPLES
31.12. SENDING MAIL WITH ATTACHMENT SAMPLE
31.13. SSL SAMPLE
31.14. CONSUMING MAILS WITH ATTACHMENT SAMPLE
31.15. HOW TO SPLIT A MAIL MESSAGE WITH ATTACHMENTS
31.16. USING CUSTOM SEARCHTERM
31.17. POLLING OPTIMIZATION
31.18. USING HEADERS WITH ADDITIONAL JAVA MAIL SENDER PROPERTIES
31.19. SPRING BOOT AUTO-CONFIGURATION

CHAPTER 32. MASTER
32.1. USING THE MASTER ENDPOINT
32.2. URI FORMAT
32.3. CONFIGURING OPTIONS

32.3.1. Configuring Component Options
32.3.2. Configuring Endpoint Options

32.4. COMPONENT OPTIONS
32.5. ENDPOINT OPTIONS

32.5.1. Path Parameters (2 parameters)
32.5.2. Query Parameters (3 parameters)

32.6. EXAMPLE
32.7. IMPLEMENTATIONS
32.8. SPRING BOOT AUTO-CONFIGURATION

CHAPTER 33. MLLP
33.1. CONFIGURING OPTIONS

33.1.1. Configuring Component Options
33.1.2. Configuring Endpoint Options

33.2. COMPONENT OPTIONS
33.3. ENDPOINT OPTIONS

33.3.1. Path Parameters (2 parameters)
33.3.2. Query Parameters (26 parameters)

631

633
633
633
634
634
634
639
639
640
647
648
648
648
648
649
649
650
650
650
650
651
651
651
652
652
653
654
654
655

661
661
661
661
661

662
662
662
663
663
663
664
665

667
667
667
668
668
671
671
672

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

14

. .

. .

33.4. MLLP CONSUMER
33.4.1. Message Headers
33.4.2. Exchange Properties

33.5. MLLP PRODUCER
33.5.1. Message Headers
33.5.2. Exchange Properties

33.6. SPRING BOOT AUTO-CONFIGURATION

CHAPTER 34. MOCK
34.1. URI FORMAT
34.2. CONFIGURING OPTIONS

34.2.1. Configuring Component Options
34.2.2. Configuring Endpoint Options

34.3. COMPONENT OPTIONS
34.4. ENDPOINT OPTIONS

34.4.1. Path Parameters (1 parameters)
34.4.2. Query Parameters (12 parameters)

34.5. SIMPLE EXAMPLE
34.6. USING ASSERTPERIOD
34.7. SETTING EXPECTATIONS
34.8. ADDING EXPECTATIONS TO SPECIFIC MESSAGES
34.9. MOCKING EXISTING ENDPOINTS
34.10. MOCKING EXISTING ENDPOINTS USING THE CAMEL-TEST COMPONENT
34.11. MOCKING EXISTING ENDPOINTS WITH XML DSL
34.12. MOCKING ENDPOINTS AND SKIP SENDING TO ORIGINAL ENDPOINT
34.13. LIMITING THE NUMBER OF MESSAGES TO KEEP
34.14. TESTING WITH ARRIVAL TIMES
34.15. SPRING BOOT AUTO-CONFIGURATION

CHAPTER 35. MONGODB
35.1. URI FORMAT
35.2. CONFIGURING OPTIONS

35.2.1. Configuring Component Options
35.2.2. Configuring Endpoint Options

35.3. COMPONENT OPTIONS
35.4. ENDPOINT OPTIONS

35.4.1. Path Parameters (1 parameters)
35.4.2. Query Parameters (27 parameters)

35.5. CONFIGURATION OF DATABASE IN SPRING XML
35.6. SAMPLE ROUTE
35.7. MONGODB OPERATIONS - PRODUCER ENDPOINTS

35.7.1. Query operations
35.7.1.1. findById
35.7.1.2. findOneByQuery
35.7.1.3. Example without a query selector (returns the first document in a collection)
35.7.1.4. Example with a query selector (returns the first matching document in a collection):
35.7.1.5. findAll

35.7.1.5.1. Example without a query selector (returns all documents in a collection)
35.7.1.5.2. Example with a query selector (returns all matching documents in a collection)
35.7.1.5.3. Example with option outputType=MongoIterable and batch size

35.7.1.6. count
35.7.1.7. Specifying a fields filter (projection)
35.7.1.8. Specifying a sort clause

675
675
676
677
677
677
678

682
682
682
683
683
683
684
684
684
687
687
688
689
689
691

692
693
694
695
695

697
697
697
697
698
698
699
699
699
704
705
705
705
705
705
706
706
706
706
706
707
708
708
709

Table of Contents

15

. .

. .

35.7.2. Create/update operations
35.7.2.1. insert
35.7.2.2. save
35.7.2.3. update

35.7.3. Delete operations
35.7.3.1. remove

35.7.4. Bulk Write Operations
35.7.4.1. bulkWrite

35.7.5. Other operations
35.7.5.1. aggregate
35.7.5.2. getDbStats
35.7.5.3. getColStats
35.7.5.4. command

35.7.6. Dynamic operations
35.8. CONSUMERS

35.8.1. Tailable Cursor Consumer
35.9. HOW THE TAILABLE CURSOR CONSUMER WORKS
35.10. PERSISTENT TAIL TRACKING
35.11. ENABLING PERSISTENT TAIL TRACKING

35.11.1. Change Streams Consumer
35.12. TYPE CONVERSIONS
35.13. SPRING BOOT AUTO-CONFIGURATION

CHAPTER 36. NETTY
36.1. URI FORMAT
36.2. CONFIGURING OPTIONS

36.2.1. Configuring Component Options
36.2.2. Configuring Endpoint Options

36.3. COMPONENT OPTIONS
36.4. ENDPOINT OPTIONS

36.4.1. Path Parameters (3 parameters)
36.4.2. Query Parameters (71 parameters)

36.5. REGISTRY BASED OPTIONS
36.5.1. Using non shareable encoders or decoders

36.6. SENDING MESSAGES TO/FROM A NETTY ENDPOINT
36.6.1. Netty Producer
36.6.2. Netty Consumer

36.7. EXAMPLES
36.7.1. A UDP Netty endpoint using Request-Reply and serialized object payload
36.7.2. A TCP based Netty consumer endpoint using One-way communication
36.7.3. An SSL/TCP based Netty consumer endpoint using Request-Reply communication
36.7.4. Using Multiple Codecs

36.8. CLOSING CHANNEL WHEN COMPLETE
36.9. CUSTOM PIPELINE

36.9.1. Using custom pipeline factory
36.10. REUSING NETTY BOSS AND WORKER THREAD POOLS
36.11. MULTIPLEXING CONCURRENT MESSAGES OVER A SINGLE CONNECTION WITH REQUEST/REPLY

36.12. SPRING BOOT AUTO-CONFIGURATION

CHAPTER 37. PAHO
37.1. URI FORMAT
37.2. CONFIGURING OPTIONS

709
709
710
711
712
712
713
713
713
713
714
715
716
716
716
716
717
717
718
718
719

720

722
722
722
722
723
723
732
732
732
741
742
742
742
743
743
743
743
744
745
747
747
748
749

750
750

760
760
760

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

16

. .

. .

37.2.1. Configuring Component Options
37.2.2. Configuring Endpoint Options

37.3. COMPONENT OPTIONS
37.4. ENDPOINT OPTIONS

37.4.1. Path Parameters (1 parameters)
37.4.2. Query Parameters (31 parameters)

37.5. HEADERS
37.6. DEFAULT PAYLOAD TYPE
37.7. SAMPLES
37.8. SPRING BOOT AUTO-CONFIGURATION

CHAPTER 38. PAHO MQTT 5
38.1. URI FORMAT
38.2. CONFIGURING OPTIONS

38.2.1. Configuring Component Options
38.2.2. Configuring Endpoint Options

38.3. COMPONENT OPTIONS
38.4. ENDPOINT OPTIONS

38.4.1. Path Parameters (1 parameters)
38.4.2. Query Parameters (32 parameters)

38.5. HEADERS
38.6. DEFAULT PAYLOAD TYPE
38.7. SAMPLES
38.8. SPRING BOOT AUTO-CONFIGURATION

CHAPTER 39. QUARTZ
39.1. URI FORMAT
39.2. CONFIGURING OPTIONS

39.2.1. Configuring Component Options
39.2.2. Configuring Endpoint Options

39.3. COMPONENT OPTIONS
39.4. ENDPOINT OPTIONS

39.4.1. Path Parameters (2 parameters)
39.4.2. Query Parameters (17 parameters)
39.4.3. Configuring quartz.properties file

39.5. ENABLING QUARTZ SCHEDULER IN JMX
39.6. STARTING THE QUARTZ SCHEDULER
39.7. CLUSTERING
39.8. MESSAGE HEADERS
39.9. USING CRON TRIGGERS
39.10. SPECIFYING TIME ZONE
39.11. CONFIGURING MISFIRE INSTRUCTIONS

39.11.1. SimpleTrigger.MISFIRE_INSTRUCTION_FIRE_NOW = 1 (default)
39.11.2. SimpleTrigger.MISFIRE_INSTRUCTION_RESCHEDULE_NOW_WITH_EXISTING_REPEAT_COUNT = 2

39.11.3. SimpleTrigger.MISFIRE_INSTRUCTION_RESCHEDULE_NOW_WITH_REMAINING_REPEAT_COUNT =
3
39.11.4. SimpleTrigger.MISFIRE_INSTRUCTION_RESCHEDULE_NEXT_WITH_REMAINING_COUNT = 4
39.11.5. SimpleTrigger.MISFIRE_INSTRUCTION_RESCHEDULE_NEXT_WITH_EXISTING_COUNT = 5
39.11.6. CronTrigger.MISFIRE_INSTRUCTION_FIRE_ONCE_NOW = 1 (default)
39.11.7. CronTrigger.MISFIRE_INSTRUCTION_DO_NOTHING = 2

39.12. USING QUARTZSCHEDULEDPOLLCONSUMERSCHEDULER
39.13. CRON COMPONENT SUPPORT

760
760
761

766
766
767
772
773
773
774

781
781
781
781
781
782
788
788
788
795
795
796
796

805
805
805
805
805
806
807
807
808
810
810
810
810
811
811
811
811

812

812

812
812
813
813
813
813
814

Table of Contents

17

. .

. .

. .

. .

39.14. SPRING BOOT AUTO-CONFIGURATION

CHAPTER 40. REF
40.1. URI FORMAT
40.2. CONFIGURING OPTIONS

40.2.1. Configuring Component Options
40.2.2. Configuring Endpoint Options

40.3. COMPONENT OPTIONS
40.4. ENDPOINT OPTIONS

40.4.1. Path Parameters (1 parameters)
40.4.2. Query Parameters (4 parameters)

40.5. RUNTIME LOOKUP
40.6. SAMPLE
40.7. SPRING BOOT AUTO-CONFIGURATION

CHAPTER 41. REST
41.1. URI FORMAT
41.2. CONFIGURING OPTIONS

41.2.1. Configuring Component Options
41.2.2. Configuring Endpoint Options

41.3. COMPONENT OPTIONS
41.4. ENDPOINT OPTIONS

41.4.1. Path Parameters (3 parameters)
41.4.2. Query Parameters (16 parameters)

41.5. SUPPORTED REST COMPONENTS
41.6. PATH AND URITEMPLATE SYNTAX
41.7. REST PRODUCER EXAMPLES
41.8. REST PRODUCER BINDING
41.9. MORE EXAMPLES
41.10. SPRING BOOT AUTO-CONFIGURATION

CHAPTER 42. SAGA
42.1. URI FORMAT
42.2. CONFIGURING OPTIONS

42.2.1. Configuring Component Options
42.2.2. Configuring Endpoint Options

42.3. COMPONENT OPTIONS
42.4. ENDPOINT OPTIONS

42.4.1. Path Parameters (1 parameters)
42.4.2. Query Parameters (1 parameters)

42.5. SPRING BOOT AUTO-CONFIGURATION

CHAPTER 43. SALESFORCE
43.1. CONFIGURING OPTIONS

43.1.1. Configuring Component Options
43.1.2. Configuring Endpoint Options

43.2. COMPONENT OPTIONS
43.3. ENDPOINT OPTIONS

43.3.1. Path Parameters (2 parameters)
43.3.2. Query Parameters (57 parameters)

43.4. AUTHENTICATING TO SALESFORCE
43.5. URI FORMAT
43.6. PASSING IN SALESFORCE HEADERS AND FETCHING SALESFORCE RESPONSE HEADERS
43.7. SUPPORTED SALESFORCE APIS

814

817
817
817
817
817
817
818
818
818
819

820
820

822
822
822
822
822
822
824
824
825
827
828
828
829
830
830

833
833
833
833
833
833
834
834
834
835

837
837
837
837
838
847
847
849
855
856
856
857

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

18

. .

. .

43.7.1. Rest API
43.7.2. Bulk 2.0 API
43.7.3. Rest Bulk (original) API
43.7.4. Rest Streaming API
43.7.5. Platform events
43.7.6. Change data capture events

43.8. EXAMPLES
43.8.1. Uploading a document to a ContentWorkspace

43.9. USING SALESFORCE LIMITS API
43.10. WORKING WITH APPROVALS
43.11. USING SALESFORCE RECENT ITEMS API
43.12. USING SALESFORCE COMPOSITE API TO SUBMIT SOBJECT TREE
43.13. USING SALESFORCE COMPOSITE API TO SUBMIT MULTIPLE REQUESTS IN A BATCH
43.14. USING SALESFORCE COMPOSITE API TO SUBMIT MULTIPLE CHAINED REQUESTS
43.15. USING "RAW" SALESFORCE COMPOSITE
43.16. USING RAW OPERATION

43.16.1. Query example
43.16.2. SObject example

43.17. USING COMPOSITE SOBJECT COLLECTIONS
43.17.1. compositeRetrieveSObjectCollections
43.17.2. compositeCreateSObjectCollections
43.17.3. compositeUpdateSObjectCollections
43.17.4. compositeUpsertSObjectCollections
43.17.5. compositeDeleteSObjectCollections

43.18. SENDING NULL VALUES TO SALESFORCE
43.19. GENERATING SOQL QUERY STRINGS
43.20. CAMEL SALESFORCE MAVEN PLUGIN
43.21. SPRING BOOT AUTO-CONFIGURATION

CHAPTER 44. SCHEDULER
44.1. URI FORMAT
44.2. CONFIGURING OPTIONS

44.2.1. Configuring Component Options
44.2.2. Configuring Endpoint Options

44.3. COMPONENT OPTIONS
44.4. ENDPOINT OPTIONS

44.4.1. Path Parameters (1 parameters)
44.4.2. Query Parameters (21 parameters)

44.5. MORE INFORMATION
44.6. EXCHANGE PROPERTIES
44.7. SAMPLE
44.8. FORCING THE SCHEDULER TO TRIGGER IMMEDIATELY WHEN COMPLETED
44.9. FORCING THE SCHEDULER TO BE IDLE
44.10. SPRING BOOT AUTO-CONFIGURATION

CHAPTER 45. SEDA
45.1. URI FORMAT
45.2. CONFIGURING OPTIONS

45.2.1. Configuring Component Options
45.2.2. Configuring Endpoint Options

45.3. COMPONENT OPTIONS
45.4. ENDPOINT OPTIONS

45.4.1. Path Parameters (1 parameters)

857
858
859
860
861

862
862
862
863
863
864
864
865
866
867
868
869
869
869
869
870
870
871
871
872
872
872
872

883
883
883
883
883
884
884
884
885
887
887
888
888
888
888

890
890
890
890
890
891

892
892

Table of Contents

19

. .

. .

. .

45.4.2. Query Parameters (18 parameters)
45.5. CHOOSING BLOCKINGQUEUE IMPLEMENTATION
45.6. USE OF REQUEST REPLY
45.7. CONCURRENT CONSUMERS
45.8. THREAD POOLS
45.9. SAMPLE
45.10. USING MULTIPLECONSUMERS
45.11. EXTRACTING QUEUE INFORMATION
45.12. SPRING BOOT AUTO-CONFIGURATION

CHAPTER 46. SERVLET
46.1. URI FORMAT
46.2. CONFIGURING OPTIONS

46.2.1. Configuring Component Options
46.2.2. Configuring Endpoint Options

46.3. COMPONENT OPTIONS
46.4. ENDPOINT OPTIONS

46.4.1. Path Parameters (1 parameters)
46.4.2. Query Parameters (22 parameters)

46.5. MESSAGE HEADERS
46.6. USAGE
46.7. SPRING BOOT AUTO-CONFIGURATION

CHAPTER 47. SLACK
47.1. URI FORMAT
47.2. CONFIGURING OPTIONS

47.2.1. Configuring Component Options
47.2.2. Configuring Endpoint Options

47.3. COMPONENT OPTIONS
47.4. ENDPOINT OPTIONS

47.4.1. Path Parameters (1 parameters)
47.4.2. Query Parameters (29 parameters)

47.5. CONFIGURING IN SPRINT XML
47.6. EXAMPLE
47.7. PRODUCER
47.8. CONSUMER
47.9. SPRING BOOT AUTO-CONFIGURATION

CHAPTER 48. SQL
48.1. URI FORMAT
48.2. CONFIGURING OPTIONS

48.2.1. Configuring Component Options
48.2.2. Configuring Endpoint Options

48.3. COMPONENT OPTIONS
48.4. ENDPOINT OPTIONS

48.4.1. Path Parameters (1 parameters)
48.4.2. Query Parameters (45 parameters)

48.5. TREATMENT OF THE MESSAGE BODY
48.6. RESULT OF THE QUERY
48.7. USING STREAMLIST
48.8. HEADER VALUES
48.9. GENERATED KEYS
48.10. DATASOURCE
48.11. USING NAMED PARAMETERS

893
895
896
896
896
897
897
898
898

901
901
901
901
902
902
903
903
904
906
906
907

910
910
910
910
910
911
911

912
912
916
916
916
917
917

919
919

920
920
920
921
921
922
922
928
928
929
929
930
930
930

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

20

. .

. .

. .

48.12. USING EXPRESSION PARAMETERS IN PRODUCERS
48.12.1. Using expression parameters in consumers

48.13. USING IN QUERIES WITH DYNAMIC VALUES
48.14. USING THE JDBC BASED IDEMPOTENT REPOSITORY

48.14.1. Customize the JDBC idempotency repository
48.14.2. Orphan Lock aware Jdbc IdempotentRepository
48.14.3. Caching Jdbc IdempotentRepository

48.15. USING THE JDBC BASED AGGREGATION REPOSITORY
48.15.1. Database

48.16. STORING BODY AND HEADERS AS TEXT
48.16.1. Codec (Serialization)
48.16.2. Transaction

48.16.2.1. Service (Start/Stop)
48.16.3. Aggregator configuration
48.16.4. Optimistic locking
48.16.5. Propagation behavior
48.16.6. PostgreSQL case

48.17. CAMEL SQL STARTER
48.18. SPRING BOOT AUTO-CONFIGURATION

CHAPTER 49. STUB
49.1. URI FORMAT
49.2. CONFIGURING OPTIONS

49.2.1. Configuring Component Options
49.2.1.1. Configuring Endpoint Options

49.3. COMPONENT OPTIONS
49.4. ENDPOINT OPTIONS

49.4.1. Path Parameters (1 parameters)
49.4.2. Query Parameters (18 parameters)

49.5. EXAMPLES
49.6. SPRING BOOT AUTO-CONFIGURATION

CHAPTER 50. TELEGRAM
50.1. URI FORMAT
50.2. CONFIGURING OPTIONS

50.2.1. Configuring Component Options
50.2.2. Configuring Endpoint Options

50.3. COMPONENT OPTIONS
50.4. ENDPOINT OPTIONS

50.4.1. Path Parameters (1 parameters)
50.4.2. Query Parameters (30 parameters)
50.4.3. Message Headers

50.5. USAGE
50.6. PRODUCER EXAMPLE
50.7. CONSUMER EXAMPLE
50.8. REACTIVE CHAT-BOT EXAMPLE
50.9. GETTING THE CHAT ID
50.10. CUSTOMIZING KEYBOARD
50.11. WEBHOOK MODE
50.12. SPRING BOOT AUTO-CONFIGURATION

CHAPTER 51. TIMER
51.1. URI FORMAT
51.2. CONFIGURING OPTIONS

930
931
931

932
933
934
934
934
935
935
936
936
936
936
937
938
938
938
939

941
941
941
941
941

942
943
943
943
946
946

949
949
949
949
950
950
951
951
951

955
956
956
957
958
959
959
960
961

963
963
963

Table of Contents

21

. .

. .

. .

51.2.1. Configuring Component Options
51.2.2. Configuring Endpoint Options

51.3. COMPONENT OPTIONS
51.4. ENDPOINT OPTIONS

51.4.1. Path Parameters (1 parameters)
51.4.2. Query Parameters (13 parameters)

51.5. EXCHANGE PROPERTIES
51.6. SAMPLE
51.7. FIRING AS SOON AS POSSIBLE
51.8. FIRING ONLY ONCE
51.9. SPRING BOOT AUTO-CONFIGURATION

CHAPTER 52. VALIDATOR
52.1. URI FORMAT
52.2. CONFIGURING OPTIONS

52.2.1. Configuring Component Options
52.2.2. Configuring Endpoint Options

52.3. COMPONENT OPTIONS
52.4. ENDPOINT OPTIONS

52.4.1. Path Parameters (1 parameters)
52.4.2. Query Parameters (10 parameters)

52.5. EXAMPLE
52.6. ADVANCED: JMX METHOD CLEARCACHEDSCHEMA
52.7. SPRING BOOT AUTO-CONFIGURATION

CHAPTER 53. WEBHOOK
53.1. URI FORMAT
53.2. CONFIGURING OPTIONS

53.2.1. Configuring Component Options
53.2.2. Configuring Endpoint Options

53.3. COMPONENT OPTIONS
53.4. ENDPOINT OPTIONS

53.4.1. Path Parameters (1 parameters)
53.4.2. Query Parameters (8 parameters)

53.5. EXAMPLES
53.6. SPRING BOOT AUTO-CONFIGURATION

CHAPTER 54. XSLT
54.1. URI FORMAT
54.2. CONFIGURING OPTIONS

54.2.1. Configuring Component Options
54.2.2. Configuring Endpoint Options

54.3. COMPONENT OPTIONS
54.4. ENDPOINT OPTIONS

54.4.1. Path Parameters (1 parameters)
54.4.2. Query Parameters (13 parameters)

54.5. USING XSLT ENDPOINTS
54.6. GETTING USEABLE PARAMETERS INTO THE XSLT
54.7. SPRING XML VERSIONS
54.8. USING XSL:INCLUDE
54.9. USING XSL:INCLUDE AND DEFAULT PREFIX
54.10. DYNAMIC STYLESHEETS
54.11. ACCESSING WARNINGS, ERRORS AND FATALERRORS FROM XSLT ERRORLISTENER
54.12. SPRING BOOT AUTO-CONFIGURATION

963
963
964
964
964
964
966
966
967
967
967

969
969
969
969
970
970
970
971
971
972
972
972

974
974
974
974
974
975
976
976
976
977
977

979
979
979
979
980
980
981
981
981

983
983
984
984
984
985
985
985

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

22

. .

. .

. .

. .

. .

CHAPTER 55. AVRO
55.1. AVRO DATAFORMAT OPTIONS
55.2. AVRO DATA FORMAT USAGE
55.3. SPRING BOOT AUTO-CONFIGURATION

CHAPTER 56. AVRO JACKSON
56.1. CONFIGURING THE SCHEMARESOLVER
56.2. AVRO JACKSON OPTIONS
56.3. USING CUSTOM AVROMAPPER
56.4. DEPENDENCIES
56.5. SPRING BOOT AUTO-CONFIGURATION

CHAPTER 57. BINDY
57.1. OPTIONS
57.2. ANNOTATIONS

57.2.1. 1. CsvRecord
57.2.2. 2. Link
57.2.3. 3. DataField
57.2.4. 4. FixedLengthRecord
57.2.5. 5. Message
57.2.6. 6. KeyValuePairField
57.2.7. 7. Section
57.2.8. 8. OneToMany
57.2.9. 9. BindyConverter
57.2.10. 10. FormatFactories

57.3. SUPPORTED DATATYPES
57.4. USING THE JAVA DSL

57.4.1. Setting locale
57.4.2. Unmarshaling
57.4.3. Marshaling

57.5. USING SPRING XML
57.6. DEPENDENCIES
57.7. SPRING BOOT AUTO-CONFIGURATION

CHAPTER 58. HL7
58.1. HL7 MLLP PROTOCOL

58.1.1. Exposing an HL7 listener using Mina
58.1.2. Exposing an HL7 listener using Netty (available from Camel 2.15 onwards)

58.2. HL7 MODEL USING JAVA.LANG.STRING OR BYTE[]
58.3. HL7V2 MODEL USING HAPI
58.4. HL7 DATAFORMAT

58.4.1. Segment separators
58.4.2. Charset

58.5. MESSAGE HEADERS
58.6. DEPENDENCIES
58.7. SPRING BOOT AUTO-CONFIGURATION

CHAPTER 59. JACKSONXML
59.1. JACKSONXML OPTIONS

59.1.1. Using Jackson XML in Spring DSL
59.1.2. Excluding POJO fields from marshalling

59.2. INCLUDE/EXCLUDE FIELDS USING THE JSONVIEW ATTRIBUTE WITH `JACKSONXML`DATAFORMAT

59.3. SETTING SERIALIZATION INCLUDE OPTION

988
988
988
989

990
990
990
992
992
992

996
997
997
998

1002
1003
1009
1016
1018

1020
1021

1023
1024
1025
1025
1026
1026
1027
1027
1028
1029

1031
1031
1032
1032
1033
1033
1033
1034
1034
1035
1036
1037

1038
1038
1039
1040

1040
1040

Table of Contents

23

. .

. .

. .

. .

. .

59.4. UNMARSHALLING FROM XML TO POJO WITH DYNAMIC CLASS NAME
59.5. UNMARSHALLING FROM XML TO LIST<MAP> OR LIST<POJO>
59.6. USING CUSTOM JACKSON MODULES
59.7. ENABLING OR DISABLE FEATURES USING JACKSON
59.8. CONVERTING MAPS TO POJO USING JACKSON
59.9. FORMATTED XML MARSHALLING (PRETTY-PRINTING)
59.10. DEPENDENCIES
59.11. SPRING BOOT AUTO-CONFIGURATION

CHAPTER 60. JAXB
60.1. OPTIONS
60.2. USING THE JAVA DSL
60.3. USING SPRING XML
60.4. PARTIAL MARSHALLING/UNMARSHALLING
60.5. FRAGMENT
60.6. IGNORING THE NONXML CHARACTER
60.7. WORKING WITH THE OBJECTFACTORY
60.8. SETTING ENCODING
60.9. CONTROLLING NAMESPACE PREFIX MAPPING
60.10. SCHEMA VALIDATION
60.11. SCHEMA LOCATION
60.12. MARSHAL DATA THAT IS ALREADY XML
60.13. DEPENDENCIES
60.14. SPRING BOOT AUTO-CONFIGURATION

CHAPTER 61. JSON GSON
61.1. GSON OPTIONS
61.2. DEPENDENCIES
61.3. SPRING BOOT AUTO-CONFIGURATION

CHAPTER 62. JSON JACKSON
62.1. JACKSON OPTIONS
62.2. USING CUSTOM OBJECTMAPPER
62.3. USING JACKSON FOR AUTOMATIC TYPE CONVERSION
62.4. DEPENDENCIES
62.5. SPRING BOOT AUTO-CONFIGURATION

CHAPTER 63. PROTOBUF JACKSON
63.1. CONFIGURING THE SCHEMARESOLVER
63.2. PROTOBUF JACKSON OPTIONS
63.3. USING CUSTOM PROTOBUFMAPPER
63.4. DEPENDENCIES
63.5. SPRING BOOT AUTO-CONFIGURATION

CHAPTER 64. SOAP
64.1. SOAP OPTIONS
64.2. ELEMENTNAMESTRATEGY
64.3. USING THE JAVA DSL

64.3.1. Using SOAP 1.2
64.4. MULTI-PART MESSAGES

64.4.1. Holder Object mapping
64.5. EXAMPLES

64.5.1. Webservice client
64.5.2. Webservice Server

1041
1041
1042
1042
1043
1043
1043
1044

1047
1047
1049
1049
1050
1050
1050
1051
1051
1051

1052
1052
1052
1053
1053

1056
1056
1056
1056

1058
1058
1063
1063
1064
1064

1068
1068
1068
1070
1070
1071

1074
1074
1075
1075
1076
1076
1077
1077
1077
1077

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

24

. .

. .

. .

. .

. .

. .

. .

64.6. DEPENDENCIES
64.7. SPRING BOOT AUTO-CONFIGURATION

CHAPTER 65. ZIP FILE
65.1. ZIPFILE OPTIONS
65.2. MARSHAL
65.3. UNMARSHAL

65.3.1. Aggregate
65.4. DEPENDENCIES
65.5. SPRING BOOT AUTO-CONFIGURATION

CHAPTER 66. CONSTANT
66.1. CONSTANT OPTIONS
66.2. EXAMPLE

66.2.1. Specifying type of value
66.3. LOADING CONSTANT FROM EXTERNAL RESOURCE
66.4. DEPENDENCIES
66.5. SPRING BOOT AUTO-CONFIGURATION

CHAPTER 67. CSIMPLE
67.1. DIFFERENT BETWEEN CSIMPLE AND SIMPLE

67.1.1. Additional CSimple functions
67.2. COMPILATION

67.2.1. Using camel-csimple-maven-plugin
67.2.2. Using camel-csimple-joor

67.3. CSIMPLE LANGUAGE OPTIONS
67.4. LIMITATIONS
67.5. AUTO IMPORTS
67.6. CONFIGURATION FILE
67.7. SEE ALSO
67.8. SPRING BOOT AUTO-CONFIGURATION

CHAPTER 68. EXCHANGEPROPERTY
68.1. EXCHANGE PROPERTY OPTIONS
68.2. EXAMPLE
68.3. DEPENDENCIES
68.4. SPRING BOOT AUTO-CONFIGURATION

CHAPTER 69. FILE
69.1. FILE LANGUAGE OPTIONS
69.2. SYNTAX
69.3. FILE TOKEN EXAMPLE

69.3.1. Relative paths
69.3.2. Absolute paths

69.4. SAMPLES
69.5. DEPENDENCIES
69.6. SPRING BOOT AUTO-CONFIGURATION

CHAPTER 70. HEADER
70.1. HEADER OPTIONS
70.2. EXAMPLE USAGE
70.3. DEPENDENCIES
70.4. SPRING BOOT AUTO-CONFIGURATION

CHAPTER 71. JSONPATH

1078
1078

1080
1080
1080
1081
1081
1082
1082

1084
1084
1084
1084
1085
1085
1085

1103
1103
1103
1104
1104
1105
1106
1106
1106
1107
1107
1107

1125
1125
1125
1125
1125

1143
1143
1143
1145
1145
1146
1147
1147
1148

1165
1165
1165
1165
1165

1183

Table of Contents

25

. .

. .

. .

. .

. .

71.1. JSONPATH OPTIONS
71.2. EXAMPLES
71.3. JSONPATH SYNTAX

71.3.1. Easy JSONPath Syntax
71.4. SUPPORTED MESSAGE BODY TYPES
71.5. SUPPRESSING EXCEPTIONS
71.6. INLINE SIMPLE EXPRESSIONS
71.7. JSONPATH INJECTION
71.8. ENCODING DETECTION
71.9. SPLIT JSON DATA INTO SUB ROWS AS JSON
71.10. USING HEADER AS INPUT
71.11. SPRING BOOT AUTO-CONFIGURATION

CHAPTER 72. REF
72.1. REF LANGUAGE OPTIONS
72.2. EXAMPLE USAGE
72.3. DEPENDENCIES
72.4. SPRING BOOT AUTO-CONFIGURATION

CHAPTER 73. XQUERY
73.1. XQUERY LANGUAGE OPTIONS
73.2. VARIABLES
73.3. EXAMPLE

73.3.1. Using namespaces
73.4. USING XQUERY AS TRANSFORMATION
73.5. LOADING SCRIPT FROM EXTERNAL RESOURCE
73.6. LEARNING XQUERY
73.7. DEPENDENCIES
73.8. SPRING BOOT AUTO-CONFIGURATION

CHAPTER 74. SIMPLE
74.1. SIMPLE LANGUAGE OPTIONS
74.2. VARIABLES
74.3. OGNL EXPRESSION SUPPORT
74.4. OPERATOR SUPPORT

74.4.1. Comparing with different types
74.4.2. Using and / or

74.5. EXAMPLES
74.6. SETTING RESULT TYPE
74.7. USING NEW LINES OR TABS IN XML DSLS
74.8. LEADING AND TRAILING WHITESPACE HANDLING
74.9. LOADING SCRIPT FROM EXTERNAL RESOURCE
74.10. SPRING BOOT AUTO-CONFIGURATION

CHAPTER 75. TOKENIZE
75.1. TOKENIZE OPTIONS
75.2. EXAMPLE
75.3. SEE ALSO
75.4. SPRING BOOT AUTO-CONFIGURATION

CHAPTER 76. XML TOKENIZE
76.1. XML TOKENIZER OPTIONS
76.2. EXAMPLE
76.3. SPRING BOOT AUTO-CONFIGURATION

1183
1183
1184
1184
1185
1185
1186
1187
1187
1187
1187
1188

1190
1190
1190
1190
1190

1208
1208
1208
1209
1209
1210
1211
1211
1211
1211

1214
1214
1214
1218

1220
1223
1224
1224
1226
1226
1226
1227
1227

1245
1245
1246
1246
1246

1264
1264
1265
1265

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

26

. .

. .

CHAPTER 77. XPATH
77.1. XPATH LANGUAGE OPTIONS
77.2. NAMESPACES
77.3. VARIABLES

77.3.1. Namespace given
77.3.2. No namespace given

77.4. FUNCTIONS
77.4.1. Functions example

77.5. STREAM BASED MESSAGE BODIES
77.6. SETTING RESULT TYPE
77.7. USING XPATH ON HEADERS
77.8. EXAMPLE
77.9. USING NAMESPACES
77.10. USING @XPATH ANNOTATION FOR BEAN INTEGRATION
77.11. USING XPATHBUILDER WITHOUT AN EXCHANGE
77.12. USING SAXON WITH XPATHBUILDER

77.12.1. Setting a custom XPathFactory using System Property
77.12.2. Enabling Saxon from XML DSL

77.13. NAMESPACE AUDITING TO AID DEBUGGING
77.13.1. Logging the Namespace Context of your XPath expression/predicate
77.13.2. Auditing namespaces

77.14. LOADING SCRIPT FROM EXTERNAL RESOURCE
77.15. DEPENDENCIES
77.16. SPRING BOOT AUTO-CONFIGURATION

CHAPTER 78. OPENAPI JAVA
78.1. USING OPENAPI IN REST-DSL
78.2. OPTIONS
78.3. ADDING SECURITY DEFINITIONS IN API DOC
78.4. JSON OR YAML
78.5. USEXFORWARDHEADERS AND API URL RESOLUTION
78.6. EXAMPLES
78.7. SPRING BOOT AUTO-CONFIGURATION

1266
1266
1267
1267
1268
1268
1268
1269
1269
1270
1270
1270
1271

1272
1272
1273
1273
1273
1273
1274
1274
1275
1275
1275

1277
1277
1277
1278
1279
1279
1280
1280

Table of Contents

27

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

28

PREFACE

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

PREFACE

29

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

CHAPTER 1. AWS CLOUDWATCH
Only producer is supported

The AWS2 Cloudwatch component allows messages to be sent to an Amazon CloudWatch metrics. The
implementation of the Amazon API is provided by the AWS SDK.

Prerequisites

You must have a valid Amazon Web Services developer account, and be signed up to use Amazon
CloudWatch. More information is available at Amazon CloudWatch.

1.1. URI FORMAT

aws2-cw://namespace[?options]

The metrics will be created if they don’t already exists. You can append query options to the URI in the
following format, ?options=value&option2=value&…

1.2. CONFIGURING OPTIONS

Camel components are configured on two separate levels:

component level

endpoint level

1.2.1. Configuring Component Options

The component level is the highest level which holds general and common configurations that are
inherited by the endpoints. For example a component may have security settings, credentials for
authentication, urls for network connection and so forth.

Some components only have a few options, and others may have many. Because components typically
have pre configured defaults that are commonly used, then you may often only need to configure a few
options on a component; or none at all.

Configuring components can be done with the Component DSL, in a configuration file
(application.properties|yaml), or directly with Java code.

1.2.2. Configuring Endpoint Options

Where you find yourself configuring the most is on endpoints, as endpoints often have many options,
which allows you to configure what you need the endpoint to do. The options are also categorized into
whether the endpoint is used as consumer (from) or as a producer (to), or used for both.

Configuring endpoints is most often done directly in the endpoint URI as path and query parameters.
You can also use the Endpoint DSL as a type safe way of configuring endpoints.

A good practice when configuring options is to use Property Placeholders, which allows to not hardcode
urls, port numbers, sensitive information, and other settings. In other words placeholders allows to
externalize the configuration from your code, and gives more flexibility and reuse.

The following two sections lists all the options, firstly for the component followed by the endpoint.

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

30

https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/sdkforjava/
https://aws.amazon.com/cloudwatch/
https://camel.apache.org/manual/component-dsl.html
https://camel.apache.org/manual/Endpoint-dsl.html
https://camel.apache.org/manual/using-propertyplaceholder.html

1.3. COMPONENT OPTIONS

The AWS CloudWatch component supports 18 options, which are listed below.

Name Description Defaul
t

Type

amazonCwClient (producer) Autowired To use the
AmazonCloudWatch as the client.

 CloudWatchClient

configuration (producer) The component configuration. Cw2Configuration

lazyStartProducer
(producer)

Whether the producer should be started
lazy (on the first message). By starting
lazy you can use this to allow
CamelContext and routes to startup in
situations where a producer may
otherwise fail during starting and cause
the route to fail being started. By
deferring this startup to be lazy then the
startup failure can be handled during
routing messages via Camel’s routing
error handlers. Beware that when the first
message is processed then creating and
starting the producer may take a little
time and prolong the total processing
time of the processing.

false boolean

name (producer) The metric name. String

overrideEndpoint (producer) Set the need for overidding the endpoint.
This option needs to be used in
combination with uriEndpointOverride
option.

false boolean

proxyHost (producer) To define a proxy host when instantiating
the CW client.

 String

proxyPort (producer) To define a proxy port when instantiating
the CW client.

 Integer

proxyProtocol (producer) To define a proxy protocol when
instantiating the CW client.

Enum values:

HTTP

HTTPS

HTTPS Protocol

CHAPTER 1. AWS CLOUDWATCH

31

region (producer) The region in which CW client needs to
work. When using this parameter, the
configuration will expect the lowercase
name of the region (for example ap-east-
1) You’ll need to use the name
Region.EU_WEST_1.id().

 String

timestamp (producer) The metric timestamp. Instant

trustAllCertificates
(producer)

If we want to trust all certificates in case
of overriding the endpoint.

false boolean

unit (producer) The metric unit. String

uriEndpointOverride
(producer)

Set the overriding uri endpoint. This
option needs to be used in combination
with overrideEndpoint option.

 String

useDefaultCredentialsProvid
er (producer)

Set whether the S3 client should expect
to load credentials through a default
credentials provider or to expect static
credentials to be passed in.

false boolean

value (producer) The metric value. Double

autowiredEnabled
(advanced)

Whether autowiring is enabled. This is
used for automatic autowiring options
(the option must be marked as
autowired) by looking up in the registry to
find if there is a single instance of
matching type, which then gets
configured on the component. This can
be used for automatic configuring JDBC
data sources, JMS connection factories,
AWS Clients, etc.

true boolean

accessKey (security) Amazon AWS Access Key. String

secretKey (security) Amazon AWS Secret Key. String

Name Description Defaul
t

Type

1.4. ENDPOINT OPTIONS

The AWS CloudWatch endpoint is configured using URI syntax:

aws2-cw:namespace

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

32

with the following path and query parameters:

1.4.1. Path Parameters (1 parameters)

Name Description Defaul
t

Type

namespace
(producer)

Required The metric namespace. String

1.4.2. Query Parameters (16 parameters)

Name Description Defaul
t

Type

amazonCwClient
(producer)

Autowired To use the AmazonCloudWatch as the
client.

 CloudWatchClient

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

name (producer) The metric name. String

overrideEndpoint
(producer)

Set the need for overidding the endpoint. This option
needs to be used in combination with
uriEndpointOverride option.

false boolean

proxyHost
(producer)

To define a proxy host when instantiating the CW
client.

 String

proxyPort
(producer)

To define a proxy port when instantiating the CW
client.

 Integer

proxyProtocol
(producer)

To define a proxy protocol when instantiating the CW
client.

Enum values:

HTTP

HTTPS

HTTPS Protocol

CHAPTER 1. AWS CLOUDWATCH

33

region (producer) The region in which CW client needs to work. When
using this parameter, the configuration will expect the
lowercase name of the region (for example ap-east-
1) You’ll need to use the name
Region.EU_WEST_1.id().

 String

timestamp
(producer)

The metric timestamp. Instant

trustAllCertificate
s (producer)

If we want to trust all certificates in case of overriding
the endpoint.

false boolean

unit (producer) The metric unit. String

uriEndpointOverri
de (producer)

Set the overriding uri endpoint. This option needs to
be used in combination with overrideEndpoint option.

 String

useDefaultCrede
ntialsProvider
(producer)

Set whether the S3 client should expect to load
credentials through a default credentials provider or
to expect static credentials to be passed in.

false boolean

value (producer) The metric value. Double

accessKey
(security)

Amazon AWS Access Key. String

secretKey
(security)

Amazon AWS Secret Key. String

Name Description Defaul
t

Type

Required CW component options

You have to provide the amazonCwClient in the Registry or your accessKey and secretKey to access the
Amazon’s CloudWatch.

1.5. USAGE

1.5.1. Static credentials vs Default Credential Provider

You have the possibility of avoiding the usage of explicit static credentials, by specifying the
useDefaultCredentialsProvider option and set it to true.

Java system properties - aws.accessKeyId and aws.secretKey

Environment variables - AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY.

Web Identity Token from AWS STS.

The shared credentials and config files.

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

34

https://aws.amazon.com/cloudwatch/

Amazon ECS container credentials - loaded from the Amazon ECS if the environment variable
AWS_CONTAINER_CREDENTIALS_RELATIVE_URI is set.

Amazon EC2 Instance profile credentials.

For more information about this you can look at AWS credentials documentation

1.5.2. Message headers evaluated by the CW producer

Header Type Description

CamelAwsCwMetricName String The Amazon CW metric name.

CamelAwsCwMetricValue Double The Amazon CW metric value.

CamelAwsCwMetricUnit String The Amazon CW metric unit.

CamelAwsCwMetricName
space

String The Amazon CW metric namespace.

CamelAwsCwMetricTimes
tamp

Date The Amazon CW metric timestamp.

CamelAwsCwMetricDime
nsionName

String The Amazon CW metric dimension name.

CamelAwsCwMetricDime
nsionValue

String The Amazon CW metric dimension value.

CamelAwsCwMetricDime
nsions

Map<String, String> A map of dimension names and
dimension values.

1.5.3. Advanced CloudWatchClient configuration

If you need more control over the CloudWatchClient instance configuration you can create your own
instance and refer to it from the URI:

The #client refers to a CloudWatchClient in the Registry.

1.6. DEPENDENCIES

Maven users will need to add the following dependency to their pom.xml.

pom.xml

from("direct:start")
.to("aws2-cw://namespace?amazonCwClient=#client");

<dependency>
 <groupId>org.apache.camel</groupId>

CHAPTER 1. AWS CLOUDWATCH

35

https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/credentials.html

where {camel-version} must be replaced by the actual version of Camel.

1.7. EXAMPLES

1.7.1. Producer Example

and sends something like

1.8. SPRING BOOT AUTO-CONFIGURATION

When using aws2-cw with Spring Boot make sure to use the following Maven dependency to have
support for auto configuration:

The component supports 19 options, which are listed below.

Name Description Defaul
t

Type

camel.component
.aws2-cw.access-
key

Amazon AWS Access Key. String

camel.component
.aws2-
cw.amazon-cw-
client

To use the AmazonCloudWatch as the client. The
option is a
software.amazon.awssdk.services.cloudwatch.Cloud
WatchClient type.

 CloudWatchClient

 <artifactId>camel-aws2-cw</artifactId>
 <version>${camel-version}</version>
</dependency>

from("direct:start")
 .to("aws2-cw://http://camel.apache.org/aws-cw");

exchange.getIn().setHeader(Cw2Constants.METRIC_NAME, "ExchangesCompleted");
exchange.getIn().setHeader(Cw2Constants.METRIC_VALUE, "2.0");
exchange.getIn().setHeader(Cw2Constants.METRIC_UNIT, "Count");

<dependency>
 <groupId>org.apache.camel.springboot</groupId>
 <artifactId>camel-aws2-cw-starter</artifactId>
 <version>3.14.5.redhat-00032</version>
 <!-- Use your Camel Spring Boot version -->
</dependency>

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

36

camel.component
.aws2-
cw.autowired-
enabled

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true Boolean

camel.component
.aws2-
cw.configuration

The component configuration. The option is a
org.apache.camel.component.aws2.cw.Cw2Configura
tion type.

 Cw2Configuration

camel.component
.aws2-cw.enabled

Whether to enable auto configuration of the aws2-cw
component. This is enabled by default.

 Boolean

camel.component
.aws2-cw.lazy-
start-producer

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false Boolean

camel.component
.aws2-cw.name

The metric name. String

camel.component
.aws2-
cw.override-
endpoint

Set the need for overidding the endpoint. This option
needs to be used in combination with
uriEndpointOverride option.

false Boolean

camel.component
.aws2-cw.proxy-
host

To define a proxy host when instantiating the CW
client.

 String

camel.component
.aws2-cw.proxy-
port

To define a proxy port when instantiating the CW
client.

 Integer

camel.component
.aws2-cw.proxy-
protocol

To define a proxy protocol when instantiating the CW
client.

 Protocol

Name Description Defaul
t

Type

CHAPTER 1. AWS CLOUDWATCH

37

camel.component
.aws2-cw.region

The region in which CW client needs to work. When
using this parameter, the configuration will expect the
lowercase name of the region (for example ap-east-
1) You’ll need to use the name
Region.EU_WEST_1.id().

 String

camel.component
.aws2-cw.secret-
key

Amazon AWS Secret Key. String

camel.component
.aws2-
cw.timestamp

The metric timestamp. The option is a
java.time.Instant type.

 Instant

camel.component
.aws2-cw.trust-
all-certificates

If we want to trust all certificates in case of overriding
the endpoint.

false Boolean

camel.component
.aws2-cw.unit

The metric unit. String

camel.component
.aws2-cw.uri-
endpoint-
override

Set the overriding uri endpoint. This option needs to
be used in combination with overrideEndpoint option.

 String

camel.component
.aws2-cw.use-
default-
credentials-
provider

Set whether the S3 client should expect to load
credentials through a default credentials provider or
to expect static credentials to be passed in.

false Boolean

camel.component
.aws2-cw.value

The metric value. Double

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

38

CHAPTER 2. AWS DYNAMODB
Only producer is supported

The AWS2 DynamoDB component supports storing and retrieving data from/to service.

Prerequisites

You must have a valid Amazon Web Services developer account, and be signed up to use Amazon
DynamoDB. More information is available at Amazon DynamoDB.

2.1. URI FORMAT

You can append query options to the URI in the following format, ?options=value&option2=value&…

2.2. CONFIGURING OPTIONS

Camel components are configured on two separate levels:

component level

endpoint level

2.2.1. Configuring Component Options

The component level is the highest level which holds general and common configurations that are
inherited by the endpoints. For example a component may have security settings, credentials for
authentication, urls for network connection and so forth.

Some components only have a few options, and others may have many. Because components typically
have pre configured defaults that are commonly used, then you may often only need to configure a few
options on a component; or none at all.

Configuring components can be done with the Component DSL, in a configuration file
(application.properties|yaml), or directly with Java code.

2.2.2. Configuring Endpoint Options

Where you find yourself configuring the most is on endpoints, as endpoints often have many options,
which allows you to configure what you need the endpoint to do. The options are also categorized into
whether the endpoint is used as consumer (from) or as a producer (to), or used for both.

Configuring endpoints is most often done directly in the endpoint URI as path and query parameters.
You can also use the Endpoint DSL as a type safe way of configuring endpoints.

A good practice when configuring options is to use Property Placeholders, which allows to not hardcode
urls, port numbers, sensitive information, and other settings. In other words placeholders allows to
externalize the configuration from your code, and gives more flexibility and reuse.

The following two sections lists all the options, firstly for the component followed by the endpoint.

2.3. COMPONENT OPTIONS

aws2-ddb://domainName[?options]

CHAPTER 2. AWS DYNAMODB

39

https://aws.amazon.com/dynamodb
https://camel.apache.org/manual/component-dsl.html
https://camel.apache.org/manual/Endpoint-dsl.html
https://camel.apache.org/manual/using-propertyplaceholder.html

The AWS DynamoDB component supports 22 options, which are listed below.

Name Description Defaul
t

Type

amazonDDBClien
t (producer)

Autowired To use the AmazonDynamoDB as the
client.

 DynamoDbClient

configuration
(producer)

The component configuration. Ddb2Configuratio
n

consistentRead
(producer)

Determines whether or not strong consistency should
be enforced when data is read.

false boolean

enabledInitialDes
cribeTable
(producer)

Set whether the initial Describe table operation in the
DDB Endpoint must be done, or not.

true boolean

keyAttributeNam
e (producer)

Attribute name when creating table. String

keyAttributeType
(producer)

Attribute type when creating table. String

keyScalarType
(producer)

The key scalar type, it can be S (String), N (Number)
and B (Bytes).

 String

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

40

operation
(producer)

What operation to perform.

Enum values:

BatchGetItems

DeleteItem

DeleteTable

DescribeTable

GetItem

PutItem

Query

Scan

UpdateItem

UpdateTable

PutIte
m

Ddb2Operations

overrideEndpoint
(producer)

Set the need for overidding the endpoint. This option
needs to be used in combination with
uriEndpointOverride option.

false boolean

proxyHost
(producer)

To define a proxy host when instantiating the DDB
client.

 String

proxyPort
(producer)

The region in which DynamoDB client needs to work.
When using this parameter, the configuration will
expect the lowercase name of the region (for
example ap-east-1) You’ll need to use the name
Region.EU_WEST_1.id().

 Integer

proxyProtocol
(producer)

To define a proxy protocol when instantiating the
DDB client.

Enum values:

HTTP

HTTPS

HTTPS Protocol

readCapacity
(producer)

The provisioned throughput to reserve for reading
resources from your table.

 Long

region (producer) The region in which DDB client needs to work. String

Name Description Defaul
t

Type

CHAPTER 2. AWS DYNAMODB

41

trustAllCertificate
s (producer)

If we want to trust all certificates in case of overriding
the endpoint.

false boolean

uriEndpointOverri
de (producer)

Set the overriding uri endpoint. This option needs to
be used in combination with overrideEndpoint option.

 String

useDefaultCrede
ntialsProvider
(producer)

Set whether the S3 client should expect to load
credentials through a default credentials provider or
to expect static credentials to be passed in.

false boolean

writeCapacity
(producer)

The provisioned throughput to reserved for writing
resources to your table.

 Long

autowiredEnabled
(advanced)

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true boolean

accessKey
(security)

Amazon AWS Access Key. String

secretKey
(security)

Amazon AWS Secret Key. String

Name Description Defaul
t

Type

2.4. ENDPOINT OPTIONS

The AWS DynamoDB endpoint is configured using URI syntax:

aws2-ddb:tableName

with the following path and query parameters:

2.4.1. Path Parameters (1 parameters)

Name Description Defaul
t

Type

tableName
(producer)

Required The name of the table currently worked
with.

 String

2.4.2. Query Parameters (20 parameters)

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

42

Name Description Defaul
t

Type

amazonDDBClien
t (producer)

Autowired To use the AmazonDynamoDB as the
client.

 DynamoDbClient

consistentRead
(producer)

Determines whether or not strong consistency should
be enforced when data is read.

false boolean

enabledInitialDes
cribeTable
(producer)

Set whether the initial Describe table operation in the
DDB Endpoint must be done, or not.

true boolean

keyAttributeNam
e (producer)

Attribute name when creating table. String

keyAttributeType
(producer)

Attribute type when creating table. String

keyScalarType
(producer)

The key scalar type, it can be S (String), N (Number)
and B (Bytes).

 String

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

CHAPTER 2. AWS DYNAMODB

43

operation
(producer)

What operation to perform.

Enum values:

BatchGetItems

DeleteItem

DeleteTable

DescribeTable

GetItem

PutItem

Query

Scan

UpdateItem

UpdateTable

PutIte
m

Ddb2Operations

overrideEndpoint
(producer)

Set the need for overidding the endpoint. This option
needs to be used in combination with
uriEndpointOverride option.

false boolean

proxyHost
(producer)

To define a proxy host when instantiating the DDB
client.

 String

proxyPort
(producer)

The region in which DynamoDB client needs to work.
When using this parameter, the configuration will
expect the lowercase name of the region (for
example ap-east-1) You’ll need to use the name
Region.EU_WEST_1.id().

 Integer

proxyProtocol
(producer)

To define a proxy protocol when instantiating the
DDB client.

Enum values:

HTTP

HTTPS

HTTPS Protocol

readCapacity
(producer)

The provisioned throughput to reserve for reading
resources from your table.

 Long

region (producer) The region in which DDB client needs to work. String

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

44

trustAllCertificate
s (producer)

If we want to trust all certificates in case of overriding
the endpoint.

false boolean

uriEndpointOverri
de (producer)

Set the overriding uri endpoint. This option needs to
be used in combination with overrideEndpoint option.

 String

useDefaultCrede
ntialsProvider
(producer)

Set whether the S3 client should expect to load
credentials through a default credentials provider or
to expect static credentials to be passed in.

false boolean

writeCapacity
(producer)

The provisioned throughput to reserved for writing
resources to your table.

 Long

accessKey
(security)

Amazon AWS Access Key. String

secretKey
(security)

Amazon AWS Secret Key. String

Name Description Defaul
t

Type

Required DDB component options

You have to provide the amazonDDBClient in the Registry or your accessKey and secretKey to access
the Amazon’s DynamoDB.

2.5. USAGE

2.5.1. Static credentials vs Default Credential Provider

You have the possibility of avoiding the usage of explicit static credentials, by specifying the
useDefaultCredentialsProvider option and set it to true.

Java system properties - aws.accessKeyId and aws.secretKey

Environment variables - AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY.

Web Identity Token from AWS STS.

The shared credentials and config files.

Amazon ECS container credentials - loaded from the Amazon ECS if the environment variable
AWS_CONTAINER_CREDENTIALS_RELATIVE_URI is set.

Amazon EC2 Instance profile credentials.

For more information about this you can look at AWS credentials documentation

2.5.2. Message headers evaluated by the DDB producer

CHAPTER 2. AWS DYNAMODB

45

https://aws.amazon.com/dynamodb
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/credentials.html

Header Type Description

CamelAwsDdbBatchItems Map<String,
KeysAndAttributes>

A map of the table name and corresponding
items to get by primary key.

CamelAwsDdbTableName String Table Name for this operation.

CamelAwsDdbKey Key The primary key that uniquely identifies each
item in a table.

CamelAwsDdbReturnValu
es

String Use this parameter if you want to get the
attribute name-value pairs before or after they
are modified(NONE, ALL_OLD,
UPDATED_OLD, ALL_NEW, UPDATED_NEW).

CamelAwsDdbUpdateCon
dition

Map<String,
ExpectedAttributeVa
lue>

Designates an attribute for a conditional
modification.

CamelAwsDdbAttributeN
ames

Collection<String> If attribute names are not specified then all
attributes will be returned.

CamelAwsDdbConsistent
Read

Boolean If set to true, then a consistent read is issued,
otherwise eventually consistent is used.

CamelAwsDdbIndexName String If set will be used as Secondary Index for Query
operation.

CamelAwsDdbItem Map<String,
AttributeValue>

A map of the attributes for the item, and must
include the primary key values that define the
item.

CamelAwsDdbExactCoun
t

Boolean If set to true, Amazon DynamoDB returns a
total number of items that match the query
parameters, instead of a list of the matching
items and their attributes.

CamelAwsDdbKeyConditi
ons

Map<String,
Condition>

This header specify the selection criteria for the
query, and merge together the two old headers
CamelAwsDdbHashKeyValue and
CamelAwsDdbScanRangeKeyCondition

CamelAwsDdbStartKey Key Primary key of the item from which to continue
an earlier query.

CamelAwsDdbHashKeyV
alue

AttributeValue Value of the hash component of the composite
primary key.

CamelAwsDdbLimit Integer The maximum number of items to return.

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

46

CamelAwsDdbScanRang
eKeyCondition

Condition A container for the attribute values and
comparison operators to use for the query.

CamelAwsDdbScanIndex
Forward

Boolean Specifies forward or backward traversal of the
index.

CamelAwsDdbScanFilter Map<String,
Condition>

Evaluates the scan results and returns only the
desired values.

CamelAwsDdbUpdateVal
ues

Map<String,
AttributeValueUpdat
e>

Map of attribute name to the new value and
action for the update.

Header Type Description

2.5.3. Message headers set during BatchGetItems operation

Header Type Description

CamelAwsDdbBatchResp
onse

Map<String,Bat
chResponse>

Table names and the respective item attributes from
the tables.

CamelAwsDdbUnprocess
edKeys

Map<String,Key
sAndAttributes
>

Contains a map of tables and their respective keys
that were not processed with the current response.

2.5.4. Message headers set during DeleteItem operation

Header Type Description

CamelAwsDdbAttributes Map<String,
AttributeValue>

The list of attributes returned by the operation.

2.5.5. Message headers set during DeleteTable operation

Header Type Description

CamelAwsDdbProvisione
dThroughput

ProvisionedThroughputD
escription

 The value of the ProvisionedThroughput property for
this table

CamelAwsDdbCreationDa
te

Date Creation DateTime of this table.

CHAPTER 2. AWS DYNAMODB

47

CamelAwsDdbTableItemC
ount

Long Item count for this table.

CamelAwsDdbKeySchem
a

KeySchema The KeySchema that identifies the primary key for
this table. From Camel 2.16.0 the type of this
header is List<KeySchemaElement> and not
KeySchema

CamelAwsDdbTableName String The table name.

CamelAwsDdbTableSize Long The table size in bytes.

CamelAwsDdbTableStatu
s

String The status of the table: CREATING, UPDATING,
DELETING, ACTIVE

Header Type Description

2.5.6. Message headers set during DescribeTable operation

Header Type Description

CamelAwsDdbProvisionedThrough
put

\
{{ProvisionedThro
ughputDescription
}}

The value of the ProvisionedThroughput
property for this table

CamelAwsDdbCreationDate Date Creation DateTime of this table.

CamelAwsDdbTableItemCount Long Item count for this table.

CamelAwsDdbKeySchema \{{KeySchema}} The KeySchema that identifies the
primary key for this table.

CamelAwsDdbTableName String The table name.

CamelAwsDdbTableSize Long The table size in bytes.

CamelAwsDdbTableStatus String The status of the table: CREATING,
UPDATING, DELETING, ACTIVE

CamelAwsDdbReadCapacity Long ReadCapacityUnits property of this table.

CamelAwsDdbWriteCapacity Long WriteCapacityUnits property of this table.

2.5.7. Message headers set during GetItem operation

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

48

Header Type Description

CamelAwsDdbAttributes Map<String,
AttributeValue>

The list of attributes returned by the operation.

2.5.8. Message headers set during PutItem operation

Header Type Description

CamelAwsDdbAttributes Map<String,
AttributeValue>

The list of attributes returned by the operation.

2.5.9. Message headers set during Query operation

Header Type Description

CamelAwsDdbItems List<java.util.M
ap<String,Attrib
uteValue>>

The list of attributes returned by the operation.

CamelAwsDdbLastEvalua
tedKey

Key Primary key of the item where the query operation
stopped, inclusive of the previous result set.

CamelAwsDdbConsumed
Capacity

Double The number of Capacity Units of the provisioned
throughput of the table consumed during the
operation.

CamelAwsDdbCount Integer Number of items in the response.

2.5.10. Message headers set during Scan operation

Header Type Description

CamelAwsDdbItems List<java.util.M
ap<String,Attrib
uteValue>>

The list of attributes returned by the operation.

CamelAwsDdbLastEvalua
tedKey

Key Primary key of the item where the query operation
stopped, inclusive of the previous result set.

CamelAwsDdbConsumed
Capacity

Double The number of Capacity Units of the provisioned
throughput of the table consumed during the
operation.

CamelAwsDdbCount Integer Number of items in the response.

CHAPTER 2. AWS DYNAMODB

49

CamelAwsDdbScannedC
ount

Integer Number of items in the complete scan before any
filters are applied.

Header Type Description

2.5.11. Message headers set during UpdateItem operation

Header Type Description

CamelAwsDdbAttributes Map<String,
AttributeValue>

The list of attributes returned by the operation.

2.5.12. Advanced AmazonDynamoDB configuration

If you need more control over the AmazonDynamoDB instance configuration you can create your own
instance and refer to it from the URI:

The #client refers to a DynamoDbClient in the Registry.

2.6. SUPPORTED PRODUCER OPERATIONS

BatchGetItems

DeleteItem

DeleteTable

DescribeTable

GetItem

PutItem

Query

Scan

UpdateItem

UpdateTable

2.7. EXAMPLES

2.7.1. Producer Examples

PutItem: this operation will create an entry into DynamoDB

from("direct:start")
.to("aws2-ddb://domainName?amazonDDBClient=#client");

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

50

Maven users will need to add the following dependency to their pom.xml.

pom.xml

where 3.14.2 must be replaced by the actual version of Camel.

2.8. SPRING BOOT AUTO-CONFIGURATION

When using aws2-ddb with Spring Boot make sure to use the following Maven dependency to have
support for auto configuration:

The component supports 40 options, which are listed below.

Name Description Defaul
t

Type

camel.component
.aws2-
ddb.access-key

Amazon AWS Access Key. String

camel.component
.aws2-
ddb.amazon-d-d-
b-client

To use the AmazonDynamoDB as the client. The
option is a
software.amazon.awssdk.services.dynamodb.Dynamo
DbClient type.

 DynamoDbClient

from("direct:start")
 .setHeader(Ddb2Constants.OPERATION, Ddb2Operations.PutItem)
 .setHeader(Ddb2Constants.CONSISTENT_READ, "true")
 .setHeader(Ddb2Constants.RETURN_VALUES, "ALL_OLD")
 .setHeader(Ddb2Constants.ITEM, attributeMap)
 .setHeader(Ddb2Constants.ATTRIBUTE_NAMES, attributeMap.keySet());
 .to("aws2-ddb://" + tableName + "?keyAttributeName=" + attributeName + "&keyAttributeType=" +
KeyType.HASH
 + "&keyScalarType=" + ScalarAttributeType.S
 + "&readCapacity=1&writeCapacity=1");

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-aws2-ddb</artifactId>
 <version>${camel-version}</version>
</dependency>

<dependency>
 <groupId>org.apache.camel.springboot</groupId>
 <artifactId>camel-aws2-ddb-starter</artifactId>
 <version>3.14.5.redhat-00032</version>
 <!-- Use your Camel Spring Boot version -->
</dependency>

CHAPTER 2. AWS DYNAMODB

51

camel.component
.aws2-
ddb.autowired-
enabled

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true Boolean

camel.component
.aws2-
ddb.configuration

The component configuration. The option is a
org.apache.camel.component.aws2.ddb.Ddb2Configu
ration type.

 Ddb2Configuratio
n

camel.component
.aws2-
ddb.consistent-
read

Determines whether or not strong consistency should
be enforced when data is read.

false Boolean

camel.component
.aws2-
ddb.enabled

Whether to enable auto configuration of the aws2-
ddb component. This is enabled by default.

 Boolean

camel.component
.aws2-
ddb.enabled-
initial-describe-
table

Set whether the initial Describe table operation in the
DDB Endpoint must be done, or not.

true Boolean

camel.component
.aws2-ddb.key-
attribute-name

Attribute name when creating table. String

camel.component
.aws2-ddb.key-
attribute-type

Attribute type when creating table. String

camel.component
.aws2-ddb.key-
scalar-type

The key scalar type, it can be S (String), N (Number)
and B (Bytes).

 String

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

52

camel.component
.aws2-ddb.lazy-
start-producer

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false Boolean

camel.component
.aws2-
ddb.operation

What operation to perform. Ddb2Operations

camel.component
.aws2-
ddb.override-
endpoint

Set the need for overidding the endpoint. This option
needs to be used in combination with
uriEndpointOverride option.

false Boolean

camel.component
.aws2-ddb.proxy-
host

To define a proxy host when instantiating the DDB
client.

 String

camel.component
.aws2-ddb.proxy-
port

The region in which DynamoDB client needs to work.
When using this parameter, the configuration will
expect the lowercase name of the region (for
example ap-east-1) You’ll need to use the name
Region.EU_WEST_1.id().

 Integer

camel.component
.aws2-ddb.proxy-
protocol

To define a proxy protocol when instantiating the
DDB client.

 Protocol

camel.component
.aws2-ddb.read-
capacity

The provisioned throughput to reserve for reading
resources from your table.

 Long

camel.component
.aws2-ddb.region

The region in which DDB client needs to work. String

camel.component
.aws2-ddb.secret-
key

Amazon AWS Secret Key. String

Name Description Defaul
t

Type

CHAPTER 2. AWS DYNAMODB

53

camel.component
.aws2-ddb.trust-
all-certificates

If we want to trust all certificates in case of overriding
the endpoint.

false Boolean

camel.component
.aws2-ddb.uri-
endpoint-
override

Set the overriding uri endpoint. This option needs to
be used in combination with overrideEndpoint option.

 String

camel.component
.aws2-ddb.use-
default-
credentials-
provider

Set whether the S3 client should expect to load
credentials through a default credentials provider or
to expect static credentials to be passed in.

false Boolean

camel.component
.aws2-ddb.write-
capacity

The provisioned throughput to reserved for writing
resources to your table.

 Long

camel.component
.aws2-
ddbstream.access
-key

Amazon AWS Access Key. String

camel.component
.aws2-
ddbstream.amazo
n-dynamo-db-
streams-client

Amazon DynamoDB client to use for all requests for
this endpoint. The option is a
software.amazon.awssdk.services.dynamodb.streams.
DynamoDbStreamsClient type.

 DynamoDbStream
sClient

camel.component
.aws2-
ddbstream.autowi
red-enabled

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true Boolean

camel.component
.aws2-
ddbstream.bridge
-error-handler

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false Boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

54

camel.component
.aws2-
ddbstream.config
uration

The component configuration. The option is a
org.apache.camel.component.aws2.ddbstream.Ddb2
StreamConfiguration type.

 Ddb2StreamConfi
guration

camel.component
.aws2-
ddbstream.enable
d

Whether to enable auto configuration of the aws2-
ddbstream component. This is enabled by default.

 Boolean

camel.component
.aws2-
ddbstream.max-
results-per-
request

Maximum number of records that will be fetched in
each poll.

 Integer

camel.component
.aws2-
ddbstream.overri
de-endpoint

Set the need for overidding the endpoint. This option
needs to be used in combination with
uriEndpointOverride option.

false Boolean

camel.component
.aws2-
ddbstream.proxy-
host

To define a proxy host when instantiating the
DDBStreams client.

 String

camel.component
.aws2-
ddbstream.proxy-
port

To define a proxy port when instantiating the
DDBStreams client.

 Integer

camel.component
.aws2-
ddbstream.proxy-
protocol

To define a proxy protocol when instantiating the
DDBStreams client.

 Protocol

camel.component
.aws2-
ddbstream.region

The region in which DDBStreams client needs to
work.

 String

camel.component
.aws2-
ddbstream.secret
-key

Amazon AWS Secret Key. String

Name Description Defaul
t

Type

CHAPTER 2. AWS DYNAMODB

55

camel.component
.aws2-
ddbstream.strea
m-iterator-type

Defines where in the DynamoDB stream to start
getting records. Note that using FROM_START can
cause a significant delay before the stream has
caught up to real-time.

 Ddb2StreamConfi
guration$StreamIt
eratorType

camel.component
.aws2-
ddbstream.trust-
all-certificates

If we want to trust all certificates in case of overriding
the endpoint.

false Boolean

camel.component
.aws2-
ddbstream.uri-
endpoint-
override

Set the overriding uri endpoint. This option needs to
be used in combination with overrideEndpoint option.

 String

camel.component
.aws2-
ddbstream.use-
default-
credentials-
provider

Set whether the DynamoDB Streams client should
expect to load credentials through a default
credentials provider or to expect static credentials to
be passed in.

false Boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

56

CHAPTER 3. AWS KINESIS
Both producer and consumer are supported

The AWS2 Kinesis component supports receiving messages from and sending messages to Amazon
Kinesis (no Batch supported) service.

Prerequisites

You must have a valid Amazon Web Services developer account, and be signed up to use Amazon
Kinesis. More information are available at AWS Kinesis.

3.1. URI FORMAT

aws2-kinesis://stream-name[?options]

The stream needs to be created prior to it being used. You can append query options to the URI in the
following format, ?options=value&option2=value&…

3.2. CONFIGURING OPTIONS

Camel components are configured on two separate levels:

component level

endpoint level

3.2.1. Configuring Component Options

The component level is the highest level which holds general and common configurations that are
inherited by the endpoints. For example a component may have security settings, credentials for
authentication, urls for network connection and so forth.

Some components only have a few options, and others may have many. Because components typically
have pre configured defaults that are commonly used, then you may often only need to configure a few
options on a component; or none at all.

Configuring components can be done with the Component DSL, in a configuration file
(application.properties|yaml), or directly with Java code.

3.2.2. Configuring Endpoint Options

Where you find yourself configuring the most is on endpoints, as endpoints often have many options,
which allows you to configure what you need the endpoint to do. The options are also categorized into
whether the endpoint is used as consumer (from) or as a producer (to), or used for both.

Configuring endpoints is most often done directly in the endpoint URI as path and query parameters.
You can also use the Endpoint DSL as a type safe way of configuring endpoints.

A good practice when configuring options is to use Property Placeholders, which allows to not hardcode
urls, port numbers, sensitive information, and other settings. In other words placeholders allows to
externalize the configuration from your code, and gives more flexibility and reuse.

The following two sections lists all the options, firstly for the component followed by the endpoint.

CHAPTER 3. AWS KINESIS

57

https://aws.amazon.com/kinesis/
https://camel.apache.org/manual/component-dsl.html
https://camel.apache.org/manual/Endpoint-dsl.html
https://camel.apache.org/manual/using-propertyplaceholder.html

3.3. COMPONENT OPTIONS

The AWS Kinesis component supports 22 options, which are listed below.

Name Description Defaul
t

Type

amazonKinesisCli
ent (common)

Autowired Amazon Kinesis client to use for all
requests for this endpoint.

 KinesisClient

cborEnabled
(common)

This option will set the CBOR_ENABLED property
during the execution.

true boolean

configuration
(common)

Component configuration. Kinesis2Configurat
ion

overrideEndpoint
(common)

Set the need for overidding the endpoint. This option
needs to be used in combination with
uriEndpointOverride option.

false boolean

proxyHost
(common)

To define a proxy host when instantiating the Kinesis
client.

 String

proxyPort
(common)

To define a proxy port when instantiating the Kinesis
client.

 Integer

proxyProtocol
(common)

To define a proxy protocol when instantiating the
Kinesis client.

Enum values:

HTTP

HTTPS

HTTPS Protocol

region (common) The region in which Kinesis Firehose client needs to
work. When using this parameter, the configuration
will expect the lowercase name of the region (for
example ap-east-1) You’ll need to use the name
Region.EU_WEST_1.id().

 String

trustAllCertificate
s (common)

If we want to trust all certificates in case of overriding
the endpoint.

false boolean

uriEndpointOverri
de (common)

Set the overriding uri endpoint. This option needs to
be used in combination with overrideEndpoint option.

 String

useDefaultCrede
ntialsProvider
(common)

Set whether the Kinesis client should expect to load
credentials through a default credentials provider or
to expect static credentials to be passed in.

false boolean

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

58

bridgeErrorHandl
er (consumer)

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false boolean

iteratorType
(consumer)

Defines where in the Kinesis stream to start getting
records.

Enum values:

AT_SEQUENCE_NUMBER

AFTER_SEQUENCE_NUMBER

TRIM_HORIZON

LATEST

AT_TIMESTAMP

null

TRIM_
HORIZ
ON

ShardIteratorType

maxResultsPerRe
quest (consumer)

Maximum number of records that will be fetched in
each poll.

1 int

resumeStrategy
(consumer)

Defines a resume strategy for AWS Kinesis. The
default strategy reads the sequenceNumber if
provided.

Kinesis
UserC
onfigur
ationR
esume
Strate
gy

KinesisResumeStr
ategy

sequenceNumber
(consumer)

The sequence number to start polling from. Required
if iteratorType is set to
AFTER_SEQUENCE_NUMBER or
AT_SEQUENCE_NUMBER.

 String

Name Description Defaul
t

Type

CHAPTER 3. AWS KINESIS

59

shardClosed
(consumer)

Define what will be the behavior in case of shard
closed. Possible value are ignore, silent and fail. In
case of ignore a message will be logged and the
consumer will restart from the beginning,in case of
silent there will be no logging and the consumer will
start from the beginning,in case of fail a
ReachedClosedStateException will be raised.

Enum values:

ignore

fail

silent

ignore Kinesis2ShardClos
edStrategyEnum

shardId
(consumer)

Defines which shardId in the Kinesis stream to get
records from.

 String

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

autowiredEnabled
(advanced)

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true boolean

accessKey
(security)

Amazon AWS Access Key. String

secretKey
(security)

Amazon AWS Secret Key. String

Name Description Defaul
t

Type

3.4. ENDPOINT OPTIONS

The AWS Kinesis endpoint is configured using URI syntax:

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

60

aws2-kinesis:streamName

with the following path and query parameters:

3.4.1. Path Parameters (1 parameters)

Name Description Defaul
t

Type

streamName
(common)

Required Name of the stream. String

3.4.2. Query Parameters (38 parameters)

Name Description Defaul
t

Type

amazonKinesisCli
ent (common)

Autowired Amazon Kinesis client to use for all
requests for this endpoint.

 KinesisClient

cborEnabled
(common)

This option will set the CBOR_ENABLED property
during the execution.

true boolean

overrideEndpoint
(common)

Set the need for overidding the endpoint. This option
needs to be used in combination with
uriEndpointOverride option.

false boolean

proxyHost
(common)

To define a proxy host when instantiating the Kinesis
client.

 String

proxyPort
(common)

To define a proxy port when instantiating the Kinesis
client.

 Integer

proxyProtocol
(common)

To define a proxy protocol when instantiating the
Kinesis client.

Enum values:

HTTP

HTTPS

HTTPS Protocol

region (common) The region in which Kinesis Firehose client needs to
work. When using this parameter, the configuration
will expect the lowercase name of the region (for
example ap-east-1) You’ll need to use the name
Region.EU_WEST_1.id().

 String

CHAPTER 3. AWS KINESIS

61

trustAllCertificate
s (common)

If we want to trust all certificates in case of overriding
the endpoint.

false boolean

uriEndpointOverri
de (common)

Set the overriding uri endpoint. This option needs to
be used in combination with overrideEndpoint option.

 String

useDefaultCrede
ntialsProvider
(common)

Set whether the Kinesis client should expect to load
credentials through a default credentials provider or
to expect static credentials to be passed in.

false boolean

bridgeErrorHandl
er (consumer)

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false boolean

iteratorType
(consumer)

Defines where in the Kinesis stream to start getting
records.

Enum values:

AT_SEQUENCE_NUMBER

AFTER_SEQUENCE_NUMBER

TRIM_HORIZON

LATEST

AT_TIMESTAMP

null

TRIM_
HORIZ
ON

ShardIteratorType

maxResultsPerRe
quest (consumer)

Maximum number of records that will be fetched in
each poll.

1 int

resumeStrategy
(consumer)

Defines a resume strategy for AWS Kinesis. The
default strategy reads the sequenceNumber if
provided.

Kinesis
UserC
onfigur
ationR
esume
Strate
gy

KinesisResumeStr
ategy

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

62

sendEmptyMessa
geWhenIdle
(consumer)

If the polling consumer did not poll any files, you can
enable this option to send an empty message (no
body) instead.

false boolean

sequenceNumber
(consumer)

The sequence number to start polling from. Required
if iteratorType is set to
AFTER_SEQUENCE_NUMBER or
AT_SEQUENCE_NUMBER.

 String

shardClosed
(consumer)

Define what will be the behavior in case of shard
closed. Possible value are ignore, silent and fail. In
case of ignore a message will be logged and the
consumer will restart from the beginning,in case of
silent there will be no logging and the consumer will
start from the beginning,in case of fail a
ReachedClosedStateException will be raised.

Enum values:

ignore

fail

silent

ignore Kinesis2ShardClos
edStrategyEnum

shardId
(consumer)

Defines which shardId in the Kinesis stream to get
records from.

 String

exceptionHandler
(consumer
(advanced))

To let the consumer use a custom ExceptionHandler.
Notice if the option bridgeErrorHandler is enabled
then this option is not in use. By default the consumer
will deal with exceptions, that will be logged at WARN
or ERROR level and ignored.

 ExceptionHandler

exchangePattern
(consumer
(advanced))

Sets the exchange pattern when the consumer
creates an exchange.

Enum values:

InOnly

InOut

InOptionalOut

 ExchangePattern

Name Description Defaul
t

Type

CHAPTER 3. AWS KINESIS

63

pollStrategy
(consumer
(advanced))

A pluggable
org.apache.camel.PollingConsumerPollingStrategy
allowing you to provide your custom implementation
to control error handling usually occurred during the
poll operation before an Exchange have been
created and being routed in Camel.

 PollingConsumerP
ollStrategy

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

backoffErrorThre
shold (scheduler)

The number of subsequent error polls (failed due
some error) that should happen before the
backoffMultipler should kick-in.

 int

backoffIdleThres
hold (scheduler)

The number of subsequent idle polls that should
happen before the backoffMultipler should kick-in.

 int

backoffMultiplier
(scheduler)

To let the scheduled polling consumer backoff if
there has been a number of subsequent idles/errors
in a row. The multiplier is then the number of polls
that will be skipped before the next actual attempt is
happening again. When this option is in use then
backoffIdleThreshold and/or backoffErrorThreshold
must also be configured.

 int

delay (scheduler) Milliseconds before the next poll. 500 long

greedy
(scheduler)

If greedy is enabled, then the
ScheduledPollConsumer will run immediately again, if
the previous run polled 1 or more messages.

false boolean

initialDelay
(scheduler)

Milliseconds before the first poll starts. 1000 long

repeatCount
(scheduler)

Specifies a maximum limit of number of fires. So if
you set it to 1, the scheduler will only fire once. If you
set it to 5, it will only fire five times. A value of zero or
negative means fire forever.

0 long

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

64

runLoggingLevel
(scheduler)

The consumer logs a start/complete log line when it
polls. This option allows you to configure the logging
level for that.

Enum values:

TRACE

DEBUG

INFO

WARN

ERROR

OFF

TRACE LoggingLevel

scheduledExecut
orService
(scheduler)

Allows for configuring a custom/shared thread pool
to use for the consumer. By default each consumer
has its own single threaded thread pool.

 ScheduledExecuto
rService

scheduler
(scheduler)

To use a cron scheduler from either camel-spring or
camel-quartz component. Use value spring or quartz
for built in scheduler.

none Object

schedulerProperti
es (scheduler)

To configure additional properties when using a
custom scheduler or any of the Quartz, Spring based
scheduler.

 Map

startScheduler
(scheduler)

Whether the scheduler should be auto started. true boolean

timeUnit
(scheduler)

Time unit for initialDelay and delay options.

Enum values:

NANOSECONDS

MICROSECONDS

MILLISECONDS

SECONDS

MINUTES

HOURS

DAYS

MILLIS
ECON
DS

TimeUnit

Name Description Defaul
t

Type

CHAPTER 3. AWS KINESIS

65

useFixedDelay
(scheduler)

Controls if fixed delay or fixed rate is used. See
ScheduledExecutorService in JDK for details.

true boolean

accessKey
(security)

Amazon AWS Access Key. String

secretKey
(security)

Amazon AWS Secret Key. String

Name Description Defaul
t

Type

Required Kinesis component options

You have to provide the KinesisClient in the Registry with proxies and relevant credentials configured.

3.5. BATCH CONSUMER

This component implements the Batch Consumer.

This allows you for instance to know how many messages exists in this batch and for instance let the
Aggregator aggregate this number of messages.

3.6. USAGE

3.6.1. Static credentials vs Default Credential Provider

You have the possibility of avoiding the usage of explicit static credentials, by specifying the
useDefaultCredentialsProvider option and set it to true.

Java system properties - aws.accessKeyId and aws.secretKey

Environment variables - AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY.

Web Identity Token from AWS STS.

The shared credentials and config files.

Amazon ECS container credentials - loaded from the Amazon ECS if the environment variable
AWS_CONTAINER_CREDENTIALS_RELATIVE_URI is set.

Amazon EC2 Instance profile credentials.

For more information about this you can look at AWS credentials documentation

3.6.2. Message headers set by the Kinesis consumer

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

66

https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/credentials.html

Header Type Description

CamelAwsKines
isSequenceNu
mber

String The sequence number of the record. This is represented as a
String as it size is not defined by the API. If it is to be used as a
numerical type then use

CamelAwsKines
isApproximateA
rrivalTimestamp

String The time AWS assigned as the arrival time of the record.

CamelAwsKines
isPartitionKey

String Identifies which shard in the stream the data record is assigned
to.

3.6.3. AmazonKinesis configuration

You then have to reference the KinesisClient in the amazonKinesisClient URI option.

3.6.4. Providing AWS Credentials

It is recommended that the credentials are obtained by using the DefaultAWSCredentialsProviderChain
that is the default when creating a new ClientConfiguration instance, however, a different
AWSCredentialsProvider can be specified when calling createClient(…).

3.6.5. Message headers used by the Kinesis producer to write to Kinesis. The
producer expects that the message body is a byte[].

Header Type Description

CamelAwsKinesisPartitio
nKey

String The PartitionKey to pass to Kinesis to store this
record.

CamelAwsKinesisSequen
ceNumber

String Optional paramter to indicate the sequence number
of this record.

3.6.6. Message headers set by the Kinesis producer on successful storage of a
Record

Header Type Description

CamelAwsKinesisSequen
ceNumber

String The sequence number of the record, as defined in
Response Syntax

CamelAwsKinesisShardId String The shard ID of where the Record was stored

from("aws2-kinesis://mykinesisstream?amazonKinesisClient=#kinesisClient")
 .to("log:out?showAll=true");

CHAPTER 3. AWS KINESIS

67

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/auth/DefaultAWSCredentialsProviderChain.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/auth/AWSCredentialsProvider.html
http://docs.aws.amazon.com/kinesis/latest/APIReference/API_PutRecord.html#API_PutRecord_ResponseSyntax

3.7. DEPENDENCIES

Maven users will need to add the following dependency to their pom.xml.

pom.xml

where 3.14.2 must be replaced by the actual version of Camel.

3.8. SPRING BOOT AUTO-CONFIGURATION

When using aws2-kinesis with Spring Boot make sure to use the following Maven dependency to have
support for auto configuration:

The component supports 40 options, which are listed below.

Name Description Defaul
t

Type

camel.component
.aws2-kinesis-
firehose.access-
key

Amazon AWS Access Key. String

camel.component
.aws2-kinesis-
firehose.amazon-
kinesis-firehose-
client

Amazon Kinesis Firehose client to use for all requests
for this endpoint. The option is a
software.amazon.awssdk.services.firehose.FirehoseCl
ient type.

 FirehoseClient

camel.component
.aws2-kinesis-
firehose.autowire
d-enabled

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true Boolean

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-aws2-kinesis</artifactId>
 <version>${camel-version}</version>
</dependency>

<dependency>
 <groupId>org.apache.camel.springboot</groupId>
 <artifactId>camel-aws2-kinesis-starter</artifactId>
 <version>3.14.5.redhat-00032</version>
 <!-- use your Camel Spring Boot version -->
</dependency>

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

68

camel.component
.aws2-kinesis-
firehose.cbor-
enabled

This option will set the CBOR_ENABLED property
during the execution.

true Boolean

camel.component
.aws2-kinesis-
firehose.configur
ation

Component configuration. The option is a
org.apache.camel.component.aws2.firehose.KinesisFi
rehose2Configuration type.

 KinesisFirehose2C
onfiguration

camel.component
.aws2-kinesis-
firehose.enabled

Whether to enable auto configuration of the aws2-
kinesis-firehose component. This is enabled by
default.

 Boolean

camel.component
.aws2-kinesis-
firehose.lazy-
start-producer

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false Boolean

camel.component
.aws2-kinesis-
firehose.operatio
n

The operation to do in case the user don’t want to
send only a record.

 KinesisFirehose2O
perations

camel.component
.aws2-kinesis-
firehose.override-
endpoint

Set the need for overidding the endpoint. This option
needs to be used in combination with
uriEndpointOverride option.

false Boolean

camel.component
.aws2-kinesis-
firehose.proxy-
host

To define a proxy host when instantiating the Kinesis
Firehose client.

 String

camel.component
.aws2-kinesis-
firehose.proxy-
port

To define a proxy port when instantiating the Kinesis
Firehose client.

 Integer

Name Description Defaul
t

Type

CHAPTER 3. AWS KINESIS

69

camel.component
.aws2-kinesis-
firehose.proxy-
protocol

To define a proxy protocol when instantiating the
Kinesis Firehose client.

 Protocol

camel.component
.aws2-kinesis-
firehose.region

The region in which Kinesis Firehose client needs to
work. When using this parameter, the configuration
will expect the lowercase name of the region (for
example ap-east-1) You’ll need to use the name
Region.EU_WEST_1.id().

 String

camel.component
.aws2-kinesis-
firehose.secret-
key

Amazon AWS Secret Key. String

camel.component
.aws2-kinesis-
firehose.trust-all-
certificates

If we want to trust all certificates in case of overriding
the endpoint.

false Boolean

camel.component
.aws2-kinesis-
firehose.uri-
endpoint-
override

Set the overriding uri endpoint. This option needs to
be used in combination with overrideEndpoint option.

 String

camel.component
.aws2-kinesis-
firehose.use-
default-
credentials-
provider

Set whether the Kinesis Firehose client should expect
to load credentials through a default credentials
provider or to expect static credentials to be passed
in.

false Boolean

camel.component
.aws2-
kinesis.access-
key

Amazon AWS Access Key. String

camel.component
.aws2-
kinesis.amazon-
kinesis-client

Amazon Kinesis client to use for all requests for this
endpoint. The option is a
software.amazon.awssdk.services.kinesis.KinesisClien
t type.

 KinesisClient

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

70

camel.component
.aws2-
kinesis.autowired
-enabled

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true Boolean

camel.component
.aws2-
kinesis.bridge-
error-handler

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false Boolean

camel.component
.aws2-
kinesis.cbor-
enabled

This option will set the CBOR_ENABLED property
during the execution.

true Boolean

camel.component
.aws2-
kinesis.configurat
ion

Component configuration. The option is a
org.apache.camel.component.aws2.kinesis.Kinesis2C
onfiguration type.

 Kinesis2Configurat
ion

camel.component
.aws2-
kinesis.enabled

Whether to enable auto configuration of the aws2-
kinesis component. This is enabled by default.

 Boolean

camel.component
.aws2-
kinesis.iterator-
type

Defines where in the Kinesis stream to start getting
records.

 ShardIteratorType

Name Description Defaul
t

Type

CHAPTER 3. AWS KINESIS

71

camel.component
.aws2-
kinesis.lazy-start-
producer

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false Boolean

camel.component
.aws2-
kinesis.max-
results-per-
request

Maximum number of records that will be fetched in
each poll.

1 Integer

camel.component
.aws2-
kinesis.override-
endpoint

Set the need for overidding the endpoint. This option
needs to be used in combination with
uriEndpointOverride option.

false Boolean

camel.component
.aws2-
kinesis.proxy-
host

To define a proxy host when instantiating the Kinesis
client.

 String

camel.component
.aws2-
kinesis.proxy-port

To define a proxy port when instantiating the Kinesis
client.

 Integer

camel.component
.aws2-
kinesis.proxy-
protocol

To define a proxy protocol when instantiating the
Kinesis client.

 Protocol

camel.component
.aws2-
kinesis.region

The region in which Kinesis Firehose client needs to
work. When using this parameter, the configuration
will expect the lowercase name of the region (for
example ap-east-1) You’ll need to use the name
Region.EU_WEST_1.id().

 String

camel.component
.aws2-
kinesis.resume-
strategy

Defines a resume strategy for AWS Kinesis. The
default strategy reads the sequenceNumber if
provided. The option is a
org.apache.camel.component.aws2.kinesis.consumer.
KinesisResumeStrategy type.

 KinesisResumeStr
ategy

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

72

camel.component
.aws2-
kinesis.secret-key

Amazon AWS Secret Key. String

camel.component
.aws2-
kinesis.sequence-
number

The sequence number to start polling from. Required
if iteratorType is set to
AFTER_SEQUENCE_NUMBER or
AT_SEQUENCE_NUMBER.

 String

camel.component
.aws2-
kinesis.shard-
closed

Define what will be the behavior in case of shard
closed. Possible value are ignore, silent and fail. In
case of ignore a message will be logged and the
consumer will restart from the beginning,in case of
silent there will be no logging and the consumer will
start from the beginning,in case of fail a
ReachedClosedStateException will be raised.

 Kinesis2ShardClos
edStrategyEnum

camel.component
.aws2-
kinesis.shard-id

Defines which shardId in the Kinesis stream to get
records from.

 String

camel.component
.aws2-
kinesis.trust-all-
certificates

If we want to trust all certificates in case of overriding
the endpoint.

false Boolean

camel.component
.aws2-kinesis.uri-
endpoint-
override

Set the overriding uri endpoint. This option needs to
be used in combination with overrideEndpoint option.

 String

camel.component
.aws2-kinesis.use-
default-
credentials-
provider

Set whether the Kinesis client should expect to load
credentials through a default credentials provider or
to expect static credentials to be passed in.

false Boolean

Name Description Defaul
t

Type

CHAPTER 3. AWS KINESIS

73

CHAPTER 4. AWS 2 LAMBDA
Only producer is supported

The AWS2 Lambda component supports create, get, list, delete and invoke AWS Lambda functions.

Prerequisites

You must have a valid Amazon Web Services developer account, and be signed up to use Amazon
Lambda. More information is available at AWS Lambda.

When creating a Lambda function, you need to specify a IAM role which has at least the
AWSLambdaBasicExecuteRole policy attached.

4.1. URI FORMAT

aws2-lambda://functionName[?options]

You can append query options to the URI in the following format, options=value&option2=value&…

4.2. CONFIGURING OPTIONS

Camel components are configured on two separate levels:

component level

endpoint level

4.2.1. Configuring Component Options

The component level is the highest level which holds general and common configurations that are
inherited by the endpoints. For example a component may have security settings, credentials for
authentication, urls for network connection and so forth.

Some components only have a few options, and others may have many. Because components typically
have pre configured defaults that are commonly used, then you may often only need to configure a few
options on a component; or none at all.

Configuring components can be done with the Component DSL, in a configuration file
(application.properties|yaml), or directly with Java code.

4.2.2. Configuring Endpoint Options

Where you find yourself configuring the most is on endpoints, as endpoints often have many options,
which allows you to configure what you need the endpoint to do. The options are also categorized into
whether the endpoint is used as consumer (from) or as a producer (to), or used for both.

Configuring endpoints is most often done directly in the endpoint URI as path and query parameters.
You can also use the Endpoint DSL as a type safe way of configuring endpoints.

A good practice when configuring options is to use Property Placeholders, which allows to not hardcode
urls, port numbers, sensitive information, and other settings. In other words placeholders allows to
externalize the configuration from your code, and gives more flexibility and reuse.

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

74

https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://camel.apache.org/manual/component-dsl.html
https://camel.apache.org/manual/Endpoint-dsl.html
https://camel.apache.org/manual/using-propertyplaceholder.html

The following two sections lists all the options, firstly for the component followed by the endpoint.

4.3. COMPONENT OPTIONS

The AWS Lambda component supports 16 options, which are listed below.

Name Description Defaul
t

Type

configuration
(producer)

Component configuration. Lambda2Configur
ation

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

CHAPTER 4. AWS 2 LAMBDA

75

operation
(producer)

The operation to perform. It can be listFunctions,
getFunction, createFunction, deleteFunction or
invokeFunction.

Enum values:

listFunctions

getFunction

createAlias

deleteAlias

getAlias

listAliases

createFunction

deleteFunction

invokeFunction

updateFunction

createEventSourceMapping

deleteEventSourceMapping

listEventSourceMapping

listTags

tagResource

untagResource

publishVersion

listVersions

invoke
Functi
on

Lambda2Operatio
ns

overrideEndpoint
(producer)

Set the need for overidding the endpoint. This option
needs to be used in combination with
uriEndpointOverride option.

false boolean

pojoRequest
(producer)

If we want to use a POJO request as body or not. false boolean

region (producer) The region in which Lambda client needs to work.
When using this parameter, the configuration will
expect the lowercase name of the region (for
example ap-east-1) You’ll need to use the name
Region.EU_WEST_1.id().

 String

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

76

trustAllCertificate
s (producer)

If we want to trust all certificates in case of overriding
the endpoint.

false boolean

uriEndpointOverri
de (producer)

Set the overriding uri endpoint. This option needs to
be used in combination with overrideEndpoint option.

 String

useDefaultCrede
ntialsProvider
(producer)

Set whether the Lambda client should expect to load
credentials through a default credentials provider or
to expect static credentials to be passed in.

false boolean

autowiredEnabled
(advanced)

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true boolean

awsLambdaClient
(advanced)

Autowired To use a existing configured
AwsLambdaClient as client.

 LambdaClient

proxyHost (proxy) To define a proxy host when instantiating the
Lambda client.

 String

proxyPort (proxy) To define a proxy port when instantiating the
Lambda client.

 Integer

proxyProtocol
(proxy)

To define a proxy protocol when instantiating the
Lambda client.

Enum values:

HTTP

HTTPS

HTTPS Protocol

accessKey
(security)

Amazon AWS Access Key. String

secretKey
(security)

Amazon AWS Secret Key. String

Name Description Defaul
t

Type

4.4. ENDPOINT OPTIONS

The AWS Lambda endpoint is configured using URI syntax:

aws2-lambda:function

CHAPTER 4. AWS 2 LAMBDA

77

with the following path and query parameters:

4.4.1. Path Parameters (1 parameters)

Name Description Defaul
t

Type

function
(producer)

Required Name of the Lambda function. String

4.4.2. Query Parameters (14 parameters)

Name Description Defaul
t

Type

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

78

operation
(producer)

The operation to perform. It can be listFunctions,
getFunction, createFunction, deleteFunction or
invokeFunction.

Enum values:

listFunctions

getFunction

createAlias

deleteAlias

getAlias

listAliases

createFunction

deleteFunction

invokeFunction

updateFunction

createEventSourceMapping

deleteEventSourceMapping

listEventSourceMapping

listTags

tagResource

untagResource

publishVersion

listVersions

invoke
Functi
on

Lambda2Operatio
ns

overrideEndpoint
(producer)

Set the need for overidding the endpoint. This option
needs to be used in combination with
uriEndpointOverride option.

false boolean

pojoRequest
(producer)

If we want to use a POJO request as body or not. false boolean

region (producer) The region in which Lambda client needs to work.
When using this parameter, the configuration will
expect the lowercase name of the region (for
example ap-east-1) You’ll need to use the name
Region.EU_WEST_1.id().

 String

Name Description Defaul
t

Type

CHAPTER 4. AWS 2 LAMBDA

79

trustAllCertificate
s (producer)

If we want to trust all certificates in case of overriding
the endpoint.

false boolean

uriEndpointOverri
de (producer)

Set the overriding uri endpoint. This option needs to
be used in combination with overrideEndpoint option.

 String

useDefaultCrede
ntialsProvider
(producer)

Set whether the Lambda client should expect to load
credentials through a default credentials provider or
to expect static credentials to be passed in.

false boolean

awsLambdaClient
(advanced)

Autowired To use a existing configured
AwsLambdaClient as client.

 LambdaClient

proxyHost (proxy) To define a proxy host when instantiating the
Lambda client.

 String

proxyPort (proxy) To define a proxy port when instantiating the
Lambda client.

 Integer

proxyProtocol
(proxy)

To define a proxy protocol when instantiating the
Lambda client.

Enum values:

HTTP

HTTPS

HTTPS Protocol

accessKey
(security)

Amazon AWS Access Key. String

secretKey
(security)

Amazon AWS Secret Key. String

Name Description Defaul
t

Type

Required Lambda component options

You have to provide the awsLambdaClient in the Registry or your accessKey and secretKey to access
the Amazon Lambda service..

4.5. USAGE

4.5.1. Static credentials vs Default Credential Provider

You have the possibility of avoiding the usage of explicit static credentials, by specifying the
useDefaultCredentialsProvider option and set it to true.

Java system properties - aws.accessKeyId and aws.secretKey

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

80

https://aws.amazon.com/lambda/

Environment variables - AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY.

Web Identity Token from AWS STS.

The shared credentials and config files.

Amazon ECS container credentials - loaded from the Amazon ECS if the environment variable
AWS_CONTAINER_CREDENTIALS_RELATIVE_URI is set.

Amazon EC2 Instance profile credentials.

For more information about this you can look at AWS credentials documentation

4.5.2. Message headers evaluated by the Lambda producer

Operation Header Type Description Requir
ed

All CamelAwsLambdaO
peration

String The operation we want
to perform. Override
operation passed as
query parameter

Yes

createFunction CamelAwsLambdaS3
Bucket

String Amazon S3 bucket name
where the .zip file
containing your
deployment package is
stored. This bucket must
reside in the same AWS
region where you are
creating the Lambda
function.

No

createFunction CamelAwsLambdaS3
Key

String The Amazon S3 object
(the deployment
package) key name you
want to upload.

No

createFunction CamelAwsLambdaS3
ObjectVersion

String The Amazon S3 object
(the deployment
package) version you
want to upload.

No

createFunction CamelAwsLambdaZi
pFile

String The local path of the zip
file (the deployment
package). Content of
zip file can also be put in
Message body.

No

CHAPTER 4. AWS 2 LAMBDA

81

https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/credentials.html

createFunction CamelAwsLambdaR
ole

String The Amazon Resource
Name (ARN) of the IAM
role that Lambda
assumes when it
executes your function
to access any other
Amazon Web Services
(AWS) resources.

Yes

createFunction CamelAwsLambdaR
untime

String The runtime
environment for the
Lambda function you
are uploading. (nodejs,
nodejs4.3, nodejs6.10,
java8, python2.7,
python3.6,
dotnetcore1.0, odejs4.3-
edge)

Yes

createFunction CamelAwsLambdaH
andler

String The function within your
code that Lambda calls
to begin execution. For
Node.js, it is the module-
name.export value in
your function. For Java,
it can be package.class-
name::handler or
package.class-name.

Yes

createFunction CamelAwsLambdaD
escription

String The user-provided
description.

No

createFunction CamelAwsLambdaTa
rgetArn

String The parent object that
contains the target ARN
(Amazon Resource
Name) of an Amazon
SQS queue or Amazon
SNS topic.

No

createFunction CamelAwsLambdaM
emorySize

Integer The memory size, in MB,
you configured for the
function. Must be a
multiple of 64 MB.

No

Operation Header Type Description Requir
ed

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

82

createFunction CamelAwsLambdaK
MSKeyArn

String The Amazon Resource
Name (ARN) of the KMS
key used to encrypt your
function’s environment
variables. If not
provided, AWS Lambda
will use a default service
key.

No

createFunction CamelAwsLambdaP
ublish

Boolean This boolean parameter
can be used to request
AWS Lambda to create
the Lambda function
and publish a version as
an atomic operation.

No

createFunction CamelAwsLambdaTi
meout

Integer The function execution
time at which Lambda
should terminate the
function. The default is 3
seconds.

No

createFunction CamelAwsLambdaTr
acingConfig

String Your function’s tracing
settings (Active or
PassThrough).

No

createFunction CamelAwsLambdaE
nvironmentVariables

Map<String,
String>

The key-value pairs that
represent your
environment’s
configuration settings.

No

createFunction CamelAwsLambdaE
nvironmentTags

Map<String,
String>

The list of tags (key-
value pairs) assigned to
the new function.

No

createFunction CamelAwsLambdaSe
curityGroupIds

List<String> If your Lambda function
accesses resources in a
VPC, a list of one or
more security groups IDs
in your VPC.

No

createFunction CamelAwsLambdaS
ubnetIds

List<String> If your Lambda function
accesses resources in a
VPC, a list of one or
more subnet IDs in your
VPC.

No

createAlias CamelAwsLambdaFu
nctionVersion

String The function version to
set in the alias

Yes

Operation Header Type Description Requir
ed

CHAPTER 4. AWS 2 LAMBDA

83

createAlias CamelAwsLambdaAl
iasFunctionName

String The function name to
set in the alias

Yes

createAlias CamelAwsLambdaAl
iasFunctionDescripti
on

String The function description
to set in the alias

No

deleteAlias CamelAwsLambdaAl
iasFunctionName

String The function name of
the alias

Yes

getAlias CamelAwsLambdaAl
iasFunctionName

String The function name of
the alias

Yes

listAliases CamelAwsLambdaFu
nctionVersion

String The function version to
set in the alias

No

Operation Header Type Description Requir
ed

4.6. LIST OF AVALAIBLE OPERATIONS

listFunctions

getFunction

createFunction

deleteFunction

invokeFunction

updateFunction

createEventSourceMapping

deleteEventSourceMapping

listEventSourceMapping

listTags

tagResource

untagResource

publishVersion

listVersions

createAlias

deleteAlias

getAlias

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

84

listAliases

4.7. EXAMPLES

4.7.1. Producer Example

To have a full understanding of how the component works, you may have a look at these integration
tests.

4.7.2. Producer Examples

CreateFunction: this operation will create a function for you in AWS Lambda

and by sending

4.8. USING A POJO AS BODY

Sometimes build an AWS Request can be complex, because of multiple options. We introduce the
possibility to use a POJO as body. In AWS Lambda there are multiple operations you can submit, as an
example for Get Function request, you can do something like:

In this way you’ll pass the request directly without the need of passing headers and options specifically
related to this operation.

 from("direct:createFunction").to("aws2-lambda://GetHelloWithName?
operation=createFunction").to("mock:result");

template.send("direct:createFunction", ExchangePattern.InOut, new Processor() {
 @Override
 public void process(Exchange exchange) throws Exception {
 exchange.getIn().setHeader(Lambda2Constants.RUNTIME, "nodejs6.10");
 exchange.getIn().setHeader(Lambda2Constants.HANDLER, "GetHelloWithName.handler");
 exchange.getIn().setHeader(Lambda2Constants.DESCRIPTION, "Hello with node.js on
Lambda");
 exchange.getIn().setHeader(Lambda2Constants.ROLE,
 "arn:aws:iam::643534317684:role/lambda-execution-role");
 ClassLoader classLoader = getClass().getClassLoader();
 File file = new File(
 classLoader

.getResource("org/apache/camel/component/aws2/lambda/function/node/GetHelloWithName.zip")
 .getFile());
 FileInputStream inputStream = new FileInputStream(file);
 exchange.getIn().setBody(inputStream);
 }
});

from("direct:getFunction")
 .setBody(GetFunctionRequest.builder().functionName("test").build())
 .to("aws2-lambda://GetHelloWithName?
awsLambdaClient=#awsLambdaClient&operation=getFunction&pojoRequest=true")

CHAPTER 4. AWS 2 LAMBDA

85

https://github.com/apache/camel/tree/main/components/camel-aws/camel-aws2-lambda/src/test/java/org/apache/camel/component/aws2/lambda/integration

4.9. DEPENDENCIES

Maven users will need to add the following dependency to their pom.xml.

pom.xml

where 3.14.2 must be replaced by the actual version of Camel.

4.10. SPRING BOOT AUTO-CONFIGURATION

When using aws2-lambda with Spring Boot make sure to use the following Maven dependency to have
support for auto configuration:

The component supports 17 options, which are listed below.

Name Description Defaul
t

Type

camel.component
.aws2-
lambda.access-
key

Amazon AWS Access Key. String

camel.component
.aws2-
lambda.autowired
-enabled

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true Boolean

camel.component
.aws2-
lambda.aws-
lambda-client

To use a existing configured AwsLambdaClient as
client. The option is a
software.amazon.awssdk.services.lambda.LambdaCli
ent type.

 LambdaClient

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-aws2-lambda</artifactId>
 <version>${camel-version}</version>
</dependency>

<dependency>
 <groupId>org.apache.camel.springboot</groupId>
 <artifactId>camel-aws2-lambda-starter</artifactId>
 <version>3.14.5.redhat-00032</version>
 <!-- use your Camel Spring Boot version -->
</dependency>

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

86

camel.component
.aws2-
lambda.configura
tion

Component configuration. The option is a
org.apache.camel.component.aws2.lambda.Lambda2
Configuration type.

 Lambda2Configur
ation

camel.component
.aws2-
lambda.enabled

Whether to enable auto configuration of the aws2-
lambda component. This is enabled by default.

 Boolean

camel.component
.aws2-
lambda.lazy-
start-producer

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false Boolean

camel.component
.aws2-
lambda.operation

The operation to perform. It can be listFunctions,
getFunction, createFunction, deleteFunction or
invokeFunction.

 Lambda2Operatio
ns

camel.component
.aws2-
lambda.override-
endpoint

Set the need for overidding the endpoint. This option
needs to be used in combination with
uriEndpointOverride option.

false Boolean

camel.component
.aws2-
lambda.pojo-
request

If we want to use a POJO request as body or not. false Boolean

camel.component
.aws2-
lambda.proxy-
host

To define a proxy host when instantiating the
Lambda client.

 String

camel.component
.aws2-
lambda.proxy-
port

To define a proxy port when instantiating the
Lambda client.

 Integer

camel.component
.aws2-
lambda.proxy-
protocol

To define a proxy protocol when instantiating the
Lambda client.

 Protocol

Name Description Defaul
t

Type

CHAPTER 4. AWS 2 LAMBDA

87

camel.component
.aws2-
lambda.region

The region in which Lambda client needs to work.
When using this parameter, the configuration will
expect the lowercase name of the region (for
example ap-east-1) You’ll need to use the name
Region.EU_WEST_1.id().

 String

camel.component
.aws2-
lambda.secret-
key

Amazon AWS Secret Key. String

camel.component
.aws2-
lambda.trust-all-
certificates

If we want to trust all certificates in case of overriding
the endpoint.

false Boolean

camel.component
.aws2-lambda.uri-
endpoint-
override

Set the overriding uri endpoint. This option needs to
be used in combination with overrideEndpoint option.

 String

camel.component
.aws2-
lambda.use-
default-
credentials-
provider

Set whether the Lambda client should expect to load
credentials through a default credentials provider or
to expect static credentials to be passed in.

false Boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

88

CHAPTER 5. AWS S3 STORAGE SERVICE
Both producer and consumer are supported

The AWS2 S3 component supports storing and retrieving objects from/to Amazon’s S3 service.

Prerequisites

You must have a valid Amazon Web Services developer account, and be signed up to use Amazon S3.
More information is available at link:https://aws.amazon.com/s3 [Amazon S3].

5.1. URI FORMAT

aws2-s3://bucketNameOrArn[?options]

The bucket will be created if it don’t already exists. You can append query options to the URI in the
following format,

options=value&option2=value&…

5.2. CONFIGURING OPTIONS

Camel components are configured on two separate levels:

component level

endpoint level

5.2.1. Configuring Component Options

The component level is the highest level which holds general and common configurations that are
inherited by the endpoints. For example a component may have security settings, credentials for
authentication, urls for network connection and so forth.

Some components only have a few options, and others may have many. Because components typically
have pre configured defaults that are commonly used, then you may often only need to configure a few
options on a component; or none at all.

Configuring components can be done with the Component DSL, in a configuration file
(application.properties|yaml), or directly with Java code.

5.2.2. Configuring Endpoint Options

Where you find yourself configuring the most is on endpoints, as endpoints often have many options,
which allows you to configure what you need the endpoint to do. The options are also categorized into
whether the endpoint is used as consumer (from) or as a producer (to), or used for both.

Configuring endpoints is most often done directly in the endpoint URI as path and query parameters.
You can also use the Endpoint DSL as a type safe way of configuring endpoints.

A good practice when configuring options is to use Property Placeholders, which allows to not hardcode
urls, port numbers, sensitive information, and other settings. In other words placeholders allows to
externalize the configuration from your code, and gives more flexibility and reuse.

CHAPTER 5. AWS S3 STORAGE SERVICE

89

https://aws.amazon.com/s3
https://camel.apache.org/manual/component-dsl.html
https://camel.apache.org/manual/Endpoint-dsl.html
https://camel.apache.org/manual/using-propertyplaceholder.html

The following two sections lists all the options, firstly for the component followed by the endpoint.

5.3. COMPONENT OPTIONS

The AWS S3 Storage Service component supports 50 options, which are listed below.

Name Description Defaul
t

Type

amazonS3Client
(common)

Autowired Reference to a
com.amazonaws.services.s3.AmazonS3 in the
registry.

 S3Client

amazonS3Presign
er (common)

Autowired An S3 Presigner for Request, used mainly
in createDownloadLink operation.

 S3Presigner

autoCreateBucke
t (common)

Setting the autocreation of the S3 bucket
bucketName. This will apply also in case of
moveAfterRead option enabled and it will create the
destinationBucket if it doesn’t exist already.

false boolean

configuration
(common)

The component configuration. AWS2S3Configura
tion

overrideEndpoint
(common)

Set the need for overidding the endpoint. This option
needs to be used in combination with
uriEndpointOverride option.

false boolean

pojoRequest
(common)

If we want to use a POJO request as body or not. false boolean

policy (common) The policy for this queue to set in the
com.amazonaws.services.s3.AmazonS3#setBucketP
olicy() method.

 String

proxyHost
(common)

To define a proxy host when instantiating the SQS
client.

 String

proxyPort
(common)

Specify a proxy port to be used inside the client
definition.

 Integer

proxyProtocol
(common)

To define a proxy protocol when instantiating the S3
client.

Enum values:

HTTP

HTTPS

HTTPS Protocol

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

90

region (common) The region in which S3 client needs to work. When
using this parameter, the configuration will expect the
lowercase name of the region (for example ap-east-
1) You’ll need to use the name
Region.EU_WEST_1.id().

 String

trustAllCertificate
s (common)

If we want to trust all certificates in case of overriding
the endpoint.

false boolean

uriEndpointOverri
de (common)

Set the overriding uri endpoint. This option needs to
be used in combination with overrideEndpoint option.

 String

useDefaultCrede
ntialsProvider
(common)

Set whether the S3 client should expect to load
credentials through a default credentials provider or
to expect static credentials to be passed in.

false boolean

customerAlgorith
m (common
(advanced))

Define the customer algorithm to use in case
CustomerKey is enabled.

 String

customerKeyId
(common
(advanced))

Define the id of Customer key to use in case
CustomerKey is enabled.

 String

customerKeyMD5
(common
(advanced))

Define the MD5 of Customer key to use in case
CustomerKey is enabled.

 String

bridgeErrorHandl
er (consumer)

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false boolean

Name Description Defaul
t

Type

CHAPTER 5. AWS S3 STORAGE SERVICE

91

deleteAfterRead
(consumer)

Delete objects from S3 after they have been
retrieved. The delete is only performed if the
Exchange is committed. If a rollback occurs, the
object is not deleted. If this option is false, then the
same objects will be retrieve over and over again on
the polls. Therefore you need to use the Idempotent
Consumer EIP in the route to filter out duplicates.
You can filter using the
AWS2S3Constants#BUCKET_NAME and
AWS2S3Constants#KEY headers, or only the
AWS2S3Constants#KEY header.

true boolean

delimiter
(consumer)

The delimiter which is used in the
com.amazonaws.services.s3.model.ListObjectsReque
st to only consume objects we are interested in.

 String

destinationBucke
t (consumer)

Define the destination bucket where an object must
be moved when moveAfterRead is set to true.

 String

destinationBucke
tPrefix
(consumer)

Define the destination bucket prefix to use when an
object must be moved and moveAfterRead is set to
true.

 String

destinationBucke
tSuffix
(consumer)

Define the destination bucket suffix to use when an
object must be moved and moveAfterRead is set to
true.

 String

doneFileName
(consumer)

If provided, Camel will only consume files if a done
file exists.

 String

fileName
(consumer)

To get the object from the bucket with the given file
name.

 String

ignoreBody
(consumer)

If it is true, the S3 Object Body will be ignored
completely, if it is set to false the S3 Object will be
put in the body. Setting this to true, will override any
behavior defined by includeBody option.

false boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

92

includeBody
(consumer)

If it is true, the S3Object exchange will be consumed
and put into the body and closed. If false the
S3Object stream will be put raw into the body and
the headers will be set with the S3 object metadata.
This option is strongly related to autocloseBody
option. In case of setting includeBody to true
because the S3Object stream will be consumed then
it will also be closed, while in case of includeBody
false then it will be up to the caller to close the
S3Object stream. However setting autocloseBody to
true when includeBody is false it will schedule to
close the S3Object stream automatically on
exchange completion.

true boolean

includeFolders
(consumer)

If it is true, the folders/directories will be consumed.
If it is false, they will be ignored, and Exchanges will
not be created for those.

true boolean

moveAfterRead
(consumer)

Move objects from S3 bucket to a different bucket
after they have been retrieved. To accomplish the
operation the destinationBucket option must be set.
The copy bucket operation is only performed if the
Exchange is committed. If a rollback occurs, the
object is not moved.

false boolean

prefix (consumer) The prefix which is used in the
com.amazonaws.services.s3.model.ListObjectsReque
st to only consume objects we are interested in.

 String

autocloseBody
(consumer
(advanced))

If this option is true and includeBody is false, then the
S3Object.close() method will be called on exchange
completion. This option is strongly related to
includeBody option. In case of setting includeBody to
false and autocloseBody to false, it will be up to the
caller to close the S3Object stream. Setting
autocloseBody to true, will close the S3Object
stream automatically.

true boolean

batchMessageNu
mber (producer)

The number of messages composing a batch in
streaming upload mode.

10 int

batchSize
(producer)

The batch size (in bytes) in streaming upload mode. 10000
00

int

deleteAfterWrite
(producer)

Delete file object after the S3 file has been uploaded. false boolean

keyName
(producer)

Setting the key name for an element in the bucket
through endpoint parameter.

 String

Name Description Defaul
t

Type

CHAPTER 5. AWS S3 STORAGE SERVICE

93

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

multiPartUpload
(producer)

If it is true, camel will upload the file with multi part
format, the part size is decided by the option of
partSize.

false boolean

namingStrategy
(producer)

The naming strategy to use in streaming upload
mode.

Enum values:

progressive

random

progre
ssive

AWSS3NamingStr
ategyEnum

operation
(producer)

The operation to do in case the user don’t want to do
only an upload.

Enum values:

copyObject

listObjects

deleteObject

deleteBucket

listBuckets

getObject

getObjectRange

createDownloadLink

 AWS2S3Operatio
ns

partSize
(producer)

Setup the partSize which is used in multi part upload,
the default size is 25M.

262144
00

long

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

94

restartingPolicy
(producer)

The restarting policy to use in streaming upload
mode.

Enum values:

override

lastPart

overrid
e

AWSS3Restarting
PolicyEnum

storageClass
(producer)

The storage class to set in the
com.amazonaws.services.s3.model.PutObjectReques
t request.

 String

streamingUpload
Mode (producer)

When stream mode is true the upload to bucket will
be done in streaming.

false boolean

streamingUpload
Timeout
(producer)

While streaming upload mode is true, this option set
the timeout to complete upload.

 long

awsKMSKeyId
(producer
(advanced))

Define the id of KMS key to use in case KMS is
enabled.

 String

useAwsKMS
(producer
(advanced))

Define if KMS must be used or not. false boolean

useCustomerKey
(producer
(advanced))

Define if Customer Key must be used or not. false boolean

autowiredEnabled
(advanced)

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true boolean

accessKey
(security)

Amazon AWS Access Key. String

secretKey
(security)

Amazon AWS Secret Key. String

Name Description Defaul
t

Type

CHAPTER 5. AWS S3 STORAGE SERVICE

95

5.4. ENDPOINT OPTIONS

The AWS S3 Storage Service endpoint is configured using URI syntax:

aws2-s3://bucketNameOrArn

with the following path and query parameters:

5.4.1. Path Parameters (1 parameters)

Name Description Defaul
t

Type

bucketNameOrAr
n (common)

Required Bucket name or ARN. String

5.4.2. Query Parameters (68 parameters)

Name Description Defaul
t

Type

amazonS3Client
(common)

Autowired Reference to a
com.amazonaws.services.s3.AmazonS3 in the
registry.

 S3Client

amazonS3Presign
er (common)

Autowired An S3 Presigner for Request, used mainly
in createDownloadLink operation.

 S3Presigner

autoCreateBucke
t (common)

Setting the autocreation of the S3 bucket
bucketName. This will apply also in case of
moveAfterRead option enabled and it will create the
destinationBucket if it doesn’t exist already.

false boolean

overrideEndpoint
(common)

Set the need for overidding the endpoint. This option
needs to be used in combination with
uriEndpointOverride option.

false boolean

pojoRequest
(common)

If we want to use a POJO request as body or not. false boolean

policy (common) The policy for this queue to set in the
com.amazonaws.services.s3.AmazonS3#setBucketP
olicy() method.

 String

proxyHost
(common)

To define a proxy host when instantiating the SQS
client.

 String

proxyPort
(common)

Specify a proxy port to be used inside the client
definition.

 Integer

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

96

proxyProtocol
(common)

To define a proxy protocol when instantiating the S3
client.

Enum values:

HTTP

HTTPS

HTTPS Protocol

region (common) The region in which S3 client needs to work. When
using this parameter, the configuration will expect the
lowercase name of the region (for example ap-east-
1) You’ll need to use the name
Region.EU_WEST_1.id().

 String

trustAllCertificate
s (common)

If we want to trust all certificates in case of overriding
the endpoint.

false boolean

uriEndpointOverri
de (common)

Set the overriding uri endpoint. This option needs to
be used in combination with overrideEndpoint option.

 String

useDefaultCrede
ntialsProvider
(common)

Set whether the S3 client should expect to load
credentials through a default credentials provider or
to expect static credentials to be passed in.

false boolean

customerAlgorith
m (common
(advanced))

Define the customer algorithm to use in case
CustomerKey is enabled.

 String

customerKeyId
(common
(advanced))

Define the id of Customer key to use in case
CustomerKey is enabled.

 String

customerKeyMD5
(common
(advanced))

Define the MD5 of Customer key to use in case
CustomerKey is enabled.

 String

bridgeErrorHandl
er (consumer)

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false boolean

Name Description Defaul
t

Type

CHAPTER 5. AWS S3 STORAGE SERVICE

97

deleteAfterRead
(consumer)

Delete objects from S3 after they have been
retrieved. The delete is only performed if the
Exchange is committed. If a rollback occurs, the
object is not deleted. If this option is false, then the
same objects will be retrieve over and over again on
the polls. Therefore you need to use the Idempotent
Consumer EIP in the route to filter out duplicates.
You can filter using the
AWS2S3Constants#BUCKET_NAME and
AWS2S3Constants#KEY headers, or only the
AWS2S3Constants#KEY header.

true boolean

delimiter
(consumer)

The delimiter which is used in the
com.amazonaws.services.s3.model.ListObjectsReque
st to only consume objects we are interested in.

 String

destinationBucke
t (consumer)

Define the destination bucket where an object must
be moved when moveAfterRead is set to true.

 String

destinationBucke
tPrefix
(consumer)

Define the destination bucket prefix to use when an
object must be moved and moveAfterRead is set to
true.

 String

destinationBucke
tSuffix
(consumer)

Define the destination bucket suffix to use when an
object must be moved and moveAfterRead is set to
true.

 String

doneFileName
(consumer)

If provided, Camel will only consume files if a done
file exists.

 String

fileName
(consumer)

To get the object from the bucket with the given file
name.

 String

ignoreBody
(consumer)

If it is true, the S3 Object Body will be ignored
completely, if it is set to false the S3 Object will be
put in the body. Setting this to true, will override any
behavior defined by includeBody option.

false boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

98

includeBody
(consumer)

If it is true, the S3Object exchange will be consumed
and put into the body and closed. If false the
S3Object stream will be put raw into the body and
the headers will be set with the S3 object metadata.
This option is strongly related to autocloseBody
option. In case of setting includeBody to true
because the S3Object stream will be consumed then
it will also be closed, while in case of includeBody
false then it will be up to the caller to close the
S3Object stream. However setting autocloseBody to
true when includeBody is false it will schedule to
close the S3Object stream automatically on
exchange completion.

true boolean

includeFolders
(consumer)

If it is true, the folders/directories will be consumed.
If it is false, they will be ignored, and Exchanges will
not be created for those.

true boolean

maxConnections
(consumer)

Set the maxConnections parameter in the S3 client
configuration.

60 int

maxMessagesPer
Poll (consumer)

Gets the maximum number of messages as a limit to
poll at each polling. Gets the maximum number of
messages as a limit to poll at each polling. The default
value is 10. Use 0 or a negative number to set it as
unlimited.

10 int

moveAfterRead
(consumer)

Move objects from S3 bucket to a different bucket
after they have been retrieved. To accomplish the
operation the destinationBucket option must be set.
The copy bucket operation is only performed if the
Exchange is committed. If a rollback occurs, the
object is not moved.

false boolean

prefix (consumer) The prefix which is used in the
com.amazonaws.services.s3.model.ListObjectsReque
st to only consume objects we are interested in.

 String

sendEmptyMessa
geWhenIdle
(consumer)

If the polling consumer did not poll any files, you can
enable this option to send an empty message (no
body) instead.

false boolean

Name Description Defaul
t

Type

CHAPTER 5. AWS S3 STORAGE SERVICE

99

autocloseBody
(consumer
(advanced))

If this option is true and includeBody is false, then the
S3Object.close() method will be called on exchange
completion. This option is strongly related to
includeBody option. In case of setting includeBody to
false and autocloseBody to false, it will be up to the
caller to close the S3Object stream. Setting
autocloseBody to true, will close the S3Object
stream automatically.

true boolean

exceptionHandler
(consumer
(advanced))

To let the consumer use a custom ExceptionHandler.
Notice if the option bridgeErrorHandler is enabled
then this option is not in use. By default the consumer
will deal with exceptions, that will be logged at WARN
or ERROR level and ignored.

 ExceptionHandler

exchangePattern
(consumer
(advanced))

Sets the exchange pattern when the consumer
creates an exchange.

Enum values:

InOnly

InOut

InOptionalOut

 ExchangePattern

pollStrategy
(consumer
(advanced))

A pluggable
org.apache.camel.PollingConsumerPollingStrategy
allowing you to provide your custom implementation
to control error handling usually occurred during the
poll operation before an Exchange have been
created and being routed in Camel.

 PollingConsumerP
ollStrategy

batchMessageNu
mber (producer)

The number of messages composing a batch in
streaming upload mode.

10 int

batchSize
(producer)

The batch size (in bytes) in streaming upload mode. 10000
00

int

deleteAfterWrite
(producer)

Delete file object after the S3 file has been uploaded. false boolean

keyName
(producer)

Setting the key name for an element in the bucket
through endpoint parameter.

 String

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

100

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

multiPartUpload
(producer)

If it is true, camel will upload the file with multi part
format, the part size is decided by the option of
partSize.

false boolean

namingStrategy
(producer)

The naming strategy to use in streaming upload
mode.

Enum values:

progressive

random

progre
ssive

AWSS3NamingStr
ategyEnum

operation
(producer)

The operation to do in case the user don’t want to do
only an upload.

Enum values:

copyObject

listObjects

deleteObject

deleteBucket

listBuckets

getObject

getObjectRange

createDownloadLink

 AWS2S3Operatio
ns

partSize
(producer)

Setup the partSize which is used in multi part upload,
the default size is 25M.

262144
00

long

Name Description Defaul
t

Type

CHAPTER 5. AWS S3 STORAGE SERVICE

101

restartingPolicy
(producer)

The restarting policy to use in streaming upload
mode.

Enum values:

override

lastPart

overrid
e

AWSS3Restarting
PolicyEnum

storageClass
(producer)

The storage class to set in the
com.amazonaws.services.s3.model.PutObjectReques
t request.

 String

streamingUpload
Mode (producer)

When stream mode is true the upload to bucket will
be done in streaming.

false boolean

streamingUpload
Timeout
(producer)

While streaming upload mode is true, this option set
the timeout to complete upload.

 long

awsKMSKeyId
(producer
(advanced))

Define the id of KMS key to use in case KMS is
enabled.

 String

useAwsKMS
(producer
(advanced))

Define if KMS must be used or not. false boolean

useCustomerKey
(producer
(advanced))

Define if Customer Key must be used or not. false boolean

backoffErrorThre
shold (scheduler)

The number of subsequent error polls (failed due
some error) that should happen before the
backoffMultipler should kick-in.

 int

backoffIdleThres
hold (scheduler)

The number of subsequent idle polls that should
happen before the backoffMultipler should kick-in.

 int

backoffMultiplier
(scheduler)

To let the scheduled polling consumer backoff if
there has been a number of subsequent idles/errors
in a row. The multiplier is then the number of polls
that will be skipped before the next actual attempt is
happening again. When this option is in use then
backoffIdleThreshold and/or backoffErrorThreshold
must also be configured.

 int

delay (scheduler) Milliseconds before the next poll. 500 long

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

102

greedy
(scheduler)

If greedy is enabled, then the
ScheduledPollConsumer will run immediately again, if
the previous run polled 1 or more messages.

false boolean

initialDelay
(scheduler)

Milliseconds before the first poll starts. 1000 long

repeatCount
(scheduler)

Specifies a maximum limit of number of fires. So if
you set it to 1, the scheduler will only fire once. If you
set it to 5, it will only fire five times. A value of zero or
negative means fire forever.

0 long

runLoggingLevel
(scheduler)

The consumer logs a start/complete log line when it
polls. This option allows you to configure the logging
level for that.

Enum values:

TRACE

DEBUG

INFO

WARN

ERROR

OFF

TRACE LoggingLevel

scheduledExecut
orService
(scheduler)

Allows for configuring a custom/shared thread pool
to use for the consumer. By default each consumer
has its own single threaded thread pool.

 ScheduledExecuto
rService

scheduler
(scheduler)

To use a cron scheduler from either camel-spring or
camel-quartz component. Use value spring or quartz
for built in scheduler.

none Object

schedulerProperti
es (scheduler)

To configure additional properties when using a
custom scheduler or any of the Quartz, Spring based
scheduler.

 Map

startScheduler
(scheduler)

Whether the scheduler should be auto started. true boolean

Name Description Defaul
t

Type

CHAPTER 5. AWS S3 STORAGE SERVICE

103

timeUnit
(scheduler)

Time unit for initialDelay and delay options.

Enum values:

NANOSECONDS

MICROSECONDS

MILLISECONDS

SECONDS

MINUTES

HOURS

DAYS

MILLIS
ECON
DS

TimeUnit

useFixedDelay
(scheduler)

Controls if fixed delay or fixed rate is used. See
ScheduledExecutorService in JDK for details.

true boolean

accessKey
(security)

Amazon AWS Access Key. String

secretKey
(security)

Amazon AWS Secret Key. String

Name Description Defaul
t

Type

Required S3 component options

You have to provide the amazonS3Client in the Registry or your accessKey and secretKey to access the
Amazon’s S3.

5.5. BATCH CONSUMER

This component implements the Batch Consumer.

This allows you for instance to know how many messages exists in this batch and for instance let the
Aggregator aggregate this number of messages.

5.6. USAGE

For example in order to read file hello.txt from bucket helloBucket, use the following snippet:

5.6.1. Message headers evaluated by the S3 producer

from("aws2-s3://helloBucket?
accessKey=yourAccessKey&secretKey=yourSecretKey&prefix=hello.txt")
 .to("file:/var/downloaded");

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

104

https://aws.amazon.com/s3

Header Type Description

CamelAwsS3BucketName String The bucket Name which this object will be
stored or which will be used for the
current operation

CamelAwsS3BucketDestinationNa
me

String The bucket Destination Name which will
be used for the current operation

CamelAwsS3ContentLength Long The content length of this object.

CamelAwsS3ContentType String The content type of this object.

CamelAwsS3ContentControl String The content control of this object.

CamelAwsS3ContentDisposition String The content disposition of this object.

CamelAwsS3ContentEncoding String The content encoding of this object.

CamelAwsS3ContentMD5 String The md5 checksum of this object.

CamelAwsS3DestinationKey String The Destination key which will be used for
the current operation

CamelAwsS3Key String The key under which this object will be
stored or which will be used for the
current operation

CamelAwsS3LastModified java.util.Date The last modified timestamp of this
object.

CamelAwsS3Operation String The operation to perform. Permitted
values are copyObject, deleteObject,
listBuckets, deleteBucket, listObjects

CamelAwsS3StorageClass String The storage class of this object.

CamelAwsS3CannedAcl String The canned acl that will be applied to the
object. see
software.amazon.awssdk.services.
s3.model.ObjectCannedACL for
allowed values.

CamelAwsS3Acl software.amazo
n.awssdk.servic
es.s3.model.Bu
cketCannedAC
L

A well constructed Amazon S3 Access
Control List object. see
software.amazon.awssdk.services.
s3.model.BucketCannedACL for
more details

CHAPTER 5. AWS S3 STORAGE SERVICE

105

CamelAwsS3ServerSideEncryption String Sets the server-side encryption algorithm
when encrypting the object using AWS-
managed keys. For example use AES256.

CamelAwsS3VersionId String The version Id of the object to be stored
or returned from the current operation

CamelAwsS3Metadata Map<String,
String>

A map of metadata to be stored with the
object in S3. More details about metadata
.

Header Type Description

5.6.2. Message headers set by the S3 producer

Header Type Description

CamelAwsS3ETag String The ETag value for the newly uploaded object.

CamelAwsS3VersionId String The optional version ID of the newly uploaded
object.

5.6.3. Message headers set by the S3 consumer

Header Type Description

CamelAwsS3Key String The key under which this object is stored.

CamelAwsS3BucketName String The name of the bucket in which this object is
contained.

CamelAwsS3ETag String The hex encoded 128-bit MD5 digest of the
associated object according to RFC 1864. This data is
used as an integrity check to verify that the data
received by the caller is the same data that was sent
by Amazon S3.

CamelAwsS3LastModifie
d

Date The value of the Last-Modified header, indicating the
date and time at which Amazon S3 last recorded a
modification to the associated object.

CamelAwsS3VersionId String The version ID of the associated Amazon S3 object if
available. Version IDs are only assigned to objects
when an object is uploaded to an Amazon S3 bucket
that has object versioning enabled.

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

106

CamelAwsS3ContentType String The Content-Type HTTP header, which indicates the
type of content stored in the associated object. The
value of this header is a standard MIME type.

CamelAwsS3ContentMD5 String The base64 encoded 128-bit MD5 digest of the
associated object (content - not including headers)
according to RFC 1864. This data is used as a
message integrity check to verify that the data
received by Amazon S3 is the same data that the
caller sent.

CamelAwsS3ContentLen
gth

Long The Content-Length HTTP header indicating the size
of the associated object in bytes.

CamelAwsS3ContentEnc
oding

String The optional Content-Encoding HTTP header
specifying what content encodings have been
applied to the object and what decoding mechanisms
must be applied in order to obtain the media-type
referenced by the Content-Type field.

CamelAwsS3ContentDisp
osition

String The optional Content-Disposition HTTP header,
which specifies presentational information such as
the recommended filename for the object to be
saved as.

CamelAwsS3ContentCont
rol

String The optional Cache-Control HTTP header which
allows the user to specify caching behavior along the
HTTP request/reply chain.

CamelAwsS3ServerSideE
ncryption

String The server-side encryption algorithm when
encrypting the object using AWS-managed keys.

CamelAwsS3Metadata Map<String,
String>

A map of metadata stored with the object in S3.
More details about metadata .

Header Type Description

5.6.4. S3 Producer operations

Camel-AWS2-S3 component provides the following operation on the producer side:

copyObject

deleteObject

listBuckets

deleteBucket

CHAPTER 5. AWS S3 STORAGE SERVICE

107

listObjects

getObject (this will return an S3Object instance)

getObjectRange (this will return an S3Object instance)

createDownloadLink

If you don’t specify an operation explicitly the producer will do: - a single file upload - a multipart upload
if multiPartUpload option is enabled.

5.6.5. Advanced AmazonS3 configuration

If your Camel Application is running behind a firewall or if you need to have more control over the
S3Client instance configuration, you can create your own instance and refer to it in your Camel aws2-s3
component configuration:

5.6.6. Use KMS with the S3 component

To use AWS KMS to encrypt/decrypt data by using AWS infrastructure you can use the options
introduced in 2.21.x like in the following example

In this way you’ll ask to S3, to use the KMS key 3f0637ad-296a-3dfe-a796-e60654fb128c, to encrypt
the file test.txt. When you’ll ask to download this file, the decryption will be done directly before the
download.

5.6.7. Static credentials vs Default Credential Provider

You have the possibility of avoiding the usage of explicit static credentials, by specifying the
useDefaultCredentialsProvider option and set it to true.

Java system properties - aws.accessKeyId and aws.secretKey

Environment variables - AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY.

Web Identity Token from AWS STS.

The shared credentials and config files.

Amazon ECS container credentials - loaded from the Amazon ECS if the environment variable
AWS_CONTAINER_CREDENTIALS_RELATIVE_URI is set.

Amazon EC2 Instance profile credentials.

For more information about this you can look at AWS credentials documentation

from("aws2-s3://MyBucket?amazonS3Client=#client&delay=5000&maxMessagesPerPoll=5")
.to("mock:result");

from("file:tmp/test?fileName=test.txt")
 .setHeader(S3Constants.KEY, constant("testFile"))
 .to("aws2-s3://mybucket?amazonS3Client=#client&useAwsKMS=true&awsKMSKeyId=3f0637ad-
296a-3dfe-a796-e60654fb128c");

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

108

https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/credentials.html

5.6.8. S3 Producer Operation examples

Single Upload: This operation will upload a file to S3 based on the body content

This operation will upload the file camel.txt with the content "Camel rocks!" in the mycamelbucket
bucket

Multipart Upload: This operation will perform a multipart upload of a file to S3 based on the
body content

This operation will perform a multipart upload of the file empty.txt with based on the content the file
src/empty.txt in the mycamelbucket bucket

CopyObject: this operation copy an object from one bucket to a different one

This operation will copy the object with the name expressed in the header camelDestinationKey to the
camelDestinationBucket bucket, from the bucket mycamelbucket.

 from("direct:start").process(new Processor() {

 @Override
 public void process(Exchange exchange) throws Exception {
 exchange.getIn().setHeader(S3Constants.KEY, "camel.txt");
 exchange.getIn().setBody("Camel rocks!");
 }
 })
 .to("aws2-s3://mycamelbucket?amazonS3Client=#amazonS3Client")
 .to("mock:result");

 from("direct:start").process(new Processor() {

 @Override
 public void process(Exchange exchange) throws Exception {
 exchange.getIn().setHeader(AWS2S3Constants.KEY, "empty.txt");
 exchange.getIn().setBody(new File("src/empty.txt"));
 }
 })
 .to("aws2-s3://mycamelbucket?
amazonS3Client=#amazonS3Client&multiPartUpload=true&autoCreateBucket=true&partSize=1048576"
)
 .to("mock:result");

 from("direct:start").process(new Processor() {

 @Override
 public void process(Exchange exchange) throws Exception {
 exchange.getIn().setHeader(S3Constants.BUCKET_DESTINATION_NAME,
"camelDestinationBucket");
 exchange.getIn().setHeader(S3Constants.KEY, "camelKey");
 exchange.getIn().setHeader(S3Constants.DESTINATION_KEY, "camelDestinationKey");
 }
 })
 .to("aws2-s3://mycamelbucket?amazonS3Client=#amazonS3Client&operation=copyObject")
 .to("mock:result");

CHAPTER 5. AWS S3 STORAGE SERVICE

109

DeleteObject: this operation deletes an object from a bucket

This operation will delete the object camelKey from the bucket mycamelbucket.

ListBuckets: this operation list the buckets for this account in this region

This operation will list the buckets for this account

DeleteBucket: this operation delete the bucket specified as URI parameter or header

This operation will delete the bucket mycamelbucket

ListObjects: this operation list object in a specific bucket

This operation will list the objects in the mycamelbucket bucket

GetObject: this operation get a single object in a specific bucket

This operation will return an S3Object instance related to the camelKey object in mycamelbucket
bucket.

GetObjectRange: this operation get a single object range in a specific bucket

 from("direct:start").process(new Processor() {

 @Override
 public void process(Exchange exchange) throws Exception {
 exchange.getIn().setHeader(S3Constants.KEY, "camelKey");
 }
 })
 .to("aws2-s3://mycamelbucket?amazonS3Client=#amazonS3Client&operation=deleteObject")
 .to("mock:result");

 from("direct:start")
 .to("aws2-s3://mycamelbucket?amazonS3Client=#amazonS3Client&operation=listBuckets")
 .to("mock:result");

 from("direct:start")
 .to("aws2-s3://mycamelbucket?amazonS3Client=#amazonS3Client&operation=deleteBucket")
 .to("mock:result");

 from("direct:start")
 .to("aws2-s3://mycamelbucket?amazonS3Client=#amazonS3Client&operation=listObjects")
 .to("mock:result");

 from("direct:start").process(new Processor() {

 @Override
 public void process(Exchange exchange) throws Exception {
 exchange.getIn().setHeader(S3Constants.KEY, "camelKey");
 }
 })
 .to("aws2-s3://mycamelbucket?amazonS3Client=#amazonS3Client&operation=getObject")
 .to("mock:result");

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

110

This operation will return an S3Object instance related to the camelKey object in mycamelbucket
bucket, containing a the bytes from 0 to 9.

CreateDownloadLink: this operation will return a download link through S3 Presigner

This operation will return a download link url for the file camel-key in the bucket mycamelbucket and
region region

5.7. STREAMING UPLOAD MODE

With the stream mode enabled users will be able to upload data to S3 without knowing ahead of time
the dimension of the data, by leveraging multipart upload. The upload will be completed when: the
batchSize has been completed or the batchMessageNumber has been reached. There are two possible
naming strategy:

progressive
With the progressive strategy each file will have the name composed by keyName option and a
progressive counter, and eventually the file extension (if any)

random.
With the random strategy a UUID will be added after keyName and eventually the file extension
will appended.

As an example:

 from("direct:start").process(new Processor() {

 @Override
 public void process(Exchange exchange) throws Exception {
 exchange.getIn().setHeader(S3Constants.KEY, "camelKey");
 exchange.getIn().setHeader(S3Constants.RANGE_START, "0");
 exchange.getIn().setHeader(S3Constants.RANGE_END, "9");
 }
 })
 .to("aws2-s3://mycamelbucket?amazonS3Client=#amazonS3Client&operation=getObjectRange")
 .to("mock:result");

 from("direct:start").process(new Processor() {

 @Override
 public void process(Exchange exchange) throws Exception {
 exchange.getIn().setHeader(S3Constants.KEY, "camelKey");
 }
 })
 .to("aws2-s3://mycamelbucket?
accessKey=xxx&secretKey=yyy®ion=region&operation=createDownloadLink")
 .to("mock:result");

from(kafka("topic1").brokers("localhost:9092"))
 .log("Kafka Message is: ${body}")
 .to(aws2S3("camel-
bucket").streamingUploadMode(true).batchMessageNumber(25).namingStrategy(AWS2S3EndpointBu
ilderFactory.AWSS3NamingStrategyEnum.progressive).keyName("
{{kafkaTopic1}}/{{kafkaTopic1}}.txt"));

CHAPTER 5. AWS S3 STORAGE SERVICE

111

The default size for a batch is 1 Mb, but you can adjust it according to your requirements.

When you’ll stop your producer route, the producer will take care of flushing the remaining buffered
messaged and complete the upload.

In Streaming upload you’ll be able restart the producer from the point where it left. It’s important to note
that this feature is critical only when using the progressive naming strategy.

By setting the restartingPolicy to lastPart, you will restart uploading files and contents from the last part
number the producer left.

Example

1. Start the route with progressive naming strategy and keyname equals to camel.txt, with
batchMessageNumber equals to 20, and restartingPolicy equals to lastPart - Send 70
messages.

2. Stop the route

3. On your S3 bucket you should now see 4 files: * camel.txt

camel-1.txt

camel-2.txt

camel-3.txt
The first three will have 20 messages, while the last one only 10.

4. Restart the route.

5. Send 25 messages.

6. Stop the route.

7. You’ll now have 2 other files in your bucket: camel-5.txt and camel-6.txt, the first with 20
messages and second with 5 messages.

8. Go ahead

This won’t be needed when using the random naming strategy.

On the opposite you can specify the override restartingPolicy. In that case you’ll be able to override
whatever you written before (for that particular keyName) on your bucket.

NOTE

from(kafka("topic2").brokers("localhost:9092"))
 .log("Kafka Message is: ${body}")
 .to(aws2S3("camel-
bucket").streamingUploadMode(true).batchMessageNumber(25).namingStrategy(AWS2S3EndpointBu
ilderFactory.AWSS3NamingStrategyEnum.progressive).keyName("
{{kafkaTopic2}}/{{kafkaTopic2}}.txt"));

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

112

NOTE

In Streaming upload mode the only keyName option that will be taken into account is the
endpoint option. Using the header will throw an NPE and this is done by design. Setting
the header means potentially change the file name on each exchange and this is against
the aim of the streaming upload producer. The keyName needs to be fixed and static.
The selected naming strategy will do the rest of the of the work.

Another possibility is specifying a streamingUploadTimeout with batchMessageNumber and batchSize
options. With this option the user will be able to complete the upload of a file after a certain time
passed. In this way the upload completion will be passed on three tiers: the timeout, the number of
messages and the batch size.

As an example:

In this case the upload will be completed after 10 seconds.

5.8. BUCKET AUTOCREATION

With the option autoCreateBucket users are able to avoid the autocreation of an S3 Bucket in case it
doesn’t exist. The default for this option is true. If set to false any operation on a not-existent bucket in
AWS won’t be successful and an error will be returned.

5.9. MOVING STUFF BETWEEN A BUCKET AND ANOTHER BUCKET

Some users like to consume stuff from a bucket and move the content in a different one without using
the copyObject feature of this component. If this is case for you, don’t forget to remove the
bucketName header from the incoming exchange of the consumer, otherwise the file will be always
overwritten on the same original bucket.

5.10. MOVEAFTERREAD CONSUMER OPTION

In addition to deleteAfterRead it has been added another option, moveAfterRead. With this option
enabled the consumed object will be moved to a target destinationBucket instead of being only deleted.
This will require specifying the destinationBucket option. As example:

In this case the objects consumed will be moved to myothercamelbucket bucket and deleted from the
original one (because of deleteAfterRead set to true as default).

You have also the possibility of using a key prefix/suffix while moving the file to a different bucket. The
options are destinationBucketPrefix and destinationBucketSuffix.

from(kafka("topic1").brokers("localhost:9092"))
 .log("Kafka Message is: ${body}")
 .to(aws2S3("camel-
bucket").streamingUploadMode(true).batchMessageNumber(25).streamingUploadTimeout(10000).na
mingStrategy(AWS2S3EndpointBuilderFactory.AWSS3NamingStrategyEnum.progressive).keyName(
"{{kafkaTopic1}}/{{kafkaTopic1}}.txt"));

 from("aws2-s3://mycamelbucket?
amazonS3Client=#amazonS3Client&moveAfterRead=true&destinationBucket=myothercamelbucket")
 .to("mock:result");

CHAPTER 5. AWS S3 STORAGE SERVICE

113

Taking the above example, you could do something like:

In this case the objects consumed will be moved to myothercamelbucket bucket and deleted from the
original one (because of deleteAfterRead set to true as default).

So if the file name is test, in the myothercamelbucket you should see a file called pre-test-suff.

5.11. USING CUSTOMER KEY AS ENCRYPTION

We introduced also the customer key support (an alternative of using KMS). The following code shows
an example.

5.12. USING A POJO AS BODY

Sometimes build an AWS Request can be complex, because of multiple options. We introduce the
possibility to use a POJO as body. In AWS S3 there are multiple operations you can submit, as an
example for List brokers request, you can do something like:

In this way you’ll pass the request directly without the need of passing headers and options specifically
related to this operation.

5.13. CREATE S3 CLIENT AND ADD COMPONENT TO REGISTRY

Sometimes you would want to perform some advanced configuration using AWS2S3Configuration which
also allows to set the S3 client. You can create and set the S3 client in the component configuration as
shown in the following example

 from("aws2-s3://mycamelbucket?
amazonS3Client=#amazonS3Client&moveAfterRead=true&destinationBucket=myothercamelbucket&des
tinationBucketPrefix=RAW(pre-)&destinationBucketSuffix=RAW(-suff)")
 .to("mock:result");

String key = UUID.randomUUID().toString();
byte[] secretKey = generateSecretKey();
String b64Key = Base64.getEncoder().encodeToString(secretKey);
String b64KeyMd5 = Md5Utils.md5AsBase64(secretKey);

String awsEndpoint = "aws2-s3://mycamel?
autoCreateBucket=false&useCustomerKey=true&customerKeyId=RAW(" + b64Key +
")&customerKeyMD5=RAW(" + b64KeyMd5 + ")&customerAlgorithm=" + AES256.name();

from("direct:putObject")
 .setHeader(AWS2S3Constants.KEY, constant("test.txt"))
 .setBody(constant("Test"))
 .to(awsEndpoint);

from("direct:aws2-s3")
 .setBody(ListObjectsRequest.builder().bucket(bucketName).build())
 .to("aws2-s3://test?
amazonS3Client=#amazonS3Client&operation=listObjects&pojoRequest=true")

String awsBucketAccessKey = "your_access_key";
String awsBucketSecretKey = "your_secret_key";

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

114

Now you can configure the S3 component (using the configuration object created above) and add it to
the registry in the configure method before initialization of routes.

Now your component will be used for all the operations implemented in camel routes.

5.14. DEPENDENCIES

Maven users will need to add the following dependency to their pom.xml.

pom.xml

where 3.14.2 must be replaced by the actual version of Camel.

5.15. SPRING BOOT AUTO-CONFIGURATION

When using aws2-s3 with Spring Boot make sure to use the following Maven dependency to have
support for auto configuration:

The component supports 51 options, which are listed below.

S3Client s3Client =
S3Client.builder().credentialsProvider(StaticCredentialsProvider.create(AwsBasicCredentials.create(aws
BucketAccessKey, awsBucketSecretKey)))
 .region(Region.US_EAST_1).build();

AWS2S3Configuration configuration = new AWS2S3Configuration();
configuration.setAmazonS3Client(s3Client);
configuration.setAutoDiscoverClient(true);
configuration.setBucketName("s3bucket2020");
configuration.setRegion("us-east-1");

AWS2S3Component s3Component = new AWS2S3Component(getContext());
s3Component.setConfiguration(configuration);
s3Component.setLazyStartProducer(true);
camelContext.addComponent("aws2-s3", s3Component);

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-aws2-s3</artifactId>
 <version>${camel-version}</version>
</dependency>

<dependency>
 <groupId>org.apache.camel.springboot</groupId>
 <artifactId>camel-aws2-s3-starter</artifactId>
 <version>3.14.5.redhat-00032</version>
 <!-- Use your Camel Spring Boot version -->
</dependency>

CHAPTER 5. AWS S3 STORAGE SERVICE

115

Name Description Defaul
t

Type

camel.component
.aws2-s3.access-
key

Amazon AWS Access Key. String

camel.component
.aws2-s3.amazon-
s3-client

Reference to a
com.amazonaws.services.s3.AmazonS3 in the
registry. The option is a
software.amazon.awssdk.services.s3.S3Client type.

 S3Client

camel.component
.aws2-s3.amazon-
s3-presigner

An S3 Presigner for Request, used mainly in
createDownloadLink operation. The option is a
software.amazon.awssdk.services.s3.presigner.S3Pre
signer type.

 S3Presigner

camel.component
.aws2-s3.auto-
create-bucket

Setting the autocreation of the S3 bucket
bucketName. This will apply also in case of
moveAfterRead option enabled and it will create the
destinationBucket if it doesn’t exist already.

false Boolean

camel.component
.aws2-
s3.autoclose-
body

If this option is true and includeBody is false, then the
S3Object.close() method will be called on exchange
completion. This option is strongly related to
includeBody option. In case of setting includeBody to
false and autocloseBody to false, it will be up to the
caller to close the S3Object stream. Setting
autocloseBody to true, will close the S3Object
stream automatically.

true Boolean

camel.component
.aws2-
s3.autowired-
enabled

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true Boolean

camel.component
.aws2-s3.aws-k-
m-s-key-id

Define the id of KMS key to use in case KMS is
enabled.

 String

camel.component
.aws2-s3.batch-
message-number

The number of messages composing a batch in
streaming upload mode.

10 Integer

camel.component
.aws2-s3.batch-
size

The batch size (in bytes) in streaming upload mode. 10000
00

Integer

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

116

camel.component
.aws2-s3.bridge-
error-handler

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false Boolean

camel.component
.aws2-
s3.configuration

The component configuration. The option is a
org.apache.camel.component.aws2.s3.AWS2S3Confi
guration type.

 AWS2S3Configura
tion

camel.component
.aws2-
s3.customer-
algorithm

Define the customer algorithm to use in case
CustomerKey is enabled.

 String

camel.component
.aws2-
s3.customer-key-
id

Define the id of Customer key to use in case
CustomerKey is enabled.

 String

camel.component
.aws2-
s3.customer-key-
m-d5

Define the MD5 of Customer key to use in case
CustomerKey is enabled.

 String

camel.component
.aws2-s3.delete-
after-read

Delete objects from S3 after they have been
retrieved. The delete is only performed if the
Exchange is committed. If a rollback occurs, the
object is not deleted. If this option is false, then the
same objects will be retrieve over and over again on
the polls. Therefore you need to use the Idempotent
Consumer EIP in the route to filter out duplicates.
You can filter using the
AWS2S3Constants#BUClKET_NAME and
AWS2S3Constants#KEY headers, or only the
AWS2S3Constants#KEY header.

true Boolean

camel.component
.aws2-s3.delete-
after-write

Delete file object after the S3 file has been uploaded. false Boolean

camel.component
.aws2-s3.delimiter

The delimiter which is used in the
com.amazonaws.services.s3.model.ListObjectsReque
st to only consume objects we are interested in.

 String

Name Description Defaul
t

Type

CHAPTER 5. AWS S3 STORAGE SERVICE

117

camel.component
.aws2-
s3.destination-
bucket

Define the destination bucket where an object must
be moved when moveAfterRead is set to true.

 String

camel.component
.aws2-
s3.destination-
bucket-prefix

Define the destination bucket prefix to use when an
object must be moved and moveAfterRead is set to
true.

 String

camel.component
.aws2-
s3.destination-
bucket-suffix

Define the destination bucket suffix to use when an
object must be moved and moveAfterRead is set to
true.

 String

camel.component
.aws2-s3.done-
file-name

If provided, Camel will only consume files if a done
file exists.

 String

camel.component
.aws2-s3.enabled

Whether to enable auto configuration of the aws2-s3
component. This is enabled by default.

 Boolean

camel.component
.aws2-s3.file-
name

To get the object from the bucket with the given file
name.

 String

camel.component
.aws2-s3.ignore-
body

If it is true, the S3 Object Body will be ignored
completely, if it is set to false the S3 Object will be
put in the body. Setting this to true, will override any
behavior defined by includeBody option.

false Boolean

camel.component
.aws2-s3.include-
body

If it is true, the S3Object exchange will be consumed
and put into the body and closed. If false the
S3Object stream will be put raw into the body and
the headers will be set with the S3 object metadata.
This option is strongly related to autocloseBody
option. In case of setting includeBody to true
because the S3Object stream will be consumed then
it will also be closed, while in case of includeBody
false then it will be up to the caller to close the
S3Object stream. However setting autocloseBody to
true when includeBody is false it will schedule to
close the S3Object stream automatically on
exchange completion.

true Boolean

camel.component
.aws2-s3.include-
folders

If it is true, the folders/directories will be consumed.
If it is false, they will be ignored, and Exchanges will
not be created for those.

true Boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

118

camel.component
.aws2-s3.key-
name

Setting the key name for an element in the bucket
through endpoint parameter.

 String

camel.component
.aws2-s3.lazy-
start-producer

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false Boolean

camel.component
.aws2-s3.move-
after-read

Move objects from S3 bucket to a different bucket
after they have been retrieved. To accomplish the
operation the destinationBucket option must be set.
The copy bucket operation is only performed if the
Exchange is committed. If a rollback occurs, the
object is not moved.

false Boolean

camel.component
.aws2-s3.multi-
part-upload

If it is true, camel will upload the file with multi part
format, the part size is decided by the option of
partSize.

false Boolean

camel.component
.aws2-s3.naming-
strategy

The naming strategy to use in streaming upload
mode.

 AWSS3NamingStr
ategyEnum

camel.component
.aws2-
s3.operation

The operation to do in case the user don’t want to do
only an upload.

 AWS2S3Operatio
ns

camel.component
.aws2-
s3.override-
endpoint

Set the need for overidding the endpoint. This option
needs to be used in combination with
uriEndpointOverride option.

false Boolean

camel.component
.aws2-s3.part-
size

Setup the partSize which is used in multi part upload,
the default size is 25M.

262144
00

Long

camel.component
.aws2-s3.pojo-
request

If we want to use a POJO request as body or not. false Boolean

Name Description Defaul
t

Type

CHAPTER 5. AWS S3 STORAGE SERVICE

119

camel.component
.aws2-s3.policy

The policy for this queue to set in the
com.amazonaws.services.s3.AmazonS3#setBucketP
olicy() method.

 String

camel.component
.aws2-s3.prefix

The prefix which is used in the
com.amazonaws.services.s3.model.ListObjectsReque
st to only consume objects we are interested in.

 String

camel.component
.aws2-s3.proxy-
host

To define a proxy host when instantiating the SQS
client.

 String

camel.component
.aws2-s3.proxy-
port

Specify a proxy port to be used inside the client
definition.

 Integer

camel.component
.aws2-s3.proxy-
protocol

To define a proxy protocol when instantiating the S3
client.

 Protocol

camel.component
.aws2-s3.region

The region in which S3 client needs to work. When
using this parameter, the configuration will expect the
lowercase name of the region (for example ap-east-
1) You’ll need to use the name
Region.EU_WEST_1.id().

 String

camel.component
.aws2-
s3.restarting-
policy

The restarting policy to use in streaming upload
mode.

 AWSS3Restarting
PolicyEnum

camel.component
.aws2-s3.secret-
key

Amazon AWS Secret Key. String

camel.component
.aws2-s3.storage-
class

The storage class to set in the
com.amazonaws.services.s3.model.PutObjectReques
t request.

 String

camel.component
.aws2-
s3.streaming-
upload-mode

When stream mode is true the upload to bucket will
be done in streaming.

false Boolean

camel.component
.aws2-
s3.streaming-
upload-timeout

While streaming upload mode is true, this option set
the timeout to complete upload.

 Long

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

120

camel.component
.aws2-s3.trust-
all-certificates

If we want to trust all certificates in case of overriding
the endpoint.

false Boolean

camel.component
.aws2-s3.uri-
endpoint-
override

Set the overriding uri endpoint. This option needs to
be used in combination with overrideEndpoint option.

 String

camel.component
.aws2-s3.use-
aws-k-m-s

Define if KMS must be used or not. false Boolean

camel.component
.aws2-s3.use-
customer-key

Define if Customer Key must be used or not. false Boolean

camel.component
.aws2-s3.use-
default-
credentials-
provider

Set whether the S3 client should expect to load
credentials through a default credentials provider or
to expect static credentials to be passed in.

false Boolean

Name Description Defaul
t

Type

CHAPTER 5. AWS S3 STORAGE SERVICE

121

CHAPTER 6. AWS SIMPLE NOTIFICATION SYSTEM (SNS)
Only producer is supported

The AWS2 SNS component allows messages to be sent to an Amazon Simple Notification Topic. The
implementation of the Amazon API is provided by the AWS SDK.

Prerequisites

You must have a valid Amazon Web Services developer account, and be signed up to use Amazon SNS.
More information is available at Amazon SNS.

6.1. URI FORMAT

aws2-sns://topicNameOrArn[?options]

The topic will be created if they don’t already exists. You can append query options to the URI in the
following format, ?options=value&option2=value&…

6.2. URI OPTIONS

6.2.1. Configuring Options

Camel components are configured on two separate levels:

component level

endpoint level

6.2.1.1. Configuring Component Options

The component level is the highest level which holds general and common configurations that are
inherited by the endpoints. For example a component may have security settings, credentials for
authentication, urls for network connection and so forth.

Some components only have a few options, and others may have many. Because components typically
have pre configured defaults that are commonly used, then you may often only need to configure a few
options on a component; or none at all.

Configuring components can be done with the Component DSL, in a configuration file
(application.properties|yaml), or directly with Java code.

6.2.1.2. Configuring Endpoint Options

Where you find yourself configuring the most is on endpoints, as endpoints often have many options,
which allows you to configure what you need the endpoint to do. The options are also categorized into
whether the endpoint is used as consumer (from) or as a producer (to), or used for both.

Configuring endpoints is most often done directly in the endpoint URI as path and query parameters.
You can also use the Endpoint DSL as a type safe way of configuring endpoints.

A good practice when configuring options is to use Property Placeholders, which allows to not hardcode
urls, port numbers, sensitive information, and other settings. In other words placeholders allows to
externalize the configuration from your code, and gives more flexibility and reuse.

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

122

https://aws.amazon.com/sns
https://aws.amazon.com/sdkforjava/
https://aws.amazon.com/sns
https://camel.apache.org/manual/component-dsl.html
https://camel.apache.org/manual/Endpoint-dsl.html
https://camel.apache.org/manual/using-propertyplaceholder.html

The following two sections lists all the options, firstly for the component followed by the endpoint.

6.3. COMPONENT OPTIONS

The AWS Simple Notification System (SNS) component supports 24 options, which are listed below.

Name Description Defaul
t

Type

amazonSNSClient
(producer)

Autowired To use the AmazonSNS as the client. SnsClient

autoCreateTopic
(producer)

Setting the autocreation of the topic. false boolean

configuration
(producer)

Component configuration. Sns2Configuration

kmsMasterKeyId
(producer)

The ID of an AWS-managed customer master key
(CMK) for Amazon SNS or a custom CMK.

 String

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

messageDeduplic
ationIdStrategy
(producer)

Only for FIFO Topic. Strategy for setting the
messageDeduplicationId on the message. Can be one
of the following options: useExchangeId,
useContentBasedDeduplication. For the
useContentBasedDeduplication option, no
messageDeduplicationId will be set on the message.

Enum values:

useExchangeId

useContentBasedDeduplication

useExc
hangeI
d

String

CHAPTER 6. AWS SIMPLE NOTIFICATION SYSTEM (SNS)

123

messageGroupId
Strategy
(producer)

Only for FIFO Topic. Strategy for setting the
messageGroupId on the message. Can be one of the
following options: useConstant, useExchangeId,
usePropertyValue. For the usePropertyValue option,
the value of property CamelAwsMessageGroupId will
be used.

Enum values:

useConstant

useExchangeId

usePropertyValue

 String

messageStructur
e (producer)

The message structure to use such as json. String

overrideEndpoint
(producer)

Set the need for overidding the endpoint. This option
needs to be used in combination with
uriEndpointOverride option.

false boolean

policy (producer) The policy for this topic. Is loaded by default from
classpath, but you can prefix with classpath:, file:, or
http: to load the resource from different systems.

 String

proxyHost
(producer)

To define a proxy host when instantiating the SNS
client.

 String

proxyPort
(producer)

To define a proxy port when instantiating the SNS
client.

 Integer

proxyProtocol
(producer)

To define a proxy protocol when instantiating the
SNS client.

Enum values:

HTTP

HTTPS

HTTPS Protocol

queueUrl
(producer)

The queueUrl to subscribe to. String

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

124

region (producer) The region in which SNS client needs to work. When
using this parameter, the configuration will expect the
lowercase name of the region (for example ap-east-
1) You’ll need to use the name
Region.EU_WEST_1.id().

 String

serverSideEncryp
tionEnabled
(producer)

Define if Server Side Encryption is enabled or not on
the topic.

false boolean

subject (producer) The subject which is used if the message header
'CamelAwsSnsSubject' is not present.

 String

subscribeSNStoS
QS (producer)

Define if the subscription between SNS Topic and
SQS must be done or not.

false boolean

trustAllCertificate
s (producer)

If we want to trust all certificates in case of overriding
the endpoint.

false boolean

uriEndpointOverri
de (producer)

Set the overriding uri endpoint. This option needs to
be used in combination with overrideEndpoint option.

 String

useDefaultCrede
ntialsProvider
(producer)

Set whether the SNS client should expect to load
credentials on an AWS infra instance or to expect
static credentials to be passed in.

false boolean

autowiredEnabled
(advanced)

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true boolean

accessKey
(security)

Amazon AWS Access Key. String

secretKey
(security)

Amazon AWS Secret Key. String

Name Description Defaul
t

Type

6.4. ENDPOINT OPTIONS

The AWS Simple Notification System (SNS) endpoint is configured using URI syntax:

aws2-sns:topicNameOrArn

with the following path and query parameters:

CHAPTER 6. AWS SIMPLE NOTIFICATION SYSTEM (SNS)

125

6.4.1. Path Parameters (1 parameters)

Name Description Defaul
t

Type

topicNameOrArn
(producer)

Required Topic name or ARN. String

6.4.2. Query Parameters (23 parameters)

Name Description Defaul
t

Type

amazonSNSClient
(producer)

Autowired To use the AmazonSNS as the client. SnsClient

autoCreateTopic
(producer)

Setting the autocreation of the topic. false boolean

headerFilterStrat
egy (producer)

To use a custom HeaderFilterStrategy to map
headers to/from Camel.

 HeaderFilterStrate
gy

kmsMasterKeyId
(producer)

The ID of an AWS-managed customer master key
(CMK) for Amazon SNS or a custom CMK.

 String

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

messageDeduplic
ationIdStrategy
(producer)

Only for FIFO Topic. Strategy for setting the
messageDeduplicationId on the message. Can be one
of the following options: useExchangeId,
useContentBasedDeduplication. For the
useContentBasedDeduplication option, no
messageDeduplicationId will be set on the message.

Enum values:

useExchangeId

useContentBasedDeduplication

useExc
hangeI
d

String

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

126

messageGroupId
Strategy
(producer)

Only for FIFO Topic. Strategy for setting the
messageGroupId on the message. Can be one of the
following options: useConstant, useExchangeId,
usePropertyValue. For the usePropertyValue option,
the value of property CamelAwsMessageGroupId will
be used.

Enum values:

useConstant

useExchangeId

usePropertyValue

 String

messageStructur
e (producer)

The message structure to use such as json. String

overrideEndpoint
(producer)

Set the need for overidding the endpoint. This option
needs to be used in combination with
uriEndpointOverride option.

false boolean

policy (producer) The policy for this topic. Is loaded by default from
classpath, but you can prefix with classpath:, file:, or
http: to load the resource from different systems.

 String

proxyHost
(producer)

To define a proxy host when instantiating the SNS
client.

 String

proxyPort
(producer)

To define a proxy port when instantiating the SNS
client.

 Integer

proxyProtocol
(producer)

To define a proxy protocol when instantiating the
SNS client.

Enum values:

HTTP

HTTPS

HTTPS Protocol

queueUrl
(producer)

The queueUrl to subscribe to. String

Name Description Defaul
t

Type

CHAPTER 6. AWS SIMPLE NOTIFICATION SYSTEM (SNS)

127

region (producer) The region in which SNS client needs to work. When
using this parameter, the configuration will expect the
lowercase name of the region (for example ap-east-
1) You’ll need to use the name
Region.EU_WEST_1.id().

 String

serverSideEncryp
tionEnabled
(producer)

Define if Server Side Encryption is enabled or not on
the topic.

false boolean

subject (producer) The subject which is used if the message header
'CamelAwsSnsSubject' is not present.

 String

subscribeSNStoS
QS (producer)

Define if the subscription between SNS Topic and
SQS must be done or not.

false boolean

trustAllCertificate
s (producer)

If we want to trust all certificates in case of overriding
the endpoint.

false boolean

uriEndpointOverri
de (producer)

Set the overriding uri endpoint. This option needs to
be used in combination with overrideEndpoint option.

 String

useDefaultCrede
ntialsProvider
(producer)

Set whether the SNS client should expect to load
credentials on an AWS infra instance or to expect
static credentials to be passed in.

false boolean

accessKey
(security)

Amazon AWS Access Key. String

secretKey
(security)

Amazon AWS Secret Key. String

Name Description Defaul
t

Type

Required SNS component options

You have to provide the amazonSNSClient in the Registry or your accessKey and secretKey to access
the Amazon’s SNS.

6.5. USAGE

6.5.1. Static credentials vs Default Credential Provider

You have the possibility of avoiding the usage of explicit static credentials, by specifying the
useDefaultCredentialsProvider option and set it to true.

Java system properties - aws.accessKeyId and aws.secretKey

Environment variables - AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY.

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

128

https://aws.amazon.com/sns

Web Identity Token from AWS STS.

The shared credentials and config files.

Amazon ECS container credentials - loaded from the Amazon ECS if the environment variable
AWS_CONTAINER_CREDENTIALS_RELATIVE_URI is set.

Amazon EC2 Instance profile credentials.

For more information about this you can look at AWS credentials documentation.

6.5.2. Message headers evaluated by the SNS producer

Header Type Description

CamelAwsSnsSubject String The Amazon SNS message subject. If not set, the
subject from the SnsConfiguration is used.

6.5.3. Message headers set by the SNS producer

Header Type Description

CamelAwsSnsMessageId String The Amazon SNS message ID.

6.5.4. Advanced AmazonSNS configuration

If you need more control over the SnsClient instance configuration you can create your own instance
and refer to it from the URI:

The #client refers to a AmazonSNS in the Registry.

6.5.5. Create a subscription between an AWS SNS Topic and an AWS SQS Queue

You can create a subscription of an SQS Queue to an SNS Topic in this way:

The #amazonSNSClient refers to a SnsClient in the Registry. By specifying subscribeSNStoSQS to
true and a queueUrl of an existing SQS Queue, you’ll be able to subscribe your SQS Queue to your SNS
Topic.

At this point you can consume messages coming from SNS Topic through your SQS Queue

from("direct:start")
.to("aws2-sns://MyTopic?amazonSNSClient=#client");

from("direct:start")
.to("aws2-sns://test-camel-sns1?
amazonSNSClient=#amazonSNSClient&subscribeSNStoSQS=true&queueUrl=https://sqs.eu-central-
1.amazonaws.com/780410022472/test-camel");

CHAPTER 6. AWS SIMPLE NOTIFICATION SYSTEM (SNS)

129

https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/credentials.html

6.6. TOPIC AUTOCREATION

With the option autoCreateTopic users are able to avoid the autocreation of an SNS Topic in case it
doesn’t exist. The default for this option is true. If set to false any operation on a not-existent topic in
AWS won’t be successful and an error will be returned.

6.7. SNS FIFO

SNS FIFO are supported. While creating the SQS queue you will subscribe to the SNS topic there is an
important point to remember, you’ll need to make possible for the SNS Topic to send message to the
SQS Queue.

Example

Suppose you created an SNS FIFO Topic called Order.fifo and an SQS Queue called QueueSub.fifo.

In the access Policy of the QueueSub.fifo you should submit something like this:

This is a critical step to make the subscription work correctly.

6.7.1. SNS Fifo Topic Message group Id Strategy and message Deduplication Id

from("aws2-sqs://test-camel?
amazonSQSClient=#amazonSQSClient&delay=50&maxMessagesPerPoll=5")
 .to(...);

{
 "Version": "2008-10-17",
 "Id": "__default_policy_ID",
 "Statement": [
 {
 "Sid": "__owner_statement",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::780560123482:root"
 },
 "Action": "SQS:*",
 "Resource": "arn:aws:sqs:eu-west-1:780560123482:QueueSub.fifo"
 },
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "sns.amazonaws.com"
 },
 "Action": "SQS:SendMessage",
 "Resource": "arn:aws:sqs:eu-west-1:780560123482:QueueSub.fifo",
 "Condition": {
 "ArnLike": {
 "aws:SourceArn": "arn:aws:sns:eu-west-1:780410022472:Order.fifo"
 }
 }
 }
]
}

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

130

6.7.1. SNS Fifo Topic Message group Id Strategy and message Deduplication Id
Strategy

When sending something to the FIFO topic you’ll need to always set up a message group Id strategy.

If the content-based message deduplication has been enabled on the SNS Fifo topic, where won’t be
the need of setting a message deduplication id strategy, otherwise you’ll have to set it.

6.8. EXAMPLES

6.8.1. Producer Examples

Sending to a topic

6.9. DEPENDENCIES

Maven users will need to add the following dependency to their pom.xml.

pom.xml

where 3.14.2 must be replaced by the actual version of Camel.

6.10. SPRING BOOT AUTO-CONFIGURATION

When using aws2-sns with Spring Boot make sure to use the following Maven dependency to have
support for auto configuration:

The component supports 25 options, which are listed below.

Name Description Defaul
t

Type

camel.component
.aws2-sns.access-
key

Amazon AWS Access Key. String

from("direct:start")
 .to("aws2-sns://camel-topic?subject=The+subject+message&autoCreateTopic=true");

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-aws2-sns</artifactId>
 <version>${camel-version}</version>
</dependency>

<dependency>
 <groupId>org.apache.camel.springboot</groupId>
 <artifactId>camel-aws2-sns-starter</artifactId>
 <version>3.14.5.redhat-00032</version>
 <!-- Use your Camel Spring Boot version -->
</dependency>

CHAPTER 6. AWS SIMPLE NOTIFICATION SYSTEM (SNS)

131

camel.component
.aws2-
sns.amazon-s-n-
s-client

To use the AmazonSNS as the client. The option is a
software.amazon.awssdk.services.sns.SnsClient type.

 SnsClient

camel.component
.aws2-sns.auto-
create-topic

Setting the autocreation of the topic. false Boolean

camel.component
.aws2-
sns.autowired-
enabled

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true Boolean

camel.component
.aws2-
sns.configuration

Component configuration. The option is a
org.apache.camel.component.aws2.sns.Sns2Configur
ation type.

 Sns2Configuration

camel.component
.aws2-sns.enabled

Whether to enable auto configuration of the aws2-
sns component. This is enabled by default.

 Boolean

camel.component
.aws2-sns.kms-
master-key-id

The ID of an AWS-managed customer master key
(CMK) for Amazon SNS or a custom CMK.

 String

camel.component
.aws2-sns.lazy-
start-producer

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false Boolean

camel.component
.aws2-
sns.message-
deduplication-id-
strategy

Only for FIFO Topic. Strategy for setting the
messageDeduplicationId on the message. Can be one
of the following options: useExchangeId,
useContentBasedDeduplication. For the
useContentBasedDeduplication option, no
messageDeduplicationId will be set on the message.

useExc
hangeI
d

String

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

132

camel.component
.aws2-
sns.message-
group-id-
strategy

Only for FIFO Topic. Strategy for setting the
messageGroupId on the message. Can be one of the
following options: useConstant, useExchangeId,
usePropertyValue. For the usePropertyValue option,
the value of property CamelAwsMessageGroupId will
be used.

 String

camel.component
.aws2-
sns.message-
structure

The message structure to use such as json. String

camel.component
.aws2-
sns.override-
endpoint

Set the need for overidding the endpoint. This option
needs to be used in combination with
uriEndpointOverride option.

false Boolean

camel.component
.aws2-sns.policy

The policy for this topic. Is loaded by default from
classpath, but you can prefix with classpath:, file:, or
http: to load the resource from different systems.

 String

camel.component
.aws2-sns.proxy-
host

To define a proxy host when instantiating the SNS
client.

 String

camel.component
.aws2-sns.proxy-
port

To define a proxy port when instantiating the SNS
client.

 Integer

camel.component
.aws2-sns.proxy-
protocol

To define a proxy protocol when instantiating the
SNS client.

 Protocol

camel.component
.aws2-sns.queue-
url

The queueUrl to subscribe to. String

camel.component
.aws2-sns.region

The region in which SNS client needs to work. When
using this parameter, the configuration will expect the
lowercase name of the region (for example ap-east-
1) You’ll need to use the name
Region.EU_WEST_1.id().

 String

camel.component
.aws2-sns.secret-
key

Amazon AWS Secret Key. String

Name Description Defaul
t

Type

CHAPTER 6. AWS SIMPLE NOTIFICATION SYSTEM (SNS)

133

camel.component
.aws2-sns.server-
side-encryption-
enabled

Define if Server Side Encryption is enabled or not on
the topic.

false Boolean

camel.component
.aws2-sns.subject

The subject which is used if the message header
'CamelAwsSnsSubject' is not present.

 String

camel.component
.aws2-
sns.subscribe-s-
n-sto-s-q-s

Define if the subscription between SNS Topic and
SQS must be done or not.

false Boolean

camel.component
.aws2-sns.trust-
all-certificates

If we want to trust all certificates in case of overriding
the endpoint.

false Boolean

camel.component
.aws2-sns.uri-
endpoint-
override

Set the overriding uri endpoint. This option needs to
be used in combination with overrideEndpoint option.

 String

camel.component
.aws2-sns.use-
default-
credentials-
provider

Set whether the SNS client should expect to load
credentials on an AWS infra instance or to expect
static credentials to be passed in.

false Boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

134

CHAPTER 7. AWS SIMPLE QUEUE SERVICE (SQS)
Both producer and consumer are supported

The AWS2 SQS component supports sending and receiving messages to Amazon’s SQS service .

Prerequisites

You must have a valid Amazon Web Services developer account, and be signed up to use Amazon SQS.
More information is available at Amazon SQS.

7.1. URI FORMAT

aws2-sqs://queueNameOrArn[?options]

The queue will be created if they don’t already exists. You can append query options to the URI in the
following format,

?options=value&option2=value&…

7.2. CONFIGURING OPTIONS

Camel components are configured on two separate levels:

component level

endpoint level

7.2.1. Configuring Component Options

The component level is the highest level which holds general and common configurations that are
inherited by the endpoints. For example a component may have security settings, credentials for
authentication, urls for network connection and so forth.

Some components only have a few options, and others may have many. Because components typically
have pre configured defaults that are commonly used, then you may often only need to configure a few
options on a component; or none at all.

Configuring components can be done with the Component DSL, in a configuration file
(application.properties|yaml), or directly with Java code.

7.2.2. Configuring Endpoint Options

Where you find yourself configuring the most is on endpoints, as endpoints often have many options,
which allows you to configure what you need the endpoint to do. The options are also categorized into
whether the endpoint is used as consumer (from) or as a producer (to), or used for both.

Configuring endpoints is most often done directly in the endpoint URI as path and query parameters.
You can also use the Endpoint DSL as a type safe way of configuring endpoints.

A good practice when configuring options is to use Property Placeholders, which allows to not hardcode
urls, port numbers, sensitive information, and other settings. In other words placeholders allows to
externalize the configuration from your code, and gives more flexibility and reuse.

CHAPTER 7. AWS SIMPLE QUEUE SERVICE (SQS)

135

https://aws.amazon.com/sqs
https://aws.amazon.com/sqs
https://camel.apache.org/manual/component-dsl.html
https://camel.apache.org/manual/Endpoint-dsl.html
https://camel.apache.org/manual/using-propertyplaceholder.html

The following two sections lists all the options, firstly for the component followed by the endpoint.

7.3. COMPONENT OPTIONS

The AWS Simple Queue Service (SQS) component supports 43 options, which are listed below.

Name Description Defaul
t

Type

amazonAWSHost
(common)

The hostname of the Amazon AWS cloud. amazo
naws.c
om

String

amazonSQSClient
(common)

Autowired To use the AmazonSQS as client. SqsClient

autoCreateQueue
(common)

Setting the autocreation of the queue. false boolean

configuration
(common)

The AWS SQS default configuration. Sqs2Configuration

overrideEndpoint
(common)

Set the need for overidding the endpoint. This option
needs to be used in combination with
uriEndpointOverride option.

false boolean

protocol
(common)

The underlying protocol used to communicate with
SQS.

https String

proxyProtocol
(common)

To define a proxy protocol when instantiating the
SQS client.

Enum values:

HTTP

HTTPS

HTTPS Protocol

queueOwnerAWS
AccountId
(common)

Specify the queue owner aws account id when you
need to connect the queue with different account
owner.

 String

region (common) The region in which SQS client needs to work. When
using this parameter, the configuration will expect the
lowercase name of the region (for example ap-east-
1) You’ll need to use the name
Region.EU_WEST_1.id().

 String

trustAllCertificate
s (common)

If we want to trust all certificates in case of overriding
the endpoint.

false boolean

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

136

uriEndpointOverri
de (common)

Set the overriding uri endpoint. This option needs to
be used in combination with overrideEndpoint option.

 String

useDefaultCrede
ntialsProvider
(common)

Set whether the SQS client should expect to load
credentials on an AWS infra instance or to expect
static credentials to be passed in.

false boolean

attributeNames
(consumer)

A list of attribute names to receive when consuming.
Multiple names can be separated by comma.

 String

bridgeErrorHandl
er (consumer)

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false boolean

concurrentConsu
mers (consumer)

Allows you to use multiple threads to poll the sqs
queue to increase throughput.

1 int

defaultVisibilityTi
meout (consumer)

The default visibility timeout (in seconds). Integer

deleteAfterRead
(consumer)

Delete message from SQS after it has been read. true boolean

deleteIfFiltered
(consumer)

Whether or not to send the DeleteMessage to the
SQS queue if the exchange has property with key
Sqs2Constants#SQS_DELETE_FILTERED
(CamelAwsSqsDeleteFiltered) set to true.

true boolean

extendMessageVi
sibility (consumer)

If enabled then a scheduled background task will
keep extending the message visibility on SQS. This is
needed if it takes a long time to process the message.
If set to true defaultVisibilityTimeout must be set.

false boolean

kmsDataKeyReus
ePeriodSeconds
(consumer)

The length of time, in seconds, for which Amazon
SQS can reuse a data key to encrypt or decrypt
messages before calling AWS KMS again. An integer
representing seconds, between 60 seconds (1
minute) and 86,400 seconds (24 hours). Default:
300 (5 minutes).

 Integer

Name Description Defaul
t

Type

CHAPTER 7. AWS SIMPLE QUEUE SERVICE (SQS)

137

kmsMasterKeyId
(consumer)

The ID of an AWS-managed customer master key
(CMK) for Amazon SQS or a custom CMK.

 String

messageAttribute
Names
(consumer)

A list of message attribute names to receive when
consuming. Multiple names can be separated by
comma.

 String

serverSideEncryp
tionEnabled
(consumer)

Define if Server Side Encryption is enabled or not on
the queue.

false boolean

visibilityTimeout
(consumer)

The duration (in seconds) that the received
messages are hidden from subsequent retrieve
requests after being retrieved by a ReceiveMessage
request to set in the
com.amazonaws.services.sqs.model.SetQueueAttribu
tesRequest. This only make sense if its different from
defaultVisibilityTimeout. It changes the queue
visibility timeout attribute permanently.

 Integer

waitTimeSeconds
(consumer)

Duration in seconds (0 to 20) that the
ReceiveMessage action call will wait until a message
is in the queue to include in the response.

 Integer

batchSeparator
(producer)

Set the separator when passing a String to send
batch message operation.

, String

delaySeconds
(producer)

Delay sending messages for a number of seconds. Integer

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

138

messageDeduplic
ationIdStrategy
(producer)

Only for FIFO queues. Strategy for setting the
messageDeduplicationId on the message. Can be one
of the following options: useExchangeId,
useContentBasedDeduplication. For the
useContentBasedDeduplication option, no
messageDeduplicationId will be set on the message.

Enum values:

useExchangeId

useContentBasedDeduplication

useExc
hangeI
d

String

messageGroupId
Strategy
(producer)

Only for FIFO queues. Strategy for setting the
messageGroupId on the message. Can be one of the
following options: useConstant, useExchangeId,
usePropertyValue. For the usePropertyValue option,
the value of property CamelAwsMessageGroupId will
be used.

Enum values:

useConstant

useExchangeId

usePropertyValue

 String

operation
(producer)

The operation to do in case the user don’t want to
send only a message.

Enum values:

sendBatchMessage

deleteMessage

listQueues

purgeQueue

deleteQueue

 Sqs2Operations

autowiredEnabled
(advanced)

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true boolean

Name Description Defaul
t

Type

CHAPTER 7. AWS SIMPLE QUEUE SERVICE (SQS)

139

delayQueue
(advanced)

Define if you want to apply delaySeconds option to
the queue or on single messages.

false boolean

queueUrl
(advanced)

To define the queueUrl explicitly. All other
parameters, which would influence the queueUrl, are
ignored. This parameter is intended to be used, to
connect to a mock implementation of SQS, for
testing purposes.

 String

proxyHost (proxy) To define a proxy host when instantiating the SQS
client.

 String

proxyPort (proxy) To define a proxy port when instantiating the SQS
client.

 Integer

maximumMessag
eSize (queue)

The maximumMessageSize (in bytes) an SQS
message can contain for this queue.

 Integer

messageRetentio
nPeriod (queue)

The messageRetentionPeriod (in seconds) a
message will be retained by SQS for this queue.

 Integer

policy (queue) The policy for this queue. It can be loaded by default
from classpath, but you can prefix with classpath:,
file:, or http: to load the resource from different
systems.

 String

receiveMessageW
aitTimeSeconds
(queue)

If you do not specify WaitTimeSeconds in the
request, the queue attribute
ReceiveMessageWaitTimeSeconds is used to
determine how long to wait.

 Integer

redrivePolicy
(queue)

Specify the policy that send message to DeadLetter
queue. See detail at Amazon docs.

 String

accessKey
(security)

Amazon AWS Access Key. String

secretKey
(security)

Amazon AWS Secret Key. String

Name Description Defaul
t

Type

7.4. ENDPOINT OPTIONS

The AWS Simple Queue Service (SQS) endpoint is configured using URI syntax:

aws2-sqs:queueNameOrArn

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

140

with the following path and query parameters:

7.4.1. Path Parameters (1 parameters)

Name Description Defaul
t

Type

queueNameOrArn
(common)

Required Queue name or ARN. String

7.4.2. Query Parameters (61 parameters)

Name Description Defaul
t

Type

amazonAWSHost
(common)

The hostname of the Amazon AWS cloud. amazo
naws.c
om

String

amazonSQSClient
(common)

Autowired To use the AmazonSQS as client. SqsClient

autoCreateQueue
(common)

Setting the autocreation of the queue. false boolean

headerFilterStrat
egy (common)

To use a custom HeaderFilterStrategy to map
headers to/from Camel.

 HeaderFilterStrate
gy

overrideEndpoint
(common)

Set the need for overidding the endpoint. This option
needs to be used in combination with
uriEndpointOverride option.

false boolean

protocol
(common)

The underlying protocol used to communicate with
SQS.

https String

proxyProtocol
(common)

To define a proxy protocol when instantiating the
SQS client.

Enum values:

HTTP

HTTPS

HTTPS Protocol

queueOwnerAWS
AccountId
(common)

Specify the queue owner aws account id when you
need to connect the queue with different account
owner.

 String

CHAPTER 7. AWS SIMPLE QUEUE SERVICE (SQS)

141

region (common) The region in which SQS client needs to work. When
using this parameter, the configuration will expect the
lowercase name of the region (for example ap-east-
1) You’ll need to use the name
Region.EU_WEST_1.id().

 String

trustAllCertificate
s (common)

If we want to trust all certificates in case of overriding
the endpoint.

false boolean

uriEndpointOverri
de (common)

Set the overriding uri endpoint. This option needs to
be used in combination with overrideEndpoint option.

 String

useDefaultCrede
ntialsProvider
(common)

Set whether the SQS client should expect to load
credentials on an AWS infra instance or to expect
static credentials to be passed in.

false boolean

attributeNames
(consumer)

A list of attribute names to receive when consuming.
Multiple names can be separated by comma.

 String

bridgeErrorHandl
er (consumer)

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false boolean

concurrentConsu
mers (consumer)

Allows you to use multiple threads to poll the sqs
queue to increase throughput.

1 int

defaultVisibilityTi
meout (consumer)

The default visibility timeout (in seconds). Integer

deleteAfterRead
(consumer)

Delete message from SQS after it has been read. true boolean

deleteIfFiltered
(consumer)

Whether or not to send the DeleteMessage to the
SQS queue if the exchange has property with key
Sqs2Constants#SQS_DELETE_FILTERED
(CamelAwsSqsDeleteFiltered) set to true.

true boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

142

extendMessageVi
sibility (consumer)

If enabled then a scheduled background task will
keep extending the message visibility on SQS. This is
needed if it takes a long time to process the message.
If set to true defaultVisibilityTimeout must be set.
See details at Amazon docs.

false boolean

kmsDataKeyReus
ePeriodSeconds
(consumer)

The length of time, in seconds, for which Amazon
SQS can reuse a data key to encrypt or decrypt
messages before calling AWS KMS again. An integer
representing seconds, between 60 seconds (1
minute) and 86,400 seconds (24 hours). Default:
300 (5 minutes).

 Integer

kmsMasterKeyId
(consumer)

The ID of an AWS-managed customer master key
(CMK) for Amazon SQS or a custom CMK.

 String

maxMessagesPer
Poll (consumer)

Gets the maximum number of messages as a limit to
poll at each polling. Is default unlimited, but use 0 or
negative number to disable it as unlimited.

 int

messageAttribute
Names
(consumer)

A list of message attribute names to receive when
consuming. Multiple names can be separated by
comma.

 String

sendEmptyMessa
geWhenIdle
(consumer)

If the polling consumer did not poll any files, you can
enable this option to send an empty message (no
body) instead.

false boolean

serverSideEncryp
tionEnabled
(consumer)

Define if Server Side Encryption is enabled or not on
the queue.

false boolean

visibilityTimeout
(consumer)

The duration (in seconds) that the received
messages are hidden from subsequent retrieve
requests after being retrieved by a ReceiveMessage
request to set in the
com.amazonaws.services.sqs.model.SetQueueAttribu
tesRequest. This only make sense if its different from
defaultVisibilityTimeout. It changes the queue
visibility timeout attribute permanently.

 Integer

waitTimeSeconds
(consumer)

Duration in seconds (0 to 20) that the
ReceiveMessage action call will wait until a message
is in the queue to include in the response.

 Integer

Name Description Defaul
t

Type

CHAPTER 7. AWS SIMPLE QUEUE SERVICE (SQS)

143

exceptionHandler
(consumer
(advanced))

To let the consumer use a custom ExceptionHandler.
Notice if the option bridgeErrorHandler is enabled
then this option is not in use. By default the consumer
will deal with exceptions, that will be logged at WARN
or ERROR level and ignored.

 ExceptionHandler

exchangePattern
(consumer
(advanced))

Sets the exchange pattern when the consumer
creates an exchange.

Enum values:

InOnly

InOut

InOptionalOut

 ExchangePattern

pollStrategy
(consumer
(advanced))

A pluggable
org.apache.camel.PollingConsumerPollingStrategy
allowing you to provide your custom implementation
to control error handling usually occurred during the
poll operation before an Exchange have been
created and being routed in Camel.

 PollingConsumerP
ollStrategy

batchSeparator
(producer)

Set the separator when passing a String to send
batch message operation.

, String

delaySeconds
(producer)

Delay sending messages for a number of seconds. Integer

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

144

messageDeduplic
ationIdStrategy
(producer)

Only for FIFO queues. Strategy for setting the
messageDeduplicationId on the message. Can be one
of the following options: useExchangeId,
useContentBasedDeduplication. For the
useContentBasedDeduplication option, no
messageDeduplicationId will be set on the message.

Enum values:

useExchangeId

useContentBasedDeduplication

useExc
hangeI
d

String

messageGroupId
Strategy
(producer)

Only for FIFO queues. Strategy for setting the
messageGroupId on the message. Can be one of the
following options: useConstant, useExchangeId,
usePropertyValue. For the usePropertyValue option,
the value of property CamelAwsMessageGroupId will
be used.

Enum values:

useConstant

useExchangeId

usePropertyValue

 String

operation
(producer)

The operation to do in case the user don’t want to
send only a message.

Enum values:

sendBatchMessage

deleteMessage

listQueues

purgeQueue

deleteQueue

 Sqs2Operations

delayQueue
(advanced)

Define if you want to apply delaySeconds option to
the queue or on single messages.

false boolean

queueUrl
(advanced)

To define the queueUrl explicitly. All other
parameters, which would influence the queueUrl, are
ignored. This parameter is intended to be used, to
connect to a mock implementation of SQS, for
testing purposes.

 String

Name Description Defaul
t

Type

CHAPTER 7. AWS SIMPLE QUEUE SERVICE (SQS)

145

proxyHost (proxy) To define a proxy host when instantiating the SQS
client.

 String

proxyPort (proxy) To define a proxy port when instantiating the SQS
client.

 Integer

maximumMessag
eSize (queue)

The maximumMessageSize (in bytes) an SQS
message can contain for this queue.

 Integer

messageRetentio
nPeriod (queue)

The messageRetentionPeriod (in seconds) a
message will be retained by SQS for this queue.

 Integer

policy (queue) The policy for this queue. It can be loaded by default
from classpath, but you can prefix with classpath:,
file:, or http: to load the resource from different
systems.

 String

receiveMessageW
aitTimeSeconds
(queue)

If you do not specify WaitTimeSeconds in the
request, the queue attribute
ReceiveMessageWaitTimeSeconds is used to
determine how long to wait.

 Integer

redrivePolicy
(queue)

Specify the policy that send message to DeadLetter
queue. See detail at Amazon docs.

 String

backoffErrorThre
shold (scheduler)

The number of subsequent error polls (failed due
some error) that should happen before the
backoffMultipler should kick-in.

 int

backoffIdleThres
hold (scheduler)

The number of subsequent idle polls that should
happen before the backoffMultipler should kick-in.

 int

backoffMultiplier
(scheduler)

To let the scheduled polling consumer backoff if
there has been a number of subsequent idles/errors
in a row. The multiplier is then the number of polls
that will be skipped before the next actual attempt is
happening again. When this option is in use then
backoffIdleThreshold and/or backoffErrorThreshold
must also be configured.

 int

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

146

delay (scheduler) Milliseconds before the next poll. 500 long

greedy
(scheduler)

If greedy is enabled, then the
ScheduledPollConsumer will run immediately again, if
the previous run polled 1 or more messages.

false boolean

initialDelay
(scheduler)

Milliseconds before the first poll starts. 1000 long

repeatCount
(scheduler)

Specifies a maximum limit of number of fires. So if
you set it to 1, the scheduler will only fire once. If you
set it to 5, it will only fire five times. A value of zero or
negative means fire forever.

0 long

runLoggingLevel
(scheduler)

The consumer logs a start/complete log line when it
polls. This option allows you to configure the logging
level for that.

Enum values:

TRACE

DEBUG

INFO

WARN

ERROR

OFF

TRACE LoggingLevel

scheduledExecut
orService
(scheduler)

Allows for configuring a custom/shared thread pool
to use for the consumer. By default each consumer
has its own single threaded thread pool.

 ScheduledExecuto
rService

scheduler
(scheduler)

To use a cron scheduler from either camel-spring or
camel-quartz component. Use value spring or quartz
for built in scheduler.

none Object

schedulerProperti
es (scheduler)

To configure additional properties when using a
custom scheduler or any of the Quartz, Spring based
scheduler.

 Map

startScheduler
(scheduler)

Whether the scheduler should be auto started. true boolean

Name Description Defaul
t

Type

CHAPTER 7. AWS SIMPLE QUEUE SERVICE (SQS)

147

timeUnit
(scheduler)

Time unit for initialDelay and delay options.

Enum values:

NANOSECONDS

MICROSECONDS

MILLISECONDS

SECONDS

MINUTES

HOURS

DAYS

MILLIS
ECON
DS

TimeUnit

useFixedDelay
(scheduler)

Controls if fixed delay or fixed rate is used. See
ScheduledExecutorService in JDK for details.

true boolean

accessKey
(security)

Amazon AWS Access Key. String

secretKey
(security)

Amazon AWS Secret Key. String

Name Description Defaul
t

Type

Required SQS component options

You have to provide the amazonSQSClient in the Registry or your accessKey and secretKey to access
the Amazon’s SQS.

7.5. BATCH CONSUMER

This component implements the Batch Consumer.

This allows you for instance to know how many messages exists in this batch and for instance let the
Aggregator aggregate this number of messages.

7.6. USAGE

7.6.1. Static credentials vs Default Credential Provider

You have the possibility of avoiding the usage of explicit static credentials, by specifying the
useDefaultCredentialsProvider option and set it to true.

Java system properties - aws.accessKeyId and aws.secretKey

Environment variables - AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY.

Web Identity Token from AWS STS.

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

148

https://aws.amazon.com/sqs

The shared credentials and config files.

Amazon ECS container credentials - loaded from the Amazon ECS if the environment variable
AWS_CONTAINER_CREDENTIALS_RELATIVE_URI is set.

Amazon EC2 Instance profile credentials.

For more information about this you can look at AWS credentials documentation

7.6.2. Message headers set by the SQS producer

Header Type Description

CamelAwsSqsMD5OfBod
y

String The MD5 checksum of the Amazon SQS message.

CamelAwsSqsMessageId String The Amazon SQS message ID.

CamelAwsSqsDelaySeco
nds

Integer The delay seconds that the Amazon SQS message
can be see by others.

7.6.3. Message headers set by the SQS consumer

Header Type Description

CamelAwsSqsMD5OfBod
y

String The MD5 checksum of the Amazon SQS
message.

CamelAwsSqsMessageId String The Amazon SQS message ID.

CamelAwsSqsReceiptHan
dle

String The Amazon SQS message receipt handle.

CamelAwsSqsMessageAt
tributes

Map<String, String> The Amazon SQS message attributes.

7.6.4. Advanced AmazonSQS configuration

If your Camel Application is running behind a firewall or if you need to have more control over the
SqsClient instance configuration, you can create your own instance:

7.6.5. Creating or updating an SQS Queue

In the SQS Component, when an endpoint is started, a check is executed to obtain information about the
existence of the queue or not. You’re able to customize the creation through the QueueAttributeName
mapping with the SQSConfiguration option.

from("aws2-sqs://MyQueue?amazonSQSClient=#client&delay=5000&maxMessagesPerPoll=5")
.to("mock:result");

CHAPTER 7. AWS SIMPLE QUEUE SERVICE (SQS)

149

https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/credentials.html

In this example if the MyQueue queue is not already created on AWS (and the autoCreateQueue option
is set to true), it will be created with default parameters from the SQS configuration. If it’s already up on
AWS, the SQS configuration options will be used to override the existent AWS configuration.

7.6.6. DelayQueue VS Delay for Single message

When the option delayQueue is set to true, the SQS Queue will be a DelayQueue with the
DelaySeconds option as delay. For more information about DelayQueue you can read the AWS SQS
documentation. One important information to take into account is the following:

For standard queues, the per-queue delay setting is not retroactive—changing the setting
doesn’t affect the delay of messages already in the queue.

For FIFO queues, the per-queue delay setting is retroactive—changing the setting affects the
delay of messages already in the queue.

as stated in the official documentation. If you want to specify a delay on single messages, you can ignore
the delayQueue option, while you can set this option to true, if you need to add a fixed delay to all
messages enqueued.

7.6.7. Server Side Encryption

There is a set of Server Side Encryption attributes for a queue. The related option are
serverSideEncryptionEnabled, keyMasterKeyId and kmsDataKeyReusePeriod. The SSE is disabled
by default. You need to explicitly set the option to true and set the related parameters as queue
attributes.

7.7. JMS-STYLE SELECTORS

SQS does not allow selectors, but you can effectively achieve this by using the Camel Filter EIP and
setting an appropriate visibilityTimeout. When SQS dispatches a message, it will wait up to the visibility
timeout before it will try to dispatch the message to a different consumer unless a DeleteMessage is
received. By default, Camel will always send the DeleteMessage at the end of the route, unless the
route ended in failure. To achieve appropriate filtering and not send the DeleteMessage even on
successful completion of the route, use a Filter:

In the above code, if an exchange doesn’t have an appropriate header, it will not make it through the
filter AND also not be deleted from the SQS queue. After 5000 milliseconds, the message will become
visible to other consumers.

Note we must set the property Sqs2Constants.SQS_DELETE_FILTERED to true to instruct Camel to
send the DeleteMessage, if being filtered.

from("aws2-sqs://MyQueue?amazonSQSClient=#client&delay=5000&maxMessagesPerPoll=5")
.to("mock:result");

from("aws2-sqs://MyQueue?
amazonSQSClient=#client&defaultVisibilityTimeout=5000&deleteIfFiltered=false&deleteAfterRead=false"
)
.filter("${header.login} == true")
 .setProperty(Sqs2Constants.SQS_DELETE_FILTERED, constant(true))
 .to("mock:filter");

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

150

https://docs.aws.amazon.com/en_us/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-delay-queues.html

7.8. AVAILABLE PRODUCER OPERATIONS

single message (default)

sendBatchMessage

deleteMessage

listQueues

7.9. SEND MESSAGE

You can set a SendMessageBatchRequest or an Iterable

7.10. SEND BATCH MESSAGE

You can set a SendMessageBatchRequest or an Iterable

As result you’ll get an exchange containing a SendMessageBatchResponse instance, that you can
examinate to check what messages were successfull and what not. The id set on each message of the
batch will be a Random UUID.

7.11. DELETE SINGLE MESSAGE

Use deleteMessage operation to delete a single message. You’ll need to set a receipt handle header for
the message you want to delete.

As result you’ll get an exchange containing a DeleteMessageResponse instance, that you can use to
check if the message was deleted or not.

from("direct:start")
 .setBody(constant("Camel rocks!"))
 .to("aws2-sqs://camel-1?accessKey=RAW(xxx)&secretKey=RAW(xxx)®ion=eu-west-1");

from("direct:start")
 .setHeader(SqsConstants.SQS_OPERATION, constant("sendBatchMessage"))
 .process(new Processor() {
 @Override
 public void process(Exchange exchange) throws Exception {
 Collection c = new ArrayList();
 c.add("team1");
 c.add("team2");
 c.add("team3");
 c.add("team4");
 exchange.getIn().setBody(c);
 }
 })
 .to("aws2-sqs://camel-1?accessKey=RAW(xxx)&secretKey=RAW(xxx)®ion=eu-west-1");

from("direct:start")
 .setHeader(SqsConstants.SQS_OPERATION, constant("deleteMessage"))
 .setHeader(SqsConstants.RECEIPT_HANDLE, constant("123456"))
 .to("aws2-sqs://camel-1?accessKey=RAW(xxx)&secretKey=RAW(xxx)®ion=eu-west-1");

CHAPTER 7. AWS SIMPLE QUEUE SERVICE (SQS)

151

7.12. LIST QUEUES

Use listQueues operation to list queues.

As result you’ll get an exchange containing a ListQueuesResponse instance, that you can examinate to
check the actual queues.

7.13. PURGE QUEUE

Use purgeQueue operation to purge queue.

As result you’ll get an exchange containing a PurgeQueueResponse instance.

7.14. QUEUE AUTOCREATION

With the option autoCreateQueue users are able to avoid the autocreation of an SQS Queue in case it
doesn’t exist. The default for this option is true. If set to false any operation on a not-existent queue in
AWS won’t be successful and an error will be returned.

7.15. SEND BATCH MESSAGE AND MESSAGE DEDUPLICATION
STRATEGY

In case you’re using a SendBatchMessage Operation, you can set two different kind of Message
Deduplication Strategy: - useExchangeId - useContentBasedDeduplication

The first one will use a ExchangeIdMessageDeduplicationIdStrategy, that will use the Exchange ID as
parameter The other one will use a NullMessageDeduplicationIdStrategy, that will use the body as
deduplication element.

In case of send batch message operation, you’ll need to use the useContentBasedDeduplication and
on the Queue you’re pointing you’ll need to enable the content based deduplication option.

7.16. DEPENDENCIES

Maven users will need to add the following dependency to their pom.xml.

pom.xml

from("direct:start")
 .setHeader(SqsConstants.SQS_OPERATION, constant("listQueues"))
 .to("aws2-sqs://camel-1?accessKey=RAW(xxx)&secretKey=RAW(xxx)®ion=eu-west-1");

from("direct:start")
 .setHeader(SqsConstants.SQS_OPERATION, constant("purgeQueue"))
 .to("aws2-sqs://camel-1?accessKey=RAW(xxx)&secretKey=RAW(xxx)®ion=eu-west-1");

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-aws2-sqs</artifactId>
 <version>${camel-version}</version>
</dependency>

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

152

where 3.14.2 must be replaced by the actual version of Camel.

7.17. SPRING BOOT AUTO-CONFIGURATION

When using aws2-sqs with Spring Boot make sure to use the following Maven dependency to have
support for auto configuration:

The component supports 44 options, which are listed below.

Name Description Defaul
t

Type

camel.component
.aws2-sqs.access-
key

Amazon AWS Access Key. String

camel.component
.aws2-
sqs.amazon-a-w-
s-host

The hostname of the Amazon AWS cloud. amazo
naws.c
om

String

camel.component
.aws2-
sqs.amazon-s-q-
s-client

To use the AmazonSQS as client. The option is a
software.amazon.awssdk.services.sqs.SqsClient type.

 SqsClient

camel.component
.aws2-
sqs.attribute-
names

A list of attribute names to receive when consuming.
Multiple names can be separated by comma.

 String

camel.component
.aws2-sqs.auto-
create-queue

Setting the autocreation of the queue. false Boolean

camel.component
.aws2-
sqs.autowired-
enabled

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true Boolean

<dependency>
 <groupId>org.apache.camel.springboot</groupId>
 <artifactId>camel-aws2-sqs-starter</artifactId>
 <version>3.14.5.redhat-00032</version>
 <!-- Use your Camel Spring Boot version -->
</dependency>

CHAPTER 7. AWS SIMPLE QUEUE SERVICE (SQS)

153

camel.component
.aws2-sqs.batch-
separator

Set the separator when passing a String to send
batch message operation.

, String

camel.component
.aws2-sqs.bridge-
error-handler

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false Boolean

camel.component
.aws2-
sqs.concurrent-
consumers

Allows you to use multiple threads to poll the sqs
queue to increase throughput.

1 Integer

camel.component
.aws2-
sqs.configuration

The AWS SQS default configuration. The option is a
org.apache.camel.component.aws2.sqs.Sqs2Configur
ation type.

 Sqs2Configuration

camel.component
.aws2-
sqs.default-
visibility-timeout

The default visibility timeout (in seconds). Integer

camel.component
.aws2-sqs.delay-
queue

Define if you want to apply delaySeconds option to
the queue or on single messages.

false Boolean

camel.component
.aws2-sqs.delay-
seconds

Delay sending messages for a number of seconds. Integer

camel.component
.aws2-sqs.delete-
after-read

Delete message from SQS after it has been read. true Boolean

camel.component
.aws2-sqs.delete-
if-filtered

Whether or not to send the DeleteMessage to the
SQS queue if the exchange has property with key
Sqs2Constants#SQS_DELETE_FILTERED
(CamelAwsSqsDeleteFiltered) set to true.

true Boolean

camel.component
.aws2-
sqs.enabled

Whether to enable auto configuration of the aws2-
sqs component. This is enabled by default.

 Boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

154

camel.component
.aws2-
sqs.extend-
message-visibility

If enabled then a scheduled background task will
keep extending the message visibility on SQS. This is
needed if it takes a long time to process the message.
If set to true defaultVisibilityTimeout must be set.
See details at Amazon docs.

false Boolean

camel.component
.aws2-sqs.kms-
data-key-reuse-
period-seconds

The length of time, in seconds, for which Amazon
SQS can reuse a data key to encrypt or decrypt
messages before calling AWS KMS again. An integer
representing seconds, between 60 seconds (1
minute) and 86,400 seconds (24 hours). Default:
300 (5 minutes).

 Integer

camel.component
.aws2-sqs.kms-
master-key-id

The ID of an AWS-managed customer master key
(CMK) for Amazon SQS or a custom CMK.

 String

camel.component
.aws2-sqs.lazy-
start-producer

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false Boolean

camel.component
.aws2-
sqs.maximum-
message-size

The maximumMessageSize (in bytes) an SQS
message can contain for this queue.

 Integer

camel.component
.aws2-
sqs.message-
attribute-names

A list of message attribute names to receive when
consuming. Multiple names can be separated by
comma.

 String

camel.component
.aws2-
sqs.message-
deduplication-id-
strategy

Only for FIFO queues. Strategy for setting the
messageDeduplicationId on the message. Can be one
of the following options: useExchangeId,
useContentBasedDeduplication. For the
useContentBasedDeduplication option, no
messageDeduplicationId will be set on the message.

useExc
hangeI
d

String

Name Description Defaul
t

Type

CHAPTER 7. AWS SIMPLE QUEUE SERVICE (SQS)

155

camel.component
.aws2-
sqs.message-
group-id-
strategy

Only for FIFO queues. Strategy for setting the
messageGroupId on the message. Can be one of the
following options: useConstant, useExchangeId,
usePropertyValue. For the usePropertyValue option,
the value of property CamelAwsMessageGroupId will
be used.

 String

camel.component
.aws2-
sqs.message-
retention-period

The messageRetentionPeriod (in seconds) a
message will be retained by SQS for this queue.

 Integer

camel.component
.aws2-
sqs.operation

The operation to do in case the user don’t want to
send only a message.

 Sqs2Operations

camel.component
.aws2-
sqs.override-
endpoint

Set the need for overidding the endpoint. This option
needs to be used in combination with
uriEndpointOverride option.

false Boolean

camel.component
.aws2-sqs.policy

The policy for this queue. It can be loaded by default
from classpath, but you can prefix with classpath:,
file:, or http: to load the resource from different
systems.

 String

camel.component
.aws2-
sqs.protocol

The underlying protocol used to communicate with
SQS.

https String

camel.component
.aws2-sqs.proxy-
host

To define a proxy host when instantiating the SQS
client.

 String

camel.component
.aws2-sqs.proxy-
port

To define a proxy port when instantiating the SQS
client.

 Integer

camel.component
.aws2-sqs.proxy-
protocol

To define a proxy protocol when instantiating the
SQS client.

 Protocol

camel.component
.aws2-sqs.queue-
owner-a-w-s-
account-id

Specify the queue owner aws account id when you
need to connect the queue with different account
owner.

 String

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

156

camel.component
.aws2-sqs.queue-
url

To define the queueUrl explicitly. All other
parameters, which would influence the queueUrl, are
ignored. This parameter is intended to be used, to
connect to a mock implementation of SQS, for
testing purposes.

 String

camel.component
.aws2-
sqs.receive-
message-wait-
time-seconds

If you do not specify WaitTimeSeconds in the
request, the queue attribute
ReceiveMessageWaitTimeSeconds is used to
determine how long to wait.

 Integer

camel.component
.aws2-
sqs.redrive-policy

Specify the policy that send message to DeadLetter
queue. See detail at Amazon docs.

 String

camel.component
.aws2-sqs.region

The region in which SQS client needs to work. When
using this parameter, the configuration will expect the
lowercase name of the region (for example ap-east-
1) You’ll need to use the name
Region.EU_WEST_1.id().

 String

camel.component
.aws2-sqs.secret-
key

Amazon AWS Secret Key. String

camel.component
.aws2-sqs.server-
side-encryption-
enabled

Define if Server Side Encryption is enabled or not on
the queue.

false Boolean

camel.component
.aws2-sqs.trust-
all-certificates

If we want to trust all certificates in case of overriding
the endpoint.

false Boolean

camel.component
.aws2-sqs.uri-
endpoint-
override

Set the overriding uri endpoint. This option needs to
be used in combination with overrideEndpoint option.

 String

camel.component
.aws2-sqs.use-
default-
credentials-
provider

Set whether the SQS client should expect to load
credentials on an AWS infra instance or to expect
static credentials to be passed in.

false Boolean

Name Description Defaul
t

Type

CHAPTER 7. AWS SIMPLE QUEUE SERVICE (SQS)

157

camel.component
.aws2-
sqs.visibility-
timeout

The duration (in seconds) that the received
messages are hidden from subsequent retrieve
requests after being retrieved by a ReceiveMessage
request to set in the
com.amazonaws.services.sqs.model.SetQueueAttribu
tesRequest. This only make sense if its different from
defaultVisibilityTimeout. It changes the queue
visibility timeout attribute permanently.

 Integer

camel.component
.aws2-sqs.wait-
time-seconds

Duration in seconds (0 to 20) that the
ReceiveMessage action call will wait until a message
is in the queue to include in the response.

 Integer

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

158

CHAPTER 8. AZURE STORAGE BLOB SERVICE
Both producer and consumer are supported

The Azure Storage Blob component is used for storing and retrieving blobs from Azure Storage Blob
Service using Azure APIs v12. However in case of versions above v12, we will see if this component can
adopt these changes depending on how much breaking changes can result.

Prerequisites

You must have a valid Windows Azure Storage account. More information is available at Azure
Documentation Portal .

Maven users will need to add the following dependency to their pom.xml for this component:

8.1. URI FORMAT

In case of consumer, accountName, containerName are required. In case of producer, it depends on
the operation that being requested, for example if operation is on a container level, for example,
createContainer, accountName and containerName are only required, but in case of operation being
requested in blob level, for example, getBlob, accountName, containerName and blobName are
required.

The blob will be created if it does not already exist. You can append query options to the URI in the
following format,

?options=value&option2=value&…

8.2. CONFIGURING OPTIONS

Camel components are configured on two separate levels:

component level

endpoint level

8.2.1. Configuring Component Options

The component level is the highest level which holds general and common configurations that are
inherited by the endpoints. For example a component may have security settings, credentials for
authentication, urls for network connection and so forth.

Some components only have a few options, and others may have many. Because components typically
have pre configured defaults that are commonly used, then you may often only need to configure a few
options on a component; or none at all.

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-azure-storage-blob</artifactId>
 <version>3.14.5.redhat-00018</version>
 <!-- use the same version as your Camel core version -->
</dependency>

azure-storage-blob://accountName[/containerName][?options]

CHAPTER 8. AZURE STORAGE BLOB SERVICE

159

https://azure.microsoft.com/services/storage/blobs/
https://docs.microsoft.com/azure/

Configuring components can be done with the Component DSL, in a configuration file
(application.properties|yaml), or directly with Java code.

8.2.2. Configuring Endpoint Options

Where you find yourself configuring the most is on endpoints, as endpoints often have many options,
which allows you to configure what you need the endpoint to do. The options are also categorized into
whether the endpoint is used as consumer (from) or as a producer (to), or used for both.

Configuring endpoints is most often done directly in the endpoint URI as path and query parameters.
You can also use the Endpoint DSL as a type safe way of configuring endpoints.

A good practice when configuring options is to use Property Placeholders, which allows to not hardcode
urls, port numbers, sensitive information, and other settings. In other words placeholders allows to
externalize the configuration from your code, and gives more flexibility and reuse.

The following two sections lists all the options, firstly for the component followed by the endpoint.

8.3. COMPONENT OPTIONS

The Azure Storage Blob Service component supports 31 options, which are listed below.

Name Description Defaul
t

Type

blobName
(common)

The blob name, to consume specific blob from a
container. However on producer, is only required for
the operations on the blob level.

 String

blobOffset
(common)

Set the blob offset for the upload or download
operations, default is 0.

0 long

blobType
(common)

The blob type in order to initiate the appropriate
settings for each blob type.

Enum values:

blockblob

appendblob

pageblob

blockbl
ob

BlobType

closeStreamAfter
Read (common)

Close the stream after read or keep it open, default is
true.

true boolean

configuration
(common)

The component configurations. BlobConfiguration

credentials
(common)

StorageSharedKeyCredential can be injected to
create the azure client, this holds the important
authentication information.

 StorageSharedKey
Credential

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

160

https://camel.apache.org/manual/component-dsl.html
https://camel.apache.org/manual/Endpoint-dsl.html
https://camel.apache.org/manual/using-propertyplaceholder.html

dataCount
(common)

How many bytes to include in the range. Must be
greater than or equal to 0 if specified.

 Long

fileDir (common) The file directory where the downloaded blobs will be
saved to, this can be used in both, producer and
consumer.

 String

maxResultsPerPa
ge (common)

Specifies the maximum number of blobs to return,
including all BlobPrefix elements. If the request does
not specify maxResultsPerPage or specifies a value
greater than 5,000, the server will return up to 5,000
items.

 Integer

maxRetryRequest
s (common)

Specifies the maximum number of additional HTTP
Get requests that will be made while reading the data
from a response body.

0 int

prefix (common) Filters the results to return only blobs whose names
begin with the specified prefix. May be null to return
all blobs.

 String

regex (common) Filters the results to return only blobs whose names
match the specified regular expression. May be null
to return all if both prefix and regex are set, regex
takes the priority and prefix is ignored.

 String

serviceClient
(common)

Autowired Client to a storage account. This client
does not hold any state about a particular storage
account but is instead a convenient way of sending
off appropriate requests to the resource on the
service. It may also be used to construct URLs to
blobs and containers. This client contains operations
on a service account. Operations on a container are
available on BlobContainerClient through
BlobServiceClient#getBlobContainerClient(String),
and operations on a blob are available on BlobClient
through BlobContainerClient#getBlobClient(String).

 BlobServiceClient

timeout
(common)

An optional timeout value beyond which a
RuntimeException will be raised.

 Duration

Name Description Defaul
t

Type

CHAPTER 8. AZURE STORAGE BLOB SERVICE

161

bridgeErrorHandl
er (consumer)

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false boolean

blobSequenceNu
mber (producer)

A user-controlled value that you can use to track
requests. The value of the sequence number must be
between 0 and 263 - 1.The default value is 0.

0 Long

blockListType
(producer)

Specifies which type of blocks to return.

Enum values:

committed

uncommitted

all

COMM
ITTED

BlockListType

changeFeedCont
ext (producer)

When using getChangeFeed producer operation, this
gives additional context that is passed through the
Http pipeline during the service call.

 Context

changeFeedEndTi
me (producer)

When using getChangeFeed producer operation, this
filters the results to return events approximately
before the end time. Note: A few events belonging to
the next hour can also be returned. A few events
belonging to this hour can be missing; to ensure all
events from the hour are returned, round the end
time up by an hour.

 OffsetDateTime

changeFeedStart
Time (producer)

When using getChangeFeed producer operation, this
filters the results to return events approximately after
the start time. Note: A few events belonging to the
previous hour can also be returned. A few events
belonging to this hour can be missing; to ensure all
events from the hour are returned, round the start
time down by an hour.

 OffsetDateTime

closeStreamAfter
Write (producer)

Close the stream after write or keep it open, default is
true.

true boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

162

commitBlockListL
ater (producer)

When is set to true, the staged blocks will not be
committed directly.

true boolean

createAppendBlo
b (producer)

When is set to true, the append blocks will be created
when committing append blocks.

true boolean

createPageBlob
(producer)

When is set to true, the page blob will be created
when uploading page blob.

true boolean

downloadLinkExp
iration (producer)

Override the default expiration (millis) of URL
download link.

 Long

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

Name Description Defaul
t

Type

CHAPTER 8. AZURE STORAGE BLOB SERVICE

163

operation
(producer)

The blob operation that can be used with this
component on the producer.

Enum values:

listBlobContainers

createBlobContainer

deleteBlobContainer

listBlobs

getBlob

deleteBlob

downloadBlobToFile

downloadLink

uploadBlockBlob

stageBlockBlobList

commitBlobBlockList

getBlobBlockList

createAppendBlob

commitAppendBlob

createPageBlob

uploadPageBlob

resizePageBlob

clearPageBlob

getPageBlobRanges

listBlob
Contai
ners

BlobOperationsDe
finition

pageBlobSize
(producer)

Specifies the maximum size for the page blob, up to 8
TB. The page blob size must be aligned to a 512-byte
boundary.

512 Long

autowiredEnabled
(advanced)

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

164

accessKey
(security)

Access key for the associated azure account name to
be used for authentication with azure blob services.

 String

sourceBlobAcces
sKey (security)

Source Blob Access Key: for copyblob operation,
sadly, we need to have an accessKey for the source
blob we want to copy Passing an accessKey as
header, it’s unsafe so we could set as key.

 String

Name Description Defaul
t

Type

8.4. ENDPOINT OPTIONS

The Azure Storage Blob Service endpoint is configured using URI syntax:

azure-storage-blob:accountName/containerName

with the following path and query parameters:

8.4.1. Path Parameters (2 parameters)

Name Description Defaul
t

Type

accountName
(common)

Azure account name to be used for authentication
with azure blob services.

 String

containerName
(common)

The blob container name. String

8.4.2. Query Parameters (48 parameters)

Name Description Defaul
t

Type

blobName
(common)

The blob name, to consume specific blob from a
container. However on producer, is only required for
the operations on the blob level.

 String

blobOffset
(common)

Set the blob offset for the upload or download
operations, default is 0.

0 long

CHAPTER 8. AZURE STORAGE BLOB SERVICE

165

blobServiceClient
(common)

Client to a storage account. This client does not hold
any state about a particular storage account but is
instead a convenient way of sending off appropriate
requests to the resource on the service. It may also
be used to construct URLs to blobs and containers.
This client contains operations on a service account.
Operations on a container are available on
BlobContainerClient through
getBlobContainerClient(String), and operations on a
blob are available on BlobClient through
getBlobContainerClient(String).getBlobClient(String
).

 BlobServiceClient

blobType
(common)

The blob type in order to initiate the appropriate
settings for each blob type.

Enum values:

blockblob

appendblob

pageblob

blockbl
ob

BlobType

closeStreamAfter
Read (common)

Close the stream after read or keep it open, default is
true.

true boolean

credentials
(common)

StorageSharedKeyCredential can be injected to
create the azure client, this holds the important
authentication information.

 StorageSharedKey
Credential

dataCount
(common)

How many bytes to include in the range. Must be
greater than or equal to 0 if specified.

 Long

fileDir (common) The file directory where the downloaded blobs will be
saved to, this can be used in both, producer and
consumer.

 String

maxResultsPerPa
ge (common)

Specifies the maximum number of blobs to return,
including all BlobPrefix elements. If the request does
not specify maxResultsPerPage or specifies a value
greater than 5,000, the server will return up to 5,000
items.

 Integer

maxRetryRequest
s (common)

Specifies the maximum number of additional HTTP
Get requests that will be made while reading the data
from a response body.

0 int

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

166

prefix (common) Filters the results to return only blobs whose names
begin with the specified prefix. May be null to return
all blobs.

 String

regex (common) Filters the results to return only blobs whose names
match the specified regular expression. May be null
to return all if both prefix and regex are set, regex
takes the priority and prefix is ignored.

 String

serviceClient
(common)

Autowired Client to a storage account. This client
does not hold any state about a particular storage
account but is instead a convenient way of sending
off appropriate requests to the resource on the
service. It may also be used to construct URLs to
blobs and containers. This client contains operations
on a service account. Operations on a container are
available on BlobContainerClient through
BlobServiceClient#getBlobContainerClient(String),
and operations on a blob are available on BlobClient
through BlobContainerClient#getBlobClient(String).

 BlobServiceClient

timeout
(common)

An optional timeout value beyond which a
RuntimeException will be raised.

 Duration

bridgeErrorHandl
er (consumer)

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false boolean

sendEmptyMessa
geWhenIdle
(consumer)

If the polling consumer did not poll any files, you can
enable this option to send an empty message (no
body) instead.

false boolean

exceptionHandler
(consumer
(advanced))

To let the consumer use a custom ExceptionHandler.
Notice if the option bridgeErrorHandler is enabled
then this option is not in use. By default the consumer
will deal with exceptions, that will be logged at WARN
or ERROR level and ignored.

 ExceptionHandler

Name Description Defaul
t

Type

CHAPTER 8. AZURE STORAGE BLOB SERVICE

167

exchangePattern
(consumer
(advanced))

Sets the exchange pattern when the consumer
creates an exchange.

Enum values:

InOnly

InOut

InOptionalOut

 ExchangePattern

pollStrategy
(consumer
(advanced))

A pluggable
org.apache.camel.PollingConsumerPollingStrategy
allowing you to provide your custom implementation
to control error handling usually occurred during the
poll operation before an Exchange have been
created and being routed in Camel.

 PollingConsumerP
ollStrategy

blobSequenceNu
mber (producer)

A user-controlled value that you can use to track
requests. The value of the sequence number must be
between 0 and 263 - 1.The default value is 0.

0 Long

blockListType
(producer)

Specifies which type of blocks to return.

Enum values:

committed

uncommitted

all

COMM
ITTED

BlockListType

changeFeedCont
ext (producer)

When using getChangeFeed producer operation, this
gives additional context that is passed through the
Http pipeline during the service call.

 Context

changeFeedEndTi
me (producer)

When using getChangeFeed producer operation, this
filters the results to return events approximately
before the end time. Note: A few events belonging to
the next hour can also be returned. A few events
belonging to this hour can be missing; to ensure all
events from the hour are returned, round the end
time up by an hour.

 OffsetDateTime

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

168

changeFeedStart
Time (producer)

When using getChangeFeed producer operation, this
filters the results to return events approximately after
the start time. Note: A few events belonging to the
previous hour can also be returned. A few events
belonging to this hour can be missing; to ensure all
events from the hour are returned, round the start
time down by an hour.

 OffsetDateTime

closeStreamAfter
Write (producer)

Close the stream after write or keep it open, default is
true.

true boolean

commitBlockListL
ater (producer)

When is set to true, the staged blocks will not be
committed directly.

true boolean

createAppendBlo
b (producer)

When is set to true, the append blocks will be created
when committing append blocks.

true boolean

createPageBlob
(producer)

When is set to true, the page blob will be created
when uploading page blob.

true boolean

downloadLinkExp
iration (producer)

Override the default expiration (millis) of URL
download link.

 Long

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

Name Description Defaul
t

Type

CHAPTER 8. AZURE STORAGE BLOB SERVICE

169

operation
(producer)

The blob operation that can be used with this
component on the producer.

Enum values:

listBlobContainers

createBlobContainer

deleteBlobContainer

listBlobs

getBlob

deleteBlob

downloadBlobToFile

downloadLink

uploadBlockBlob

stageBlockBlobList

commitBlobBlockList

getBlobBlockList

createAppendBlob

commitAppendBlob

createPageBlob

uploadPageBlob

resizePageBlob

clearPageBlob

getPageBlobRanges

listBlob
Contai
ners

BlobOperationsDe
finition

pageBlobSize
(producer)

Specifies the maximum size for the page blob, up to 8
TB. The page blob size must be aligned to a 512-byte
boundary.

512 Long

backoffErrorThre
shold (scheduler)

The number of subsequent error polls (failed due
some error) that should happen before the
backoffMultipler should kick-in.

 int

backoffIdleThres
hold (scheduler)

The number of subsequent idle polls that should
happen before the backoffMultipler should kick-in.

 int

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

170

backoffMultiplier
(scheduler)

To let the scheduled polling consumer backoff if
there has been a number of subsequent idles/errors
in a row. The multiplier is then the number of polls
that will be skipped before the next actual attempt is
happening again. When this option is in use then
backoffIdleThreshold and/or backoffErrorThreshold
must also be configured.

 int

delay (scheduler) Milliseconds before the next poll. 500 long

greedy
(scheduler)

If greedy is enabled, then the
ScheduledPollConsumer will run immediately again, if
the previous run polled 1 or more messages.

false boolean

initialDelay
(scheduler)

Milliseconds before the first poll starts. 1000 long

repeatCount
(scheduler)

Specifies a maximum limit of number of fires. So if
you set it to 1, the scheduler will only fire once. If you
set it to 5, it will only fire five times. A value of zero or
negative means fire forever.

0 long

runLoggingLevel
(scheduler)

The consumer logs a start/complete log line when it
polls. This option allows you to configure the logging
level for that.

Enum values:

TRACE

DEBUG

INFO

WARN

ERROR

OFF

TRACE LoggingLevel

scheduledExecut
orService
(scheduler)

Allows for configuring a custom/shared thread pool
to use for the consumer. By default each consumer
has its own single threaded thread pool.

 ScheduledExecuto
rService

scheduler
(scheduler)

To use a cron scheduler from either camel-spring or
camel-quartz component. Use value spring or quartz
for built in scheduler.

none Object

Name Description Defaul
t

Type

CHAPTER 8. AZURE STORAGE BLOB SERVICE

171

schedulerProperti
es (scheduler)

To configure additional properties when using a
custom scheduler or any of the Quartz, Spring based
scheduler.

 Map

startScheduler
(scheduler)

Whether the scheduler should be auto started. true boolean

timeUnit
(scheduler)

Time unit for initialDelay and delay options.

Enum values:

NANOSECONDS

MICROSECONDS

MILLISECONDS

SECONDS

MINUTES

HOURS

DAYS

MILLIS
ECON
DS

TimeUnit

useFixedDelay
(scheduler)

Controls if fixed delay or fixed rate is used. See
ScheduledExecutorService in JDK for details.

true boolean

accessKey
(security)

Access key for the associated azure account name to
be used for authentication with azure blob services.

 String

sourceBlobAcces
sKey (security)

Source Blob Access Key: for copyblob operation,
sadly, we need to have an accessKey for the source
blob we want to copy Passing an accessKey as
header, it’s unsafe so we could set as key.

 String

Name Description Defaul
t

Type

Required information options

To use this component, you have 3 options in order to provide the required Azure authentication
information:

Provide accountName and accessKey for your Azure account, this is the simplest way to get
started. The accessKey can be generated through your Azure portal.

Provide a StorageSharedKeyCredential instance which can be provided into credentials option.

Provide a BlobServiceClient instance which can be provided into blobServiceClient. Note: You
don’t need to create a specific client, e.g: BlockBlobClient, the BlobServiceClient represents the
upper level which can be used to retrieve lower level clients.

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

172

https://azuresdkartifacts.blob.core.windows.net/azure-sdk-for-java/staging/apidocs/com/azure/storage/common/StorageSharedKeyCredential.html
https://azuresdkdocs.blob.core.windows.net/$web/java/azure-storage-blob/12.0.0/com/azure/storage/blob/BlobServiceClient.html

8.5. USAGE

For example, in order to download a blob content from the block blob hello.txt located on the
container1 in the camelazure storage account, use the following snippet:

8.5.1. Message headers evaluated by the component producer

Header Variable Name Type Operations Description

CamelAzureStor
ageBlobTimeou
t

BlobConstants.
TIMEOUT

Duration All An optional
timeout value
beyond which a
{@link
RuntimeException
} will be raised.

CamelAzureStor
ageBlobMetadat
a

BlobConstants.
METADATA

Map<String,Stri
ng>

Operations related
to container and
blob

Metadata to
associate with the
container or blob.

CamelAzureStor
ageBlobPublicA
ccessType

BlobConstants.
PUBLIC_ACCES
S_TYPE

PublicAccessTy
pe

createContainer Specifies how the
data in this
container is
available to the
public. Pass null
for no public
access.

CamelAzureStor
ageBlobReques
tCondition

BlobConstants.
BLOB_REQUES
T_CONDITION

BlobRequestCo
nditions

Operations related
to container and
blob

This contains
values which will
restrict the
successful
operation of a
variety of requests
to the conditions
present. These
conditions are
entirely optional.

CamelAzureStor
ageBlobListDet
ails

BlobConstants.
BLOB_LIST_DE
TAILS

BlobListDetails listBlobs The details for
listing specific
blobs

from("azure-storage-blob://camelazure/container1?
blobName=hello.txt&accessKey=yourAccessKey").
to("file://blobdirectory");

CHAPTER 8. AZURE STORAGE BLOB SERVICE

173

CamelAzureStor
ageBlobPrefix

BlobConstants.
PREFIX

String listBlobs,getBlo
b

Filters the results
to return only
blobs whose
names begin with
the specified
prefix. May be null
to return all blobs.

CamelAzureStor
ageBlobMaxRes
ultsPerPage

BlobConstants.
MAX_RESULTS
_PER_PAGE

Integer listBlobs Specifies the
maximum number
of blobs to return,
including all
BlobPrefix
elements. If the
request does not
specify
maxResultsPerPag
e or specifies a
value greater than
5,000, the server
will return up to
5,000 items.

CamelAzureStor
ageBlobListBlo
bOptions

BlobConstants.
LIST_BLOB_OP
TIONS

ListBlobsOption
s

listBlobs Defines options
available to
configure the
behavior of a call
to
listBlobsFlatSegm
ent on a {@link
BlobContainerClie
nt} object.

CamelAzureStor
ageBlobHttpHea
ders

BlobConstants.
BLOB_HTTP_H
EADERS

BlobHttpHeader
s

uploadBlockBlo
b,
commitBlobBlo
ckList,
createAppendBl
ob,
createPageBlob

Additional
parameters for a
set of operations.

CamelAzureStor
ageBlobAccess
Tier

BlobConstants.
ACCESS_TIER

AccessTier uploadBlockBlo
b,
commitBlobBlo
ckList

Defines values for
AccessTier.

Header Variable Name Type Operations Description

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

174

CamelAzureStor
ageBlobContent
MD5

BlobConstants.
CONTENT_MD5

byte[] Most operations
related to upload
blob

An MD5 hash of
the block content.
This hash is used
to verify the
integrity of the
block during
transport. When
this header is
specified, the
storage service
compares the hash
of the content that
has arrived with
this header value.
Note that this
MD5 hash is not
stored with the
blob. If the two
hashes do not
match, the
operation will fail.

CamelAzureStor
ageBlobPageBl
obRange

BlobConstants.
PAGE_BLOB_R
ANGE

PageRange Operations related
to page blob

A {@link
PageRange}
object. Given that
pages must be
aligned with 512-
byte boundaries,
the start offset
must be a modulus
of 512 and the end
offset must be a
modulus of 512 - 1.
Examples of valid
byte ranges are 0-
511, 512-1023, etc.

CamelAzureStor
ageBlobCommit
BlobBlockListL
ater

BlobConstants.
COMMIT_BLOC
K_LIST_LATER

boolean stageBlockBlob
List

When is set to
true, the staged
blocks will not be
committed
directly.

CamelAzureStor
ageBlobCreateA
ppendBlob

BlobConstants.
CREATE_APPE
ND_BLOB

boolean commitAppend
Blob

When is set to
true, the append
blocks will be
created when
committing
append blocks.

Header Variable Name Type Operations Description

CHAPTER 8. AZURE STORAGE BLOB SERVICE

175

CamelAzureStor
ageBlobCreateP
ageBlob

BlobConstants.
CREATE_PAGE
_BLOB

boolean uploadPageBlo
b

When is set to
true, the page
blob will be
created when
uploading page
blob.

CamelAzureStor
ageBlobBlockLi
stType

BlobConstants.
BLOCK_LIST_T
YPE

BlockListType getBlobBlockLi
st

Specifies which
type of blocks to
return.

CamelAzureStor
ageBlobPageBl
obSize

BlobConstants.
PAGE_BLOB_SI
ZE

Long createPageBlob
,
resizePageBlob

Specifies the
maximum size for
the page blob, up
to 8 TB. The page
blob size must be
aligned to a 512-
byte boundary.

CamelAzureStor
ageBlobSequen
ceNumber

BlobConstants.
BLOB_SEQUEN
CE_NUMBER

Long createPageBlob A user-controlled
value that you can
use to track
requests. The
value of the
sequence number
must be between
0 and 2^63 - 1.The
default value is 0.

CamelAzureStor
ageBlobDeleteS
napshotsOption
Type

BlobConstants.
DELETE_SNAP
SHOT_OPTION_
TYPE

DeleteSnapshot
sOptionType

deleteBlob Specifies the
behavior for
deleting the
snapshots on this
blob. \{@code
Include} will delete
the base blob and
all snapshots. \
{@code Only} will
delete only the
snapshots. If a
snapshot is being
deleted, you must
pass null.

Header Variable Name Type Operations Description

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

176

CamelAzureStor
ageBlobListBlo
bContainersOpt
ions

BlobConstants.
LIST_BLOB_CO
NTAINERS_OPT
IONS

ListBlobContain
ersOptions

listBlobContain
ers

A {@link
ListBlobContainer
sOptions} which
specifies what
data should be
returned by the
service.

CamelAzureStor
ageBlobParallel
TransferOptions

BlobConstants.
PARALLEL_TR
ANSFER_OPTIO
NS

ParallelTransfer
Options

downloadBlobT
oFile

{@link
ParallelTransferOp
tions} to use to
download to file.
Number of parallel
transfers
parameter is
ignored.

CamelAzureStor
ageBlobFileDir

BlobConstants.
FILE_DIR

String downloadBlobT
oFile

The file directory
where the
downloaded blobs
will be saved to.

CamelAzureStor
ageBlobDownlo
adLinkExpiratio
n

BlobConstants.
DOWNLOAD_LI
NK_EXPIRATIO
N

Long downloadLink Override the
default expiration
(millis) of URL
download link.

CamelAzureStor
ageBlobBlobNa
me

BlobConstants.
BLOB_NAME

String Operations related
to blob

Override/set the
blob name on the
exchange headers.

CamelAzureStor
ageBlobContain
erName

BlobConstants.
BLOB_CONTAI
NER_NAME

String Operations related
to container and
blob

Override/set the
container name on
the exchange
headers.

CamelAzureStor
ageBlobOperati
on

BlobConstants.
BLOB_OPERAT
ION

BlobOperations
Definition

All Specify the
producer
operation to
execute, please
see the doc on this
page related to
producer
operation.

Header Variable Name Type Operations Description

CHAPTER 8. AZURE STORAGE BLOB SERVICE

177

CamelAzureStor
ageBlobRegex

BlobConstants.
REGEX

String listBlobs,getBlo
b

Filters the results
to return only
blobs whose
names match the
specified regular
expression. May
be null to return
all. If both prefix
and regex are set,
regex takes the
priority and prefix
is ignored.

CamelAzureStor
ageBlobChange
FeedStartTime

BlobConstants.
CHANGE_FEED
_START_TIME

OffsetDateTime getChangeFeed It filters the results
to return events
approximately
after the start
time. Note: A few
events belonging
to the previous
hour can also be
returned. A few
events belonging
to this hour can be
missing; to ensure
all events from the
hour are returned,
round the start
time down by an
hour.

CamelAzureStor
ageBlobChange
FeedEndTime

BlobConstants.
CHANGE_FEED
_END_TIME

OffsetDateTime getChangeFeed It filters the results
to return events
approximately
before the end
time. Note: A few
events belonging
to the next hour
can also be
returned. A few
events belonging
to this hour can be
missing; to ensure
all events from the
hour are returned,
round the end time
up by an hour.

Header Variable Name Type Operations Description

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

178

CamelAzureStor
ageBlobChange
FeedContext

BlobConstants.
CHANGE_FEED
_CONTEXT

Context getChangeFeed This gives
additional context
that is passed
through the Http
pipeline during the
service call.

CamelAzureStor
ageBlobSource
BlobAccountNa
me

BlobConstants.
SOURCE_BLOB
_ACCOUNT_NA
ME

String copyBlob The source blob
account name to
be used as source
account name in a
copy blob
operation

CamelAzureStor
ageBlobSource
BlobContainerN
ame

BlobConstants.
SOURCE_BLOB
_CONTAINER_N
AME

String copyBlob The source blob
container name to
be used as source
container name in
a copy blob
operation

Header Variable Name Type Operations Description

8.5.2. Message headers set by either component producer or consumer

Header Variable Name Type Description

CamelAzureStor
ageBlobAccess
Tier

BlobConstants.
ACCESS_TIER

AccessTier Access tier of the blob.

CamelAzureStor
ageBlobAccess
TierChangeTim
e

BlobConstants.
ACCESS_TIER_
CHANGE_TIME

OffsetDateTime Datetime when the access tier of the blob
last changed.

CamelAzureStor
ageBlobArchive
Status

BlobConstants.
ARCHIVE_STAT
US

ArchiveStatus Archive status of the blob.

CamelAzureStor
ageBlobCreatio
nTime

BlobConstants.
CREATION_TIM
E

OffsetDateTime Creation time of the blob.

CamelAzureStor
ageBlobSequen
ceNumber

BlobConstants.
BLOB_SEQUEN
CE_NUMBER

Long The current sequence number for a page
blob.

CHAPTER 8. AZURE STORAGE BLOB SERVICE

179

CamelAzureStor
ageBlobBlobSiz
e

BlobConstants.
BLOB_SIZE

long The size of the blob.

CamelAzureStor
ageBlobBlobTy
pe

BlobConstants.
BLOB_TYPE

BlobType The type of the blob.

CamelAzureStor
ageBlobCacheC
ontrol

BlobConstants.
CACHE_CONTR
OL

String Cache control specified for the blob.

CamelAzureStor
ageBlobCommit
tedBlockCount

BlobConstants.
COMMITTED_B
LOCK_COUNT

Integer Number of blocks committed to an
append blob

CamelAzureStor
ageBlobContent
Disposition

BlobConstants.
CONTENT_DISP
OSITION

String Content disposition specified for the
blob.

CamelAzureStor
ageBlobContent
Encoding

BlobConstants.
CONTENT_ENC
ODING

String Content encoding specified for the blob.

CamelAzureStor
ageBlobContent
Language

BlobConstants.
CONTENT_LAN
GUAGE

String Content language specified for the blob.

CamelAzureStor
ageBlobContent
Md5

BlobConstants.
CONTENT_MD5

byte[] Content MD5 specified for the blob.

CamelAzureStor
ageBlobContent
Type

BlobConstants.
CONTENT_TYP
E

String Content type specified for the blob.

CamelAzureStor
ageBlobCopyC
ompletionTime

BlobConstants.
COPY_COMPIL
ATION_TIME

OffsetDateTime Datetime when the last copy operation
on the blob completed.

CamelAzureStor
ageBlobCopyDe
stinationSnapsh
ot

BlobConstants.
COPY_DESTINA
TION_SNAPSH
OT

String Snapshot identifier of the last incremental
copy snapshot for the blob.

CamelAzureStor
ageBlobCopyId

BlobConstants.
COPY_ID

String Identifier of the last copy operation
performed on the blob.

Header Variable Name Type Description

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

180

CamelAzureStor
ageBlobCopyPr
ogress

BlobConstants.
COPY_PROGRE
SS

String Progress of the last copy operation
performed on the blob.

CamelAzureStor
ageBlobCopySo
urce

BlobConstants.
COPY_SOURCE

String Source of the last copy operation
performed on the blob.

CamelAzureStor
ageBlobCopySt
atus

BlobConstants.
COPY_STATUS

CopyStatusTyp
e

Status of the last copy operation
performed on the blob.

CamelAzureStor
ageBlobCopySt
atusDescription

BlobConstants.
COPY_STATUS
_DESCRIPTION

String Description of the last copy operation on
the blob.

CamelAzureStor
ageBlobETag

BlobConstants.
E_TAG

String The E Tag of the blob

CamelAzureStor
ageBlobIsAcces
sTierInferred

BlobConstants.I
S_ACCESS_TIE
R_INFRRRED

boolean Flag indicating if the access tier of the
blob was inferred from properties of the
blob.

CamelAzureStor
ageBlobIsIncre
mentalCopy

BlobConstants.I
S_INCREMENT
AL_COPY

boolean Flag indicating if the blob was
incrementally copied.

CamelAzureStor
ageBlobIsServe
rEncrypted

BlobConstants.I
S_SERVER_EN
CRYPTED

boolean Flag indicating if the blob’s content is
encrypted on the server.

CamelAzureStor
ageBlobLastMo
dified

BlobConstants.
LAST_MODIFIE
D

OffsetDateTime Datetime when the blob was last
modified.

CamelAzureStor
ageBlobLeaseD
uration

BlobConstants.
LEASE_DURATI
ON

LeaseDurationT
ype

Type of lease on the blob.

CamelAzureStor
ageBlobLeaseS
tate

BlobConstants.
LEASE_STATE

LeaseStateType State of the lease on the blob.

CamelAzureStor
ageBlobLeaseS
tatus

BlobConstants.
LEASE_STATU
S

LeaseStatusTyp
e

Status of the lease on the blob.

Header Variable Name Type Description

CHAPTER 8. AZURE STORAGE BLOB SERVICE

181

CamelAzureStor
ageBlobMetadat
a

BlobConstants.
METADATA

Map<String,
String>

Additional metadata associated with the
blob.

CamelAzureStor
ageBlobAppend
Offset

BlobConstants.
APPEND_OFFS
ET

String The offset at which the block was
committed to the block blob.

CamelAzureStor
ageBlobFileNa
me

BlobConstants.
FILE_NAME

String The downloaded filename from the
operation downloadBlobToFile.

CamelAzureStor
ageBlobDownlo
adLink

BlobConstants.
DOWNLOAD_LI
NK

String The download link generated by
downloadLink operation.

CamelAzureStor
ageBlobRawHtt
pHeaders

BlobConstants.
RAW_HTTP_HE
ADERS

HttpHeaders Returns non-parsed httpHeaders that
can be used by the user.

Header Variable Name Type Description

8.5.3. Advanced Azure Storage Blob configuration

If your Camel Application is running behind a firewall or if you need to have more control over the
BlobServiceClient instance configuration, you can create your own instance:

Then refer to this instance in your Camel azure-storage-blob component configuration:

8.5.4. Automatic detection of BlobServiceClient client in registry

The component is capable of detecting the presence of an BlobServiceClient bean into the registry. If
it’s the only instance of that type it will be used as client and you won’t have to define it as uri parameter,
like the example above. This may be really useful for smarter configuration of the endpoint.

8.5.5. Azure Storage Blob Producer operations

StorageSharedKeyCredential credential = new StorageSharedKeyCredential("yourAccountName",
"yourAccessKey");
String uri = String.format("https://%s.blob.core.windows.net", "yourAccountName");

BlobServiceClient client = new BlobServiceClientBuilder()
 .endpoint(uri)
 .credential(credential)
 .buildClient();
// This is camel context
context.getRegistry().bind("client", client);

from("azure-storage-blob://cameldev/container1?blobName=myblob&serviceClient=#client")
.to("mock:result");

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

182

Camel Azure Storage Blob component provides wide range of operations on the producer side:

Operations on the service level

For these operations, accountName is required.

Operation Description

listBlobContainers Get the content of the blob. You can restrict the output of this operation to
a blob range.

getChangeFeed Returns transaction logs of all the changes that occur to the blobs and the
blob metadata in your storage account. The change feed provides ordered,
guaranteed, durable, immutable, read-only log of these changes.

Operations on the container level

For these operations, accountName and containerName are required.

Operation Description

createBlobContainer Creates a new container within a storage account. If a container with the
same name already exists, the producer will ignore it.

deleteBlobContainer Deletes the specified container in the storage account. If the container
doesn’t exist the operation fails.

listBlobs Returns a list of blobs in this container, with folder structures flattened.

Operations on the blob level

For these operations, accountName, containerName and blobName are required.

Operation Blob Type Description

getBlob Common Get the content of the blob. You can restrict the
output of this operation to a blob range.

deleteBlob Common Delete a blob.

downloadBlobToFile Common Downloads the entire blob into a file specified by the
path.The file will be created and must not exist, if the
file already exists a {@link
FileAlreadyExistsException} will be thrown.

downloadLink Common Generates the download link for the specified blob
using shared access signatures (SAS). This by
default only limit to 1hour of allowed access.
However, you can override the default expiration
duration through the headers.

CHAPTER 8. AZURE STORAGE BLOB SERVICE

183

uploadBlockBlob BlockBlob Creates a new block blob, or updates the content of
an existing block blob. Updating an existing block
blob overwrites any existing metadata on the blob.
Partial updates are not supported with PutBlob; the
content of the existing blob is overwritten with the
new content.

stageBlockBlobList BlockBlob Uploads the specified block to the block blob’s
"staging area" to be later committed by a call to
commitBlobBlockList. However in case header
CamelAzureStorageBlobCommitBlobBlockLi
stLater or config commitBlockListLater is set to
false, this will commit the blocks immediately after
staging the blocks.

commitBlobBlockList BlockBlob Writes a blob by specifying the list of block IDs that
are to make up the blob. In order to be written as part
of a blob, a block must have been successfully
written to the server in a prior stageBlockBlobList
operation. You can call commitBlobBlockList to
update a blob by uploading only those blocks that
have changed, then committing the new and existing
blocks together. Any blocks not specified in the block
list and permanently deleted.

getBlobBlockList BlockBlob Returns the list of blocks that have been uploaded as
part of a block blob using the specified block list
filter.

createAppendBlob AppendBlob Creates a 0-length append blob. Call
commitAppendBlo`b operation to append data to an
append blob.

commitAppendBlob AppendBlob Commits a new block of data to the end of the
existing append blob. In case of header
CamelAzureStorageBlobCreateAppendBlob
or config createAppendBlob is set to true, it will
attempt to create the appendBlob through internal
call to createAppendBlob operation first before
committing.

createPageBlob PageBlob Creates a page blob of the specified length. Call
uploadPageBlob operation to upload data data to
a page blob.

Operation Blob Type Description

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

184

uploadPageBlob PageBlob Writes one or more pages to the page blob. The write
size must be a multiple of 512. In case of header
CamelAzureStorageBlobCreatePageBlob or
config createPageBlob is set to true, it will attempt
to create the appendBlob through internal call to
createPageBlob operation first before uploading.

resizePageBlob PageBlob Resizes the page blob to the specified size (which
must be a multiple of 512).

clearPageBlob PageBlob Frees the specified pages from the page blob. The
size of the range must be a multiple of 512.

getPageBlobRanges PageBlob Returns the list of valid page ranges for a page blob
or snapshot of a page blob.

copyBlob Common Copy a blob from one container to another one, even
from different accounts.

Operation Blob Type Description

Refer to the example section in this page to learn how to use these operations into your camel
application.

8.5.6. Consumer Examples

To consume a blob into a file using file component, this can be done like this:

However, you can also write to file directly without using the file component, you will need to specify
fileDir folder path in order to save your blob in your machine.

Also, the component supports batch consumer, hence you can consume multiple blobs with only
specifying the container name, the consumer will return multiple exchanges depending on the number
of the blobs in the container.

Example

from("azure-storage-blob://camelazure/container1?
blobName=hello.txt&accountName=yourAccountName&accessKey=yourAccessKey").
to("file://blobdirectory");

from("azure-storage-blob://camelazure/container1?
blobName=hello.txt&accountName=yourAccountName&accessKey=yourAccessKey&fileDir=/var/to/awes
ome/dir").
to("mock:results");

from("azure-storage-blob://camelazure/container1?
accountName=yourAccountName&accessKey=yourAccessKey&fileDir=/var/to/awesome/dir").
to("mock:results");

CHAPTER 8. AZURE STORAGE BLOB SERVICE

185

8.5.7. Producer Operations Examples

listBlobContainers

createBlobContainer

deleteBlobContainer:

listBlobs:

getBlob:

from("direct:start")
 .process(exchange -> {
 // set the header you want the producer to evaluate, refer to the previous
 // section to learn about the headers that can be set
 // e.g:
 exchange.getIn().setHeader(BlobConstants.LIST_BLOB_CONTAINERS_OPTIONS, new
ListBlobContainersOptions().setMaxResultsPerPage(10));
 })
 .to("azure-storage-blob://camelazure?operation=listBlobContainers&client&serviceClient=#client")
 .to("mock:result");

from("direct:start")
 .process(exchange -> {
 // set the header you want the producer to evaluate, refer to the previous
 // section to learn about the headers that can be set
 // e.g:
 exchange.getIn().setHeader(BlobConstants.BLOB_CONTAINER_NAME, "newContainerName");
 })
 .to("azure-storage-blob://camelazure/container1?
operation=createBlobContainer&serviceClient=#client")
 .to("mock:result");

from("direct:start")
 .process(exchange -> {
 // set the header you want the producer to evaluate, refer to the previous
 // section to learn about the headers that can be set
 // e.g:
 exchange.getIn().setHeader(BlobConstants.BLOB_CONTAINER_NAME, "overridenName");
 })
 .to("azure-storage-blob://camelazure/container1?
operation=deleteBlobContainer&serviceClient=#client")
 .to("mock:result");

from("direct:start")
 .process(exchange -> {
 // set the header you want the producer to evaluate, refer to the previous
 // section to learn about the headers that can be set
 // e.g:
 exchange.getIn().setHeader(BlobConstants.BLOB_CONTAINER_NAME, "overridenName");
 })
 .to("azure-storage-blob://camelazure/container1?operation=listBlobs&serviceClient=#client")
 .to("mock:result");

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

186

We can either set an outputStream in the exchange body and write the data to it. E.g:

If we don’t set a body, then this operation will give us an InputStream instance which can proceeded
further downstream:

deleteBlob:

downloadBlobToFile:

from("direct:start")
 .process(exchange -> {
 // set the header you want the producer to evaluate, refer to the previous
 // section to learn about the headers that can be set
 // e.g:
 exchange.getIn().setHeader(BlobConstants.BLOB_CONTAINER_NAME, "overridenName");

 // set our body
 exchange.getIn().setBody(outputStream);
 })
 .to("azure-storage-blob://camelazure/container1?
blobName=blob&operation=getBlob&serviceClient=#client")
 .to("mock:result");

from("direct:start")
 .to("azure-storage-blob://camelazure/container1?
blobName=blob&operation=getBlob&serviceClient=#client")
 .process(exchange -> {
 InputStream inputStream = exchange.getMessage().getBody(InputStream.class);
 // We use Apache common IO for simplicity, but you are free to do whatever dealing
 // with inputStream
 System.out.println(IOUtils.toString(inputStream, StandardCharsets.UTF_8.name()));
 })
 .to("mock:result");

from("direct:start")
 .process(exchange -> {
 // set the header you want the producer to evaluate, refer to the previous
 // section to learn about the headers that can be set
 // e.g:
 exchange.getIn().setHeader(BlobConstants.BLOB_NAME, "overridenName");
 })
 .to("azure-storage-blob://camelazure/container1?
blobName=blob&operation=deleteBlob&serviceClient=#client")
 .to("mock:result");

from("direct:start")
 .process(exchange -> {
 // set the header you want the producer to evaluate, refer to the previous
 // section to learn about the headers that can be set
 // e.g:
 exchange.getIn().setHeader(BlobConstants.BLOB_NAME, "overridenName");
 })
 .to("azure-storage-blob://camelazure/container1?
blobName=blob&operation=downloadBlobToFile&fileDir=/var/mydir&serviceClient=#client")
 .to("mock:result");

CHAPTER 8. AZURE STORAGE BLOB SERVICE

187

downloadLink

uploadBlockBlob

stageBlockBlobList

commitBlockBlobList

from("direct:start")
 .to("azure-storage-blob://camelazure/container1?
blobName=blob&operation=downloadLink&serviceClient=#client")
 .process(exchange -> {
 String link = exchange.getMessage().getHeader(BlobConstants.DOWNLOAD_LINK,
String.class);
 System.out.println("My link " + link);
 })
 .to("mock:result");

from("direct:start")
 .process(exchange -> {
 // set the header you want the producer to evaluate, refer to the previous
 // section to learn about the headers that can be set
 // e.g:
 exchange.getIn().setHeader(BlobConstants.BLOB_NAME, "overridenName");
 exchange.getIn().setBody("Block Blob");
 })
 .to("azure-storage-blob://camelazure/container1?
blobName=blob&operation=uploadBlockBlob&serviceClient=#client")
 .to("mock:result");

from("direct:start")
 .process(exchange -> {
 final List<BlobBlock> blocks = new LinkedList<>();
 blocks.add(BlobBlock.createBlobBlock(new ByteArrayInputStream("Hello".getBytes())));
 blocks.add(BlobBlock.createBlobBlock(new ByteArrayInputStream("From".getBytes())));
 blocks.add(BlobBlock.createBlobBlock(new ByteArrayInputStream("Camel".getBytes())));

 exchange.getIn().setBody(blocks);
 })
 .to("azure-storage-blob://camelazure/container1?
blobName=blob&operation=stageBlockBlobList&serviceClient=#client")
 .to("mock:result");

from("direct:start")
 .process(exchange -> {
 // We assume here you have the knowledge of these blocks you want to commit
 final List<Block> blocksIds = new LinkedList<>();
 blocksIds.add(new Block().setName("id-1"));
 blocksIds.add(new Block().setName("id-2"));
 blocksIds.add(new Block().setName("id-3"));

 exchange.getIn().setBody(blocksIds);
 })

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

188

getBlobBlockList

createAppendBlob

commitAppendBlob

createPageBlob

uploadPageBlob

 .to("azure-storage-blob://camelazure/container1?
blobName=blob&operation=commitBlockBlobList&serviceClient=#client")
 .to("mock:result");

from("direct:start")
 .to("azure-storage-blob://camelazure/container1?
blobName=blob&operation=getBlobBlockList&serviceClient=#client")
 .log("${body}")
 .to("mock:result");

from("direct:start")
 .to("azure-storage-blob://camelazure/container1?
blobName=blob&operation=createAppendBlob&serviceClient=#client")
 .to("mock:result");

from("direct:start")
 .process(exchange -> {
 final String data = "Hello world from my awesome tests!";
 final InputStream dataStream = new
ByteArrayInputStream(data.getBytes(StandardCharsets.UTF_8));

 exchange.getIn().setBody(dataStream);

 // of course you can set whatever headers you like, refer to the headers section to learn more
 })
 .to("azure-storage-blob://camelazure/container1?
blobName=blob&operation=commitAppendBlob&serviceClient=#client")
 .to("mock:result");

from("direct:start")
 .to("azure-storage-blob://camelazure/container1?
blobName=blob&operation=createPageBlob&serviceClient=#client")
 .to("mock:result");

from("direct:start")
 .process(exchange -> {
 byte[] dataBytes = new byte[512]; // we set range for the page from 0-511
 new Random().nextBytes(dataBytes);
 final InputStream dataStream = new ByteArrayInputStream(dataBytes);
 final PageRange pageRange = new PageRange().setStart(0).setEnd(511);

 exchange.getIn().setHeader(BlobConstants.PAGE_BLOB_RANGE, pageRange);
 exchange.getIn().setBody(dataStream);
 })

CHAPTER 8. AZURE STORAGE BLOB SERVICE

189

resizePageBlob

clearPageBlob

getPageBlobRanges

copyBlob

 .to("azure-storage-blob://camelazure/container1?
blobName=blob&operation=uploadPageBlob&serviceClient=#client")
 .to("mock:result");

from("direct:start")
 .process(exchange -> {
 final PageRange pageRange = new PageRange().setStart(0).setEnd(511);

 exchange.getIn().setHeader(BlobConstants.PAGE_BLOB_RANGE, pageRange);
 })
 .to("azure-storage-blob://camelazure/container1?
blobName=blob&operation=resizePageBlob&serviceClient=#client")
 .to("mock:result");

from("direct:start")
 .process(exchange -> {
 final PageRange pageRange = new PageRange().setStart(0).setEnd(511);

 exchange.getIn().setHeader(BlobConstants.PAGE_BLOB_RANGE, pageRange);
 })
 .to("azure-storage-blob://camelazure/container1?
blobName=blob&operation=clearPageBlob&serviceClient=#client")
 .to("mock:result");

from("direct:start")
 .process(exchange -> {
 final PageRange pageRange = new PageRange().setStart(0).setEnd(511);

 exchange.getIn().setHeader(BlobConstants.PAGE_BLOB_RANGE, pageRange);
 })
 .to("azure-storage-blob://camelazure/container1?
blobName=blob&operation=getPageBlobRanges&serviceClient=#client")
 .log("${body}")
 .to("mock:result");

from("direct:copyBlob")
 .process(exchange -> {
 exchange.getIn().setHeader(BlobConstants.BLOB_NAME, "file.txt");
 exchange.getMessage().setHeader(BlobConstants.SOURCE_BLOB_CONTAINER_NAME,
"containerblob1");
 exchange.getMessage().setHeader(BlobConstants.SOURCE_BLOB_ACCOUNT_NAME,
"account");
 })
 .to("azure-storage-blob://account/containerblob2?
operation=copyBlob&sourceBlobAccessKey=RAW(accessKey)")
 .to("mock:result");

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

190

In this way the file.txt in the container containerblob1 of the account 'account', will be copied to the
container containerblob2 of the same account.

8.5.8. Development Notes (Important)

All integration tests use Testcontainers and run by default. Obtaining of Azure accessKey and
accountName is needed to be able to run all integration tests using Azure services. In addition to the
mocked unit tests you will need to run the integration tests with every change you make or even
client upgrade as the Azure client can break things even on minor versions upgrade. To run the
integration tests, on this component directory, run the following maven command:

Whereby accountName is your Azure account name and accessKey is the access key being generated
from Azure portal.

8.6. SPRING BOOT AUTO-CONFIGURATION

When using azure-storage-blob with Spring Boot make sure to use the following Maven dependency to
have support for auto configuration:

The component supports 32 options, which are listed below.

Name Description Defaul
t

Type

camel.component
.azure-storage-
blob.access-key

Access key for the associated azure account name to
be used for authentication with azure blob services.

 String

camel.component
.azure-storage-
blob.autowired-
enabled

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true Boolean

camel.component
.azure-storage-
blob.blob-name

The blob name, to consume specific blob from a
container. However on producer, is only required for
the operations on the blob level.

 String

camel.component
.azure-storage-
blob.blob-offset

Set the blob offset for the upload or download
operations, default is 0.

0 Long

mvn verify -PfullTests -DaccountName=myacc -DaccessKey=mykey

<dependency>
 <groupId>org.apache.camel.springboot</groupId>
 <artifactId>camel-azure-storage-blob-starter</artifactId>
 <version>3.14.5.redhat-00032</version>
 <!-- Use your Camel Spring Boot version -->
</dependency>

CHAPTER 8. AZURE STORAGE BLOB SERVICE

191

https://www.testcontainers.org/

camel.component
.azure-storage-
blob.blob-
sequence-number

A user-controlled value that you can use to track
requests. The value of the sequence number must be
between 0 and 263 - 1.The default value is 0.

0 Long

camel.component
.azure-storage-
blob.blob-type

The blob type in order to initiate the appropriate
settings for each blob type.

 BlobType

camel.component
.azure-storage-
blob.block-list-
type

Specifies which type of blocks to return. BlockListType

camel.component
.azure-storage-
blob.bridge-
error-handler

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false Boolean

camel.component
.azure-storage-
blob.change-
feed-context

When using getChangeFeed producer operation, this
gives additional context that is passed through the
Http pipeline during the service call. The option is a
com.azure.core.util.Context type.

 Context

camel.component
.azure-storage-
blob.change-
feed-end-time

When using getChangeFeed producer operation, this
filters the results to return events approximately
before the end time. Note: A few events belonging to
the next hour can also be returned. A few events
belonging to this hour can be missing; to ensure all
events from the hour are returned, round the end
time up by an hour. The option is a
java.time.OffsetDateTime type.

 OffsetDateTime

camel.component
.azure-storage-
blob.change-
feed-start-time

When using getChangeFeed producer operation, this
filters the results to return events approximately after
the start time. Note: A few events belonging to the
previous hour can also be returned. A few events
belonging to this hour can be missing; to ensure all
events from the hour are returned, round the start
time down by an hour. The option is a
java.time.OffsetDateTime type.

 OffsetDateTime

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

192

camel.component
.azure-storage-
blob.close-
stream-after-
read

Close the stream after read or keep it open, default is
true.

true Boolean

camel.component
.azure-storage-
blob.close-
stream-after-
write

Close the stream after write or keep it open, default is
true.

true Boolean

camel.component
.azure-storage-
blob.commit-
block-list-later

When is set to true, the staged blocks will not be
committed directly.

true Boolean

camel.component
.azure-storage-
blob.configuratio
n

The component configurations. The option is a
org.apache.camel.component.azure.storage.blob.Blo
bConfiguration type.

 BlobConfiguration

camel.component
.azure-storage-
blob.create-
append-blob

When is set to true, the append blocks will be created
when committing append blocks.

true Boolean

camel.component
.azure-storage-
blob.create-
page-blob

When is set to true, the page blob will be created
when uploading page blob.

true Boolean

camel.component
.azure-storage-
blob.credentials

StorageSharedKeyCredential can be injected to
create the azure client, this holds the important
authentication information. The option is a
com.azure.storage.common.StorageSharedKeyCrede
ntial type.

 StorageSharedKey
Credential

camel.component
.azure-storage-
blob.data-count

How many bytes to include in the range. Must be
greater than or equal to 0 if specified.

 Long

camel.component
.azure-storage-
blob.download-
link-expiration

Override the default expiration (millis) of URL
download link.

 Long

Name Description Defaul
t

Type

CHAPTER 8. AZURE STORAGE BLOB SERVICE

193

camel.component
.azure-storage-
blob.enabled

Whether to enable auto configuration of the azure-
storage-blob component. This is enabled by default.

 Boolean

camel.component
.azure-storage-
blob.file-dir

The file directory where the downloaded blobs will be
saved to, this can be used in both, producer and
consumer.

 String

camel.component
.azure-storage-
blob.lazy-start-
producer

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false Boolean

camel.component
.azure-storage-
blob.max-results-
per-page

Specifies the maximum number of blobs to return,
including all BlobPrefix elements. If the request does
not specify maxResultsPerPage or specifies a value
greater than 5,000, the server will return up to 5,000
items.

 Integer

camel.component
.azure-storage-
blob.max-retry-
requests

Specifies the maximum number of additional HTTP
Get requests that will be made while reading the data
from a response body.

0 Integer

camel.component
.azure-storage-
blob.operation

The blob operation that can be used with this
component on the producer.

 BlobOperationsDe
finition

camel.component
.azure-storage-
blob.page-blob-
size

Specifies the maximum size for the page blob, up to 8
TB. The page blob size must be aligned to a 512-byte
boundary.

512 Long

camel.component
.azure-storage-
blob.prefix

Filters the results to return only blobs whose names
begin with the specified prefix. May be null to return
all blobs.

 String

camel.component
.azure-storage-
blob.regex

Filters the results to return only blobs whose names
match the specified regular expression. May be null
to return all if both prefix and regex are set, regex
takes the priority and prefix is ignored.

 String

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

194

camel.component
.azure-storage-
blob.service-
client

Client to a storage account. This client does not hold
any state about a particular storage account but is
instead a convenient way of sending off appropriate
requests to the resource on the service. It may also
be used to construct URLs to blobs and containers.
This client contains operations on a service account.
Operations on a container are available on
BlobContainerClient through
BlobServiceClient#getBlobContainerClient(String),
and operations on a blob are available on BlobClient
through BlobContainerClient#getBlobClient(String).
The option is a
com.azure.storage.blob.BlobServiceClient type.

 BlobServiceClient

camel.component
.azure-storage-
blob.source-blob-
access-key

Source Blob Access Key: for copyblob operation,
sadly, we need to have an accessKey for the source
blob we want to copy Passing an accessKey as
header, it’s unsafe so we could set as key.

 String

camel.component
.azure-storage-
blob.timeout

An optional timeout value beyond which a
RuntimeException will be raised. The option is a
java.time.Duration type.

 Duration

Name Description Defaul
t

Type

CHAPTER 8. AZURE STORAGE BLOB SERVICE

195

CHAPTER 9. AZURE STORAGE QUEUE SERVICE
Both producer and consumer are supported

The Azure Storage Queue component supports storing and retrieving the messages to/from Azure
Storage Queue service using Azure APIs v12. However in case of versions above v12, we will see if this
component can adopt these changes depending on how much breaking changes can result.

Prerequisites

You must have a valid Windows Azure Storage account. More information is available at Azure
Documentation Portal.

Maven users will need to add the following dependency to their pom.xml for this component:

9.1. URI FORMAT

In case of consumer, accountName and queueName are required. In case of producer, it depends on the
operation that being requested, for example if operation is on a service level, e.b: listQueues, only
accountName is required, but in case of operation being requested on the queue level, for example,
createQueue, sendMessage.. etc, both accountName and queueName are required.

The queue will be created if it does not already exist. You can append query options to the URI in the
following format,

?options=value&option2=value&…

9.2. CONFIGURING OPTIONS

Camel components are configured on two separate levels:

component level

endpoint level

9.2.1. Configuring Component Options

The component level is the highest level which holds general and common configurations that are
inherited by the endpoints. For example a component may have security settings, credentials for
authentication, urls for network connection and so forth.

Some components only have a few options, and others may have many. Because components typically
have pre configured defaults that are commonly used, then you may often only need to configure a few
options on a component; or none at all.

Configuring components can be done with the Component DSL, in a configuration file

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-azure-storage-queue</artifactId>
 <version>3.14.5.redhat-00018</version>
 <!-- use the same version as your Camel core version -->
</dependency>

azure-storage-queue://accountName[/queueName][?options]

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

196

https://azure.microsoft.com/services/storage/queues/
https://docs.microsoft.com/azure/

Configuring components can be done with the Component DSL, in a configuration file
(application.properties|yaml), or directly with Java code.

9.2.2. Configuring Endpoint Options

Where you find yourself configuring the most is on endpoints, as endpoints often have many options,
which allows you to configure what you need the endpoint to do. The options are also categorized into
whether the endpoint is used as consumer (from) or as a producer (to), or used for both.

Configuring endpoints is most often done directly in the endpoint URI as path and query parameters.
You can also use the Endpoint DSL as a type safe way of configuring endpoints.

A good practice when configuring options is to use Property Placeholders, which allows to not hardcode
urls, port numbers, sensitive information, and other settings. In other words placeholders allows to
externalize the configuration from your code, and gives more flexibility and reuse.

The following two sections lists all the options, firstly for the component followed by the endpoint.

9.3. COMPONENT OPTIONS

The Azure Storage Queue Service component supports 15 options, which are listed below.

Name Description Defaul
t

Type

configuration
(common)

The component configurations. QueueConfigurati
on

serviceClient
(common)

Autowired Service client to a storage account to
interact with the queue service. This client does not
hold any state about a particular storage account but
is instead a convenient way of sending off
appropriate requests to the resource on the service.
This client contains all the operations for interacting
with a queue account in Azure Storage. Operations
allowed by the client are creating, listing, and deleting
queues, retrieving and updating properties of the
account, and retrieving statistics of the account.

 QueueServiceClie
nt

bridgeErrorHandl
er (consumer)

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false boolean

createQueue
(producer)

When is set to true, the queue will be automatically
created when sending messages to the queue.

false boolean

CHAPTER 9. AZURE STORAGE QUEUE SERVICE

197

https://camel.apache.org/manual/component-dsl.html
https://camel.apache.org/manual/Endpoint-dsl.html
https://camel.apache.org/manual/using-propertyplaceholder.html

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

operation
(producer)

Queue service operation hint to the producer.

Enum values:

listQueues

createQueue

deleteQueue

clearQueue

sendMessage

deleteMessage

receiveMessages

peekMessages

updateMessage

 QueueOperationD
efinition

autowiredEnabled
(advanced)

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true boolean

maxMessages
(queue)

Maximum number of messages to get, if there are
less messages exist in the queue than requested all
the messages will be returned. If left empty only 1
message will be retrieved, the allowed range is 1 to 32
messages.

1 Integer

messageId
(queue)

The ID of the message to be deleted or updated. String

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

198

popReceipt
(queue)

Unique identifier that must match for the message to
be deleted or updated.

 String

timeout (queue) An optional timeout applied to the operation. If a
response is not returned before the timeout
concludes a RuntimeException will be thrown.

 Duration

timeToLive
(queue)

How long the message will stay alive in the queue. If
unset the value will default to 7 days, if -1 is passed
the message will not expire. The time to live must be
-1 or any positive number. The format should be in
this form: PnDTnHnMn.nS., e.g: PT20.345S — parses
as 20.345 seconds, P2D — parses as 2 days However,
in case you are using EndpointDsl/ComponentDsl,
you can do something like Duration.ofSeconds() since
these Java APIs are typesafe.

 Duration

visibilityTimeout
(queue)

The timeout period for how long the message is
invisible in the queue. The timeout must be between 1
seconds and 7 days. The format should be in this
form: PnDTnHnMn.nS., e.g: PT20.345S — parses as
20.345 seconds, P2D — parses as 2 days However, in
case you are using EndpointDsl/ComponentDsl, you
can do something like Duration.ofSeconds() since
these Java APIs are typesafe.

 Duration

accessKey
(security)

Access key for the associated azure account name to
be used for authentication with azure queue services.

 String

credentials
(security)

StorageSharedKeyCredential can be injected to
create the azure client, this holds the important
authentication information.

 StorageSharedKey
Credential

Name Description Defaul
t

Type

9.4. ENDPOINT OPTIONS

The Azure Storage Queue Service endpoint is configured using URI syntax:

azure-storage-queue:accountName/queueName

with the following path and query parameters:

9.4.1. Path Parameters (2 parameters)

CHAPTER 9. AZURE STORAGE QUEUE SERVICE

199

Name Description Defaul
t

Type

accountName
(common)

Azure account name to be used for authentication
with azure queue services.

 String

queueName
(common)

The queue resource name. String

9.4.2. Query Parameters (31 parameters)

Name Description Defaul
t

Type

serviceClient
(common)

Autowired Service client to a storage account to
interact with the queue service. This client does not
hold any state about a particular storage account but
is instead a convenient way of sending off
appropriate requests to the resource on the service.
This client contains all the operations for interacting
with a queue account in Azure Storage. Operations
allowed by the client are creating, listing, and deleting
queues, retrieving and updating properties of the
account, and retrieving statistics of the account.

 QueueServiceClie
nt

bridgeErrorHandl
er (consumer)

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false boolean

sendEmptyMessa
geWhenIdle
(consumer)

If the polling consumer did not poll any files, you can
enable this option to send an empty message (no
body) instead.

false boolean

exceptionHandler
(consumer
(advanced))

To let the consumer use a custom ExceptionHandler.
Notice if the option bridgeErrorHandler is enabled
then this option is not in use. By default the consumer
will deal with exceptions, that will be logged at WARN
or ERROR level and ignored.

 ExceptionHandler

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

200

exchangePattern
(consumer
(advanced))

Sets the exchange pattern when the consumer
creates an exchange.

Enum values:

InOnly

InOut

InOptionalOut

 ExchangePattern

pollStrategy
(consumer
(advanced))

A pluggable
org.apache.camel.PollingConsumerPollingStrategy
allowing you to provide your custom implementation
to control error handling usually occurred during the
poll operation before an Exchange have been
created and being routed in Camel.

 PollingConsumerP
ollStrategy

createQueue
(producer)

When is set to true, the queue will be automatically
created when sending messages to the queue.

false boolean

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

Name Description Defaul
t

Type

CHAPTER 9. AZURE STORAGE QUEUE SERVICE

201

operation
(producer)

Queue service operation hint to the producer.

Enum values:

listQueues

createQueue

deleteQueue

clearQueue

sendMessage

deleteMessage

receiveMessages

peekMessages

updateMessage

 QueueOperationD
efinition

maxMessages
(queue)

Maximum number of messages to get, if there are
less messages exist in the queue than requested all
the messages will be returned. If left empty only 1
message will be retrieved, the allowed range is 1 to 32
messages.

1 Integer

messageId
(queue)

The ID of the message to be deleted or updated. String

popReceipt
(queue)

Unique identifier that must match for the message to
be deleted or updated.

 String

timeout (queue) An optional timeout applied to the operation. If a
response is not returned before the timeout
concludes a RuntimeException will be thrown.

 Duration

timeToLive
(queue)

How long the message will stay alive in the queue. If
unset the value will default to 7 days, if -1 is passed
the message will not expire. The time to live must be
-1 or any positive number. The format should be in
this form: PnDTnHnMn.nS., e.g: PT20.345S — parses
as 20.345 seconds, P2D — parses as 2 days However,
in case you are using EndpointDsl/ComponentDsl,
you can do something like Duration.ofSeconds() since
these Java APIs are typesafe.

 Duration

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

202

visibilityTimeout
(queue)

The timeout period for how long the message is
invisible in the queue. The timeout must be between 1
seconds and 7 days. The format should be in this
form: PnDTnHnMn.nS., e.g: PT20.345S — parses as
20.345 seconds, P2D — parses as 2 days However, in
case you are using EndpointDsl/ComponentDsl, you
can do something like Duration.ofSeconds() since
these Java APIs are typesafe.

 Duration

backoffErrorThre
shold (scheduler)

The number of subsequent error polls (failed due
some error) that should happen before the
backoffMultipler should kick-in.

 int

backoffIdleThres
hold (scheduler)

The number of subsequent idle polls that should
happen before the backoffMultipler should kick-in.

 int

backoffMultiplier
(scheduler)

To let the scheduled polling consumer backoff if
there has been a number of subsequent idles/errors
in a row. The multiplier is then the number of polls
that will be skipped before the next actual attempt is
happening again. When this option is in use then
backoffIdleThreshold and/or backoffErrorThreshold
must also be configured.

 int

delay (scheduler) Milliseconds before the next poll. 500 long

greedy
(scheduler)

If greedy is enabled, then the
ScheduledPollConsumer will run immediately again, if
the previous run polled 1 or more messages.

false boolean

initialDelay
(scheduler)

Milliseconds before the first poll starts. 1000 long

repeatCount
(scheduler)

Specifies a maximum limit of number of fires. So if
you set it to 1, the scheduler will only fire once. If you
set it to 5, it will only fire five times. A value of zero or
negative means fire forever.

0 long

Name Description Defaul
t

Type

CHAPTER 9. AZURE STORAGE QUEUE SERVICE

203

runLoggingLevel
(scheduler)

The consumer logs a start/complete log line when it
polls. This option allows you to configure the logging
level for that.

Enum values:

TRACE

DEBUG

INFO

WARN

ERROR

OFF

TRACE LoggingLevel

scheduledExecut
orService
(scheduler)

Allows for configuring a custom/shared thread pool
to use for the consumer. By default each consumer
has its own single threaded thread pool.

 ScheduledExecuto
rService

scheduler
(scheduler)

To use a cron scheduler from either camel-spring or
camel-quartz component. Use value spring or quartz
for built in scheduler.

none Object

schedulerProperti
es (scheduler)

To configure additional properties when using a
custom scheduler or any of the Quartz, Spring based
scheduler.

 Map

startScheduler
(scheduler)

Whether the scheduler should be auto started. true boolean

timeUnit
(scheduler)

Time unit for initialDelay and delay options.

Enum values:

NANOSECONDS

MICROSECONDS

MILLISECONDS

SECONDS

MINUTES

HOURS

DAYS

MILLIS
ECON
DS

TimeUnit

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

204

useFixedDelay
(scheduler)

Controls if fixed delay or fixed rate is used. See
ScheduledExecutorService in JDK for details.

true boolean

accessKey
(security)

Access key for the associated azure account name to
be used for authentication with azure queue services.

 String

credentials
(security)

StorageSharedKeyCredential can be injected to
create the azure client, this holds the important
authentication information.

 StorageSharedKey
Credential

Name Description Defaul
t

Type

Required information options

To use this component, you have 3 options in order to provide the required Azure authentication
information:

Provide accountName and accessKey for your Azure account, this is the simplest way to get
started. The accessKey can be generated through your Azure portal.

Provide a StorageSharedKeyCredential instance which can be provided into credentials option.

Provide a QueueServiceClient instance which can be provided into serviceClient. Note: You
don’t need to create a specific client, e.g: QueueClient, the QueueServiceClient represents the
upper level which can be used to retrieve lower level clients.

9.5. USAGE

For example in order to get a message content from the queue messageQueue in the storageAccount
storage account and, use the following snippet:

9.5.1. Message headers evaluated by the component producer

Header Variable Name Type Operations Description

CamelAzureStor
ageQueueSegm
entOptions

QueueConstant
s.QUEUES_SEG
MENT_OPTION
S

QueuesSegmen
tOptions

listQueues Options for listing
queues

CamelAzureStor
ageQueueTime
out

QueueConstant
s.TIMEOUT

Duration All An optional
timeout value
beyond which a \
{@link
RuntimeException
} will be raised.

from("azure-storage-queue://storageAccount/messageQueue?accessKey=yourAccessKey").
to("file://queuedirectory");

CHAPTER 9. AZURE STORAGE QUEUE SERVICE

205

https://azuresdkartifacts.blob.core.windows.net/azure-sdk-for-java/staging/apidocs/com/azure/storage/common/StorageSharedKeyCredential.html
https://azuresdkartifacts.blob.core.windows.net/azure-sdk-for-java/staging/apidocs/com/azure/storage/queue/QueueServiceClient.html

CamelAzureStor
ageQueueMetad
ata

QueueConstant
s.METADATA

Map<String,Stri
ng>

createQueue Metadata to
associate with the
queue

CamelAzureStor
ageQueueTime
ToLive

QueueConstant
s.TIME_TO_LIV
E

Duration sendMessage How long the
message will stay
alive in the queue.
If unset the value
will default to 7
days, if -1 is passed
the message will
not expire. The
time to live must
be -1 or any
positive number.

CamelAzureStor
ageQueueVisibil
ityTimeout

QueueConstant
s.VISIBILITY_TI
MEOUT

Duration sendMessage,
receiveMessage
s,
updateMessage

The timeout
period for how
long the message
is invisible in the
queue. If unset the
value will default
to 0 and the
message will be
instantly visible.
The timeout must
be between 0
seconds and 7
days.

CamelAzureStor
ageQueueCreat
eQueue

QueueConstant
s.CREATE_QUE
UE

boolean sendMessage When is set to
true, the queue
will be
automatically
created when
sending messages
to the queue.

CamelAzureStor
ageQueuePopR
eceipt

QueueConstant
s.POP_RECEIPT

String deleteMessage,
updateMessage

Unique identifier
that must match
for the message to
be deleted or
updated.

CamelAzureStor
ageQueueMess
ageId

QueueConstant
s.MESSAGE_ID

String deleteMessage,
updateMessage

The ID of the
message to be
deleted or
updated.

Header Variable Name Type Operations Description

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

206

CamelAzureStor
ageQueueMaxM
essages

QueueConstant
s.MAX_MESSA
GES

Integer receiveMessage
s,
peekMessages

Maximum number
of messages to
get, if there are
less messages
exist in the queue
than requested all
the messages will
be returned. If left
empty only 1
message will be
retrieved, the
allowed range is 1
to 32 messages.

CamelAzureStor
ageQueueOpera
tion

QueueConstant
s.QUEUE_OPER
ATION

QueueOperatio
nDefinition

All Specify the
producer
operation to
execute, please
see the doc on this
page related to
producer
operation.

CamelAzureStor
ageQueueName

QueueConstant
s.QUEUE_NAM
E

String All Override the
queue name.

Header Variable Name Type Operations Description

9.5.2. Message headers set by either component producer or consumer

Header Variable Name Type Description

CamelAzureStorageQueu
eMessageId

QueueConstant
s.MESSAGE_ID

String The ID of message that being
sent to the queue.

CamelAzureStorageQueu
eInsertionTime

QueueConstant
s.INSERTION_TI
ME

OffsetDateTime The time the Message was
inserted into the Queue.

CamelAzureStorageQueu
eExpirationTime

QueueConstant
s.EXPIRATION_
TIME

OffsetDateTime The time that the Message will
expire and be automatically
deleted.

CamelAzureStorageQueu
ePopReceipt

QueueConstant
s.POP_RECEIPT

String This value is required to
delete/update the Message. If
deletion fails using this
popreceipt then the message
has been dequeued by
another client.

CHAPTER 9. AZURE STORAGE QUEUE SERVICE

207

CamelAzureStorageQueu
eTimeNextVisible

QueueConstant
s.TIME_NEXT_V
ISIBLE

OffsetDateTime The time that the message will
again become visible in the
Queue.

CamelAzureStorageQueu
eDequeueCount

QueueConstant
s.DEQUEUE_C
OUNT

long The number of times the
message has been dequeued.

CamelAzureStorageQueu
eRawHttpHeaders

QueueConstant
s.RAW_HTTP_H
EADERS

HttpHeaders Returns non-parsed
httpHeaders that can be used
by the user.

Header Variable Name Type Description

9.5.3. Advanced Azure Storage Queue configuration

If your Camel Application is running behind a firewall or if you need to have more control over the
QueueServiceClient instance configuration, you can create your own instance:

Then refer to this instance in your Camel azure-storage-queue component configuration:

9.5.4. Automatic detection of QueueServiceClient client in registry

The component is capable of detecting the presence of an QueueServiceClient bean into the registry. If
it’s the only instance of that type it will be used as client and you won’t have to define it as uri parameter,
like the example above. This may be really useful for smarter configuration of the endpoint.

9.5.5. Azure Storage Queue Producer operations

Camel Azure Storage Queue component provides wide range of operations on the producer side:

Operations on the service level

For these operations, accountName is required.

StorageSharedKeyCredential credential = new StorageSharedKeyCredential("yourAccountName",
"yourAccessKey");
String uri = String.format("https://%s.queue.core.windows.net", "yourAccountName");

QueueServiceClient client = new QueueServiceClientBuilder()
 .endpoint(uri)
 .credential(credential)
 .buildClient();
// This is camel context
context.getRegistry().bind("client", client);

from("azure-storage-queue://cameldev/queue1?serviceClient=#client")
.to("file://outputFolder?fileName=output.txt&fileExist=Append");

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

208

Operation Description

listQueues Lists the queues in the storage account that pass the filter starting at the
specified marker.

Operations on the queue level

For these operations, accountName and queueName are required.

Operation Description

createQueue Creates a new queue.

deleteQueue Permanently deletes the queue.

clearQueue Deletes all messages in the queue..

sendMessage Default Producer Operation Sends a message with a given time-to-live
and a timeout period where the message is invisible in the queue. The
message text is evaluated from the exchange message body. By default, if
the queue doesn`t exist, it will create an empty queue first. If you want to
disable this, set the config createQueue or header
CamelAzureStorageQueueCreateQueue to false.

deleteMessage Deletes the specified message in the queue.

receiveMessages Retrieves up to the maximum number of messages from the queue and
hides them from other operations for the timeout period. However it will not
dequeue the message from the queue due to reliability reasons.

peekMessages Peek messages from the front of the queue up to the maximum number of
messages.

updateMessage Updates the specific message in the queue with a new message and resets
the visibility timeout. The message text is evaluated from the exchange
message body.

Refer to the example section in this page to learn how to use these operations into your camel
application.

9.5.6. Consumer Examples

To consume a queue into a file component with maximum 5 messages in one batch, this can be done like
this:

9.5.7. Producer Operations Examples

from("azure-storage-queue://cameldev/queue1?serviceClient=#client&maxMessages=5")
.to("file://outputFolder?fileName=output.txt&fileExist=Append");

CHAPTER 9. AZURE STORAGE QUEUE SERVICE

209

listQueues:

createQueue:

deleteQueue:

clearQueue:

sendMessage:

from("direct:start")
 .process(exchange -> {
 // set the header you want the producer to evaluate, refer to the previous
 // section to learn about the headers that can be set
 // e.g, to only returns list of queues with 'awesome' prefix:
 exchange.getIn().setHeader(QueueConstants.QUEUES_SEGMENT_OPTIONS, new
QueuesSegmentOptions().setPrefix("awesome"));
 })
 .to("azure-storage-queue://cameldev?serviceClient=#client&operation=listQueues")
 .log("${body}")
 .to("mock:result");

from("direct:start")
 .process(exchange -> {
 // set the header you want the producer to evaluate, refer to the previous
 // section to learn about the headers that can be set
 // e.g:
 exchange.getIn().setHeader(QueueConstants.QUEUE_NAME, "overrideName");
 })
 .to("azure-storage-queue://cameldev/test?serviceClient=#client&operation=createQueue");

from("direct:start")
 .process(exchange -> {
 // set the header you want the producer to evaluate, refer to the previous
 // section to learn about the headers that can be set
 // e.g:
 exchange.getIn().setHeader(QueueConstants.QUEUE_NAME, "overrideName");
 })
 .to("azure-storage-queue://cameldev/test?serviceClient=#client&operation=deleteQueue");

from("direct:start")
 .process(exchange -> {
 // set the header you want the producer to evaluate, refer to the previous
 // section to learn about the headers that can be set
 // e.g:
 exchange.getIn().setHeader(QueueConstants.QUEUE_NAME, "overrideName");
 })
 .to("azure-storage-queue://cameldev/test?serviceClient=#client&operation=clearQueue");

from("direct:start")
 .process(exchange -> {
 // set the header you want the producer to evaluate, refer to the previous
 // section to learn about the headers that can be set
 // e.g:

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

210

deleteMessage:

receiveMessages:

peekMessages:

updateMessage:

 exchange.getIn().setBody("message to send");
 // we set a visibility of 1min
 exchange.getIn().setHeader(QueueConstants.VISIBILITY_TIMEOUT, Duration.ofMinutes(1));
 })
 .to("azure-storage-queue://cameldev/test?serviceClient=#client");

from("direct:start")
 .process(exchange -> {
 // set the header you want the producer to evaluate, refer to the previous
 // section to learn about the headers that can be set
 // e.g:
 // Mandatory header:
 exchange.getIn().setHeader(QueueConstants.MESSAGE_ID, "1");
 // Mandatory header:
 exchange.getIn().setHeader(QueueConstants.POP_RECEIPT, "PAAAAHEEERXXX-1");
 })
 .to("azure-storage-queue://cameldev/test?serviceClient=#client&operation=deleteMessage");

from("direct:start")
 .to("azure-storage-queue://cameldev/test?serviceClient=#client&operation=receiveMessages")
 .process(exchange -> {
 final List<QueueMessageItem> messageItems = exchange.getMessage().getBody(List.class);
 messageItems.forEach(messageItem -> System.out.println(messageItem.getMessageText()));
 })
 .to("mock:result");

from("direct:start")
 .to("azure-storage-queue://cameldev/test?serviceClient=#client&operation=peekMessages")
 .process(exchange -> {
 final List<PeekedMessageItem> messageItems = exchange.getMessage().getBody(List.class);
 messageItems.forEach(messageItem -> System.out.println(messageItem.getMessageText()));
 })
 .to("mock:result");

from("direct:start")
 .process(exchange -> {
 // set the header you want the producer to evaluate, refer to the previous
 // section to learn about the headers that can be set
 // e.g:
 exchange.getIn().setBody("new message text");
 // Mandatory header:
 exchange.getIn().setHeader(QueueConstants.MESSAGE_ID, "1");
 // Mandatory header:
 exchange.getIn().setHeader(QueueConstants.POP_RECEIPT, "PAAAAHEEERXXX-1");
 // Mandatory header:

CHAPTER 9. AZURE STORAGE QUEUE SERVICE

211

9.5.8. Development Notes (Important)

When developing on this component, you will need to obtain your Azure accessKey in order to run the
integration tests. In addition to the mocked unit tests you will need to run the integration tests with
every change you make or even client upgrade as the Azure client can break things even on minor
versions upgrade. To run the integration tests, on this component directory, run the following maven
command:

mvn verify -PfullTests -DaccountName=myacc -DaccessKey=mykey

Whereby accountName is your Azure account name and accessKey is the access key being generated
from Azure portal.

9.6. SPRING BOOT AUTO-CONFIGURATION

When using azure-storage-queue with Spring Boot make sure to use the following Maven dependency
to have support for auto configuration:

The component supports 16 options, which are listed below.

Name Description Defaul
t

Type

camel.component
.azure-storage-
queue.access-key

Access key for the associated azure account name to
be used for authentication with azure queue services.

 String

camel.component
.azure-storage-
queue.autowired-
enabled

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true Boolean

 exchange.getIn().setHeader(QueueConstants.VISIBILITY_TIMEOUT, Duration.ofMinutes(1));
 })
 .to("azure-storage-queue://cameldev/test?serviceClient=#client&operation=updateMessage");

<dependency>
 <groupId>org.apache.camel.springboot</groupId>
 <artifactId>camel-azure-storage-queue-starter</artifactId>
 <version>3.14.5.redhat-00032</version>
 <!-- Use your Camel Spring Boot version -->
</dependency>

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

212

camel.component
.azure-storage-
queue.bridge-
error-handler

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false Boolean

camel.component
.azure-storage-
queue.configurati
on

The component configurations. The option is a
org.apache.camel.component.azure.storage.queue.Q
ueueConfiguration type.

 QueueConfigurati
on

camel.component
.azure-storage-
queue.create-
queue

When is set to true, the queue will be automatically
created when sending messages to the queue.

false Boolean

camel.component
.azure-storage-
queue.credentials

StorageSharedKeyCredential can be injected to
create the azure client, this holds the important
authentication information. The option is a
com.azure.storage.common.StorageSharedKeyCrede
ntial type.

 StorageSharedKey
Credential

camel.component
.azure-storage-
queue.enabled

Whether to enable auto configuration of the azure-
storage-queue component. This is enabled by
default.

 Boolean

camel.component
.azure-storage-
queue.lazy-start-
producer

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false Boolean

camel.component
.azure-storage-
queue.max-
messages

Maximum number of messages to get, if there are
less messages exist in the queue than requested all
the messages will be returned. If left empty only 1
message will be retrieved, the allowed range is 1 to 32
messages.

1 Integer

Name Description Defaul
t

Type

CHAPTER 9. AZURE STORAGE QUEUE SERVICE

213

camel.component
.azure-storage-
queue.message-
id

The ID of the message to be deleted or updated. String

camel.component
.azure-storage-
queue.operation

Queue service operation hint to the producer. QueueOperationD
efinition

camel.component
.azure-storage-
queue.pop-
receipt

Unique identifier that must match for the message to
be deleted or updated.

 String

camel.component
.azure-storage-
queue.service-
client

Service client to a storage account to interact with
the queue service. This client does not hold any state
about a particular storage account but is instead a
convenient way of sending off appropriate requests
to the resource on the service. This client contains all
the operations for interacting with a queue account in
Azure Storage. Operations allowed by the client are
creating, listing, and deleting queues, retrieving and
updating properties of the account, and retrieving
statistics of the account. The option is a
com.azure.storage.queue.QueueServiceClient type.

 QueueServiceClie
nt

camel.component
.azure-storage-
queue.time-to-
live

How long the message will stay alive in the queue. If
unset the value will default to 7 days, if -1 is passed
the message will not expire. The time to live must be
-1 or any positive number. The format should be in
this form: PnDTnHnMn.nS., e.g: PT20.345S — parses
as 20.345 seconds, P2D — parses as 2 days However,
in case you are using EndpointDsl/ComponentDsl,
you can do something like Duration.ofSeconds() since
these Java APIs are typesafe. The option is a
java.time.Duration type.

 Duration

camel.component
.azure-storage-
queue.timeout

An optional timeout applied to the operation. If a
response is not returned before the timeout
concludes a RuntimeException will be thrown. The
option is a java.time.Duration type.

 Duration

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

214

camel.component
.azure-storage-
queue.visibility-
timeout

The timeout period for how long the message is
invisible in the queue. The timeout must be between 1
seconds and 7 days. The format should be in this
form: PnDTnHnMn.nS., e.g: PT20.345S — parses as
20.345 seconds, P2D — parses as 2 days However, in
case you are using EndpointDsl/ComponentDsl, you
can do something like Duration.ofSeconds() since
these Java APIs are typesafe. The option is a
java.time.Duration type.

 Duration

Name Description Defaul
t

Type

CHAPTER 9. AZURE STORAGE QUEUE SERVICE

215

CHAPTER 10. BEAN
Only producer is supported

The Bean component binds beans to Camel message exchanges.

10.1. URI FORMAT

bean:beanName[?options]

Where beanID can be any string which is used to look up the bean in the Registry

10.2. CONFIGURING OPTIONS

Camel components are configured on two separate levels:

component level

endpoint level

10.2.1. Configuring Component Options

The component level is the highest level which holds general and common configurations that are
inherited by the endpoints. For example a component may have security settings, credentials for
authentication, urls for network connection and so forth.

Some components only have a few options, and others may have many. Because components typically
have pre configured defaults that are commonly used, then you may often only need to configure a few
options on a component; or none at all.

Configuring components can be done with the Component DSL, in a configuration file
(application.properties|yaml), or directly with Java code.

10.2.2. Configuring Endpoint Options

Where you find yourself configuring the most is on endpoints, as endpoints often have many options,
which allows you to configure what you need the endpoint to do. The options are also categorized into
whether the endpoint is used as consumer (from) or as a producer (to), or used for both.

Configuring endpoints is most often done directly in the endpoint URI as path and query parameters.
You can also use the Endpoint DSL as a type safe way of configuring endpoints.

A good practice when configuring options is to use Property Placeholders, which allows to not hardcode
urls, port numbers, sensitive information, and other settings. In other words placeholders allows to
externalize the configuration from your code, and gives more flexibility and reuse.

The following two sections lists all the options, firstly for the component followed by the endpoint.

10.3. COMPONENT OPTIONS

The Bean component supports 4 options, which are listed below.

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

216

https://camel.apache.org/manual/component-dsl.html
https://camel.apache.org/manual/Endpoint-dsl.html
https://camel.apache.org/manual/using-propertyplaceholder.html

Name Description Defaul
t

Type

cache (producer) Deprecated Use singleton option instead. true Boolean

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

scope (producer) Scope of bean. When using singleton scope (default)
the bean is created or looked up only once and
reused for the lifetime of the endpoint. The bean
should be thread-safe in case concurrent threads is
calling the bean at the same time. When using
request scope the bean is created or looked up once
per request (exchange). This can be used if you want
to store state on a bean while processing a request
and you want to call the same bean instance multiple
times while processing the request. The bean does
not have to be thread-safe as the instance is only
called from the same request. When using delegate
scope, then the bean will be looked up or created per
call. However in case of lookup then this is delegated
to the bean registry such as Spring or CDI (if in use),
which depends on their configuration can act as
either singleton or prototype scope. so when using
prototype then this depends on the delegated
registry.

Enum values:

Singleton

Request

Prototype

Singlet
on

BeanScope

autowiredEnabled
(advanced)

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true boolean

CHAPTER 10. BEAN

217

10.4. ENDPOINT OPTIONS

The Bean endpoint is configured using URI syntax:

bean:beanName

with the following path and query parameters:

10.4.1. Path Parameters (1 parameters)

Name Description Defaul
t

Type

beanName
(common)

Required Sets the name of the bean to invoke. String

10.4.2. Query Parameters (5 parameters)

Name Description Defaul
t

Type

cache (common) Deprecated Use scope option instead. Boolean

method (common) Sets the name of the method to invoke on the bean. String

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

218

scope (common) Scope of bean. When using singleton scope (default)
the bean is created or looked up only once and
reused for the lifetime of the endpoint. The bean
should be thread-safe in case concurrent threads is
calling the bean at the same time. When using
request scope the bean is created or looked up once
per request (exchange). This can be used if you want
to store state on a bean while processing a request
and you want to call the same bean instance multiple
times while processing the request. The bean does
not have to be thread-safe as the instance is only
called from the same request. When using prototype
scope, then the bean will be looked up or created per
call. However in case of lookup then this is delegated
to the bean registry such as Spring or CDI (if in use),
which depends on their configuration can act as
either singleton or prototype scope. so when using
prototype then this depends on the delegated
registry.

Enum values:

Singleton

Request

Prototype

Singlet
on

BeanScope

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

parameters
(advanced)

Used for configuring additional properties on the
bean.

 Map

Name Description Defaul
t

Type

10.5. USING

The object instance that is used to consume messages must be explicitly registered with the Registry.
For example, if you are using Spring you must define the bean in the Spring configuration XML file.

You can also register beans manually via Camel’s Registry with the bind method.

CHAPTER 10. BEAN

219

Once an endpoint has been registered, you can build Camel routes that use it to process exchanges.

A bean: endpoint cannot be defined as the input to the route; i.e. you cannot consume from it, you can
only route from some inbound message Endpoint to the bean endpoint as output. So consider using a
direct: or queue: endpoint as the input.

You can use the createProxy() methods on ProxyHelper to create a proxy that will generate exchanges
and send them to any endpoint:

And the same route using XML DSL:

10.6. BEAN AS ENDPOINT

Camel also supports invoking Bean as an Endpoint. What happens is that when the exchange is routed to
the myBean Camel will use the Bean Binding to invoke the bean. The source for the bean is just a plain
POJO.

Camel will use Bean Binding to invoke the sayHello method, by converting the Exchange’s In body to
the String type and storing the output of the method on the Exchange Out body.

10.7. JAVA DSL BEAN SYNTAX

Java DSL comes with syntactic sugar for the component. Instead of specifying the bean explicitly as the
endpoint (i.e. to("bean:beanName")) you can use the following syntax:

Instead of passing name of the reference to the bean (so that Camel will lookup for it in the registry),
you can specify the bean itself:

10.8. BEAN BINDING

How bean methods to be invoked are chosen (if they are not specified explicitly through the method

<route>
 <from uri="direct:hello"/>
 <to uri="bean:bye"/>
</route>

// Send message to the bean endpoint
// and invoke method resolved using Bean Binding.
from("direct:start").bean("beanName");

// Send message to the bean endpoint
// and invoke given method.
from("direct:start").bean("beanName", "methodName");

// Send message to the given bean instance.
from("direct:start").bean(new ExampleBean());

// Explicit selection of bean method to be invoked.
from("direct:start").bean(new ExampleBean(), "methodName");

// Camel will create the instance of bean and cache it for you.
from("direct:start").bean(ExampleBean.class);

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

220

https://www.javadoc.io/doc/org.apache.camel/camel-bean/current/org/apache/camel/component/bean/ProxyHelper.html
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/camel_spring_boot_reference_3.14/index#ref-csb-camel-bean-component-starter

How bean methods to be invoked are chosen (if they are not specified explicitly through the method
parameter) and how parameter values are constructed from the Message are all defined by the Bean
Binding mechanism which is used throughout all of the various Bean Integration mechanisms in Camel.

10.9. SPRING BOOT AUTO-CONFIGURATION

When using bean with Spring Boot make sure to use the following Maven dependency to have support
for auto configuration:

The component supports 13 options, which are listed below.

Name Description Defaul
t

Type

camel.component
.bean.autowired-
enabled

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true Boolean

camel.component
.bean.enabled

Whether to enable auto configuration of the bean
component. This is enabled by default.

 Boolean

camel.component
.bean.lazy-start-
producer

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false Boolean

<dependency>
 <groupId>org.apache.camel.springboot</groupId>
 <artifactId>camel-bean-starter</artifactId>
 <version>3.14.5.redhat-00032</version>
 <!-- use the same version as your Camel core version -->
</dependency>

CHAPTER 10. BEAN

221

camel.component
.bean.scope

Scope of bean. When using singleton scope (default)
the bean is created or looked up only once and
reused for the lifetime of the endpoint. The bean
should be thread-safe in case concurrent threads is
calling the bean at the same time. When using
request scope the bean is created or looked up once
per request (exchange). This can be used if you want
to store state on a bean while processing a request
and you want to call the same bean instance multiple
times while processing the request. The bean does
not have to be thread-safe as the instance is only
called from the same request. When using delegate
scope, then the bean will be looked up or created per
call. However in case of lookup then this is delegated
to the bean registry such as Spring or CDI (if in use),
which depends on their configuration can act as
either singleton or prototype scope. so when using
prototype then this depends on the delegated
registry.

 BeanScope

camel.component
.class.autowired-
enabled

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true Boolean

camel.component
.class.enabled

Whether to enable auto configuration of the class
component. This is enabled by default.

 Boolean

camel.component
.class.lazy-start-
producer

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false Boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

222

camel.component
.class.scope

Scope of bean. When using singleton scope (default)
the bean is created or looked up only once and
reused for the lifetime of the endpoint. The bean
should be thread-safe in case concurrent threads is
calling the bean at the same time. When using
request scope the bean is created or looked up once
per request (exchange). This can be used if you want
to store state on a bean while processing a request
and you want to call the same bean instance multiple
times while processing the request. The bean does
not have to be thread-safe as the instance is only
called from the same request. When using delegate
scope, then the bean will be looked up or created per
call. However in case of lookup then this is delegated
to the bean registry such as Spring or CDI (if in use),
which depends on their configuration can act as
either singleton or prototype scope. so when using
prototype then this depends on the delegated
registry.

 BeanScope

camel.language.b
ean.enabled

Whether to enable auto configuration of the bean
language. This is enabled by default.

 Boolean

camel.language.b
ean.scope

Scope of bean. When using singleton scope (default)
the bean is created or looked up only once and
reused for the lifetime of the endpoint. The bean
should be thread-safe in case concurrent threads is
calling the bean at the same time. When using
request scope the bean is created or looked up once
per request (exchange). This can be used if you want
to store state on a bean while processing a request
and you want to call the same bean instance multiple
times while processing the request. The bean does
not have to be thread-safe as the instance is only
called from the same request. When using prototype
scope, then the bean will be looked up or created per
call. However in case of lookup then this is delegated
to the bean registry such as Spring or CDI (if in use),
which depends on their configuration can act as
either singleton or prototype scope. So when using
prototype scope then this depends on the bean
registry implementation.

Singlet
on

String

camel.language.b
ean.trim

Whether to trim the value to remove leading and
trailing whitespaces and line breaks.

true Boolean

camel.component
.bean.cache

Deprecated Use singleton option instead. true Boolean

Name Description Defaul
t

Type

CHAPTER 10. BEAN

223

camel.component
.class.cache

Deprecated Use singleton option instead. true Boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

224

CHAPTER 11. BEAN VALIDATOR
Only producer is supported

The Validator component performs bean validation of the message body using the Java Bean Validation
API (). Camel uses the reference implementation, which is Hibernate Validator.

Maven users will need to add the following dependency to their pom.xml for this component:

11.1. URI FORMAT

bean-validator:label[?options]

Where label is an arbitrary text value describing the endpoint. You can append query options to the URI
in the following format,

?option=value&option=value&…

11.2. CONFIGURING OPTIONS

Camel components are configured on two separate levels:

component level

endpoint level

11.2.1. Configuring Component Options

The component level is the highest level which holds general and common configurations that are
inherited by the endpoints. For example a component may have security settings, credentials for
authentication, urls for network connection and so forth.

Some components only have a few options, and others may have many. Because components typically
have pre configured defaults that are commonly used, then you may often only need to configure a few
options on a component; or none at all.

Configuring components can be done with the Component DSL, in a configuration file
(application.properties|yaml), or directly with Java code.

11.2.2. Configuring Endpoint Options

Where you find yourself configuring the most is on endpoints, as endpoints often have many options,
which allows you to configure what you need the endpoint to do. The options are also categorized into
whether the endpoint is used as consumer (from) or as a producer (to), or used for both.

Configuring endpoints is most often done directly in the endpoint URI as path and query parameters.

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-bean-validator</artifactId>
 <version>3.14.5.redhat-00018</version>
 <!-- use the same version as your Camel core version -->
</dependency>

CHAPTER 11. BEAN VALIDATOR

225

http://docs.jboss.org/hibernate/validator/4.3/reference/en-US/html_single/
https://camel.apache.org/manual/component-dsl.html

Configuring endpoints is most often done directly in the endpoint URI as path and query parameters.
You can also use the Endpoint DSL as a type safe way of configuring endpoints.

A good practice when configuring options is to use Property Placeholders, which allows to not hardcode
urls, port numbers, sensitive information, and other settings. In other words placeholders allows to
externalize the configuration from your code, and gives more flexibility and reuse.

The following two sections lists all the options, firstly for the component followed by the endpoint.

11.3. COMPONENT OPTIONS

The Bean Validator component supports 8 options, which are listed below.

Name Description Defaul
t

Type

ignoreXmlConfig
uration (producer)

Whether to ignore data from the META-
INF/validation.xml file.

false boolean

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

autowiredEnabled
(advanced)

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true boolean

constraintValidat
orFactory
(advanced)

To use a custom ConstraintValidatorFactory. ConstraintValidato
rFactory

messageInterpola
tor (advanced)

To use a custom MessageInterpolator. MessageInterpolat
or

traversableResolv
er (advanced)

To use a custom TraversableResolver. TraversableResolv
er

validationProvide
rResolver
(advanced)

To use a a custom ValidationProviderResolver. ValidationProvider
Resolver

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

226

https://camel.apache.org/manual/Endpoint-dsl.html
https://camel.apache.org/manual/using-propertyplaceholder.html

validatorFactory
(advanced)

Autowired To use a custom ValidatorFactory. ValidatorFactory

Name Description Defaul
t

Type

11.4. ENDPOINT OPTIONS

The Bean Validator endpoint is configured using URI syntax:

bean-validator:label

with the following path and query parameters:

11.4.1. Path Parameters (1 parameters)

Name Description Defaul
t

Type

label (producer) Required Where label is an arbitrary text value
describing the endpoint.

 String

11.4.2. Query Parameters (8 parameters)

Name Description Defaul
t

Type

group (producer) To use a custom validation group. javax.v
alidatio
n.grou
ps.Def
ault

String

ignoreXmlConfig
uration (producer)

Whether to ignore data from the META-
INF/validation.xml file.

false boolean

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

CHAPTER 11. BEAN VALIDATOR

227

constraintValidat
orFactory
(advanced)

To use a custom ConstraintValidatorFactory. ConstraintValidato
rFactory

messageInterpola
tor (advanced)

To use a custom MessageInterpolator. MessageInterpolat
or

traversableResolv
er (advanced)

To use a custom TraversableResolver. TraversableResolv
er

validationProvide
rResolver
(advanced)

To use a a custom ValidationProviderResolver. ValidationProvider
Resolver

validatorFactory
(advanced)

To use a custom ValidatorFactory. ValidatorFactory

Name Description Defaul
t

Type

11.5. OSGI DEPLOYMENT

To use Hibernate Validator in the OSGi environment use dedicated ValidationProviderResolver
implementation, just as
org.apache.camel.component.bean.validator.HibernateValidationProviderResolver. The snippet
below demonstrates this approach. You can also use HibernateValidationProviderResolver.

Using HibernateValidationProviderResolver

If no custom ValidationProviderResolver is defined and the validator component has been deployed
into the OSGi environment, the HibernateValidationProviderResolver will be automatically used.

11.6. EXAMPLE

Assumed we have a java bean with the following annotations

Car.java

from("direct:test").
 to("bean-validator://ValidationProviderResolverTest?
validationProviderResolver=#myValidationProviderResolver");

<bean id="myValidationProviderResolver"
class="org.apache.camel.component.bean.validator.HibernateValidationProviderResolver"/>

public class Car {

 @NotNull
 private String manufacturer;

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

228

and an interface definition for our custom validation group

OptionalChecks.java

with the following Camel route, only the @NotNull constraints on the attributes manufacturer and
licensePlate will be validated (Camel uses the default group javax.validation.groups.Default).

If you want to check the constraints from the group OptionalChecks, you have to define the route like
this

If you want to check the constraints from both groups, you have to define a new interface first

AllChecks.java

and then your route definition should looks like this

And if you have to provide your own message interpolator, traversable resolver and constraint validator
factory, you have to write a route like this

 @NotNull
 @Size(min = 5, max = 14, groups = OptionalChecks.class)
 private String licensePlate;

 // getter and setter
}

public interface OptionalChecks {
}

from("direct:start")
.to("bean-validator://x")
.to("mock:end")

from("direct:start")
.to("bean-validator://x?group=OptionalChecks")
.to("mock:end")

@GroupSequence({Default.class, OptionalChecks.class})
public interface AllChecks {
}

from("direct:start")
.to("bean-validator://x?group=AllChecks")
.to("mock:end")

<bean id="myMessageInterpolator" class="my.ConstraintValidatorFactory" />
<bean id="myTraversableResolver" class="my.TraversableResolver" />
<bean id="myConstraintValidatorFactory" class="my.ConstraintValidatorFactory" />

from("direct:start")
.to("bean-validator://x?group=AllChecks&messageInterpolator=#myMessageInterpolator
&traversableResolver=#myTraversableResolver&constraintValidatorFactory=#myConstraintValidatorFac

CHAPTER 11. BEAN VALIDATOR

229

It’s also possible to describe your constraints as XML and not as Java annotations. In this case, you have
to provide the file META-INF/validation.xml which could looks like this

validation.xml

and the constraints-car.xml file

constraints-car.xml

Here is the XML syntax for the example route definition for OrderedChecks.

tory")
.to("mock:end")

<validation-config
 xmlns="http://jboss.org/xml/ns/javax/validation/configuration"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://jboss.org/xml/ns/javax/validation/configuration">

 <default-provider>org.hibernate.validator.HibernateValidator</default-provider>
 <message-
interpolator>org.hibernate.validator.engine.ResourceBundleMessageInterpolator</message-
interpolator>
 <traversable-
resolver>org.hibernate.validator.engine.resolver.DefaultTraversableResolver</traversable-resolver>
 <constraint-validator-
factory>org.hibernate.validator.engine.ConstraintValidatorFactoryImpl</constraint-validator-factory>
 <constraint-mapping>/constraints-car.xml</constraint-mapping>

</validation-config>

<constraint-mappings xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://jboss.org/xml/ns/javax/validation/mapping validation-mapping-1.0.xsd"
 xmlns="http://jboss.org/xml/ns/javax/validation/mapping">

 <default-package>org.apache.camel.component.bean.validator</default-package>

 <bean class="CarWithoutAnnotations" ignore-annotations="true">
 <field name="manufacturer">
 <constraint annotation="javax.validation.constraints.NotNull" />
 </field>

 <field name="licensePlate">
 <constraint annotation="javax.validation.constraints.NotNull" />

 <constraint annotation="javax.validation.constraints.Size">
 <groups>
 <value>org.apache.camel.component.bean.validator.OptionalChecks</value>
 </groups>
 <element name="min">5</element>
 <element name="max">14</element>
 </constraint>
 </field>
 </bean>
</constraint-mappings>

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

230

https://github.com/apache/camel/blob/main/components/camel-bean-validator/src/test/java/org/apache/camel/component/bean/validator/OrderedChecks.java

Note that the body should include an instance of a class to validate.

11.7. SPRING BOOT AUTO-CONFIGURATION

When using bean-validator with Spring Boot make sure to use the following Maven dependency to have
support for auto configuration:

The component supports 9 options, which are listed below.

Name Description Defaul
t

Type

camel.component
.bean-
validator.autowire
d-enabled

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true Boolean

camel.component
.bean-
validator.constrai
nt-validator-
factory

To use a custom ConstraintValidatorFactory. The
option is a
javax.validation.ConstraintValidatorFactory type.

 ConstraintValidato
rFactory

camel.component
.bean-
validator.enabled

Whether to enable auto configuration of the bean-
validator component. This is enabled by default.

 Boolean

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
 http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/camel-spring.xsd">

 <camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="direct:start"/>
 <to uri="bean-validator://x?
group=org.apache.camel.component.bean.validator.OrderedChecks"/>
 </route>
 </camelContext>
</beans>

<dependency>
 <groupId>org.apache.camel.springboot</groupId>
 <artifactId>camel-bean-validator-starter</artifactId>
 <version>3.14.5.redhat-00032</version>
 <!-- Use your Camel Spring Boot version -->
</dependency>

CHAPTER 11. BEAN VALIDATOR

231

camel.component
.bean-
validator.ignore-
xml-configuration

Whether to ignore data from the META-
INF/validation.xml file.

false Boolean

camel.component
.bean-
validator.lazy-
start-producer

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false Boolean

camel.component
.bean-
validator.message
-interpolator

To use a custom MessageInterpolator. The option is a
javax.validation.MessageInterpolator type.

 MessageInterpolat
or

camel.component
.bean-
validator.traversa
ble-resolver

To use a custom TraversableResolver. The option is a
javax.validation.TraversableResolver type.

 TraversableResolv
er

camel.component
.bean-
validator.validatio
n-provider-
resolver

To use a a custom ValidationProviderResolver. The
option is a
javax.validation.ValidationProviderResolver type.

 ValidationProvider
Resolver

camel.component
.bean-
validator.validato
r-factory

To use a custom ValidatorFactory. The option is a
javax.validation.ValidatorFactory type.

 ValidatorFactory

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

232

CHAPTER 12. BROWSE
Both producer and consumer are supported

The Browse component provides a simple BrowsableEndpoint which can be useful for testing,
visualisation tools or debugging. The exchanges sent to the endpoint are all available to be browsed.

12.1. URI FORMAT

browse:someName[?options]

Where someName can be any string to uniquely identify the endpoint.

12.2. CONFIGURING OPTIONS

Camel components are configured on two separate levels:

component level

endpoint level

12.2.1. Configuring Component Options

The component level is the highest level which holds general and common configurations that are
inherited by the endpoints. For example a component may have security settings, credentials for
authentication, urls for network connection and so forth.

Some components only have a few options, and others may have many. Because components typically
have pre configured defaults that are commonly used, then you may often only need to configure a few
options on a component; or none at all.

Configuring components can be done with the Component DSL, in a configuration file
(application.properties|yaml), or directly with Java code.

12.2.2. Configuring Endpoint Options

Where you find yourself configuring the most is on endpoints, as endpoints often have many options,
which allows you to configure what you need the endpoint to do. The options are also categorized into
whether the endpoint is used as consumer (from) or as a producer (to), or used for both.

Configuring endpoints is most often done directly in the endpoint URI as path and query parameters.
You can also use the Endpoint DSL as a type safe way of configuring endpoints.

A good practice when configuring options is to use Property Placeholders, which allows to not hardcode
urls, port numbers, sensitive information, and other settings. In other words placeholders allows to
externalize the configuration from your code, and gives more flexibility and reuse.

The following two sections lists all the options, firstly for the component followed by the endpoint.

12.3. COMPONENT OPTIONS

The Browse component supports 3 options, which are listed below.

CHAPTER 12. BROWSE

233

https://camel.apache.org/manual/component-dsl.html
https://camel.apache.org/manual/Endpoint-dsl.html
https://camel.apache.org/manual/using-propertyplaceholder.html

Name Description Defaul
t

Type

bridgeErrorHandl
er (consumer)

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false boolean

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

autowiredEnabled
(advanced)

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true boolean

12.4. ENDPOINT OPTIONS

The Browse endpoint is configured using URI syntax:

browse:name

with the following path and query parameters:

12.4.1. Path Parameters (1 parameters)

Name Description Defaul
t

Type

name (common) Required A name which can be any string to uniquely
identify the endpoint.

 String

12.4.2. Query Parameters (4 parameters)

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

234

Name Description Defaul
t

Type

bridgeErrorHandl
er (consumer)

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false boolean

exceptionHandler
(consumer
(advanced))

To let the consumer use a custom ExceptionHandler.
Notice if the option bridgeErrorHandler is enabled
then this option is not in use. By default the consumer
will deal with exceptions, that will be logged at WARN
or ERROR level and ignored.

 ExceptionHandler

exchangePattern
(consumer
(advanced))

Sets the exchange pattern when the consumer
creates an exchange.

Enum values:

InOnly

InOut

InOptionalOut

 ExchangePattern

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

12.5. SAMPLE

In the route below, we insert a browse: component to be able to browse the Exchanges that are passing
through:

We can now inspect the received exchanges from within the Java code:

from("activemq:order.in").to("browse:orderReceived").to("bean:processOrder");

private CamelContext context;

CHAPTER 12. BROWSE

235

12.6. SPRING BOOT AUTO-CONFIGURATION

When using browse with Spring Boot make sure to use the following Maven dependency to have
support for auto configuration:

The component supports 4 options, which are listed below.

Name Description Defaul
t

Type

camel.component
.browse.autowire
d-enabled

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true Boolean

camel.component
.browse.bridge-
error-handler

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false Boolean

camel.component
.browse.enabled

Whether to enable auto configuration of the browse
component. This is enabled by default.

 Boolean

public void inspectReceivedOrders() {
 BrowsableEndpoint browse = context.getEndpoint("browse:orderReceived",
BrowsableEndpoint.class);
 List<Exchange> exchanges = browse.getExchanges();

 // then we can inspect the list of received exchanges from Java
 for (Exchange exchange : exchanges) {
 String payload = exchange.getIn().getBody();
 // do something with payload
 }
}

<dependency>
 <groupId>org.apache.camel.springboot</groupId>
 <artifactId>camel-browse-starter</artifactId>
 <version>3.14.5.redhat-00032</version>
 <!-- Use your Camel Spring Boot version -->
</dependency>

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

236

camel.component
.browse.lazy-
start-producer

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false Boolean

Name Description Defaul
t

Type

CHAPTER 12. BROWSE

237

CHAPTER 13. CASSANDRA CQL
Both producer and consumer are supported

Apache Cassandra is an open source NoSQL database designed to handle large amounts on commodity
hardware. Like Amazon’s DynamoDB, Cassandra has a peer-to-peer and master-less architecture to
avoid single point of failure and garanty high availability. Like Google’s BigTable, Cassandra data is
structured using column families which can be accessed through the Thrift RPC API or a SQL-like API
called CQL.

NOTE

This component aims at integrating Cassandra 2.0+ using the CQL3 API (not the Thrift
API). It’s based on Cassandra Java Driver provided by DataStax.

13.1. CONFIGURING OPTIONS

Camel components are configured on two separate levels:

component level

endpoint level

13.1.1. Configuring Component Options

The component level is the highest level which holds general and common configurations that are
inherited by the endpoints. For example a component may have security settings, credentials for
authentication, urls for network connection and so forth.

Some components only have a few options, and others may have many. Because components typically
have pre configured defaults that are commonly used, then you may often only need to configure a few
options on a component; or none at all.

Configuring components can be done with the Component DSL, in a configuration file
(application.properties|yaml), or directly with Java code.

13.1.2. Configuring Endpoint Options

Where you find yourself configuring the most is on endpoints, as endpoints often have many options,
which allows you to configure what you need the endpoint to do. The options are also categorized into
whether the endpoint is used as consumer (from) or as a producer (to), or used for both.

Configuring endpoints is most often done directly in the endpoint URI as path and query parameters.
You can also use the Endpoint DSL as a type safe way of configuring endpoints.

A good practice when configuring options is to use Property Placeholders, which allows to not hardcode
urls, port numbers, sensitive information, and other settings. In other words placeholders allows to
externalize the configuration from your code, and gives more flexibility and reuse.

The following two sections lists all the options, firstly for the component followed by the endpoint.

13.2. COMPONENT OPTIONS

The Cassandra CQL component supports 3 options, which are listed below.

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

238

http://cassandra.apache.org
https://github.com/datastax/java-driver
https://camel.apache.org/manual/component-dsl.html
https://camel.apache.org/manual/Endpoint-dsl.html
https://camel.apache.org/manual/using-propertyplaceholder.html

Name Description Defaul
t

Type

bridgeErrorHandl
er (consumer)

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false boolean

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

autowiredEnabled
(advanced)

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true boolean

13.3. ENDPOINT OPTIONS

The Cassandra CQL endpoint is configured using URI syntax:

cql:beanRef:hosts:port/keyspace

with the following path and query parameters:

13.3.1. Path Parameters (4 parameters)

Name Description Defaul
t

Type

beanRef
(common)

beanRef is defined using bean:id. String

CHAPTER 13. CASSANDRA CQL

239

hosts (common) Hostname(s) Cassandra server(s). Multiple hosts can
be separated by comma.

 String

port (common) Port number of Cassandra server(s). Integer

keyspace
(common)

Keyspace to use. String

Name Description Defaul
t

Type

13.3.2. Query Parameters (30 parameters)

Name Description Defaul
t

Type

clusterName
(common)

Cluster name. String

consistencyLevel
(common)

Consistency level to use.

Enum values:

ANY

ONE

TWO

THREE

QUORUM

ALL

LOCAL_ONE

LOCAL_QUORUM

EACH_QUORUM

SERIAL

LOCAL_SERIAL

 DefaultConsistenc
yLevel

cql (common) CQL query to perform. Can be overridden with the
message header with key CamelCqlQuery.

 String

datacenter
(common)

Datacenter to use. datace
nter1

String

loadBalancingPoli
cyClass (common)

To use a specific LoadBalancingPolicyClass. String

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

240

password
(common)

Password for session authentication. String

prepareStatemen
ts (common)

Whether to use PreparedStatements or regular
Statements.

true boolean

resultSetConversi
onStrategy
(common)

To use a custom class that implements logic for
converting ResultSet into message body ALL, ONE,
LIMIT_10, LIMIT_100…

 ResultSetConversi
onStrategy

session (common) To use the Session instance (you would normally not
use this option).

 CqlSession

username
(common)

Username for session authentication. String

bridgeErrorHandl
er (consumer)

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false boolean

sendEmptyMessa
geWhenIdle
(consumer)

If the polling consumer did not poll any files, you can
enable this option to send an empty message (no
body) instead.

false boolean

exceptionHandler
(consumer
(advanced))

To let the consumer use a custom ExceptionHandler.
Notice if the option bridgeErrorHandler is enabled
then this option is not in use. By default the consumer
will deal with exceptions, that will be logged at WARN
or ERROR level and ignored.

 ExceptionHandler

exchangePattern
(consumer
(advanced))

Sets the exchange pattern when the consumer
creates an exchange.

Enum values:

InOnly

InOut

InOptionalOut

 ExchangePattern

Name Description Defaul
t

Type

CHAPTER 13. CASSANDRA CQL

241

pollStrategy
(consumer
(advanced))

A pluggable
org.apache.camel.PollingConsumerPollingStrategy
allowing you to provide your custom implementation
to control error handling usually occurred during the
poll operation before an Exchange have been
created and being routed in Camel.

 PollingConsumerP
ollStrategy

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

backoffErrorThre
shold (scheduler)

The number of subsequent error polls (failed due
some error) that should happen before the
backoffMultipler should kick-in.

 int

backoffIdleThres
hold (scheduler)

The number of subsequent idle polls that should
happen before the backoffMultipler should kick-in.

 int

backoffMultiplier
(scheduler)

To let the scheduled polling consumer backoff if
there has been a number of subsequent idles/errors
in a row. The multiplier is then the number of polls
that will be skipped before the next actual attempt is
happening again. When this option is in use then
backoffIdleThreshold and/or backoffErrorThreshold
must also be configured.

 int

delay (scheduler) Milliseconds before the next poll. 500 long

greedy
(scheduler)

If greedy is enabled, then the
ScheduledPollConsumer will run immediately again, if
the previous run polled 1 or more messages.

false boolean

initialDelay
(scheduler)

Milliseconds before the first poll starts. 1000 long

repeatCount
(scheduler)

Specifies a maximum limit of number of fires. So if
you set it to 1, the scheduler will only fire once. If you
set it to 5, it will only fire five times. A value of zero or
negative means fire forever.

0 long

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

242

runLoggingLevel
(scheduler)

The consumer logs a start/complete log line when it
polls. This option allows you to configure the logging
level for that.

Enum values:

TRACE

DEBUG

INFO

WARN

ERROR

OFF

TRACE LoggingLevel

scheduledExecut
orService
(scheduler)

Allows for configuring a custom/shared thread pool
to use for the consumer. By default each consumer
has its own single threaded thread pool.

 ScheduledExecuto
rService

scheduler
(scheduler)

To use a cron scheduler from either camel-spring or
camel-quartz component. Use value spring or quartz
for built in scheduler.

none Object

schedulerProperti
es (scheduler)

To configure additional properties when using a
custom scheduler or any of the Quartz, Spring based
scheduler.

 Map

startScheduler
(scheduler)

Whether the scheduler should be auto started. true boolean

timeUnit
(scheduler)

Time unit for initialDelay and delay options.

Enum values:

NANOSECONDS

MICROSECONDS

MILLISECONDS

SECONDS

MINUTES

HOURS

DAYS

MILLIS
ECON
DS

TimeUnit

Name Description Defaul
t

Type

CHAPTER 13. CASSANDRA CQL

243

useFixedDelay
(scheduler)

Controls if fixed delay or fixed rate is used. See
ScheduledExecutorService in JDK for details.

true boolean

Name Description Defaul
t

Type

13.4. ENDPOINT CONNECTION SYNTAX

The endpoint can initiate the Cassandra connection or use an existing one.

URI Description

cql:localhost/keyspace Single host, default port, usual for testing

cql:host1,host2/keyspace Multi host, default port

cql:host1,host2:9042/keyspace Multi host, custom port

cql:host1,host2 Default port and keyspace

cql:bean:sessionRef Provided Session reference

cql:bean:clusterRef/keyspace Provided Cluster reference

To fine tune the Cassandra connection (SSL options, pooling options, load balancing policy, retry policy,
reconnection policy…), create your own Cluster instance and give it to the Camel endpoint.

13.5. MESSAGES

13.5.1. Incoming Message

The Camel Cassandra endpoint expects a bunch of simple objects (Object or Object[] or
Collection<Object>) which will be bound to the CQL statement as query parameters. If message body is
null or empty, then CQL query will be executed without binding parameters.

Headers

CamelCqlQuery (optional, String or RegularStatement)
CQL query either as a plain String or built using the QueryBuilder.

13.5.2. Outgoing Message

The Camel Cassandra endpoint produces one or many a Cassandra Row objects depending on the
resultSetConversionStrategy:

List<Row> if resultSetConversionStrategy is ALL or LIMIT_[0-9]+

Single` Row` if resultSetConversionStrategy is ONE

Anything else, if resultSetConversionStrategy is a custom implementation of the

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

244

Anything else, if resultSetConversionStrategy is a custom implementation of the
ResultSetConversionStrategy

13.6. REPOSITORIES

Cassandra can be used to store message keys or messages for the idempotent and aggregation EIP.

Cassandra might not be the best tool for queuing use cases yet, read Cassandra anti-patterns queues
and queue like datasets. It’s advised to use LeveledCompaction and a small GC grace setting for these
tables to allow tombstoned rows to be removed quickly.

13.7. IDEMPOTENT REPOSITORY

The NamedCassandraIdempotentRepository stores messages keys in a Cassandra table like this:

CAMEL_IDEMPOTENT.cql

This repository implementation uses lightweight transactions (also known as Compare and Set) and
requires Cassandra 2.0.7+.

Alternatively, the CassandraIdempotentRepository does not have a NAME column and can be
extended to use a different data model.

Option Default Description

table CAMEL_IDEMPOTENT Table name

pkColumns NAME,` KEY` Primary key columns

name Repository name, value used for NAME
column

ttl Key time to live

writeConsistencyLevel Consistency level used to insert/delete
key: ANY, ONE, TWO, QUORUM,
LOCAL_QUORUM…

readConsistencyLevel Consistency level used to read/check
key: ONE, TWO, QUORUM,
LOCAL_QUORUM…

13.8. AGGREGATION REPOSITORY

CREATE TABLE CAMEL_IDEMPOTENT (
 NAME varchar, -- Repository name
 KEY varchar, -- Message key
 PRIMARY KEY (NAME, KEY)
) WITH compaction = {'class':'LeveledCompactionStrategy'}
 AND gc_grace_seconds = 86400;

CHAPTER 13. CASSANDRA CQL

245

http://www.datastax.com/dev/blog/cassandra-anti-patterns-queues-and-queue-like-datasets

The NamedCassandraAggregationRepository stores exchanges by correlation key in a Cassandra
table like this:

CAMEL_AGGREGATION.cql

Alternatively, the CassandraAggregationRepository does not have a NAME column and can be
extended to use a different data model.

Option Default Description

table CAMEL_AGGREGATION Table name

pkColumns NAME,KEY Primary key columns

exchangeIdColumn EXCHANGE_ID Exchange Id column

exchangeColumn EXCHANGE Exchange content column

name Repository name, value used for
NAME column

ttl Exchange time to live

writeConsistencyLevel Consistency level used to
insert/delete exchange: ANY,
ONE, TWO, QUORUM,
LOCAL_QUORUM…

readConsistencyLevel Consistency level used to
read/check exchange: ONE,
TWO, QUORUM,
LOCAL_QUORUM…

13.9. EXAMPLES

To insert something on a table you can use the following code:

At this point you should be able to insert data by using a list as body

CREATE TABLE CAMEL_AGGREGATION (
 NAME varchar, -- Repository name
 KEY varchar, -- Correlation id
 EXCHANGE_ID varchar, -- Exchange id
 EXCHANGE blob, -- Serialized exchange
 PRIMARY KEY (NAME, KEY)
) WITH compaction = {'class':'LeveledCompactionStrategy'}
 AND gc_grace_seconds = 86400;

String CQL = "insert into camel_user(login, first_name, last_name) values (?, ?, ?)";
from("direct:input")
 .to("cql://localhost/camel_ks?cql=" + CQL);

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

246

The same approach can be used for updating or querying the table.

13.10. SPRING BOOT AUTO-CONFIGURATION

When using cql with Spring Boot make sure to use the following Maven dependency to have support for
auto configuration:

The component supports 4 options, which are listed below.

Name Description Defaul
t

Type

camel.component
.cql.autowired-
enabled

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true Boolean

camel.component
.cql.bridge-error-
handler

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false Boolean

camel.component
.cql.enabled

Whether to enable auto configuration of the cql
component. This is enabled by default.

 Boolean

Arrays.asList("davsclaus", "Claus", "Ibsen")

<dependency>
 <groupId>org.apache.camel.springboot</groupId>
 <artifactId>camel-cassandraql-starter</artifactId>
 <version>3.14.5.redhat-00032</version>
 <!-- Use your Camel Spring Boot version -->
</dependency>

CHAPTER 13. CASSANDRA CQL

247

camel.component
.cql.lazy-start-
producer

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false Boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

248

CHAPTER 14. CONTROL BUS
Only producer is supported

The Control Bus from the EIP patterns allows for the integration system to be monitored and managed
from within the framework.

Use a Control Bus to manage an enterprise integration system. The Control Bus uses the same
messaging mechanism used by the application data, but uses separate channels to transmit data that is
relevant to the management of components involved in the message flow.

In Camel you can manage and monitor using JMX, or by using a Java API from the CamelContext, or
from the org.apache.camel.api.management package, or use the event notifier which has an example
here.

The ControlBus component provides easy management of Camel applications based on the Control Bus
EIP pattern. For example, by sending a message to an Endpoint you can control the lifecycle of routes,
or gather performance statistics.

controlbus:command[?options]

Where command can be any string to identify which type of command to use.

14.1. COMMANDS

Command Description

route To control routes using the routeId and action parameter.

language Allows you to specify a to use for evaluating the message body. If there is
any result from the evaluation, then the result is put in the message body.

14.2. CONFIGURING OPTIONS

Camel components are configured on two separate levels:

component level

endpoint level

14.2.1. Configuring Component Options

The component level is the highest level which holds general and common configurations that are
inherited by the endpoints. For example a component may have security settings, credentials for
authentication, urls for network connection and so forth.

Some components only have a few options, and others may have many. Because components typically
have pre configured defaults that are commonly used, then you may often only need to configure a few
options on a component; or none at all.

Configuring components can be done with the Component DSL, in a configuration file
(application.properties|yaml), or directly with Java code.

CHAPTER 14. CONTROL BUS

249

http://www.eaipatterns.com/ControlBus.html
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/camel_spring_boot_reference_3.14/index#csb-camel-control-bus-component-starter
https://camel.apache.org/manual/component-dsl.html

14.2.2. Configuring Endpoint Options

Where you find yourself configuring the most is on endpoints, as endpoints often have many options,
which allows you to configure what you need the endpoint to do. The options are also categorized into
whether the endpoint is used as consumer (from) or as a producer (to), or used for both.

Configuring endpoints is most often done directly in the endpoint URI as path and query parameters.
You can also use the Endpoint DSL as a type safe way of configuring endpoints.

A good practice when configuring options is to use Property Placeholders, which allows to not hardcode
urls, port numbers, sensitive information, and other settings. In other words placeholders allows to
externalize the configuration from your code, and gives more flexibility and reuse.

The following two sections lists all the options, firstly for the component followed by the endpoint.

14.3. COMPONENT OPTIONS

The Control Bus component supports 2 options, which are listed below.

Name Description Defaul
t

Type

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

autowiredEnabled
(advanced)

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true boolean

14.4. ENDPOINT OPTIONS

The Control Bus endpoint is configured using URI syntax:

controlbus:command:language

with the following path and query parameters:

14.4.1. Path Parameters (2 parameters)

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

250

https://camel.apache.org/manual/Endpoint-dsl.html
https://camel.apache.org/manual/using-propertyplaceholder.html

Name Description Defaul
t

Type

command
(producer)

Required Command can be either route or language.

Enum values:

route

language

 String

language
(producer)

Allows you to specify the name of a Language to use
for evaluating the message body. If there is any result
from the evaluation, then the result is put in the
message body.

Enum values:

bean

constant

el

exchangeProperty

file

groovy

header

jsonpath

mvel

ognl

ref

simple

spel

sql

terser

tokenize

xpath

xquery

xtokenize

 Language

14.4.1.1. Query Parameters (6 parameters)

CHAPTER 14. CONTROL BUS

251

Name Description Defaul
t

Type

action (producer) To denote an action that can be either: start, stop, or
status. To either start or stop a route, or to get the
status of the route as output in the message body.
You can use suspend and resume from Camel 2.11.1
onwards to either suspend or resume a route. And
from Camel 2.11.1 onwards you can use stats to get
performance statics returned in XML format; the
routeId option can be used to define which route to
get the performance stats for, if routeId is not
defined, then you get statistics for the entire
CamelContext. The restart action will restart the
route.

Enum values:

start

stop

suspend

resume

restart

status

stats

 String

async (producer) Whether to execute the control bus task
asynchronously. Important: If this option is enabled,
then any result from the task is not set on the
Exchange. This is only possible if executing tasks
synchronously.

false boolean

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

252

loggingLevel
(producer)

Logging level used for logging when task is done, or if
any exceptions occurred during processing the task.

Enum values:

TRACE

DEBUG

INFO

WARN

ERROR

OFF

INFO LoggingLevel

restartDelay
(producer)

The delay in millis to use when restarting a route. 1000 int

routeId (producer) To specify a route by its id. The special keyword
current indicates the current route.

 String

Name Description Defaul
t

Type

14.5. USING ROUTE COMMAND

The route command allows you to do common tasks on a given route very easily, for example to start a
route, you can send an empty message to this endpoint:

To get the status of the route, you can do:

14.6. GETTING PERFORMANCE STATISTICS

This requires JMX to be enabled (is by default) then you can get the performance statistics per route, or
for the CamelContext. For example to get the statistics for a route named foo, we can do:

The returned statistics is in XML format. Its the same data you can get from JMX with the
dumpRouteStatsAsXml operation on the ManagedRouteMBean.

To get statistics for the entire CamelContext you just omit the routeId parameter as shown below:

template.sendBody("controlbus:route?routeId=foo&action=start", null);

String status = template.requestBody("controlbus:route?routeId=foo&action=status", null,
String.class);

String xml = template.requestBody("controlbus:route?routeId=foo&action=stats", null, String.class);

String xml = template.requestBody("controlbus:route?action=stats", null, String.class);

CHAPTER 14. CONTROL BUS

253

14.7. USING SIMPLE LANGUAGE

You can use the Simple language with the control bus, for example to stop a specific route, you can send
a message to the "controlbus:language:simple" endpoint containing the following message:

As this is a void operation, no result is returned. However, if you want the route status you can do:

It’s easier to use the route command to control lifecycle of routes. The language command allows you
to execute a language script that has stronger powers such as Groovy or to some extend the Simple
language.

For example to shutdown Camel itself you can do:

We use async=true to stop Camel asynchronously as otherwise we would be trying to stop Camel while
it was in-flight processing the message we sent to the control bus component.

NOTE

You can also use other languages such as Groovy, etc.

14.8. SPRING BOOT AUTO-CONFIGURATION

When using controlbus with Spring Boot make sure to use the following Maven dependency to have
support for auto configuration:

The component supports 3 options, which are listed below.

Name Description Defaul
t

Type

camel.component
.controlbus.autow
ired-enabled

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true Boolean

template.sendBody("controlbus:language:simple",
"${camelContext.getRouteController().stopRoute('myRoute')}");

String status = template.requestBody("controlbus:language:simple",
"${camelContext.getRouteStatus('myRoute')}", String.class);

template.sendBody("controlbus:language:simple?async=true", "${camelContext.stop()}");

<dependency>
 <groupId>org.apache.camel.springboot</groupId>
 <artifactId>camel-controlbus-starter</artifactId>
 <version>3.14.5.redhat-00032</version>
 <!-- Use your Camel Spring Boot version -->
</dependency>

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

254

https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/camel_spring_boot_reference_3.14/index#csb-camel-simple-language-starter
https://camel.apache.org/components/3.14.x/languages/groovy-language.html
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/camel_spring_boot_reference_3.14/index#csb-camel-simple-language-starter
https://camel.apache.org/components/3.14.x/languages/groovy-language.html

camel.component
.controlbus.enabl
ed

Whether to enable auto configuration of the
controlbus component. This is enabled by default.

 Boolean

camel.component
.controlbus.lazy-
start-producer

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false Boolean

Name Description Defaul
t

Type

CHAPTER 14. CONTROL BUS

255

CHAPTER 15. CRON
Only consumer is supported

The Cron component is a generic interface component that allows triggering events at specific time
interval specified using the Unix cron syntax (e.g. 0/2 * * * * ? to trigger an event every two seconds).

Being an interface component, the Cron component does not contain a default implementation, instead
it requires that the users plug the implementation of their choice.

The following standard Camel components support the Cron endpoints:

Camel-quartz

Camel-spring

The Cron component is also supported in Camel K, which can use the Kubernetes scheduler to trigger
the routes when required by the cron expression. Camel K does not require additional libraries to be
plugged when using cron expressions compatible with Kubernetes cron syntax.

Maven users will need to add the following dependency to their pom.xml for this component:

Additional libraries may be needed in order to plug a specific implementation.

15.1. CONFIGURING OPTIONS

Camel components are configured on two separate levels:

component level

endpoint level

15.1.1. Configuring Component Options

The component level is the highest level which holds general and common configurations that are
inherited by the endpoints. For example a component may have security settings, credentials for
authentication, urls for network connection and so forth.

Some components only have a few options, and others may have many. Because components typically
have pre configured defaults that are commonly used, then you may often only need to configure a few
options on a component; or none at all.

Configuring components can be done with the Component DSL, in a configuration file
(application.properties|yaml), or directly with Java code.

15.1.2. Configuring Endpoint Options

Where you find yourself configuring the most is on endpoints, as endpoints often have many options,

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-cron</artifactId>
 <version>3.14.5.redhat-00018</version>
 <!-- use the same version as your Camel core version -->
</dependency>

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

256

https://camel.apache.org/manual/component-dsl.html

Where you find yourself configuring the most is on endpoints, as endpoints often have many options,
which allows you to configure what you need the endpoint to do. The options are also categorized into
whether the endpoint is used as consumer (from) or as a producer (to), or used for both.

Configuring endpoints is most often done directly in the endpoint URI as path and query parameters.
You can also use the Endpoint DSL as a type safe way of configuring endpoints.

A good practice when configuring options is to use Property Placeholders, which allows to not hardcode
urls, port numbers, sensitive information, and other settings. In other words placeholders allows to
externalize the configuration from your code, and gives more flexibility and reuse.

The following two sections lists all the options, firstly for the component followed by the endpoint.

15.2. COMPONENT OPTIONS

The Cron component supports 3 options, which are listed below.

Name Description Defaul
t

Type

bridgeErrorHandl
er (consumer)

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false boolean

autowiredEnabled
(advanced)

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true boolean

cronService
(advanced)

The id of the CamelCronService to use when multiple
implementations are provided.

 String

15.3. ENDPOINT OPTIONS

The Cron endpoint is configured using URI syntax:

cron:name

with the following path and query parameters:

15.3.1. Path Parameters (1 parameters)

CHAPTER 15. CRON

257

https://camel.apache.org/manual/Endpoint-dsl.html
https://camel.apache.org/manual/using-propertyplaceholder.html

Name Description Defaul
t

Type

name (consumer) Required The name of the cron trigger. String

15.3.2. Query Parameters (4 parameters)

Name Description Defaul
t

Type

bridgeErrorHandl
er (consumer)

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false boolean

schedule
(consumer)

Required A cron expression that will be used to
generate events.

 String

exceptionHandler
(consumer
(advanced))

To let the consumer use a custom ExceptionHandler.
Notice if the option bridgeErrorHandler is enabled
then this option is not in use. By default the consumer
will deal with exceptions, that will be logged at WARN
or ERROR level and ignored.

 ExceptionHandler

exchangePattern
(consumer
(advanced))

Sets the exchange pattern when the consumer
creates an exchange.

Enum values:

InOnly

InOut

InOptionalOut

 ExchangePattern

15.4. USAGE

The component can be used to trigger events at specified times, as in the following example:

The schedule expression 0/3+10+*+? can be also written as 0/3 10 * * * ? and triggers an event every
three seconds only in the tenth minute of each hour.

from("cron:tab?schedule=0/1+*+*+*+*+?")
.setBody().constant("event")
.log("${body}");

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

258

Parts in the schedule expression means (in order):

Seconds (optional)

Minutes

Hours

Day of month

Month

Day of week

Year (optional)

Schedule expressions can be made of 5 to 7 parts. When expressions are composed of 6 parts, the first
items is the "seconds" part (and year is considered missing).

Other valid examples of schedule expressions are:

0/2 * * * ? (5 parts, an event every two minutes)

0 0/2 * * * MON-FRI 2030 (7 parts, an event every two minutes only in year 2030)

Routes can also be written using the XML DSL.

15.5. SPRING BOOT AUTO-CONFIGURATION

When using cron with Spring Boot make sure to use the following Maven dependency to have support
for auto configuration:

The component supports 4 options, which are listed below.

<route>
 <from uri="cron:tab?schedule=0/1+*+*+*+*+?"/>
 <setBody>
 <constant>event</constant>
 </setBody>
 <to uri="log:info"/>
</route>

<dependency>
 <groupId>org.apache.camel.springboot</groupId>
 <artifactId>camel-cron-starter</artifactId>
 <version>3.14.5.redhat-00032</version>
 <!-- Use your Camel Spring Boot version -->
</dependency>

CHAPTER 15. CRON

259

Name Description Defaul
t

Type

camel.component
.cron.autowired-
enabled

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true Boolean

camel.component
.cron.bridge-
error-handler

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false Boolean

camel.component
.cron.cron-service

The id of the CamelCronService to use when multiple
implementations are provided.

 String

camel.component
.cron.enabled

Whether to enable auto configuration of the cron
component. This is enabled by default.

 Boolean

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

260

CHAPTER 16. CXF
Both producer and consumer are supported

The CXF component provides integration with Apache CXF for connecting to JAX-WS services hosted
in CXF.

TIP

When using CXF in streaming modes (see DataFormat option), then also read about Stream caching.

Maven users must add the following dependency to their pom.xml for this component:

16.1. URI FORMAT

There are two URI formats for this endpoint: cxfEndpoint and someAddress.

cxf:bean:cxfEndpoint[?options]

Where cxfEndpoint represents a bean ID that references a bean in the Spring bean registry. With this
URI format, most of the endpoint details are specified in the bean definition.

cxf://someAddress[?options]

Where someAddress specifies the CXF endpoint’s address. With this URI format, most of the endpoint
details are specified using options.

For either style above, you can append options to the URI as follows:

cxf:bean:cxfEndpoint?wsdlURL=wsdl/hello_world.wsdl&dataFormat=PAYLOAD

16.2. CONFIGURING OPTIONS

Camel components are configured on two separate levels:

component level

endpoint level

16.2.1. Configuring Component Options

The component level is the highest level which holds general and common configurations that are
inherited by the endpoints. For example a component may have security settings, credentials for
authentication, urls for network connection and so forth.

Some components only have a few options, and others may have many. Because components typically

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-cxf-soap</artifactId>
 <version>3.14.5.redhat-00018</version>
 <!-- use the same version as your Camel core version -->
</dependency>

CHAPTER 16. CXF

261

http://cxf.apache.org
http://cxf.apache.org/docs/jax-ws.html

Some components only have a few options, and others may have many. Because components typically
have pre configured defaults that are commonly used, then you may often only need to configure a few
options on a component; or none at all.

Configuring components can be done with the Component DSL, in a configuration file
(application.properties|yaml), or directly with Java code.

16.2.2. Configuring Endpoint Options

Where you find yourself configuring the most is on endpoints, as endpoints often have many options,
which allows you to configure what you need the endpoint to do. The options are also categorized into
whether the endpoint is used as consumer (from) or as a producer (to), or used for both.

Configuring endpoints is most often done directly in the endpoint URI as path and query parameters.
You can also use the Endpoint DSL as a type safe way of configuring endpoints.

A good practice when configuring options is to use Property Placeholders, which allows to not hardcode
urls, port numbers, sensitive information, and other settings. In other words placeholders allows to
externalize the configuration from your code, and gives more flexibility and reuse.

The following two sections lists all the options, firstly for the component followed by the endpoint.

16.3. COMPONENT OPTIONS

The CXF component supports 6 options, which are listed below.

Name Description Defaul
t

Type

bridgeErrorHandl
er (consumer)

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false boolean

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

262

https://camel.apache.org/manual/component-dsl.html
https://camel.apache.org/manual/Endpoint-dsl.html
https://camel.apache.org/manual/using-propertyplaceholder.html

allowStreaming
(advanced)

This option controls whether the CXF component,
when running in PAYLOAD mode, will DOM parse the
incoming messages into DOM Elements or keep the
payload as a javax.xml.transform.Source object that
would allow streaming in some cases.

 Boolean

autowiredEnabled
(advanced)

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true boolean

headerFilterStrat
egy (filter)

To use a custom
org.apache.camel.spi.HeaderFilterStrategy to filter
header to and from Camel message.

 HeaderFilterStrate
gy

useGlobalSslCont
extParameters
(security)

Enable usage of global SSL context parameters. false boolean

Name Description Defaul
t

Type

16.4. ENDPOINT OPTIONS

The CXF endpoint is configured using URI syntax:

cxf:beanId:address

with the following path and query parameters:

16.4.1. Path Parameters (2 parameters)

Name Description Defaul
t

Type

beanId (common) To lookup an existing configured CxfEndpoint. Must
used bean: as prefix.

 String

address (service) The service publish address. String

16.4.2. Query Parameters (35 parameters)

CHAPTER 16. CXF

263

Name Description Defaul
t

Type

dataFormat
(common)

The data type messages supported by the CXF
endpoint.

Enum values:

PAYLOAD

RAW

MESSAGE

CXF_MESSAGE

POJO

POJO DataFormat

wrappedStyle
(common)

The WSDL style that describes how parameters are
represented in the SOAP body. If the value is false,
CXF will chose the document-literal unwrapped style,
If the value is true, CXF will chose the document-
literal wrapped style.

 Boolean

bridgeErrorHandl
er (consumer)

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false boolean

exceptionHandler
(consumer
(advanced))

To let the consumer use a custom ExceptionHandler.
Notice if the option bridgeErrorHandler is enabled
then this option is not in use. By default the consumer
will deal with exceptions, that will be logged at WARN
or ERROR level and ignored.

 ExceptionHandler

exchangePattern
(consumer
(advanced))

Sets the exchange pattern when the consumer
creates an exchange.

Enum values:

InOnly

InOut

InOptionalOut

 ExchangePattern

cookieHandler
(producer)

Configure a cookie handler to maintain a HTTP
session.

 CookieHandler

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

264

defaultOperation
Name (producer)

This option will set the default operationName that
will be used by the CxfProducer which invokes the
remote service.

 String

defaultOperation
Namespace
(producer)

This option will set the default operationNamespace
that will be used by the CxfProducer which invokes
the remote service.

 String

hostnameVerifier
(producer)

The hostname verifier to be used. Use the # notation
to reference a HostnameVerifier from the registry.

 HostnameVerifier

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

sslContextParam
eters (producer)

The Camel SSL setting reference. Use the # notation
to reference the SSL Context.

 SSLContextParam
eters

wrapped
(producer)

Which kind of operation that CXF endpoint producer
will invoke.

false boolean

synchronous
(producer
(advanced))

Sets whether synchronous processing should be
strictly used.

false boolean

allowStreaming
(advanced)

This option controls whether the CXF component,
when running in PAYLOAD mode, will DOM parse the
incoming messages into DOM Elements or keep the
payload as a javax.xml.transform.Source object that
would allow streaming in some cases.

 Boolean

bus (advanced) To use a custom configured CXF Bus. Bus

continuationTime
out (advanced)

This option is used to set the CXF continuation
timeout which could be used in CxfConsumer by
default when the CXF server is using Jetty or Servlet
transport.

30000 long

Name Description Defaul
t

Type

CHAPTER 16. CXF

265

cxfBinding
(advanced)

To use a custom CxfBinding to control the binding
between Camel Message and CXF Message.

 CxfBinding

cxfConfigurer
(advanced)

This option could apply the implementation of
org.apache.camel.component.cxf.CxfEndpointConfig
urer which supports to configure the CXF endpoint in
programmatic way. User can configure the CXF
server and client by implementing
configure{ServerClient} method of
CxfEndpointConfigurer.

 CxfConfigurer

defaultBus
(advanced)

Will set the default bus when CXF endpoint create a
bus by itself.

false boolean

headerFilterStrat
egy (advanced)

To use a custom HeaderFilterStrategy to filter
header to and from Camel message.

 HeaderFilterStrate
gy

mergeProtocolHe
aders (advanced)

Whether to merge protocol headers. If enabled then
propagating headers between Camel and CXF
becomes more consistent and similar. For more
details see CAMEL-6393.

false boolean

mtomEnabled
(advanced)

To enable MTOM (attachments). This requires to use
POJO or PAYLOAD data format mode.

false boolean

properties
(advanced)

To set additional CXF options using the key/value
pairs from the Map. For example to turn on
stacktraces in SOAP faults,
properties.faultStackTraceEnabled=true.

 Map

skipPayloadMess
agePartCheck
(advanced)

Sets whether SOAP message validation should be
disabled.

false boolean

loggingFeatureEn
abled (logging)

This option enables CXF Logging Feature which
writes inbound and outbound SOAP messages to log.

false boolean

loggingSizeLimit
(logging)

To limit the total size of number of bytes the logger
will output when logging feature has been enabled
and -1 for no limit.

49152 int

skipFaultLogging
(logging)

This option controls whether the
PhaseInterceptorChain skips logging the Fault that it
catches.

false boolean

password
(security)

This option is used to set the basic authentication
information of password for the CXF client.

 String

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

266

username
(security)

This option is used to set the basic authentication
information of username for the CXF client.

 String

bindingId
(service)

The bindingId for the service model to use. String

portName
(service)

The endpoint name this service is implementing, it
maps to the wsdl:portname. In the format of
ns:PORT_NAME where ns is a namespace prefix valid
at this scope.

 String

publishedEndpoin
tUrl (service)

This option can override the endpointUrl that
published from the WSDL which can be accessed
with service address url plus wsd.

 String

serviceClass
(service)

The class name of the SEI (Service Endpoint
Interface) class which could have JSR181 annotation
or not.

 Class

serviceName
(service)

The service name this service is implementing, it
maps to the wsdl:servicename.

 String

wsdlURL (service) The location of the WSDL. Can be on the classpath,
file system, or be hosted remotely.

 String

Name Description Defaul
t

Type

The serviceName and portName are QNames, so if you provide them be sure to prefix them with their
{namespace} as shown in the examples above.

16.4.3. Descriptions of the dataformats

In Apache Camel, the Camel CXF component is the key to integrating routes with Web services. You can
use the Camel CXF component to create a CXF endpoint, which can be used in either of the following
ways:

Consumer — (at the start of a route) represents a Web service instance, which integrates with
the route. The type of payload injected into the route depends on the value of the endpoint’s
dataFormat option.

Producer — (at other points in the route) represents a WS client proxy, which converts the
current exchange object into an operation invocation on a remote Web service. The format of
the current exchange must match the endpoint’s dataFormat setting.

DataFormat Description

POJO POJOs (Plain old Java objects) are the Java parameters to the method being
invoked on the target server. Both Protocol and Logical JAX-WS handlers are
supported.

CHAPTER 16. CXF

267

http://en.wikipedia.org/wiki/QName

PAYLOAD PAYLOAD is the message payload (the contents of the soap:body) after
message configuration in the CXF endpoint is applied. Only Protocol JAX-WS
handler is supported. Logical JAX-WS handler is not supported.

RAW RAW mode provides the raw message stream that is received from the transport
layer. It is not possible to touch or change the stream, some of the CXF
interceptors will be removed if you are using this kind of DataFormat, so you can’t
see any soap headers after the camel-cxf consumer. JAX-WS handler is not
supported.

CXF_MESSAGE CXF_MESSAGE allows for invoking the full capabilities of CXF interceptors by
converting the message from the transport layer into a raw SOAP message

DataFormat Description

You can determine the data format mode of an exchange by retrieving the exchange property,
CamelCXFDataFormat. The exchange key constant is defined in
org.apache.camel.component.cxf.common.message.CxfConstants.DATA_FORMAT_PROPERTY.

16.4.4. How to enable CXF’s LoggingOutInterceptor in RAW mode

CXF’s LoggingOutInterceptor outputs outbound message that goes on the wire to logging system
(Java Util Logging). Since the LoggingOutInterceptor is in PRE_STREAM phase (but PRE_STREAM
phase is removed in RAW mode), you have to configure LoggingOutInterceptor to be run during the
WRITE phase. The following is an example.

16.4.5. Description of relayHeaders option

There are in-band and out-of-band on-the-wire headers from the perspective of a JAXWS WSDL-first
developer.

The in-band headers are headers that are explicitly defined as part of the WSDL binding contract for an

@Bean
public CxfEndpoint serviceEndpoint(LoggingOutInterceptor loggingOutInterceptor) {
 CxfSpringEndpoint cxfEndpoint = new CxfSpringEndpoint();
 cxfEndpoint.setAddress("http://localhost:" + port
 + "/services" + SERVICE_ADDRESS);
 cxfEndpoint.setServiceClass(org.apache.camel.component.cxf.HelloService.class);
 Map<String, Object> properties = new HashMap<String, Object>();
 properties.put("dataFormat", "RAW");
 cxfEndpoint.setProperties(properties);
 cxfEndpoint.getOutInterceptors().add(loggingOutInterceptor);
 return cxfEndpoint;
}

@Bean
public LoggingOutInterceptor loggingOutInterceptor() {
 LoggingOutInterceptor logger = new LoggingOutInterceptor("write");
 return logger;
}

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

268

The in-band headers are headers that are explicitly defined as part of the WSDL binding contract for an
endpoint such as SOAP headers.

The out-of-band headers are headers that are serialized over the wire, but are not explicitly part of the
WSDL binding contract.

Headers relaying/filtering is bi-directional.

When a route has a CXF endpoint and the developer needs to have on-the-wire headers, such as SOAP
headers, be relayed along the route to be consumed say by another JAXWS endpoint, then
relayHeaders should be set to true, which is the default value.

16.4.6. Available only in POJO mode

The relayHeaders=true expresses an intent to relay the headers. The actual decision on whether a given
header is relayed is delegated to a pluggable instance that implements the MessageHeadersRelay
interface. A concrete implementation of MessageHeadersRelay will be consulted to decide if a header
needs to be relayed or not. There is already an implementation of SoapMessageHeadersRelay which
binds itself to well-known SOAP name spaces. Currently only out-of-band headers are filtered, and in-
band headers will always be relayed when relayHeaders=true. If there is a header on the wire whose
name space is unknown to the runtime, then a fall back DefaultMessageHeadersRelay will be used,
which simply allows all headers to be relayed.

The relayHeaders=false setting specifies that all headers in-band and out-of-band should be dropped.

You can plugin your own MessageHeadersRelay implementations overriding or adding additional ones
to the list of relays. In order to override a preloaded relay instance just make sure that your
MessageHeadersRelay implementation services the same name spaces as the one you looking to
override. Also note, that the overriding relay has to service all of the name spaces as the one you looking
to override, or else a runtime exception on route start up will be thrown as this would introduce an
ambiguity in name spaces to relay instance mappings.

Take a look at the tests that show how you’d be able to relay/drop headers here:

https://github.com/apache/camel/blob/main/components/camel-
cxf/src/test/java/org/apache/camel/component/cxf/soap/headers/CxfMessageHeadersRelayTest.java

POJO and PAYLOAD modes are supported. In POJO mode, only out-of-band message
headers are available for filtering as the in-band headers have been processed and removed
from header list by CXF. The in-band headers are incorporated into the MessageContentList
in POJO mode. The camel-cxf component does make any attempt to remove the in-band
headers from the MessageContentList. If filtering of in-band headers is required, please use
PAYLOAD mode or plug in a (pretty straightforward) CXF interceptor/JAXWS Handler to the
CXF endpoint.

<cxf:cxfEndpoint ...>
 <cxf:properties>
 <entry key="org.apache.camel.cxf.message.headers.relays">
 <list>
 <ref bean="customHeadersRelay"/>
 </list>
 </entry>
 </cxf:properties>
 </cxf:cxfEndpoint>
 <bean id="customHeadersRelay"
class="org.apache.camel.component.cxf.soap.headers.CustomHeadersRelay"/>

CHAPTER 16. CXF

269

https://github.com/apache/camel/blob/main/components/camel-cxf/src/test/java/org/apache/camel/component/cxf/soap/headers/CxfMessageHeadersRelayTest.java

The Message Header Relay mechanism has been merged into CxfHeaderFilterStrategy. The
relayHeaders option, its semantics, and default value remain the same, but it is a property of
CxfHeaderFilterStrategy. Here is an example of configuring it.

Then, your endpoint can reference the CxfHeaderFilterStrategy.

Then configure the route as follows:

The MessageHeadersRelay interface has changed slightly and has been renamed to
MessageHeaderFilter. It is a property of CxfHeaderFilterStrategy. Here is an example of
configuring user defined Message Header Filters:

@Bean
public HeaderFilterStrategy dropAllMessageHeadersStrategy() {
 CxfHeaderFilterStrategy headerFilterStrategy = new CxfHeaderFilterStrategy();
 headerFilterStrategy.setRelayHeaders(false);
 return headerFilterStrategy;
}

@Bean
public CxfEndpoint routerNoRelayEndpoint(HeaderFilterStrategy dropAllMessageHeadersStrategy) {
 CxfSpringEndpoint cxfEndpoint = new CxfSpringEndpoint();
 cxfEndpoint.setServiceClass(org.apache.camel.component.cxf.soap.headers.HeaderTester.class);
 cxfEndpoint.setAddress("/CxfMessageHeadersRelayTest/HeaderService/routerNoRelayEndpoint");
 cxfEndpoint.setWsdlURL("soap_header.wsdl");
 cxfEndpoint.setEndpointNameAsQName(
 QName.valueOf("{http://apache.org/camel/component/cxf/soap/headers}SoapPortNoRelay"));
 cxfEndpoint.setServiceNameAsQName(SERVICENAME);
 Map<String, Object> properties = new HashMap<String, Object>();
 properties.put("dataFormat", "PAYLOAD");
 cxfEndpoint.setProperties(properties);
 cxfEndpoint.setHeaderFilterStrategy(dropAllMessageHeadersStrategy);
 return cxfEndpoint;
}

@Bean
public CxfEndpoint serviceNoRelayEndpoint(HeaderFilterStrategy dropAllMessageHeadersStrategy)
{
 CxfSpringEndpoint cxfEndpoint = new CxfSpringEndpoint();
 cxfEndpoint.setServiceClass(org.apache.camel.component.cxf.soap.headers.HeaderTester.class);
 cxfEndpoint.setAddress("http://localhost:" + port +
"/services/CxfMessageHeadersRelayTest/HeaderService/routerNoRelayEndpointBackend");
 cxfEndpoint.setWsdlURL("soap_header.wsdl");
 cxfEndpoint.setEndpointNameAsQName(
 QName.valueOf("{http://apache.org/camel/component/cxf/soap/headers}SoapPortNoRelay"));
 cxfEndpoint.setServiceNameAsQName(SERVICENAME);
 Map<String, Object> properties = new HashMap<String, Object>();
 properties.put("dataFormat", "PAYLOAD");
 cxfEndpoint.setProperties(properties);
 cxfEndpoint.setHeaderFilterStrategy(dropAllMessageHeadersStrategy);
 return cxfEndpoint;
}

rom("cxf:bean:routerNoRelayEndpoint")
 .to("cxf:bean:serviceNoRelayEndpoint");

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

270

In addition to relayHeaders, the following properties can be configured in
CxfHeaderFilterStrategy.

Name Required Description

relayHeaders No All message headers will be processed by Message Header
Filters Type: boolean Default: true

relayAllMessage
Headers

No All message headers will be propagated (without processing by
Message Header Filters) Type: booleanDefault: false

allowFilterName
spaceClash

No If two filters overlap in activation namespace, the property
control how it should be handled. If the value is true, last one
wins. If the value is false, it will throw an exception Type:
boolean Default: false

16.5. CONFIGURE THE CXF ENDPOINTS WITH SPRING

You can configure the CXF endpoint with the Spring configuration file shown below, and you can also
embed the endpoint into the camelContext tags. When you are invoking the service endpoint, you can
set the operationName and operationNamespace headers to explicitly state which operation you are
calling.

@Bean
public HeaderFilterStrategy customMessageFilterStrategy() {
 CxfHeaderFilterStrategy headerFilterStrategy = new CxfHeaderFilterStrategy();
 List<MessageHeaderFilter> headerFilterList = new ArrayList<MessageHeaderFilter>();
 headerFilterList.add(new SoapMessageHeaderFilter());
 headerFilterList.add(new CustomHeaderFilter());
 headerFilterStrategy.setMessageHeaderFilters(headerFilterList);
 return headerFilterStrategy;
}

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:cxf="http://camel.apache.org/schema/cxf"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
 http://camel.apache.org/schema/cxf http://camel.apache.org/schema/cxf/camel-cxf.xsd
 http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/camel-
spring.xsd">
 <cxf:cxfEndpoint id="routerEndpoint" address="http://localhost:9003/CamelContext/RouterPort"
 serviceClass="org.apache.hello_world_soap_http.GreeterImpl"/>
 <cxf:cxfEndpoint id="serviceEndpoint" address="http://localhost:9000/SoapContext/SoapPort"
 wsdlURL="testutils/hello_world.wsdl"
 serviceClass="org.apache.hello_world_soap_http.Greeter"
 endpointName="s:SoapPort"
 serviceName="s:SOAPService"
 xmlns:s="http://apache.org/hello_world_soap_http" />
 <camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
 <route>

CHAPTER 16. CXF

271

Be sure to include the JAX-WS schemaLocation attribute specified on the root beans element. This
allows CXF to validate the file and is required. Also note the namespace declarations at the end of the
<cxf:cxfEndpoint/> tag. These declarations are required because the combined
{namespace}localName syntax is presently not supported for this tag’s attribute values.

The cxf:cxfEndpoint element supports many additional attributes:

Name Value

PortName The endpoint name this service is implementing, it maps to the
wsdl:port@name. In the format of ns:PORT_NAME where ns is a namespace
prefix valid at this scope.

serviceName The service name this service is implementing, it maps to the
wsdl:service@name. In the format of ns:SERVICE_NAME where ns is a
namespace prefix valid at this scope.

wsdlURL The location of the WSDL. Can be on the classpath, file system, or be hosted
remotely.

bindingId The bindingId for the service model to use.

address The service publish address.

bus The bus name that will be used in the JAX-WS endpoint.

serviceClass The class name of the SEI (Service Endpoint Interface) class which could have
JSR181 annotation or not.

It also supports many child elements:

Name Value

cxf:inInterceptors The incoming interceptors for this endpoint. A list of <bean> or <ref>.

cxf:inFaultIntercepto
rs

The incoming fault interceptors for this endpoint. A list of <bean> or <ref>.

cxf:outInterceptors The outgoing interceptors for this endpoint. A list of <bean> or <ref>.

cxf:outFaultIntercept
ors

The outgoing fault interceptors for this endpoint. A list of <bean> or <ref>.

 <from uri="cxf:bean:routerEndpoint" />
 <to uri="cxf:bean:serviceEndpoint" />
 </route>
 </camelContext>
 </beans>

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

272

cxf:properties A properties map which should be supplied to the JAX-WS endpoint. See below.

cxf:handlers A JAX-WS handler list which should be supplied to the JAX-WS endpoint. See
below.

cxf:dataBinding You can specify the which DataBinding will be use in the endpoint. This can be
supplied using the Spring <bean class="MyDataBinding"/> syntax.

cxf:binding You can specify the BindingFactory for this endpoint to use. This can be
supplied using the Spring <bean class="MyBindingFactory"/> syntax.

cxf:features The features that hold the interceptors for this endpoint. A list of beans or refs

cxf:schemaLocation
s

The schema locations for endpoint to use. A list of schemaLocations

cxf:serviceFactory The service factory for this endpoint to use. This can be supplied using the Spring
<bean class="MyServiceFactory"/> syntax

Name Value

You can find more advanced examples that show how to provide interceptors, properties and handlers
on the CXF JAX-WS Configuration page .

NOTE

You can use cxf:properties to set the camel-cxf endpoint’s dataFormat and
setDefaultBus properties from spring configuration file.

NOTE

<cxf:cxfEndpoint id="testEndpoint" address="http://localhost:9000/router"
 serviceClass="org.apache.camel.component.cxf.HelloService"
 endpointName="s:PortName"
 serviceName="s:ServiceName"
 xmlns:s="http://www.example.com/test">
 <cxf:properties>
 <entry key="dataFormat" value="RAW"/>
 <entry key="setDefaultBus" value="true"/>
 </cxf:properties>
 </cxf:cxfEndpoint>

CHAPTER 16. CXF

273

http://cxf.apache.org/docs/jax-ws-configuration.html

NOTE

In SpringBoot, you can use Spring XML files to configure camel-cxf and use code similar
to the following example to create XML configured beans:

However, the use of Java code configured beans (as shown in other examples) is best
practice in SpringBoot.

16.6. HOW TO MAKE THE CAMEL-CXF COMPONENT USE LOG4J
INSTEAD OF JAVA.UTIL.LOGGING

CXF’s default logger is java.util.logging. If you want to change it to log4j, proceed as follows. Create a
file, in the classpath, named META-INF/cxf/org.apache.cxf.logger. This file should contain the fully-
qualified name of the class, org.apache.cxf.common.logging.Log4jLogger, with no comments, on a
single line.

16.7. HOW TO LET CAMEL-CXF RESPONSE START WITH XML
PROCESSING INSTRUCTION

If you are using some SOAP client such as PHP, you will get this kind of error, because CXF doesn’t add
the XML processing instruction <?xml version="1.0" encoding="utf-8"?>:

Error:sendSms: SoapFault exception: [Client] looks like we got no XML document in [...]

To resolve this issue, you just need to tell StaxOutInterceptor to write the XML start document for you,
as in the WriteXmlDeclarationInterceptor below:

As an alternative you can add a message header for it as demonstrated in CxfConsumerTest:

16.8. HOW TO OVERRIDE THE CXF PRODUCER ADDRESS FROM

@ImportResource({
 "classpath:spring-configuration.xml"
})

public class WriteXmlDeclarationInterceptor extends AbstractPhaseInterceptor<SoapMessage> {
 public WriteXmlDeclarationInterceptor() {
 super(Phase.PRE_STREAM);
 addBefore(StaxOutInterceptor.class.getName());
 }

 public void handleMessage(SoapMessage message) throws Fault {
 message.put("org.apache.cxf.stax.force-start-document", Boolean.TRUE);
 }

}

 // set up the response context which force start document
 Map<String, Object> map = new HashMap<String, Object>();
 map.put("org.apache.cxf.stax.force-start-document", Boolean.TRUE);
 exchange.getOut().setHeader(Client.RESPONSE_CONTEXT, map);

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

274

https://github.com/apache/camel/blob/main/components/camel-cxf/src/test/java/org/apache/camel/component/cxf/WriteXmlDeclarationInterceptor.java
https://github.com/apache/camel/blob/e818e0103490a106fa1538219f91a732ddebc562/components/camel-cxf/src/test/java/org/apache/camel/component/cxf/CxfConsumerTest.java#L59

16.8. HOW TO OVERRIDE THE CXF PRODUCER ADDRESS FROM
MESSAGE HEADER

The camel-cxf producer supports to override the target service address by setting a message header
CamelDestinationOverrideUrl.

16.9. HOW TO CONSUME A MESSAGE FROM A CAMEL-CXF
ENDPOINT IN POJO DATA FORMAT

The camel-cxf endpoint consumer POJO data format is based on the CXF invoker, so the message
header has a property with the name of CxfConstants.OPERATION_NAME and the message body is a
list of the SEI method parameters.

Consider the PersonProcessor example code:

 // set up the service address from the message header to override the setting of CXF endpoint
 exchange.getIn().setHeader(Exchange.DESTINATION_OVERRIDE_URL,
constant(getServiceAddress()));

public class PersonProcessor implements Processor {

 private static final Logger LOG = LoggerFactory.getLogger(PersonProcessor.class);

 @Override
 @SuppressWarnings("unchecked")
 public void process(Exchange exchange) throws Exception {
 LOG.info("processing exchange in camel");

 BindingOperationInfo boi = (BindingOperationInfo)
exchange.getProperty(BindingOperationInfo.class.getName());
 if (boi != null) {
 LOG.info("boi.isUnwrapped" + boi.isUnwrapped());
 }
 // Get the parameters list which element is the holder.
 MessageContentsList msgList = (MessageContentsList) exchange.getIn().getBody();
 Holder<String> personId = (Holder<String>) msgList.get(0);
 Holder<String> ssn = (Holder<String>) msgList.get(1);
 Holder<String> name = (Holder<String>) msgList.get(2);

 if (personId.value == null || personId.value.length() == 0) {
 LOG.info("person id 123, so throwing exception");
 // Try to throw out the soap fault message
 org.apache.camel.wsdl_first.types.UnknownPersonFault personFault
 = new org.apache.camel.wsdl_first.types.UnknownPersonFault();
 personFault.setPersonId("");
 org.apache.camel.wsdl_first.UnknownPersonFault fault
 = new org.apache.camel.wsdl_first.UnknownPersonFault("Get the null value of person
name", personFault);
 exchange.getMessage().setBody(fault);
 return;
 }

 name.value = "Bonjour";
 ssn.value = "123";

CHAPTER 16. CXF

275

http://cxf.apache.org/docs/invokers.html
https://github.com/apache/camel/blob/main/components/camel-cxf/src/test/java/org/apache/camel/wsdl_first/PersonProcessor.java

16.10. HOW TO PREPARE THE MESSAGE FOR THE CAMEL-CXF
ENDPOINT IN POJO DATA FORMAT

The camel-cxf endpoint producer is based on the CXF client API. First you need to specify the
operation name in the message header, then add the method parameters to a list, and initialize the
message with this parameter list. The response message’s body is a messageContentsList, you can get
the result from that list.

If you don’t specify the operation name in the message header, CxfProducer will try to use the
defaultOperationName from CxfEndpoint, if there is no defaultOperationName set on CxfEndpoint,
it will pick up the first operationName from the Operation list.

If you want to get the object array from the message body, you can get the body using
message.getBody(Object[].class), as shown in
CxfProducerRouterTest.testInvokingSimpleServerWithParams:

16.11. HOW TO DEAL WITH THE MESSAGE FOR A CAMEL-CXF
ENDPOINT IN PAYLOAD DATA FORMAT

PAYLOAD means that you process the payload from the SOAP envelope as a native CxfPayload.
Message.getBody() will return a org.apache.camel.component.cxf.CxfPayload object, with getters
for SOAP message headers and the SOAP body.

 LOG.info("setting Bonjour as the response");
 // Set the response message, first element is the return value of the operation,
 // the others are the holders of method parameters
 exchange.getMessage().setBody(new Object[] { null, personId, ssn, name });
 }

}

Exchange senderExchange = new DefaultExchange(context, ExchangePattern.InOut);
final List<String> params = new ArrayList<>();
// Prepare the request message for the camel-cxf procedure
params.add(TEST_MESSAGE);
senderExchange.getIn().setBody(params);
senderExchange.getIn().setHeader(CxfConstants.OPERATION_NAME, ECHO_OPERATION);

Exchange exchange = template.send("direct:EndpointA", senderExchange);

org.apache.camel.Message out = exchange.getMessage();
// The response message's body is an MessageContentsList which first element is the return value of
the operation,
// If there are some holder parameters, the holder parameter will be filled in the reset of List.
// The result will be extract from the MessageContentsList with the String class type
MessageContentsList result = (MessageContentsList) out.getBody();
LOG.info("Received output text: " + result.get(0));
Map<String, Object> responseContext = CastUtils.cast((Map<?, ?>)
out.getHeader(Client.RESPONSE_CONTEXT));
assertNotNull(responseContext);
assertEquals("UTF-8", responseContext.get(org.apache.cxf.message.Message.ENCODING),
 "We should get the response context here");
assertEquals("echo " + TEST_MESSAGE, result.get(0), "Reply body on Camel is wrong");

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

276

https://github.com/apache/cxf/blob/master/core/src/main/java/org/apache/cxf/endpoint/Client.java
https://github.com/apache/camel/blob/e818e0103490a106fa1538219f91a732ddebc562/components/camel-cxf/src/test/java/org/apache/camel/component/cxf/CxfProducerRouterTest.java#L116

See CxfConsumerPayloadTest:

16.12. HOW TO GET AND SET SOAP HEADERS IN POJO MODE

POJO means that the data format is a "list of Java objects" when the camel-cxf endpoint produces or
consumes Camel exchanges. Even though Camel exposes the message body as POJOs in this mode,
camel-cxf still provides access to read and write SOAP headers. However, since CXF interceptors
remove in-band SOAP headers from the header list after they have been processed, only out-of-band
SOAP headers are available to camel-cxf in POJO mode.

The following example illustrates how to get/set SOAP headers. Suppose we have a route that forwards
from one Camel-cxf endpoint to another. That is, SOAP Client → Camel → CXF service. We can attach
two processors to obtain/insert SOAP headers at (1) before a request goes out to the CXF service and

protected RouteBuilder createRouteBuilder() {
 return new RouteBuilder() {
 public void configure() {
 from(simpleEndpointURI + "&dataFormat=PAYLOAD").to("log:info").process(new Processor()
{
 @SuppressWarnings("unchecked")
 public void process(final Exchange exchange) throws Exception {
 CxfPayload<SoapHeader> requestPayload =
exchange.getIn().getBody(CxfPayload.class);
 List<Source> inElements = requestPayload.getBodySources();
 List<Source> outElements = new ArrayList<>();
 // You can use a customer toStringConverter to turn a CxfPayLoad message into String
as you want
 String request = exchange.getIn().getBody(String.class);
 XmlConverter converter = new XmlConverter();
 String documentString = ECHO_RESPONSE;

 Element in = new XmlConverter().toDOMElement(inElements.get(0));
 // Just check the element namespace
 if (!in.getNamespaceURI().equals(ELEMENT_NAMESPACE)) {
 throw new IllegalArgumentException("Wrong element namespace");
 }
 if (in.getLocalName().equals("echoBoolean")) {
 documentString = ECHO_BOOLEAN_RESPONSE;
 checkRequest("ECHO_BOOLEAN_REQUEST", request);
 } else {
 documentString = ECHO_RESPONSE;
 checkRequest("ECHO_REQUEST", request);
 }
 Document outDocument = converter.toDOMDocument(documentString, exchange);
 outElements.add(new DOMSource(outDocument.getDocumentElement()));
 // set the payload header with null
 CxfPayload<SoapHeader> responsePayload = new CxfPayload<>(null, outElements,
null);
 exchange.getMessage().setBody(responsePayload);
 }
 });
 }
 };
}

CHAPTER 16. CXF

277

https://github.com/apache/camel/blob/e818e0103490a106fa1538219f91a732ddebc562/components/camel-cxf/src/test/java/org/apache/camel/component/cxf/CxfConsumerPayloadTest.java#L66

(2) before the response comes back to the SOAP Client. Processor (1) and (2) in this example are
InsertRequestOutHeaderProcessor and InsertResponseOutHeaderProcessor. Our route looks like this:

The Bean routerRelayEndpointWithInsertion and serviceRelayEndpointWithInsertion are defined as
follows:

SOAP headers are propagated to and from Camel Message headers. The Camel message header name
is "org.apache.cxf.headers.Header.list" which is a constant defined in CXF
(org.apache.cxf.headers.Header.HEADER_LIST). The header value is a List of CXF SoapHeader objects
(org.apache.cxf.binding.soap.SoapHeader). The following snippet is the
InsertResponseOutHeaderProcessor (that insert a new SOAP header in the response message). The
way to access SOAP headers in both InsertResponseOutHeaderProcessor and
InsertRequestOutHeaderProcessor are actually the same. The only difference between the two
processors is setting the direction of the inserted SOAP header.

You can find the InsertResponseOutHeaderProcessor example in CxfMessageHeadersRelayTest:

from("cxf:bean:routerRelayEndpointWithInsertion")
 .process(new InsertRequestOutHeaderProcessor())
 .to("cxf:bean:serviceRelayEndpointWithInsertion")
 .process(new InsertResponseOutHeaderProcessor());

@Bean
public CxfEndpoint routerRelayEndpointWithInsertion() {
 CxfSpringEndpoint cxfEndpoint = new CxfSpringEndpoint();
 cxfEndpoint.setServiceClass(org.apache.camel.component.cxf.soap.headers.HeaderTester.class);

cxfEndpoint.setAddress("/CxfMessageHeadersRelayTest/HeaderService/routerRelayEndpointWithInsert
ion");
 cxfEndpoint.setWsdlURL("soap_header.wsdl");
 cxfEndpoint.setEndpointNameAsQName(
 QName.valueOf("
{http://apache.org/camel/component/cxf/soap/headers}SoapPortRelayWithInsertion"));
 cxfEndpoint.setServiceNameAsQName(SERVICENAME);
 cxfEndpoint.getFeatures().add(new LoggingFeature());
 return cxfEndpoint;
}

@Bean
public CxfEndpoint serviceRelayEndpointWithInsertion() {
 CxfSpringEndpoint cxfEndpoint = new CxfSpringEndpoint();
 cxfEndpoint.setServiceClass(org.apache.camel.component.cxf.soap.headers.HeaderTester.class);
 cxfEndpoint.setAddress("http://localhost:" + port +
"/services/CxfMessageHeadersRelayTest/HeaderService/routerRelayEndpointWithInsertionBackend");

 cxfEndpoint.setWsdlURL("soap_header.wsdl");
 cxfEndpoint.setEndpointNameAsQName(
 QName.valueOf("
{http://apache.org/camel/component/cxf/soap/headers}SoapPortRelayWithInsertion"));
 cxfEndpoint.setServiceNameAsQName(SERVICENAME);
 cxfEndpoint.getFeatures().add(new LoggingFeature());
 return cxfEndpoint;
}

public static class InsertResponseOutHeaderProcessor implements Processor {

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

278

https://github.com/apache/camel/blob/e818e0103490a106fa1538219f91a732ddebc562/components/camel-cxf/src/test/java/org/apache/camel/component/cxf/soap/headers/CxfMessageHeadersRelayTest.java#L730

16.13. HOW TO GET AND SET SOAP HEADERS IN PAYLOAD MODE

We’ve already shown how to access the SOAP message as CxfPayload object in PAYLOAD mode inm
the section How to deal with the message for a camel-cxf endpoint in PAYLOAD data format .

Once you obtain a CxfPayload object, you can invoke the CxfPayload.getHeaders() method that returns
a List of DOM Elements (SOAP headers).

For an example see CxfPayLoadSoapHeaderTest:

 public void process(Exchange exchange) throws Exception {
 List<SoapHeader> soapHeaders = CastUtils.cast((List<?
>)exchange.getIn().getHeader(Header.HEADER_LIST));

 // Insert a new header
 String xml = "<?xml version=\"1.0\" encoding=\"utf-8\"?><outofbandHeader "
 + "xmlns=\"http://cxf.apache.org/outofband/Header\" hdrAttribute=\"testHdrAttribute\" "
 + "xmlns:soap=\"http://schemas.xmlsoap.org/soap/envelope/\" soap:mustUnderstand=\"1\">"
 + "<name>New_testOobHeader</name><value>New_testOobHeaderValue</value>
</outofbandHeader>";
 SoapHeader newHeader = new SoapHeader(soapHeaders.get(0).getName(),
 DOMUtils.readXml(new StringReader(xml)).getDocumentElement());
 // make sure direction is OUT since it is a response message.
 newHeader.setDirection(Direction.DIRECTION_OUT);
 //newHeader.setMustUnderstand(false);
 soapHeaders.add(newHeader);

 }

}

from(getRouterEndpointURI()).process(new Processor() {
 @SuppressWarnings("unchecked")
 public void process(Exchange exchange) throws Exception {
 CxfPayload<SoapHeader> payload = exchange.getIn().getBody(CxfPayload.class);
 List<Source> elements = payload.getBodySources();
 assertNotNull(elements, "We should get the elements here");
 assertEquals(1, elements.size(), "Get the wrong elements size");

 Element el = new XmlConverter().toDOMElement(elements.get(0));
 elements.set(0, new DOMSource(el));
 assertEquals("http://camel.apache.org/pizza/types",
 el.getNamespaceURI(), "Get the wrong namespace URI");

 List<SoapHeader> headers = payload.getHeaders();
 assertNotNull(headers, "We should get the headers here");
 assertEquals(1, headers.size(), "Get the wrong headers size");
 assertEquals("http://camel.apache.org/pizza/types",
 ((Element) (headers.get(0).getObject())).getNamespaceURI(), "Get the wrong namespace
URI");
 // alternatively you can also get the SOAP header via the camel header:
 headers = exchange.getIn().getHeader(Header.HEADER_LIST, List.class);
 assertNotNull(headers, "We should get the headers here");
 assertEquals(1, headers.size(), "Get the wrong headers size");

CHAPTER 16. CXF

279

https://github.com/apache/camel/blob/e818e0103490a106fa1538219f91a732ddebc562/components/camel-cxf/src/test/java/org/apache/camel/component/cxf/CxfPayLoadSoapHeaderTest.java#L51

You can also use the same way as described in sub-chapter "How to get and set SOAP headers in POJO
mode" to set or get the SOAP headers. So, you can use the header "org.apache.cxf.headers.Header.list"
to get and set a list of SOAP headers.This does also mean that if you have a route that forwards from
one Camel-cxf endpoint to another (SOAP Client → Camel → CXF service), now also the SOAP headers
sent by the SOAP client are forwarded to the CXF service. If you do not want that these headers are
forwarded you have to remove them in the Camel header "org.apache.cxf.headers.Header.list".

16.14. SOAP HEADERS ARE NOT AVAILABLE IN RAW MODE

SOAP headers are not available in RAW mode as SOAP processing is skipped.

16.15. HOW TO THROW A SOAP FAULT FROM CAMEL

If you are using a camel-cxf endpoint to consume the SOAP request, you may need to throw the SOAP
Fault from the camel context.
Basically, you can use the throwFault DSL to do that; it works for POJO, PAYLOAD and MESSAGE
data format.
You can define the soap fault as shown in CxfCustomizedExceptionTest:

Then throw it as you like

If your CXF endpoint is working in the MESSAGE data format, you could set the SOAP Fault message in
the message body and set the response code in the message header as demonstrated by
CxfMessageStreamExceptionTest

 assertEquals("http://camel.apache.org/pizza/types",
 ((Element) (headers.get(0).getObject())).getNamespaceURI(), "Get the wrong namespace
URI");

 }

})
.to(getServiceEndpointURI());

SOAP_FAULT = new SoapFault(EXCEPTION_MESSAGE, SoapFault.FAULT_CODE_CLIENT);
Element detail = SOAP_FAULT.getOrCreateDetail();
Document doc = detail.getOwnerDocument();
Text tn = doc.createTextNode(DETAIL_TEXT);
detail.appendChild(tn);

from(routerEndpointURI).setFaultBody(constant(SOAP_FAULT));

from(routerEndpointURI).process(new Processor() {

 public void process(Exchange exchange) throws Exception {
 Message out = exchange.getOut();
 // Set the message body with the
 out.setBody(this.getClass().getResourceAsStream("SoapFaultMessage.xml"));
 // Set the response code here
 out.setHeader(org.apache.cxf.message.Message.RESPONSE_CODE, new Integer(500));
 }

});

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

280

https://github.com/apache/camel/blob/e818e0103490a106fa1538219f91a732ddebc562/components/camel-cxf/src/test/java/org/apache/camel/component/cxf/CxfCustomizedExceptionTest.java#L64
https://github.com/apache/camel/blob/e818e0103490a106fa1538219f91a732ddebc562/components/camel-cxf/src/test/java/org/apache/camel/component/cxf/CxfMessageStreamExceptionTest.java#L43

Same for using POJO data format. You can set the SOAPFault on the out body.

16.16. HOW TO PROPAGATE A CAMEL-CXF ENDPOINT’S REQUEST
AND RESPONSE CONTEXT

CXF client API provides a way to invoke the operation with request and response context. If you are
using a camel-cxf endpoint producer to invoke the outside web service, you can set the request context
and get response context with the following code:

16.17. ATTACHMENT SUPPORT

POJO Mode: Both SOAP with Attachment and MTOM are supported (see example in Payload Mode for
enabling MTOM). However, SOAP with Attachment is not tested. Since attachments are marshalled and
unmarshalled into POJOs, users typically do not need to deal with the attachment themself.
Attachments are propagated to Camel message’s attachments if the MTOM is not enabled. So, it is
possible to retrieve attachments by Camel Message API

Payload Mode: MTOM is supported by the component. Attachments can be retrieved by Camel
Message APIs mentioned above. SOAP with Attachment (SwA) is supported and attachments can be
retrieved. SwA is the default (same as setting the CXF endpoint property "mtom-enabled" to false).

To enable MTOM, set the CXF endpoint property "mtom-enabled" to true.

 CxfExchange exchange = (CxfExchange)template.send(getJaxwsEndpointUri(), new
Processor() {
 public void process(final Exchange exchange) {
 final List<String> params = new ArrayList<String>();
 params.add(TEST_MESSAGE);
 // Set the request context to the inMessage
 Map<String, Object> requestContext = new HashMap<String, Object>();
 requestContext.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY,
JAXWS_SERVER_ADDRESS);
 exchange.getIn().setBody(params);
 exchange.getIn().setHeader(Client.REQUEST_CONTEXT , requestContext);
 exchange.getIn().setHeader(CxfConstants.OPERATION_NAME,
GREET_ME_OPERATION);
 }
 });
 org.apache.camel.Message out = exchange.getOut();
 // The output is an object array, the first element of the array is the return value
 Object\[\] output = out.getBody(Object\[\].class);
 LOG.info("Received output text: " + output\[0\]);
 // Get the response context form outMessage
 Map<String, Object> responseContext =
CastUtils.cast((Map)out.getHeader(Client.RESPONSE_CONTEXT));
 assertNotNull(responseContext);
 assertEquals("Get the wrong wsdl operation name", "
{http://apache.org/hello_world_soap_http}greetMe",
 responseContext.get("javax.xml.ws.wsdl.operation").toString());

DataHandler Message.getAttachment(String id)

@Bean

CHAPTER 16. CXF

281

https://github.com/apache/cxf/blob/master/core/src/main/java/org/apache/cxf/endpoint/Client.java

You can produce a Camel message with attachment to send to a CXF endpoint in Payload mode.

public CxfEndpoint routerEndpoint() {
 CxfSpringEndpoint cxfEndpoint = new CxfSpringEndpoint();
 cxfEndpoint.setServiceNameAsQName(SERVICE_QNAME);
 cxfEndpoint.setEndpointNameAsQName(PORT_QNAME);
 cxfEndpoint.setAddress("/" + getClass().getSimpleName()+ "/jaxws-mtom/hello");
 cxfEndpoint.setWsdlURL("mtom.wsdl");
 Map<String, Object> properties = new HashMap<String, Object>();
 properties.put("dataFormat", "PAYLOAD");
 properties.put("mtom-enabled", true);
 cxfEndpoint.setProperties(properties);
 return cxfEndpoint;
}

Exchange exchange = context.createProducerTemplate().send("direct:testEndpoint", new
Processor() {

 public void process(Exchange exchange) throws Exception {
 exchange.setPattern(ExchangePattern.InOut);
 List<Source> elements = new ArrayList<Source>();
 elements.add(new DOMSource(DOMUtils.readXml(new
StringReader(MtomTestHelper.REQ_MESSAGE)).getDocumentElement()));
 CxfPayload<SoapHeader> body = new CxfPayload<SoapHeader>(new ArrayList<SoapHeader>
(),
 elements, null);
 exchange.getIn().setBody(body);
 exchange.getIn().addAttachment(MtomTestHelper.REQ_PHOTO_CID,
 new DataHandler(new ByteArrayDataSource(MtomTestHelper.REQ_PHOTO_DATA,
"application/octet-stream")));

 exchange.getIn().addAttachment(MtomTestHelper.REQ_IMAGE_CID,
 new DataHandler(new ByteArrayDataSource(MtomTestHelper.requestJpeg, "image/jpeg")));

 }

});

// process response

CxfPayload<SoapHeader> out = exchange.getOut().getBody(CxfPayload.class);
Assert.assertEquals(1, out.getBody().size());

Map<String, String> ns = new HashMap<String, String>();
ns.put("ns", MtomTestHelper.SERVICE_TYPES_NS);
ns.put("xop", MtomTestHelper.XOP_NS);

XPathUtils xu = new XPathUtils(ns);
Element oute = new XmlConverter().toDOMElement(out.getBody().get(0));
Element ele = (Element)xu.getValue("//ns:DetailResponse/ns:photo/xop:Include", oute,
 XPathConstants.NODE);
String photoId = ele.getAttribute("href").substring(4); // skip "cid:"

ele = (Element)xu.getValue("//ns:DetailResponse/ns:image/xop:Include", oute,
 XPathConstants.NODE);
String imageId = ele.getAttribute("href").substring(4); // skip "cid:"

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

282

You can also consume a Camel message received from a CXF endpoint in Payload mode. The
CxfMtomConsumerPayloadModeTest illustrates how this works:

DataHandler dr = exchange.getOut().getAttachment(photoId);
Assert.assertEquals("application/octet-stream", dr.getContentType());
MtomTestHelper.assertEquals(MtomTestHelper.RESP_PHOTO_DATA,
IOUtils.readBytesFromStream(dr.getInputStream()));

dr = exchange.getOut().getAttachment(imageId);
Assert.assertEquals("image/jpeg", dr.getContentType());

BufferedImage image = ImageIO.read(dr.getInputStream());
Assert.assertEquals(560, image.getWidth());
Assert.assertEquals(300, image.getHeight());

public static class MyProcessor implements Processor {

 @SuppressWarnings("unchecked")
 public void process(Exchange exchange) throws Exception {
 CxfPayload<SoapHeader> in = exchange.getIn().getBody(CxfPayload.class);

 // verify request
 Assert.assertEquals(1, in.getBody().size());

 Map<String, String> ns = new HashMap<String, String>();
 ns.put("ns", MtomTestHelper.SERVICE_TYPES_NS);
 ns.put("xop", MtomTestHelper.XOP_NS);

 XPathUtils xu = new XPathUtils(ns);
 Element body = new XmlConverter().toDOMElement(in.getBody().get(0));
 Element ele = (Element)xu.getValue("//ns:Detail/ns:photo/xop:Include", body,
 XPathConstants.NODE);
 String photoId = ele.getAttribute("href").substring(4); // skip "cid:"
 Assert.assertEquals(MtomTestHelper.REQ_PHOTO_CID, photoId);

 ele = (Element)xu.getValue("//ns:Detail/ns:image/xop:Include", body,
 XPathConstants.NODE);
 String imageId = ele.getAttribute("href").substring(4); // skip "cid:"
 Assert.assertEquals(MtomTestHelper.REQ_IMAGE_CID, imageId);

 DataHandler dr = exchange.getIn().getAttachment(photoId);
 Assert.assertEquals("application/octet-stream", dr.getContentType());
 MtomTestHelper.assertEquals(MtomTestHelper.REQ_PHOTO_DATA,
IOUtils.readBytesFromStream(dr.getInputStream()));

 dr = exchange.getIn().getAttachment(imageId);
 Assert.assertEquals("image/jpeg", dr.getContentType());
 MtomTestHelper.assertEquals(MtomTestHelper.requestJpeg,
IOUtils.readBytesFromStream(dr.getInputStream()));

 // create response
 List<Source> elements = new ArrayList<Source>();
 elements.add(new DOMSource(DOMUtils.readXml(new
StringReader(MtomTestHelper.RESP_MESSAGE)).getDocumentElement()));
 CxfPayload<SoapHeader> sbody = new CxfPayload<SoapHeader>(new

CHAPTER 16. CXF

283

https://github.com/apache/camel/blob/e818e0103490a106fa1538219f91a732ddebc562/components/camel-cxf/src/test/java/org/apache/camel/component/cxf/mtom/CxfMtomConsumerPayloadModeTest.java#L98

Raw Mode: Attachments are not supported as it does not process the message at all.

CXF_RAW Mode: MTOM is supported, and Attachments can be retrieved by Camel Message APIs
mentioned above. Note that when receiving a multipart (i.e. MTOM) message the default
SOAPMessage to String converter will provide the complete multipart payload on the body. If you
require just the SOAP XML as a String, you can set the message body with message.getSOAPPart(),
and Camel convert can do the rest of work for you.

16.18. STREAMING SUPPORT IN PAYLOAD MODE

The camel-cxf component now supports streaming of incoming messages when using PAYLOAD mode.
Previously, the incoming messages would have been completely DOM parsed. For large messages, this
is time consuming and uses a significant amount of memory. The incoming messages can remain as a
javax.xml.transform.Source while being routed and, if nothing modifies the payload, can then be directly
streamed out to the target destination. For common "simple proxy" use cases (example: from("cxf:…
").to("cxf:…")), this can provide very significant performance increases as well as significantly lowered
memory requirements.

However, there are cases where streaming may not be appropriate or desired. Due to the streaming
nature, invalid incoming XML may not be caught until later in the processing chain. Also, certain actions
may require the message to be DOM parsed anyway (like WS-Security or message tracing and such) in
which case the advantages of the streaming is limited. At this point, there are two ways to control the
streaming:

Endpoint property: you can add "allowStreaming=false" as an endpoint property to turn the
streaming on/off.

Component property: the CxfComponent object also has an allowStreaming property that can
set the default for endpoints created from that component.

Global system property: you can add a system property of "org.apache.camel.component.cxf.streaming"
to "false" to turn it off. That sets the global default, but setting the endpoint property above will override
this value for that endpoint.

16.19. USING THE GENERIC CXF DISPATCH MODE

The camel-cxf component supports the generic CXF dispatch mode that can transport messages of
arbitrary structures (i.e., not bound to a specific XML schema). To use this mode, you simply omit
specifying the wsdlURL and serviceClass attributes of the CXF endpoint.

ArrayList<SoapHeader>(),
 elements, null);
 exchange.getOut().setBody(sbody);
 exchange.getOut().addAttachment(MtomTestHelper.RESP_PHOTO_CID,
 new DataHandler(new ByteArrayDataSource(MtomTestHelper.RESP_PHOTO_DATA,
"application/octet-stream")));

 exchange.getOut().addAttachment(MtomTestHelper.RESP_IMAGE_CID,
 new DataHandler(new ByteArrayDataSource(MtomTestHelper.responseJpeg, "image/jpeg")));

 }
}

<cxf:cxfEndpoint id="testEndpoint" address="http://localhost:9000/SoapContext/SoapAnyPort">
 <cxf:properties>

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

284

https://cxf.apache.org/docs/jax-ws-dispatch-api.html

It is noted that the default CXF dispatch client does not send a specific SOAPAction header. Therefore,
when the target service requires a specific SOAPAction value, it is supplied in the Camel header using
the key SOAPAction (case-insensitive).

16.20. SPRING BOOT AUTO-CONFIGURATION

When using cxf with Spring Boot make sure to use the following Maven dependency to have support for
auto configuration:

The component supports 13 options, which are listed below.

Name Description Defaul
t

Type

camel.component
.cxf.allow-
streaming

This option controls whether the CXF component,
when running in PAYLOAD mode, will DOM parse the
incoming messages into DOM Elements or keep the
payload as a javax.xml.transform.Source object that
would allow streaming in some cases.

 Boolean

camel.component
.cxf.autowired-
enabled

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true Boolean

camel.component
.cxf.bridge-error-
handler

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false Boolean

camel.component
.cxf.enabled

Whether to enable auto configuration of the cxf
component. This is enabled by default.

 Boolean

 <entry key="dataFormat" value="PAYLOAD"/>
 </cxf:properties>
 </cxf:cxfEndpoint>

<dependency>
 <groupId>org.apache.camel.springboot</groupId>
 <artifactId>camel-cxf-soap-starter</artifactId>
 <version>3.14.5.redhat-00032</version>
 <!-- Use your Camel Spring Boot version -->
</dependency>

CHAPTER 16. CXF

285

camel.component
.cxf.header-filter-
strategy

To use a custom
org.apache.camel.spi.HeaderFilterStrategy to filter
header to and from Camel message. The option is a
org.apache.camel.spi.HeaderFilterStrategy type.

 HeaderFilterStrate
gy

camel.component
.cxf.lazy-start-
producer

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false Boolean

camel.component
.cxf.use-global-
ssl-context-
parameters

Enable usage of global SSL context parameters. false Boolean

camel.component
.cxfrs.autowired-
enabled

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true Boolean

camel.component
.cxfrs.bridge-
error-handler

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false Boolean

camel.component
.cxfrs.enabled

Whether to enable auto configuration of the cxfrs
component. This is enabled by default.

 Boolean

camel.component
.cxfrs.header-
filter-strategy

To use a custom
org.apache.camel.spi.HeaderFilterStrategy to filter
header to and from Camel message. The option is a
org.apache.camel.spi.HeaderFilterStrategy type.

 HeaderFilterStrate
gy

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

286

camel.component
.cxfrs.lazy-start-
producer

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false Boolean

camel.component
.cxfrs.use-global-
ssl-context-
parameters

Enable usage of global SSL context parameters. false Boolean

Name Description Defaul
t

Type

CHAPTER 16. CXF

287

CHAPTER 17. DATA FORMAT
Only producer is supported

The Dataformat component allows to use the Data Format as a Camel Component.

17.1. URI FORMAT

dataformat:name:(marshal|unmarshal)[?options]

Where name is the name of the Data Format. And then followed by the operation which must either be
marshal or unmarshal. The options is used for configuring the Data Format in use. See the Data
Format documentation for which options it support.

17.2. DATAFORMAT OPTIONS

17.2.1. Configuring Options

Camel components are configured on two separate levels:

component level

endpoint level

17.2.1.1. Configuring Component Options

The component level is the highest level which holds general and common configurations that are
inherited by the endpoints. For example a component may have security settings, credentials for
authentication, urls for network connection and so forth.

Some components only have a few options, and others may have many. Because components typically
have pre configured defaults that are commonly used, then you may often only need to configure a few
options on a component; or none at all.

Configuring components can be done with the Component DSL, in a configuration file
(application.properties|yaml), or directly with Java code.

17.2.1.2. Configuring Endpoint Options

Where you find yourself configuring the most is on endpoints, as endpoints often have many options,
which allows you to configure what you need the endpoint to do. The options are also categorized into
whether the endpoint is used as consumer (from) or as a producer (to), or used for both.

Configuring endpoints is most often done directly in the endpoint URI as path and query parameters.
You can also use the Endpoint DSL as a type safe way of configuring endpoints.

A good practice when configuring options is to use Property Placeholders, which allows to not hardcode
urls, port numbers, sensitive information, and other settings. In other words placeholders allows to
externalize the configuration from your code, and gives more flexibility and reuse.

The following two sections lists all the options, firstly for the component followed by the endpoint.

17.3. COMPONENT OPTIONS

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

288

https://camel.apache.org/manual/data-format.html
https://camel.apache.org/manual/data-format.html
https://camel.apache.org/manual/component-dsl.html
https://camel.apache.org/manual/Endpoint-dsl.html
https://camel.apache.org/manual/using-propertyplaceholder.html

The Data Format component supports 2 options, which are listed below.

Name Description Defaul
t

Type

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

autowiredEnabled
(advanced)

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true boolean

17.4. ENDPOINT OPTIONS

The Data Format endpoint is configured using URI syntax:

dataformat:name:operation

with the following path and query parameters:

17.4.1. Path Parameters (2 parameters)

Name Description Defaul
t

Type

name (producer) Required Name of data format. String

operation
(producer)

Required Operation to use either marshal or
unmarshal.

Enum values:

marshal

unmarshal

 String

17.4.2. Query Parameters (1 parameters)

CHAPTER 17. DATA FORMAT

289

Name Description Defaul
t

Type

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

17.5. SAMPLES

For example to use the JAXB Data Format we can do as follows:

And in XML DSL you do:

17.6. SPRING BOOT AUTO-CONFIGURATION

When using dataformat with Spring Boot make sure to use the following Maven dependency to have
support for auto configuration:

The component supports 3 options, which are listed below.

from("activemq:My.Queue").
 to("dataformat:jaxb:unmarshal?contextPath=com.acme.model").
 to("mqseries:Another.Queue");

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="activemq:My.Queue"/>
 <to uri="dataformat:jaxb:unmarshal?contextPath=com.acme.model"/>
 <to uri="mqseries:Another.Queue"/>
 </route>
</camelContext>

<dependency>
 <groupId>org.apache.camel.springboot</groupId>
 <artifactId>camel-dataformat-starter</artifactId>
 <version>3.14.5.redhat-00032</version>
 <!-- Use your Camel Spring Boot version -->
</dependency>

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

290

https://camel.apache.org/manual/data-format.html

Name Description Defaul
t

Type

camel.component
.dataformat.auto
wired-enabled

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true Boolean

camel.component
.dataformat.enabl
ed

Whether to enable auto configuration of the
dataformat component. This is enabled by default.

 Boolean

camel.component
.dataformat.lazy-
start-producer

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false Boolean

CHAPTER 17. DATA FORMAT

291

CHAPTER 18. DATASET
Both producer and consumer are supported

Testing of distributed and asynchronous processing is notoriously difficult. The Mock, Test and DataSet
endpoints work great with the Camel Testing Framework to simplify your unit and integration testing
using Enterprise Integration Patterns and Camel’s large range of Components together with the
powerful Bean Integration.

The DataSet component provides a mechanism to easily perform load & soak testing of your system. It
works by allowing you to create DataSet instances both as a source of messages and as a way to assert
that the data set is received.

Camel will use the throughput logger when sending datasets.

18.1. URI FORMAT

dataset:name[?options]

Where name is used to find the DataSet instance in the Registry

Camel ships with a support implementation of org.apache.camel.component.dataset.DataSet, the
org.apache.camel.component.dataset.DataSetSupport class, that can be used as a base for
implementing your own DataSet. Camel also ships with some implementations that can be used for
testing: org.apache.camel.component.dataset.SimpleDataSet,
org.apache.camel.component.dataset.ListDataSet and
org.apache.camel.component.dataset.FileDataSet, all of which extend DataSetSupport.

18.2. CONFIGURING OPTIONS

Camel components are configured on two separate levels:

component level

endpoint level

18.2.1. Configuring Component Options

The component level is the highest level which holds general and common configurations that are
inherited by the endpoints. For example a component may have security settings, credentials for
authentication, urls for network connection and so forth.

Some components only have a few options, and others may have many. Because components typically
have pre configured defaults that are commonly used, then you may often only need to configure a few
options on a component; or none at all.

Configuring components can be done with the Component DSL, in a configuration file
(application.properties|yaml), or directly with Java code.

18.2.2. Configuring Endpoint Options

Where you find yourself configuring the most is on endpoints, as endpoints often have many options,
which allows you to configure what you need the endpoint to do. The options are also categorized into
whether the endpoint is used as consumer (from) or as a producer (to), or used for both.

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

292

https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/camel_spring_boot_reference_3.14/index#csb-camel-mock-component-starter
https://camel.apache.org/components/3.14.x/others/test.html
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/camel_spring_boot_reference_3.14/index#csb-camel-dataset-component-starter
https://camel.apache.org/components/3.14.x/eips/enterprise-integration-patterns.html
https://www.javadoc.io/doc/org.apache.camel/camel-dataset/current/org/apache/camel/component/dataset/DataSet.html
https://camel.apache.org/components/3.14.x/log-component.html
https://www.javadoc.io/doc/org.apache.camel/camel-dataset/current/org/apache/camel/component/dataset/DataSet.html
https://camel.apache.org/manual/component-dsl.html

Configuring endpoints is most often done directly in the endpoint URI as path and query parameters.
You can also use the Endpoint DSL as a type safe way of configuring endpoints.

A good practice when configuring options is to use Property Placeholders, which allows to not hardcode
urls, port numbers, sensitive information, and other settings. In other words placeholders allows to
externalize the configuration from your code, and gives more flexibility and reuse.

The following two sections lists all the options, firstly for the component followed by the endpoint.

18.3. COMPONENT OPTIONS

The Dataset component supports 5 options, which are listed below.

Name Description Defaul
t

Type

bridgeErrorHandl
er (consumer)

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false boolean

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

log (producer) To turn on logging when the mock receives an
incoming message. This will log only one time at INFO
level for the incoming message. For more detailed
logging then set the logger to DEBUG level for the
org.apache.camel.component.mock.MockEndpoint
class.

false boolean

autowiredEnabled
(advanced)

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true boolean

CHAPTER 18. DATASET

293

https://camel.apache.org/manual/Endpoint-dsl.html
https://camel.apache.org/manual/using-propertyplaceholder.html

exchangeFormatt
er (advanced)

Autowired Sets a custom ExchangeFormatter to
convert the Exchange to a String suitable for logging.
If not specified, we default to
DefaultExchangeFormatter.

 ExchangeFormatt
er

Name Description Defaul
t

Type

18.4. ENDPOINT OPTIONS

The Dataset endpoint is configured using URI syntax:

dataset:name

with the following path and query parameters:

18.4.1. Path Parameters (1 parameters)

Name Description Defaul
t

Type

name (common) Required Name of DataSet to lookup in the registry. DataSet

18.4.2. Query Parameters (21 parameters)

Name Description Defaul
t

Type

dataSetIndex
(common)

Controls the behaviour of the CamelDataSetIndex
header. For Consumers: - off = the header will not be
set - strict/lenient = the header will be set For
Producers: - off = the header value will not be
verified, and will not be set if it is not present = strict =
the header value must be present and will be verified
= lenient = the header value will be verified if it is
present, and will be set if it is not present.

Enum values:

strict

lenient

off

lenient String

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

294

bridgeErrorHandl
er (consumer)

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false boolean

initialDelay
(consumer)

Time period in millis to wait before starting sending
messages.

1000 long

minRate
(consumer)

Wait until the DataSet contains at least this number
of messages.

0 int

preloadSize
(consumer)

Sets how many messages should be preloaded
(sent) before the route completes its initialization.

0 long

produceDelay
(consumer)

Allows a delay to be specified which causes a delay
when a message is sent by the consumer (to simulate
slow processing).

3 long

exceptionHandler
(consumer
(advanced))

To let the consumer use a custom ExceptionHandler.
Notice if the option bridgeErrorHandler is enabled
then this option is not in use. By default the consumer
will deal with exceptions, that will be logged at WARN
or ERROR level and ignored.

 ExceptionHandler

exchangePattern
(consumer
(advanced))

Sets the exchange pattern when the consumer
creates an exchange.

Enum values:

InOnly

InOut

InOptionalOut

 ExchangePattern

Name Description Defaul
t

Type

CHAPTER 18. DATASET

295

assertPeriod
(producer)

Sets a grace period after which the mock endpoint
will re-assert to ensure the preliminary assertion is
still valid. This is used for example to assert that
exactly a number of messages arrives. For example if
expectedMessageCount(int) was set to 5, then the
assertion is satisfied when 5 or more message arrives.
To ensure that exactly 5 messages arrives, then you
would need to wait a little period to ensure no further
message arrives. This is what you can use this method
for. By default this period is disabled.

 long

consumeDelay
(producer)

Allows a delay to be specified which causes a delay
when a message is consumed by the producer (to
simulate slow processing).

0 long

expectedCount
(producer)

Specifies the expected number of message
exchanges that should be received by this endpoint.
Beware: If you want to expect that 0 messages, then
take extra care, as 0 matches when the tests starts,
so you need to set a assert period time to let the test
run for a while to make sure there are still no
messages arrived; for that use setAssertPeriod(long).
An alternative is to use NotifyBuilder, and use the
notifier to know when Camel is done routing some
messages, before you call the assertIsSatisfied()
method on the mocks. This allows you to not use a
fixed assert period, to speedup testing times. If you
want to assert that exactly n’th message arrives to
this mock endpoint, then see also the
setAssertPeriod(long) method for further details.

-1 int

failFast
(producer)

Sets whether assertIsSatisfied() should fail fast at
the first detected failed expectation while it may
otherwise wait for all expected messages to arrive
before performing expectations verifications. Is by
default true. Set to false to use behavior as in Camel
2.x.

false boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

296

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

log (producer) To turn on logging when the mock receives an
incoming message. This will log only one time at INFO
level for the incoming message. For more detailed
logging then set the logger to DEBUG level for the
org.apache.camel.component.mock.MockEndpoint
class.

false boolean

reportGroup
(producer)

A number that is used to turn on throughput logging
based on groups of the size.

 int

resultMinimumWa
itTime (producer)

Sets the minimum expected amount of time (in millis)
the assertIsSatisfied() will wait on a latch until it is
satisfied.

 long

resultWaitTime
(producer)

Sets the maximum amount of time (in millis) the
assertIsSatisfied() will wait on a latch until it is
satisfied.

 long

retainFirst
(producer)

Specifies to only retain the first n’th number of
received Exchanges. This is used when testing with
big data, to reduce memory consumption by not
storing copies of every Exchange this mock endpoint
receives. Important: When using this limitation, then
the getReceivedCounter() will still return the actual
number of received Exchanges. For example if we
have received 5000 Exchanges, and have configured
to only retain the first 10 Exchanges, then the
getReceivedCounter() will still return 5000 but there
is only the first 10 Exchanges in the getExchanges()
and getReceivedExchanges() methods. When using
this method, then some of the other expectation
methods is not supported, for example the
expectedBodiesReceived(Object…) sets a
expectation on the first number of bodies received.
You can configure both setRetainFirst(int) and
setRetainLast(int) methods, to limit both the first and
last received.

-1 int

Name Description Defaul
t

Type

CHAPTER 18. DATASET

297

retainLast
(producer)

Specifies to only retain the last n’th number of
received Exchanges. This is used when testing with
big data, to reduce memory consumption by not
storing copies of every Exchange this mock endpoint
receives. Important: When using this limitation, then
the getReceivedCounter() will still return the actual
number of received Exchanges. For example if we
have received 5000 Exchanges, and have configured
to only retain the last 20 Exchanges, then the
getReceivedCounter() will still return 5000 but there
is only the last 20 Exchanges in the getExchanges()
and getReceivedExchanges() methods. When using
this method, then some of the other expectation
methods is not supported, for example the
expectedBodiesReceived(Object…) sets a
expectation on the first number of bodies received.
You can configure both setRetainFirst(int) and
setRetainLast(int) methods, to limit both the first and
last received.

-1 int

sleepForEmptyTe
st (producer)

Allows a sleep to be specified to wait to check that
this endpoint really is empty when
expectedMessageCount(int) is called with zero.

 long

copyOnExchange
(producer
(advanced))

Sets whether to make a deep copy of the incoming
Exchange when received at this mock endpoint. Is by
default true.

true boolean

Name Description Defaul
t

Type

18.5. CONFIGURING DATASET

Camel will lookup in the Registry for a bean implementing the DataSet interface. So you can register
your own DataSet as:

18.6. EXAMPLE

For example, to test that a set of messages are sent to a queue and then consumed from the queue
without losing any messages:

The above would look in the Registry to find the foo DataSet instance which is used to create the

<bean id="myDataSet" class="com.mycompany.MyDataSet">
 <property name="size" value="100"/>
</bean>

// send the dataset to a queue
from("dataset:foo").to("activemq:SomeQueue");

// now lets test that the messages are consumed correctly
from("activemq:SomeQueue").to("dataset:foo");

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

298

The above would look in the Registry to find the foo DataSet instance which is used to create the
messages.

Then you create a DataSet implementation, such as using the SimpleDataSet as described below,
configuring things like how big the data set is and what the messages look like etc.

18.7. DATASETSUPPORT (ABSTRACT CLASS)

The DataSetSupport abstract class is a nice starting point for new DataSets, and provides some useful
features to derived classes.

18.7.1. Properties on DataSetSupport

Property Type Defau
lt

Description

defaultHeaders Map<String,Object
>

null Specifies the default message body. For
SimpleDataSet it is a constant payload; though
if you want to create custom payloads per
message, create your own derivation of
DataSetSupport.

outputTransformer org.apache.camel.
Processor

null

size long 10 Specifies how many messages to
send/consume.

reportCount long -1 Specifies the number of messages to be
received before reporting progress. Useful for
showing progress of a large load test. If < 0,
then size / 5, if is 0 then size, else set to
reportCount value.

18.8. SIMPLEDATASET

The SimpleDataSet extends DataSetSupport, and adds a default body.

18.8.1. Additional Properties on SimpleDataSet

Property Type Default Description

defaultBody Object <hello>world!
</hello>

Specifies the default message body. By
default, the SimpleDataSet produces
the same constant payload for each
exchange. If you want to customize the
payload for each exchange, create a
Camel Processor and configure the
SimpleDataSet to use it by setting the
outputTransformer property.

CHAPTER 18. DATASET

299

18.9. LISTDATASET

The List`DataSet` extends DataSetSupport, and adds a list of default bodies.

18.9.1. Additional Properties on ListDataSet

Property Type Default Description

defaultBodies List<Object> empty
LinkedList<Obj
ect>

Specifies the default message body. By
default, the ListDataSet selects a
constant payload from the list of
defaultBodies using the
CamelDataSetIndex. If you want to
customize the payload, create a Camel
Processor and configure the
ListDataSet to use it by setting the
outputTransformer property.

size long the size of the
defaultBodies list

Specifies how many messages to
send/consume. This value can be
different from the size of the
defaultBodies list. If the value is less
than the size of the defaultBodies list,
some of the list elements will not be used.
If the value is greater than the size of the
defaultBodies list, the payload for the
exchange will be selected using the
modulus of the CamelDataSetIndex
and the size of the defaultBodies list
(i.e. CamelDataSetIndex %
defaultBodies.size())

18.10. FILEDATASET

The FileDataSet extends ListDataSet, and adds support for loading the bodies from a file.

18.10.1. Additional Properties on FileDataSet

Property Type Defaul
t

Description

sourceFile File null Specifies the source file for payloads

delimiter String \z Specifies the delimiter pattern used by a
java.util.Scanner to split the file into multiple
payloads.

18.11. SPRING BOOT AUTO-CONFIGURATION

When using dataset with Spring Boot make sure to use the following Maven dependency to have

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

300

When using dataset with Spring Boot make sure to use the following Maven dependency to have
support for auto configuration:

The component supports 11 options, which are listed below.

Name Description Defaul
t

Type

camel.component
.dataset-
test.autowired-
enabled

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true Boolean

camel.component
.dataset-
test.enabled

Whether to enable auto configuration of the dataset-
test component. This is enabled by default.

 Boolean

camel.component
.dataset-
test.exchange-
formatter

Sets a custom ExchangeFormatter to convert the
Exchange to a String suitable for logging. If not
specified, we default to DefaultExchangeFormatter.
The option is a
org.apache.camel.spi.ExchangeFormatter type.

 ExchangeFormatt
er

camel.component
.dataset-
test.lazy-start-
producer

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false Boolean

camel.component
.dataset-test.log

To turn on logging when the mock receives an
incoming message. This will log only one time at INFO
level for the incoming message. For more detailed
logging then set the logger to DEBUG level for the
org.apache.camel.component.mock.MockEndpoint
class.

false Boolean

<dependency>
 <groupId>org.apache.camel.springboot</groupId>
 <artifactId>camel-dataset-starter</artifactId>
 <version>3.14.5.redhat-00032</version>
 <!-- Use your Camel Spring Boot version -->
</dependency>

CHAPTER 18. DATASET

301

camel.component
.dataset.autowire
d-enabled

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true Boolean

camel.component
.dataset.bridge-
error-handler

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false Boolean

camel.component
.dataset.enabled

Whether to enable auto configuration of the dataset
component. This is enabled by default.

 Boolean

camel.component
.dataset.exchang
e-formatter

Sets a custom ExchangeFormatter to convert the
Exchange to a String suitable for logging. If not
specified, we default to DefaultExchangeFormatter.
The option is a
org.apache.camel.spi.ExchangeFormatter type.

 ExchangeFormatt
er

camel.component
.dataset.lazy-
start-producer

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false Boolean

camel.component
.dataset.log

To turn on logging when the mock receives an
incoming message. This will log only one time at INFO
level for the incoming message. For more detailed
logging then set the logger to DEBUG level for the
org.apache.camel.component.mock.MockEndpoint
class.

false Boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

302

CHAPTER 19. DIRECT
Both producer and consumer are supported

The Direct component provides direct, synchronous invocation of any consumers when a producer
sends a message exchange.
This endpoint can be used to connect existing routes in the same camel context.

NOTE

Asynchronous
The SEDA component provides asynchronous invocation of any consumers when a
producer sends a message exchange.

19.1. URI FORMAT

direct:someName[?options]

Where someName can be any string to uniquely identify the endpoint

19.2. CONFIGURING OPTIONS

Camel components are configured on two separate levels:

component level

endpoint level

19.2.1. Configuring Component Options

The component level is the highest level which holds general and common configurations that are
inherited by the endpoints. For example a component may have security settings, credentials for
authentication, urls for network connection and so forth.

Some components only have a few options, and others may have many. Because components typically
have pre configured defaults that are commonly used, then you may often only need to configure a few
options on a component; or none at all.

Configuring components can be done with the Component DSL, in a configuration file
(application.properties|yaml), or directly with Java code.

19.2.2. Configuring Endpoint Options

Where you find yourself configuring the most is on endpoints, as endpoints often have many options,
which allows you to configure what you need the endpoint to do. The options are also categorized into
whether the endpoint is used as consumer (from) or as a producer (to), or used for both.

Configuring endpoints is most often done directly in the endpoint URI as path and query parameters.
You can also use the Endpoint DSL as a type safe way of configuring endpoints.

A good practice when configuring options is to use Property Placeholders, which allows to not hardcode
urls, port numbers, sensitive information, and other settings. In other words placeholders allows to
externalize the configuration from your code, and gives more flexibility and reuse.

CHAPTER 19. DIRECT

303

https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/camel_spring_boot_reference_3.14/index#csb-camel-seda-component-starter
https://camel.apache.org/manual/component-dsl.html
https://camel.apache.org/manual/Endpoint-dsl.html
https://camel.apache.org/manual/using-propertyplaceholder.html

The following two sections lists all the options, firstly for the component followed by the endpoint.

19.3. COMPONENT OPTIONS

The Direct component supports 5 options, which are listed below.

Name Description Defaul
t

Type

bridgeErrorHandl
er (consumer)

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false boolean

block (producer) If sending a message to a direct endpoint which has
no active consumer, then we can tell the producer to
block and wait for the consumer to become active.

true boolean

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

timeout
(producer)

The timeout value to use if block is enabled. 30000 long

autowiredEnabled
(advanced)

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true boolean

19.4. ENDPOINT OPTIONS

The Direct endpoint is configured using URI syntax:

direct:name

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

304

with the following path and query parameters:

19.4.1. Path Parameters (1 parameters)

Name Description Defaul
t

Type

name (common) Required Name of direct endpoint. String

19.4.2. Query Parameters (8 parameters)

Name Description Defaul
t

Type

bridgeErrorHandl
er (consumer)

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false boolean

exceptionHandler
(consumer
(advanced))

To let the consumer use a custom ExceptionHandler.
Notice if the option bridgeErrorHandler is enabled
then this option is not in use. By default the consumer
will deal with exceptions, that will be logged at WARN
or ERROR level and ignored.

 ExceptionHandler

exchangePattern
(consumer
(advanced))

Sets the exchange pattern when the consumer
creates an exchange.

Enum values:

InOnly

InOut

InOptionalOut

 ExchangePattern

block (producer) If sending a message to a direct endpoint which has
no active consumer, then we can tell the producer to
block and wait for the consumer to become active.

true boolean

failIfNoConsumer
s (producer)

Whether the producer should fail by throwing an
exception, when sending to a DIRECT endpoint with
no active consumers.

true boolean

CHAPTER 19. DIRECT

305

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

timeout
(producer)

The timeout value to use if block is enabled. 30000 long

synchronous
(advanced)

Whether synchronous processing is forced. If enabled
then the producer thread, will be forced to wait until
the message has been completed before the same
thread will continue processing. If disabled (default)
then the producer thread may be freed and can do
other work while the message is continued processed
by other threads (reactive).

false boolean

Name Description Defaul
t

Type

19.5. SAMPLES

In the route below we use the direct component to link the two routes together:

And the sample using spring DSL:

from("activemq:queue:order.in")
 .to("bean:orderServer?method=validate")
 .to("direct:processOrder");

from("direct:processOrder")
 .to("bean:orderService?method=process")
 .to("activemq:queue:order.out");

<route>
 <from uri="activemq:queue:order.in"/>
 <to uri="bean:orderService?method=validate"/>
 <to uri="direct:processOrder"/>
</route>

<route>
 <from uri="direct:processOrder"/>

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

306

See also samples from the SEDA component, how they can be used together.

19.6. SPRING BOOT AUTO-CONFIGURATION

When using direct with Spring Boot make sure to use the following Maven dependency to have support
for auto configuration:

The component supports 6 options, which are listed below.

Name Description Defaul
t

Type

camel.component
.direct.autowired-
enabled

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true Boolean

camel.component
.direct.block

If sending a message to a direct endpoint which has
no active consumer, then we can tell the producer to
block and wait for the consumer to become active.

true Boolean

camel.component
.direct.bridge-
error-handler

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false Boolean

camel.component
.direct.enabled

Whether to enable auto configuration of the direct
component. This is enabled by default.

 Boolean

 <to uri="bean:orderService?method=process"/>
 <to uri="activemq:queue:order.out"/>
</route>

<dependency>
 <groupId>org.apache.camel.springboot</groupId>
 <artifactId>camel-direct-starter</artifactId>
 <version>3.14.5.redhat-00032</version>
 <!-- Use your Camel Spring Boot version -->
</dependency>

CHAPTER 19. DIRECT

307

https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/camel_spring_boot_reference_3.14/index#csb-camel-seda-component-starter

camel.component
.direct.lazy-start-
producer

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false Boolean

camel.component
.direct.timeout

The timeout value to use if block is enabled. 30000 Long

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

308

CHAPTER 20. FHIR
Both producer and consumer are supported

The FHIR component integrates with the HAPI-FHIR library which is an open-source implementation of
the FHIR (Fast Healthcare Interoperability Resources) specification in Java.

Maven users will need to add the following dependency to their pom.xml for this component:

20.1. URI FORMAT

The FHIR Component uses the following URI format:

fhir://endpoint-prefix/endpoint?[options]

Endpoint prefix can be one of:

capabilities

create

delete

history

load-page

meta

operation

patch

read

search

transaction

update

validate

20.2. CONFIGURING OPTIONS

Camel components are configured on two separate levels:

component level

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-fhir</artifactId>
 <version>${camel-version}</version>
</dependency>

CHAPTER 20. FHIR

309

http://hapifhir.io/
http://hl7.org/implement/standards/fhir/

endpoint level

20.2.1. Configuring Component Options

The component level is the highest level which holds general and common configurations that are
inherited by the endpoints. For example a component may have security settings, credentials for
authentication, urls for network connection and so forth.

Some components only have a few options, and others may have many. Because components typically
have pre configured defaults that are commonly used, then you may often only need to configure a few
options on a component; or none at all.

Configuring components can be done with the Component DSL, in a configuration file
(application.properties|yaml), or directly with Java code.

20.2.2. Configuring Endpoint Options

Where you find yourself configuring the most is on endpoints, as endpoints often have many options,
which allows you to configure what you need the endpoint to do. The options are also categorized into
whether the endpoint is used as consumer (from) or as a producer (to), or used for both.

Configuring endpoints is most often done directly in the endpoint URI as path and query parameters.
You can also use the Endpoint DSL as a type safe way of configuring endpoints.

A good practice when configuring options is to use Property Placeholders, which allows to not hardcode
urls, port numbers, sensitive information, and other settings. In other words placeholders allows to
externalize the configuration from your code, and gives more flexibility and reuse.

The following two sections lists all the options, firstly for the component followed by the endpoint.

20.3. COMPONENT OPTIONS

The FHIR component supports 27 options, which are listed below.

Name Description Defaul
t

Type

encoding
(common)

Encoding to use for all request.

Enum values:

JSON

XML

 String

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

310

https://camel.apache.org/manual/component-dsl.html
https://camel.apache.org/manual/Endpoint-dsl.html
https://camel.apache.org/manual/using-propertyplaceholder.html

fhirVersion
(common)

The FHIR Version to use.

Enum values:

DSTU2

DSTU2_HL7ORG

DSTU2_1

DSTU3

R4

R5

R4 String

log (common) Will log every requests and responses. false boolean

prettyPrint
(common)

Pretty print all request. false boolean

serverUrl
(common)

The FHIR server base URL. String

bridgeErrorHandl
er (consumer)

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false boolean

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

Name Description Defaul
t

Type

CHAPTER 20. FHIR

311

autowiredEnabled
(advanced)

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true boolean

client (advanced) To use the custom client. IGenericClient

clientFactory
(advanced)

To use the custom client factory. IRestfulClientFact
ory

compress
(advanced)

Compresses outgoing (POST/PUT) contents to the
GZIP format.

false boolean

configuration
(advanced)

To use the shared configuration. FhirConfiguration

connectionTimeo
ut (advanced)

How long to try and establish the initial TCP
connection (in ms).

10000 Integer

deferModelScann
ing (advanced)

When this option is set, model classes will not be
scanned for children until the child list for the given
type is actually accessed.

false boolean

fhirContext
(advanced)

FhirContext is an expensive object to create. To
avoid creating multiple instances, it can be set
directly.

 FhirContext

forceConformanc
eCheck
(advanced)

Force conformance check. false boolean

sessionCookie
(advanced)

HTTP session cookie to add to every request. String

socketTimeout
(advanced)

How long to block for individual read/write operations
(in ms).

10000 Integer

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

312

summary
(advanced)

Request that the server modify the response using
the _summary param.

Enum values:

COUNT

TEXT

DATA

TRUE

FALSE

 String

validationMode
(advanced)

When should Camel validate the FHIR Server’s
conformance statement.

Enum values:

NEVER

ONCE

ONCE String

proxyHost (proxy) The proxy host. String

proxyPassword
(proxy)

The proxy password. String

proxyPort (proxy) The proxy port. Integer

proxyUser (proxy) The proxy username. String

accessToken
(security)

OAuth access token. String

password
(security)

Username to use for basic authentication. String

username
(security)

Username to use for basic authentication. String

Name Description Defaul
t

Type

20.4. ENDPOINT OPTIONS

The FHIR endpoint is configured using URI syntax:

fhir:apiName/methodName

CHAPTER 20. FHIR

313

with the following path and query parameters:

20.4.1. Path Parameters (2 parameters)

Name Description Defaul
t

Type

apiName
(common)

Required What kind of operation to perform.

Enum values:

CAPABILITIES

CREATE

DELETE

HISTORY

LOAD_PAGE

META

OPERATION

PATCH

READ

SEARCH

TRANSACTION

UPDATE

VALIDATE

 FhirApiName

methodName
(common)

Required What sub operation to use for the selected
operation.

 String

20.4.2. Query Parameters (44 parameters)

Name Description Defaul
t

Type

encoding
(common)

Encoding to use for all request.

Enum values:

JSON

XML

 String

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

314

fhirVersion
(common)

The FHIR Version to use.

Enum values:

DSTU2

DSTU2_HL7ORG

DSTU2_1

DSTU3

R4

R5

R4 String

inBody (common) Sets the name of a parameter to be passed in the
exchange In Body.

 String

log (common) Will log every requests and responses. false boolean

prettyPrint
(common)

Pretty print all request. false boolean

serverUrl
(common)

The FHIR server base URL. String

bridgeErrorHandl
er (consumer)

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false boolean

sendEmptyMessa
geWhenIdle
(consumer)

If the polling consumer did not poll any files, you can
enable this option to send an empty message (no
body) instead.

false boolean

exceptionHandler
(consumer
(advanced))

To let the consumer use a custom ExceptionHandler.
Notice if the option bridgeErrorHandler is enabled
then this option is not in use. By default the consumer
will deal with exceptions, that will be logged at WARN
or ERROR level and ignored.

 ExceptionHandler

Name Description Defaul
t

Type

CHAPTER 20. FHIR

315

exchangePattern
(consumer
(advanced))

Sets the exchange pattern when the consumer
creates an exchange.

Enum values:

InOnly

InOut

InOptionalOut

 ExchangePattern

pollStrategy
(consumer
(advanced))

A pluggable
org.apache.camel.PollingConsumerPollingStrategy
allowing you to provide your custom implementation
to control error handling usually occurred during the
poll operation before an Exchange have been
created and being routed in Camel.

 PollingConsumerP
ollStrategy

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

client (advanced) To use the custom client. IGenericClient

clientFactory
(advanced)

To use the custom client factory. IRestfulClientFact
ory

compress
(advanced)

Compresses outgoing (POST/PUT) contents to the
GZIP format.

false boolean

connectionTimeo
ut (advanced)

How long to try and establish the initial TCP
connection (in ms).

10000 Integer

deferModelScann
ing (advanced)

When this option is set, model classes will not be
scanned for children until the child list for the given
type is actually accessed.

false boolean

fhirContext
(advanced)

FhirContext is an expensive object to create. To
avoid creating multiple instances, it can be set
directly.

 FhirContext

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

316

forceConformanc
eCheck
(advanced)

Force conformance check. false boolean

sessionCookie
(advanced)

HTTP session cookie to add to every request. String

socketTimeout
(advanced)

How long to block for individual read/write operations
(in ms).

10000 Integer

summary
(advanced)

Request that the server modify the response using
the _summary param.

Enum values:

COUNT

TEXT

DATA

TRUE

FALSE

 String

validationMode
(advanced)

When should Camel validate the FHIR Server’s
conformance statement.

Enum values:

NEVER

ONCE

ONCE String

proxyHost (proxy) The proxy host. String

proxyPassword
(proxy)

The proxy password. String

proxyPort (proxy) The proxy port. Integer

proxyUser (proxy) The proxy username. String

backoffErrorThre
shold (scheduler)

The number of subsequent error polls (failed due
some error) that should happen before the
backoffMultipler should kick-in.

 int

backoffIdleThres
hold (scheduler)

The number of subsequent idle polls that should
happen before the backoffMultipler should kick-in.

 int

Name Description Defaul
t

Type

CHAPTER 20. FHIR

317

backoffMultiplier
(scheduler)

To let the scheduled polling consumer backoff if
there has been a number of subsequent idles/errors
in a row. The multiplier is then the number of polls
that will be skipped before the next actual attempt is
happening again. When this option is in use then
backoffIdleThreshold and/or backoffErrorThreshold
must also be configured.

 int

delay (scheduler) Milliseconds before the next poll. 500 long

greedy
(scheduler)

If greedy is enabled, then the
ScheduledPollConsumer will run immediately again, if
the previous run polled 1 or more messages.

false boolean

initialDelay
(scheduler)

Milliseconds before the first poll starts. 1000 long

repeatCount
(scheduler)

Specifies a maximum limit of number of fires. So if
you set it to 1, the scheduler will only fire once. If you
set it to 5, it will only fire five times. A value of zero or
negative means fire forever.

0 long

runLoggingLevel
(scheduler)

The consumer logs a start/complete log line when it
polls. This option allows you to configure the logging
level for that.

Enum values:

TRACE

DEBUG

INFO

WARN

ERROR

OFF

TRACE LoggingLevel

scheduledExecut
orService
(scheduler)

Allows for configuring a custom/shared thread pool
to use for the consumer. By default each consumer
has its own single threaded thread pool.

 ScheduledExecuto
rService

scheduler
(scheduler)

To use a cron scheduler from either camel-spring or
camel-quartz component. Use value spring or quartz
for built in scheduler.

none Object

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

318

schedulerProperti
es (scheduler)

To configure additional properties when using a
custom scheduler or any of the Quartz, Spring based
scheduler.

 Map

startScheduler
(scheduler)

Whether the scheduler should be auto started. true boolean

timeUnit
(scheduler)

Time unit for initialDelay and delay options.

Enum values:

NANOSECONDS

MICROSECONDS

MILLISECONDS

SECONDS

MINUTES

HOURS

DAYS

MILLIS
ECON
DS

TimeUnit

useFixedDelay
(scheduler)

Controls if fixed delay or fixed rate is used. See
ScheduledExecutorService in JDK for details.

true boolean

accessToken
(security)

OAuth access token. String

password
(security)

Username to use for basic authentication. String

username
(security)

Username to use for basic authentication. String

Name Description Defaul
t

Type

20.5. API PARAMETERS (13 APIS)

The @FHIR endpoint is an API based component and has additional parameters based on which API
name and API method is used. The API name and API method is located in the endpoint URI as the
apiName/methodName path parameters:

fhir:apiName/methodName

There are 13 API names as listed in the table below:

CHAPTER 20. FHIR

319

API Name Type Description

capabilities Both API to Fetch the capability statement for the server

create Both API for the create operation, which creates a new resource
instance on the server

delete Both API for the delete operation, which performs a logical delete on
a server resource

history Both API for the history method

load-page Both API that Loads the previous/next bundle of resources from a
paged set, using the link specified in the link type=next tag within
the atom bundle

meta Both API for the meta operations, which can be used to get, add and
remove tags and other Meta elements from a resource or across
the server

operation Both API for extended FHIR operations

patch Both API for the patch operation, which performs a logical patch on a
server resource

read Both API method for read operations

search Both API to search for resources matching a given set of criteria

transaction Both API for sending a transaction (collection of resources) to the
server to be executed as a single unit

update Both API for the update operation, which performs a logical delete on
a server resource

validate Both API for validating resources

Each API is documented in the following sections to come.

20.5.1. API: capabilities

Both producer and consumer are supported

The capabilities API is defined in the syntax as follows:

fhir:capabilities/methodName?[parameters]

The method is listed in the table below, followed by detailed syntax for each method. (API methods can
have a shorthand alias name which can be used in the syntax instead of the name)

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

320

Method Description

ofType Retrieve the conformance statement using the given model type

20.5.1.1. Method ofType

Signatures:

org.hl7.fhir.instance.model.api.IBaseConformance
ofType(Class<org.hl7.fhir.instance.model.api.IBaseConformance> type,
java.util.Map<org.apache.camel.component.fhir.api.ExtraParameters, Object> extraParameters);

The fhir/ofType API method has the parameters listed in the table below:

Parameter Description Type

extraParameters See ExtraParameters for a full list of parameters that
can be passed, may be NULL

Map

type The model type Class

In addition to the parameters above, the fhir API can also use any of the Query Parameters.

Any of the parameters can be provided in either the endpoint URI, or dynamically in a message header.
The message header name must be of the format CamelFhir.parameter. The inBody parameter
overrides message header, i.e. the endpoint parameter inBody=myParameterNameHere would
override a CamelFhir.myParameterNameHere header.

20.5.2. API: create

Both producer and consumer are supported

The create API is defined in the syntax as follows:

fhir:create/methodName?[parameters]

The 1 method(s) is listed in the table below, followed by detailed syntax for each method. (API methods
can have a shorthand alias name which can be used in the syntax instead of the name)

Method Description

resource Creates a IBaseResource on the server

20.5.2.1. Method resource

Signatures:

ca.uhn.fhir.rest.api.MethodOutcome resource(String resourceAsString, String url,

CHAPTER 20. FHIR

321

https://camel.apache.org/components/3.14.x/fhir-component.html#_api_capabilities_method_ofType
https://camel.apache.org/components/3.14.x/fhir-component.html#_api_create_method_resource

ca.uhn.fhir.rest.api.MethodOutcome resource(String resourceAsString, String url,
ca.uhn.fhir.rest.api.PreferReturnEnum preferReturn,
java.util.Map<org.apache.camel.component.fhir.api.ExtraParameters, Object> extraParameters);

ca.uhn.fhir.rest.api.MethodOutcome resource(org.hl7.fhir.instance.model.api.IBaseResource
resource, String url, ca.uhn.fhir.rest.api.PreferReturnEnum preferReturn,
java.util.Map<org.apache.camel.component.fhir.api.ExtraParameters, Object> extraParameters);

The fhir/resource API method has the parameters listed in the table below:

Parameter Description Type

extraParameters See ExtraParameters for a full list of parameters that
can be passed, may be NULL

Map

preferReturn Add a Prefer header to the request, which requests
that the server include or suppress the resource body
as a part of the result. If a resource is returned by the
server it will be parsed an accessible to the client via
MethodOutcome#getResource() , may be null

PreferReturnEnum

resource The resource to create IBaseResource

resourceAsString The resource to create String

url The search URL to use. The format of this URL
should be of the form ResourceTypeParameters, for
example:
Patientname=Smith&identifier=13.2.4.11.4%7C84736
6, may be null

String

In addition to the parameters above, the fhir API can also use any of the Query Parameters.

Any of the parameters can be provided in either the endpoint URI, or dynamically in a message header.
The message header name must be of the format CamelFhir.parameter. The inBody parameter
overrides message header, i.e. the endpoint parameter inBody=myParameterNameHere would
override a CamelFhir.myParameterNameHere header.

20.5.3. API: delete

Both producer and consumer are supported

The delete API is defined in the syntax as follows:

fhir:delete/methodName?[parameters]

The 3 method(s) is listed in the table below, followed by detailed syntax for each method. (API methods
can have a shorthand alias name which can be used in the syntax instead of the name)

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

322

Method Description

resource Deletes the given resource

resourceById Deletes the resource by resource type e

resourceConditionalByUrl Specifies that the delete should be performed as a conditional delete
against a given search URL

20.5.3.1. Method resource

Signatures:

org.hl7.fhir.instance.model.api.IBaseOperationOutcome
resource(org.hl7.fhir.instance.model.api.IBaseResource resource,
java.util.Map<org.apache.camel.component.fhir.api.ExtraParameters, Object> extraParameters);

The fhir/resource API method has the parameters listed in the table below:

Parameter Description Type

extraParameters See ExtraParameters for a full list of parameters that
can be passed, may be NULL

Map

resource The IBaseResource to delete IBaseResource

20.5.3.2. Method resourceById

Signatures:

org.hl7.fhir.instance.model.api.IBaseOperationOutcome resourceById(String type, String
stringId, java.util.Map<org.apache.camel.component.fhir.api.ExtraParameters, Object>
extraParameters);

org.hl7.fhir.instance.model.api.IBaseOperationOutcome
resourceById(org.hl7.fhir.instance.model.api.IIdType id,
java.util.Map<org.apache.camel.component.fhir.api.ExtraParameters, Object> extraParameters);

The fhir/resourceById API method has the parameters listed in the table below:

Parameter Description Type

extraParameters See ExtraParameters for a full list of parameters that
can be passed, may be NULL

Map

id The IIdType referencing the resource IIdType

stringId It’s id String

CHAPTER 20. FHIR

323

https://camel.apache.org/components/3.14.x/fhir-component.html#_api_delete_method_resource
https://camel.apache.org/components/3.14.x/fhir-component.html#_api_delete_method_resourceById
https://camel.apache.org/components/3.14.x/fhir-component.html#_api_delete_method_resourceConditionalByUrl

type The resource type e.g Patient String

Parameter Description Type

20.5.3.3. Method resourceConditionalByUrl

Signatures:

org.hl7.fhir.instance.model.api.IBaseOperationOutcome resourceConditionalByUrl(String url,
java.util.Map<org.apache.camel.component.fhir.api.ExtraParameters, Object> extraParameters);

The fhir/resourceConditionalByUrl API method has the parameters listed in the table below:

Parameter Description Type

extraParameters See ExtraParameters for a full list of parameters that
can be passed, may be NULL

Map

url The search URL to use. The format of this URL
should be of the form ResourceTypeParameters, for
example:
Patientname=Smith&identifier=13.2.4.11.4%7C84736
6

String

In addition to the parameters above, the fhir API can also use any of the Query Parameters.

Any of the parameters can be provided in either the endpoint URI, or dynamically in a message header.
The message header name must be of the format CamelFhir.parameter. The inBody parameter
overrides message header, i.e. the endpoint parameter inBody=myParameterNameHere would
override a CamelFhir.myParameterNameHere header.

20.5.4. API: history

Both producer and consumer are supported

The history API is defined in the syntax as follows:

fhir:history/methodName?[parameters]

The 3 method(s) is listed in the table below, followed by detailed syntax for each method. (API methods
can have a shorthand alias name which can be used in the syntax instead of the name)

Method Description

onInstance Perform the operation across all versions of a specific resource (by ID and
type) on the server

onServer Perform the operation across all versions of all resources of all types on the
server

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

324

https://camel.apache.org/components/3.14.x/fhir-component.html#_api_history_method_onInstance
https://camel.apache.org/components/3.14.x/fhir-component.html#_api_history_method_onServer

onType Perform the operation across all versions of all resources of the given type
on the server

Method Description

20.5.4.1. Method onInstance

Signatures:

org.hl7.fhir.instance.model.api.IBaseBundle onInstance(org.hl7.fhir.instance.model.api.IIdType
id, Class<org.hl7.fhir.instance.model.api.IBaseBundle> returnType, Integer count, java.util.Date
cutoff, org.hl7.fhir.instance.model.api.IPrimitiveType<java.util.Date> iCutoff,
java.util.Map<org.apache.camel.component.fhir.api.ExtraParameters, Object> extraParameters);

The fhir/onInstance API method has the parameters listed in the table below:

Parameter Description Type

count Request that the server return only up to theCount
number of resources, may be NULL

Integer

cutoff Request that the server return only resource versions
that were created at or after the given time
(inclusive), may be NULL

Date

extraParameters See ExtraParameters for a full list of parameters that
can be passed, may be NULL

Map

iCutoff Request that the server return only resource versions
that were created at or after the given time
(inclusive), may be NULL

IPrimitiveType

id The IIdType which must be populated with both a
resource type and a resource ID at

IIdType

returnType Request that the method return a Bundle resource
(such as ca.uhn.fhir.model.dstu2.resource.Bundle).
Use this method if you are accessing a DSTU2 server.

Class

20.5.4.2. Method onServer

Signatures:

org.hl7.fhir.instance.model.api.IBaseBundle
onServer(Class<org.hl7.fhir.instance.model.api.IBaseBundle> returnType, Integer count,
java.util.Date cutoff, org.hl7.fhir.instance.model.api.IPrimitiveType<java.util.Date> iCutoff,
java.util.Map<org.apache.camel.component.fhir.api.ExtraParameters, Object> extraParameters);

The fhir/onServer API method has the parameters listed in the table below:

CHAPTER 20. FHIR

325

https://camel.apache.org/components/3.14.x/fhir-component.html#_api_history_method_onType

Parameter Description Type

count Request that the server return only up to theCount
number of resources, may be NULL

Integer

cutoff Request that the server return only resource versions
that were created at or after the given time
(inclusive), may be NULL

Date

extraParameters See ExtraParameters for a full list of parameters that
can be passed, may be NULL

Map

iCutoff Request that the server return only resource versions
that were created at or after the given time
(inclusive), may be NULL

IPrimitiveType

returnType Request that the method return a Bundle resource
(such as ca.uhn.fhir.model.dstu2.resource.Bundle).
Use this method if you are accessing a DSTU2 server.

Class

20.5.4.3. Method onType

Signatures:

org.hl7.fhir.instance.model.api.IBaseBundle
onType(Class<org.hl7.fhir.instance.model.api.IBaseResource> resourceType,
Class<org.hl7.fhir.instance.model.api.IBaseBundle> returnType, Integer count, java.util.Date
cutoff, org.hl7.fhir.instance.model.api.IPrimitiveType<java.util.Date> iCutoff,
java.util.Map<org.apache.camel.component.fhir.api.ExtraParameters, Object> extraParameters);

The fhir/onType API method has the parameters listed in the table below:

Parameter Description Type

count Request that the server return only up to theCount
number of resources, may be NULL

Integer

cutoff Request that the server return only resource versions
that were created at or after the given time
(inclusive), may be NULL

Date

extraParameters See ExtraParameters for a full list of parameters that
can be passed, may be NULL

Map

iCutoff Request that the server return only resource versions
that were created at or after the given time
(inclusive), may be NULL

IPrimitiveType

resourceType The resource type to search for Class

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

326

returnType Request that the method return a Bundle resource
(such as ca.uhn.fhir.model.dstu2.resource.Bundle).
Use this method if you are accessing a DSTU2 server.

Class

Parameter Description Type

In addition to the parameters above, the fhir API can also use any of the Query Parameters.

Any of the parameters can be provided in either the endpoint URI, or dynamically in a message header.
The message header name must be of the format CamelFhir.parameter. The inBody parameter
overrides message header, i.e. the endpoint parameter inBody=myParameterNameHere would
override a CamelFhir.myParameterNameHere header.

20.5.5. API: load-page

Both producer and consumer are supported

The load-page API is defined in the syntax as follows:

fhir:load-page/methodName?[parameters]

The 3 method(s) is listed in the table below, followed by detailed syntax for each method. (API methods
can have a shorthand alias name which can be used in the syntax instead of the name)

Method Description

byUrl Load a page of results using the given URL and bundle type and return a
DSTU1 Atom bundle

next Load the next page of results using the link with relation next in the bundle

previous Load the previous page of results using the link with relation prev in the
bundle

20.5.5.1. Method byUrl

Signatures:

org.hl7.fhir.instance.model.api.IBaseBundle byUrl(String url,
Class<org.hl7.fhir.instance.model.api.IBaseBundle> returnType,
java.util.Map<org.apache.camel.component.fhir.api.ExtraParameters, Object> extraParameters);

The fhir/byUrl API method has the parameters listed in the table below:

Parameter Description Type

extraParameters See ExtraParameters for a full list of parameters that
can be passed, may be NULL

Map

CHAPTER 20. FHIR

327

https://camel.apache.org/components/3.14.x/fhir-component.html#_api_load-page_method_byUrl
https://camel.apache.org/components/3.14.x/fhir-component.html#_api_load-page_method_next
https://camel.apache.org/components/3.14.x/fhir-component.html#_api_load-page_method_previous

returnType The return type Class

url The search url String

Parameter Description Type

20.5.5.2. Method next

Signatures:

org.hl7.fhir.instance.model.api.IBaseBundle next(org.hl7.fhir.instance.model.api.IBaseBundle
bundle, java.util.Map<org.apache.camel.component.fhir.api.ExtraParameters, Object>
extraParameters);

The fhir/next API method has the parameters listed in the table below:

Parameter Description Type

bundle The IBaseBundle IBaseBundle

extraParameters See ExtraParameters for a full list of parameters that
can be passed, may be NULL

Map

20.5.5.3. Method previous

Signatures:

org.hl7.fhir.instance.model.api.IBaseBundle previous(org.hl7.fhir.instance.model.api.IBaseBundle
bundle, java.util.Map<org.apache.camel.component.fhir.api.ExtraParameters, Object>
extraParameters);

The fhir/previous API method has the parameters listed in the table below:

Parameter Description Type

bundle The IBaseBundle IBaseBundle

extraParameters See ExtraParameters for a full list of parameters that
can be passed, may be NULL

Map

In addition to the parameters above, the fhir API can also use any of the Query Parameters.

Any of the parameters can be provided in either the endpoint URI, or dynamically in a message header.
The message header name must be of the format CamelFhir.parameter. The inBody parameter
overrides message header, i.e. the endpoint parameter inBody=myParameterNameHere would
override a CamelFhir.myParameterNameHere header.

20.5.6. API: meta

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

328

Both producer and consumer are supported

The meta API is defined in the syntax as follows:

fhir:meta/methodName?[parameters]

The 5 method(s) is listed in the table below, followed by detailed syntax for each method. (API methods
can have a shorthand alias name which can be used in the syntax instead of the name)

Method Description

add Add the elements in the given metadata to the already existing set (do not
remove any)

delete Delete the elements in the given metadata from the given id

getFromResource Fetch the current metadata from a specific resource

getFromServer Fetch the current metadata from the whole Server

getFromType Fetch the current metadata from a specific type

20.5.6.1. Method add

Signatures:

org.hl7.fhir.instance.model.api.IBaseMetaType
add(org.hl7.fhir.instance.model.api.IBaseMetaType meta, org.hl7.fhir.instance.model.api.IIdType
id, java.util.Map<org.apache.camel.component.fhir.api.ExtraParameters, Object>
extraParameters);

The fhir/add API method has the parameters listed in the table below:

Parameter Description Type

extraParameters See ExtraParameters for a full list of parameters that
can be passed, may be NULL

Map

id The id IIdType

meta The IBaseMetaType class IBaseMetaType

20.5.6.2. Method delete

Signatures:

org.hl7.fhir.instance.model.api.IBaseMetaType
delete(org.hl7.fhir.instance.model.api.IBaseMetaType meta,
org.hl7.fhir.instance.model.api.IIdType id,
java.util.Map<org.apache.camel.component.fhir.api.ExtraParameters, Object> extraParameters);

CHAPTER 20. FHIR

329

https://camel.apache.org/components/3.14.x/fhir-component.html#_api_meta_method_add
https://camel.apache.org/components/3.14.x/fhir-component.html#_api_meta_method_delete
https://camel.apache.org/components/3.14.x/fhir-component.html#_api_meta_method_getFromResource
https://camel.apache.org/components/3.14.x/fhir-component.html#_api_meta_method_getFromServer
https://camel.apache.org/components/3.14.x/fhir-component.html#_api_meta_method_getFromType

The fhir/delete API method has the parameters listed in the table below:

Parameter Description Type

extraParameters See ExtraParameters for a full list of parameters that
can be passed, may be NULL

Map

id The id IIdType

meta The IBaseMetaType class IBaseMetaType

20.5.6.3. Method getFromResource

Signatures:

org.hl7.fhir.instance.model.api.IBaseMetaType
getFromResource(Class<org.hl7.fhir.instance.model.api.IBaseMetaType> metaType,
org.hl7.fhir.instance.model.api.IIdType id,
java.util.Map<org.apache.camel.component.fhir.api.ExtraParameters, Object> extraParameters);

The fhir/getFromResource API method has the parameters listed in the table below:

Parameter Description Type

extraParameters See ExtraParameters for a full list of parameters that
can be passed, may be NULL

Map

id The id IIdType

metaType The IBaseMetaType class Class

20.5.6.4. Method getFromServer

Signatures:

org.hl7.fhir.instance.model.api.IBaseMetaType
getFromServer(Class<org.hl7.fhir.instance.model.api.IBaseMetaType> metaType,
java.util.Map<org.apache.camel.component.fhir.api.ExtraParameters, Object> extraParameters);

The fhir/getFromServer API method has the parameters listed in the table below:

Parameter Description Type

extraParameters See ExtraParameters for a full list of parameters that
can be passed, may be NULL

Map

metaType The type of the meta datatype for the given FHIR
model version (should be MetaDt.class or
MetaType.class)

Class

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

330

20.5.6.5. Method getFromType

Signatures:

org.hl7.fhir.instance.model.api.IBaseMetaType
getFromType(Class<org.hl7.fhir.instance.model.api.IBaseMetaType> metaType, String
resourceType, java.util.Map<org.apache.camel.component.fhir.api.ExtraParameters, Object>
extraParameters);

The fhir/getFromType API method has the parameters listed in the table below:

Parameter Description Type

extraParameters See ExtraParameters for a full list of parameters that
can be passed, may be NULL

Map

metaType The IBaseMetaType class Class

resourceType The resource type e.g Patient String

In addition to the parameters above, the fhir API can also use any of the Query Parameters.

Any of the parameters can be provided in either the endpoint URI, or dynamically in a message header.
The message header name must be of the format CamelFhir.parameter. The inBody parameter
overrides message header, i.e. the endpoint parameter inBody=myParameterNameHere would
override a CamelFhir.myParameterNameHere header.

20.5.7. API: operation

Both producer and consumer are supported

The operation API is defined in the syntax as follows:

fhir:operation/methodName?[parameters]

The 5 method(s) is listed in the table below, followed by detailed syntax for each method. (API methods
can have a shorthand alias name which can be used in the syntax instead of the name)

Method Description

onInstance Perform the operation across all versions of a specific resource (by ID and
type) on the server

onInstanceVersion This operation operates on a specific version of a resource

onServer Perform the operation across all versions of all resources of all types on the
server

onType Perform the operation across all versions of all resources of the given type
on the server

CHAPTER 20. FHIR

331

https://camel.apache.org/components/3.14.x/fhir-component.html#_api_operation_method_onInstance
https://camel.apache.org/components/3.14.x/fhir-component.html#_api_operation_method_onInstanceVersion
https://camel.apache.org/components/3.14.x/fhir-component.html#_api_operation_method_onServer
https://camel.apache.org/components/3.14.x/fhir-component.html#_api_operation_method_onType

processMessage This operation is called $process-message as defined by the FHIR
specification

Method Description

20.5.7.1. Method onInstance

Signatures:

org.hl7.fhir.instance.model.api.IBaseResource onInstance(org.hl7.fhir.instance.model.api.IIdType
id, String name, org.hl7.fhir.instance.model.api.IBaseParameters parameters,
Class<org.hl7.fhir.instance.model.api.IBaseParameters> outputParameterType, boolean
useHttpGet, Class<org.hl7.fhir.instance.model.api.IBaseResource> returnType,
java.util.Map<org.apache.camel.component.fhir.api.ExtraParameters, Object> extraParameters);

The fhir/onInstance API method has the parameters listed in the table below:

Parameter Description Type

extraParameters See ExtraParameters for a full list of parameters that
can be passed, may be NULL

Map

id Resource (version will be stripped) IIdType

name Operation name String

outputParameterType The type to use for the output parameters (this
should be set to Parameters.class drawn from the
version of the FHIR structures you are using), may be
NULL

Class

parameters The parameters to use as input. May also be null if
the operation does not require any input parameters.

IBaseParameters

returnType If this operation returns a single resource body as its
return type instead of a Parameters resource, use
this method to specify that resource type. This is
useful for certain operations (e.g.
Patient/NNN/$everything) which return a bundle
instead of a Parameters resource, may be NULL

Class

useHttpGet Use HTTP GET verb Boolean

20.5.7.2. Method onInstanceVersion

Signatures:

org.hl7.fhir.instance.model.api.IBaseResource
onInstanceVersion(org.hl7.fhir.instance.model.api.IIdType id, String name,

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

332

https://camel.apache.org/components/3.14.x/fhir-component.html#_api_operation_method_processMessage

org.hl7.fhir.instance.model.api.IBaseParameters parameters,
Class<org.hl7.fhir.instance.model.api.IBaseParameters> outputParameterType, boolean
useHttpGet, Class<org.hl7.fhir.instance.model.api.IBaseResource> returnType,
java.util.Map<org.apache.camel.component.fhir.api.ExtraParameters, Object> extraParameters);

The fhir/onInstanceVersion API method has the parameters listed in the table below:

Parameter Description Type

extraParameters See ExtraParameters for a full list of parameters that
can be passed, may be NULL

Map

id Resource version IIdType

name Operation name String

outputParameterType The type to use for the output parameters (this
should be set to Parameters.class drawn from the
version of the FHIR structures you are using), may be
NULL

Class

parameters The parameters to use as input. May also be null if
the operation does not require any input parameters.

IBaseParameters

returnType If this operation returns a single resource body as its
return type instead of a Parameters resource, use
this method to specify that resource type. This is
useful for certain operations (e.g.
Patient/NNN/$everything) which return a bundle
instead of a Parameters resource, may be NULL

Class

useHttpGet Use HTTP GET verb Boolean

20.5.7.3. Method onServer

Signatures:

org.hl7.fhir.instance.model.api.IBaseResource onServer(String name,
org.hl7.fhir.instance.model.api.IBaseParameters parameters,
Class<org.hl7.fhir.instance.model.api.IBaseParameters> outputParameterType, boolean
useHttpGet, Class<org.hl7.fhir.instance.model.api.IBaseResource> returnType,
java.util.Map<org.apache.camel.component.fhir.api.ExtraParameters, Object> extraParameters);

The fhir/onServer API method has the parameters listed in the table below:

Parameter Description Type

extraParameters See ExtraParameters for a full list of parameters that
can be passed, may be NULL

Map

CHAPTER 20. FHIR

333

name Operation name String

outputParameterType The type to use for the output parameters (this
should be set to Parameters.class drawn from the
version of the FHIR structures you are using), may be
NULL

Class

parameters The parameters to use as input. May also be null if
the operation does not require any input parameters.

IBaseParameters

returnType If this operation returns a single resource body as its
return type instead of a Parameters resource, use
this method to specify that resource type. This is
useful for certain operations (e.g.
Patient/NNN/$everything) which return a bundle
instead of a Parameters resource, may be NULL

Class

useHttpGet Use HTTP GET verb Boolean

Parameter Description Type

20.5.7.4. Method onType

Signatures:

org.hl7.fhir.instance.model.api.IBaseResource
onType(Class<org.hl7.fhir.instance.model.api.IBaseResource> resourceType, String name,
org.hl7.fhir.instance.model.api.IBaseParameters parameters,
Class<org.hl7.fhir.instance.model.api.IBaseParameters> outputParameterType, boolean
useHttpGet, Class<org.hl7.fhir.instance.model.api.IBaseResource> returnType,
java.util.Map<org.apache.camel.component.fhir.api.ExtraParameters, Object> extraParameters);

The fhir/onType API method has the parameters listed in the table below:

Parameter Description Type

extraParameters See ExtraParameters for a full list of parameters that
can be passed, may be NULL

Map

name Operation name String

outputParameterType The type to use for the output parameters (this
should be set to Parameters.class drawn from the
version of the FHIR structures you are using), may be
NULL

Class

parameters The parameters to use as input. May also be null if
the operation does not require any input parameters.

IBaseParameters

resourceType The resource type to operate on Class

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

334

returnType If this operation returns a single resource body as its
return type instead of a Parameters resource, use
this method to specify that resource type. This is
useful for certain operations (e.g.
Patient/NNN/$everything) which return a bundle
instead of a Parameters resource, may be NULL

Class

useHttpGet Use HTTP GET verb Boolean

Parameter Description Type

20.5.7.5. Method processMessage

Signatures:

org.hl7.fhir.instance.model.api.IBaseBundle processMessage(String respondToUri,
org.hl7.fhir.instance.model.api.IBaseBundle msgBundle, boolean asynchronous,
Class<org.hl7.fhir.instance.model.api.IBaseBundle> responseClass,
java.util.Map<org.apache.camel.component.fhir.api.ExtraParameters, Object> extraParameters);

The fhir/processMessage API method has the parameters listed in the table below:

Parameter Description Type

asynchronous Whether to process the message asynchronously or
synchronously, defaults to synchronous.

Boolean

extraParameters See ExtraParameters for a full list of parameters that
can be passed, may be NULL

Map

msgBundle Set the Message Bundle to POST to the messaging
server

IBaseBundle

respondToUri An optional query parameter indicating that
responses from the receiving server should be sent
to this URI, may be NULL

String

responseClass The response class Class

In addition to the parameters above, the fhir API can also use any of the Query Parameters.

Any of the parameters can be provided in either the endpoint URI, or dynamically in a message header.
The message header name must be of the format CamelFhir.parameter. The inBody parameter
overrides message header, i.e. the endpoint parameter inBody=myParameterNameHere would
override a CamelFhir.myParameterNameHere header.

20.5.8. API: patch

Both producer and consumer are supported

CHAPTER 20. FHIR

335

The patch API is defined in the syntax as follows:

fhir:patch/methodName?[parameters]

The 2 method(s) is listed in the table below, followed by detailed syntax for each method. (API methods
can have a shorthand alias name which can be used in the syntax instead of the name)

Method Description

patchById Applies the patch to the given resource ID

patchByUrl Specifies that the update should be performed as a conditional create
against a given search URL

20.5.8.1. Method patchById

Signatures:

ca.uhn.fhir.rest.api.MethodOutcome patchById(String patchBody, String stringId,
ca.uhn.fhir.rest.api.PreferReturnEnum preferReturn,
java.util.Map<org.apache.camel.component.fhir.api.ExtraParameters, Object> extraParameters);

ca.uhn.fhir.rest.api.MethodOutcome patchById(String patchBody,
org.hl7.fhir.instance.model.api.IIdType id, ca.uhn.fhir.rest.api.PreferReturnEnum preferReturn,
java.util.Map<org.apache.camel.component.fhir.api.ExtraParameters, Object> extraParameters);

The fhir/patchById API method has the parameters listed in the table below:

Parameter Description Type

extraParameters See ExtraParameters for a full list of parameters that
can be passed, may be NULL

Map

id The resource ID to patch IIdType

patchBody The body of the patch document serialized in either
XML or JSON which conforms to

String

preferReturn Add a Prefer header to the request, which requests
that the server include or suppress the resource body
as a part of the result. If a resource is returned by the
server it will be parsed an accessible to the client via
MethodOutcome#getResource()

PreferReturnEnum

stringId The resource ID to patch String

20.5.8.2. Method patchByUrl

Signatures:

ca.uhn.fhir.rest.api.MethodOutcome patchByUrl(String patchBody, String url,

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

336

https://camel.apache.org/components/3.14.x/fhir-component.html#_api_patch_method_patchById
https://camel.apache.org/components/3.14.x/fhir-component.html#_api_patch_method_patchByUrl

ca.uhn.fhir.rest.api.MethodOutcome patchByUrl(String patchBody, String url,
ca.uhn.fhir.rest.api.PreferReturnEnum preferReturn,
java.util.Map<org.apache.camel.component.fhir.api.ExtraParameters, Object> extraParameters);

The fhir/patchByUrl API method has the parameters listed in the table below:

Parameter Description Type

extraParameters See ExtraParameters for a full list of parameters that
can be passed, may be NULL

Map

patchBody The body of the patch document serialized in either
XML or JSON which conforms to

String

preferReturn Add a Prefer header to the request, which requests
that the server include or suppress the resource body
as a part of the result. If a resource is returned by the
server it will be parsed an accessible to the client via
MethodOutcome#getResource()

PreferReturnEnum

url The search URL to use. The format of this URL
should be of the form ResourceTypeParameters, for
example:
Patientname=Smith&identifier=13.2.4.11.4%7C84736
6

String

In addition to the parameters above, the fhir API can also use any of the Query Parameters.

Any of the parameters can be provided in either the endpoint URI, or dynamically in a message header.
The message header name must be of the format CamelFhir.parameter. The inBody parameter
overrides message header, i.e. the endpoint parameter inBody=myParameterNameHere would
override a CamelFhir.myParameterNameHere header.

20.5.9. API: read

Both producer and consumer are supported

The read API is defined in the syntax as follows:

fhir:read/methodName?[parameters]

The 2 method(s) is listed in the table below, followed by detailed syntax for each method. (API methods
can have a shorthand alias name which can be used in the syntax instead of the name)

Method Description

resourceById Reads a IBaseResource on the server by id

resourceByUrl Reads a IBaseResource on the server by url

CHAPTER 20. FHIR

337

https://camel.apache.org/components/3.14.x/fhir-component.html#_api_read_method_resourceById
https://camel.apache.org/components/3.14.x/fhir-component.html#_api_read_method_resourceByUrl

20.5.9.1. Method resourceById

Signatures:

org.hl7.fhir.instance.model.api.IBaseResource
resourceById(Class<org.hl7.fhir.instance.model.api.IBaseResource> resource, Long longId,
String ifVersionMatches, Boolean returnNull, org.hl7.fhir.instance.model.api.IBaseResource
returnResource, Boolean throwError,
java.util.Map<org.apache.camel.component.fhir.api.ExtraParameters, Object> extraParameters);

org.hl7.fhir.instance.model.api.IBaseResource
resourceById(Class<org.hl7.fhir.instance.model.api.IBaseResource> resource, String stringId,
String version, String ifVersionMatches, Boolean returnNull,
org.hl7.fhir.instance.model.api.IBaseResource returnResource, Boolean throwError,
java.util.Map<org.apache.camel.component.fhir.api.ExtraParameters, Object> extraParameters);

org.hl7.fhir.instance.model.api.IBaseResource
resourceById(Class<org.hl7.fhir.instance.model.api.IBaseResource> resource,
org.hl7.fhir.instance.model.api.IIdType id, String ifVersionMatches, Boolean returnNull,
org.hl7.fhir.instance.model.api.IBaseResource returnResource, Boolean throwError,
java.util.Map<org.apache.camel.component.fhir.api.ExtraParameters, Object> extraParameters);

org.hl7.fhir.instance.model.api.IBaseResource resourceById(String resourceClass, Long longId,
String ifVersionMatches, Boolean returnNull, org.hl7.fhir.instance.model.api.IBaseResource
returnResource, Boolean throwError,
java.util.Map<org.apache.camel.component.fhir.api.ExtraParameters, Object> extraParameters);

org.hl7.fhir.instance.model.api.IBaseResource resourceById(String resourceClass, String
stringId, String ifVersionMatches, String version, Boolean returnNull,
org.hl7.fhir.instance.model.api.IBaseResource returnResource, Boolean throwError,
java.util.Map<org.apache.camel.component.fhir.api.ExtraParameters, Object> extraParameters);

org.hl7.fhir.instance.model.api.IBaseResource resourceById(String resourceClass,
org.hl7.fhir.instance.model.api.IIdType id, String ifVersionMatches, Boolean returnNull,
org.hl7.fhir.instance.model.api.IBaseResource returnResource, Boolean throwError,
java.util.Map<org.apache.camel.component.fhir.api.ExtraParameters, Object> extraParameters);

The fhir/resourceById API method has the parameters listed in the table below:

Parameter Description Type

extraParameters See ExtraParameters for a full list of parameters that
can be passed, may be NULL

Map

id The IIdType referencing the resource IIdType

ifVersionMatches A version to match against the newest version on the
server

String

longId The resource ID Long

resource The resource to read (e.g. Patient) Class

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

338

resourceClass The resource to read (e.g. Patient) String

returnNull Return null if version matches Boolean

returnResource Return the resource if version matches IBaseResource

stringId The resource ID String

throwError Throw error if the version matches Boolean

version The resource version String

Parameter Description Type

20.5.9.2. Method resourceByUrl

Signatures:

org.hl7.fhir.instance.model.api.IBaseResource
resourceByUrl(Class<org.hl7.fhir.instance.model.api.IBaseResource> resource, String url, String
ifVersionMatches, Boolean returnNull, org.hl7.fhir.instance.model.api.IBaseResource
returnResource, Boolean throwError,
java.util.Map<org.apache.camel.component.fhir.api.ExtraParameters, Object> extraParameters);

org.hl7.fhir.instance.model.api.IBaseResource
resourceByUrl(Class<org.hl7.fhir.instance.model.api.IBaseResource> resource,
org.hl7.fhir.instance.model.api.IIdType iUrl, String ifVersionMatches, Boolean returnNull,
org.hl7.fhir.instance.model.api.IBaseResource returnResource, Boolean throwError,
java.util.Map<org.apache.camel.component.fhir.api.ExtraParameters, Object> extraParameters);

org.hl7.fhir.instance.model.api.IBaseResource resourceByUrl(String resourceClass, String url,
String ifVersionMatches, Boolean returnNull, org.hl7.fhir.instance.model.api.IBaseResource
returnResource, Boolean throwError,
java.util.Map<org.apache.camel.component.fhir.api.ExtraParameters, Object> extraParameters);

org.hl7.fhir.instance.model.api.IBaseResource resourceByUrl(String resourceClass,
org.hl7.fhir.instance.model.api.IIdType iUrl, String ifVersionMatches, Boolean returnNull,
org.hl7.fhir.instance.model.api.IBaseResource returnResource, Boolean throwError,
java.util.Map<org.apache.camel.component.fhir.api.ExtraParameters, Object> extraParameters);

The fhir/resourceByUrl API method has the parameters listed in the table below:

Parameter Description Type

extraParameters See ExtraParameters for a full list of parameters that
can be passed, may be NULL

Map

iUrl The IIdType referencing the resource by absolute url IIdType

CHAPTER 20. FHIR

339

ifVersionMatches A version to match against the newest version on the
server

String

resource The resource to read (e.g. Patient) Class

resourceClass The resource to read (e.g. Patient.class) String

returnNull Return null if version matches Boolean

returnResource Return the resource if version matches IBaseResource

throwError Throw error if the version matches Boolean

url Referencing the resource by absolute url String

Parameter Description Type

In addition to the parameters above, the fhir API can also use any of the Query Parameters.

Any of the parameters can be provided in either the endpoint URI, or dynamically in a message header.
The message header name must be of the format CamelFhir.parameter. The inBody parameter
overrides message header, i.e. the endpoint parameter inBody=myParameterNameHere would
override a CamelFhir.myParameterNameHere header.

20.5.10. API: search

Both producer and consumer are supported

The search API is defined in the syntax as follows:

fhir:search/methodName?[parameters]

The 1 method(s) is listed in the table below, followed by detailed syntax for each method. (API methods
can have a shorthand alias name which can be used in the syntax instead of the name)

Method Description

searchByUrl Perform a search directly by URL

20.5.10.1. Method searchByUrl

Signatures:

org.hl7.fhir.instance.model.api.IBaseBundle searchByUrl(String url,
java.util.Map<org.apache.camel.component.fhir.api.ExtraParameters, Object> extraParameters);

The fhir/searchByUrl API method has the parameters listed in the table below:

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

340

https://camel.apache.org/components/3.14.x/fhir-component.html#_api_search_method_searchByUrl

Parameter Description Type

extraParameters See ExtraParameters for a full list of parameters that
can be passed, may be NULL

Map

url The URL to search for. Note that this URL may be
complete (e.g.) in which case the client’s base URL
will be ignored. Or it can be relative (e.g.
Patientname=foo) in which case the client’s base
URL will be used.

String

In addition to the parameters above, the fhir API can also use any of the Query Parameters.

Any of the parameters can be provided in either the endpoint URI, or dynamically in a message header.
The message header name must be of the format CamelFhir.parameter. The inBody parameter
overrides message header, i.e. the endpoint parameter inBody=myParameterNameHere would
override a CamelFhir.myParameterNameHere header.

20.5.11. API: transaction

Both producer and consumer are supported

The transaction API is defined in the syntax as follows:

fhir:transaction/methodName?[parameters]

The 2 method(s) is listed in the table below, followed by detailed syntax for each method. (API methods
can have a shorthand alias name which can be used in the syntax instead of the name)

Method Description

withBundle Use the given raw text (should be a Bundle resource) as the transaction
input

withResources Use a list of resources as the transaction input

20.5.11.1. Method withBundle

Signatures:

String withBundle(String stringBundle,
java.util.Map<org.apache.camel.component.fhir.api.ExtraParameters, Object> extraParameters);

org.hl7.fhir.instance.model.api.IBaseBundle
withBundle(org.hl7.fhir.instance.model.api.IBaseBundle bundle,
java.util.Map<org.apache.camel.component.fhir.api.ExtraParameters, Object> extraParameters);

The fhir/withBundle API method has the parameters listed in the table below:

CHAPTER 20. FHIR

341

https://camel.apache.org/components/3.14.x/fhir-component.html#_api_transaction_method_withBundle
https://camel.apache.org/components/3.14.x/fhir-component.html#_api_transaction_method_withResources

Parameter Description Type

bundle Bundle to use in the transaction IBaseBundle

extraParameters See ExtraParameters for a full list of parameters that
can be passed, may be NULL

Map

stringBundle Bundle to use in the transaction String

20.5.11.2. Method withResources

Signatures:

java.util.List<org.hl7.fhir.instance.model.api.IBaseResource>
withResources(java.util.List<org.hl7.fhir.instance.model.api.IBaseResource> resources,
java.util.Map<org.apache.camel.component.fhir.api.ExtraParameters, Object> extraParameters);

The fhir/withResources API method has the parameters listed in the table below:

Parameter Description Type

extraParameters See ExtraParameters for a full list of parameters that
can be passed, may be NULL

Map

resources Resources to use in the transaction List

In addition to the parameters above, the fhir API can also use any of the Query Parameters.

Any of the parameters can be provided in either the endpoint URI, or dynamically in a message header.
The message header name must be of the format CamelFhir.parameter. The inBody parameter
overrides message header, i.e. the endpoint parameter inBody=myParameterNameHere would
override a CamelFhir.myParameterNameHere header.

20.5.12. API: update

Both producer and consumer are supported

The update API is defined in the syntax as follows:

fhir:update/methodName?[parameters]

The 2 method(s) is listed in the table below, followed by detailed syntax for each method. (API methods
can have a shorthand alias name which can be used in the syntax instead of the name)

Method Description

resource Updates a IBaseResource on the server by id

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

342

https://camel.apache.org/components/3.14.x/fhir-component.html#_api_update_method_resource

resourceBySearchUrl Updates a IBaseResource on the server by search url

Method Description

20.5.12.1. Method resource

Signatures:

ca.uhn.fhir.rest.api.MethodOutcome resource(String resourceAsString, String stringId,
ca.uhn.fhir.rest.api.PreferReturnEnum preferReturn,
java.util.Map<org.apache.camel.component.fhir.api.ExtraParameters, Object> extraParameters);

ca.uhn.fhir.rest.api.MethodOutcome resource(String resourceAsString,
org.hl7.fhir.instance.model.api.IIdType id, ca.uhn.fhir.rest.api.PreferReturnEnum preferReturn,
java.util.Map<org.apache.camel.component.fhir.api.ExtraParameters, Object> extraParameters);

ca.uhn.fhir.rest.api.MethodOutcome resource(org.hl7.fhir.instance.model.api.IBaseResource
resource, String stringId, ca.uhn.fhir.rest.api.PreferReturnEnum preferReturn,
java.util.Map<org.apache.camel.component.fhir.api.ExtraParameters, Object> extraParameters);

ca.uhn.fhir.rest.api.MethodOutcome resource(org.hl7.fhir.instance.model.api.IBaseResource
resource, org.hl7.fhir.instance.model.api.IIdType id, ca.uhn.fhir.rest.api.PreferReturnEnum
preferReturn, java.util.Map<org.apache.camel.component.fhir.api.ExtraParameters, Object>
extraParameters);

The fhir/resource API method has the parameters listed in the table below:

Parameter Description Type

extraParameters See ExtraParameters for a full list of parameters that
can be passed, may be NULL

Map

id The IIdType referencing the resource IIdType

preferReturn Whether the server include or suppress the resource
body as a part of the result

PreferReturnEnum

resource The resource to update (e.g. Patient) IBaseResource

resourceAsString The resource body to update String

stringId The ID referencing the resource String

20.5.12.2. Method resourceBySearchUrl

Signatures:

ca.uhn.fhir.rest.api.MethodOutcome resourceBySearchUrl(String resourceAsString, String url,
ca.uhn.fhir.rest.api.PreferReturnEnum preferReturn,
java.util.Map<org.apache.camel.component.fhir.api.ExtraParameters, Object> extraParameters);

CHAPTER 20. FHIR

343

https://camel.apache.org/components/3.14.x/fhir-component.html#_api_update_method_resourceBySearchUrl

ca.uhn.fhir.rest.api.MethodOutcome
resourceBySearchUrl(org.hl7.fhir.instance.model.api.IBaseResource resource, String url,
ca.uhn.fhir.rest.api.PreferReturnEnum preferReturn,
java.util.Map<org.apache.camel.component.fhir.api.ExtraParameters, Object> extraParameters);

The fhir/resourceBySearchUrl API method has the parameters listed in the table below:

Parameter Description Type

extraParameters See ExtraParameters for a full list of parameters that
can be passed, may be NULL

Map

preferReturn Whether the server include or suppress the resource
body as a part of the result

PreferReturnEnum

resource The resource to update (e.g. Patient) IBaseResource

resourceAsString The resource body to update String

url Specifies that the update should be performed as a
conditional create against a given search URL

String

In addition to the parameters above, the fhir API can also use any of the Query Parameters.

Any of the parameters can be provided in either the endpoint URI, or dynamically in a message header.
The message header name must be of the format CamelFhir.parameter. The inBody parameter
overrides message header, i.e. the endpoint parameter inBody=myParameterNameHere would
override a CamelFhir.myParameterNameHere header.

20.5.13. API: validate

Both producer and consumer are supported

The validate API is defined in the syntax as follows:

fhir:validate/methodName?[parameters]

The 1 method(s) is listed in the table below, followed by detailed syntax for each method. (API methods
can have a shorthand alias name which can be used in the syntax instead of the name)

Method Description

resource Validates the resource

20.5.13.1. Method resource

Signatures:

ca.uhn.fhir.rest.api.MethodOutcome resource(String resourceAsString,
java.util.Map<org.apache.camel.component.fhir.api.ExtraParameters, Object> extraParameters);

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

344

https://camel.apache.org/components/3.14.x/fhir-component.html#_api_validate_method_resource

ca.uhn.fhir.rest.api.MethodOutcome resource(org.hl7.fhir.instance.model.api.IBaseResource
resource, java.util.Map<org.apache.camel.component.fhir.api.ExtraParameters, Object>
extraParameters);

The fhir/resource API method has the parameters listed in the table below:

Parameter Description Type

extraParameters See ExtraParameters for a full list of parameters that
can be passed, may be NULL

Map

resource The IBaseResource to validate IBaseResource

resourceAsString Raw resource to validate String

In addition to the parameters above, the fhir API can also use any of the Query Parameters.

Any of the parameters can be provided in either the endpoint URI, or dynamically in a message header.
The message header name must be of the format CamelFhir.parameter. The inBody parameter
overrides message header, i.e. the endpoint parameter inBody=myParameterNameHere would
override a CamelFhir.myParameterNameHere header.

20.6. SPRING BOOT AUTO-CONFIGURATION

When using fhir with Spring Boot make sure to use the following Maven dependency to have support for
auto configuration:

The component supports 56 options, which are listed below.

Name Description Defaul
t

Type

camel.component
.fhir.access-token

OAuth access token. String

camel.component
.fhir.autowired-
enabled

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true Boolean

<dependency>
 <groupId>org.apache.camel.springboot</groupId>
 <artifactId>camel-fhir-starter</artifactId>
 <version>3.14.5.redhat-00032</version>
 <!-- Use your Camel Spring Boot version -->
</dependency>

CHAPTER 20. FHIR

345

camel.component
.fhir.bridge-error-
handler

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false Boolean

camel.component
.fhir.client

To use the custom client. The option is a
ca.uhn.fhir.rest.client.api.IGenericClient type.

 IGenericClient

camel.component
.fhir.client-
factory

To use the custom client factory. The option is a
ca.uhn.fhir.rest.client.api.IRestfulClientFactory type.

 IRestfulClientFact
ory

camel.component
.fhir.compress

Compresses outgoing (POST/PUT) contents to the
GZIP format.

false Boolean

camel.component
.fhir.configuration

To use the shared configuration. The option is a
org.apache.camel.component.fhir.FhirConfiguration
type.

 FhirConfiguration

camel.component
.fhir.connection-
timeout

How long to try and establish the initial TCP
connection (in ms).

10000 Integer

camel.component
.fhir.defer-model-
scanning

When this option is set, model classes will not be
scanned for children until the child list for the given
type is actually accessed.

false Boolean

camel.component
.fhir.enabled

Whether to enable auto configuration of the fhir
component. This is enabled by default.

 Boolean

camel.component
.fhir.encoding

Encoding to use for all request. String

camel.component
.fhir.fhir-context

FhirContext is an expensive object to create. To
avoid creating multiple instances, it can be set
directly. The option is a
ca.uhn.fhir.context.FhirContext type.

 FhirContext

camel.component
.fhir.fhir-version

The FHIR Version to use. R4 String

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

346

camel.component
.fhir.force-
conformance-
check

Force conformance check. false Boolean

camel.component
.fhir.lazy-start-
producer

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false Boolean

camel.component
.fhir.log

Will log every requests and responses. false Boolean

camel.component
.fhir.password

Username to use for basic authentication. String

camel.component
.fhir.pretty-print

Pretty print all request. false Boolean

camel.component
.fhir.proxy-host

The proxy host. String

camel.component
.fhir.proxy-
password

The proxy password. String

camel.component
.fhir.proxy-port

The proxy port. Integer

camel.component
.fhir.proxy-user

The proxy username. String

camel.component
.fhir.server-url

The FHIR server base URL. String

camel.component
.fhir.session-
cookie

HTTP session cookie to add to every request. String

Name Description Defaul
t

Type

CHAPTER 20. FHIR

347

camel.component
.fhir.socket-
timeout

How long to block for individual read/write operations
(in ms).

10000 Integer

camel.component
.fhir.summary

Request that the server modify the response using
the _summary param.

 String

camel.component
.fhir.username

Username to use for basic authentication. String

camel.component
.fhir.validation-
mode

When should Camel validate the FHIR Server’s
conformance statement.

ONCE String

camel.dataformat
.fhirjson.content-
type-header

Whether the data format should set the Content-
Type header with the type from the data format. For
example application/xml for data formats marshalling
to XML, or application/json for data formats
marshalling to JSON.

true Boolean

camel.dataformat
.fhirjson.dont-
encode-elements

If provided, specifies the elements which should NOT
be encoded. Valid values for this field would include:
Patient - Don’t encode patient and all its children
Patient.name - Don’t encode the patient’s name
Patient.name.family - Don’t encode the patient’s
family name .text - Don’t encode the text element on
any resource (only the very first position may contain
a wildcard) DSTU2 note: Note that values including
meta, such as Patient.meta will work for DSTU2
parsers, but values with subelements on meta such as
Patient.meta.lastUpdated will only work in DSTU3
mode.

 Set

camel.dataformat
.fhirjson.dont-
strip-versions-
from-references-
at-paths

If supplied value(s), any resource references at the
specified paths will have their resource versions
encoded instead of being automatically stripped
during the encoding process. This setting has no
effect on the parsing process. This method provides
a finer-grained level of control than
setStripVersionsFromReferences(String) and any
paths specified by this method will be encoded even
if setStripVersionsFromReferences(String) has been
set to true (which is the default).

 List

camel.dataformat
.fhirjson.enabled

Whether to enable auto configuration of the fhirJson
data format. This is enabled by default.

 Boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

348

camel.dataformat
.fhirjson.encode-
elements

If provided, specifies the elements which should be
encoded, to the exclusion of all others. Valid values
for this field would include: Patient - Encode patient
and all its children Patient.name - Encode only the
patient’s name Patient.name.family - Encode only the
patient’s family name .text - Encode the text element
on any resource (only the very first position may
contain a wildcard) .(mandatory) - This is a special
case which causes any mandatory fields (min 0) to be
encoded.

 Set

camel.dataformat
.fhirjson.encode-
elements-
applies-to-child-
resources-only

If set to true (default is false), the values supplied to
setEncodeElements(Set) will not be applied to the
root resource (typically a Bundle), but will be applied
to any sub-resources contained within it (i.e. search
result resources in that bundle).

false Boolean

camel.dataformat
.fhirjson.fhir-
version

The version of FHIR to use. Possible values are:
DSTU2,DSTU2_HL7ORG,DSTU2_1,DSTU3,R4.

DSTU3 String

camel.dataformat
.fhirjson.omit-
resource-id

If set to true (default is false) the ID of any resources
being encoded will not be included in the output.
Note that this does not apply to contained resources,
only to root resources. In other words, if this is set to
true, contained resources will still have local IDs but
the outer/containing ID will not have an ID.

false Boolean

camel.dataformat
.fhirjson.override-
resource-id-with-
bundle-entry-
full-url

If set to true (which is the default), the
Bundle.entry.fullUrl will override the
Bundle.entry.resource’s resource id if the fullUrl is
defined. This behavior happens when parsing the
source data into a Bundle object. Set this to false if
this is not the desired behavior (e.g. the client code
wishes to perform additional validation checks
between the fullUrl and the resource id).

false Boolean

camel.dataformat
.fhirjson.pretty-
print

Sets the pretty print flag, meaning that the parser will
encode resources with human-readable spacing and
newlines between elements instead of condensing
output as much as possible.

false Boolean

camel.dataformat
.fhirjson.server-
base-url

Sets the server’s base URL used by this parser. If a
value is set, resource references will be turned into
relative references if they are provided as absolute
URLs but have a base matching the given base.

 String

Name Description Defaul
t

Type

CHAPTER 20. FHIR

349

camel.dataformat
.fhirjson.strip-
versions-from-
references

If set to true (which is the default), resource
references containing a version will have the version
removed when the resource is encoded. This is
generally good behaviour because in most situations,
references from one resource to another should be
to the resource by ID, not by ID and version. In some
cases though, it may be desirable to preserve the
version in resource links. In that case, this value
should be set to false. This method provides the
ability to globally disable reference encoding. If finer-
grained control is needed, use
setDontStripVersionsFromReferencesAtPaths(List).

false Boolean

camel.dataformat
.fhirjson.summary
-mode

If set to true (default is false) only elements marked
by the FHIR specification as being summary elements
will be included.

false Boolean

camel.dataformat
.fhirjson.suppress
-narratives

If set to true (default is false), narratives will not be
included in the encoded values.

false Boolean

camel.dataformat
.fhirxml.content-
type-header

Whether the data format should set the Content-
Type header with the type from the data format. For
example application/xml for data formats marshalling
to XML, or application/json for data formats
marshalling to JSON.

true Boolean

camel.dataformat
.fhirxml.dont-
encode-elements

If provided, specifies the elements which should NOT
be encoded. Valid values for this field would include:
Patient - Don’t encode patient and all its children
Patient.name - Don’t encode the patient’s name
Patient.name.family - Don’t encode the patient’s
family name .text - Don’t encode the text element on
any resource (only the very first position may contain
a wildcard) DSTU2 note: Note that values including
meta, such as Patient.meta will work for DSTU2
parsers, but values with subelements on meta such as
Patient.meta.lastUpdated will only work in DSTU3
mode.

 Set

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

350

camel.dataformat
.fhirxml.dont-
strip-versions-
from-references-
at-paths

If supplied value(s), any resource references at the
specified paths will have their resource versions
encoded instead of being automatically stripped
during the encoding process. This setting has no
effect on the parsing process. This method provides
a finer-grained level of control than
setStripVersionsFromReferences(String) and any
paths specified by this method will be encoded even
if setStripVersionsFromReferences(String) has been
set to true (which is the default).

 List

camel.dataformat
.fhirxml.enabled

Whether to enable auto configuration of the fhirXml
data format. This is enabled by default.

 Boolean

camel.dataformat
.fhirxml.encode-
elements

If provided, specifies the elements which should be
encoded, to the exclusion of all others. Valid values
for this field would include: Patient - Encode patient
and all its children Patient.name - Encode only the
patient’s name Patient.name.family - Encode only the
patient’s family name .text - Encode the text element
on any resource (only the very first position may
contain a wildcard) .(mandatory) - This is a special
case which causes any mandatory fields (min 0) to be
encoded.

 Set

camel.dataformat
.fhirxml.encode-
elements-
applies-to-child-
resources-only

If set to true (default is false), the values supplied to
setEncodeElements(Set) will not be applied to the
root resource (typically a Bundle), but will be applied
to any sub-resources contained within it (i.e. search
result resources in that bundle).

false Boolean

camel.dataformat
.fhirxml.fhir-
version

The version of FHIR to use. Possible values are:
DSTU2,DSTU2_HL7ORG,DSTU2_1,DSTU3,R4.

DSTU3 String

camel.dataformat
.fhirxml.omit-
resource-id

If set to true (default is false) the ID of any resources
being encoded will not be included in the output.
Note that this does not apply to contained resources,
only to root resources. In other words, if this is set to
true, contained resources will still have local IDs but
the outer/containing ID will not have an ID.

false Boolean

Name Description Defaul
t

Type

CHAPTER 20. FHIR

351

camel.dataformat
.fhirxml.override-
resource-id-with-
bundle-entry-
full-url

If set to true (which is the default), the
Bundle.entry.fullUrl will override the
Bundle.entry.resource’s resource id if the fullUrl is
defined. This behavior happens when parsing the
source data into a Bundle object. Set this to false if
this is not the desired behavior (e.g. the client code
wishes to perform additional validation checks
between the fullUrl and the resource id).

false Boolean

camel.dataformat
.fhirxml.pretty-
print

Sets the pretty print flag, meaning that the parser will
encode resources with human-readable spacing and
newlines between elements instead of condensing
output as much as possible.

false Boolean

camel.dataformat
.fhirxml.server-
base-url

Sets the server’s base URL used by this parser. If a
value is set, resource references will be turned into
relative references if they are provided as absolute
URLs but have a base matching the given base.

 String

camel.dataformat
.fhirxml.strip-
versions-from-
references

If set to true (which is the default), resource
references containing a version will have the version
removed when the resource is encoded. This is
generally good behaviour because in most situations,
references from one resource to another should be
to the resource by ID, not by ID and version. In some
cases though, it may be desirable to preserve the
version in resource links. In that case, this value
should be set to false. This method provides the
ability to globally disable reference encoding. If finer-
grained control is needed, use
setDontStripVersionsFromReferencesAtPaths(List).

false Boolean

camel.dataformat
.fhirxml.summary-
mode

If set to true (default is false) only elements marked
by the FHIR specification as being summary elements
will be included.

false Boolean

camel.dataformat
.fhirxml.suppress-
narratives

If set to true (default is false), narratives will not be
included in the encoded values.

false Boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

352

CHAPTER 21. FILE
Both producer and consumer are supported

The File component provides access to file systems, allowing files to be processed by any other Camel
Components or messages from other components to be saved to disk.

21.1. URI FORMAT

file:directoryName[?options]

Where directoryName represents the underlying file directory.

Only directories

Camel supports only endpoints configured with a starting directory. So the directoryName must be a
directory. If you want to consume a single file only, you can use the fileName option, e.g. by setting
fileName=thefilename. Also, the starting directory must not contain dynamic expressions with ${ }
placeholders. Again use the fileName option to specify the dynamic part of the filename.

NOTE

Avoid reading files currently being written by another application
Beware the JDK File IO API is a bit limited in detecting whether another application is
currently writing/copying a file. And the implementation can be different depending on
OS platform as well. This could lead to that Camel thinks the file is not locked by another
process and start consuming it. Therefore you have to do you own investigation what
suites your environment. To help with this Camel provides different readLock options
and doneFileName option that you can use. See also the section Consuming files from
folders where others drop files directly.

21.2. CONFIGURING OPTIONS

Camel components are configured on two separate levels:

component level

endpoint level

21.2.1. Configuring Component Options

The component level is the highest level which holds general and common configurations that are
inherited by the endpoints. For example a component may have security settings, credentials for
authentication, urls for network connection and so forth.

Some components only have a few options, and others may have many. Because components typically
have pre configured defaults that are commonly used, then you may often only need to configure a few
options on a component; or none at all.

Configuring components can be done with the Component DSL, in a configuration file
(application.properties|yaml), or directly with Java code.

21.2.2. Configuring Endpoint Options

CHAPTER 21. FILE

353

https://camel.apache.org/components/3.14.x/file-component.html#File2-Consumingfilesfromfolderswhereothersdropfilesdirectly
https://camel.apache.org/manual/component-dsl.html

Where you find yourself configuring the most is on endpoints, as endpoints often have many options,
which allows you to configure what you need the endpoint to do. The options are also categorized into
whether the endpoint is used as consumer (from) or as a producer (to), or used for both.

Configuring endpoints is most often done directly in the endpoint URI as path and query parameters.
You can also use the Endpoint DSL as a type safe way of configuring endpoints.

A good practice when configuring options is to use Property Placeholders, which allows to not hardcode
urls, port numbers, sensitive information, and other settings. In other words placeholders allows to
externalize the configuration from your code, and gives more flexibility and reuse.

The following two sections lists all the options, firstly for the component followed by the endpoint.

21.3. COMPONENT OPTIONS

The File component supports 3 options, which are listed below.

Name Description Defaul
t

Type

bridgeErrorHandl
er (consumer)

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false boolean

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

autowiredEnabled
(advanced)

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true boolean

21.4. ENDPOINT OPTIONS

The File endpoint is configured using URI syntax:

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

354

https://camel.apache.org/manual/Endpoint-dsl.html
https://camel.apache.org/manual/using-propertyplaceholder.html

file:directoryName

with the following path and query parameters:

21.4.1. Path Parameters (1 parameters)

Name Description Defaul
t

Type

directoryName
(common)

Required The starting directory. File

21.4.2. Query Parameters (94 parameters)

Name Description Defaul
t

Type

charset (common) This option is used to specify the encoding of the file.
You can use this on the consumer, to specify the
encodings of the files, which allow Camel to know the
charset it should load the file content in case the file
content is being accessed. Likewise when writing a
file, you can use this option to specify which charset
to write the file as well. Do mind that when writing the
file Camel may have to read the message content
into memory to be able to convert the data into the
configured charset, so do not use this if you have big
messages.

 String

doneFileName
(common)

Producer: If provided, then Camel will write a 2nd
done file when the original file has been written. The
done file will be empty. This option configures what
file name to use. Either you can specify a fixed name.
Or you can use dynamic placeholders. The done file
will always be written in the same folder as the
original file. Consumer: If provided, Camel will only
consume files if a done file exists. This option
configures what file name to use. Either you can
specify a fixed name. Or you can use dynamic
placeholders.The done file is always expected in the
same folder as the original file. Only $\\{file.name}
and $\\{file.name.next} is supported as dynamic
placeholders.

 String

CHAPTER 21. FILE

355

fileName
(common)

Use Expression such as File Language to dynamically
set the filename. For consumers, it’s used as a
filename filter. For producers, it’s used to evaluate
the filename to write. If an expression is set, it take
precedence over the CamelFileName header. (Note:
The header itself can also be an Expression). The
expression options support both String and
Expression types. If the expression is a String type, it
is always evaluated using the File Language. If the
expression is an Expression type, the specified
Expression type is used - this allows you, for instance,
to use OGNL expressions. For the consumer, you can
use it to filter filenames, so you can for instance
consume today’s file using the File Language syntax:
mydata-$\\{date:now:yyyyMMdd}.txt. The producers
support the CamelOverruleFileName header which
takes precedence over any existing CamelFileName
header; the CamelOverruleFileName is a header that
is used only once, and makes it easier as this avoids to
temporary store CamelFileName and have to restore
it afterwards.

 String

bridgeErrorHandl
er (consumer)

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false boolean

delete (consumer) If true, the file will be deleted after it is processed
successfully.

false boolean

moveFailed
(consumer)

Sets the move failure expression based on Simple
language. For example, to move files into a .error
subdirectory use: .error. Note: When moving the files
to the fail location Camel will handle the error and will
not pick up the file again.

 String

noop (consumer) If true, the file is not moved or deleted in any way.
This option is good for readonly data, or for ETL type
requirements. If noop=true, Camel will set
idempotent=true as well, to avoid consuming the
same files over and over again.

false boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

356

preMove
(consumer)

Expression (such as File Language) used to
dynamically set the filename when moving it before
processing. For example to move in-progress files
into the order directory set this value to order.

 String

preSort
(consumer)

When pre-sort is enabled then the consumer will sort
the file and directory names during polling, that was
retrieved from the file system. You may want to do
this in case you need to operate on the files in a
sorted order. The pre-sort is executed before the
consumer starts to filter, and accept files to process
by Camel. This option is default=false meaning
disabled.

false boolean

recursive
(consumer)

If a directory, will look for files in all the sub-
directories as well.

false boolean

sendEmptyMessa
geWhenIdle
(consumer)

If the polling consumer did not poll any files, you can
enable this option to send an empty message (no
body) instead.

false boolean

directoryMustExis
t (consumer
(advanced))

Similar to the startingDirectoryMustExist option but
this applies during polling (after starting the
consumer).

false boolean

exceptionHandler
(consumer
(advanced))

To let the consumer use a custom ExceptionHandler.
Notice if the option bridgeErrorHandler is enabled
then this option is not in use. By default the consumer
will deal with exceptions, that will be logged at WARN
or ERROR level and ignored.

 ExceptionHandler

exchangePattern
(consumer
(advanced))

Sets the exchange pattern when the consumer
creates an exchange.

Enum values:

InOnly

InOut

InOptionalOut

 ExchangePattern

extendedAttribut
es (consumer
(advanced))

To define which file attributes of interest. Like
posix:permissions,posix:owner,basic:lastAccessTime,
it supports basic wildcard like posix:,
basic:lastAccessTime.

 String

Name Description Defaul
t

Type

CHAPTER 21. FILE

357

inProgressReposi
tory (consumer
(advanced))

A pluggable in-progress repository
org.apache.camel.spi.IdempotentRepository. The in-
progress repository is used to account the current in
progress files being consumed. By default a memory
based repository is used.

 IdempotentReposi
tory

localWorkDirector
y (consumer
(advanced))

When consuming, a local work directory can be used
to store the remote file content directly in local files,
to avoid loading the content into memory. This is
beneficial, if you consume a very big remote file and
thus can conserve memory.

 String

onCompletionExc
eptionHandler
(consumer
(advanced))

To use a custom
org.apache.camel.spi.ExceptionHandler to handle any
thrown exceptions that happens during the file on
completion process where the consumer does either
a commit or rollback. The default implementation will
log any exception at WARN level and ignore.

 ExceptionHandler

pollStrategy
(consumer
(advanced))

A pluggable
org.apache.camel.PollingConsumerPollingStrategy
allowing you to provide your custom implementation
to control error handling usually occurred during the
poll operation before an Exchange have been
created and being routed in Camel.

 PollingConsumerP
ollStrategy

probeContentTyp
e (consumer
(advanced))

Whether to enable probing of the content type. If
enable then the consumer uses
Files#probeContentType(java.nio.file.Path) to
determine the content-type of the file, and store that
as a header with key
Exchange#FILE_CONTENT_TYPE on the Message.

false boolean

processStrategy
(consumer
(advanced))

A pluggable
org.apache.camel.component.file.GenericFileProcess
Strategy allowing you to implement your own
readLock option or similar. Can also be used when
special conditions must be met before a file can be
consumed, such as a special ready file exists. If this
option is set then the readLock option does not
apply.

 GenericFileProces
sStrategy

resumeStrategy
(consumer
(advanced))

Set a resume strategy for files. This makes it possible
to define a strategy for resuming reading files after
the last point before stopping the application. See
the FileConsumerResumeStrategy for
implementation details.

 FileConsumerResu
meStrategy

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

358

startingDirectory
MustExist
(consumer
(advanced))

Whether the starting directory must exist. Mind that
the autoCreate option is default enabled, which
means the starting directory is normally auto created
if it doesn’t exist. You can disable autoCreate and
enable this to ensure the starting directory must
exist. Will thrown an exception if the directory doesn’t
exist.

false boolean

startingDirectory
MustHaveAccess
(consumer
(advanced))

Whether the starting directory has access
permissions. Mind that the
startingDirectoryMustExist parameter must be set to
true in order to verify that the directory exists. Will
thrown an exception if the directory doesn’t have
read and write permissions.

false boolean

appendChars
(producer)

Used to append characters (text) after writing files.
This can for example be used to add new lines or
other separators when writing and appending new
files or existing files. To specify new-line (slash-n or
slash-r) or tab (slash-t) characters then escape with
an extra slash, eg slash-slash-n.

 String

Name Description Defaul
t

Type

CHAPTER 21. FILE

359

fileExist
(producer)

What to do if a file already exists with the same name.
Override, which is the default, replaces the existing
file. - Append - adds content to the existing file. - Fail
- throws a GenericFileOperationException, indicating
that there is already an existing file. - Ignore - silently
ignores the problem and does not override the
existing file, but assumes everything is okay. - Move -
option requires to use the moveExisting option to be
configured as well. The option eagerDeleteTargetFile
can be used to control what to do if an moving the
file, and there exists already an existing file, otherwise
causing the move operation to fail. The Move option
will move any existing files, before writing the target
file. - TryRename is only applicable if tempFileName
option is in use. This allows to try renaming the file
from the temporary name to the actual name, without
doing any exists check. This check may be faster on
some file systems and especially FTP servers.

Enum values:

Override

Append

Fail

Ignore

Move

TryRename

Overri
de

GenericFileExist

flatten (producer) Flatten is used to flatten the file name path to strip
any leading paths, so it’s just the file name. This allows
you to consume recursively into sub-directories, but
when you eg write the files to another directory they
will be written in a single directory. Setting this to
true on the producer enforces that any file name in
CamelFileName header will be stripped for any
leading paths.

false boolean

jailStartingDirect
ory (producer)

Used for jailing (restricting) writing files to the
starting directory (and sub) only. This is enabled by
default to not allow Camel to write files to outside
directories (to be more secured out of the box). You
can turn this off to allow writing files to directories
outside the starting directory, such as parent or root
folders.

true boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

360

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

moveExisting
(producer)

Expression (such as File Language) used to compute
file name to use when fileExist=Move is configured.
To move files into a backup subdirectory just enter
backup. This option only supports the following File
Language tokens: file:name, file:name.ext,
file:name.noext, file:onlyname, file:onlyname.noext,
file:ext, and file:parent. Notice the file:parent is not
supported by the FTP component, as the FTP
component can only move any existing files to a
relative directory based on current dir as base.

 String

tempFileName
(producer)

The same as tempPrefix option but offering a more
fine grained control on the naming of the temporary
filename as it uses the File Language. The location for
tempFilename is relative to the final file location in
the option 'fileName', not the target directory in the
base uri. For example if option fileName includes a
directory prefix: dir/finalFilename then
tempFileName is relative to that subdirectory dir.

 String

tempPrefix
(producer)

This option is used to write the file using a temporary
name and then, after the write is complete, rename it
to the real name. Can be used to identify files being
written and also avoid consumers (not using exclusive
read locks) reading in progress files. Is often used by
FTP when uploading big files.

 String

allowNullBody
(producer
(advanced))

Used to specify if a null body is allowed during file
writing. If set to true then an empty file will be
created, when set to false, and attempting to send a
null body to the file component, a
GenericFileWriteException of 'Cannot write null body
to file.' will be thrown. If the fileExist option is set to
'Override', then the file will be truncated, and if set to
append the file will remain unchanged.

false boolean

Name Description Defaul
t

Type

CHAPTER 21. FILE

361

chmod (producer
(advanced))

Specify the file permissions which is sent by the
producer, the chmod value must be between 000
and 777; If there is a leading digit like in 0755 we will
ignore it.

 String

chmodDirectory
(producer
(advanced))

Specify the directory permissions used when the
producer creates missing directories, the chmod
value must be between 000 and 777; If there is a
leading digit like in 0755 we will ignore it.

 String

eagerDeleteTarg
etFile (producer
(advanced))

Whether or not to eagerly delete any existing target
file. This option only applies when you use
fileExists=Override and the tempFileName option as
well. You can use this to disable (set it to false)
deleting the target file before the temp file is written.
For example you may write big files and want the
target file to exists during the temp file is being
written. This ensure the target file is only deleted
until the very last moment, just before the temp file is
being renamed to the target filename. This option is
also used to control whether to delete any existing
files when fileExist=Move is enabled, and an existing
file exists. If this option
copyAndDeleteOnRenameFails false, then an
exception will be thrown if an existing file existed, if
its true, then the existing file is deleted before the
move operation.

true boolean

forceWrites
(producer
(advanced))

Whether to force syncing writes to the file system.
You can turn this off if you do not want this level of
guarantee, for example if writing to logs / audit logs
etc; this would yield better performance.

true boolean

keepLastModifie
d (producer
(advanced))

Will keep the last modified timestamp from the
source file (if any). Will use the
Exchange.FILE_LAST_MODIFIED header to located
the timestamp. This header can contain either a
java.util.Date or long with the timestamp. If the
timestamp exists and the option is enabled it will set
this timestamp on the written file. Note: This option
only applies to the file producer. You cannot use this
option with any of the ftp producers.

false boolean

moveExistingFile
Strategy
(producer
(advanced))

Strategy (Custom Strategy) used to move file with
special naming token to use when fileExist=Move is
configured. By default, there is an implementation
used if no custom strategy is provided.

 FileMoveExistingS
trategy

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

362

autoCreate
(advanced)

Automatically create missing directories in the file’s
pathname. For the file consumer, that means creating
the starting directory. For the file producer, it means
the directory the files should be written to.

true boolean

bufferSize
(advanced)

Buffer size in bytes used for writing files (or in case of
FTP for downloading and uploading files).

131072 int

copyAndDeleteO
nRenameFail
(advanced)

Whether to fallback and do a copy and delete file, in
case the file could not be renamed directly. This
option is not available for the FTP component.

true boolean

renameUsingCop
y (advanced)

Perform rename operations using a copy and delete
strategy. This is primarily used in environments where
the regular rename operation is unreliable (e.g.
across different file systems or networks). This
option takes precedence over the
copyAndDeleteOnRenameFail parameter that will
automatically fall back to the copy and delete
strategy, but only after additional delays.

false boolean

synchronous
(advanced)

Sets whether synchronous processing should be
strictly used.

false boolean

antExclude (filter) Ant style filter exclusion. If both antInclude and
antExclude are used, antExclude takes precedence
over antInclude. Multiple exclusions may be specified
in comma-delimited format.

 String

antFilterCaseSen
sitive (filter)

Sets case sensitive flag on ant filter. true boolean

antInclude (filter) Ant style filter inclusion. Multiple inclusions may be
specified in comma-delimited format.

 String

eagerMaxMessag
esPerPoll (filter)

Allows for controlling whether the limit from
maxMessagesPerPoll is eager or not. If eager then
the limit is during the scanning of files. Where as false
would scan all files, and then perform sorting. Setting
this option to false allows for sorting all files first, and
then limit the poll. Mind that this requires a higher
memory usage as all file details are in memory to
perform the sorting.

true boolean

Name Description Defaul
t

Type

CHAPTER 21. FILE

363

exclude (filter) Is used to exclude files, if filename matches the regex
pattern (matching is case in-sensitive). Notice if you
use symbols such as plus sign and others you would
need to configure this using the RAW() syntax if
configuring this as an endpoint uri. See more details
at configuring endpoint uris.

 String

excludeExt (filter) Is used to exclude files matching file extension name
(case insensitive). For example to exclude bak files,
then use excludeExt=bak. Multiple extensions can be
separated by comma, for example to exclude bak and
dat files, use excludeExt=bak,dat. Note that the file
extension includes all parts, for example having a file
named mydata.tar.gz will have extension as tar.gz.
For more flexibility then use the include/exclude
options.

 String

filter (filter) Pluggable filter as a
org.apache.camel.component.file.GenericFileFilter
class. Will skip files if filter returns false in its accept()
method.

 GenericFileFilter

filterDirectory
(filter)

Filters the directory based on Simple language. For
example to filter on current date, you can use a
simple date pattern such as $\\{date:now:yyyMMdd}.

 String

filterFile (filter) Filters the file based on Simple language. For
example to filter on file size, you can use $\\{file:size}
5000.

 String

idempotent
(filter)

Option to use the Idempotent Consumer EIP pattern
to let Camel skip already processed files. Will by
default use a memory based LRUCache that holds
1000 entries. If noop=true then idempotent will be
enabled as well to avoid consuming the same files
over and over again.

false Boolean

idempotentKey
(filter)

To use a custom idempotent key. By default the
absolute path of the file is used. You can use the File
Language, for example to use the file name and file
size, you can do: idempotentKey=$\\{file:name}-$\\
{file:size}.

 String

idempotentRepos
itory (filter)

A pluggable repository
org.apache.camel.spi.IdempotentRepository which by
default use MemoryIdempotentRepository if none is
specified and idempotent is true.

 IdempotentReposi
tory

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

364

include (filter) Is used to include files, if filename matches the regex
pattern (matching is case in-sensitive). Notice if you
use symbols such as plus sign and others you would
need to configure this using the RAW() syntax if
configuring this as an endpoint uri. See more details
at configuring endpoint uris.

 String

includeExt (filter) Is used to include files matching file extension name
(case insensitive). For example to include txt files,
then use includeExt=txt. Multiple extensions can be
separated by comma, for example to include txt and
xml files, use includeExt=txt,xml. Note that the file
extension includes all parts, for example having a file
named mydata.tar.gz will have extension as tar.gz.
For more flexibility then use the include/exclude
options.

 String

maxDepth (filter) The maximum depth to traverse when recursively
processing a directory.

214748
3647

int

maxMessagesPer
Poll (filter)

To define a maximum messages to gather per poll.
By default no maximum is set. Can be used to set a
limit of e.g. 1000 to avoid when starting up the server
that there are thousands of files. Set a value of 0 or
negative to disabled it. Notice: If this option is in use
then the File and FTP components will limit before
any sorting. For example if you have 100000 files
and use maxMessagesPerPoll=500, then only the
first 500 files will be picked up, and then sorted. You
can use the eagerMaxMessagesPerPoll option and
set this to false to allow to scan all files first and then
sort afterwards.

 int

minDepth (filter) The minimum depth to start processing when
recursively processing a directory. Using minDepth=1
means the base directory. Using minDepth=2 means
the first sub directory.

 int

move (filter) Expression (such as Simple Language) used to
dynamically set the filename when moving it after
processing. To move files into a .done subdirectory
just enter .done.

 String

exclusiveReadLoc
kStrategy (lock)

Pluggable read-lock as a
org.apache.camel.component.file.GenericFileExclusiv
eReadLockStrategy implementation.

 GenericFileExclusi
veReadLockStrate
gy

readLock (lock) Used by consumer, to only poll the files if it has none String

Name Description Defaul
t

Type

CHAPTER 21. FILE

365

exclusive read-lock on the file (i.e. the file is not in-
progress or being written). Camel will wait until the
file lock is granted. This option provides the build in
strategies: - none - No read lock is in use - markerFile
- Camel creates a marker file (fileName.camelLock)
and then holds a lock on it. This option is not available
for the FTP component - changed - Changed is using
file length/modification timestamp to detect whether
the file is currently being copied or not. Will at least
use 1 sec to determine this, so this option cannot
consume files as fast as the others, but can be more
reliable as the JDK IO API cannot always determine
whether a file is currently being used by another
process. The option readLockCheckInterval can be
used to set the check frequency. - fileLock - is for
using java.nio.channels.FileLock. This option is not
avail for Windows OS and the FTP component. This
approach should be avoided when accessing a
remote file system via a mount/share unless that file
system supports distributed file locks. - rename -
rename is for using a try to rename the file as a test if
we can get exclusive read-lock. - idempotent - (only
for file component) idempotent is for using a
idempotentRepository as the read-lock. This allows
to use read locks that supports clustering if the
idempotent repository implementation supports that.
- idempotent-changed - (only for file component)
idempotent-changed is for using a
idempotentRepository and changed as the combined
read-lock. This allows to use read locks that supports
clustering if the idempotent repository
implementation supports that. - idempotent-rename
- (only for file component) idempotent-rename is for
using a idempotentRepository and rename as the
combined read-lock. This allows to use read locks
that supports clustering if the idempotent repository
implementation supports that.Notice: The various
read locks is not all suited to work in clustered mode,
where concurrent consumers on different nodes is
competing for the same files on a shared file system.
The markerFile using a close to atomic operation to
create the empty marker file, but its not guaranteed
to work in a cluster. The fileLock may work better but
then the file system need to support distributed file
locks, and so on. Using the idempotent read lock can
support clustering if the idempotent repository
supports clustering, such as Hazelcast Component or
Infinispan.

Enum values:

none

markerFile

fileLock

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

366

rename

changed

idempotent

idempotent-changed

idempotent-rename

readLockCheckIn
terval (lock)

Interval in millis for the read-lock, if supported by the
read lock. This interval is used for sleeping between
attempts to acquire the read lock. For example when
using the changed read lock, you can set a higher
interval period to cater for slow writes. The default of
1 sec. may be too fast if the producer is very slow
writing the file. Notice: For FTP the default
readLockCheckInterval is 5000. The
readLockTimeout value must be higher than
readLockCheckInterval, but a rule of thumb is to have
a timeout that is at least 2 or more times higher than
the readLockCheckInterval. This is needed to ensure
that amble time is allowed for the read lock process to
try to grab the lock before the timeout was hit.

1000 long

readLockDeleteO
rphanLockFiles
(lock)

Whether or not read lock with marker files should
upon startup delete any orphan read lock files, which
may have been left on the file system, if Camel was
not properly shutdown (such as a JVM crash). If
turning this option to false then any orphaned lock
file will cause Camel to not attempt to pickup that
file, this could also be due another node is
concurrently reading files from the same shared
directory.

true boolean

readLockIdempot
entReleaseAsync
(lock)

Whether the delayed release task should be
synchronous or asynchronous. See more details at
the readLockIdempotentReleaseDelay option.

false boolean

readLockIdempot
entReleaseAsync
PoolSize (lock)

The number of threads in the scheduled thread pool
when using asynchronous release tasks. Using a
default of 1 core threads should be sufficient in
almost all use-cases, only set this to a higher value if
either updating the idempotent repository is slow, or
there are a lot of files to process. This option is not
in-use if you use a shared thread pool by configuring
the readLockIdempotentReleaseExecutorService
option. See more details at the
readLockIdempotentReleaseDelay option.

 int

Name Description Defaul
t

Type

CHAPTER 21. FILE

367

readLockIdempot
entReleaseDelay
(lock)

Whether to delay the release task for a period of
millis. This can be used to delay the release tasks to
expand the window when a file is regarded as read-
locked, in an active/active cluster scenario with a
shared idempotent repository, to ensure other nodes
cannot potentially scan and acquire the same file, due
to race-conditions. By expanding the time-window of
the release tasks helps prevents these situations.
Note delaying is only needed if you have configured
readLockRemoveOnCommit to true.

 int

readLockIdempot
entReleaseExecut
orService (lock)

To use a custom and shared thread pool for
asynchronous release tasks. See more details at the
readLockIdempotentReleaseDelay option.

 ScheduledExecuto
rService

readLockLogging
Level (lock)

Logging level used when a read lock could not be
acquired. By default a DEBUG is logged. You can
change this level, for example to OFF to not have any
logging. This option is only applicable for readLock of
types: changed, fileLock, idempotent, idempotent-
changed, idempotent-rename, rename.

Enum values:

TRACE

DEBUG

INFO

WARN

ERROR

OFF

DEBU
G

LoggingLevel

readLockMarkerF
ile (lock)

Whether to use marker file with the changed, rename,
or exclusive read lock types. By default a marker file is
used as well to guard against other processes picking
up the same files. This behavior can be turned off by
setting this option to false. For example if you do not
want to write marker files to the file systems by the
Camel application.

true boolean

readLockMinAge
(lock)

This option is applied only for readLock=changed. It
allows to specify a minimum age the file must be
before attempting to acquire the read lock. For
example use readLockMinAge=300s to require the
file is at last 5 minutes old. This can speedup the
changed read lock as it will only attempt to acquire
files which are at least that given age.

0 long

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

368

readLockMinLeng
th (lock)

This option is applied only for readLock=changed. It
allows you to configure a minimum file length. By
default Camel expects the file to contain data, and
thus the default value is 1. You can set this option to
zero, to allow consuming zero-length files.

1 long

readLockRemove
OnCommit (lock)

This option is applied only for readLock=idempotent.
It allows to specify whether to remove the file name
entry from the idempotent repository when
processing the file is succeeded and a commit
happens. By default the file is not removed which
ensures that any race-condition do not occur so
another active node may attempt to grab the file.
Instead the idempotent repository may support
eviction strategies that you can configure to evict the
file name entry after X minutes - this ensures no
problems with race conditions. See more details at
the readLockIdempotentReleaseDelay option.

false boolean

readLockRemove
OnRollback (lock)

This option is applied only for readLock=idempotent.
It allows to specify whether to remove the file name
entry from the idempotent repository when
processing the file failed and a rollback happens. If
this option is false, then the file name entry is
confirmed (as if the file did a commit).

true boolean

readLockTimeout
(lock)

Optional timeout in millis for the read-lock, if
supported by the read-lock. If the read-lock could not
be granted and the timeout triggered, then Camel will
skip the file. At next poll Camel, will try the file again,
and this time maybe the read-lock could be granted.
Use a value of 0 or lower to indicate forever.
Currently fileLock, changed and rename support the
timeout. Notice: For FTP the default
readLockTimeout value is 20000 instead of 10000.
The readLockTimeout value must be higher than
readLockCheckInterval, but a rule of thumb is to have
a timeout that is at least 2 or more times higher than
the readLockCheckInterval. This is needed to ensure
that amble time is allowed for the read lock process to
try to grab the lock before the timeout was hit.

10000 long

backoffErrorThre
shold (scheduler)

The number of subsequent error polls (failed due
some error) that should happen before the
backoffMultipler should kick-in.

 int

backoffIdleThres
hold (scheduler)

The number of subsequent idle polls that should
happen before the backoffMultipler should kick-in.

 int

Name Description Defaul
t

Type

CHAPTER 21. FILE

369

backoffMultiplier
(scheduler)

To let the scheduled polling consumer backoff if
there has been a number of subsequent idles/errors
in a row. The multiplier is then the number of polls
that will be skipped before the next actual attempt is
happening again. When this option is in use then
backoffIdleThreshold and/or backoffErrorThreshold
must also be configured.

 int

delay (scheduler) Milliseconds before the next poll. 500 long

greedy
(scheduler)

If greedy is enabled, then the
ScheduledPollConsumer will run immediately again, if
the previous run polled 1 or more messages.

false boolean

initialDelay
(scheduler)

Milliseconds before the first poll starts. 1000 long

repeatCount
(scheduler)

Specifies a maximum limit of number of fires. So if
you set it to 1, the scheduler will only fire once. If you
set it to 5, it will only fire five times. A value of zero or
negative means fire forever.

0 long

runLoggingLevel
(scheduler)

The consumer logs a start/complete log line when it
polls. This option allows you to configure the logging
level for that.

Enum values:

TRACE

DEBUG

INFO

WARN

ERROR

OFF

TRACE LoggingLevel

scheduledExecut
orService
(scheduler)

Allows for configuring a custom/shared thread pool
to use for the consumer. By default each consumer
has its own single threaded thread pool.

 ScheduledExecuto
rService

scheduler
(scheduler)

To use a cron scheduler from either camel-spring or
camel-quartz component. Use value spring or quartz
for built in scheduler.

none Object

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

370

schedulerProperti
es (scheduler)

To configure additional properties when using a
custom scheduler or any of the Quartz, Spring based
scheduler.

 Map

startScheduler
(scheduler)

Whether the scheduler should be auto started. true boolean

timeUnit
(scheduler)

Time unit for initialDelay and delay options.

Enum values:

NANOSECONDS

MICROSECONDS

MILLISECONDS

SECONDS

MINUTES

HOURS

DAYS

MILLIS
ECON
DS

TimeUnit

useFixedDelay
(scheduler)

Controls if fixed delay or fixed rate is used. See
ScheduledExecutorService in JDK for details.

true boolean

shuffle (sort) To shuffle the list of files (sort in random order). false boolean

sortBy (sort) Built-in sort by using the File Language. Supports
nested sorts, so you can have a sort by file name and
as a 2nd group sort by modified date.

 String

sorter (sort) Pluggable sorter as a java.util.Comparator class. Comparator

Name Description Defaul
t

Type

NOTE

Default behavior for file producer
By default it will override any existing file, if one exist with the same name.

21.5. MOVE AND DELETE OPERATIONS

Any move or delete operations is executed after (post command) the routing has completed; so during
processing of the Exchange the file is still located in the inbox folder.

Lets illustrate this with an example:

from("file://inbox?move=.done").to("bean:handleOrder");

CHAPTER 21. FILE

371

When a file is dropped in the inbox folder, the file consumer notices this and creates a new
FileExchange that is routed to the handleOrder bean. The bean then processes the File object. At this
point in time the file is still located in the inbox folder. After the bean completes, and thus the route is
completed, the file consumer will perform the move operation and move the file to the .done sub-
folder.

The move and the preMove options are considered as a directory name (though if you use an
expression such as File Language, or Simple then the result of the expression evaluation is the file name
to be used. For example, if you set:

move=../backup/copy-of-${file:name}

then that’s using the File language which we use return the file name to be used), which can be either
relative or absolute. If relative, the directory is created as a sub-folder from within the folder where the
file was consumed.

By default, Camel will move consumed files to the .camel sub-folder relative to the directory where the
file was consumed.

If you want to delete the file after processing, the route should be:

We have introduced a pre move operation to move files before they are processed. This allows you to
mark which files have been scanned as they are moved to this sub folder before being processed.

You can combine the pre move and the regular move:

So in this situation, the file is in the inprogress folder when being processed and after it’s processed, it’s
moved to the .done folder.

21.6. FINE GRAINED CONTROL OVER MOVE AND PREMOVE OPTION

The move and preMove options are Expression-based, so we have the full power of the File Language
to do advanced configuration of the directory and name pattern.
Camel will, in fact, internally convert the directory name you enter into a File Language expression. So
when we enter move=.done Camel will convert this into: ${file:parent}/.done/${file:onlyname}. This is
only done if Camel detects that you have not provided a $\{ } in the option value yourself. So when you
enter a $\{ } Camel will not convert it and thus you have the full power.

So if we want to move the file into a backup folder with today’s date as the pattern, we can do:

move=backup/${date:now:yyyyMMdd}/${file:name}

21.7. ABOUT MOVEFAILED

The moveFailed option allows you to move files that could not be processed successfully to another
location such as an error folder of your choice. For example to move the files in an error folder with a

from("file://inbox?delete=true").to("bean:handleOrder");

from("file://inbox?preMove=inprogress").to("bean:handleOrder");

from("file://inbox?preMove=inprogress&move=.done").to("bean:handleOrder");

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

372

https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/camel_spring_boot_reference_3.14/index#csb-camel-file-language-starter
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/camel_spring_boot_reference_3.14/index#csb-camel-simple-language-starter
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/camel_spring_boot_reference_3.14/index#csb-camel-file-language-starter
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/camel_spring_boot_reference_3.14/index#csb-camel-file-language-starter
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/camel_spring_boot_reference_3.14/index#csb-camel-file-language-starter

timestamp you can use moveFailed=/error/${file:name.noext}-
${date:now:yyyyMMddHHmmssSSS}.${\'\'file:ext}.

See more examples at

21.8. MESSAGE HEADERS

The following headers are supported by this component:

21.8.1. File producer only

Header Description

CamelFileName Specifies the name of the file to write (relative to the endpoint directory).
This name can be a String; a String with a File Language or Simple
language expression; or an Expression object. If it’s null then Camel will
auto-generate a filename based on the message unique ID.

CamelFileNameProduced The actual absolute filepath (path + name) for the output file that was
written. This header is set by Camel and its purpose is providing end-users
with the name of the file that was written.

CamelOverruleFileName Is used for overruling CamelFileName header and use the value instead
(but only once, as the producer will remove this header after writing the file).
The value can be only be a String. Notice that if the option fileName has
been configured, then this is still being evaluated.

21.8.2. File consumer only

Header Description

CamelFileName Name of the consumed file as a relative file path with offset from the
starting directory configured on the endpoint.

CamelFileNameOnly Only the file name (the name with no leading paths).

CamelFileAbsolute A boolean option specifying whether the consumed file denotes an
absolute path or not. Should normally be false for relative paths. Absolute
paths should normally not be used but we added to the move option to
allow moving files to absolute paths. But can be used elsewhere as well.

CamelFileAbsolutePath The absolute path to the file. For relative files this path holds the relative
path instead.

CamelFilePath The file path. For relative files this is the starting directory + the relative
filename. For absolute files this is the absolute path.

CamelFileRelativePath The relative path.

CHAPTER 21. FILE

373

https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/camel_spring_boot_reference_3.14/index#csb-camel-file-language-starter
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/camel_spring_boot_reference_3.14/index#csb-camel-simple-language-starter

CamelFileParent The parent path.

CamelFileLength A long value containing the file size.

CamelFileLastModified A Long value containing the last modified timestamp of the file.

Header Description

21.9. BATCH CONSUMER

This component implements the Batch Consumer.

21.10. EXCHANGE PROPERTIES, FILE CONSUMER ONLY

As the file consumer implements the BatchConsumer it supports batching the files it polls. By batching
we mean that Camel will add the following additional properties to the Exchange, so you know the
number of files polled, the current index, and whether the batch is already completed.

Property Description

CamelBatchSize The total number of files that was polled in this batch.

CamelBatchIndex The current index of the batch. Starts from 0.

CamelBatchComplete A boolean value indicating the last Exchange in the batch. Is only true for
the last entry.

This allows you for instance to know how many files exist in this batch and for instance let the
Aggregator2 aggregate this number of files.

21.11. USING CHARSET

The charset option allows for configuring an encoding of the files on both the consumer and producer
endpoints. For example if you read utf-8 files, and want to convert the files to iso-8859-1, you can do:

You can also use the convertBodyTo in the route. In the example below we have still input files in utf-8
format, but we want to convert the file content to a byte array in iso-8859-1 format. And then let a bean
process the data. Before writing the content to the outbox folder using the current charset.

If you omit the charset on the consumer endpoint, then Camel does not know the charset of the file, and

from("file:inbox?charset=utf-8")
 .to("file:outbox?charset=iso-8859-1")

from("file:inbox?charset=utf-8")
 .convertBodyTo(byte[].class, "iso-8859-1")
 .to("bean:myBean")
 .to("file:outbox");

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

374

If you omit the charset on the consumer endpoint, then Camel does not know the charset of the file, and
would by default use "UTF-8". However you can configure a JVM system property to override and use a
different default encoding with the key org.apache.camel.default.charset.

In the example below this could be a problem if the files is not in UTF-8 encoding, which would be the
default encoding for read the files.
In this example when writing the files, the content has already been converted to a byte array, and thus
would write the content directly as is (without any further encodings).

You can also override and control the encoding dynamic when writing files, by setting a property on the
exchange with the key Exchange.CHARSET_NAME. For example in the route below we set the
property with a value from a message header.

We suggest to keep things simpler, so if you pickup files with the same encoding, and want to write the
files in a specific encoding, then favor to use the charset option on the endpoints.

Notice that if you have explicit configured a charset option on the endpoint, then that configuration is
used, regardless of the Exchange.CHARSET_NAME property.

If you have some issues then you can enable DEBUG logging on org.apache.camel.component.file,
and Camel logs when it reads/write a file using a specific charset.
For example the route below will log the following:

And the logs:

DEBUG GenericFileConverter - Read file /Users/davsclaus/workspace/camel/camel-
core/target/charset/input/input.txt with charset utf-8
DEBUG FileOperations - Using Reader to write file: target/charset/output.txt with charset:
iso-8859-1

21.12. COMMON GOTCHAS WITH FOLDER AND FILENAMES

When Camel is producing files (writing files) there are a few gotchas affecting how to set a filename of
your choice. By default, Camel will use the message ID as the filename, and since the message ID is
normally a unique generated ID, you will end up with filenames such as: ID-MACHINENAME-2443-
1211718892437-1-0. If such a filename is not desired, then you must provide a filename in the
CamelFileName message header. The constant, Exchange.FILE_NAME, can also be used.

The sample code below produces files using the message ID as the filename:

from("file:inbox")
 .convertBodyTo(byte[].class, "iso-8859-1")
 .to("bean:myBean")
 .to("file:outbox");

from("file:inbox")
 .convertBodyTo(byte[].class, "iso-8859-1")
 .to("bean:myBean")
 .setProperty(Exchange.CHARSET_NAME, header("someCharsetHeader"))
 .to("file:outbox");

from("file:inbox?charset=utf-8")
 .to("file:outbox?charset=iso-8859-1")

CHAPTER 21. FILE

375

To use report.txt as the filename you have to do:

the same as above, but with CamelFileName:

And a syntax where we set the filename on the endpoint with the fileName URI option.

21.13. FILENAME EXPRESSION

Filename can be set either using the expression option or as a string-based File language expression in
the CamelFileName header. See the File language for syntax and samples.

21.14. CONSUMING FILES FROM FOLDERS WHERE OTHERS DROP
FILES DIRECTLY

Beware if you consume files from a folder where other applications write files to directly. Take a look at
the different readLock options to see what suits your use cases. The best approach is however to write
to another folder and after the write move the file in the drop folder. However if you write files directly
to the drop folder then the option changed could better detect whether a file is currently being
written/copied as it uses a file changed algorithm to see whether the file size / modification changes
over a period of time. The other readLock options rely on Java File API that sadly is not always very
good at detecting this. You may also want to look at the doneFileName option, which uses a marker file
(done file) to signal when a file is done and ready to be consumed.

21.15. USING DONE FILES

See also section writing done files below.

If you want only to consume files when a done file exists, then you can use the doneFileName option on
the endpoint.

Will only consume files from the bar folder, if a done file exists in the same directory as the target files.
Camel will automatically delete the done file when it’s done consuming the files. Camel does not delete
automatically the done file if noop=true is configured.

However it is more common to have one done file per target file. This means there is a 1:1 correlation. To
do this you must use dynamic placeholders in the doneFileName option. Currently Camel supports the
following two dynamic tokens: file:name and file:name.noext which must be enclosed in $\{ }. The
consumer only supports the static part of the done file name as either prefix or suffix (not both).

In this example only files will be polled if there exists a done file with the name file name .done. For

from("direct:report").to("file:target/reports");

from("direct:report").setHeader(Exchange.FILE_NAME, constant("report.txt")).to("file:target/reports");

from("direct:report").setHeader("CamelFileName", constant("report.txt")).to("file:target/reports");

from("direct:report").to("file:target/reports/?fileName=report.txt");

from("file:bar?doneFileName=done");

from("file:bar?doneFileName=${file:name}.done");

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

376

https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/camel_spring_boot_reference_3.14/index#csb-camel-file-language-starter
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/camel_spring_boot_reference_3.14/index#csb-camel-file-language-starter

In this example only files will be polled if there exists a done file with the name file name .done. For
example

hello.txt - is the file to be consumed

hello.txt.done - is the associated done file

You can also use a prefix for the done file, such as:

hello.txt - is the file to be consumed

ready-hello.txt - is the associated done file

21.16. WRITING DONE FILES

After you have written a file you may want to write an additional donefile as a kind of marker, to indicate
to others that the file is finished and has been written. To do that you can use the doneFileName option
on the file producer endpoint.

Will simply create a file named done in the same directory as the target file.

However it is more common to have one done file per target file. This means there is a 1:1 correlation. To
do this you must use dynamic placeholders in the doneFileName option. Currently Camel supports the
following two dynamic tokens: file:name and file:name.noext which must be enclosed in $\{ }.

Will for example create a file named done-foo.txt if the target file was foo.txt in the same directory as
the target file.

Will for example create a file named foo.txt.done if the target file was foo.txt in the same directory as
the target file.

Will for example create a file named foo.done if the target file was foo.txt in the same directory as the
target file.

21.17. SAMPLES

21.17.1. Read from a directory and write to another directory

21.17.2. Read from a directory and write to another directory using a overrule

from("file:bar?doneFileName=ready-${file:name}");

.to("file:bar?doneFileName=done");

.to("file:bar?doneFileName=done-${file:name}");

.to("file:bar?doneFileName=${file:name}.done");

.to("file:bar?doneFileName=${file:name.noext}.done");

from("file://inputdir/?delete=true").to("file://outputdir")

CHAPTER 21. FILE

377

21.17.2. Read from a directory and write to another directory using a overrule
dynamic name

Listen on a directory and create a message for each file dropped there. Copy the contents to the
outputdir and delete the file in the inputdir.

21.17.3. Reading recursively from a directory and writing to another

Listen on a directory and create a message for each file dropped there. Copy the contents to the
outputdir and delete the file in the inputdir. Will scan recursively into sub-directories. Will lay out the
files in the same directory structure in the outputdir as the inputdir, including any sub-directories.

Will result in the following output layout:

outputdir/foo.txt
outputdir/sub/bar.txt

21.18. USING FLATTEN

If you want to store the files in the outputdir directory in the same directory, disregarding the source
directory layout (e.g. to flatten out the path), you just add the flatten=true option on the file producer
side:

Will result in the following output layout:

outputdir/foo.txt
outputdir/bar.txt

21.19. READING FROM A DIRECTORY AND THE DEFAULT MOVE
OPERATION

Camel will by default move any processed file into a .camel subdirectory in the directory the file was
consumed from.

Affects the layout as follows:
before

inputdir/foo.txt
inputdir/sub/bar.txt

from("file://inputdir/?delete=true").to("file://outputdir?overruleFile=copy-of-${file:name}")

from("file://inputdir/?recursive=true&delete=true").to("file://outputdir")

inputdir/foo.txt
inputdir/sub/bar.txt

from("file://inputdir/?recursive=true&delete=true").to("file://outputdir?flatten=true")

from("file://inputdir/?recursive=true&delete=true").to("file://outputdir")

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

378

after

inputdir/.camel/foo.txt
inputdir/sub/.camel/bar.txt
outputdir/foo.txt
outputdir/sub/bar.txt

21.20. READ FROM A DIRECTORY AND PROCESS THE MESSAGE IN
JAVA

The body will be a File object that points to the file that was just dropped into the inputdir directory.

21.21. WRITING TO FILES

Camel is of course also able to write files, i.e. produce files. In the sample below we receive some reports
on the SEDA queue that we process before they are being written to a directory.

21.21.1. Write to subdirectory using Exchange.FILE_NAME

Using a single route, it is possible to write a file to any number of subdirectories. If you have a route
setup as such:

You can have myBean set the header Exchange.FILE_NAME to values such as:

Exchange.FILE_NAME = hello.txt => /rootDirectory/hello.txt
Exchange.FILE_NAME = foo/bye.txt => /rootDirectory/foo/bye.txt

This allows you to have a single route to write files to multiple destinations.

21.21.2. Writing file through the temporary directory relative to the final destination

Sometime you need to temporarily write the files to some directory relative to the destination directory.
Such situation usually happens when some external process with limited filtering capabilities is reading
from the directory you are writing to. In the example below files will be written to the
/var/myapp/filesInProgress directory and after data transfer is done, they will be atomically moved to
the` /var/myapp/finalDirectory `directory.

from("file://inputdir/").process(new Processor() {
 public void process(Exchange exchange) throws Exception {
 Object body = exchange.getIn().getBody();
 // do some business logic with the input body
 }
});

<route>
 <from uri="bean:myBean"/>
 <to uri="file:/rootDirectory"/>
</route>

from("direct:start").
 to("file:///var/myapp/finalDirectory?tempPrefix=/../filesInProgress/");

CHAPTER 21. FILE

379

21.22. USING EXPRESSION FOR FILENAMES

In this sample we want to move consumed files to a backup folder using today’s date as a sub-folder
name:

See File language for more samples.

21.23. AVOIDING READING THE SAME FILE MORE THAN ONCE
(IDEMPOTENT CONSUMER)

Camel supports Idempotent Consumer directly within the component so it will skip already processed
files. This feature can be enabled by setting the idempotent=true option.

Camel uses the absolute file name as the idempotent key, to detect duplicate files. You can customize
this key by using an expression in the idempotentKey option. For example to use both the name and the
file size as the key

By default Camel uses a in memory based store for keeping track of consumed files, it uses a least
recently used cache holding up to 1000 entries. You can plugin your own implementation of this store by
using the idempotentRepository option using the # sign in the value to indicate it’s a referring to a bean
in the Registry with the specified id.

Camel will log at DEBUG level if it skips a file because it has been consumed before:

21.24. USING A FILE BASED IDEMPOTENT REPOSITORY

In this section we will use the file based idempotent repository
org.apache.camel.processor.idempotent.FileIdempotentRepository instead of the in-memory based
that is used as default.
This repository uses a 1st level cache to avoid reading the file repository. It will only use the file
repository to store the content of the 1st level cache. Thereby the repository can survive server restarts.
It will load the content of the file into the 1st level cache upon startup. The file structure is very simple as

from("file://inbox?move=backup/${date:now:yyyyMMdd}/${file:name}").to("...");

from("file://inbox?idempotent=true").to("...");

<route>
 <from uri="file://inbox?idempotent=true&idempotentKey=${file:name}-${file:size}"/>
 <to uri="bean:processInbox"/>
</route>

 <!-- define our store as a plain spring bean -->
 <bean id="myStore" class="com.mycompany.MyIdempotentStore"/>

<route>
 <from uri="file://inbox?idempotent=true&idempotentRepository=#myStore"/>
 <to uri="bean:processInbox"/>
</route>

DEBUG FileConsumer is idempotent and the file has been consumed before. Will skip this file:
target\idempotent\report.txt

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

380

https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/camel_spring_boot_reference_3.14/index#csb-camel-file-language-starter

it stores the key in separate lines in the file. By default, the file store has a size limit of 1mb. When the file
grows larger Camel will truncate the file store, rebuilding the content by flushing the 1st level cache into
a fresh empty file.

We configure our repository using Spring XML creating our file idempotent repository and define our
file consumer to use our repository with the idempotentRepository using # sign to indicate Registry
lookup:

21.25. USING A JPA BASED IDEMPOTENT REPOSITORY

In this section we will use the JPA based idempotent repository instead of the in-memory based that is
used as default.

First we need a persistence-unit in META-INF/persistence.xml where we need to use the class
org.apache.camel.processor.idempotent.jpa.MessageProcessed as model.

Next, we can create our JPA idempotent repository in the spring XML file as well:

And yes then we just need to refer to the jpaStore bean in the file consumer endpoint using the
idempotentRepository using the # syntax option:

21.26. FILTER USING
ORG.APACHE.CAMEL.COMPONENT.FILE.GENERICFILEFILTER

Camel supports pluggable filtering strategies. You can then configure the endpoint with such a filter to
skip certain files being processed.

<persistence-unit name="idempotentDb" transaction-type="RESOURCE_LOCAL">
 <class>org.apache.camel.processor.idempotent.jpa.MessageProcessed</class>

 <properties>
 <property name="openjpa.ConnectionURL" value="jdbc:derby:target/idempotentTest;create=true"/>
 <property name="openjpa.ConnectionDriverName"
value="org.apache.derby.jdbc.EmbeddedDriver"/>
 <property name="openjpa.jdbc.SynchronizeMappings" value="buildSchema"/>
 <property name="openjpa.Log" value="DefaultLevel=WARN, Tool=INFO"/>
 <property name="openjpa.Multithreaded" value="true"/>
 </properties>
</persistence-unit>

<!-- we define our jpa based idempotent repository we want to use in the file consumer -->
<bean id="jpaStore" class="org.apache.camel.processor.idempotent.jpa.JpaMessageIdRepository">
 <!-- Here we refer to the entityManagerFactory -->
 <constructor-arg index="0" ref="entityManagerFactory"/>
 <!-- This 2nd parameter is the name (= a category name).
 You can have different repositories with different names -->
 <constructor-arg index="1" value="FileConsumer"/>
</bean>

<route>
 <from uri="file://inbox?idempotent=true&idempotentRepository=#jpaStore"/>
 <to uri="bean:processInbox"/>
</route>

CHAPTER 21. FILE

381

In the sample we have built our own filter that skips files starting with skip in the filename:

And then we can configure our route using the filter attribute to reference our filter (using # notation)
that we have defined in the spring XML file:

21.27. FILTERING USING ANT PATH MATCHER

The ANT path matcher is based on AntPathMatcher.

The file paths is matched with the following rules:

? matches one character

* matches zero or more characters

** matches zero or more directories in a path

The antInclude and antExclude options make it easy to specify ANT style include/exclude without
having to define the filter. See the URI options above for more information.

The sample below demonstrates how to use it:

21.27.1. Sorting using Comparator

Camel supports pluggable sorting strategies. This strategy it to use the build in java.util.Comparator in
Java. You can then configure the endpoint with such a comparator and have Camel sort the files before
being processed.

In the sample we have built our own comparator that just sorts by file name:

And then we can configure our route using the sorter option to reference to our sorter (mySorter) we
have defined in the spring XML file:

NOTE

<!-- define our filter as a plain spring bean -->
<bean id="myFilter" class="com.mycompany.MyFileFilter"/>

<route>
 <from uri="file://inbox?filter=#myFilter"/>
 <to uri="bean:processInbox"/>
</route>

 <!-- define our sorter as a plain spring bean -->
 <bean id="mySorter" class="com.mycompany.MyFileSorter"/>

<route>
 <from uri="file://inbox?sorter=#mySorter"/>
 <to uri="bean:processInbox"/>
</route>

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

382

http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/util/AntPathMatcher.html

NOTE

URI options can reference beans using the # syntax
In the Spring DSL route above notice that we can refer to beans in the Registry by
prefixing the id with #. So writing sorter=#mySorter, will instruct Camel to go look in the
Registry for a bean with the ID, mySorter.

21.27.2. Sorting using sortBy

Camel supports pluggable sorting strategies. This strategy it to use the File language to configure the
sorting. The sortBy option is configured as follows:

Where each group is separated with semi colon. In the simple situations you just use one group, so a
simple example could be:

sortBy=file:name

This will sort by file name, you can reverse the order by prefixing reverse: to the group, so the sorting is
now Z..A:

sortBy=reverse:file:name

As we have the full power of File language we can use some of the other parameters, so if we want to
sort by file size we do:

sortBy=file:length

You can configure to ignore the case, using ignoreCase: for string comparison, so if you want to use file
name sorting but to ignore the case then we do:

sortBy=ignoreCase:file:name

You can combine ignore case and reverse, however reverse must be specified first:

sortBy=reverse:ignoreCase:file:name

In the sample below we want to sort by last modified file, so we do:

sortBy=file:modified

And then we want to group by name as a 2nd option so files with same modifcation is sorted by name:

sortBy=file:modified;file:name

Now there is an issue here, can you spot it? Well the modified timestamp of the file is too fine as it will be
in milliseconds, but what if we want to sort by date only and then subgroup by name?
Well as we have the true power of File language we can use its date command that supports patterns.
So this can be solved as:

sortBy=date:file:yyyyMMdd;file:name

sortBy=group 1;group 2;group 3;...

CHAPTER 21. FILE

383

https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/camel_spring_boot_reference_3.14/index#csb-camel-file-language-starter
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/camel_spring_boot_reference_3.14/index#csb-camel-file-language-starter
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/camel_spring_boot_reference_3.14/index#csb-camel-file-language-starter

Yeah, that is pretty powerful, oh by the way you can also use reverse per group, so we could reverse the
file names:

sortBy=date:file:yyyyMMdd;reverse:file:name

21.28. USING GENERICFILEPROCESSSTRATEGY

The option processStrategy can be used to use a custom GenericFileProcessStrategy that allows you
to implement your own begin, commit and rollback logic.
For instance lets assume a system writes a file in a folder you should consume. But you should not start
consuming the file before another ready file has been written as well.

So by implementing our own GenericFileProcessStrategy we can implement this as:

In the begin() method we can test whether the special ready file exists. The begin method
returns a boolean to indicate if we can consume the file or not.

In the abort() method special logic can be executed in case the begin operation returned false,
for example to cleanup resources etc.

in the commit() method we can move the actual file and also delete the ready file.

21.29. USING FILTER

The filter option allows you to implement a custom filter in Java code by implementing the
org.apache.camel.component.file.GenericFileFilter interface. This interface has an accept method
that returns a boolean. Return true to include the file, and false to skip the file. There is a isDirectory
method on GenericFile whether the file is a directory. This allows you to filter unwanted directories, to
avoid traversing down unwanted directories.

For example to skip any directories which starts with "skip" in the name, can be implemented as follows:

21.30. USING BRIDGEERRORHANDLER

If you want to use the Camel Error Handler to deal with any exception occurring in the file consumer,
then you can enable the bridgeErrorHandler option as shown below:

So all you have to do is to enable this option, and the error handler in the route will take it from there.

IMPORTANT

// to handle any IOException being thrown
onException(IOException.class)
 .handled(true)
 .log("IOException occurred due: ${exception.message}")
 .transform().simple("Error ${exception.message}")
 .to("mock:error");

// this is the file route that pickup files, notice how we bridge the consumer to use the Camel routing
error handler
// the exclusiveReadLockStrategy is only configured because this is from an unit test, so we use that
to simulate exceptions
from("file:target/nospace?bridgeErrorHandler=true")
 .convertBodyTo(String.class)
 .to("mock:result");

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

384

IMPORTANT

When using bridgeErrorHandler
When using bridgeErrorHandler, then interceptors, OnCompletions does not apply. The
Exchange is processed directly by the Camel Error Handler, and does not allow prior
actions such as interceptors, onCompletion to take action.

21.31. DEBUG LOGGING

This component has log level TRACE that can be helpful if you have problems.

21.32. SPRING BOOT AUTO-CONFIGURATION

When using file with Spring Boot make sure to use the following Maven dependency to have support for
auto configuration:

The component supports 11 options, which are listed below.

Name Description Defaul
t

Type

camel.cluster.file.
acquire-lock-
delay

The time to wait before starting to try to acquire lock. String

camel.cluster.file.
acquire-lock-
interval

The time to wait between attempts to try to acquire
lock.

 String

camel.cluster.file.
attributes

Custom service attributes. Map

camel.cluster.file.
enabled

Sets if the file cluster service should be enabled or
not, default is false.

false Boolean

camel.cluster.file.i
d

Cluster Service ID. String

camel.cluster.file.
order

Service lookup order/priority. Integer

camel.cluster.file.
root

The root path. String

<dependency>
 <groupId>org.apache.camel.springboot</groupId>
 <artifactId>camel-file-starter</artifactId>
 <version>3.14.5.redhat-00032</version>
 <!-- Use your Camel Spring Boot version -->
</dependency>

CHAPTER 21. FILE

385

camel.component
.file.autowired-
enabled

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true Boolean

camel.component
.file.bridge-error-
handler

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false Boolean

camel.component
.file.enabled

Whether to enable auto configuration of the file
component. This is enabled by default.

 Boolean

camel.component
.file.lazy-start-
producer

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false Boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

386

CHAPTER 22. FTP
Both producer and consumer are supported

This component provides access to remote file systems over the FTP and SFTP protocols.

When consuming from remote FTP server make sure you read the section titled Default when
consuming files further below for details related to consuming files.

Absolute path is not supported. Camel translates absolute path to relative by trimming all leading
slashes from directoryname. There’ll be WARN message printed in the logs.

Maven users will need to add the following dependency to their pom.xml for this component:

22.1. URI FORMAT

ftp://[username@]hostname[:port]/directoryname[?options]
sftp://[username@]hostname[:port]/directoryname[?options]
ftps://[username@]hostname[:port]/directoryname[?options]

Where directoryname represents the underlying directory. The directory name is a relative path.
Absolute path’s is not supported. The relative path can contain nested folders, such as /inbox/us.

The autoCreate option is supported. When consumer starts, before polling is scheduled, there’s
additional FTP operation performed to create the directory configured for endpoint. The default value
for autoCreate is true.

If no username is provided, then anonymous login is attempted using no password.
If no port number is provided, Camel will provide default values according to the protocol (ftp = 21, sftp =
22, ftps = 2222).

You can append query options to the URI in the following format, ?option=value&option=value&…

This component uses two different libraries for the actual FTP work. FTP and FTPS uses Apache
Commons Net while SFTP uses JCraft JSCH.

FTPS (also known as FTP Secure) is an extension to FTP that adds support for the Transport Layer
Security (TLS) and the Secure Sockets Layer (SSL) cryptographic protocols.

22.2. CONFIGURING OPTIONS

Camel components are configured on two separate levels:

component level

endpoint level

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-ftp</artifactId>
 <version>3.14.5.redhat-00018</version>See the documentation of the Apache Commons
 <!-- use the same version as your Camel core version -->
</dependency>

CHAPTER 22. FTP

387

http://commons.apache.org/net
http://www.jcraft.com/jsch

22.2.1. Configuring Component Options

The component level is the highest level which holds general and common configurations that are
inherited by the endpoints. For example a component may have security settings, credentials for
authentication, urls for network connection and so forth.

Some components only have a few options, and others may have many. Because components typically
have pre configured defaults that are commonly used, then you may often only need to configure a few
options on a component; or none at all.

Configuring components can be done with the Component DSL, in a configuration file
(application.properties|yaml), or directly with Java code.

22.2.2. Configuring Endpoint Options

Where you find yourself configuring the most is on endpoints, as endpoints often have many options,
which allows you to configure what you need the endpoint to do. The options are also categorized into
whether the endpoint is used as consumer (from) or as a producer (to), or used for both.

Configuring endpoints is most often done directly in the endpoint URI as path and query parameters.
You can also use the Endpoint DSL as a type safe way of configuring endpoints.

A good practice when configuring options is to use Property Placeholders, which allows to not hardcode
urls, port numbers, sensitive information, and other settings. In other words placeholders allows to
externalize the configuration from your code, and gives more flexibility and reuse.

The following two sections lists all the options, firstly for the component followed by the endpoint.

22.3. COMPONENT OPTIONS

The FTP component supports 3 options, which are listed below.

Name Description Defaul
t

Type

bridgeErrorHandl
er (consumer)

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false boolean

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

388

https://camel.apache.org/manual/component-dsl.html
https://camel.apache.org/manual/Endpoint-dsl.html
https://camel.apache.org/manual/using-propertyplaceholder.html

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

autowiredEnabled
(advanced)

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true boolean

Name Description Defaul
t

Type

22.4. ENDPOINT OPTIONS

The FTP endpoint is configured using URI syntax:

ftp:host:port/directoryName

with the following path and query parameters:

22.4.1. Path Parameters (3 parameters)

Name Description Defaul
t

Type

host (common) Required Hostname of the FTP server. String

port (common) Port of the FTP server. int

directoryName
(common)

The starting directory. String

22.4.2. Query Parameters (111 parameters)

CHAPTER 22. FTP

389

Name Description Defaul
t

Type

binary (common) Specifies the file transfer mode, BINARY or ASCII.
Default is ASCII (false).

false boolean

charset (common) This option is used to specify the encoding of the file.
You can use this on the consumer, to specify the
encodings of the files, which allow Camel to know the
charset it should load the file content in case the file
content is being accessed. Likewise when writing a
file, you can use this option to specify which charset
to write the file as well. Do mind that when writing the
file Camel may have to read the message content
into memory to be able to convert the data into the
configured charset, so do not use this if you have big
messages.

 String

disconnect
(common)

Whether or not to disconnect from remote FTP
server right after use. Disconnect will only disconnect
the current connection to the FTP server. If you have
a consumer which you want to stop, then you need to
stop the consumer/route instead.

false boolean

doneFileName
(common)

Producer: If provided, then Camel will write a 2nd
done file when the original file has been written. The
done file will be empty. This option configures what
file name to use. Either you can specify a fixed name.
Or you can use dynamic placeholders. The done file
will always be written in the same folder as the
original file. Consumer: If provided, Camel will only
consume files if a done file exists. This option
configures what file name to use. Either you can
specify a fixed name. Or you can use dynamic
placeholders.The done file is always expected in the
same folder as the original file. Only $\\{file.name}
and $\\{file.name.next} is supported as dynamic
placeholders.

 String

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

390

fileName
(common)

Use Expression such as File Language to dynamically
set the filename. For consumers, it’s used as a
filename filter. For producers, it’s used to evaluate
the filename to write. If an expression is set, it take
precedence over the CamelFileName header. (Note:
The header itself can also be an Expression). The
expression options support both String and
Expression types. If the expression is a String type, it
is always evaluated using the File Language. If the
expression is an Expression type, the specified
Expression type is used - this allows you, for instance,
to use OGNL expressions. For the consumer, you can
use it to filter filenames, so you can for instance
consume today’s file using the File Language syntax:
mydata-$\\{date:now:yyyyMMdd}.txt. The producers
support the CamelOverruleFileName header which
takes precedence over any existing CamelFileName
header; the CamelOverruleFileName is a header that
is used only once, and makes it easier as this avoids to
temporary store CamelFileName and have to restore
it afterwards.

 String

passiveMode
(common)

Sets passive mode connections. Default is active
mode connections.

false boolean

separator
(common)

Sets the path separator to be used. UNIX = Uses unix
style path separator Windows = Uses windows style
path separator Auto = (is default) Use existing path
separator in file name.

Enum values:

UNIX

Windows

Auto

UNIX PathSeparator

transferLoggingIn
tervalSeconds
(common)

Configures the interval in seconds to use when
logging the progress of upload and download
operations that are in-flight. This is used for logging
progress when operations takes longer time.

5 int

Name Description Defaul
t

Type

CHAPTER 22. FTP

391

transferLoggingL
evel (common)

Configure the logging level to use when logging the
progress of upload and download operations.

Enum values:

TRACE

DEBUG

INFO

WARN

ERROR

OFF

DEBU
G

LoggingLevel

transferLoggingV
erbose (common)

Configures whether the perform verbose (fine
grained) logging of the progress of upload and
download operations.

false boolean

fastExistsCheck
(common
(advanced))

If set this option to be true, camel-ftp will use the list
file directly to check if the file exists. Since some FTP
server may not support to list the file directly, if the
option is false, camel-ftp will use the old way to list
the directory and check if the file exists. This option
also influences readLock=changed to control
whether it performs a fast check to update file
information or not. This can be used to speed up the
process if the FTP server has a lot of files.

false boolean

bridgeErrorHandl
er (consumer)

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false boolean

delete (consumer) If true, the file will be deleted after it is processed
successfully.

false boolean

moveFailed
(consumer)

Sets the move failure expression based on Simple
language. For example, to move files into a .error
subdirectory use: .error. Note: When moving the files
to the fail location Camel will handle the error and will
not pick up the file again.

 String

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

392

noop (consumer) If true, the file is not moved or deleted in any way.
This option is good for readonly data, or for ETL type
requirements. If noop=true, Camel will set
idempotent=true as well, to avoid consuming the
same files over and over again.

false boolean

preMove
(consumer)

Expression (such as File Language) used to
dynamically set the filename when moving it before
processing. For example to move in-progress files
into the order directory set this value to order.

 String

preSort
(consumer)

When pre-sort is enabled then the consumer will sort
the file and directory names during polling, that was
retrieved from the file system. You may want to do
this in case you need to operate on the files in a
sorted order. The pre-sort is executed before the
consumer starts to filter, and accept files to process
by Camel. This option is default=false meaning
disabled.

false boolean

recursive
(consumer)

If a directory, will look for files in all the sub-
directories as well.

false boolean

resumeDownload
(consumer)

Configures whether resume download is enabled.
This must be supported by the FTP server (almost all
FTP servers support it). In addition the options
localWorkDirectory must be configured so
downloaded files are stored in a local directory, and
the option binary must be enabled, which is required
to support resuming of downloads.

false boolean

sendEmptyMessa
geWhenIdle
(consumer)

If the polling consumer did not poll any files, you can
enable this option to send an empty message (no
body) instead.

false boolean

streamDownload
(consumer)

Sets the download method to use when not using a
local working directory. If set to true, the remote files
are streamed to the route as they are read. When set
to false, the remote files are loaded into memory
before being sent into the route. If enabling this
option then you must set stepwise=false as both
cannot be enabled at the same time.

false boolean

download
(consumer
(advanced))

Whether the FTP consumer should download the file.
If this option is set to false, then the message body
will be null, but the consumer will still trigger a Camel
Exchange that has details about the file such as file
name, file size, etc. It’s just that the file will not be
downloaded.

false boolean

Name Description Defaul
t

Type

CHAPTER 22. FTP

393

exceptionHandler
(consumer
(advanced))

To let the consumer use a custom ExceptionHandler.
Notice if the option bridgeErrorHandler is enabled
then this option is not in use. By default the consumer
will deal with exceptions, that will be logged at WARN
or ERROR level and ignored.

 ExceptionHandler

exchangePattern
(consumer
(advanced))

Sets the exchange pattern when the consumer
creates an exchange.

Enum values:

InOnly

InOut

InOptionalOut

 ExchangePattern

handleDirectoryP
arserAbsoluteRes
ult (consumer
(advanced))

Allows you to set how the consumer will handle
subfolders and files in the path if the directory parser
results in with absolute paths The reason for this is
that some FTP servers may return file names with
absolute paths, and if so then the FTP component
needs to handle this by converting the returned path
into a relative path.

false boolean

ignoreFileNotFou
ndOrPermissionE
rror (consumer
(advanced))

Whether to ignore when (trying to list files in
directories or when downloading a file), which does
not exist or due to permission error. By default when
a directory or file does not exists or insufficient
permission, then an exception is thrown. Setting this
option to true allows to ignore that instead.

false boolean

inProgressReposi
tory (consumer
(advanced))

A pluggable in-progress repository
org.apache.camel.spi.IdempotentRepository. The in-
progress repository is used to account the current in
progress files being consumed. By default a memory
based repository is used.

 IdempotentReposi
tory

localWorkDirector
y (consumer
(advanced))

When consuming, a local work directory can be used
to store the remote file content directly in local files,
to avoid loading the content into memory. This is
beneficial, if you consume a very big remote file and
thus can conserve memory.

 String

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

394

onCompletionExc
eptionHandler
(consumer
(advanced))

To use a custom
org.apache.camel.spi.ExceptionHandler to handle any
thrown exceptions that happens during the file on
completion process where the consumer does either
a commit or rollback. The default implementation will
log any exception at WARN level and ignore.

 ExceptionHandler

pollStrategy
(consumer
(advanced))

A pluggable
org.apache.camel.PollingConsumerPollingStrategy
allowing you to provide your custom implementation
to control error handling usually occurred during the
poll operation before an Exchange have been
created and being routed in Camel.

 PollingConsumerP
ollStrategy

processStrategy
(consumer
(advanced))

A pluggable
org.apache.camel.component.file.GenericFileProcess
Strategy allowing you to implement your own
readLock option or similar. Can also be used when
special conditions must be met before a file can be
consumed, such as a special ready file exists. If this
option is set then the readLock option does not
apply.

 GenericFileProces
sStrategy

useList (consumer
(advanced))

Whether to allow using LIST command when
downloading a file. Default is true. In some use cases
you may want to download a specific file and are not
allowed to use the LIST command, and therefore you
can set this option to false. Notice when using this
option, then the specific file to download does not
include meta-data information such as file size,
timestamp, permissions etc, because those
information is only possible to retrieve when LIST
command is in use.

true boolean

Name Description Defaul
t

Type

CHAPTER 22. FTP

395

fileExist
(producer)

What to do if a file already exists with the same name.
Override, which is the default, replaces the existing
file. - Append - adds content to the existing file. - Fail
- throws a GenericFileOperationException, indicating
that there is already an existing file. - Ignore - silently
ignores the problem and does not override the
existing file, but assumes everything is okay. - Move -
option requires to use the moveExisting option to be
configured as well. The option eagerDeleteTargetFile
can be used to control what to do if an moving the
file, and there exists already an existing file, otherwise
causing the move operation to fail. The Move option
will move any existing files, before writing the target
file. - TryRename is only applicable if tempFileName
option is in use. This allows to try renaming the file
from the temporary name to the actual name, without
doing any exists check. This check may be faster on
some file systems and especially FTP servers.

Enum values:

Override

Append

Fail

Ignore

Move

TryRename

Overri
de

GenericFileExist

flatten (producer) Flatten is used to flatten the file name path to strip
any leading paths, so it’s just the file name. This allows
you to consume recursively into sub-directories, but
when you eg write the files to another directory they
will be written in a single directory. Setting this to
true on the producer enforces that any file name in
CamelFileName header will be stripped for any
leading paths.

false boolean

jailStartingDirect
ory (producer)

Used for jailing (restricting) writing files to the
starting directory (and sub) only. This is enabled by
default to not allow Camel to write files to outside
directories (to be more secured out of the box). You
can turn this off to allow writing files to directories
outside the starting directory, such as parent or root
folders.

true boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

396

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

moveExisting
(producer)

Expression (such as File Language) used to compute
file name to use when fileExist=Move is configured.
To move files into a backup subdirectory just enter
backup. This option only supports the following File
Language tokens: file:name, file:name.ext,
file:name.noext, file:onlyname, file:onlyname.noext,
file:ext, and file:parent. Notice the file:parent is not
supported by the FTP component, as the FTP
component can only move any existing files to a
relative directory based on current dir as base.

 String

tempFileName
(producer)

The same as tempPrefix option but offering a more
fine grained control on the naming of the temporary
filename as it uses the File Language. The location for
tempFilename is relative to the final file location in
the option 'fileName', not the target directory in the
base uri. For example if option fileName includes a
directory prefix: dir/finalFilename then
tempFileName is relative to that subdirectory dir.

 String

tempPrefix
(producer)

This option is used to write the file using a temporary
name and then, after the write is complete, rename it
to the real name. Can be used to identify files being
written and also avoid consumers (not using exclusive
read locks) reading in progress files. Is often used by
FTP when uploading big files.

 String

allowNullBody
(producer
(advanced))

Used to specify if a null body is allowed during file
writing. If set to true then an empty file will be
created, when set to false, and attempting to send a
null body to the file component, a
GenericFileWriteException of 'Cannot write null body
to file.' will be thrown. If the fileExist option is set to
'Override', then the file will be truncated, and if set to
append the file will remain unchanged.

false boolean

chmod (producer
(advanced))

Allows you to set chmod on the stored file. For
example chmod=640.

 String

Name Description Defaul
t

Type

CHAPTER 22. FTP

397

disconnectOnBat
chComplete
(producer
(advanced))

Whether or not to disconnect from remote FTP
server right after a Batch upload is complete.
disconnectOnBatchComplete will only disconnect the
current connection to the FTP server.

false boolean

eagerDeleteTarg
etFile (producer
(advanced))

Whether or not to eagerly delete any existing target
file. This option only applies when you use
fileExists=Override and the tempFileName option as
well. You can use this to disable (set it to false)
deleting the target file before the temp file is written.
For example you may write big files and want the
target file to exists during the temp file is being
written. This ensure the target file is only deleted
until the very last moment, just before the temp file is
being renamed to the target filename. This option is
also used to control whether to delete any existing
files when fileExist=Move is enabled, and an existing
file exists. If this option
copyAndDeleteOnRenameFails false, then an
exception will be thrown if an existing file existed, if
its true, then the existing file is deleted before the
move operation.

true boolean

keepLastModifie
d (producer
(advanced))

Will keep the last modified timestamp from the
source file (if any). Will use the
Exchange.FILE_LAST_MODIFIED header to located
the timestamp. This header can contain either a
java.util.Date or long with the timestamp. If the
timestamp exists and the option is enabled it will set
this timestamp on the written file. Note: This option
only applies to the file producer. You cannot use this
option with any of the ftp producers.

false boolean

moveExistingFile
Strategy
(producer
(advanced))

Strategy (Custom Strategy) used to move file with
special naming token to use when fileExist=Move is
configured. By default, there is an implementation
used if no custom strategy is provided.

 FileMoveExistingS
trategy

sendNoop
(producer
(advanced))

Whether to send a noop command as a pre-write
check before uploading files to the FTP server. This is
enabled by default as a validation of the connection is
still valid, which allows to silently re-connect to be
able to upload the file. However if this causes
problems, you can turn this option off.

true boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

398

activePortRange
(advanced)

Set the client side port range in active mode. The
syntax is: minPort-maxPort Both port numbers are
inclusive, eg 10000-19999 to include all 1xxxx ports.

 String

autoCreate
(advanced)

Automatically create missing directories in the file’s
pathname. For the file consumer, that means creating
the starting directory. For the file producer, it means
the directory the files should be written to.

true boolean

bufferSize
(advanced)

Buffer size in bytes used for writing files (or in case of
FTP for downloading and uploading files).

131072 int

connectTimeout
(advanced)

Sets the connect timeout for waiting for a connection
to be established Used by both FTPClient and JSCH.

10000 int

ftpClient
(advanced)

To use a custom instance of FTPClient. FTPClient

ftpClientConfig
(advanced)

To use a custom instance of FTPClientConfig to
configure the FTP client the endpoint should use.

 FTPClientConfig

ftpClientConfigP
arameters
(advanced)

Used by FtpComponent to provide additional
parameters for the FTPClientConfig.

 Map

ftpClientParamet
ers (advanced)

Used by FtpComponent to provide additional
parameters for the FTPClient.

 Map

maximumReconn
ectAttempts
(advanced)

Specifies the maximum reconnect attempts Camel
performs when it tries to connect to the remote FTP
server. Use 0 to disable this behavior.

 int

reconnectDelay
(advanced)

Delay in millis Camel will wait before performing a
reconnect attempt.

1000 long

siteCommand
(advanced)

Sets optional site command(s) to be executed after
successful login. Multiple site commands can be
separated using a new line character.

 String

soTimeout
(advanced)

Sets the so timeout FTP and FTPS Is the
SocketOptions.SO_TIMEOUT value in millis.
Recommended option is to set this to 300000 so as
not have a hanged connection. On SFTP this option is
set as timeout on the JSCH Session instance.

30000
0

int

Name Description Defaul
t

Type

CHAPTER 22. FTP

399

stepwise
(advanced)

Sets whether we should stepwise change directories
while traversing file structures when downloading
files, or as well when uploading a file to a directory.
You can disable this if you for example are in a
situation where you cannot change directory on the
FTP server due security reasons. Stepwise cannot be
used together with streamDownload.

true boolean

synchronous
(advanced)

Sets whether synchronous processing should be
strictly used.

false boolean

throwExceptionO
nConnectFailed
(advanced)

Should an exception be thrown if connection failed
(exhausted)By default exception is not thrown and a
WARN is logged. You can use this to enable
exception being thrown and handle the thrown
exception from the
org.apache.camel.spi.PollingConsumerPollStrategy
rollback method.

false boolean

timeout
(advanced)

Sets the data timeout for waiting for reply Used only
by FTPClient.

30000 int

antExclude (filter) Ant style filter exclusion. If both antInclude and
antExclude are used, antExclude takes precedence
over antInclude. Multiple exclusions may be specified
in comma-delimited format.

 String

antFilterCaseSen
sitive (filter)

Sets case sensitive flag on ant filter. true boolean

antInclude (filter) Ant style filter inclusion. Multiple inclusions may be
specified in comma-delimited format.

 String

eagerMaxMessag
esPerPoll (filter)

Allows for controlling whether the limit from
maxMessagesPerPoll is eager or not. If eager then
the limit is during the scanning of files. Where as false
would scan all files, and then perform sorting. Setting
this option to false allows for sorting all files first, and
then limit the poll. Mind that this requires a higher
memory usage as all file details are in memory to
perform the sorting.

true boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

400

exclude (filter) Is used to exclude files, if filename matches the regex
pattern (matching is case in-sensitive). Notice if you
use symbols such as plus sign and others you would
need to configure this using the RAW() syntax if
configuring this as an endpoint uri. See more details
at configuring endpoint uris.

 String

excludeExt (filter) Is used to exclude files matching file extension name
(case insensitive). For example to exclude bak files,
then use excludeExt=bak. Multiple extensions can be
separated by comma, for example to exclude bak and
dat files, use excludeExt=bak,dat. Note that the file
extension includes all parts, for example having a file
named mydata.tar.gz will have extension as tar.gz.
For more flexibility then use the include/exclude
options.

 String

filter (filter) Pluggable filter as a
org.apache.camel.component.file.GenericFileFilter
class. Will skip files if filter returns false in its accept()
method.

 GenericFileFilter

filterDirectory
(filter)

Filters the directory based on Simple language. For
example to filter on current date, you can use a
simple date pattern such as $\\{date:now:yyyMMdd}.

 String

filterFile (filter) Filters the file based on Simple language. For
example to filter on file size, you can use $\\{file:size}
5000.

 String

idempotent
(filter)

Option to use the Idempotent Consumer EIP pattern
to let Camel skip already processed files. Will by
default use a memory based LRUCache that holds
1000 entries. If noop=true then idempotent will be
enabled as well to avoid consuming the same files
over and over again.

false Boolean

idempotentKey
(filter)

To use a custom idempotent key. By default the
absolute path of the file is used. You can use the File
Language, for example to use the file name and file
size, you can do: idempotentKey=$\\{file:name}-$\\
{file:size}.

 String

idempotentRepos
itory (filter)

A pluggable repository
org.apache.camel.spi.IdempotentRepository which by
default use MemoryIdempotentRepository if none is
specified and idempotent is true.

 IdempotentReposi
tory

Name Description Defaul
t

Type

CHAPTER 22. FTP

401

include (filter) Is used to include files, if filename matches the regex
pattern (matching is case in-sensitive). Notice if you
use symbols such as plus sign and others you would
need to configure this using the RAW() syntax if
configuring this as an endpoint uri. See more details
at configuring endpoint uris.

 String

includeExt (filter) Is used to include files matching file extension name
(case insensitive). For example to include txt files,
then use includeExt=txt. Multiple extensions can be
separated by comma, for example to include txt and
xml files, use includeExt=txt,xml. Note that the file
extension includes all parts, for example having a file
named mydata.tar.gz will have extension as tar.gz.
For more flexibility then use the include/exclude
options.

 String

maxDepth (filter) The maximum depth to traverse when recursively
processing a directory.

214748
3647

int

maxMessagesPer
Poll (filter)

To define a maximum messages to gather per poll.
By default no maximum is set. Can be used to set a
limit of e.g. 1000 to avoid when starting up the server
that there are thousands of files. Set a value of 0 or
negative to disabled it. Notice: If this option is in use
then the File and FTP components will limit before
any sorting. For example if you have 100000 files
and use maxMessagesPerPoll=500, then only the
first 500 files will be picked up, and then sorted. You
can use the eagerMaxMessagesPerPoll option and
set this to false to allow to scan all files first and then
sort afterwards.

 int

minDepth (filter) The minimum depth to start processing when
recursively processing a directory. Using minDepth=1
means the base directory. Using minDepth=2 means
the first sub directory.

 int

move (filter) Expression (such as Simple Language) used to
dynamically set the filename when moving it after
processing. To move files into a .done subdirectory
just enter .done.

 String

exclusiveReadLoc
kStrategy (lock)

Pluggable read-lock as a
org.apache.camel.component.file.GenericFileExclusiv
eReadLockStrategy implementation.

 GenericFileExclusi
veReadLockStrate
gy

readLock (lock) Used by consumer, to only poll the files if it has none String

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

402

exclusive read-lock on the file (i.e. the file is not in-
progress or being written). Camel will wait until the
file lock is granted. This option provides the build in
strategies: - none - No read lock is in use - markerFile
- Camel creates a marker file (fileName.camelLock)
and then holds a lock on it. This option is not available
for the FTP component - changed - Changed is using
file length/modification timestamp to detect whether
the file is currently being copied or not. Will at least
use 1 sec to determine this, so this option cannot
consume files as fast as the others, but can be more
reliable as the JDK IO API cannot always determine
whether a file is currently being used by another
process. The option readLockCheckInterval can be
used to set the check frequency. - fileLock - is for
using java.nio.channels.FileLock. This option is not
avail for Windows OS and the FTP component. This
approach should be avoided when accessing a
remote file system via a mount/share unless that file
system supports distributed file locks. - rename -
rename is for using a try to rename the file as a test if
we can get exclusive read-lock. - idempotent - (only
for file component) idempotent is for using a
idempotentRepository as the read-lock. This allows
to use read locks that supports clustering if the
idempotent repository implementation supports that.
- idempotent-changed - (only for file component)
idempotent-changed is for using a
idempotentRepository and changed as the combined
read-lock. This allows to use read locks that supports
clustering if the idempotent repository
implementation supports that. - idempotent-rename
- (only for file component) idempotent-rename is for
using a idempotentRepository and rename as the
combined read-lock. This allows to use read locks
that supports clustering if the idempotent repository
implementation supports that.Notice: The various
read locks is not all suited to work in clustered mode,
where concurrent consumers on different nodes is
competing for the same files on a shared file system.
The markerFile using a close to atomic operation to
create the empty marker file, but its not guaranteed
to work in a cluster. The fileLock may work better but
then the file system need to support distributed file
locks, and so on. Using the idempotent read lock can
support clustering if the idempotent repository
supports clustering, such as Hazelcast Component or
Infinispan.

Enum values:

none

markerFile

fileLock

Name Description Defaul
t

Type

CHAPTER 22. FTP

403

rename

changed

idempotent

idempotent-changed

idempotent-rename

readLockCheckIn
terval (lock)

Interval in millis for the read-lock, if supported by the
read lock. This interval is used for sleeping between
attempts to acquire the read lock. For example when
using the changed read lock, you can set a higher
interval period to cater for slow writes. The default of
1 sec. may be too fast if the producer is very slow
writing the file. Notice: For FTP the default
readLockCheckInterval is 5000. The
readLockTimeout value must be higher than
readLockCheckInterval, but a rule of thumb is to have
a timeout that is at least 2 or more times higher than
the readLockCheckInterval. This is needed to ensure
that amble time is allowed for the read lock process to
try to grab the lock before the timeout was hit.

1000 long

readLockDeleteO
rphanLockFiles
(lock)

Whether or not read lock with marker files should
upon startup delete any orphan read lock files, which
may have been left on the file system, if Camel was
not properly shutdown (such as a JVM crash). If
turning this option to false then any orphaned lock
file will cause Camel to not attempt to pickup that
file, this could also be due another node is
concurrently reading files from the same shared
directory.

true boolean

readLockLogging
Level (lock)

Logging level used when a read lock could not be
acquired. By default a DEBUG is logged. You can
change this level, for example to OFF to not have any
logging. This option is only applicable for readLock of
types: changed, fileLock, idempotent, idempotent-
changed, idempotent-rename, rename.

Enum values:

TRACE

DEBUG

INFO

WARN

ERROR

OFF

DEBU
G

LoggingLevel

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

404

readLockMarkerF
ile (lock)

Whether to use marker file with the changed, rename,
or exclusive read lock types. By default a marker file is
used as well to guard against other processes picking
up the same files. This behavior can be turned off by
setting this option to false. For example if you do not
want to write marker files to the file systems by the
Camel application.

true boolean

readLockMinAge
(lock)

This option is applied only for readLock=changed. It
allows to specify a minimum age the file must be
before attempting to acquire the read lock. For
example use readLockMinAge=300s to require the
file is at last 5 minutes old. This can speedup the
changed read lock as it will only attempt to acquire
files which are at least that given age.

0 long

readLockMinLeng
th (lock)

This option is applied only for readLock=changed. It
allows you to configure a minimum file length. By
default Camel expects the file to contain data, and
thus the default value is 1. You can set this option to
zero, to allow consuming zero-length files.

1 long

readLockRemove
OnCommit (lock)

This option is applied only for readLock=idempotent.
It allows to specify whether to remove the file name
entry from the idempotent repository when
processing the file is succeeded and a commit
happens. By default the file is not removed which
ensures that any race-condition do not occur so
another active node may attempt to grab the file.
Instead the idempotent repository may support
eviction strategies that you can configure to evict the
file name entry after X minutes - this ensures no
problems with race conditions. See more details at
the readLockIdempotentReleaseDelay option.

false boolean

readLockRemove
OnRollback (lock)

This option is applied only for readLock=idempotent.
It allows to specify whether to remove the file name
entry from the idempotent repository when
processing the file failed and a rollback happens. If
this option is false, then the file name entry is
confirmed (as if the file did a commit).

true boolean

Name Description Defaul
t

Type

CHAPTER 22. FTP

405

readLockTimeout
(lock)

Optional timeout in millis for the read-lock, if
supported by the read-lock. If the read-lock could not
be granted and the timeout triggered, then Camel will
skip the file. At next poll Camel, will try the file again,
and this time maybe the read-lock could be granted.
Use a value of 0 or lower to indicate forever.
Currently fileLock, changed and rename support the
timeout. Notice: For FTP the default
readLockTimeout value is 20000 instead of 10000.
The readLockTimeout value must be higher than
readLockCheckInterval, but a rule of thumb is to have
a timeout that is at least 2 or more times higher than
the readLockCheckInterval. This is needed to ensure
that amble time is allowed for the read lock process to
try to grab the lock before the timeout was hit.

10000 long

backoffErrorThre
shold (scheduler)

The number of subsequent error polls (failed due
some error) that should happen before the
backoffMultipler should kick-in.

 int

backoffIdleThres
hold (scheduler)

The number of subsequent idle polls that should
happen before the backoffMultipler should kick-in.

 int

backoffMultiplier
(scheduler)

To let the scheduled polling consumer backoff if
there has been a number of subsequent idles/errors
in a row. The multiplier is then the number of polls
that will be skipped before the next actual attempt is
happening again. When this option is in use then
backoffIdleThreshold and/or backoffErrorThreshold
must also be configured.

 int

delay (scheduler) Milliseconds before the next poll. 500 long

greedy
(scheduler)

If greedy is enabled, then the
ScheduledPollConsumer will run immediately again, if
the previous run polled 1 or more messages.

false boolean

initialDelay
(scheduler)

Milliseconds before the first poll starts. 1000 long

repeatCount
(scheduler)

Specifies a maximum limit of number of fires. So if
you set it to 1, the scheduler will only fire once. If you
set it to 5, it will only fire five times. A value of zero or
negative means fire forever.

0 long

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

406

runLoggingLevel
(scheduler)

The consumer logs a start/complete log line when it
polls. This option allows you to configure the logging
level for that.

Enum values:

TRACE

DEBUG

INFO

WARN

ERROR

OFF

TRACE LoggingLevel

scheduledExecut
orService
(scheduler)

Allows for configuring a custom/shared thread pool
to use for the consumer. By default each consumer
has its own single threaded thread pool.

 ScheduledExecuto
rService

scheduler
(scheduler)

To use a cron scheduler from either camel-spring or
camel-quartz component. Use value spring or quartz
for built in scheduler.

none Object

schedulerProperti
es (scheduler)

To configure additional properties when using a
custom scheduler or any of the Quartz, Spring based
scheduler.

 Map

startScheduler
(scheduler)

Whether the scheduler should be auto started. true boolean

timeUnit
(scheduler)

Time unit for initialDelay and delay options.

Enum values:

NANOSECONDS

MICROSECONDS

MILLISECONDS

SECONDS

MINUTES

HOURS

DAYS

MILLIS
ECON
DS

TimeUnit

Name Description Defaul
t

Type

CHAPTER 22. FTP

407

useFixedDelay
(scheduler)

Controls if fixed delay or fixed rate is used. See
ScheduledExecutorService in JDK for details.

true boolean

account (security) Account to use for login. String

password
(security)

Password to use for login. String

username
(security)

Username to use for login. String

shuffle (sort) To shuffle the list of files (sort in random order). false boolean

sortBy (sort) Built-in sort by using the File Language. Supports
nested sorts, so you can have a sort by file name and
as a 2nd group sort by modified date.

 String

sorter (sort) Pluggable sorter as a java.util.Comparator class. Comparator

Name Description Defaul
t

Type

22.5. FTPS COMPONENT DEFAULT TRUST STORE

When using the ftpClient. properties related to SSL with the FTPS component, the trust store accept all
certificates. If you only want trust selective certificates, you have to configure the trust store with the
ftpClient.trustStore.xxx options or by configuring a custom ftpClient.

When using sslContextParameters, the trust store is managed by the configuration of the provided
SSLContextParameters instance.

You can configure additional options on the ftpClient and ftpClientConfig from the URI directly by
using the ftpClient. or ftpClientConfig. prefix.

For example to set the setDataTimeout on the FTPClient to 30 seconds you can do:

You can mix and match and have use both prefixes, for example to configure date format or timezones.

You can have as many of these options as you like.

See the documentation of the Apache Commons FTP FTPClientConfig for possible options and more
details. And as well for Apache Commons FTP FTPClient.

If you do not like having many and long configuration in the url you can refer to the ftpClient or
ftpClientConfig to use by letting Camel lookup in the Registry for it.

from("ftp://foo@myserver?password=secret&ftpClient.dataTimeout=30000").to("bean:foo");

from("ftp://foo@myserver?
password=secret&ftpClient.dataTimeout=30000&ftpClientConfig.serverLanguageCode=fr").to("bean:f
oo");

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

408

For example:

And then let Camel lookup this bean when you use the # notation in the url.

22.6. EXAMPLES

ftp://someone@someftpserver.com/public/upload/images/holiday2008?password=secret&binary=true

ftp://someoneelse@someotherftpserver.co.uk:12049/reports/2008/password=secret&binary=false

ftp://publicftpserver.com/download

22.7. CONCURRENCY

FTP Consumer does not support concurrency

The FTP consumer (with the same endpoint) does not support concurrency (the backing FTP client is
not thread safe).
You can use multiple FTP consumers to poll from different endpoints. It is only a single endpoint that
does not support concurrent consumers.

The FTP producer does not have this issue, it supports concurrency.

22.8. MORE INFORMATION

This component is an extension of the File component. So there are more samples and details on the
File component page.

22.9. DEFAULT WHEN CONSUMING FILES

The FTP consumer will by default leave the consumed files untouched on the remote FTP server. You
have to configure it explicitly if you want it to delete the files or move them to another location. For
example you can use delete=true to delete the files, or use move=.done to move the files into a hidden
done sub directory.

The regular File consumer is different as it will by default move files to a .camel sub directory. The
reason Camel does not do this by default for the FTP consumer is that it may lack permissions by
default to be able to move or delete files.

22.9.1. limitations

The option readLock can be used to force Camel not to consume files that is currently in the progress
of being written. However, this option is turned off by default, as it requires that the user has write
access. See the options table at File2 for more details about read locks.

 <bean id="myConfig" class="org.apache.commons.net.ftp.FTPClientConfig">
 <property name="lenientFutureDates" value="true"/>
 <property name="serverLanguageCode" value="fr"/>
 </bean>

from("ftp://foo@myserver?password=secret&ftpClientConfig=#myConfig").to("bean:foo");

CHAPTER 22. FTP

409

There are other solutions to avoid consuming files that are currently being written over FTP; for
instance, you can write to a temporary destination and move the file after it has been written.

When moving files using move or preMove option the files are restricted to the FTP_ROOT folder. That
prevents you from moving files outside the FTP area. If you want to move files to another area you can
use soft links and move files into a soft linked folder.

22.10. MESSAGE HEADERS

The following message headers can be used to affect the behavior of the component

Header Description

CamelFileName Specifies the output file name (relative to the endpoint directory) to be
used for the output message when sending to the endpoint. If this is not
present and no expression either, then a generated message ID is used as
the filename instead.

CamelFileNameProduced The actual filepath (path + name) for the output file that was written. This
header is set by Camel and its purpose is providing end-users the name of
the file that was written.

CamelFileNameConsume
d

The file name of the file consumed

CamelFileHost The remote hostname.

CamelFileLocalWorkPath Path to the local work file, if local work directory is used.

In addition the FTP/FTPS consumer and producer will enrich the Camel Message with the following
headers

Header Description

CamelFtpReplyCode The FTP client reply code (the type is a integer)

CamelFtpReplyString The FTP client reply string

22.10.1. Exchange Properties

Camel sets the following exchange properties

Header Description

CamelBatchIndex Current index out of total number of files being consumed in this batch.

CamelBatchSize Total number of files being consumed in this batch.

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

410

CamelBatchComplete True if there are no more files in this batch.

Header Description

22.11. ABOUT TIMEOUTS

The two set of libraries (see top) has different API for setting timeout. You can use the
connectTimeout option for both of them to set a timeout in millis to establish a network connection. An
individual soTimeout can also be set on the FTP/FTPS, which corresponds to using
ftpClient.soTimeout. Notice SFTP will automatically use connectTimeout as its soTimeout. The
timeout option only applies for FTP/FTPS as the data timeout, which corresponds to the
ftpClient.dataTimeout value. All timeout values are in millis.

22.12. USING LOCAL WORK DIRECTORY

Camel supports consuming from remote FTP servers and downloading the files directly into a local work
directory. This avoids reading the entire remote file content into memory as it is streamed directly into
the local file using FileOutputStream.

Camel will store to a local file with the same name as the remote file, though with .inprogress as
extension while the file is being downloaded. Afterwards, the file is renamed to remove the .inprogress
suffix. And finally, when the Exchange is complete the local file is deleted.

So if you want to download files from a remote FTP server and store it as files then you need to route to
a file endpoint such as:

NOTE

The route above is ultra efficient as it avoids reading the entire file content into memory.
It will download the remote file directly to a local file stream. The java.io.File handle is
then used as the Exchange body. The file producer leverages this fact and can work
directly on the work file java.io.File handle and perform a java.io.File.rename to the
target filename. As Camel knows it’s a local work file, it can optimize and use a rename
instead of a file copy, as the work file is meant to be deleted anyway.

22.13. STEPWISE CHANGING DIRECTORIES

Camel FTP can operate in two modes in terms of traversing directories when consuming files (eg
downloading) or producing files (eg uploading)

stepwise

not stepwise

You may want to pick either one depending on your situation and security issues. Some Camel end users
can only download files if they use stepwise, while others can only download if they do not.

You can use the stepwise option to control the behavior.

Note that stepwise changing of directory will in most cases only work when the user is confined to it’s

from("ftp://someone@someserver.com?password=secret&localWorkDirectory=/tmp").to("file://inbox");

CHAPTER 22. FTP

411

Note that stepwise changing of directory will in most cases only work when the user is confined to it’s
home directory and when the home directory is reported as "/".

The difference between the two of them is best illustrated with an example. Suppose we have the
following directory structure on the remote FTP server we need to traverse and download files:

/
/one
/one/two
/one/two/sub-a
/one/two/sub-b

And that we have a file in each of sub-a (a.txt) and sub-b (b.txt) folder.

22.14. USING STEPWISE=TRUE (DEFAULT MODE)

TYPE A
200 Type set to A
PWD
257 "/" is current directory.
CWD one
250 CWD successful. "/one" is current directory.
CWD two
250 CWD successful. "/one/two" is current directory.
SYST
215 UNIX emulated by FileZilla
PORT 127,0,0,1,17,94
200 Port command successful
LIST
150 Opening data channel for directory list.
226 Transfer OK
CWD sub-a
250 CWD successful. "/one/two/sub-a" is current directory.
PORT 127,0,0,1,17,95
200 Port command successful
LIST
150 Opening data channel for directory list.
226 Transfer OK
CDUP
200 CDUP successful. "/one/two" is current directory.
CWD sub-b
250 CWD successful. "/one/two/sub-b" is current directory.
PORT 127,0,0,1,17,96
200 Port command successful
LIST
150 Opening data channel for directory list.
226 Transfer OK
CDUP
200 CDUP successful. "/one/two" is current directory.
CWD /
250 CWD successful. "/" is current directory.
PWD
257 "/" is current directory.
CWD one
250 CWD successful. "/one" is current directory.

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

412

CWD two
250 CWD successful. "/one/two" is current directory.
PORT 127,0,0,1,17,97
200 Port command successful
RETR foo.txt
150 Opening data channel for file transfer.
226 Transfer OK
CWD /
250 CWD successful. "/" is current directory.
PWD
257 "/" is current directory.
CWD one
250 CWD successful. "/one" is current directory.
CWD two
250 CWD successful. "/one/two" is current directory.
CWD sub-a
250 CWD successful. "/one/two/sub-a" is current directory.
PORT 127,0,0,1,17,98
200 Port command successful
RETR a.txt
150 Opening data channel for file transfer.
226 Transfer OK
CWD /
250 CWD successful. "/" is current directory.
PWD
257 "/" is current directory.
CWD one
250 CWD successful. "/one" is current directory.
CWD two
250 CWD successful. "/one/two" is current directory.
CWD sub-b
250 CWD successful. "/one/two/sub-b" is current directory.
PORT 127,0,0,1,17,99
200 Port command successful
RETR b.txt
150 Opening data channel for file transfer.
226 Transfer OK
CWD /
250 CWD successful. "/" is current directory.
QUIT
221 Goodbye
disconnected.

As you can see when stepwise is enabled, it will traverse the directory structure using CD xxx.

22.15. USING STEPWISE=FALSE

230 Logged on
TYPE A
200 Type set to A
SYST
215 UNIX emulated by FileZilla
PORT 127,0,0,1,4,122
200 Port command successful
LIST one/two

CHAPTER 22. FTP

413

150 Opening data channel for directory list
226 Transfer OK
PORT 127,0,0,1,4,123
200 Port command successful
LIST one/two/sub-a
150 Opening data channel for directory list
226 Transfer OK
PORT 127,0,0,1,4,124
200 Port command successful
LIST one/two/sub-b
150 Opening data channel for directory list
226 Transfer OK
PORT 127,0,0,1,4,125
200 Port command successful
RETR one/two/foo.txt
150 Opening data channel for file transfer.
226 Transfer OK
PORT 127,0,0,1,4,126
200 Port command successful
RETR one/two/sub-a/a.txt
150 Opening data channel for file transfer.
226 Transfer OK
PORT 127,0,0,1,4,127
200 Port command successful
RETR one/two/sub-b/b.txt
150 Opening data channel for file transfer.
226 Transfer OK
QUIT
221 Goodbye
disconnected.

As you can see when not using stepwise, there are no CD operation invoked at all.

22.16. SAMPLES

In the sample below we set up Camel to download all the reports from the FTP server once every hour
(60 min) as BINARY content and store it as files on the local file system.

And the route using XML DSL:

22.16.1. Consuming a remote FTPS server (implicit SSL) and client authentication

 <route>
 <from uri="ftp://scott@localhost/public/reports?
password=tiger&binary=true&delay=60000"/>
 <to uri="file://target/test-reports"/>
 </route>

from("ftps://admin@localhost:2222/public/camel?
password=admin&securityProtocol=SSL&implicit=true
 &ftpClient.keyStore.file=./src/test/resources/server.jks
 &ftpClient.keyStore.password=password&ftpClient.keyStore.keyPassword=password")
 .to("bean:foo");

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

414

22.16.2. Consuming a remote FTPS server (explicit TLS) and a custom trust store
configuration

22.17. CUSTOM FILTERING

Camel supports pluggable filtering strategies. This strategy it to use the build in
org.apache.camel.component.file.GenericFileFilter in Java. You can then configure the endpoint
with such a filter to skip certain filters before being processed.

In the sample we have built our own filter that only accepts files starting with report in the filename.

And then we can configure our route using the filter attribute to reference our filter (using # notation)
that we have defined in the spring XML file:

22.18. FILTERING USING ANT PATH MATCHER

The ANT path matcher is a filter that is shipped out-of-the-box in the camel-spring jar. So you need to
depend on camel-spring if you are using Maven.
The reason is that we leverage Spring’s AntPathMatcher to do the actual matching.

The file paths are matched with the following rules:

? matches one character

* matches zero or more characters

** matches zero or more directories in a path

The sample below demonstrates how to use it:

22.19. USING A PROXY WITH SFTP

To use an HTTP proxy to connect to your remote host, you can configure your route in the following
way:

from("ftps://admin@localhost:2222/public/camel?
password=admin&ftpClient.trustStore.file=./src/test/resources/server.jks&ftpClient.trustStore.password=
password")
 .to("bean:foo");

 <!-- define our sorter as a plain spring bean -->
 <bean id="myFilter" class="com.mycompany.MyFileFilter"/>

 <route>
 <from uri="ftp://someuser@someftpserver.com?password=secret&filter=#myFilter"/>
 <to uri="bean:processInbox"/>
 </route>

<!-- define our sorter as a plain spring bean -->
<bean id="proxy" class="com.jcraft.jsch.ProxyHTTP">
 <constructor-arg value="localhost"/>
 <constructor-arg value="7777"/>
</bean>

CHAPTER 22. FTP

415

http://static.springsource.org/spring/docs/3.0.x/api/org/springframework/util/AntPathMatcher.html

You can also assign a user name and password to the proxy, if necessary. Please consult the
documentation for com.jcraft.jsch.Proxy to discover all options.

22.20. SETTING PREFERRED SFTP AUTHENTICATION METHOD

If you want to explicitly specify the list of authentication methods that should be used by sftp
component, use preferredAuthentications option. If for example you would like Camel to attempt to
authenticate with private/public SSH key and fallback to user/password authentication in the case when
no public key is available, use the following route configuration:

22.21. CONSUMING A SINGLE FILE USING A FIXED NAME

When you want to download a single file and knows the file name, you can use
fileName=myFileName.txt to tell Camel the name of the file to download. By default the consumer will
still do a FTP LIST command to do a directory listing and then filter these files based on the fileName
option. Though in this use-case it may be desirable to turn off the directory listing by setting
useList=false. For example the user account used to login to the FTP server may not have permission
to do a FTP LIST command. So you can turn off this with useList=false, and then provide the fixed
name of the file to download with fileName=myFileName.txt, then the FTP consumer can still download
the file. If the file for some reason does not exist, then Camel will by default throw an exception, you can
turn this off and ignore this by setting ignoreFileNotFoundOrPermissionError=true.

For example to have a Camel route that pickup a single file, and delete it after use you can do

Notice that we have used all the options we talked above.

You can also use this with ConsumerTemplate. For example to download a single file (if it exists) and
grab the file content as a String type:

22.22. DEBUG LOGGING

This component has log level TRACE that can be helpful if you have problems.

<route>
 <from uri="sftp://localhost:9999/root?username=admin&password=admin&proxy=#proxy"/>
 <to uri="bean:processFile"/>
</route>

from("sftp://localhost:9999/root?
username=admin&password=admin&preferredAuthentications=publickey,password").
 to("bean:processFile");

from("ftp://admin@localhost:21/nolist/?
password=admin&stepwise=false&useList=false&ignoreFileNotFoundOrPermissionError=true&fileName
=report.txt&delete=true")
 .to("activemq:queue:report");

String data = template.retrieveBodyNoWait("ftp://admin@localhost:21/nolist/?
password=admin&stepwise=false&useList=false&ignoreFileNotFoundOrPermissionError=true&fileName
=report.txt&delete=true", String.class);

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

416

22.23. SPRING BOOT AUTO-CONFIGURATION

When using ftp with Spring Boot make sure to use the following Maven dependency to have support for
auto configuration:

The component supports 13 options, which are listed below.

Name Description Defaul
t

Type

camel.component
.ftp.autowired-
enabled

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true Boolean

camel.component
.ftp.bridge-error-
handler

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false Boolean

camel.component
.ftp.enabled

Whether to enable auto configuration of the ftp
component. This is enabled by default.

 Boolean

camel.component
.ftp.lazy-start-
producer

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false Boolean

<dependency>
 <groupId>org.apache.camel.springboot</groupId>
 <artifactId>camel-ftp-starter</artifactId>
 <version>3.14.5.redhat-00032</version>
 <!-- Use your Camel Spring Boot version -->
</dependency>

CHAPTER 22. FTP

417

camel.component
.ftps.autowired-
enabled

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true Boolean

camel.component
.ftps.bridge-
error-handler

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false Boolean

camel.component
.ftps.enabled

Whether to enable auto configuration of the ftps
component. This is enabled by default.

 Boolean

camel.component
.ftps.lazy-start-
producer

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false Boolean

camel.component
.ftps.use-global-
ssl-context-
parameters

Enable usage of global SSL context parameters. false Boolean

camel.component
.sftp.autowired-
enabled

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true Boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

418

camel.component
.sftp.bridge-
error-handler

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false Boolean

camel.component
.sftp.enabled

Whether to enable auto configuration of the sftp
component. This is enabled by default.

 Boolean

camel.component
.sftp.lazy-start-
producer

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false Boolean

Name Description Defaul
t

Type

CHAPTER 22. FTP

419

CHAPTER 23. HTTP
Only producer is supported

The HTTP component provides HTTP based endpoints for calling external HTTP resources (as a client
to call external servers using HTTP).

Maven users will need to add the following dependency to their pom.xml for this component:

23.1. URI FORMAT

http:hostname[:port][/resourceUri][?options]

Will by default use port 80 for HTTP and 443 for HTTPS.

23.2. CONFIGURING OPTIONS

Camel components are configured on two separate levels:

component level

endpoint level

23.2.1. Configuring Component Options

The component level is the highest level which holds general and common configurations that are
inherited by the endpoints. For example a component may have security settings, credentials for
authentication, urls for network connection and so forth.

Some components only have a few options, and others may have many. Because components typically
have pre configured defaults that are commonly used, then you may often only need to configure a few
options on a component; or none at all.

Configuring components can be done with the Component DSL, in a configuration file
(application.properties|yaml), or directly with Java code.

23.2.2. Configuring Endpoint Options

Where you find yourself configuring the most is on endpoints, as endpoints often have many options,
which allows you to configure what you need the endpoint to do. The options are also categorized into
whether the endpoint is used as consumer (from) or as a producer (to), or used for both.

Configuring endpoints is most often done directly in the endpoint URI as path and query parameters.
You can also use the Endpoint DSL as a type safe way of configuring endpoints.

A good practice when configuring options is to use Property Placeholders, which allows to not hardcode

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-http</artifactId>
 <version>3.14.5.redhat-00018</version>
 <!-- use the same version as your Camel core version -->
</dependency>

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

420

https://camel.apache.org/manual/component-dsl.html
https://camel.apache.org/manual/Endpoint-dsl.html

A good practice when configuring options is to use Property Placeholders, which allows to not hardcode
urls, port numbers, sensitive information, and other settings. In other words placeholders allows to
externalize the configuration from your code, and gives more flexibility and reuse.

The following two sections lists all the options, firstly for the component followed by the endpoint.

23.3. COMPONENT OPTIONS

The HTTP component supports 37 options, which are listed below.

Name Description Defaul
t

Type

cookieStore
(producer)

To use a custom org.apache.http.client.CookieStore.
By default the
org.apache.http.impl.client.BasicCookieStore is used
which is an in-memory only cookie store. Notice if
bridgeEndpoint=true then the cookie store is forced
to be a noop cookie store as cookie shouldn’t be
stored as we are just bridging (eg acting as a proxy).

 CookieStore

copyHeaders
(producer)

If this option is true then IN exchange headers will be
copied to OUT exchange headers according to copy
strategy. Setting this to false, allows to only include
the headers from the HTTP response (not
propagating IN headers).

true boolean

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

responsePayload
StreamingThresh
old (producer)

This threshold in bytes controls whether the response
payload should be stored in memory as a byte array
or be streaming based. Set this to -1 to always use
streaming mode.

8192 int

skipRequestHead
ers (producer
(advanced))

Whether to skip mapping all the Camel headers as
HTTP request headers. If there are no data from
Camel headers needed to be included in the HTTP
request then this can avoid parsing overhead with
many object allocations for the JVM garbage
collector.

false boolean

CHAPTER 23. HTTP

421

https://camel.apache.org/manual/using-propertyplaceholder.html

skipResponseHea
ders (producer
(advanced))

Whether to skip mapping all the HTTP response
headers to Camel headers. If there are no data
needed from HTTP headers then this can avoid
parsing overhead with many object allocations for the
JVM garbage collector.

false boolean

allowJavaSerializ
edObject
(advanced)

Whether to allow java serialization when a request
uses context-type=application/x-java-serialized-
object. This is by default turned off. If you enable this
then be aware that Java will deserialize the incoming
data from the request to Java and that can be a
potential security risk.

false boolean

authCachingDisa
bled (advanced)

Disables authentication scheme caching. false boolean

automaticRetries
Disabled
(advanced)

Disables automatic request recovery and re-
execution.

false boolean

autowiredEnabled
(advanced)

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true boolean

clientConnection
Manager
(advanced)

To use a custom and shared
HttpClientConnectionManager to manage
connections. If this has been configured then this is
always used for all endpoints created by this
component.

 HttpClientConnec
tionManager

connectionsPerR
oute (advanced)

The maximum number of connections per route. 20 int

connectionStateD
isabled
(advanced)

Disables connection state tracking. false boolean

connectionTimeT
oLive (advanced)

The time for connection to live, the time unit is
millisecond, the default value is always keep alive.

 long

contentCompress
ionDisabled
(advanced)

Disables automatic content decompression. false boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

422

cookieManageme
ntDisabled
(advanced)

Disables state (cookie) management. false boolean

defaultUserAgent
Disabled
(advanced)

Disables the default user agent set by this builder if
none has been provided by the user.

false boolean

httpBinding
(advanced)

To use a custom HttpBinding to control the mapping
between Camel message and HttpClient.

 HttpBinding

httpClientConfig
urer (advanced)

To use the custom HttpClientConfigurer to perform
configuration of the HttpClient that will be used.

 HttpClientConfigu
rer

httpConfiguratio
n (advanced)

To use the shared HttpConfiguration as base
configuration.

 HttpConfiguration

httpContext
(advanced)

To use a custom
org.apache.http.protocol.HttpContext when
executing requests.

 HttpContext

maxTotalConnect
ions (advanced)

The maximum number of connections. 200 int

redirectHandling
Disabled
(advanced)

Disables automatic redirect handling. false boolean

headerFilterStrat
egy (filter)

To use a custom
org.apache.camel.spi.HeaderFilterStrategy to filter
header to and from Camel message.

 HeaderFilterStrate
gy

proxyAuthDomain
(proxy)

Proxy authentication domain to use. String

proxyAuthHost
(proxy)

Proxy authentication host. String

proxyAuthMetho
d (proxy)

Proxy authentication method to use.

Enum values:

Basic

Digest

NTLM

 String

Name Description Defaul
t

Type

CHAPTER 23. HTTP

423

proxyAuthNtHost
(proxy)

Proxy authentication domain (workstation name) to
use with NTML.

 String

proxyAuthPasswo
rd (proxy)

Proxy authentication password. String

proxyAuthPort
(proxy)

Proxy authentication port. Integer

proxyAuthUserna
me (proxy)

Proxy authentication username. String

sslContextParam
eters (security)

To configure security using SSLContextParameters.
Important: Only one instance of
org.apache.camel.support.jsse.SSLContextParamete
rs is supported per HttpComponent. If you need to
use 2 or more different instances, you need to define
a new HttpComponent per instance you need.

 SSLContextParam
eters

useGlobalSslCont
extParameters
(security)

Enable usage of global SSL context parameters. false boolean

x509HostnameVe
rifier (security)

To use a custom X509HostnameVerifier such as
DefaultHostnameVerifier or NoopHostnameVerifier.

 HostnameVerifier

connectionReque
stTimeout
(timeout)

The timeout in milliseconds used when requesting a
connection from the connection manager. A timeout
value of zero is interpreted as an infinite timeout. A
timeout value of zero is interpreted as an infinite
timeout. A negative value is interpreted as undefined
(system default).

-1 int

connectTimeout
(timeout)

Determines the timeout in milliseconds until a
connection is established. A timeout value of zero is
interpreted as an infinite timeout. A timeout value of
zero is interpreted as an infinite timeout. A negative
value is interpreted as undefined (system default).

-1 int

socketTimeout
(timeout)

Defines the socket timeout in milliseconds, which is
the timeout for waiting for data or, put differently, a
maximum period inactivity between two consecutive
data packets). A timeout value of zero is interpreted
as an infinite timeout. A negative value is interpreted
as undefined (system default).

-1 int

Name Description Defaul
t

Type

23.4. ENDPOINT OPTIONS

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

424

The HTTP endpoint is configured using URI syntax:

http://httpUri

with the following path and query parameters:

23.4.1. Path Parameters (1 parameters)

Name Description Defaul
t

Type

httpUri (common) Required The url of the HTTP endpoint to call. URI

23.4.2. Query Parameters (51 parameters)

Name Description Defaul
t

Type

chunked
(producer)

If this option is false the Servlet will disable the HTTP
streaming and set the content-length header on the
response.

true boolean

disableStreamCa
che (common)

Determines whether or not the raw input stream from
Servlet is cached or not (Camel will read the stream
into a in memory/overflow to file, Stream caching)
cache. By default Camel will cache the Servlet input
stream to support reading it multiple times to ensure
it Camel can retrieve all data from the stream.
However you can set this option to true when you for
example need to access the raw stream, such as
streaming it directly to a file or other persistent store.
DefaultHttpBinding will copy the request input
stream into a stream cache and put it into message
body if this option is false to support reading the
stream multiple times. If you use Servlet to
bridge/proxy an endpoint then consider enabling this
option to improve performance, in case you do not
need to read the message payload multiple times.
The http producer will by default cache the response
body stream. If setting this option to true, then the
producers will not cache the response body stream
but use the response stream as-is as the message
body.

false boolean

headerFilterStrat
egy (common)

To use a custom HeaderFilterStrategy to filter
header to and from Camel message.

 HeaderFilterStrate
gy

httpBinding
(common
(advanced))

To use a custom HttpBinding to control the mapping
between Camel message and HttpClient.

 HttpBinding

CHAPTER 23. HTTP

425

bridgeEndpoint
(producer)

If the option is true, HttpProducer will ignore the
Exchange.HTTP_URI header, and use the endpoint’s
URI for request. You may also set the option
throwExceptionOnFailure to be false to let the
HttpProducer send all the fault response back.

false boolean

clearExpiredCook
ies (producer)

Whether to clear expired cookies before sending the
HTTP request. This ensures the cookies store does
not keep growing by adding new cookies which is
newer removed when they are expired. If the
component has disabled cookie management then
this option is disabled too.

true boolean

connectionClose
(producer)

Specifies whether a Connection Close header must
be added to HTTP Request. By default
connectionClose is false.

false boolean

copyHeaders
(producer)

If this option is true then IN exchange headers will be
copied to OUT exchange headers according to copy
strategy. Setting this to false, allows to only include
the headers from the HTTP response (not
propagating IN headers).

true boolean

customHostHead
er (producer)

To use custom host header for producer. When not
set in query will be ignored. When set will override
host header derived from url.

 String

httpMethod
(producer)

Configure the HTTP method to use. The HttpMethod
header cannot override this option if set.

Enum values:

GET

POST

PUT

DELETE

HEAD

OPTIONS

TRACE

PATCH

 HttpMethods

ignoreResponseB
ody (producer)

If this option is true, The http producer won’t read
response body and cache the input stream.

false boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

426

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

preserveHostHea
der (producer)

If the option is true, HttpProducer will set the Host
header to the value contained in the current
exchange Host header, useful in reverse proxy
applications where you want the Host header
received by the downstream server to reflect the URL
called by the upstream client, this allows applications
which use the Host header to generate accurate
URL’s for a proxied service.

false boolean

throwExceptionO
nFailure
(producer)

Option to disable throwing the
HttpOperationFailedException in case of failed
responses from the remote server. This allows you to
get all responses regardless of the HTTP status code.

true boolean

transferException
(producer)

If enabled and an Exchange failed processing on the
consumer side, and if the caused Exception was send
back serialized in the response as a application/x-
java-serialized-object content type. On the producer
side the exception will be deserialized and thrown as
is, instead of the HttpOperationFailedException. The
caused exception is required to be serialized. This is
by default turned off. If you enable this then be
aware that Java will deserialize the incoming data
from the request to Java and that can be a potential
security risk.

false boolean

cookieHandler
(producer
(advanced))

Configure a cookie handler to maintain a HTTP
session.

 CookieHandler

Name Description Defaul
t

Type

CHAPTER 23. HTTP

427

cookieStore
(producer
(advanced))

To use a custom CookieStore. By default the
BasicCookieStore is used which is an in-memory only
cookie store. Notice if bridgeEndpoint=true then the
cookie store is forced to be a noop cookie store as
cookie shouldn’t be stored as we are just bridging (eg
acting as a proxy). If a cookieHandler is set then the
cookie store is also forced to be a noop cookie store
as cookie handling is then performed by the
cookieHandler.

 CookieStore

deleteWithBody
(producer
(advanced))

Whether the HTTP DELETE should include the
message body or not. By default HTTP DELETE do
not include any HTTP body. However in some rare
cases users may need to be able to include the
message body.

false boolean

getWithBody
(producer
(advanced))

Whether the HTTP GET should include the message
body or not. By default HTTP GET do not include any
HTTP body. However in some rare cases users may
need to be able to include the message body.

false boolean

okStatusCodeRan
ge (producer
(advanced))

The status codes which are considered a success
response. The values are inclusive. Multiple ranges
can be defined, separated by comma, e.g. 200-
204,209,301-304. Each range must be a single
number or from-to with the dash included.

200-
299

String

skipRequestHead
ers (producer
(advanced))

Whether to skip mapping all the Camel headers as
HTTP request headers. If there are no data from
Camel headers needed to be included in the HTTP
request then this can avoid parsing overhead with
many object allocations for the JVM garbage
collector.

false boolean

skipResponseHea
ders (producer
(advanced))

Whether to skip mapping all the HTTP response
headers to Camel headers. If there are no data
needed from HTTP headers then this can avoid
parsing overhead with many object allocations for the
JVM garbage collector.

false boolean

userAgent
(producer
(advanced))

To set a custom HTTP User-Agent request header. String

clientBuilder
(advanced)

Provide access to the http client request parameters
used on new RequestConfig instances used by
producers or consumers of this endpoint.

 HttpClientBuilder

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

428

clientConnection
Manager
(advanced)

To use a custom HttpClientConnectionManager to
manage connections.

 HttpClientConnec
tionManager

connectionsPerR
oute (advanced)

The maximum number of connections per route. 20 int

httpClient
(advanced)

Sets a custom HttpClient to be used by the producer. HttpClient

httpClientConfig
urer (advanced)

Register a custom configuration strategy for new
HttpClient instances created by producers or
consumers such as to configure authentication
mechanisms etc.

 HttpClientConfigu
rer

httpClientOption
s (advanced)

To configure the HttpClient using the key/values
from the Map.

 Map

httpContext
(advanced)

To use a custom HttpContext instance. HttpContext

maxTotalConnect
ions (advanced)

The maximum number of connections. 200 int

useSystemProper
ties (advanced)

To use System Properties as fallback for
configuration.

false boolean

proxyAuthDomain
(proxy)

Proxy authentication domain to use with NTML. String

proxyAuthHost
(proxy)

Proxy authentication host. String

proxyAuthMetho
d (proxy)

Proxy authentication method to use.

Enum values:

Basic

Digest

NTLM

 String

proxyAuthNtHost
(proxy)

Proxy authentication domain (workstation name) to
use with NTML.

 String

Name Description Defaul
t

Type

CHAPTER 23. HTTP

429

proxyAuthPasswo
rd (proxy)

Proxy authentication password. String

proxyAuthPort
(proxy)

Proxy authentication port. int

proxyAuthSchem
e (proxy)

Proxy authentication scheme to use.

Enum values:

http

https

 String

proxyAuthUserna
me (proxy)

Proxy authentication username. String

proxyHost (proxy) Proxy hostname to use. String

proxyPort (proxy) Proxy port to use. int

authDomain
(security)

Authentication domain to use with NTML. String

authenticationPre
emptive (security)

If this option is true, camel-http sends preemptive
basic authentication to the server.

false boolean

authHost
(security)

Authentication host to use with NTML. String

authMethod
(security)

Authentication methods allowed to use as a comma
separated list of values Basic, Digest or NTLM.

 String

authMethodPriori
ty (security)

Which authentication method to prioritize to use,
either as Basic, Digest or NTLM.

Enum values:

Basic

Digest

NTLM

 String

authPassword
(security)

Authentication password. String

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

430

authUsername
(security)

Authentication username. String

sslContextParam
eters (security)

To configure security using SSLContextParameters.
Important: Only one instance of
org.apache.camel.util.jsse.SSLContextParameters is
supported per HttpComponent. If you need to use 2
or more different instances, you need to define a new
HttpComponent per instance you need.

 SSLContextParam
eters

x509HostnameVe
rifier (security)

To use a custom X509HostnameVerifier such as
DefaultHostnameVerifier or NoopHostnameVerifier.

 HostnameVerifier

Name Description Defaul
t

Type

23.5. MESSAGE HEADERS

Name Type Description

Exchange.HTTP_URI String URI to call. Will override existing URI set directly on
the endpoint. This uri is the uri of the http server to
call. Its not the same as the Camel endpoint uri, where
you can configure endpoint options such as security
etc. This header does not support that, its only the
uri of the http server.

Exchange.HTTP_PATH String Request URI’s path, the header will be used to build
the request URI with the HTTP_URI.

Exchange.HTTP_QUERY String URI parameters. Will override existing URI
parameters set directly on the endpoint.

Exchange.HTTP_RESPON
SE_CODE

int The HTTP response code from the external server. Is
200 for OK.

Exchange.HTTP_RESPON
SE_TEXT

String The HTTP response text from the external server.

Exchange.HTTP_CHARA
CTER_ENCODING

String Character encoding.

Exchange.CONTENT_TYP
E

String The HTTP content type. Is set on both the IN and
OUT message to provide a content type, such as
text/html.

Exchange.CONTENT_EN
CODING

String The HTTP content encoding. Is set on both the IN
and OUT message to provide a content encoding,
such as gzip.

CHAPTER 23. HTTP

431

23.6. MESSAGE BODY

Camel will store the HTTP response from the external server on the OUT body. All headers from the IN
message will be copied to the OUT message, so headers are preserved during routing. Additionally
Camel will add the HTTP response headers as well to the OUT message headers.

23.7. USING SYSTEM PROPERTIES

When setting useSystemProperties to true, the HTTP Client will look for the following System
Properties and it will use it:

ssl.TrustManagerFactory.algorithm

javax.net.ssl.trustStoreType

javax.net.ssl.trustStore

javax.net.ssl.trustStoreProvider

javax.net.ssl.trustStorePassword

java.home

ssl.KeyManagerFactory.algorithm

javax.net.ssl.keyStoreType

javax.net.ssl.keyStore

javax.net.ssl.keyStoreProvider

javax.net.ssl.keyStorePassword

http.proxyHost

http.proxyPort

http.nonProxyHosts

http.keepAlive

http.maxConnections

23.8. RESPONSE CODE

Camel will handle according to the HTTP response code:

Response code is in the range 100..299, Camel regards it as a success response.

Response code is in the range 300..399, Camel regards it as a redirection response and will
throw a HttpOperationFailedException with the information.

Response code is 400+, Camel regards it as an external server failure and will throw a
HttpOperationFailedException with the information.

throwExceptionOnFailure The option, throwExceptionOnFailure, can be set to false to prevent the

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

432

http://javax.net
http://javax.net/
http://javax.net/
http://javax.net/
http://javax.net/
http://javax.net/
http://javax.net/
http://javax.net/

HttpOperationFailedException from being thrown for failed response codes. This allows you to get any
response from the remote server.
There is a sample below demonstrating this.

23.9. EXCEPTIONS

HttpOperationFailedException exception contains the following information:

The HTTP status code

The HTTP status line (text of the status code)

Redirect location, if server returned a redirect

Response body as a java.lang.String, if server provided a body as response

23.10. WHICH HTTP METHOD WILL BE USED

The following algorithm is used to determine what HTTP method should be used:
1. Use method provided as endpoint configuration (httpMethod).
2. Use method provided in header (Exchange.HTTP_METHOD).
3. GET if query string is provided in header.
4. GET if endpoint is configured with a query string.
5. POST if there is data to send (body is not null).
6. GET otherwise.

23.11. HOW TO GET ACCESS TO HTTPSERVLETREQUEST AND
HTTPSERVLETRESPONSE

You can get access to these two using the Camel type converter system using

NOTE

You can get the request and response not just from the processor after the camel-jetty
or camel-cxf endpoint.

23.12. CONFIGURING URI TO CALL

You can set the HTTP producer’s URI directly form the endpoint URI. In the route below, Camel will call
out to the external server, oldhost, using HTTP.

And the equivalent Spring sample:

HttpServletRequest request = exchange.getIn().getBody(HttpServletRequest.class);
HttpServletResponse response = exchange.getIn().getBody(HttpServletResponse.class);

from("direct:start")
 .to("http://oldhost");

<camelContext xmlns="http://activemq.apache.org/camel/schema/spring">
 <route>
 <from uri="direct:start"/>

CHAPTER 23. HTTP

433

You can override the HTTP endpoint URI by adding a header with the key, Exchange.HTTP_URI, on the
message.

In the sample above Camel will call the http://newhost/ despite the endpoint is configured with
http://oldhost/.
If the http endpoint is working in bridge mode, it will ignore the message header of
Exchange.HTTP_URI.

23.13. CONFIGURING URI PARAMETERS

The http producer supports URI parameters to be sent to the HTTP server. The URI parameters can
either be set directly on the endpoint URI or as a header with the key Exchange.HTTP_QUERY on the
message.

Or options provided in a header:

23.14. HOW TO SET THE HTTP METHOD
(GET/PATCH/POST/PUT/DELETE/HEAD/OPTIONS/TRACE) TO THE
HTTP PRODUCER

The HTTP component provides a way to set the HTTP request method by setting the message header.
Here is an example:

The method can be written a bit shorter using the string constants:

And the equivalent Spring sample:

 <to uri="http://oldhost"/>
 </route>
</camelContext>

from("direct:start")
 .setHeader(Exchange.HTTP_URI, constant("http://newhost"))
 .to("http://oldhost");

from("direct:start")
 .to("http://oldhost?order=123&detail=short");

from("direct:start")
 .setHeader(Exchange.HTTP_QUERY, constant("order=123&detail=short"))
 .to("http://oldhost");

from("direct:start")
 .setHeader(Exchange.HTTP_METHOD,
constant(org.apache.camel.component.http.HttpMethods.POST))
 .to("http://www.google.com")
 .to("mock:results");

.setHeader("CamelHttpMethod", constant("POST"))

<camelContext xmlns="http://activemq.apache.org/camel/schema/spring">
 <route>

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

434

http://newhost/
http://oldhost/

23.15. USING CLIENT TIMEOUT - SO_TIMEOUT

See the HttpSOTimeoutTest unit test.

23.16. CONFIGURING A PROXY

The HTTP component provides a way to configure a proxy.

There is also support for proxy authentication via the proxyAuthUsername and proxyAuthPassword
options.

23.16.1. Using proxy settings outside of URI

To avoid System properties conflicts, you can set proxy configuration only from the CamelContext or
URI.
Java DSL :

Spring XML

Camel will first set the settings from Java System or CamelContext Properties and then the endpoint
proxy options if provided.
So you can override the system properties with the endpoint options.

There is also a http.proxyScheme property you can set to explicit configure the scheme to use.

23.17. CONFIGURING CHARSET

If you are using POST to send data you can configure the charset using the Exchange property:

 <from uri="direct:start"/>
 <setHeader name="CamelHttpMethod">
 <constant>POST</constant>
 </setHeader>
 <to uri="http://www.google.com"/>
 <to uri="mock:results"/>
 </route>
</camelContext>

from("direct:start")
 .to("http://oldhost?proxyAuthHost=www.myproxy.com&proxyAuthPort=80");

 context.getGlobalOptions().put("http.proxyHost", "172.168.18.9");
 context.getGlobalOptions().put("http.proxyPort", "8080");

 <camelContext>
 <properties>
 <property key="http.proxyHost" value="172.168.18.9"/>
 <property key="http.proxyPort" value="8080"/>
 </properties>
 </camelContext>

exchange.setProperty(Exchange.CHARSET_NAME, "ISO-8859-1");

CHAPTER 23. HTTP

435

https://github.com/apache/camel/blob/main/components/camel-http/src/test/java/org/apache/camel/component/http/HttpSOTimeoutTest.java

23.17.1. Sample with scheduled poll

This sample polls the Google homepage every 10 seconds and write the page to the file message.html:

23.17.2. URI Parameters from the endpoint URI

In this sample we have the complete URI endpoint that is just what you would have typed in a web
browser. Multiple URI parameters can of course be set using the & character as separator, just as you
would in the web browser. Camel does no tricks here.

23.17.3. URI Parameters from the Message

In the header value above notice that it should not be prefixed with ? and you can separate parameters
as usual with the & char.

23.17.4. Getting the Response Code

You can get the HTTP response code from the HTTP component by getting the value from the Out
message header with Exchange.HTTP_RESPONSE_CODE.

23.18. DISABLING COOKIES

To disable cookies you can set the HTTP Client to ignore cookies by adding this URI option:
httpClient.cookieSpec=ignoreCookies

23.19. BASIC AUTH WITH THE STREAMING MESSAGE BODY

In order to avoid the NonRepeatableRequestException, you need to do the Preemptive Basic
Authentication by adding the option:
authenticationPreemptive=true

from("timer://foo?fixedRate=true&delay=0&period=10000")
 .to("http://www.google.com")
 .setHeader(FileComponent.HEADER_FILE_NAME, "message.html")
 .to("file:target/google");

// we query for Camel at the Google page
template.sendBody("http://www.google.com/search?q=Camel", null);

Map headers = new HashMap();
headers.put(Exchange.HTTP_QUERY, "q=Camel&lr=lang_en");
// we query for Camel and English language at Google
template.sendBody("http://www.google.com/search", null, headers);

Exchange exchange = template.send("http://www.google.com/search", new Processor() {
 public void process(Exchange exchange) throws Exception {
 exchange.getIn().setHeader(Exchange.HTTP_QUERY, constant("hl=en&q=activemq"));
 }
});
Message out = exchange.getOut();
int responseCode = out.getHeader(Exchange.HTTP_RESPONSE_CODE, Integer.class);

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

436

23.20. ADVANCED USAGE

If you need more control over the HTTP producer you should use the HttpComponent where you can
set various classes to give you custom behavior.

23.20.1. Setting up SSL for HTTP Client

Using the JSSE Configuration Utility

The HTTP component supports SSL/TLS configuration through the Camel JSSE Configuration Utility .
This utility greatly decreases the amount of component specific code you need to write and is
configurable at the endpoint and component levels. The following examples demonstrate how to use
the utility with the HTTP component.

Programmatic configuration of the component

Spring DSL based configuration of endpoint

Configuring Apache HTTP Client Directly

Basically camel-http component is built on the top of Apache HttpClient. Please refer to SSL/TLS
customization for details or have a look into the
org.apache.camel.component.http.HttpsServerTestSupport unit test base class.
You can also implement a custom org.apache.camel.component.http.HttpClientConfigurer to do
some configuration on the http client if you need full control of it.

However if you just want to specify the keystore and truststore you can do this with Apache HTTP
HttpClientConfigurer, for example:

KeyStoreParameters ksp = new KeyStoreParameters();
ksp.setResource("/users/home/server/keystore.jks");
ksp.setPassword("keystorePassword");

KeyManagersParameters kmp = new KeyManagersParameters();
kmp.setKeyStore(ksp);
kmp.setKeyPassword("keyPassword");

SSLContextParameters scp = new SSLContextParameters();
scp.setKeyManagers(kmp);

HttpComponent httpComponent = getContext().getComponent("https", HttpComponent.class);
httpComponent.setSslContextParameters(scp);

 <camel:sslContextParameters
 id="sslContextParameters">
 <camel:keyManagers
 keyPassword="keyPassword">
 <camel:keyStore
 resource="/users/home/server/keystore.jks"
 password="keystorePassword"/>
 </camel:keyManagers>
 </camel:sslContextParameters>

 <to uri="https://127.0.0.1/mail/?sslContextParameters=#sslContextParameters"/>

CHAPTER 23. HTTP

437

https://camel.apache.org/manual/camel-configuration-utilities.html
http://hc.apache.org/httpcomponents-client-ga
http://hc.apache.org/httpcomponents-client-ga/tutorial/html/connmgmt.html#d4e537

And then you need to create a class that implements HttpClientConfigurer, and registers https protocol
providing a keystore or truststore per example above. Then, from your camel route builder class you can
hook it up like so:

If you are doing this using the Spring DSL, you can specify your HttpClientConfigurer using the URI. For
example:

As long as you implement the HttpClientConfigurer and configure your keystore and truststore as
described above, it will work fine.

Using HTTPS to authenticate gotchas

An end user reported that he had problem with authenticating with HTTPS. The problem was eventually
resolved by providing a custom configured org.apache.http.protocol.HttpContext:

1. Create a (Spring) factory for HttpContexts:

2. Declare an HttpContext in the Spring application context file:

KeyStore keystore = ...;
KeyStore truststore = ...;

SchemeRegistry registry = new SchemeRegistry();
registry.register(new Scheme("https", 443, new SSLSocketFactory(keystore, "mypassword",
truststore)));

HttpComponent httpComponent = getContext().getComponent("http", HttpComponent.class);
httpComponent.setHttpClientConfigurer(new MyHttpClientConfigurer());

<bean id="myHttpClientConfigurer"
 class="my.https.HttpClientConfigurer">
</bean>

<to uri="https://myhostname.com:443/myURL?httpClientConfigurer=myHttpClientConfigurer"/>

public class HttpContextFactory {

 private String httpHost = "localhost";
 private String httpPort = 9001;

 private BasicHttpContext httpContext = new BasicHttpContext();
 private BasicAuthCache authCache = new BasicAuthCache();
 private BasicScheme basicAuth = new BasicScheme();

 public HttpContext getObject() {
 authCache.put(new HttpHost(httpHost, httpPort), basicAuth);

 httpContext.setAttribute(ClientContext.AUTH_CACHE, authCache);

 return httpContext;
 }

 // getter and setter
}

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

438

3. Reference the context in the http URL:

Using different SSLContextParameters

The HTTP component only support one instance of
org.apache.camel.support.jsse.SSLContextParameters per component. If you need to use 2 or more
different instances, then you need to setup multiple HTTP components as shown below. Where we have
2 components, each using their own instance of sslContextParameters property.

23.21. SPRING BOOT AUTO-CONFIGURATION

When using http with Spring Boot make sure to use the following Maven dependency to have support
for auto configuration:

The component supports 38 options, which are listed below.

Name Description Defaul
t

Type

camel.component
.http.allow-java-
serialized-object

Whether to allow java serialization when a request
uses context-type=application/x-java-serialized-
object. This is by default turned off. If you enable this
then be aware that Java will deserialize the incoming
data from the request to Java and that can be a
potential security risk.

false Boolean

camel.component
.http.auth-
caching-disabled

Disables authentication scheme caching. false Boolean

<bean id="myHttpContext" factory-bean="httpContextFactory" factory-method="getObject"/>

<to uri="https://myhostname.com:443/myURL?httpContext=myHttpContext"/>

<bean id="http-foo" class="org.apache.camel.component.http.HttpComponent">
 <property name="sslContextParameters" ref="sslContextParams1"/>
 <property name="x509HostnameVerifier" ref="hostnameVerifier"/>
</bean>

<bean id="http-bar" class="org.apache.camel.component.http.HttpComponent">
 <property name="sslContextParameters" ref="sslContextParams2"/>
 <property name="x509HostnameVerifier" ref="hostnameVerifier"/>
</bean>

<dependency>
 <groupId>org.apache.camel.springboot</groupId>
 <artifactId>camel-http-starter</artifactId>
 <version>3.14.5.redhat-00032</version>
 <!-- Use your Camel Spring Boot version -->
</dependency>

CHAPTER 23. HTTP

439

https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/camel_spring_boot_reference_3.14/index#csb-camel-http-component-starter
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/camel_spring_boot_reference_3.14/index#csb-camel-http-component-starter

camel.component
.http.automatic-
retries-disabled

Disables automatic request recovery and re-
execution.

false Boolean

camel.component
.http.autowired-
enabled

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true Boolean

camel.component
.http.client-
connection-
manager

To use a custom and shared
HttpClientConnectionManager to manage
connections. If this has been configured then this is
always used for all endpoints created by this
component. The option is a
org.apache.http.conn.HttpClientConnectionManager
type.

 HttpClientConnec
tionManager

camel.component
.http.connect-
timeout

Determines the timeout in milliseconds until a
connection is established. A timeout value of zero is
interpreted as an infinite timeout. A timeout value of
zero is interpreted as an infinite timeout. A negative
value is interpreted as undefined (system default).

-1 Integer

camel.component
.http.connection-
request-timeout

The timeout in milliseconds used when requesting a
connection from the connection manager. A timeout
value of zero is interpreted as an infinite timeout. A
timeout value of zero is interpreted as an infinite
timeout. A negative value is interpreted as undefined
(system default).

-1 Integer

camel.component
.http.connection-
state-disabled

Disables connection state tracking. false Boolean

camel.component
.http.connection-
time-to-live

The time for connection to live, the time unit is
millisecond, the default value is always keep alive.

 Long

camel.component
.http.connections
-per-route

The maximum number of connections per route. 20 Integer

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

440

camel.component
.http.content-
compression-
disabled

Disables automatic content decompression. false Boolean

camel.component
.http.cookie-
management-
disabled

Disables state (cookie) management. false Boolean

camel.component
.http.cookie-store

To use a custom org.apache.http.client.CookieStore.
By default the
org.apache.http.impl.client.BasicCookieStore is used
which is an in-memory only cookie store. Notice if
bridgeEndpoint=true then the cookie store is forced
to be a noop cookie store as cookie shouldn’t be
stored as we are just bridging (eg acting as a proxy).
The option is a org.apache.http.client.CookieStore
type.

 CookieStore

camel.component
.http.copy-
headers

If this option is true then IN exchange headers will be
copied to OUT exchange headers according to copy
strategy. Setting this to false, allows to only include
the headers from the HTTP response (not
propagating IN headers).

true Boolean

camel.component
.http.default-
user-agent-
disabled

Disables the default user agent set by this builder if
none has been provided by the user.

false Boolean

camel.component
.http.enabled

Whether to enable auto configuration of the http
component. This is enabled by default.

 Boolean

camel.component
.http.header-
filter-strategy

To use a custom
org.apache.camel.spi.HeaderFilterStrategy to filter
header to and from Camel message. The option is a
org.apache.camel.spi.HeaderFilterStrategy type.

 HeaderFilterStrate
gy

camel.component
.http.http-binding

To use a custom HttpBinding to control the mapping
between Camel message and HttpClient. The option
is a org.apache.camel.http.common.HttpBinding
type.

 HttpBinding

Name Description Defaul
t

Type

CHAPTER 23. HTTP

441

camel.component
.http.http-client-
configurer

To use the custom HttpClientConfigurer to perform
configuration of the HttpClient that will be used. The
option is a
org.apache.camel.component.http.HttpClientConfigu
rer type.

 HttpClientConfigu
rer

camel.component
.http.http-
configuration

To use the shared HttpConfiguration as base
configuration. The option is a
org.apache.camel.http.common.HttpConfiguration
type.

 HttpConfiguration

camel.component
.http.http-
context

To use a custom
org.apache.http.protocol.HttpContext when
executing requests. The option is a
org.apache.http.protocol.HttpContext type.

 HttpContext

camel.component
.http.lazy-start-
producer

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false Boolean

camel.component
.http.max-total-
connections

The maximum number of connections. 200 Integer

camel.component
.http.proxy-auth-
domain

Proxy authentication domain to use. String

camel.component
.http.proxy-auth-
host

Proxy authentication host. String

camel.component
.http.proxy-auth-
method

Proxy authentication method to use. String

camel.component
.http.proxy-auth-
nt-host

Proxy authentication domain (workstation name) to
use with NTML.

 String

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

442

camel.component
.http.proxy-auth-
password

Proxy authentication password. String

camel.component
.http.proxy-auth-
port

Proxy authentication port. Integer

camel.component
.http.proxy-auth-
username

Proxy authentication username. String

camel.component
.http.redirect-
handling-disabled

Disables automatic redirect handling. false Boolean

camel.component
.http.response-
payload-
streaming-
threshold

This threshold in bytes controls whether the response
payload should be stored in memory as a byte array
or be streaming based. Set this to -1 to always use
streaming mode.

8192 Integer

camel.component
.http.skip-
request-headers

Whether to skip mapping all the Camel headers as
HTTP request headers. If there are no data from
Camel headers needed to be included in the HTTP
request then this can avoid parsing overhead with
many object allocations for the JVM garbage
collector.

false Boolean

camel.component
.http.skip-
response-headers

Whether to skip mapping all the HTTP response
headers to Camel headers. If there are no data
needed from HTTP headers then this can avoid
parsing overhead with many object allocations for the
JVM garbage collector.

false Boolean

camel.component
.http.socket-
timeout

Defines the socket timeout in milliseconds, which is
the timeout for waiting for data or, put differently, a
maximum period inactivity between two consecutive
data packets). A timeout value of zero is interpreted
as an infinite timeout. A negative value is interpreted
as undefined (system default).

-1 Integer

Name Description Defaul
t

Type

CHAPTER 23. HTTP

443

camel.component
.http.ssl-context-
parameters

To configure security using SSLContextParameters.
Important: Only one instance of
org.apache.camel.support.jsse.SSLContextParamete
rs is supported per HttpComponent. If you need to
use 2 or more different instances, you need to define
a new HttpComponent per instance you need. The
option is a
org.apache.camel.support.jsse.SSLContextParamete
rs type.

 SSLContextParam
eters

camel.component
.http.use-global-
ssl-context-
parameters

Enable usage of global SSL context parameters. false Boolean

camel.component
.http.x509-
hostname-verifier

To use a custom X509HostnameVerifier such as
DefaultHostnameVerifier or NoopHostnameVerifier.
The option is a javax.net.ssl.HostnameVerifier type.

 HostnameVerifier

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

444

CHAPTER 24. INFINISPAN
Both producer and consumer are supported

This component allows you to interact with Infinispan distributed data grid/cache using the Hot Rod
protocol. Infinispan is an extremely scalable, highly available key/value data store and data grid platform
written in Java.

If you use Maven, you must add the following dependency to your pom.xml:

24.1. URI FORMAT

infinispan://cacheName?[options]

The producer allows sending messages to a remote cache using the HotRod protocol. The consumer
allows listening for events from a remote cache using the HotRod protocol.

24.2. CONFIGURING OPTIONS

Camel components are configured on two separate levels:

component level

endpoint level

24.2.1. Configuring Component Options

The component level is the highest level which holds general and common configurations that are
inherited by the endpoints. For example a component may have security settings, credentials for
authentication, urls for network connection and so forth.

Some components only have a few options, and others may have many. Because components typically
have pre configured defaults that are commonly used, then you may often only need to configure a few
options on a component; or none at all.

Configuring components can be done with the Component DSL, in a configuration file
(application.properties|yaml), or directly with Java code.

24.2.2. Configuring Endpoint Options

Where you find yourself configuring the most is on endpoints, as endpoints often have many options,
which allows you to configure what you need the endpoint to do. The options are also categorized into
whether the endpoint is used as consumer (from) or as a producer (to), or used for both.

Configuring endpoints is most often done directly in the endpoint URI as path and query parameters.
You can also use the Endpoint DSL as a type safe way of configuring endpoints.

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-infinispan</artifactId>
 <version>3.14.5.redhat-00018</version>
 <!-- use the same version as your Camel core version -->
</dependency>

CHAPTER 24. INFINISPAN

445

http://infinispan.org
https://camel.apache.org/manual/component-dsl.html
https://camel.apache.org/manual/Endpoint-dsl.html

A good practice when configuring options is to use Property Placeholders, which allows to not hardcode
urls, port numbers, sensitive information, and other settings. In other words placeholders allows to
externalize the configuration from your code, and gives more flexibility and reuse.

The following two sections lists all the options, firstly for the component followed by the endpoint.

24.3. COMPONENT OPTIONS

The Infinispan component supports 26 options, which are listed below.

Name Description Defaul
t

Type

configuration
(common)

Component configuration. InfinispanRemote
Configuration

hosts (common) Specifies the host of the cache on Infinispan
instance.

 String

queryBuilder
(common)

Specifies the query builder. InfinispanQueryBu
ilder

secure (common) Define if we are connecting to a secured Infinispan
instance.

false boolean

bridgeErrorHandl
er (consumer)

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false boolean

customListener
(consumer)

Returns the custom listener in use, if provided. InfinispanRemote
CustomListener

eventTypes
(consumer)

Specifies the set of event types to register by the
consumer.Multiple event can be separated by
comma. The possible event types are:
CLIENT_CACHE_ENTRY_CREATED,
CLIENT_CACHE_ENTRY_MODIFIED,
CLIENT_CACHE_ENTRY_REMOVED,
CLIENT_CACHE_ENTRY_EXPIRED,
CLIENT_CACHE_FAILOVER.

 String

defaultValue
(producer)

Set a specific default value for some producer
operations.

 Object

key (producer) Set a specific key for producer operations. Object

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

446

https://camel.apache.org/manual/using-propertyplaceholder.html

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

oldValue
(producer)

Set a specific old value for some producer
operations.

 Object

Name Description Defaul
t

Type

CHAPTER 24. INFINISPAN

447

operation
(producer)

The operation to perform.

Enum values:

PUT

PUTASYNC

PUTALL

PUTALLASYNC

PUTIFABSENT

PUTIFABSENTASYNC

GET

GETORDEFAULT

CONTAINSKEY

CONTAINSVALUE

REMOVE

REMOVEASYNC

REPLACE

REPLACEASYNC

SIZE

CLEAR

CLEARASYNC

QUERY

STATS

COMPUTE

COMPUTEASYNC

PUT InfinispanOperatio
n

value (producer) Set a specific value for producer operations. Object

password (
security)

Define the password to access the infinispan
instance.

 String

saslMechanism (
security)

Define the SASL Mechanism to access the infinispan
instance.

 String

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

448

securityRealm (
security)

Define the security realm to access the infinispan
instance.

 String

securityServerNa
me (security)

Define the security server name to access the
infinispan instance.

 String

username (
security)

Define the username to access the infinispan
instance.

 String

autowiredEnabled
(advanced)

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true boolean

cacheContainer
(advanced)

Autowired Specifies the cache Container to connect. RemoteCacheMan
ager

cacheContainerC
onfiguration
(advanced)

Autowired The CacheContainer configuration. Used
if the cacheContainer is not defined.

 Configuration

configurationPro
perties
(advanced)

Implementation specific properties for the
CacheManager.

 Map

configurationUri
(advanced)

An implementation specific URI for the
CacheManager.

 String

flags (advanced) A comma separated list of
org.infinispan.client.hotrod.Flag to be applied by
default on each cache invocation.

 String

remappingFuncti
on (advanced)

Set a specific remappingFunction to use in a
compute operation.

 BiFunction

resultHeader
(advanced)

Store the operation result in a header instead of the
message body. By default, resultHeader == null and
the query result is stored in the message body, any
existing content in the message body is discarded. If
resultHeader is set, the value is used as the name of
the header to store the query result and the original
message body is preserved. This value can be
overridden by an in message header named:
CamelInfinispanOperationResultHeader.

 String

Name Description Defaul
t

Type

CHAPTER 24. INFINISPAN

449

24.4. ENDPOINT OPTIONS

The Infinispan endpoint is configured using URI syntax:

infinispan:cacheName

with the following path and query parameters:

24.4.1. Path Parameters (1 parameters)

Name Description Defaul
t

Type

cacheName
(common)

Required The name of the cache to use. Use current
to use the existing cache name from the currently
configured cached manager. Or use default for the
default cache manager name.

 String

24.4.2. Query Parameters (26 parameters)

Name Description Defaul
t

Type

hosts (common) Specifies the host of the cache on Infinispan
instance.

 String

queryBuilder
(common)

Specifies the query builder. InfinispanQueryBu
ilder

secure (common) Define if we are connecting to a secured Infinispan
instance.

false boolean

bridgeErrorHandl
er (consumer)

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false boolean

customListener
(consumer)

Returns the custom listener in use, if provided. InfinispanRemote
CustomListener

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

450

eventTypes
(consumer)

Specifies the set of event types to register by the
consumer.Multiple event can be separated by
comma. The possible event types are:
CLIENT_CACHE_ENTRY_CREATED,
CLIENT_CACHE_ENTRY_MODIFIED,
CLIENT_CACHE_ENTRY_REMOVED,
CLIENT_CACHE_ENTRY_EXPIRED,
CLIENT_CACHE_FAILOVER.

 String

exceptionHandler
(consumer
(advanced))

To let the consumer use a custom ExceptionHandler.
Notice if the option bridgeErrorHandler is enabled
then this option is not in use. By default the consumer
will deal with exceptions, that will be logged at WARN
or ERROR level and ignored.

 ExceptionHandler

exchangePattern
(consumer
(advanced))

Sets the exchange pattern when the consumer
creates an exchange.

Enum values:

InOnly

InOut

InOptionalOut

 ExchangePattern

defaultValue
(producer)

Set a specific default value for some producer
operations.

 Object

key (producer) Set a specific key for producer operations. Object

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

oldValue
(producer)

Set a specific old value for some producer
operations.

 Object

Name Description Defaul
t

Type

CHAPTER 24. INFINISPAN

451

operation
(producer)

The operation to perform.

Enum values:

PUT

PUTASYNC

PUTALL

PUTALLASYNC

PUTIFABSENT

PUTIFABSENTASYNC

GET

GETORDEFAULT

CONTAINSKEY

CONTAINSVALUE

REMOVE

REMOVEASYNC

REPLACE

REPLACEASYNC

SIZE

CLEAR

CLEARASYNC

QUERY

STATS

COMPUTE

COMPUTEASYNC

PUT InfinispanOperatio
n

value (producer) Set a specific value for producer operations. Object

password (
security)

Define the password to access the infinispan
instance.

 String

saslMechanism (
security)

Define the SASL Mechanism to access the infinispan
instance.

 String

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

452

securityRealm (
security)

Define the security realm to access the infinispan
instance.

 String

securityServerNa
me (security)

Define the security server name to access the
infinispan instance.

 String

username (
security)

Define the username to access the infinispan
instance.

 String

cacheContainer
(advanced)

Autowired Specifies the cache Container to connect. RemoteCacheMan
ager

cacheContainerC
onfiguration
(advanced)

Autowired The CacheContainer configuration. Used
if the cacheContainer is not defined.

 Configuration

configurationPro
perties
(advanced)

Implementation specific properties for the
CacheManager.

 Map

configurationUri
(advanced)

An implementation specific URI for the
CacheManager.

 String

flags (advanced) A comma separated list of
org.infinispan.client.hotrod.Flag to be applied by
default on each cache invocation.

 String

remappingFuncti
on (advanced)

Set a specific remappingFunction to use in a
compute operation.

 BiFunction

resultHeader
(advanced)

Store the operation result in a header instead of the
message body. By default, resultHeader == null and
the query result is stored in the message body, any
existing content in the message body is discarded. If
resultHeader is set, the value is used as the name of
the header to store the query result and the original
message body is preserved. This value can be
overridden by an in message header named:
CamelInfinispanOperationResultHeader.

 String

Name Description Defaul
t

Type

24.5. CAMEL OPERATIONS

This section lists all available operations, along with their header information.

Table 24.1. Table 1. Put Operations

CHAPTER 24. INFINISPAN

453

Operation Name Description

InfinispanOperation.PUT Puts a key/value pair in the cache, optionally with expiration

InfinispanOperation.PUTASYNC Asynchronously puts a key/value pair in the cache, optionally
with expiration

InfinispanOperation.PUTIFABSENT Puts a key/value pair in the cache if it did not exist, optionally
with expiration

InfinispanOperation.PUTIFABSENTASYN
C

Asynchronously puts a key/value pair in the cache if it did not
exist, optionally with expiration

Required Headers:

CamelInfinispanKey

CamelInfinispanValue

Optional Headers:

CamelInfinispanLifespanTime

CamelInfinispanLifespanTimeUnit

CamelInfinispanMaxIdleTime

CamelInfinispanMaxIdleTimeUnit

Result Header:

CamelInfinispanOperationResult

Table 24.2. Table 2. Put All Operations

Operation Name Description

InfinispanOperation.PUTALL Adds multiple entries to a cache, optionally with expiration

CamelInfinispanOperation.PUTALLASYN
C

Asynchronously adds multiple entries to a cache, optionally with
expiration

Required Headers:

CamelInfinispanMap

Optional Headers:

CamelInfinispanLifespanTime

CamelInfinispanLifespanTimeUnit

CamelInfinispanMaxIdleTime

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

454

CamelInfinispanMaxIdleTimeUnit

Table 24.3. Table 3. Get Operations

Operation Name Description

InfinispanOperation.GET Retrieves the value associated with a specific key from the
cache

InfinispanOperation.GETORDEFAULT Retrieves the value, or default value, associated with a specific
key from the cache

Required Headers:

CamelInfinispanKey

Table 24.4. Table 4. Contains Key Operation

Operation Name Description

InfinispanOperation.CONTAINSKEY Determines whether a cache contains a specific key

Required Headers

CamelInfinispanKey

Result Header

CamelInfinispanOperationResult

Table 24.5. Table 5. Contains Value Operation

Operation Name Description

InfinispanOperation.CONTAINSVALUE Determines whether a cache contains a specific value

Required Headers:

CamelInfinispanKey

Table 24.6. Table 6. Remove Operations

Operation Name Description

InfinispanOperation.REMOVE Removes an entry from a cache, optionally only if the value
matches a given one

InfinispanOperation.REMOVEASYNC Asynchronously removes an entry from a cache, optionally only
if the value matches a given one

Required Headers:

CHAPTER 24. INFINISPAN

455

CamelInfinispanKey

Optional Headers:

CamelInfinispanValue

Result Header:

CamelInfinispanOperationResult

Table 24.7. Table 7. Replace Operations

Operation Name Description

InfinispanOperation.REPLACE Conditionally replaces an entry in the cache, optionally with
expiration

InfinispanOperation.REPLACEASYNC Asynchronously conditionally replaces an entry in the cache,
optionally with expiration

Required Headers:

CamelInfinispanKey

CamelInfinispanValue

CamelInfinispanOldValue

Optional Headers:

CamelInfinispanLifespanTime

CamelInfinispanLifespanTimeUnit

CamelInfinispanMaxIdleTime

CamelInfinispanMaxIdleTimeUnit

Result Header:

CamelInfinispanOperationResult

Table 24.8. Table 8. Clear Operations

Operation Name Description

InfinispanOperation.CLEAR Clears the cache

InfinispanOperation.CLEARASYNC Asynchronously clears the cache

Table 24.9. Table 9. Size Operation

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

456

Operation Name Description

InfinispanOperation.SIZE Returns the number of entries in the cache

Result Header

CamelInfinispanOperationResult

Table 24.10. Table 10. Stats Operation

Operation Name Description

InfinispanOperation.STATS Returns statistics about the cache

Result Header:

CamelInfinispanOperationResult

Table 24.11. Table 11. Query Operation

Operation Name Description

InfinispanOperation.QUERY Executes a query on the cache

Required Headers:

CamelInfinispanQueryBuilder

Result Header:

CamelInfinispanOperationResult

NOTE

Write methods like put(key, value) and remove(key) do not return the previous value by
default.

24.6. MESSAGE HEADERS

Name Default
Value

Type Contex
t

Description

CamelInfinispanCacheName null String Shared The cache participating in the operation
or event.

CamelInfinispanOperation PUT Infinisp
anOper
ation

Produc
er

The operation to perform.

CHAPTER 24. INFINISPAN

457

CamelInfinispanMap null Map Produc
er

A Map to use in case of
CamelInfinispanOperationPutAll
operation

CamelInfinispanKey null Object Shared The key to perform the operation to or
the key generating the event.

CamelInfinispanValue null Object Produc
er

The value to use for the operation.

CamelInfinispanEventType null String Consu
mer

The type of the received event.

CamelInfinispanLifespanTime null long Produc
er

The Lifespan time of a value inside the
cache. Negative values are interpreted as
infinity.

CamelInfinispanTimeUnit null String Produc
er

The Time Unit of an entry Lifespan Time.

CamelInfinispanMaxIdleTime null long Produc
er

The maximum amount of time an entry is
allowed to be idle for before it is
considered as expired.

CamelInfinispanMaxIdleTimeU
nit

null String Produc
er

The Time Unit of an entry Max Idle Time.

CamelInfinispanQueryBuilder null Infinisp
anQuer
yBuilde
r

Produc
er

The QueryBuilde to use for QUERY
command, if not present the command
defaults to InifinispanConfiguration’s one

CamelInfinispanOperationRes
ultHeader

null String Produc
er

Store the operation result in a header
instead of the message body

Name Default
Value

Type Contex
t

Description

24.7. EXAMPLES

Put a key/value into a named cache:

Where,

from("direct:start")
 .setHeader(InfinispanConstants.OPERATION).constant(InfinispanOperation.PUT) (1)
 .setHeader(InfinispanConstants.KEY).constant("123") (2)
 .to("infinispan:myCacheName&cacheContainer=#cacheContainer"); (3)

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

458

1 - Set the operation to perform

2 - Set the key used to identify the element in the cache

3 - Use the configured cache manager cacheContainer from the registry to put an element to
the cache named myCacheName
It is possible to configure the lifetime and/or the idle time before the entry expires and gets
evicted from the cache, as example:

where,

1 - Set the lifespan of the entry

2 - Set the time unit for the lifespan

Queries

NOTE

The .proto descriptors for domain objects must be registered with the remote Data Grid
server, see Remote Query Example in the official Infinispan documentation.

Custom Listeners

The instance of myCustomListener must exist and Camel should be able to look it up from the
Registry. Users are encouraged to extend the
org.apache.camel.component.infinispan.remote.InfinispanRemoteCustomListener class and
annotate the resulting class with @ClientListener which can be found found in package
org.infinispan.client.hotrod.annotation.

24.8. USING THE INFINISPAN BASED IDEMPOTENT REPOSITORY

from("direct:start")
 .setHeader(InfinispanConstants.OPERATION).constant(InfinispanOperation.GET)
 .setHeader(InfinispanConstants.KEY).constant("123")
 .setHeader(InfinispanConstants.LIFESPAN_TIME).constant(100L) (1)

.setHeader(InfinispanConstants.LIFESPAN_TIME_UNIT.constant(TimeUnit.MILLISECONDS.t
oString()) (2)
 .to("infinispan:myCacheName");

from("direct:start")
 .setHeader(InfinispanConstants.OPERATION, InfinispanConstants.QUERY)
 .setHeader(InfinispanConstants.QUERY_BUILDER, new InfinispanQueryBuilder() {
 @Override
 public Query build(QueryFactory<Query> qf) {
 return qf.from(User.class).having("name").like("%abc%").build();
 }
 })
 .to("infinispan:myCacheName?cacheContainer=#cacheManager") ;

from("infinispan://?cacheContainer=#cacheManager&customListener=#myCustomListener")
 .to("mock:result");

CHAPTER 24. INFINISPAN

459

https://infinispan.org/docs/stable/titles/developing/developing.html#remote_query_example

In this section we will use the Infinispan based idempotent repository.

Java Example

where,

1 - Configure the cache

2 - Configure the repository bean

3 - Set the repository to the route

XML Example

where,

1 - Set the name of the cache that will be used by the repository

2 - Configure the repository bean

InfinispanRemoteConfiguration conf = new InfinispanRemoteConfiguration(); (1)
conf.setHosts("localhost:1122")

InfinispanRemoteIdempotentRepository repo = new
InfinispanRemoteIdempotentRepository("idempotent"); (2)
repo.setConfiguration(conf);

context.addRoutes(new RouteBuilder() {
 @Override
 public void configure() {
 from("direct:start")
 .idempotentConsumer(header("MessageID"), repo) (3)
 .to("mock:result");
 }
});

<bean id="infinispanRepo"
class="org.apache.camel.component.infinispan.remote.InfinispanRemoteIdempotentRepository"
destroy-method="stop">
 <constructor-arg value="idempotent"/> (1)
 <property name="configuration"> (2)
 <bean class="org.apache.camel.component.infinispan.remote.InfinispanRemoteConfiguration">
 <property name="hosts" value="localhost:11222"/>
 </bean>
 </property>
</bean>

<camelContext xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="direct:start" />
 <idempotentConsumer messageIdRepositoryRef="infinispanRepo"> (3)
 <header>MessageID</header>
 <to uri="mock:result" />
 </idempotentConsumer>
 </route>
</camelContext>

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

460

3 - Set the repository to the route

24.9. USING THE INFINISPAN BASED AGGREGATION REPOSITORY

In this section we will use the Infinispan based aggregation repository.

Java Example

where,

1 - Configure the cache

2 - Create the repository bean

3 - Set the repository to the route

XML Example

InfinispanRemoteConfiguration conf = new InfinispanRemoteConfiguration(); (1)
conf.setHosts("localhost:1122")

InfinispanRemoteAggregationRepository repo = new InfinispanRemoteAggregationRepository(); (2)
repo.setCacheName("aggregation");
repo.setConfiguration(conf);

context.addRoutes(new RouteBuilder() {
 @Override
 public void configure() {
 from("direct:start")
 .aggregate(header("MessageID"))
 .completionSize(3)
 .aggregationRepository(repo) (3)
 .aggregationStrategyRef("myStrategy")
 .to("mock:result");
 }
});

<bean id="infinispanRepo"
class="org.apache.camel.component.infinispan.remote.InfinispanRemoteAggregationRepository"
destroy-method="stop">
 <constructor-arg value="aggregation"/> (1)
 <property name="configuration"> (2)
 <bean class="org.apache.camel.component.infinispan.remote.InfinispanRemoteConfiguration">
 <property name="hosts" value="localhost:11222"/>
 </bean>
 </property>
</bean>

<camelContext xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="direct:start" />
 <aggregate strategyRef="myStrategy"
 completionSize="3"
 aggregationRepositoryRef="infinispanRepo"> (3)
 <correlationExpression>

CHAPTER 24. INFINISPAN

461

where,

1 - Set the name of the cache that will be used by the repository

2 - Configure the repository bean

3 - Set the repository to the route

NOTE

With the release of Infinispan 11, it is required to set the encoding configuration on any
cache created. This is critical for consuming events too. For more information have a look
at Data Encoding and MediaTypes in the official Infinispan documentation.

24.10. SPRING BOOT AUTO-CONFIGURATION

When using infinispan with Spring Boot make sure to use the following Maven dependency to have
support for auto configuration:

The component supports 23 options, which are listed below.

Name Description Defaul
t

Type

camel.component
.infinispan.autowi
red-enabled

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true Boolean

 <header>MessageID</header>
 </correlationExpression>
 <to uri="mock:result"/>
 </aggregate>
 </route>
</camelContext>

<dependency>
 <groupId>org.apache.camel.springboot</groupId>
 <artifactId>camel-infinispan-starter</artifactId>
 <version>3.14.5.redhat-00032</version>
 <!-- Use your Camel Spring Boot version -->
</dependency>

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

462

https://infinispan.org/docs/stable/titles/developing/developing.html#data_encoding

camel.component
.infinispan.bridge-
error-handler

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false Boolean

camel.component
.infinispan.cache-
container

Specifies the cache Container to connect. The option
is a
org.infinispan.client.hotrod.RemoteCacheManager
type.

 RemoteCacheMan
ager

camel.component
.infinispan.cache-
container-
configuration

The CacheContainer configuration. Used if the
cacheContainer is not defined. The option is a
org.infinispan.client.hotrod.configuration.Configurati
on type.

 Configuration

camel.component
.infinispan.config
uration

Component configuration. The option is a
org.apache.camel.component.infinispan.remote.Infini
spanRemoteConfiguration type.

 InfinispanRemote
Configuration

camel.component
.infinispan.config
uration-
properties

Implementation specific properties for the
CacheManager.

 Map

camel.component
.infinispan.config
uration-uri

An implementation specific URI for the
CacheManager.

 String

camel.component
.infinispan.custom
-listener

Returns the custom listener in use, if provided. The
option is a
org.apache.camel.component.infinispan.remote.Infini
spanRemoteCustomListener type.

 InfinispanRemote
CustomListener

camel.component
.infinispan.enable
d

Whether to enable auto configuration of the
infinispan component. This is enabled by default.

 Boolean

Name Description Defaul
t

Type

CHAPTER 24. INFINISPAN

463

camel.component
.infinispan.event-
types

Specifies the set of event types to register by the
consumer.Multiple event can be separated by
comma. The possible event types are:
CLIENT_CACHE_ENTRY_CREATED,
CLIENT_CACHE_ENTRY_MODIFIED,
CLIENT_CACHE_ENTRY_REMOVED,
CLIENT_CACHE_ENTRY_EXPIRED,
CLIENT_CACHE_FAILOVER.

 String

camel.component
.infinispan.flags

A comma separated list of
org.infinispan.client.hotrod.Flag to be applied by
default on each cache invocation.

 String

camel.component
.infinispan.hosts

Specifies the host of the cache on Infinispan
instance.

 String

camel.component
.infinispan.lazy-
start-producer

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false Boolean

camel.component
.infinispan.operati
on

The operation to perform. InfinispanOperatio
n

camel.component
.infinispan.passwo
rd

Define the password to access the infinispan
instance.

 String

camel.component
.infinispan.query-
builder

Specifies the query builder. The option is a
org.apache.camel.component.infinispan.InfinispanQu
eryBuilder type.

 InfinispanQueryBu
ilder

camel.component
.infinispan.remap
ping-function

Set a specific remappingFunction to use in a
compute operation. The option is a
java.util.function.BiFunction type.

 BiFunction

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

464

camel.component
.infinispan.result-
header

Store the operation result in a header instead of the
message body. By default, resultHeader == null and
the query result is stored in the message body, any
existing content in the message body is discarded. If
resultHeader is set, the value is used as the name of
the header to store the query result and the original
message body is preserved. This value can be
overridden by an in message header named:
CamelInfinispanOperationResultHeader.

 String

camel.component
.infinispan.sasl-
mechanism

Define the SASL Mechanism to access the infinispan
instance.

 String

camel.component
.infinispan.secure

Define if we are connecting to a secured Infinispan
instance.

false Boolean

camel.component
.infinispan.securit
y-realm

Define the security realm to access the infinispan
instance.

 String

camel.component
.infinispan.securit
y-server-name

Define the security server name to access the
infinispan instance.

 String

camel.component
.infinispan.userna
me

Define the username to access the infinispan
instance.

 String

Name Description Defaul
t

Type

CHAPTER 24. INFINISPAN

465

CHAPTER 25. JIRA
Both producer and consumer are supported

The JIRA component interacts with the JIRA API by encapsulating Atlassian’s REST Java Client for
JIRA. It currently provides polling for new issues and new comments. It is also able to create new issues,
add comments, change issues, add/remove watchers, add attachment and transition the state of an
issue.

Rather than webhooks, this endpoint relies on simple polling. Reasons include:

Concern for reliability/stability

The types of payloads we’re polling aren’t typically large (plus, paging is available in the API)

The need to support apps running somewhere not publicly accessible where a webhook would
fail

Note that the JIRA API is fairly expansive. Therefore, this component could be easily expanded to
provide additional interactions.

Maven users will need to add the following dependency to their pom.xml for this component:

25.1. URI FORMAT

jira://type[?options]

The Jira type accepts the following operations:

For consumers:

newIssues: retrieve only new issues after the route is started

newComments: retrieve only new comments after the route is started

watchUpdates: retrieve only updated fields/issues based on provided jql

For producers:

addIssue: add an issue

addComment: add a comment on a given issue

attach: add an attachment on a given issue

deleteIssue: delete a given issue

updateIssue: update fields of a given issue

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-jira</artifactId>
 <version>${camel-version}</version>
</dependency>

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

466

https://bitbucket.org/atlassian/jira-rest-java-client/src/master/

transitionIssue: transition a status of a given issue

watchers: add/remove watchers of a given issue

As Jira is fully customizable, you must assure the fields IDs exists for the project and workflow, as they
can change between different Jira servers.

25.2. CONFIGURING OPTIONS

Camel components are configured on two separate levels:

component level

endpoint level

25.2.1. Configuring Component Options

The component level is the highest level which holds general and common configurations that are
inherited by the endpoints. For example a component may have security settings, credentials for
authentication, urls for network connection and so forth.

Some components only have a few options, and others may have many. Because components typically
have pre configured defaults that are commonly used, then you may often only need to configure a few
options on a component; or none at all.

Configuring components can be done with the Component DSL, in a configuration file
(application.properties|yaml), or directly with Java code.

25.2.2. Configuring Endpoint Options

Where you find yourself configuring the most is on endpoints, as endpoints often have many options,
which allows you to configure what you need the endpoint to do. The options are also categorized into
whether the endpoint is used as consumer (from) or as a producer (to), or used for both.

Configuring endpoints is most often done directly in the endpoint URI as path and query parameters.
You can also use the Endpoint DSL as a type safe way of configuring endpoints.

A good practice when configuring options is to use Property Placeholders, which allows to not hardcode
urls, port numbers, sensitive information, and other settings. In other words placeholders allows to
externalize the configuration from your code, and gives more flexibility and reuse.

The following two sections lists all the options, firstly for the component followed by the endpoint.

25.3. COMPONENT OPTIONS

The Jira component supports 12 options, which are listed below.

Name Description Defaul
t

Type

delay (common) Time in milliseconds to elapse for the next poll. 6000 Integer

jiraUrl (common) Required The Jira server url, example: . String

CHAPTER 25. JIRA

467

https://camel.apache.org/manual/component-dsl.html
https://camel.apache.org/manual/Endpoint-dsl.html
https://camel.apache.org/manual/using-propertyplaceholder.html

bridgeErrorHandl
er (consumer)

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false boolean

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

autowiredEnabled
(advanced)

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true boolean

configuration
(advanced)

To use a shared base jira configuration. JiraConfiguration

accessToken
(security)

(OAuth only) The access token generated by the Jira
server.

 String

consumerKey
(security)

(OAuth only) The consumer key from Jira settings. String

password
(security)

(Basic authentication only) The password to
authenticate to the Jira server. Use only if username
basic authentication is used.

 String

privateKey
(security)

(OAuth only) The private key generated by the client
to encrypt the conversation to the server.

 String

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

468

username
(security)

(Basic authentication only) The username to
authenticate to the Jira server. Use only if OAuth is
not enabled on the Jira server. Do not set the
username and OAuth token parameter, if they are
both set, the username basic authentication takes
precedence.

 String

verificationCode
(security)

(OAuth only) The verification code from Jira
generated in the first step of the authorization
proccess.

 String

Name Description Defaul
t

Type

25.4. ENDPOINT OPTIONS

The Jira endpoint is configured using URI syntax:

jira:type

with the following path and query parameters:

25.4.1. Path Parameters (1 parameters)

Name Description Defaul
t

Type

CHAPTER 25. JIRA

469

type (common) Required Operation to perform. Consumers:
NewIssues, NewComments. Producers: AddIssue,
AttachFile, DeleteIssue, TransitionIssue, UpdateIssue,
Watchers. See this class javadoc description for more
information.

Enum values:

ADDCOMMENT

ADDISSUE

ATTACH

DELETEISSUE

NEWISSUES

NEWCOMMENTS

WATCHUPDATES

UPDATEISSUE

TRANSITIONISSUE

WATCHERS

ADDISSUELINK

ADDWORKLOG

FETCHISSUE

FETCHCOMMENTS

 JiraType

Name Description Defaul
t

Type

25.4.2. Query Parameters (16 parameters)

Name Description Defaul
t

Type

delay (common) Time in milliseconds to elapse for the next poll. 6000 Integer

jiraUrl (common) Required The Jira server url, example: . String

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

470

bridgeErrorHandl
er (consumer)

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false boolean

jql (consumer) JQL is the query language from JIRA which allows
you to retrieve the data you want. For example
jql=project=MyProject Where MyProject is the
product key in Jira. It is important to use the RAW()
and set the JQL inside it to prevent camel parsing it,
example: RAW(project in (MYP, COM) AND
resolution = Unresolved).

 String

maxResults
(consumer)

Max number of issues to search for. 50 Integer

sendOnlyUpdated
Field (consumer)

Indicator for sending only changed fields in exchange
body or issue object. By default consumer sends only
changed fields.

true boolean

watchedFields
(consumer)

Comma separated list of fields to watch for changes.
Status,Priority are the defaults.

Status,
Priority

String

exceptionHandler
(consumer
(advanced))

To let the consumer use a custom ExceptionHandler.
Notice if the option bridgeErrorHandler is enabled
then this option is not in use. By default the consumer
will deal with exceptions, that will be logged at WARN
or ERROR level and ignored.

 ExceptionHandler

exchangePattern
(consumer
(advanced))

Sets the exchange pattern when the consumer
creates an exchange.

Enum values:

InOnly

InOut

InOptionalOut

 ExchangePattern

Name Description Defaul
t

Type

CHAPTER 25. JIRA

471

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

accessToken
(security)

(OAuth only) The access token generated by the Jira
server.

 String

consumerKey
(security)

(OAuth only) The consumer key from Jira settings. String

password
(security)

(Basic authentication only) The password to
authenticate to the Jira server. Use only if username
basic authentication is used.

 String

privateKey
(security)

(OAuth only) The private key generated by the client
to encrypt the conversation to the server.

 String

username
(security)

(Basic authentication only) The username to
authenticate to the Jira server. Use only if OAuth is
not enabled on the Jira server. Do not set the
username and OAuth token parameter, if they are
both set, the username basic authentication takes
precedence.

 String

verificationCode
(security)

(OAuth only) The verification code from Jira
generated in the first step of the authorization
proccess.

 String

Name Description Defaul
t

Type

25.5. CLIENT FACTORY

You can bind the JiraRestClientFactory with name JiraRestClientFactory in the registry to have it
automatically set in the Jira endpoint.

25.6. AUTHENTICATION

Camel-jira supports Basic Authentication and OAuth 3 legged authentication.

We recommend to use OAuth whenever possible, as it provides the best security for your users and
system.

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

472

https://developer.atlassian.com/cloud/jira/platform/jira-rest-api-basic-authentication/
https://developer.atlassian.com/cloud/jira/platform/jira-rest-api-oauth-authentication/

25.6.1. Basic authentication requirements:

An username and password

25.6.2. OAuth authentication requirements:

Follow the tutorial in Jira OAuth documentation to generate the client private key, consumer key,
verification code and access token.

a private key, generated locally on your system.

A verification code, generated by Jira server.

The consumer key, set in the Jira server settings.

An access token, generated by Jira server.

25.7. JQL

The JQL URI option is used by both consumer endpoints. Theoretically, items like "project key", etc.
could be URI options themselves. However, by requiring the use of JQL, the consumers become much
more flexible and powerful.

At the bare minimum, the consumers will require the following:

jira://[type]?[required options]&jql=project=[project key]

One important thing to note is that the newIssues consumer will automatically set the JQL as:

append ORDER BY key desc to your JQL

prepend id > latestIssueId to retrieve issues added after the camel route was started.

This is in order to optimize startup processing, rather than having to index every single issue in the
project.

Another note is that, similarly, the newComments consumer will have to index every single issue and
comment in the project. Therefore, for large projects, it’s vital to optimize the JQL expression as much
as possible. For example, the JIRA Toolkit Plugin includes a "Number of comments" custom field — use
'"Number of comments" > 0' in your query. Also try to minimize based on state (status=Open), increase
the polling delay, etc. Example:

jira://[type]?[required options]&jql=RAW(project=[project key] AND status in (Open, \"Coding In
Progress\") AND \"Number of comments\">0)"

25.8. OPERATIONS

See a list of required headers to set when using the Jira operations. The author field for the producers is
automatically set to the authenticated user in the Jira side.

If any required field is not set, then an IllegalArgumentException is throw.

There are operations that requires id for fields suchs as: issue type, priority, transition. Check the valid id
on your jira project as they may differ on a jira installation and project workflow.

CHAPTER 25. JIRA

473

https://developer.atlassian.com/cloud/jira/platform/jira-rest-api-oauth-authentication

25.9. ADDISSUE

Required:

ProjectKey: The project key, example: CAMEL, HHH, MYP.

IssueTypeId or IssueTypeName: The id of the issue type or the name of the issue type, you
can see the valid list in http://jira_server/rest/api/2/issue/createmeta?
projectKeys=SAMPLE_KEY.

IssueSummary: The summary of the issue.

Optional:

IssueAssignee: the assignee user

IssuePriorityId or IssuePriorityName: The priority of the issue, you can see the valid list in
http://jira_server/rest/api/2/priority.

IssueComponents: A list of string with the valid component names.

IssueWatchersAdd: A list of strings with the usernames to add to the watcher list.

IssueDescription: The description of the issue.

25.10. ADDCOMMENT

Required:

IssueKey: The issue key identifier.

body of the exchange is the description.

25.11. ATTACH

Only one file should attach per invocation.

Required:

IssueKey: The issue key identifier.

body of the exchange should be of type File

25.12. DELETEISSUE

Required:

IssueKey: The issue key identifier.

25.13. TRANSITIONISSUE

Required:

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

474

http://jira_server/rest/api/2/issue/createmeta?projectKeys=SAMPLE_KEY
http://jira_server/rest/api/2/priority

IssueKey: The issue key identifier.

IssueTransitionId: The issue transition id.

body of the exchange is the description.

25.14. UPDATEISSUE

IssueKey: The issue key identifier.

IssueTypeId or IssueTypeName: The id of the issue type or the name of the issue type, you
can see the valid list in http://jira_server/rest/api/2/issue/createmeta?
projectKeys=SAMPLE_KEY.

IssueSummary: The summary of the issue.

IssueAssignee: the assignee user

IssuePriorityId or IssuePriorityName: The priority of the issue, you can see the valid list in
http://jira_server/rest/api/2/priority.

IssueComponents: A list of string with the valid component names.

IssueDescription: The description of the issue.

25.15. WATCHER

IssueKey: The issue key identifier.

IssueWatchersAdd: A list of strings with the usernames to add to the watcher list.

IssueWatchersRemove: A list of strings with the usernames to remove from the watcher list.

25.16. WATCHUPDATES (CONSUMER)

watchedFields Comma separated list of fields to watch for changes i.e
Status,Priority,Assignee,Components etc.

sendOnlyUpdatedField By default only changed field is send as the body.

All messages also contain following headers that add additional info about the change:

issueKey: Key of the updated issue

changed: name of the updated field (i.e Status)

watchedIssues: list of all issue keys that are watched in the time of update

25.17. SPRING BOOT AUTO-CONFIGURATION

When using jira with Spring Boot make sure to use the following Maven dependency to have support for
auto configuration:

<dependency>
 <groupId>org.apache.camel.springboot</groupId>

CHAPTER 25. JIRA

475

http://jira_server/rest/api/2/issue/createmeta?projectKeys=SAMPLE_KEY
http://jira_server/rest/api/2/priority

The component supports 13 options, which are listed below.

Name Description Defaul
t

Type

camel.component
.jira.access-token

(OAuth only) The access token generated by the Jira
server.

 String

camel.component
.jira.autowired-
enabled

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true Boolean

camel.component
.jira.bridge-error-
handler

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false Boolean

camel.component
.jira.configuration

To use a shared base jira configuration. The option is
a org.apache.camel.component.jira.JiraConfiguration
type.

 JiraConfiguration

camel.component
.jira.consumer-
key

(OAuth only) The consumer key from Jira settings. String

camel.component
.jira.delay

Time in milliseconds to elapse for the next poll. 6000 Integer

camel.component
.jira.enabled

Whether to enable auto configuration of the jira
component. This is enabled by default.

 Boolean

camel.component
.jira.jira-url

The Jira server url, example:
http://my_jira.com:8081/.

 String

 <artifactId>camel-jira-starter</artifactId>
 <version>3.14.5.redhat-00032</version>
 <!-- Use your Camel Spring Boot version -->
</dependency>

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

476

http://my_jira.com:8081/

camel.component
.jira.lazy-start-
producer

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false Boolean

camel.component
.jira.password

(Basic authentication only) The password to
authenticate to the Jira server. Use only if username
basic authentication is used.

 String

camel.component
.jira.private-key

(OAuth only) The private key generated by the client
to encrypt the conversation to the server.

 String

camel.component
.jira.username

(Basic authentication only) The username to
authenticate to the Jira server. Use only if OAuth is
not enabled on the Jira server. Do not set the
username and OAuth token parameter, if they are
both set, the username basic authentication takes
precedence.

 String

camel.component
.jira.verification-
code

(OAuth only) The verification code from Jira
generated in the first step of the authorization
proccess.

 String

Name Description Defaul
t

Type

CHAPTER 25. JIRA

477

CHAPTER 26. JMS
Both producer and consumer are supported

This component allows messages to be sent to (or consumed from) a JMS Queue or Topic. It uses
Spring’s JMS support for declarative transactions, including Spring’s JmsTemplate for sending and a
MessageListenerContainer for consuming.

Maven users will need to add the following dependency to their pom.xml for this component:

NOTE

Using ActiveMQ
If you are using Apache ActiveMQ, you should prefer the ActiveMQ component as it has
been optimized for ActiveMQ. All of the options and samples on this page are also valid
for the ActiveMQ component.

NOTE

Transacted and caching
See section Transactions and Cache Levels below if you are using transactions with
JMS as it can impact performance.

NOTE

Request/Reply over JMS
Make sure to read the section Request-reply over JMS further below on this page for
important notes about request/reply, as Camel offers a number of options to configure
for performance, and clustered environments.

26.1. URI FORMAT

jms:[queue:|topic:]destinationName[?options]

Where destinationName is a JMS queue or topic name. By default, the destinationName is interpreted
as a queue name. For example, to connect to the queue, FOO.BAR use:

jms:FOO.BAR

You can include the optional queue: prefix, if you prefer:

jms:queue:FOO.BAR

To connect to a topic, you must include the topic: prefix. For example, to connect to the topic,
Stocks.Prices, use:

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-jms</artifactId>
 <version>3.14.5.redhat-00018</version>
 <!-- use the same version as your Camel core version -->
</dependency>

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

478

http://java.sun.com/products/jms
http://activemq.apache.org
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/camel_spring_boot_reference_3.14/index#csb-camel-jms-component-starter

jms:topic:Stocks.Prices

You append query options to the URI by using the following format,

?option=value&option=value&…

26.1.1. Using ActiveMQ

The JMS component reuses Spring 2’s JmsTemplate for sending messages. This is not ideal for use in a
non-J2EE container and typically requires some caching in the JMS provider to avoid poor performance
.

If you intend to use Apache ActiveMQ as your message broker, the recommendation is that you do one
of the following:

Use the ActiveMQ component, which is already optimized to use ActiveMQ efficiently

Use the PoolingConnectionFactory in ActiveMQ.

26.1.2. Transactions and Cache Levels

If you are consuming messages and using transactions (transacted=true) then the default settings for
cache level can impact performance.

If you are using XA transactions then you cannot cache as it can cause the XA transaction to not work
properly.

If you are not using XA, then you should consider caching as it speeds up performance, such as setting
cacheLevelName=CACHE_CONSUMER.

The default setting for cacheLevelName is CACHE_AUTO. This default auto detects the mode and
sets the cache level accordingly to:

CACHE_CONSUMER if transacted=false

CACHE_NONE if transacted=true

So you can say the default setting is conservative. Consider using
cacheLevelName=CACHE_CONSUMER if you are using non-XA transactions.

26.1.3. Durable Subscriptions

If you wish to use durable topic subscriptions, you need to specify both clientId and
durableSubscriptionName. The value of the clientId must be unique and can only be used by a single
JMS connection instance in your entire network. You may prefer to use Virtual Topics instead to avoid
this limitation. More background on durable messaging here.

26.1.4. Message Header Mapping

When using message headers, the JMS specification states that header names must be valid Java
identifiers. So try to name your headers to be valid Java identifiers. One benefit of doing this is that you
can then use your headers inside a JMS Selector (whose SQL92 syntax mandates Java identifier syntax
for headers).

A simple strategy for mapping header names is used by default. The strategy is to replace any dots and

CHAPTER 26. JMS

479

http://activemq.apache.org/jmstemplate-gotchas.html
http://activemq.apache.org
http://activemq.apache.org/virtual-destinations.html
http://activemq.apache.org/how-do-durable-queues-and-topics-work.html

hyphens in the header name as shown below and to reverse the replacement when the header name is
restored from a JMS message sent over the wire. What does this mean? No more losing method names
to invoke on a bean component, no more losing the filename header for the File Component, and so on.

The current header name strategy for accepting header names in Camel is as follows:

Dots are replaced by `DOT` and the replacement is reversed when Camel consume the
message

Hyphen is replaced by ̀ HYPHEN` and the replacement is reversed when Camel consumes the
message

You can configure many different properties on the JMS endpoint, which map to properties on the
JMSConfiguration object.

NOTE

Mapping to Spring JMS
Many of these properties map to properties on Spring JMS, which Camel uses for
sending and receiving messages. So you can get more information about these properties
by consulting the relevant Spring documentation.

26.2. CONFIGURING OPTIONS

Camel components are configured on two separate levels:

component level

endpoint level

26.2.1. Configuring Component Options

The component level is the highest level which holds general and common configurations that are
inherited by the endpoints. For example a component may have security settings, credentials for
authentication, urls for network connection and so forth.

Some components only have a few options, and others may have many. Because components typically
have pre configured defaults that are commonly used, then you may often only need to configure a few
options on a component; or none at all.

Configuring components can be done with the Component DSL, in a configuration file
(application.properties|yaml), or directly with Java code.

26.2.2. Configuring Endpoint Options

Where you find yourself configuring the most is on endpoints, as endpoints often have many options,
which allows you to configure what you need the endpoint to do. The options are also categorized into
whether the endpoint is used as consumer (from) or as a producer (to), or used for both.

Configuring endpoints is most often done directly in the endpoint URI as path and query parameters.
You can also use the Endpoint DSL as a type safe way of configuring endpoints.

A good practice when configuring options is to use Property Placeholders, which allows to not hardcode
urls, port numbers, sensitive information, and other settings. In other words placeholders allows to
externalize the configuration from your code, and gives more flexibility and reuse.

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

480

https://camel.apache.org/manual/component-dsl.html
https://camel.apache.org/manual/Endpoint-dsl.html
https://camel.apache.org/manual/using-propertyplaceholder.html

The following two sections lists all the options, firstly for the component followed by the endpoint.

26.3. COMPONENT OPTIONS

The JMS component supports 98 options, which are listed below.

Name Description Defaul
t

Type

clientId (common) Sets the JMS client ID to use. Note that this value, if
specified, must be unique and can only be used by a
single JMS connection instance. It is typically only
required for durable topic subscriptions. If using
Apache ActiveMQ you may prefer to use Virtual
Topics instead.

 String

connectionFactor
y (common)

The connection factory to be use. A connection
factory must be configured either on the component
or endpoint.

 ConnectionFactor
y

disableReplyTo
(common)

Specifies whether Camel ignores the JMSReplyTo
header in messages. If true, Camel does not send a
reply back to the destination specified in the
JMSReplyTo header. You can use this option if you
want Camel to consume from a route and you do not
want Camel to automatically send back a reply
message because another component in your code
handles the reply message. You can also use this
option if you want to use Camel as a proxy between
different message brokers and you want to route
message from one system to another.

false boolean

durableSubscripti
onName
(common)

The durable subscriber name for specifying durable
topic subscriptions. The clientId option must be
configured as well.

 String

CHAPTER 26. JMS

481

jmsMessageType
(common)

Allows you to force the use of a specific
javax.jms.Message implementation for sending JMS
messages. Possible values are: Bytes, Map, Object,
Stream, Text. By default, Camel would determine
which JMS message type to use from the In body
type. This option allows you to specify it.

Enum values:

Bytes

Map

Object

Stream

Text

 JmsMessageType

replyTo (common) Provides an explicit ReplyTo destination (overrides
any incoming value of Message.getJMSReplyTo() in
consumer).

 String

testConnectionO
nStartup
(common)

Specifies whether to test the connection on startup.
This ensures that when Camel starts that all the JMS
consumers have a valid connection to the JMS
broker. If a connection cannot be granted then
Camel throws an exception on startup. This ensures
that Camel is not started with failed connections. The
JMS producers is tested as well.

false boolean

acknowledgemen
tModeName
(consumer)

The JMS acknowledgement name, which is one of:
SESSION_TRANSACTED,
CLIENT_ACKNOWLEDGE, AUTO_ACKNOWLEDGE,
DUPS_OK_ACKNOWLEDGE.

Enum values:

SESSION_TRANSACTED

CLIENT_ACKNOWLEDGE

AUTO_ACKNOWLEDGE

DUPS_OK_ACKNOWLEDGE

AUTO_
ACKN
OWLE
DGE

String

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

482

artemisConsumer
Priority
(consumer)

Consumer priorities allow you to ensure that high
priority consumers receive messages while they are
active. Normally, active consumers connected to a
queue receive messages from it in a round-robin
fashion. When consumer priorities are in use,
messages are delivered round-robin if multiple active
consumers exist with the same high priority.
Messages will only going to lower priority consumers
when the high priority consumers do not have credit
available to consume the message, or those high
priority consumers have declined to accept the
message (for instance because it does not meet the
criteria of any selectors associated with the
consumer).

 int

asyncConsumer
(consumer)

Whether the JmsConsumer processes the Exchange
asynchronously. If enabled then the JmsConsumer
may pickup the next message from the JMS queue,
while the previous message is being processed
asynchronously (by the Asynchronous Routing
Engine). This means that messages may be
processed not 100% strictly in order. If disabled (as
default) then the Exchange is fully processed before
the JmsConsumer will pickup the next message from
the JMS queue. Note if transacted has been enabled,
then asyncConsumer=true does not run
asynchronously, as transaction must be executed
synchronously (Camel 3.0 may support async
transactions).

false boolean

autoStartup
(consumer)

Specifies whether the consumer container should
auto-startup.

true boolean

cacheLevel
(consumer)

Sets the cache level by ID for the underlying JMS
resources. See cacheLevelName option for more
details.

 int

Name Description Defaul
t

Type

CHAPTER 26. JMS

483

cacheLevelName
(consumer)

Sets the cache level by name for the underlying JMS
resources. Possible values are: CACHE_AUTO,
CACHE_CONNECTION, CACHE_CONSUMER,
CACHE_NONE, and CACHE_SESSION. The default
setting is CACHE_AUTO. See the Spring
documentation and Transactions Cache Levels for
more information.

Enum values:

CACHE_AUTO

CACHE_CONNECTION

CACHE_CONSUMER

CACHE_NONE

CACHE_SESSION

CACH
E_AUT
O

String

concurrentConsu
mers (consumer)

Specifies the default number of concurrent
consumers when consuming from JMS (not for
request/reply over JMS). See also the
maxMessagesPerTask option to control dynamic
scaling up/down of threads. When doing
request/reply over JMS then the option
replyToConcurrentConsumers is used to control
number of concurrent consumers on the reply
message listener.

1 int

maxConcurrentC
onsumers
(consumer)

Specifies the maximum number of concurrent
consumers when consuming from JMS (not for
request/reply over JMS). See also the
maxMessagesPerTask option to control dynamic
scaling up/down of threads. When doing
request/reply over JMS then the option
replyToMaxConcurrentConsumers is used to control
number of concurrent consumers on the reply
message listener.

 int

replyToDeliveryP
ersistent
(consumer)

Specifies whether to use persistent delivery by
default for replies.

true boolean

selector
(consumer)

Sets the JMS selector to use. String

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

484

subscriptionDura
ble (consumer)

Set whether to make the subscription durable. The
durable subscription name to be used can be
specified through the subscriptionName property.
Default is false. Set this to true to register a durable
subscription, typically in combination with a
subscriptionName value (unless your message
listener class name is good enough as subscription
name). Only makes sense when listening to a topic
(pub-sub domain), therefore this method switches
the pubSubDomain flag as well.

false boolean

subscriptionName
(consumer)

Set the name of a subscription to create. To be
applied in case of a topic (pub-sub domain) with a
shared or durable subscription. The subscription
name needs to be unique within this client’s JMS
client id. Default is the class name of the specified
message listener. Note: Only 1 concurrent consumer
(which is the default of this message listener
container) is allowed for each subscription, except for
a shared subscription (which requires JMS 2.0).

 String

subscriptionShare
d (consumer)

Set whether to make the subscription shared. The
shared subscription name to be used can be
specified through the subscriptionName property.
Default is false. Set this to true to register a shared
subscription, typically in combination with a
subscriptionName value (unless your message
listener class name is good enough as subscription
name). Note that shared subscriptions may also be
durable, so this flag can (and often will) be combined
with subscriptionDurable as well. Only makes sense
when listening to a topic (pub-sub domain),
therefore this method switches the pubSubDomain
flag as well. Requires a JMS 2.0 compatible message
broker.

false boolean

acceptMessages
WhileStopping
(consumer
(advanced))

Specifies whether the consumer accept messages
while it is stopping. You may consider enabling this
option, if you start and stop JMS routes at runtime,
while there are still messages enqueued on the
queue. If this option is false, and you stop the JMS
route, then messages may be rejected, and the JMS
broker would have to attempt redeliveries, which yet
again may be rejected, and eventually the message
may be moved at a dead letter queue on the JMS
broker. To avoid this its recommended to enable this
option.

false boolean

Name Description Defaul
t

Type

CHAPTER 26. JMS

485

allowReplyManag
erQuickStop
(consumer
(advanced))

Whether the DefaultMessageListenerContainer used
in the reply managers for request-reply messaging
allow the
DefaultMessageListenerContainer.runningAllowed
flag to quick stop in case
JmsConfiguration#isAcceptMessagesWhileStopping
is enabled, and org.apache.camel.CamelContext is
currently being stopped. This quick stop ability is
enabled by default in the regular JMS consumers but
to enable for reply managers you must enable this
flag.

false boolean

consumerType
(consumer
(advanced))

The consumer type to use, which can be one of:
Simple, Default, or Custom. The consumer type
determines which Spring JMS listener to use. Default
will use
org.springframework.jms.listener.DefaultMessageList
enerContainer, Simple will use
org.springframework.jms.listener.SimpleMessageList
enerContainer. When Custom is specified, the
MessageListenerContainerFactory defined by the
messageListenerContainerFactory option will
determine what
org.springframework.jms.listener.AbstractMessageLis
tenerContainer to use.

Enum values:

Simple

Default

Custom

Default ConsumerType

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

486

defaultTaskExecu
torType
(consumer
(advanced))

Specifies what default TaskExecutor type to use in
the DefaultMessageListenerContainer, for both
consumer endpoints and the ReplyTo consumer of
producer endpoints. Possible values: SimpleAsync
(uses Spring’s SimpleAsyncTaskExecutor) or
ThreadPool (uses Spring’s ThreadPoolTaskExecutor
with optimal values - cached threadpool-like). If not
set, it defaults to the previous behaviour, which uses
a cached thread pool for consumer endpoints and
SimpleAsync for reply consumers. The use of
ThreadPool is recommended to reduce thread trash
in elastic configurations with dynamically increasing
and decreasing concurrent consumers.

Enum values:

ThreadPool

SimpleAsync

 DefaultTaskExecu
torType

eagerLoadingOfP
roperties
(consumer
(advanced))

Enables eager loading of JMS properties and payload
as soon as a message is loaded which generally is
inefficient as the JMS properties may not be required
but sometimes can catch early any issues with the
underlying JMS provider and the use of JMS
properties. See also the option eagerPoisonBody.

false boolean

eagerPoisonBody
(consumer
(advanced))

If eagerLoadingOfProperties is enabled and the JMS
message payload (JMS body or JMS properties) is
poison (cannot be read/mapped), then set this text
as the message body instead so the message can be
processed (the cause of the poison are already
stored as exception on the Exchange). This can be
turned off by setting eagerPoisonBody=false. See
also the option eagerLoadingOfProperties.

Poison
JMS
messa
ge due
to $\
{excep
tion.me
ssage}

String

exposeListenerSe
ssion (consumer
(advanced))

Specifies whether the listener session should be
exposed when consuming messages.

false boolean

replyToSameDest
inationAllowed
(consumer
(advanced))

Whether a JMS consumer is allowed to send a reply
message to the same destination that the consumer
is using to consume from. This prevents an endless
loop by consuming and sending back the same
message to itself.

false boolean

taskExecutor
(consumer
(advanced))

Allows you to specify a custom task executor for
consuming messages.

 TaskExecutor

Name Description Defaul
t

Type

CHAPTER 26. JMS

487

deliveryDelay
(producer)

Sets delivery delay to use for send calls for JMS. This
option requires JMS 2.0 compliant broker.

-1 long

deliveryMode
(producer)

Specifies the delivery mode to be used. Possible
values are those defined by javax.jms.DeliveryMode.
NON_PERSISTENT = 1 and PERSISTENT = 2.

Enum values:

1

2

 Integer

deliveryPersisten
t (producer)

Specifies whether persistent delivery is used by
default.

true boolean

explicitQosEnable
d (producer)

Set if the deliveryMode, priority or timeToLive
qualities of service should be used when sending
messages. This option is based on Spring’s
JmsTemplate. The deliveryMode, priority and
timeToLive options are applied to the current
endpoint. This contrasts with the
preserveMessageQos option, which operates at
message granularity, reading QoS properties
exclusively from the Camel In message headers.

false Boolean

formatDateHead
ersToIso8601
(producer)

Sets whether JMS date properties should be
formatted according to the ISO 8601 standard.

false boolean

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

488

preserveMessage
Qos (producer)

Set to true, if you want to send message using the
QoS settings specified on the message, instead of
the QoS settings on the JMS endpoint. The following
three headers are considered JMSPriority,
JMSDeliveryMode, and JMSExpiration. You can
provide all or only some of them. If not provided,
Camel will fall back to use the values from the
endpoint instead. So, when using this option, the
headers override the values from the endpoint. The
explicitQosEnabled option, by contrast, will only use
options set on the endpoint, and not values from the
message header.

false boolean

priority (producer) Values greater than 1 specify the message priority
when sending (where 1 is the lowest priority and 9 is
the highest). The explicitQosEnabled option must
also be enabled in order for this option to have any
effect.

Enum values:

1

2

3

4

5

6

7

8

9

4 int

replyToConcurren
tConsumers
(producer)

Specifies the default number of concurrent
consumers when doing request/reply over JMS. See
also the maxMessagesPerTask option to control
dynamic scaling up/down of threads.

1 int

replyToMaxConc
urrentConsumers
(producer)

Specifies the maximum number of concurrent
consumers when using request/reply over JMS. See
also the maxMessagesPerTask option to control
dynamic scaling up/down of threads.

 int

Name Description Defaul
t

Type

CHAPTER 26. JMS

489

replyToOnTimeou
tMaxConcurrentC
onsumers
(producer)

Specifies the maximum number of concurrent
consumers for continue routing when timeout
occurred when using request/reply over JMS.

1 int

replyToOverride
(producer)

Provides an explicit ReplyTo destination in the JMS
message, which overrides the setting of replyTo. It is
useful if you want to forward the message to a
remote Queue and receive the reply message from
the ReplyTo destination.

 String

replyToType
(producer)

Allows for explicitly specifying which kind of strategy
to use for replyTo queues when doing request/reply
over JMS. Possible values are: Temporary, Shared, or
Exclusive. By default Camel will use temporary
queues. However if replyTo has been configured,
then Shared is used by default. This option allows you
to use exclusive queues instead of shared ones. See
Camel JMS documentation for more details, and
especially the notes about the implications if running
in a clustered environment, and the fact that Shared
reply queues has lower performance than its
alternatives Temporary and Exclusive.

Enum values:

Temporary

Shared

Exclusive

 ReplyToType

requestTimeout
(producer)

The timeout for waiting for a reply when using the
InOut Exchange Pattern (in milliseconds). The default
is 20 seconds. You can include the header
CamelJmsRequestTimeout to override this endpoint
configured timeout value, and thus have per message
individual timeout values. See also the
requestTimeoutCheckerInterval option.

20000 long

timeToLive
(producer)

When sending messages, specifies the time-to-live
of the message (in milliseconds).

-1 long

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

490

allowAdditionalHe
aders (producer
(advanced))

This option is used to allow additional headers which
may have values that are invalid according to JMS
specification. For example some message systems
such as WMQ do this with header names using prefix
JMS_IBM_MQMD_ containing values with byte array
or other invalid types. You can specify multiple
header names separated by comma, and use as suffix
for wildcard matching.

 String

allowNullBody
(producer
(advanced))

Whether to allow sending messages with no body. If
this option is false and the message body is null, then
an JMSException is thrown.

true boolean

alwaysCopyMessa
ge (producer
(advanced))

If true, Camel will always make a JMS message copy
of the message when it is passed to the producer for
sending. Copying the message is needed in some
situations, such as when a
replyToDestinationSelectorName is set (incidentally,
Camel will set the alwaysCopyMessage option to
true, if a replyToDestinationSelectorName is set).

false boolean

correlationProper
ty (producer
(advanced))

When using InOut exchange pattern use this JMS
property instead of JMSCorrelationID JMS property
to correlate messages. If set messages will be
correlated solely on the value of this property
JMSCorrelationID property will be ignored and not
set by Camel.

 String

disableTimeToLiv
e (producer
(advanced))

Use this option to force disabling time to live. For
example when you do request/reply over JMS, then
Camel will by default use the requestTimeout value
as time to live on the message being sent. The
problem is that the sender and receiver systems have
to have their clocks synchronized, so they are in sync.
This is not always so easy to archive. So you can use
disableTimeToLive=true to not set a time to live value
on the sent message. Then the message will not
expire on the receiver system. See below in section
About time to live for more details.

false boolean

forceSendOrigina
lMessage
(producer
(advanced))

When using mapJmsMessage=false Camel will create
a new JMS message to send to a new JMS
destination if you touch the headers (get or set)
during the route. Set this option to true to force
Camel to send the original JMS message that was
received.

false boolean

Name Description Defaul
t

Type

CHAPTER 26. JMS

491

includeSentJMS
MessageID
(producer
(advanced))

Only applicable when sending to JMS destination
using InOnly (eg fire and forget). Enabling this option
will enrich the Camel Exchange with the actual
JMSMessageID that was used by the JMS client
when the message was sent to the JMS destination.

false boolean

replyToCacheLev
elName (producer
(advanced))

Sets the cache level by name for the reply consumer
when doing request/reply over JMS. This option only
applies when using fixed reply queues (not
temporary). Camel will by default use:
CACHE_CONSUMER for exclusive or shared w/
replyToSelectorName. And CACHE_SESSION for
shared without replyToSelectorName. Some JMS
brokers such as IBM WebSphere may require to set
the replyToCacheLevelName=CACHE_NONE to
work. Note: If using temporary queues then
CACHE_NONE is not allowed, and you must use a
higher value such as CACHE_CONSUMER or
CACHE_SESSION.

Enum values:

CACHE_AUTO

CACHE_CONNECTION

CACHE_CONSUMER

CACHE_NONE

CACHE_SESSION

 String

replyToDestinatio
nSelectorName
(producer
(advanced))

Sets the JMS Selector using the fixed name to be
used so you can filter out your own replies from the
others when using a shared queue (that is, if you are
not using a temporary reply queue).

 String

streamMessageT
ypeEnabled
(producer
(advanced))

Sets whether StreamMessage type is enabled or not.
Message payloads of streaming kind such as files,
InputStream, etc will either by sent as BytesMessage
or StreamMessage. This option controls which kind
will be used. By default BytesMessage is used which
enforces the entire message payload to be read into
memory. By enabling this option the message payload
is read into memory in chunks and each chunk is then
written to the StreamMessage until no more data.

false boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

492

allowAutoWiredC
onnectionFactory
(advanced)

Whether to auto-discover ConnectionFactory from
the registry, if no connection factory has been
configured. If only one instance of
ConnectionFactory is found then it will be used. This
is enabled by default.

true boolean

allowAutoWiredD
estinationResolve
r (advanced)

Whether to auto-discover DestinationResolver from
the registry, if no destination resolver has been
configured. If only one instance of
DestinationResolver is found then it will be used. This
is enabled by default.

true boolean

allowSerializedHe
aders (advanced)

Controls whether or not to include serialized headers.
Applies only when transferExchange is true. This
requires that the objects are serializable. Camel will
exclude any non-serializable objects and log it at
WARN level.

false boolean

artemisStreaming
Enabled
(advanced)

Whether optimizing for Apache Artemis streaming
mode. This can reduce memory overhead when using
Artemis with JMS StreamMessage types. This option
must only be enabled if Apache Artemis is being used.

false boolean

asyncStartListen
er (advanced)

Whether to startup the JmsConsumer message
listener asynchronously, when starting a route. For
example if a JmsConsumer cannot get a connection
to a remote JMS broker, then it may block while
retrying and/or failover. This will cause Camel to
block while starting routes. By setting this option to
true, you will let routes startup, while the
JmsConsumer connects to the JMS broker using a
dedicated thread in asynchronous mode. If this
option is used, then beware that if the connection
could not be established, then an exception is logged
at WARN level, and the consumer will not be able to
receive messages; You can then restart the route to
retry.

false boolean

asyncStopListene
r (advanced)

Whether to stop the JmsConsumer message listener
asynchronously, when stopping a route.

false boolean

autowiredEnabled
(advanced)

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true boolean

Name Description Defaul
t

Type

CHAPTER 26. JMS

493

configuration
(advanced)

To use a shared JMS configuration. JmsConfiguration

destinationResolv
er (advanced)

A pluggable
org.springframework.jms.support.destination.Destina
tionResolver that allows you to use your own resolver
(for example, to lookup the real destination in a JNDI
registry).

 DestinationResolv
er

errorHandler
(advanced)

Specifies a org.springframework.util.ErrorHandler to
be invoked in case of any uncaught exceptions
thrown while processing a Message. By default these
exceptions will be logged at the WARN level, if no
errorHandler has been configured. You can configure
logging level and whether stack traces should be
logged using errorHandlerLoggingLevel and
errorHandlerLogStackTrace options. This makes it
much easier to configure, than having to code a
custom errorHandler.

 ErrorHandler

exceptionListener
(advanced)

Specifies the JMS Exception Listener that is to be
notified of any underlying JMS exceptions.

 ExceptionListener

idleConsumerLimi
t (advanced)

Specify the limit for the number of consumers that
are allowed to be idle at any given time.

1 int

idleTaskExecutio
nLimit (advanced)

Specifies the limit for idle executions of a receive
task, not having received any message within its
execution. If this limit is reached, the task will shut
down and leave receiving to other executing tasks (in
the case of dynamic scheduling; see the
maxConcurrentConsumers setting). There is
additional doc available from Spring.

1 int

includeAllJMSXPr
operties
(advanced)

Whether to include all JMSXxxx properties when
mapping from JMS to Camel Message. Setting this to
true will include properties such as JMSXAppID, and
JMSXUserID etc. Note: If you are using a custom
headerFilterStrategy then this option does not apply.

false boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

494

jmsKeyFormatStr
ategy (advanced)

Pluggable strategy for encoding and decoding JMS
keys so they can be compliant with the JMS
specification. Camel provides two implementations
out of the box: default and passthrough. The default
strategy will safely marshal dots and hyphens (. and -
). The passthrough strategy leaves the key as is. Can
be used for JMS brokers which do not care whether
JMS header keys contain illegal characters. You can
provide your own implementation of the
org.apache.camel.component.jms.JmsKeyFormatStr
ategy and refer to it using the # notation.

Enum values:

default

passthrough

 JmsKeyFormatStr
ategy

mapJmsMessage
(advanced)

Specifies whether Camel should auto map the
received JMS message to a suited payload type, such
as javax.jms.TextMessage to a String etc.

true boolean

maxMessagesPer
Task (advanced)

The number of messages per task. -1 is unlimited. If
you use a range for concurrent consumers (eg min
max), then this option can be used to set a value to
eg 100 to control how fast the consumers will shrink
when less work is required.

-1 int

messageConverte
r (advanced)

To use a custom Spring
org.springframework.jms.support.converter.Message
Converter so you can be in control how to map
to/from a javax.jms.Message.

 MessageConverte
r

messageCreated
Strategy
(advanced)

To use the given MessageCreatedStrategy which are
invoked when Camel creates new instances of
javax.jms.Message objects when Camel is sending a
JMS message.

 MessageCreatedS
trategy

messageIdEnable
d (advanced)

When sending, specifies whether message IDs should
be added. This is just an hint to the JMS broker. If the
JMS provider accepts this hint, these messages must
have the message ID set to null; if the provider
ignores the hint, the message ID must be set to its
normal unique value.

true boolean

Name Description Defaul
t

Type

CHAPTER 26. JMS

495

messageListener
ContainerFactory
(advanced)

Registry ID of the MessageListenerContainerFactory
used to determine what
org.springframework.jms.listener.AbstractMessageLis
tenerContainer to use to consume messages. Setting
this will automatically set consumerType to Custom.

 MessageListenerC
ontainerFactory

messageTimesta
mpEnabled
(advanced)

Specifies whether timestamps should be enabled by
default on sending messages. This is just an hint to
the JMS broker. If the JMS provider accepts this hint,
these messages must have the timestamp set to
zero; if the provider ignores the hint the timestamp
must be set to its normal value.

true boolean

pubSubNoLocal
(advanced)

Specifies whether to inhibit the delivery of messages
published by its own connection.

false boolean

queueBrowseStra
tegy (advanced)

To use a custom QueueBrowseStrategy when
browsing queues.

 QueueBrowseStra
tegy

receiveTimeout
(advanced)

The timeout for receiving messages (in milliseconds). 1000 long

recoveryInterval
(advanced)

Specifies the interval between recovery attempts, i.e.
when a connection is being refreshed, in milliseconds.
The default is 5000 ms, that is, 5 seconds.

5000 long

requestTimeoutC
heckerInterval
(advanced)

Configures how often Camel should check for timed
out Exchanges when doing request/reply over JMS.
By default Camel checks once per second. But if you
must react faster when a timeout occurs, then you
can lower this interval, to check more frequently. The
timeout is determined by the option requestTimeout.

1000 long

synchronous
(advanced)

Sets whether synchronous processing should be
strictly used.

false boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

496

transferException
(advanced)

If enabled and you are using Request Reply
messaging (InOut) and an Exchange failed on the
consumer side, then the caused Exception will be
send back in response as a javax.jms.ObjectMessage.
If the client is Camel, the returned Exception is
rethrown. This allows you to use Camel JMS as a
bridge in your routing - for example, using persistent
queues to enable robust routing. Notice that if you
also have transferExchange enabled, this option takes
precedence. The caught exception is required to be
serializable. The original Exception on the consumer
side can be wrapped in an outer exception such as
org.apache.camel.RuntimeCamelException when
returned to the producer. Use this with caution as the
data is using Java Object serialization and requires
the received to be able to deserialize the data at
Class level, which forces a strong coupling between
the producers and consumer!.

false boolean

transferExchange
(advanced)

You can transfer the exchange over the wire instead
of just the body and headers. The following fields are
transferred: In body, Out body, Fault body, In headers,
Out headers, Fault headers, exchange properties,
exchange exception. This requires that the objects
are serializable. Camel will exclude any non-
serializable objects and log it at WARN level. You
must enable this option on both the producer and
consumer side, so Camel knows the payloads is an
Exchange and not a regular payload. Use this with
caution as the data is using Java Object serialization
and requires the receiver to be able to deserialize the
data at Class level, which forces a strong coupling
between the producers and consumers having to use
compatible Camel versions!.

false boolean

useMessageIDAs
CorrelationID
(advanced)

Specifies whether JMSMessageID should always be
used as JMSCorrelationID for InOut messages.

false boolean

waitForProvision
CorrelationToBeU
pdatedCounter
(advanced)

Number of times to wait for provisional correlation id
to be updated to the actual correlation id when doing
request/reply over JMS and when the option
useMessageIDAsCorrelationID is enabled.

50 int

waitForProvision
CorrelationToBeU
pdatedThreadSle
epingTime
(advanced)

Interval in millis to sleep each time while waiting for
provisional correlation id to be updated.

100 long

Name Description Defaul
t

Type

CHAPTER 26. JMS

497

headerFilterStrat
egy (filter)

To use a custom
org.apache.camel.spi.HeaderFilterStrategy to filter
header to and from Camel message.

 HeaderFilterStrate
gy

errorHandlerLogg
ingLevel (logging)

Allows to configure the default errorHandler logging
level for logging uncaught exceptions.

Enum values:

TRACE

DEBUG

INFO

WARN

ERROR

OFF

WARN LoggingLevel

errorHandlerLogS
tackTrace
(logging)

Allows to control whether stacktraces should be
logged or not, by the default errorHandler.

true boolean

password
(security)

Password to use with the ConnectionFactory. You
can also configure username/password directly on
the ConnectionFactory.

 String

username
(security)

Username to use with the ConnectionFactory. You
can also configure username/password directly on
the ConnectionFactory.

 String

transacted
(transaction)

Specifies whether to use transacted mode. false boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

498

transactedInOut
(transaction)

Specifies whether InOut operations (request reply)
default to using transacted mode If this flag is set to
true, then Spring JmsTemplate will have
sessionTransacted set to true, and the
acknowledgeMode as transacted on the
JmsTemplate used for InOut operations. Note from
Spring JMS: that within a JTA transaction, the
parameters passed to createQueue, createTopic
methods are not taken into account. Depending on
the Java EE transaction context, the container
makes its own decisions on these values.
Analogously, these parameters are not taken into
account within a locally managed transaction either,
since Spring JMS operates on an existing JMS
Session in this case. Setting this flag to true will use a
short local JMS transaction when running outside of
a managed transaction, and a synchronized local JMS
transaction in case of a managed transaction (other
than an XA transaction) being present. This has the
effect of a local JMS transaction being managed
alongside the main transaction (which might be a
native JDBC transaction), with the JMS transaction
committing right after the main transaction.

false boolean

lazyCreateTransa
ctionManager
(transaction
(advanced))

If true, Camel will create a JmsTransactionManager,
if there is no transactionManager injected when
option transacted=true.

true boolean

transactionManag
er (transaction
(advanced))

The Spring transaction manager to use. PlatformTransacti
onManager

transactionName
(transaction
(advanced))

The name of the transaction to use. String

transactionTimeo
ut (transaction
(advanced))

The timeout value of the transaction (in seconds), if
using transacted mode.

-1 int

Name Description Defaul
t

Type

26.4. ENDPOINT OPTIONS

The JMS endpoint is configured using URI syntax:

jms:destinationType:destinationName

with the following path and query parameters:

CHAPTER 26. JMS

499

26.4.1. Path Parameters (2 parameters)

Name Description Defaul
t

Type

destinationType
(common)

The kind of destination to use.

Enum values:

queue

topic

temp-queue

temp-topic

queue String

destinationName
(common)

Required Name of the queue or topic to use as
destination.

 String

26.4.2. Query Parameters (95 parameters)

Name Description Defaul
t

Type

clientId (common) Sets the JMS client ID to use. Note that this value, if
specified, must be unique and can only be used by a
single JMS connection instance. It is typically only
required for durable topic subscriptions. If using
Apache ActiveMQ you may prefer to use Virtual
Topics instead.

 String

connectionFactor
y (common)

The connection factory to be use. A connection
factory must be configured either on the component
or endpoint.

 ConnectionFactor
y

disableReplyTo
(common)

Specifies whether Camel ignores the JMSReplyTo
header in messages. If true, Camel does not send a
reply back to the destination specified in the
JMSReplyTo header. You can use this option if you
want Camel to consume from a route and you do not
want Camel to automatically send back a reply
message because another component in your code
handles the reply message. You can also use this
option if you want to use Camel as a proxy between
different message brokers and you want to route
message from one system to another.

false boolean

durableSubscripti
onName
(common)

The durable subscriber name for specifying durable
topic subscriptions. The clientId option must be
configured as well.

 String

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

500

jmsMessageType
(common)

Allows you to force the use of a specific
javax.jms.Message implementation for sending JMS
messages. Possible values are: Bytes, Map, Object,
Stream, Text. By default, Camel would determine
which JMS message type to use from the In body
type. This option allows you to specify it.

Enum values:

Bytes

Map

Object

Stream

Text

 JmsMessageType

replyTo (common) Provides an explicit ReplyTo destination (overrides
any incoming value of Message.getJMSReplyTo() in
consumer).

 String

testConnectionO
nStartup
(common)

Specifies whether to test the connection on startup.
This ensures that when Camel starts that all the JMS
consumers have a valid connection to the JMS
broker. If a connection cannot be granted then
Camel throws an exception on startup. This ensures
that Camel is not started with failed connections. The
JMS producers is tested as well.

false boolean

acknowledgemen
tModeName
(consumer)

The JMS acknowledgement name, which is one of:
SESSION_TRANSACTED,
CLIENT_ACKNOWLEDGE, AUTO_ACKNOWLEDGE,
DUPS_OK_ACKNOWLEDGE.

Enum values:

SESSION_TRANSACTED

CLIENT_ACKNOWLEDGE

AUTO_ACKNOWLEDGE

DUPS_OK_ACKNOWLEDGE

AUTO_
ACKN
OWLE
DGE

String

Name Description Defaul
t

Type

CHAPTER 26. JMS

501

artemisConsumer
Priority
(consumer)

Consumer priorities allow you to ensure that high
priority consumers receive messages while they are
active. Normally, active consumers connected to a
queue receive messages from it in a round-robin
fashion. When consumer priorities are in use,
messages are delivered round-robin if multiple active
consumers exist with the same high priority.
Messages will only going to lower priority consumers
when the high priority consumers do not have credit
available to consume the message, or those high
priority consumers have declined to accept the
message (for instance because it does not meet the
criteria of any selectors associated with the
consumer).

 int

asyncConsumer
(consumer)

Whether the JmsConsumer processes the Exchange
asynchronously. If enabled then the JmsConsumer
may pickup the next message from the JMS queue,
while the previous message is being processed
asynchronously (by the Asynchronous Routing
Engine). This means that messages may be
processed not 100% strictly in order. If disabled (as
default) then the Exchange is fully processed before
the JmsConsumer will pickup the next message from
the JMS queue. Note if transacted has been enabled,
then asyncConsumer=true does not run
asynchronously, as transaction must be executed
synchronously (Camel 3.0 may support async
transactions).

false boolean

autoStartup
(consumer)

Specifies whether the consumer container should
auto-startup.

true boolean

cacheLevel
(consumer)

Sets the cache level by ID for the underlying JMS
resources. See cacheLevelName option for more
details.

 int

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

502

cacheLevelName
(consumer)

Sets the cache level by name for the underlying JMS
resources. Possible values are: CACHE_AUTO,
CACHE_CONNECTION, CACHE_CONSUMER,
CACHE_NONE, and CACHE_SESSION. The default
setting is CACHE_AUTO. See the Spring
documentation and Transactions Cache Levels for
more information.

Enum values:

CACHE_AUTO

CACHE_CONNECTION

CACHE_CONSUMER

CACHE_NONE

CACHE_SESSION

CACH
E_AUT
O

String

concurrentConsu
mers (consumer)

Specifies the default number of concurrent
consumers when consuming from JMS (not for
request/reply over JMS). See also the
maxMessagesPerTask option to control dynamic
scaling up/down of threads. When doing
request/reply over JMS then the option
replyToConcurrentConsumers is used to control
number of concurrent consumers on the reply
message listener.

1 int

maxConcurrentC
onsumers
(consumer)

Specifies the maximum number of concurrent
consumers when consuming from JMS (not for
request/reply over JMS). See also the
maxMessagesPerTask option to control dynamic
scaling up/down of threads. When doing
request/reply over JMS then the option
replyToMaxConcurrentConsumers is used to control
number of concurrent consumers on the reply
message listener.

 int

replyToDeliveryP
ersistent
(consumer)

Specifies whether to use persistent delivery by
default for replies.

true boolean

selector
(consumer)

Sets the JMS selector to use. String

Name Description Defaul
t

Type

CHAPTER 26. JMS

503

subscriptionDura
ble (consumer)

Set whether to make the subscription durable. The
durable subscription name to be used can be
specified through the subscriptionName property.
Default is false. Set this to true to register a durable
subscription, typically in combination with a
subscriptionName value (unless your message
listener class name is good enough as subscription
name). Only makes sense when listening to a topic
(pub-sub domain), therefore this method switches
the pubSubDomain flag as well.

false boolean

subscriptionName
(consumer)

Set the name of a subscription to create. To be
applied in case of a topic (pub-sub domain) with a
shared or durable subscription. The subscription
name needs to be unique within this client’s JMS
client id. Default is the class name of the specified
message listener. Note: Only 1 concurrent consumer
(which is the default of this message listener
container) is allowed for each subscription, except for
a shared subscription (which requires JMS 2.0).

 String

subscriptionShare
d (consumer)

Set whether to make the subscription shared. The
shared subscription name to be used can be
specified through the subscriptionName property.
Default is false. Set this to true to register a shared
subscription, typically in combination with a
subscriptionName value (unless your message
listener class name is good enough as subscription
name). Note that shared subscriptions may also be
durable, so this flag can (and often will) be combined
with subscriptionDurable as well. Only makes sense
when listening to a topic (pub-sub domain),
therefore this method switches the pubSubDomain
flag as well. Requires a JMS 2.0 compatible message
broker.

false boolean

acceptMessages
WhileStopping
(consumer
(advanced))

Specifies whether the consumer accept messages
while it is stopping. You may consider enabling this
option, if you start and stop JMS routes at runtime,
while there are still messages enqueued on the
queue. If this option is false, and you stop the JMS
route, then messages may be rejected, and the JMS
broker would have to attempt redeliveries, which yet
again may be rejected, and eventually the message
may be moved at a dead letter queue on the JMS
broker. To avoid this its recommended to enable this
option.

false boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

504

allowReplyManag
erQuickStop
(consumer
(advanced))

Whether the DefaultMessageListenerContainer used
in the reply managers for request-reply messaging
allow the
DefaultMessageListenerContainer.runningAllowed
flag to quick stop in case
JmsConfiguration#isAcceptMessagesWhileStopping
is enabled, and org.apache.camel.CamelContext is
currently being stopped. This quick stop ability is
enabled by default in the regular JMS consumers but
to enable for reply managers you must enable this
flag.

false boolean

consumerType
(consumer
(advanced))

The consumer type to use, which can be one of:
Simple, Default, or Custom. The consumer type
determines which Spring JMS listener to use. Default
will use
org.springframework.jms.listener.DefaultMessageList
enerContainer, Simple will use
org.springframework.jms.listener.SimpleMessageList
enerContainer. When Custom is specified, the
MessageListenerContainerFactory defined by the
messageListenerContainerFactory option will
determine what
org.springframework.jms.listener.AbstractMessageLis
tenerContainer to use.

Enum values:

Simple

Default

Custom

Default ConsumerType

Name Description Defaul
t

Type

CHAPTER 26. JMS

505

defaultTaskExecu
torType
(consumer
(advanced))

Specifies what default TaskExecutor type to use in
the DefaultMessageListenerContainer, for both
consumer endpoints and the ReplyTo consumer of
producer endpoints. Possible values: SimpleAsync
(uses Spring’s SimpleAsyncTaskExecutor) or
ThreadPool (uses Spring’s ThreadPoolTaskExecutor
with optimal values - cached threadpool-like). If not
set, it defaults to the previous behaviour, which uses
a cached thread pool for consumer endpoints and
SimpleAsync for reply consumers. The use of
ThreadPool is recommended to reduce thread trash
in elastic configurations with dynamically increasing
and decreasing concurrent consumers.

Enum values:

ThreadPool

SimpleAsync

 DefaultTaskExecu
torType

eagerLoadingOfP
roperties
(consumer
(advanced))

Enables eager loading of JMS properties and payload
as soon as a message is loaded which generally is
inefficient as the JMS properties may not be required
but sometimes can catch early any issues with the
underlying JMS provider and the use of JMS
properties. See also the option eagerPoisonBody.

false boolean

eagerPoisonBody
(consumer
(advanced))

If eagerLoadingOfProperties is enabled and the JMS
message payload (JMS body or JMS properties) is
poison (cannot be read/mapped), then set this text
as the message body instead so the message can be
processed (the cause of the poison are already
stored as exception on the Exchange). This can be
turned off by setting eagerPoisonBody=false. See
also the option eagerLoadingOfProperties.

Poison
JMS
messa
ge due
to $\
{excep
tion.me
ssage}

String

exceptionHandler
(consumer
(advanced))

To let the consumer use a custom ExceptionHandler.
Notice if the option bridgeErrorHandler is enabled
then this option is not in use. By default the consumer
will deal with exceptions, that will be logged at WARN
or ERROR level and ignored.

 ExceptionHandler

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

506

exchangePattern
(consumer
(advanced))

Sets the exchange pattern when the consumer
creates an exchange.

Enum values:

InOnly

InOut

InOptionalOut

 ExchangePattern

exposeListenerSe
ssion (consumer
(advanced))

Specifies whether the listener session should be
exposed when consuming messages.

false boolean

replyToSameDest
inationAllowed
(consumer
(advanced))

Whether a JMS consumer is allowed to send a reply
message to the same destination that the consumer
is using to consume from. This prevents an endless
loop by consuming and sending back the same
message to itself.

false boolean

taskExecutor
(consumer
(advanced))

Allows you to specify a custom task executor for
consuming messages.

 TaskExecutor

deliveryDelay
(producer)

Sets delivery delay to use for send calls for JMS. This
option requires JMS 2.0 compliant broker.

-1 long

deliveryMode
(producer)

Specifies the delivery mode to be used. Possible
values are those defined by javax.jms.DeliveryMode.
NON_PERSISTENT = 1 and PERSISTENT = 2.

Enum values:

1

2

 Integer

deliveryPersisten
t (producer)

Specifies whether persistent delivery is used by
default.

true boolean

Name Description Defaul
t

Type

CHAPTER 26. JMS

507

explicitQosEnable
d (producer)

Set if the deliveryMode, priority or timeToLive
qualities of service should be used when sending
messages. This option is based on Spring’s
JmsTemplate. The deliveryMode, priority and
timeToLive options are applied to the current
endpoint. This contrasts with the
preserveMessageQos option, which operates at
message granularity, reading QoS properties
exclusively from the Camel In message headers.

false Boolean

formatDateHead
ersToIso8601
(producer)

Sets whether JMS date properties should be
formatted according to the ISO 8601 standard.

false boolean

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

preserveMessage
Qos (producer)

Set to true, if you want to send message using the
QoS settings specified on the message, instead of
the QoS settings on the JMS endpoint. The following
three headers are considered JMSPriority,
JMSDeliveryMode, and JMSExpiration. You can
provide all or only some of them. If not provided,
Camel will fall back to use the values from the
endpoint instead. So, when using this option, the
headers override the values from the endpoint. The
explicitQosEnabled option, by contrast, will only use
options set on the endpoint, and not values from the
message header.

false boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

508

priority (producer) Values greater than 1 specify the message priority
when sending (where 1 is the lowest priority and 9 is
the highest). The explicitQosEnabled option must
also be enabled in order for this option to have any
effect.

Enum values:

1

2

3

4

5

6

7

8

9

4 int

replyToConcurren
tConsumers
(producer)

Specifies the default number of concurrent
consumers when doing request/reply over JMS. See
also the maxMessagesPerTask option to control
dynamic scaling up/down of threads.

1 int

replyToMaxConc
urrentConsumers
(producer)

Specifies the maximum number of concurrent
consumers when using request/reply over JMS. See
also the maxMessagesPerTask option to control
dynamic scaling up/down of threads.

 int

replyToOnTimeou
tMaxConcurrentC
onsumers
(producer)

Specifies the maximum number of concurrent
consumers for continue routing when timeout
occurred when using request/reply over JMS.

1 int

replyToOverride
(producer)

Provides an explicit ReplyTo destination in the JMS
message, which overrides the setting of replyTo. It is
useful if you want to forward the message to a
remote Queue and receive the reply message from
the ReplyTo destination.

 String

Name Description Defaul
t

Type

CHAPTER 26. JMS

509

replyToType
(producer)

Allows for explicitly specifying which kind of strategy
to use for replyTo queues when doing request/reply
over JMS. Possible values are: Temporary, Shared, or
Exclusive. By default Camel will use temporary
queues. However if replyTo has been configured,
then Shared is used by default. This option allows you
to use exclusive queues instead of shared ones. See
Camel JMS documentation for more details, and
especially the notes about the implications if running
in a clustered environment, and the fact that Shared
reply queues has lower performance than its
alternatives Temporary and Exclusive.

Enum values:

Temporary

Shared

Exclusive

 ReplyToType

requestTimeout
(producer)

The timeout for waiting for a reply when using the
InOut Exchange Pattern (in milliseconds). The default
is 20 seconds. You can include the header
CamelJmsRequestTimeout to override this endpoint
configured timeout value, and thus have per message
individual timeout values. See also the
requestTimeoutCheckerInterval option.

20000 long

timeToLive
(producer)

When sending messages, specifies the time-to-live
of the message (in milliseconds).

-1 long

allowAdditionalHe
aders (producer
(advanced))

This option is used to allow additional headers which
may have values that are invalid according to JMS
specification. For example some message systems
such as WMQ do this with header names using prefix
JMS_IBM_MQMD_ containing values with byte array
or other invalid types. You can specify multiple
header names separated by comma, and use as suffix
for wildcard matching.

 String

allowNullBody
(producer
(advanced))

Whether to allow sending messages with no body. If
this option is false and the message body is null, then
an JMSException is thrown.

true boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

510

alwaysCopyMessa
ge (producer
(advanced))

If true, Camel will always make a JMS message copy
of the message when it is passed to the producer for
sending. Copying the message is needed in some
situations, such as when a
replyToDestinationSelectorName is set (incidentally,
Camel will set the alwaysCopyMessage option to
true, if a replyToDestinationSelectorName is set).

false boolean

correlationProper
ty (producer
(advanced))

When using InOut exchange pattern use this JMS
property instead of JMSCorrelationID JMS property
to correlate messages. If set messages will be
correlated solely on the value of this property
JMSCorrelationID property will be ignored and not
set by Camel.

 String

disableTimeToLiv
e (producer
(advanced))

Use this option to force disabling time to live. For
example when you do request/reply over JMS, then
Camel will by default use the requestTimeout value
as time to live on the message being sent. The
problem is that the sender and receiver systems have
to have their clocks synchronized, so they are in sync.
This is not always so easy to archive. So you can use
disableTimeToLive=true to not set a time to live value
on the sent message. Then the message will not
expire on the receiver system. See below in section
About time to live for more details.

false boolean

forceSendOrigina
lMessage
(producer
(advanced))

When using mapJmsMessage=false Camel will create
a new JMS message to send to a new JMS
destination if you touch the headers (get or set)
during the route. Set this option to true to force
Camel to send the original JMS message that was
received.

false boolean

includeSentJMS
MessageID
(producer
(advanced))

Only applicable when sending to JMS destination
using InOnly (eg fire and forget). Enabling this option
will enrich the Camel Exchange with the actual
JMSMessageID that was used by the JMS client
when the message was sent to the JMS destination.

false boolean

Name Description Defaul
t

Type

CHAPTER 26. JMS

511

replyToCacheLev
elName (producer
(advanced))

Sets the cache level by name for the reply consumer
when doing request/reply over JMS. This option only
applies when using fixed reply queues (not
temporary). Camel will by default use:
CACHE_CONSUMER for exclusive or shared w/
replyToSelectorName. And CACHE_SESSION for
shared without replyToSelectorName. Some JMS
brokers such as IBM WebSphere may require to set
the replyToCacheLevelName=CACHE_NONE to
work. Note: If using temporary queues then
CACHE_NONE is not allowed, and you must use a
higher value such as CACHE_CONSUMER or
CACHE_SESSION.

Enum values:

CACHE_AUTO

CACHE_CONNECTION

CACHE_CONSUMER

CACHE_NONE

CACHE_SESSION

 String

replyToDestinatio
nSelectorName
(producer
(advanced))

Sets the JMS Selector using the fixed name to be
used so you can filter out your own replies from the
others when using a shared queue (that is, if you are
not using a temporary reply queue).

 String

streamMessageT
ypeEnabled
(producer
(advanced))

Sets whether StreamMessage type is enabled or not.
Message payloads of streaming kind such as files,
InputStream, etc will either by sent as BytesMessage
or StreamMessage. This option controls which kind
will be used. By default BytesMessage is used which
enforces the entire message payload to be read into
memory. By enabling this option the message payload
is read into memory in chunks and each chunk is then
written to the StreamMessage until no more data.

false boolean

allowSerializedHe
aders (advanced)

Controls whether or not to include serialized headers.
Applies only when transferExchange is true. This
requires that the objects are serializable. Camel will
exclude any non-serializable objects and log it at
WARN level.

false boolean

artemisStreaming
Enabled
(advanced)

Whether optimizing for Apache Artemis streaming
mode. This can reduce memory overhead when using
Artemis with JMS StreamMessage types. This option
must only be enabled if Apache Artemis is being used.

false boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

512

asyncStartListen
er (advanced)

Whether to startup the JmsConsumer message
listener asynchronously, when starting a route. For
example if a JmsConsumer cannot get a connection
to a remote JMS broker, then it may block while
retrying and/or failover. This will cause Camel to
block while starting routes. By setting this option to
true, you will let routes startup, while the
JmsConsumer connects to the JMS broker using a
dedicated thread in asynchronous mode. If this
option is used, then beware that if the connection
could not be established, then an exception is logged
at WARN level, and the consumer will not be able to
receive messages; You can then restart the route to
retry.

false boolean

asyncStopListene
r (advanced)

Whether to stop the JmsConsumer message listener
asynchronously, when stopping a route.

false boolean

destinationResolv
er (advanced)

A pluggable
org.springframework.jms.support.destination.Destina
tionResolver that allows you to use your own resolver
(for example, to lookup the real destination in a JNDI
registry).

 DestinationResolv
er

errorHandler
(advanced)

Specifies a org.springframework.util.ErrorHandler to
be invoked in case of any uncaught exceptions
thrown while processing a Message. By default these
exceptions will be logged at the WARN level, if no
errorHandler has been configured. You can configure
logging level and whether stack traces should be
logged using errorHandlerLoggingLevel and
errorHandlerLogStackTrace options. This makes it
much easier to configure, than having to code a
custom errorHandler.

 ErrorHandler

exceptionListener
(advanced)

Specifies the JMS Exception Listener that is to be
notified of any underlying JMS exceptions.

 ExceptionListener

headerFilterStrat
egy (advanced)

To use a custom HeaderFilterStrategy to filter
header to and from Camel message.

 HeaderFilterStrate
gy

idleConsumerLimi
t (advanced)

Specify the limit for the number of consumers that
are allowed to be idle at any given time.

1 int

Name Description Defaul
t

Type

CHAPTER 26. JMS

513

idleTaskExecutio
nLimit (advanced)

Specifies the limit for idle executions of a receive
task, not having received any message within its
execution. If this limit is reached, the task will shut
down and leave receiving to other executing tasks (in
the case of dynamic scheduling; see the
maxConcurrentConsumers setting). There is
additional doc available from Spring.

1 int

includeAllJMSXPr
operties
(advanced)

Whether to include all JMSXxxx properties when
mapping from JMS to Camel Message. Setting this to
true will include properties such as JMSXAppID, and
JMSXUserID etc. Note: If you are using a custom
headerFilterStrategy then this option does not apply.

false boolean

jmsKeyFormatStr
ategy (advanced)

Pluggable strategy for encoding and decoding JMS
keys so they can be compliant with the JMS
specification. Camel provides two implementations
out of the box: default and passthrough. The default
strategy will safely marshal dots and hyphens (. and -
). The passthrough strategy leaves the key as is. Can
be used for JMS brokers which do not care whether
JMS header keys contain illegal characters. You can
provide your own implementation of the
org.apache.camel.component.jms.JmsKeyFormatStr
ategy and refer to it using the # notation.

Enum values:

default

passthrough

 JmsKeyFormatStr
ategy

mapJmsMessage
(advanced)

Specifies whether Camel should auto map the
received JMS message to a suited payload type, such
as javax.jms.TextMessage to a String etc.

true boolean

maxMessagesPer
Task (advanced)

The number of messages per task. -1 is unlimited. If
you use a range for concurrent consumers (eg min
max), then this option can be used to set a value to
eg 100 to control how fast the consumers will shrink
when less work is required.

-1 int

messageConverte
r (advanced)

To use a custom Spring
org.springframework.jms.support.converter.Message
Converter so you can be in control how to map
to/from a javax.jms.Message.

 MessageConverte
r

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

514

messageCreated
Strategy
(advanced)

To use the given MessageCreatedStrategy which are
invoked when Camel creates new instances of
javax.jms.Message objects when Camel is sending a
JMS message.

 MessageCreatedS
trategy

messageIdEnable
d (advanced)

When sending, specifies whether message IDs should
be added. This is just an hint to the JMS broker. If the
JMS provider accepts this hint, these messages must
have the message ID set to null; if the provider
ignores the hint, the message ID must be set to its
normal unique value.

true boolean

messageListener
ContainerFactory
(advanced)

Registry ID of the MessageListenerContainerFactory
used to determine what
org.springframework.jms.listener.AbstractMessageLis
tenerContainer to use to consume messages. Setting
this will automatically set consumerType to Custom.

 MessageListenerC
ontainerFactory

messageTimesta
mpEnabled
(advanced)

Specifies whether timestamps should be enabled by
default on sending messages. This is just an hint to
the JMS broker. If the JMS provider accepts this hint,
these messages must have the timestamp set to
zero; if the provider ignores the hint the timestamp
must be set to its normal value.

true boolean

pubSubNoLocal
(advanced)

Specifies whether to inhibit the delivery of messages
published by its own connection.

false boolean

receiveTimeout
(advanced)

The timeout for receiving messages (in milliseconds). 1000 long

recoveryInterval
(advanced)

Specifies the interval between recovery attempts, i.e.
when a connection is being refreshed, in milliseconds.
The default is 5000 ms, that is, 5 seconds.

5000 long

requestTimeoutC
heckerInterval
(advanced)

Configures how often Camel should check for timed
out Exchanges when doing request/reply over JMS.
By default Camel checks once per second. But if you
must react faster when a timeout occurs, then you
can lower this interval, to check more frequently. The
timeout is determined by the option requestTimeout.

1000 long

synchronous
(advanced)

Sets whether synchronous processing should be
strictly used.

false boolean

Name Description Defaul
t

Type

CHAPTER 26. JMS

515

transferException
(advanced)

If enabled and you are using Request Reply
messaging (InOut) and an Exchange failed on the
consumer side, then the caused Exception will be
send back in response as a javax.jms.ObjectMessage.
If the client is Camel, the returned Exception is
rethrown. This allows you to use Camel JMS as a
bridge in your routing - for example, using persistent
queues to enable robust routing. Notice that if you
also have transferExchange enabled, this option takes
precedence. The caught exception is required to be
serializable. The original Exception on the consumer
side can be wrapped in an outer exception such as
org.apache.camel.RuntimeCamelException when
returned to the producer. Use this with caution as the
data is using Java Object serialization and requires
the received to be able to deserialize the data at
Class level, which forces a strong coupling between
the producers and consumer!.

false boolean

transferExchange
(advanced)

You can transfer the exchange over the wire instead
of just the body and headers. The following fields are
transferred: In body, Out body, Fault body, In headers,
Out headers, Fault headers, exchange properties,
exchange exception. This requires that the objects
are serializable. Camel will exclude any non-
serializable objects and log it at WARN level. You
must enable this option on both the producer and
consumer side, so Camel knows the payloads is an
Exchange and not a regular payload. Use this with
caution as the data is using Java Object serialization
and requires the receiver to be able to deserialize the
data at Class level, which forces a strong coupling
between the producers and consumers having to use
compatible Camel versions!.

false boolean

useMessageIDAs
CorrelationID
(advanced)

Specifies whether JMSMessageID should always be
used as JMSCorrelationID for InOut messages.

false boolean

waitForProvision
CorrelationToBeU
pdatedCounter
(advanced)

Number of times to wait for provisional correlation id
to be updated to the actual correlation id when doing
request/reply over JMS and when the option
useMessageIDAsCorrelationID is enabled.

50 int

waitForProvision
CorrelationToBeU
pdatedThreadSle
epingTime
(advanced)

Interval in millis to sleep each time while waiting for
provisional correlation id to be updated.

100 long

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

516

errorHandlerLogg
ingLevel (logging)

Allows to configure the default errorHandler logging
level for logging uncaught exceptions.

Enum values:

TRACE

DEBUG

INFO

WARN

ERROR

OFF

WARN LoggingLevel

errorHandlerLogS
tackTrace
(logging)

Allows to control whether stacktraces should be
logged or not, by the default errorHandler.

true boolean

password
(security)

Password to use with the ConnectionFactory. You
can also configure username/password directly on
the ConnectionFactory.

 String

username
(security)

Username to use with the ConnectionFactory. You
can also configure username/password directly on
the ConnectionFactory.

 String

transacted
(transaction)

Specifies whether to use transacted mode. false boolean

Name Description Defaul
t

Type

CHAPTER 26. JMS

517

transactedInOut
(transaction)

Specifies whether InOut operations (request reply)
default to using transacted mode If this flag is set to
true, then Spring JmsTemplate will have
sessionTransacted set to true, and the
acknowledgeMode as transacted on the
JmsTemplate used for InOut operations. Note from
Spring JMS: that within a JTA transaction, the
parameters passed to createQueue, createTopic
methods are not taken into account. Depending on
the Java EE transaction context, the container
makes its own decisions on these values.
Analogously, these parameters are not taken into
account within a locally managed transaction either,
since Spring JMS operates on an existing JMS
Session in this case. Setting this flag to true will use a
short local JMS transaction when running outside of
a managed transaction, and a synchronized local JMS
transaction in case of a managed transaction (other
than an XA transaction) being present. This has the
effect of a local JMS transaction being managed
alongside the main transaction (which might be a
native JDBC transaction), with the JMS transaction
committing right after the main transaction.

false boolean

lazyCreateTransa
ctionManager
(transaction
(advanced))

If true, Camel will create a JmsTransactionManager,
if there is no transactionManager injected when
option transacted=true.

true boolean

transactionManag
er (transaction
(advanced))

The Spring transaction manager to use. PlatformTransacti
onManager

transactionName
(transaction
(advanced))

The name of the transaction to use. String

transactionTimeo
ut (transaction
(advanced))

The timeout value of the transaction (in seconds), if
using transacted mode.

-1 int

Name Description Defaul
t

Type

26.5. SAMPLES

JMS is used in many examples for other components as well. But we provide a few samples below to get
started.

26.5.1. Receiving from JMS

In the following sample we configure a route that receives JMS messages and routes the message to a

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

518

In the following sample we configure a route that receives JMS messages and routes the message to a
POJO:

You can of course use any of the EIP patterns so the route can be context based. For example, here’s
how to filter an order topic for the big spenders:

26.5.2. Sending to JMS

In the sample below we poll a file folder and send the file content to a JMS topic. As we want the
content of the file as a TextMessage instead of a BytesMessage, we need to convert the body to a
String:

26.5.3. Using Annotations

Camel also has annotations so you can use POJO Consuming and POJO Producing.

26.5.4. Spring DSL sample

The preceding examples use the Java DSL. Camel also supports Spring XML DSL. Here is the big
spender sample using Spring DSL:

26.5.5. Other samples

JMS appears in many of the examples for other components and EIP patterns, as well in this Camel
documentation. So feel free to browse the documentation.

26.5.6. Using JMS as a Dead Letter Queue storing Exchange

Normally, when using JMS as the transport, it only transfers the body and headers as the payload. If you
want to use JMS with a Dead Letter Channel, using a JMS queue as the Dead Letter Queue, then
normally the caused Exception is not stored in the JMS message. You can, however, use the
transferExchange option on the JMS dead letter queue to instruct Camel to store the entire Exchange
in the queue as a javax.jms.ObjectMessage that holds a

from("jms:queue:foo").
 to("bean:myBusinessLogic");

from("jms:topic:OrdersTopic").
 filter().method("myBean", "isGoldCustomer").
 to("jms:queue:BigSpendersQueue");

from("file://orders").
 convertBodyTo(String.class).
 to("jms:topic:OrdersTopic");

<route>
 <from uri="jms:topic:OrdersTopic"/>
 <filter>
 <method ref="myBean" method="isGoldCustomer"/>
 <to uri="jms:queue:BigSpendersQueue"/>
 </filter>
</route>

CHAPTER 26. JMS

519

https://camel.apache.org/manual/pojo-consuming.html
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/camel_spring_boot_reference_3.14/index#csb-camel-jms-component-starter
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/camel_spring_boot_reference_3.14/index#csb-camel-jms-component-starter
https://camel.apache.org/components/3.14.x/eips/dead-letter-channel.html

org.apache.camel.support.DefaultExchangeHolder. This allows you to consume from the Dead Letter
Queue and retrieve the caused exception from the Exchange property with the key
Exchange.EXCEPTION_CAUGHT. The demo below illustrates this:

Then you can consume from the JMS queue and analyze the problem:

26.5.7. Using JMS as a Dead Letter Channel storing error only

You can use JMS to store the cause error message or to store a custom body, which you can initialize
yourself. The following example uses the Message Translator EIP to do a transformation on the failed
exchange before it is moved to the JMS dead letter queue:

Here we only store the original cause error message in the transform. You can, however, use any
Expression to send whatever you like. For example, you can invoke a method on a Bean or use a custom
processor.

26.6. MESSAGE MAPPING BETWEEN JMS AND CAMEL

Camel automatically maps messages between javax.jms.Message and org.apache.camel.Message.

When sending a JMS message, Camel converts the message body to the following JMS message types:

Body Type JMS Message Comment

String javax.jms.TextMessage

org.w3c.dom.Node javax.jms.TextMessage The DOM will be converted to
String.

Map javax.jms.MapMessage

java.io.Serializable javax.jms.ObjectMessage

byte[] javax.jms.BytesMessage

// setup error handler to use JMS as queue and store the entire Exchange
errorHandler(deadLetterChannel("jms:queue:dead?transferExchange=true"));

from("jms:queue:dead").to("bean:myErrorAnalyzer");

// and in our bean
String body = exchange.getIn().getBody();
Exception cause = exchange.getProperty(Exchange.EXCEPTION_CAUGHT, Exception.class);
// the cause message is
String problem = cause.getMessage();

// we sent it to a seda dead queue first
errorHandler(deadLetterChannel("seda:dead"));

// and on the seda dead queue we can do the custom transformation before its sent to the JMS queue
from("seda:dead").transform(exceptionMessage()).to("jms:queue:dead");

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

520

https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/camel_spring_boot_reference_3.14/index#csb-camel-jms-component-starter

java.io.File javax.jms.BytesMessage

java.io.Reader javax.jms.BytesMessage

java.io.InputStream javax.jms.BytesMessage

java.nio.ByteBuffer javax.jms.BytesMessage

Body Type JMS Message Comment

When receiving a JMS message, Camel converts the JMS message to the following body type:

JMS Message Body Type

javax.jms.TextMessage String

javax.jms.BytesMessage byte[]

javax.jms.MapMessage Map<String, Object>

javax.jms.ObjectMessage Object

26.6.1. Disabling auto-mapping of JMS messages

You can use the mapJmsMessage option to disable the auto-mapping above. If disabled, Camel will
not try to map the received JMS message, but instead uses it directly as the payload. This allows you to
avoid the overhead of mapping and let Camel just pass through the JMS message. For instance, it even
allows you to route javax.jms.ObjectMessage JMS messages with classes you do not have on the
classpath.

26.6.2. Using a custom MessageConverter

You can use the messageConverter option to do the mapping yourself in a Spring
org.springframework.jms.support.converter.MessageConverter class.

For example, in the route below we use a custom message converter when sending a message to the
JMS order queue:

You can also use a custom message converter when consuming from a JMS destination.

26.6.3. Controlling the mapping strategy selected

You can use the jmsMessageType option on the endpoint URL to force a specific message type for all
messages.

In the route below, we poll files from a folder and send them as javax.jms.TextMessage as we have
forced the JMS producer endpoint to use text messages:

from("file://inbox/order").to("jms:queue:order?messageConverter=#myMessageConverter");

CHAPTER 26. JMS

521

You can also specify the message type to use for each message by setting the header with the key
CamelJmsMessageType. For example:

The possible values are defined in the enum class, org.apache.camel.jms.JmsMessageType.

26.7. MESSAGE FORMAT WHEN SENDING

The exchange that is sent over the JMS wire must conform to the JMS Message spec.

For the exchange.in.header the following rules apply for the header keys:

Keys starting with JMS or JMSX are reserved.

exchange.in.headers keys must be literals and all be valid Java identifiers (do not use dots in
the key name).

Camel replaces dots & hyphens and the reverse when when consuming JMS messages:
. is replaced by `DOT` and the reverse replacement when Camel consumes the message.
- is replaced by `HYPHEN` and the reverse replacement when Camel consumes the message.

See also the option jmsKeyFormatStrategy, which allows use of your own custom strategy for
formatting keys.

For the exchange.in.header, the following rules apply for the header values:

The values must be primitives or their counter objects (such as Integer, Long, Character). The
types, String, CharSequence, Date, BigDecimal and BigInteger are all converted to their
toString() representation. All other types are dropped.

Camel will log with category org.apache.camel.component.jms.JmsBinding at DEBUG level if it
drops a given header value. For example:

2008-07-09 06:43:04,046 [main] DEBUG JmsBinding
 - Ignoring non primitive header: order of class:
org.apache.camel.component.jms.issues.DummyOrder with value: DummyOrder{orderId=333,
itemId=4444, quantity=2}

26.8. MESSAGE FORMAT WHEN RECEIVING

Camel adds the following properties to the Exchange when it receives a message:

Property Type Description

org.apache.camel.jms.rep
lyDestination

javax.jms.Destination The reply destination.

Camel adds the following JMS properties to the In message headers when it receives a JMS message:

from("file://inbox/order").to("jms:queue:order?jmsMessageType=Text");

from("file://inbox/order").setHeader("CamelJmsMessageType",
JmsMessageType.Text).to("jms:queue:order");

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

522

http://java.sun.com/j2ee/1.4/docs/api/javax/jms/Message.html

Header Type Description

JMSCorrelationID String The JMS correlation ID.

JMSDeliveryMode int The JMS delivery mode.

JMSDestination javax.jms.Destination The JMS destination.

JMSExpiration long The JMS expiration.

JMSMessageID String The JMS unique message ID.

JMSPriority int The JMS priority (with 0 as the lowest
priority and 9 as the highest).

JMSRedelivered boolean Is the JMS message redelivered.

JMSReplyTo javax.jms.Destination The JMS reply-to destination.

JMSTimestamp long The JMS timestamp.

JMSType String The JMS type.

JMSXGroupID String The JMS group ID.

As all the above information is standard JMS you can check the JMS documentation for further details.

26.9. ABOUT USING CAMEL TO SEND AND RECEIVE MESSAGES AND
JMSREPLYTO

The JMS component is complex and you have to pay close attention to how it works in some cases. So
this is a short summary of some of the areas/pitfalls to look for.

When Camel sends a message using its JMSProducer, it checks the following conditions:

The message exchange pattern,

Whether a JMSReplyTo was set in the endpoint or in the message headers,

Whether any of the following options have been set on the JMS endpoint: disableReplyTo,
preserveMessageQos, explicitQosEnabled.

All this can be a tad complex to understand and configure to support your use case.

26.9.1. JmsProducer

The JmsProducer behaves as follows, depending on configuration:

CHAPTER 26. JMS

523

http://java.sun.com/javaee/5/docs/api/javax/jms/Message.html

Exchange Pattern Other options Description

InOut - Camel will expect a reply, set a temporary
JMSReplyTo, and after sending the message, it will
start to listen for the reply message on the temporary
queue.

InOut JMSReplyTo is set Camel will expect a reply and, after sending the
message, it will start to listen for the reply message
on the specified JMSReplyTo queue.

InOnly - Camel will send the message and not expect a reply.

InOnly JMSReplyTo is set By default, Camel discards the JMSReplyTo
destination and clears the JMSReplyTo header
before sending the message. Camel then sends the
message and does not expect a reply. Camel logs
this in the log at WARN level (changed to DEBUG
level from Camel 2.6 onwards. You can use
preserveMessageQuo=true to instruct Camel to
keep the JMSReplyTo. In all situations the
JmsProducer does not expect any reply and thus
continue after sending the message.

26.9.2. JmsConsumer

The JmsConsumer behaves as follows, depending on configuration:

Exchange Pattern Other options Description

InOut - Camel will send the reply back to the JMSReplyTo
queue.

InOnly - Camel will not send a reply back, as the pattern is
InOnly.

- disableReplyTo
=true

This option suppresses replies.

So pay attention to the message exchange pattern set on your exchanges.

If you send a message to a JMS destination in the middle of your route you can specify the exchange
pattern to use, see more at Request Reply.
This is useful if you want to send an InOnly message to a JMS topic:

from("activemq:queue:in")
 .to("bean:validateOrder")
 .to(ExchangePattern.InOnly, "activemq:topic:order")
 .to("bean:handleOrder");

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

524

26.10. REUSE ENDPOINT AND SEND TO DIFFERENT DESTINATIONS
COMPUTED AT RUNTIME

If you need to send messages to a lot of different JMS destinations, it makes sense to reuse a JMS
endpoint and specify the real destination in a message header. This allows Camel to reuse the same
endpoint, but send to different destinations. This greatly reduces the number of endpoints created and
economizes on memory and thread resources.

You can specify the destination in the following headers:

Header Type Description

CamelJmsDestination javax.jms.Desti
nation

A destination object.

CamelJmsDestinationNa
me

String The destination name.

For example, the following route shows how you can compute a destination at run time and use it to
override the destination appearing in the JMS URL:

The queue name, dummy, is just a placeholder. It must be provided as part of the JMS endpoint URL,
but it will be ignored in this example.

In the computeDestination bean, specify the real destination by setting the
CamelJmsDestinationName header as follows:

Then Camel will read this header and use it as the destination instead of the one configured on the
endpoint. So, in this example Camel sends the message to activemq:queue:order:2, assuming the id
value was 2.

If both the CamelJmsDestination and the CamelJmsDestinationName headers are set,
CamelJmsDestination takes priority. Keep in mind that the JMS producer removes both
CamelJmsDestination and CamelJmsDestinationName headers from the exchange and do not
propagate them to the created JMS message in order to avoid the accidental loops in the routes (in
scenarios when the message will be forwarded to the another JMS endpoint).

26.11. CONFIGURING DIFFERENT JMS PROVIDERS

You can configure your JMS provider in Spring XML as follows:

Basically, you can configure as many JMS component instances as you wish and give them a unique

from("file://inbox")
 .to("bean:computeDestination")
 .to("activemq:queue:dummy");

public void setJmsHeader(Exchange exchange) {
 String id =
 exchange.getIn().setHeader("CamelJmsDestinationName", "order:" + id");
}

CHAPTER 26. JMS

525

Basically, you can configure as many JMS component instances as you wish and give them a unique
name using the id attribute. The preceding example configures an activemq component. You could do
the same to configure MQSeries, TibCo, BEA, Sonic and so on.

Once you have a named JMS component, you can then refer to endpoints within that component using
URIs. For example for the component name, activemq, you can then refer to destinations using the URI
format, activemq:[queue:|topic:]destinationName. You can use the same approach for all other JMS
providers.

This works by the SpringCamelContext lazily fetching components from the spring context for the
scheme name you use for Endpoint URIs and having the Component resolve the endpoint URIs.

26.11.1. Using JNDI to find the ConnectionFactory

If you are using a J2EE container, you might need to look up JNDI to find the JMS ConnectionFactory
rather than use the usual <bean> mechanism in Spring. You can do this using Spring’s factory bean or
the new Spring XML namespace. For example:

See The jee schema in the Spring reference documentation for more details about JNDI lookup.

26.12. CONCURRENT CONSUMING

A common requirement with JMS is to consume messages concurrently in multiple threads in order to
make an application more responsive. You can set the concurrentConsumers option to specify the
number of threads servicing the JMS endpoint, as follows:

You can configure this option in one of the following ways:

On the JmsComponent,

On the endpoint URI or,

By invoking setConcurrentConsumers() directly on the JmsEndpoint.

26.12.1. Concurrent Consuming with async consumer

Notice that each concurrent consumer will only pickup the next available message from the JMS broker,
when the current message has been fully processed. You can set the option asyncConsumer=true to
let the consumer pickup the next message from the JMS queue, while the previous message is being
processed asynchronously (by the Asynchronous Routing Engine). See more details in the table on top
of the page about the asyncConsumer option.

<bean id="weblogic" class="org.apache.camel.component.jms.JmsComponent">
 <property name="connectionFactory" ref="myConnectionFactory"/>
</bean>

<jee:jndi-lookup id="myConnectionFactory" jndi-name="jms/connectionFactory"/>

from("jms:SomeQueue?concurrentConsumers=20").
 bean(MyClass.class);

from("jms:SomeQueue?concurrentConsumers=20&asyncConsumer=true").
 bean(MyClass.class);

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

526

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/xsd-config.html#xsd-config-body-schemas-jee

26.13. REQUEST-REPLY OVER JMS

Camel supports Request Reply over JMS. In essence the MEP of the Exchange should be InOut when
you send a message to a JMS queue.

Camel offers a number of options to configure request/reply over JMS that influence performance and
clustered environments. The table below summaries the options.

Option Perfor
mance

Cluster Description

Temporary Fast Yes A temporary queue is used as reply queue, and
automatic created by Camel. To use this do not
specify a replyTo queue name. And you can
optionally configure replyToType=Temporary to
make it stand out that temporary queues are in use.

Shared Slow Yes A shared persistent queue is used as reply queue.
The queue must be created beforehand, although
some brokers can create them on the fly such as
Apache ActiveMQ. To use this you must specify the
replyTo queue name. And you can optionally
configure replyToType=Shared to make it stand
out that shared queues are in use. A shared queue
can be used in a clustered environment with multiple
nodes running this Camel application at the same
time. All using the same shared reply queue. This is
possible because JMS Message selectors are used to
correlate expected reply messages; this impacts
performance though. JMS Message selectors is
slower, and therefore not as fast as Temporary or
Exclusive queues. See further below how to tweak
this for better performance.

CHAPTER 26. JMS

527

Exclusive Fast No
(*Yes)

An exclusive persistent queue is used as reply queue.
The queue must be created beforehand, although
some brokers can create them on the fly such as
Apache ActiveMQ. To use this you must specify the
replyTo queue name. And you must configure
replyToType=Exclusive to instruct Camel to use
exclusive queues, as Shared is used by default, if a
replyTo queue name was configured. When using
exclusive reply queues, then JMS Message selectors
are not in use, and therefore other applications must
not use this queue as well. An exclusive queue cannot
be used in a clustered environment with multiple
nodes running this Camel application at the same
time; as we do not have control if the reply queue
comes back to the same node that sent the request
message; that is why shared queues use JMS
Message selectors to make sure of this. Though if
you configure each Exclusive reply queue with an
unique name per node, then you can run this in a
clustered environment. As then the reply message
will be sent back to that queue for the given node,
that awaits the reply message.

concurrentConsumers Fast Yes Allows to process reply messages concurrently using
concurrent message listeners in use. You can specify
a range using the concurrentConsumers and
maxConcurrentConsumers options. Notice:
That using Shared reply queues may not work as well
with concurrent listeners, so use this option with care.

maxConcurrentConsumer
s

Fast Yes Allows to process reply messages concurrently using
concurrent message listeners in use. You can specify
a range using the concurrentConsumers and
maxConcurrentConsumers options. Notice:
That using Shared reply queues may not work as well
with concurrent listeners, so use this option with care.

Option Perfor
mance

Cluster Description

The JmsProducer detects the InOut and provides a JMSReplyTo header with the reply destination to
be used. By default Camel uses a temporary queue, but you can use the replyTo option on the endpoint
to specify a fixed reply queue (see more below about fixed reply queue).

Camel will automatically setup a consumer which listen on the reply queue, so you should not do
anything.
This consumer is a Spring DefaultMessageListenerContainer which listen for replies. However it’s fixed
to 1 concurrent consumer.
That means replies will be processed in sequence as there are only 1 thread to process the replies. You
can configure the listener to use concurrent threads using the concurrentConsumers and
maxConcurrentConsumers options. This allows you to easier configure this in Camel as shown below:

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

528

In this route we instruct Camel to route replies asynchronously using a thread pool with 5 threads.

26.13.1. Request-reply over JMS and using a shared fixed reply queue

If you use a fixed reply queue when doing Request Reply over JMS as shown in the example below, then
pay attention.

In this example the fixed reply queue named "bar" is used. By default Camel assumes the queue is
shared when using fixed reply queues, and therefore it uses a JMSSelector to only pickup the expected
reply messages (eg based on the JMSCorrelationID). See next section for exclusive fixed reply queues.
That means its not as fast as temporary queues. You can speedup how often Camel will pull for reply
messages using the receiveTimeout option. By default its 1000 millis. So to make it faster you can set it
to 250 millis to pull 4 times per second as shown:

Notice this will cause the Camel to send pull requests to the message broker more frequent, and thus
require more network traffic.
It is generally recommended to use temporary queues if possible.

26.13.2. Request-reply over JMS and using an exclusive fixed reply queue

In the previous example, Camel would anticipate the fixed reply queue named "bar" was shared, and thus
it uses a JMSSelector to only consume reply messages which it expects. However there is a drawback
doing this as the JMS selector is slower. Also the consumer on the reply queue is slower to update with
new JMS selector ids. In fact it only updates when the receiveTimeout option times out, which by
default is 1 second. So in theory the reply messages could take up till about 1 sec to be detected. On the
other hand if the fixed reply queue is exclusive to the Camel reply consumer, then we can avoid using the
JMS selectors, and thus be more performant. In fact as fast as using temporary queues. There is the
ReplyToType option which you can configure to Exclusive
to tell Camel that the reply queue is exclusive as shown in the example below:

Mind that the queue must be exclusive to each and every endpoint. So if you have two routes, then they
each need an unique reply queue as shown in the next example:

from(xxx)
.inOut().to("activemq:queue:foo?concurrentConsumers=5")
.to(yyy)
.to(zzz);

from(xxx)
.inOut().to("activemq:queue:foo?replyTo=bar")
.to(yyy)

from(xxx)
.inOut().to("activemq:queue:foo?replyTo=bar&receiveTimeout=250")
.to(yyy)

from(xxx)
.inOut().to("activemq:queue:foo?replyTo=bar&replyToType=Exclusive")
.to(yyy)

from(xxx)
.inOut().to("activemq:queue:foo?replyTo=bar&replyToType=Exclusive")
.to(yyy)

CHAPTER 26. JMS

529

The same applies if you run in a clustered environment. Then each node in the cluster must use an
unique reply queue name. As otherwise each node in the cluster may pickup messages which was
intended as a reply on another node. For clustered environments its recommended to use shared reply
queues instead.

26.14. SYNCHRONIZING CLOCKS BETWEEN SENDERS AND
RECEIVERS

When doing messaging between systems, its desirable that the systems have synchronized clocks. For
example when sending a JMS message, then you can set a time to live value on the message. Then the
receiver can inspect this value, and determine if the message is already expired, and thus drop the
message instead of consume and process it. However this requires that both sender and receiver have
synchronized clocks. If you are using ActiveMQ then you can use the timestamp plugin to synchronize
clocks.

26.15. ABOUT TIME TO LIVE

Read first above about synchronized clocks.

When you do request/reply (InOut) over JMS with Camel then Camel uses a timeout on the sender side,
which is default 20 seconds from the requestTimeout option. You can control this by setting a
higher/lower value. However the time to live value is still set on the message being send. So that
requires the clocks to be synchronized between the systems. If they are not, then you may want to
disable the time to live value being set. This is now possible using the disableTimeToLive option from
Camel 2.8 onwards. So if you set this option to disableTimeToLive=true, then Camel does not set any
time to live value when sending JMS messages. But the request timeout is still active. So for example if
you do request/reply over JMS and have disabled time to live, then Camel will still use a timeout by 20
seconds (the requestTimeout option). That option can of course also be configured. So the two options
requestTimeout and disableTimeToLive gives you fine grained control when doing request/reply.

You can provide a header in the message to override and use as the request timeout value instead of the
endpoint configured value. For example:

In the route above we have a endpoint configured requestTimeout of 30 seconds. So Camel will wait up
till 30 seconds for that reply message to come back on the bar queue. If no reply message is received
then a org.apache.camel.ExchangeTimedOutException is set on the Exchange and Camel continues
routing the message, which would then fail due the exception, and Camel’s error handler reacts.

If you want to use a per message timeout value, you can set the header with key
org.apache.camel.component.jms.JmsConstants#JMS_REQUEST_TIMEOUT which has constant
value "CamelJmsRequestTimeout" with a timeout value as long type.

For example we can use a bean to compute the timeout value per individual message, such as calling the
"whatIsTheTimeout" method on the service bean as shown below:

from(aaa)
.inOut().to("activemq:queue:order?replyTo=order.reply&replyToType=Exclusive")
.to(bbb)

 from("direct:someWhere")
 .to("jms:queue:foo?replyTo=bar&requestTimeout=30s")
 .to("bean:processReply");

from("direct:someWhere")

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

530

https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/camel_spring_boot_reference_3.14/index#csb-camel-jms-component-starter
http://activemq.apache.org
http://activemq.apache.org/timestampplugin.html
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/camel_spring_boot_reference_3.14/index#csb-camel-jms-component-starter
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/camel_spring_boot_reference_3.14/index#csb-camel-jms-component-starter
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/camel_spring_boot_reference_3.14/index#csb-camel-jms-component-starter

When you do fire and forget (InOut) over JMS with Camel then Camel by default does not set any time
to live value on the message. You can configure a value by using the timeToLive option. For example to
indicate a 5 sec., you set timeToLive=5000. The option disableTimeToLive can be used to force
disabling the time to live, also for InOnly messaging. The requestTimeout option is not being used for
InOnly messaging.

26.16. ENABLING TRANSACTED CONSUMPTION

A common requirement is to consume from a queue in a transaction and then process the message
using the Camel route. To do this, just ensure that you set the following properties on the
component/endpoint:

transacted = true

transactionManager = a Transsaction Manager - typically the JmsTransactionManager

See the Transactional Client EIP pattern for further details.

Transactions and [Request Reply] over JMS

When using Request Reply over JMS you cannot use a single transaction; JMS will not send any
messages until a commit is performed, so the server side won’t receive anything at all until the
transaction commits. Therefore to use Request Reply you must commit a transaction after sending the
request and then use a separate transaction for receiving the response.

To address this issue the JMS component uses different properties to specify transaction use for
oneway messaging and request reply messaging:

The transacted property applies only to the InOnly message Exchange Pattern (MEP).

You can leverage the DMLC transacted session API using the following properties on
component/endpoint:

transacted = true

lazyCreateTransactionManager = false

The benefit of doing so is that the cacheLevel setting will be honored when using local transactions
without a configured TransactionManager. When a TransactionManager is configured, no caching
happens at DMLC level and it is necessary to rely on a pooled connection factory. For more details
about this kind of setup, see here and here.

26.17. USING JMSREPLYTO FOR LATE REPLIES

When using Camel as a JMS listener, it sets an Exchange property with the value of the ReplyTo
javax.jms.Destination object, having the key ReplyTo. You can obtain this Destination as follows:

And then later use it to send a reply using regular JMS or Camel.

 .setHeader("CamelJmsRequestTimeout", method(ServiceBean.class, "whatIsTheTimeout"))
 .to("jms:queue:foo?replyTo=bar&requestTimeout=30s")
 .to("bean:processReply");

Destination replyDestination =
exchange.getIn().getHeader(JmsConstants.JMS_REPLY_DESTINATION, Destination.class);

CHAPTER 26. JMS

531

https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/camel_spring_boot_reference_3.14/index#csb-camel-jms-component-starter
eips/requestReply-eip.html
http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/jms/listener/AbstractPollingMessageListenerContainer.html#setSessionTransacted(boolean)
http://tmielke.blogspot.com/2012/03/camel-jms-with-transactions-lessons.html
http://forum.springsource.org/showthread.php?123631-JMS-DMLC-not-caching connection-when-using-TX-despite-cacheLevel-CACHE_CONSUMER&p=403530&posted=1#post403530

A different solution to sending a reply is to provide the replyDestination object in the same Exchange
property when sending. Camel will then pick up this property and use it for the real destination. The
endpoint URI must include a dummy destination, however. For example:

26.18. USING A REQUEST TIMEOUT

In the sample below we send a Request Reply style message Exchange (we use the requestBody
method = InOut) to the slow queue for further processing in Camel and we wait for a return reply:

26.19. SENDING AN INONLY MESSAGE AND KEEPING THE
JMSREPLYTO HEADER

When sending to a JMS destination using camel-jms the producer will use the MEP to detect if its
InOnly or InOut messaging. However there can be times where you want to send an InOnly message but
keeping the JMSReplyTo header. To do so you have to instruct Camel to keep it, otherwise the
JMSReplyTo header will be dropped.

For example to send an InOnly message to the foo queue, but with a JMSReplyTo with bar queue you
can do as follows:

Notice we use preserveMessageQos=true to instruct Camel to keep the JMSReplyTo header.

26.20. SETTING JMS PROVIDER OPTIONS ON THE DESTINATION

Some JMS providers, like IBM’s WebSphere MQ need options to be set on the JMS destination. For
example, you may need to specify the targetClient option. Since targetClient is a WebSphere MQ
option and not a Camel URI option, you need to set that on the JMS destination name like so:

// we need to pass in the JMS component, and in this sample we use ActiveMQ
JmsEndpoint endpoint = JmsEndpoint.newInstance(replyDestination, activeMQComponent);
// now we have the endpoint we can use regular Camel API to send a message to it
template.sendBody(endpoint, "Here is the late reply.");

// we pretend to send it to some non existing dummy queue
template.send("activemq:queue:dummy, new Processor() {
 public void process(Exchange exchange) throws Exception {
 // and here we override the destination with the ReplyTo destination object so the message is sent
to there instead of dummy
 exchange.getIn().setHeader(JmsConstants.JMS_DESTINATION, replyDestination);
 exchange.getIn().setBody("Here is the late reply.");
 }
}

template.send("activemq:queue:foo?preserveMessageQos=true", new Processor() {
 public void process(Exchange exchange) throws Exception {
 exchange.getIn().setBody("World");
 exchange.getIn().setHeader("JMSReplyTo", "bar");
 }
});

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

532

https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/camel_spring_boot_reference_3.14/index#csb-camel-jms-component-starter

Some versions of WMQ won’t accept this option on the destination name and you will get an exception
like:

com.ibm.msg.client.jms.DetailedJMSException: JMSCC0005: The specified
value 'MY_QUEUE?targetClient=1' is not allowed for
'XMSC_DESTINATION_NAME'

A workaround is to use a custom DestinationResolver:

26.21. SPRING BOOT AUTO-CONFIGURATION

When using jms with Spring Boot make sure to use the following Maven dependency to have support for
auto configuration:

The component supports 99 options, which are listed below.

Name Description Defaul
t

Type

camel.component
.jms.accept-
messages-while-
stopping

Specifies whether the consumer accept messages
while it is stopping. You may consider enabling this
option, if you start and stop JMS routes at runtime,
while there are still messages enqueued on the
queue. If this option is false, and you stop the JMS
route, then messages may be rejected, and the JMS
broker would have to attempt redeliveries, which yet
again may be rejected, and eventually the message
may be moved at a dead letter queue on the JMS
broker. To avoid this its recommended to enable this
option.

false Boolean

// ...
.setHeader("CamelJmsDestinationName", constant("queue:///MY_QUEUE?targetClient=1"))
.to("wmq:queue:MY_QUEUE?useMessageIDAsCorrelationID=true");

JmsComponent wmq = new JmsComponent(connectionFactory);

wmq.setDestinationResolver(new DestinationResolver() {
 public Destination resolveDestinationName(Session session, String destinationName, boolean
pubSubDomain) throws JMSException {
 MQQueueSession wmqSession = (MQQueueSession) session;
 return wmqSession.createQueue("queue:///" + destinationName + "?targetClient=1");
 }
});

<dependency>
 <groupId>org.apache.camel.springboot</groupId>
 <artifactId>camel-jms-starter</artifactId>
 <version>3.14.5.redhat-00032</version>
 <!-- Use your Camel Spring Boot version -->
</dependency>

CHAPTER 26. JMS

533

camel.component
.jms.acknowledge
ment-mode-
name

The JMS acknowledgement name, which is one of:
SESSION_TRANSACTED,
CLIENT_ACKNOWLEDGE, AUTO_ACKNOWLEDGE,
DUPS_OK_ACKNOWLEDGE.

AUTO_
ACKN
OWLE
DGE

String

camel.component
.jms.allow-
additional-
headers

This option is used to allow additional headers which
may have values that are invalid according to JMS
specification. For example some message systems
such as WMQ do this with header names using prefix
JMS_IBM_MQMD_ containing values with byte array
or other invalid types. You can specify multiple
header names separated by comma, and use as suffix
for wildcard matching.

 String

camel.component
.jms.allow-auto-
wired-
connection-
factory

Whether to auto-discover ConnectionFactory from
the registry, if no connection factory has been
configured. If only one instance of
ConnectionFactory is found then it will be used. This
is enabled by default.

true Boolean

camel.component
.jms.allow-auto-
wired-
destination-
resolver

Whether to auto-discover DestinationResolver from
the registry, if no destination resolver has been
configured. If only one instance of
DestinationResolver is found then it will be used. This
is enabled by default.

true Boolean

camel.component
.jms.allow-null-
body

Whether to allow sending messages with no body. If
this option is false and the message body is null, then
an JMSException is thrown.

true Boolean

camel.component
.jms.allow-reply-
manager-quick-
stop

Whether the DefaultMessageListenerContainer used
in the reply managers for request-reply messaging
allow the
DefaultMessageListenerContainer.runningAllowed
flag to quick stop in case
JmsConfiguration#isAcceptMessagesWhileStopping
is enabled, and org.apache.camel.CamelContext is
currently being stopped. This quick stop ability is
enabled by default in the regular JMS consumers but
to enable for reply managers you must enable this
flag.

false Boolean

camel.component
.jms.allow-
serialized-
headers

Controls whether or not to include serialized headers.
Applies only when transferExchange is true. This
requires that the objects are serializable. Camel will
exclude any non-serializable objects and log it at
WARN level.

false Boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

534

camel.component
.jms.always-copy-
message

If true, Camel will always make a JMS message copy
of the message when it is passed to the producer for
sending. Copying the message is needed in some
situations, such as when a
replyToDestinationSelectorName is set (incidentally,
Camel will set the alwaysCopyMessage option to
true, if a replyToDestinationSelectorName is set).

false Boolean

camel.component
.jms.artemis-
consumer-priority

Consumer priorities allow you to ensure that high
priority consumers receive messages while they are
active. Normally, active consumers connected to a
queue receive messages from it in a round-robin
fashion. When consumer priorities are in use,
messages are delivered round-robin if multiple active
consumers exist with the same high priority.
Messages will only going to lower priority consumers
when the high priority consumers do not have credit
available to consume the message, or those high
priority consumers have declined to accept the
message (for instance because it does not meet the
criteria of any selectors associated with the
consumer).

 Integer

camel.component
.jms.artemis-
streaming-
enabled

Whether optimizing for Apache Artemis streaming
mode. This can reduce memory overhead when using
Artemis with JMS StreamMessage types. This option
must only be enabled if Apache Artemis is being used.

false Boolean

camel.component
.jms.async-
consumer

Whether the JmsConsumer processes the Exchange
asynchronously. If enabled then the JmsConsumer
may pickup the next message from the JMS queue,
while the previous message is being processed
asynchronously (by the Asynchronous Routing
Engine). This means that messages may be
processed not 100% strictly in order. If disabled (as
default) then the Exchange is fully processed before
the JmsConsumer will pickup the next message from
the JMS queue. Note if transacted has been enabled,
then asyncConsumer=true does not run
asynchronously, as transaction must be executed
synchronously (Camel 3.0 may support async
transactions).

false Boolean

Name Description Defaul
t

Type

CHAPTER 26. JMS

535

camel.component
.jms.async-start-
listener

Whether to startup the JmsConsumer message
listener asynchronously, when starting a route. For
example if a JmsConsumer cannot get a connection
to a remote JMS broker, then it may block while
retrying and/or failover. This will cause Camel to
block while starting routes. By setting this option to
true, you will let routes startup, while the
JmsConsumer connects to the JMS broker using a
dedicated thread in asynchronous mode. If this
option is used, then beware that if the connection
could not be established, then an exception is logged
at WARN level, and the consumer will not be able to
receive messages; You can then restart the route to
retry.

false Boolean

camel.component
.jms.async-stop-
listener

Whether to stop the JmsConsumer message listener
asynchronously, when stopping a route.

false Boolean

camel.component
.jms.auto-startup

Specifies whether the consumer container should
auto-startup.

true Boolean

camel.component
.jms.autowired-
enabled

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true Boolean

camel.component
.jms.cache-level

Sets the cache level by ID for the underlying JMS
resources. See cacheLevelName option for more
details.

 Integer

camel.component
.jms.cache-level-
name

Sets the cache level by name for the underlying JMS
resources. Possible values are: CACHE_AUTO,
CACHE_CONNECTION, CACHE_CONSUMER,
CACHE_NONE, and CACHE_SESSION. The default
setting is CACHE_AUTO. See the Spring
documentation and Transactions Cache Levels for
more information.

CACH
E_AUT
O

String

camel.component
.jms.client-id

Sets the JMS client ID to use. Note that this value, if
specified, must be unique and can only be used by a
single JMS connection instance. It is typically only
required for durable topic subscriptions. If using
Apache ActiveMQ you may prefer to use Virtual
Topics instead.

 String

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

536

camel.component
.jms.concurrent-
consumers

Specifies the default number of concurrent
consumers when consuming from JMS (not for
request/reply over JMS). See also the
maxMessagesPerTask option to control dynamic
scaling up/down of threads. When doing
request/reply over JMS then the option
replyToConcurrentConsumers is used to control
number of concurrent consumers on the reply
message listener.

1 Integer

camel.component
.jms.configuration

To use a shared JMS configuration. The option is a
org.apache.camel.component.jms.JmsConfiguration
type.

 JmsConfiguration

camel.component
.jms.connection-
factory

The connection factory to be use. A connection
factory must be configured either on the component
or endpoint. The option is a
javax.jms.ConnectionFactory type.

 ConnectionFactor
y

camel.component
.jms.consumer-
type

The consumer type to use, which can be one of:
Simple, Default, or Custom. The consumer type
determines which Spring JMS listener to use. Default
will use
org.springframework.jms.listener.DefaultMessageList
enerContainer, Simple will use
org.springframework.jms.listener.SimpleMessageList
enerContainer. When Custom is specified, the
MessageListenerContainerFactory defined by the
messageListenerContainerFactory option will
determine what
org.springframework.jms.listener.AbstractMessageLis
tenerContainer to use.

 ConsumerType

camel.component
.jms.correlation-
property

When using InOut exchange pattern use this JMS
property instead of JMSCorrelationID JMS property
to correlate messages. If set messages will be
correlated solely on the value of this property
JMSCorrelationID property will be ignored and not
set by Camel.

 String

Name Description Defaul
t

Type

CHAPTER 26. JMS

537

camel.component
.jms.default-task-
executor-type

Specifies what default TaskExecutor type to use in
the DefaultMessageListenerContainer, for both
consumer endpoints and the ReplyTo consumer of
producer endpoints. Possible values: SimpleAsync
(uses Spring’s SimpleAsyncTaskExecutor) or
ThreadPool (uses Spring’s ThreadPoolTaskExecutor
with optimal values - cached threadpool-like). If not
set, it defaults to the previous behaviour, which uses
a cached thread pool for consumer endpoints and
SimpleAsync for reply consumers. The use of
ThreadPool is recommended to reduce thread trash
in elastic configurations with dynamically increasing
and decreasing concurrent consumers.

 DefaultTaskExecu
torType

camel.component
.jms.delivery-
delay

Sets delivery delay to use for send calls for JMS. This
option requires JMS 2.0 compliant broker.

-1 Long

camel.component
.jms.delivery-
mode

Specifies the delivery mode to be used. Possible
values are those defined by javax.jms.DeliveryMode.
NON_PERSISTENT = 1 and PERSISTENT = 2.

 Integer

camel.component
.jms.delivery-
persistent

Specifies whether persistent delivery is used by
default.

true Boolean

camel.component
.jms.destination-
resolver

A pluggable
org.springframework.jms.support.destination.Destina
tionResolver that allows you to use your own resolver
(for example, to lookup the real destination in a JNDI
registry). The option is a
org.springframework.jms.support.destination.Destina
tionResolver type.

 DestinationResolv
er

camel.component
.jms.disable-
reply-to

Specifies whether Camel ignores the JMSReplyTo
header in messages. If true, Camel does not send a
reply back to the destination specified in the
JMSReplyTo header. You can use this option if you
want Camel to consume from a route and you do not
want Camel to automatically send back a reply
message because another component in your code
handles the reply message. You can also use this
option if you want to use Camel as a proxy between
different message brokers and you want to route
message from one system to another.

false Boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

538

camel.component
.jms.disable-time-
to-live

Use this option to force disabling time to live. For
example when you do request/reply over JMS, then
Camel will by default use the requestTimeout value
as time to live on the message being sent. The
problem is that the sender and receiver systems have
to have their clocks synchronized, so they are in sync.
This is not always so easy to archive. So you can use
disableTimeToLive=true to not set a time to live value
on the sent message. Then the message will not
expire on the receiver system. See below in section
About time to live for more details.

false Boolean

camel.component
.jms.durable-
subscription-
name

The durable subscriber name for specifying durable
topic subscriptions. The clientId option must be
configured as well.

 String

camel.component
.jms.eager-
loading-of-
properties

Enables eager loading of JMS properties and payload
as soon as a message is loaded which generally is
inefficient as the JMS properties may not be required
but sometimes can catch early any issues with the
underlying JMS provider and the use of JMS
properties. See also the option eagerPoisonBody.

false Boolean

camel.component
.jms.eager-
poison-body

If eagerLoadingOfProperties is enabled and the JMS
message payload (JMS body or JMS properties) is
poison (cannot be read/mapped), then set this text
as the message body instead so the message can be
processed (the cause of the poison are already
stored as exception on the Exchange). This can be
turned off by setting eagerPoisonBody=false. See
also the option eagerLoadingOfProperties.

Poison
JMS
messa
ge due
to $\
{excep
tion.me
ssage}

String

camel.component
.jms.enabled

Whether to enable auto configuration of the jms
component. This is enabled by default.

 Boolean

camel.component
.jms.error-handler

Specifies a org.springframework.util.ErrorHandler to
be invoked in case of any uncaught exceptions
thrown while processing a Message. By default these
exceptions will be logged at the WARN level, if no
errorHandler has been configured. You can configure
logging level and whether stack traces should be
logged using errorHandlerLoggingLevel and
errorHandlerLogStackTrace options. This makes it
much easier to configure, than having to code a
custom errorHandler. The option is a
org.springframework.util.ErrorHandler type.

 ErrorHandler

Name Description Defaul
t

Type

CHAPTER 26. JMS

539

camel.component
.jms.error-
handler-log-
stack-trace

Allows to control whether stacktraces should be
logged or not, by the default errorHandler.

true Boolean

camel.component
.jms.error-
handler-logging-
level

Allows to configure the default errorHandler logging
level for logging uncaught exceptions.

 LoggingLevel

camel.component
.jms.exception-
listener

Specifies the JMS Exception Listener that is to be
notified of any underlying JMS exceptions. The
option is a javax.jms.ExceptionListener type.

 ExceptionListener

camel.component
.jms.explicit-qos-
enabled

Set if the deliveryMode, priority or timeToLive
qualities of service should be used when sending
messages. This option is based on Spring’s
JmsTemplate. The deliveryMode, priority and
timeToLive options are applied to the current
endpoint. This contrasts with the
preserveMessageQos option, which operates at
message granularity, reading QoS properties
exclusively from the Camel In message headers.

false Boolean

camel.component
.jms.expose-
listener-session

Specifies whether the listener session should be
exposed when consuming messages.

false Boolean

camel.component
.jms.force-send-
original-message

When using mapJmsMessage=false Camel will create
a new JMS message to send to a new JMS
destination if you touch the headers (get or set)
during the route. Set this option to true to force
Camel to send the original JMS message that was
received.

false Boolean

camel.component
.jms.format-date-
headers-to-
iso8601

Sets whether JMS date properties should be
formatted according to the ISO 8601 standard.

false Boolean

camel.component
.jms.header-
filter-strategy

To use a custom
org.apache.camel.spi.HeaderFilterStrategy to filter
header to and from Camel message. The option is a
org.apache.camel.spi.HeaderFilterStrategy type.

 HeaderFilterStrate
gy

camel.component
.jms.idle-
consumer-limit

Specify the limit for the number of consumers that
are allowed to be idle at any given time.

1 Integer

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

540

camel.component
.jms.idle-task-
execution-limit

Specifies the limit for idle executions of a receive
task, not having received any message within its
execution. If this limit is reached, the task will shut
down and leave receiving to other executing tasks (in
the case of dynamic scheduling; see the
maxConcurrentConsumers setting). There is
additional doc available from Spring.

1 Integer

camel.component
.jms.include-all-j-
m-s-x-properties

Whether to include all JMSXxxx properties when
mapping from JMS to Camel Message. Setting this to
true will include properties such as JMSXAppID, and
JMSXUserID etc. Note: If you are using a custom
headerFilterStrategy then this option does not apply.

false Boolean

camel.component
.jms.include-sent-
j-m-s-message-i-
d

Only applicable when sending to JMS destination
using InOnly (eg fire and forget). Enabling this option
will enrich the Camel Exchange with the actual
JMSMessageID that was used by the JMS client
when the message was sent to the JMS destination.

false Boolean

camel.component
.jms.jms-key-
format-strategy

Pluggable strategy for encoding and decoding JMS
keys so they can be compliant with the JMS
specification. Camel provides two implementations
out of the box: default and passthrough. The default
strategy will safely marshal dots and hyphens (. and -
). The passthrough strategy leaves the key as is. Can
be used for JMS brokers which do not care whether
JMS header keys contain illegal characters. You can
provide your own implementation of the
org.apache.camel.component.jms.JmsKeyFormatStr
ategy and refer to it using the # notation.

 JmsKeyFormatStr
ategy

camel.component
.jms.jms-
message-type

Allows you to force the use of a specific
javax.jms.Message implementation for sending JMS
messages. Possible values are: Bytes, Map, Object,
Stream, Text. By default, Camel would determine
which JMS message type to use from the In body
type. This option allows you to specify it.

 JmsMessageType

camel.component
.jms.lazy-create-
transaction-
manager

If true, Camel will create a JmsTransactionManager,
if there is no transactionManager injected when
option transacted=true.

true Boolean

Name Description Defaul
t

Type

CHAPTER 26. JMS

541

camel.component
.jms.lazy-start-
producer

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false Boolean

camel.component
.jms.map-jms-
message

Specifies whether Camel should auto map the
received JMS message to a suited payload type, such
as javax.jms.TextMessage to a String etc.

true Boolean

camel.component
.jms.max-
concurrent-
consumers

Specifies the maximum number of concurrent
consumers when consuming from JMS (not for
request/reply over JMS). See also the
maxMessagesPerTask option to control dynamic
scaling up/down of threads. When doing
request/reply over JMS then the option
replyToMaxConcurrentConsumers is used to control
number of concurrent consumers on the reply
message listener.

 Integer

camel.component
.jms.max-
messages-per-
task

The number of messages per task. -1 is unlimited. If
you use a range for concurrent consumers (eg min
max), then this option can be used to set a value to
eg 100 to control how fast the consumers will shrink
when less work is required.

-1 Integer

camel.component
.jms.message-
converter

To use a custom Spring
org.springframework.jms.support.converter.Message
Converter so you can be in control how to map
to/from a javax.jms.Message. The option is a
org.springframework.jms.support.converter.Message
Converter type.

 MessageConverte
r

camel.component
.jms.message-
created-strategy

To use the given MessageCreatedStrategy which are
invoked when Camel creates new instances of
javax.jms.Message objects when Camel is sending a
JMS message. The option is a
org.apache.camel.component.jms.MessageCreatedSt
rategy type.

 MessageCreatedS
trategy

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

542

camel.component
.jms.message-id-
enabled

When sending, specifies whether message IDs should
be added. This is just an hint to the JMS broker. If the
JMS provider accepts this hint, these messages must
have the message ID set to null; if the provider
ignores the hint, the message ID must be set to its
normal unique value.

true Boolean

camel.component
.jms.message-
listener-
container-factory

Registry ID of the MessageListenerContainerFactory
used to determine what
org.springframework.jms.listener.AbstractMessageLis
tenerContainer to use to consume messages. Setting
this will automatically set consumerType to Custom.
The option is a
org.apache.camel.component.jms.MessageListenerC
ontainerFactory type.

 MessageListenerC
ontainerFactory

camel.component
.jms.message-
timestamp-
enabled

Specifies whether timestamps should be enabled by
default on sending messages. This is just an hint to
the JMS broker. If the JMS provider accepts this hint,
these messages must have the timestamp set to
zero; if the provider ignores the hint the timestamp
must be set to its normal value.

true Boolean

camel.component
.jms.password

Password to use with the ConnectionFactory. You
can also configure username/password directly on
the ConnectionFactory.

 String

camel.component
.jms.preserve-
message-qos

Set to true, if you want to send message using the
QoS settings specified on the message, instead of
the QoS settings on the JMS endpoint. The following
three headers are considered JMSPriority,
JMSDeliveryMode, and JMSExpiration. You can
provide all or only some of them. If not provided,
Camel will fall back to use the values from the
endpoint instead. So, when using this option, the
headers override the values from the endpoint. The
explicitQosEnabled option, by contrast, will only use
options set on the endpoint, and not values from the
message header.

false Boolean

camel.component
.jms.priority

Values greater than 1 specify the message priority
when sending (where 1 is the lowest priority and 9 is
the highest). The explicitQosEnabled option must
also be enabled in order for this option to have any
effect.

4 Integer

Name Description Defaul
t

Type

CHAPTER 26. JMS

543

camel.component
.jms.pub-sub-no-
local

Specifies whether to inhibit the delivery of messages
published by its own connection.

false Boolean

camel.component
.jms.queue-
browse-strategy

To use a custom QueueBrowseStrategy when
browsing queues. The option is a
org.apache.camel.component.jms.QueueBrowseStrat
egy type.

 QueueBrowseStra
tegy

camel.component
.jms.receive-
timeout

The timeout for receiving messages (in milliseconds).
The option is a long type.

1000 Long

camel.component
.jms.recovery-
interval

Specifies the interval between recovery attempts, i.e.
when a connection is being refreshed, in milliseconds.
The default is 5000 ms, that is, 5 seconds. The option
is a long type.

5000 Long

camel.component
.jms.reply-to

Provides an explicit ReplyTo destination (overrides
any incoming value of Message.getJMSReplyTo() in
consumer).

 String

camel.component
.jms.reply-to-
cache-level-name

Sets the cache level by name for the reply consumer
when doing request/reply over JMS. This option only
applies when using fixed reply queues (not
temporary). Camel will by default use:
CACHE_CONSUMER for exclusive or shared w/
replyToSelectorName. And CACHE_SESSION for
shared without replyToSelectorName. Some JMS
brokers such as IBM WebSphere may require to set
the replyToCacheLevelName=CACHE_NONE to
work. Note: If using temporary queues then
CACHE_NONE is not allowed, and you must use a
higher value such as CACHE_CONSUMER or
CACHE_SESSION.

 String

camel.component
.jms.reply-to-
concurrent-
consumers

Specifies the default number of concurrent
consumers when doing request/reply over JMS. See
also the maxMessagesPerTask option to control
dynamic scaling up/down of threads.

1 Integer

camel.component
.jms.reply-to-
delivery-
persistent

Specifies whether to use persistent delivery by
default for replies.

true Boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

544

camel.component
.jms.reply-to-
destination-
selector-name

Sets the JMS Selector using the fixed name to be
used so you can filter out your own replies from the
others when using a shared queue (that is, if you are
not using a temporary reply queue).

 String

camel.component
.jms.reply-to-
max-concurrent-
consumers

Specifies the maximum number of concurrent
consumers when using request/reply over JMS. See
also the maxMessagesPerTask option to control
dynamic scaling up/down of threads.

 Integer

camel.component
.jms.reply-to-on-
timeout-max-
concurrent-
consumers

Specifies the maximum number of concurrent
consumers for continue routing when timeout
occurred when using request/reply over JMS.

1 Integer

camel.component
.jms.reply-to-
override

Provides an explicit ReplyTo destination in the JMS
message, which overrides the setting of replyTo. It is
useful if you want to forward the message to a
remote Queue and receive the reply message from
the ReplyTo destination.

 String

camel.component
.jms.reply-to-
same-
destination-
allowed

Whether a JMS consumer is allowed to send a reply
message to the same destination that the consumer
is using to consume from. This prevents an endless
loop by consuming and sending back the same
message to itself.

false Boolean

camel.component
.jms.reply-to-type

Allows for explicitly specifying which kind of strategy
to use for replyTo queues when doing request/reply
over JMS. Possible values are: Temporary, Shared, or
Exclusive. By default Camel will use temporary
queues. However if replyTo has been configured,
then Shared is used by default. This option allows you
to use exclusive queues instead of shared ones. See
Camel JMS documentation for more details, and
especially the notes about the implications if running
in a clustered environment, and the fact that Shared
reply queues has lower performance than its
alternatives Temporary and Exclusive.

 ReplyToType

camel.component
.jms.request-
timeout

The timeout for waiting for a reply when using the
InOut Exchange Pattern (in milliseconds). The default
is 20 seconds. You can include the header
CamelJmsRequestTimeout to override this endpoint
configured timeout value, and thus have per message
individual timeout values. See also the
requestTimeoutCheckerInterval option. The option is
a long type.

20000 Long

Name Description Defaul
t

Type

CHAPTER 26. JMS

545

camel.component
.jms.request-
timeout-checker-
interval

Configures how often Camel should check for timed
out Exchanges when doing request/reply over JMS.
By default Camel checks once per second. But if you
must react faster when a timeout occurs, then you
can lower this interval, to check more frequently. The
timeout is determined by the option requestTimeout.
The option is a long type.

1000 Long

camel.component
.jms.selector

Sets the JMS selector to use. String

camel.component
.jms.stream-
message-type-
enabled

Sets whether StreamMessage type is enabled or not.
Message payloads of streaming kind such as files,
InputStream, etc will either by sent as BytesMessage
or StreamMessage. This option controls which kind
will be used. By default BytesMessage is used which
enforces the entire message payload to be read into
memory. By enabling this option the message payload
is read into memory in chunks and each chunk is then
written to the StreamMessage until no more data.

false Boolean

camel.component
.jms.subscription-
durable

Set whether to make the subscription durable. The
durable subscription name to be used can be
specified through the subscriptionName property.
Default is false. Set this to true to register a durable
subscription, typically in combination with a
subscriptionName value (unless your message
listener class name is good enough as subscription
name). Only makes sense when listening to a topic
(pub-sub domain), therefore this method switches
the pubSubDomain flag as well.

false Boolean

camel.component
.jms.subscription-
name

Set the name of a subscription to create. To be
applied in case of a topic (pub-sub domain) with a
shared or durable subscription. The subscription
name needs to be unique within this client’s JMS
client id. Default is the class name of the specified
message listener. Note: Only 1 concurrent consumer
(which is the default of this message listener
container) is allowed for each subscription, except for
a shared subscription (which requires JMS 2.0).

 String

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

546

camel.component
.jms.subscription-
shared

Set whether to make the subscription shared. The
shared subscription name to be used can be
specified through the subscriptionName property.
Default is false. Set this to true to register a shared
subscription, typically in combination with a
subscriptionName value (unless your message
listener class name is good enough as subscription
name). Note that shared subscriptions may also be
durable, so this flag can (and often will) be combined
with subscriptionDurable as well. Only makes sense
when listening to a topic (pub-sub domain),
therefore this method switches the pubSubDomain
flag as well. Requires a JMS 2.0 compatible message
broker.

false Boolean

camel.component
.jms.synchronous

Sets whether synchronous processing should be
strictly used.

false Boolean

camel.component
.jms.task-
executor

Allows you to specify a custom task executor for
consuming messages. The option is a
org.springframework.core.task.TaskExecutor type.

 TaskExecutor

camel.component
.jms.test-
connection-on-
startup

Specifies whether to test the connection on startup.
This ensures that when Camel starts that all the JMS
consumers have a valid connection to the JMS
broker. If a connection cannot be granted then
Camel throws an exception on startup. This ensures
that Camel is not started with failed connections. The
JMS producers is tested as well.

false Boolean

camel.component
.jms.time-to-live

When sending messages, specifies the time-to-live
of the message (in milliseconds).

-1 Long

camel.component
.jms.transacted

Specifies whether to use transacted mode. false Boolean

Name Description Defaul
t

Type

CHAPTER 26. JMS

547

camel.component
.jms.transacted-
in-out

Specifies whether InOut operations (request reply)
default to using transacted mode If this flag is set to
true, then Spring JmsTemplate will have
sessionTransacted set to true, and the
acknowledgeMode as transacted on the
JmsTemplate used for InOut operations. Note from
Spring JMS: that within a JTA transaction, the
parameters passed to createQueue, createTopic
methods are not taken into account. Depending on
the Java EE transaction context, the container
makes its own decisions on these values.
Analogously, these parameters are not taken into
account within a locally managed transaction either,
since Spring JMS operates on an existing JMS
Session in this case. Setting this flag to true will use a
short local JMS transaction when running outside of
a managed transaction, and a synchronized local JMS
transaction in case of a managed transaction (other
than an XA transaction) being present. This has the
effect of a local JMS transaction being managed
alongside the main transaction (which might be a
native JDBC transaction), with the JMS transaction
committing right after the main transaction.

false Boolean

camel.component
.jms.transaction-
manager

The Spring transaction manager to use. The option is
a
org.springframework.transaction.PlatformTransactio
nManager type.

 PlatformTransacti
onManager

camel.component
.jms.transaction-
name

The name of the transaction to use. String

camel.component
.jms.transaction-
timeout

The timeout value of the transaction (in seconds), if
using transacted mode.

-1 Integer

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

548

camel.component
.jms.transfer-
exception

If enabled and you are using Request Reply
messaging (InOut) and an Exchange failed on the
consumer side, then the caused Exception will be
send back in response as a javax.jms.ObjectMessage.
If the client is Camel, the returned Exception is
rethrown. This allows you to use Camel JMS as a
bridge in your routing - for example, using persistent
queues to enable robust routing. Notice that if you
also have transferExchange enabled, this option takes
precedence. The caught exception is required to be
serializable. The original Exception on the consumer
side can be wrapped in an outer exception such as
org.apache.camel.RuntimeCamelException when
returned to the producer. Use this with caution as the
data is using Java Object serialization and requires
the received to be able to deserialize the data at
Class level, which forces a strong coupling between
the producers and consumer!.

false Boolean

camel.component
.jms.transfer-
exchange

You can transfer the exchange over the wire instead
of just the body and headers. The following fields are
transferred: In body, Out body, Fault body, In headers,
Out headers, Fault headers, exchange properties,
exchange exception. This requires that the objects
are serializable. Camel will exclude any non-
serializable objects and log it at WARN level. You
must enable this option on both the producer and
consumer side, so Camel knows the payloads is an
Exchange and not a regular payload. Use this with
caution as the data is using Java Object serialization
and requires the receiver to be able to deserialize the
data at Class level, which forces a strong coupling
between the producers and consumers having to use
compatible Camel versions!.

false Boolean

camel.component
.jms.use-
message-i-d-as-
correlation-i-d

Specifies whether JMSMessageID should always be
used as JMSCorrelationID for InOut messages.

false Boolean

camel.component
.jms.username

Username to use with the ConnectionFactory. You
can also configure username/password directly on
the ConnectionFactory.

 String

camel.component
.jms.wait-for-
provision-
correlation-to-
be-updated-
counter

Number of times to wait for provisional correlation id
to be updated to the actual correlation id when doing
request/reply over JMS and when the option
useMessageIDAsCorrelationID is enabled.

50 Integer

Name Description Defaul
t

Type

CHAPTER 26. JMS

549

camel.component
.jms.wait-for-
provision-
correlation-to-
be-updated-
thread-sleeping-
time

Interval in millis to sleep each time while waiting for
provisional correlation id to be updated. The option is
a long type.

100 Long

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

550

CHAPTER 27. KAFKA
Both producer and consumer are supported

The Kafka component is used for communicating with Apache Kafka message broker.

Maven users will need to add the following dependency to their pom.xml for this component.

27.1. URI FORMAT

kafka:topic[?options]

27.2. CONFIGURING OPTIONS

Camel components are configured on two separate levels:

component level

endpoint level

27.2.1. Configuring Component Options

The component level is the highest level which holds general and common configurations that are
inherited by the endpoints. For example a component may have security settings, credentials for
authentication, urls for network connection and so forth.

Some components only have a few options, and others may have many. Because components typically
have pre configured defaults that are commonly used, then you may often only need to configure a few
options on a component; or none at all.

Configuring components can be done with the Component DSL, in a configuration file
(application.properties|yaml), or directly with Java code.

27.2.2. Configuring Endpoint Options

Where you find yourself configuring the most is on endpoints, as endpoints often have many options,
which allows you to configure what you need the endpoint to do. The options are also categorized into
whether the endpoint is used as consumer (from) or as a producer (to), or used for both.

Configuring endpoints is most often done directly in the endpoint URI as path and query parameters.
You can also use the Endpoint DSL as a type safe way of configuring endpoints.

A good practice when configuring options is to use Property Placeholders, which allows to not hardcode
urls, port numbers, sensitive information, and other settings. In other words placeholders allows to
externalize the configuration from your code, and gives more flexibility and reuse.

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-kafka</artifactId>
 <version>3.14.5.redhat-00018</version>
 <!-- use the same version as your Camel core version -->
</dependency>

CHAPTER 27. KAFKA

551

http://kafka.apache.org/
https://camel.apache.org/manual/component-dsl.html
https://camel.apache.org/manual/Endpoint-dsl.html
https://camel.apache.org/manual/using-propertyplaceholder.html

The following two sections lists all the options, firstly for the component followed by the endpoint.

27.3. COMPONENT OPTIONS

The Kafka component supports 104 options, which are listed below.

Name Description Defaul
t

Type

additionalPropert
ies (common)

Sets additional properties for either kafka consumer
or kafka producer in case they can’t be set directly on
the camel configurations (e.g: new Kafka properties
that are not reflected yet in Camel configurations),
the properties have to be prefixed with
additionalProperties.. E.g:
additionalProperties.transactional.id=12345&addition
alProperties.schema.registry.url=http://localhost:8811
/avro.

 Map

brokers (common) URL of the Kafka brokers to use. The format is
host1:port1,host2:port2, and the list can be a subset of
brokers or a VIP pointing to a subset of brokers. This
option is known as bootstrap.servers in the Kafka
documentation.

 String

clientId (common) The client id is a user-specified string sent in each
request to help trace calls. It should logically identify
the application making the request.

 String

configuration
(common)

Allows to pre-configure the Kafka component with
common options that the endpoints will reuse.

 KafkaConfiguratio
n

headerFilterStrat
egy (common)

To use a custom HeaderFilterStrategy to filter
header to and from Camel message.

 HeaderFilterStrate
gy

reconnectBackoff
MaxMs (common)

The maximum amount of time in milliseconds to wait
when reconnecting to a broker that has repeatedly
failed to connect. If provided, the backoff per host
will increase exponentially for each consecutive
connection failure, up to this maximum. After
calculating the backoff increase, 20% random jitter is
added to avoid connection storms.

1000 Integer

shutdownTimeout
(common)

Timeout in milliseconds to wait gracefully for the
consumer or producer to shutdown and terminate its
worker threads.

30000 int

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

552

allowManualCom
mit (consumer)

Whether to allow doing manual commits via
KafkaManualCommit. If this option is enabled then an
instance of KafkaManualCommit is stored on the
Exchange message header, which allows end users to
access this API and perform manual offset commits
via the Kafka consumer.

false boolean

autoCommitEnabl
e (consumer)

If true, periodically commit to ZooKeeper the offset
of messages already fetched by the consumer. This
committed offset will be used when the process fails
as the position from which the new consumer will
begin.

true Boolean

autoCommitInter
valMs (consumer)

The frequency in ms that the consumer offsets are
committed to zookeeper.

5000 Integer

autoCommitOnSt
op (consumer)

Whether to perform an explicit auto commit when the
consumer stops to ensure the broker has a commit
from the last consumed message. This requires the
option autoCommitEnable is turned on. The possible
values are: sync, async, or none. And sync is the
default value.

Enum values:

sync

async

none

sync String

autoOffsetReset
(consumer)

What to do when there is no initial offset in
ZooKeeper or if an offset is out of range: earliest :
automatically reset the offset to the earliest offset
latest : automatically reset the offset to the latest
offset fail: throw exception to the consumer.

Enum values:

latest

earliest

none

latest String

Name Description Defaul
t

Type

CHAPTER 27. KAFKA

553

breakOnFirstErro
r (consumer)

This options controls what happens when a consumer
is processing an exchange and it fails. If the option is
false then the consumer continues to the next
message and processes it. If the option is true then
the consumer breaks out, and will seek back to offset
of the message that caused a failure, and then re-
attempt to process this message. However this can
lead to endless processing of the same message if its
bound to fail every time, eg a poison message.
Therefore its recommended to deal with that for
example by using Camel’s error handler.

false boolean

bridgeErrorHandl
er (consumer)

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false boolean

checkCrcs
(consumer)

Automatically check the CRC32 of the records
consumed. This ensures no on-the-wire or on-disk
corruption to the messages occurred. This check
adds some overhead, so it may be disabled in cases
seeking extreme performance.

true Boolean

commitTimeoutM
s (consumer)

The maximum time, in milliseconds, that the code will
wait for a synchronous commit to complete.

5000 Long

consumerRequest
TimeoutMs
(consumer)

The configuration controls the maximum amount of
time the client will wait for the response of a request.
If the response is not received before the timeout
elapses the client will resend the request if necessary
or fail the request if retries are exhausted.

40000 Integer

consumersCount
(consumer)

The number of consumers that connect to kafka
server. Each consumer is run on a separate thread,
that retrieves and process the incoming data.

1 int

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

554

fetchMaxBytes
(consumer)

The maximum amount of data the server should
return for a fetch request This is not an absolute
maximum, if the first message in the first non-empty
partition of the fetch is larger than this value, the
message will still be returned to ensure that the
consumer can make progress. The maximum
message size accepted by the broker is defined via
message.max.bytes (broker config) or
max.message.bytes (topic config). Note that the
consumer performs multiple fetches in parallel.

52428
800

Integer

fetchMinBytes
(consumer)

The minimum amount of data the server should
return for a fetch request. If insufficient data is
available the request will wait for that much data to
accumulate before answering the request.

1 Integer

fetchWaitMaxMs
(consumer)

The maximum amount of time the server will block
before answering the fetch request if there isn’t
sufficient data to immediately satisfy fetch.min.bytes.

500 Integer

groupId
(consumer)

A string that uniquely identifies the group of
consumer processes to which this consumer belongs.
By setting the same group id multiple processes
indicate that they are all part of the same consumer
group. This option is required for consumers.

 String

groupInstanceId
(consumer)

A unique identifier of the consumer instance provided
by the end user. Only non-empty strings are
permitted. If set, the consumer is treated as a static
member, which means that only one instance with
this ID is allowed in the consumer group at any time.
This can be used in combination with a larger session
timeout to avoid group rebalances caused by
transient unavailability (e.g. process restarts). If not
set, the consumer will join the group as a dynamic
member, which is the traditional behavior.

 String

headerDeserialize
r (consumer)

To use a custom KafkaHeaderDeserializer to
deserialize kafka headers values.

 KafkaHeaderDese
rializer

Name Description Defaul
t

Type

CHAPTER 27. KAFKA

555

heartbeatInterval
Ms (consumer)

The expected time between heartbeats to the
consumer coordinator when using Kafka’s group
management facilities. Heartbeats are used to
ensure that the consumer’s session stays active and
to facilitate rebalancing when new consumers join or
leave the group. The value must be set lower than
session.timeout.ms, but typically should be set no
higher than 1/3 of that value. It can be adjusted even
lower to control the expected time for normal
rebalances.

3000 Integer

keyDeserializer
(consumer)

Deserializer class for key that implements the
Deserializer interface.

org.ap
ache.k
afka.co
mmon.
serializ
ation.S
tringD
eseriali
zer

String

maxPartitionFetc
hBytes
(consumer)

The maximum amount of data per-partition the
server will return. The maximum total memory used
for a request will be #partitions
max.partition.fetch.bytes. This size must be at least
as large as the maximum message size the server
allows or else it is possible for the producer to send
messages larger than the consumer can fetch. If that
happens, the consumer can get stuck trying to fetch a
large message on a certain partition.

104857
6

Integer

maxPollIntervalM
s (consumer)

The maximum delay between invocations of poll()
when using consumer group management. This
places an upper bound on the amount of time that
the consumer can be idle before fetching more
records. If poll() is not called before expiration of this
timeout, then the consumer is considered failed and
the group will rebalance in order to reassign the
partitions to another member.

 Long

maxPollRecords
(consumer)

The maximum number of records returned in a single
call to poll().

500 Integer

offsetRepository
(consumer)

The offset repository to use in order to locally store
the offset of each partition of the topic. Defining one
will disable the autocommit.

 StateRepository

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

556

partitionAssignor
(consumer)

The class name of the partition assignment strategy
that the client will use to distribute partition
ownership amongst consumer instances when group
management is used.

org.ap
ache.k
afka.cli
ents.co
nsumer
.Range
Assign
or

String

pollOnError
(consumer)

What to do if kafka threw an exception while polling
for new messages. Will by default use the value from
the component configuration unless an explicit value
has been configured on the endpoint level. DISCARD
will discard the message and continue to poll next
message. ERROR_HANDLER will use Camel’s error
handler to process the exception, and afterwards
continue to poll next message. RECONNECT will re-
connect the consumer and try poll the message again
RETRY will let the consumer retry polling the same
message again STOP will stop the consumer (have to
be manually started/restarted if the consumer should
be able to consume messages again).

Enum values:

DISCARD

ERROR_HANDLER

RECONNECT

RETRY

STOP

ERROR
_HAND
LER

PollOnError

pollTimeoutMs
(consumer)

The timeout used when polling the KafkaConsumer. 5000 Long

resumeStrategy
(consumer)

This option allows the user to set a custom resume
strategy. The resume strategy is executed when
partitions are assigned (i.e.: when connecting or
reconnecting). It allows implementations to
customize how to resume operations and serve as
more flexible alternative to the seekTo and the
offsetRepository mechanisms. See the
KafkaConsumerResumeStrategy for implementation
details. This option does not affect the auto commit
setting. It is likely that implementations using this
setting will also want to evaluate using the manual
commit option along with this.

 KafkaConsumerRe
sumeStrategy

Name Description Defaul
t

Type

CHAPTER 27. KAFKA

557

seekTo
(consumer)

Set if KafkaConsumer will read from beginning or end
on startup: beginning : read from beginning end : read
from end This is replacing the earlier property
seekToBeginning.

Enum values:

beginning

end

 String

sessionTimeoutM
s (consumer)

The timeout used to detect failures when using
Kafka’s group management facilities.

10000 Integer

specificAvroRead
er (consumer)

This enables the use of a specific Avro reader for use
with the Confluent Platform schema registry and the
io.confluent.kafka.serializers.KafkaAvroDeserializer.
This option is only available in the Confluent Platform
(not standard Apache Kafka).

false boolean

topicIsPattern
(consumer)

Whether the topic is a pattern (regular expression).
This can be used to subscribe to dynamic number of
topics matching the pattern.

false boolean

valueDeserializer
(consumer)

Deserializer class for value that implements the
Deserializer interface.

org.ap
ache.k
afka.co
mmon.
serializ
ation.S
tringD
eseriali
zer

String

kafkaManualCom
mitFactory
(consumer
(advanced))

Autowired Factory to use for creating
KafkaManualCommit instances. This allows to plugin a
custom factory to create custom
KafkaManualCommit instances in case special logic is
needed when doing manual commits that deviates
from the default implementation that comes out of
the box.

 KafkaManualCom
mitFactory

pollExceptionStra
tegy (consumer
(advanced))

Autowired To use a custom strategy with the
consumer to control how to handle exceptions
thrown from the Kafka broker while pooling
messages.

 PollExceptionStrat
egy

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

558

bufferMemorySiz
e (producer)

The total bytes of memory the producer can use to
buffer records waiting to be sent to the server. If
records are sent faster than they can be delivered to
the server the producer will either block or throw an
exception based on the preference specified by
block.on.buffer.full.This setting should correspond
roughly to the total memory the producer will use, but
is not a hard bound since not all memory the producer
uses is used for buffering. Some additional memory
will be used for compression (if compression is
enabled) as well as for maintaining in-flight requests.

33554
432

Integer

compressionCode
c (producer)

This parameter allows you to specify the compression
codec for all data generated by this producer. Valid
values are none, gzip and snappy.

Enum values:

none

gzip

snappy

lz4

none String

connectionMaxIdl
eMs (producer)

Close idle connections after the number of
milliseconds specified by this config.

54000
0

Integer

deliveryTimeoutM
s (producer)

An upper bound on the time to report success or
failure after a call to send() returns. This limits the
total time that a record will be delayed prior to
sending, the time to await acknowledgement from
the broker (if expected), and the time allowed for
retriable send failures.

12000
0

Integer

enableIdempoten
ce (producer)

If set to 'true' the producer will ensure that exactly
one copy of each message is written in the stream. If
'false', producer retries may write duplicates of the
retried message in the stream. If set to true this
option will require
max.in.flight.requests.per.connection to be set to 1
and retries cannot be zero and additionally acks must
be set to 'all'.

false boolean

headerSerializer
(producer)

To use a custom KafkaHeaderSerializer to serialize
kafka headers values.

 KafkaHeaderSerial
izer

Name Description Defaul
t

Type

CHAPTER 27. KAFKA

559

key (producer) The record key (or null if no key is specified). If this
option has been configured then it take precedence
over header KafkaConstants#KEY.

 String

keySerializer
(producer)

The serializer class for keys (defaults to the same as
for messages if nothing is given).

org.ap
ache.k
afka.co
mmon.
serializ
ation.S
tringSe
rializer

String

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

lingerMs
(producer)

The producer groups together any records that arrive
in between request transmissions into a single
batched request. Normally this occurs only under load
when records arrive faster than they can be sent out.
However in some circumstances the client may want
to reduce the number of requests even under
moderate load. This setting accomplishes this by
adding a small amount of artificial delay that is, rather
than immediately sending out a record the producer
will wait for up to the given delay to allow other
records to be sent so that the sends can be batched
together. This can be thought of as analogous to
Nagle’s algorithm in TCP. This setting gives the upper
bound on the delay for batching: once we get
batch.size worth of records for a partition it will be
sent immediately regardless of this setting, however
if we have fewer than this many bytes accumulated
for this partition we will 'linger' for the specified time
waiting for more records to show up. This setting
defaults to 0 (i.e. no delay). Setting linger.ms=5, for
example, would have the effect of reducing the
number of requests sent but would add up to 5ms of
latency to records sent in the absense of load.

0 Integer

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

560

maxBlockMs
(producer)

The configuration controls how long sending to kafka
will block. These methods can be blocked for multiple
reasons. For e.g: buffer full, metadata
unavailable.This configuration imposes maximum limit
on the total time spent in fetching metadata,
serialization of key and value, partitioning and
allocation of buffer memory when doing a send(). In
case of partitionsFor(), this configuration imposes a
maximum time threshold on waiting for metadata.

60000 Integer

maxInFlightRequ
est (producer)

The maximum number of unacknowledged requests
the client will send on a single connection before
blocking. Note that if this setting is set to be greater
than 1 and there are failed sends, there is a risk of
message re-ordering due to retries (i.e., if retries are
enabled).

5 Integer

maxRequestSize
(producer)

The maximum size of a request. This is also
effectively a cap on the maximum record size. Note
that the server has its own cap on record size which
may be different from this. This setting will limit the
number of record batches the producer will send in a
single request to avoid sending huge requests.

104857
6

Integer

metadataMaxAge
Ms (producer)

The period of time in milliseconds after which we
force a refresh of metadata even if we haven’t seen
any partition leadership changes to proactively
discover any new brokers or partitions.

30000
0

Integer

metricReporters
(producer)

A list of classes to use as metrics reporters.
Implementing the MetricReporter interface allows
plugging in classes that will be notified of new metric
creation. The JmxReporter is always included to
register JMX statistics.

 String

metricsSampleWi
ndowMs
(producer)

The number of samples maintained to compute
metrics.

30000 Integer

noOfMetricsSam
ple (producer)

The number of samples maintained to compute
metrics.

2 Integer

Name Description Defaul
t

Type

CHAPTER 27. KAFKA

561

partitioner
(producer)

The partitioner class for partitioning messages
amongst sub-topics. The default partitioner is based
on the hash of the key.

org.ap
ache.k
afka.cli
ents.pr
oducer.
interna
ls.Defa
ultParti
tioner

String

partitionKey
(producer)

The partition to which the record will be sent (or null
if no partition was specified). If this option has been
configured then it take precedence over header
KafkaConstants#PARTITION_KEY.

 Integer

producerBatchSiz
e (producer)

The producer will attempt to batch records together
into fewer requests whenever multiple records are
being sent to the same partition. This helps
performance on both the client and the server. This
configuration controls the default batch size in bytes.
No attempt will be made to batch records larger than
this size.Requests sent to brokers will contain multiple
batches, one for each partition with data available to
be sent.A small batch size will make batching less
common and may reduce throughput (a batch size of
zero will disable batching entirely). A very large batch
size may use memory a bit more wastefully as we will
always allocate a buffer of the specified batch size in
anticipation of additional records.

16384 Integer

queueBufferingM
axMessages
(producer)

The maximum number of unsent messages that can
be queued up the producer when using async mode
before either the producer must be blocked or data
must be dropped.

10000 Integer

receiveBufferByt
es (producer)

The size of the TCP receive buffer (SO_RCVBUF) to
use when reading data.

65536 Integer

reconnectBackoff
Ms (producer)

The amount of time to wait before attempting to
reconnect to a given host. This avoids repeatedly
connecting to a host in a tight loop. This backoff
applies to all requests sent by the consumer to the
broker.

50 Integer

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

562

recordMetadata
(producer)

Whether the producer should store the
RecordMetadata results from sending to Kafka. The
results are stored in a List containing the
RecordMetadata metadata’s. The list is stored on a
header with the key
KafkaConstants#KAFKA_RECORDMETA.

true boolean

requestRequired
Acks (producer)

The number of acknowledgments the producer
requires the leader to have received before
considering a request complete. This controls the
durability of records that are sent. The following
settings are common: acks=0 If set to zero then the
producer will not wait for any acknowledgment from
the server at all. The record will be immediately
added to the socket buffer and considered sent. No
guarantee can be made that the server has received
the record in this case, and the retries configuration
will not take effect (as the client won’t generally know
of any failures). The offset given back for each record
will always be set to -1. acks=1 This will mean the
leader will write the record to its local log but will
respond without awaiting full acknowledgement from
all followers. In this case should the leader fail
immediately after acknowledging the record but
before the followers have replicated it then the
record will be lost. acks=all This means the leader will
wait for the full set of in-sync replicas to
acknowledge the record. This guarantees that the
record will not be lost as long as at least one in-sync
replica remains alive. This is the strongest available
guarantee.

Enum values:

-1

0

1

all

1 String

requestTimeoutM
s (producer)

The amount of time the broker will wait trying to
meet the request.required.acks requirement before
sending back an error to the client.

30000 Integer

Name Description Defaul
t

Type

CHAPTER 27. KAFKA

563

retries (producer) Setting a value greater than zero will cause the client
to resend any record whose send fails with a
potentially transient error. Note that this retry is no
different than if the client resent the record upon
receiving the error. Allowing retries will potentially
change the ordering of records because if two
records are sent to a single partition, and the first
fails and is retried but the second succeeds, then the
second record may appear first.

0 Integer

retryBackoffMs
(producer)

Before each retry, the producer refreshes the
metadata of relevant topics to see if a new leader has
been elected. Since leader election takes a bit of
time, this property specifies the amount of time that
the producer waits before refreshing the metadata.

100 Integer

sendBufferBytes
(producer)

Socket write buffer size. 131072 Integer

valueSerializer
(producer)

The serializer class for messages. org.ap
ache.k
afka.co
mmon.
serializ
ation.S
tringSe
rializer

String

workerPool
(producer)

To use a custom worker pool for continue routing
Exchange after kafka server has acknowledge the
message that was sent to it from KafkaProducer
using asynchronous non-blocking processing. If using
this option then you must handle the lifecycle of the
thread pool to shut the pool down when no longer
needed.

 ExecutorService

workerPoolCoreSi
ze (producer)

Number of core threads for the worker pool for
continue routing Exchange after kafka server has
acknowledge the message that was sent to it from
KafkaProducer using asynchronous non-blocking
processing.

10 Integer

workerPoolMaxSi
ze (producer)

Maximum number of threads for the worker pool for
continue routing Exchange after kafka server has
acknowledge the message that was sent to it from
KafkaProducer using asynchronous non-blocking
processing.

20 Integer

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

564

autowiredEnabled
(advanced)

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true boolean

kafkaClientFactor
y (advanced)

Autowired Factory to use for creating
org.apache.kafka.clients.consumer.KafkaConsumer
and org.apache.kafka.clients.producer.KafkaProducer
instances. This allows to configure a custom factory
to create instances with logic that extends the vanilla
Kafka clients.

 KafkaClientFactor
y

synchronous
(advanced)

Sets whether synchronous processing should be
strictly used.

false boolean

schemaRegistryU
RL (confluent)

URL of the Confluent Platform schema registry
servers to use. The format is host1:port1,host2:port2.
This is known as schema.registry.url in the Confluent
Platform documentation. This option is only available
in the Confluent Platform (not standard Apache
Kafka).

 String

interceptorClasse
s (monitoring)

Sets interceptors for producer or consumers.
Producer interceptors have to be classes
implementing
org.apache.kafka.clients.producer.ProducerIntercept
or Consumer interceptors have to be classes
implementing
org.apache.kafka.clients.consumer.ConsumerInterce
ptor Note that if you use Producer interceptor on a
consumer it will throw a class cast exception in
runtime.

 String

kerberosBeforeR
eloginMinTime
(security)

Login thread sleep time between refresh attempts. 60000 Integer

kerberosInitCmd
(security)

Kerberos kinit command path. Default is
/usr/bin/kinit.

/usr/bi
n/kinit

String

Name Description Defaul
t

Type

CHAPTER 27. KAFKA

565

kerberosPrincipal
ToLocalRules
(security)

A list of rules for mapping from principal names to
short names (typically operating system usernames).
The rules are evaluated in order and the first rule that
matches a principal name is used to map it to a short
name. Any later rules in the list are ignored. By
default, principal names of the form
{username}/{hostname}{REALM} are mapped to
{username}. For more details on the format please
see the security authorization and acls
documentation.. Multiple values can be separated by
comma.

DEFAU
LT

String

kerberosRenewJi
tter (security)

Percentage of random jitter added to the renewal
time.

0.05 Double

kerberosRenewWi
ndowFactor
(security)

Login thread will sleep until the specified window
factor of time from last refresh to ticket’s expiry has
been reached, at which time it will try to renew the
ticket.

0.8 Double

saslJaasConfig
(security)

Expose the kafka sasl.jaas.config parameter Example:
org.apache.kafka.common.security.plain.PlainLoginM
odule required username=USERNAME
password=PASSWORD;.

 String

saslKerberosServi
ceName (security)

The Kerberos principal name that Kafka runs as. This
can be defined either in Kafka’s JAAS config or in
Kafka’s config.

 String

saslMechanism
(security)

The Simple Authentication and Security Layer
(SASL) Mechanism used. For the valid values see .

GSSA
PI

String

securityProtocol
(security)

Protocol used to communicate with brokers.
SASL_PLAINTEXT, PLAINTEXT and SSL are
supported.

PLAIN
TEXT

String

sslCipherSuites
(security)

A list of cipher suites. This is a named combination of
authentication, encryption, MAC and key exchange
algorithm used to negotiate the security settings for
a network connection using TLS or SSL network
protocol.By default all the available cipher suites are
supported.

 String

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

566

sslContextParam
eters (security)

SSL configuration using a Camel
SSLContextParameters object. If configured it’s
applied before the other SSL endpoint parameters.
NOTE: Kafka only supports loading keystore from file
locations, so prefix the location with file: in the
KeyStoreParameters.resource option.

 SSLContextParam
eters

sslEnabledProtoc
ols (security)

The list of protocols enabled for SSL connections.
TLSv1.2, TLSv1.1 and TLSv1 are enabled by default.

 String

sslEndpointAlgori
thm (security)

The endpoint identification algorithm to validate
server hostname using server certificate.

https String

sslKeymanagerAl
gorithm (security)

The algorithm used by key manager factory for SSL
connections. Default value is the key manager
factory algorithm configured for the Java Virtual
Machine.

SunX5
09

String

sslKeyPassword
(security)

The password of the private key in the key store file.
This is optional for client.

 String

sslKeystoreLocati
on (security)

The location of the key store file. This is optional for
client and can be used for two-way authentication for
client.

 String

sslKeystorePassw
ord (security)

The store password for the key store file.This is
optional for client and only needed if
ssl.keystore.location is configured.

 String

sslKeystoreType
(security)

The file format of the key store file. This is optional
for client. Default value is JKS.

JKS String

sslProtocol
(security)

The SSL protocol used to generate the SSLContext.
Default setting is TLS, which is fine for most cases.
Allowed values in recent JVMs are TLS, TLSv1.1 and
TLSv1.2. SSL, SSLv2 and SSLv3 may be supported in
older JVMs, but their usage is discouraged due to
known security vulnerabilities.

 String

sslProvider
(security)

The name of the security provider used for SSL
connections. Default value is the default security
provider of the JVM.

 String

Name Description Defaul
t

Type

CHAPTER 27. KAFKA

567

sslTrustmanagerA
lgorithm (security)

The algorithm used by trust manager factory for SSL
connections. Default value is the trust manager
factory algorithm configured for the Java Virtual
Machine.

PKIX String

sslTruststoreLoca
tion (security)

The location of the trust store file. String

sslTruststorePass
word (security)

The password for the trust store file. String

sslTruststoreType
(security)

The file format of the trust store file. Default value is
JKS.

JKS String

useGlobalSslCont
extParameters
(security)

Enable usage of global SSL context parameters. false boolean

Name Description Defaul
t

Type

27.4. ENDPOINT OPTIONS

The Kafka endpoint is configured using URI syntax:

kafka:topic

with the following path and query parameters:

27.4.1. Path Parameters (1 parameters)

Name Description Defaul
t

Type

topic (common) Required Name of the topic to use. On the consumer
you can use comma to separate multiple topics. A
producer can only send a message to a single topic.

 String

27.4.2. Query Parameters (102 parameters)

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

568

additionalPropert
ies (common)

Sets additional properties for either kafka consumer
or kafka producer in case they can’t be set directly on
the camel configurations (e.g: new Kafka properties
that are not reflected yet in Camel configurations),
the properties have to be prefixed with
additionalProperties.. E.g:
additionalProperties.transactional.id=12345&addition
alProperties.schema.registry.url=http://localhost:8811
/avro.

 Map

brokers (common) URL of the Kafka brokers to use. The format is
host1:port1,host2:port2, and the list can be a subset of
brokers or a VIP pointing to a subset of brokers. This
option is known as bootstrap.servers in the Kafka
documentation.

 String

clientId (common) The client id is a user-specified string sent in each
request to help trace calls. It should logically identify
the application making the request.

 String

headerFilterStrat
egy (common)

To use a custom HeaderFilterStrategy to filter
header to and from Camel message.

 HeaderFilterStrate
gy

reconnectBackoff
MaxMs (common)

The maximum amount of time in milliseconds to wait
when reconnecting to a broker that has repeatedly
failed to connect. If provided, the backoff per host
will increase exponentially for each consecutive
connection failure, up to this maximum. After
calculating the backoff increase, 20% random jitter is
added to avoid connection storms.

1000 Integer

shutdownTimeout
(common)

Timeout in milliseconds to wait gracefully for the
consumer or producer to shutdown and terminate its
worker threads.

30000 int

allowManualCom
mit (consumer)

Whether to allow doing manual commits via
KafkaManualCommit. If this option is enabled then an
instance of KafkaManualCommit is stored on the
Exchange message header, which allows end users to
access this API and perform manual offset commits
via the Kafka consumer.

false boolean

autoCommitEnabl
e (consumer)

If true, periodically commit to ZooKeeper the offset
of messages already fetched by the consumer. This
committed offset will be used when the process fails
as the position from which the new consumer will
begin.

true Boolean

Name Description Defaul
t

Type

CHAPTER 27. KAFKA

569

autoCommitInter
valMs (consumer)

The frequency in ms that the consumer offsets are
committed to zookeeper.

5000 Integer

autoCommitOnSt
op (consumer)

Whether to perform an explicit auto commit when the
consumer stops to ensure the broker has a commit
from the last consumed message. This requires the
option autoCommitEnable is turned on. The possible
values are: sync, async, or none. And sync is the
default value.

Enum values:

sync

async

none

sync String

autoOffsetReset
(consumer)

What to do when there is no initial offset in
ZooKeeper or if an offset is out of range: earliest :
automatically reset the offset to the earliest offset
latest : automatically reset the offset to the latest
offset fail: throw exception to the consumer.

Enum values:

latest

earliest

none

latest String

breakOnFirstErro
r (consumer)

This options controls what happens when a consumer
is processing an exchange and it fails. If the option is
false then the consumer continues to the next
message and processes it. If the option is true then
the consumer breaks out, and will seek back to offset
of the message that caused a failure, and then re-
attempt to process this message. However this can
lead to endless processing of the same message if its
bound to fail every time, eg a poison message.
Therefore its recommended to deal with that for
example by using Camel’s error handler.

false boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

570

bridgeErrorHandl
er (consumer)

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false boolean

checkCrcs
(consumer)

Automatically check the CRC32 of the records
consumed. This ensures no on-the-wire or on-disk
corruption to the messages occurred. This check
adds some overhead, so it may be disabled in cases
seeking extreme performance.

true Boolean

commitTimeoutM
s (consumer)

The maximum time, in milliseconds, that the code will
wait for a synchronous commit to complete.

5000 Long

consumerRequest
TimeoutMs
(consumer)

The configuration controls the maximum amount of
time the client will wait for the response of a request.
If the response is not received before the timeout
elapses the client will resend the request if necessary
or fail the request if retries are exhausted.

40000 Integer

consumersCount
(consumer)

The number of consumers that connect to kafka
server. Each consumer is run on a separate thread,
that retrieves and process the incoming data.

1 int

fetchMaxBytes
(consumer)

The maximum amount of data the server should
return for a fetch request This is not an absolute
maximum, if the first message in the first non-empty
partition of the fetch is larger than this value, the
message will still be returned to ensure that the
consumer can make progress. The maximum
message size accepted by the broker is defined via
message.max.bytes (broker config) or
max.message.bytes (topic config). Note that the
consumer performs multiple fetches in parallel.

52428
800

Integer

fetchMinBytes
(consumer)

The minimum amount of data the server should
return for a fetch request. If insufficient data is
available the request will wait for that much data to
accumulate before answering the request.

1 Integer

fetchWaitMaxMs
(consumer)

The maximum amount of time the server will block
before answering the fetch request if there isn’t
sufficient data to immediately satisfy fetch.min.bytes.

500 Integer

Name Description Defaul
t

Type

CHAPTER 27. KAFKA

571

groupId
(consumer)

A string that uniquely identifies the group of
consumer processes to which this consumer belongs.
By setting the same group id multiple processes
indicate that they are all part of the same consumer
group. This option is required for consumers.

 String

groupInstanceId
(consumer)

A unique identifier of the consumer instance provided
by the end user. Only non-empty strings are
permitted. If set, the consumer is treated as a static
member, which means that only one instance with
this ID is allowed in the consumer group at any time.
This can be used in combination with a larger session
timeout to avoid group rebalances caused by
transient unavailability (e.g. process restarts). If not
set, the consumer will join the group as a dynamic
member, which is the traditional behavior.

 String

headerDeserialize
r (consumer)

To use a custom KafkaHeaderDeserializer to
deserialize kafka headers values.

 KafkaHeaderDese
rializer

heartbeatInterval
Ms (consumer)

The expected time between heartbeats to the
consumer coordinator when using Kafka’s group
management facilities. Heartbeats are used to
ensure that the consumer’s session stays active and
to facilitate rebalancing when new consumers join or
leave the group. The value must be set lower than
session.timeout.ms, but typically should be set no
higher than 1/3 of that value. It can be adjusted even
lower to control the expected time for normal
rebalances.

3000 Integer

keyDeserializer
(consumer)

Deserializer class for key that implements the
Deserializer interface.

org.ap
ache.k
afka.co
mmon.
serializ
ation.S
tringD
eseriali
zer

String

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

572

maxPartitionFetc
hBytes
(consumer)

The maximum amount of data per-partition the
server will return. The maximum total memory used
for a request will be #partitions
max.partition.fetch.bytes. This size must be at least
as large as the maximum message size the server
allows or else it is possible for the producer to send
messages larger than the consumer can fetch. If that
happens, the consumer can get stuck trying to fetch a
large message on a certain partition.

104857
6

Integer

maxPollIntervalM
s (consumer)

The maximum delay between invocations of poll()
when using consumer group management. This
places an upper bound on the amount of time that
the consumer can be idle before fetching more
records. If poll() is not called before expiration of this
timeout, then the consumer is considered failed and
the group will rebalance in order to reassign the
partitions to another member.

 Long

maxPollRecords
(consumer)

The maximum number of records returned in a single
call to poll().

500 Integer

offsetRepository
(consumer)

The offset repository to use in order to locally store
the offset of each partition of the topic. Defining one
will disable the autocommit.

 StateRepository

partitionAssignor
(consumer)

The class name of the partition assignment strategy
that the client will use to distribute partition
ownership amongst consumer instances when group
management is used.

org.ap
ache.k
afka.cli
ents.co
nsumer
.Range
Assign
or

String

Name Description Defaul
t

Type

CHAPTER 27. KAFKA

573

pollOnError
(consumer)

What to do if kafka threw an exception while polling
for new messages. Will by default use the value from
the component configuration unless an explicit value
has been configured on the endpoint level. DISCARD
will discard the message and continue to poll next
message. ERROR_HANDLER will use Camel’s error
handler to process the exception, and afterwards
continue to poll next message. RECONNECT will re-
connect the consumer and try poll the message again
RETRY will let the consumer retry polling the same
message again STOP will stop the consumer (have to
be manually started/restarted if the consumer should
be able to consume messages again).

Enum values:

DISCARD

ERROR_HANDLER

RECONNECT

RETRY

STOP

ERROR
_HAND
LER

PollOnError

pollTimeoutMs
(consumer)

The timeout used when polling the KafkaConsumer. 5000 Long

resumeStrategy
(consumer)

This option allows the user to set a custom resume
strategy. The resume strategy is executed when
partitions are assigned (i.e.: when connecting or
reconnecting). It allows implementations to
customize how to resume operations and serve as
more flexible alternative to the seekTo and the
offsetRepository mechanisms. See the
KafkaConsumerResumeStrategy for implementation
details. This option does not affect the auto commit
setting. It is likely that implementations using this
setting will also want to evaluate using the manual
commit option along with this.

 KafkaConsumerRe
sumeStrategy

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

574

seekTo
(consumer)

Set if KafkaConsumer will read from beginning or end
on startup: beginning : read from beginning end : read
from end This is replacing the earlier property
seekToBeginning.

Enum values:

beginning

end

 String

sessionTimeoutM
s (consumer)

The timeout used to detect failures when using
Kafka’s group management facilities.

10000 Integer

specificAvroRead
er (consumer)

This enables the use of a specific Avro reader for use
with the Confluent Platform schema registry and the
io.confluent.kafka.serializers.KafkaAvroDeserializer.
This option is only available in the Confluent Platform
(not standard Apache Kafka).

false boolean

topicIsPattern
(consumer)

Whether the topic is a pattern (regular expression).
This can be used to subscribe to dynamic number of
topics matching the pattern.

false boolean

valueDeserializer
(consumer)

Deserializer class for value that implements the
Deserializer interface.

org.ap
ache.k
afka.co
mmon.
serializ
ation.S
tringD
eseriali
zer

String

exceptionHandler
(consumer
(advanced))

To let the consumer use a custom ExceptionHandler.
Notice if the option bridgeErrorHandler is enabled
then this option is not in use. By default the consumer
will deal with exceptions, that will be logged at WARN
or ERROR level and ignored.

 ExceptionHandler

Name Description Defaul
t

Type

CHAPTER 27. KAFKA

575

exchangePattern
(consumer
(advanced))

Sets the exchange pattern when the consumer
creates an exchange.

Enum values:

InOnly

InOut

InOptionalOut

 ExchangePattern

kafkaManualCom
mitFactory
(consumer
(advanced))

Factory to use for creating KafkaManualCommit
instances. This allows to plugin a custom factory to
create custom KafkaManualCommit instances in case
special logic is needed when doing manual commits
that deviates from the default implementation that
comes out of the box.

 KafkaManualCom
mitFactory

bufferMemorySiz
e (producer)

The total bytes of memory the producer can use to
buffer records waiting to be sent to the server. If
records are sent faster than they can be delivered to
the server the producer will either block or throw an
exception based on the preference specified by
block.on.buffer.full.This setting should correspond
roughly to the total memory the producer will use, but
is not a hard bound since not all memory the producer
uses is used for buffering. Some additional memory
will be used for compression (if compression is
enabled) as well as for maintaining in-flight requests.

33554
432

Integer

compressionCode
c (producer)

This parameter allows you to specify the compression
codec for all data generated by this producer. Valid
values are none, gzip and snappy.

Enum values:

none

gzip

snappy

lz4

none String

connectionMaxIdl
eMs (producer)

Close idle connections after the number of
milliseconds specified by this config.

54000
0

Integer

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

576

deliveryTimeoutM
s (producer)

An upper bound on the time to report success or
failure after a call to send() returns. This limits the
total time that a record will be delayed prior to
sending, the time to await acknowledgement from
the broker (if expected), and the time allowed for
retriable send failures.

12000
0

Integer

enableIdempoten
ce (producer)

If set to 'true' the producer will ensure that exactly
one copy of each message is written in the stream. If
'false', producer retries may write duplicates of the
retried message in the stream. If set to true this
option will require
max.in.flight.requests.per.connection to be set to 1
and retries cannot be zero and additionally acks must
be set to 'all'.

false boolean

headerSerializer
(producer)

To use a custom KafkaHeaderSerializer to serialize
kafka headers values.

 KafkaHeaderSerial
izer

key (producer) The record key (or null if no key is specified). If this
option has been configured then it take precedence
over header KafkaConstants#KEY.

 String

keySerializer
(producer)

The serializer class for keys (defaults to the same as
for messages if nothing is given).

org.ap
ache.k
afka.co
mmon.
serializ
ation.S
tringSe
rializer

String

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

Name Description Defaul
t

Type

CHAPTER 27. KAFKA

577

lingerMs
(producer)

The producer groups together any records that arrive
in between request transmissions into a single
batched request. Normally this occurs only under load
when records arrive faster than they can be sent out.
However in some circumstances the client may want
to reduce the number of requests even under
moderate load. This setting accomplishes this by
adding a small amount of artificial delay that is, rather
than immediately sending out a record the producer
will wait for up to the given delay to allow other
records to be sent so that the sends can be batched
together. This can be thought of as analogous to
Nagle’s algorithm in TCP. This setting gives the upper
bound on the delay for batching: once we get
batch.size worth of records for a partition it will be
sent immediately regardless of this setting, however
if we have fewer than this many bytes accumulated
for this partition we will 'linger' for the specified time
waiting for more records to show up. This setting
defaults to 0 (i.e. no delay). Setting linger.ms=5, for
example, would have the effect of reducing the
number of requests sent but would add up to 5ms of
latency to records sent in the absense of load.

0 Integer

maxBlockMs
(producer)

The configuration controls how long sending to kafka
will block. These methods can be blocked for multiple
reasons. For e.g: buffer full, metadata
unavailable.This configuration imposes maximum limit
on the total time spent in fetching metadata,
serialization of key and value, partitioning and
allocation of buffer memory when doing a send(). In
case of partitionsFor(), this configuration imposes a
maximum time threshold on waiting for metadata.

60000 Integer

maxInFlightRequ
est (producer)

The maximum number of unacknowledged requests
the client will send on a single connection before
blocking. Note that if this setting is set to be greater
than 1 and there are failed sends, there is a risk of
message re-ordering due to retries (i.e., if retries are
enabled).

5 Integer

maxRequestSize
(producer)

The maximum size of a request. This is also
effectively a cap on the maximum record size. Note
that the server has its own cap on record size which
may be different from this. This setting will limit the
number of record batches the producer will send in a
single request to avoid sending huge requests.

104857
6

Integer

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

578

metadataMaxAge
Ms (producer)

The period of time in milliseconds after which we
force a refresh of metadata even if we haven’t seen
any partition leadership changes to proactively
discover any new brokers or partitions.

30000
0

Integer

metricReporters
(producer)

A list of classes to use as metrics reporters.
Implementing the MetricReporter interface allows
plugging in classes that will be notified of new metric
creation. The JmxReporter is always included to
register JMX statistics.

 String

metricsSampleWi
ndowMs
(producer)

The number of samples maintained to compute
metrics.

30000 Integer

noOfMetricsSam
ple (producer)

The number of samples maintained to compute
metrics.

2 Integer

partitioner
(producer)

The partitioner class for partitioning messages
amongst sub-topics. The default partitioner is based
on the hash of the key.

org.ap
ache.k
afka.cli
ents.pr
oducer.
interna
ls.Defa
ultParti
tioner

String

partitionKey
(producer)

The partition to which the record will be sent (or null
if no partition was specified). If this option has been
configured then it take precedence over header
KafkaConstants#PARTITION_KEY.

 Integer

producerBatchSiz
e (producer)

The producer will attempt to batch records together
into fewer requests whenever multiple records are
being sent to the same partition. This helps
performance on both the client and the server. This
configuration controls the default batch size in bytes.
No attempt will be made to batch records larger than
this size.Requests sent to brokers will contain multiple
batches, one for each partition with data available to
be sent.A small batch size will make batching less
common and may reduce throughput (a batch size of
zero will disable batching entirely). A very large batch
size may use memory a bit more wastefully as we will
always allocate a buffer of the specified batch size in
anticipation of additional records.

16384 Integer

Name Description Defaul
t

Type

CHAPTER 27. KAFKA

579

queueBufferingM
axMessages
(producer)

The maximum number of unsent messages that can
be queued up the producer when using async mode
before either the producer must be blocked or data
must be dropped.

10000 Integer

receiveBufferByt
es (producer)

The size of the TCP receive buffer (SO_RCVBUF) to
use when reading data.

65536 Integer

reconnectBackoff
Ms (producer)

The amount of time to wait before attempting to
reconnect to a given host. This avoids repeatedly
connecting to a host in a tight loop. This backoff
applies to all requests sent by the consumer to the
broker.

50 Integer

recordMetadata
(producer)

Whether the producer should store the
RecordMetadata results from sending to Kafka. The
results are stored in a List containing the
RecordMetadata metadata’s. The list is stored on a
header with the key
KafkaConstants#KAFKA_RECORDMETA.

true boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

580

requestRequired
Acks (producer)

The number of acknowledgments the producer
requires the leader to have received before
considering a request complete. This controls the
durability of records that are sent. The following
settings are common: acks=0 If set to zero then the
producer will not wait for any acknowledgment from
the server at all. The record will be immediately
added to the socket buffer and considered sent. No
guarantee can be made that the server has received
the record in this case, and the retries configuration
will not take effect (as the client won’t generally know
of any failures). The offset given back for each record
will always be set to -1. acks=1 This will mean the
leader will write the record to its local log but will
respond without awaiting full acknowledgement from
all followers. In this case should the leader fail
immediately after acknowledging the record but
before the followers have replicated it then the
record will be lost. acks=all This means the leader will
wait for the full set of in-sync replicas to
acknowledge the record. This guarantees that the
record will not be lost as long as at least one in-sync
replica remains alive. This is the strongest available
guarantee.

Enum values:

-1

0

1

all

1 String

requestTimeoutM
s (producer)

The amount of time the broker will wait trying to
meet the request.required.acks requirement before
sending back an error to the client.

30000 Integer

retries (producer) Setting a value greater than zero will cause the client
to resend any record whose send fails with a
potentially transient error. Note that this retry is no
different than if the client resent the record upon
receiving the error. Allowing retries will potentially
change the ordering of records because if two
records are sent to a single partition, and the first
fails and is retried but the second succeeds, then the
second record may appear first.

0 Integer

Name Description Defaul
t

Type

CHAPTER 27. KAFKA

581

retryBackoffMs
(producer)

Before each retry, the producer refreshes the
metadata of relevant topics to see if a new leader has
been elected. Since leader election takes a bit of
time, this property specifies the amount of time that
the producer waits before refreshing the metadata.

100 Integer

sendBufferBytes
(producer)

Socket write buffer size. 131072 Integer

valueSerializer
(producer)

The serializer class for messages. org.ap
ache.k
afka.co
mmon.
serializ
ation.S
tringSe
rializer

String

workerPool
(producer)

To use a custom worker pool for continue routing
Exchange after kafka server has acknowledge the
message that was sent to it from KafkaProducer
using asynchronous non-blocking processing. If using
this option then you must handle the lifecycle of the
thread pool to shut the pool down when no longer
needed.

 ExecutorService

workerPoolCoreSi
ze (producer)

Number of core threads for the worker pool for
continue routing Exchange after kafka server has
acknowledge the message that was sent to it from
KafkaProducer using asynchronous non-blocking
processing.

10 Integer

workerPoolMaxSi
ze (producer)

Maximum number of threads for the worker pool for
continue routing Exchange after kafka server has
acknowledge the message that was sent to it from
KafkaProducer using asynchronous non-blocking
processing.

20 Integer

kafkaClientFactor
y (advanced)

Factory to use for creating
org.apache.kafka.clients.consumer.KafkaConsumer
and org.apache.kafka.clients.producer.KafkaProducer
instances. This allows to configure a custom factory
to create instances with logic that extends the vanilla
Kafka clients.

 KafkaClientFactor
y

synchronous
(advanced)

Sets whether synchronous processing should be
strictly used.

false boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

582

schemaRegistryU
RL (confluent)

URL of the Confluent Platform schema registry
servers to use. The format is host1:port1,host2:port2.
This is known as schema.registry.url in the Confluent
Platform documentation. This option is only available
in the Confluent Platform (not standard Apache
Kafka).

 String

interceptorClasse
s (monitoring)

Sets interceptors for producer or consumers.
Producer interceptors have to be classes
implementing
org.apache.kafka.clients.producer.ProducerIntercept
or Consumer interceptors have to be classes
implementing
org.apache.kafka.clients.consumer.ConsumerInterce
ptor Note that if you use Producer interceptor on a
consumer it will throw a class cast exception in
runtime.

 String

kerberosBeforeR
eloginMinTime
(security)

Login thread sleep time between refresh attempts. 60000 Integer

kerberosInitCmd
(security)

Kerberos kinit command path. Default is
/usr/bin/kinit.

/usr/bi
n/kinit

String

kerberosPrincipal
ToLocalRules
(security)

A list of rules for mapping from principal names to
short names (typically operating system usernames).
The rules are evaluated in order and the first rule that
matches a principal name is used to map it to a short
name. Any later rules in the list are ignored. By
default, principal names of the form
{username}/{hostname}{REALM} are mapped to
{username}. For more details on the format please
see the security authorization and acls
documentation.. Multiple values can be separated by
comma.

DEFAU
LT

String

kerberosRenewJi
tter (security)

Percentage of random jitter added to the renewal
time.

0.05 Double

kerberosRenewWi
ndowFactor
(security)

Login thread will sleep until the specified window
factor of time from last refresh to ticket’s expiry has
been reached, at which time it will try to renew the
ticket.

0.8 Double

Name Description Defaul
t

Type

CHAPTER 27. KAFKA

583

saslJaasConfig
(security)

Expose the kafka sasl.jaas.config parameter Example:
org.apache.kafka.common.security.plain.PlainLoginM
odule required username=USERNAME
password=PASSWORD;.

 String

saslKerberosServi
ceName (security)

The Kerberos principal name that Kafka runs as. This
can be defined either in Kafka’s JAAS config or in
Kafka’s config.

 String

saslMechanism
(security)

The Simple Authentication and Security Layer
(SASL) Mechanism used. For the valid values see .

GSSA
PI

String

securityProtocol
(security)

Protocol used to communicate with brokers.
SASL_PLAINTEXT, PLAINTEXT and SSL are
supported.

PLAIN
TEXT

String

sslCipherSuites
(security)

A list of cipher suites. This is a named combination of
authentication, encryption, MAC and key exchange
algorithm used to negotiate the security settings for
a network connection using TLS or SSL network
protocol.By default all the available cipher suites are
supported.

 String

sslContextParam
eters (security)

SSL configuration using a Camel
SSLContextParameters object. If configured it’s
applied before the other SSL endpoint parameters.
NOTE: Kafka only supports loading keystore from file
locations, so prefix the location with file: in the
KeyStoreParameters.resource option.

 SSLContextParam
eters

sslEnabledProtoc
ols (security)

The list of protocols enabled for SSL connections.
TLSv1.2, TLSv1.1 and TLSv1 are enabled by default.

 String

sslEndpointAlgori
thm (security)

The endpoint identification algorithm to validate
server hostname using server certificate.

https String

sslKeymanagerAl
gorithm (security)

The algorithm used by key manager factory for SSL
connections. Default value is the key manager
factory algorithm configured for the Java Virtual
Machine.

SunX5
09

String

sslKeyPassword
(security)

The password of the private key in the key store file.
This is optional for client.

 String

sslKeystoreLocati
on (security)

The location of the key store file. This is optional for
client and can be used for two-way authentication for
client.

 String

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

584

sslKeystorePassw
ord (security)

The store password for the key store file.This is
optional for client and only needed if
ssl.keystore.location is configured.

 String

sslKeystoreType
(security)

The file format of the key store file. This is optional
for client. Default value is JKS.

JKS String

sslProtocol
(security)

The SSL protocol used to generate the SSLContext.
Default setting is TLS, which is fine for most cases.
Allowed values in recent JVMs are TLS, TLSv1.1 and
TLSv1.2. SSL, SSLv2 and SSLv3 may be supported in
older JVMs, but their usage is discouraged due to
known security vulnerabilities.

 String

sslProvider
(security)

The name of the security provider used for SSL
connections. Default value is the default security
provider of the JVM.

 String

sslTrustmanagerA
lgorithm (security)

The algorithm used by trust manager factory for SSL
connections. Default value is the trust manager
factory algorithm configured for the Java Virtual
Machine.

PKIX String

sslTruststoreLoca
tion (security)

The location of the trust store file. String

sslTruststorePass
word (security)

The password for the trust store file. String

sslTruststoreType
(security)

The file format of the trust store file. Default value is
JKS.

JKS String

Name Description Defaul
t

Type

For more information about Producer/Consumer configuration see:

http://kafka.apache.org/documentation.html#newconsumerconfigs

http://kafka.apache.org/documentation.html#producerconfigs

27.5. MESSAGE HEADERS

27.5.1. Consumer headers

The following headers are available when consuming messages from Kafka.

CHAPTER 27. KAFKA

585

http://kafka.apache.org/documentation.html#newconsumerconfigs
http://kafka.apache.org/documentation.html#producerconfigs

Header constant Header value Type Description

KafkaConstants.TOP
IC

"kafka.TOPIC" String The topic from where the
message originated

KafkaConstants.PAR
TITION

"kafka.PARTITION" Integer The partition where the
message was stored

KafkaConstants.OFF
SET

"kafka.OFFSET" Long The offset of the message

KafkaConstants.KEY "kafka.KEY" Object The key of the message if
configured

KafkaConstants.HEA
DERS

"kafka.HEADERS" org.apache.kafk
a.common.head
er.Headers

The record headers

KafkaConstants.LAS
T_RECORD_BEFOR
E_COMMIT

"kafka.LAST_RECO
RD_BEFORE_COMM
IT"

Boolean Whether or not it’s the last
record before commit (only
available if
autoCommitEnable
endpoint parameter is false)

KafkaConstants.LAS
T_POLL_RECORD

"kafka.LAST_POLL_
RECORD"

Boolean Indicates the last record
within the current poll request
(only available if
autoCommitEnable
endpoint parameter is false
or allowManualCommit is
true)

KafkaConstants.MA
NUAL_COMMIT

"CamelKafkaManual
Commit"

KafkaManualCo
mmit

Can be used for forcing
manual offset commit when
using Kafka consumer.

27.5.2. Producer headers

Before sending a message to Kafka you can configure the following headers.

Header constant Header value Type Description

KafkaConstants.KEY "kafka.KEY" Object Required The key of the
message in order to ensure
that all related message goes
in the same partition

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

586

KafkaConstants.OVE
RRIDE_TOPIC

"kafka.OVERRIDE_T
OPIC"

String The topic to which send the
message (override and takes
precedence), and the header
is not preserved.

KafkaConstants.OVE
RRIDE_TIMESTAMP

"kafka.OVERRIDE_TI
MESTAMP"

Long The ProducerRecord also has
an associated timestamp. If
the user did provide a
timestamp, the producer will
stamp the record with the
provided timestamp and the
header is not preserved.

KafkaConstants.PAR
TITION_KEY

"kafka.PARTITION_K
EY"

Integer Explicitly specify the partition

Header constant Header value Type Description

If you want to send a message to a dynamic topic then use KafkaConstants.OVERRIDE_TOPIC as its
used as a one-time header that are not send along the message, as its removed in the producer.

After the message is sent to Kafka, the following headers are available

Header constant Header value Type Description

KafkaConstants.KAF
KA_RECORDMETA

"org.apache.kafka.cli
ents.producer.Recor
dMetadata"

List<RecordMet
adata>

The metadata (only
configured if
recordMetadata endpoint
parameter is true

27.6. CONSUMER ERROR HANDLING

While kafka consumer is polling messages from the kafka broker, then errors can happen. This section
describes what happens and what you can configure.

The consumer may throw exception when invoking the Kafka poll API. For example if the message
cannot be de-serialized due invalid data, and many other kind of errors. Those errors are in the form of
KafkaException which are either retryable or not. The exceptions which can be retried
(RetriableException) will be retried again (with a poll timeout in between). All other kind of exceptions
are handled according to the pollOnError configuration. This configuration has the following values:

DISCARD will discard the message and continue to poll next message.

ERROR_HANDLER will use Camel’s error handler to process the exception, and afterwards
continue to poll next message.

RECONNECT will re-connect the consumer and try poll the message again.

RETRY will let the consumer retry polling the same message again

STOP will stop the consumer (have to be manually started/restarted if the consumer should be

CHAPTER 27. KAFKA

587

STOP will stop the consumer (have to be manually started/restarted if the consumer should be
able to consume messages again).

The default is ERROR_HANDLER which will let Camel’s error handler (if any configured) process the
caused exception. And then afterwards continue to poll the next message. This behavior is similar to the
bridgeErrorHandler option that Camel components have.

For advanced control then a custom implementation of
org.apache.camel.component.kafka.PollExceptionStrategy can be configured on the component
level, which allows to control which exceptions causes which of the strategies above.

27.7. SAMPLES

27.7.1. Consuming messages from Kafka

Here is the minimal route you need in order to read messages from Kafka.

If you need to consume messages from multiple topics you can use a comma separated list of topic
names.

It’s also possible to subscribe to multiple topics giving a pattern as the topic name and using the
topicIsPattern option.

When consuming messages from Kafka you can use your own offset management and not delegate this
management to Kafka. In order to keep the offsets the component needs a StateRepository
implementation such as FileStateRepository. This bean should be available in the registry. Here how to
use it :

from("kafka:test?brokers=localhost:9092")
 .log("Message received from Kafka : ${body}")
 .log(" on the topic ${headers[kafka.TOPIC]}")
 .log(" on the partition ${headers[kafka.PARTITION]}")
 .log(" with the offset ${headers[kafka.OFFSET]}")
 .log(" with the key ${headers[kafka.KEY]}")

from("kafka:test,test1,test2?brokers=localhost:9092")
 .log("Message received from Kafka : ${body}")
 .log(" on the topic ${headers[kafka.TOPIC]}")
 .log(" on the partition ${headers[kafka.PARTITION]}")
 .log(" with the offset ${headers[kafka.OFFSET]}")
 .log(" with the key ${headers[kafka.KEY]}")

from("kafka:test*?brokers=localhost:9092&topicIsPattern=true")
 .log("Message received from Kafka : ${body}")
 .log(" on the topic ${headers[kafka.TOPIC]}")
 .log(" on the partition ${headers[kafka.PARTITION]}")
 .log(" with the offset ${headers[kafka.OFFSET]}")
 .log(" with the key ${headers[kafka.KEY]}")

// Create the repository in which the Kafka offsets will be persisted
FileStateRepository repository = FileStateRepository.fileStateRepository(new
File("/path/to/repo.dat"));

// Bind this repository into the Camel registry

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

588

27.7.2. Producing messages to Kafka

Here is the minimal route you need in order to write messages to Kafka.

27.8. SSL CONFIGURATION

You have 2 different ways to configure the SSL communication on the Kafka` component.

The first way is through the many SSL endpoint parameters

The second way is to use the sslContextParameters endpoint parameter.

Registry registry = createCamelRegistry();
registry.bind("offsetRepo", repository);

// Configure the camel context
DefaultCamelContext camelContext = new DefaultCamelContext(registry);
camelContext.addRoutes(new RouteBuilder() {
 @Override
 public void configure() throws Exception {
 from("kafka:" + TOPIC + "?brokers=localhost:{{kafkaPort}}" +
 // Setup the topic and broker address
 "&groupId=A" +
 // The consumer processor group ID
 "&autoOffsetReset=earliest" +
 // Ask to start from the beginning if we have unknown offset
 "&offsetRepository=#offsetRepo")
 // Keep the offsets in the previously configured repository
 .to("mock:result");
 }
});

from("direct:start")
 .setBody(constant("Message from Camel")) // Message to send
 .setHeader(KafkaConstants.KEY, constant("Camel")) // Key of the message
 .to("kafka:test?brokers=localhost:9092");

from("kafka:" + TOPIC + "?brokers=localhost:{{kafkaPort}}" +
 "&groupId=A" +
 "&sslKeystoreLocation=/path/to/keystore.jks" +
 "&sslKeystorePassword=changeit" +
 "&sslKeyPassword=changeit" +
 "&securityProtocol=SSL")
 .to("mock:result");

// Configure the SSLContextParameters object
KeyStoreParameters ksp = new KeyStoreParameters();
ksp.setResource("/path/to/keystore.jks");
ksp.setPassword("changeit");
KeyManagersParameters kmp = new KeyManagersParameters();
kmp.setKeyStore(ksp);
kmp.setKeyPassword("changeit");
SSLContextParameters scp = new SSLContextParameters();
scp.setKeyManagers(kmp);

CHAPTER 27. KAFKA

589

27.9. USING THE KAFKA IDEMPOTENT REPOSITORY

The camel-kafka library provides a Kafka topic-based idempotent repository.

This repository stores broadcasts all changes to idempotent state (add/remove) in a Kafka topic, and
populates a local in-memory cache for each repository’s process instance through event sourcing. The
topic used must be unique per idempotent repository instance.

The mechanism does not have any requirements about the number of topic partitions; as the repository
consumes from all partitions at the same time. It also does not have any requirements about the
replication factor of the topic.

Each repository instance that uses the topic (e.g. typically on different machines running in parallel)
controls its own consumer group, so in a cluster of 10 Camel processes using the same topic each will
control its own offset.

On startup, the instance subscribes to the topic and rewinds the offset to the beginning, rebuilding the
cache to the latest state. The cache will not be considered warmed up until one poll of pollDurationMs
in length returns 0 records. Startup will not be completed until either the cache has warmed up, or 30
seconds go by; if the latter happens the idempotent repository may be in an inconsistent state until its
consumer catches up to the end of the topic.

Be mindful of the format of the header used for the uniqueness check. By default, it uses Strings as the
data types. When using primitive numeric formats, the header must be deserialized accordingly. Check
the samples below for examples.

A KafkaIdempotentRepository has the following properties:

Property Description

topic The name of the Kafka topic to use to broadcast changes. (required)

// Bind this SSLContextParameters into the Camel registry
Registry registry = createCamelRegistry();
registry.bind("ssl", scp);

// Configure the camel context
DefaultCamelContext camelContext = new DefaultCamelContext(registry);
camelContext.addRoutes(new RouteBuilder() {
 @Override
 public void configure() throws Exception {
 from("kafka:" + TOPIC + "?brokers=localhost:{{kafkaPort}}" +
 // Setup the topic and broker address
 "&groupId=A" +
 // The consumer processor group ID
 "&sslContextParameters=#ssl" +
 // The security protocol
 "&securityProtocol=SSL)
 // Reference the SSL configuration
 .to("mock:result");
 }
});

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

590

bootstrapServers The bootstrap.servers property on the internal Kafka producer and
consumer. Use this as shorthand if not setting consumerConfig and
producerConfig. If used, this component will apply sensible default
configurations for the producer and consumer.

producerConfig Sets the properties that will be used by the Kafka producer that broadcasts
changes. Overrides bootstrapServers, so must define the Kafka
bootstrap.servers property itself

consumerConfig Sets the properties that will be used by the Kafka consumer that populates
the cache from the topic. Overrides bootstrapServers, so must define the
Kafka bootstrap.servers property itself

maxCacheSize How many of the most recently used keys should be stored in memory
(default 1000).

pollDurationMs The poll duration of the Kafka consumer. The local caches are updated
immediately. This value will affect how far behind other peers that update
their caches from the topic are relative to the idempotent consumer instance
that sent the cache action message. The default value of this is 100 ms.
If setting this value explicitly, be aware that there is a tradeoff between the
remote cache liveness and the volume of network traffic between this
repository’s consumer and the Kafka brokers. The cache warmup process also
depends on there being one poll that fetches nothing - this indicates that the
stream has been consumed up to the current point. If the poll duration is
excessively long for the rate at which messages are sent on the topic, there
exists a possibility that the cache cannot be warmed up and will operate in an
inconsistent state relative to its peers until it catches up.

Property Description

The repository can be instantiated by defining the topic and bootstrapServers, or the producerConfig
and consumerConfig property sets can be explicitly defined to enable features such as SSL/SASL. To
use, this repository must be placed in the Camel registry, either manually or by registration as a bean in
Spring/Blueprint, as it is CamelContext aware.

Sample usage is as follows:

KafkaIdempotentRepository kafkaIdempotentRepository = new
KafkaIdempotentRepository("idempotent-db-inserts", "localhost:9091");

SimpleRegistry registry = new SimpleRegistry();
registry.put("insertDbIdemRepo", kafkaIdempotentRepository); // must be registered in the registry, to
enable access to the CamelContext
CamelContext context = new CamelContext(registry);

// later in RouteBuilder...
from("direct:performInsert")
 .idempotentConsumer(header("id")).messageIdRepositoryRef("insertDbIdemRepo")
 // once-only insert into database
 .end()

CHAPTER 27. KAFKA

591

In XML:

There are 3 alternatives to choose from when using idempotency with numeric identifiers. The first one
is to use the static method numericHeader method from
org.apache.camel.component.kafka.serde.KafkaSerdeHelper to perform the conversion for you:

Alternatively, it is possible use a custom serializer configured via the route URL to perform the
conversion:

Lastly, it is also possible to do so in a processor:

<!-- simple -->
<bean id="insertDbIdemRepo"
 class="org.apache.camel.processor.idempotent.kafka.KafkaIdempotentRepository">
 <property name="topic" value="idempotent-db-inserts"/>
 <property name="bootstrapServers" value="localhost:9091"/>
</bean>

<!-- complex -->
<bean id="insertDbIdemRepo"
 class="org.apache.camel.processor.idempotent.kafka.KafkaIdempotentRepository">
 <property name="topic" value="idempotent-db-inserts"/>
 <property name="maxCacheSize" value="10000"/>
 <property name="consumerConfig">
 <props>
 <prop key="bootstrap.servers">localhost:9091</prop>
 </props>
 </property>
 <property name="producerConfig">
 <props>
 <prop key="bootstrap.servers">localhost:9091</prop>
 </props>
 </property>
</bean>

from("direct:performInsert")
 .idempotentConsumer(numericHeader("id")).messageIdRepositoryRef("insertDbIdemRepo")
 // once-only insert into database
 .end()

public class CustomHeaderDeserializer extends DefaultKafkaHeaderDeserializer {
 private static final Logger LOG = LoggerFactory.getLogger(CustomHeaderDeserializer.class);

 @Override
 public Object deserialize(String key, byte[] value) {
 if (key.equals("id")) {
 BigInteger bi = new BigInteger(value);

 return String.valueOf(bi.longValue());
 } else {
 return super.deserialize(key, value);
 }
 }
}

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

592

27.10. USING MANUAL COMMIT WITH KAFKA CONSUMER

By default the Kafka consumer will use auto commit, where the offset will be committed automatically in
the background using a given interval.

In case you want to force manual commits, you can use KafkaManualCommit API from the Camel
Exchange, stored on the message header. This requires to turn on manual commits by either setting the
option allowManualCommit to true on the KafkaComponent or on the endpoint, for example:

You can then use the KafkaManualCommit from Java code such as a Camel Processor:

This will force a synchronous commit which will block until the commit is acknowledge on Kafka, or if it
fails an exception is thrown. You can use an asynchronous commit as well by configuring the
KafkaManualCommitFactory with the `DefaultKafkaManualAsyncCommitFactory`implementation.

The commit will then be done in the next consumer loop using the kafka asynchronous commit api. Be
aware that records from a partition must be processed and committed by a unique thread. If not, this
could lead with non consistent behaviors. This is mostly useful with aggregation’s completion timeout
strategies.

If you want to use a custom implementation of KafkaManualCommit then you can configure a custom
KafkaManualCommitFactory on the KafkaComponent that creates instances of your custom
implementation.

27.11. KAFKA HEADERS PROPAGATION

When consuming messages from Kafka, headers will be propagated to camel exchange headers
automatically. Producing flow backed by same behaviour - camel headers of particular exchange will be
propagated to kafka message headers.

Since kafka headers allows only byte[] values, in order camel exchange header to be propagated its
value should be serialized to bytes[], otherwise header will be skipped. Following header value types are

from(from).routeId("foo")
 .process(exchange -> {
 byte[] id = exchange.getIn().getHeader("id", byte[].class);

 BigInteger bi = new BigInteger(id);
 exchange.getIn().setHeader("id", String.valueOf(bi.longValue()));
 })
 .idempotentConsumer(header("id"))
 .messageIdRepositoryRef("kafkaIdempotentRepository")
 .to(to);

KafkaComponent kafka = new KafkaComponent();
kafka.setAllowManualCommit(true);
...
camelContext.addComponent("kafka", kafka);

public void process(Exchange exchange) {
 KafkaManualCommit manual =
 exchange.getIn().getHeader(KafkaConstants.MANUAL_COMMIT, KafkaManualCommit.class);
 manual.commit();
}

CHAPTER 27. KAFKA

593

supported: String, Integer, Long, Double, Boolean, byte[]. Note: all headers propagated from kafka to
camel exchange will contain byte[] value by default. In order to override default functionality uri
parameters can be set: headerDeserializer for from route and headerSerializer for to route. Example:

By default all headers are being filtered by KafkaHeaderFilterStrategy. Strategy filters out headers
which start with Camel or org.apache.camel prefixes. Default strategy can be overridden by using
headerFilterStrategy uri parameter in both to and from routes:

myStrategy object should be subclass of HeaderFilterStrategy and must be placed in the Camel
registry, either manually or by registration as a bean in Spring/Blueprint, as it is CamelContext aware.

27.12. SPRING BOOT AUTO-CONFIGURATION

When using kafka with Spring Boot make sure to use the following Maven dependency to have support
for auto configuration:

The component supports 105 options, which are listed below.

Name Description Defaul
t

Type

camel.component
.kafka.additional-
properties

Sets additional properties for either kafka consumer
or kafka producer in case they can’t be set directly on
the camel configurations (e.g: new Kafka properties
that are not reflected yet in Camel configurations),
the properties have to be prefixed with
additionalProperties.. E.g:
additionalProperties.transactional.id=12345&addition
alProperties.schema.registry.url=http://localhost:8811
/avro.

 Map

camel.component
.kafka.allow-
manual-commit

Whether to allow doing manual commits via
KafkaManualCommit. If this option is enabled then an
instance of KafkaManualCommit is stored on the
Exchange message header, which allows end users to
access this API and perform manual offset commits
via the Kafka consumer.

false Boolean

from("kafka:my_topic?headerDeserializer=#myDeserializer")
...
.to("kafka:my_topic?headerSerializer=#mySerializer")

from("kafka:my_topic?headerFilterStrategy=#myStrategy")
...
.to("kafka:my_topic?headerFilterStrategy=#myStrategy")

<dependency>
 <groupId>org.apache.camel.springboot</groupId>
 <artifactId>camel-kafka-starter</artifactId>
 <version>3.14.5.redhat-00032</version>
 <!-- Use your Camel Spring Boot version -->
</dependency>

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

594

camel.component
.kafka.auto-
commit-enable

If true, periodically commit to ZooKeeper the offset
of messages already fetched by the consumer. This
committed offset will be used when the process fails
as the position from which the new consumer will
begin.

true Boolean

camel.component
.kafka.auto-
commit-interval-
ms

The frequency in ms that the consumer offsets are
committed to zookeeper.

5000 Integer

camel.component
.kafka.auto-
commit-on-stop

Whether to perform an explicit auto commit when the
consumer stops to ensure the broker has a commit
from the last consumed message. This requires the
option autoCommitEnable is turned on. The possible
values are: sync, async, or none. And sync is the
default value.

sync String

camel.component
.kafka.auto-
offset-reset

What to do when there is no initial offset in
ZooKeeper or if an offset is out of range: earliest :
automatically reset the offset to the earliest offset
latest : automatically reset the offset to the latest
offset fail: throw exception to the consumer.

latest String

camel.component
.kafka.autowired-
enabled

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true Boolean

camel.component
.kafka.break-on-
first-error

This options controls what happens when a consumer
is processing an exchange and it fails. If the option is
false then the consumer continues to the next
message and processes it. If the option is true then
the consumer breaks out, and will seek back to offset
of the message that caused a failure, and then re-
attempt to process this message. However this can
lead to endless processing of the same message if its
bound to fail every time, eg a poison message.
Therefore its recommended to deal with that for
example by using Camel’s error handler.

false Boolean

Name Description Defaul
t

Type

CHAPTER 27. KAFKA

595

camel.component
.kafka.bridge-
error-handler

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false Boolean

camel.component
.kafka.brokers

URL of the Kafka brokers to use. The format is
host1:port1,host2:port2, and the list can be a subset of
brokers or a VIP pointing to a subset of brokers. This
option is known as bootstrap.servers in the Kafka
documentation.

 String

camel.component
.kafka.buffer-
memory-size

The total bytes of memory the producer can use to
buffer records waiting to be sent to the server. If
records are sent faster than they can be delivered to
the server the producer will either block or throw an
exception based on the preference specified by
block.on.buffer.full.This setting should correspond
roughly to the total memory the producer will use, but
is not a hard bound since not all memory the producer
uses is used for buffering. Some additional memory
will be used for compression (if compression is
enabled) as well as for maintaining in-flight requests.

33554
432

Integer

camel.component
.kafka.check-crcs

Automatically check the CRC32 of the records
consumed. This ensures no on-the-wire or on-disk
corruption to the messages occurred. This check
adds some overhead, so it may be disabled in cases
seeking extreme performance.

true Boolean

camel.component
.kafka.client-id

The client id is a user-specified string sent in each
request to help trace calls. It should logically identify
the application making the request.

 String

camel.component
.kafka.commit-
timeout-ms

The maximum time, in milliseconds, that the code will
wait for a synchronous commit to complete. The
option is a java.lang.Long type.

5000 Long

camel.component
.kafka.compressio
n-codec

This parameter allows you to specify the compression
codec for all data generated by this producer. Valid
values are none, gzip and snappy.

none String

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

596

camel.component
.kafka.configurati
on

Allows to pre-configure the Kafka component with
common options that the endpoints will reuse. The
option is a
org.apache.camel.component.kafka.KafkaConfigurati
on type.

 KafkaConfiguratio
n

camel.component
.kafka.connection
-max-idle-ms

Close idle connections after the number of
milliseconds specified by this config.

54000
0

Integer

camel.component
.kafka.consumer-
request-timeout-
ms

The configuration controls the maximum amount of
time the client will wait for the response of a request.
If the response is not received before the timeout
elapses the client will resend the request if necessary
or fail the request if retries are exhausted.

40000 Integer

camel.component
.kafka.consumers
-count

The number of consumers that connect to kafka
server. Each consumer is run on a separate thread,
that retrieves and process the incoming data.

1 Integer

camel.component
.kafka.delivery-
timeout-ms

An upper bound on the time to report success or
failure after a call to send() returns. This limits the
total time that a record will be delayed prior to
sending, the time to await acknowledgement from
the broker (if expected), and the time allowed for
retriable send failures.

12000
0

Integer

camel.component
.kafka.enable-
idempotence

If set to 'true' the producer will ensure that exactly
one copy of each message is written in the stream. If
'false', producer retries may write duplicates of the
retried message in the stream. If set to true this
option will require
max.in.flight.requests.per.connection to be set to 1
and retries cannot be zero and additionally acks must
be set to 'all'.

false Boolean

camel.component
.kafka.enabled

Whether to enable auto configuration of the kafka
component. This is enabled by default.

 Boolean

Name Description Defaul
t

Type

CHAPTER 27. KAFKA

597

camel.component
.kafka.fetch-max-
bytes

The maximum amount of data the server should
return for a fetch request This is not an absolute
maximum, if the first message in the first non-empty
partition of the fetch is larger than this value, the
message will still be returned to ensure that the
consumer can make progress. The maximum
message size accepted by the broker is defined via
message.max.bytes (broker config) or
max.message.bytes (topic config). Note that the
consumer performs multiple fetches in parallel.

52428
800

Integer

camel.component
.kafka.fetch-min-
bytes

The minimum amount of data the server should
return for a fetch request. If insufficient data is
available the request will wait for that much data to
accumulate before answering the request.

1 Integer

camel.component
.kafka.fetch-wait-
max-ms

The maximum amount of time the server will block
before answering the fetch request if there isn’t
sufficient data to immediately satisfy fetch.min.bytes.

500 Integer

camel.component
.kafka.group-id

A string that uniquely identifies the group of
consumer processes to which this consumer belongs.
By setting the same group id multiple processes
indicate that they are all part of the same consumer
group. This option is required for consumers.

 String

camel.component
.kafka.group-
instance-id

A unique identifier of the consumer instance provided
by the end user. Only non-empty strings are
permitted. If set, the consumer is treated as a static
member, which means that only one instance with
this ID is allowed in the consumer group at any time.
This can be used in combination with a larger session
timeout to avoid group rebalances caused by
transient unavailability (e.g. process restarts). If not
set, the consumer will join the group as a dynamic
member, which is the traditional behavior.

 String

camel.component
.kafka.header-
deserializer

To use a custom KafkaHeaderDeserializer to
deserialize kafka headers values. The option is a
org.apache.camel.component.kafka.serde.KafkaHead
erDeserializer type.

 KafkaHeaderDese
rializer

camel.component
.kafka.header-
filter-strategy

To use a custom HeaderFilterStrategy to filter
header to and from Camel message. The option is a
org.apache.camel.spi.HeaderFilterStrategy type.

 HeaderFilterStrate
gy

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

598

camel.component
.kafka.header-
serializer

To use a custom KafkaHeaderSerializer to serialize
kafka headers values. The option is a
org.apache.camel.component.kafka.serde.KafkaHead
erSerializer type.

 KafkaHeaderSerial
izer

camel.component
.kafka.heartbeat-
interval-ms

The expected time between heartbeats to the
consumer coordinator when using Kafka’s group
management facilities. Heartbeats are used to
ensure that the consumer’s session stays active and
to facilitate rebalancing when new consumers join or
leave the group. The value must be set lower than
session.timeout.ms, but typically should be set no
higher than 1/3 of that value. It can be adjusted even
lower to control the expected time for normal
rebalances.

3000 Integer

camel.component
.kafka.interceptor
-classes

Sets interceptors for producer or consumers.
Producer interceptors have to be classes
implementing
org.apache.kafka.clients.producer.ProducerIntercept
or Consumer interceptors have to be classes
implementing
org.apache.kafka.clients.consumer.ConsumerInterce
ptor Note that if you use Producer interceptor on a
consumer it will throw a class cast exception in
runtime.

 String

camel.component
.kafka.kafka-
client-factory

Factory to use for creating
org.apache.kafka.clients.consumer.KafkaConsumer
and org.apache.kafka.clients.producer.KafkaProducer
instances. This allows to configure a custom factory
to create instances with logic that extends the vanilla
Kafka clients. The option is a
org.apache.camel.component.kafka.KafkaClientFacto
ry type.

 KafkaClientFactor
y

camel.component
.kafka.kafka-
manual-commit-
factory

Factory to use for creating KafkaManualCommit
instances. This allows to plugin a custom factory to
create custom KafkaManualCommit instances in case
special logic is needed when doing manual commits
that deviates from the default implementation that
comes out of the box. The option is a
org.apache.camel.component.kafka.KafkaManualCo
mmitFactory type.

 KafkaManualCom
mitFactory

camel.component
.kafka.kerberos-
before-relogin-
min-time

Login thread sleep time between refresh attempts. 60000 Integer

Name Description Defaul
t

Type

CHAPTER 27. KAFKA

599

camel.component
.kafka.kerberos-
init-cmd

Kerberos kinit command path. Default is
/usr/bin/kinit.

/usr/bi
n/kinit

String

camel.component
.kafka.kerberos-
principal-to-
local-rules

A list of rules for mapping from principal names to
short names (typically operating system usernames).
The rules are evaluated in order and the first rule that
matches a principal name is used to map it to a short
name. Any later rules in the list are ignored. By
default, principal names of the form
{username}/{hostname}{REALM} are mapped to
{username}. For more details on the format please
see the security authorization and acls
documentation.. Multiple values can be separated by
comma.

DEFAU
LT

String

camel.component
.kafka.kerberos-
renew-jitter

Percentage of random jitter added to the renewal
time.

 Double

camel.component
.kafka.kerberos-
renew-window-
factor

Login thread will sleep until the specified window
factor of time from last refresh to ticket’s expiry has
been reached, at which time it will try to renew the
ticket.

 Double

camel.component
.kafka.key

The record key (or null if no key is specified). If this
option has been configured then it take precedence
over header KafkaConstants#KEY.

 String

camel.component
.kafka.key-
deserializer

Deserializer class for key that implements the
Deserializer interface.

org.ap
ache.k
afka.co
mmon.
serializ
ation.S
tringD
eseriali
zer

String

camel.component
.kafka.key-
serializer

The serializer class for keys (defaults to the same as
for messages if nothing is given).

org.ap
ache.k
afka.co
mmon.
serializ
ation.S
tringSe
rializer

String

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

600

camel.component
.kafka.lazy-start-
producer

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false Boolean

camel.component
.kafka.linger-ms

The producer groups together any records that arrive
in between request transmissions into a single
batched request. Normally this occurs only under load
when records arrive faster than they can be sent out.
However in some circumstances the client may want
to reduce the number of requests even under
moderate load. This setting accomplishes this by
adding a small amount of artificial delay that is, rather
than immediately sending out a record the producer
will wait for up to the given delay to allow other
records to be sent so that the sends can be batched
together. This can be thought of as analogous to
Nagle’s algorithm in TCP. This setting gives the upper
bound on the delay for batching: once we get
batch.size worth of records for a partition it will be
sent immediately regardless of this setting, however
if we have fewer than this many bytes accumulated
for this partition we will 'linger' for the specified time
waiting for more records to show up. This setting
defaults to 0 (i.e. no delay). Setting linger.ms=5, for
example, would have the effect of reducing the
number of requests sent but would add up to 5ms of
latency to records sent in the absense of load.

0 Integer

camel.component
.kafka.max-block-
ms

The configuration controls how long sending to kafka
will block. These methods can be blocked for multiple
reasons. For e.g: buffer full, metadata
unavailable.This configuration imposes maximum limit
on the total time spent in fetching metadata,
serialization of key and value, partitioning and
allocation of buffer memory when doing a send(). In
case of partitionsFor(), this configuration imposes a
maximum time threshold on waiting for metadata.

60000 Integer

Name Description Defaul
t

Type

CHAPTER 27. KAFKA

601

camel.component
.kafka.max-in-
flight-request

The maximum number of unacknowledged requests
the client will send on a single connection before
blocking. Note that if this setting is set to be greater
than 1 and there are failed sends, there is a risk of
message re-ordering due to retries (i.e., if retries are
enabled).

5 Integer

camel.component
.kafka.max-
partition-fetch-
bytes

The maximum amount of data per-partition the
server will return. The maximum total memory used
for a request will be #partitions
max.partition.fetch.bytes. This size must be at least
as large as the maximum message size the server
allows or else it is possible for the producer to send
messages larger than the consumer can fetch. If that
happens, the consumer can get stuck trying to fetch a
large message on a certain partition.

104857
6

Integer

camel.component
.kafka.max-poll-
interval-ms

The maximum delay between invocations of poll()
when using consumer group management. This
places an upper bound on the amount of time that
the consumer can be idle before fetching more
records. If poll() is not called before expiration of this
timeout, then the consumer is considered failed and
the group will rebalance in order to reassign the
partitions to another member. The option is a
java.lang.Long type.

 Long

camel.component
.kafka.max-poll-
records

The maximum number of records returned in a single
call to poll().

500 Integer

camel.component
.kafka.max-
request-size

The maximum size of a request. This is also
effectively a cap on the maximum record size. Note
that the server has its own cap on record size which
may be different from this. This setting will limit the
number of record batches the producer will send in a
single request to avoid sending huge requests.

104857
6

Integer

camel.component
.kafka.metadata-
max-age-ms

The period of time in milliseconds after which we
force a refresh of metadata even if we haven’t seen
any partition leadership changes to proactively
discover any new brokers or partitions.

30000
0

Integer

camel.component
.kafka.metric-
reporters

A list of classes to use as metrics reporters.
Implementing the MetricReporter interface allows
plugging in classes that will be notified of new metric
creation. The JmxReporter is always included to
register JMX statistics.

 String

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

602

camel.component
.kafka.metrics-
sample-window-
ms

The number of samples maintained to compute
metrics.

30000 Integer

camel.component
.kafka.no-of-
metrics-sample

The number of samples maintained to compute
metrics.

2 Integer

camel.component
.kafka.offset-
repository

The offset repository to use in order to locally store
the offset of each partition of the topic. Defining one
will disable the autocommit. The option is a
org.apache.camel.spi.StateRepository<java.lang.Strin
g, java.lang.String> type.

 StateRepository

camel.component
.kafka.partition-
assignor

The class name of the partition assignment strategy
that the client will use to distribute partition
ownership amongst consumer instances when group
management is used.

org.ap
ache.k
afka.cli
ents.co
nsumer
.Range
Assign
or

String

camel.component
.kafka.partition-
key

The partition to which the record will be sent (or null
if no partition was specified). If this option has been
configured then it take precedence over header
KafkaConstants#PARTITION_KEY.

 Integer

camel.component
.kafka.partitioner

The partitioner class for partitioning messages
amongst sub-topics. The default partitioner is based
on the hash of the key.

org.ap
ache.k
afka.cli
ents.pr
oducer.
interna
ls.Defa
ultParti
tioner

String

camel.component
.kafka.poll-
exception-
strategy

To use a custom strategy with the consumer to
control how to handle exceptions thrown from the
Kafka broker while pooling messages. The option is a
org.apache.camel.component.kafka.PollExceptionStr
ategy type.

 PollExceptionStrat
egy

Name Description Defaul
t

Type

CHAPTER 27. KAFKA

603

camel.component
.kafka.poll-on-
error

What to do if kafka threw an exception while polling
for new messages. Will by default use the value from
the component configuration unless an explicit value
has been configured on the endpoint level. DISCARD
will discard the message and continue to poll next
message. ERROR_HANDLER will use Camel’s error
handler to process the exception, and afterwards
continue to poll next message. RECONNECT will re-
connect the consumer and try poll the message again
RETRY will let the consumer retry polling the same
message again STOP will stop the consumer (have to
be manually started/restarted if the consumer should
be able to consume messages again).

 PollOnError

camel.component
.kafka.poll-
timeout-ms

The timeout used when polling the KafkaConsumer.
The option is a java.lang.Long type.

5000 Long

camel.component
.kafka.producer-
batch-size

The producer will attempt to batch records together
into fewer requests whenever multiple records are
being sent to the same partition. This helps
performance on both the client and the server. This
configuration controls the default batch size in bytes.
No attempt will be made to batch records larger than
this size.Requests sent to brokers will contain multiple
batches, one for each partition with data available to
be sent.A small batch size will make batching less
common and may reduce throughput (a batch size of
zero will disable batching entirely). A very large batch
size may use memory a bit more wastefully as we will
always allocate a buffer of the specified batch size in
anticipation of additional records.

16384 Integer

camel.component
.kafka.queue-
buffering-max-
messages

The maximum number of unsent messages that can
be queued up the producer when using async mode
before either the producer must be blocked or data
must be dropped.

10000 Integer

camel.component
.kafka.receive-
buffer-bytes

The size of the TCP receive buffer (SO_RCVBUF) to
use when reading data.

65536 Integer

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

604

camel.component
.kafka.reconnect-
backoff-max-ms

The maximum amount of time in milliseconds to wait
when reconnecting to a broker that has repeatedly
failed to connect. If provided, the backoff per host
will increase exponentially for each consecutive
connection failure, up to this maximum. After
calculating the backoff increase, 20% random jitter is
added to avoid connection storms.

1000 Integer

camel.component
.kafka.reconnect-
backoff-ms

The amount of time to wait before attempting to
reconnect to a given host. This avoids repeatedly
connecting to a host in a tight loop. This backoff
applies to all requests sent by the consumer to the
broker.

50 Integer

camel.component
.kafka.record-
metadata

Whether the producer should store the
RecordMetadata results from sending to Kafka. The
results are stored in a List containing the
RecordMetadata metadata’s. The list is stored on a
header with the key
KafkaConstants#KAFKA_RECORDMETA.

true Boolean

camel.component
.kafka.request-
required-acks

The number of acknowledgments the producer
requires the leader to have received before
considering a request complete. This controls the
durability of records that are sent. The following
settings are common: acks=0 If set to zero then the
producer will not wait for any acknowledgment from
the server at all. The record will be immediately
added to the socket buffer and considered sent. No
guarantee can be made that the server has received
the record in this case, and the retries configuration
will not take effect (as the client won’t generally know
of any failures). The offset given back for each record
will always be set to -1. acks=1 This will mean the
leader will write the record to its local log but will
respond without awaiting full acknowledgement from
all followers. In this case should the leader fail
immediately after acknowledging the record but
before the followers have replicated it then the
record will be lost. acks=all This means the leader will
wait for the full set of in-sync replicas to
acknowledge the record. This guarantees that the
record will not be lost as long as at least one in-sync
replica remains alive. This is the strongest available
guarantee.

1 String

camel.component
.kafka.request-
timeout-ms

The amount of time the broker will wait trying to
meet the request.required.acks requirement before
sending back an error to the client.

30000 Integer

Name Description Defaul
t

Type

CHAPTER 27. KAFKA

605

camel.component
.kafka.resume-
strategy

This option allows the user to set a custom resume
strategy. The resume strategy is executed when
partitions are assigned (i.e.: when connecting or
reconnecting). It allows implementations to
customize how to resume operations and serve as
more flexible alternative to the seekTo and the
offsetRepository mechanisms. See the
KafkaConsumerResumeStrategy for implementation
details. This option does not affect the auto commit
setting. It is likely that implementations using this
setting will also want to evaluate using the manual
commit option along with this. The option is a
org.apache.camel.component.kafka.consumer.suppor
t.KafkaConsumerResumeStrategy type.

 KafkaConsumerRe
sumeStrategy

camel.component
.kafka.retries

Setting a value greater than zero will cause the client
to resend any record whose send fails with a
potentially transient error. Note that this retry is no
different than if the client resent the record upon
receiving the error. Allowing retries will potentially
change the ordering of records because if two
records are sent to a single partition, and the first
fails and is retried but the second succeeds, then the
second record may appear first.

0 Integer

camel.component
.kafka.retry-
backoff-ms

Before each retry, the producer refreshes the
metadata of relevant topics to see if a new leader has
been elected. Since leader election takes a bit of
time, this property specifies the amount of time that
the producer waits before refreshing the metadata.

100 Integer

camel.component
.kafka.sasl-jaas-
config

Expose the kafka sasl.jaas.config parameter Example:
org.apache.kafka.common.security.plain.PlainLoginM
odule required username=USERNAME
password=PASSWORD;.

 String

camel.component
.kafka.sasl-
kerberos-service-
name

The Kerberos principal name that Kafka runs as. This
can be defined either in Kafka’s JAAS config or in
Kafka’s config.

 String

camel.component
.kafka.sasl-
mechanism

The Simple Authentication and Security Layer
(SASL) Mechanism used. For the valid values see .

GSSA
PI

String

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

606

camel.component
.kafka.schema-
registry-u-r-l

URL of the Confluent Platform schema registry
servers to use. The format is host1:port1,host2:port2.
This is known as schema.registry.url in the Confluent
Platform documentation. This option is only available
in the Confluent Platform (not standard Apache
Kafka).

 String

camel.component
.kafka.security-
protocol

Protocol used to communicate with brokers.
SASL_PLAINTEXT, PLAINTEXT and SSL are
supported.

PLAIN
TEXT

String

camel.component
.kafka.seek-to

Set if KafkaConsumer will read from beginning or end
on startup: beginning : read from beginning end : read
from end This is replacing the earlier property
seekToBeginning.

 String

camel.component
.kafka.send-
buffer-bytes

Socket write buffer size. 131072 Integer

camel.component
.kafka.session-
timeout-ms

The timeout used to detect failures when using
Kafka’s group management facilities.

10000 Integer

camel.component
.kafka.shutdown-
timeout

Timeout in milliseconds to wait gracefully for the
consumer or producer to shutdown and terminate its
worker threads.

30000 Integer

camel.component
.kafka.specific-
avro-reader

This enables the use of a specific Avro reader for use
with the Confluent Platform schema registry and the
io.confluent.kafka.serializers.KafkaAvroDeserializer.
This option is only available in the Confluent Platform
(not standard Apache Kafka).

false Boolean

camel.component
.kafka.ssl-cipher-
suites

A list of cipher suites. This is a named combination of
authentication, encryption, MAC and key exchange
algorithm used to negotiate the security settings for
a network connection using TLS or SSL network
protocol.By default all the available cipher suites are
supported.

 String

Name Description Defaul
t

Type

CHAPTER 27. KAFKA

607

camel.component
.kafka.ssl-
context-
parameters

SSL configuration using a Camel
SSLContextParameters object. If configured it’s
applied before the other SSL endpoint parameters.
NOTE: Kafka only supports loading keystore from file
locations, so prefix the location with file: in the
KeyStoreParameters.resource option. The option is a
org.apache.camel.support.jsse.SSLContextParamete
rs type.

 SSLContextParam
eters

camel.component
.kafka.ssl-
enabled-
protocols

The list of protocols enabled for SSL connections.
TLSv1.2, TLSv1.1 and TLSv1 are enabled by default.

 String

camel.component
.kafka.ssl-
endpoint-
algorithm

The endpoint identification algorithm to validate
server hostname using server certificate.

https String

camel.component
.kafka.ssl-key-
password

The password of the private key in the key store file.
This is optional for client.

 String

camel.component
.kafka.ssl-
keymanager-
algorithm

The algorithm used by key manager factory for SSL
connections. Default value is the key manager
factory algorithm configured for the Java Virtual
Machine.

SunX5
09

String

camel.component
.kafka.ssl-
keystore-location

The location of the key store file. This is optional for
client and can be used for two-way authentication for
client.

 String

camel.component
.kafka.ssl-
keystore-
password

The store password for the key store file.This is
optional for client and only needed if
ssl.keystore.location is configured.

 String

camel.component
.kafka.ssl-
keystore-type

The file format of the key store file. This is optional
for client. Default value is JKS.

JKS String

camel.component
.kafka.ssl-
protocol

The SSL protocol used to generate the SSLContext.
Default setting is TLS, which is fine for most cases.
Allowed values in recent JVMs are TLS, TLSv1.1 and
TLSv1.2. SSL, SSLv2 and SSLv3 may be supported in
older JVMs, but their usage is discouraged due to
known security vulnerabilities.

 String

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

608

camel.component
.kafka.ssl-
provider

The name of the security provider used for SSL
connections. Default value is the default security
provider of the JVM.

 String

camel.component
.kafka.ssl-
trustmanager-
algorithm

The algorithm used by trust manager factory for SSL
connections. Default value is the trust manager
factory algorithm configured for the Java Virtual
Machine.

PKIX String

camel.component
.kafka.ssl-
truststore-
location

The location of the trust store file. String

camel.component
.kafka.ssl-
truststore-
password

The password for the trust store file. String

camel.component
.kafka.ssl-
truststore-type

The file format of the trust store file. Default value is
JKS.

JKS String

camel.component
.kafka.synchronou
s

Sets whether synchronous processing should be
strictly used.

false Boolean

camel.component
.kafka.topic-is-
pattern

Whether the topic is a pattern (regular expression).
This can be used to subscribe to dynamic number of
topics matching the pattern.

false Boolean

camel.component
.kafka.use-global-
ssl-context-
parameters

Enable usage of global SSL context parameters. false Boolean

camel.component
.kafka.value-
deserializer

Deserializer class for value that implements the
Deserializer interface.

org.ap
ache.k
afka.co
mmon.
serializ
ation.S
tringD
eseriali
zer

String

Name Description Defaul
t

Type

CHAPTER 27. KAFKA

609

camel.component
.kafka.value-
serializer

The serializer class for messages. org.ap
ache.k
afka.co
mmon.
serializ
ation.S
tringSe
rializer

String

camel.component
.kafka.worker-
pool

To use a custom worker pool for continue routing
Exchange after kafka server has acknowledge the
message that was sent to it from KafkaProducer
using asynchronous non-blocking processing. If using
this option then you must handle the lifecycle of the
thread pool to shut the pool down when no longer
needed. The option is a
java.util.concurrent.ExecutorService type.

 ExecutorService

camel.component
.kafka.worker-
pool-core-size

Number of core threads for the worker pool for
continue routing Exchange after kafka server has
acknowledge the message that was sent to it from
KafkaProducer using asynchronous non-blocking
processing.

10 Integer

camel.component
.kafka.worker-
pool-max-size

Maximum number of threads for the worker pool for
continue routing Exchange after kafka server has
acknowledge the message that was sent to it from
KafkaProducer using asynchronous non-blocking
processing.

20 Integer

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

610

CHAPTER 28. KAMELET
Both producer and consumer are supported

The Kamelet Component provides support for interacting with the Camel Route Template engine using
Endpoint semantic.

28.1. URI FORMAT

28.2. CONFIGURING OPTIONS

Camel components are configured on two separate levels:

component level

endpoint level

28.2.1. Configuring Component Options

The component level is the highest level which holds general and common configurations that are
inherited by the endpoints. For example a component may have security settings, credentials for
authentication, urls for network connection and so forth.

Some components only have a few options, and others may have many. Because components typically
have pre configured defaults that are commonly used, then you may often only need to configure a few
options on a component; or none at all.

Configuring components can be done with the Component DSL, in a configuration file
(application.properties|yaml), or directly with Java code.

28.2.2. Configuring Endpoint Options

Where you find yourself configuring the most is on endpoints, as endpoints often have many options,
which allows you to configure what you need the endpoint to do. The options are also categorized into
whether the endpoint is used as consumer (from) or as a producer (to), or used for both.

Configuring endpoints is most often done directly in the endpoint URI as path and query parameters.
You can also use the Endpoint DSL as a type safe way of configuring endpoints.

A good practice when configuring options is to use Property Placeholders, which allows to not hardcode
urls, port numbers, sensitive information, and other settings. In other words placeholders allows to
externalize the configuration from your code, and gives more flexibility and reuse.

The following two sections lists all the options, firstly for the component followed by the endpoint.

28.3. COMPONENT OPTIONS

The Kamelet component supports 9 options, which are listed below.

kamelet:templateId/routeId[?options]

CHAPTER 28. KAMELET

611

https://camel.apache.org/manual/route-template.html
https://camel.apache.org/manual/component-dsl.html
https://camel.apache.org/manual/Endpoint-dsl.html
https://camel.apache.org/manual/using-propertyplaceholder.html

Name Description Defaul
t

Type

location
(common)

The location(s) of the Kamelets on the file system.
Multiple locations can be set separated by comma.

classpa
th:/ka
melets

String

routeProperties
(common)

Set route local parameters. Map

templateProperti
es (common)

Set template local parameters. Map

bridgeErrorHandl
er (consumer)

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false boolean

block (producer) If sending a message to a kamelet endpoint which
has no active consumer, then we can tell the producer
to block and wait for the consumer to become active.

true boolean

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

timeout
(producer)

The timeout value to use if block is enabled. 30000 long

autowiredEnabled
(advanced)

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true boolean

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

612

routeTemplateLo
aderListener
(advanced)

Autowired To plugin a custom listener for when the
Kamelet component is loading Kamelets from
external resources.

 RouteTemplateLo
aderListener

Name Description Defaul
t

Type

28.4. ENDPOINT OPTIONS

The Kamelet endpoint is configured using URI syntax:

kamelet:templateId/routeId

with the following path and query parameters:

28.4.1. Path Parameters (2 parameters)

Name Description Defaul
t

Type

templateId
(common)

Required The Route Template ID. String

routeId (common) The Route ID. Default value notice: The ID will be
auto-generated if not provided.

 String

28.4.2. Query Parameters (8 parameters)

Name Description Defaul
t

Type

location
(common)

Location of the Kamelet to use which can be
specified as a resource from file system, classpath
etc. The location cannot use wildcards, and must
refer to a file including extension, for example
file:/etc/foo-kamelet.xml.

 String

bridgeErrorHandl
er (consumer)

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false boolean

CHAPTER 28. KAMELET

613

exceptionHandler
(consumer
(advanced))

To let the consumer use a custom ExceptionHandler.
Notice if the option bridgeErrorHandler is enabled
then this option is not in use. By default the consumer
will deal with exceptions, that will be logged at WARN
or ERROR level and ignored.

 ExceptionHandler

exchangePattern
(consumer
(advanced))

Sets the exchange pattern when the consumer
creates an exchange.

Enum values:

InOnly

InOut

InOptionalOut

 ExchangePattern

block (producer) If sending a message to a direct endpoint which has
no active consumer, then we can tell the producer to
block and wait for the consumer to become active.

true boolean

failIfNoConsumer
s (producer)

Whether the producer should fail by throwing an
exception, when sending to a kamelet endpoint with
no active consumers.

true boolean

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

timeout
(producer)

The timeout value to use if block is enabled. 30000 long

Name Description Defaul
t

Type

NOTE

The kamelet endpoint is lenient, which means that the endpoint accepts additional
parameters that are passed to the engine and consumed upon route materialization.

28.5. DISCOVERY

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

614

If a Route Template is not found, the kamelet endpoint tries to load the related kamelet definition from
the file system (by default classpath:/kamelets). The default resolution mechanism expect kamelet
files to have the extension .kamelet.yaml.

28.6. SAMPLES

Kamelets can be used as if they were standard Camel components. For example, suppose that we have
created a Route Template as follows:

NOTE

To let the Kamelet component wiring the materialized route to the caller processor, we
need to be able to identify the input and output endpoint of the route and this is done by
using kamele:source to mark the input endpoint and kamelet:sink for the output
endpoint.

Then the template can be instantiated and invoked as shown below:

Behind the scenes, the Kamelet component does the following things:

1. It instantiates a route out of the Route Template identified by the given templateId path
parameter (in this case setBody)

2. It will act like the direct component and connect the current route to the materialized one.

If you had to do it programmatically, it would have been something like:

28.7. SPRING BOOT AUTO-CONFIGURATION

When using kamelet with Spring Boot make sure to use the following Maven dependency to have
support for auto configuration:

routeTemplate("setMyBody")
 .templateParameter("bodyValue")
 .from("kamelet:source")
 .setBody().constant("{{bodyValue}}");

from("direct:setMyBody")
 .to("kamelet:setMyBody?bodyValue=myKamelet");

routeTemplate("setMyBody")
 .templateParameter("bodyValue")
 .from("direct:{{foo}}")
 .setBody().constant("{{bodyValue}}");

TemplatedRouteBuilder.builder(context, "setMyBody")
 .parameter("foo", "bar")
 .parameter("bodyValue", "myKamelet")
 .add();

from("direct:template")
 .to("direct:bar");

CHAPTER 28. KAMELET

615

https://camel.apache.org/manual/route-template.html

The component supports 10 options, which are listed below.

Name Description Defaul
t

Type

camel.component
.kamelet.autowire
d-enabled

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true Boolean

camel.component
.kamelet.block

If sending a message to a kamelet endpoint which
has no active consumer, then we can tell the producer
to block and wait for the consumer to become active.

true Boolean

camel.component
.kamelet.bridge-
error-handler

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false Boolean

camel.component
.kamelet.enabled

Whether to enable auto configuration of the kamelet
component. This is enabled by default.

 Boolean

camel.component
.kamelet.lazy-
start-producer

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false Boolean

camel.component
.kamelet.location

The location(s) of the Kamelets on the file system.
Multiple locations can be set separated by comma.

classpa
th:/ka
melets

String

<dependency>
 <groupId>org.apache.camel.springboot</groupId>
 <artifactId>camel-kamelet-starter</artifactId>
 <version>3.14.5.redhat-00032</version>
 <!-- Use your Camel Spring Boot version -->
</dependency>

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

616

camel.component
.kamelet.route-
properties

Set route local parameters. Map

camel.component
.kamelet.route-
template-loader-
listener

To plugin a custom listener for when the Kamelet
component is loading Kamelets from external
resources. The option is a
org.apache.camel.spi.RouteTemplateLoaderListener
type.

 RouteTemplateLo
aderListener

camel.component
.kamelet.template
-properties

Set template local parameters. Map

camel.component
.kamelet.timeout

The timeout value to use if block is enabled. 30000 Long

Name Description Defaul
t

Type

CHAPTER 28. KAMELET

617

CHAPTER 29. LANGUAGE
Only producer is supported

The Language component allows you to send Exchange to an endpoint which executes a script by any of
the supported Languages in Camel. By having a component to execute language scripts, it allows more
dynamic routing capabilities. For example by using the Routing Slip or Dynamic Router EIPs you can
send messages to language endpoints where the script is dynamic defined as well.

This component is provided out of the box in camel-core and hence no additional JARs is needed. You
only have to include additional Camel components if the language of choice mandates it, such as using
Groovy or JavaScript languages.

29.1. URI FORMAT

language://languageName[:script][?options]

You can refer to an external resource for the script using same notation as supported by the other
Languages in Camel.

language://languageName:resource:scheme:location][?options]

29.2. CONFIGURING OPTIONS

Camel components are configured on two separate levels:

component level

endpoint level

29.2.1. Configuring Component Options

The component level is the highest level which holds general and common configurations that are
inherited by the endpoints. For example a component may have security settings, credentials for
authentication, urls for network connection and so forth.

Some components only have a few options, and others may have many. Because components typically
have pre configured defaults that are commonly used, then you may often only need to configure a few
options on a component; or none at all.

Configuring components can be done with the Component DSL, in a configuration file
(application.properties|yaml), or directly with Java code.

29.2.2. Configuring Endpoint Options

Where you find yourself configuring the most is on endpoints, as endpoints often have many options,
which allows you to configure what you need the endpoint to do. The options are also categorized into
whether the endpoint is used as consumer (from) or as a producer (to), or used for both.

Configuring endpoints is most often done directly in the endpoint URI as path and query parameters.
You can also use the Endpoint DSL as a type safe way of configuring endpoints.

A good practice when configuring options is to use Property Placeholders, which allows to not hardcode

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

618

https://camel.apache.org/components/3.14.x/eips/dynamicRouter-eip.html
https://camel.apache.org/components/3.14.x/languages/groovy-language.html
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/camel_spring_boot_reference_3.14/index#csb-camel-language-component-starter
https://camel.apache.org/manual/component-dsl.html
https://camel.apache.org/manual/Endpoint-dsl.html

A good practice when configuring options is to use Property Placeholders, which allows to not hardcode
urls, port numbers, sensitive information, and other settings. In other words placeholders allows to
externalize the configuration from your code, and gives more flexibility and reuse.

The following two sections lists all the options, firstly for the component followed by the endpoint.

29.3. COMPONENT OPTIONS

The Language component supports 2 options, which are listed below.

Name Description Defaul
t

Type

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

autowiredEnabled
(advanced)

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true boolean

29.4. ENDPOINT OPTIONS

The Language endpoint is configured using URI syntax:

language:languageName:resourceUri

with the following path and query parameters:

29.4.1. Path Parameters (2 parameters)

Name Description Defaul
t

Type

CHAPTER 29. LANGUAGE

619

https://camel.apache.org/manual/using-propertyplaceholder.html

languageName
(producer)

Required Sets the name of the language to use.

Enum values:

bean

constant

exchangeProperty

file

groovy

header

javascript

jsonpath

mvel

ognl

ref

simple

spel

sql

terser

tokenize

xpath

xquery

xtokenize

 String

resourceUri
(producer)

Path to the resource, or a reference to lookup a bean
in the Registry to use as the resource.

 String

Name Description Defaul
t

Type

29.4.2. Query Parameters (7 parameters)

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

620

allowContextMap
All (producer)

Sets whether the context map should allow access to
all details. By default only the message body and
headers can be accessed. This option can be enabled
for full access to the current Exchange and
CamelContext. Doing so impose a potential security
risk as this opens access to the full power of
CamelContext API.

false boolean

binary (producer) Whether the script is binary content or text content.
By default the script is read as text content (eg
java.lang.String).

false boolean

cacheScript
(producer)

Whether to cache the compiled script and reuse
Notice reusing the script can cause side effects from
processing one Camel org.apache.camel.Exchange to
the next org.apache.camel.Exchange.

false boolean

contentCache
(producer)

Sets whether to use resource content cache or not. true boolean

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

script (producer) Sets the script to execute. String

transform
(producer)

Whether or not the result of the script should be used
as message body. This options is default true.

true boolean

Name Description Defaul
t

Type

29.5. MESSAGE HEADERS

The following message headers can be used to affect the behavior of the component

Header Description

CamelLanguageScript The script to execute provided in the header. Takes precedence over
script configured on the endpoint.

CHAPTER 29. LANGUAGE

621

29.6. EXAMPLES

For example you can use the Simple language to Message Translator a message.

You can also provide the script as a header as shown below. Here we use XPath language to extract the
text from the <foo> tag.

29.7. LOADING SCRIPTS FROM RESOURCES

You can specify a resource uri for a script to load in either the endpoint uri, or in the
Exchange.LANGUAGE_SCRIPT header. The uri must start with one of the following schemes: file:,
classpath:, or http:

By default the script is loaded once and cached. However you can disable the contentCache option and
have the script loaded on each evaluation. For example if the file myscript.txt is changed on disk, then
the updated script is used:

You can refer to the resource similar to the other Languages in Camel by prefixing with "resource:" as
shown below.

29.8. SPRING BOOT AUTO-CONFIGURATION

When using language with Spring Boot make sure to use the following Maven dependency to have
support for auto configuration:

The component supports 3 options, which are listed below.

Name Description Defaul
t

Type

camel.component
.language.autowir
ed-enabled

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true Boolean

camel.component
.language.enabled

Whether to enable auto configuration of the
language component. This is enabled by default.

 Boolean

Object out = producer.requestBodyAndHeader("language:xpath", "<foo>Hello World</foo>",
Exchange.LANGUAGE_SCRIPT, "/foo/text()");
assertEquals("Hello World", out);

<dependency>
 <groupId>org.apache.camel.springboot</groupId>
 <artifactId>camel-language-starter</artifactId>
 <version>3.14.5.redhat-00032</version>
 <!-- Use your Camel Spring Boot version -->
</dependency>

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

622

https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/camel_spring_boot_reference_3.14/index#csb-camel-simple-language-starter
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/camel_spring_boot_reference_3.14/index#csb-camel-language-component-starter

camel.component
.language.lazy-
start-producer

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false Boolean

Name Description Defaul
t

Type

CHAPTER 29. LANGUAGE

623

CHAPTER 30. LOG
Only producer is supported

The Log component logs message exchanges to the underlying logging mechanism.

Camel uses SLF4J which allows you to configure logging via, among others:

Log4j

Logback

Java Util Logging

30.1. URI FORMAT

log:loggingCategory[?options]

Where loggingCategory is the name of the logging category to use. You can append query options to
the URI in the following format,

?option=value&option=value&…

NOTE

Using Logger instance from the Registry
If there’s single instance of org.slf4j.Logger found in the Registry, the loggingCategory
is no longer used to create logger instance. The registered instance is used instead. Also
it is possible to reference particular Logger instance using ?logger=#myLogger URI
parameter. Eventually, if there’s no registered and URI logger parameter, the logger
instance is created using loggingCategory.

For example, a log endpoint typically specifies the logging level using the level option, as follows:

log:org.apache.camel.example?level=DEBUG

The default logger logs every exchange (regular logging). But Camel also ships with the Throughput
logger, which is used whenever the groupSize option is specified.

NOTE

Also a log in the DSL
There is also a log directly in the DSL, but it has a different purpose. Its meant for
lightweight and human logs. See more details at LogEIP.

30.2. CONFIGURING OPTIONS

Camel components are configured on two separate levels:

component level

endpoint level

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

624

http://www.slf4j.org/

30.2.1. Configuring Component Options

The component level is the highest level which holds general and common configurations that are
inherited by the endpoints. For example a component may have security settings, credentials for
authentication, urls for network connection and so forth.

Some components only have a few options, and others may have many. Because components typically
have pre configured defaults that are commonly used, then you may often only need to configure a few
options on a component; or none at all.

Configuring components can be done with the Component DSL, in a configuration file
(application.properties|yaml), or directly with Java code.

30.2.2. Configuring Endpoint Options

Where you find yourself configuring the most is on endpoints, as endpoints often have many options,
which allows you to configure what you need the endpoint to do. The options are also categorized into
whether the endpoint is used as consumer (from) or as a producer (to), or used for both.

Configuring endpoints is most often done directly in the endpoint URI as path and query parameters.
You can also use the Endpoint DSL as a type safe way of configuring endpoints.

A good practice when configuring options is to use Property Placeholders, which allows to not hardcode
urls, port numbers, sensitive information, and other settings. In other words placeholders allows to
externalize the configuration from your code, and gives more flexibility and reuse.

The following two sections lists all the options, firstly for the component followed by the endpoint.

30.3. COMPONENT OPTIONS

The Log component supports 3 options, which are listed below.

Name Description Defaul
t

Type

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

autowiredEnabled
(advanced)

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true boolean

CHAPTER 30. LOG

625

https://camel.apache.org/manual/component-dsl.html
https://camel.apache.org/manual/Endpoint-dsl.html
https://camel.apache.org/manual/using-propertyplaceholder.html

exchangeFormatt
er (advanced)

Autowired Sets a custom ExchangeFormatter to
convert the Exchange to a String suitable for logging.
If not specified, we default to
DefaultExchangeFormatter.

 ExchangeFormatt
er

Name Description Defaul
t

Type

30.4. ENDPOINT OPTIONS

The Log endpoint is configured using URI syntax:

log:loggerName

with the following path and query parameters:

30.4.1. Path Parameters (1 parameters)

Name Description Defaul
t

Type

loggerName
(producer)

Required Name of the logging category to use. String

30.4.2. Query Parameters (27 parameters)

Name Description Defaul
t

Type

groupActiveOnly
(producer)

If true, will hide stats when no new messages have
been received for a time interval, if false, show stats
regardless of message traffic.

true Boolean

groupDelay
(producer)

Set the initial delay for stats (in millis). Long

groupInterval
(producer)

If specified will group message stats by this time
interval (in millis).

 Long

groupSize
(producer)

An integer that specifies a group size for throughput
logging.

 Integer

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

626

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

level (producer) Logging level to use. The default value is INFO.

Enum values:

TRACE

DEBUG

INFO

WARN

ERROR

OFF

INFO String

logMask
(producer)

If true, mask sensitive information like password or
passphrase in the log.

 Boolean

marker (producer) An optional Marker name to use. String

exchangeFormatt
er (advanced)

To use a custom exchange formatter. ExchangeFormatt
er

maxChars
(formatting)

Limits the number of characters logged per line. 10000 int

multiline
(formatting)

If enabled then each information is outputted on a
newline.

false boolean

showAll
(formatting)

Quick option for turning all options on. (multiline,
maxChars has to be manually set if to be used).

false boolean

showAllProperties
(formatting)

Show all of the exchange properties (both internal
and custom).

false boolean

Name Description Defaul
t

Type

CHAPTER 30. LOG

627

showBody
(formatting)

Show the message body. true boolean

showBodyType
(formatting)

Show the body Java type. true boolean

showCaughtExce
ption (formatting)

If the exchange has a caught exception, show the
exception message (no stack trace). A caught
exception is stored as a property on the exchange
(using the key
org.apache.camel.Exchange#EXCEPTION_CAUGHT
) and for instance a doCatch can catch exceptions.

false boolean

showException
(formatting)

If the exchange has an exception, show the exception
message (no stacktrace).

false boolean

showExchangeId
(formatting)

Show the unique exchange ID. false boolean

showExchangePa
ttern (formatting)

Shows the Message Exchange Pattern (or MEP for
short).

true boolean

showFiles
(formatting)

If enabled Camel will output files. false boolean

showFuture
(formatting)

If enabled Camel will on Future objects wait for it to
complete to obtain the payload to be logged.

false boolean

showHeaders
(formatting)

Show the message headers. false boolean

showProperties
(formatting)

Show the exchange properties (only custom). Use
showAllProperties to show both internal and custom
properties.

false boolean

showStackTrace
(formatting)

Show the stack trace, if an exchange has an
exception. Only effective if one of showAll,
showException or showCaughtException are
enabled.

false boolean

showStreams
(formatting)

Whether Camel should show stream bodies or not (eg
such as java.io.InputStream). Beware if you enable
this option then you may not be able later to access
the message body as the stream have already been
read by this logger. To remedy this you will have to
use Stream Caching.

false boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

628

skipBodyLineSep
arator
(formatting)

Whether to skip line separators when logging the
message body. This allows to log the message body
in one line, setting this option to false will preserve
any line separators from the body, which then will log
the body as is.

true boolean

style (formatting) Sets the outputs style to use.

Enum values:

Default

Tab

Fixed

Default OutputStyle

Name Description Defaul
t

Type

30.5. REGULAR LOGGER SAMPLE

In the route below we log the incoming orders at DEBUG level before the order is processed:

Or using Spring XML to define the route:

30.6. REGULAR LOGGER WITH FORMATTER SAMPLE

In the route below we log the incoming orders at INFO level before the order is processed.

30.7. THROUGHPUT LOGGER WITH GROUPSIZE SAMPLE

In the route below we log the throughput of the incoming orders at DEBUG level grouped by 10
messages.

30.8. THROUGHPUT LOGGER WITH GROUPINTERVAL SAMPLE

from("activemq:orders").to("log:com.mycompany.order?level=DEBUG").to("bean:processOrder");

<route>
 <from uri="activemq:orders"/>
 <to uri="log:com.mycompany.order?level=DEBUG"/>
 <to uri="bean:processOrder"/>
</route>

from("activemq:orders").
 to("log:com.mycompany.order?showAll=true&multiline=true").to("bean:processOrder");

from("activemq:orders").
 to("log:com.mycompany.order?level=DEBUG&groupSize=10").to("bean:processOrder");

CHAPTER 30. LOG

629

This route will result in message stats logged every 10s, with an initial 60s delay and stats should be
displayed even if there isn’t any message traffic.

The following will be logged:

"Received: 1000 new messages, with total 2000 so far. Last group took: 10000 millis which is: 100
messages per second. average: 100"

30.9. MASKING SENSITIVE INFORMATION LIKE PASSWORD

You can enable security masking for logging by setting logMask flag to true. Note that this option also
affects Log EIP.

To enable mask in Java DSL at CamelContext level:

And in XML:

You can also turn it on|off at endpoint level. To enable mask in Java DSL at endpoint level, add
logMask=true option in the URI for the log endpoint:

And in XML:

org.apache.camel.support.processor.DefaultMaskingFormatter is used for the masking by default. If
you want to use a custom masking formatter, put it into registry with the name CamelCustomLogMask.
Note that the masking formatter must implement org.apache.camel.spi.MaskingFormatter.

30.10. FULL CUSTOMIZATION OF THE LOGGING OUTPUT

With the options outlined in the section, you can control much of the output of the logger. However, log
lines will always follow this structure:

Exchange[Id:ID-machine-local-50656-1234567901234-1-2, ExchangePattern:InOut,
Properties:{CamelToEndpoint=log://org.apache.camel.component.log.TEST?showAll=true,
CamelCreatedTimestamp=Thu Mar 28 00:00:00 WET 2013},
Headers:{breadcrumbId=ID-machine-local-50656-1234567901234-1-1}, BodyType:String, Body:Hello
World, Out: null]

from("activemq:orders").
 to("log:com.mycompany.order?
level=DEBUG&groupInterval=10000&groupDelay=60000&groupActiveOnly=false").to("bean:process
Order");

camelContext.setLogMask(true);

<camelContext logMask="true">

from("direct:start").to("log:foo?logMask=true");

<route>
 <from uri="direct:foo"/>
 <to uri="log:foo?logMask=true"/>
</route>

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

630

This format is unsuitable in some cases, perhaps because you need to…

Filter the headers and properties that are printed, to strike a balance between insight and
verbosity.

Adjust the log message to whatever you deem most readable.

Tailor log messages for digestion by log mining systems, e.g. Splunk.

Print specific body types differently.

Whenever you require absolute customization, you can create a class that implements the interface.
Within the format(Exchange) method you have access to the full Exchange, so you can select and
extract the precise information you need, format it in a custom manner and return it. The return value
will become the final log message.

You can have the Log component pick up your custom ExchangeFormatter in either of two ways:

Explicitly instantiating the LogComponent in your Registry:

30.10.1. Convention over configuration

Simply by registering a bean with the name logFormatter; the Log Component is intelligent enough to
pick it up automatically.

NOTE

The ExchangeFormatter gets applied to all Log endpoints within that Camel Context.
If you need different ExchangeFormatters for different endpoints, just instantiate the
LogComponent as many times as needed, and use the relevant bean name as the
endpoint prefix.

When using a custom log formatter, you can specify parameters in the log uri, which gets configured on
the custom log formatter. Though when you do that you should define the "logFormatter" as prototype
scoped so its not shared if you have different parameters, for example,

And then we can have Camel routes using the log uri with different options:

30.11. SPRING BOOT AUTO-CONFIGURATION

When using log with Spring Boot make sure to use the following Maven dependency to have support for

<bean name="log" class="org.apache.camel.component.log.LogComponent">
 <property name="exchangeFormatter" ref="myCustomFormatter" />
</bean>

<bean name="logFormatter" class="com.xyz.MyCustomExchangeFormatter" />

<bean name="logFormatter" class="com.xyz.MyCustomExchangeFormatter" scope="prototype"/>

<to uri="log:foo?param1=foo&param2=100"/>

<to uri="log:bar?param1=bar&param2=200"/>

CHAPTER 30. LOG

631

When using log with Spring Boot make sure to use the following Maven dependency to have support for
auto configuration:

The component supports 4 options, which are listed below.

Name Description Defaul
t

Type

camel.component
.log.autowired-
enabled

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true Boolean

camel.component
.log.enabled

Whether to enable auto configuration of the log
component. This is enabled by default.

 Boolean

camel.component
.log.exchange-
formatter

Sets a custom ExchangeFormatter to convert the
Exchange to a String suitable for logging. If not
specified, we default to DefaultExchangeFormatter.
The option is a
org.apache.camel.spi.ExchangeFormatter type.

 ExchangeFormatt
er

camel.component
.log.lazy-start-
producer

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false Boolean

<dependency>
 <groupId>org.apache.camel.springboot</groupId>
 <artifactId>camel-log-starter</artifactId>
 <version>3.14.5.redhat-00032</version>
 <!-- Use your Camel Spring Boot version -->
</dependency>

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

632

CHAPTER 31. MAIL
Both producer and consumer are supported

The Mail component provides access to Email via Spring’s Mail support and the underlying JavaMail
system.

Maven users will need to add the following dependency to their pom.xml for this component:

NOTE

POP3 or IMAP
POP3 has some limitations and end users are encouraged to use IMAP if possible.

NOTE

Using mock-mail for testing
You can use a mock framework for unit testing, which allows you to test without the need
for a real mail server. However you should remember to not include the mock-mail when
you go into production or other environments where you need to send mails to a real mail
server. Just the presence of the mock-javamail.jar on the classpath means that it will kick
in and avoid sending the mails.

31.1. URI FORMAT

Mail endpoints can have one of the following URI formats (for the protocols, SMTP, POP3, or IMAP,
respectively):

smtp://[username@]host[:port][?options]
pop3://[username@]host[:port][?options]
imap://[username@]host[:port][?options]

The mail component also supports secure variants of these protocols (layered over SSL). You can
enable the secure protocols by adding s to the scheme:

smtps://[username@]host[:port][?options]
pop3s://[username@]host[:port][?options]
imaps://[username@]host[:port][?options]

31.2. CONFIGURING OPTIONS

Camel components are configured on two separate levels:

component level

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-mail</artifactId>
 <version>3.14.5.redhat-00018</version>
 <!-- use the same version as your Camel core version -->
</dependency>

CHAPTER 31. MAIL

633

endpoint level

31.2.1. Configuring Component Options

The component level is the highest level which holds general and common configurations that are
inherited by the endpoints. For example a component may have security settings, credentials for
authentication, urls for network connection and so forth.

Some components only have a few options, and others may have many. Because components typically
have pre configured defaults that are commonly used, then you may often only need to configure a few
options on a component; or none at all.

Configuring components can be done with the Component DSL, in a configuration file
(application.properties|yaml), or directly with Java code.

31.2.2. Configuring Endpoint Options

Where you find yourself configuring the most is on endpoints, as endpoints often have many options,
which allows you to configure what you need the endpoint to do. The options are also categorized into
whether the endpoint is used as consumer (from) or as a producer (to), or used for both.

Configuring endpoints is most often done directly in the endpoint URI as path and query parameters.
You can also use the Endpoint DSL as a type safe way of configuring endpoints.

A good practice when configuring options is to use Property Placeholders, which allows to not hardcode
urls, port numbers, sensitive information, and other settings. In other words placeholders allows to
externalize the configuration from your code, and gives more flexibility and reuse.

The following two sections lists all the options, firstly for the component followed by the endpoint.

31.3. COMPONENT OPTIONS

The Mail component supports 43 options, which are listed below.

Name Description Defaul
t

Type

bridgeErrorHandl
er (consumer)

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false boolean

closeFolder
(consumer)

Whether the consumer should close the folder after
polling. Setting this option to false and having
disconnect=false as well, then the consumer keep the
folder open between polls.

true boolean

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

634

https://camel.apache.org/manual/component-dsl.html
https://camel.apache.org/manual/Endpoint-dsl.html
https://camel.apache.org/manual/using-propertyplaceholder.html

copyTo
(consumer)

After processing a mail message, it can be copied to
a mail folder with the given name. You can override
this configuration value, with a header with the key
copyTo, allowing you to copy messages to folder
names configured at runtime.

 String

decodeFilename
(consumer)

If set to true, the MimeUtility.decodeText method will
be used to decode the filename. This is similar to
setting JVM system property
mail.mime.encodefilename.

false boolean

delete (consumer) Deletes the messages after they have been
processed. This is done by setting the DELETED flag
on the mail message. If false, the SEEN flag is set
instead. As of Camel 2.10 you can override this
configuration option by setting a header with the key
delete to determine if the mail should be deleted or
not.

false boolean

disconnect
(consumer)

Whether the consumer should disconnect after
polling. If enabled this forces Camel to connect on
each poll.

false boolean

handleFailedMess
age (consumer)

If the mail consumer cannot retrieve a given mail
message, then this option allows to handle the caused
exception by the consumer’s error handler. By enable
the bridge error handler on the consumer, then the
Camel routing error handler can handle the exception
instead. The default behavior would be the consumer
throws an exception and no mails from the batch
would be able to be routed by Camel.

false boolean

mimeDecodeHea
ders (consumer)

This option enables transparent MIME decoding and
unfolding for mail headers.

false boolean

moveTo
(consumer)

After processing a mail message, it can be moved to
a mail folder with the given name. You can override
this configuration value, with a header with the key
moveTo, allowing you to move messages to folder
names configured at runtime.

 String

peek (consumer) Will mark the javax.mail.Message as peeked before
processing the mail message. This applies to
IMAPMessage messages types only. By using peek
the mail will not be eager marked as SEEN on the mail
server, which allows us to rollback the mail message if
there is an error processing in Camel.

true boolean

Name Description Defaul
t

Type

CHAPTER 31. MAIL

635

skipFailedMessag
e (consumer)

If the mail consumer cannot retrieve a given mail
message, then this option allows to skip the message
and move on to retrieve the next mail message. The
default behavior would be the consumer throws an
exception and no mails from the batch would be able
to be routed by Camel.

false boolean

unseen
(consumer)

Whether to limit by unseen mails only. true boolean

fetchSize
(consumer
(advanced))

Sets the maximum number of messages to consume
during a poll. This can be used to avoid overloading a
mail server, if a mailbox folder contains a lot of
messages. Default value of -1 means no fetch size
and all messages will be consumed. Setting the value
to 0 is a special corner case, where Camel will not
consume any messages at all.

-1 int

folderName
(consumer
(advanced))

The folder to poll. INBOX String

mapMailMessage
(consumer
(advanced))

Specifies whether Camel should map the received
mail message to Camel body/headers/attachments.
If set to true, the body of the mail message is mapped
to the body of the Camel IN message, the mail
headers are mapped to IN headers, and the
attachments to Camel IN attachment message. If this
option is set to false then the IN message contains a
raw javax.mail.Message. You can retrieve this raw
message by calling
exchange.getIn().getBody(javax.mail.Message.class).

true boolean

bcc (producer) Sets the BCC email address. Separate multiple email
addresses with comma.

 String

cc (producer) Sets the CC email address. Separate multiple email
addresses with comma.

 String

from (producer) The from email address. camel
@local
host

String

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

636

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

replyTo
(producer)

The Reply-To recipients (the receivers of the
response mail). Separate multiple email addresses
with a comma.

 String

subject (producer) The Subject of the message being sent. Note: Setting
the subject in the header takes precedence over this
option.

 String

to (producer) Sets the To email address. Separate multiple email
addresses with comma.

 String

javaMailSender
(producer
(advanced))

To use a custom
org.apache.camel.component.mail.JavaMailSender
for sending emails.

 JavaMailSender

additionalJavaMa
ilProperties
(advanced)

Sets additional java mail properties, that will
append/override any default properties that is set
based on all the other options. This is useful if you
need to add some special options but want to keep
the others as is.

 Properties

alternativeBodyH
eader (advanced)

Specifies the key to an IN message header that
contains an alternative email body. For example, if
you send emails in text/html format and want to
provide an alternative mail body for non-HTML email
clients, set the alternative mail body with this key as a
header.

Camel
MailAlt
ernativ
eBody

String

attachmentsCont
entTransferEncod
ingResolver
(advanced)

To use a custom
AttachmentsContentTransferEncodingResolver to
resolve what content-type-encoding to use for
attachments.

 AttachmentsCont
entTransferEncodi
ngResolver

Name Description Defaul
t

Type

CHAPTER 31. MAIL

637

authenticator
(advanced)

The authenticator for login. If set then the password
and username are ignored. Can be used for tokens
which can expire and therefore must be read
dynamically.

 MailAuthenticator

autowiredEnabled
(advanced)

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true boolean

configuration
(advanced)

Sets the Mail configuration. MailConfiguration

connectionTimeo
ut (advanced)

The connection timeout in milliseconds. 30000 int

contentType
(advanced)

The mail message content type. Use text/html for
HTML mails.

text/pl
ain

String

contentTypeReso
lver (advanced)

Resolver to determine Content-Type for file
attachments.

 ContentTypeResol
ver

debugMode
(advanced)

Enable debug mode on the underlying mail
framework. The SUN Mail framework logs the debug
messages to System.out by default.

false boolean

ignoreUnsupport
edCharset
(advanced)

Option to let Camel ignore unsupported charset in
the local JVM when sending mails. If the charset is
unsupported then charset=XXX (where XXX
represents the unsupported charset) is removed
from the content-type and it relies on the platform
default instead.

false boolean

ignoreUriScheme
(advanced)

Option to let Camel ignore unsupported charset in
the local JVM when sending mails. If the charset is
unsupported then charset=XXX (where XXX
represents the unsupported charset) is removed
from the content-type and it relies on the platform
default instead.

false boolean

javaMailPropertie
s (advanced)

Sets the java mail options. Will clear any default
properties and only use the properties provided for
this method.

 Properties

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

638

session
(advanced)

Specifies the mail session that camel should use for
all mail interactions. Useful in scenarios where mail
sessions are created and managed by some other
resource, such as a JavaEE container. When using a
custom mail session, then the hostname and port
from the mail session will be used (if configured on
the session).

 Session

useInlineAttachm
ents (advanced)

Whether to use disposition inline or attachment. false boolean

headerFilterStrat
egy (filter)

To use a custom
org.apache.camel.spi.HeaderFilterStrategy to filter
header to and from Camel message.

 HeaderFilterStrate
gy

password
(security)

The password for login. See also
setAuthenticator(MailAuthenticator).

 String

sslContextParam
eters (security)

To configure security using SSLContextParameters. SSLContextParam
eters

useGlobalSslCont
extParameters
(security)

Enable usage of global SSL context parameters. false boolean

username
(security)

The username for login. See also
setAuthenticator(MailAuthenticator).

 String

Name Description Defaul
t

Type

31.4. ENDPOINT OPTIONS

The Mail endpoint is configured using URI syntax:

imap:host:port

with the following path and query parameters:

31.4.1. Path Parameters (2 parameters)

Name Description Defaul
t

Type

host (common) Required The mail server host name. String

port (common) The port number of the mail server. int

CHAPTER 31. MAIL

639

31.4.2. Query Parameters (66 parameters)

Name Description Defaul
t

Type

bridgeErrorHandl
er (consumer)

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false boolean

closeFolder
(consumer)

Whether the consumer should close the folder after
polling. Setting this option to false and having
disconnect=false as well, then the consumer keep the
folder open between polls.

true boolean

copyTo
(consumer)

After processing a mail message, it can be copied to
a mail folder with the given name. You can override
this configuration value, with a header with the key
copyTo, allowing you to copy messages to folder
names configured at runtime.

 String

decodeFilename
(consumer)

If set to true, the MimeUtility.decodeText method will
be used to decode the filename. This is similar to
setting JVM system property
mail.mime.encodefilename.

false boolean

delete (consumer) Deletes the messages after they have been
processed. This is done by setting the DELETED flag
on the mail message. If false, the SEEN flag is set
instead. As of Camel 2.10 you can override this
configuration option by setting a header with the key
delete to determine if the mail should be deleted or
not.

false boolean

disconnect
(consumer)

Whether the consumer should disconnect after
polling. If enabled this forces Camel to connect on
each poll.

false boolean

handleFailedMess
age (consumer)

If the mail consumer cannot retrieve a given mail
message, then this option allows to handle the caused
exception by the consumer’s error handler. By enable
the bridge error handler on the consumer, then the
Camel routing error handler can handle the exception
instead. The default behavior would be the consumer
throws an exception and no mails from the batch
would be able to be routed by Camel.

false boolean

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

640

maxMessagesPer
Poll (consumer)

Specifies the maximum number of messages to
gather per poll. By default, no maximum is set. Can be
used to set a limit of e.g. 1000 to avoid downloading
thousands of files when the server starts up. Set a
value of 0 or negative to disable this option.

 int

mimeDecodeHea
ders (consumer)

This option enables transparent MIME decoding and
unfolding for mail headers.

false boolean

moveTo
(consumer)

After processing a mail message, it can be moved to
a mail folder with the given name. You can override
this configuration value, with a header with the key
moveTo, allowing you to move messages to folder
names configured at runtime.

 String

peek (consumer) Will mark the javax.mail.Message as peeked before
processing the mail message. This applies to
IMAPMessage messages types only. By using peek
the mail will not be eager marked as SEEN on the mail
server, which allows us to rollback the mail message if
there is an error processing in Camel.

true boolean

sendEmptyMessa
geWhenIdle
(consumer)

If the polling consumer did not poll any files, you can
enable this option to send an empty message (no
body) instead.

false boolean

skipFailedMessag
e (consumer)

If the mail consumer cannot retrieve a given mail
message, then this option allows to skip the message
and move on to retrieve the next mail message. The
default behavior would be the consumer throws an
exception and no mails from the batch would be able
to be routed by Camel.

false boolean

unseen
(consumer)

Whether to limit by unseen mails only. true boolean

exceptionHandler
(consumer
(advanced))

To let the consumer use a custom ExceptionHandler.
Notice if the option bridgeErrorHandler is enabled
then this option is not in use. By default the consumer
will deal with exceptions, that will be logged at WARN
or ERROR level and ignored.

 ExceptionHandler

Name Description Defaul
t

Type

CHAPTER 31. MAIL

641

exchangePattern
(consumer
(advanced))

Sets the exchange pattern when the consumer
creates an exchange.

Enum values:

InOnly

InOut

InOptionalOut

 ExchangePattern

fetchSize
(consumer
(advanced))

Sets the maximum number of messages to consume
during a poll. This can be used to avoid overloading a
mail server, if a mailbox folder contains a lot of
messages. Default value of -1 means no fetch size
and all messages will be consumed. Setting the value
to 0 is a special corner case, where Camel will not
consume any messages at all.

-1 int

folderName
(consumer
(advanced))

The folder to poll. INBOX String

mailUidGenerator
(consumer
(advanced))

A pluggable MailUidGenerator that allows to use
custom logic to generate UUID of the mail message.

 MailUidGenerator

mapMailMessage
(consumer
(advanced))

Specifies whether Camel should map the received
mail message to Camel body/headers/attachments.
If set to true, the body of the mail message is mapped
to the body of the Camel IN message, the mail
headers are mapped to IN headers, and the
attachments to Camel IN attachment message. If this
option is set to false then the IN message contains a
raw javax.mail.Message. You can retrieve this raw
message by calling
exchange.getIn().getBody(javax.mail.Message.class).

true boolean

pollStrategy
(consumer
(advanced))

A pluggable
org.apache.camel.PollingConsumerPollingStrategy
allowing you to provide your custom implementation
to control error handling usually occurred during the
poll operation before an Exchange have been
created and being routed in Camel.

 PollingConsumerP
ollStrategy

postProcessActio
n (consumer
(advanced))

Refers to an MailBoxPostProcessAction for doing
post processing tasks on the mailbox once the normal
processing ended.

 MailBoxPostProce
ssAction

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

642

bcc (producer) Sets the BCC email address. Separate multiple email
addresses with comma.

 String

cc (producer) Sets the CC email address. Separate multiple email
addresses with comma.

 String

from (producer) The from email address. camel
@local
host

String

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

replyTo
(producer)

The Reply-To recipients (the receivers of the
response mail). Separate multiple email addresses
with a comma.

 String

subject (producer) The Subject of the message being sent. Note: Setting
the subject in the header takes precedence over this
option.

 String

to (producer) Sets the To email address. Separate multiple email
addresses with comma.

 String

javaMailSender
(producer
(advanced))

To use a custom
org.apache.camel.component.mail.JavaMailSender
for sending emails.

 JavaMailSender

additionalJavaMa
ilProperties
(advanced)

Sets additional java mail properties, that will
append/override any default properties that is set
based on all the other options. This is useful if you
need to add some special options but want to keep
the others as is.

 Properties

Name Description Defaul
t

Type

CHAPTER 31. MAIL

643

alternativeBodyH
eader (advanced)

Specifies the key to an IN message header that
contains an alternative email body. For example, if
you send emails in text/html format and want to
provide an alternative mail body for non-HTML email
clients, set the alternative mail body with this key as a
header.

Camel
MailAlt
ernativ
eBody

String

attachmentsCont
entTransferEncod
ingResolver
(advanced)

To use a custom
AttachmentsContentTransferEncodingResolver to
resolve what content-type-encoding to use for
attachments.

 AttachmentsCont
entTransferEncodi
ngResolver

authenticator
(advanced)

The authenticator for login. If set then the password
and username are ignored. Can be used for tokens
which can expire and therefore must be read
dynamically.

 MailAuthenticator

binding
(advanced)

Sets the binding used to convert from a Camel
message to and from a Mail message.

 MailBinding

connectionTimeo
ut (advanced)

The connection timeout in milliseconds. 30000 int

contentType
(advanced)

The mail message content type. Use text/html for
HTML mails.

text/pl
ain

String

contentTypeReso
lver (advanced)

Resolver to determine Content-Type for file
attachments.

 ContentTypeResol
ver

debugMode
(advanced)

Enable debug mode on the underlying mail
framework. The SUN Mail framework logs the debug
messages to System.out by default.

false boolean

headerFilterStrat
egy (advanced)

To use a custom
org.apache.camel.spi.HeaderFilterStrategy to filter
headers.

 HeaderFilterStrate
gy

ignoreUnsupport
edCharset
(advanced)

Option to let Camel ignore unsupported charset in
the local JVM when sending mails. If the charset is
unsupported then charset=XXX (where XXX
represents the unsupported charset) is removed
from the content-type and it relies on the platform
default instead.

false boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

644

ignoreUriScheme
(advanced)

Option to let Camel ignore unsupported charset in
the local JVM when sending mails. If the charset is
unsupported then charset=XXX (where XXX
represents the unsupported charset) is removed
from the content-type and it relies on the platform
default instead.

false boolean

javaMailPropertie
s (advanced)

Sets the java mail options. Will clear any default
properties and only use the properties provided for
this method.

 Properties

session
(advanced)

Specifies the mail session that camel should use for
all mail interactions. Useful in scenarios where mail
sessions are created and managed by some other
resource, such as a JavaEE container. When using a
custom mail session, then the hostname and port
from the mail session will be used (if configured on
the session).

 Session

useInlineAttachm
ents (advanced)

Whether to use disposition inline or attachment. false boolean

idempotentRepos
itory (filter)

A pluggable repository
org.apache.camel.spi.IdempotentRepository which
allows to cluster consuming from the same mailbox,
and let the repository coordinate whether a mail
message is valid for the consumer to process. By
default no repository is in use.

 IdempotentReposi
tory

idempotentRepos
itoryRemoveOnC
ommit (filter)

When using idempotent repository, then when the
mail message has been successfully processed and is
committed, should the message id be removed from
the idempotent repository (default) or be kept in the
repository. By default its assumed the message id is
unique and has no value to be kept in the repository,
because the mail message will be marked as
seen/moved or deleted to prevent it from being
consumed again. And therefore having the message
id stored in the idempotent repository has little value.
However this option allows to store the message id,
for whatever reason you may have.

true boolean

searchTerm
(filter)

Refers to a javax.mail.search.SearchTerm which
allows to filter mails based on search criteria such as
subject, body, from, sent after a certain date etc.

 SearchTerm

backoffErrorThre
shold (scheduler)

The number of subsequent error polls (failed due
some error) that should happen before the
backoffMultipler should kick-in.

 int

Name Description Defaul
t

Type

CHAPTER 31. MAIL

645

backoffIdleThres
hold (scheduler)

The number of subsequent idle polls that should
happen before the backoffMultipler should kick-in.

 int

backoffMultiplier
(scheduler)

To let the scheduled polling consumer backoff if
there has been a number of subsequent idles/errors
in a row. The multiplier is then the number of polls
that will be skipped before the next actual attempt is
happening again. When this option is in use then
backoffIdleThreshold and/or backoffErrorThreshold
must also be configured.

 int

delay (scheduler) Milliseconds before the next poll. 60000 long

greedy
(scheduler)

If greedy is enabled, then the
ScheduledPollConsumer will run immediately again, if
the previous run polled 1 or more messages.

false boolean

initialDelay
(scheduler)

Milliseconds before the first poll starts. 1000 long

repeatCount
(scheduler)

Specifies a maximum limit of number of fires. So if
you set it to 1, the scheduler will only fire once. If you
set it to 5, it will only fire five times. A value of zero or
negative means fire forever.

0 long

runLoggingLevel
(scheduler)

The consumer logs a start/complete log line when it
polls. This option allows you to configure the logging
level for that.

Enum values:

TRACE

DEBUG

INFO

WARN

ERROR

OFF

TRACE LoggingLevel

scheduledExecut
orService
(scheduler)

Allows for configuring a custom/shared thread pool
to use for the consumer. By default each consumer
has its own single threaded thread pool.

 ScheduledExecuto
rService

scheduler
(scheduler)

To use a cron scheduler from either camel-spring or
camel-quartz component. Use value spring or quartz
for built in scheduler.

none Object

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

646

schedulerProperti
es (scheduler)

To configure additional properties when using a
custom scheduler or any of the Quartz, Spring based
scheduler.

 Map

startScheduler
(scheduler)

Whether the scheduler should be auto started. true boolean

timeUnit
(scheduler)

Time unit for initialDelay and delay options.

Enum values:

NANOSECONDS

MICROSECONDS

MILLISECONDS

SECONDS

MINUTES

HOURS

DAYS

MILLIS
ECON
DS

TimeUnit

useFixedDelay
(scheduler)

Controls if fixed delay or fixed rate is used. See
ScheduledExecutorService in JDK for details.

true boolean

password
(security)

The password for login. See also
setAuthenticator(MailAuthenticator).

 String

sslContextParam
eters (security)

To configure security using SSLContextParameters. SSLContextParam
eters

username
(security)

The username for login. See also
setAuthenticator(MailAuthenticator).

 String

sortTerm (sort) Sorting order for messages. Only natively supported
for IMAP. Emulated to some degree when using
POP3 or when IMAP server does not have the SORT
capability.

 SortTerm[]

Name Description Defaul
t

Type

31.4.3. Sample endpoints

Typically, you specify a URI with login credentials as follows (taking SMTP as an example):

smtp://[username@]host[:port][?password=somepwd]

Alternatively, it is possible to specify both the user name and the password as query options:

CHAPTER 31. MAIL

647

smtp://host[:port]?password=somepwd&username=someuser

For example:

smtp://mycompany.mailserver:30?password=tiger&username=scott

31.4.4. Component alias names

IMAP

IMAPs

POP3s

SMTP

SMTPs

31.4.5. Default ports

Default port numbers are supported. If the port number is omitted, Camel determines the port number
to use based on the protocol.

Protoc
ol

Default Port Number

SMTP 25

SMTP
S

465

POP3 110

POP3
S

995

IMAP 143

IMAPS 993

31.5. SSL SUPPORT

The underlying mail framework is responsible for providing SSL support. You may either configure
SSL/TLS support by completely specifying the necessary Java Mail API configuration options, or you
may provide a configured SSLContextParameters through the component or endpoint configuration.

31.5.1. Using the JSSE Configuration Utility

The mail component supports SSL/TLS configuration through the Camel JSSE Configuration Utility .
This utility greatly decreases the amount of component specific code you need to write and is

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

648

https://camel.apache.org/manual/camel-configuration-utilities.html

configurable at the endpoint and component levels. The following examples demonstrate how to use
the utility with the mail component.

Programmatic configuration of the endpoint

Spring DSL based configuration of endpoint

31.5.2. Configuring JavaMail Directly

Camel uses Jakarta JavaMail, which only trusts certificates issued by well known Certificate Authorities
(the default JVM trust configuration). If you issue your own certificates, you have to import the CA
certificates into the JVM’s Java trust/key store files, override the default JVM trust/key store files (see
SSLNOTES.txt in JavaMail for details).

31.6. MAIL MESSAGE CONTENT

Camel uses the message exchange’s IN body as the MimeMessage text content. The body is converted
to String.class.

Camel copies all of the exchange’s IN headers to the MimeMessage headers.

The subject of the MimeMessage can be configured using a header property on the IN message. The
code below demonstrates this:

The same applies for other MimeMessage headers such as recipients, so you can use a header property
as To:

When using the MailProducer the send the mail to server, you should be able to get the message id of
the MimeMessage with the key CamelMailMessageId from the Camel message header.

KeyStoreParameters ksp = new KeyStoreParameters();
ksp.setResource("/users/home/server/truststore.jks");
ksp.setPassword("keystorePassword");
TrustManagersParameters tmp = new TrustManagersParameters();
tmp.setKeyStore(ksp);
SSLContextParameters scp = new SSLContextParameters();
scp.setTrustManagers(tmp);
Registry registry = ...
registry.bind("sslContextParameters", scp);
...
from(...)
 .to("smtps://smtp.google.com?
username=user@gmail.com&password=password&sslContextParameters=#sslContextParameters");

...
<camel:sslContextParameters id="sslContextParameters">
 <camel:trustManagers>
 <camel:keyStore resource="/users/home/server/truststore.jks" password="keystorePassword"/>
 </camel:trustManagers>
</camel:sslContextParameters>...
...
<to uri="smtps://smtp.google.com?
username=user@gmail.com&password=password&sslContextParameters=#sslContextParameters"/
>...

CHAPTER 31. MAIL

649

http://java.sun.com/javaee/5/docs/api/javax/mail/internet/MimeMessage.html
http://java.sun.com/javaee/5/docs/api/javax/mail/internet/MimeMessage.html
http://java.sun.com/javaee/5/docs/api/javax/mail/internet/MimeMessage.html
http://java.sun.com/javaee/5/docs/api/javax/mail/internet/MimeMessage.html

31.7. HEADERS TAKE PRECEDENCE OVER PRE-CONFIGURED
RECIPIENTS

The recipients specified in the message headers always take precedence over recipients pre-configured
in the endpoint URI. The idea is that if you provide any recipients in the message headers, that is what
you get. The recipients pre-configured in the endpoint URI are treated as a fallback.

In the sample code below, the email message is sent to davsclaus@apache.org, because it takes
precedence over the pre-configured recipient, info@mycompany.com. Any CC and BCC settings in
the endpoint URI are also ignored and those recipients will not receive any mail. The choice between
headers and pre-configured settings is all or nothing: the mail component either takes the recipients
exclusively from the headers or exclusively from the pre-configured settings. It is not possible to mix and
match headers and pre-configured settings.

31.8. MULTIPLE RECIPIENTS FOR EASIER CONFIGURATION

It is possible to set multiple recipients using a comma-separated or a semicolon-separated list. This
applies both to header settings and to settings in an endpoint URI. For example:

The preceding example uses a semicolon, ;, as the separator character.

31.9. SETTING SENDER NAME AND EMAIL

You can specify recipients in the format, name <email>, to include both the name and the email
address of the recipient.

For example, you define the following headers on the a Message:

31.10. JAVAMAIL API (EX SUN JAVAMAIL)

JavaMail API is used under the hood for consuming and producing mails. We encourage end-users to
consult these references when using either POP3 or IMAP protocol. Note particularly that POP3 has a
much more limited set of features than IMAP.

JavaMail POP3 API

JavaMail IMAP API

And generally about the MAIL Flags

Map<String, Object> headers = new HashMap<String, Object>();
headers.put("to", "davsclaus@apache.org");

template.sendBodyAndHeaders("smtp://admin@localhost?to=info@mycompany.com", "Hello World",
headers);

Map<String, Object> headers = new HashMap<String, Object>();
headers.put("to", "davsclaus@apache.org ; jstrachan@apache.org ; ningjiang@apache.org");

Map headers = new HashMap();
map.put("To", "Claus Ibsen <davsclaus@apache.org>");
map.put("From", "James Strachan <jstrachan@apache.org>");
map.put("Subject", "Camel is cool");

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

650

https://java.net/projects/javamail/pages/Home
https://javamail.java.net/nonav/docs/api/com/sun/mail/pop3/package-summary.html
https://javamail.java.net/nonav/docs/api/com/sun/mail/imap/package-summary.html
https://javamail.java.net/nonav/docs/api/javax/mail/Flags.html

31.11. SAMPLES

We start with a simple route that sends the messages received from a JMS queue as emails. The email
account is the admin account on mymailserver.com.

In the next sample, we poll a mailbox for new emails once every minute.

31.12. SENDING MAIL WITH ATTACHMENT SAMPLE

NOTE

Attachments are not support by all Camel components
The Attachments API is based on the Java Activation Framework and is generally only
used by the Mail API. Since many of the other Camel components do not support
attachments, the attachments could potentially be lost as they propagate along the
route. The rule of thumb, therefore, is to add attachments just before sending a message
to the mail endpoint.

The mail component supports attachments. In the sample below, we send a mail message containing a
plain text message with a logo file attachment.

31.13. SSL SAMPLE

In this sample, we want to poll our Google mail inbox for mails. To download mail onto a local mail client,
Google mail requires you to enable and configure SSL. This is done by logging into your Google mail
account and changing your settings to allow IMAP access. Google have extensive documentation on
how to do this.

The preceding route polls the Google mail inbox for new mails once every minute and logs the received
messages to the newmail logger category.
Running the sample with DEBUG logging enabled, we can monitor the progress in the logs:

from("jms://queue:subscription").to("smtp://admin@mymailserver.com?password=secret");

from("imap://admin@mymailserver.com?password=secret&unseen=true&delay=60000")
 .to("seda://mails");

from("imaps://imap.gmail.com?
username=YOUR_USERNAME@gmail.com&password=YOUR_PASSWORD"
 + "&delete=false&unseen=true&delay=60000").to("log:newmail");

2008-05-08 06:32:09,640 DEBUG MailConsumer - Connecting to MailStore
imaps//imap.gmail.com:993 (SSL enabled), folder=INBOX
2008-05-08 06:32:11,203 DEBUG MailConsumer - Polling mailfolder: imaps//imap.gmail.com:993
(SSL enabled), folder=INBOX
2008-05-08 06:32:11,640 DEBUG MailConsumer - Fetching 1 messages. Total 1 messages.
2008-05-08 06:32:12,171 DEBUG MailConsumer - Processing message: messageNumber=[332],
from=[James Bond <007@mi5.co.uk>], to=YOUR_USERNAME@gmail.com], subject=[...
2008-05-08 06:32:12,187 INFO newmail - Exchange[MailMessage: messageNumber=[332], from=
[James Bond <007@mi5.co.uk>], to=YOUR_USERNAME@gmail.com], subject=[...

CHAPTER 31. MAIL

651

31.14. CONSUMING MAILS WITH ATTACHMENT SAMPLE

In this sample we poll a mailbox and store all attachments from the mails as files. First, we define a route
to poll the mailbox. As this sample is based on google mail, it uses the same route as shown in the SSL
sample:

Instead of logging the mail we use a processor where we can process the mail from java code:

As you can see the API to handle attachments is a bit clunky but it’s there so you can get the
javax.activation.DataHandler so you can handle the attachments using standard API.

31.15. HOW TO SPLIT A MAIL MESSAGE WITH ATTACHMENTS

In this example we consume mail messages which may have a number of attachments. What we want to
do is to use the Splitter EIP per individual attachment, to process the attachments separately. For
example if the mail message has 5 attachments, we want the Splitter to process five messages, each
having a single attachment. To do this we need to provide a custom Expression to the Splitter where we
provide a List<Message> that contains the five messages with the single attachment.

The code is provided out of the box in Camel 2.10 onwards in the camel-mail component. The code is in
the class: org.apache.camel.component.mail.SplitAttachmentsExpression, which you can find in the
source code here.

In the Camel route you then need to use this Expression in the route as shown below:

If you use XML DSL then you need to declare a method call expression in the Splitter as shown below

from("imaps://imap.gmail.com?
username=YOUR_USERNAME@gmail.com&password=YOUR_PASSWORD"
 + "&delete=false&unseen=true&delay=60000").process(new MyMailProcessor());

public void process(Exchange exchange) throws Exception {
 // the API is a bit clunky so we need to loop
 AttachmentMessage attachmentMessage = exchange.getMessage(AttachmentMessage.class);
 Map<String, DataHandler> attachments = attachmentMessage.getAttachments();
 if (attachments.size() > 0) {
 for (String name : attachments.keySet()) {
 DataHandler dh = attachments.get(name);
 // get the file name
 String filename = dh.getName();

 // get the content and convert it to byte[]
 byte[] data = exchange.getContext().getTypeConverter()
 .convertTo(byte[].class, dh.getInputStream());

 // write the data to a file
 FileOutputStream out = new FileOutputStream(filename);
 out.write(data);
 out.flush();
 out.close();
 }
 }
}

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

652

https://svn.apache.org/repos/asf/camel/trunk/components/camel-mail/src/main/java/org/apache/camel/component/mail/SplitAttachmentsExpression.java

You can also split the attachments as byte[] to be stored as the message body. This is done by creating
the expression with boolean true

And then use the expression with the splitter EIP.

31.16. USING CUSTOM SEARCHTERM

You can configure a searchTerm on the MailEndpoint which allows you to filter out unwanted mails.

For example to filter mails to contain Camel in either Subject or Text you can do as follows:

Notice we use the "searchTerm.subjectOrBody" as parameter key to indicate that we want to search
on mail subject or body, to contain the word "Camel".
The class org.apache.camel.component.mail.SimpleSearchTerm has a number of options you can
configure:

Or to get the new unseen emails going 24 hours back in time you can do. Notice the "now-24h" syntax.
See the table below for more details.

You can have multiple searchTerm in the endpoint uri configuration. They would then be combined
together using AND operator, eg so both conditions must match. For example to get the last unseen
emails going back 24 hours which has Camel in the mail subject you can do:

The SimpleSearchTerm is designed to be easily configurable from a POJO, so you can also configure it
using a <bean> style in XML

<split>
 <method beanType="org.apache.camel.component.mail.SplitAttachmentsExpression"/>
 <to uri="mock:split"/>
</split>

SplitAttachmentsExpression split = SplitAttachmentsExpression(true);

<route>
 <from uri="imaps://mymailseerver?
username=foo&password=secret&searchTerm.subjectOrBody=Camel"/>
 <to uri="bean:myBean"/>
</route>

<route>
 <from uri="imaps://mymailseerver?
username=foo&password=secret&searchTerm.fromSentDate=now-24h"/>
 <to uri="bean:myBean"/>
</route>

<route>
 <from uri="imaps://mymailseerver?
username=foo&password=secret&searchTerm.subject=Camel&searchTerm.fromSentDate=now-
24h"/>
 <to uri="bean:myBean"/>
</route>

<bean id="mySearchTerm" class="org.apache.camel.component.mail.SimpleSearchTerm">

CHAPTER 31. MAIL

653

You can then refer to this bean, using #beanId in your Camel route as shown:

In Java there is a builder class to build compound SearchTerms using the
org.apache.camel.component.mail.SearchTermBuilder class. This allows you to build complex terms
such as:

31.17. POLLING OPTIMIZATION

The parameter maxMessagePerPoll and fetchSize allow you to restrict the number message that should
be processed for each poll. These parameters should help to prevent bad performance when working
with folders that contain a lot of messages. In previous versions these parameters have been evaluated
too late, so that big mailboxes could still cause performance problems. With Camel 3.1 these parameters
are evaluated earlier during the poll to avoid these problems.

31.18. USING HEADERS WITH ADDITIONAL JAVA MAIL SENDER
PROPERTIES

When sending mails, then you can provide dynamic java mail properties for the JavaMailSender from
the Exchange as message headers with keys starting with java.smtp..

You can set any of the java.smtp properties which you can find in the Java Mail documentation.

For example to provide a dynamic uuid in java.smtp.from (SMTP MAIL command):

NOTE

This is only supported when not using a custom JavaMailSender.

 <property name="subject" value="Order"/>
 <property name="to" value="acme-order@acme.com"/>
 <property name="fromSentDate" value="now"/>
 </bean>

<route>
 <from uri="imaps://mymailseerver?
username=foo&password=secret&searchTerm=#mySearchTerm"/>
 <to uri="bean:myBean"/>
</route>

// we just want the unseen mails which is not spam
SearchTermBuilder builder = new SearchTermBuilder();

builder.unseen().body(Op.not, "Spam").subject(Op.not, "Spam")
 // which was sent from either foo or bar
 .from("foo@somewhere.com").from(Op.or, "bar@somewhere.com");
 // .. and we could continue building the terms

SearchTerm term = builder.build();

 .setHeader("from", constant("reply2me@foo.com"));
 .setHeader("java.smtp.from", method(UUID.class, "randomUUID"));
 .to("smtp://mymailserver:1234");

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

654

31.19. SPRING BOOT AUTO-CONFIGURATION

When using imap with Spring Boot make sure to use the following Maven dependency to have support
for auto configuration:

The component supports 50 options, which are listed below.

Name Description Defaul
t

Type

camel.component
.mail.additional-
java-mail-
properties

Sets additional java mail properties, that will
append/override any default properties that is set
based on all the other options. This is useful if you
need to add some special options but want to keep
the others as is. The option is a java.util.Properties
type.

 Properties

camel.component
.mail.alternative-
body-header

Specifies the key to an IN message header that
contains an alternative email body. For example, if
you send emails in text/html format and want to
provide an alternative mail body for non-HTML email
clients, set the alternative mail body with this key as a
header.

Camel
MailAlt
ernativ
eBody

String

camel.component
.mail.attachments
-content-
transfer-
encoding-
resolver

To use a custom
AttachmentsContentTransferEncodingResolver to
resolve what content-type-encoding to use for
attachments. The option is a
org.apache.camel.component.mail.AttachmentsCont
entTransferEncodingResolver type.

 AttachmentsCont
entTransferEncodi
ngResolver

camel.component
.mail.authenticato
r

The authenticator for login. If set then the password
and username are ignored. Can be used for tokens
which can expire and therefore must be read
dynamically. The option is a
org.apache.camel.component.mail.MailAuthenticator
type.

 MailAuthenticator

camel.component
.mail.autowired-
enabled

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true Boolean

<dependency>
 <groupId>org.apache.camel.springboot</groupId>
 <artifactId>camel-mail-starter</artifactId>
 <version>3.14.5.redhat-00032</version>
 <!-- Use your Camel Spring Boot version -->
</dependency>

CHAPTER 31. MAIL

655

camel.component
.mail.bcc

Sets the BCC email address. Separate multiple email
addresses with comma.

 String

camel.component
.mail.bridge-
error-handler

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false Boolean

camel.component
.mail.cc

Sets the CC email address. Separate multiple email
addresses with comma.

 String

camel.component
.mail.close-folder

Whether the consumer should close the folder after
polling. Setting this option to false and having
disconnect=false as well, then the consumer keep the
folder open between polls.

true Boolean

camel.component
.mail.configuratio
n

Sets the Mail configuration. The option is a
org.apache.camel.component.mail.MailConfiguration
type.

 MailConfiguration

camel.component
.mail.connection-
timeout

The connection timeout in milliseconds. 30000 Integer

camel.component
.mail.content-
type

The mail message content type. Use text/html for
HTML mails.

text/pl
ain

String

camel.component
.mail.content-
type-resolver

Resolver to determine Content-Type for file
attachments. The option is a
org.apache.camel.component.mail.ContentTypeReso
lver type.

 ContentTypeResol
ver

camel.component
.mail.copy-to

After processing a mail message, it can be copied to
a mail folder with the given name. You can override
this configuration value, with a header with the key
copyTo, allowing you to copy messages to folder
names configured at runtime.

 String

camel.component
.mail.debug-
mode

Enable debug mode on the underlying mail
framework. The SUN Mail framework logs the debug
messages to System.out by default.

false Boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

656

camel.component
.mail.decode-
filename

If set to true, the MimeUtility.decodeText method will
be used to decode the filename. This is similar to
setting JVM system property
mail.mime.encodefilename.

false Boolean

camel.component
.mail.delete

Deletes the messages after they have been
processed. This is done by setting the DELETED flag
on the mail message. If false, the SEEN flag is set
instead. As of Camel 2.10 you can override this
configuration option by setting a header with the key
delete to determine if the mail should be deleted or
not.

false Boolean

camel.component
.mail.disconnect

Whether the consumer should disconnect after
polling. If enabled this forces Camel to connect on
each poll.

false Boolean

camel.component
.mail.enabled

Whether to enable auto configuration of the mail
component. This is enabled by default.

 Boolean

camel.component
.mail.fetch-size

Sets the maximum number of messages to consume
during a poll. This can be used to avoid overloading a
mail server, if a mailbox folder contains a lot of
messages. Default value of -1 means no fetch size
and all messages will be consumed. Setting the value
to 0 is a special corner case, where Camel will not
consume any messages at all.

-1 Integer

camel.component
.mail.folder-name

The folder to poll. INBOX String

camel.component
.mail.from

The from email address. camel
@local
host

String

camel.component
.mail.handle-
failed-message

If the mail consumer cannot retrieve a given mail
message, then this option allows to handle the caused
exception by the consumer’s error handler. By enable
the bridge error handler on the consumer, then the
Camel routing error handler can handle the exception
instead. The default behavior would be the consumer
throws an exception and no mails from the batch
would be able to be routed by Camel.

false Boolean

camel.component
.mail.header-
filter-strategy

To use a custom
org.apache.camel.spi.HeaderFilterStrategy to filter
header to and from Camel message. The option is a
org.apache.camel.spi.HeaderFilterStrategy type.

 HeaderFilterStrate
gy

Name Description Defaul
t

Type

CHAPTER 31. MAIL

657

camel.component
.mail.ignore-
unsupported-
charset

Option to let Camel ignore unsupported charset in
the local JVM when sending mails. If the charset is
unsupported then charset=XXX (where XXX
represents the unsupported charset) is removed
from the content-type and it relies on the platform
default instead.

false Boolean

camel.component
.mail.ignore-uri-
scheme

Option to let Camel ignore unsupported charset in
the local JVM when sending mails. If the charset is
unsupported then charset=XXX (where XXX
represents the unsupported charset) is removed
from the content-type and it relies on the platform
default instead.

false Boolean

camel.component
.mail.java-mail-
properties

Sets the java mail options. Will clear any default
properties and only use the properties provided for
this method. The option is a java.util.Properties type.

 Properties

camel.component
.mail.java-mail-
sender

To use a custom
org.apache.camel.component.mail.JavaMailSender
for sending emails. The option is a
org.apache.camel.component.mail.JavaMailSender
type.

 JavaMailSender

camel.component
.mail.lazy-start-
producer

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false Boolean

camel.component
.mail.map-mail-
message

Specifies whether Camel should map the received
mail message to Camel body/headers/attachments.
If set to true, the body of the mail message is mapped
to the body of the Camel IN message, the mail
headers are mapped to IN headers, and the
attachments to Camel IN attachment message. If this
option is set to false then the IN message contains a
raw javax.mail.Message. You can retrieve this raw
message by calling
exchange.getIn().getBody(javax.mail.Message.class).

true Boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

658

camel.component
.mail.mime-
decode-headers

This option enables transparent MIME decoding and
unfolding for mail headers.

false Boolean

camel.component
.mail.move-to

After processing a mail message, it can be moved to
a mail folder with the given name. You can override
this configuration value, with a header with the key
moveTo, allowing you to move messages to folder
names configured at runtime.

 String

camel.component
.mail.password

The password for login. See also
setAuthenticator(MailAuthenticator).

 String

camel.component
.mail.peek

Will mark the javax.mail.Message as peeked before
processing the mail message. This applies to
IMAPMessage messages types only. By using peek
the mail will not be eager marked as SEEN on the mail
server, which allows us to rollback the mail message if
there is an error processing in Camel.

true Boolean

camel.component
.mail.reply-to

The Reply-To recipients (the receivers of the
response mail). Separate multiple email addresses
with a comma.

 String

camel.component
.mail.session

Specifies the mail session that camel should use for
all mail interactions. Useful in scenarios where mail
sessions are created and managed by some other
resource, such as a JavaEE container. When using a
custom mail session, then the hostname and port
from the mail session will be used (if configured on
the session). The option is a javax.mail.Session type.

 Session

camel.component
.mail.skip-failed-
message

If the mail consumer cannot retrieve a given mail
message, then this option allows to skip the message
and move on to retrieve the next mail message. The
default behavior would be the consumer throws an
exception and no mails from the batch would be able
to be routed by Camel.

false Boolean

camel.component
.mail.ssl-context-
parameters

To configure security using SSLContextParameters.
The option is a
org.apache.camel.support.jsse.SSLContextParamete
rs type.

 SSLContextParam
eters

camel.component
.mail.subject

The Subject of the message being sent. Note: Setting
the subject in the header takes precedence over this
option.

 String

Name Description Defaul
t

Type

CHAPTER 31. MAIL

659

camel.component
.mail.to

Sets the To email address. Separate multiple email
addresses with comma.

 String

camel.component
.mail.unseen

Whether to limit by unseen mails only. true Boolean

camel.component
.mail.use-global-
ssl-context-
parameters

Enable usage of global SSL context parameters. false Boolean

camel.component
.mail.use-inline-
attachments

Whether to use disposition inline or attachment. false Boolean

camel.component
.mail.username

The username for login. See also
setAuthenticator(MailAuthenticator).

 String

camel.dataformat
.mime-
multipart.binary-
content

Defines whether the content of binary parts in the
MIME multipart is binary (true) or Base-64 encoded
(false) Default is false.

false Boolean

camel.dataformat
.mime-
multipart.enabled

Whether to enable auto configuration of the mime-
multipart data format. This is enabled by default.

 Boolean

camel.dataformat
.mime-
multipart.headers
-inline

Defines whether the MIME-Multipart headers are
part of the message body (true) or are set as Camel
headers (false). Default is false.

false Boolean

camel.dataformat
.mime-
multipart.include-
headers

A regex that defines which Camel headers are also
included as MIME headers into the MIME multipart.
This will only work if headersInline is set to true.
Default is to include no headers.

 String

camel.dataformat
.mime-
multipart.multipar
t-sub-type

Specify the subtype of the MIME Multipart. Default is
mixed.

mixed String

camel.dataformat
.mime-
multipart.multipar
t-without-
attachment

Defines whether a message without attachment is
also marshaled into a MIME Multipart (with only one
body part). Default is false.

false Boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

660

CHAPTER 32. MASTER
Only consumer is supported

The Camel-Master endpoint provides a way to ensure only a single consumer in a cluster consumes from
a given endpoint; with automatic failover if that JVM dies.

This can be very useful if you need to consume from some legacy back end which either doesn’t support
concurrent consumption or due to commercial or stability reasons you can only have a single connection
at any point in time.

32.1. USING THE MASTER ENDPOINT

Just prefix any camel endpoint with master:someName: where someName is a logical name and is used
to acquire the master lock. e.g.

In this example, there master component ensures that the route is only active in one node, at any given
time, in the cluster. So if there are 8 nodes in the cluster, then the master component will elect one route
to be the leader, and only this route will be active, and hence only this route will consume messages
from jms:foo. In case this route is stopped or unexpected terminated, then the master component will
detect this, and re-elect another node to be active, which will then become active and start consuming
messages from jms:foo.

NOTE

Apache ActiveMQ 5.x has such feature out of the box called Exclusive Consumers.

32.2. URI FORMAT

master:namespace:endpoint[?options]

Where endpoint is any Camel endpoint you want to run in master/slave mode.

32.3. CONFIGURING OPTIONS

Camel components are configured on two separate levels:

component level

endpoint level

32.3.1. Configuring Component Options

The component level is the highest level which holds general and common configurations that are
inherited by the endpoints. For example a component may have security settings, credentials for
authentication, urls for network connection and so forth.

Some components only have a few options, and others may have many. Because components typically
have pre configured defaults that are commonly used, then you may often only need to configure a few
options on a component; or none at all.

Configuring components can be done with the Component DSL, in a configuration file

from("master:cheese:jms:foo").to("activemq:wine");

CHAPTER 32. MASTER

661

https://activemq.apache.org/exclusive-consumer.html

Configuring components can be done with the Component DSL, in a configuration file
(application.properties|yaml), or directly with Java code.

32.3.2. Configuring Endpoint Options

Where you find yourself configuring the most is on endpoints, as endpoints often have many options,
which allows you to configure what you need the endpoint to do. The options are also categorized into
whether the endpoint is used as consumer (from) or as a producer (to), or used for both.

Configuring endpoints is most often done directly in the endpoint URI as path and query parameters.
You can also use the Endpoint DSL as a type safe way of configuring endpoints.

A good practice when configuring options is to use Property Placeholders, which allows to not hardcode
urls, port numbers, sensitive information, and other settings. In other words placeholders allows to
externalize the configuration from your code, and gives more flexibility and reuse.

The following two sections lists all the options, firstly for the component followed by the endpoint.

32.4. COMPONENT OPTIONS

The Master component supports 4 options, which are listed below.

Name Description Defaul
t

Type

bridgeErrorHandl
er (consumer)

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false boolean

autowiredEnabled
(advanced)

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true boolean

service
(advanced)

Inject the service to use. CamelClusterServi
ce

serviceSelector
(advanced)

Inject the service selector used to lookup the
CamelClusterService to use.

 Selector

32.5. ENDPOINT OPTIONS

The Master endpoint is configured using URI syntax:

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

662

https://camel.apache.org/manual/component-dsl.html
https://camel.apache.org/manual/Endpoint-dsl.html
https://camel.apache.org/manual/using-propertyplaceholder.html

master:namespace:delegateUri

with the following path and query parameters:

32.5.1. Path Parameters (2 parameters)

Name Description Defaul
t

Type

namespace
(consumer)

Required The name of the cluster namespace to use. String

delegateUri
(consumer)

Required The endpoint uri to use in master/slave
mode.

 String

32.5.2. Query Parameters (3 parameters)

Name Description Defaul
t

Type

bridgeErrorHandl
er (consumer)

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false boolean

exceptionHandler
(consumer
(advanced))

To let the consumer use a custom ExceptionHandler.
Notice if the option bridgeErrorHandler is enabled
then this option is not in use. By default the consumer
will deal with exceptions, that will be logged at WARN
or ERROR level and ignored.

 ExceptionHandler

exchangePattern
(consumer
(advanced))

Sets the exchange pattern when the consumer
creates an exchange.

Enum values:

InOnly

InOut

InOptionalOut

 ExchangePattern

32.6. EXAMPLE

You can protect a clustered Camel application to only consume files from one active node.

CHAPTER 32. MASTER

663

The master component leverages CamelClusterService you can configure using

Java

Xml (Spring/Blueprint)

Spring boot

32.7. IMPLEMENTATIONS

// the file endpoint we want to consume from
String url = "file:target/inbox?delete=true";

// use the camel master component in the clustered group named myGroup
// to run a master/slave mode in the following Camel url
from("master:myGroup:" + url)
 .log(name + " - Received file: ${file:name}")
 .delay(delay)
 .log(name + " - Done file: ${file:name}")
 .to("file:target/outbox");

ZooKeeperClusterService service = new ZooKeeperClusterService();
service.setId("camel-node-1");
service.setNodes("myzk:2181");
service.setBasePath("/camel/cluster");

context.addService(service)

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://camel.apache.org/schema/spring
 http://camel.apache.org/schema/spring/camel-spring.xsd">

 <bean id="cluster"
class="org.apache.camel.component.zookeeper.cluster.ZooKeeperClusterService">
 <property name="id" value="camel-node-1"/>
 <property name="basePath" value="/camel/cluster"/>
 <property name="nodes" value="myzk:2181"/>
 </bean>

 <camelContext xmlns="http://camel.apache.org/schema/spring" autoStartup="false">
 ...
 </camelContext>

</beans>

camel.component.zookeeper.cluster.service.enabled = true
camel.component.zookeeper.cluster.service.id = camel-node-1
camel.component.zookeeper.cluster.service.base-path = /camel/cluster
camel.component.zookeeper.cluster.service.nodes = myzk:2181

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

664

Camel provides the following ClusterService implementations:

camel-consul

camel-file

camel-infinispan

camel-jgroups-raft

camel-jgroups

camel-kubernetes

camel-zookeeper

32.8. SPRING BOOT AUTO-CONFIGURATION

When using master with Spring Boot make sure to use the following Maven dependency to have support
for auto configuration:

The component supports 5 options, which are listed below.

Name Description Defaul
t

Type

camel.component
.master.autowired
-enabled

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true Boolean

camel.component
.master.bridge-
error-handler

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false Boolean

camel.component
.master.enabled

Whether to enable auto configuration of the master
component. This is enabled by default.

 Boolean

<dependency>
 <groupId>org.apache.camel.springboot</groupId>
 <artifactId>camel-master-starter</artifactId>
 <version>3.14.5.redhat-00032</version>
 <!-- Use your Camel Spring Boot version -->
</dependency>

CHAPTER 32. MASTER

665

camel.component
.master.service

Inject the service to use. The option is a
org.apache.camel.cluster.CamelClusterService type.

 CamelClusterServi
ce

camel.component
.master.service-
selector

Inject the service selector used to lookup the
CamelClusterService to use. The option is a
org.apache.camel.cluster.CamelClusterService.Select
or type.

 CamelClusterServi
ce$Selector

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

666

CHAPTER 33. MLLP
Both producer and consumer are supported

The MLLP component is specifically designed to handle the nuances of the MLLP protocol and provide
the functionality required by Healthcare providers to communicate with other systems using the MLLP
protocol.

The MLLP component provides a simple configuration URI, automated HL7 acknowledgment
generation and automatic acknowledgment interrogation.

The MLLP protocol does not typically use a large number of concurrent TCP connections - a single
active TCP connection is the normal case. Therefore, the MLLP component uses a simple thread-per-
connection model based on standard Java Sockets. This keeps the implementation simple and
eliminates the dependencies on only Camel itself.

The component supports the following:

A Camel consumer using a TCP Server

A Camel producer using a TCP Client

The MLLP component use byte[] payloads, and relies on Camel type conversion to convert byte[] to
other types.

Maven users will need to add the following dependency to their pom.xml for this component:

33.1. CONFIGURING OPTIONS

Camel components are configured on two separate levels:

component level

endpoint level

33.1.1. Configuring Component Options

The component level is the highest level which holds general and common configurations that are
inherited by the endpoints. For example a component may have security settings, credentials for
authentication, urls for network connection and so forth.

Some components only have a few options, and others may have many. Because components typically
have pre configured defaults that are commonly used, then you may often only need to configure a few
options on a component; or none at all.

Configuring components can be done with the Component DSL, in a configuration file
(application.properties|yaml), or directly with Java code.

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-mllp</artifactId>
 <version>3.14.5.redhat-00018</version>
 <!-- use the same version as your Camel core version -->
</dependency>

CHAPTER 33. MLLP

667

https://camel.apache.org/manual/component-dsl.html

33.1.2. Configuring Endpoint Options

Where you find yourself configuring the most is on endpoints, as endpoints often have many options,
which allows you to configure what you need the endpoint to do. The options are also categorized into
whether the endpoint is used as consumer (from) or as a producer (to), or used for both.

Configuring endpoints is most often done directly in the endpoint URI as path and query parameters.
You can also use the Endpoint DSL as a type safe way of configuring endpoints.

A good practice when configuring options is to use Property Placeholders, which allows to not hardcode
urls, port numbers, sensitive information, and other settings. In other words placeholders allows to
externalize the configuration from your code, and gives more flexibility and reuse.

The following two sections lists all the options, firstly for the component followed by the endpoint.

33.2. COMPONENT OPTIONS

The MLLP component supports 30 options, which are listed below.

Name Description Defaul
t

Type

autoAck
(common)

Enable/Disable the automatic generation of a MLLP
Acknowledgement MLLP Consumers only.

true boolean

charsetName
(common)

Sets the default charset to use. String

configuration
(common)

Sets the default configuration to use when creating
MLLP endpoints.

 MllpConfiguration

hl7Headers
(common)

Enable/Disable the automatic generation of message
headers from the HL7 Message MLLP Consumers
only.

true boolean

requireEndOfDat
a (common)

Enable/Disable strict compliance to the MLLP
standard. The MLLP standard specifies
START_OF_BLOCKhl7
payloadEND_OF_BLOCKEND_OF_DATA, however,
some systems do not send the final END_OF_DATA
byte. This setting controls whether or not the final
END_OF_DATA byte is required or optional.

true boolean

stringPayload
(common)

Enable/Disable converting the payload to a String. If
enabled, HL7 Payloads received from external
systems will be validated converted to a String. If the
charsetName property is set, that character set will
be used for the conversion. If the charsetName
property is not set, the value of MSH-18 will be used
to determine th appropriate character set. If MSH-18
is not set, then the default ISO-8859-1 character set
will be use.

true boolean

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

668

https://camel.apache.org/manual/Endpoint-dsl.html
https://camel.apache.org/manual/using-propertyplaceholder.html

validatePayload
(common)

Enable/Disable the validation of HL7 Payloads If
enabled, HL7 Payloads received from external
systems will be validated (see
Hl7Util.generateInvalidPayloadExceptionMessage for
details on the validation). If and invalid payload is
detected, a MllpInvalidMessageException (for
consumers) or a
MllpInvalidAcknowledgementException will be
thrown.

false boolean

acceptTimeout
(consumer)

Timeout (in milliseconds) while waiting for a TCP
connection TCP Server Only.

60000 int

backlog
(consumer)

The maximum queue length for incoming connection
indications (a request to connect) is set to the
backlog parameter. If a connection indication arrives
when the queue is full, the connection is refused.

5 Integer

bindRetryInterval
(consumer)

TCP Server Only - The number of milliseconds to
wait between bind attempts.

5000 int

bindTimeout
(consumer)

TCP Server Only - The number of milliseconds to
retry binding to a server port.

30000 int

bridgeErrorHandl
er (consumer)

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to receive
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. If disabled, the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions by logging them at WARN or ERROR level
and ignored.

true boolean

lenientBind
(consumer)

TCP Server Only - Allow the endpoint to start before
the TCP ServerSocket is bound. In some
environments, it may be desirable to allow the
endpoint to start before the TCP ServerSocket is
bound.

false boolean

maxConcurrentC
onsumers
(consumer)

The maximum number of concurrent MLLP
Consumer connections that will be allowed. If a new
connection is received and the maximum is number
are already established, the new connection will be
reset immediately.

5 int

reuseAddress
(consumer)

Enable/disable the SO_REUSEADDR socket option. false Boolean

Name Description Defaul
t

Type

CHAPTER 33. MLLP

669

exchangePattern
(consumer
(advanced))

Sets the exchange pattern when the consumer
creates an exchange.

Enum values:

InOnly

InOut

InOptionalOut

InOut ExchangePattern

connectTimeout
(producer)

Timeout (in milliseconds) for establishing for a TCP
connection TCP Client only.

30000 int

idleTimeoutStrat
egy (producer)

decide what action to take when idle timeout occurs.
Possible values are : RESET: set SO_LINGER to 0
and reset the socket CLOSE: close the socket
gracefully default is RESET.

Enum values:

RESET

CLOSE

RESET MllpIdleTimeoutSt
rategy

keepAlive
(producer)

Enable/disable the SO_KEEPALIVE socket option. true Boolean

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

tcpNoDelay
(producer)

Enable/disable the TCP_NODELAY socket option. true Boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

670

autowiredEnabled
(advanced)

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true boolean

defaultCharset
(advanced)

Set the default character set to use for byte to/from
String conversions.

ISO-
8859-1

String

logPhi (advanced) Whether to log PHI. true Boolean

logPhiMaxBytes
(advanced)

Set the maximum number of bytes of PHI that will be
logged in a log entry.

5120 Integer

readTimeout
(advanced)

The SO_TIMEOUT value (in milliseconds) used after
the start of an MLLP frame has been received.

5000 int

receiveBufferSize
(advanced)

Sets the SO_RCVBUF option to the specified value
(in bytes).

8192 Integer

receiveTimeout
(advanced)

The SO_TIMEOUT value (in milliseconds) used when
waiting for the start of an MLLP frame.

15000 int

sendBufferSize
(advanced)

Sets the SO_SNDBUF option to the specified value
(in bytes).

8192 Integer

idleTimeout (tcp) The approximate idle time allowed before the Client
TCP Connection will be reset. A null value or a value
less than or equal to zero will disable the idle timeout.

 Integer

Name Description Defaul
t

Type

33.3. ENDPOINT OPTIONS

The MLLP endpoint is configured using URI syntax:

mllp:hostname:port

with the following path and query parameters:

33.3.1. Path Parameters (2 parameters)

CHAPTER 33. MLLP

671

Name Description Defaul
t

Type

hostname
(common)

Required Hostname or IP for connection for the TCP
connection. The default value is null, which means
any local IP address.

 String

port (common) Required Port number for the TCP connection. int

33.3.2. Query Parameters (26 parameters)

Name Description Defaul
t

Type

autoAck
(common)

Enable/Disable the automatic generation of a MLLP
Acknowledgement MLLP Consumers only.

true boolean

charsetName
(common)

Sets the default charset to use. String

hl7Headers
(common)

Enable/Disable the automatic generation of message
headers from the HL7 Message MLLP Consumers
only.

true boolean

requireEndOfDat
a (common)

Enable/Disable strict compliance to the MLLP
standard. The MLLP standard specifies
START_OF_BLOCKhl7
payloadEND_OF_BLOCKEND_OF_DATA, however,
some systems do not send the final END_OF_DATA
byte. This setting controls whether or not the final
END_OF_DATA byte is required or optional.

true boolean

stringPayload
(common)

Enable/Disable converting the payload to a String. If
enabled, HL7 Payloads received from external
systems will be validated converted to a String. If the
charsetName property is set, that character set will
be used for the conversion. If the charsetName
property is not set, the value of MSH-18 will be used
to determine th appropriate character set. If MSH-18
is not set, then the default ISO-8859-1 character set
will be use.

true boolean

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

672

validatePayload
(common)

Enable/Disable the validation of HL7 Payloads If
enabled, HL7 Payloads received from external
systems will be validated (see
Hl7Util.generateInvalidPayloadExceptionMessage for
details on the validation). If and invalid payload is
detected, a MllpInvalidMessageException (for
consumers) or a
MllpInvalidAcknowledgementException will be
thrown.

false boolean

acceptTimeout
(consumer)

Timeout (in milliseconds) while waiting for a TCP
connection TCP Server Only.

60000 int

backlog
(consumer)

The maximum queue length for incoming connection
indications (a request to connect) is set to the
backlog parameter. If a connection indication arrives
when the queue is full, the connection is refused.

5 Integer

bindRetryInterval
(consumer)

TCP Server Only - The number of milliseconds to
wait between bind attempts.

5000 int

bindTimeout
(consumer)

TCP Server Only - The number of milliseconds to
retry binding to a server port.

30000 int

bridgeErrorHandl
er (consumer)

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to receive
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. If disabled, the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions by logging them at WARN or ERROR level
and ignored.

true boolean

lenientBind
(consumer)

TCP Server Only - Allow the endpoint to start before
the TCP ServerSocket is bound. In some
environments, it may be desirable to allow the
endpoint to start before the TCP ServerSocket is
bound.

false boolean

maxConcurrentC
onsumers
(consumer)

The maximum number of concurrent MLLP
Consumer connections that will be allowed. If a new
connection is received and the maximum is number
are already established, the new connection will be
reset immediately.

5 int

Name Description Defaul
t

Type

CHAPTER 33. MLLP

673

reuseAddress
(consumer)

Enable/disable the SO_REUSEADDR socket option. false Boolean

exceptionHandler
(consumer
(advanced))

To let the consumer use a custom ExceptionHandler.
Notice if the option bridgeErrorHandler is enabled
then this option is not in use. By default the consumer
will deal with exceptions, that will be logged at WARN
or ERROR level and ignored.

 ExceptionHandler

exchangePattern
(consumer
(advanced))

Sets the exchange pattern when the consumer
creates an exchange.

Enum values:

InOnly

InOut

InOptionalOut

InOut ExchangePattern

connectTimeout
(producer)

Timeout (in milliseconds) for establishing for a TCP
connection TCP Client only.

30000 int

idleTimeoutStrat
egy (producer)

decide what action to take when idle timeout occurs.
Possible values are : RESET: set SO_LINGER to 0
and reset the socket CLOSE: close the socket
gracefully default is RESET.

Enum values:

RESET

CLOSE

RESET MllpIdleTimeoutSt
rategy

keepAlive
(producer)

Enable/disable the SO_KEEPALIVE socket option. true Boolean

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

674

tcpNoDelay
(producer)

Enable/disable the TCP_NODELAY socket option. true Boolean

readTimeout
(advanced)

The SO_TIMEOUT value (in milliseconds) used after
the start of an MLLP frame has been received.

5000 int

receiveBufferSize
(advanced)

Sets the SO_RCVBUF option to the specified value
(in bytes).

8192 Integer

receiveTimeout
(advanced)

The SO_TIMEOUT value (in milliseconds) used when
waiting for the start of an MLLP frame.

15000 int

sendBufferSize
(advanced)

Sets the SO_SNDBUF option to the specified value
(in bytes).

8192 Integer

idleTimeout (tcp) The approximate idle time allowed before the Client
TCP Connection will be reset. A null value or a value
less than or equal to zero will disable the idle timeout.

 Integer

Name Description Defaul
t

Type

33.4. MLLP CONSUMER

The MLLP Consumer supports receiving MLLP-framed messages and sending HL7 Acknowledgements.
The MLLP Consumer can automatically generate the HL7 Acknowledgement (HL7 Application
Acknowledgements only - AA, AE and AR), or the acknowledgement can be specified using the
CamelMllpAcknowledgement exchange property. Additionally, the type of acknowledgement that will
be generated can be controlled by setting the CamelMllpAcknowledgementType exchange property.
The MLLP Consumer can read messages without sending any HL7 Acknowledgement if the automatic
acknowledgement is disabled and exchange pattern is InOnly.

33.4.1. Message Headers

The MLLP Consumer adds these headers on the Camel message:

Key Description

CamelMllpLocalAddress The local TCP Address of the Socket

CamelMllpRemoteAddress The local TCP Address of the Socket

CamelMllpSendingApplication MSH-3 value

CamelMllpSendingFacility MSH-4 value

CamelMllpReceivingApplication MSH-5 value

CHAPTER 33. MLLP

675

CamelMllpReceivingFacility MSH-6 value

CamelMllpTimestamp MSH-7 value

CamelMllpSecurity MSH-8 value

CamelMllpMessageType MSH-9 value

CamelMllpEventType MSH-9-1 value

CamelMllpTriggerEvent MSH-9-2 value

CamelMllpMessageControlId MSH-10 value

CamelMllpProcessingId MSH-11 value

CamelMllpVersionId MSH-12 value

CamelMllpCharset MSH-18 value

All headers are String types. If a header value is missing, its value is null.

33.4.2. Exchange Properties

The type of acknowledgment the MLLP Consumer generates and state of the TCP Socket can be
controlled by these properties on the Camel exchange:

Key Type Description

CamelMllpAcknowledgement byte[] If present, this property will we sent to client as the
MLLP Acknowledgement

CamelMllpAcknowledgement
String

String If present and CamelMllpAcknowledgement is not
present, this property will we sent to client as the
MLLP Acknowledgement

CamelMllpAcknowledgement
MsaText

String If neither CamelMllpAcknowledgement or
CamelMllpAcknowledgementString are present and
autoAck is true, this property can be used to specify
the contents of MSA-3 in the generated HL7
acknowledgement

CamelMllpAcknowledgement
Type

String If neither CamelMllpAcknowledgement or
CamelMllpAcknowledgementString are present and
autoAck is true, this property can be used to specify
the HL7 acknowledgement type (i.e. AA, AE, AR)

CamelMllpAutoAcknowledge Boolean Overrides the autoAck query parameter

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

676

CamelMllpCloseConnectionB
eforeSend

Boolean If true, the Socket will be closed before sending data

CamelMllpResetConnectionB
eforeSend

Boolean If true, the Socket will be reset before sending data

CamelMllpCloseConnectionAf
terSend

Boolean If true, the Socket will be closed immediately after
sending data

CamelMllpResetConnectionAf
terSend

Boolean If true, the Socket will be reset immediately after
sending any data

Key Type Description

33.5. MLLP PRODUCER

The MLLP Producer supports sending MLLP-framed messages and receiving HL7 Acknowledgements.
The MLLP Producer interrogates the HL7 Acknowledgments and raises exceptions if a negative
acknowledgement is received. The received acknowledgement is interrogated and an exception is raised
in the event of a negative acknowledgement. The MLLP Producer can ignore acknowledgements when
configured with InOnly exchange pattern.

33.5.1. Message Headers

The MLLP Producer adds these headers on the Camel message:

Key Description

CamelMllpLocalAddress The local TCP Address of the Socket

CamelMllpRemoteAddress The remote TCP Address of the Socket

CamelMllpAcknowledgement The HL7 Acknowledgment byte[] received

CamelMllpAcknowledgementString The HL7 Acknowledgment received, converted to a
String

33.5.2. Exchange Properties

The state of the TCP Socket can be controlled by these properties on the Camel exchange:

Key Type Description

CamelMllpCloseConnectionB
eforeSend

Boolean If true, the Socket will be closed before sending data

CHAPTER 33. MLLP

677

CamelMllpResetConnectionB
eforeSend

Boolean If true, the Socket will be reset before sending data

CamelMllpCloseConnectionAf
terSend

Boolean If true, the Socket will be closed immediately after
sending data

CamelMllpResetConnectionAf
terSend

Boolean If true, the Socket will be reset immediately after
sending any data

Key Type Description

33.6. SPRING BOOT AUTO-CONFIGURATION

When using mllp with Spring Boot make sure to use the following Maven dependency to have support
for auto configuration:

The component supports 31 options, which are listed below.

Name Description Defaul
t

Type

camel.component
.mllp.accept-
timeout

Timeout (in milliseconds) while waiting for a TCP
connection TCP Server Only.

60000 Integer

camel.component
.mllp.auto-ack

Enable/Disable the automatic generation of a MLLP
Acknowledgement MLLP Consumers only.

true Boolean

camel.component
.mllp.autowired-
enabled

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true Boolean

camel.component
.mllp.backlog

The maximum queue length for incoming connection
indications (a request to connect) is set to the
backlog parameter. If a connection indication arrives
when the queue is full, the connection is refused.

5 Integer

<dependency>
 <groupId>org.apache.camel.springboot</groupId>
 <artifactId>camel-mllp-starter</artifactId>
 <version>3.14.5.redhat-00032</version>
 <!-- Use your Camel Spring Boot version -->
</dependency>

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

678

camel.component
.mllp.bind-retry-
interval

TCP Server Only - The number of milliseconds to
wait between bind attempts.

5000 Integer

camel.component
.mllp.bind-
timeout

TCP Server Only - The number of milliseconds to
retry binding to a server port.

30000 Integer

camel.component
.mllp.bridge-
error-handler

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to receive
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. If disabled, the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions by logging them at WARN or ERROR level
and ignored.

true Boolean

camel.component
.mllp.charset-
name

Sets the default charset to use. String

camel.component
.mllp.configuratio
n

Sets the default configuration to use when creating
MLLP endpoints. The option is a
org.apache.camel.component.mllp.MllpConfiguration
type.

 MllpConfiguration

camel.component
.mllp.connect-
timeout

Timeout (in milliseconds) for establishing for a TCP
connection TCP Client only.

30000 Integer

camel.component
.mllp.default-
charset

Set the default character set to use for byte to/from
String conversions.

ISO-
8859-1

String

camel.component
.mllp.enabled

Whether to enable auto configuration of the mllp
component. This is enabled by default.

 Boolean

camel.component
.mllp.exchange-
pattern

Sets the exchange pattern when the consumer
creates an exchange.

 ExchangePattern

camel.component
.mllp.hl7-headers

Enable/Disable the automatic generation of message
headers from the HL7 Message MLLP Consumers
only.

true Boolean

Name Description Defaul
t

Type

CHAPTER 33. MLLP

679

camel.component
.mllp.idle-timeout

The approximate idle time allowed before the Client
TCP Connection will be reset. A null value or a value
less than or equal to zero will disable the idle timeout.

 Integer

camel.component
.mllp.idle-
timeout-strategy

decide what action to take when idle timeout occurs.
Possible values are : RESET: set SO_LINGER to 0
and reset the socket CLOSE: close the socket
gracefully default is RESET.

 MllpIdleTimeoutSt
rategy

camel.component
.mllp.keep-alive

Enable/disable the SO_KEEPALIVE socket option. true Boolean

camel.component
.mllp.lazy-start-
producer

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false Boolean

camel.component
.mllp.lenient-bind

TCP Server Only - Allow the endpoint to start before
the TCP ServerSocket is bound. In some
environments, it may be desirable to allow the
endpoint to start before the TCP ServerSocket is
bound.

false Boolean

camel.component
.mllp.log-phi

Whether to log PHI. true Boolean

camel.component
.mllp.log-phi-
max-bytes

Set the maximum number of bytes of PHI that will be
logged in a log entry.

5120 Integer

camel.component
.mllp.max-
concurrent-
consumers

The maximum number of concurrent MLLP
Consumer connections that will be allowed. If a new
connection is received and the maximum is number
are already established, the new connection will be
reset immediately.

5 Integer

camel.component
.mllp.read-
timeout

The SO_TIMEOUT value (in milliseconds) used after
the start of an MLLP frame has been received.

5000 Integer

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

680

camel.component
.mllp.receive-
buffer-size

Sets the SO_RCVBUF option to the specified value
(in bytes).

8192 Integer

camel.component
.mllp.receive-
timeout

The SO_TIMEOUT value (in milliseconds) used when
waiting for the start of an MLLP frame.

15000 Integer

camel.component
.mllp.require-end-
of-data

Enable/Disable strict compliance to the MLLP
standard. The MLLP standard specifies
START_OF_BLOCKhl7
payloadEND_OF_BLOCKEND_OF_DATA, however,
some systems do not send the final END_OF_DATA
byte. This setting controls whether or not the final
END_OF_DATA byte is required or optional.

true Boolean

camel.component
.mllp.reuse-
address

Enable/disable the SO_REUSEADDR socket option. false Boolean

camel.component
.mllp.send-
buffer-size

Sets the SO_SNDBUF option to the specified value
(in bytes).

8192 Integer

camel.component
.mllp.string-
payload

Enable/Disable converting the payload to a String. If
enabled, HL7 Payloads received from external
systems will be validated converted to a String. If the
charsetName property is set, that character set will
be used for the conversion. If the charsetName
property is not set, the value of MSH-18 will be used
to determine th appropriate character set. If MSH-18
is not set, then the default ISO-8859-1 character set
will be use.

true Boolean

camel.component
.mllp.tcp-no-
delay

Enable/disable the TCP_NODELAY socket option. true Boolean

camel.component
.mllp.validate-
payload

Enable/Disable the validation of HL7 Payloads If
enabled, HL7 Payloads received from external
systems will be validated (see
Hl7Util.generateInvalidPayloadExceptionMessage for
details on the validation). If and invalid payload is
detected, a MllpInvalidMessageException (for
consumers) or a
MllpInvalidAcknowledgementException will be
thrown.

false Boolean

Name Description Defaul
t

Type

CHAPTER 33. MLLP

681

CHAPTER 34. MOCK
Only producer is supported

Testing of distributed and asynchronous processing is notoriously difficult. The Mock, Test and Dataset
endpoints work great with the Camel Testing Framework to simplify your unit and integration testing
using Enterprise Integration Patterns and Camel’s large range of Components together with the
powerful Bean Integration.

The Mock component provides a powerful declarative testing mechanism, which is similar to jMock in
that it allows declarative expectations to be created on any Mock endpoint before a test begins. Then
the test is run, which typically fires messages to one or more endpoints, and finally the expectations can
be asserted in a test case to ensure the system worked as expected.

This allows you to test various things like:

The correct number of messages are received on each endpoint,

The correct payloads are received, in the right order,

Messages arrive on an endpoint in order, using some Expression to create an order testing
function,

Messages arrive match some kind of Predicate such as that specific headers have certain values,
or that messages match some predicate, such as by evaluating an XPath or XQuery Expression.

NOTE

There is also the Test endpoint which is a Mock endpoint, but which uses a second
endpoint to provide the list of expected message bodies and automatically sets up the
Mock endpoint assertions. In other words, it’s a Mock endpoint that automatically sets up
its assertions from some sample messages in a File or database, for example.

NOTE

Mock endpoints keep received Exchanges in memory indefinitely.
Remember that Mock is designed for testing. When you add Mock endpoints to a route,
each Exchange sent to the endpoint will be stored (to allow for later validation) in
memory until explicitly reset or the JVM is restarted. If you are sending high volume
and/or large messages, this may cause excessive memory use. If your goal is to test
deployable routes inline, consider using NotifyBuilder or AdviceWith in your tests instead
of adding Mock endpoints to routes directly. There are two new options retainFirst, and
retainLast that can be used to limit the number of messages the Mock endpoints keep in
memory.

34.1. URI FORMAT

mock:someName[?options]

Where someName can be any string that uniquely identifies the endpoint.

34.2. CONFIGURING OPTIONS

Camel components are configured on two separate levels:

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

682

https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/camel_spring_boot_reference_3.14/index#csb-camel-mock-component-starter
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/camel_spring_boot_reference_3.14/index#csb-camel-mock-component-starter
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/camel_spring_boot_reference_3.14/index#csb-camel-dataset-component-starter
https://camel.apache.org/components/3.14.x/eips/enterprise-integration-patterns.html
http://www.jmock.org/
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/camel_spring_boot_reference_3.14/index#csb-camel-xpath-language-starter
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/camel_spring_boot_reference_3.14/index#csb-camel-saxon-language-starter
https://camel.apache.org/components/3.14.x/others/test.html
https://camel.apache.org/components/3.14.x/jpa-component.html

component level

endpoint level

34.2.1. Configuring Component Options

The component level is the highest level which holds general and common configurations that are
inherited by the endpoints. For example a component may have security settings, credentials for
authentication, urls for network connection and so forth.

Some components only have a few options, and others may have many. Because components typically
have pre configured defaults that are commonly used, then you may often only need to configure a few
options on a component; or none at all.

Configuring components can be done with the Component DSL, in a configuration file
(application.properties|yaml), or directly with Java code.

34.2.2. Configuring Endpoint Options

Where you find yourself configuring the most is on endpoints, as endpoints often have many options,
which allows you to configure what you need the endpoint to do. The options are also categorized into
whether the endpoint is used as consumer (from) or as a producer (to), or used for both.

Configuring endpoints is most often done directly in the endpoint URI as path and query parameters.
You can also use the Endpoint DSL as a type safe way of configuring endpoints.

A good practice when configuring options is to use Property Placeholders, which allows to not hardcode
urls, port numbers, sensitive information, and other settings. In other words placeholders allows to
externalize the configuration from your code, and gives more flexibility and reuse.

The following two sections lists all the options, firstly for the component followed by the endpoint.

34.3. COMPONENT OPTIONS

The Mock component supports 4 options, which are listed below.

Name Description Defaul
t

Type

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

CHAPTER 34. MOCK

683

https://camel.apache.org/manual/component-dsl.html
https://camel.apache.org/manual/Endpoint-dsl.html
https://camel.apache.org/manual/using-propertyplaceholder.html

log (producer) To turn on logging when the mock receives an
incoming message. This will log only one time at INFO
level for the incoming message. For more detailed
logging then set the logger to DEBUG level for the
org.apache.camel.component.mock.MockEndpoint
class.

false boolean

autowiredEnabled
(advanced)

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true boolean

exchangeFormatt
er (advanced)

Autowired Sets a custom ExchangeFormatter to
convert the Exchange to a String suitable for logging.
If not specified, we default to
DefaultExchangeFormatter.

 ExchangeFormatt
er

Name Description Defaul
t

Type

34.4. ENDPOINT OPTIONS

The Mock endpoint is configured using URI syntax:

mock:name

with the following path and query parameters:

34.4.1. Path Parameters (1 parameters)

Name Description Defaul
t

Type

name (producer) Required Name of mock endpoint. String

34.4.2. Query Parameters (12 parameters)

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

684

assertPeriod
(producer)

Sets a grace period after which the mock endpoint
will re-assert to ensure the preliminary assertion is
still valid. This is used for example to assert that
exactly a number of messages arrives. For example if
expectedMessageCount(int) was set to 5, then the
assertion is satisfied when 5 or more message arrives.
To ensure that exactly 5 messages arrives, then you
would need to wait a little period to ensure no further
message arrives. This is what you can use this method
for. By default this period is disabled.

 long

expectedCount
(producer)

Specifies the expected number of message
exchanges that should be received by this endpoint.
Beware: If you want to expect that 0 messages, then
take extra care, as 0 matches when the tests starts,
so you need to set a assert period time to let the test
run for a while to make sure there are still no
messages arrived; for that use setAssertPeriod(long).
An alternative is to use NotifyBuilder, and use the
notifier to know when Camel is done routing some
messages, before you call the assertIsSatisfied()
method on the mocks. This allows you to not use a
fixed assert period, to speedup testing times. If you
want to assert that exactly n’th message arrives to
this mock endpoint, then see also the
setAssertPeriod(long) method for further details.

-1 int

failFast
(producer)

Sets whether assertIsSatisfied() should fail fast at
the first detected failed expectation while it may
otherwise wait for all expected messages to arrive
before performing expectations verifications. Is by
default true. Set to false to use behavior as in Camel
2.x.

false boolean

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

Name Description Defaul
t

Type

CHAPTER 34. MOCK

685

log (producer) To turn on logging when the mock receives an
incoming message. This will log only one time at INFO
level for the incoming message. For more detailed
logging then set the logger to DEBUG level for the
org.apache.camel.component.mock.MockEndpoint
class.

false boolean

reportGroup
(producer)

A number that is used to turn on throughput logging
based on groups of the size.

 int

resultMinimumWa
itTime (producer)

Sets the minimum expected amount of time (in millis)
the assertIsSatisfied() will wait on a latch until it is
satisfied.

 long

resultWaitTime
(producer)

Sets the maximum amount of time (in millis) the
assertIsSatisfied() will wait on a latch until it is
satisfied.

 long

retainFirst
(producer)

Specifies to only retain the first n’th number of
received Exchanges. This is used when testing with
big data, to reduce memory consumption by not
storing copies of every Exchange this mock endpoint
receives. Important: When using this limitation, then
the getReceivedCounter() will still return the actual
number of received Exchanges. For example if we
have received 5000 Exchanges, and have configured
to only retain the first 10 Exchanges, then the
getReceivedCounter() will still return 5000 but there
is only the first 10 Exchanges in the getExchanges()
and getReceivedExchanges() methods. When using
this method, then some of the other expectation
methods is not supported, for example the
expectedBodiesReceived(Object…) sets a
expectation on the first number of bodies received.
You can configure both setRetainFirst(int) and
setRetainLast(int) methods, to limit both the first and
last received.

-1 int

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

686

retainLast
(producer)

Specifies to only retain the last n’th number of
received Exchanges. This is used when testing with
big data, to reduce memory consumption by not
storing copies of every Exchange this mock endpoint
receives. Important: When using this limitation, then
the getReceivedCounter() will still return the actual
number of received Exchanges. For example if we
have received 5000 Exchanges, and have configured
to only retain the last 20 Exchanges, then the
getReceivedCounter() will still return 5000 but there
is only the last 20 Exchanges in the getExchanges()
and getReceivedExchanges() methods. When using
this method, then some of the other expectation
methods is not supported, for example the
expectedBodiesReceived(Object…) sets a
expectation on the first number of bodies received.
You can configure both setRetainFirst(int) and
setRetainLast(int) methods, to limit both the first and
last received.

-1 int

sleepForEmptyTe
st (producer)

Allows a sleep to be specified to wait to check that
this endpoint really is empty when
expectedMessageCount(int) is called with zero.

 long

copyOnExchange
(producer
(advanced))

Sets whether to make a deep copy of the incoming
Exchange when received at this mock endpoint. Is by
default true.

true boolean

Name Description Defaul
t

Type

34.5. SIMPLE EXAMPLE

Here’s a simple example of Mock endpoint in use. First, the endpoint is resolved on the context. Then we
set an expectation, and then, after the test has run, we assert that our expectations have been met:

You typically always call the method to test that the expectations were met after running a test.

Camel will by default wait 10 seconds when the assertIsSatisfied() is invoked. This can be configured by
setting the setResultWaitTime(millis) method.

34.6. USING ASSERTPERIOD

MockEndpoint resultEndpoint = context.getEndpoint("mock:foo", MockEndpoint.class);

// set expectations
resultEndpoint.expectedMessageCount(2);

// send some messages

// now lets assert that the mock:foo endpoint received 2 messages
resultEndpoint.assertIsSatisfied();

CHAPTER 34. MOCK

687

When the assertion is satisfied then Camel will stop waiting and continue from the assertIsSatisfied
method. That means if a new message arrives on the mock endpoint, just a bit later, that arrival will not
affect the outcome of the assertion. Suppose you do want to test that no new messages arrives after a
period thereafter, then you can do that by setting the setAssertPeriod method, for example:

34.7. SETTING EXPECTATIONS

You can see from the Javadoc of MockEndpoint the various helper methods you can use to set
expectations. The main methods are as follows:

Method Description

expectedMessageCount(int) To define the expected message count on the
endpoint.

expectedMinimumMessageCount(int) To define the minimum number of expected
messages on the endpoint.

expectedBodiesReceived(…) To define the expected bodies that should be
received (in order).

expectedHeaderReceived(…) To define the expected header that should be
received

expectsAscending(Expression) To add an expectation that messages are received in
order, using the given Expression to compare
messages.

expectsDescending(Expression) To add an expectation that messages are received in
order, using the given Expression to compare
messages.

expectsNoDuplicates(Expression) To add an expectation that no duplicate messages
are received; using an Expression to calculate a
unique identifier for each message. This could be
something like the JMSMessageID if using JMS, or
some unique reference number within the message.

Here’s another example:

MockEndpoint resultEndpoint = context.getEndpoint("mock:foo", MockEndpoint.class);
resultEndpoint.setAssertPeriod(5000);
resultEndpoint.expectedMessageCount(2);

// send some messages

// now lets assert that the mock:foo endpoint received 2 messages
resultEndpoint.assertIsSatisfied();

resultEndpoint.expectedBodiesReceived("firstMessageBody", "secondMessageBody",
"thirdMessageBody");

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

688

https://www.javadoc.io/doc/org.apache.camel/camel-mock/3.14.0/org/apache/camel/component/mock/MockEndpoint.html
https://www.javadoc.io/doc/org.apache.camel/camel-mock/current/org/apache/camel/component/mock/MockEndpoint.html#expectedMessageCount-int-
https://www.javadoc.io/doc/org.apache.camel/camel-mock/current/org/apache/camel/component/mock/MockEndpoint.html#expectedMinimumMessageCount-int-
https://www.javadoc.io/doc/org.apache.camel/camel-mock/current/org/apache/camel/component/mock/MockEndpoint.html#expectedBodiesReceived-java.lang.Object%E2%80%A6%E2%80%8B-
https://www.javadoc.io/doc/org.apache.camel/camel-mock/current/org/apache/camel/component/mock/MockEndpoint.html#expectedHeaderReceived-java.lang.String-java.lang.Object-
https://www.javadoc.io/doc/org.apache.camel/camel-mock/current/org/apache/camel/component/mock/MockEndpoint.html#expectsAscending-org.apache.camel.Expression-
https://www.javadoc.io/doc/org.apache.camel/camel-mock/current/org/apache/camel/component/mock/MockEndpoint.html#expectsDescending-org.apache.camel.Expression-
https://www.javadoc.io/doc/org.apache.camel/camel-mock/current/org/apache/camel/component/mock/MockEndpoint.html#expectsNoDuplicates-org.apache.camel.Expression-

34.8. ADDING EXPECTATIONS TO SPECIFIC MESSAGES

In addition, you can use the message(int messageIndex) method to add assertions about a specific
message that is received.

For example, to add expectations of the headers or body of the first message (using zero-based
indexing like java.util.List), you can use the following code:

There are some examples of the Mock endpoint in use in the camel-core processor tests.

34.9. MOCKING EXISTING ENDPOINTS

Camel now allows you to automatically mock existing endpoints in your Camel routes.

NOTE

How it works
The endpoints are still in action. What happens differently is that a Mock endpoint is
injected and receives the message first and then delegates the message to the target
endpoint. You can view this as a kind of intercept and delegate or endpoint listener.

Suppose you have the given route below:

Route

You can then use the adviceWith feature in Camel to mock all the endpoints in a given route from your
unit test, as shown below:

adviceWith mocking all endpoints

resultEndpoint.message(0).header("foo").isEqualTo("bar");

 @Override
 protected RouteBuilder createRouteBuilder() throws Exception {
 return new RouteBuilder() {
 @Override
 public void configure() throws Exception {
 from("direct:start").routeId("start")
 .to("direct:foo").to("log:foo").to("mock:result");

 from("direct:foo").routeId("foo")
 .transform(constant("Bye World"));
 }
 };
 }

 @Test
 public void testAdvisedMockEndpoints() throws Exception {
 // advice the start route using the inlined AdviceWith lambda style route builder
 // which has extended capabilities than the regular route builder
 AdviceWith.adviceWith(context, "start", a ->
 // mock all endpoints

CHAPTER 34. MOCK

689

https://javadoc.io/doc/org.apache.camel/camel-mock/3.14.0/org/apache/camel/component/mock/MockEndpoint.html#message-int-
https://github.com/apache/camel/tree/main/camel-core/src/test/java/org/apache/camel/processor/
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/camel_spring_boot_reference_3.14/index#csb-camel-mock-component-starter

Notice that the mock endpoints is given the URI mock:<endpoint>, for example mock:direct:foo.
Camel logs at INFO level the endpoints being mocked:

INFO Adviced endpoint [direct://foo] with mock endpoint [mock:direct:foo]

NOTE

Mocked endpoints are without parameters
Endpoints which are mocked will have their parameters stripped off. For example the
endpoint log:foo?showAll=true will be mocked to the following endpoint mock:log:foo.
Notice the parameters have been removed.

Its also possible to only mock certain endpoints using a pattern. For example to mock all log endpoints
you do as shown:

adviceWith mocking only log endpoints using a pattern

 a.mockEndpoints());

 getMockEndpoint("mock:direct:start").expectedBodiesReceived("Hello World");
 getMockEndpoint("mock:direct:foo").expectedBodiesReceived("Hello World");
 getMockEndpoint("mock:log:foo").expectedBodiesReceived("Bye World");
 getMockEndpoint("mock:result").expectedBodiesReceived("Bye World");

 template.sendBody("direct:start", "Hello World");

 assertMockEndpointsSatisfied();

 // additional test to ensure correct endpoints in registry
 assertNotNull(context.hasEndpoint("direct:start"));
 assertNotNull(context.hasEndpoint("direct:foo"));
 assertNotNull(context.hasEndpoint("log:foo"));
 assertNotNull(context.hasEndpoint("mock:result"));
 // all the endpoints was mocked
 assertNotNull(context.hasEndpoint("mock:direct:start"));
 assertNotNull(context.hasEndpoint("mock:direct:foo"));
 assertNotNull(context.hasEndpoint("mock:log:foo"));
 }

 @Test
 public void testAdvisedMockEndpointsWithPattern() throws Exception {
 // advice the start route using the inlined AdviceWith lambda style route builder
 // which has extended capabilities than the regular route builder
 AdviceWith.adviceWith(context, "start", a ->
 // mock only log endpoints
 a.mockEndpoints("log*"));

 // now we can refer to log:foo as a mock and set our expectations
 getMockEndpoint("mock:log:foo").expectedBodiesReceived("Bye World");

 getMockEndpoint("mock:result").expectedBodiesReceived("Bye World");

 template.sendBody("direct:start", "Hello World");

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

690

The pattern supported can be a wildcard or a regular expression. See more details about this at
Intercept as its the same matching function used by Camel.

NOTE

Mind that mocking endpoints causes the messages to be copied when they arrive on the
mock.
That means Camel will use more memory. This may not be suitable when you send in a lot
of messages.

34.10. MOCKING EXISTING ENDPOINTS USING THE CAMEL-TEST

COMPONENT

Instead of using the adviceWith to instruct Camel to mock endpoints, you can easily enable this
behavior when using the camel-test Test Kit.

The same route can be tested as follows. Notice that we return "*" from the isMockEndpoints method,
which tells Camel to mock all endpoints.

If you only want to mock all log endpoints you can return "log*" instead.

isMockEndpoints using camel-test kit

 assertMockEndpointsSatisfied();

 // additional test to ensure correct endpoints in registry
 assertNotNull(context.hasEndpoint("direct:start"));
 assertNotNull(context.hasEndpoint("direct:foo"));
 assertNotNull(context.hasEndpoint("log:foo"));
 assertNotNull(context.hasEndpoint("mock:result"));
 // only the log:foo endpoint was mocked
 assertNotNull(context.hasEndpoint("mock:log:foo"));
 assertNull(context.hasEndpoint("mock:direct:start"));
 assertNull(context.hasEndpoint("mock:direct:foo"));
 }

public class IsMockEndpointsJUnit4Test extends CamelTestSupport {

 @Override
 public String isMockEndpoints() {
 // override this method and return the pattern for which endpoints to mock.
 // use * to indicate all
 return "*";
 }

 @Test
 public void testMockAllEndpoints() throws Exception {
 // notice we have automatic mocked all endpoints and the name of the endpoints is "mock:uri"
 getMockEndpoint("mock:direct:start").expectedBodiesReceived("Hello World");
 getMockEndpoint("mock:direct:foo").expectedBodiesReceived("Hello World");
 getMockEndpoint("mock:log:foo").expectedBodiesReceived("Bye World");
 getMockEndpoint("mock:result").expectedBodiesReceived("Bye World");

 template.sendBody("direct:start", "Hello World");

CHAPTER 34. MOCK

691

34.11. MOCKING EXISTING ENDPOINTS WITH XML DSL

If you do not use the camel-test component for unit testing (as shown above) you can use a different
approach when using XML files for routes.
The solution is to create a new XML file used by the unit test and then include the intended XML file
which has the route you want to test.

Suppose we have the route in the camel-route.xml file:

camel-route.xml

 assertMockEndpointsSatisfied();

 // additional test to ensure correct endpoints in registry
 assertNotNull(context.hasEndpoint("direct:start"));
 assertNotNull(context.hasEndpoint("direct:foo"));
 assertNotNull(context.hasEndpoint("log:foo"));
 assertNotNull(context.hasEndpoint("mock:result"));
 // all the endpoints was mocked
 assertNotNull(context.hasEndpoint("mock:direct:start"));
 assertNotNull(context.hasEndpoint("mock:direct:foo"));
 assertNotNull(context.hasEndpoint("mock:log:foo"));
 }

 @Override
 protected RouteBuilder createRouteBuilder() throws Exception {
 return new RouteBuilder() {
 @Override
 public void configure() throws Exception {
 from("direct:start").to("direct:foo").to("log:foo").to("mock:result");

 from("direct:foo").transform(constant("Bye World"));
 }
 };
 }
}

 <!-- this camel route is in the camel-route.xml file -->
 <camelContext xmlns="http://camel.apache.org/schema/spring">

 <route>
 <from uri="direct:start"/>
 <to uri="direct:foo"/>
 <to uri="log:foo"/>
 <to uri="mock:result"/>
 </route>

 <route>
 <from uri="direct:foo"/>
 <transform>
 <constant>Bye World</constant>
 </transform>
 </route>

 </camelContext>

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

692

Then we create a new XML file as follows, where we include the camel-route.xml file and define a spring
bean with the class org.apache.camel.impl.InterceptSendToMockEndpointStrategy which tells
Camel to mock all endpoints:

test-camel-route.xml

Then in your unit test you load the new XML file (test-camel-route.xml) instead of camel-route.xml.

To only mock all Log endpoints you can define the pattern in the constructor for the bean:

34.12. MOCKING ENDPOINTS AND SKIP SENDING TO ORIGINAL
ENDPOINT

Sometimes you want to easily mock and skip sending to a certain endpoints. So the message is detoured
and send to the mock endpoint only. You can now use the mockEndpointsAndSkip method using
AdviceWith. The example below will skip sending to the two endpoints "direct:foo", and "direct:bar".

adviceWith mock and skip sending to endpoints

 <!-- the Camel route is defined in another XML file -->
 <import resource="camel-route.xml"/>

 <!-- bean which enables mocking all endpoints -->
 <bean id="mockAllEndpoints"
class="org.apache.camel.component.mock.InterceptSendToMockEndpointStrategy"/>

<bean id="mockAllEndpoints"
class="org.apache.camel.impl.InterceptSendToMockEndpointStrategy">
 <constructor-arg index="0" value="log*"/>
</bean>

 @Test
 public void testAdvisedMockEndpointsWithSkip() throws Exception {
 // advice the first route using the inlined AdviceWith route builder
 // which has extended capabilities than the regular route builder
 AdviceWith.adviceWith(context.getRouteDefinitions().get(0), context, new
AdviceWithRouteBuilder() {
 @Override
 public void configure() throws Exception {
 // mock sending to direct:foo and direct:bar and skip send to it
 mockEndpointsAndSkip("direct:foo", "direct:bar");
 }
 });

 getMockEndpoint("mock:result").expectedBodiesReceived("Hello World");
 getMockEndpoint("mock:direct:foo").expectedMessageCount(1);
 getMockEndpoint("mock:direct:bar").expectedMessageCount(1);

 template.sendBody("direct:start", "Hello World");

 assertMockEndpointsSatisfied();

 // the message was not send to the direct:foo route and thus not sent to
 // the seda endpoint

CHAPTER 34. MOCK

693

https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/camel_spring_boot_reference_3.14/index#csb-camel-log-component-starter

The same example using the Test Kit

isMockEndpointsAndSkip using camel-test kit

34.13. LIMITING THE NUMBER OF MESSAGES TO KEEP

The Mock endpoints will by default keep a copy of every Exchange that it received. So if you test with a
lot of messages, then it will consume memory.
We have introduced two options retainFirst and retainLast that can be used to specify to only keep
N’th of the first and/or last Exchanges.

For example in the code below, we only want to retain a copy of the first 5 and last 5 Exchanges the
mock receives.

 SedaEndpoint seda = context.getEndpoint("seda:foo", SedaEndpoint.class);
 assertEquals(0, seda.getCurrentQueueSize());
 }

public class IsMockEndpointsAndSkipJUnit4Test extends CamelTestSupport {

 @Override
 public String isMockEndpointsAndSkip() {
 // override this method and return the pattern for which endpoints to mock,
 // and skip sending to the original endpoint.
 return "direct:foo";
 }

 @Test
 public void testMockEndpointAndSkip() throws Exception {
 // notice we have automatic mocked the direct:foo endpoints and the name of the endpoints is
"mock:uri"
 getMockEndpoint("mock:result").expectedBodiesReceived("Hello World");
 getMockEndpoint("mock:direct:foo").expectedMessageCount(1);

 template.sendBody("direct:start", "Hello World");

 assertMockEndpointsSatisfied();

 // the message was not send to the direct:foo route and thus not sent to the seda endpoint
 SedaEndpoint seda = context.getEndpoint("seda:foo", SedaEndpoint.class);
 assertEquals(0, seda.getCurrentQueueSize());
 }

 @Override
 protected RouteBuilder createRouteBuilder() throws Exception {
 return new RouteBuilder() {
 @Override
 public void configure() throws Exception {
 from("direct:start").to("direct:foo").to("mock:result");

 from("direct:foo").transform(constant("Bye World")).to("seda:foo");
 }
 };
 }
}

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

694

https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/camel_spring_boot_reference_3.14/index#csb-camel-mock-component-starter

Using this has some limitations. The getExchanges() and getReceivedExchanges() methods on the
MockEndpoint will return only the retained copies of the Exchanges. So in the example above, the list
will contain 10 Exchanges; the first five, and the last five.
The retainFirst and retainLast options also have limitations on which expectation methods you can use.
For example the expectedXXX methods that work on message bodies, headers, etc. will only operate on
the retained messages. In the example above they can test only the expectations on the 10 retained
messages.

34.14. TESTING WITH ARRIVAL TIMES

The Mock endpoint stores the arrival time of the message as a property on the Exchange

You can use this information to know when the message arrived on the mock. But it also provides
foundation to know the time interval between the previous and next message arrived on the mock. You
can use this to set expectations using the arrives DSL on the Mock endpoint.

For example to say that the first message should arrive between 0-2 seconds before the next you can
do:

You can also define this as that 2nd message (0 index based) should arrive no later than 0-2 seconds
after the previous:

You can also use between to set a lower bound. For example suppose that it should be between 1-4
seconds:

You can also set the expectation on all messages, for example to say that the gap between them should
be at most 1 second:

NOTE

Time units
In the example above we use seconds as the time unit, but Camel offers milliseconds,
and minutes as well.

34.15. SPRING BOOT AUTO-CONFIGURATION

 MockEndpoint mock = getMockEndpoint("mock:data");
 mock.setRetainFirst(5);
 mock.setRetainLast(5);
 mock.expectedMessageCount(2000);

 mock.assertIsSatisfied();

Date time = exchange.getProperty(Exchange.RECEIVED_TIMESTAMP, Date.class);

mock.message(0).arrives().noLaterThan(2).seconds().beforeNext();

mock.message(1).arrives().noLaterThan(2).seconds().afterPrevious();

mock.message(1).arrives().between(1, 4).seconds().afterPrevious();

mock.allMessages().arrives().noLaterThan(1).seconds().beforeNext();

CHAPTER 34. MOCK

695

https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/camel_spring_boot_reference_3.14/index#csb-camel-mock-component-starter

When using mock with Spring Boot make sure to use the following Maven dependency to have support
for auto configuration:

The component supports 5 options, which are listed below.

Name Description Defaul
t

Type

camel.component
.mock.autowired-
enabled

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true Boolean

camel.component
.mock.enabled

Whether to enable auto configuration of the mock
component. This is enabled by default.

 Boolean

camel.component
.mock.exchange-
formatter

Sets a custom ExchangeFormatter to convert the
Exchange to a String suitable for logging. If not
specified, we default to DefaultExchangeFormatter.
The option is a
org.apache.camel.spi.ExchangeFormatter type.

 ExchangeFormatt
er

camel.component
.mock.lazy-start-
producer

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false Boolean

camel.component
.mock.log

To turn on logging when the mock receives an
incoming message. This will log only one time at INFO
level for the incoming message. For more detailed
logging then set the logger to DEBUG level for the
org.apache.camel.component.mock.MockEndpoint
class.

false Boolean

<dependency>
 <groupId>org.apache.camel.springboot</groupId>
 <artifactId>camel-mock-starter</artifactId>
 <version>3.14.5.redhat-00032</version>
 <!-- Use your Camel Spring Boot version -->
</dependency>

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

696

CHAPTER 35. MONGODB
Both producer and consumer are supported

According to Wikipedia: "NoSQL is a movement promoting a loosely defined class of non-relational data
stores that break with a long history of relational databases and ACID guarantees." NoSQL solutions
have grown in popularity in the last few years, and major extremely-used sites and services such as
Facebook, LinkedIn, Twitter, etc. are known to use them extensively to achieve scalability and agility.

Basically, NoSQL solutions differ from traditional RDBMS (Relational Database Management Systems)
in that they don’t use SQL as their query language and generally don’t offer ACID-like transactional
behaviour nor relational data. Instead, they are designed around the concept of flexible data structures
and schemas (meaning that the traditional concept of a database table with a fixed schema is dropped),
extreme scalability on commodity hardware and blazing-fast processing.

MongoDB is a very popular NoSQL solution and the camel-mongodb component integrates Camel with
MongoDB allowing you to interact with MongoDB collections both as a producer (performing operations
on the collection) and as a consumer (consuming documents from a MongoDB collection).

MongoDB revolves around the concepts of documents (not as is office documents, but rather
hierarchical data defined in JSON/BSON) and collections. This component page will assume you are
familiar with them. Otherwise, visit http://www.mongodb.org/.

NOTE

The MongoDB Camel component uses Mongo Java Driver 4.x.

Maven users will need to add the following dependency to their pom.xml for this component:

35.1. URI FORMAT

mongodb:connectionBean?
database=databaseName&collection=collectionName&operation=operationName[&moreOptions...]

35.2. CONFIGURING OPTIONS

Camel components are configured on two separate levels:

component level

endpoint level

35.2.1. Configuring Component Options

The component level is the highest level which holds general and common configurations that are

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-mongodb</artifactId>
 <version>3.14.5.redhat-00018</version>
 <!-- use the same version as your Camel core version -->
</dependency>

CHAPTER 35. MONGODB

697

http://www.mongodb.org/

The component level is the highest level which holds general and common configurations that are
inherited by the endpoints. For example a component may have security settings, credentials for
authentication, urls for network connection and so forth.

Some components only have a few options, and others may have many. Because components typically
have pre configured defaults that are commonly used, then you may often only need to configure a few
options on a component; or none at all.

Configuring components can be done with the Component DSL, in a configuration file
(application.properties|yaml), or directly with Java code.

35.2.2. Configuring Endpoint Options

Where you find yourself configuring the most is on endpoints, as endpoints often have many options,
which allows you to configure what you need the endpoint to do. The options are also categorized into
whether the endpoint is used as consumer (from) or as a producer (to), or used for both.

Configuring endpoints is most often done directly in the endpoint URI as path and query parameters.
You can also use the Endpoint DSL as a type safe way of configuring endpoints.

A good practice when configuring options is to use Property Placeholders, which allows to not hardcode
urls, port numbers, sensitive information, and other settings. In other words placeholders allows to
externalize the configuration from your code, and gives more flexibility and reuse.

The following two sections lists all the options, firstly for the component followed by the endpoint.

35.3. COMPONENT OPTIONS

The MongoDB component supports 4 options, which are listed below.

Name Description Defaul
t

Type

mongoConnectio
n (common)

Autowired Shared client used for connection. All
endpoints generated from the component will share
this connection client.

 MongoClient

bridgeErrorHandl
er (consumer)

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false boolean

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

698

https://camel.apache.org/manual/component-dsl.html
https://camel.apache.org/manual/Endpoint-dsl.html
https://camel.apache.org/manual/using-propertyplaceholder.html

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

autowiredEnabled
(advanced)

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true boolean

Name Description Defaul
t

Type

35.4. ENDPOINT OPTIONS

The MongoDB endpoint is configured using URI syntax:

mongodb:connectionBean

with the following path and query parameters:

35.4.1. Path Parameters (1 parameters)

Name Description Defaul
t

Type

connectionBean
(common)

Required Sets the connection bean reference used
to lookup a client for connecting to a database.

 String

35.4.2. Query Parameters (27 parameters)

Name Description Defaul
t

Type

collection
(common)

Sets the name of the MongoDB collection to bind to
this endpoint.

 String

collectionIndex
(common)

Sets the collection index (JSON FORMAT : \\{ field1 :
order1, field2 : order2}).

 String

CHAPTER 35. MONGODB

699

createCollection
(common)

Create collection during initialisation if it doesn’t
exist. Default is true.

true boolean

database
(common)

Sets the name of the MongoDB database to target. String

hosts (common) Host address of mongodb server in host:port format.
It’s possible also use more than one address, as
comma separated list of hosts:
host1:port1,host2:port2. If hosts parameter is
specified, provided connectionBean is ignored.

 String

mongoConnectio
n (common)

Sets the connection bean used as a client for
connecting to a database.

 MongoClient

operation
(common)

Sets the operation this endpoint will execute against
MongoDB.

Enum values:

findById

findOneByQuery

findAll

findDistinct

insert

save

update

remove

bulkWrite

aggregate

getDbStats

getColStats

count

command

 MongoDbOperati
on

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

700

outputType
(common)

Convert the output of the producer to the selected
type : DocumentList Document or MongoIterable.
DocumentList or MongoIterable applies to findAll
and aggregate. Document applies to all other
operations.

Enum values:

DocumentList

Document

MongoIterable

 MongoDbOutputT
ype

bridgeErrorHandl
er (consumer)

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false boolean

consumerType
(consumer)

Consumer type. String

exceptionHandler
(consumer
(advanced))

To let the consumer use a custom ExceptionHandler.
Notice if the option bridgeErrorHandler is enabled
then this option is not in use. By default the consumer
will deal with exceptions, that will be logged at WARN
or ERROR level and ignored.

 ExceptionHandler

exchangePattern
(consumer
(advanced))

Sets the exchange pattern when the consumer
creates an exchange.

Enum values:

InOnly

InOut

InOptionalOut

 ExchangePattern

Name Description Defaul
t

Type

CHAPTER 35. MONGODB

701

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

cursorRegenerati
onDelay
(advanced)

MongoDB tailable cursors will block until new data
arrives. If no new data is inserted, after some time the
cursor will be automatically freed and closed by the
MongoDB server. The client is expected to
regenerate the cursor if needed. This value specifies
the time to wait before attempting to fetch a new
cursor, and if the attempt fails, how long before the
next attempt is made. Default value is 1000ms.

1000 long

dynamicity
(advanced)

Sets whether this endpoint will attempt to
dynamically resolve the target database and
collection from the incoming Exchange properties.
Can be used to override at runtime the database and
collection specified on the otherwise static endpoint
URI. It is disabled by default to boost performance.
Enabling it will take a minimal performance hit.

false boolean

readPreference
(advanced)

Configure how MongoDB clients route read
operations to the members of a replica set. Possible
values are PRIMARY, PRIMARY_PREFERRED,
SECONDARY, SECONDARY_PREFERRED or
NEAREST.

Enum values:

PRIMARY

PRIMARY_PREFERRED

SECONDARY

SECONDARY_PREFERRED

NEAREST

PRIMA
RY

String

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

702

writeConcern
(advanced)

Configure the connection bean with the level of
acknowledgment requested from MongoDB for write
operations to a standalone mongod, replicaset or
cluster. Possible values are ACKNOWLEDGED, W1,
W2, W3, UNACKNOWLEDGED, JOURNALED or
MAJORITY.

Enum values:

ACKNOWLEDGED

W1

W2

W3

UNACKNOWLEDGED

JOURNALED

MAJORITY

ACKN
OWLE
DGED

String

writeResultAsHea
der (advanced)

In write operations, it determines whether instead of
returning WriteResult as the body of the OUT
message, we transfer the IN message to the OUT and
attach the WriteResult as a header.

false boolean

streamFilter
(changeStream)

Filter condition for change streams consumer. String

password
(security)

User password for mongodb connection. String

username
(security)

Username for mongodb connection. String

persistentId (tail) One tail tracking collection can host many trackers
for several tailable consumers. To keep them
separate, each tracker should have its own unique
persistentId.

 String

persistentTailTra
cking (tail)

Enable persistent tail tracking, which is a mechanism
to keep track of the last consumed message across
system restarts. The next time the system is up, the
endpoint will recover the cursor from the point where
it last stopped slurping records.

false boolean

Name Description Defaul
t

Type

CHAPTER 35. MONGODB

703

tailTrackCollectio
n (tail)

Collection where tail tracking information will be
persisted. If not specified,
MongoDbTailTrackingConfig#DEFAULT_COLLECTI
ON will be used by default.

 String

tailTrackDb (tail) Indicates what database the tail tracking mechanism
will persist to. If not specified, the current database
will be picked by default. Dynamicity will not be taken
into account even if enabled, i.e. the tail tracking
database will not vary past endpoint initialisation.

 String

tailTrackField
(tail)

Field where the last tracked value will be placed. If not
specified,
MongoDbTailTrackingConfig#DEFAULT_FIELD will
be used by default.

 String

tailTrackIncreasin
gField (tail)

Correlation field in the incoming record which is of
increasing nature and will be used to position the
tailing cursor every time it is generated. The cursor
will be (re)created with a query of type:
tailTrackIncreasingField greater than lastValue
(possibly recovered from persistent tail tracking).
Can be of type Integer, Date, String, etc. NOTE: No
support for dot notation at the current time, so the
field should be at the top level of the document.

 String

Name Description Defaul
t

Type

35.5. CONFIGURATION OF DATABASE IN SPRING XML

The following Spring XML creates a bean defining the connection to a MongoDB instance.

Since mongo java driver 3, the WriteConcern and readPreference options are not dynamically
modifiable. They are defined in the mongoClient object

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xmlns:mongo="http://www.springframework.org/schema/data/mongo"
xsi:schemaLocation="http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context.xsd
 http://www.springframework.org/schema/data/mongo
 http://www.springframework.org/schema/data/mongo/spring-mongo.xsd
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd">

 <mongo:mongo-client id="mongoBean" host="${mongo.url}" port="${mongo.port}"
credentials="${mongo.user}:${mongo.pass}@${mongo.dbname}">
 <mongo:client-options write-concern="NORMAL" />
 </mongo:mongo-client>
</beans>

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

704

35.6. SAMPLE ROUTE

The following route defined in Spring XML executes the operation getDbStats on a collection.

Get DB stats for specified collection

35.7. MONGODB OPERATIONS - PRODUCER ENDPOINTS

35.7.1. Query operations

35.7.1.1. findById

This operation retrieves only one element from the collection whose _id field matches the content of the
IN message body. The incoming object can be anything that has an equivalent to a Bson type. See
http://bsonspec.org/spec.html and http://www.mongodb.org/display/DOCS/Java+Types.

Please, note that the default _id is treated by Mongo as and ObjectId type, so you may need to convert
it properly.

NOTE

Supports optional parameters
This operation supports projection operators. See Specifying a fields filter (projection) .

35.7.1.2. findOneByQuery

Retrieve the first element from a collection matching a MongoDB query selector. If the
CamelMongoDbCriteria header is set, then its value is used as the query selector. If the
CamelMongoDbCriteria header is null, then the IN message body is used as the query selector. In both
cases, the query selector should be of type Bson or convertible to Bson (for instance, a JSON string or
HashMap). See Type conversions for more info.

Create query selectors using the Filters provided by the MongoDB Driver.

<route>
 <from uri="direct:start" />
 <!-- using bean 'mongoBean' defined above -->
 <to uri="mongodb:mongoBean?
database=${mongodb.database}&collection=${mongodb.collection}&operation=getDbStats"
/>
 <to uri="direct:result" />
</route>

from("direct:findById")
 .to("mongodb:myDb?database=flights&collection=tickets&operation=findById")
 .to("mock:resultFindById");

from("direct:findById")
 .convertBodyTo(ObjectId.class)
 .to("mongodb:myDb?database=flights&collection=tickets&operation=findById")
 .to("mock:resultFindById");

CHAPTER 35. MONGODB

705

http://bsonspec.org/spec.html
http://www.mongodb.org/display/DOCS/Java+Types

35.7.1.3. Example without a query selector (returns the first document in a collection)

35.7.1.4. Example with a query selector (returns the first matching document in a
collection):

NOTE

Supports optional parameters
This operation supports projection operators and sort clauses. See Specifying a fields
filter (projection), Specifying a sort clause.

35.7.1.5. findAll

The findAll operation returns all documents matching a query, or none at all, in which case all
documents contained in the collection are returned. The query object is extracted
CamelMongoDbCriteria header. if the CamelMongoDbCriteria header is null the query object is
extracted message body, i.e. it should be of type Bson or convertible to Bson. It can be a JSON String
or a Hashmap. See Type conversions for more info.

35.7.1.5.1. Example without a query selector (returns all documents in a collection)

35.7.1.5.2. Example with a query selector (returns all matching documents in a collection)

Paging and efficient retrieval is supported via the following headers:

Header key Quick constant Description (extracted from MongoDB
API doc)

Expected type

CamelMongoDb
NumToSkip

MongoDbConst
ants.NUM_TO_S
KIP

Discards a given number of elements at
the beginning of the cursor.

int/Integer

from("direct:findOneByQuery")
 .to("mongodb:myDb?database=flights&collection=tickets&operation=findOneByQuery")
 .to("mock:resultFindOneByQuery");

from("direct:findOneByQuery")
 .setHeader(MongoDbConstants.CRITERIA, constant(Filters.eq("name", "Raul Kripalani")))
 .to("mongodb:myDb?database=flights&collection=tickets&operation=findOneByQuery")
 .to("mock:resultFindOneByQuery");

from("direct:findAll")
 .to("mongodb:myDb?database=flights&collection=tickets&operation=findAll")
 .to("mock:resultFindAll");

from("direct:findAll")
 .setHeader(MongoDbConstants.CRITERIA, Filters.eq("name", "Raul Kripalani"))
 .to("mongodb:myDb?database=flights&collection=tickets&operation=findAll")
 .to("mock:resultFindAll");

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

706

CamelMongoDb
Limit

MongoDbConst
ants.LIMIT

Limits the number of elements returned. int/Integer

CamelMongoDb
BatchSize

MongoDbConst
ants.BATCH_SI
ZE

Limits the number of elements returned
in one batch. A cursor typically fetches a
batch of result objects and store them
locally. If batchSize is positive, it
represents the size of each batch of
objects retrieved. It can be adjusted to
optimize performance and limit data
transfer. If batchSize is negative, it will
limit of number objects returned, that fit
within the max batch size limit (usually
4MB), and cursor will be closed. For
example if batchSize is -10, then the
server will return a maximum of 10
documents and as many as can fit in 4MB,
then close the cursor. Note that this
feature is different from limit() in that
documents must fit within a maximum
size, and it removes the need to send a
request to close the cursor server-side.
The batch size can be changed even after
a cursor is iterated, in which case the
setting will apply on the next batch
retrieval.

int/Integer

CamelMongoDb
AllowDiskUse

MongoDbConst
ants.ALLOW_DI
SK_USE

Sets allowDiskUse MongoDB flag. This is
supported since MongoDB Server 4.3.1.
Using this header with older MongoDB
Server version can cause query to fail.

boolean/Boolean

Header key Quick constant Description (extracted from MongoDB
API doc)

Expected type

35.7.1.5.3. Example with option outputType=MongoIterable and batch size

The findAll operation will also return the following OUT headers to enable you to iterate through result
pages if you are using paging:

from("direct:findAll")
 .setHeader(MongoDbConstants.BATCH_SIZE).constant(10)
 .setHeader(MongoDbConstants.CRITERIA, constant(Filters.eq("name", "Raul Kripalani")))
 .to("mongodb:myDb?
database=flights&collection=tickets&operation=findAll&outputType=MongoIterable")
 .to("mock:resultFindAll");

CHAPTER 35. MONGODB

707

Header
key

Quick
consta
nt

Description (extracted from MongoDB API doc) Data type

Camel
Mong
oDbR
esultT
otalSi
ze

Mong
oDbC
onsta
nts.R
ESUL
T_TO
TAL_
SIZE

Number of objects matching the query. This does not take
limit/skip into consideration.

int/Integer

Camel
Mong
oDbR
esultP
ageSiz
e

Mong
oDbC
onsta
nts.R
ESUL
T_PA
GE_SI
ZE

Number of objects matching the query. This does not take
limit/skip into consideration.

int/Integer

NOTE

Supports optional parameters
This operation supports projection operators and sort clauses. See Specifying a fields
filter (projection), Specifying a sort clause.

35.7.1.6. count

Returns the total number of objects in a collection, returning a Long as the OUT message body.
The following example will count the number of records in the "dynamicCollectionName" collection.
Notice how dynamicity is enabled, and as a result, the operation will not run against the
"notableScientists" collection, but against the "dynamicCollectionName" collection.

You can provide a query The query object is extracted CamelMongoDbCriteria header. if the
CamelMongoDbCriteria header is null the query object is extracted message body, i.e. it should be of
type Bson or convertible to Bson., and operation will return the amount of documents matching this
criteria.

35.7.1.7. Specifying a fields filter (projection)

// from("direct:count").to("mongodb:myDb?
database=tickets&collection=flights&operation=count&dynamicity=true");
Long result = template.requestBodyAndHeader("direct:count", "irrelevantBody",
MongoDbConstants.COLLECTION, "dynamicCollectionName");
assertTrue("Result is not of type Long", result instanceof Long);

Document query = ...
Long count = template.requestBodyAndHeader("direct:count", query,
MongoDbConstants.COLLECTION, "dynamicCollectionName");

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

708

Query operations will, by default, return the matching objects in their entirety (with all their fields). If your
documents are large and you only require retrieving a subset of their fields, you can specify a field filter
in all query operations, simply by setting the relevant Bson (or type convertible to Bson, such as a
JSON String, Map, etc.) on the CamelMongoDbFieldsProjection header, constant shortcut:
MongoDbConstants.FIELDS_PROJECTION.

Here is an example that uses MongoDB’s Projections to simplify the creation of Bson. It retrieves all
fields except _id and boringField:

Here is an example that uses MongoDB’s Projections to simplify the creation of Bson. It retrieves all
fields except _id and boringField:

35.7.1.8. Specifying a sort clause

There is a often a requirement to fetch the min/max record from a collection based on sorting by a
particular field that uses MongoDB’s Sorts to simplify the creation of Bson. It retrieves all fields except
_id and boringField:

In a Camel route the SORT_BY header can be used with the findOneByQuery operation to achieve the
same result. If the FIELDS_PROJECTION header is also specified the operation will return a single
field/value pair that can be passed directly to another component (for example, a parameterized
MyBatis SELECT query). This example demonstrates fetching the temporally newest document from a
collection and reducing the result to a single field, based on the documentTimestamp field:

35.7.2. Create/update operations

35.7.2.1. insert

// route: from("direct:findAll").to("mongodb:myDb?
database=flights&collection=tickets&operation=findAll")
Bson fieldProjection = Projection.exclude("_id", "boringField");
Object result = template.requestBodyAndHeader("direct:findAll", ObjectUtils.NULL,
MongoDbConstants.FIELDS_PROJECTION, fieldProjection);

// route: from("direct:findAll").to("mongodb:myDb?
database=flights&collection=tickets&operation=findAll")
Bson fieldProjection = Projection.exclude("_id", "boringField");
Object result = template.requestBodyAndHeader("direct:findAll", ObjectUtils.NULL,
MongoDbConstants.FIELDS_PROJECTION, fieldProjection);

// route: from("direct:findAll").to("mongodb:myDb?
database=flights&collection=tickets&operation=findAll")
Bson sorts = Sorts.descending("_id");
Object result = template.requestBodyAndHeader("direct:findAll", ObjectUtils.NULL,
MongoDbConstants.SORT_BY, sorts);

.from("direct:someTriggeringEvent")

.setHeader(MongoDbConstants.SORT_BY).constant(Sorts.descending("documentTimestamp"))

.setHeader(MongoDbConstants.FIELDS_PROJECTION).constant(Projection.include("documentTime
stamp"))
.setBody().constant("{}")
.to("mongodb:myDb?database=local&collection=myDemoCollection&operation=findOneByQuery")
.to("direct:aMyBatisParameterizedSelect");

CHAPTER 35. MONGODB

709

Inserts an new object into the MongoDB collection, taken from the IN message body. Type conversion is
attempted to turn it into Document or a List.
Two modes are supported: single insert and multiple insert. For multiple insert, the endpoint will expect
a List, Array or Collections of objects of any type, as long as they are - or can be converted to -
Document. Example:

The operation will return a WriteResult, and depending on the WriteConcern or the value of the
invokeGetLastError option, getLastError() would have been called already or not. If you want to access
the ultimate result of the write operation, you need to retrieve the CommandResult by calling
getLastError() or getCachedLastError() on the WriteResult. Then you can verify the result by calling
CommandResult.ok(), CommandResult.getErrorMessage() and/or
CommandResult.getException().

Note that the new object’s _id must be unique in the collection. If you don’t specify the value, MongoDB
will automatically generate one for you. But if you do specify it and it is not unique, the insert operation
will fail (and for Camel to notice, you will need to enable invokeGetLastError or set a WriteConcern that
waits for the write result).

This is not a limitation of the component, but it is how things work in MongoDB for higher throughput. If
you are using a custom _id, you are expected to ensure at the application level that is unique (and this is
a good practice too).

OID(s) of the inserted record(s) is stored in the message header under CamelMongoOid key
(MongoDbConstants.OID constant). The value stored is org.bson.types.ObjectId for single insert or
java.util.List<org.bson.types.ObjectId> if multiple records have been inserted.

In MongoDB Java Driver 3.x the insertOne and insertMany operation return void. The Camel insert
operation return the Document or List of Documents inserted. Note that each Documents are Updated
by a new OID if need.

35.7.2.2. save

The save operation is equivalent to an upsert (UPdate, inSERT) operation, where the record will be
updated, and if it doesn’t exist, it will be inserted, all in one atomic operation. MongoDB will perform the
matching based on the _id field.

Beware that in case of an update, the object is replaced entirely and the usage of MongoDB’s
$modifiers is not permitted. Therefore, if you want to manipulate the object if it already exists, you have
two options:

1. perform a query to retrieve the entire object first along with all its fields (may not be efficient),
alter it inside Camel and then save it.

2. use the update operation with $modifiers, which will execute the update at the server-side
instead. You can enable the upsert flag, in which case if an insert is required, MongoDB will apply
the $modifiers to the filter query object and insert the result.

If the document to be saved does not contain the _id attribute, the operation will be an insert, and the
new _id created will be placed in the CamelMongoOid header.

For example:

from("direct:insert")
 .to("mongodb:myDb?database=flights&collection=tickets&operation=insert");

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

710

http://www.mongodb.org/display/DOCS/Updating#Updating-ModifierOperations
http://www.mongodb.org/display/DOCS/Updating#Updating-ModifierOperations

35.7.2.3. update

Update one or multiple records on the collection. Requires a filter query and a update rules.

You can define the filter using MongoDBConstants.CRITERIA header as Bson and define the update
rules as Bson in Body.

NOTE

Update after enrich
While defining the filter by using MongoDBConstants.CRITERIA header as Bson to query
mongodb before you do update, you should notice you need to remove it from the
resulting camel exchange during aggregation if you use enrich pattern with a aggregation
strategy and then apply mongodb update. If you don’t remove this header during
aggregation and/or redefine MongoDBConstants.CRITERIA header before sending
camel exchange to mongodb producer endpoint, you may end up with invalid camel
exchange payload while updating mongodb.

The second way Require a List<Bson> as the IN message body containing exactly 2 elements:

Element 1 (index 0) ⇒ filter query ⇒ determines what objects will be affected, same as a typical
query object

Element 2 (index 1) ⇒ update rules ⇒ how matched objects will be updated. All modifier
operations from MongoDB are supported.

NOTE

Multiupdates
By default, MongoDB will only update 1 object even if multiple objects match the filter
query. To instruct MongoDB to update all matching records, set the
CamelMongoDbMultiUpdate IN message header to true.

A header with key CamelMongoDbRecordsAffected will be returned
(MongoDbConstants.RECORDS_AFFECTED constant) with the number of records updated (copied
from WriteResult.getN()).

Supports the following IN message headers:

from("direct:insert")
 .to("mongodb:myDb?database=flights&collection=tickets&operation=save");

// route: from("direct:insert").to("mongodb:myDb?
database=flights&collection=tickets&operation=save");
org.bson.Document docForSave = new org.bson.Document();
docForSave.put("key", "value");
Object result = template.requestBody("direct:insert", docForSave);

CHAPTER 35. MONGODB

711

http://www.mongodb.org/display/DOCS/Updating#Updating-ModifierOperations

Header key Quick constant Description (extracted from MongoDB
API doc)

Expected type

CamelMongoDb
MultiUpdate

MongoDbConst
ants.MULTIUPD
ATE

If the update should be applied to all
objects matching. See
http://www.mongodb.org/display/DOCS
/Atomic+Operations

boolean/Boolean

CamelMongoDb
Upsert

MongoDbConst
ants.UPSERT

If the database should create the element
if it does not exist

boolean/Boolean

For example, the following will update all records whose filterField field equals true by setting the value
of the "scientist" field to "Darwin":

35.7.3. Delete operations

35.7.3.1. remove

Remove matching records from the collection. The IN message body will act as the removal filter query,
and is expected to be of type DBObject or a type convertible to it.
The following example will remove all objects whose field 'conditionField' equals true, in the science
database, notableScientists collection:

// route: from("direct:update").to("mongodb:myDb?
database=science&collection=notableScientists&operation=update");
List<Bson> body = new ArrayList<>();
Bson filterField = Filters.eq("filterField", true);
body.add(filterField);
BsonDocument updateObj = new BsonDocument().append("$set", new BsonDocument("scientist",
new BsonString("Darwin")));
body.add(updateObj);
Object result = template.requestBodyAndHeader("direct:update", body,
MongoDbConstants.MULTIUPDATE, true);

// route: from("direct:update").to("mongodb:myDb?
database=science&collection=notableScientists&operation=update");
Maps<String, Object> headers = new HashMap<>(2);
headers.add(MongoDbConstants.MULTIUPDATE, true);
headers.add(MongoDbConstants.FIELDS_FILTER, Filters.eq("filterField", true));
String updateObj = Updates.set("scientist", "Darwin");;
Object result = template.requestBodyAndHeaders("direct:update", updateObj, headers);

// route: from("direct:update").to("mongodb:myDb?
database=science&collection=notableScientists&operation=update");
String updateObj = "[{\"filterField\": true}, {\"$set\", {\"scientist\", \"Darwin\"}}]";
Object result = template.requestBodyAndHeader("direct:update", updateObj,
MongoDbConstants.MULTIUPDATE, true);

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

712

http://www.mongodb.org/display/DOCS/Atomic+Operations

A header with key CamelMongoDbRecordsAffected is returned
(MongoDbConstants.RECORDS_AFFECTED constant) with type int, containing the number of
records deleted (copied from WriteResult.getN()).

35.7.4. Bulk Write Operations

35.7.4.1. bulkWrite

Performs write operations in bulk with controls for order of execution. Requires a
List<WriteModel<Document>> as the IN message body containing commands for insert, update, and
delete operations.

The following example will insert a new scientist "Pierre Curie", update record with id "5" by setting the
value of the "scientist" field to "Marie Curie" and delete record with id "3" :

By default, operations are executed in order and interrupted on the first write error without processing
any remaining write operations in the list. To instruct MongoDB to continue to process remaining write
operations in the list, set the CamelMongoDbBulkOrdered IN message header to false. Unordered
operations are executed in parallel and this behavior is not guaranteed.

Header key Quick constant Description (extracted from MongoDB API doc) Expect
ed
type

CamelMongoDb
BulkOrdered

MongoDbConst
ants.BULK_OR
DERED

Perform an ordered or unordered operation
execution. Defaults to true.

boolea
n/Bool
ean

35.7.5. Other operations

35.7.5.1. aggregate

Perform a aggregation with the given pipeline contained in the body. Aggregations could be long and
heavy operations. Use with care.

// route: from("direct:remove").to("mongodb:myDb?
database=science&collection=notableScientists&operation=remove");
Bson conditionField = Filters.eq("conditionField", true);
Object result = template.requestBody("direct:remove", conditionField);

// route: from("direct:bulkWrite").to("mongodb:myDb?
database=science&collection=notableScientists&operation=bulkWrite");
List<WriteModel<Document>> bulkOperations = Arrays.asList(
 new InsertOneModel<>(new Document("scientist", "Pierre Curie")),
 new UpdateOneModel<>(new Document("_id", "5"),
 new Document("$set", new Document("scientist", "Marie Curie"))),
 new DeleteOneModel<>(new Document("_id", "3")));

BulkWriteResult result = template.requestBody("direct:bulkWrite", bulkOperations,
BulkWriteResult.class);

// route: from("direct:aggregate").to("mongodb:myDb?

CHAPTER 35. MONGODB

713

Supports the following IN message headers:

Header key Quick constant Description (extracted from MongoDB API doc) Expect
ed
type

CamelMongoDb
BatchSize

MongoDbConst
ants.BATCH_SI
ZE

Sets the number of documents to return per batch. int/Int
eger

CamelMongoDb
AllowDiskUse

MongoDbConst
ants.ALLOW_DI
SK_USE

Enable aggregation pipeline stages to write data to
temporary files.

boolea
n/Bool
ean

By default a List of all results is returned. This can be heavy on memory depending on the size of the
results. A safer alternative is to set your outputType=MongoIterable. The next Processor will see an
iterable in the message body allowing it to step through the results one by one. Thus setting a batch size
and returning an iterable allows for efficient retrieval and processing of the result.

An example would look like:

Note that calling .split(body()) is enough to send the entries down the route one-by-one, however it
would still load all the entries into memory first. Calling .streaming() is thus required to load data into
memory by batches.

35.7.5.2. getDbStats

Equivalent of running the db.stats() command in the MongoDB shell, which displays useful statistic
figures about the database.
For example:

> db.stats();
{
 "db" : "test",

database=science&collection=notableScientists&operation=aggregate");
List<Bson> aggregate = Arrays.asList(match(or(eq("scientist", "Darwin"), eq("scientist",
 group("$scientist", sum("count", 1)));
from("direct:aggregate")
 .setBody().constant(aggregate)
 .to("mongodb:myDb?database=science&collection=notableScientists&operation=aggregate")
 .to("mock:resultAggregate");

List<Bson> aggregate = Arrays.asList(match(or(eq("scientist", "Darwin"), eq("scientist",
 group("$scientist", sum("count", 1)));
from("direct:aggregate")
 .setHeader(MongoDbConstants.BATCH_SIZE).constant(10)
 .setBody().constant(aggregate)
 .to("mongodb:myDb?
database=science&collection=notableScientists&operation=aggregate&outputType=MongoIterable")
 .split(body())
 .streaming()
 .to("mock:resultAggregate");

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

714

 "collections" : 7,
 "objects" : 719,
 "avgObjSize" : 59.73296244784423,
 "dataSize" : 42948,
 "storageSize" : 1000058880,
 "numExtents" : 9,
 "indexes" : 4,
 "indexSize" : 32704,
 "fileSize" : 1275068416,
 "nsSizeMB" : 16,
 "ok" : 1
}

Usage example:

The operation will return a data structure similar to the one displayed in the shell, in the form of a
Document in the OUT message body.

35.7.5.3. getColStats

Equivalent of running the db.collection.stats() command in the MongoDB shell, which displays useful
statistic figures about the collection.
For example:

> db.camelTest.stats();
{
 "ns" : "test.camelTest",
 "count" : 100,
 "size" : 5792,
 "avgObjSize" : 57.92,
 "storageSize" : 20480,
 "numExtents" : 2,
 "nindexes" : 1,
 "lastExtentSize" : 16384,
 "paddingFactor" : 1,
 "flags" : 1,
 "totalIndexSize" : 8176,
 "indexSizes" : {
 "_id_" : 8176
 },
 "ok" : 1
}

Usage example:

// from("direct:getDbStats").to("mongodb:myDb?
database=flights&collection=tickets&operation=getDbStats");
Object result = template.requestBody("direct:getDbStats", "irrelevantBody");
assertTrue("Result is not of type Document", result instanceof Document);

// from("direct:getColStats").to("mongodb:myDb?
database=flights&collection=tickets&operation=getColStats");
Object result = template.requestBody("direct:getColStats", "irrelevantBody");
assertTrue("Result is not of type Document", result instanceof Document);

CHAPTER 35. MONGODB

715

The operation will return a data structure similar to the one displayed in the shell, in the form of a
Document in the OUT message body.

35.7.5.4. command

Run the body as a command on database. Useful for admin operation as getting host information,
replication or sharding status.

Collection parameter is not use for this operation.

35.7.6. Dynamic operations

An Exchange can override the endpoint’s fixed operation by setting the CamelMongoDbOperation
header, defined by the MongoDbConstants.OPERATION_HEADER constant.
The values supported are determined by the MongoDbOperation enumeration and match the accepted
values for the operation parameter on the endpoint URI.

For example:

35.8. CONSUMERS

There are several types of consumers:

1. Tailable Cursor Consumer

2. Change Streams Consumer

35.8.1. Tailable Cursor Consumer

MongoDB offers a mechanism to instantaneously consume ongoing data from a collection, by keeping
the cursor open just like the tail -f command of *nix systems. This mechanism is significantly more
efficient than a scheduled poll, due to the fact that the server pushes new data to the client as it
becomes available, rather than making the client ping back at scheduled intervals to fetch new data. It
also reduces otherwise redundant network traffic.

There is only one requisite to use tailable cursors: the collection must be a "capped collection", meaning
that it will only hold N objects, and when the limit is reached, MongoDB flushes old objects in the same
order they were originally inserted. For more information, please refer to
http://www.mongodb.org/display/DOCS/Tailable+Cursors.

The Camel MongoDB component implements a tailable cursor consumer, making this feature available
for you to use in your Camel routes. As new objects are inserted, MongoDB will push them as Document
in natural order to your tailable cursor consumer, who will transform them to an Exchange and will trigger
your route logic.

// route: from("command").to("mongodb:myDb?database=science&operation=command");
DBObject commandBody = new BasicDBObject("hostInfo", "1");
Object result = template.requestBody("direct:command", commandBody);

// from("direct:insert").to("mongodb:myDb?database=flights&collection=tickets&operation=insert");
Object result = template.requestBodyAndHeader("direct:insert", "irrelevantBody",
MongoDbConstants.OPERATION_HEADER, "count");
assertTrue("Result is not of type Long", result instanceof Long);

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

716

http://www.mongodb.org/display/DOCS/Tailable+Cursors

35.9. HOW THE TAILABLE CURSOR CONSUMER WORKS

To turn a cursor into a tailable cursor, a few special flags are to be signalled to MongoDB when first
generating the cursor. Once created, the cursor will then stay open and will block upon calling the
MongoCursor.next() method until new data arrives. However, the MongoDB server reserves itself the
right to kill your cursor if new data doesn’t appear after an indeterminate period. If you are interested to
continue consuming new data, you have to regenerate the cursor. And to do so, you will have to
remember the position where you left off or else you will start consuming from the top again.

The Camel MongoDB tailable cursor consumer takes care of all these tasks for you. You will just need to
provide the key to some field in your data of increasing nature, which will act as a marker to position your
cursor every time it is regenerated, e.g. a timestamp, a sequential ID, etc. It can be of any datatype
supported by MongoDB. Date, Strings and Integers are found to work well. We call this mechanism "tail
tracking" in the context of this component.

The consumer will remember the last value of this field and whenever the cursor is to be regenerated, it
will run the query with a filter like: increasingField > lastValue, so that only unread data is consumed.

Setting the increasing field: Set the key of the increasing field on the endpoint URI
tailTrackingIncreasingField option. In Camel 2.10, it must be a top-level field in your data, as nested
navigation for this field is not yet supported. That is, the "timestamp" field is okay, but
"nested.timestamp" will not work. Please open a ticket in the Camel JIRA if you do require support for
nested increasing fields.

Cursor regeneration delay: One thing to note is that if new data is not already available upon
initialisation, MongoDB will kill the cursor instantly. Since we don’t want to overwhelm the server in this
case, a cursorRegenerationDelay option has been introduced (with a default value of 1000ms.), which
you can modify to suit your needs.

An example:

The above route will consume from the "flights.cancellations" capped collection, using "departureTime"
as the increasing field, with a default regeneration cursor delay of 1000ms.

35.10. PERSISTENT TAIL TRACKING

Standard tail tracking is volatile and the last value is only kept in memory. However, in practice you will
need to restart your Camel container every now and then, but your last value would then be lost and
your tailable cursor consumer would start consuming from the top again, very likely sending duplicate
records into your route.

To overcome this situation, you can enable the persistent tail tracking feature to keep track of the last
consumed increasing value in a special collection inside your MongoDB database too. When the
consumer initialises again, it will restore the last tracked value and continue as if nothing happened.

The last read value is persisted on two occasions: every time the cursor is regenerated and when the
consumer shuts down. We may consider persisting at regular intervals too in the future (flush every 5
seconds) for added robustness if the demand is there. To request this feature, please open a ticket in
the Camel JIRA.

from("mongodb:myDb?
database=flights&collection=cancellations&tailTrackIncreasingField=departureTime")
 .id("tailableCursorConsumer1")
 .autoStartup(false)
 .to("mock:test");

CHAPTER 35. MONGODB

717

35.11. ENABLING PERSISTENT TAIL TRACKING

To enable this function, set at least the following options on the endpoint URI:

persistentTailTracking option to true

persistentId option to a unique identifier for this consumer, so that the same collection can be
reused across many consumers

Additionally, you can set the tailTrackDb, tailTrackCollection and tailTrackField options to customise
where the runtime information will be stored. Refer to the endpoint options table at the top of this page
for descriptions of each option.

For example, the following route will consume from the "flights.cancellations" capped collection, using
"departureTime" as the increasing field, with a default regeneration cursor delay of 1000ms, with
persistent tail tracking turned on, and persisting under the "cancellationsTracker" id on the
"flights.camelTailTracking", storing the last processed value under the "lastTrackingValue" field
(camelTailTracking and lastTrackingValue are defaults).

Below is another example identical to the one above, but where the persistent tail tracking runtime
information will be stored under the "trackers.camelTrackers" collection, in the
"lastProcessedDepartureTime" field:

35.11.1. Change Streams Consumer

Change Streams allow applications to access real-time data changes without the complexity and risk of
tailing the MongoDB oplog. Applications can use change streams to subscribe to all data changes on a
collection and immediately react to them. Because change streams use the aggregation framework,
applications can also filter for specific changes or transform the notifications at will. The exchange body
will contain the full document of any change.

To configure Change Streams Consumer you need to specify consumerType, database, collection
and optional JSON property streamFilter to filter events. That JSON property is standard MongoDB
$match aggregation. It could be easily specified using XML DSL configuration:

from("mongodb:myDb?
database=flights&collection=cancellations&tailTrackIncreasingField=departureTime&persistentTailTracki
ng=true" +
 "&persistentId=cancellationsTracker")
 .id("tailableCursorConsumer2")
 .autoStartup(false)
 .to("mock:test");

from("mongodb:myDb?
database=flights&collection=cancellations&tailTrackIncreasingField=departureTime&persistentTailTracki
ng=true" +
 "&persistentId=cancellationsTracker&tailTrackDb=trackers&tailTrackCollection=camelTrackers" +
 "&tailTrackField=lastProcessedDepartureTime")
 .id("tailableCursorConsumer3")
 .autoStartup(false)
 .to("mock:test");

<route id="filterConsumer">
 <from uri="mongodb:myDb?
consumerType=changeStreams&database=flights&collection=tickets&streamFilter={

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

718

Java configuration:

NOTE

You can externalize the streamFilter value into a property placeholder which allows the
endpoint URI parameters to be cleaner and easier to read.

The changeStreams consumer type will also return the following OUT headers:

Header key Quick constant Description (extracted from MongoDB
API doc)

Data type

CamelMongoDb
StreamOperatio
nType

MongoDbConst
ants.STREAM_
OPERATION_TY
PE

The type of operation that occurred. Can
be any of the following values: insert,
delete, replace, update, drop, rename,
dropDatabase, invalidate.

String

_id MongoDbConst
ants.MONGO_ID

A document that contains the _id of the
document created or modified by the
insert, replace, delete, update operations
(i.e. CRUD operations). For sharded
collections, also displays the full shard key
for the document. The _id field is not
repeated if it is already a part of the shard
key.

ObjectId

35.12. TYPE CONVERSIONS

The MongoDbBasicConverters type converter included with the camel-mongodb component provides
the following conversions:

Name From
type

To
type

How?

fromMapToDocum
ent

Map Docu
ment

constructs a new Document via the new Document(Map m)
constructor.

fromDocumentTo
Map

Docu
ment

Map Document already implements Map.

'$match':{'$or':[{'fullDocument.stringValue': 'specificValue'}]} }"/>
 <to uri="mock:test"/>
</route>

from("mongodb:myDb?
consumerType=changeStreams&database=flights&collection=tickets&streamFilter={ '$match':{'$or':
[{'fullDocument.stringValue': 'specificValue'}]} }")
 .to("mock:test");

CHAPTER 35. MONGODB

719

fromStringToDocu
ment

String Docu
ment

uses com.mongodb.Document.parse(String s).

fromStringToObje
ctId

String Object
Id

constructs a new ObjectId via the new ObjectId(s)

fromFileToDocum
ent

File Docu
ment

uses fromInputStreamToDocument under the hood

fromInputStreamT
oDocument

InputS
tream

Docu
ment

converts the inputstream bytes to a Document

fromStringToList String List<B
son>

uses org.bson.codecs.configuration.CodecRegistries to
convert to BsonArray then to List<Bson>.

Name From
type

To
type

How?

This type converter is auto-discovered, so you don’t need to configure anything manually.

35.13. SPRING BOOT AUTO-CONFIGURATION

When using mongodb with Spring Boot make sure to use the following Maven dependency to have
support for auto configuration:

The component supports 5 options, which are listed below.

Name Description Defaul
t

Type

camel.component
.mongodb.autowir
ed-enabled

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true Boolean

<dependency>
 <groupId>org.apache.camel.springboot</groupId>
 <artifactId>camel-mongodb-starter</artifactId>
 <version>3.14.5.redhat-00032</version>
 <!-- Use your Camel Spring Boot version -->
</dependency>

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

720

camel.component
.mongodb.bridge-
error-handler

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false Boolean

camel.component
.mongodb.enable
d

Whether to enable auto configuration of the
mongodb component. This is enabled by default.

 Boolean

camel.component
.mongodb.lazy-
start-producer

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false Boolean

camel.component
.mongodb.mongo
-connection

Shared client used for connection. All endpoints
generated from the component will share this
connection client. The option is a
com.mongodb.client.MongoClient type.

 MongoClient

Name Description Defaul
t

Type

CHAPTER 35. MONGODB

721

CHAPTER 36. NETTY
Both producer and consumer are supported

The Netty component in Camel is a socket communication component, based on the Netty project
version 4.
Netty is a NIO client server framework which enables quick and easy development of
networkServerInitializerFactory applications such as protocol servers and clients.
Netty greatly simplifies and streamlines network programming such as TCP and UDP socket server.

This camel component supports both producer and consumer endpoints.

The Netty component has several options and allows fine-grained control of a number of TCP/UDP
communication parameters (buffer sizes, keepAlives, tcpNoDelay, etc) and facilitates both In-Only and
In-Out communication on a Camel route.

Maven users will need to add the following dependency to their pom.xml for this component:

36.1. URI FORMAT

The URI scheme for a netty component is as follows

netty:tcp://0.0.0.0:99999[?options]
netty:udp://remotehost:99999/[?options]

This component supports producer and consumer endpoints for both TCP and UDP.

36.2. CONFIGURING OPTIONS

Camel components are configured on two separate levels:

component level

endpoint level

36.2.1. Configuring Component Options

The component level is the highest level which holds general and common configurations that are
inherited by the endpoints. For example, a component may have security settings, credentials for
authentication, urls for network connection and so forth.

Some components only have a few options, and others may have many. Because components typically
have pre configured defaults that are commonly used, then you may often only need to configure a few
options on a component; or none at all.

Configuring components can be done with the Component DSL, in a configuration file
(application.properties|yaml), or directly with Java code.

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-netty</artifactId>
 <version>3.14.5.redhat-00018</version>
 <!-- use the same version as your Camel core version -->
</dependency>

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

722

http://netty.io
https://camel.apache.org/manual/component-dsl.html

36.2.2. Configuring Endpoint Options

Where you find yourself configuring the most is on endpoints, as endpoints often have many options,
which allows you to configure what you need the endpoint to do. The options are also categorized into
whether the endpoint is used as consumer (from) or as a producer (to), or used for both.

Configuring endpoints is most often done directly in the endpoint URI as path and query parameters.
You can also use the Endpoint DSL as a type safe way of configuring endpoints.

A good practice when configuring options is to use Property Placeholders, which allows to not hardcode
urls, port numbers, sensitive information, and other settings. In other words placeholders allows to
externalize the configuration from your code, and gives more flexibility and reuse.

The following two sections lists all the options, firstly for the component followed by the endpoint.

36.3. COMPONENT OPTIONS

The Netty component supports 73 options, which are listed below.

Name Description Defaul
t

Type

configuration
(common)

To use the NettyConfiguration as configuration when
creating endpoints.

 NettyConfiguratio
n

disconnect
(common)

Whether or not to disconnect(close) from Netty
Channel right after use. Can be used for both
consumer and producer.

false boolean

keepAlive
(common)

Setting to ensure socket is not closed due to
inactivity.

true boolean

reuseAddress
(common)

Setting to facilitate socket multiplexing. true boolean

reuseChannel
(common)

This option allows producers and consumers (in client
mode) to reuse the same Netty Channel for the
lifecycle of processing the Exchange. This is useful if
you need to call a server multiple times in a Camel
route and want to use the same network connection.
When using this, the channel is not returned to the
connection pool until the Exchange is done; or
disconnected if the disconnect option is set to true.
The reused Channel is stored on the Exchange as an
exchange property with the key
NettyConstants#NETTY_CHANNEL which allows
you to obtain the channel during routing and use it as
well.

false boolean

sync (common) Setting to set endpoint as one-way or request-
response.

true boolean

CHAPTER 36. NETTY

723

https://camel.apache.org/manual/Endpoint-dsl.html
https://camel.apache.org/manual/using-propertyplaceholder.html#_using_property_placeholders

tcpNoDelay
(common)

Setting to improve TCP protocol performance. true boolean

bridgeErrorHandl
er (consumer)

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false boolean

broadcast
(consumer)

Setting to choose Multicast over UDP. false boolean

clientMode
(consumer)

If the clientMode is true, netty consumer will connect
the address as a TCP client.

false boolean

reconnect
(consumer)

Used only in clientMode in consumer, the consumer
will attempt to reconnect on disconnection if this is
enabled.

true boolean

reconnectInterval
(consumer)

Used if reconnect and clientMode is enabled. The
interval in milli seconds to attempt reconnection.

10000 int

backlog
(consumer
(advanced))

Allows to configure a backlog for netty consumer
(server). Note the backlog is just a best effort
depending on the OS. Setting this option to a value
such as 200, 500 or 1000, tells the TCP stack how
long the accept queue can be If this option is not
configured, then the backlog depends on OS setting.

 int

bossCount
(consumer
(advanced))

When netty works on nio mode, it uses default
bossCount parameter from Netty, which is 1. User can
use this option to override the default bossCount
from Netty.

1 int

bossGroup
(consumer
(advanced))

Set the BossGroup which could be used for handling
the new connection of the server side across the
NettyEndpoint.

 EventLoopGroup

disconnectOnNoR
eply (consumer
(advanced))

If sync is enabled then this option dictates
NettyConsumer if it should disconnect where there is
no reply to send back.

true boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

724

executorService
(consumer
(advanced))

To use the given EventExecutorGroup. EventExecutorGro
up

maximumPoolSiz
e (consumer
(advanced))

Sets a maximum thread pool size for the netty
consumer ordered thread pool. The default size is 2 x
cpu_core plus 1. Setting this value to eg 10 will then
use 10 threads unless 2 x cpu_core plus 1 is a higher
value, which then will override and be used. For
example if there are 8 cores, then the consumer
thread pool will be 17. This thread pool is used to
route messages received from Netty by Camel. We
use a separate thread pool to ensure ordering of
messages and also in case some messages will block,
then nettys worker threads (event loop) wont be
affected.

 int

nettyServerBoots
trapFactory
(consumer
(advanced))

To use a custom NettyServerBootstrapFactory. NettyServerBoots
trapFactory

networkInterface
(consumer
(advanced))

When using UDP then this option can be used to
specify a network interface by its name, such as eth0
to join a multicast group.

 String

noReplyLogLevel
(consumer
(advanced))

If sync is enabled this option dictates NettyConsumer
which logging level to use when logging a there is no
reply to send back.

Enum values:

TRACE

DEBUG

INFO

WARN

ERROR

OFF

WARN LoggingLevel

Name Description Defaul
t

Type

CHAPTER 36. NETTY

725

serverClosedCha
nnelExceptionCa
ughtLogLevel
(consumer
(advanced))

If the server (NettyConsumer) catches an
java.nio.channels.ClosedChannelException then its
logged using this logging level. This is used to avoid
logging the closed channel exceptions, as clients can
disconnect abruptly and then cause a flood of closed
exceptions in the Netty server.

Enum values:

TRACE

DEBUG

INFO

WARN

ERROR

OFF

DEBU
G

LoggingLevel

serverExceptionC
aughtLogLevel
(consumer
(advanced))

If the server (NettyConsumer) catches an exception
then its logged using this logging level.

Enum values:

TRACE

DEBUG

INFO

WARN

ERROR

OFF

WARN LoggingLevel

serverInitializerFa
ctory (consumer
(advanced))

To use a custom ServerInitializerFactory. ServerInitializerFa
ctory

usingExecutorSer
vice (consumer
(advanced))

Whether to use ordered thread pool, to ensure
events are processed orderly on the same channel.

true boolean

connectTimeout
(producer)

Time to wait for a socket connection to be available.
Value is in milliseconds.

10000 int

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

726

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

requestTimeout
(producer)

Allows to use a timeout for the Netty producer when
calling a remote server. By default no timeout is in
use. The value is in milli seconds, so eg 30000 is 30
seconds. The requestTimeout is using Netty’s
ReadTimeoutHandler to trigger the timeout.

 long

clientInitializerFa
ctory (producer
(advanced))

To use a custom ClientInitializerFactory. ClientInitializerFac
tory

correlationManag
er (producer
(advanced))

To use a custom correlation manager to manage how
request and reply messages are mapped when using
request/reply with the netty producer. This should
only be used if you have a way to map requests
together with replies such as if there is correlation ids
in both the request and reply messages. This can be
used if you want to multiplex concurrent messages
on the same channel (aka connection) in netty. When
doing this you must have a way to correlate the
request and reply messages so you can store the
right reply on the inflight Camel Exchange before its
continued routed. We recommend extending the
TimeoutCorrelationManagerSupport when you build
custom correlation managers. This provides support
for timeout and other complexities you otherwise
would need to implement as well. See also the
producerPoolEnabled option for more details.

 NettyCamelState
CorrelationManag
er

lazyChannelCreat
ion (producer
(advanced))

Channels can be lazily created to avoid exceptions, if
the remote server is not up and running when the
Camel producer is started.

true boolean

Name Description Defaul
t

Type

CHAPTER 36. NETTY

727

producerPoolEna
bled (producer
(advanced))

Whether producer pool is enabled or not. Important:
If you turn this off then a single shared connection is
used for the producer, also if you are doing
request/reply. That means there is a potential issue
with interleaved responses if replies comes back out-
of-order. Therefore you need to have a correlation id
in both the request and reply messages so you can
properly correlate the replies to the Camel callback
that is responsible for continue processing the
message in Camel. To do this you need to implement
NettyCamelStateCorrelationManager as correlation
manager and configure it via the correlationManager
option. See also the correlationManager option for
more details.

true boolean

producerPoolMax
Idle (producer
(advanced))

Sets the cap on the number of idle instances in the
pool.

100 int

producerPoolMax
Total (producer
(advanced))

Sets the cap on the number of objects that can be
allocated by the pool (checked out to clients, or idle
awaiting checkout) at a given time. Use a negative
value for no limit.

-1 int

producerPoolMin
EvictableIdle
(producer
(advanced))

Sets the minimum amount of time (value in millis) an
object may sit idle in the pool before it is eligible for
eviction by the idle object evictor.

30000
0

long

producerPoolMinI
dle (producer
(advanced))

Sets the minimum number of instances allowed in the
producer pool before the evictor thread (if active)
spawns new objects.

 int

udpConnectionles
sSending
(producer
(advanced))

This option supports connection less udp sending
which is a real fire and forget. A connected udp send
receive the PortUnreachableException if no one is
listen on the receiving port.

false boolean

useByteBuf
(producer
(advanced))

If the useByteBuf is true, netty producer will turn the
message body into ByteBuf before sending it out.

false boolean

hostnameVerifica
tion (security)

To enable/disable hostname verification on
SSLEngine.

false boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

728

allowSerializedHe
aders (advanced)

Only used for TCP when transferExchange is true.
When set to true, serializable objects in headers and
properties will be added to the exchange. Otherwise
Camel will exclude any non-serializable objects and
log it at WARN level.

false boolean

autowiredEnabled
(advanced)

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true boolean

channelGroup
(advanced)

To use a explicit ChannelGroup. ChannelGroup

nativeTransport
(advanced)

Whether to use native transport instead of NIO.
Native transport takes advantage of the host
operating system and is only supported on some
platforms. You need to add the netty JAR for the
host operating system you are using. See more
details at: .

false boolean

options
(advanced)

Allows to configure additional netty options using
option. as prefix. For example
option.child.keepAlive=false to set the netty option
child.keepAlive=false. See the Netty documentation
for possible options that can be used.

 Map

receiveBufferSize
(advanced)

The TCP/UDP buffer sizes to be used during
inbound communication. Size is bytes.

65536 int

receiveBufferSize
Predictor
(advanced)

Configures the buffer size predictor. See details at
Jetty documentation and this mail thread.

 int

sendBufferSize
(advanced)

The TCP/UDP buffer sizes to be used during
outbound communication. Size is bytes.

65536 int

transferExchange
(advanced)

Only used for TCP. You can transfer the exchange
over the wire instead of just the body. The following
fields are transferred: In body, Out body, fault body,
In headers, Out headers, fault headers, exchange
properties, exchange exception. This requires that
the objects are serializable. Camel will exclude any
non-serializable objects and log it at WARN level.

false boolean

Name Description Defaul
t

Type

CHAPTER 36. NETTY

729

udpByteArrayCod
ec (advanced)

For UDP only. If enabled the using byte array codec
instead of Java serialization protocol.

false boolean

workerCount
(advanced)

When netty works on nio mode, it uses default
workerCount parameter from Netty (which is
cpu_core_threads x 2). User can use this option to
override the default workerCount from Netty.

 int

workerGroup
(advanced)

To use a explicit EventLoopGroup as the boss thread
pool. For example to share a thread pool with
multiple consumers or producers. By default each
consumer or producer has their own worker pool with
2 x cpu count core threads.

 EventLoopGroup

allowDefaultCode
c (codec)

The netty component installs a default codec if both,
encoder/decoder is null and textline is false. Setting
allowDefaultCodec to false prevents the netty
component from installing a default codec as the first
element in the filter chain.

true boolean

autoAppendDelim
iter (codec)

Whether or not to auto append missing end delimiter
when sending using the textline codec.

true boolean

decoderMaxLineL
ength (codec)

The max line length to use for the textline codec. 1024 int

decoders (codec) A list of decoders to be used. You can use a String
which have values separated by comma, and have the
values be looked up in the Registry. Just remember
to prefix the value with # so Camel knows it should
lookup.

 List

delimiter (codec) The delimiter to use for the textline codec. Possible
values are LINE and NULL.

Enum values:

LINE

NULL

LINE TextLineDelimiter

encoders (codec) A list of encoders to be used. You can use a String
which have values separated by comma, and have the
values be looked up in the Registry. Just remember
to prefix the value with # so Camel knows it should
lookup.

 List

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

730

encoding (codec) The encoding (a charset name) to use for the textline
codec. If not provided, Camel will use the JVM
default Charset.

 String

textline (codec) Only used for TCP. If no codec is specified, you can
use this flag to indicate a text line based codec; if not
specified or the value is false, then Object
Serialization is assumed over TCP - however only
Strings are allowed to be serialized by default.

false boolean

enabledProtocols
(security)

Which protocols to enable when using SSL. TLSv1,
TLSv1.1,
TLSv1.2

String

keyStoreFile
(security)

Client side certificate keystore to be used for
encryption.

 File

keyStoreFormat
(security)

Keystore format to be used for payload encryption.
Defaults to JKS if not set.

 String

keyStoreResourc
e (security)

Client side certificate keystore to be used for
encryption. Is loaded by default from classpath, but
you can prefix with classpath:, file:, or http: to load the
resource from different systems.

 String

needClientAuth
(security)

Configures whether the server needs client
authentication when using SSL.

false boolean

passphrase
(security)

Password setting to use in order to encrypt/decrypt
payloads sent using SSH.

 String

securityProvider
(security)

Security provider to be used for payload encryption.
Defaults to SunX509 if not set.

 String

ssl (security) Setting to specify whether SSL encryption is applied
to this endpoint.

false boolean

sslClientCertHea
ders (security)

When enabled and in SSL mode, then the Netty
consumer will enrich the Camel Message with
headers having information about the client
certificate such as subject name, issuer name, serial
number, and the valid date range.

false boolean

sslContextParam
eters (security)

To configure security using SSLContextParameters. SSLContextParam
eters

Name Description Defaul
t

Type

CHAPTER 36. NETTY

731

sslHandler
(security)

Reference to a class that could be used to return an
SSL Handler.

 SslHandler

trustStoreFile
(security)

Server side certificate keystore to be used for
encryption.

 File

trustStoreResour
ce (security)

Server side certificate keystore to be used for
encryption. Is loaded by default from classpath, but
you can prefix with classpath:, file:, or http: to load the
resource from different systems.

 String

useGlobalSslCont
extParameters
(security)

Enable usage of global SSL context parameters. false boolean

Name Description Defaul
t

Type

36.4. ENDPOINT OPTIONS

The Netty endpoint is configured using URI syntax:

netty:protocol://host:port

with the following path and query parameters:

36.4.1. Path Parameters (3 parameters)

Name Description Defaul
t

Type

protocol
(common)

Required The protocol to use which can be tcp or
udp.

Enum values:

tcp

udp

 String

host (common) Required The hostname. For the consumer the
hostname is localhost or 0.0.0.0. For the producer
the hostname is the remote host to connect to.

 String

port (common) Required The host port number. int

36.4.2. Query Parameters (71 parameters)

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

732

Name Description Defaul
t

Type

disconnect
(common)

Whether or not to disconnect(close) from Netty
Channel right after use. Can be used for both
consumer and producer.

false boolean

keepAlive
(common)

Setting to ensure socket is not closed due to
inactivity.

true boolean

reuseAddress
(common)

Setting to facilitate socket multiplexing. true boolean

reuseChannel
(common)

This option allows producers and consumers (in client
mode) to reuse the same Netty Channel for the
lifecycle of processing the Exchange. This is useful if
you need to call a server multiple times in a Camel
route and want to use the same network connection.
When using this, the channel is not returned to the
connection pool until the Exchange is done; or
disconnected if the disconnect option is set to true.
The reused Channel is stored on the Exchange as an
exchange property with the key
NettyConstants#NETTY_CHANNEL which allows
you to obtain the channel during routing and use it as
well.

false boolean

sync (common) Setting to set endpoint as one-way or request-
response.

true boolean

tcpNoDelay
(common)

Setting to improve TCP protocol performance. true boolean

bridgeErrorHandl
er (consumer)

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false boolean

broadcast
(consumer)

Setting to choose Multicast over UDP. false boolean

clientMode
(consumer)

If the clientMode is true, netty consumer will connect
the address as a TCP client.

false boolean

CHAPTER 36. NETTY

733

reconnect
(consumer)

Used only in clientMode in consumer, the consumer
will attempt to reconnect on disconnection if this is
enabled.

true boolean

reconnectInterval
(consumer)

Used if reconnect and clientMode is enabled. The
interval in milli seconds to attempt reconnection.

10000 int

backlog
(consumer
(advanced))

Allows to configure a backlog for netty consumer
(server). Note the backlog is just a best effort
depending on the OS. Setting this option to a value
such as 200, 500 or 1000, tells the TCP stack how
long the accept queue can be If this option is not
configured, then the backlog depends on OS setting.

 int

bossCount
(consumer
(advanced))

When netty works on nio mode, it uses default
bossCount parameter from Netty, which is 1. User can
use this option to override the default bossCount
from Netty.

1 int

bossGroup
(consumer
(advanced))

Set the BossGroup which could be used for handling
the new connection of the server side across the
NettyEndpoint.

 EventLoopGroup

disconnectOnNoR
eply (consumer
(advanced))

If sync is enabled then this option dictates
NettyConsumer if it should disconnect where there is
no reply to send back.

true boolean

exceptionHandler
(consumer
(advanced))

To let the consumer use a custom ExceptionHandler.
Notice if the option bridgeErrorHandler is enabled
then this option is not in use. By default the consumer
will deal with exceptions, that will be logged at WARN
or ERROR level and ignored.

 ExceptionHandler

exchangePattern
(consumer
(advanced))

Sets the exchange pattern when the consumer
creates an exchange.

Enum values:

InOnly

InOut

InOptionalOut

 ExchangePattern

nettyServerBoots
trapFactory
(consumer
(advanced))

To use a custom NettyServerBootstrapFactory. NettyServerBoots
trapFactory

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

734

networkInterface
(consumer
(advanced))

When using UDP then this option can be used to
specify a network interface by its name, such as eth0
to join a multicast group.

 String

noReplyLogLevel
(consumer
(advanced))

If sync is enabled this option dictates NettyConsumer
which logging level to use when logging a there is no
reply to send back.

Enum values:

TRACE

DEBUG

INFO

WARN

ERROR

OFF

WARN LoggingLevel

serverClosedCha
nnelExceptionCa
ughtLogLevel
(consumer
(advanced))

If the server (NettyConsumer) catches an
java.nio.channels.ClosedChannelException then its
logged using this logging level. This is used to avoid
logging the closed channel exceptions, as clients can
disconnect abruptly and then cause a flood of closed
exceptions in the Netty server.

Enum values:

TRACE

DEBUG

INFO

WARN

ERROR

OFF

DEBU
G

LoggingLevel

Name Description Defaul
t

Type

CHAPTER 36. NETTY

735

serverExceptionC
aughtLogLevel
(consumer
(advanced))

If the server (NettyConsumer) catches an exception
then its logged using this logging level.

Enum values:

TRACE

DEBUG

INFO

WARN

ERROR

OFF

WARN LoggingLevel

serverInitializerFa
ctory (consumer
(advanced))

To use a custom ServerInitializerFactory. ServerInitializerFa
ctory

usingExecutorSer
vice (consumer
(advanced))

Whether to use ordered thread pool, to ensure
events are processed orderly on the same channel.

true boolean

connectTimeout
(producer)

Time to wait for a socket connection to be available.
Value is in milliseconds.

10000 int

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

requestTimeout
(producer)

Allows to use a timeout for the Netty producer when
calling a remote server. By default no timeout is in
use. The value is in milli seconds, so eg 30000 is 30
seconds. The requestTimeout is using Netty’s
ReadTimeoutHandler to trigger the timeout.

 long

clientInitializerFa
ctory (producer
(advanced))

To use a custom ClientInitializerFactory. ClientInitializerFac
tory

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

736

correlationManag
er (producer
(advanced))

To use a custom correlation manager to manage how
request and reply messages are mapped when using
request/reply with the netty producer. This should
only be used if you have a way to map requests
together with replies such as if there is correlation ids
in both the request and reply messages. This can be
used if you want to multiplex concurrent messages
on the same channel (aka connection) in netty. When
doing this you must have a way to correlate the
request and reply messages so you can store the
right reply on the inflight Camel Exchange before its
continued routed. We recommend extending the
TimeoutCorrelationManagerSupport when you build
custom correlation managers. This provides support
for timeout and other complexities you otherwise
would need to implement as well. See also the
producerPoolEnabled option for more details.

 NettyCamelState
CorrelationManag
er

lazyChannelCreat
ion (producer
(advanced))

Channels can be lazily created to avoid exceptions, if
the remote server is not up and running when the
Camel producer is started.

true boolean

producerPoolEna
bled (producer
(advanced))

Whether producer pool is enabled or not. Important:
If you turn this off then a single shared connection is
used for the producer, also if you are doing
request/reply. That means there is a potential issue
with interleaved responses if replies comes back out-
of-order. Therefore you need to have a correlation id
in both the request and reply messages so you can
properly correlate the replies to the Camel callback
that is responsible for continue processing the
message in Camel. To do this you need to implement
NettyCamelStateCorrelationManager as correlation
manager and configure it via the correlationManager
option. See also the correlationManager option for
more details.

true boolean

producerPoolMax
Idle (producer
(advanced))

Sets the cap on the number of idle instances in the
pool.

100 int

producerPoolMax
Total (producer
(advanced))

Sets the cap on the number of objects that can be
allocated by the pool (checked out to clients, or idle
awaiting checkout) at a given time. Use a negative
value for no limit.

-1 int

Name Description Defaul
t

Type

CHAPTER 36. NETTY

737

producerPoolMin
EvictableIdle
(producer
(advanced))

Sets the minimum amount of time (value in millis) an
object may sit idle in the pool before it is eligible for
eviction by the idle object evictor.

30000
0

long

producerPoolMinI
dle (producer
(advanced))

Sets the minimum number of instances allowed in the
producer pool before the evictor thread (if active)
spawns new objects.

 int

udpConnectionles
sSending
(producer
(advanced))

This option supports connection less udp sending
which is a real fire and forget. A connected udp send
receive the PortUnreachableException if no one is
listen on the receiving port.

false boolean

useByteBuf
(producer
(advanced))

If the useByteBuf is true, netty producer will turn the
message body into ByteBuf before sending it out.

false boolean

hostnameVerifica
tion (security)

To enable/disable hostname verification on
SSLEngine.

false boolean

allowSerializedHe
aders (advanced)

Only used for TCP when transferExchange is true.
When set to true, serializable objects in headers and
properties will be added to the exchange. Otherwise
Camel will exclude any non-serializable objects and
log it at WARN level.

false boolean

channelGroup
(advanced)

To use a explicit ChannelGroup. ChannelGroup

nativeTransport
(advanced)

Whether to use native transport instead of NIO.
Native transport takes advantage of the host
operating system and is only supported on some
platforms. You need to add the netty JAR for the
host operating system you are using. See more
details at: .

false boolean

options
(advanced)

Allows to configure additional netty options using
option. as prefix. For example
option.child.keepAlive=false to set the netty option
child.keepAlive=false. See the Netty documentation
for possible options that can be used.

 Map

receiveBufferSize
(advanced)

The TCP/UDP buffer sizes to be used during
inbound communication. Size is bytes.

65536 int

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

738

receiveBufferSize
Predictor
(advanced)

Configures the buffer size predictor. See details at
Jetty documentation and this mail thread.

 int

sendBufferSize
(advanced)

The TCP/UDP buffer sizes to be used during
outbound communication. Size is bytes.

65536 int

synchronous
(advanced)

Sets whether synchronous processing should be
strictly used.

false boolean

transferExchange
(advanced)

Only used for TCP. You can transfer the exchange
over the wire instead of just the body. The following
fields are transferred: In body, Out body, fault body,
In headers, Out headers, fault headers, exchange
properties, exchange exception. This requires that
the objects are serializable. Camel will exclude any
non-serializable objects and log it at WARN level.

false boolean

udpByteArrayCod
ec (advanced)

For UDP only. If enabled the using byte array codec
instead of Java serialization protocol.

false boolean

workerCount
(advanced)

When netty works on nio mode, it uses default
workerCount parameter from Netty (which is
cpu_core_threads x 2). User can use this option to
override the default workerCount from Netty.

 int

workerGroup
(advanced)

To use a explicit EventLoopGroup as the boss thread
pool. For example to share a thread pool with
multiple consumers or producers. By default each
consumer or producer has their own worker pool with
2 x cpu count core threads.

 EventLoopGroup

allowDefaultCode
c (codec)

The netty component installs a default codec if both,
encoder/decoder is null and textline is false. Setting
allowDefaultCodec to false prevents the netty
component from installing a default codec as the first
element in the filter chain.

true boolean

autoAppendDelim
iter (codec)

Whether or not to auto append missing end delimiter
when sending using the textline codec.

true boolean

decoderMaxLineL
ength (codec)

The max line length to use for the textline codec. 1024 int

Name Description Defaul
t

Type

CHAPTER 36. NETTY

739

decoders (codec) A list of decoders to be used. You can use a String
which have values separated by comma, and have the
values be looked up in the Registry. Just remember
to prefix the value with # so Camel knows it should
lookup.

 List

delimiter (codec) The delimiter to use for the textline codec. Possible
values are LINE and NULL.

Enum values:

LINE

NULL

LINE TextLineDelimiter

encoders (codec) A list of encoders to be used. You can use a String
which have values separated by comma, and have the
values be looked up in the Registry. Just remember
to prefix the value with # so Camel knows it should
lookup.

 List

encoding (codec) The encoding (a charset name) to use for the textline
codec. If not provided, Camel will use the JVM
default Charset.

 String

textline (codec) Only used for TCP. If no codec is specified, you can
use this flag to indicate a text line based codec; if not
specified or the value is false, then Object
Serialization is assumed over TCP - however only
Strings are allowed to be serialized by default.

false boolean

enabledProtocols
(security)

Which protocols to enable when using SSL. TLSv1,
TLSv1.1,
TLSv1.2

String

keyStoreFile
(security)

Client side certificate keystore to be used for
encryption.

 File

keyStoreFormat
(security)

Keystore format to be used for payload encryption.
Defaults to JKS if not set.

 String

keyStoreResourc
e (security)

Client side certificate keystore to be used for
encryption. Is loaded by default from classpath, but
you can prefix with classpath:, file:, or http: to load the
resource from different systems.

 String

needClientAuth
(security)

Configures whether the server needs client
authentication when using SSL.

false boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

740

passphrase
(security)

Password setting to use in order to encrypt/decrypt
payloads sent using SSH.

 String

securityProvider
(security)

Security provider to be used for payload encryption.
Defaults to SunX509 if not set.

 String

ssl (security) Setting to specify whether SSL encryption is applied
to this endpoint.

false boolean

sslClientCertHea
ders (security)

When enabled and in SSL mode, then the Netty
consumer will enrich the Camel Message with
headers having information about the client
certificate such as subject name, issuer name, serial
number, and the valid date range.

false boolean

sslContextParam
eters (security)

To configure security using SSLContextParameters. SSLContextParam
eters

sslHandler
(security)

Reference to a class that could be used to return an
SSL Handler.

 SslHandler

trustStoreFile
(security)

Server side certificate keystore to be used for
encryption.

 File

trustStoreResour
ce (security)

Server side certificate keystore to be used for
encryption. Is loaded by default from classpath, but
you can prefix with classpath:, file:, or http: to load the
resource from different systems.

 String

Name Description Defaul
t

Type

36.5. REGISTRY BASED OPTIONS

Codec Handlers and SSL Keystores can be enlisted in the Registry, such as in the Spring XML file. The
values that could be passed in, are the following:

Name Description

passphrase password setting to use in order to encrypt/decrypt payloads sent using SSH

keyStoreFormat keystore format to be used for payload encryption. Defaults to "JKS" if not set

securityProvide
r

Security provider to be used for payload encryption. Defaults to "SunX509" if not set.

keyStoreFile deprecated: Client side certificate keystore to be used for encryption

CHAPTER 36. NETTY

741

trustStoreFile deprecated: Server side certificate keystore to be used for encryption

keyStoreResour
ce

Client side certificate keystore to be used for encryption. Is loaded by default from
classpath, but you can prefix with "classpath:", "file:", or "http:" to load the
resource from different systems.

trustStoreReso
urce

Server side certificate keystore to be used for encryption. Is loaded by default from
classpath, but you can prefix with "classpath:", "file:", or "http:" to load the
resource from different systems.

sslHandler Reference to a class that could be used to return an SSL Handler

encoder A custom ChannelHandler class that can be used to perform special marshalling of
outbound payloads. Must override io.netty.channel.ChannelInboundHandlerAdapter.

encoders A list of encoders to be used. You can use a String which have values separated by
comma, and have the values be looked up in the Registry. Just remember to prefix the
value with # so Camel knows it should lookup.

decoder A custom ChannelHandler class that can be used to perform special marshalling of
inbound payloads. Must override io.netty.channel.ChannelOutboundHandlerAdapter.

decoders A list of decoders to be used. You can use a String which have values separated by
comma, and have the values be looked up in the Registry. Just remember to prefix the
value with # so Camel knows it should lookup.

Name Description

NOTE

Read below about using non shareable encoders/decoders.

36.5.1. Using non shareable encoders or decoders

If your encoders or decoders are not shareable (e.g. they don’t have the @Shareable class annotation),
then your encoder/decoder must implement the
org.apache.camel.component.netty.ChannelHandlerFactory interface, and return a new instance in
the newChannelHandler method. This is to ensure the encoder/decoder can safely be used. If this is
not the case, then the Netty component will log a WARN when an endpoint is created.

The Netty component offers a org.apache.camel.component.netty.ChannelHandlerFactories
factory class, that has a number of commonly used methods.

36.6. SENDING MESSAGES TO/FROM A NETTY ENDPOINT

36.6.1. Netty Producer

In Producer mode, the component provides the ability to send payloads to a socket endpoint using
either TCP or UDP protocols (with optional SSL support).

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

742

The producer mode supports both one-way and request-response based operations.

36.6.2. Netty Consumer

In Consumer mode, the component provides the ability to:

listen on a specified socket using either TCP or UDP protocols (with optional SSL support),

receive requests on the socket using text/xml, binary and serialized object based payloads and

send them along on a route as message exchanges.

The consumer mode supports both one-way and request-response based operations.

36.7. EXAMPLES

36.7.1. A UDP Netty endpoint using Request-Reply and serialized object payload

Note that Object serialization is not allowed by default, and so a decoder must be configured.

36.7.2. A TCP based Netty consumer endpoint using One-way communication

36.7.3. An SSL/TCP based Netty consumer endpoint using Request-Reply

@BindToRegistry("decoder")
public ChannelHandler getDecoder() throws Exception {
 return new DefaultChannelHandlerFactory() {
 @Override
 public ChannelHandler newChannelHandler() {
 return new DatagramPacketObjectDecoder(ClassResolvers.weakCachingResolver(null));
 }
 };
}

RouteBuilder builder = new RouteBuilder() {
 public void configure() {
 from("netty:udp://0.0.0.0:5155?sync=true&decoders=#decoder")
 .process(new Processor() {
 public void process(Exchange exchange) throws Exception {
 Poetry poetry = (Poetry) exchange.getIn().getBody();
 // Process poetry in some way
 exchange.getOut().setBody("Message received);
 }
 }
 }
};

RouteBuilder builder = new RouteBuilder() {
 public void configure() {
 from("netty:tcp://0.0.0.0:5150")
 .to("mock:result");
 }
};

CHAPTER 36. NETTY

743

36.7.3. An SSL/TCP based Netty consumer endpoint using Request-Reply
communication

Using the JSSE Configuration Utility

The Netty component supports SSL/TLS configuration through the Camel JSSE Configuration Utility .
This utility greatly decreases the amount of component specific code you need to write and is
configurable at the endpoint and component levels. The following examples demonstrate how to use
the utility with the Netty component.

Programmatic configuration of the component

Spring DSL based configuration of endpoint

Using Basic SSL/TLS configuration on the Jetty Component

KeyStoreParameters ksp = new KeyStoreParameters();
ksp.setResource("/users/home/server/keystore.jks");
ksp.setPassword("keystorePassword");

KeyManagersParameters kmp = new KeyManagersParameters();
kmp.setKeyStore(ksp);
kmp.setKeyPassword("keyPassword");

SSLContextParameters scp = new SSLContextParameters();
scp.setKeyManagers(kmp);

NettyComponent nettyComponent = getContext().getComponent("netty", NettyComponent.class);
nettyComponent.setSslContextParameters(scp);

...
 <camel:sslContextParameters
 id="sslContextParameters">
 <camel:keyManagers
 keyPassword="keyPassword">
 <camel:keyStore
 resource="/users/home/server/keystore.jks"
 password="keystorePassword"/>
 </camel:keyManagers>
 </camel:sslContextParameters>...
...
 <to uri="netty:tcp://0.0.0.0:5150?
sync=true&ssl=true&sslContextParameters=#sslContextParameters"/>
...

Registry registry = context.getRegistry();
registry.bind("password", "changeit");
registry.bind("ksf", new File("src/test/resources/keystore.jks"));
registry.bind("tsf", new File("src/test/resources/keystore.jks"));

context.addRoutes(new RouteBuilder() {
 public void configure() {
 String netty_ssl_endpoint =
 "netty:tcp://0.0.0.0:5150?sync=true&ssl=true&passphrase=#password"
 + "&keyStoreFile=#ksf&trustStoreFile=#tsf";

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

744

https://camel.apache.org/manual/camel-configuration-utilities.html

Getting access to SSLSession and the client certificate

You can get access to the javax.net.ssl.SSLSession if you eg need to get details about the client
certificate. When ssl=true then the Netty component will store the SSLSession as a header on the
Camel Message as shown below:

Remember to set needClientAuth=true to authenticate the client, otherwise SSLSession cannot
access information about the client certificate, and you may get an exception
javax.net.ssl.SSLPeerUnverifiedException: peer not authenticated. You may also get this exception
if the client certificate is expired or not valid etc.

NOTE

The option sslClientCertHeaders can be set to true which then enriches the Camel
Message with headers having details about the client certificate. For example the subject
name is readily available in the header CamelNettySSLClientCertSubjectName.

36.7.4. Using Multiple Codecs

In certain cases it may be necessary to add chains of encoders and decoders to the netty pipeline. To
add multpile codecs to a camel netty endpoint the 'encoders' and 'decoders' uri parameters should be
used. Like the 'encoder' and 'decoder' parameters they are used to supply references (lists of
ChannelUpstreamHandlers and ChannelDownstreamHandlers) that should be added to the pipeline.
Note that if encoders is specified then the encoder param will be ignored, similarly for decoders and the
decoder param.

NOTE

Read further above about using non shareable encoders/decoders.

The lists of codecs need to be added to the Camel’s registry so they can be resolved when the endpoint
is created.

 String return_string =
 "When You Go Home, Tell Them Of Us And Say,"
 + "For Your Tomorrow, We Gave Our Today.";

 from(netty_ssl_endpoint)
 .process(new Processor() {
 public void process(Exchange exchange) throws Exception {
 exchange.getOut().setBody(return_string);
 }
 }
 }
});

SSLSession session = exchange.getIn().getHeader(NettyConstants.NETTY_SSL_SESSION,
SSLSession.class);
// get the first certificate which is client certificate
javax.security.cert.X509Certificate cert = session.getPeerCertificateChain()[0];
Principal principal = cert.getSubjectDN();

ChannelHandlerFactory lengthDecoder =
ChannelHandlerFactories.newLengthFieldBasedFrameDecoder(1048576, 0, 4, 0, 4);

CHAPTER 36. NETTY

745

Spring’s native collections support can be used to specify the codec lists in an application context

StringDecoder stringDecoder = new StringDecoder();
registry.bind("length-decoder", lengthDecoder);
registry.bind("string-decoder", stringDecoder);

LengthFieldPrepender lengthEncoder = new LengthFieldPrepender(4);
StringEncoder stringEncoder = new StringEncoder();
registry.bind("length-encoder", lengthEncoder);
registry.bind("string-encoder", stringEncoder);

List<ChannelHandler> decoders = new ArrayList<ChannelHandler>();
decoders.add(lengthDecoder);
decoders.add(stringDecoder);

List<ChannelHandler> encoders = new ArrayList<ChannelHandler>();
encoders.add(lengthEncoder);
encoders.add(stringEncoder);

registry.bind("encoders", encoders);
registry.bind("decoders", decoders);

<util:list id="decoders" list-class="java.util.LinkedList">
 <bean class="org.apache.camel.component.netty.ChannelHandlerFactories" factory-
method="newLengthFieldBasedFrameDecoder">
 <constructor-arg value="1048576"/>
 <constructor-arg value="0"/>
 <constructor-arg value="4"/>
 <constructor-arg value="0"/>
 <constructor-arg value="4"/>
 </bean>
 <bean class="io.netty.handler.codec.string.StringDecoder"/>
 </util:list>

 <util:list id="encoders" list-class="java.util.LinkedList">
 <bean class="io.netty.handler.codec.LengthFieldPrepender">
 <constructor-arg value="4"/>
 </bean>
 <bean class="io.netty.handler.codec.string.StringEncoder"/>
 </util:list>

 <bean id="length-encoder" class="io.netty.handler.codec.LengthFieldPrepender">
 <constructor-arg value="4"/>
 </bean>
 <bean id="string-encoder" class="io.netty.handler.codec.string.StringEncoder"/>

 <bean id="length-decoder" class="org.apache.camel.component.netty.ChannelHandlerFactories"
factory-method="newLengthFieldBasedFrameDecoder">
 <constructor-arg value="1048576"/>
 <constructor-arg value="0"/>
 <constructor-arg value="4"/>
 <constructor-arg value="0"/>
 <constructor-arg value="4"/>
 </bean>
 <bean id="string-decoder" class="io.netty.handler.codec.string.StringDecoder"/>

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

746

The bean names can then be used in netty endpoint definitions either as a comma separated list or
contained in a List e.g.

or via XML.

36.8. CLOSING CHANNEL WHEN COMPLETE

When acting as a server you sometimes want to close the channel when, for example, a client conversion
is finished.
You can do this by simply setting the endpoint option disconnect=true.

However you can also instruct Camel on a per message basis as follows.
To instruct Camel to close the channel, you should add a header with the key
CamelNettyCloseChannelWhenComplete set to a boolean true value.
For instance, the example below will close the channel after it has written the bye message back to the
client:

Adding custom channel pipeline factories to gain complete control over a created pipeline.

36.9. CUSTOM PIPELINE

Custom channel pipelines provide complete control to the user over the handler/interceptor chain by

 from("direct:multiple-codec").to("netty:tcp://0.0.0.0:{{port}}?encoders=#encoders&sync=false");

 from("netty:tcp://0.0.0.0:{{port}}?decoders=#length-decoder,#string-
decoder&sync=false").to("mock:multiple-codec");

<camelContext id="multiple-netty-codecs-context" xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="direct:multiple-codec"/>
 <to uri="netty:tcp://0.0.0.0:5150?encoders=#encoders&sync=false"/>
 </route>
 <route>
 <from uri="netty:tcp://0.0.0.0:5150?decoders=#length-decoder,#string-
decoder&sync=false"/>
 <to uri="mock:multiple-codec"/>
 </route>
</camelContext>

from("netty:tcp://0.0.0.0:8080").process(new Processor() {
 public void process(Exchange exchange) throws Exception {
 String body = exchange.getIn().getBody(String.class);
 exchange.getOut().setBody("Bye " + body);
 // some condition which determines if we should close
 if (close) {

exchange.getOut().setHeader(NettyConstants.NETTY_CLOSE_CHANNEL_WHEN_COMPLETE,
true);
 }
 }
});

CHAPTER 36. NETTY

747

Custom channel pipelines provide complete control to the user over the handler/interceptor chain by
inserting custom handler(s), encoder(s) & decoder(s) without having to specify them in the Netty
Endpoint URL in a very simple way.

In order to add a custom pipeline, a custom channel pipeline factory must be created and registered with
the context via the context registry (Registry, or the camel-spring ApplicationContextRegistry etc).

A custom pipeline factory must be constructed as follows

A Producer linked channel pipeline factory must extend the abstract class
ClientPipelineFactory.

A Consumer linked channel pipeline factory must extend the abstract class
ServerInitializerFactory.

The classes should override the initChannel() method in order to insert custom handler(s),
encoder(s) and decoder(s). Not overriding the initChannel() method creates a pipeline with no
handlers, encoders or decoders wired to the pipeline.

The example below shows how ServerInitializerFactory factory may be created

36.9.1. Using custom pipeline factory

The custom channel pipeline factory can then be added to the registry and instantiated/utilized on a
camel route in the following way

public class SampleServerInitializerFactory extends ServerInitializerFactory {
 private int maxLineSize = 1024;

 protected void initChannel(Channel ch) throws Exception {
 ChannelPipeline channelPipeline = ch.pipeline();

 channelPipeline.addLast("encoder-SD", new StringEncoder(CharsetUtil.UTF_8));
 channelPipeline.addLast("decoder-DELIM", new DelimiterBasedFrameDecoder(maxLineSize,
true, Delimiters.lineDelimiter()));
 channelPipeline.addLast("decoder-SD", new StringDecoder(CharsetUtil.UTF_8));
 // here we add the default Camel ServerChannelHandler for the consumer, to allow Camel to
route the message etc.
 channelPipeline.addLast("handler", new ServerChannelHandler(consumer));
 }
}

Registry registry = camelContext.getRegistry();
ServerInitializerFactory factory = new TestServerInitializerFactory();
registry.bind("spf", factory);
context.addRoutes(new RouteBuilder() {
 public void configure() {
 String netty_ssl_endpoint =
 "netty:tcp://0.0.0.0:5150?serverInitializerFactory=#spf"
 String return_string =
 "When You Go Home, Tell Them Of Us And Say,"
 + "For Your Tomorrow, We Gave Our Today.";

 from(netty_ssl_endpoint)
 .process(new Processor() {
 public void process(Exchange exchange) throws Exception {

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

748

36.10. REUSING NETTY BOSS AND WORKER THREAD POOLS

Netty has two kind of thread pools: boss and worker. By default each Netty consumer and producer has
their private thread pools. If you want to reuse these thread pools among multiple consumers or
producers then the thread pools must be created and enlisted in the Registry.

For example using Spring XML we can create a shared worker thread pool using the
NettyWorkerPoolBuilder with 2 worker threads as shown below:

NOTE

For boss thread pool there is a
org.apache.camel.component.netty.NettyServerBossPoolBuilder builder for Netty
consumers, and a org.apache.camel.component.netty.NettyClientBossPoolBuilder
for the Netty producers.

Then in the Camel routes we can refer to this worker pools by configuring the workerPool option in the
URI as shown below:

And if we have another route we can refer to the shared worker pool:

and so forth.

 exchange.getOut().setBody(return_string);
 }
 }
 }
});

<!-- use the worker pool builder to help create the shared thread pool -->
<bean id="poolBuilder" class="org.apache.camel.component.netty.NettyWorkerPoolBuilder">
 <property name="workerCount" value="2"/>
</bean>

<!-- the shared worker thread pool -->
<bean id="sharedPool" class="org.jboss.netty.channel.socket.nio.WorkerPool"
 factory-bean="poolBuilder" factory-method="build" destroy-method="shutdown">
</bean>

<route>
 <from uri="netty:tcp://0.0.0.0:5021?
textline=true&sync=true&workerPool=#sharedPool&usingExecutorService=false"/>
 <to uri="log:result"/>
 ...
</route>

<route>
 <from uri="netty:tcp://0.0.0.0:5022?
textline=true&sync=true&workerPool=#sharedPool&usingExecutorService=false"/>
 <to uri="log:result"/>
 ...
</route>

CHAPTER 36. NETTY

749

36.11. MULTIPLEXING CONCURRENT MESSAGES OVER A SINGLE
CONNECTION WITH REQUEST/REPLY

When using Netty for request/reply messaging via the netty producer then by default each message is
sent via a non-shared connection (pooled). This ensures that replies are automatic being able to map to
the correct request thread for further routing in Camel. In other words correlation between
request/reply messages happens out-of-the-box because the replies comes back on the same
connection that was used for sending the request; and this connection is not shared with others. When
the response comes back, the connection is returned back to the connection pool, where it can be
reused by others.

However if you want to multiplex concurrent request/responses on a single shared connection, then you
need to turn off the connection pooling by setting producerPoolEnabled=false. Now this means there
is a potential issue with interleaved responses if replies comes back out-of-order. Therefore you need to
have a correlation id in both the request and reply messages so you can properly correlate the replies to
the Camel callback that is responsible for continue processing the message in Camel. To do this you
need to implement NettyCamelStateCorrelationManager as correlation manager and configure it via
the correlationManager=#myManager option.

NOTE

We recommend extending the TimeoutCorrelationManagerSupport when you build
custom correlation managers. This provides support for timeout and other complexities
you otherwise would need to implement as well.

You can find an example with the Apache Camel source code in the examples directory under the
camel-example-netty-custom-correlation directory.

36.12. SPRING BOOT AUTO-CONFIGURATION

When using netty with Spring Boot make sure to use the following Maven dependency to have support
for auto configuration:

The component supports 74 options, which are listed below.

Name Description Defaul
t

Type

camel.component
.netty.allow-
default-codec

The netty component installs a default codec if both,
encoder/decoder is null and textline is false. Setting
allowDefaultCodec to false prevents the netty
component from installing a default codec as the first
element in the filter chain.

true Boolean

<dependency>
 <groupId>org.apache.camel.springboot</groupId>
 <artifactId>camel-netty-starter</artifactId>
 <version>3.14.5.redhat-00032</version>
 <!-- Use your Camel Spring Boot version -->
</dependency>

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

750

camel.component
.netty.allow-
serialized-
headers

Only used for TCP when transferExchange is true.
When set to true, serializable objects in headers and
properties will be added to the exchange. Otherwise
Camel will exclude any non-serializable objects and
log it at WARN level.

false Boolean

camel.component
.netty.auto-
append-delimiter

Whether or not to auto append missing end delimiter
when sending using the textline codec.

true Boolean

camel.component
.netty.autowired-
enabled

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true Boolean

camel.component
.netty.backlog

Allows to configure a backlog for netty consumer
(server). Note the backlog is just a best effort
depending on the OS. Setting this option to a value
such as 200, 500 or 1000, tells the TCP stack how
long the accept queue can be If this option is not
configured, then the backlog depends on OS setting.

 Integer

camel.component
.netty.boss-count

When netty works on nio mode, it uses default
bossCount parameter from Netty, which is 1. User can
use this option to override the default bossCount
from Netty.

1 Integer

camel.component
.netty.boss-group

Set the BossGroup which could be used for handling
the new connection of the server side across the
NettyEndpoint. The option is a
io.netty.channel.EventLoopGroup type.

 EventLoopGroup

camel.component
.netty.bridge-
error-handler

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false Boolean

Name Description Defaul
t

Type

CHAPTER 36. NETTY

751

camel.component
.netty.broadcast

Setting to choose Multicast over UDP. false Boolean

camel.component
.netty.channel-
group

To use a explicit ChannelGroup. The option is a
io.netty.channel.group.ChannelGroup type.

 ChannelGroup

camel.component
.netty.client-
initializer-factory

To use a custom ClientInitializerFactory. The option is
a
org.apache.camel.component.netty.ClientInitializerFa
ctory type.

 ClientInitializerFac
tory

camel.component
.netty.client-
mode

If the clientMode is true, netty consumer will connect
the address as a TCP client.

false Boolean

camel.component
.netty.configurati
on

To use the NettyConfiguration as configuration when
creating endpoints. The option is a
org.apache.camel.component.netty.NettyConfigurati
on type.

 NettyConfiguratio
n

camel.component
.netty.connect-
timeout

Time to wait for a socket connection to be available.
Value is in milliseconds.

10000 Integer

camel.component
.netty.correlation
-manager

To use a custom correlation manager to manage how
request and reply messages are mapped when using
request/reply with the netty producer. This should
only be used if you have a way to map requests
together with replies such as if there is correlation ids
in both the request and reply messages. This can be
used if you want to multiplex concurrent messages
on the same channel (aka connection) in netty. When
doing this you must have a way to correlate the
request and reply messages so you can store the
right reply on the inflight Camel Exchange before its
continued routed. We recommend extending the
TimeoutCorrelationManagerSupport when you build
custom correlation managers. This provides support
for timeout and other complexities you otherwise
would need to implement as well. See also the
producerPoolEnabled option for more details. The
option is a
org.apache.camel.component.netty.NettyCamelStat
eCorrelationManager type.

 NettyCamelState
CorrelationManag
er

camel.component
.netty.decoder-
max-line-length

The max line length to use for the textline codec. 1024 Integer

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

752

camel.component
.netty.decoders

A list of decoders to be used. You can use a String
which have values separated by comma, and have the
values be looked up in the Registry. Just remember
to prefix the value with # so Camel knows it should
lookup.

 String

camel.component
.netty.delimiter

The delimiter to use for the textline codec. Possible
values are LINE and NULL.

 TextLineDelimiter

camel.component
.netty.disconnect

Whether or not to disconnect(close) from Netty
Channel right after use. Can be used for both
consumer and producer.

false Boolean

camel.component
.netty.disconnect
-on-no-reply

If sync is enabled then this option dictates
NettyConsumer if it should disconnect where there is
no reply to send back.

true Boolean

camel.component
.netty.enabled

Whether to enable auto configuration of the netty
component. This is enabled by default.

 Boolean

camel.component
.netty.enabled-
protocols

Which protocols to enable when using SSL. TLSv1,
TLSv1.1,
TLSv1.2

String

camel.component
.netty.encoders

A list of encoders to be used. You can use a String
which have values separated by comma, and have the
values be looked up in the Registry. Just remember
to prefix the value with # so Camel knows it should
lookup.

 String

camel.component
.netty.encoding

The encoding (a charset name) to use for the textline
codec. If not provided, Camel will use the JVM
default Charset.

 String

camel.component
.netty.executor-
service

To use the given EventExecutorGroup. The option is
a io.netty.util.concurrent.EventExecutorGroup type.

 EventExecutorGro
up

camel.component
.netty.hostname-
verification

To enable/disable hostname verification on
SSLEngine.

false Boolean

camel.component
.netty.keep-alive

Setting to ensure socket is not closed due to
inactivity.

true Boolean

Name Description Defaul
t

Type

CHAPTER 36. NETTY

753

camel.component
.netty.key-store-
file

Client side certificate keystore to be used for
encryption.

 File

camel.component
.netty.key-store-
format

Keystore format to be used for payload encryption.
Defaults to JKS if not set.

 String

camel.component
.netty.key-store-
resource

Client side certificate keystore to be used for
encryption. Is loaded by default from classpath, but
you can prefix with classpath:, file:, or http: to load the
resource from different systems.

 String

camel.component
.netty.lazy-
channel-creation

Channels can be lazily created to avoid exceptions, if
the remote server is not up and running when the
Camel producer is started.

true Boolean

camel.component
.netty.lazy-start-
producer

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false Boolean

camel.component
.netty.maximum-
pool-size

Sets a maximum thread pool size for the netty
consumer ordered thread pool. The default size is 2 x
cpu_core plus 1. Setting this value to eg 10 will then
use 10 threads unless 2 x cpu_core plus 1 is a higher
value, which then will override and be used. For
example if there are 8 cores, then the consumer
thread pool will be 17. This thread pool is used to
route messages received from Netty by Camel. We
use a separate thread pool to ensure ordering of
messages and also in case some messages will block,
then nettys worker threads (event loop) wont be
affected.

 Integer

camel.component
.netty.native-
transport

Whether to use native transport instead of NIO.
Native transport takes advantage of the host
operating system and is only supported on some
platforms. You need to add the netty JAR for the
host operating system you are using. See more
details at: .

false Boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

754

camel.component
.netty.need-
client-auth

Configures whether the server needs client
authentication when using SSL.

false Boolean

camel.component
.netty.netty-
server-bootstrap-
factory

To use a custom NettyServerBootstrapFactory. The
option is a
org.apache.camel.component.netty.NettyServerBoot
strapFactory type.

 NettyServerBoots
trapFactory

camel.component
.netty.network-
interface

When using UDP then this option can be used to
specify a network interface by its name, such as eth0
to join a multicast group.

 String

camel.component
.netty.no-reply-
log-level

If sync is enabled this option dictates NettyConsumer
which logging level to use when logging a there is no
reply to send back.

 LoggingLevel

camel.component
.netty.options

Allows to configure additional netty options using
option. as prefix. For example
option.child.keepAlive=false to set the netty option
child.keepAlive=false. See the Netty documentation
for possible options that can be used.

 Map

camel.component
.netty.passphrase

Password setting to use in order to encrypt/decrypt
payloads sent using SSH.

 String

camel.component
.netty.producer-
pool-enabled

Whether producer pool is enabled or not. Important:
If you turn this off then a single shared connection is
used for the producer, also if you are doing
request/reply. That means there is a potential issue
with interleaved responses if replies comes back out-
of-order. Therefore you need to have a correlation id
in both the request and reply messages so you can
properly correlate the replies to the Camel callback
that is responsible for continue processing the
message in Camel. To do this you need to implement
NettyCamelStateCorrelationManager as correlation
manager and configure it via the correlationManager
option. See also the correlationManager option for
more details.

true Boolean

camel.component
.netty.producer-
pool-max-idle

Sets the cap on the number of idle instances in the
pool.

100 Integer

Name Description Defaul
t

Type

CHAPTER 36. NETTY

755

camel.component
.netty.producer-
pool-max-total

Sets the cap on the number of objects that can be
allocated by the pool (checked out to clients, or idle
awaiting checkout) at a given time. Use a negative
value for no limit.

-1 Integer

camel.component
.netty.producer-
pool-min-
evictable-idle

Sets the minimum amount of time (value in millis) an
object may sit idle in the pool before it is eligible for
eviction by the idle object evictor.

30000
0

Long

camel.component
.netty.producer-
pool-min-idle

Sets the minimum number of instances allowed in the
producer pool before the evictor thread (if active)
spawns new objects.

 Integer

camel.component
.netty.receive-
buffer-size

The TCP/UDP buffer sizes to be used during
inbound communication. Size is bytes.

65536 Integer

camel.component
.netty.receive-
buffer-size-
predictor

Configures the buffer size predictor. See details at
Jetty documentation and this mail thread.

 Integer

camel.component
.netty.reconnect

Used only in clientMode in consumer, the consumer
will attempt to reconnect on disconnection if this is
enabled.

true Boolean

camel.component
.netty.reconnect-
interval

Used if reconnect and clientMode is enabled. The
interval in milli seconds to attempt reconnection.

10000 Integer

camel.component
.netty.request-
timeout

Allows to use a timeout for the Netty producer when
calling a remote server. By default no timeout is in
use. The value is in milli seconds, so eg 30000 is 30
seconds. The requestTimeout is using Netty’s
ReadTimeoutHandler to trigger the timeout.

 Long

camel.component
.netty.reuse-
address

Setting to facilitate socket multiplexing. true Boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

756

camel.component
.netty.reuse-
channel

This option allows producers and consumers (in client
mode) to reuse the same Netty Channel for the
lifecycle of processing the Exchange. This is useful if
you need to call a server multiple times in a Camel
route and want to use the same network connection.
When using this, the channel is not returned to the
connection pool until the Exchange is done; or
disconnected if the disconnect option is set to true.
The reused Channel is stored on the Exchange as an
exchange property with the key
NettyConstants#NETTY_CHANNEL which allows
you to obtain the channel during routing and use it as
well.

false Boolean

camel.component
.netty.security-
provider

Security provider to be used for payload encryption.
Defaults to SunX509 if not set.

 String

camel.component
.netty.send-
buffer-size

The TCP/UDP buffer sizes to be used during
outbound communication. Size is bytes.

65536 Integer

camel.component
.netty.server-
closed-channel-
exception-
caught-log-level

If the server (NettyConsumer) catches an
java.nio.channels.ClosedChannelException then its
logged using this logging level. This is used to avoid
logging the closed channel exceptions, as clients can
disconnect abruptly and then cause a flood of closed
exceptions in the Netty server.

 LoggingLevel

camel.component
.netty.server-
exception-
caught-log-level

If the server (NettyConsumer) catches an exception
then its logged using this logging level.

 LoggingLevel

camel.component
.netty.server-
initializer-factory

To use a custom ServerInitializerFactory. The option
is a
org.apache.camel.component.netty.ServerInitializerF
actory type.

 ServerInitializerFa
ctory

camel.component
.netty.ssl

Setting to specify whether SSL encryption is applied
to this endpoint.

false Boolean

camel.component
.netty.ssl-client-
cert-headers

When enabled and in SSL mode, then the Netty
consumer will enrich the Camel Message with
headers having information about the client
certificate such as subject name, issuer name, serial
number, and the valid date range.

false Boolean

Name Description Defaul
t

Type

CHAPTER 36. NETTY

757

camel.component
.netty.ssl-
context-
parameters

To configure security using SSLContextParameters.
The option is a
org.apache.camel.support.jsse.SSLContextParamete
rs type.

 SSLContextParam
eters

camel.component
.netty.ssl-handler

Reference to a class that could be used to return an
SSL Handler. The option is a
io.netty.handler.ssl.SslHandler type.

 SslHandler

camel.component
.netty.sync

Setting to set endpoint as one-way or request-
response.

true Boolean

camel.component
.netty.tcp-no-
delay

Setting to improve TCP protocol performance. true Boolean

camel.component
.netty.textline

Only used for TCP. If no codec is specified, you can
use this flag to indicate a text line based codec; if not
specified or the value is false, then Object
Serialization is assumed over TCP - however only
Strings are allowed to be serialized by default.

false Boolean

camel.component
.netty.transfer-
exchange

Only used for TCP. You can transfer the exchange
over the wire instead of just the body. The following
fields are transferred: In body, Out body, fault body,
In headers, Out headers, fault headers, exchange
properties, exchange exception. This requires that
the objects are serializable. Camel will exclude any
non-serializable objects and log it at WARN level.

false Boolean

camel.component
.netty.trust-
store-file

Server side certificate keystore to be used for
encryption.

 File

camel.component
.netty.trust-
store-resource

Server side certificate keystore to be used for
encryption. Is loaded by default from classpath, but
you can prefix with classpath:, file:, or http: to load the
resource from different systems.

 String

camel.component
.netty.udp-byte-
array-codec

For UDP only. If enabled the using byte array codec
instead of Java serialization protocol.

false Boolean

camel.component
.netty.udp-
connectionless-
sending

This option supports connection less udp sending
which is a real fire and forget. A connected udp send
receive the PortUnreachableException if no one is
listen on the receiving port.

false Boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

758

camel.component
.netty.use-byte-
buf

If the useByteBuf is true, netty producer will turn the
message body into ByteBuf before sending it out.

false Boolean

camel.component
.netty.use-global-
ssl-context-
parameters

Enable usage of global SSL context parameters. false Boolean

camel.component
.netty.using-
executor-service

Whether to use ordered thread pool, to ensure
events are processed orderly on the same channel.

true Boolean

camel.component
.netty.worker-
count

When netty works on nio mode, it uses default
workerCount parameter from Netty (which is
cpu_core_threads x 2). User can use this option to
override the default workerCount from Netty.

 Integer

camel.component
.netty.worker-
group

To use a explicit EventLoopGroup as the boss thread
pool. For example to share a thread pool with
multiple consumers or producers. By default each
consumer or producer has their own worker pool with
2 x cpu count core threads. The option is a
io.netty.channel.EventLoopGroup type.

 EventLoopGroup

Name Description Defaul
t

Type

CHAPTER 36. NETTY

759

CHAPTER 37. PAHO
Both producer and consumer are supported

Paho component provides connector for the MQTT messaging protocol using the Eclipse Paho library.
Paho is one of the most popular MQTT libraries, so if you would like to integrate it with your Java project
- Camel Paho connector is a way to go.

Maven users will need to add the following dependency to their pom.xml for this component:

37.1. URI FORMAT

Where topic is the name of the topic.

37.2. CONFIGURING OPTIONS

Camel components are configured on two separate levels:

component level

endpoint level

37.2.1. Configuring Component Options

The component level is the highest level which holds general and common configurations that are
inherited by the endpoints. For example a component may have security settings, credentials for
authentication, urls for network connection and so forth.

Some components only have a few options, and others may have many. Because components typically
have pre configured defaults that are commonly used, then you may often only need to configure a few
options on a component; or none at all.

Configuring components can be done with the Component DSL, in a configuration file
(application.properties|yaml), or directly with Java code.

37.2.2. Configuring Endpoint Options

Where you find yourself configuring the most is on endpoints, as endpoints often have many options,
which allows you to configure what you need the endpoint to do. The options are also categorized into
whether the endpoint is used as consumer (from) or as a producer (to), or used for both.

Configuring endpoints is most often done directly in the endpoint URI as path and query parameters.
You can also use the Endpoint DSL as a type safe way of configuring endpoints.

A good practice when configuring options is to use Property Placeholders, which allows to not hardcode

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-paho</artifactId>
 <version>3.14.5.redhat-00018</version>
 <!-- use the same version as your Camel core version -->
</dependency>

paho:topic[?options]

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

760

https://eclipse.org/paho
https://camel.apache.org/manual/component-dsl.html
https://camel.apache.org/manual/Endpoint-dsl.html

A good practice when configuring options is to use Property Placeholders, which allows to not hardcode
urls, port numbers, sensitive information, and other settings.

In other words placeholders allows to externalize the configuration from your code, and gives more
flexibility and reuse.

The following two sections lists all the options, firstly for the component followed by the endpoint.

37.3. COMPONENT OPTIONS

The Paho component supports 31 options, which are listed below.

Name Description Defaul
t

Type

automaticReconn
ect (common)

Sets whether the client will automatically attempt to
reconnect to the server if the connection is lost. If set
to false, the client will not attempt to automatically
reconnect to the server in the event that the
connection is lost. If set to true, in the event that the
connection is lost, the client will attempt to
reconnect to the server. It will initially wait 1 second
before it attempts to reconnect, for every failed
reconnect attempt, the delay will double until it is at 2
minutes at which point the delay will stay at 2
minutes.

true boolean

brokerUrl
(common)

The URL of the MQTT broker. tcp://l
ocalho
st:1883

String

cleanSession
(common)

Sets whether the client and server should remember
state across restarts and reconnects. If set to false
both the client and server will maintain state across
restarts of the client, the server and the connection.
As state is maintained: Message delivery will be
reliable meeting the specified QOS even if the client,
server or connection are restarted. The server will
treat a subscription as durable. If set to true the
client and server will not maintain state across
restarts of the client, the server or the connection.
This means Message delivery to the specified QOS
cannot be maintained if the client, server or
connection are restarted The server will treat a
subscription as non-durable.

true boolean

clientId (common) MQTT client identifier. The identifier must be unique. String

configuration
(common)

To use the shared Paho configuration. PahoConfiguratio
n

CHAPTER 37. PAHO

761

https://camel.apache.org/manual/using-propertyplaceholder.html

connectionTimeo
ut (common)

Sets the connection timeout value. This value,
measured in seconds, defines the maximum time
interval the client will wait for the network connection
to the MQTT server to be established. The default
timeout is 30 seconds. A value of 0 disables timeout
processing meaning the client will wait until the
network connection is made successfully or fails.

30 int

filePersistenceDir
ectory (common)

Base directory used by file persistence. Will by
default use user directory.

 String

keepAliveInterval
(common)

Sets the keep alive interval. This value, measured in
seconds, defines the maximum time interval between
messages sent or received. It enables the client to
detect if the server is no longer available, without
having to wait for the TCP/IP timeout. The client will
ensure that at least one message travels across the
network within each keep alive period. In the absence
of a data-related message during the time period, the
client sends a very small ping message, which the
server will acknowledge. A value of 0 disables
keepalive processing in the client. The default value is
60 seconds.

60 int

maxInflight
(common)

Sets the max inflight. please increase this value in a
high traffic environment. The default value is 10.

10 int

maxReconnectDe
lay (common)

Get the maximum time (in millis) to wait between
reconnects.

12800
0

int

mqttVersion
(common)

Sets the MQTT version. The default action is to
connect with version 3.1.1, and to fall back to 3.1 if that
fails. Version 3.1.1 or 3.1 can be selected specifically,
with no fall back, by using the MQTT_VERSION_3_1_1
or MQTT_VERSION_3_1 options respectively.

 int

persistence
(common)

Client persistence to be used - memory or file.

Enum values:

FILE

MEMORY

MEMO
RY

PahoPersistence

qos (common) Client quality of service level (0-2). 2 int

retained
(common)

Retain option. false boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

762

serverURIs
(common)

Set a list of one or more serverURIs the client may
connect to. Multiple servers can be separated by
comma. Each serverURI specifies the address of a
server that the client may connect to. Two types of
connection are supported tcp:// for a TCP
connection and ssl:// for a TCP connection secured
by SSL/TLS. For example: tcp://localhost:1883
ssl://localhost:8883 If the port is not specified, it will
default to 1883 for tcp:// URIs, and 8883 for ssl://
URIs. If serverURIs is set then it overrides the
serverURI parameter passed in on the constructor of
the MQTT client. When an attempt to connect is
initiated the client will start with the first serverURI in
the list and work through the list until a connection is
established with a server. If a connection cannot be
made to any of the servers then the connect attempt
fails. Specifying a list of servers that a client may
connect to has several uses: High Availability and
reliable message delivery Some MQTT servers
support a high availability feature where two or more
equal MQTT servers share state. An MQTT client can
connect to any of the equal servers and be assured
that messages are reliably delivered and durable
subscriptions are maintained no matter which server
the client connects to. The cleansession flag must be
set to false if durable subscriptions and/or reliable
message delivery is required. Hunt List A set of
servers may be specified that are not equal (as in the
high availability option). As no state is shared across
the servers reliable message delivery and durable
subscriptions are not valid. The cleansession flag
must be set to true if the hunt list mode is used.

 String

willPayload
(common)

Sets the Last Will and Testament (LWT) for the
connection. In the event that this client unexpectedly
loses its connection to the server, the server will
publish a message to itself using the supplied details.
The topic to publish to The byte payload for the
message. The quality of service to publish the
message at (0, 1 or 2). Whether or not the message
should be retained.

 String

willQos (common) Sets the Last Will and Testament (LWT) for the
connection. In the event that this client unexpectedly
loses its connection to the server, the server will
publish a message to itself using the supplied details.
The topic to publish to The byte payload for the
message. The quality of service to publish the
message at (0, 1 or 2). Whether or not the message
should be retained.

 int

Name Description Defaul
t

Type

CHAPTER 37. PAHO

763

willRetained
(common)

Sets the Last Will and Testament (LWT) for the
connection. In the event that this client unexpectedly
loses its connection to the server, the server will
publish a message to itself using the supplied details.
The topic to publish to The byte payload for the
message. The quality of service to publish the
message at (0, 1 or 2). Whether or not the message
should be retained.

false boolean

willTopic
(common)

Sets the Last Will and Testament (LWT) for the
connection. In the event that this client unexpectedly
loses its connection to the server, the server will
publish a message to itself using the supplied details.
The topic to publish to The byte payload for the
message. The quality of service to publish the
message at (0, 1 or 2). Whether or not the message
should be retained.

 String

bridgeErrorHandl
er (consumer)

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false boolean

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

autowiredEnabled
(advanced)

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

764

client (advanced) To use a shared Paho client. MqttClient

customWebSocke
tHeaders
(advanced)

Sets the Custom WebSocket Headers for the
WebSocket Connection.

 Properties

executorServiceT
imeout
(advanced)

Set the time in seconds that the executor service
should wait when terminating before forcefully
terminating. It is not recommended to change this
value unless you are absolutely sure that you need to.

1 int

httpsHostnameV
erificationEnable
d (security)

Whether SSL HostnameVerifier is enabled or not.
The default value is true.

true boolean

password
(security)

Password to be used for authentication against the
MQTT broker.

 String

socketFactory
(security)

Sets the SocketFactory to use. This allows an
application to apply its own policies around the
creation of network sockets. If using an SSL
connection, an SSLSocketFactory can be used to
supply application-specific security settings.

 SocketFactory

sslClientProps
(security)

Sets the SSL properties for the connection. Note that
these properties are only valid if an implementation
of the Java Secure Socket Extensions (JSSE) is
available. These properties are not used if a custom
SocketFactory has been set. The following properties
can be used: com.ibm.ssl.protocol One of: SSL,
SSLv3, TLS, TLSv1, SSL_TLS.
com.ibm.ssl.contextProvider Underlying JSSE
provider. For example IBMJSSE2 or SunJSSE
com.ibm.ssl.keyStore The name of the file that
contains the KeyStore object that you want the
KeyManager to use. For example /mydir/etc/key.p12
com.ibm.ssl.keyStorePassword The password for the
KeyStore object that you want the KeyManager to
use. The password can either be in plain-text, or may
be obfuscated using the static method:
com.ibm.micro.security.Password.obfuscate(char
password). This obfuscates the password using a
simple and insecure XOR and Base64 encoding
mechanism. Note that this is only a simple scrambler
to obfuscate clear-text passwords.
com.ibm.ssl.keyStoreType Type of key store, for
example PKCS12, JKS, or JCEKS.
com.ibm.ssl.keyStoreProvider Key store provider, for
example IBMJCE or IBMJCEFIPS.
com.ibm.ssl.trustStore The name of the file that

 Properties

Name Description Defaul
t

Type

CHAPTER 37. PAHO

765

contains the KeyStore object that you want the
TrustManager to use.
com.ibm.ssl.trustStorePassword The password for
the TrustStore object that you want the
TrustManager to use. The password can either be in
plain-text, or may be obfuscated using the static
method:
com.ibm.micro.security.Password.obfuscate(char
password). This obfuscates the password using a
simple and insecure XOR and Base64 encoding
mechanism. Note that this is only a simple scrambler
to obfuscate clear-text passwords.
com.ibm.ssl.trustStoreType The type of KeyStore
object that you want the default TrustManager to
use. Same possible values as keyStoreType.
com.ibm.ssl.trustStoreProvider Trust store provider,
for example IBMJCE or IBMJCEFIPS.
com.ibm.ssl.enabledCipherSuites A list of which
ciphers are enabled. Values are dependent on the
provider, for example:
SSL_RSA_WITH_AES_128_CBC_SHA;SSL_RSA_WIT
H_3DES_EDE_CBC_SHA. com.ibm.ssl.keyManager
Sets the algorithm that will be used to instantiate a
KeyManagerFactory object instead of using the
default algorithm available in the platform. Example
values: IbmX509 or IBMJ9X509.
com.ibm.ssl.trustManager Sets the algorithm that will
be used to instantiate a TrustManagerFactory object
instead of using the default algorithm available in the
platform. Example values: PKIX or IBMJ9X509.

sslHostnameVerif
ier (security)

Sets the HostnameVerifier for the SSL connection.
Note that it will be used after handshake on a
connection and you should do actions by yourself
when hostname is verified error. There is no default
HostnameVerifier.

 HostnameVerifier

userName
(security)

Username to be used for authentication against the
MQTT broker.

 String

Name Description Defaul
t

Type

37.4. ENDPOINT OPTIONS

The Paho endpoint is configured using URI syntax:

paho:topic

with the following path and query parameters:

37.4.1. Path Parameters (1 parameters)

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

766

Name Description Defaul
t

Type

topic (common) Required Name of the topic. String

37.4.2. Query Parameters (31 parameters)

Name Description Defaul
t

Type

automaticReconn
ect (common)

Sets whether the client will automatically attempt to
reconnect to the server if the connection is lost. If set
to false, the client will not attempt to automatically
reconnect to the server in the event that the
connection is lost. If set to true, in the event that the
connection is lost, the client will attempt to
reconnect to the server. It will initially wait 1 second
before it attempts to reconnect, for every failed
reconnect attempt, the delay will double until it is at 2
minutes at which point the delay will stay at 2
minutes.

true boolean

brokerUrl
(common)

The URL of the MQTT broker. tcp://l
ocalho
st:1883

String

cleanSession
(common)

Sets whether the client and server should remember
state across restarts and reconnects. If set to false
both the client and server will maintain state across
restarts of the client, the server and the connection.
As state is maintained: Message delivery will be
reliable meeting the specified QOS even if the client,
server or connection are restarted. The server will
treat a subscription as durable. If set to true the
client and server will not maintain state across
restarts of the client, the server or the connection.
This means Message delivery to the specified QOS
cannot be maintained if the client, server or
connection are restarted The server will treat a
subscription as non-durable.

true boolean

clientId (common) MQTT client identifier. The identifier must be unique. String

connectionTimeo
ut (common)

Sets the connection timeout value. This value,
measured in seconds, defines the maximum time
interval the client will wait for the network connection
to the MQTT server to be established. The default
timeout is 30 seconds. A value of 0 disables timeout
processing meaning the client will wait until the
network connection is made successfully or fails.

30 int

CHAPTER 37. PAHO

767

filePersistenceDir
ectory (common)

Base directory used by file persistence. Will by
default use user directory.

 String

keepAliveInterval
(common)

Sets the keep alive interval. This value, measured in
seconds, defines the maximum time interval between
messages sent or received. It enables the client to
detect if the server is no longer available, without
having to wait for the TCP/IP timeout. The client will
ensure that at least one message travels across the
network within each keep alive period. In the absence
of a data-related message during the time period, the
client sends a very small ping message, which the
server will acknowledge. A value of 0 disables
keepalive processing in the client. The default value is
60 seconds.

60 int

maxInflight
(common)

Sets the max inflight. please increase this value in a
high traffic environment. The default value is 10.

10 int

maxReconnectDe
lay (common)

Get the maximum time (in millis) to wait between
reconnects.

12800
0

int

mqttVersion
(common)

Sets the MQTT version. The default action is to
connect with version 3.1.1, and to fall back to 3.1 if that
fails. Version 3.1.1 or 3.1 can be selected specifically,
with no fall back, by using the MQTT_VERSION_3_1_1
or MQTT_VERSION_3_1 options respectively.

 int

persistence
(common)

Client persistence to be used - memory or file.

Enum values:

FILE

MEMORY

MEMO
RY

PahoPersistence

qos (common) Client quality of service level (0-2). 2 int

retained
(common)

Retain option. false boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

768

serverURIs
(common)

Set a list of one or more serverURIs the client may
connect to. Multiple servers can be separated by
comma. Each serverURI specifies the address of a
server that the client may connect to. Two types of
connection are supported tcp:// for a TCP
connection and ssl:// for a TCP connection secured
by SSL/TLS. For example: tcp://localhost:1883
ssl://localhost:8883 If the port is not specified, it will
default to 1883 for tcp:// URIs, and 8883 for ssl://
URIs. If serverURIs is set then it overrides the
serverURI parameter passed in on the constructor of
the MQTT client. When an attempt to connect is
initiated the client will start with the first serverURI in
the list and work through the list until a connection is
established with a server. If a connection cannot be
made to any of the servers then the connect attempt
fails. Specifying a list of servers that a client may
connect to has several uses: High Availability and
reliable message delivery Some MQTT servers
support a high availability feature where two or more
equal MQTT servers share state. An MQTT client can
connect to any of the equal servers and be assured
that messages are reliably delivered and durable
subscriptions are maintained no matter which server
the client connects to. The cleansession flag must be
set to false if durable subscriptions and/or reliable
message delivery is required. Hunt List A set of
servers may be specified that are not equal (as in the
high availability option). As no state is shared across
the servers reliable message delivery and durable
subscriptions are not valid. The cleansession flag
must be set to true if the hunt list mode is used.

 String

willPayload
(common)

Sets the Last Will and Testament (LWT) for the
connection. In the event that this client unexpectedly
loses its connection to the server, the server will
publish a message to itself using the supplied details.
The topic to publish to The byte payload for the
message. The quality of service to publish the
message at (0, 1 or 2). Whether or not the message
should be retained.

 String

willQos (common) Sets the Last Will and Testament (LWT) for the
connection. In the event that this client unexpectedly
loses its connection to the server, the server will
publish a message to itself using the supplied details.
The topic to publish to The byte payload for the
message. The quality of service to publish the
message at (0, 1 or 2). Whether or not the message
should be retained.

 int

Name Description Defaul
t

Type

CHAPTER 37. PAHO

769

willRetained
(common)

Sets the Last Will and Testament (LWT) for the
connection. In the event that this client unexpectedly
loses its connection to the server, the server will
publish a message to itself using the supplied details.
The topic to publish to The byte payload for the
message. The quality of service to publish the
message at (0, 1 or 2). Whether or not the message
should be retained.

false boolean

willTopic
(common)

Sets the Last Will and Testament (LWT) for the
connection. In the event that this client unexpectedly
loses its connection to the server, the server will
publish a message to itself using the supplied details.
The topic to publish to The byte payload for the
message. The quality of service to publish the
message at (0, 1 or 2). Whether or not the message
should be retained.

 String

bridgeErrorHandl
er (consumer)

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false boolean

exceptionHandler
(consumer
(advanced))

To let the consumer use a custom ExceptionHandler.
Notice if the option bridgeErrorHandler is enabled
then this option is not in use. By default the consumer
will deal with exceptions, that will be logged at WARN
or ERROR level and ignored.

 ExceptionHandler

exchangePattern
(consumer
(advanced))

Sets the exchange pattern when the consumer
creates an exchange.

Enum values:

InOnly

InOut

InOptionalOut

 ExchangePattern

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

770

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

client (advanced) To use an existing mqtt client. MqttClient

customWebSocke
tHeaders
(advanced)

Sets the Custom WebSocket Headers for the
WebSocket Connection.

 Properties

executorServiceT
imeout
(advanced)

Set the time in seconds that the executor service
should wait when terminating before forcefully
terminating. It is not recommended to change this
value unless you are absolutely sure that you need to.

1 int

httpsHostnameV
erificationEnable
d (security)

Whether SSL HostnameVerifier is enabled or not.
The default value is true.

true boolean

password
(security)

Password to be used for authentication against the
MQTT broker.

 String

socketFactory
(security)

Sets the SocketFactory to use. This allows an
application to apply its own policies around the
creation of network sockets. If using an SSL
connection, an SSLSocketFactory can be used to
supply application-specific security settings.

 SocketFactory

sslClientProps
(security)

Sets the SSL properties for the connection. Note that
these properties are only valid if an implementation
of the Java Secure Socket Extensions (JSSE) is
available. These properties are not used if a custom
SocketFactory has been set. The following properties
can be used: com.ibm.ssl.protocol One of: SSL,
SSLv3, TLS, TLSv1, SSL_TLS.
com.ibm.ssl.contextProvider Underlying JSSE
provider. For example IBMJSSE2 or SunJSSE
com.ibm.ssl.keyStore The name of the file that
contains the KeyStore object that you want the
KeyManager to use. For example /mydir/etc/key.p12
com.ibm.ssl.keyStorePassword The password for the
KeyStore object that you want the KeyManager to

 Properties

Name Description Defaul
t

Type

CHAPTER 37. PAHO

771

use. The password can either be in plain-text, or may
be obfuscated using the static method:
com.ibm.micro.security.Password.obfuscate(char
password). This obfuscates the password using a
simple and insecure XOR and Base64 encoding
mechanism. Note that this is only a simple scrambler
to obfuscate clear-text passwords.
com.ibm.ssl.keyStoreType Type of key store, for
example PKCS12, JKS, or JCEKS.
com.ibm.ssl.keyStoreProvider Key store provider, for
example IBMJCE or IBMJCEFIPS.
com.ibm.ssl.trustStore The name of the file that
contains the KeyStore object that you want the
TrustManager to use.
com.ibm.ssl.trustStorePassword The password for
the TrustStore object that you want the
TrustManager to use. The password can either be in
plain-text, or may be obfuscated using the static
method:
com.ibm.micro.security.Password.obfuscate(char
password). This obfuscates the password using a
simple and insecure XOR and Base64 encoding
mechanism. Note that this is only a simple scrambler
to obfuscate clear-text passwords.
com.ibm.ssl.trustStoreType The type of KeyStore
object that you want the default TrustManager to
use. Same possible values as keyStoreType.
com.ibm.ssl.trustStoreProvider Trust store provider,
for example IBMJCE or IBMJCEFIPS.
com.ibm.ssl.enabledCipherSuites A list of which
ciphers are enabled. Values are dependent on the
provider, for example:
SSL_RSA_WITH_AES_128_CBC_SHA;SSL_RSA_WIT
H_3DES_EDE_CBC_SHA. com.ibm.ssl.keyManager
Sets the algorithm that will be used to instantiate a
KeyManagerFactory object instead of using the
default algorithm available in the platform. Example
values: IbmX509 or IBMJ9X509.
com.ibm.ssl.trustManager Sets the algorithm that will
be used to instantiate a TrustManagerFactory object
instead of using the default algorithm available in the
platform. Example values: PKIX or IBMJ9X509.

sslHostnameVerif
ier (security)

Sets the HostnameVerifier for the SSL connection.
Note that it will be used after handshake on a
connection and you should do actions by yourself
when hostname is verified error. There is no default
HostnameVerifier.

 HostnameVerifier

userName
(security)

Username to be used for authentication against the
MQTT broker.

 String

Name Description Defaul
t

Type

37.5. HEADERS

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

772

The following headers are recognized by the Paho component:

Header Java constant Endpoi
nt type

Value
type

Description

CamelMqttTopic PahoConstants.M
QTT_TOPIC

Consu
mer

String The name of the topic

CamelMqttQoS PahoConstants.M
QTT_QOS

Consu
mer

Integer QualityOfService of the incoming
message

CamelPahoOverri
deTopic

PahoConstants.CA
MEL_PAHO_OVE
RRIDE_TOPIC

Produc
er

String Name of topic to override and send to
instead of topic specified on endpoint

37.6. DEFAULT PAYLOAD TYPE

By default Camel Paho component operates on the binary payloads extracted out of (or put into) the
MQTT message:

But of course Camel build-in type conversion API can perform the automatic data type transformations
for you. In the example below Camel automatically converts binary payload into String (and conversely):

37.7. SAMPLES

For example the following snippet reads messages from the MQTT broker installed on the same host as
the Camel router:

While the snippet below sends message to the MQTT broker:

For example this is how to read messages from the remote MQTT broker:

// Receive payload
byte[] payload = (byte[]) consumerTemplate.receiveBody("paho:topic");

// Send payload
byte[] payload = "message".getBytes();
producerTemplate.sendBody("paho:topic", payload);

// Receive payload
String payload = consumerTemplate.receiveBody("paho:topic", String.class);

// Send payload
String payload = "message";
producerTemplate.sendBody("paho:topic", payload);

from("paho:some/queue")
 .to("mock:test");

from("direct:test")
 .to("paho:some/target/queue");

CHAPTER 37. PAHO

773

https://camel.apache.org/manual/type-converter.html

And here we override the default topic and set to a dynamic topic

37.8. SPRING BOOT AUTO-CONFIGURATION

When using paho with Spring Boot make sure to use the following Maven dependency to have support
for auto configuration:

The component supports 32 options, which are listed below.

Name Description Defaul
t

Type

camel.component
.paho.automatic-
reconnect

Sets whether the client will automatically attempt to
reconnect to the server if the connection is lost. If set
to false, the client will not attempt to automatically
reconnect to the server in the event that the
connection is lost. If set to true, in the event that the
connection is lost, the client will attempt to
reconnect to the server. It will initially wait 1 second
before it attempts to reconnect, for every failed
reconnect attempt, the delay will double until it is at 2
minutes at which point the delay will stay at 2
minutes.

true Boolean

camel.component
.paho.autowired-
enabled

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true Boolean

from("paho:some/queue?brokerUrl=tcp://iot.eclipse.org:1883")
 .to("mock:test");

from("direct:test")
 .setHeader(PahoConstants.CAMEL_PAHO_OVERRIDE_TOPIC, simple("${header.customerId}"))
 .to("paho:some/target/queue");

<dependency>
 <groupId>org.apache.camel.springboot</groupId>
 <artifactId>camel-paho-starter</artifactId>
 <version>3.14.5.redhat-00032</version>
 <!-- Use your Camel Spring Boot version -->
</dependency>

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

774

camel.component
.paho.bridge-
error-handler

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false Boolean

camel.component
.paho.broker-url

The URL of the MQTT broker. tcp://l
ocalho
st:1883

String

camel.component
.paho.clean-
session

Sets whether the client and server should remember
state across restarts and reconnects. If set to false
both the client and server will maintain state across
restarts of the client, the server and the connection.
As state is maintained: Message delivery will be
reliable meeting the specified QOS even if the client,
server or connection are restarted. The server will
treat a subscription as durable. If set to true the
client and server will not maintain state across
restarts of the client, the server or the connection.
This means Message delivery to the specified QOS
cannot be maintained if the client, server or
connection are restarted The server will treat a
subscription as non-durable.

true Boolean

camel.component
.paho.client

To use a shared Paho client. The option is a
org.eclipse.paho.client.mqttv3.MqttClient type.

 MqttClient

camel.component
.paho.client-id

MQTT client identifier. The identifier must be unique. String

camel.component
.paho.configurati
on

To use the shared Paho configuration. The option is a
org.apache.camel.component.paho.PahoConfiguratio
n type.

 PahoConfiguratio
n

camel.component
.paho.connection-
timeout

Sets the connection timeout value. This value,
measured in seconds, defines the maximum time
interval the client will wait for the network connection
to the MQTT server to be established. The default
timeout is 30 seconds. A value of 0 disables timeout
processing meaning the client will wait until the
network connection is made successfully or fails.

30 Integer

Name Description Defaul
t

Type

CHAPTER 37. PAHO

775

camel.component
.paho.custom-
web-socket-
headers

Sets the Custom WebSocket Headers for the
WebSocket Connection. The option is a
java.util.Properties type.

 Properties

camel.component
.paho.enabled

Whether to enable auto configuration of the paho
component. This is enabled by default.

 Boolean

camel.component
.paho.executor-
service-timeout

Set the time in seconds that the executor service
should wait when terminating before forcefully
terminating. It is not recommended to change this
value unless you are absolutely sure that you need to.

1 Integer

camel.component
.paho.file-
persistence-
directory

Base directory used by file persistence. Will by
default use user directory.

 String

camel.component
.paho.https-
hostname-
verification-
enabled

Whether SSL HostnameVerifier is enabled or not.
The default value is true.

true Boolean

camel.component
.paho.keep-alive-
interval

Sets the keep alive interval. This value, measured in
seconds, defines the maximum time interval between
messages sent or received. It enables the client to
detect if the server is no longer available, without
having to wait for the TCP/IP timeout. The client will
ensure that at least one message travels across the
network within each keep alive period. In the absence
of a data-related message during the time period, the
client sends a very small ping message, which the
server will acknowledge. A value of 0 disables
keepalive processing in the client. The default value is
60 seconds.

60 Integer

camel.component
.paho.lazy-start-
producer

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false Boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

776

camel.component
.paho.max-inflight

Sets the max inflight. please increase this value in a
high traffic environment. The default value is 10.

10 Integer

camel.component
.paho.max-
reconnect-delay

Get the maximum time (in millis) to wait between
reconnects.

12800
0

Integer

camel.component
.paho.mqtt-
version

Sets the MQTT version. The default action is to
connect with version 3.1.1, and to fall back to 3.1 if that
fails. Version 3.1.1 or 3.1 can be selected specifically,
with no fall back, by using the MQTT_VERSION_3_1_1
or MQTT_VERSION_3_1 options respectively.

 Integer

camel.component
.paho.password

Password to be used for authentication against the
MQTT broker.

 String

camel.component
.paho.persistence

Client persistence to be used - memory or file. PahoPersistence

camel.component
.paho.qos

Client quality of service level (0-2). 2 Integer

camel.component
.paho.retained

Retain option. false Boolean

Name Description Defaul
t

Type

CHAPTER 37. PAHO

777

camel.component
.paho.server-u-r-
is

Set a list of one or more serverURIs the client may
connect to. Multiple servers can be separated by
comma. Each serverURI specifies the address of a
server that the client may connect to. Two types of
connection are supported tcp:// for a TCP
connection and ssl:// for a TCP connection secured
by SSL/TLS. For example: tcp://localhost:1883
ssl://localhost:8883 If the port is not specified, it will
default to 1883 for tcp:// URIs, and 8883 for ssl://
URIs. If serverURIs is set then it overrides the
serverURI parameter passed in on the constructor of
the MQTT client. When an attempt to connect is
initiated the client will start with the first serverURI in
the list and work through the list until a connection is
established with a server. If a connection cannot be
made to any of the servers then the connect attempt
fails. Specifying a list of servers that a client may
connect to has several uses: High Availability and
reliable message delivery Some MQTT servers
support a high availability feature where two or more
equal MQTT servers share state. An MQTT client can
connect to any of the equal servers and be assured
that messages are reliably delivered and durable
subscriptions are maintained no matter which server
the client connects to. The cleansession flag must be
set to false if durable subscriptions and/or reliable
message delivery is required. Hunt List A set of
servers may be specified that are not equal (as in the
high availability option). As no state is shared across
the servers reliable message delivery and durable
subscriptions are not valid. The cleansession flag
must be set to true if the hunt list mode is used.

 String

camel.component
.paho.socket-
factory

Sets the SocketFactory to use. This allows an
application to apply its own policies around the
creation of network sockets. If using an SSL
connection, an SSLSocketFactory can be used to
supply application-specific security settings. The
option is a javax.net.SocketFactory type.

 SocketFactory

camel.component
.paho.ssl-client-
props

Sets the SSL properties for the connection. Note that
these properties are only valid if an implementation
of the Java Secure Socket Extensions (JSSE) is
available. These properties are not used if a custom
SocketFactory has been set. The following properties
can be used: com.ibm.ssl.protocol One of: SSL,
SSLv3, TLS, TLSv1, SSL_TLS.
com.ibm.ssl.contextProvider Underlying JSSE
provider. For example IBMJSSE2 or SunJSSE
com.ibm.ssl.keyStore The name of the file that
contains the KeyStore object that you want the

 Properties

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

778

KeyManager to use. For example /mydir/etc/key.p12
com.ibm.ssl.keyStorePassword The password for the
KeyStore object that you want the KeyManager to
use. The password can either be in plain-text, or may
be obfuscated using the static method:
com.ibm.micro.security.Password.obfuscate(char
password). This obfuscates the password using a
simple and insecure XOR and Base64 encoding
mechanism. Note that this is only a simple scrambler
to obfuscate clear-text passwords.
com.ibm.ssl.keyStoreType Type of key store, for
example PKCS12, JKS, or JCEKS.
com.ibm.ssl.keyStoreProvider Key store provider, for
example IBMJCE or IBMJCEFIPS.
com.ibm.ssl.trustStore The name of the file that
contains the KeyStore object that you want the
TrustManager to use.
com.ibm.ssl.trustStorePassword The password for
the TrustStore object that you want the
TrustManager to use. The password can either be in
plain-text, or may be obfuscated using the static
method:
com.ibm.micro.security.Password.obfuscate(char
password). This obfuscates the password using a
simple and insecure XOR and Base64 encoding
mechanism. Note that this is only a simple scrambler
to obfuscate clear-text passwords.
com.ibm.ssl.trustStoreType The type of KeyStore
object that you want the default TrustManager to
use. Same possible values as keyStoreType.
com.ibm.ssl.trustStoreProvider Trust store provider,
for example IBMJCE or IBMJCEFIPS.
com.ibm.ssl.enabledCipherSuites A list of which
ciphers are enabled. Values are dependent on the
provider, for example:
SSL_RSA_WITH_AES_128_CBC_SHA;SSL_RSA_WIT
H_3DES_EDE_CBC_SHA. com.ibm.ssl.keyManager
Sets the algorithm that will be used to instantiate a
KeyManagerFactory object instead of using the
default algorithm available in the platform. Example
values: IbmX509 or IBMJ9X509.
com.ibm.ssl.trustManager Sets the algorithm that will
be used to instantiate a TrustManagerFactory object
instead of using the default algorithm available in the
platform. Example values: PKIX or IBMJ9X509. The
option is a java.util.Properties type.

camel.component
.paho.ssl-
hostname-verifier

Sets the HostnameVerifier for the SSL connection.
Note that it will be used after handshake on a
connection and you should do actions by yourself
when hostname is verified error. There is no default
HostnameVerifier. The option is a
javax.net.ssl.HostnameVerifier type.

 HostnameVerifier

Name Description Defaul
t

Type

CHAPTER 37. PAHO

779

camel.component
.paho.user-name

Username to be used for authentication against the
MQTT broker.

 String

camel.component
.paho.will-payload

Sets the Last Will and Testament (LWT) for the
connection. In the event that this client unexpectedly
loses its connection to the server, the server will
publish a message to itself using the supplied details.
The topic to publish to The byte payload for the
message. The quality of service to publish the
message at (0, 1 or 2). Whether or not the message
should be retained.

 String

camel.component
.paho.will-qos

Sets the Last Will and Testament (LWT) for the
connection. In the event that this client unexpectedly
loses its connection to the server, the server will
publish a message to itself using the supplied details.
The topic to publish to The byte payload for the
message. The quality of service to publish the
message at (0, 1 or 2). Whether or not the message
should be retained.

 Integer

camel.component
.paho.will-
retained

Sets the Last Will and Testament (LWT) for the
connection. In the event that this client unexpectedly
loses its connection to the server, the server will
publish a message to itself using the supplied details.
The topic to publish to The byte payload for the
message. The quality of service to publish the
message at (0, 1 or 2). Whether or not the message
should be retained.

false Boolean

camel.component
.paho.will-topic

Sets the Last Will and Testament (LWT) for the
connection. In the event that this client unexpectedly
loses its connection to the server, the server will
publish a message to itself using the supplied details.
The topic to publish to The byte payload for the
message. The quality of service to publish the
message at (0, 1 or 2). Whether or not the message
should be retained.

 String

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

780

CHAPTER 38. PAHO MQTT 5
Both producer and consumer are supported

Paho MQTT5 component provides connector for the MQTT messaging protocol using the Eclipse Paho
library with MQTT v5. Paho is one of the most popular MQTT libraries, so if you would like to integrate it
with your Java project - Camel Paho connector is a way to go.

Maven users will need to add the following dependency to their pom.xml for this component:

38.1. URI FORMAT

paho-mqtt5:topic[?options]

Where topic is the name of the topic.

38.2. CONFIGURING OPTIONS

Camel components are configured on two separate levels:

component level

endpoint level

38.2.1. Configuring Component Options

The component level is the highest level which holds general and common configurations that are
inherited by the endpoints. For example a component may have security settings, credentials for
authentication, urls for network connection and so forth.

Some components only have a few options, and others may have many. Because components typically
have pre configured defaults that are commonly used, then you may often only need to configure a few
options on a component; or none at all.

Configuring components can be done with the Component DSL, in a configuration file
(application.properties|yaml), or directly with Java code.

38.2.2. Configuring Endpoint Options

Where you find yourself configuring the most is on endpoints, as endpoints often have many options,
which allows you to configure what you need the endpoint to do. The options are also categorized into
whether the endpoint is used as consumer (from) or as a producer (to), or used for both.

Configuring endpoints is most often done directly in the endpoint URI as path and query parameters.
You can also use the Endpoint DSL as a type safe way of configuring endpoints.

A good practice when configuring options is to use Property Placeholders, which allows to not hardcode

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-paho-mqtt5</artifactId>
 <version>3.14.5.redhat-00018</version>
 <!-- use the same version as your Camel core version -->
</dependency>

CHAPTER 38. PAHO MQTT 5

781

https://eclipse.org/paho
https://camel.apache.org/manual/component-dsl.html
https://camel.apache.org/manual/Endpoint-dsl.html

A good practice when configuring options is to use Property Placeholders, which allows to not hardcode
urls, port numbers, sensitive information, and other settings. In other words placeholders allows to
externalize the configuration from your code, and gives more flexibility and reuse.

The following two sections lists all the options, firstly for the component followed by the endpoint.

38.3. COMPONENT OPTIONS

The Paho MQTT 5 component supports 32 options, which are listed below.

Name Description Defaul
t

Type

automaticReconn
ect (common)

Sets whether the client will automatically attempt to
reconnect to the server if the connection is lost. If set
to false, the client will not attempt to automatically
reconnect to the server in the event that the
connection is lost. If set to true, in the event that the
connection is lost, the client will attempt to
reconnect to the server. It will initially wait 1 second
before it attempts to reconnect, for every failed
reconnect attempt, the delay will double until it is at 2
minutes at which point the delay will stay at 2
minutes.

true boolean

brokerUrl
(common)

The URL of the MQTT broker. tcp://l
ocalho
st:1883

String

cleanStart
(common)

Sets whether the client and server should remember
state across restarts and reconnects. If set to false
both the client and server will maintain state across
restarts of the client, the server and the connection.
As state is maintained: Message delivery will be
reliable meeting the specified QOS even if the client,
server or connection are restarted. The server will
treat a subscription as durable. If set to true the
client and server will not maintain state across
restarts of the client, the server or the connection.
This means Message delivery to the specified QOS
cannot be maintained if the client, server or
connection are restarted The server will treat a
subscription as non-durable.

true boolean

clientId (common) MQTT client identifier. The identifier must be unique. String

configuration
(common)

To use the shared Paho configuration. PahoMqtt5Config
uration

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

782

https://camel.apache.org/manual/using-propertyplaceholder.html

connectionTimeo
ut (common)

Sets the connection timeout value. This value,
measured in seconds, defines the maximum time
interval the client will wait for the network connection
to the MQTT server to be established. The default
timeout is 30 seconds. A value of 0 disables timeout
processing meaning the client will wait until the
network connection is made successfully or fails.

30 int

filePersistenceDir
ectory (common)

Base directory used by file persistence. Will by
default use user directory.

 String

keepAliveInterval
(common)

Sets the keep alive interval. This value, measured in
seconds, defines the maximum time interval between
messages sent or received. It enables the client to
detect if the server is no longer available, without
having to wait for the TCP/IP timeout. The client will
ensure that at least one message travels across the
network within each keep alive period. In the absence
of a data-related message during the time period, the
client sends a very small ping message, which the
server will acknowledge. A value of 0 disables
keepalive processing in the client. The default value is
60 seconds.

60 int

maxReconnectDe
lay (common)

Get the maximum time (in millis) to wait between
reconnects.

12800
0

int

persistence
(common)

Client persistence to be used - memory or file.

Enum values:

FILE

MEMORY

MEMO
RY

PahoMqtt5Persist
ence

qos (common) Client quality of service level (0-2). 2 int

receiveMaximum
(common)

Sets the Receive Maximum. This value represents the
limit of QoS 1 and QoS 2 publications that the client is
willing to process concurrently. There is no
mechanism to limit the number of QoS 0 publications
that the Server might try to send. The default value is
65535.

65535 int

retained
(common)

Retain option. false boolean

Name Description Defaul
t

Type

CHAPTER 38. PAHO MQTT 5

783

serverURIs
(common)

Set a list of one or more serverURIs the client may
connect to. Multiple servers can be separated by
comma. Each serverURI specifies the address of a
server that the client may connect to. Two types of
connection are supported tcp:// for a TCP
connection and ssl:// for a TCP connection secured
by SSL/TLS. For example: tcp://localhost:1883
ssl://localhost:8883 If the port is not specified, it will
default to 1883 for tcp:// URIs, and 8883 for ssl://
URIs. If serverURIs is set then it overrides the
serverURI parameter passed in on the constructor of
the MQTT client. When an attempt to connect is
initiated the client will start with the first serverURI in
the list and work through the list until a connection is
established with a server. If a connection cannot be
made to any of the servers then the connect attempt
fails. Specifying a list of servers that a client may
connect to has several uses: High Availability and
reliable message delivery Some MQTT servers
support a high availability feature where two or more
equal MQTT servers share state. An MQTT client can
connect to any of the equal servers and be assured
that messages are reliably delivered and durable
subscriptions are maintained no matter which server
the client connects to. The cleansession flag must be
set to false if durable subscriptions and/or reliable
message delivery is required. Hunt List A set of
servers may be specified that are not equal (as in the
high availability option). As no state is shared across
the servers reliable message delivery and durable
subscriptions are not valid. The cleansession flag
must be set to true if the hunt list mode is used.

 String

sessionExpiryInte
rval (common)

Sets the Session Expiry Interval. This value, measured
in seconds, defines the maximum time that the broker
will maintain the session for once the client
disconnects. Clients should only connect with a long
Session Expiry interval if they intend to connect to
the server at some later point in time. By default this
value is -1 and so will not be sent, in this case, the
session will not expire. If a 0 is sent, the session will
end immediately once the Network Connection is
closed. When the client has determined that it has no
longer any use for the session, it should disconnect
with a Session Expiry Interval set to 0.

-1 long

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

784

willMqttPropertie
s (common)

Sets the Last Will and Testament (LWT) for the
connection. In the event that this client unexpectedly
loses its connection to the server, the server will
publish a message to itself using the supplied details.
The MQTT properties set for the message.

 MqttProperties

willPayload
(common)

Sets the Last Will and Testament (LWT) for the
connection. In the event that this client unexpectedly
loses its connection to the server, the server will
publish a message to itself using the supplied details.
The byte payload for the message.

 String

willQos (common) Sets the Last Will and Testament (LWT) for the
connection. In the event that this client unexpectedly
loses its connection to the server, the server will
publish a message to itself using the supplied details.
The quality of service to publish the message at (0, 1
or 2).

1 int

willRetained
(common)

Sets the Last Will and Testament (LWT) for the
connection. In the event that this client unexpectedly
loses its connection to the server, the server will
publish a message to itself using the supplied details.
Whether or not the message should be retained.

false boolean

willTopic
(common)

Sets the Last Will and Testament (LWT) for the
connection. In the event that this client unexpectedly
loses its connection to the server, the server will
publish a message to itself using the supplied details.
The topic to publish to.

 String

bridgeErrorHandl
er (consumer)

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false boolean

Name Description Defaul
t

Type

CHAPTER 38. PAHO MQTT 5

785

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

autowiredEnabled
(advanced)

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true boolean

client (advanced) To use a shared Paho client. MqttClient

customWebSocke
tHeaders
(advanced)

Sets the Custom WebSocket Headers for the
WebSocket Connection.

 Map

executorServiceT
imeout
(advanced)

Set the time in seconds that the executor service
should wait when terminating before forcefully
terminating. It is not recommended to change this
value unless you are absolutely sure that you need to.

1 int

httpsHostnameV
erificationEnable
d (security)

Whether SSL HostnameVerifier is enabled or not.
The default value is true.

true boolean

password
(security)

Password to be used for authentication against the
MQTT broker.

 String

socketFactory
(security)

Sets the SocketFactory to use. This allows an
application to apply its own policies around the
creation of network sockets. If using an SSL
connection, an SSLSocketFactory can be used to
supply application-specific security settings.

 SocketFactory

sslClientProps
(security)

Sets the SSL properties for the connection. Note that
these properties are only valid if an implementation
of the Java Secure Socket Extensions (JSSE) is

 Properties

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

786

available. These properties are not used if a custom
SocketFactory has been set. The following properties
can be used: com.ibm.ssl.protocol One of: SSL,
SSLv3, TLS, TLSv1, SSL_TLS.
com.ibm.ssl.contextProvider Underlying JSSE
provider. For example IBMJSSE2 or SunJSSE
com.ibm.ssl.keyStore The name of the file that
contains the KeyStore object that you want the
KeyManager to use. For example /mydir/etc/key.p12
com.ibm.ssl.keyStorePassword The password for the
KeyStore object that you want the KeyManager to
use. The password can either be in plain-text, or may
be obfuscated using the static method:
com.ibm.micro.security.Password.obfuscate(char
password). This obfuscates the password using a
simple and insecure XOR and Base64 encoding
mechanism. Note that this is only a simple scrambler
to obfuscate clear-text passwords.
com.ibm.ssl.keyStoreType Type of key store, for
example PKCS12, JKS, or JCEKS.
com.ibm.ssl.keyStoreProvider Key store provider, for
example IBMJCE or IBMJCEFIPS.
com.ibm.ssl.trustStore The name of the file that
contains the KeyStore object that you want the
TrustManager to use.
com.ibm.ssl.trustStorePassword The password for
the TrustStore object that you want the
TrustManager to use. The password can either be in
plain-text, or may be obfuscated using the static
method:
com.ibm.micro.security.Password.obfuscate(char
password). This obfuscates the password using a
simple and insecure XOR and Base64 encoding
mechanism. Note that this is only a simple scrambler
to obfuscate clear-text passwords.
com.ibm.ssl.trustStoreType The type of KeyStore
object that you want the default TrustManager to
use. Same possible values as keyStoreType.
com.ibm.ssl.trustStoreProvider Trust store provider,
for example IBMJCE or IBMJCEFIPS.
com.ibm.ssl.enabledCipherSuites A list of which
ciphers are enabled. Values are dependent on the
provider, for example:
SSL_RSA_WITH_AES_128_CBC_SHA;SSL_RSA_WIT
H_3DES_EDE_CBC_SHA. com.ibm.ssl.keyManager
Sets the algorithm that will be used to instantiate a
KeyManagerFactory object instead of using the
default algorithm available in the platform. Example
values: IbmX509 or IBMJ9X509.
com.ibm.ssl.trustManager Sets the algorithm that will
be used to instantiate a TrustManagerFactory object
instead of using the default algorithm available in the
platform. Example values: PKIX or IBMJ9X509.

Name Description Defaul
t

Type

CHAPTER 38. PAHO MQTT 5

787

sslHostnameVerif
ier (security)

Sets the HostnameVerifier for the SSL connection.
Note that it will be used after handshake on a
connection and you should do actions by yourself
when hostname is verified error. There is no default
HostnameVerifier.

 HostnameVerifier

userName
(security)

Username to be used for authentication against the
MQTT broker.

 String

Name Description Defaul
t

Type

38.4. ENDPOINT OPTIONS

The Paho MQTT 5 endpoint is configured using URI syntax:

paho-mqtt5:topic

with the following path and query parameters:

38.4.1. Path Parameters (1 parameters)

Name Description Defaul
t

Type

topic (common) Required Name of the topic. String

38.4.2. Query Parameters (32 parameters)

Name Description Defaul
t

Type

automaticReconn
ect (common)

Sets whether the client will automatically attempt to
reconnect to the server if the connection is lost. If set
to false, the client will not attempt to automatically
reconnect to the server in the event that the
connection is lost. If set to true, in the event that the
connection is lost, the client will attempt to
reconnect to the server. It will initially wait 1 second
before it attempts to reconnect, for every failed
reconnect attempt, the delay will double until it is at 2
minutes at which point the delay will stay at 2
minutes.

true boolean

brokerUrl
(common)

The URL of the MQTT broker. tcp://l
ocalho
st:1883

String

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

788

cleanStart
(common)

Sets whether the client and server should remember
state across restarts and reconnects. If set to false
both the client and server will maintain state across
restarts of the client, the server and the connection.
As state is maintained: Message delivery will be
reliable meeting the specified QOS even if the client,
server or connection are restarted. The server will
treat a subscription as durable. If set to true the
client and server will not maintain state across
restarts of the client, the server or the connection.
This means Message delivery to the specified QOS
cannot be maintained if the client, server or
connection are restarted The server will treat a
subscription as non-durable.

true boolean

clientId (common) MQTT client identifier. The identifier must be unique. String

connectionTimeo
ut (common)

Sets the connection timeout value. This value,
measured in seconds, defines the maximum time
interval the client will wait for the network connection
to the MQTT server to be established. The default
timeout is 30 seconds. A value of 0 disables timeout
processing meaning the client will wait until the
network connection is made successfully or fails.

30 int

filePersistenceDir
ectory (common)

Base directory used by file persistence. Will by
default use user directory.

 String

keepAliveInterval
(common)

Sets the keep alive interval. This value, measured in
seconds, defines the maximum time interval between
messages sent or received. It enables the client to
detect if the server is no longer available, without
having to wait for the TCP/IP timeout. The client will
ensure that at least one message travels across the
network within each keep alive period. In the absence
of a data-related message during the time period, the
client sends a very small ping message, which the
server will acknowledge. A value of 0 disables
keepalive processing in the client. The default value is
60 seconds.

60 int

maxReconnectDe
lay (common)

Get the maximum time (in millis) to wait between
reconnects.

12800
0

int

Name Description Defaul
t

Type

CHAPTER 38. PAHO MQTT 5

789

persistence
(common)

Client persistence to be used - memory or file.

Enum values:

FILE

MEMORY

MEMO
RY

PahoMqtt5Persist
ence

qos (common) Client quality of service level (0-2). 2 int

receiveMaximum
(common)

Sets the Receive Maximum. This value represents the
limit of QoS 1 and QoS 2 publications that the client is
willing to process concurrently. There is no
mechanism to limit the number of QoS 0 publications
that the Server might try to send. The default value is
65535.

65535 int

retained
(common)

Retain option. false boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

790

serverURIs
(common)

Set a list of one or more serverURIs the client may
connect to. Multiple servers can be separated by
comma. Each serverURI specifies the address of a
server that the client may connect to. Two types of
connection are supported tcp:// for a TCP
connection and ssl:// for a TCP connection secured
by SSL/TLS. For example: tcp://localhost:1883
ssl://localhost:8883 If the port is not specified, it will
default to 1883 for tcp:// URIs, and 8883 for ssl://
URIs. If serverURIs is set then it overrides the
serverURI parameter passed in on the constructor of
the MQTT client. When an attempt to connect is
initiated the client will start with the first serverURI in
the list and work through the list until a connection is
established with a server. If a connection cannot be
made to any of the servers then the connect attempt
fails. Specifying a list of servers that a client may
connect to has several uses: High Availability and
reliable message delivery Some MQTT servers
support a high availability feature where two or more
equal MQTT servers share state. An MQTT client can
connect to any of the equal servers and be assured
that messages are reliably delivered and durable
subscriptions are maintained no matter which server
the client connects to. The cleansession flag must be
set to false if durable subscriptions and/or reliable
message delivery is required. Hunt List A set of
servers may be specified that are not equal (as in the
high availability option). As no state is shared across
the servers reliable message delivery and durable
subscriptions are not valid. The cleansession flag
must be set to true if the hunt list mode is used.

 String

sessionExpiryInte
rval (common)

Sets the Session Expiry Interval. This value, measured
in seconds, defines the maximum time that the broker
will maintain the session for once the client
disconnects. Clients should only connect with a long
Session Expiry interval if they intend to connect to
the server at some later point in time. By default this
value is -1 and so will not be sent, in this case, the
session will not expire. If a 0 is sent, the session will
end immediately once the Network Connection is
closed. When the client has determined that it has no
longer any use for the session, it should disconnect
with a Session Expiry Interval set to 0.

-1 long

Name Description Defaul
t

Type

CHAPTER 38. PAHO MQTT 5

791

willMqttPropertie
s (common)

Sets the Last Will and Testament (LWT) for the
connection. In the event that this client unexpectedly
loses its connection to the server, the server will
publish a message to itself using the supplied details.
The MQTT properties set for the message.

 MqttProperties

willPayload
(common)

Sets the Last Will and Testament (LWT) for the
connection. In the event that this client unexpectedly
loses its connection to the server, the server will
publish a message to itself using the supplied details.
The byte payload for the message.

 String

willQos (common) Sets the Last Will and Testament (LWT) for the
connection. In the event that this client unexpectedly
loses its connection to the server, the server will
publish a message to itself using the supplied details.
The quality of service to publish the message at (0, 1
or 2).

1 int

willRetained
(common)

Sets the Last Will and Testament (LWT) for the
connection. In the event that this client unexpectedly
loses its connection to the server, the server will
publish a message to itself using the supplied details.
Whether or not the message should be retained.

false boolean

willTopic
(common)

Sets the Last Will and Testament (LWT) for the
connection. In the event that this client unexpectedly
loses its connection to the server, the server will
publish a message to itself using the supplied details.
The topic to publish to.

 String

bridgeErrorHandl
er (consumer)

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false boolean

exceptionHandler
(consumer
(advanced))

To let the consumer use a custom ExceptionHandler.
Notice if the option bridgeErrorHandler is enabled
then this option is not in use. By default the consumer
will deal with exceptions, that will be logged at WARN
or ERROR level and ignored.

 ExceptionHandler

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

792

exchangePattern
(consumer
(advanced))

Sets the exchange pattern when the consumer
creates an exchange.

Enum values:

InOnly

InOut

InOptionalOut

 ExchangePattern

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

client (advanced) To use an existing mqtt client. MqttClient

customWebSocke
tHeaders
(advanced)

Sets the Custom WebSocket Headers for the
WebSocket Connection.

 Map

executorServiceT
imeout
(advanced)

Set the time in seconds that the executor service
should wait when terminating before forcefully
terminating. It is not recommended to change this
value unless you are absolutely sure that you need to.

1 int

httpsHostnameV
erificationEnable
d (security)

Whether SSL HostnameVerifier is enabled or not.
The default value is true.

true boolean

password
(security)

Password to be used for authentication against the
MQTT broker.

 String

socketFactory
(security)

Sets the SocketFactory to use. This allows an
application to apply its own policies around the
creation of network sockets. If using an SSL
connection, an SSLSocketFactory can be used to
supply application-specific security settings.

 SocketFactory

sslClientProps
(security)

Sets the SSL properties for the connection. Note that
these properties are only valid if an implementation
of the Java Secure Socket Extensions (JSSE) is

 Properties

Name Description Defaul
t

Type

CHAPTER 38. PAHO MQTT 5

793

available. These properties are not used if a custom
SocketFactory has been set. The following properties
can be used: com.ibm.ssl.protocol One of: SSL,
SSLv3, TLS, TLSv1, SSL_TLS.
com.ibm.ssl.contextProvider Underlying JSSE
provider. For example IBMJSSE2 or SunJSSE
com.ibm.ssl.keyStore The name of the file that
contains the KeyStore object that you want the
KeyManager to use. For example /mydir/etc/key.p12
com.ibm.ssl.keyStorePassword The password for the
KeyStore object that you want the KeyManager to
use. The password can either be in plain-text, or may
be obfuscated using the static method:
com.ibm.micro.security.Password.obfuscate(char
password). This obfuscates the password using a
simple and insecure XOR and Base64 encoding
mechanism. Note that this is only a simple scrambler
to obfuscate clear-text passwords.
com.ibm.ssl.keyStoreType Type of key store, for
example PKCS12, JKS, or JCEKS.
com.ibm.ssl.keyStoreProvider Key store provider, for
example IBMJCE or IBMJCEFIPS.
com.ibm.ssl.trustStore The name of the file that
contains the KeyStore object that you want the
TrustManager to use.
com.ibm.ssl.trustStorePassword The password for
the TrustStore object that you want the
TrustManager to use. The password can either be in
plain-text, or may be obfuscated using the static
method:
com.ibm.micro.security.Password.obfuscate(char
password). This obfuscates the password using a
simple and insecure XOR and Base64 encoding
mechanism. Note that this is only a simple scrambler
to obfuscate clear-text passwords.
com.ibm.ssl.trustStoreType The type of KeyStore
object that you want the default TrustManager to
use. Same possible values as keyStoreType.
com.ibm.ssl.trustStoreProvider Trust store provider,
for example IBMJCE or IBMJCEFIPS.
com.ibm.ssl.enabledCipherSuites A list of which
ciphers are enabled. Values are dependent on the
provider, for example:
SSL_RSA_WITH_AES_128_CBC_SHA;SSL_RSA_WIT
H_3DES_EDE_CBC_SHA. com.ibm.ssl.keyManager
Sets the algorithm that will be used to instantiate a
KeyManagerFactory object instead of using the
default algorithm available in the platform. Example
values: IbmX509 or IBMJ9X509.
com.ibm.ssl.trustManager Sets the algorithm that will
be used to instantiate a TrustManagerFactory object
instead of using the default algorithm available in the
platform. Example values: PKIX or IBMJ9X509.

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

794

sslHostnameVerif
ier (security)

Sets the HostnameVerifier for the SSL connection.
Note that it will be used after handshake on a
connection and you should do actions by yourself
when hostname is verified error. There is no default
HostnameVerifier.

 HostnameVerifier

userName
(security)

Username to be used for authentication against the
MQTT broker.

 String

Name Description Defaul
t

Type

38.5. HEADERS

The following headers are recognized by the Paho component:

Header Java constant Endpoi
nt type

Value
type

Description

CamelMqttTopic PahoConstants.M
QTT_TOPIC

Consu
mer

String The name of the topic

CamelMqttQoS PahoConstants.M
QTT_QOS

Consu
mer

Integer QualityOfService of the incoming
message

CamelPahoOverri
deTopic

PahoConstants.CA
MEL_PAHO_OVE
RRIDE_TOPIC

Produc
er

String Name of topic to override and send to
instead of topic specified on endpoint

38.6. DEFAULT PAYLOAD TYPE

By default Camel Paho component operates on the binary payloads extracted out of (or put into) the
MQTT message:

But of course Camel build-in type conversion API can perform the automatic data type transformations
for you. In the example below Camel automatically converts binary payload into String (and conversely):

// Receive payload
byte[] payload = (byte[]) consumerTemplate.receiveBody("paho:topic");

// Send payload
byte[] payload = "message".getBytes();
producerTemplate.sendBody("paho:topic", payload);

// Receive payload
String payload = consumerTemplate.receiveBody("paho:topic", String.class);

// Send payload
String payload = "message";
producerTemplate.sendBody("paho:topic", payload);

CHAPTER 38. PAHO MQTT 5

795

https://camel.apache.org/manual/type-converter.html

38.7. SAMPLES

For example the following snippet reads messages from the MQTT broker installed on the same host as
the Camel router:

While the snippet below sends message to the MQTT broker:

For example this is how to read messages from the remote MQTT broker:

And here we override the default topic and set to a dynamic topic

38.8. SPRING BOOT AUTO-CONFIGURATION

When using paho-mqtt5 with Spring Boot make sure to use the following Maven dependency to have
support for auto configuration:

The component supports 33 options, which are listed below.

Name Description Defaul
t

Type

from("paho:some/queue")
 .to("mock:test");

from("direct:test")
 .to("paho:some/target/queue");

from("paho:some/queue?brokerUrl=tcp://iot.eclipse.org:1883")
 .to("mock:test");

from("direct:test")
 .setHeader(PahoConstants.CAMEL_PAHO_OVERRIDE_TOPIC, simple("${header.customerId}"))
 .to("paho:some/target/queue");

<dependency>
 <groupId>org.apache.camel.springboot</groupId>
 <artifactId>camel-paho-mqtt5-starter</artifactId>
 <version>3.14.5.redhat-00032</version>
 <!-- Use your Camel Spring Boot version -->
</dependency>

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

796

camel.component
.paho-
mqtt5.automatic-
reconnect

Sets whether the client will automatically attempt to
reconnect to the server if the connection is lost. If set
to false, the client will not attempt to automatically
reconnect to the server in the event that the
connection is lost. If set to true, in the event that the
connection is lost, the client will attempt to
reconnect to the server. It will initially wait 1 second
before it attempts to reconnect, for every failed
reconnect attempt, the delay will double until it is at 2
minutes at which point the delay will stay at 2
minutes.

true Boolean

camel.component
.paho-
mqtt5.autowired-
enabled

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true Boolean

camel.component
.paho-
mqtt5.bridge-
error-handler

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false Boolean

camel.component
.paho-
mqtt5.broker-url

The URL of the MQTT broker. tcp://l
ocalho
st:1883

String

Name Description Defaul
t

Type

CHAPTER 38. PAHO MQTT 5

797

camel.component
.paho-
mqtt5.clean-start

Sets whether the client and server should remember
state across restarts and reconnects. If set to false
both the client and server will maintain state across
restarts of the client, the server and the connection.
As state is maintained: Message delivery will be
reliable meeting the specified QOS even if the client,
server or connection are restarted. The server will
treat a subscription as durable. If set to true the
client and server will not maintain state across
restarts of the client, the server or the connection.
This means Message delivery to the specified QOS
cannot be maintained if the client, server or
connection are restarted The server will treat a
subscription as non-durable.

true Boolean

camel.component
.paho-
mqtt5.client

To use a shared Paho client. The option is a
org.eclipse.paho.mqttv5.client.MqttClient type.

 MqttClient

camel.component
.paho-
mqtt5.client-id

MQTT client identifier. The identifier must be unique. String

camel.component
.paho-
mqtt5.configurati
on

To use the shared Paho configuration. The option is a
org.apache.camel.component.paho.mqtt5.PahoMqtt
5Configuration type.

 PahoMqtt5Config
uration

camel.component
.paho-
mqtt5.connection
-timeout

Sets the connection timeout value. This value,
measured in seconds, defines the maximum time
interval the client will wait for the network connection
to the MQTT server to be established. The default
timeout is 30 seconds. A value of 0 disables timeout
processing meaning the client will wait until the
network connection is made successfully or fails.

30 Integer

camel.component
.paho-
mqtt5.custom-
web-socket-
headers

Sets the Custom WebSocket Headers for the
WebSocket Connection.

 Map

camel.component
.paho-
mqtt5.enabled

Whether to enable auto configuration of the paho-
mqtt5 component. This is enabled by default.

 Boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

798

camel.component
.paho-
mqtt5.executor-
service-timeout

Set the time in seconds that the executor service
should wait when terminating before forcefully
terminating. It is not recommended to change this
value unless you are absolutely sure that you need to.

1 Integer

camel.component
.paho-mqtt5.file-
persistence-
directory

Base directory used by file persistence. Will by
default use user directory.

 String

camel.component
.paho-
mqtt5.https-
hostname-
verification-
enabled

Whether SSL HostnameVerifier is enabled or not.
The default value is true.

true Boolean

camel.component
.paho-
mqtt5.keep-alive-
interval

Sets the keep alive interval. This value, measured in
seconds, defines the maximum time interval between
messages sent or received. It enables the client to
detect if the server is no longer available, without
having to wait for the TCP/IP timeout. The client will
ensure that at least one message travels across the
network within each keep alive period. In the absence
of a data-related message during the time period, the
client sends a very small ping message, which the
server will acknowledge. A value of 0 disables
keepalive processing in the client. The default value is
60 seconds.

60 Integer

camel.component
.paho-mqtt5.lazy-
start-producer

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false Boolean

camel.component
.paho-
mqtt5.max-
reconnect-delay

Get the maximum time (in millis) to wait between
reconnects.

12800
0

Integer

Name Description Defaul
t

Type

CHAPTER 38. PAHO MQTT 5

799

camel.component
.paho-
mqtt5.password

Password to be used for authentication against the
MQTT broker.

 String

camel.component
.paho-
mqtt5.persistenc
e

Client persistence to be used - memory or file. PahoMqtt5Persist
ence

camel.component
.paho-mqtt5.qos

Client quality of service level (0-2). 2 Integer

camel.component
.paho-
mqtt5.receive-
maximum

Sets the Receive Maximum. This value represents the
limit of QoS 1 and QoS 2 publications that the client is
willing to process concurrently. There is no
mechanism to limit the number of QoS 0 publications
that the Server might try to send. The default value is
65535.

65535 Integer

camel.component
.paho-
mqtt5.retained

Retain option. false Boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

800

camel.component
.paho-
mqtt5.server-u-r-
is

Set a list of one or more serverURIs the client may
connect to. Multiple servers can be separated by
comma. Each serverURI specifies the address of a
server that the client may connect to. Two types of
connection are supported tcp:// for a TCP
connection and ssl:// for a TCP connection secured
by SSL/TLS. For example: tcp://localhost:1883
ssl://localhost:8883 If the port is not specified, it will
default to 1883 for tcp:// URIs, and 8883 for ssl://
URIs. If serverURIs is set then it overrides the
serverURI parameter passed in on the constructor of
the MQTT client. When an attempt to connect is
initiated the client will start with the first serverURI in
the list and work through the list until a connection is
established with a server. If a connection cannot be
made to any of the servers then the connect attempt
fails. Specifying a list of servers that a client may
connect to has several uses: High Availability and
reliable message delivery Some MQTT servers
support a high availability feature where two or more
equal MQTT servers share state. An MQTT client can
connect to any of the equal servers and be assured
that messages are reliably delivered and durable
subscriptions are maintained no matter which server
the client connects to. The cleansession flag must be
set to false if durable subscriptions and/or reliable
message delivery is required. Hunt List A set of
servers may be specified that are not equal (as in the
high availability option). As no state is shared across
the servers reliable message delivery and durable
subscriptions are not valid. The cleansession flag
must be set to true if the hunt list mode is used.

 String

camel.component
.paho-
mqtt5.session-
expiry-interval

Sets the Session Expiry Interval. This value, measured
in seconds, defines the maximum time that the broker
will maintain the session for once the client
disconnects. Clients should only connect with a long
Session Expiry interval if they intend to connect to
the server at some later point in time. By default this
value is -1 and so will not be sent, in this case, the
session will not expire. If a 0 is sent, the session will
end immediately once the Network Connection is
closed. When the client has determined that it has no
longer any use for the session, it should disconnect
with a Session Expiry Interval set to 0.

-1 Long

Name Description Defaul
t

Type

CHAPTER 38. PAHO MQTT 5

801

camel.component
.paho-
mqtt5.socket-
factory

Sets the SocketFactory to use. This allows an
application to apply its own policies around the
creation of network sockets. If using an SSL
connection, an SSLSocketFactory can be used to
supply application-specific security settings. The
option is a javax.net.SocketFactory type.

 SocketFactory

camel.component
.paho-mqtt5.ssl-
client-props

Sets the SSL properties for the connection. Note that
these properties are only valid if an implementation
of the Java Secure Socket Extensions (JSSE) is
available. These properties are not used if a custom
SocketFactory has been set. The following properties
can be used: com.ibm.ssl.protocol One of: SSL,
SSLv3, TLS, TLSv1, SSL_TLS.
com.ibm.ssl.contextProvider Underlying JSSE
provider. For example IBMJSSE2 or SunJSSE
com.ibm.ssl.keyStore The name of the file that
contains the KeyStore object that you want the
KeyManager to use. For example /mydir/etc/key.p12
com.ibm.ssl.keyStorePassword The password for the
KeyStore object that you want the KeyManager to
use. The password can either be in plain-text, or may
be obfuscated using the static method:
com.ibm.micro.security.Password.obfuscate(char
password). This obfuscates the password using a
simple and insecure XOR and Base64 encoding
mechanism. Note that this is only a simple scrambler
to obfuscate clear-text passwords.
com.ibm.ssl.keyStoreType Type of key store, for
example PKCS12, JKS, or JCEKS.
com.ibm.ssl.keyStoreProvider Key store provider, for
example IBMJCE or IBMJCEFIPS.
com.ibm.ssl.trustStore The name of the file that
contains the KeyStore object that you want the
TrustManager to use.
com.ibm.ssl.trustStorePassword The password for
the TrustStore object that you want the
TrustManager to use. The password can either be in
plain-text, or may be obfuscated using the static
method:
com.ibm.micro.security.Password.obfuscate(char
password). This obfuscates the password using a
simple and insecure XOR and Base64 encoding
mechanism. Note that this is only a simple scrambler
to obfuscate clear-text passwords.
com.ibm.ssl.trustStoreType The type of KeyStore
object that you want the default TrustManager to
use. Same possible values as keyStoreType.
com.ibm.ssl.trustStoreProvider Trust store provider,
for example IBMJCE or IBMJCEFIPS.
com.ibm.ssl.enabledCipherSuites A list of which
ciphers are enabled. Values are dependent on the

 Properties

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

802

provider, for example:
SSL_RSA_WITH_AES_128_CBC_SHA;SSL_RSA_WIT
H_3DES_EDE_CBC_SHA. com.ibm.ssl.keyManager
Sets the algorithm that will be used to instantiate a
KeyManagerFactory object instead of using the
default algorithm available in the platform. Example
values: IbmX509 or IBMJ9X509.
com.ibm.ssl.trustManager Sets the algorithm that will
be used to instantiate a TrustManagerFactory object
instead of using the default algorithm available in the
platform. Example values: PKIX or IBMJ9X509. The
option is a java.util.Properties type.

camel.component
.paho-mqtt5.ssl-
hostname-verifier

Sets the HostnameVerifier for the SSL connection.
Note that it will be used after handshake on a
connection and you should do actions by yourself
when hostname is verified error. There is no default
HostnameVerifier. The option is a
javax.net.ssl.HostnameVerifier type.

 HostnameVerifier

camel.component
.paho-
mqtt5.user-name

Username to be used for authentication against the
MQTT broker.

 String

camel.component
.paho-mqtt5.will-
mqtt-properties

Sets the Last Will and Testament (LWT) for the
connection. In the event that this client unexpectedly
loses its connection to the server, the server will
publish a message to itself using the supplied details.
The MQTT properties set for the message. The
option is a
org.eclipse.paho.mqttv5.common.packet.MqttProper
ties type.

 MqttProperties

camel.component
.paho-mqtt5.will-
payload

Sets the Last Will and Testament (LWT) for the
connection. In the event that this client unexpectedly
loses its connection to the server, the server will
publish a message to itself using the supplied details.
The byte payload for the message.

 String

camel.component
.paho-mqtt5.will-
qos

Sets the Last Will and Testament (LWT) for the
connection. In the event that this client unexpectedly
loses its connection to the server, the server will
publish a message to itself using the supplied details.
The quality of service to publish the message at (0, 1
or 2).

1 Integer

camel.component
.paho-mqtt5.will-
retained

Sets the Last Will and Testament (LWT) for the
connection. In the event that this client unexpectedly
loses its connection to the server, the server will
publish a message to itself using the supplied details.
Whether or not the message should be retained.

false Boolean

Name Description Defaul
t

Type

CHAPTER 38. PAHO MQTT 5

803

camel.component
.paho-mqtt5.will-
topic

Sets the Last Will and Testament (LWT) for the
connection. In the event that this client unexpectedly
loses its connection to the server, the server will
publish a message to itself using the supplied details.
The topic to publish to.

 String

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

804

CHAPTER 39. QUARTZ
Only consumer is supported

The Quartz component provides a scheduled delivery of messages using the Quartz Scheduler 2.x . Each
endpoint represents a different timer (in Quartz terms, a Trigger and JobDetail).

Maven users will need to add the following dependency to their pom.xml for this component:

39.1. URI FORMAT

quartz://timerName?options
quartz://groupName/timerName?options
quartz://groupName/timerName?cron=expression
quartz://timerName?cron=expression

The component uses either a CronTrigger or a SimpleTrigger. If no cron expression is provided, the
component uses a simple trigger. If no groupName is provided, the quartz component uses the Camel
group name.

39.2. CONFIGURING OPTIONS

Camel components are configured on two separate levels:

component level

endpoint level

39.2.1. Configuring Component Options

The component level is the highest level which holds general and common configurations that are
inherited by the endpoints. For example a component may have security settings, credentials for
authentication, urls for network connection and so forth.

Some components only have a few options, and others may have many. Because components typically
have pre configured defaults that are commonly used, then you may often only need to configure a few
options on a component; or none at all.

Configuring components can be done with the Component DSL, in a configuration file
(application.properties|yaml), or directly with Java code.

39.2.2. Configuring Endpoint Options

Where you find yourself configuring the most is on endpoints, as endpoints often have many options,
which allows you to configure what you need the endpoint to do. The options are also categorized into
whether the endpoint is used as consumer (from) or as a producer (to), or used for both.

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-quartz</artifactId>
 <version>3.14.5.redhat-00018</version>
 <!-- use the same version as your Camel core version -->
</dependency>

CHAPTER 39. QUARTZ

805

http://www.quartz-scheduler.org/
https://camel.apache.org/manual/component-dsl.html

Configuring endpoints is most often done directly in the endpoint URI as path and query parameters.
You can also use the Endpoint DSL as a type safe way of configuring endpoints.

A good practice when configuring options is to use Property Placeholders, which allows to not hardcode
urls, port numbers, sensitive information, and other settings. In other words placeholders allows to
externalize the configuration from your code, and gives more flexibility and reuse.

The following two sections lists all the options, firstly for the component followed by the endpoint.

39.3. COMPONENT OPTIONS

The Quartz component supports 13 options, which are listed below.

Name Description Defaul
t

Type

bridgeErrorHandl
er (consumer)

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false boolean

enableJmx
(consumer)

Whether to enable Quartz JMX which allows to
manage the Quartz scheduler from JMX. This
options is default true.

true boolean

prefixInstanceNa
me (consumer)

Whether to prefix the Quartz Scheduler instance
name with the CamelContext name. This is enabled
by default, to let each CamelContext use its own
Quartz scheduler instance by default. You can set this
option to false to reuse Quartz scheduler instances
between multiple CamelContext’s.

true boolean

prefixJobNameW
ithEndpointId
(consumer)

Whether to prefix the quartz job with the endpoint id.
This option is default false.

false boolean

properties
(consumer)

Properties to configure the Quartz scheduler. Map

propertiesFile
(consumer)

File name of the properties to load from the
classpath.

 String

propertiesRef
(consumer)

References to an existing Properties or Map to
lookup in the registry to use for configuring quartz.

 String

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

806

https://camel.apache.org/manual/Endpoint-dsl.html
https://camel.apache.org/manual/using-propertyplaceholder.html

autowiredEnabled
(advanced)

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true boolean

scheduler
(advanced)

To use the custom configured Quartz scheduler,
instead of creating a new Scheduler.

 Scheduler

schedulerFactory
(advanced)

To use the custom SchedulerFactory which is used to
create the Scheduler.

 SchedulerFactory

autoStartSchedul
er (scheduler)

Whether or not the scheduler should be auto started.
This options is default true.

true boolean

interruptJobsOn
Shutdown
(scheduler)

Whether to interrupt jobs on shutdown which forces
the scheduler to shutdown quicker and attempt to
interrupt any running jobs. If this is enabled then any
running jobs can fail due to being interrupted. When a
job is interrupted then Camel will mark the exchange
to stop continue routing and set
java.util.concurrent.RejectedExecutionException as
caused exception. Therefore use this with care, as its
often better to allow Camel jobs to complete and
shutdown gracefully.

false boolean

startDelayedSeco
nds (scheduler)

Seconds to wait before starting the quartz scheduler. int

Name Description Defaul
t

Type

39.4. ENDPOINT OPTIONS

The Quartz endpoint is configured using URI syntax:

quartz:groupName/triggerName

with the following path and query parameters:

39.4.1. Path Parameters (2 parameters)

Name Description Defaul
t

Type

groupName
(consumer)

The quartz group name to use. The combination of
group name and trigger name should be unique.

Camel String

CHAPTER 39. QUARTZ

807

triggerName
(consumer)

Required The quartz trigger name to use. The
combination of group name and trigger name should
be unique.

 String

Name Description Defaul
t

Type

39.4.2. Query Parameters (17 parameters)

Name Description Defaul
t

Type

bridgeErrorHandl
er (consumer)

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false boolean

cron (consumer) Specifies a cron expression to define when to trigger. String

deleteJob
(consumer)

If set to true, then the trigger automatically delete
when route stop. Else if set to false, it will remain in
scheduler. When set to false, it will also mean user
may reuse pre-configured trigger with camel Uri.
Just ensure the names match. Notice you cannot
have both deleteJob and pauseJob set to true.

true boolean

durableJob
(consumer)

Whether or not the job should remain stored after it is
orphaned (no triggers point to it).

false boolean

pauseJob
(consumer)

If set to true, then the trigger automatically pauses
when route stop. Else if set to false, it will remain in
scheduler. When set to false, it will also mean user
may reuse pre-configured trigger with camel Uri.
Just ensure the names match. Notice you cannot
have both deleteJob and pauseJob set to true.

false boolean

recoverableJob
(consumer)

Instructs the scheduler whether or not the job should
be re-executed if a 'recovery' or 'fail-over' situation is
encountered.

false boolean

stateful
(consumer)

Uses a Quartz PersistJobDataAfterExecution and
DisallowConcurrentExecution instead of the default
job.

false boolean

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

808

exceptionHandler
(consumer
(advanced))

To let the consumer use a custom ExceptionHandler.
Notice if the option bridgeErrorHandler is enabled
then this option is not in use. By default the consumer
will deal with exceptions, that will be logged at WARN
or ERROR level and ignored.

 ExceptionHandler

exchangePattern
(consumer
(advanced))

Sets the exchange pattern when the consumer
creates an exchange.

Enum values:

InOnly

InOut

InOptionalOut

 ExchangePattern

customCalendar
(advanced)

Specifies a custom calendar to avoid specific range
of date.

 Calendar

jobParameters
(advanced)

To configure additional options on the job. Map

prefixJobNameW
ithEndpointId
(advanced)

Whether the job name should be prefixed with
endpoint id.

false boolean

triggerParameter
s (advanced)

To configure additional options on the trigger. Map

usingFixedCamel
ContextName
(advanced)

If it is true, JobDataMap uses the CamelContext
name directly to reference the CamelContext, if it is
false, JobDataMap uses use the CamelContext
management name which could be changed during
the deploy time.

false boolean

autoStartSchedul
er (scheduler)

Whether or not the scheduler should be auto started. true boolean

startDelayedSeco
nds (scheduler)

Seconds to wait before starting the quartz scheduler. int

triggerStartDelay
(scheduler)

In case of scheduler has already started, we want the
trigger start slightly after current time to ensure
endpoint is fully started before the job kicks in.
Negative value shifts trigger start time in the past.

500 long

Name Description Defaul
t

Type

CHAPTER 39. QUARTZ

809

39.4.3. Configuring quartz.properties file

By default Quartz will look for a quartz.properties file in the org/quartz directory of the classpath. If
you are using WAR deployments this means just drop the quartz.properties in WEB-
INF/classes/org/quartz.

However the Camel Quartz component also allows you to configure properties:

Parameter Default Type Description

properties null Prope
rties

You can configure a java.util.Properties instance.

propertiesFile null String File name of the properties to load from the classpath

To do this you can configure this in Spring XML as follows

39.5. ENABLING QUARTZ SCHEDULER IN JMX

You need to configure the quartz scheduler properties to enable JMX.
That is typically setting the option "org.quartz.scheduler.jmx.export" to a true value in the
configuration file.

This option is set to true by default, unless explicitly disabled.

39.6. STARTING THE QUARTZ SCHEDULER

The Quartz component offers an option to let the Quartz scheduler be started delayed, or not auto
started at all.

This is an example:

39.7. CLUSTERING

If you use Quartz in clustered mode, e.g. the JobStore is clustered. Then the Quartz component will not
pause/remove triggers when a node is being stopped/shutdown. This allows the trigger to keep running
on the other nodes in the cluster.

NOTE

When running in clustered node no checking is done to ensure unique job name/group
for endpoints.

<bean id="quartz" class="org.apache.camel.component.quartz.QuartzComponent">
 <property name="propertiesFile" value="com/mycompany/myquartz.properties"/>
</bean>

<bean id="quartz" class="org.apache.camel.component.quartz.QuartzComponent">
 <property name="startDelayedSeconds" value="5"/>
</bean>

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

810

https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/camel_spring_boot_reference_3.14/index#csb-camel-quartz-component-starter
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/camel_spring_boot_reference_3.14/index#csb-camel-quartz-component-starter
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/camel_spring_boot_reference_3.14/index#csb-camel-quartz-component-starter

39.8. MESSAGE HEADERS

Camel adds the getters from the Quartz Execution Context as header values. The following headers are
added:
calendar, fireTime, jobDetail, jobInstance, jobRuntTime, mergedJobDataMap, nextFireTime,
previousFireTime, refireCount, result, scheduledFireTime, scheduler, trigger, triggerName,
triggerGroup.

The fireTime header contains the java.util.Date of when the exchange was fired.

39.9. USING CRON TRIGGERS

Quartz supports Cron-like expressions for specifying timers in a handy format. You can use these
expressions in the cron URI parameter; though to preserve valid URI encoding we allow + to be used
instead of spaces.

For example, the following will fire a message every five minutes starting at 12pm (noon) to 6pm on
weekdays:

which is equivalent to using the cron expression

0 0/5 12-18 ? * MON-FRI

The following table shows the URI character encodings we use to preserve valid URI syntax:

URI Character Cron character

+ Space

39.10. SPECIFYING TIME ZONE

The Quartz Scheduler allows you to configure time zone per trigger. For example to use a timezone of
your country, then you can do as follows:

quartz://groupName/timerName?cron=0+0/5+12-18+?+*+MON-
FRI&trigger.timeZone=Europe/Stockholm

The timeZone value is the values accepted by java.util.TimeZone.

39.11. CONFIGURING MISFIRE INSTRUCTIONS

The quartz scheduler can be configured with a misfire instruction to handle misfire situations for the
trigger. The concrete trigger type that you are using will have defined a set of additional
MISFIRE_INSTRUCTION_XXX constants that may be set as this property’s value.

For example to configure the simple trigger to use misfire instruction 4:

quartz://myGroup/myTimerName?trigger.repeatInterval=2000&trigger.misfireInstruction=4

from("quartz://myGroup/myTimerName?cron=0+0/5+12-18+?+*+MON-FRI")
 .to("activemq:Totally.Rocks");

CHAPTER 39. QUARTZ

811

http://www.quartz-scheduler.org/documentation/quartz-2.3.0/tutorials/crontrigger.html

And likewise you can configure the cron trigger with one of its misfire instructions as well:

quartz://myGroup/myTimerName?cron=0/2+*+*+*+*+?&trigger.misfireInstruction=2

The simple and cron triggers has the following misfire instructions representative:

39.11.1. SimpleTrigger.MISFIRE_INSTRUCTION_FIRE_NOW = 1 (default)

Instructs the Scheduler that upon a mis-fire situation, the SimpleTrigger wants to be fired now by
Scheduler.

This instruction should typically only be used for 'one-shot' (non-repeating) Triggers. If it is used on a
trigger with a repeat count > 0 then it is equivalent to the instruction
MISFIRE_INSTRUCTION_RESCHEDULE_NOW_WITH_REMAINING_REPEAT_COUNT.

39.11.2. SimpleTrigger.MISFIRE_INSTRUCTION_RESCHEDULE_NOW_WITH_EXISTING_REPEAT_COUNT
= 2

Instructs the Scheduler that upon a mis-fire situation, the SimpleTrigger wants to be re-scheduled to
'now' (even if the associated Calendar excludes 'now') with the repeat count left as-is. This does obey
the Trigger end-time however, so if 'now' is after the end-time the Trigger will not fire again.

Use of this instruction causes the trigger to 'forget' the start-time and repeat-count that it was originally
setup with (this is only an issue if you for some reason wanted to be able to tell what the original values
were at some later time).

39.11.3. SimpleTrigger.MISFIRE_INSTRUCTION_RESCHEDULE_NOW_WITH_REMAINING_REPEAT_COUNT
= 3

Instructs the Scheduler that upon a mis-fire situation, the SimpleTrigger wants to be re-scheduled to
'now' (even if the associated Calendar excludes 'now') with the repeat count set to what it would be, if it
had not missed any firings. This does obey the Trigger end-time however, so if 'now' is after the end-
time the Trigger will not fire again.

Use of this instruction causes the trigger to 'forget' the start-time and repeat-count that it was originally
setup with. Instead, the repeat count on the trigger will be changed to whatever the remaining repeat
count is (this is only an issue if you for some reason wanted to be able to tell what the original values
were at some later time).

This instruction could cause the Trigger to go to the 'COMPLETE' state after firing 'now', if all the
repeat-fire-times where missed.

39.11.4. SimpleTrigger.MISFIRE_INSTRUCTION_RESCHEDULE_NEXT_WITH_REMAINING_COUNT
= 4

Instructs the Scheduler that upon a mis-fire situation, the SimpleTrigger wants to be re-scheduled to the
next scheduled time after 'now' - taking into account any associated Calendar and with the repeat
count set to what it would be, if it had not missed any firings.

NOTE

This instruction could cause the Trigger to go directly to the 'COMPLETE' state if all fire-
times where missed.

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

812

39.11.5. SimpleTrigger.MISFIRE_INSTRUCTION_RESCHEDULE_NEXT_WITH_EXISTING_COUNT
= 5

Instructs the Scheduler that upon a mis-fire situation, the SimpleTrigger wants to be re-scheduled to the
next scheduled time after 'now' - taking into account any associated Calendar, and with the repeat
count left unchanged.

NOTE

This instruction could cause the Trigger to go directly to the 'COMPLETE' state if the
end-time of the trigger has arrived.

39.11.6. CronTrigger.MISFIRE_INSTRUCTION_FIRE_ONCE_NOW = 1 (default)

Instructs the Scheduler that upon a mis-fire situation, the CronTrigger wants to be fired now by
Scheduler.

39.11.7. CronTrigger.MISFIRE_INSTRUCTION_DO_NOTHING = 2

Instructs the Scheduler that upon a mis-fire situation, the CronTrigger wants to have it’s next-fire-time
updated to the next time in the schedule after the current time (taking into account any associated
Calendar but it does not want to be fired now.

39.12. USING QUARTZSCHEDULEDPOLLCONSUMERSCHEDULER

The Quartz component provides a Polling Consumer scheduler which allows to use cron based
scheduling for Polling Consumer such as the File and FTP consumers.

For example to use a cron based expression to poll for files every 2nd second, then a Camel route can be
define simply as:

Notice we define the scheduler=quartz to instruct Camel to use the Quartz based scheduler. Then we
use scheduler.xxx options to configure the scheduler. The Quartz scheduler requires the cron option to
be set.

The following options is supported:

Parameter Default Type Description

quartzSchedule
r

null org.qu
artz.S
chedu
ler

To use a custom Quartz scheduler. If none configure then the
shared scheduler from the component is used.

cron null String Mandatory: To define the cron expression for triggering the
polls.

triggerId null String To specify the trigger id. If none provided then an UUID is
generated and used.

 from("file:inbox?scheduler=quartz&scheduler.cron=0/2+*+*+*+*+?")
 .to("bean:process");

CHAPTER 39. QUARTZ

813

https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/camel_spring_boot_reference_3.14/index#csb-camel-quartz-component-starter
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/camel_spring_boot_reference_3.14/index#csb-camel-quartz-component-starter
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/camel_spring_boot_reference_3.14/index#csb-camel-quartz-component-starter

triggerGroup Quart
zSche
duled
PollC
onsu
merSc
hedul
er

String To specify the trigger group.

timeZone Defaul
t

TimeZ
one

The time zone to use for the CRON trigger.

Parameter Default Type Description

IMPORTANT

Remember configuring these options from the endpoint URIs must be prefixed with
scheduler.

For example to configure the trigger id and group:

There is also a CRON scheduler in Spring, so you can use the following as well:

39.13. CRON COMPONENT SUPPORT

The Quartz component can be used as implementation of the Camel Cron component.

Maven users will need to add the following additional dependency to their pom.xml:

Users can then use the cron component instead of the quartz component, as in the following route:

39.14. SPRING BOOT AUTO-CONFIGURATION

When using quartz with Spring Boot make sure to use the following Maven dependency to have support

 from("file:inbox?scheduler=quartz&scheduler.cron=0/2+*+*+*+*+?
&scheduler.triggerId=myId&scheduler.triggerGroup=myGroup")
 .to("bean:process");

 from("file:inbox?scheduler=spring&scheduler.cron=0/2+*+*+*+*+?")
 .to("bean:process");

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-cron</artifactId>
 <version>3.14.5.redhat-00018</version>
 <!-- use the same version as your Camel core version -->
</dependency>

 from("cron://name?schedule=0+0/5+12-18+?+*+MON-FRI")
 .to("activemq:Totally.Rocks");

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

814

When using quartz with Spring Boot make sure to use the following Maven dependency to have support
for auto configuration:

The component supports 14 options, which are listed below.

Name Description Defaul
t

Type

camel.component
.quartz.auto-
start-scheduler

Whether or not the scheduler should be auto started.
This options is default true.

true Boolean

camel.component
.quartz.autowired
-enabled

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true Boolean

camel.component
.quartz.bridge-
error-handler

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false Boolean

camel.component
.quartz.enable-
jmx

Whether to enable Quartz JMX which allows to
manage the Quartz scheduler from JMX. This
options is default true.

true Boolean

camel.component
.quartz.enabled

Whether to enable auto configuration of the quartz
component. This is enabled by default.

 Boolean

<dependency>
 <groupId>org.apache.camel.springboot</groupId>
 <artifactId>camel-quartz-starter</artifactId>
 <version>3.14.5.redhat-00032</version>
 <!-- Use your Camel Spring Boot version -->
</dependency>

CHAPTER 39. QUARTZ

815

camel.component
.quartz.interrupt-
jobs-on-
shutdown

Whether to interrupt jobs on shutdown which forces
the scheduler to shutdown quicker and attempt to
interrupt any running jobs. If this is enabled then any
running jobs can fail due to being interrupted. When a
job is interrupted then Camel will mark the exchange
to stop continue routing and set
java.util.concurrent.RejectedExecutionException as
caused exception. Therefore use this with care, as its
often better to allow Camel jobs to complete and
shutdown gracefully.

false Boolean

camel.component
.quartz.prefix-
instance-name

Whether to prefix the Quartz Scheduler instance
name with the CamelContext name. This is enabled
by default, to let each CamelContext use its own
Quartz scheduler instance by default. You can set this
option to false to reuse Quartz scheduler instances
between multiple CamelContext’s.

true Boolean

camel.component
.quartz.prefix-
job-name-with-
endpoint-id

Whether to prefix the quartz job with the endpoint id.
This option is default false.

false Boolean

camel.component
.quartz.properties

Properties to configure the Quartz scheduler. Map

camel.component
.quartz.properties
-file

File name of the properties to load from the
classpath.

 String

camel.component
.quartz.properties
-ref

References to an existing Properties or Map to
lookup in the registry to use for configuring quartz.

 String

camel.component
.quartz.scheduler

To use the custom configured Quartz scheduler,
instead of creating a new Scheduler. The option is a
org.quartz.Scheduler type.

 Scheduler

camel.component
.quartz.scheduler-
factory

To use the custom SchedulerFactory which is used to
create the Scheduler. The option is a
org.quartz.SchedulerFactory type.

 SchedulerFactory

camel.component
.quartz.start-
delayed-seconds

Seconds to wait before starting the quartz scheduler. Integer

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

816

CHAPTER 40. REF
Both producer and consumer are supported

The Ref component is used for lookup of existing endpoints bound in the Registry.

40.1. URI FORMAT

ref:someName[?options]

Where someName is the name of an endpoint in the Registry (usually, but not always, the Spring
registry). If you are using the Spring registry, someName would be the bean ID of an endpoint in the
Spring registry.

40.2. CONFIGURING OPTIONS

Camel components are configured on two separate levels:

component level

endpoint level

40.2.1. Configuring Component Options

The component level is the highest level which holds general and common configurations that are
inherited by the endpoints. For example a component may have security settings, credentials for
authentication, urls for network connection and so forth.

Some components only have a few options, and others may have many. Because components typically
have pre configured defaults that are commonly used, then you may often only need to configure a few
options on a component; or none at all.

Configuring components can be done with the Component DSL, in a configuration file
(application.properties|yaml), or directly with Java code.

40.2.2. Configuring Endpoint Options

Where you find yourself configuring the most is on endpoints, as endpoints often have many options,
which allows you to configure what you need the endpoint to do. The options are also categorized into
whether the endpoint is used as consumer (from) or as a producer (to), or used for both.

Configuring endpoints is most often done directly in the endpoint URI as path and query parameters.
You can also use the Endpoint DSL as a type safe way of configuring endpoints.

A good practice when configuring options is to use Property Placeholders, which allows to not hardcode
urls, port numbers, sensitive information, and other settings. In other words placeholders allows to
externalize the configuration from your code, and gives more flexibility and reuse.

The following two sections lists all the options, firstly for the component followed by the endpoint.

40.3. COMPONENT OPTIONS

The Ref component supports 3 options, which are listed below.

CHAPTER 40. REF

817

https://camel.apache.org/manual/component-dsl.html
https://camel.apache.org/manual/Endpoint-dsl.html
https://camel.apache.org/manual/using-propertyplaceholder.html

Name Description Defaul
t

Type

bridgeErrorHandl
er (consumer)

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false boolean

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

autowiredEnabled
(advanced)

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true boolean

40.4. ENDPOINT OPTIONS

The Ref endpoint is configured using URI syntax:

ref:name

with the following path and query parameters:

40.4.1. Path Parameters (1 parameters)

Name Description Defaul
t

Type

name (common) Required Name of endpoint to lookup in the registry. String

40.4.2. Query Parameters (4 parameters)

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

818

Name Description Defaul
t

Type

bridgeErrorHandl
er (consumer)

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false boolean

exceptionHandler
(consumer
(advanced))

To let the consumer use a custom ExceptionHandler.
Notice if the option bridgeErrorHandler is enabled
then this option is not in use. By default the consumer
will deal with exceptions, that will be logged at WARN
or ERROR level and ignored.

 ExceptionHandler

exchangePattern
(consumer
(advanced))

Sets the exchange pattern when the consumer
creates an exchange.

Enum values:

InOnly

InOut

InOptionalOut

 ExchangePattern

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

40.5. RUNTIME LOOKUP

This component can be used when you need dynamic discovery of endpoints in the Registry where you
can compute the URI at runtime. Then you can look up the endpoint using the following code:

// lookup the endpoint
String myEndpointRef = "bigspenderOrder";
Endpoint endpoint = context.getEndpoint("ref:" + myEndpointRef);

Producer producer = endpoint.createProducer();
Exchange exchange = producer.createExchange();

CHAPTER 40. REF

819

And you could have a list of endpoints defined in the Registry such as:

40.6. SAMPLE

In the sample below we use the ref: in the URI to reference the endpoint with the spring ID, endpoint2:

You could, of course, have used the ref attribute instead:

Which is the more common way to write it.

40.7. SPRING BOOT AUTO-CONFIGURATION

When using ref with Spring Boot make sure to use the following Maven dependency to have support for
auto configuration:

The component supports 4 options, which are listed below.

Name Description Defaul
t

Type

camel.component
.ref.autowired-
enabled

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true Boolean

exchange.getIn().setBody(payloadToSend);
// send the exchange
producer.process(exchange);

<camelContext id="camel" xmlns="http://activemq.apache.org/camel/schema/spring">
 <endpoint id="normalOrder" uri="activemq:order.slow"/>
 <endpoint id="bigspenderOrder" uri="activemq:order.high"/>
</camelContext>

<to uri="ref:endpoint2"/>

<dependency>
 <groupId>org.apache.camel.springboot</groupId>
 <artifactId>camel-ref-starter</artifactId>
 <version>3.14.5.redhat-00032</version>
 <!-- Use your Camel Spring Boot version -->
</dependency>

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

820

camel.component
.ref.bridge-error-
handler

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false Boolean

camel.component
.ref.enabled

Whether to enable auto configuration of the ref
component. This is enabled by default.

 Boolean

camel.component
.ref.lazy-start-
producer

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false Boolean

Name Description Defaul
t

Type

CHAPTER 40. REF

821

CHAPTER 41. REST
Both producer and consumer are supported

The REST component allows to define REST endpoints (consumer) using the Rest DSL and plugin to
other Camel components as the REST transport.

The rest component can also be used as a client (producer) to call REST services.

41.1. URI FORMAT

rest://method:path[:uriTemplate]?[options]

41.2. CONFIGURING OPTIONS

Camel components are configured on two separate levels:

component level

endpoint level

41.2.1. Configuring Component Options

The component level is the highest level which holds general and common configurations that are
inherited by the endpoints. For example a component may have security settings, credentials for
authentication, urls for network connection and so forth.

Some components only have a few options, and others may have many. Because components typically
have pre configured defaults that are commonly used, then you may often only need to configure a few
options on a component; or none at all.

Configuring components can be done with the Component DSL, in a configuration file
(application.properties|yaml), or directly with Java code.

41.2.2. Configuring Endpoint Options

Where you find yourself configuring the most is on endpoints, as endpoints often have many options,
which allows you to configure what you need the endpoint to do. The options are also categorized into
whether the endpoint is used as consumer (from) or as a producer (to), or used for both.

Configuring endpoints is most often done directly in the endpoint URI as path and query parameters.
You can also use the Endpoint DSL as a type safe way of configuring endpoints.

A good practice when configuring options is to use Property Placeholders, which allows to not hardcode
urls, port numbers, sensitive information, and other settings. In other words placeholders allows to
externalize the configuration from your code, and gives more flexibility and reuse.

The following two sections lists all the options, firstly for the component followed by the endpoint.

41.3. COMPONENT OPTIONS

The REST component supports 8 options, which are listed below.

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

822

https://camel.apache.org/manual/component-dsl.html
https://camel.apache.org/manual/Endpoint-dsl.html
https://camel.apache.org/manual/using-propertyplaceholder.html

Name Description Defaul
t

Type

bridgeErrorHandl
er (consumer)

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false boolean

consumerCompo
nentName
(consumer)

The Camel Rest component to use for (consumer)
the REST transport, such as jetty, servlet, undertow.
If no component has been explicit configured, then
Camel will lookup if there is a Camel component that
integrates with the Rest DSL, or if a
org.apache.camel.spi.RestConsumerFactory is
registered in the registry. If either one is found, then
that is being used.

 String

apiDoc (producer) The swagger api doc resource to use. The resource is
loaded from classpath by default and must be in
JSON format.

 String

componentName
(producer)

Deprecated The Camel Rest component to use for
(producer) the REST transport, such as http,
undertow. If no component has been explicit
configured, then Camel will lookup if there is a Camel
component that integrates with the Rest DSL, or if a
org.apache.camel.spi.RestProducerFactory is
registered in the registry. If either one is found, then
that is being used.

 String

host (producer) Host and port of HTTP service to use (override host
in swagger schema).

 String

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

CHAPTER 41. REST

823

producerCompon
entName
(producer)

The Camel Rest component to use for (producer) the
REST transport, such as http, undertow. If no
component has been explicit configured, then Camel
will lookup if there is a Camel component that
integrates with the Rest DSL, or if a
org.apache.camel.spi.RestProducerFactory is
registered in the registry. If either one is found, then
that is being used.

 String

autowiredEnabled
(advanced)

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true boolean

Name Description Defaul
t

Type

41.4. ENDPOINT OPTIONS

The REST endpoint is configured using URI syntax:

rest:method:path:uriTemplate

with the following path and query parameters:

41.4.1. Path Parameters (3 parameters)

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

824

method (common) Required HTTP method to use.

Enum values:

get

post

put

delete

patch

head

trace

connect

options

 String

path (common) Required The base path. String

uriTemplate
(common)

The uri template. String

Name Description Defaul
t

Type

41.4.2. Query Parameters (16 parameters)

Name Description Defaul
t

Type

consumes
(common)

Media type such as: 'text/xml', or 'application/json'
this REST service accepts. By default we accept all
kinds of types.

 String

inType (common) To declare the incoming POJO binding type as a
FQN class name.

 String

outType
(common)

To declare the outgoing POJO binding type as a
FQN class name.

 String

produces
(common)

Media type such as: 'text/xml', or 'application/json'
this REST service returns.

 String

routeId (common) Name of the route this REST services creates. String

CHAPTER 41. REST

825

bridgeErrorHandl
er (consumer)

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false boolean

consumerCompo
nentName
(consumer)

The Camel Rest component to use for (consumer)
the REST transport, such as jetty, servlet, undertow.
If no component has been explicit configured, then
Camel will lookup if there is a Camel component that
integrates with the Rest DSL, or if a
org.apache.camel.spi.RestConsumerFactory is
registered in the registry. If either one is found, then
that is being used.

 String

description
(consumer)

Human description to document this REST service. String

exceptionHandler
(consumer
(advanced))

To let the consumer use a custom ExceptionHandler.
Notice if the option bridgeErrorHandler is enabled
then this option is not in use. By default the consumer
will deal with exceptions, that will be logged at WARN
or ERROR level and ignored.

 ExceptionHandler

exchangePattern
(consumer
(advanced))

Sets the exchange pattern when the consumer
creates an exchange.

Enum values:

InOnly

InOut

InOptionalOut

 ExchangePattern

apiDoc (producer) The openapi api doc resource to use. The resource is
loaded from classpath by default and must be in
JSON format.

 String

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

826

bindingMode
(producer)

Configures the binding mode for the producer. If set
to anything other than 'off' the producer will try to
convert the body of the incoming message from
inType to the json or xml, and the response from json
or xml to outType.

Enum values:

auto

off

json

xml

json_xml

 RestBindingMode

host (producer) Host and port of HTTP service to use (override host
in openapi schema).

 String

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

producerCompon
entName
(producer)

The Camel Rest component to use for (producer) the
REST transport, such as http, undertow. If no
component has been explicit configured, then Camel
will lookup if there is a Camel component that
integrates with the Rest DSL, or if a
org.apache.camel.spi.RestProducerFactory is
registered in the registry. If either one is found, then
that is being used.

 String

queryParameters
(producer)

Query parameters for the HTTP service to call. The
query parameters can contain multiple parameters
separated by ampersand such such as
foo=123&bar=456.

 String

Name Description Defaul
t

Type

41.5. SUPPORTED REST COMPONENTS

The following components support rest consumer (Rest DSL):

CHAPTER 41. REST

827

camel-servlet

The following components support rest producer:

camel-http

41.6. PATH AND URITEMPLATE SYNTAX

The path and uriTemplate option is defined using a REST syntax where you define the REST context
path using support for parameters.

NOTE

If no uriTemplate is configured then path option works the same way. It does not matter if
you configure only path or if you configure both options. Though configuring both a path
and uriTemplate is a more common practice with REST.

The following is a Camel route using a path only

And the following route uses a parameter which is mapped to a Camel header with the key "me".

The following examples have configured a base path as "hello" and then have two REST services
configured using uriTemplates.

41.7. REST PRODUCER EXAMPLES

You can use the rest component to call REST services like any other Camel component.

For example to call a REST service on using hello/{me} you can do

And then the dynamic value {me} is mapped to Camel message with the same name. So to call this
REST service you can send an empty message body and a header as shown:

The Rest producer needs to know the hostname and port of the REST service, which you can configure
using the host option as shown:

from("rest:get:hello")
 .transform().constant("Bye World");

from("rest:get:hello/{me}")
 .transform().simple("Bye ${header.me}");

from("rest:get:hello:/{me}")
 .transform().simple("Hi ${header.me}");

from("rest:get:hello:/french/{me}")
 .transform().simple("Bonjour ${header.me}");

from("direct:start")
 .to("rest:get:hello/{me}");

template.sendBodyAndHeader("direct:start", null, "me", "Donald Duck");

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

828

Instead of using the host option, you can configure the host on the restConfiguration as shown:

You can use the producerComponent to select which Camel component to use as the HTTP client, for
example to use http you can do:

41.8. REST PRODUCER BINDING

The REST producer supports binding using JSon or XML like the rest-dsl does.

For example to use jetty with json binding mode turned on you can configure this in the rest
configuration:

Then when calling the REST service using rest producer it will automatic bind any POJOs to json before
calling the REST service:

In the example above we send a POJO instance UserPojo as the message body. And because we have
turned on JSon binding in the rest configuration, then the POJO will be marshalled from POJO to JSon
before calling the REST service.

However if you want to also perform binding for the response message (eg what the REST service send
back as response) you would need to configure the outType option to specify what is the classname of
the POJO to unmarshal from JSon to POJO.

For example if the REST service returns a JSon payload that binds to com.foo.MyResponsePojo you
can configure this as shown:

from("direct:start")
 .to("rest:get:hello/{me}?host=myserver:8080/foo");

restConfiguration().host("myserver:8080/foo");

from("direct:start")
 .to("rest:get:hello/{me}");

restConfiguration().host("myserver:8080/foo").producerComponent("http");

from("direct:start")
 .to("rest:get:hello/{me}");

restConfiguration().component("jetty").host("localhost").port(8080).bindingMode(RestBindingMode.json)
;

from("direct:start")
 .to("rest:post:user");

 UserPojo user = new UserPojo();
 user.setId(123);
 user.setName("Donald Duck");

 template.sendBody("direct:start", user);

restConfiguration().component("jetty").host("localhost").port(8080).bindingMode(RestBindingMode.json)

CHAPTER 41. REST

829

NOTE

You must configure outType option if you want POJO binding to happen for the
response messages received from calling the REST service.

41.9. MORE EXAMPLES

See Rest DSL which offers more examples and how you can use the Rest DSL to define those in a nicer
RESTful way.

There is a camel-example-servlet-rest-tomcat example in the Apache Camel distribution, that
demonstrates how to use the Rest DSL with SERVLET as transport that can be deployed on Apache
Tomcat, or similar web containers.

41.10. SPRING BOOT AUTO-CONFIGURATION

When using rest with Spring Boot make sure to use the following Maven dependency to have support
for auto configuration:

The component supports 12 options, which are listed below.

Name Description Defaul
t

Type

camel.component
.rest-
api.autowired-
enabled

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true Boolean

;

 from("direct:start")
 .to("rest:post:user?outType=com.foo.MyResponsePojo");

<dependency>
 <groupId>org.apache.camel.springboot</groupId>
 <artifactId>camel-rest-starter</artifactId>
 <version>3.14.5.redhat-00032</version>
 <!-- Use your Camel Spring Boot version -->
</dependency>

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

830

camel.component
.rest-api.bridge-
error-handler

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false Boolean

camel.component
.rest-api.enabled

Whether to enable auto configuration of the rest-api
component. This is enabled by default.

 Boolean

camel.component
.rest.api-doc

The swagger api doc resource to use. The resource is
loaded from classpath by default and must be in
JSON format.

 String

camel.component
.rest.autowired-
enabled

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true Boolean

camel.component
.rest.bridge-
error-handler

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false Boolean

camel.component
.rest.consumer-
component-name

The Camel Rest component to use for (consumer)
the REST transport, such as jetty, servlet, undertow.
If no component has been explicit configured, then
Camel will lookup if there is a Camel component that
integrates with the Rest DSL, or if a
org.apache.camel.spi.RestConsumerFactory is
registered in the registry. If either one is found, then
that is being used.

 String

camel.component
.rest.enabled

Whether to enable auto configuration of the rest
component. This is enabled by default.

 Boolean

camel.component
.rest.host

Host and port of HTTP service to use (override host
in swagger schema).

 String

Name Description Defaul
t

Type

CHAPTER 41. REST

831

camel.component
.rest.lazy-start-
producer

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false Boolean

camel.component
.rest.producer-
component-name

The Camel Rest component to use for (producer) the
REST transport, such as http, undertow. If no
component has been explicit configured, then Camel
will lookup if there is a Camel component that
integrates with the Rest DSL, or if a
org.apache.camel.spi.RestProducerFactory is
registered in the registry. If either one is found, then
that is being used.

 String

camel.component
.rest.component-
name

Deprecated The Camel Rest component to use for
(producer) the REST transport, such as http,
undertow. If no component has been explicit
configured, then Camel will lookup if there is a Camel
component that integrates with the Rest DSL, or if a
org.apache.camel.spi.RestProducerFactory is
registered in the registry. If either one is found, then
that is being used.

 String

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

832

CHAPTER 42. SAGA
Only producer is supported

The Saga component provides a bridge to execute custom actions within a route using the Saga EIP.

The component should be used for advanced tasks, such as deciding to complete or compensate a Saga
with completionMode set to MANUAL.

Refer to the Saga EIP documentation for help on using sagas in common scenarios.

42.1. URI FORMAT

saga:action

42.2. CONFIGURING OPTIONS

Camel components are configured on two separate levels:

component level

endpoint level

42.2.1. Configuring Component Options

The component level is the highest level which holds general and common configurations that are
inherited by the endpoints. For example a component may have security settings, credentials for
authentication, urls for network connection and so forth.

Some components only have a few options, and others may have many. Because components typically
have pre configured defaults that are commonly used, then you may often only need to configure a few
options on a component; or none at all.

Configuring components can be done with the Component DSL, in a configuration file
(application.properties|yaml), or directly with Java code.

42.2.2. Configuring Endpoint Options

Where you find yourself configuring the most is on endpoints, as endpoints often have many options,
which allows you to configure what you need the endpoint to do. The options are also categorized into
whether the endpoint is used as consumer (from) or as a producer (to), or used for both.

Configuring endpoints is most often done directly in the endpoint URI as path and query parameters.
You can also use the Endpoint DSL as a type safe way of configuring endpoints.

A good practice when configuring options is to use Property Placeholders, which allows to not hardcode
urls, port numbers, sensitive information, and other settings. In other words placeholders allows to
externalize the configuration from your code, and gives more flexibility and reuse.

The following two sections lists all the options, firstly for the component followed by the endpoint.

42.3. COMPONENT OPTIONS

CHAPTER 42. SAGA

833

https://camel.apache.org/manual/component-dsl.html
https://camel.apache.org/manual/Endpoint-dsl.html
https://camel.apache.org/manual/using-propertyplaceholder.html

The Saga component supports 2 options, which are listed below.

Name Description Defaul
t

Type

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

autowiredEnabled
(advanced)

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true boolean

42.4. ENDPOINT OPTIONS

The Saga endpoint is configured using URI syntax:

saga:action

with the following path and query parameters:

42.4.1. Path Parameters (1 parameters)

Name Description Defaul
t

Type

action (producer) Required Action to execute (complete or
compensate).

Enum values:

COMPLETE

COMPENSATE

 SagaEndpointActi
on

42.4.2. Query Parameters (1 parameters)

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

834

Name Description Defaul
t

Type

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

42.5. SPRING BOOT AUTO-CONFIGURATION

When using saga with Spring Boot make sure to use the following Maven dependency to have support
for auto configuration:

The component supports 3 options, which are listed below.

Name Description Defaul
t

Type

camel.component
.saga.autowired-
enabled

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true Boolean

camel.component
.saga.enabled

Whether to enable auto configuration of the saga
component. This is enabled by default.

 Boolean

<dependency>
 <groupId>org.apache.camel.springboot</groupId>
 <artifactId>camel-saga-starter</artifactId>
 <version>3.14.5.redhat-00032</version>
 <!-- Use your Camel Spring Boot version -->
</dependency>

CHAPTER 42. SAGA

835

camel.component
.saga.lazy-start-
producer

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false Boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

836

CHAPTER 43. SALESFORCE
Both producer and consumer are supported

This component supports producer and consumer endpoints to communicate with Salesforce using
Java DTOs.
There is a companion maven plugin Camel Salesforce Plugin that generates these DTOs (see further
below).

Maven users will need to add the following dependency to their pom.xml for this component:

NOTE

Developers wishing to contribute to the component are instructed to look at the
README.md file on instructions on how to get started and setup your environment for
running integration tests.

43.1. CONFIGURING OPTIONS

Camel components are configured on two separate levels:

component level

endpoint level

43.1.1. Configuring Component Options

The component level is the highest level which holds general and common configurations that are
inherited by the endpoints. For example a component may have security settings, credentials for
authentication, urls for network connection and so forth.

Some components only have a few options, and others may have many. Because components typically
have pre configured defaults that are commonly used, then you may often only need to configure a few
options on a component; or none at all.

Configuring components can be done with the Component DSL, in a configuration file
(application.properties|yaml), or directly with Java code.

43.1.2. Configuring Endpoint Options

Where you find yourself configuring the most is on endpoints, as endpoints often have many options,
which allows you to configure what you need the endpoint to do. The options are also categorized into
whether the endpoint is used as consumer (from) or as a producer (to), or used for both.

Configuring endpoints is most often done directly in the endpoint URI as path and query parameters.
You can also use the Endpoint DSL as a type safe way of configuring endpoints.

A good practice when configuring options is to use Property Placeholders, which allows to not hardcode

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-salesforce</artifactId>
 <version>3.14.5.redhat-00018</version>
 <!-- use the same version as your Camel core version -->
</dependency>

CHAPTER 43. SALESFORCE

837

https://github.com/apache/camel/tree/main/components/camel-salesforce/camel-salesforce-component/README.md
https://camel.apache.org/manual/component-dsl.html
https://camel.apache.org/manual/Endpoint-dsl.html

A good practice when configuring options is to use Property Placeholders, which allows to not hardcode
urls, port numbers, sensitive information, and other settings. In other words placeholders allows to
externalize the configuration from your code, and gives more flexibility and reuse.

The following two sections lists all the options, firstly for the component followed by the endpoint.

43.2. COMPONENT OPTIONS

The Salesforce component supports 90 options, which are listed below.

Name Description Defaul
t

Type

apexMethod
(common)

APEX method name. String

apexQueryParam
s (common)

Query params for APEX method. Map

apiVersion
(common)

Salesforce API version. 53.0 String

backoffIncrement
(common)

Backoff interval increment for Streaming connection
restart attempts for failures beyond CometD auto-
reconnect.

1000 long

batchId (common) Bulk API Batch ID. String

contentType
(common)

Bulk API content type, one of XML, CSV, ZIP_XML,
ZIP_CSV.

Enum values:

XML

CSV

JSON

ZIP_XML

ZIP_CSV

ZIP_JSON

 ContentType

defaultReplayId
(common)

Default replayId setting if no value is found in
initialReplayIdMap.

-1 Long

fallBackReplayId
(common)

ReplayId to fall back to after an Invalid Replay Id
response.

-1 Long

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

838

https://camel.apache.org/manual/using-propertyplaceholder.html

format (common) Payload format to use for Salesforce API calls, either
JSON or XML, defaults to JSON. As of Camel 3.12,
this option only applies to the Raw operation.

Enum values:

JSON

XML

 PayloadFormat

httpClient
(common)

Custom Jetty Http Client to use to connect to
Salesforce.

 SalesforceHttpCli
ent

httpClientConnec
tionTimeout
(common)

Connection timeout used by the HttpClient when
connecting to the Salesforce server.

60000 long

httpClientIdleTim
eout (common)

Timeout used by the HttpClient when waiting for
response from the Salesforce server.

10000 long

httpMaxContentL
ength (common)

Max content length of an HTTP response. Integer

httpRequestBuff
erSize (common)

HTTP request buffer size. May need to be increased
for large SOQL queries.

8192 Integer

includeDetails
(common)

Include details in Salesforce1 Analytics report,
defaults to false.

 Boolean

initialReplayIdMa
p (common)

Replay IDs to start from per channel name. Map

instanceId
(common)

Salesforce1 Analytics report execution instance ID. String

jobId (common) Bulk API Job ID. String

limit (common) Limit on number of returned records. Applicable to
some of the API, check the Salesforce
documentation.

 Integer

locator (common) Locator provided by salesforce Bulk 2.0 API for use in
getting results for a Query job.

 String

Name Description Defaul
t

Type

CHAPTER 43. SALESFORCE

839

maxBackoff
(common)

Maximum backoff interval for Streaming connection
restart attempts for failures beyond CometD auto-
reconnect.

30000 long

maxRecords
(common)

The maximum number of records to retrieve per set
of results for a Bulk 2.0 Query. The request is still
subject to the size limits. If you are working with a
very large number of query results, you may
experience a timeout before receiving all the data
from Salesforce. To prevent a timeout, specify the
maximum number of records your client is expecting
to receive in the maxRecords parameter. This splits
the results into smaller sets with this value as the
maximum size.

 Integer

notFoundBehavio
ur (common)

Sets the behaviour of 404 not found status received
from Salesforce API. Should the body be set to NULL
NotFoundBehaviour#NULL or should a exception be
signaled on the exchange
NotFoundBehaviour#EXCEPTION - the default.

Enum values:

EXCEPTION

NULL

EXCEP
TION

NotFoundBehavio
ur

notifyForFields
(common)

Notify for fields, options are ALL, REFERENCED,
SELECT, WHERE.

Enum values:

ALL

REFERENCED

SELECT

WHERE

 NotifyForFieldsEn
um

notifyForOperati
onCreate
(common)

Notify for create operation, defaults to false (API
version = 29.0).

 Boolean

notifyForOperati
onDelete
(common)

Notify for delete operation, defaults to false (API
version = 29.0).

 Boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

840

notifyForOperati
ons (common)

Notify for operations, options are ALL, CREATE,
EXTENDED, UPDATE (API version 29.0).

Enum values:

ALL

CREATE

EXTENDED

UPDATE

 NotifyForOperatio
nsEnum

notifyForOperati
onUndelete
(common)

Notify for un-delete operation, defaults to false (API
version = 29.0).

 Boolean

notifyForOperati
onUpdate
(common)

Notify for update operation, defaults to false (API
version = 29.0).

 Boolean

objectMapper
(common)

Custom Jackson ObjectMapper to use when
serializing/deserializing Salesforce objects.

 ObjectMapper

packages
(common)

In what packages are the generated DTO classes.
Typically the classes would be generated using
camel-salesforce-maven-plugin. Set it if using the
generated DTOs to gain the benefit of using short
SObject names in parameters/header values.
Multiple packages can be separated by comma.

 String

pkChunking
(common)

Use PK Chunking. Only for use in original Bulk API.
Bulk 2.0 API performs PK chunking automatically, if
necessary.

 Boolean

pkChunkingChun
kSize (common)

Chunk size for use with PK Chunking. If unspecified,
salesforce default is 100,000. Maximum size is
250,000.

 Integer

pkChunkingParen
t (common)

Specifies the parent object when you’re enabling PK
chunking for queries on sharing objects. The chunks
are based on the parent object’s records rather than
the sharing object’s records. For example, when
querying on AccountShare, specify Account as the
parent object. PK chunking is supported for sharing
objects as long as the parent object is supported.

 String

Name Description Defaul
t

Type

CHAPTER 43. SALESFORCE

841

pkChunkingStart
Row (common)

Specifies the 15-character or 18-character record ID
to be used as the lower boundary for the first chunk.
Use this parameter to specify a starting ID when
restarting a job that failed between batches.

 String

queryLocator
(common)

Query Locator provided by salesforce for use when a
query results in more records than can be retrieved in
a single call. Use this value in a subsequent call to
retrieve additional records.

 String

rawPayload
(common)

Use raw payload String for request and response
(either JSON or XML depending on format), instead
of DTOs, false by default.

false boolean

reportId
(common)

Salesforce1 Analytics report Id. String

reportMetadata
(common)

Salesforce1 Analytics report metadata for filtering. ReportMetadata

resultId (common) Bulk API Result ID. String

sObjectBlobField
Name (common)

SObject blob field name. String

sObjectClass
(common)

Fully qualified SObject class name, usually generated
using camel-salesforce-maven-plugin.

 String

sObjectFields
(common)

SObject fields to retrieve. String

sObjectId
(common)

SObject ID if required by API. String

sObjectIdName
(common)

SObject external ID field name. String

sObjectIdValue
(common)

SObject external ID field value. String

sObjectName
(common)

SObject name if required or supported by API. String

sObjectQuery
(common)

Salesforce SOQL query string. String

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

842

sObjectSearch
(common)

Salesforce SOSL search string. String

updateTopic
(common)

Whether to update an existing Push Topic when using
the Streaming API, defaults to false.

false boolean

config (common
(advanced))

Global endpoint configuration - use to set values that
are common to all endpoints.

 SalesforceEndpoin
tConfig

httpClientPropert
ies (common
(advanced))

Used to set any properties that can be configured on
the underlying HTTP client. Have a look at properties
of SalesforceHttpClient and the Jetty HttpClient for
all available options.

 Map

longPollingTransp
ortProperties
(common
(advanced))

Used to set any properties that can be configured on
the LongPollingTransport used by the BayeuxClient
(CometD) used by the streaming api.

 Map

workerPoolMaxSi
ze (common
(advanced))

Maximum size of the thread pool used to handle
HTTP responses.

20 int

workerPoolSize
(common
(advanced))

Size of the thread pool used to handle HTTP
responses.

10 int

bridgeErrorHandl
er (consumer)

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false boolean

allOrNone
(producer)

Composite API option to indicate to rollback all
records if any are not successful.

false boolean

apexUrl
(producer)

APEX method URL. String

compositeMetho
d (producer)

Composite (raw) method. String

Name Description Defaul
t

Type

CHAPTER 43. SALESFORCE

843

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

rawHttpHeaders
(producer)

Comma separated list of message headers to include
as HTTP parameters for Raw operation.

 String

rawMethod
(producer)

HTTP method to use for the Raw operation. String

rawPath
(producer)

The portion of the endpoint URL after the domain
name. E.g.,
'/services/data/v52.0/sobjects/Account/'.

 String

rawQueryParame
ters (producer)

Comma separated list of message headers to include
as query parameters for Raw operation. Do not url-
encode values as this will be done automatically.

 String

autowiredEnabled
(advanced)

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true boolean

httpProxyExclude
dAddresses
(proxy)

A list of addresses for which HTTP proxy server
should not be used.

 Set

httpProxyHost
(proxy)

Hostname of the HTTP proxy server to use. String

httpProxyInclude
dAddresses
(proxy)

A list of addresses for which HTTP proxy server
should be used.

 Set

httpProxyPort
(proxy)

Port number of the HTTP proxy server to use. Integer

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

844

httpProxySocks4
(proxy)

If set to true the configures the HTTP proxy to use as
a SOCKS4 proxy.

false boolean

authenticationTy
pe (security)

Explicit authentication method to be used, one of
USERNAME_PASSWORD, REFRESH_TOKEN or
JWT. Salesforce component can auto-determine the
authentication method to use from the properties
set, set this property to eliminate any ambiguity.

Enum values:

USERNAME_PASSWORD

REFRESH_TOKEN

JWT

 AuthenticationTyp
e

clientId (security) Required OAuth Consumer Key of the connected
app configured in the Salesforce instance setup.
Typically a connected app needs to be configured
but one can be provided by installing a package.

 String

clientSecret
(security)

OAuth Consumer Secret of the connected app
configured in the Salesforce instance setup.

 String

httpProxyAuthUri
(security)

Used in authentication against the HTTP proxy
server, needs to match the URI of the proxy server in
order for the httpProxyUsername and
httpProxyPassword to be used for authentication.

 String

httpProxyPasswo
rd (security)

Password to use to authenticate against the HTTP
proxy server.

 String

httpProxyRealm
(security)

Realm of the proxy server, used in preemptive
Basic/Digest authentication methods against the
HTTP proxy server.

 String

httpProxySecure
(security)

If set to false disables the use of TLS when accessing
the HTTP proxy.

true boolean

httpProxyUseDig
estAuth (security)

If set to true Digest authentication will be used when
authenticating to the HTTP proxy, otherwise Basic
authorization method will be used.

false boolean

httpProxyUserna
me (security)

Username to use to authenticate against the HTTP
proxy server.

 String

Name Description Defaul
t

Type

CHAPTER 43. SALESFORCE

845

instanceUrl
(security)

URL of the Salesforce instance used after
authentication, by default received from Salesforce
on successful authentication.

 String

jwtAudience
(security)

Value to use for the Audience claim (aud) when using
OAuth JWT flow. If not set, the login URL will be used,
which is appropriate in most cases.

 String

keystore
(security)

KeyStore parameters to use in OAuth JWT flow. The
KeyStore should contain only one entry with private
key and certificate. Salesforce does not verify the
certificate chain, so this can easily be a selfsigned
certificate. Make sure that you upload the certificate
to the corresponding connected app.

 KeyStoreParamet
ers

lazyLogin
(security)

If set to true prevents the component from
authenticating to Salesforce with the start of the
component. You would generally set this to the
(default) false and authenticate early and be
immediately aware of any authentication issues.

false boolean

loginConfig
(security)

All authentication configuration in one nested bean,
all properties set there can be set directly on the
component as well.

 SalesforceLoginC
onfig

loginUrl (security) Required URL of the Salesforce instance used for
authentication, by default set to
https://login.salesforce.com.

https:/
/login.s
alesfor
ce.com

String

password
(security)

Password used in OAuth flow to gain access to
access token. It’s easy to get started with password
OAuth flow, but in general one should avoid it as it is
deemed less secure than other flows. Make sure that
you append security token to the end of the
password if using one.

 String

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

846

https://login.salesforce.com
https://login.salesforce.com

refreshToken
(security)

Refresh token already obtained in the refresh token
OAuth flow. One needs to setup a web application
and configure a callback URL to receive the refresh
token, or configure using the builtin callback at
https://login.salesforce.com/services/oauth2/succes
s or
https://test.salesforce.com/services/oauth2/success
and then retrive the refresh_token from the URL at
the end of the flow. Note that in development
organizations Salesforce allows hosting the callback
web application at localhost.

 String

sslContextParam
eters (security)

SSL parameters to use, see SSLContextParameters
class for all available options.

 SSLContextParam
eters

useGlobalSslCont
extParameters
(security)

Enable usage of global SSL context parameters. false boolean

userName
(security)

Username used in OAuth flow to gain access to
access token. It’s easy to get started with password
OAuth flow, but in general one should avoid it as it is
deemed less secure than other flows.

 String

Name Description Defaul
t

Type

43.3. ENDPOINT OPTIONS

The Salesforce endpoint is configured using URI syntax:

salesforce:operationName:topicName

with the following path and query parameters:

43.3.1. Path Parameters (2 parameters)

Name Description Defaul
t

Type

operationName
(producer)

The operation to use.

Enum values:

getVersions

getResources

getGlobalObjects

 OperationName

CHAPTER 43. SALESFORCE

847

https://login.salesforce.com/services/oauth2/success
https://test.salesforce.com/services/oauth2/success

getBasicInfo

getDescription

getSObject

createSObject

updateSObject

deleteSObject

getSObjectWithId

upsertSObject

deleteSObjectWithId

getBlobField

query

queryMore

queryAll

search

apexCall

recent

createJob

getJob

closeJob

abortJob

createBatch

getBatch

getAllBatches

getRequest

getResults

createBatchQuery

getQueryResultIds

getQueryResult

getRecentReports

getReportDescription

executeSyncReport

executeAsyncReport

getReportInstances

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

848

getReportResults

limits

approval

approvals

composite-tree

composite-batch

composite

compositeRetrieveSObjectCollections

compositeCreateSObjectCollections

compositeUpdateSObjectCollections

compositeUpsertSObjectCollections

compositeDeleteSObjectCollections

bulk2GetAllJobs

bulk2CreateJob

bulk2GetJob

bulk2CreateBatch

bulk2CloseJob

bulk2AbortJob

bulk2DeleteJob

bulk2GetSuccessfulResults

bulk2GetFailedResults

bulk2GetUnprocessedRecords

bulk2CreateQueryJob

bulk2GetQueryJob

bulk2GetAllQueryJobs

bulk2GetQueryJobResults

bulk2AbortQueryJob

bulk2DeleteQueryJob

raw

topicName
(consumer)

The name of the topic/channel to use. String

Name Description Defaul
t

Type

43.3.2. Query Parameters (57 parameters)

CHAPTER 43. SALESFORCE

849

Name Description Defaul
t

Type

apexMethod
(common)

APEX method name. String

apexQueryParam
s (common)

Query params for APEX method. Map

apiVersion
(common)

Salesforce API version. 53.0 String

backoffIncrement
(common)

Backoff interval increment for Streaming connection
restart attempts for failures beyond CometD auto-
reconnect.

1000 long

batchId (common) Bulk API Batch ID. String

contentType
(common)

Bulk API content type, one of XML, CSV, ZIP_XML,
ZIP_CSV.

Enum values:

XML

CSV

JSON

ZIP_XML

ZIP_CSV

ZIP_JSON

 ContentType

defaultReplayId
(common)

Default replayId setting if no value is found in
initialReplayIdMap.

-1 Long

fallBackReplayId
(common)

ReplayId to fall back to after an Invalid Replay Id
response.

-1 Long

format (common) Payload format to use for Salesforce API calls, either
JSON or XML, defaults to JSON. As of Camel 3.12,
this option only applies to the Raw operation.

Enum values:

JSON

XML

 PayloadFormat

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

850

httpClient
(common)

Custom Jetty Http Client to use to connect to
Salesforce.

 SalesforceHttpCli
ent

includeDetails
(common)

Include details in Salesforce1 Analytics report,
defaults to false.

 Boolean

initialReplayIdMa
p (common)

Replay IDs to start from per channel name. Map

instanceId
(common)

Salesforce1 Analytics report execution instance ID. String

jobId (common) Bulk API Job ID. String

limit (common) Limit on number of returned records. Applicable to
some of the API, check the Salesforce
documentation.

 Integer

locator (common) Locator provided by salesforce Bulk 2.0 API for use in
getting results for a Query job.

 String

maxBackoff
(common)

Maximum backoff interval for Streaming connection
restart attempts for failures beyond CometD auto-
reconnect.

30000 long

maxRecords
(common)

The maximum number of records to retrieve per set
of results for a Bulk 2.0 Query. The request is still
subject to the size limits. If you are working with a
very large number of query results, you may
experience a timeout before receiving all the data
from Salesforce. To prevent a timeout, specify the
maximum number of records your client is expecting
to receive in the maxRecords parameter. This splits
the results into smaller sets with this value as the
maximum size.

 Integer

notFoundBehavio
ur (common)

Sets the behaviour of 404 not found status received
from Salesforce API. Should the body be set to NULL
NotFoundBehaviour#NULL or should a exception be
signaled on the exchange
NotFoundBehaviour#EXCEPTION - the default.

Enum values:

EXCEPTION

NULL

EXCEP
TION

NotFoundBehavio
ur

Name Description Defaul
t

Type

CHAPTER 43. SALESFORCE

851

notifyForFields
(common)

Notify for fields, options are ALL, REFERENCED,
SELECT, WHERE.

Enum values:

ALL

REFERENCED

SELECT

WHERE

 NotifyForFieldsEn
um

notifyForOperati
onCreate
(common)

Notify for create operation, defaults to false (API
version = 29.0).

 Boolean

notifyForOperati
onDelete
(common)

Notify for delete operation, defaults to false (API
version = 29.0).

 Boolean

notifyForOperati
ons (common)

Notify for operations, options are ALL, CREATE,
EXTENDED, UPDATE (API version 29.0).

Enum values:

ALL

CREATE

EXTENDED

UPDATE

 NotifyForOperatio
nsEnum

notifyForOperati
onUndelete
(common)

Notify for un-delete operation, defaults to false (API
version = 29.0).

 Boolean

notifyForOperati
onUpdate
(common)

Notify for update operation, defaults to false (API
version = 29.0).

 Boolean

objectMapper
(common)

Custom Jackson ObjectMapper to use when
serializing/deserializing Salesforce objects.

 ObjectMapper

pkChunking
(common)

Use PK Chunking. Only for use in original Bulk API.
Bulk 2.0 API performs PK chunking automatically, if
necessary.

 Boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

852

pkChunkingChun
kSize (common)

Chunk size for use with PK Chunking. If unspecified,
salesforce default is 100,000. Maximum size is
250,000.

 Integer

pkChunkingParen
t (common)

Specifies the parent object when you’re enabling PK
chunking for queries on sharing objects. The chunks
are based on the parent object’s records rather than
the sharing object’s records. For example, when
querying on AccountShare, specify Account as the
parent object. PK chunking is supported for sharing
objects as long as the parent object is supported.

 String

pkChunkingStart
Row (common)

Specifies the 15-character or 18-character record ID
to be used as the lower boundary for the first chunk.
Use this parameter to specify a starting ID when
restarting a job that failed between batches.

 String

queryLocator
(common)

Query Locator provided by salesforce for use when a
query results in more records than can be retrieved in
a single call. Use this value in a subsequent call to
retrieve additional records.

 String

rawPayload
(common)

Use raw payload String for request and response
(either JSON or XML depending on format), instead
of DTOs, false by default.

false boolean

reportId
(common)

Salesforce1 Analytics report Id. String

reportMetadata
(common)

Salesforce1 Analytics report metadata for filtering. ReportMetadata

resultId (common) Bulk API Result ID. String

sObjectBlobField
Name (common)

SObject blob field name. String

sObjectClass
(common)

Fully qualified SObject class name, usually generated
using camel-salesforce-maven-plugin.

 String

sObjectFields
(common)

SObject fields to retrieve. String

sObjectId
(common)

SObject ID if required by API. String

Name Description Defaul
t

Type

CHAPTER 43. SALESFORCE

853

sObjectIdName
(common)

SObject external ID field name. String

sObjectIdValue
(common)

SObject external ID field value. String

sObjectName
(common)

SObject name if required or supported by API. String

sObjectQuery
(common)

Salesforce SOQL query string. String

sObjectSearch
(common)

Salesforce SOSL search string. String

updateTopic
(common)

Whether to update an existing Push Topic when using
the Streaming API, defaults to false.

false boolean

bridgeErrorHandl
er (consumer)

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false boolean

replayId
(consumer)

The replayId value to use when subscribing. Long

exceptionHandler
(consumer
(advanced))

To let the consumer use a custom ExceptionHandler.
Notice if the option bridgeErrorHandler is enabled
then this option is not in use. By default the consumer
will deal with exceptions, that will be logged at WARN
or ERROR level and ignored.

 ExceptionHandler

exchangePattern
(consumer
(advanced))

Sets the exchange pattern when the consumer
creates an exchange.

Enum values:

InOnly

InOut

InOptionalOut

 ExchangePattern

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

854

allOrNone
(producer)

Composite API option to indicate to rollback all
records if any are not successful.

false boolean

apexUrl
(producer)

APEX method URL. String

compositeMetho
d (producer)

Composite (raw) method. String

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

rawHttpHeaders
(producer)

Comma separated list of message headers to include
as HTTP parameters for Raw operation.

 String

rawMethod
(producer)

HTTP method to use for the Raw operation. String

rawPath
(producer)

The portion of the endpoint URL after the domain
name. E.g.,
'/services/data/v52.0/sobjects/Account/'.

 String

rawQueryParame
ters (producer)

Comma separated list of message headers to include
as query parameters for Raw operation. Do not url-
encode values as this will be done automatically.

 String

Name Description Defaul
t

Type

43.4. AUTHENTICATING TO SALESFORCE

The component supports three OAuth authentication flows:

OAuth 2.0 Username-Password Flow

OAuth 2.0 Refresh Token Flow

OAuth 2.0 JWT Bearer Token Flow

For each of the flow different set of properties needs to be set:

Table 43.1. Table 1. Properties to set for each authentication flow

CHAPTER 43. SALESFORCE

855

https://help.salesforce.com/articleView?id=remoteaccess_oauth_username_password_flow.htm
https://help.salesforce.com/articleView?id=remoteaccess_oauth_refresh_token_flow.htm
https://help.salesforce.com/articleView?id=remoteaccess_oauth_jwt_flow.htm

Property Where to find it on Salesforce Flow

clientId Connected App, Consumer Key All flows

clientSecret Connected App, Consumer
Secret

Username-Password, Refresh
Token

userName Salesforce user username Username-Password, JWT Bearer
Token

password Salesforce user password Username-Password

refreshToken From OAuth flow callback Refresh Token

keystore Connected App, Digital
Certificate

JWT Bearer Token

The component auto determines what flow you’re trying to configure, to be remove ambiguity set the
authenticationType property.

NOTE

Using Username-Password Flow in production is not encouraged.

NOTE

The certificate used in JWT Bearer Token Flow can be a selfsigned certificate. The
KeyStore holding the certificate and the private key must contain only single certificate-
private key entry.

43.5. URI FORMAT

When used as a consumer, receiving streaming events, the URI scheme is:

salesforce:topic?options

When used as a producer, invoking the Salesforce REST APIs, the URI scheme is:

salesforce:operationName?options

43.6. PASSING IN SALESFORCE HEADERS AND FETCHING
SALESFORCE RESPONSE HEADERS

There is support to pass Salesforce headers via inbound message headers, header names that start with
Sforce or x-sfdc on the Camel message will be passed on in the request, and response headers that
start with Sforce will be present in the outbound message headers.

For example to fetch API limits you can specify:

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

856

https://developer.salesforce.com/docs/atlas.en-us.api_rest.meta/api_rest/headers.htm

In addition, HTTP response status code and text are available as headers
Exchange.HTTP_RESPONSE_CODE and Exchange.HTTP_RESPONSE_TEXT.

43.7. SUPPORTED SALESFORCE APIS

The component supports the following Salesforce APIs

Producer endpoints can use the following APIs. Most of the APIs process one record at a time, the
Query API can retrieve multiple Records.

43.7.1. Rest API

You can use the following for operationName:

getVersions - Gets supported Salesforce REST API versions

getResources - Gets available Salesforce REST Resource endpoints

getGlobalObjects - Gets metadata for all available SObject types

getBasicInfo - Gets basic metadata for a specific SObject type

getDescription - Gets comprehensive metadata for a specific SObject type

getSObject - Gets an SObject using its Salesforce Id

createSObject - Creates an SObject

updateSObject - Updates an SObject using Id

deleteSObject - Deletes an SObject using Id

getSObjectWithId - Gets an SObject using an external (user defined) id field

upsertSObject - Updates or inserts an SObject using an external id

deleteSObjectWithId - Deletes an SObject using an external id

query - Runs a Salesforce SOQL query

queryMore - Retrieves more results (in case of large number of results) using result link returned

// in your Camel route set the header before Salesforce endpoint
//...
 .setHeader("Sforce-Limit-Info", constant("api-usage"))
 .to("salesforce:getGlobalObjects")
 .to(myProcessor);

// myProcessor will receive `Sforce-Limit-Info` header on the outbound
// message
class MyProcessor implements Processor {
 public void process(Exchange exchange) throws Exception {
 Message in = exchange.getIn();
 String apiLimits = in.getHeader("Sforce-Limit-Info", String.class);
 }
}

CHAPTER 43. SALESFORCE

857

queryMore - Retrieves more results (in case of large number of results) using result link returned
from the 'query' API

search - Runs a Salesforce SOSL query

limits - fetching organization API usage limits

recent - fetching recent items

approval - submit a record or records (batch) for approval process

approvals - fetch a list of all approval processes

composite - submit up to 25 possibly related REST requests and receive individual responses.
It’s also possible to use "raw" composite without limitation.

composite-tree - create up to 200 records with parent-child relationships (up to 5 levels) in one
go

composite-batch - submit a composition of requests in batch

compositeRetrieveSObjectCollections - Retrieve one or more records of the same object type.

compositeCreateSObjectCollections - Add up to 200 records, returning a list of
SaveSObjectResult objects.

compositeUpdateSObjectCollections - Update up to 200 records, returning a list of
SaveSObjectResult objects.

compositeUpsertSObjectCollections - Create or update (upsert) up to 200 records based on
an external ID field. Returns a list of UpsertSObjectResult objects.

compositeDeleteSObjectCollections - Delete up to 200 records, returning a list of
SaveSObjectResult objects.

queryAll - Runs a SOQL query. It returns the results that are deleted because of a merge
(merges up to three records into one of the records, deletes the others, and reparents any
related records) or delete. Also returns the information about archived Task and Event records.

getBlobField - Retrieves the specified blob field from an individual record.

apexCall - Executes a user defined APEX REST API call.

raw - Send requests to salesforce and have full, raw control over endpoint, parameters, body,
etc.

For example, the following producer endpoint uses the upsertSObject API, with the sObjectIdName
parameter specifying 'Name' as the external id field. The request message body should be an SObject
DTO generated using the maven plugin. The response message will either be null if an existing record
was updated, or CreateSObjectResult with an id of the new record, or a list of errors while creating the
new object.

43.7.2. Bulk 2.0 API

The Bulk 2.0 API has a simplified model over the original Bulk API. Use it to quickly load a large amount of

...to("salesforce:upsertSObject?sObjectIdName=Name")...

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

858

data into salesforce, or query a large amount of data out of salesforce. Data must be provided in CSV
format. The minimum API version for Bulk 2.0 is v41.0. The minimum API version for Bulk Queries is
v47.0. DTO classes mentioned below are from the
org.apache.camel.component.salesforce.api.dto.bulkv2 package. The following operations are
supported:

bulk2CreateJob - Create a bulk job. Supply an instance of Job in the message body.

bulk2GetJob - Get an existing Job. jobId parameter is required.

bulk2CreateBatch - Add a Batch of CSV records to a job. Supply CSV data in the message
body. The first row must contain headers. jobId parameter is required.

bulk2CloseJob - Close a job. You must close the job in order for it to be processed or
aborted/deleted. jobId parameter is required.

bulk2AbortJob - Abort a job. jobId parameter is required.

bulk2DeleteJob - Delete a job. jobId parameter is required.

bulk2GetSuccessfulResults - Get successful results for a job. Returned message body will
contain an InputStream of CSV data. jobId parameter is required.

bulk2GetFailedResults - Get failed results for a job. Returned message body will contain an
InputStream of CSV data. jobId parameter is required.

bulk2GetUnprocessedRecords - Get unprocessed records for a job. Returned message body
will contain an InputStream of CSV data. jobId parameter is required.

bulk2GetAllJobs - Get all jobs. Response body is an instance of Jobs. If the done property is
false, there are additional pages to fetch, and the nextRecordsUrl property contains the value
to be set in the queryLocator parameter on subsequent calls.

bulk2CreateQueryJob - Create a bulk query job. Supply an instance of QueryJob in the
message body.

bulk2GetQueryJob - Get a bulk query job. jobId parameter is required.

bulk2GetQueryJobResults - Get bulk query job results. jobId parameter is required. Accepts
maxRecords and locator parameters. Response message headers include Sforce-
NumberOfRecords and Sforce-Locator headers. The value of Sforce-Locator can be passed
into subsequent calls via the locator parameter.

bulk2AbortQueryJob - Abort a bulk query job. jobId parameter is required.

bulk2DeleteQueryJob - Delete a bulk query job. jobId parameter is required.

bulk2GetAllQueryJobs - Get all jobs. Response body is an instance of QueryJobs. If the done
property is false, there are additional pages to fetch, and the nextRecordsUrl property contains
the value to be set in the queryLocator parameter on subsequent calls.

43.7.3. Rest Bulk (original) API

Producer endpoints can use the following APIs. All Job data formats, i.e. xml, csv, zip/xml, and zip/csv
are supported.
The request and response have to be marshalled/unmarshalled by the route. Usually the request will be

CHAPTER 43. SALESFORCE

859

some stream source like a CSV file,
and the response may also be saved to a file to be correlated with the request.

You can use the following for operationName:

createJob - Creates a Salesforce Bulk Job. Must supply a JobInfo instance in body. PK
Chunking is supported via the pkChunking* options. See an explanation here.

getJob - Gets a Job using its Salesforce Id

closeJob - Closes a Job

abortJob - Aborts a Job

createBatch - Submits a Batch within a Bulk Job

getBatch - Gets a Batch using Id

getAllBatches - Gets all Batches for a Bulk Job Id

getRequest - Gets Request data (XML/CSV) for a Batch

getResults - Gets the results of the Batch when its complete

createBatchQuery - Creates a Batch from an SOQL query

getQueryResultIds - Gets a list of Result Ids for a Batch Query

getQueryResult - Gets results for a Result Id

getRecentReports - Gets up to 200 of the reports you most recently viewed by sending a GET
request to the Report List resource.

getReportDescription - Retrieves the report, report type, and related metadata for a report,
either in a tabular or summary or matrix format.

executeSyncReport - Runs a report synchronously with or without changing filters and returns
the latest summary data.

executeAsyncReport - Runs an instance of a report asynchronously with or without filters and
returns the summary data with or without details.

getReportInstances - Returns a list of instances for a report that you requested to be run
asynchronously. Each item in the list is treated as a separate instance of the report.

getReportResults: Contains the results of running a report.

For example, the following producer endpoint uses the createBatch API to create a Job Batch. The in
message must contain a body that can be converted into an InputStream (usually UTF-8 CSV or XML
content from a file, etc.) and header fields 'jobId' for the Job and 'contentType' for the Job content
type, which can be XML, CSV, ZIP_XML or ZIP_CSV. The put message body will contain BatchInfo on
success, or throw a SalesforceException on error.

43.7.4. Rest Streaming API

...to("salesforce:createBatch")..

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

860

https://developer.salesforce.com/docs/atlas.en-us.api_asynch.meta/api_asynch/async_api_headers_enable_pk_chunking.htm

Consumer endpoints can use the following syntax for streaming endpoints to receive Salesforce
notifications on create/update.

To create and subscribe to a topic

To subscribe to an existing topic

43.7.5. Platform events

To emit a platform event use createSObject operation. And set the message body can be JSON string
or InputStream with key-value data — in that case sObjectName needs to be set to the API name of the
event, or a class that extends from AbstractDTOBase with the appropriate class name for the event.

For example using a DTO:

Or using JSON event data:

To receive platform events use the consumer endpoint with the API name of the platform event
prefixed with event/ (or /event/), e.g.: salesforce:events/Order_Event__e. Processor consuming from
that endpoint will receive either org.apache.camel.component.salesforce.api.dto.PlatformEvent
object or org.cometd.bayeux.Message in the body depending on the rawPayload being false or true
respectively.

For example, in the simplest form to consume one event:

from("salesforce:CamelTestTopic?
notifyForFields=ALL¬ifyForOperations=ALL&sObjectName=Merchandise__c&updateTopic=true&sO
bjectQuery=SELECT Id, Name FROM Merchandise__c")...

from("salesforce:CamelTestTopic&sObjectName=Merchandise__c")...

class Order_Event__e extends AbstractDTOBase {
 @JsonProperty("OrderNumber")
 private String orderNumber;
 // ... other properties and getters/setters
}

from("timer:tick")
 .process(exchange -> {
 final Message in = exchange.getIn();
 String orderNumber = "ORD" + exchange.getProperty(Exchange.TIMER_COUNTER);
 Order_Event__e event = new Order_Event__e();
 event.setOrderNumber(orderNumber);
 in.setBody(event);
 })
 .to("salesforce:createSObject");

from("timer:tick")
 .process(exchange -> {
 final Message in = exchange.getIn();
 String orderNumber = "ORD" + exchange.getProperty(Exchange.TIMER_COUNTER);
 in.setBody("{\"OrderNumber\":\"" + orderNumber + "\"}");
 })
 .to("salesforce:createSObject?sObjectName=Order_Event__e");

CHAPTER 43. SALESFORCE

861

43.7.6. Change data capture events

On the one hand, Salesforce could be configured to emit notifications for record changes of select
objects. On the other hand, the Camel Salesforce component could react to such notifications, allowing
for instance to synchronize those changes into an external system .

The notifications of interest could be specified in the from("salesforce:XXX") clause of a Camel route
via the subscription channel, e.g:

The received message contains either java.util.Map<String,Object> or org.cometd.bayeux.Message
in the body depending on the rawPayload being false or true respectively. The
CamelSalesforceChangeType header could be valued to one of CREATE, UPDATE, DELETE or
UNDELETE.

More details about how to use the Camel Salesforce component change data capture capabilities could
be found in the ChangeEventsConsumerIntegrationTest.

The Salesforce developer guide is a good fit to better know the subtleties of implementing a change
data capture integration application. The dynamic nature of change event body fields, high level
replication steps as well as security considerations could be of interest.

43.8. EXAMPLES

43.8.1. Uploading a document to a ContentWorkspace

Create the ContentVersion in Java, using a Processor instance:

PlatformEvent event = consumer.receiveBody("salesforce:event/Order_Event__e",
PlatformEvent.class);

from("salesforce:data/ChangeEvents?replayId=-1").log("being notified of all change events")
from("salesforce:data/AccountChangeEvent?replayId=-1").log("being notified of change events for
Account records")
from("salesforce:data/Employee__ChangeEvent?replayId=-1").log("being notified of change events
for Employee__c custom object")

public class ContentProcessor implements Processor {
 public void process(Exchange exchange) throws Exception {
 Message message = exchange.getIn();

 ContentVersion cv = new ContentVersion();
 ContentWorkspace cw = getWorkspace(exchange);
 cv.setFirstPublishLocationId(cw.getId());
 cv.setTitle("test document");
 cv.setPathOnClient("test_doc.html");
 byte[] document = message.getBody(byte[].class);
 ObjectMapper mapper = new ObjectMapper();
 String enc = mapper.convertValue(document, String.class);
 cv.setVersionDataUrl(enc);
 message.setBody(cv);
 }

 protected ContentWorkspace getWorkSpace(Exchange exchange) {

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

862

https://trailhead.salesforce.com/en/content/learn/modules/change-data-capture/understand-change-data-capture
https://github.com/apache/camel/tree/main/components/camel-salesforce/camel-salesforce-component/src/test/java/org/apache/camel/component/salesforce/ChangeEventsConsumerIntegrationTest.java
https://developer.salesforce.com/docs/atlas.en-us.change_data_capture.meta/change_data_capture/cdc_intro.htm

Give the output from the processor to the Salesforce component:

43.9. USING SALESFORCE LIMITS API

With salesforce:limits operation you can fetch of API limits from Salesforce and then act upon that
data received. The result of salesforce:limits operation is mapped to
org.apache.camel.component.salesforce.api.dto.Limits class and can be used in a custom processors
or expressions.

For instance, consider that you need to limit the API usage of Salesforce so that 10% of daily API
requests is left for other routes. The body of output message contains an instance of
org.apache.camel.component.salesforce.api.dto.Limits object that can be used in conjunction with
Content Based Router and Content Based Router and Spring Expression Language (SpEL) to choose
when to perform queries.

Notice how multiplying 1.0 with the integer value held in body.dailyApiRequests.remaining makes the
expression evaluate as with floating point arithmetic, without it - it would end up making integral division
which would result with either 0 (some API limits consumed) or 1 (no API limits consumed).

43.10. WORKING WITH APPROVALS

All the properties are named exactly the same as in the Salesforce REST API prefixed with approval..
You can set approval properties by setting approval.PropertyName of the Endpoint these will be used
as template — meaning that any property not present in either body or header will be taken from the
Endpoint configuration. Or you can set the approval template on the Endpoint by assigning approval
property to a reference onto a bean in the Registry.

You can also provide header values using the same approval.PropertyName in the incoming message
headers.

And finally body can contain one AprovalRequest or an Iterable of ApprovalRequest objects to
process as a batch.

The important thing to remember is the priority of the values specified in these three mechanisms:

 // Look up the content workspace somehow, maybe use enrich() to add it to a
 // header that can be extracted here

 }
}

from("file:///home/camel/library")
 .to(new ContentProcessor()) // convert bytes from the file into a ContentVersion SObject
 // for the salesforce component
 .to("salesforce:createSObject");

from("direct:querySalesforce")
 .to("salesforce:limits")
 .choice()
 .when(spel("#{1.0 * body.dailyApiRequests.remaining / body.dailyApiRequests.max < 0.1}"))
 .to("salesforce:query?...")
 .otherwise()
 .setBody(constant("Used up Salesforce API limits, leaving 10% for critical routes"))
 .endChoice()

CHAPTER 43. SALESFORCE

863

https://camel.apache.org/components/3.14.x/languages/spel-language.html

1. value in body takes precedence before any other

2. value in message header takes precedence before template value

3. value in template is set if no other value in header or body was given

For example to send one record for approval using values in headers use:

Given a route:

You could send a record for approval using:

43.11. USING SALESFORCE RECENT ITEMS API

To fetch the recent items use salesforce:recent operation. This operation returns an java.util.List of
org.apache.camel.component.salesforce.api.dto.RecentItem objects (List<RecentItem>) that in
turn contain the Id, Name and Attributes (with type and url properties). You can limit the number of
returned items by specifying limit parameter set to maximum number of records to return. For example:

43.12. USING SALESFORCE COMPOSITE API TO SUBMIT SOBJECT
TREE

To create up to 200 records including parent-child relationships use salesforce:composite-tree
operation. This requires an instance of
org.apache.camel.component.salesforce.api.dto.composite.SObjectTree in the input message and
returns the same tree of objects in the output message. The
org.apache.camel.component.salesforce.api.dto.AbstractSObjectBase instances within the tree get
updated with the identifier values (Id property) or their corresponding
org.apache.camel.component.salesforce.api.dto.composite.SObjectNode is populated with errors
on failure.

Note that for some records operation can succeed and for some it can fail — so you need to manually
check for errors.

from("direct:example1")//
 .setHeader("approval.ContextId", simple("${body['contextId']}"))
 .setHeader("approval.NextApproverIds", simple("${body['nextApproverIds']}"))
 .to("salesforce:approval?"//
 + "approval.actionType=Submit"//
 + "&approval.comments=this is a test"//
 + "&approval.processDefinitionNameOrId=Test_Account_Process"//
 + "&approval.skipEntryCriteria=true");

final Map<String, String> body = new HashMap<>();
body.put("contextId", accountIds.iterator().next());
body.put("nextApproverIds", userId);

final ApprovalResult result = template.requestBody("direct:example1", body, ApprovalResult.class);

from("direct:fetchRecentItems")
 to("salesforce:recent")
 .split().body()
 .log("${body.name} at ${body.attributes.url}");

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

864

Easiest way to use this functionality is to use the DTOs generated by the camel-salesforce-maven-
plugin, but you also have the option of customizing the references that identify the each object in the
tree, for instance primary keys from your database.

Lets look at an example:

43.13. USING SALESFORCE COMPOSITE API TO SUBMIT MULTIPLE
REQUESTS IN A BATCH

The Composite API batch operation (composite-batch) allows you to accumulate multiple requests in a
batch and then submit them in one go, saving the round trip cost of multiple individual requests. Each
response is then received in a list of responses with the order preserved, so that the n-th requests
response is in the n-th place of the response.

NOTE

The results can vary from API to API so the result of the request is given as a
java.lang.Object. In most cases the result will be a java.util.Map with string keys and
values or other java.util.Map as value. Requests are made in JSON format and hold some
type information (i.e. it is known what values are strings and what values are numbers).

Lets look at an example:

Account account = ...
Contact president = ...
Contact marketing = ...

Account anotherAccount = ...
Contact sales = ...
Asset someAsset = ...

// build the tree
SObjectTree request = new SObjectTree();
request.addObject(account).addChildren(president, marketing);
request.addObject(anotherAccount).addChild(sales).addChild(someAsset);

final SObjectTree response = template.requestBody("salesforce:composite-tree", tree,
SObjectTree.class);
final Map<Boolean, List<SObjectNode>> result = response.allNodes()
 .collect(Collectors.groupingBy(SObjectNode::hasErrors));

final List<SObjectNode> withErrors = result.get(true);
final List<SObjectNode> succeeded = result.get(false);

final String firstId = succeeded.get(0).getId();

final String acountId = ...
final SObjectBatch batch = new SObjectBatch("38.0");

final Account updates = new Account();
updates.setName("NewName");
batch.addUpdate("Account", accountId, updates);

final Account newAccount = new Account();

CHAPTER 43. SALESFORCE

865

43.14. USING SALESFORCE COMPOSITE API TO SUBMIT MULTIPLE
CHAINED REQUESTS

The composite operation allows submitting up to 25 requests that can be chained together, for
instance identifier generated in previous request can be used in subsequent request. Individual requests
and responses are linked with the provided reference.

NOTE

Composite API supports only JSON payloads.

NOTE

newAccount.setName("Account created from Composite batch API");
batch.addCreate(newAccount);

batch.addGet("Account", accountId, "Name", "BillingPostalCode");

batch.addDelete("Account", accountId);

final SObjectBatchResponse response = template.requestBody("salesforce:composite-batch", batch,
SObjectBatchResponse.class);

boolean hasErrors = response.hasErrors(); // if any of the requests has resulted in either 4xx or 5xx
HTTP status
final List<SObjectBatchResult> results = response.getResults(); // results of three operations sent in
batch

final SObjectBatchResult updateResult = results.get(0); // update result
final int updateStatus = updateResult.getStatusCode(); // probably 204
final Object updateResultData = updateResult.getResult(); // probably null

final SObjectBatchResult createResult = results.get(1); // create result
@SuppressWarnings("unchecked")
final Map<String, Object> createData = (Map<String, Object>) createResult.getResult();
final String newAccountId = createData.get("id"); // id of the new account, this is for JSON, for XML it
would be createData.get("Result").get("id")

final SObjectBatchResult retrieveResult = results.get(2); // retrieve result
@SuppressWarnings("unchecked")
final Map<String, Object> retrieveData = (Map<String, Object>) retrieveResult.getResult();
final String accountName = retrieveData.get("Name"); // Name of the retrieved account, this is for
JSON, for XML it would be createData.get("Account").get("Name")
final String accountBillingPostalCode = retrieveData.get("BillingPostalCode"); // Name of the retrieved
account, this is for JSON, for XML it would be createData.get("Account").get("BillingPostalCode")

final SObjectBatchResult deleteResult = results.get(3); // delete result
final int updateStatus = deleteResult.getStatusCode(); // probably 204
final Object updateResultData = deleteResult.getResult(); // probably null

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

866

NOTE

As with the batch API the results can vary from API to API so the result of the request is
given as a java.lang.Object. In most cases the result will be a java.util.Map with string
keys and values or other java.util.Map as value. Requests are made in JSON format hold
some type information (i.e. it is known what values are strings and what values are
numbers).

Lets look at an example:

43.15. USING "RAW" SALESFORCE COMPOSITE

It’s possible to directly call Salesforce composite by preparing the Salesforce JSON request in the route
thanks to the rawPayload option.

For instance, you can have the following route:

from("timer:fire?period=2000").setBody(constant("{\n" +
 " \"allOrNone\" : true,\n" +
 " \"records\" : [{ \n" +
 " \"attributes\" : {\"type\" : \"FOO\"},\n" +

SObjectComposite composite = new SObjectComposite("38.0", true);

// first insert operation via an external id
final Account updateAccount = new TestAccount();
updateAccount.setName("Salesforce");
updateAccount.setBillingStreet("Landmark @ 1 Market Street");
updateAccount.setBillingCity("San Francisco");
updateAccount.setBillingState("California");
updateAccount.setIndustry(Account_IndustryEnum.TECHNOLOGY);
composite.addUpdate("Account", "001xx000003DIpcAAG", updateAccount, "UpdatedAccount");

final Contact newContact = new TestContact();
newContact.setLastName("John Doe");
newContact.setPhone("1234567890");
composite.addCreate(newContact, "NewContact");

final AccountContactJunction__c junction = new AccountContactJunction__c();
junction.setAccount__c("001xx000003DIpcAAG");
junction.setContactId__c("@{NewContact.id}");
composite.addCreate(junction, "JunctionRecord");

final SObjectCompositeResponse response = template.requestBody("salesforce:composite",
composite, SObjectCompositeResponse.class);
final List<SObjectCompositeResult> results = response.getCompositeResponse();

final SObjectCompositeResult accountUpdateResult = results.stream().filter(r ->
"UpdatedAccount".equals(r.getReferenceId())).findFirst().get()
final int statusCode = accountUpdateResult.getHttpStatusCode(); // should be 200
final Map<String, ?> accountUpdateBody = accountUpdateResult.getBody();

final SObjectCompositeResult contactCreationResult = results.stream().filter(r ->
"JunctionRecord".equals(r.getReferenceId())).findFirst().get()

CHAPTER 43. SALESFORCE

867

 " \"Name\" : \"123456789\",\n" +
 " \"FOO\" : \"XXXX\",\n" +
 " \"ACCOUNT\" : 2100.0\n" +
 " \"ExternalID\" : \"EXTERNAL\"\n"
 " }]\n" +
 "}")
 .to("salesforce:composite?rawPayload=true")
 .log("${body}");

The route directly creates the body as JSON and directly submit to salesforce endpoint using
rawPayload=true option.

With this approach, you have the complete control on the Salesforce request.

POST is the default HTTP method used to send raw Composite requests to salesforce. Use the
compositeMethod option to override to the other supported value, GET, which returns a list of other
available composite resources.

43.16. USING RAW OPERATION

Send HTTP requests to salesforce with full, raw control of all aspects of the call. Any serialization or
deserialization of request and response bodies must be performed in the route. The Content-Type
HTTP header will be automatically set based on the format option, but this can be overridden with the
rawHttpHeaders option.

Parameter Type Description Default Required

request body String or
InputStream

Body of the HTTP
request

rawPath String The portion of the
endpoint URL
after the domain
name, e.g.,
'/services/data/v5
1.0/sobjects/Acco
unt/'

 x

rawMethod String The HTTP method x

rawQueryParamet
ers

String Comma separated
list of message
headers to include
as query
parameters. Do not
url-encode values
as this will be done
automatically.

rawHttpHeaders String Comma separated
list of message
headers to include
as HTTP headers

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

868

43.16.1. Query example

In this example we’ll send a query to the REST API. The query must be passed in a URL parameter called
"q", so we’ll create a message header called q and tell the raw operation to include that message header
as a URL parameter:

from("direct:queryExample")
 .setHeader("q", "SELECT Id, LastName FROM Contact")
 .to("salesforce:raw?
format=JSON&rawMethod=GET&rawQueryParameters=q&rawPath=/services/data/v51.0/query")
 // deserialize JSON results or handle in some other way

43.16.2. SObject example

In this example, we’ll pass a Contact the REST API in a create operation. Since the raw operation does
not perform any serialization, we make sure to pass XML in the message body

from("direct:createAContact")
 .setBody(constant("<Contact><LastName>TestLast</LastName></Contact>"))
 .to("salesforce:raw?
format=XML&rawMethod=POST&rawPath=/services/data/v51.0/sobjects/Contact")

The response is:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<Result>
 <id>0034x00000RnV6zAAF</id>
 <success>true</success>
</Result>

43.17. USING COMPOSITE SOBJECT COLLECTIONS

The SObject Collections API executes actions on multiple records in one request. Use sObject
Collections to reduce the number of round-trips between the client and server. The entire request
counts as a single call toward your API limits. This resource is available in API version 42.0 and later.
SObject records (aka DTOs) supplied to these operations must be instances of subclasses of
AbstractDescribedSObjectBase. See the Maven Plugin section for information on generating these
DTO classes. These operations serialize supplied DTOs to JSON.

43.17.1. compositeRetrieveSObjectCollections

Retrieve one or more records of the same object type.

Parameter Type Description Defaul
t

Requir
ed

ids List of String or
comma-separated
string

A list of one or more IDs of the objects to
return. All IDs must belong to the same
object type.

 x

CHAPTER 43. SALESFORCE

869

fields List of String or
comma-separated
string

A list of fields to include in the response.
The field names you specify must be
valid, and you must have read-level
permissions to each field.

 x

sObjectName String Type of SObject, e.g. Account x

sObjectClass String Fully-qualified class name of DTO class to
use for deserializing the response.

 Requir
ed if
sObje
ctNa
me
param
eter
does
not
resolve
to a
class
that
exists
in the
packag
e
specifi
ed by
the
packa
ge
option.

Parameter Type Description Defaul
t

Requir
ed

43.17.2. compositeCreateSObjectCollections

Add up to 200 records, returning a list of SaveSObjectResult objects. Mixed SObject types is supported.

Parameter Type Description Defaul
t

Requir
ed

request body List of SObject A list of SObjects to create x

allOrNone boolean Indicates whether to roll back the entire
request when the creation of any object
fails (true) or to continue with the
independent creation of other objects in
the request.

false

43.17.3. compositeUpdateSObjectCollections

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

870

Update up to 200 records, returning a list of SaveSObjectResult objects. Mixed SObject types is
supported.

Parameter Type Description Defaul
t

Requir
ed

request body List of SObject A list of SObjects to update x

allOrNone boolean Indicates whether to roll back the entire
request when the update of any object
fails (true) or to continue with the
independent update of other objects in
the request.

false

43.17.4. compositeUpsertSObjectCollections

Create or update (upsert) up to 200 records based on an external ID field, returning a list of
UpsertSObjectResult objects. Mixed SObject types is not supported.

Parameter Type Description Defaul
t

Requir
ed

request body List of SObject A list of SObjects to upsert x

allOrNone boolean Indicates whether to roll back the entire
request when the upsert of any object
fails (true) or to continue with the
independent upsert of other objects in
the request.

false

sObjectName String Type of SObject, e.g. Account x

sObjectIdName String Name of External ID field x

43.17.5. compositeDeleteSObjectCollections

Delete up to 200 records, returning a list of DeleteSObjectResult objects. Mixed SObject types is
supported.

Parameter Type Description Defaul
t

Requir
ed

sObjectIds or
request body

List of String or
comma-separated
string

A list of up to 200 IDs of objects to be
deleted.

 x

CHAPTER 43. SALESFORCE

871

allOrNone boolean Indicates whether to roll back the entire
request when the deletion of any object
fails (true) or to continue with the
independent deletion of other objects in
the request.

false

Parameter Type Description Defaul
t

Requir
ed

43.18. SENDING NULL VALUES TO SALESFORCE

By default, SObject fields with null values are not sent to salesforce. In order to send null values to
salesforce, use the fieldsToNull property, as follows:

43.19. GENERATING SOQL QUERY STRINGS

org.apache.camel.component.salesforce.api.utils.QueryHelper contains helper methods to
generate SOQL queries. For instance to fetch all custom fields from Account SObject you can simply
generate the SOQL SELECT by invoking:

43.20. CAMEL SALESFORCE MAVEN PLUGIN

This Maven plugin generates DTOs for the Camel.

For obvious security reasons it is recommended that the clientId, clientSecret, userName and password
fields be not set in the pom.xml. The plugin should be configured for the rest of the properties, and can
be executed using the following command:

mvn camel-salesforce:generate -DcamelSalesforce.clientId=<clientid> -
DcamelSalesforce.clientSecret=<clientsecret> \
 -DcamelSalesforce.userName=<username> -DcamelSalesforce.password=<password>

The generated DTOs use Jackson annotations. All Salesforce field types are supported. Date and time
fields are mapped to java.time.ZonedDateTime by default, and picklist fields are mapped to generated
Java Enumerations.

Please refer to README.md for details on how to generate the DTO.

43.21. SPRING BOOT AUTO-CONFIGURATION

When using salesforce with Spring Boot make sure to use the following Maven dependency to have
support for auto configuration:

accountSObject.getFieldsToNull().add("Site");

String allCustomFieldsQuery = QueryHelper.queryToFetchFilteredFieldsOf(new Account(),
SObjectField::isCustom);

<dependency>

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

872

https://github.com/apache/camel/tree/main/components/camel-salesforce/camel-salesforce-maven-plugin

The component supports 91 options, which are listed below.

Name Description Defaul
t

Type

camel.component
.salesforce.all-or-
none

Composite API option to indicate to rollback all
records if any are not successful.

false Boolean

camel.component
.salesforce.apex-
method

APEX method name. String

camel.component
.salesforce.apex-
query-params

Query params for APEX method. Map

camel.component
.salesforce.apex-
url

APEX method URL. String

camel.component
.salesforce.api-
version

Salesforce API version. 53.0 String

camel.component
.salesforce.authe
ntication-type

Explicit authentication method to be used, one of
USERNAME_PASSWORD, REFRESH_TOKEN or
JWT. Salesforce component can auto-determine the
authentication method to use from the properties
set, set this property to eliminate any ambiguity.

 AuthenticationTyp
e

camel.component
.salesforce.autowi
red-enabled

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true Boolean

camel.component
.salesforce.backof
f-increment

Backoff interval increment for Streaming connection
restart attempts for failures beyond CometD auto-
reconnect. The option is a long type.

1000 Long

 <groupId>org.apache.camel.springboot</groupId>
 <artifactId>camel-salesforce-starter</artifactId>
 <version>3.14.5.redhat-00032</version>
 <!-- Use your Camel Spring Boot version -->
</dependency>

CHAPTER 43. SALESFORCE

873

camel.component
.salesforce.batch-
id

Bulk API Batch ID. String

camel.component
.salesforce.bridge
-error-handler

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false Boolean

camel.component
.salesforce.client-
id

OAuth Consumer Key of the connected app
configured in the Salesforce instance setup. Typically
a connected app needs to be configured but one can
be provided by installing a package.

 String

camel.component
.salesforce.client-
secret

OAuth Consumer Secret of the connected app
configured in the Salesforce instance setup.

 String

camel.component
.salesforce.compo
site-method

Composite (raw) method. String

camel.component
.salesforce.config

Global endpoint configuration - use to set values that
are common to all endpoints. The option is a
org.apache.camel.component.salesforce.SalesforceE
ndpointConfig type.

 SalesforceEndpoin
tConfig

camel.component
.salesforce.conte
nt-type

Bulk API content type, one of XML, CSV, ZIP_XML,
ZIP_CSV.

 ContentType

camel.component
.salesforce.defaul
t-replay-id

Default replayId setting if no value is found in
initialReplayIdMap.

-1 Long

camel.component
.salesforce.enable
d

Whether to enable auto configuration of the
salesforce component. This is enabled by default.

 Boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

874

camel.component
.salesforce.fall-
back-replay-id

ReplayId to fall back to after an Invalid Replay Id
response.

-1 Long

camel.component
.salesforce.format

Payload format to use for Salesforce API calls, either
JSON or XML, defaults to JSON. As of Camel 3.12,
this option only applies to the Raw operation.

 PayloadFormat

camel.component
.salesforce.http-
client

Custom Jetty Http Client to use to connect to
Salesforce. The option is a
org.apache.camel.component.salesforce.SalesforceH
ttpClient type.

 SalesforceHttpCli
ent

camel.component
.salesforce.http-
client-
connection-
timeout

Connection timeout used by the HttpClient when
connecting to the Salesforce server.

60000 Long

camel.component
.salesforce.http-
client-idle-
timeout

Timeout used by the HttpClient when waiting for
response from the Salesforce server.

10000 Long

camel.component
.salesforce.http-
client-properties

Used to set any properties that can be configured on
the underlying HTTP client. Have a look at properties
of SalesforceHttpClient and the Jetty HttpClient for
all available options.

 Map

camel.component
.salesforce.http-
max-content-
length

Max content length of an HTTP response. Integer

camel.component
.salesforce.http-
proxy-auth-uri

Used in authentication against the HTTP proxy
server, needs to match the URI of the proxy server in
order for the httpProxyUsername and
httpProxyPassword to be used for authentication.

 String

camel.component
.salesforce.http-
proxy-excluded-
addresses

A list of addresses for which HTTP proxy server
should not be used.

 Set

camel.component
.salesforce.http-
proxy-host

Hostname of the HTTP proxy server to use. String

Name Description Defaul
t

Type

CHAPTER 43. SALESFORCE

875

camel.component
.salesforce.http-
proxy-included-
addresses

A list of addresses for which HTTP proxy server
should be used.

 Set

camel.component
.salesforce.http-
proxy-password

Password to use to authenticate against the HTTP
proxy server.

 String

camel.component
.salesforce.http-
proxy-port

Port number of the HTTP proxy server to use. Integer

camel.component
.salesforce.http-
proxy-realm

Realm of the proxy server, used in preemptive
Basic/Digest authentication methods against the
HTTP proxy server.

 String

camel.component
.salesforce.http-
proxy-secure

If set to false disables the use of TLS when accessing
the HTTP proxy.

true Boolean

camel.component
.salesforce.http-
proxy-socks4

If set to true the configures the HTTP proxy to use as
a SOCKS4 proxy.

false Boolean

camel.component
.salesforce.http-
proxy-use-
digest-auth

If set to true Digest authentication will be used when
authenticating to the HTTP proxy, otherwise Basic
authorization method will be used.

false Boolean

camel.component
.salesforce.http-
proxy-username

Username to use to authenticate against the HTTP
proxy server.

 String

camel.component
.salesforce.http-
request-buffer-
size

HTTP request buffer size. May need to be increased
for large SOQL queries.

8192 Integer

camel.component
.salesforce.includ
e-details

Include details in Salesforce1 Analytics report,
defaults to false.

 Boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

876

camel.component
.salesforce.initial-
replay-id-map

Replay IDs to start from per channel name. Map

camel.component
.salesforce.instan
ce-id

Salesforce1 Analytics report execution instance ID. String

camel.component
.salesforce.instan
ce-url

URL of the Salesforce instance used after
authentication, by default received from Salesforce
on successful authentication.

 String

camel.component
.salesforce.job-id

Bulk API Job ID. String

camel.component
.salesforce.jwt-
audience

Value to use for the Audience claim (aud) when using
OAuth JWT flow. If not set, the login URL will be used,
which is appropriate in most cases.

 String

camel.component
.salesforce.keysto
re

KeyStore parameters to use in OAuth JWT flow. The
KeyStore should contain only one entry with private
key and certificate. Salesforce does not verify the
certificate chain, so this can easily be a selfsigned
certificate. Make sure that you upload the certificate
to the corresponding connected app. The option is a
org.apache.camel.support.jsse.KeyStoreParameters
type.

 KeyStoreParamet
ers

camel.component
.salesforce.lazy-
login

If set to true prevents the component from
authenticating to Salesforce with the start of the
component. You would generally set this to the
(default) false and authenticate early and be
immediately aware of any authentication issues.

false Boolean

camel.component
.salesforce.lazy-
start-producer

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false Boolean

Name Description Defaul
t

Type

CHAPTER 43. SALESFORCE

877

camel.component
.salesforce.limit

Limit on number of returned records. Applicable to
some of the API, check the Salesforce
documentation.

 Integer

camel.component
.salesforce.locato
r

Locator provided by salesforce Bulk 2.0 API for use in
getting results for a Query job.

 String

camel.component
.salesforce.login-
config

All authentication configuration in one nested bean,
all properties set there can be set directly on the
component as well. The option is a
org.apache.camel.component.salesforce.SalesforceL
oginConfig type.

 SalesforceLoginC
onfig

camel.component
.salesforce.login-
url

URL of the Salesforce instance used for
authentication, by default set to .

 String

camel.component
.salesforce.long-
polling-transport-
properties

Used to set any properties that can be configured on
the LongPollingTransport used by the BayeuxClient
(CometD) used by the streaming api.

 Map

camel.component
.salesforce.max-
backoff

Maximum backoff interval for Streaming connection
restart attempts for failures beyond CometD auto-
reconnect. The option is a long type.

30000 Long

camel.component
.salesforce.max-
records

The maximum number of records to retrieve per set
of results for a Bulk 2.0 Query. The request is still
subject to the size limits. If you are working with a
very large number of query results, you may
experience a timeout before receiving all the data
from Salesforce. To prevent a timeout, specify the
maximum number of records your client is expecting
to receive in the maxRecords parameter. This splits
the results into smaller sets with this value as the
maximum size.

 Integer

camel.component
.salesforce.not-
found-behaviour

Sets the behaviour of 404 not found status received
from Salesforce API. Should the body be set to NULL
NotFoundBehaviour#NULL or should a exception be
signaled on the exchange
NotFoundBehaviour#EXCEPTION - the default.

 NotFoundBehavio
ur

camel.component
.salesforce.notify
-for-fields

Notify for fields, options are ALL, REFERENCED,
SELECT, WHERE.

 NotifyForFieldsEn
um

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

878

camel.component
.salesforce.notify
-for-operation-
create

Notify for create operation, defaults to false (API
version = 29.0).

 Boolean

camel.component
.salesforce.notify
-for-operation-
delete

Notify for delete operation, defaults to false (API
version = 29.0).

 Boolean

camel.component
.salesforce.notify
-for-operation-
undelete

Notify for un-delete operation, defaults to false (API
version = 29.0).

 Boolean

camel.component
.salesforce.notify
-for-operation-
update

Notify for update operation, defaults to false (API
version = 29.0).

 Boolean

camel.component
.salesforce.notify
-for-operations

Notify for operations, options are ALL, CREATE,
EXTENDED, UPDATE (API version 29.0).

 NotifyForOperatio
nsEnum

camel.component
.salesforce.object
-mapper

Custom Jackson ObjectMapper to use when
serializing/deserializing Salesforce objects. The
option is a
com.fasterxml.jackson.databind.ObjectMapper type.

 ObjectMapper

camel.component
.salesforce.packa
ges

In what packages are the generated DTO classes.
Typically the classes would be generated using
camel-salesforce-maven-plugin. Set it if using the
generated DTOs to gain the benefit of using short
SObject names in parameters/header values.
Multiple packages can be separated by comma.

 String

camel.component
.salesforce.passw
ord

Password used in OAuth flow to gain access to
access token. It’s easy to get started with password
OAuth flow, but in general one should avoid it as it is
deemed less secure than other flows. Make sure that
you append security token to the end of the
password if using one.

 String

camel.component
.salesforce.pk-
chunking

Use PK Chunking. Only for use in original Bulk API.
Bulk 2.0 API performs PK chunking automatically, if
necessary.

 Boolean

Name Description Defaul
t

Type

CHAPTER 43. SALESFORCE

879

camel.component
.salesforce.pk-
chunking-chunk-
size

Chunk size for use with PK Chunking. If unspecified,
salesforce default is 100,000. Maximum size is
250,000.

 Integer

camel.component
.salesforce.pk-
chunking-parent

Specifies the parent object when you’re enabling PK
chunking for queries on sharing objects. The chunks
are based on the parent object’s records rather than
the sharing object’s records. For example, when
querying on AccountShare, specify Account as the
parent object. PK chunking is supported for sharing
objects as long as the parent object is supported.

 String

camel.component
.salesforce.pk-
chunking-start-
row

Specifies the 15-character or 18-character record ID
to be used as the lower boundary for the first chunk.
Use this parameter to specify a starting ID when
restarting a job that failed between batches.

 String

camel.component
.salesforce.query-
locator

Query Locator provided by salesforce for use when a
query results in more records than can be retrieved in
a single call. Use this value in a subsequent call to
retrieve additional records.

 String

camel.component
.salesforce.raw-
http-headers

Comma separated list of message headers to include
as HTTP parameters for Raw operation.

 String

camel.component
.salesforce.raw-
method

HTTP method to use for the Raw operation. String

camel.component
.salesforce.raw-
path

The portion of the endpoint URL after the domain
name. E.g.,
'/services/data/v52.0/sobjects/Account/'.

 String

camel.component
.salesforce.raw-
payload

Use raw payload String for request and response
(either JSON or XML depending on format), instead
of DTOs, false by default.

false Boolean

camel.component
.salesforce.raw-
query-
parameters

Comma separated list of message headers to include
as query parameters for Raw operation. Do not url-
encode values as this will be done automatically.

 String

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

880

camel.component
.salesforce.refres
h-token

Refresh token already obtained in the refresh token
OAuth flow. One needs to setup a web application
and configure a callback URL to receive the refresh
token, or configure using the builtin callback at and
then retrive the refresh_token from the URL at the
end of the flow. Note that in development
organizations Salesforce allows hosting the callback
web application at localhost.

 String

camel.component
.salesforce.report
-id

Salesforce1 Analytics report Id. String

camel.component
.salesforce.report
-metadata

Salesforce1 Analytics report metadata for filtering.
The option is a
org.apache.camel.component.salesforce.api.dto.analy
tics.reports.ReportMetadata type.

 ReportMetadata

camel.component
.salesforce.result-
id

Bulk API Result ID. String

camel.component
.salesforce.s-
object-blob-field-
name

SObject blob field name. String

camel.component
.salesforce.s-
object-class

Fully qualified SObject class name, usually generated
using camel-salesforce-maven-plugin.

 String

camel.component
.salesforce.s-
object-fields

SObject fields to retrieve. String

camel.component
.salesforce.s-
object-id

SObject ID if required by API. String

camel.component
.salesforce.s-
object-id-name

SObject external ID field name. String

camel.component
.salesforce.s-
object-id-value

SObject external ID field value. String

Name Description Defaul
t

Type

CHAPTER 43. SALESFORCE

881

camel.component
.salesforce.s-
object-name

SObject name if required or supported by API. String

camel.component
.salesforce.s-
object-query

Salesforce SOQL query string. String

camel.component
.salesforce.s-
object-search

Salesforce SOSL search string. String

camel.component
.salesforce.ssl-
context-
parameters

SSL parameters to use, see SSLContextParameters
class for all available options. The option is a
org.apache.camel.support.jsse.SSLContextParamete
rs type.

 SSLContextParam
eters

camel.component
.salesforce.updat
e-topic

Whether to update an existing Push Topic when using
the Streaming API, defaults to false.

false Boolean

camel.component
.salesforce.use-
global-ssl-
context-
parameters

Enable usage of global SSL context parameters. false Boolean

camel.component
.salesforce.user-
name

Username used in OAuth flow to gain access to
access token. It’s easy to get started with password
OAuth flow, but in general one should avoid it as it is
deemed less secure than other flows.

 String

camel.component
.salesforce.worker
-pool-max-size

Maximum size of the thread pool used to handle
HTTP responses.

20 Integer

camel.component
.salesforce.worker
-pool-size

Size of the thread pool used to handle HTTP
responses.

10 Integer

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

882

CHAPTER 44. SCHEDULER
Only consumer is supported

The Scheduler component is used to generate message exchanges when a scheduler fires. This
component is similar to the Timer component, but it offers more functionality in terms of scheduling.
Also this component uses JDK ScheduledExecutorService. Where as the timer uses a JDK Timer.

You can only consume events from this endpoint.

44.1. URI FORMAT

scheduler:name[?options]

Where name is the name of the scheduler, which is created and shared across endpoints. So if you use
the same name for all your scheduler endpoints, only one scheduler thread pool and thread will be used -
but you can configure the thread pool to allow more concurrent threads.

NOTE

The IN body of the generated exchange is null. So exchange.getIn().getBody() returns
null.

44.2. CONFIGURING OPTIONS

Camel components are configured on two separate levels:

component level

endpoint level

44.2.1. Configuring Component Options

The component level is the highest level which holds general and common configurations that are
inherited by the endpoints. For example a component may have security settings, credentials for
authentication, urls for network connection and so forth.

Some components only have a few options, and others may have many. Because components typically
have pre configured defaults that are commonly used, then you may often only need to configure a few
options on a component; or none at all.

Configuring components can be done with the Component DSL, in a configuration file
(application.properties|yaml), or directly with Java code.

44.2.2. Configuring Endpoint Options

Where you find yourself configuring the most is on endpoints, as endpoints often have many options,
which allows you to configure what you need the endpoint to do. The options are also categorized into
whether the endpoint is used as consumer (from) or as a producer (to), or used for both.

Configuring endpoints is most often done directly in the endpoint URI as path and query parameters.
You can also use the Endpoint DSL as a type safe way of configuring endpoints.

A good practice when configuring options is to use Property Placeholders, which allows to not hardcode

CHAPTER 44. SCHEDULER

883

https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/camel_spring_boot_reference_3.14/index#csb-camel-timer-component-starter
https://camel.apache.org/manual/component-dsl.html
https://camel.apache.org/manual/Endpoint-dsl.html

A good practice when configuring options is to use Property Placeholders, which allows to not hardcode
urls, port numbers, sensitive information, and other settings. In other words placeholders allows to
externalize the configuration from your code, and gives more flexibility and reuse.

The following two sections lists all the options, firstly for the component followed by the endpoint.

44.3. COMPONENT OPTIONS

The Scheduler component supports 3 options, which are listed below.

Name Description Defaul
t

Type

bridgeErrorHandl
er (consumer)

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false boolean

autowiredEnabled
(advanced)

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true boolean

poolSize
(scheduler)

Number of core threads in the thread pool used by
the scheduling thread pool. Is by default using a
single thread.

1 int

44.4. ENDPOINT OPTIONS

The Scheduler endpoint is configured using URI syntax:

scheduler:name

with the following path and query parameters:

44.4.1. Path Parameters (1 parameters)

Name Description Defaul
t

Type

name (consumer) Required The name of the scheduler. String

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

884

https://camel.apache.org/manual/using-propertyplaceholder.html

44.4.2. Query Parameters (21 parameters)

Name Description Defaul
t

Type

bridgeErrorHandl
er (consumer)

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false boolean

sendEmptyMessa
geWhenIdle
(consumer)

If the polling consumer did not poll any files, you can
enable this option to send an empty message (no
body) instead.

false boolean

exceptionHandler
(consumer
(advanced))

To let the consumer use a custom ExceptionHandler.
Notice if the option bridgeErrorHandler is enabled
then this option is not in use. By default the consumer
will deal with exceptions, that will be logged at WARN
or ERROR level and ignored.

 ExceptionHandler

exchangePattern
(consumer
(advanced))

Sets the exchange pattern when the consumer
creates an exchange.

Enum values:

InOnly

InOut

InOptionalOut

 ExchangePattern

pollStrategy
(consumer
(advanced))

A pluggable
org.apache.camel.PollingConsumerPollingStrategy
allowing you to provide your custom implementation
to control error handling usually occurred during the
poll operation before an Exchange have been
created and being routed in Camel.

 PollingConsumerP
ollStrategy

synchronous
(advanced)

Sets whether synchronous processing should be
strictly used.

false boolean

backoffErrorThre
shold (scheduler)

The number of subsequent error polls (failed due
some error) that should happen before the
backoffMultipler should kick-in.

 int

backoffIdleThres
hold (scheduler)

The number of subsequent idle polls that should
happen before the backoffMultipler should kick-in.

 int

CHAPTER 44. SCHEDULER

885

backoffMultiplier
(scheduler)

To let the scheduled polling consumer backoff if
there has been a number of subsequent idles/errors
in a row. The multiplier is then the number of polls
that will be skipped before the next actual attempt is
happening again. When this option is in use then
backoffIdleThreshold and/or backoffErrorThreshold
must also be configured.

 int

delay (scheduler) Milliseconds before the next poll. 500 long

greedy
(scheduler)

If greedy is enabled, then the
ScheduledPollConsumer will run immediately again, if
the previous run polled 1 or more messages.

false boolean

initialDelay
(scheduler)

Milliseconds before the first poll starts. 1000 long

poolSize
(scheduler)

Number of core threads in the thread pool used by
the scheduling thread pool. Is by default using a
single thread.

1 int

repeatCount
(scheduler)

Specifies a maximum limit of number of fires. So if
you set it to 1, the scheduler will only fire once. If you
set it to 5, it will only fire five times. A value of zero or
negative means fire forever.

0 long

runLoggingLevel
(scheduler)

The consumer logs a start/complete log line when it
polls. This option allows you to configure the logging
level for that.

Enum values:

TRACE

DEBUG

INFO

WARN

ERROR

OFF

TRACE LoggingLevel

scheduledExecut
orService
(scheduler)

Allows for configuring a custom/shared thread pool
to use for the consumer. By default each consumer
has its own single threaded thread pool.

 ScheduledExecuto
rService

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

886

scheduler
(scheduler)

To use a cron scheduler from either camel-spring or
camel-quartz component. Use value spring or quartz
for built in scheduler.

none Object

schedulerProperti
es (scheduler)

To configure additional properties when using a
custom scheduler or any of the Quartz, Spring based
scheduler.

 Map

startScheduler
(scheduler)

Whether the scheduler should be auto started. true boolean

timeUnit
(scheduler)

Time unit for initialDelay and delay options.

Enum values:

NANOSECONDS

MICROSECONDS

MILLISECONDS

SECONDS

MINUTES

HOURS

DAYS

MILLIS
ECON
DS

TimeUnit

useFixedDelay
(scheduler)

Controls if fixed delay or fixed rate is used. See
ScheduledExecutorService in JDK for details.

true boolean

Name Description Defaul
t

Type

44.5. MORE INFORMATION

This component is a scheduler Polling Consumer where you can find more information about the options
above, and examples at the Polling Consumer page.

44.6. EXCHANGE PROPERTIES

When the timer is fired, it adds the following information as properties to the Exchange:

CHAPTER 44. SCHEDULER

887

http://camel.apache.org/polling-consumer.html
http://camel.apache.org/polling-consumer.html

Name Type Description

Excha
nge.TI
MER_
NAME

String The value of the name option.

Excha
nge.TI
MER_
FIRED
_TIME

Date The time when the consumer fired.

44.7. SAMPLE

To set up a route that generates an event every 60 seconds:

The above route will generate an event and then invoke the someMethodName method on the bean
called myBean in the Registry such as JNDI or Spring.

And the route in Spring DSL:

44.8. FORCING THE SCHEDULER TO TRIGGER IMMEDIATELY WHEN
COMPLETED

To let the scheduler trigger as soon as the previous task is complete, you can set the option
greedy=true. But beware then the scheduler will keep firing all the time. So use this with caution.

44.9. FORCING THE SCHEDULER TO BE IDLE

There can be use cases where you want the scheduler to trigger and be greedy. But sometimes you want
"tell the scheduler" that there was no task to poll, so the scheduler can change into idle mode using the
backoff options. To do this you would need to set a property on the exchange with the key
Exchange.SCHEDULER_POLLED_MESSAGES to a boolean value of false. This will cause the
consumer to indicate that there was no messages polled.

The consumer will otherwise as by default return 1 message polled to the scheduler, every time the
consumer has completed processing the exchange.

44.10. SPRING BOOT AUTO-CONFIGURATION

When using scheduler with Spring Boot make sure to use the following Maven dependency to have
support for auto configuration:

from("scheduler://foo?delay=60000").to("bean:myBean?method=someMethodName");

<route>
 <from uri="scheduler://foo?delay=60000"/>
 <to uri="bean:myBean?method=someMethodName"/>
</route>

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

888

The component supports 4 options, which are listed below.

Name Description Defaul
t

Type

camel.component
.scheduler.autowi
red-enabled

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true Boolean

camel.component
.scheduler.bridge
-error-handler

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false Boolean

camel.component
.scheduler.enable
d

Whether to enable auto configuration of the
scheduler component. This is enabled by default.

 Boolean

camel.component
.scheduler.pool-
size

Number of core threads in the thread pool used by
the scheduling thread pool. Is by default using a
single thread.

1 Integer

<dependency>
 <groupId>org.apache.camel.springboot</groupId>
 <artifactId>camel-scheduler-starter</artifactId>
 <version>3.14.5.redhat-00032</version>
 <!-- Use your Camel Spring Boot version -->
</dependency>

CHAPTER 44. SCHEDULER

889

CHAPTER 45. SEDA
Both producer and consumer are supported

The SEDA component provides asynchronous SEDA behavior, so that messages are exchanged on a
BlockingQueue and consumers are invoked in a separate thread from the producer.

Note that queues are only visible within a single CamelContext. If you want to communicate across
CamelContext instances (for example, communicating between Web applications), see the component.

This component does not implement any kind of persistence or recovery, if the VM terminates while
messages are yet to be processed. If you need persistence, reliability or distributed SEDA, try using
either JMS or ActiveMQ.

NOTE

Synchronous
The Direct component provides synchronous invocation of any consumers when a
producer sends a message exchange.

45.1. URI FORMAT

seda:someName[?options]

Where someName can be any string that uniquely identifies the endpoint within the current
CamelContext.

45.2. CONFIGURING OPTIONS

Camel components are configured on two separate levels:

component level

endpoint level

45.2.1. Configuring Component Options

The component level is the highest level which holds general and common configurations that are
inherited by the endpoints. For example a component may have security settings, credentials for
authentication, urls for network connection and so forth.

Some components only have a few options, and others may have many. Because components typically
have pre configured defaults that are commonly used, then you may often only need to configure a few
options on a component; or none at all.

Configuring components can be done with the Component DSL, in a configuration file
(application.properties|yaml), or directly with Java code.

45.2.2. Configuring Endpoint Options

Where you find yourself configuring the most is on endpoints, as endpoints often have many options,
which allows you to configure what you need the endpoint to do. The options are also categorized into
whether the endpoint is used as consumer (from) or as a producer (to), or used for both.

Configuring endpoints is most often done directly in the endpoint URI as path and query parameters.

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

890

https://en.wikipedia.org/wiki/Staged_event-driven_architecture
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/BlockingQueue.html
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/camel_spring_boot_reference_3.14/index#csb-camel-jms-component-starter
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/camel_spring_boot_reference_3.14/index#csb-camel-direct-component-starter
https://camel.apache.org/manual/component-dsl.html

Configuring endpoints is most often done directly in the endpoint URI as path and query parameters.
You can also use the Endpoint DSL as a type safe way of configuring endpoints.

A good practice when configuring options is to use Property Placeholders, which allows to not hardcode
urls, port numbers, sensitive information, and other settings. In other words placeholders allows to
externalize the configuration from your code, and gives more flexibility and reuse.

The following two sections lists all the options, firstly for the component followed by the endpoint.

45.3. COMPONENT OPTIONS

The SEDA component supports 10 options, which are listed below.

Name Description Defaul
t

Type

bridgeErrorHandl
er (consumer)

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false boolean

concurrentConsu
mers (consumer)

Sets the default number of concurrent threads
processing exchanges.

1 int

defaultPollTimeo
ut (consumer
(advanced))

The timeout (in milliseconds) used when polling.
When a timeout occurs, the consumer can check
whether it is allowed to continue running. Setting a
lower value allows the consumer to react more
quickly upon shutdown.

1000 int

defaultBlockWhe
nFull (producer)

Whether a thread that sends messages to a full
SEDA queue will block until the queue’s capacity is no
longer exhausted. By default, an exception will be
thrown stating that the queue is full. By enabling this
option, the calling thread will instead block and wait
until the message can be accepted.

false boolean

defaultDiscardWh
enFull (producer)

Whether a thread that sends messages to a full
SEDA queue will be discarded. By default, an
exception will be thrown stating that the queue is full.
By enabling this option, the calling thread will give up
sending and continue, meaning that the message was
not sent to the SEDA queue.

false boolean

CHAPTER 45. SEDA

891

https://camel.apache.org/manual/Endpoint-dsl.html
https://camel.apache.org/manual/using-propertyplaceholder.html

defaultOfferTime
out (producer)

Whether a thread that sends messages to a full
SEDA queue will block until the queue’s capacity is no
longer exhausted. By default, an exception will be
thrown stating that the queue is full. By enabling this
option, where a configured timeout can be added to
the block case. Utilizing the .offer(timeout) method
of the underlining java queue.

 long

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

autowiredEnabled
(advanced)

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true boolean

defaultQueueFac
tory (advanced)

Sets the default queue factory. BlockingQueueFa
ctory

queueSize
(advanced)

Sets the default maximum capacity of the SEDA
queue (i.e., the number of messages it can hold).

1000 int

Name Description Defaul
t

Type

45.4. ENDPOINT OPTIONS

The SEDA endpoint is configured using URI syntax:

seda:name

with the following path and query parameters:

45.4.1. Path Parameters (1 parameters)

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

892

Name Description Defaul
t

Type

name (common) Required Name of queue. String

45.4.2. Query Parameters (18 parameters)

Name Description Defaul
t

Type

size (common) The maximum capacity of the SEDA queue (i.e., the
number of messages it can hold). Will by default use
the defaultSize set on the SEDA component.

1000 int

bridgeErrorHandl
er (consumer)

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false boolean

concurrentConsu
mers (consumer)

Number of concurrent threads processing exchanges. 1 int

exceptionHandler
(consumer
(advanced))

To let the consumer use a custom ExceptionHandler.
Notice if the option bridgeErrorHandler is enabled
then this option is not in use. By default the consumer
will deal with exceptions, that will be logged at WARN
or ERROR level and ignored.

 ExceptionHandler

exchangePattern
(consumer
(advanced))

Sets the exchange pattern when the consumer
creates an exchange.

Enum values:

InOnly

InOut

InOptionalOut

 ExchangePattern

limitConcurrentC
onsumers
(consumer
(advanced))

Whether to limit the number of
concurrentConsumers to the maximum of 500. By
default, an exception will be thrown if an endpoint is
configured with a greater number. You can disable
that check by turning this option off.

true boolean

CHAPTER 45. SEDA

893

multipleConsume
rs (consumer
(advanced))

Specifies whether multiple consumers are allowed. If
enabled, you can use SEDA for Publish-Subscribe
messaging. That is, you can send a message to the
SEDA queue and have each consumer receive a copy
of the message. When enabled, this option should be
specified on every consumer endpoint.

false boolean

pollTimeout
(consumer
(advanced))

The timeout (in milliseconds) used when polling.
When a timeout occurs, the consumer can check
whether it is allowed to continue running. Setting a
lower value allows the consumer to react more
quickly upon shutdown.

1000 int

purgeWhenStopp
ing (consumer
(advanced))

Whether to purge the task queue when stopping the
consumer/route. This allows to stop faster, as any
pending messages on the queue is discarded.

false boolean

blockWhenFull
(producer)

Whether a thread that sends messages to a full
SEDA queue will block until the queue’s capacity is no
longer exhausted. By default, an exception will be
thrown stating that the queue is full. By enabling this
option, the calling thread will instead block and wait
until the message can be accepted.

false boolean

discardIfNoConsu
mers (producer)

Whether the producer should discard the message
(do not add the message to the queue), when
sending to a queue with no active consumers. Only
one of the options discardIfNoConsumers and
failIfNoConsumers can be enabled at the same time.

false boolean

discardWhenFull
(producer)

Whether a thread that sends messages to a full
SEDA queue will be discarded. By default, an
exception will be thrown stating that the queue is full.
By enabling this option, the calling thread will give up
sending and continue, meaning that the message was
not sent to the SEDA queue.

false boolean

failIfNoConsumer
s (producer)

Whether the producer should fail by throwing an
exception, when sending to a queue with no active
consumers. Only one of the options
discardIfNoConsumers and failIfNoConsumers can
be enabled at the same time.

false boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

894

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

offerTimeout
(producer)

Offer timeout (in milliseconds) can be added to the
block case when queue is full. You can disable
timeout by using 0 or a negative value.

 long

timeout
(producer)

Timeout (in milliseconds) before a SEDA producer
will stop waiting for an asynchronous task to
complete. You can disable timeout by using 0 or a
negative value.

30000 long

waitForTaskToCo
mplete (producer)

Option to specify whether the caller should wait for
the async task to complete or not before continuing.
The following three options are supported: Always,
Never or IfReplyExpected. The first two values are
self-explanatory. The last value, IfReplyExpected, will
only wait if the message is Request Reply based. The
default option is IfReplyExpected.

Enum values:

Never

IfReplyExpected

Always

IfReply
Expect
ed

WaitForTaskToCo
mplete

queue (advanced) Define the queue instance which will be used by the
endpoint.

 BlockingQueue

Name Description Defaul
t

Type

45.5. CHOOSING BLOCKINGQUEUE IMPLEMENTATION

By default, the SEDA component always intantiates LinkedBlockingQueue, but you can use different
implementation, you can reference your own BlockingQueue implementation, in this case the size option
is not used

<bean id="arrayQueue" class="java.util.ArrayBlockingQueue">
 <constructor-arg index="0" value="10" ><!-- size -->
 <constructor-arg index="1" value="true" ><!-- fairness -->

CHAPTER 45. SEDA

895

Or you can reference a BlockingQueueFactory implementation, 3 implementations are provided
LinkedBlockingQueueFactory, ArrayBlockingQueueFactory and PriorityBlockingQueueFactory:

45.6. USE OF REQUEST REPLY

The SEDA component supports using Request Reply, where the caller will wait for the Async route to
complete. For instance:

In the route above, we have a TCP listener on port 9876 that accepts incoming requests. The request is
routed to the seda:input queue. As it is a Request Reply message, we wait for the response. When the
consumer on the seda:input queue is complete, it copies the response to the original message
response.

45.7. CONCURRENT CONSUMERS

By default, the SEDA endpoint uses a single consumer thread, but you can configure it to use concurrent
consumer threads. So instead of thread pools you can use:

As for the difference between the two, note a thread pool can increase/shrink dynamically at runtime
depending on load, whereas the number of concurrent consumers is always fixed.

45.8. THREAD POOLS

Be aware that adding a thread pool to a SEDA endpoint by doing something like:

Can wind up with two BlockQueues: one from the SEDA endpoint, and one from the workqueue of the
thread pool, which may not be what you want. Instead, you might wish to configure a Direct endpoint
with a thread pool, which can process messages both synchronously and asynchronously. For example:

</bean>

<!-- ... and later -->
<from>seda:array?queue=#arrayQueue</from>

<bean id="priorityQueueFactory"
class="org.apache.camel.component.seda.PriorityBlockingQueueFactory">
 <property name="comparator">
 <bean class="org.apache.camel.demo.MyExchangeComparator" />
 </property>
</bean>

<!-- ... and later -->
<from>seda:priority?queueFactory=#priorityQueueFactory&size=100</from>

from("mina:tcp://0.0.0.0:9876?textline=true&sync=true").to("seda:input");

from("seda:input").to("bean:processInput").to("bean:createResponse");

from("seda:stageName?concurrentConsumers=5").process(...)

from("seda:stageName").thread(5).process(...)

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

896

https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/camel_spring_boot_reference_3.14/index#csb-camel-seda-component-starter

You can also directly configure number of threads that process messages on a SEDA endpoint using the
concurrentConsumers option.

45.9. SAMPLE

In the route below we use the SEDA queue to send the request to this async queue to be able to send a
fire-and-forget message for further processing in another thread, and return a constant reply in this
thread to the original caller.

We send a Hello World message and expects the reply to be OK.

The "Hello World" message will be consumed from the SEDA queue from another thread for further
processing. Since this is from a unit test, it will be sent to a mock endpoint where we can do assertions in
the unit test.

45.10. USING MULTIPLECONSUMERS

In this example we have defined two consumers.

from("direct:stageName").thread(5).process(...)

 @Test
 public void testSendAsync() throws Exception {
 MockEndpoint mock = getMockEndpoint("mock:result");
 mock.expectedBodiesReceived("Hello World");

 // START SNIPPET: e2
 Object out = template.requestBody("direct:start", "Hello World");
 assertEquals("OK", out);
 // END SNIPPET: e2

 assertMockEndpointsSatisfied();
 }

 @Override
 protected RouteBuilder createRouteBuilder() throws Exception {
 return new RouteBuilder() {
 // START SNIPPET: e1
 public void configure() throws Exception {
 from("direct:start")
 // send it to the seda queue that is async
 .to("seda:next")
 // return a constant response
 .transform(constant("OK"));

 from("seda:next").to("mock:result");
 }
 // END SNIPPET: e1
 };
 }

 @Test
 public void testSameOptionsProducerStillOkay() throws Exception {
 getMockEndpoint("mock:foo").expectedBodiesReceived("Hello World");

CHAPTER 45. SEDA

897

Since we have specified multipleConsumers=true on the seda foo endpoint we can have those two
consumers receive their own copy of the message as a kind of pub-sub style messaging.

As the beans are part of an unit test they simply send the message to a mock endpoint.

45.11. EXTRACTING QUEUE INFORMATION

If needed, information such as queue size, etc. can be obtained without using JMX in this fashion:

45.12. SPRING BOOT AUTO-CONFIGURATION

When using seda with Spring Boot make sure to use the following Maven dependency to have support
for auto configuration:

The component supports 11 options, which are listed below.

Name Description Defaul
t

Type

 getMockEndpoint("mock:bar").expectedBodiesReceived("Hello World");

 template.sendBody("seda:foo", "Hello World");

 assertMockEndpointsSatisfied();
 }

 @Override
 protected RouteBuilder createRouteBuilder() throws Exception {
 return new RouteBuilder() {
 @Override
 public void configure() throws Exception {
 from("seda:foo?multipleConsumers=true").routeId("foo").to("mock:foo");
 from("seda:foo?multipleConsumers=true").routeId("bar").to("mock:bar");
 }
 };
 }

SedaEndpoint seda = context.getEndpoint("seda:xxxx");
int size = seda.getExchanges().size();

<dependency>
 <groupId>org.apache.camel.springboot</groupId>
 <artifactId>camel-seda-starter</artifactId>
 <version>3.14.5.redhat-00032</version>
 <!-- Use your Camel Spring Boot version -->
</dependency>

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

898

camel.component
.seda.autowired-
enabled

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true Boolean

camel.component
.seda.bridge-
error-handler

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false Boolean

camel.component
.seda.concurrent-
consumers

Sets the default number of concurrent threads
processing exchanges.

1 Integer

camel.component
.seda.default-
block-when-full

Whether a thread that sends messages to a full
SEDA queue will block until the queue’s capacity is no
longer exhausted. By default, an exception will be
thrown stating that the queue is full. By enabling this
option, the calling thread will instead block and wait
until the message can be accepted.

false Boolean

camel.component
.seda.default-
discard-when-full

Whether a thread that sends messages to a full
SEDA queue will be discarded. By default, an
exception will be thrown stating that the queue is full.
By enabling this option, the calling thread will give up
sending and continue, meaning that the message was
not sent to the SEDA queue.

false Boolean

camel.component
.seda.default-
offer-timeout

Whether a thread that sends messages to a full
SEDA queue will block until the queue’s capacity is no
longer exhausted. By default, an exception will be
thrown stating that the queue is full. By enabling this
option, where a configured timeout can be added to
the block case. Utilizing the .offer(timeout) method
of the underlining java queue.

 Long

camel.component
.seda.default-
poll-timeout

The timeout (in milliseconds) used when polling.
When a timeout occurs, the consumer can check
whether it is allowed to continue running. Setting a
lower value allows the consumer to react more
quickly upon shutdown.

1000 Integer

Name Description Defaul
t

Type

CHAPTER 45. SEDA

899

camel.component
.seda.default-
queue-factory

Sets the default queue factory. The option is a
org.apache.camel.component.seda.BlockingQueueFa
ctory<org.apache.camel.Exchange> type.

 BlockingQueueFa
ctory

camel.component
.seda.enabled

Whether to enable auto configuration of the seda
component. This is enabled by default.

 Boolean

camel.component
.seda.lazy-start-
producer

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false Boolean

camel.component
.seda.queue-size

Sets the default maximum capacity of the SEDA
queue (i.e., the number of messages it can hold).

1000 Integer

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

900

CHAPTER 46. SERVLET
Only consumer is supported

The Servlet component provides HTTP based endpoints for consuming HTTP requests that arrive at a
HTTP endpoint that is bound to a published Servlet.

Maven users will need to add the following dependency to their pom.xml for this component:

NOTE

Stream

Servlet is stream based, which means the input it receives is submitted to Camel as a
stream. That means you will only be able to read the content of the stream once. If you
find a situation where the message body appears to be empty or you need to access the
data multiple times (eg: doing multicasting, or redelivery error handling) you should use
Stream caching or convert the message body to a String which is safe to be read multiple
times.

46.1. URI FORMAT

servlet://relative_path[?options]

46.2. CONFIGURING OPTIONS

Camel components are configured on two separate levels:

component level

endpoint level

46.2.1. Configuring Component Options

The component level is the highest level which holds general and common configurations that are
inherited by the endpoints. For example a component may have security settings, credentials for
authentication, urls for network connection and so forth.

Some components only have a few options, and others may have many. Because components typically
have pre-configured defaults that are commonly used, then you may often only need to configure a few
options on a component; or none at all.

Configuring components can be done with the Component DSL, in a configuration file
(application.properties|yaml), or directly with Java code.

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-servlet</artifactId>
 <version>3.14.5.redhat-00018</version>
 <!-- use the same version as your Camel core version -->
</dependency>

CHAPTER 46. SERVLET

901

https://camel.apache.org/manual/component-dsl.html

46.2.2. Configuring Endpoint Options

Where you find yourself configuring the most is on endpoints, as endpoints often have many options,
which allows you to configure what you need the endpoint to do. The options are also categorized into
whether the endpoint is used as consumer (from) or as a producer (to), or used for both.

Configuring endpoints is most often done directly in the endpoint URI as path and query parameters.
You can also use the Endpoint DSL as a type safe way of configuring endpoints.

A good practice when configuring options is to use Property Placeholders, which allows to not hardcode
urls, port numbers, sensitive information, and other settings. In other words placeholders allows to
externalize the configuration from your code, and gives more flexibility and reuse.

The following two sections lists all the options, firstly for the component followed by the endpoint.

46.3. COMPONENT OPTIONS

The Servlet component supports 11 options, which are listed below.

Name Description Defaul
t

Type

bridgeErrorHandl
er (consumer)

Allows for bridging the consumer to the Camel
routing Error Handler, which means any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false boolean

muteException
(consumer)

If enabled and an Exchange failed processing on the
consumer side the response’s body won’t contain the
exception’s stack trace.

false boolean

servletName
(consumer)

Default name of servlet to use. The default name is
CamelServlet.

Camel
Servlet

String

attachmentMultip
artBinding
(consumer
(advanced))

Whether to automatic bind multipart/form-data as
attachments on the Camel Exchange. The options
attachmentMultipartBinding=true and
disableStreamCache=false cannot work together.
Remove disableStreamCache to use
AttachmentMultipartBinding. This is turned off by
default as this may require servlet specific
configuration to enable this when using Servlets.

false boolean

fileNameExtWhit
elist (consumer
(advanced))

Whitelist of accepted filename extensions for
accepting uploaded files. Multiple extensions can be
separated by comma, such as txt,xml.

 String

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

902

https://camel.apache.org/manual/Endpoint-dsl.html
https://camel.apache.org/manual/using-propertyplaceholder.html

httpRegistry
(consumer
(advanced))

To use a custom
org.apache.camel.component.servlet.HttpRegistry.

 HttpRegistry

allowJavaSerializ
edObject
(advanced)

Whether to allow java serialization when a request
uses context-type=application/x-java-serialized-
object. This is by default turned off. If you enable this
then be aware that Java will deserialize the incoming
data from the request to Java and that can be a
potential security risk.

false boolean

autowiredEnabled
(advanced)

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true boolean

httpBinding
(advanced)

To use a custom HttpBinding to control the mapping
between Camel message and HttpClient.

 HttpBinding

httpConfiguratio
n (advanced)

To use the shared HttpConfiguration as base
configuration.

 HttpConfiguration

headerFilterStrat
egy (filter)

To use a custom
org.apache.camel.spi.HeaderFilterStrategy to filter
header to and from Camel message.

 HeaderFilterStrate
gy

Name Description Defaul
t

Type

46.4. ENDPOINT OPTIONS

The Servlet endpoint is configured using URI syntax:

servlet:contextPath

with the following path and query parameters:

46.4.1. Path Parameters (1 parameters)

Name Description Defaul
t

Type

contextPath
(consumer)

Required The context-path to use. String

CHAPTER 46. SERVLET

903

46.4.2. Query Parameters (22 parameters)

Name Description Defaul
t

Type

chunked
(consumer)

If this option is false the Servlet will disable the HTTP
streaming and set the content-length header on the
response.

true boolean

disableStreamCa
che (common)

Determines whether or not the raw input stream from
Servlet is cached or not (Camel will read the stream
into a in memory/overflow to file, Stream caching)
cache. By default Camel will cache the Servlet input
stream to support reading it multiple times to ensure
Camel can retrieve all data from the stream. However
you can set this option to true when you for example
need to access the raw stream, such as streaming it
directly to a file or other persistent store.
DefaultHttpBinding will copy the request input
stream into a stream cache and put it into message
body if this option is false to support reading the
stream multiple times. If you use Servlet to
bridge/proxy an endpoint then consider enabling this
option to improve performance, in case you do not
need to read the message payload multiple times.
The http producer will by default cache the response
body stream. If this option is set to true, then the
producers will not cache the response body stream
but use the response stream as-is as the message
body.

false boolean

headerFilterStrat
egy (common)

To use a custom HeaderFilterStrategy to filter
header to and from Camel message.

 HeaderFilterStrate
gy

httpBinding
(common
(advanced))

To use a custom HttpBinding to control the mapping
between Camel message and HttpClient.

 HttpBinding

async (consumer) Configure the consumer to work in async mode. false boolean

bridgeErrorHandl
er (consumer)

Allows for bridging the consumer to the Camel
routing Error Handler, which means any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false boolean

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

904

httpMethodRestri
ct (consumer)

Used to only allow consuming if the HttpMethod
matches, such as GET/POST/PUT etc. Multiple
methods can be specified separated by comma.

 String

matchOnUriPrefix
(consumer)

Whether or not the consumer should try to find a
target consumer by matching the URI prefix if no
exact match is found.

false boolean

muteException
(consumer)

If enabled and an Exchange failed processing on the
consumer side the response’s body won’t contain the
exception’s stack trace.

false boolean

responseBufferSi
ze (consumer)

To use a custom buffer size on the
javax.servlet.ServletResponse.

 Integer

servletName
(consumer)

Name of the servlet to use. Camel
Servlet

String

transferException
(consumer)

If enabled and an Exchange failed processing on the
consumer side, and if the caused Exception was sent
back serialized in the response as an application/x-
java-serialized-object content type. On the producer
side the exception will be deserialized and thrown as
is, instead of the HttpOperationFailedException. The
caused exception is required to be serialized. This is
by default turned off. If you enable this then be
aware that Java will deserialize the incoming data
from the request to Java and that can be a potential
security risk.

false boolean

attachmentMultip
artBinding
(consumer
(advanced))

Whether to automatic bind multipart/form-data as
attachments on the Camel Exchange. The options
attachmentMultipartBinding=true and
disableStreamCache=false cannot work together.
Remove disableStreamCache to use
AttachmentMultipartBinding. This is turned off by
default as this may require servlet specific
configuration to enable this when using Servlets.

false boolean

eagerCheckConte
ntAvailable
(consumer
(advanced))

Whether to eager check whether the HTTP requests
has content if the content-length header is 0 or not
present. This can be turned on in case HTTP clients
do not send streamed data.

false boolean

exceptionHandler
(consumer
(advanced))

To let the consumer use a custom ExceptionHandler.
Notice if the option bridgeErrorHandler is enabled
then this option is not in use. By default the consumer
will deal with exceptions, that will be logged at WARN
or ERROR level and ignored.

 ExceptionHandler

Name Description Defaul
t

Type

CHAPTER 46. SERVLET

905

exchangePattern
(consumer
(advanced))

Sets the exchange pattern when the consumer
creates an exchange.

Enum values:

InOnly

InOut

InOptionalOut

 ExchangePattern

fileNameExtWhit
elist (consumer
(advanced))

Whitelist of accepted filename extensions for
accepting uploaded files. Multiple extensions can be
separated by comma, such as txt,xml.

 String

mapHttpMessage
Body (consumer
(advanced))

If this option is true then IN exchange Body of the
exchange will be mapped to HTTP body. Setting this
to false will avoid the HTTP mapping.

true boolean

mapHttpMessage
FormUrlEncoded
Body (consumer
(advanced))

If this option is true then IN exchange Form Encoded
body of the exchange will be mapped to HTTP.
Setting this to false will avoid the HTTP Form
Encoded body mapping.

true boolean

mapHttpMessage
Headers
(consumer
(advanced))

If this option is true then IN exchange Headers of the
exchange will be mapped to HTTP headers. Setting
this to false will avoid the HTTP Headers mapping.

true boolean

optionsEnabled
(consumer
(advanced))

Specifies whether to enable HTTP OPTIONS for this
Servlet consumer. By default OPTIONS is turned off.

false boolean

traceEnabled
(consumer
(advanced))

Specifies whether to enable HTTP TRACE for this
Servlet consumer. By default TRACE is turned off.

false boolean

Name Description Defaul
t

Type

46.5. MESSAGE HEADERS

Camel will apply the same Message Headers as the HTTP component.

Camel will also populate all request.parameter and request.headers. For example, if a client request
has the URL, http://myserver/myserver?orderid=123, the exchange will contain a header named orderid
with the value 123.

46.6. USAGE

You can consume only from endpoints generated by the Servlet component. Therefore, it should be

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

906

http://myserver/myserver?orderid=123

You can consume only from endpoints generated by the Servlet component. Therefore, it should be
used only as input into your Camel routes. To issue HTTP requests against other HTTP endpoints, use
the HTTP component.

46.7. SPRING BOOT AUTO-CONFIGURATION

When using servlet with Spring Boot make sure to use the following Maven dependency to have support
for auto configuration:

The component supports 15 options, which are listed below.

Name Description Defaul
t

Type

camel.component
.servlet.allow-
java-serialized-
object

Whether to allow java serialization when a request
uses context-type=application/x-java-serialized-
object. This is by default turned off. If you enable this
then be aware that Java will deserialize the incoming
data from the request to Java and that can be a
potential security risk.

false Boolean

camel.component
.servlet.attachme
nt-multipart-
binding

Whether to automatic bind multipart/form-data as
attachments on the Camel Exchange. The options
attachmentMultipartBinding=true and
disableStreamCache=false cannot work together.
Remove disableStreamCache to use
AttachmentMultipartBinding. This is turned off by
default as this may require servlet specific
configuration to enable this when using Servlet’s.

false Boolean

camel.component
.servlet.autowired
-enabled

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true Boolean

<dependency>
 <groupId>org.apache.camel.springboot</groupId>
 <artifactId>camel-servlet-starter</artifactId>
 <version>3.14.5.redhat-00032</version>
 <!-- Use your Camel Spring Boot version -->
</dependency>

CHAPTER 46. SERVLET

907

camel.component
.servlet.bridge-
error-handler

Allows for bridging the consumer to the Camel
routing Error Handler, which means any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false Boolean

camel.component
.servlet.enabled

Whether to enable auto configuration of the servlet
component. This is enabled by default.

 Boolean

camel.component
.servlet.file-
name-ext-
whitelist

Whitelist of accepted filename extensions for
accepting uploaded files. Multiple extensions can be
separated by comma, such as txt,xml.

 String

camel.component
.servlet.header-
filter-strategy

To use a custom
org.apache.camel.spi.HeaderFilterStrategy to filter
header to and from Camel message. The option is a
org.apache.camel.spi.HeaderFilterStrategy type.

 HeaderFilterStrate
gy

camel.component
.servlet.http-
binding

To use a custom HttpBinding to control the mapping
between Camel message and HttpClient. The option
is a org.apache.camel.http.common.HttpBinding
type.

 HttpBinding

camel.component
.servlet.http-
configuration

To use the shared HttpConfiguration as base
configuration. The option is a
org.apache.camel.http.common.HttpConfiguration
type.

 HttpConfiguration

camel.component
.servlet.http-
registry

To use a custom
org.apache.camel.component.servlet.HttpRegistry.
The option is a
org.apache.camel.http.common.HttpRegistry type.

 HttpRegistry

camel.component
.servlet.mute-
exception

If enabled and an Exchange failed processing on the
consumer side the response’s body won’t contain the
exception’s stack trace.

false Boolean

camel.component
.servlet.servlet-
name

Default name of servlet to use. The default name is
CamelServlet.

Camel
Servlet

String

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

908

camel.servlet.map
ping.context-
path

Context path used by the servlet component for
automatic mapping.

/camel
/*

String

camel.servlet.map
ping.enabled

Enables the automatic mapping of the servlet
component into the Spring web context.

true Boolean

camel.servlet.map
ping.servlet-
name

The name of the Camel servlet. Camel
Servlet

String

Name Description Defaul
t

Type

CHAPTER 46. SERVLET

909

CHAPTER 47. SLACK
Both producer and consumer are supported

The Slack component allows you to connect to an instance of Slack and delivers a message contained in
the message body via a pre established Slack incoming webhook.

Maven users will need to add the following dependency to their pom.xml for this component:

47.1. URI FORMAT

To send a message to a channel.

slack:#channel[?options]

To send a direct message to a slackuser.

slack:@userID[?options]

47.2. CONFIGURING OPTIONS

Camel components are configured on two separate levels:

component level

endpoint level

47.2.1. Configuring Component Options

The component level is the highest level which holds general and common configurations that are
inherited by the endpoints. For example a component may have security settings, credentials for
authentication, urls for network connection and so forth.

Some components only have a few options, and others may have many. Because components typically
have pre configured defaults that are commonly used, then you may often only need to configure a few
options on a component; or none at all.

Configuring components can be done with the Component DSL, in a configuration file
(application.properties|yaml), or directly with Java code.

47.2.2. Configuring Endpoint Options

Where you find yourself configuring the most is on endpoints, as endpoints often have many options,
which allows you to configure what you need the endpoint to do. The options are also categorized into
whether the endpoint is used as consumer (from) or as a producer (to), or used for both.

Configuring endpoints is most often done directly in the endpoint URI as path and query parameters.

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-slack</artifactId>
 <version>3.14.5.redhat-00018</version>
 <!-- use the same version as your Camel core version -->
</dependency>

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

910

http://www.slack.com/
https://api.slack.com/incoming-webhooks
https://camel.apache.org/manual/component-dsl.html

Configuring endpoints is most often done directly in the endpoint URI as path and query parameters.
You can also use the Endpoint DSL as a type safe way of configuring endpoints.

A good practice when configuring options is to use Property Placeholders, which allows to not hardcode
urls, port numbers, sensitive information, and other settings. In other words placeholders allows to
externalize the configuration from your code, and gives more flexibility and reuse.

The following two sections lists all the options, firstly for the component followed by the endpoint.

47.3. COMPONENT OPTIONS

The Slack component supports 5 options, which are listed below.

Name Description Defaul
t

Type

bridgeErrorHandl
er (consumer)

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false boolean

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

autowiredEnabled
(advanced)

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true boolean

token (token) The token to use. String

webhookUrl
(webhook)

The incoming webhook URL. String

47.4. ENDPOINT OPTIONS

CHAPTER 47. SLACK

911

https://camel.apache.org/manual/Endpoint-dsl.html
https://camel.apache.org/manual/using-propertyplaceholder.html

The Slack endpoint is configured using URI syntax:

slack:channel

with the following path and query parameters:

47.4.1. Path Parameters (1 parameters)

Name Description Defaul
t

Type

channel (common) Required The channel name (syntax #name) or
slackuser (syntax userName) to send a message
directly to an user.

 String

47.4.2. Query Parameters (29 parameters)

Name Description Defaul
t

Type

token (common) The token to use. String

bridgeErrorHandl
er (consumer)

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false boolean

conversationType
(consumer)

Type of conversation.

Enum values:

PUBLIC_CHANNEL

PRIVATE_CHANNEL

MPIM

IM

PUBLI
C_CHA
NNEL

ConversationType

maxResults
(consumer)

The Max Result for the poll. 10 String

naturalOrder
(consumer)

Create exchanges in natural order (oldest to newest)
or not.

false boolean

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

912

sendEmptyMessa
geWhenIdle
(consumer)

If the polling consumer did not poll any files, you can
enable this option to send an empty message (no
body) instead.

false boolean

serverUrl
(consumer)

The Server URL of the Slack instance. String

exceptionHandler
(consumer
(advanced))

To let the consumer use a custom ExceptionHandler.
Notice if the option bridgeErrorHandler is enabled
then this option is not in use. By default the consumer
will deal with exceptions, that will be logged at WARN
or ERROR level and ignored.

 ExceptionHandler

exchangePattern
(consumer
(advanced))

Sets the exchange pattern when the consumer
creates an exchange.

Enum values:

InOnly

InOut

InOptionalOut

 ExchangePattern

pollStrategy
(consumer
(advanced))

A pluggable
org.apache.camel.PollingConsumerPollingStrategy
allowing you to provide your custom implementation
to control error handling usually occurred during the
poll operation before an Exchange have been
created and being routed in Camel.

 PollingConsumerP
ollStrategy

iconEmoji
(producer)

Deprecated Use a Slack emoji as an avatar. String

iconUrl (producer) Deprecated The avatar that the component will use
when sending message to a channel or user.

 String

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

Name Description Defaul
t

Type

CHAPTER 47. SLACK

913

username
(producer)

Deprecated This is the username that the bot will
have when sending messages to a channel or user.

 String

webhookUrl
(producer)

The incoming webhook URL. String

backoffErrorThre
shold (scheduler)

The number of subsequent error polls (failed due
some error) that should happen before the
backoffMultipler should kick-in.

 int

backoffIdleThres
hold (scheduler)

The number of subsequent idle polls that should
happen before the backoffMultipler should kick-in.

 int

backoffMultiplier
(scheduler)

To let the scheduled polling consumer backoff if
there has been a number of subsequent idles/errors
in a row. The multiplier is then the number of polls
that will be skipped before the next actual attempt is
happening again. When this option is in use then
backoffIdleThreshold and/or backoffErrorThreshold
must also be configured.

 int

delay (scheduler) Milliseconds before the next poll. 500 long

greedy
(scheduler)

If greedy is enabled, then the
ScheduledPollConsumer will run immediately again, if
the previous run polled 1 or more messages.

false boolean

initialDelay
(scheduler)

Milliseconds before the first poll starts. 1000 long

repeatCount
(scheduler)

Specifies a maximum limit of number of fires. So if
you set it to 1, the scheduler will only fire once. If you
set it to 5, it will only fire five times. A value of zero or
negative means fire forever.

0 long

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

914

runLoggingLevel
(scheduler)

The consumer logs a start/complete log line when it
polls. This option allows you to configure the logging
level for that.

Enum values:

TRACE

DEBUG

INFO

WARN

ERROR

OFF

TRACE LoggingLevel

scheduledExecut
orService
(scheduler)

Allows for configuring a custom/shared thread pool
to use for the consumer. By default each consumer
has its own single threaded thread pool.

 ScheduledExecuto
rService

scheduler
(scheduler)

To use a cron scheduler from either camel-spring or
camel-quartz component. Use value spring or quartz
for built in scheduler.

none Object

schedulerProperti
es (scheduler)

To configure additional properties when using a
custom scheduler or any of the Quartz, Spring based
scheduler.

 Map

startScheduler
(scheduler)

Whether the scheduler should be auto started. true boolean

timeUnit
(scheduler)

Time unit for initialDelay and delay options.

Enum values:

NANOSECONDS

MICROSECONDS

MILLISECONDS

SECONDS

MINUTES

HOURS

DAYS

MILLIS
ECON
DS

TimeUnit

Name Description Defaul
t

Type

CHAPTER 47. SLACK

915

useFixedDelay
(scheduler)

Controls if fixed delay or fixed rate is used. See
ScheduledExecutorService in JDK for details.

true boolean

Name Description Defaul
t

Type

47.5. CONFIGURING IN SPRINT XML

The Slack component with XML must be configured as a Spring or Blueprint bean that contains the
incoming webhook url or the app token for the integration as a parameter.

For Java you can configure this using Java code.

47.6. EXAMPLE

A CamelContext with Blueprint could be as:

47.7. PRODUCER

You can now use a token to send a message instead of WebhookUrl.

You can now use the Slack API model to create blocks. You can read more about it here
https://api.slack.com/block-kit.

<bean id="slack" class="org.apache.camel.component.slack.SlackComponent">
 <property name="webhookUrl"
value="https://hooks.slack.com/services/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"/>
 <property name="token" value="xoxb-12345678901-1234567890123-
xxxxxxxxxxxxxxxxxxxxxxxx"/>
</bean>

<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0" default-activation="lazy">

 <bean id="slack" class="org.apache.camel.component.slack.SlackComponent">
 <property name="webhookUrl"
value="https://hooks.slack.com/services/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"/>
 </bean>

 <camelContext xmlns="http://camel.apache.org/schema/blueprint">
 <route>
 <from uri="direct:test"/>
 <to uri="slack:#channel?iconEmoji=:camel:&username=CamelTest"/>
 </route>
 </camelContext>

</blueprint>

from("direct:test")
 .to("slack:#random?token=RAW(<YOUR_TOKEN>)");

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

916

https://api.slack.com/block-kit

47.8. CONSUMER

You can use also a consumer for messages in channel.

In this way you’ll get the last message from general channel. The consumer will take track of the
timestamp of the last message consumed and in the next poll it will check from that timestamp.

You’ll need to create a Slack app and use it on your workspace.

Use the 'Bot User OAuth Access Token' as token for the consumer endpoint.

NOTE

Add the corresponding history (channels:history or groups:history or mpim:history or
im:history) and read (channels:read or groups:read or mpim:read or im:read) user
token scope to your app to grant it permission to view messages in the corresponding
channel. You will need to use the conversationType option to set it up too
(PUBLIC_CHANNEL, PRIVATE_CHANNEL, MPIM, IM)

The naturalOrder option allows consuming messages from the oldest to the newest. Originally you would
get the newest first and consume backward (message 3 ⇒ message 2 ⇒ message 1)

NOTE

You can use the conversationType option to read history and messages from a channel
that is not only public (PUBLIC_CHANNEL,PRIVATE_CHANNEL, MPIM, IM)

47.9. SPRING BOOT AUTO-CONFIGURATION

When using slack with Spring Boot make sure to use the following Maven dependency to have support
for auto configuration:

 public void testSlackAPIModelMessage() {
 Message message = new Message();
 message.setBlocks(Collections.singletonList(SectionBlock
 .builder()
 .text(MarkdownTextObject
 .builder()
 .text("*Hello from Camel!*")
 .build())
 .build()));

 template.sendBody(test, message);
 }

from("slack://general?token=RAW(<YOUR_TOKEN>)&maxResults=1")
 .to("mock:result");

<dependency>
 <groupId>org.apache.camel.springboot</groupId>
 <artifactId>camel-slack-starter</artifactId>

CHAPTER 47. SLACK

917

The component supports 6 options, which are listed below.

Name Description Defaul
t

Type

camel.component
.slack.autowired-
enabled

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true Boolean

camel.component
.slack.bridge-
error-handler

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false Boolean

camel.component
.slack.enabled

Whether to enable auto configuration of the slack
component. This is enabled by default.

 Boolean

camel.component
.slack.lazy-start-
producer

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false Boolean

camel.component
.slack.token

The token to use. String

camel.component
.slack.webhook-
url

The incoming webhook URL. String

 <version>3.14.5.redhat-00032</version>
 <!-- Use your Camel Spring Boot version -->
</dependency>

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

918

CHAPTER 48. SQL
Both producer and consumer are supported

The SQL component allows you to work with databases using JDBC queries. The difference between
this component and JDBC component is that in case of SQL the query is a property of the endpoint and
it uses message payload as parameters passed to the query.

This component uses spring-jdbc behind the scenes for the actual SQL handling.

Maven users will need to add the following dependency to their pom.xml for this component:

The SQL component also supports:

a JDBC based repository for the Idempotent Consumer EIP pattern. See further below.

a JDBC based repository for the Aggregator EIP pattern. See further below.

48.1. URI FORMAT

NOTE

This component can be used as a Transactional Client.

The SQL component uses the following endpoint URI notation:

sql:select * from table where id=# order by name[?options]

You can use named parameters by using :`#name_of_the_parameter` style as shown:

sql:select * from table where id=:#myId order by name[?options]

When using named parameters, Camel will lookup the names from, in the given precedence:

1. from message body if its a java.util.Map

2. from message headers

If a named parameter cannot be resolved, then an exception is thrown.

You can use Simple expressions as parameters as shown:

sql:select * from table where id=:#${exchangeProperty.myId} order by name[?options]

Notice that the standard ? symbol that denotes the parameters to an SQL query is substituted with the

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-sql</artifactId>
 <version>3.14.5.redhat-00018</version>
 <!-- use the same version as your Camel core version -->
</dependency>

CHAPTER 48. SQL

919

https://camel.apache.org/components/3.14.x/jdbc-component.html
https://camel.apache.org/components/3.14.x/eips/transactional-client.html

Notice that the standard ? symbol that denotes the parameters to an SQL query is substituted with the
symbol, because the ? symbol is used to specify options for the endpoint. The ? symbol replacement
can be configured on endpoint basis.

You can externalize your SQL queries to files in the classpath or file system as shown:

sql:classpath:sql/myquery.sql[?options]

And the myquery.sql file is in the classpath and is just a plain text

In the file you can use multilines and format the SQL as you wish. And also use comments such as the –
dash line.

48.2. CONFIGURING OPTIONS

Camel components are configured on two separate levels:

component level

endpoint level

48.2.1. Configuring Component Options

The component level is the highest level which holds general and common configurations that are
inherited by the endpoints. For example a component may have security settings, credentials for
authentication, urls for network connection and so forth.

Some components only have a few options, and others may have many. Because components typically
have pre configured defaults that are commonly used, then you may often only need to configure a few
options on a component; or none at all.

Configuring components can be done with the Component DSL, in a configuration file
(application.properties|yaml), or directly with Java code.

48.2.2. Configuring Endpoint Options

Where you find yourself configuring the most is on endpoints, as endpoints often have many options,
which allows you to configure what you need the endpoint to do. The options are also categorized into
whether the endpoint is used as consumer (from) or as a producer (to), or used for both.

Configuring endpoints is most often done directly in the endpoint URI as path and query parameters.
You can also use the Endpoint DSL as a type safe way of configuring endpoints.

A good practice when configuring options is to use Property Placeholders, which allows to not hardcode
urls, port numbers, sensitive information, and other settings. In other words placeholders allows to
externalize the configuration from your code, and gives more flexibility and reuse.

-- this is a comment
select *
from table
where
 id = :#${exchangeProperty.myId}
order by
 name

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

920

https://camel.apache.org/manual/component-dsl.html
https://camel.apache.org/manual/Endpoint-dsl.html
https://camel.apache.org/manual/using-propertyplaceholder.html

The following two sections lists all the options, firstly for the component followed by the endpoint.

48.3. COMPONENT OPTIONS

The SQL component supports 5 options, which are listed below.

Name Description Defaul
t

Type

dataSource
(common)

Autowired Sets the DataSource to use to
communicate with the database.

 DataSource

bridgeErrorHandl
er (consumer)

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false boolean

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

autowiredEnabled
(advanced)

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true boolean

usePlaceholder
(advanced)

Sets whether to use placeholder and replace all
placeholder characters with sign in the SQL queries.
This option is default true.

true boolean

48.4. ENDPOINT OPTIONS

The SQL endpoint is configured using URI syntax:

sql:query

CHAPTER 48. SQL

921

with the following path and query parameters:

48.4.1. Path Parameters (1 parameters)

Name Description Defaul
t

Type

query (common) Required Sets the SQL query to perform. You can
externalize the query by using file: or classpath: as
prefix and specify the location of the file.

 String

48.4.2. Query Parameters (45 parameters)

Name Description Defaul
t

Type

allowNamedPara
meters (common)

Whether to allow using named parameters in the
queries.

true boolean

dataSource
(common)

Autowired Sets the DataSource to use to
communicate with the database at endpoint level.

 DataSource

outputClass
(common)

Specify the full package and class name to use as
conversion when outputType=SelectOne.

 String

outputHeader
(common)

Store the query result in a header instead of the
message body. By default, outputHeader == null and
the query result is stored in the message body, any
existing content in the message body is discarded. If
outputHeader is set, the value is used as the name of
the header to store the query result and the original
message body is preserved.

 String

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

922

outputType
(common)

Make the output of consumer or producer to
SelectList as List of Map, or SelectOne as single Java
object in the following way: a) If the query has only
single column, then that JDBC Column object is
returned. (such as SELECT COUNT() FROM
PROJECT will return a Long object. b) If the query
has more than one column, then it will return a Map of
that result. c) If the outputClass is set, then it will
convert the query result into an Java bean object by
calling all the setters that match the column names. It
will assume your class has a default constructor to
create instance with. d) If the query resulted in more
than one rows, it throws an non-unique result
exception. StreamList streams the result of the query
using an Iterator. This can be used with the Splitter
EIP in streaming mode to process the ResultSet in
streaming fashion.

Enum values:

SelectOne

SelectList

StreamList

Select
List

SqlOutputType

separator
(common)

The separator to use when parameter values is taken
from message body (if the body is a String type), to
be inserted at # placeholders. Notice if you use
named parameters, then a Map type is used instead.
The default value is comma.

, char

breakBatchOnCo
nsumeFail
(consumer)

Sets whether to break batch if onConsume failed. false boolean

bridgeErrorHandl
er (consumer)

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false boolean

expectedUpdate
Count (consumer)

Sets an expected update count to validate when
using onConsume.

-1 int

maxMessagesPer
Poll (consumer)

Sets the maximum number of messages to poll. int

Name Description Defaul
t

Type

CHAPTER 48. SQL

923

onConsume
(consumer)

After processing each row then this query can be
executed, if the Exchange was processed
successfully, for example to mark the row as
processed. The query can have parameter.

 String

onConsumeBatch
Complete
(consumer)

After processing the entire batch, this query can be
executed to bulk update rows etc. The query cannot
have parameters.

 String

onConsumeFailed
(consumer)

After processing each row then this query can be
executed, if the Exchange failed, for example to mark
the row as failed. The query can have parameter.

 String

routeEmptyResul
tSet (consumer)

Sets whether empty resultset should be allowed to
be sent to the next hop. Defaults to false. So the
empty resultset will be filtered out.

false boolean

sendEmptyMessa
geWhenIdle
(consumer)

If the polling consumer did not poll any files, you can
enable this option to send an empty message (no
body) instead.

false boolean

transacted
(consumer)

Enables or disables transaction. If enabled then if
processing an exchange failed then the consumer
breaks out processing any further exchanges to
cause a rollback eager.

false boolean

useIterator
(consumer)

Sets how resultset should be delivered to route.
Indicates delivery as either a list or individual object.
defaults to true.

true boolean

exceptionHandler
(consumer
(advanced))

To let the consumer use a custom ExceptionHandler.
Notice if the option bridgeErrorHandler is enabled
then this option is not in use. By default the consumer
will deal with exceptions, that will be logged at WARN
or ERROR level and ignored.

 ExceptionHandler

exchangePattern
(consumer
(advanced))

Sets the exchange pattern when the consumer
creates an exchange.

Enum values:

InOnly

InOut

InOptionalOut

 ExchangePattern

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

924

pollStrategy
(consumer
(advanced))

A pluggable
org.apache.camel.PollingConsumerPollingStrategy
allowing you to provide your custom implementation
to control error handling usually occurred during the
poll operation before an Exchange have been
created and being routed in Camel.

 PollingConsumerP
ollStrategy

processingStrate
gy (consumer
(advanced))

Allows to plugin to use a custom
org.apache.camel.component.sql.SqlProcessingStrat
egy to execute queries when the consumer has
processed the rows/batch.

 SqlProcessingStra
tegy

batch (producer) Enables or disables batch mode. false boolean

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

noop (producer) If set, will ignore the results of the SQL query and use
the existing IN message as the OUT message for the
continuation of processing.

false boolean

useMessageBody
ForSql (producer)

Whether to use the message body as the SQL and
then headers for parameters. If this option is enabled
then the SQL in the uri is not used. Note that query
parameters in the message body are represented by
a question mark instead of a # symbol.

false boolean

alwaysPopulateSt
atement
(advanced)

If enabled then the populateStatement method from
org.apache.camel.component.sql.SqlPrepareStateme
ntStrategy is always invoked, also if there is no
expected parameters to be prepared. When this is
false then the populateStatement is only invoked if
there is 1 or more expected parameters to be set; for
example this avoids reading the message
body/headers for SQL queries with no parameters.

false boolean

Name Description Defaul
t

Type

CHAPTER 48. SQL

925

parametersCount
(advanced)

If set greater than zero, then Camel will use this count
value of parameters to replace instead of querying
via JDBC metadata API. This is useful if the JDBC
vendor could not return correct parameters count,
then user may override instead.

 int

placeholder
(advanced)

Specifies a character that will be replaced to in SQL
query. Notice, that it is simple String.replaceAll()
operation and no SQL parsing is involved (quoted
strings will also change).

String

prepareStatemen
tStrategy
(advanced)

Allows to plugin to use a custom
org.apache.camel.component.sql.SqlPrepareStateme
ntStrategy to control preparation of the query and
prepared statement.

 SqlPrepareStatem
entStrategy

templateOptions
(advanced)

Configures the Spring JdbcTemplate with the
key/values from the Map.

 Map

usePlaceholder
(advanced)

Sets whether to use placeholder and replace all
placeholder characters with sign in the SQL queries.

true boolean

backoffErrorThre
shold (scheduler)

The number of subsequent error polls (failed due
some error) that should happen before the
backoffMultipler should kick-in.

 int

backoffIdleThres
hold (scheduler)

The number of subsequent idle polls that should
happen before the backoffMultipler should kick-in.

 int

backoffMultiplier
(scheduler)

To let the scheduled polling consumer backoff if
there has been a number of subsequent idles/errors
in a row. The multiplier is then the number of polls
that will be skipped before the next actual attempt is
happening again. When this option is in use then
backoffIdleThreshold and/or backoffErrorThreshold
must also be configured.

 int

delay (scheduler) Milliseconds before the next poll. 500 long

greedy
(scheduler)

If greedy is enabled, then the
ScheduledPollConsumer will run immediately again, if
the previous run polled 1 or more messages.

false boolean

initialDelay
(scheduler)

Milliseconds before the first poll starts. 1000 long

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

926

repeatCount
(scheduler)

Specifies a maximum limit of number of fires. So if
you set it to 1, the scheduler will only fire once. If you
set it to 5, it will only fire five times. A value of zero or
negative means fire forever.

0 long

runLoggingLevel
(scheduler)

The consumer logs a start/complete log line when it
polls. This option allows you to configure the logging
level for that.

Enum values:

TRACE

DEBUG

INFO

WARN

ERROR

OFF

TRACE LoggingLevel

scheduledExecut
orService
(scheduler)

Allows for configuring a custom/shared thread pool
to use for the consumer. By default each consumer
has its own single threaded thread pool.

 ScheduledExecuto
rService

scheduler
(scheduler)

To use a cron scheduler from either camel-spring or
camel-quartz component. Use value spring or quartz
for built in scheduler.

none Object

schedulerProperti
es (scheduler)

To configure additional properties when using a
custom scheduler or any of the Quartz, Spring based
scheduler.

 Map

startScheduler
(scheduler)

Whether the scheduler should be auto started. true boolean

Name Description Defaul
t

Type

CHAPTER 48. SQL

927

timeUnit
(scheduler)

Time unit for initialDelay and delay options.

Enum values:

NANOSECONDS

MICROSECONDS

MILLISECONDS

SECONDS

MINUTES

HOURS

DAYS

MILLIS
ECON
DS

TimeUnit

useFixedDelay
(scheduler)

Controls if fixed delay or fixed rate is used. See
ScheduledExecutorService in JDK for details.

true boolean

Name Description Defaul
t

Type

48.5. TREATMENT OF THE MESSAGE BODY

The SQL component tries to convert the message body to an object of java.util.Iterator type and then
uses this iterator to fill the query parameters (where each query parameter is represented by a # symbol
(or configured placeholder) in the endpoint URI). If the message body is not an array or collection, the
conversion results in an iterator that iterates over only one object, which is the body itself.

For example, if the message body is an instance of java.util.List, the first item in the list is substituted
into the first occurrence of # in the SQL query, the second item in the list is substituted into the second
occurrence of #, and so on.

If batch is set to true, then the interpretation of the inbound message body changes slightly – instead of
an iterator of parameters, the component expects an iterator that contains the parameter iterators; the
size of the outer iterator determines the batch size.

You can use the option useMessageBodyForSql that allows to use the message body as the SQL
statement, and then the SQL parameters must be provided in a header with the key
SqlConstants.SQL_PARAMETERS. This allows the SQL component to work more dynamically as the
SQL query is from the message body. Use templating (such as Velocity, Freemarker) for conditional
processing, e.g. to include or exclude where clauses depending on the presence of query parameters.

48.6. RESULT OF THE QUERY

For select operations, the result is an instance of List<Map<String, Object>> type, as returned by the
JdbcTemplate.queryForList() method. For update operations, a NULL body is returned as the update
operation is only set as a header and never as a body.

NOTE

See Header Values for more information on the update operation.

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

928

https://camel.apache.org/components/3.18.x/velocity-component.html
https://camel.apache.org/components/3.18.x/freemarker-component.html
http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/jdbc/core/JdbcTemplate.html#queryForList(java.lang.String, java.lang.Object%91%93)
https://camel.apache.org/components/3.14.x/sql-component.html#sql-component-header-values

By default, the result is placed in the message body. If the outputHeader parameter is set, the result is
placed in the header. This is an alternative to using a full message enrichment pattern to add headers, it
provides a concise syntax for querying a sequence or some other small value into a header. It is
convenient to use outputHeader and outputType together:

48.7. USING STREAMLIST

The producer supports outputType=StreamList that uses an iterator to stream the output of the query.
This allows to process the data in a streaming fashion which for example can be used by the Splitter EIP
to process each row one at a time, and load data from the database as needed.

48.8. HEADER VALUES

When performing update operations, the SQL Component stores the update count in the following
message headers:

Header Description

CamelSqlUpdateCou
nt

The number of rows updated for update operations, returned as an Integer
object. This header is not provided when using outputType=StreamList.

CamelSqlRowCount The number of rows returned for select operations, returned as an Integer
object. This header is not provided when using outputType=StreamList.

CamelSqlQuery Query to execute. This query takes precedence over the query specified in the
endpoint URI. Note that query parameters in the header are represented by a ?
instead of a # symbol

When performing insert operations, the SQL Component stores the rows with the generated keys and
number of these rows in the following message headers:

Header Description

CamelSqlGeneratedKey
sRowCount

The number of rows in the header that contains generated keys.

from("jms:order.inbox")
 .to("sql:select order_seq.nextval from dual?outputHeader=OrderId&outputType=SelectOne")
 .to("jms:order.booking");

from("direct:withSplitModel")
 .to("sql:select * from projects order by id?
outputType=StreamList&outputClass=org.apache.camel.component.sql.ProjectModel")
 .to("log:stream")
 .split(body()).streaming()
 .to("log:row")
 .to("mock:result")
 .end();

CHAPTER 48. SQL

929

CamelSqlGeneratedKey
Rows

Rows that contains the generated keys (a list of maps of keys).

Header Description

48.9. GENERATED KEYS

If you insert data using SQL INSERT, then the RDBMS may support auto generated keys. You can
instruct the SQL producer to return the generated keys in headers.
To do that set the header CamelSqlRetrieveGeneratedKeys=true. Then the generated keys will be
provided as headers with the keys listed in the table above.

To specify which generated columns should be retrieved, set the header CamelSqlGeneratedColumns
to a String[] or int[], indicating the column names or indexes, respectively. Some databases requires
this, such as Oracle. It may also be necessary to use the parametersCount option if the driver cannot
correctly determine the number of parameters.

You can see more details in this unit test.

48.10. DATASOURCE

You can set a reference to a DataSource in the URI directly:

48.11. USING NAMED PARAMETERS

In the given route below, we want to get all the projects from the projects table. Notice the SQL query
has 2 named parameters, :#lic and :#min.
Camel will then lookup for these parameters from the message body or message headers. Notice in the
example above we set two headers with constant value
for the named parameters:

Though if the message body is a java.util.Map then the named parameters will be taken from the body.

48.12. USING EXPRESSION PARAMETERS IN PRODUCERS

In the given route below, we want to get all the project from the database. It uses the body of the
exchange for defining the license and uses the value of a property as the second parameter.

sql:select * from table where id=# order by name?dataSource=#myDS

 from("direct:projects")
 .setHeader("lic", constant("ASF"))
 .setHeader("min", constant(123))
 .to("sql:select * from projects where license = :#lic and id > :#min order by id")

 from("direct:projects")
 .to("sql:select * from projects where license = :#lic and id > :#min order by id")

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

930

https://gitbox.apache.org/repos/asf?p=camel.git;a=blob;f=components/camel-sql/src/test/java/org/apache/camel/component/sql/SqlGeneratedKeysTest.java;h=54c19b7332bb0aa81ee24ff3d3a66885a6b9e9aa;hb=HEAD

48.12.1. Using expression parameters in consumers

When using the SQL component as consumer, you can now also use expression parameters (simple
language) to build dynamic query parameters, such as calling a method on a bean to retrieve an id, date
or something.

For example in the sample below we call the nextId method on the bean myIdGenerator:

And the bean has the following method:

Notice that there is no existing Exchange with message body and headers, so the simple expression you
can use in the consumer are most useable for calling bean methods as in this example.

48.13. USING IN QUERIES WITH DYNAMIC VALUES

The SQL producer allows to use SQL queries with IN statements where the IN values is dynamic
computed. For example from the message body or a header etc.

To use IN you need to:

prefix the parameter name with in:

add () around the parameter

An example explains this better. The following query is used:

In the following route:

from("direct:projects")
 .setBody(constant("ASF"))
 .setProperty("min", constant(123))
 .to("sql:select * from projects where license = :#${body} and id > :#${exchangeProperty.min} order
by id")

from("sql:select * from projects where id = :#${bean:myIdGenerator.nextId}")
 .to("mock:result");

public static class MyIdGenerator {

 private int id = 1;

 public int nextId() {
 return id++;
 }

-- this is a comment
select *
from projects
where project in (:#in:names)
order by id

from("direct:query")
 .to("sql:classpath:sql/selectProjectsIn.sql")

CHAPTER 48. SQL

931

Then the IN query can use a header with the key names with the dynamic values such as:

The query can also be specified in the endpoint instead of being externalized (notice that externalizing
makes maintaining the SQL queries easier)

48.14. USING THE JDBC BASED IDEMPOTENT REPOSITORY

In this section we will use the JDBC based idempotent repository.

NOTE

Abstract class
There is an abstract class
org.apache.camel.processor.idempotent.jdbc.AbstractJdbcMessageIdRepository
you can extend to build custom JDBC idempotent repository.

First we have to create the database table which will be used by the idempotent repository. We use the
following schema:

We added the createdAt column:

NOTE

The SQL Server TIMESTAMP type is a fixed-length binary-string type. It does not map
to any of the JDBC time types: DATE, TIME, or TIMESTAMP.

 .to("log:query")
 .to("mock:query");

// use an array
template.requestBodyAndHeader("direct:query", "Hi there!", "names", new String[]{"Camel", "AMQ"});

// use a list
List<String> names = new ArrayList<String>();
names.add("Camel");
names.add("AMQ");

template.requestBodyAndHeader("direct:query", "Hi there!", "names", names);

// use a string separated values with comma
template.requestBodyAndHeader("direct:query", "Hi there!", "names", "Camel,AMQ");

from("direct:query")
 .to("sql:select * from projects where project in (:#in:names) order by id")
 .to("log:query")
 .to("mock:query");

CREATE TABLE CAMEL_MESSAGEPROCESSED (processorName VARCHAR(255),
messageId VARCHAR(100))

CREATE TABLE CAMEL_MESSAGEPROCESSED (processorName VARCHAR(255),
messageId VARCHAR(100), createdAt TIMESTAMP)

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

932

When working with concurrent consumers it is crucial to create a unique constraint on the columns
processorName and messageId. Because the syntax for this constraint differs from database to
database, we do not show it here.

48.14.1. Customize the JDBC idempotency repository

You have a few options to tune the
org.apache.camel.processor.idempotent.jdbc.JdbcMessageIdRepository for your needs:

Parameter Default Value Description

createTableIfNotExists true Defines whether or not Camel should try to create
the table if it doesn’t exist.

tableName CAMEL_MESSAGEPRO
CESSED

To use a custom table name instead of the default
name: CAMEL_MESSAGEPROCESSED.

tableExistsString SELECT 1 FROM
CAMEL_MESSAGEPRO
CESSED WHERE 1 = 0

This query is used to figure out whether the table
already exists or not. It must throw an exception to
indicate the table doesn’t exist.

createString CREATE TABLE
CAMEL_MESSAGEPRO
CESSED
(processorName
VARCHAR(255),
messageId
VARCHAR(100),
createdAt TIMESTAMP)

The statement which is used to create the table.

queryString SELECT COUNT(*)
FROM
CAMEL_MESSAGEPRO
CESSED WHERE
processorName = ? AND
messageId = ?

The query which is used to figure out whether the
message already exists in the repository (the result is
not equals to '0'). It takes two parameters. This first
one is the processor name (String) and the second
one is the message id (String).

insertString INSERT INTO
CAMEL_MESSAGEPRO
CESSED
(processorName,
messageId, createdAt)
VALUES (?, ?, ?)

The statement which is used to add the entry into the
table. It takes three parameter. The first one is the
processor name (String), the second one is the
message id (String) and the third one is the
timestamp (java.sql.Timestamp) when this entry
was added to the repository.

deleteString DELETE FROM
CAMEL_MESSAGEPRO
CESSED WHERE
processorName = ? AND
messageId = ?

The statement which is used to delete the entry from
the database. It takes two parameter. This first one is
the processor name (String) and the second one is
the message id (String).

The option tableName can be used to use the default SQL queries but with a different table name.
However if you want to customize the SQL queries then you can configure each of them individually.

CHAPTER 48. SQL

933

48.14.2. Orphan Lock aware Jdbc IdempotentRepository

One of the limitations of org.apache.camel.processor.idempotent.jdbc.JdbcMessageIdRepository
is that it does not handle orphan locks resulting from JVM crash or non graceful shutdown. This can
result in unprocessed files/messages if this is implementation is used with camel-file, camel-ftp etc. if
you need to address orphan locks processing then use
org.apache.camel.processor.idempotent.jdbc.JdbcOrphanLockAwareIdempotentRepository. This
repository keeps track of the locks held by an instance of the application. For each lock held, the
application will send keep alive signals to the lock repository resulting in updating the createdAt column
with the current Timestamp. When an application instance tries to acquire a lock if the, then there are
three possibilities exist :

lock entry does not exist then the lock is provided using the base implementation of
JdbcMessageIdRepository.

lock already exists and the createdAt < System.currentTimeMillis() - lockMaxAgeMillis. In this
case it is assumed that an active instance has the lock and the lock is not provided to the new
instance requesting the lock

lock already exists and the createdAt > = System.currentTimeMillis() - lockMaxAgeMillis. In this
case it is assumed that there is no active instance which has the lock and the lock is provided to
the requesting instance. The reason behind is that if the original instance which had the lock, if it
was still running, it would have updated the Timestamp on createdAt using its keepAlive
mechanism

This repository has two additional configuration parameters

Parameter Description

lockMaxAgeMillis This refers to the duration after which the lock is
considered orphaned i.e. if the currentTimestamp -
createdAt >= lockMaxAgeMillis then lock is orphaned.

lockKeepAliveIntervalMillis The frequency at which keep alive updates are done
to createdAt Timestamp column.

48.14.3. Caching Jdbc IdempotentRepository

Some SQL implementations are not fast on a per query basis. The JdbcMessageIdRepository
implementation does its idempotent checks individually within SQL transactions. Checking a mere 100
keys can take minutes. The JdbcCachedMessageIdRepository preloads an in-memory cache on start
with the entire list of keys. This cache is then checked first before passing through to the original
implementation.

As with all cache implementations, there are considerations that should be made with regard to stale
data and your specific usage.

48.15. USING THE JDBC BASED AGGREGATION REPOSITORY

JdbcAggregationRepository is an AggregationRepository which on the fly persists the aggregated
messages. This ensures that you will not loose messages, as the default aggregator will use an in
memory only AggregationRepository. The JdbcAggregationRepository allows together with Camel
to provide persistent support for the Aggregator.

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

934

Only when an Exchange has been successfully processed it will be marked as complete which happens
when the confirm method is invoked on the AggregationRepository. This means if the same Exchange
fails again it will be kept retried until it success.

You can use option maximumRedeliveries to limit the maximum number of redelivery attempts for a
given recovered Exchange. You must also set the deadLetterUri option so Camel knows where to send
the Exchange when the maximumRedeliveries was hit.

You can see some examples in the unit tests of camel-sql, for example
JdbcAggregateRecoverDeadLetterChannelTest.java

48.15.1. Database

To be operational, each aggregator uses two table: the aggregation and completed one. By convention
the completed has the same name as the aggregation one suffixed with "_COMPLETED". The name
must be configured in the Spring bean with the RepositoryName property. In the following example
aggregation will be used.

The table structure definition of both table are identical: in both case a String value is used as key (id)
whereas a Blob contains the exchange serialized in byte array.
However one difference should be remembered: the id field does not have the same content depending
on the table.
In the aggregation table id holds the correlation Id used by the component to aggregate the messages.
In the completed table, id holds the id of the exchange stored in corresponding the blob field.

Here is the SQL query used to create the tables, just replace "aggregation" with your aggregator
repository name.

48.16. STORING BODY AND HEADERS AS TEXT

You can configure the JdbcAggregationRepository to store message body and select(ed) headers as
String in separate columns. For example to store the body, and the following two headers
companyName and accountName use the following SQL:

CREATE TABLE aggregation (
 id varchar(255) NOT NULL,
 exchange blob NOT NULL,
 version BIGINT NOT NULL,
 constraint aggregation_pk PRIMARY KEY (id)
);
CREATE TABLE aggregation_completed (
 id varchar(255) NOT NULL,
 exchange blob NOT NULL,
 version BIGINT NOT NULL,
 constraint aggregation_completed_pk PRIMARY KEY (id)
);

CREATE TABLE aggregationRepo3 (
 id varchar(255) NOT NULL,
 exchange blob NOT NULL,
 version BIGINT NOT NULL,
 body varchar(1000),
 companyName varchar(1000),
 accountName varchar(1000),
 constraint aggregationRepo3_pk PRIMARY KEY (id)

CHAPTER 48. SQL

935

And then configure the repository to enable this behavior as shown below:

48.16.1. Codec (Serialization)

Since they can contain any type of payload, Exchanges are not serializable by design. It is converted into
a byte array to be stored in a database BLOB field. All those conversions are handled by the JdbcCodec
class. One detail of the code requires your attention: the ClassLoadingAwareObjectInputStream.

The ClassLoadingAwareObjectInputStream has been reused from the Apache ActiveMQ project. It
wraps an ObjectInputStream and use it with the ContextClassLoader rather than the currentThread
one. The benefit is to be able to load classes exposed by other bundles. This allows the exchange body
and headers to have custom types object references.

48.16.2. Transaction

A Spring PlatformTransactionManager is required to orchestrate transaction.

48.16.2.1. Service (Start/Stop)

The start method verify the connection of the database and the presence of the required tables. If
anything is wrong it will fail during starting.

48.16.3. Aggregator configuration

Depending on the targeted environment, the aggregator might need some configuration. As you already
know, each aggregator should have its own repository (with the corresponding pair of table created in
the database) and a data source. If the default lobHandler is not adapted to your database system, it can
be injected with the lobHandler property.

);
CREATE TABLE aggregationRepo3_completed (
 id varchar(255) NOT NULL,
 exchange blob NOT NULL,
 version BIGINT NOT NULL,
 body varchar(1000),
 companyName varchar(1000),
 accountName varchar(1000),
 constraint aggregationRepo3_completed_pk PRIMARY KEY (id)
);

<bean id="repo3"
 class="org.apache.camel.processor.aggregate.jdbc.JdbcAggregationRepository">
 <property name="repositoryName" value="aggregationRepo3"/>
 <property name="transactionManager" ref="txManager3"/>
 <property name="dataSource" ref="dataSource3"/>
 <!-- configure to store the message body and following headers as text in the repo -->
 <property name="storeBodyAsText" value="true"/>
 <property name="headersToStoreAsText">
 <list>
 <value>companyName</value>
 <value>accountName</value>
 </list>
 </property>
</bean>

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

936

http://activemq.apache.org/

Here is the declaration for Oracle:

48.16.4. Optimistic locking

You can turn on optimisticLocking and use this JDBC based aggregation repository in a clustered
environment where multiple Camel applications shared the same database for the aggregation
repository. If there is a race condition there JDBC driver will throw a vendor specific exception which the
JdbcAggregationRepository can react upon. To know which caused exceptions from the JDBC driver
is regarded as an optimistick locking error we need a mapper to do this. Therefore there is a
org.apache.camel.processor.aggregate.jdbc.JdbcOptimisticLockingExceptionMapper allows you
to implement your custom logic if needed. There is a default implementation
org.apache.camel.processor.aggregate.jdbc.DefaultJdbcOptimisticLockingExceptionMapper
which works as follows:

The following check is done:

If the caused exception is an SQLException then the SQLState is checked if starts with 23.

If the caused exception is a DataIntegrityViolationException

If the caused exception class name has "ConstraintViolation" in its name.

Optional checking for FQN class name matches if any class names has been configured.

You can in addition add FQN classnames, and if any of the caused exception (or any nested) equals any
of the FQN class names, then its an optimistick locking error.

Here is an example, where we define 2 extra FQN class names from the JDBC vendor.

<bean id="lobHandler" class="org.springframework.jdbc.support.lob.OracleLobHandler">
 <property name="nativeJdbcExtractor" ref="nativeJdbcExtractor"/>
</bean>
<bean id="nativeJdbcExtractor"
 class="org.springframework.jdbc.support.nativejdbc.CommonsDbcpNativeJdbcExtractor"/>
<bean id="repo"
 class="org.apache.camel.processor.aggregate.jdbc.JdbcAggregationRepository">
 <property name="transactionManager" ref="transactionManager"/>
 <property name="repositoryName" value="aggregation"/>
 <property name="dataSource" ref="dataSource"/>
 <!-- Only with Oracle, else use default -->
 <property name="lobHandler" ref="lobHandler"/>
</bean>

<bean id="repo"
class="org.apache.camel.processor.aggregate.jdbc.JdbcAggregationRepository">
 <property name="transactionManager" ref="transactionManager"/>
 <property name="repositoryName" value="aggregation"/>
 <property name="dataSource" ref="dataSource"/>
 <property name="jdbcOptimisticLockingExceptionMapper" ref="myExceptionMapper"/>
</bean>
<!-- use the default mapper with extraFQN class names from our JDBC driver -->
<bean id="myExceptionMapper"
class="org.apache.camel.processor.aggregate.jdbc.DefaultJdbcOptimisticLockingExceptionMapper">
 <property name="classNames">
 <util:set>

CHAPTER 48. SQL

937

48.16.5. Propagation behavior

JdbcAggregationRepository uses two distinct transaction templates from Spring-TX. One is read-only
and one is used for read-write operations.

However, when using JdbcAggregationRepository within a route that itself uses <transacted /> and
there’s common PlatformTransactionManager used, there may be a need to configure propagation
behavior used by transaction templates inside JdbcAggregationRepository.

Here’s a way to do it:

Propagation is specified by constants of org.springframework.transaction.TransactionDefinition
interface, so propagationBehaviorName is convenient setter that allows to use names of the
constants.

48.16.6. PostgreSQL case

There’s special database that may cause problems with optimistic locking used by
JdbcAggregationRepository. PostgreSQL marks connection as invalid in case of data integrity
violation exception (the one with SQLState 23505). This makes the connection effectively unusable
within nested transaction. Details can be found in the document..

org.apache.camel.processor.aggregate.jdbc.PostgresAggregationRepository extends
JdbcAggregationRepository and uses special INSERT .. ON CONFLICT .. statement to provide
optimistic locking behavior.

This statement is (with default aggregation table definition):

Details can be found in PostgreSQL documentation.

When this clause is used, java.sql.PreparedStatement.executeUpdate() call returns 0 instead of
throwing SQLException with SQLState=23505. Further handling is exactly the same as with generic
JdbcAggregationRepository, but without marking PostgreSQL connection as invalid.

48.17. CAMEL SQL STARTER

A starter module is available to spring-boot users. When using the starter, the DataSource can be
directly configured using spring-boot properties.

 <value>com.foo.sql.MyViolationExceptoion</value>
 <value>com.foo.sql.MyOtherViolationExceptoion</value>
 </util:set>
 </property>
</bean>

<bean id="repo"
class="org.apache.camel.processor.aggregate.jdbc.JdbcAggregationRepository">
 <property name="propagationBehaviorName" value="PROPAGATION_NESTED" />
</bean>

INSERT INTO aggregation (id, exchange) values (?, ?) ON CONFLICT DO NOTHING

Example for a mysql datasource
spring.datasource.url=jdbc:mysql://localhost/test

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

938

https://www.postgresql.org/message-id/200609241203.59292.ralf.wiebicke%40exedio.com
https://www.postgresql.org/docs/9.5/sql-insert.html

To use this feature, add the following dependencies to your spring boot pom.xml file:

You should also include the specific database driver, if needed.

48.18. SPRING BOOT AUTO-CONFIGURATION

When using sql with Spring Boot make sure to use the following Maven dependency to have support for
auto configuration:

The component supports 8 options, which are listed below.

Name Description Defaul
t

Type

camel.component
.sql-
stored.autowired-
enabled

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true Boolean

camel.component
.sql-
stored.enabled

Whether to enable auto configuration of the sql-
stored component. This is enabled by default.

 Boolean

spring.datasource.username=dbuser
spring.datasource.password=dbpass
spring.datasource.driver-class-name=com.mysql.jdbc.Driver

<dependency>
 <groupId>org.apache.camel.springboot</groupId>
 <artifactId>camel-sql-starter</artifactId>
 <version>${camel.version}</version> <!-- use the same version as your Camel core version -->
</dependency>

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-jdbc</artifactId>
 <version>${spring-boot-version}</version>
</dependency>

<dependency>
 <groupId>org.apache.camel.springboot</groupId>
 <artifactId>camel-sql-starter</artifactId>
 <version>3.14.5.redhat-00032</version>
 <!-- Use your Camel Spring Boot version -->
</dependency>

CHAPTER 48. SQL

939

camel.component
.sql-stored.lazy-
start-producer

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false Boolean

camel.component
.sql.autowired-
enabled

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true Boolean

camel.component
.sql.bridge-error-
handler

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false Boolean

camel.component
.sql.enabled

Whether to enable auto configuration of the sql
component. This is enabled by default.

 Boolean

camel.component
.sql.lazy-start-
producer

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false Boolean

camel.component
.sql.use-
placeholder

Sets whether to use placeholder and replace all
placeholder characters with sign in the SQL queries.
This option is default true.

true Boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

940

CHAPTER 49. STUB
Both producer and consumer are supported

The Stub component provides a simple way to stub out any physical endpoints while in development or
testing, allowing you for example to run a route without needing to actually connect to a specific specific
SMTP or HTTP endpoint. Just add stub: in front of any endpoint URI to stub out the endpoint.

Internally the Stub component creates VM endpoints. The main difference between Stub and VM is that
VM will validate the URI and parameters you give it, so putting vm: in front of a typical URI with query
arguments will usually fail. Stub won’t though, as it basically ignores all query parameters to let you
quickly stub out one or more endpoints in your route temporarily.

49.1. URI FORMAT

stub:someUri

Where someUri can be any URI with any query parameters.

49.2. CONFIGURING OPTIONS

Camel components are configured on two separate levels:

component level

endpoint level

49.2.1. Configuring Component Options

The component level is the highest level which holds general and common configurations that are
inherited by the endpoints. For example a component may have security settings, credentials for
authentication, urls for network connection and so forth.

Some components only have a few options, and others may have many. Because components typically
have pre configured defaults that are commonly used, then you may often only need to configure a few
options on a component; or none at all.

Configuring components can be done with the Component DSL, in a configuration file
(application.properties|yaml), or directly with Java code.

49.2.1.1. Configuring Endpoint Options

Where you find yourself configuring the most is on endpoints, as endpoints often have many options,
which allows you to configure what you need the endpoint to do. The options are also categorized into
whether the endpoint is used as consumer (from) or as a producer (to), or used for both.

Configuring endpoints is most often done directly in the endpoint URI as path and query parameters.
You can also use the Endpoint DSL as a type safe way of configuring endpoints.

A good practice when configuring options is to use Property Placeholders, which allows to not hardcode
urls, port numbers, sensitive information, and other settings. In other words placeholders allows to
externalize the configuration from your code, and gives more flexibility and reuse.

The following two sections lists all the options, firstly for the component followed by the endpoint.

CHAPTER 49. STUB

941

https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/camel_spring_boot_reference_3.14/index#csb-camel-mail-component-starter
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/camel_spring_boot_reference_3.14/index#csb-camel-http-component-starter
https://camel.apache.org/components/3.14.x/vm-component.html
https://camel.apache.org/components/3.14.x/vm-component.html
https://camel.apache.org/manual/component-dsl.html
https://camel.apache.org/manual/Endpoint-dsl.html
https://camel.apache.org/manual/using-propertyplaceholder.html

49.3. COMPONENT OPTIONS

The Stub component supports 10 options, which are listed below.

Name Description Defaul
t

Type

bridgeErrorHandl
er (consumer)

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false boolean

concurrentConsu
mers (consumer)

Sets the default number of concurrent threads
processing exchanges.

1 int

defaultPollTimeo
ut (consumer
(advanced))

The timeout (in milliseconds) used when polling.
When a timeout occurs, the consumer can check
whether it is allowed to continue running. Setting a
lower value allows the consumer to react more
quickly upon shutdown.

1000 int

defaultBlockWhe
nFull (producer)

Whether a thread that sends messages to a full
SEDA queue will block until the queue’s capacity is no
longer exhausted. By default, an exception will be
thrown stating that the queue is full. By enabling this
option, the calling thread will instead block and wait
until the message can be accepted.

false boolean

defaultDiscardWh
enFull (producer)

Whether a thread that sends messages to a full
SEDA queue will be discarded. By default, an
exception will be thrown stating that the queue is full.
By enabling this option, the calling thread will give up
sending and continue, meaning that the message was
not sent to the SEDA queue.

false boolean

defaultOfferTime
out (producer)

Whether a thread that sends messages to a full
SEDA queue will block until the queue’s capacity is no
longer exhausted. By default, an exception will be
thrown stating that the queue is full. By enabling this
option, where a configured timeout can be added to
the block case. Utilizing the .offer(timeout) method
of the underlining java queue.

 long

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

942

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

autowiredEnabled
(advanced)

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true boolean

defaultQueueFac
tory (advanced)

Sets the default queue factory. BlockingQueueFa
ctory

queueSize
(advanced)

Sets the default maximum capacity of the SEDA
queue (i.e., the number of messages it can hold).

1000 int

Name Description Defaul
t

Type

49.4. ENDPOINT OPTIONS

The Stub endpoint is configured using URI syntax:

stub:name

with the following path and query parameters:

49.4.1. Path Parameters (1 parameters)

Name Description Defaul
t

Type

name (common) Required Name of queue. String

49.4.2. Query Parameters (18 parameters)

CHAPTER 49. STUB

943

Name Description Defaul
t

Type

size (common) The maximum capacity of the SEDA queue (i.e., the
number of messages it can hold). Will by default use
the defaultSize set on the SEDA component.

1000 int

bridgeErrorHandl
er (consumer)

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false boolean

concurrentConsu
mers (consumer)

Number of concurrent threads processing exchanges. 1 int

exceptionHandler
(consumer
(advanced))

To let the consumer use a custom ExceptionHandler.
Notice if the option bridgeErrorHandler is enabled
then this option is not in use. By default the consumer
will deal with exceptions, that will be logged at WARN
or ERROR level and ignored.

 ExceptionHandler

exchangePattern
(consumer
(advanced))

Sets the exchange pattern when the consumer
creates an exchange.

Enum values:

InOnly

InOut

InOptionalOut

 ExchangePattern

limitConcurrentC
onsumers
(consumer
(advanced))

Whether to limit the number of
concurrentConsumers to the maximum of 500. By
default, an exception will be thrown if an endpoint is
configured with a greater number. You can disable
that check by turning this option off.

true boolean

multipleConsume
rs (consumer
(advanced))

Specifies whether multiple consumers are allowed. If
enabled, you can use SEDA for Publish-Subscribe
messaging. That is, you can send a message to the
SEDA queue and have each consumer receive a copy
of the message. When enabled, this option should be
specified on every consumer endpoint.

false boolean

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

944

pollTimeout
(consumer
(advanced))

The timeout (in milliseconds) used when polling.
When a timeout occurs, the consumer can check
whether it is allowed to continue running. Setting a
lower value allows the consumer to react more
quickly upon shutdown.

1000 int

purgeWhenStopp
ing (consumer
(advanced))

Whether to purge the task queue when stopping the
consumer/route. This allows to stop faster, as any
pending messages on the queue is discarded.

false boolean

blockWhenFull
(producer)

Whether a thread that sends messages to a full
SEDA queue will block until the queue’s capacity is no
longer exhausted. By default, an exception will be
thrown stating that the queue is full. By enabling this
option, the calling thread will instead block and wait
until the message can be accepted.

false boolean

discardIfNoConsu
mers (producer)

Whether the producer should discard the message
(do not add the message to the queue), when
sending to a queue with no active consumers. Only
one of the options discardIfNoConsumers and
failIfNoConsumers can be enabled at the same time.

false boolean

discardWhenFull
(producer)

Whether a thread that sends messages to a full
SEDA queue will be discarded. By default, an
exception will be thrown stating that the queue is full.
By enabling this option, the calling thread will give up
sending and continue, meaning that the message was
not sent to the SEDA queue.

false boolean

failIfNoConsumer
s (producer)

Whether the producer should fail by throwing an
exception, when sending to a queue with no active
consumers. Only one of the options
discardIfNoConsumers and failIfNoConsumers can
be enabled at the same time.

false boolean

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

Name Description Defaul
t

Type

CHAPTER 49. STUB

945

offerTimeout
(producer)

Offer timeout (in milliseconds) can be added to the
block case when queue is full. You can disable
timeout by using 0 or a negative value.

 long

timeout
(producer)

Timeout (in milliseconds) before a SEDA producer
will stop waiting for an asynchronous task to
complete. You can disable timeout by using 0 or a
negative value.

30000 long

waitForTaskToCo
mplete (producer)

Option to specify whether the caller should wait for
the async task to complete or not before continuing.
The following three options are supported: Always,
Never or IfReplyExpected. The first two values are
self-explanatory. The last value, IfReplyExpected, will
only wait if the message is Request Reply based. The
default option is IfReplyExpected.

Enum values:

Never

IfReplyExpected

Always

IfReply
Expect
ed

WaitForTaskToCo
mplete

queue (advanced) Define the queue instance which will be used by the
endpoint.

 BlockingQueue

Name Description Defaul
t

Type

49.5. EXAMPLES

Here are a few samples of stubbing endpoint uris

stub:smtp://somehost.foo.com?user=whatnot&something=else
stub:http://somehost.bar.com/something

49.6. SPRING BOOT AUTO-CONFIGURATION

When using stub with Spring Boot make sure to use the following Maven dependency to have support
for auto configuration:

The component supports 11 options, which are listed below.

<dependency>
 <groupId>org.apache.camel.springboot</groupId>
 <artifactId>camel-stub-starter</artifactId>
 <version>3.14.5.redhat-00032</version>
 <!-- Use your Camel Spring Boot version -->
</dependency>

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

946

Name Description Defaul
t

Type

camel.component
.stub.autowired-
enabled

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true Boolean

camel.component
.stub.bridge-
error-handler

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false Boolean

camel.component
.stub.concurrent-
consumers

Sets the default number of concurrent threads
processing exchanges.

1 Integer

camel.component
.stub.default-
block-when-full

Whether a thread that sends messages to a full
SEDA queue will block until the queue’s capacity is no
longer exhausted. By default, an exception will be
thrown stating that the queue is full. By enabling this
option, the calling thread will instead block and wait
until the message can be accepted.

false Boolean

camel.component
.stub.default-
discard-when-full

Whether a thread that sends messages to a full
SEDA queue will be discarded. By default, an
exception will be thrown stating that the queue is full.
By enabling this option, the calling thread will give up
sending and continue, meaning that the message was
not sent to the SEDA queue.

false Boolean

camel.component
.stub.default-
offer-timeout

Whether a thread that sends messages to a full
SEDA queue will block until the queue’s capacity is no
longer exhausted. By default, an exception will be
thrown stating that the queue is full. By enabling this
option, where a configured timeout can be added to
the block case. Utilizing the .offer(timeout) method
of the underlining java queue.

 Long

camel.component
.stub.default-
poll-timeout

The timeout (in milliseconds) used when polling.
When a timeout occurs, the consumer can check
whether it is allowed to continue running. Setting a
lower value allows the consumer to react more
quickly upon shutdown.

1000 Integer

CHAPTER 49. STUB

947

camel.component
.stub.default-
queue-factory

Sets the default queue factory. The option is a
org.apache.camel.component.seda.BlockingQueueFa
ctory<org.apache.camel.Exchange> type.

 BlockingQueueFa
ctory

camel.component
.stub.enabled

Whether to enable auto configuration of the stub
component. This is enabled by default.

 Boolean

camel.component
.stub.lazy-start-
producer

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false Boolean

camel.component
.stub.queue-size

Sets the default maximum capacity of the SEDA
queue (i.e., the number of messages it can hold).

1000 Integer

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

948

CHAPTER 50. TELEGRAM
Both producer and consumer are supported

The Telegram component provides access to the Telegram Bot API. It allows a Camel-based application
to send and receive messages by acting as a Bot, participating in direct conversations with normal users,
private and public groups or channels.

A Telegram Bot must be created before using this component, following the instructions at the
Telegram Bot developers home. When a new Bot is created, the BotFather provides an authorization
token corresponding to the Bot. The authorization token is a mandatory parameter for the camel-
telegram endpoint.

NOTE

In order to allow the Bot to receive all messages exchanged within a group or channel (not
just the ones starting with a '/' character), ask the BotFather to disable the privacy
mode, using the /setprivacy command.

Maven users will need to add the following dependency to their pom.xml for this component:

50.1. URI FORMAT

telegram:type[?options]

50.2. CONFIGURING OPTIONS

Camel components are configured on two separate levels:

component level

endpoint level

50.2.1. Configuring Component Options

The component level is the highest level which holds general and common configurations that are
inherited by the endpoints. For example a component may have security settings, credentials for
authentication, urls for network connection and so forth.

Some components only have a few options, and others may have many. Because components typically
have pre configured defaults that are commonly used, then you may often only need to configure a few
options on a component; or none at all.

Configuring components can be done with the Component DSL, in a configuration file
(application.properties|yaml), or directly with Java code.

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-telegram</artifactId>
 <version>3.14.5.redhat-00018</version>
 <!-- use the same version as your Camel core version -->
</dependency>

CHAPTER 50. TELEGRAM

949

https://core.telegram.org/bots/api
https://core.telegram.org/bots#3-how-do-i-create-a-bot
https://telegram.me/botfather
https://camel.apache.org/manual/component-dsl.html

50.2.2. Configuring Endpoint Options

Where you find yourself configuring the most is on endpoints, as endpoints often have many options,
which allows you to configure what you need the endpoint to do. The options are also categorized into
whether the endpoint is used as consumer (from) or as a producer (to), or used for both.

Configuring endpoints is most often done directly in the endpoint URI as path and query parameters.
You can also use the Endpoint DSL as a type safe way of configuring endpoints.

A good practice when configuring options is to use Property Placeholders, which allows to not hardcode
urls, port numbers, sensitive information, and other settings. In other words placeholders allows to
externalize the configuration from your code, and gives more flexibility and reuse.

The following two sections lists all the options, firstly for the component followed by the endpoint.

50.3. COMPONENT OPTIONS

The Telegram component supports 7 options, which are listed below.

Name Description Defaul
t

Type

bridgeErrorHandl
er (consumer)

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false boolean

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

autowiredEnabled
(advanced)

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true boolean

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

950

https://camel.apache.org/manual/Endpoint-dsl.html
https://camel.apache.org/manual/using-propertyplaceholder.html

baseUri
(advanced)

Can be used to set an alternative base URI, e.g. when
you want to test the component against a mock
Telegram API.

 String

client (advanced) To use a custom AsyncHttpClient. AsyncHttpClient

clientConfig
(advanced)

To configure the AsyncHttpClient to use a custom
com.ning.http.client.AsyncHttpClientConfig instance.

 AsyncHttpClientC
onfig

authorizationTok
en (security)

The default Telegram authorization token to be used
when the information is not provided in the
endpoints.

 String

Name Description Defaul
t

Type

50.4. ENDPOINT OPTIONS

The Telegram endpoint is configured using URI syntax:

telegram:type

with the following path and query parameters:

50.4.1. Path Parameters (1 parameters)

Name Description Defaul
t

Type

type (common) Required The endpoint type. Currently, only the
'bots' type is supported.

Enum values:

bots

 String

50.4.2. Query Parameters (30 parameters)

Name Description Defaul
t

Type

CHAPTER 50. TELEGRAM

951

bridgeErrorHandl
er (consumer)

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false boolean

limit (consumer) Limit on the number of updates that can be received
in a single polling request.

100 Integer

sendEmptyMessa
geWhenIdle
(consumer)

If the polling consumer did not poll any files, you can
enable this option to send an empty message (no
body) instead.

false boolean

timeout
(consumer)

Timeout in seconds for long polling. Put 0 for short
polling or a bigger number for long polling. Long
polling produces shorter response time.

30 Integer

exceptionHandler
(consumer
(advanced))

To let the consumer use a custom ExceptionHandler.
Notice if the option bridgeErrorHandler is enabled
then this option is not in use. By default the consumer
will deal with exceptions, that will be logged at WARN
or ERROR level and ignored.

 ExceptionHandler

exchangePattern
(consumer
(advanced))

Sets the exchange pattern when the consumer
creates an exchange.

Enum values:

InOnly

InOut

InOptionalOut

 ExchangePattern

pollStrategy
(consumer
(advanced))

A pluggable
org.apache.camel.PollingConsumerPollingStrategy
allowing you to provide your custom implementation
to control error handling usually occurred during the
poll operation before an Exchange have been
created and being routed in Camel.

 PollingConsumerP
ollStrategy

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

952

chatId (producer) The identifier of the chat that will receive the
produced messages. Chat ids can be first obtained
from incoming messages (eg. when a telegram user
starts a conversation with a bot, its client sends
automatically a '/start' message containing the chat
id). It is an optional parameter, as the chat id can be
set dynamically for each outgoing message (using
body or headers).

 String

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

baseUri
(advanced)

Can be used to set an alternative base URI, e.g. when
you want to test the component against a mock
Telegram API.

 String

bufferSize
(advanced)

The initial in-memory buffer size used when
transferring data between Camel and AHC Client.

4096 int

clientConfig
(advanced)

To configure the AsyncHttpClient to use a custom
com.ning.http.client.AsyncHttpClientConfig instance.

 AsyncHttpClientC
onfig

proxyHost (proxy) HTTP proxy host which could be used when sending
out the message.

 String

proxyPort (proxy) HTTP proxy port which could be used when sending
out the message.

 Integer

proxyType (proxy) HTTP proxy type which could be used when sending
out the message.

Enum values:

HTTP

SOCKS4

SOCKS5

HTTP TelegramProxyTy
pe

Name Description Defaul
t

Type

CHAPTER 50. TELEGRAM

953

backoffErrorThre
shold (scheduler)

The number of subsequent error polls (failed due
some error) that should happen before the
backoffMultipler should kick-in.

 int

backoffIdleThres
hold (scheduler)

The number of subsequent idle polls that should
happen before the backoffMultipler should kick-in.

 int

backoffMultiplier
(scheduler)

To let the scheduled polling consumer backoff if
there has been a number of subsequent idles/errors
in a row. The multiplier is then the number of polls
that will be skipped before the next actual attempt is
happening again. When this option is in use then
backoffIdleThreshold and/or backoffErrorThreshold
must also be configured.

 int

delay (scheduler) Milliseconds before the next poll. 500 long

greedy
(scheduler)

If greedy is enabled, then the
ScheduledPollConsumer will run immediately again, if
the previous run polled 1 or more messages.

false boolean

initialDelay
(scheduler)

Milliseconds before the first poll starts. 1000 long

repeatCount
(scheduler)

Specifies a maximum limit of number of fires. So if
you set it to 1, the scheduler will only fire once. If you
set it to 5, it will only fire five times. A value of zero or
negative means fire forever.

0 long

runLoggingLevel
(scheduler)

The consumer logs a start/complete log line when it
polls. This option allows you to configure the logging
level for that.

Enum values:

TRACE

DEBUG

INFO

WARN

ERROR

OFF

TRACE LoggingLevel

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

954

scheduledExecut
orService
(scheduler)

Allows for configuring a custom/shared thread pool
to use for the consumer. By default each consumer
has its own single threaded thread pool.

 ScheduledExecuto
rService

scheduler
(scheduler)

To use a cron scheduler from either camel-spring or
camel-quartz component. Use value spring or quartz
for built in scheduler.

none Object

schedulerProperti
es (scheduler)

To configure additional properties when using a
custom scheduler or any of the Quartz, Spring based
scheduler.

 Map

startScheduler
(scheduler)

Whether the scheduler should be auto started. true boolean

timeUnit
(scheduler)

Time unit for initialDelay and delay options.

Enum values:

NANOSECONDS

MICROSECONDS

MILLISECONDS

SECONDS

MINUTES

HOURS

DAYS

MILLIS
ECON
DS

TimeUnit

useFixedDelay
(scheduler)

Controls if fixed delay or fixed rate is used. See
ScheduledExecutorService in JDK for details.

true boolean

authorizationTok
en (security)

Required The authorization token for using the bot
(ask the BotFather).

 String

Name Description Defaul
t

Type

50.4.3. Message Headers

Name Description

CamelTelegram
ChatId

This header is used by the producer endpoint in order to resolve the chat id that will
receive the message. The recipient chat id can be placed (in order of priority) in
message body, in the CamelTelegramChatId header or in the endpoint configuration
(chatId option). This header is also present in all incoming messages.

CHAPTER 50. TELEGRAM

955

CamelTelegram
MediaType

This header is used to identify the media type when the outgoing message is composed
of pure binary data. Possible values are strings or enum values belonging to the
org.apache.camel.component.telegram.TelegramMediaType enumeration.

CamelTelegram
MediaTitleCapti
on

This header is used to provide a caption or title for outgoing binary messages.

CamelTelegram
ParseMode

This header is used to format text messages using HTML or Markdown (see
org.apache.camel.component.telegram.TelegramParseMode).

Name Description

50.5. USAGE

The Telegram component supports both consumer and producer endpoints. It can also be used in
reactive chat-bot mode (to consume, then produce messages).

50.6. PRODUCER EXAMPLE

The following is a basic example of how to send a message to a Telegram chat through the Telegram Bot
API.

in Java DSL

or in Spring XML

The code 123456789:insertYourAuthorizationTokenHere is the authorization token corresponding
to the Bot.

When using the producer endpoint without specifying the chat id option, the target chat will be
identified using information contained in the body or headers of the message. The following message
bodies are allowed for a producer endpoint (messages of type OutgoingXXXMessage belong to the
package org.apache.camel.component.telegram.model)

Java Type Description

OutgoingTextMessage To send a text message to a chat

OutgoingPhotoMessage To send a photo (JPG, PNG) to a chat

from("direct:start").to("telegram:bots?
authorizationToken=123456789:insertYourAuthorizationTokenHere");

<route>
 <from uri="direct:start"/>
 <to uri="telegram:bots?authorizationToken=123456789:insertYourAuthorizationTokenHere"/>
<route>

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

956

OutgoingAudioMessage To send a mp3 audio to a chat

OutgoingVideoMessage To send a mp4 video to a chat

OutgoingDocumentMessage To send a file to a chat (any media type)

OutgoingStickerMessage To send a sticker to a chat (WEBP)

OutgoingAnswerInlineQuery To send answers to an inline query

EditMessageTextMessage To edit text and game messages (editMessageText)

EditMessageCaptionMessage To edit captions of messages (editMessageCaption)

EditMessageMediaMessage To edit animation, audio, document, photo, or video messages.
(editMessageMedia)

EditMessageReplyMarkupMessage To edit only the reply markup of message.
(editMessageReplyMarkup)

EditMessageDelete To delete a message, including service messages.
(deleteMessage)

SendLocationMessage To send a location (setSendLocation)

EditMessageLiveLocationMessage To send changes to a live location (editMessageLiveLocation)

StopMessageLiveLocationMessage To stop updating a live location message sent by the bot or via
the bot (for inline bots) before live_period expires
(stopMessageLiveLocation)

SendVenueMessage To send information about a venue (sendVenue)

byte[] To send any media type supported. It requires the
CamelTelegramMediaType header to be set to the
appropriate media type

String To send a text message to a chat. It gets converted
automatically into a OutgoingTextMessage

Java Type Description

50.7. CONSUMER EXAMPLE

The following is a basic example of how to receive all messages that telegram users are sending to the
configured Bot. In Java DSL

CHAPTER 50. TELEGRAM

957

or in Spring XML

The MyBean is a simple bean that will receive the messages

Supported types for incoming messages are

Java Type Description

IncomingMessage The full object representation of an incoming message

String The content of the message, for text messages only

50.8. REACTIVE CHAT-BOT EXAMPLE

The reactive chat-bot mode is a simple way of using the Camel component to build a simple chat bot
that replies directly to chat messages received from the Telegram users.

The following is a basic configuration of the chat-bot in Java DSL

or in Spring XML

from("telegram:bots?authorizationToken=123456789:insertYourAuthorizationTokenHere")
.bean(ProcessorBean.class)

<route>
 <from uri="telegram:bots?authorizationToken=123456789:insertYourAuthorizationTokenHere"/>
 <bean ref="myBean" />
<route>

<bean id="myBean" class="com.example.MyBean"/>

public class MyBean {

 public void process(String message) {
 // or Exchange, or org.apache.camel.component.telegram.model.IncomingMessage (or both)

 // do process
 }

}

from("telegram:bots?authorizationToken=123456789:insertYourAuthorizationTokenHere")
.bean(ChatBotLogic.class)
.to("telegram:bots?authorizationToken=123456789:insertYourAuthorizationTokenHere");

<route>
 <from uri="telegram:bots?authorizationToken=123456789:insertYourAuthorizationTokenHere"/>
 <bean ref="chatBotLogic" />
 <to uri="telegram:bots?authorizationToken=123456789:insertYourAuthorizationTokenHere"/>
<route>

<bean id="chatBotLogic" class="com.example.ChatBotLogic"/>

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

958

The ChatBotLogic is a simple bean that implements a generic String-to-String method.

Every non-null string returned by the chatBotProcess method is automatically routed to the chat that
originated the request (as the CamelTelegramChatId header is used to route the message).

50.9. GETTING THE CHAT ID

If you want to push messages to a specific Telegram chat when an event occurs, you need to retrieve the
corresponding chat ID. The chat ID is not currently shown in the telegram client, but you can obtain it
using a simple route.

First, add the bot to the chat where you want to push messages, then run a route like the following one.

Any message received by the bot will be dumped to your log together with information about the chat
(CamelTelegramChatId header).

Once you get the chat ID, you can use the following sample route to push message to it.

Note that the corresponding URI parameter is simply chatId.

50.10. CUSTOMIZING KEYBOARD

You can customize the user keyboard instead of asking him to write an option. OutgoingTextMessage
has the property ReplyMarkup which can be used for such thing.

public class ChatBotLogic {

 public String chatBotProcess(String message) {
 if("do-not-reply".equals(message)) {
 return null; // no response in the chat
 }

 return "echo from the bot: " + message; // echoes the message
 }

}

from("telegram:bots?authorizationToken=123456789:insertYourAuthorizationTokenHere")
.to("log:INFO?showHeaders=true");

from("timer:tick")
.setBody().constant("Hello")
to("telegram:bots?
authorizationToken=123456789:insertYourAuthorizationTokenHere&chatId=123456")

from("telegram:bots?authorizationToken=123456789:insertYourAuthorizationTokenHere")
 .process(exchange -> {

 OutgoingTextMessage msg = new OutgoingTextMessage();
 msg.setText("Choose one option!");

 InlineKeyboardButton buttonOptionOneI = InlineKeyboardButton.builder()
 .text("Option One - I").build();

CHAPTER 50. TELEGRAM

959

If you want to disable it the next message must have the property removeKeyboard set on
ReplyKeyboardMarkup object.

50.11. WEBHOOK MODE

The Telegram component supports usage in the webhook mode using the camel-webhook
component.

In order to enable webhook mode, users need first to add a REST implementation to their application.
Maven users, for example, can add netty-http to their pom.xml file:

 InlineKeyboardButton buttonOptionOneII = InlineKeyboardButton.builder()
 .text("Option One - II").build();

 InlineKeyboardButton buttonOptionTwoI = InlineKeyboardButton.builder()
 .text("Option Two - I").build();

 ReplyKeyboardMarkup replyMarkup = ReplyKeyboardMarkup.builder()
 .keyboard()
 .addRow(Arrays.asList(buttonOptionOneI, buttonOptionOneII))
 .addRow(Arrays.asList(buttonOptionTwoI))
 .close()
 .oneTimeKeyboard(true)
 .build();

 msg.setReplyMarkup(replyMarkup);

 exchange.getIn().setBody(msg);
 })
 .to("telegram:bots?authorizationToken=123456789:insertYourAuthorizationTokenHere");

from("telegram:bots?authorizationToken=123456789:insertYourAuthorizationTokenHere")
 .process(exchange -> {

 OutgoingTextMessage msg = new OutgoingTextMessage();
 msg.setText("Your answer was accepted!");

 ReplyKeyboardMarkup replyMarkup = ReplyKeyboardMarkup.builder()
 .removeKeyboard(true)
 .build();

 msg.setReplyKeyboardMarkup(replyMarkup);

 exchange.getIn().setBody(msg);
 })
 .to("telegram:bots?authorizationToken=123456789:insertYourAuthorizationTokenHere");

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-netty-http</artifactId>
 <version>3.14.5.redhat-00018</version>
 <!-- use the same version as your Camel core version -->
</dependency>

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

960

Once done, you need to prepend the webhook URI to the telegram URI you want to use.

In Java DSL:

Some endpoints will be exposed by your application and Telegram will be configured to send messages
to them. You need to ensure that your server is exposed to the internet and to pass the right value of
the camel.component.webhook.configuration.webhook-external-url property.

Refer to the camel-webhook component documentation for instructions on how to set it.

50.12. SPRING BOOT AUTO-CONFIGURATION

When using telegram with Spring Boot make sure to use the following Maven dependency to have
support for auto configuration:

The component supports 8 options, which are listed below.

Name Description Defaul
t

Type

camel.component
.telegram.authori
zation-token

The default Telegram authorization token to be used
when the information is not provided in the
endpoints.

 String

camel.component
.telegram.autowir
ed-enabled

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true Boolean

camel.component
.telegram.base-
uri

Can be used to set an alternative base URI, e.g. when
you want to test the component against a mock
Telegram API.

 String

from("webhook:telegram:bots?
authorizationToken=123456789:insertYourAuthorizationTokenHere").to("log:info");

<dependency>
 <groupId>org.apache.camel.springboot</groupId>
 <artifactId>camel-telegram-starter</artifactId>
 <version>3.14.5.redhat-00032</version>
 <!-- Use your Camel Spring Boot version -->
</dependency>

CHAPTER 50. TELEGRAM

961

camel.component
.telegram.bridge-
error-handler

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false Boolean

camel.component
.telegram.client

To use a custom AsyncHttpClient. The option is a
org.asynchttpclient.AsyncHttpClient type.

 AsyncHttpClient

camel.component
.telegram.client-
config

To configure the AsyncHttpClient to use a custom
com.ning.http.client.AsyncHttpClientConfig instance.
The option is a
org.asynchttpclient.AsyncHttpClientConfig type.

 AsyncHttpClientC
onfig

camel.component
.telegram.enabled

Whether to enable auto configuration of the telegram
component. This is enabled by default.

 Boolean

camel.component
.telegram.lazy-
start-producer

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false Boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

962

CHAPTER 51. TIMER
Only consumer is supported

The Timer component is used to generate message exchanges when a timer fires You can only consume
events from this endpoint.

51.1. URI FORMAT

timer:name[?options]

Where name is the name of the Timer object, which is created and shared across endpoints. So if you
use the same name for all your timer endpoints, only one Timer object and thread will be used.

NOTE

The IN body of the generated exchange is null. So exchange.getIn().getBody() returns
null.

NOTE

Advanced Scheduler
See also the Quartz component that supports much more advanced scheduling.

51.2. CONFIGURING OPTIONS

Camel components are configured on two separate levels:

component level

endpoint level

51.2.1. Configuring Component Options

The component level is the highest level which holds general and common configurations that are
inherited by the endpoints. For example a component may have security settings, credentials for
authentication, urls for network connection and so forth.

Some components only have a few options, and others may have many. Because components typically
have pre configured defaults that are commonly used, then you may often only need to configure a few
options on a component; or none at all.

Configuring components can be done with the Component DSL, in a configuration file
(application.properties|yaml), or directly with Java code.

51.2.2. Configuring Endpoint Options

Where you find yourself configuring the most is on endpoints, as endpoints often have many options,
which allows you to configure what you need the endpoint to do. The options are also categorized into
whether the endpoint is used as consumer (from) or as a producer (to), or used for both.

Configuring endpoints is most often done directly in the endpoint URI as path and query parameters.
You can also use the Endpoint DSL as a type safe way of configuring endpoints.

CHAPTER 51. TIMER

963

https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/camel_spring_boot_reference_3.14/index#csb-camel-quartz-component-starter
https://camel.apache.org/manual/component-dsl.html
https://camel.apache.org/manual/Endpoint-dsl.html

A good practice when configuring options is to use Property Placeholders, which allows to not hardcode
urls, port numbers, sensitive information, and other settings. In other words placeholders allows to
externalize the configuration from your code, and gives more flexibility and reuse.

The following two sections lists all the options, firstly for the component followed by the endpoint.

51.3. COMPONENT OPTIONS

The Timer component supports 2 options, which are listed below.

Name Description Defaul
t

Type

bridgeErrorHandl
er (consumer)

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false boolean

autowiredEnabled
(advanced)

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true boolean

51.4. ENDPOINT OPTIONS

The Timer endpoint is configured using URI syntax:

timer:timerName

with the following path and query parameters:

51.4.1. Path Parameters (1 parameters)

Name Description Defaul
t

Type

timerName
(consumer)

Required The name of the timer. String

51.4.2. Query Parameters (13 parameters)

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

964

https://camel.apache.org/manual/using-propertyplaceholder.html

Name Description Defaul
t

Type

bridgeErrorHandl
er (consumer)

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false boolean

delay (consumer) Delay before first event is triggered. 1000 long

fixedRate
(consumer)

Events take place at approximately regular intervals,
separated by the specified period.

false boolean

includeMetadata
(consumer)

Whether to include metadata in the exchange such as
fired time, timer name, timer count etc. This
information is default included.

true boolean

period (consumer) If greater than 0, generate periodic events every
period.

1000 long

repeatCount
(consumer)

Specifies a maximum limit of number of fires. So if
you set it to 1, the timer will only fire once. If you set it
to 5, it will only fire five times. A value of zero or
negative means fire forever.

 long

exceptionHandler
(consumer
(advanced))

To let the consumer use a custom ExceptionHandler.
Notice if the option bridgeErrorHandler is enabled
then this option is not in use. By default the consumer
will deal with exceptions, that will be logged at WARN
or ERROR level and ignored.

 ExceptionHandler

exchangePattern
(consumer
(advanced))

Sets the exchange pattern when the consumer
creates an exchange.

Enum values:

InOnly

InOut

InOptionalOut

 ExchangePattern

daemon
(advanced)

Specifies whether or not the thread associated with
the timer endpoint runs as a daemon. The default
value is true.

true boolean

CHAPTER 51. TIMER

965

pattern
(advanced)

Allows you to specify a custom Date pattern to use
for setting the time option using URI syntax.

 String

synchronous
(advanced)

Sets whether synchronous processing should be
strictly used.

false boolean

time (advanced) A java.util.Date the first event should be generated. If
using the URI, the pattern expected is: yyyy-MM-dd
HH:mm:ss or yyyy-MM-dd’T’HH:mm:ss.

 Date

timer (advanced) To use a custom Timer. Timer

Name Description Defaul
t

Type

51.5. EXCHANGE PROPERTIES

When the timer is fired, it adds the following information as properties to the Exchange:

Name Type Description

Exchange.TIMER_NAME String The value of the name option.

Exchange.TIMER_TIME Date The value of the time option.

Exchange.TIMER_PERIO
D

long The value of the period option.

Exchange.TIMER_FIRED_
TIME

Date The time when the consumer fired.

Exchange.TIMER_COUNT
ER

Long The current fire counter. Starts from 1.

51.6. SAMPLE

To set up a route that generates an event every 60 seconds:

The above route will generate an event and then invoke the someMethodName method on the bean
called myBean in the Registry.

And the route in Spring DSL:

from("timer://foo?fixedRate=true&period=60000").to("bean:myBean?method=someMethodName");

<route>
 <from uri="timer://foo?fixedRate=true&period=60000"/>
 <to uri="bean:myBean?method=someMethodName"/>

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

966

51.7. FIRING AS SOON AS POSSIBLE

Since Camel 2.17

You may want to fire messages in a Camel route as soon as possible you can use a negative delay:

In this way the timer will fire messages immediately.

You can also specify a repeatCount parameter in conjunction with a negative delay to stop firing
messages after a fixed number has been reached.

If you don’t specify a repeatCount then the timer will continue firing messages until the route will be
stopped.

51.8. FIRING ONLY ONCE

You may want to fire a message in a Camel route only once, such as when starting the route. To do that
you use the repeatCount option as shown:

51.9. SPRING BOOT AUTO-CONFIGURATION

When using timer with Spring Boot make sure to use the following Maven dependency to have support
for auto configuration:

The component supports 3 options, which are listed below.

Name Description Defaul
t

Type

</route>

<route>
 <from uri="timer://foo?delay=-1"/>
 <to uri="bean:myBean?method=someMethodName"/>
</route>

<route>
 <from uri="timer://foo?repeatCount=1"/>
 <to uri="bean:myBean?method=someMethodName"/>
</route>

<dependency>
 <groupId>org.apache.camel.springboot</groupId>
 <artifactId>camel-timer-starter</artifactId>
 <version>3.14.5.redhat-00032</version>
 <!-- Use your Camel Spring Boot version -->
</dependency>

CHAPTER 51. TIMER

967

camel.component
.timer.autowired-
enabled

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true Boolean

camel.component
.timer.bridge-
error-handler

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false Boolean

camel.component
.timer.enabled

Whether to enable auto configuration of the timer
component. This is enabled by default.

 Boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

968

CHAPTER 52. VALIDATOR
Only producer is supported

The Validation component performs XML validation of the message body using the JAXP Validation API
and based on any of the supported XML schema languages, which defaults to XML Schema

Note that the component also supports the following useful schema languages:

RelaxNG Compact Syntax

RelaxNG XML Syntax

The MSV component also supports RelaxNG XML Syntax.

52.1. URI FORMAT

validator:someLocalOrRemoteResource

Where someLocalOrRemoteResource is some URL to a local resource on the classpath or a full URL to
a remote resource or resource on the file system which contains the XSD to validate against. For
example:

msv:org/foo/bar.xsd

msv:file:../foo/bar.xsd

msv:http://acme.com/cheese.xsd

validator:com/mypackage/myschema.xsd

The Validation component is provided directly in the camel-core.

52.2. CONFIGURING OPTIONS

Camel components are configured on two separate levels:

component level

endpoint level

52.2.1. Configuring Component Options

The component level is the highest level which holds general and common configurations that are
inherited by the endpoints. For example a component may have security settings, credentials for
authentication, urls for network connection and so forth.

Some components only have a few options, and others may have many. Because components typically
have pre configured defaults that are commonly used, then you may often only need to configure a few
options on a component; or none at all.

Configuring components can be done with the Component DSL, in a configuration file
(application.properties|yaml), or directly with Java code.

CHAPTER 52. VALIDATOR

969

http://www.w3.org/XML/Schema
http://relaxng.org/compact-tutorial-20030326.html
http://relaxng.org/
https://camel.apache.org/components/3.14.x/msv-component.html
http://relaxng.org/
https://camel.apache.org/manual/component-dsl.html

52.2.2. Configuring Endpoint Options

Where you find yourself configuring the most is on endpoints, as endpoints often have many options,
which allows you to configure what you need the endpoint to do. The options are also categorized into
whether the endpoint is used as consumer (from) or as a producer (to), or used for both.

Configuring endpoints is most often done directly in the endpoint URI as path and query parameters.
You can also use the Endpoint DSL as a type safe way of configuring endpoints.

A good practice when configuring options is to use Property Placeholders, which allows to not hardcode
urls, port numbers, sensitive information, and other settings. In other words placeholders allows to
externalize the configuration from your code, and gives more flexibility and reuse.

The following two sections lists all the options, firstly for the component followed by the endpoint.

52.3. COMPONENT OPTIONS

The Validator component supports 3 options, which are listed below.

Name Description Defaul
t

Type

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

autowiredEnabled
(advanced)

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true boolean

resourceResolver
Factory
(advanced)

To use a custom LSResourceResolver which depends
on a dynamic endpoint resource URI.

 ValidatorResource
ResolverFactory

52.4. ENDPOINT OPTIONS

The Validator endpoint is configured using URI syntax:

validator:resourceUri

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

970

https://camel.apache.org/manual/Endpoint-dsl.html
https://camel.apache.org/manual/using-propertyplaceholder.html

with the following path and query parameters:

52.4.1. Path Parameters (1 parameters)

Name Description Defaul
t

Type

resourceUri
(producer)

Required URL to a local resource on the classpath, or
a reference to lookup a bean in the Registry, or a full
URL to a remote resource or resource on the file
system which contains the XSD to validate against.

 String

52.4.2. Query Parameters (10 parameters)

Name Description Defaul
t

Type

failOnNullBody
(producer)

Whether to fail if no body exists. true boolean

failOnNullHeader
(producer)

Whether to fail if no header exists when validating
against a header.

true boolean

headerName
(producer)

To validate against a header instead of the message
body.

 String

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

errorHandler
(advanced)

To use a custom
org.apache.camel.processor.validation.ValidatorError
Handler. The default error handler captures the errors
and throws an exception.

 ValidatorErrorHan
dler

resourceResolver
(advanced)

To use a custom LSResourceResolver. Do not use
together with resourceResolverFactory.

 LSResourceResolv
er

CHAPTER 52. VALIDATOR

971

resourceResolver
Factory
(advanced)

To use a custom LSResourceResolver which depends
on a dynamic endpoint resource URI. The default
resource resolver factory resturns a resource resolver
which can read files from the class path and file
system. Do not use together with resourceResolver.

 ValidatorResource
ResolverFactory

schemaFactory
(advanced)

To use a custom javax.xml.validation.SchemaFactory. SchemaFactory

schemaLanguage
(advanced)

Configures the W3C XML Schema Namespace URI. http://
www.w
3.org/2
001/X
MLSch
ema

String

useSharedSchem
a (advanced)

Whether the Schema instance should be shared or
not. This option is introduced to work around a JDK
1.6.x bug. Xerces should not have this issue.

true boolean

Name Description Defaul
t

Type

52.5. EXAMPLE

The following example shows how to configure a route from endpoint direct:start which then goes to
one of two endpoints, either mock:valid or mock:invalid based on whether or not the XML matches the
given schema (which is supplied on the classpath).

52.6. ADVANCED: JMX METHOD CLEARCACHEDSCHEMA

You can force that the cached schema in the validator endpoint is cleared and reread with the next
process call with the JMX operation clearCachedSchema. You can also use this method to
programmatically clear the cache. This method is available on the ValidatorEndpoint class.

52.7. SPRING BOOT AUTO-CONFIGURATION

When using validator with Spring Boot make sure to use the following Maven dependency to have
support for auto configuration:

The component supports 4 options, which are listed below.

<dependency>
 <groupId>org.apache.camel.springboot</groupId>
 <artifactId>camel-validator-starter</artifactId>
 <version>3.14.5.redhat-00032</version>
 <!-- Use your Camel Spring Boot version -->
</dependency>

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

972

http://www.w3.org/2001/XMLSchema
https://github.com/apache/camel/blob/main/components/camel-spring-xml/src/test/resources/org/apache/camel/component/validator/camelContext.xml

Name Description Defaul
t

Type

camel.component
.validator.autowir
ed-enabled

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true Boolean

camel.component
.validator.enabled

Whether to enable auto configuration of the validator
component. This is enabled by default.

 Boolean

camel.component
.validator.lazy-
start-producer

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false Boolean

camel.component
.validator.resourc
e-resolver-
factory

To use a custom LSResourceResolver which depends
on a dynamic endpoint resource URI. The option is a
org.apache.camel.component.validator.ValidatorReso
urceResolverFactory type.

 ValidatorResource
ResolverFactory

CHAPTER 52. VALIDATOR

973

CHAPTER 53. WEBHOOK
Only consumer is supported

The Webhook meta component allows other Camel components to configure webhooks on a remote
webhook provider and listening for them.

The following components currently provide webhook endpoints:

Telegram

Maven users can add the following dependency to their pom.xml for this component:

Typically, other components that support webhook will bring this dependency transitively.

53.1. URI FORMAT

webhook:endpoint[?options]

53.2. CONFIGURING OPTIONS

Camel components are configured on two separate levels:

component level

endpoint level

53.2.1. Configuring Component Options

The component level is the highest level which holds general and common configurations that are
inherited by the endpoints. For example a component may have security settings, credentials for
authentication, urls for network connection and so forth.

Some components only have a few options, and others may have many. Because components typically
have pre configured defaults that are commonly used, then you may often only need to configure a few
options on a component; or none at all.

Configuring components can be done with the Component DSL, in a configuration file
(application.properties|yaml), or directly with Java code.

53.2.2. Configuring Endpoint Options

Where you find yourself configuring the most is on endpoints, as endpoints often have many options,
which allows you to configure what you need the endpoint to do. The options are also categorized into
whether the endpoint is used as consumer (from) or as a producer (to), or used for both.

Configuring endpoints is most often done directly in the endpoint URI as path and query parameters.

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-webhook</artifactId>
 <version>3.14.5.redhat-00018</version>
 <!-- use the same version as your Camel core version -->
</dependency>

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

974

https://camel.apache.org/manual/component-dsl.html

Configuring endpoints is most often done directly in the endpoint URI as path and query parameters.
You can also use the Endpoint DSL as a type safe way of configuring endpoints.

A good practice when configuring options is to use Property Placeholders, which allows to not hardcode
urls, port numbers, sensitive information, and other settings. In other words placeholders allows to
externalize the configuration from your code, and gives more flexibility and reuse.

The following two sections lists all the options, firstly for the component followed by the endpoint.

53.3. COMPONENT OPTIONS

The Webhook component supports 8 options, which are listed below.

Name Description Defaul
t

Type

bridgeErrorHandl
er (consumer)

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false boolean

webhookAutoReg
ister (consumer)

Automatically register the webhook at startup and
unregister it on shutdown.

true boolean

webhookBasePat
h (consumer)

The first (base) path element where the webhook will
be exposed. It’s a good practice to set it to a random
string, so that it cannot be guessed by unauthorized
parties.

 String

webhookCompon
entName
(consumer)

The Camel Rest component to use for the REST
transport, such as netty-http.

 String

webhookExternal
Url (consumer)

The URL of the current service as seen by the
webhook provider.

 String

webhookPath
(consumer)

The path where the webhook endpoint will be
exposed (relative to basePath, if any).

 String

autowiredEnabled
(advanced)

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true boolean

CHAPTER 53. WEBHOOK

975

https://camel.apache.org/manual/Endpoint-dsl.html
https://camel.apache.org/manual/using-propertyplaceholder.html

configuration
(advanced)

Set the default configuration for the webhook meta-
component.

 WebhookConfigur
ation

Name Description Defaul
t

Type

53.4. ENDPOINT OPTIONS

The Webhook endpoint is configured using URI syntax:

webhook:endpointUri

with the following path and query parameters:

53.4.1. Path Parameters (1 parameters)

Name Description Defaul
t

Type

endpointUri
(consumer)

Required The delegate uri. Must belong to a
component that supports webhooks.

 String

53.4.2. Query Parameters (8 parameters)

Name Description Defaul
t

Type

bridgeErrorHandl
er (consumer)

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false boolean

webhookAutoReg
ister (consumer)

Automatically register the webhook at startup and
unregister it on shutdown.

true boolean

webhookBasePat
h (consumer)

The first (base) path element where the webhook will
be exposed. It’s a good practice to set it to a random
string, so that it cannot be guessed by unauthorized
parties.

 String

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

976

webhookCompon
entName
(consumer)

The Camel Rest component to use for the REST
transport, such as netty-http.

 String

webhookExternal
Url (consumer)

The URL of the current service as seen by the
webhook provider.

 String

webhookPath
(consumer)

The path where the webhook endpoint will be
exposed (relative to basePath, if any).

 String

exceptionHandler
(consumer
(advanced))

To let the consumer use a custom ExceptionHandler.
Notice if the option bridgeErrorHandler is enabled
then this option is not in use. By default the consumer
will deal with exceptions, that will be logged at WARN
or ERROR level and ignored.

 ExceptionHandler

exchangePattern
(consumer
(advanced))

Sets the exchange pattern when the consumer
creates an exchange.

Enum values:

InOnly

InOut

InOptionalOut

 ExchangePattern

Name Description Defaul
t

Type

53.5. EXAMPLES

Examples of webhook component are provided in the documentation of the delegate components that
support it.

53.6. SPRING BOOT AUTO-CONFIGURATION

When using webhook with Spring Boot make sure to use the following Maven dependency to have
support for auto configuration:

The component supports 9 options, which are listed below.

<dependency>
 <groupId>org.apache.camel.springboot</groupId>
 <artifactId>camel-webhook-starter</artifactId>
 <version>3.14.5.redhat-00032</version>
 <!-- Use your Camel Spring Boot version -->
</dependency>

CHAPTER 53. WEBHOOK

977

Name Description Defaul
t

Type

camel.component
.webhook.autowir
ed-enabled

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true Boolean

camel.component
.webhook.bridge-
error-handler

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false Boolean

camel.component
.webhook.configu
ration

Set the default configuration for the webhook meta-
component. The option is a
org.apache.camel.component.webhook.WebhookCon
figuration type.

 WebhookConfigur
ation

camel.component
.webhook.enabled

Whether to enable auto configuration of the
webhook component. This is enabled by default.

 Boolean

camel.component
.webhook.webhoo
k-auto-register

Automatically register the webhook at startup and
unregister it on shutdown.

true Boolean

camel.component
.webhook.webhoo
k-base-path

The first (base) path element where the webhook will
be exposed. It’s a good practice to set it to a random
string, so that it cannot be guessed by unauthorized
parties.

 String

camel.component
.webhook.webhoo
k-component-
name

The Camel Rest component to use for the REST
transport, such as netty-http.

 String

camel.component
.webhook.webhoo
k-external-url

The URL of the current service as seen by the
webhook provider.

 String

camel.component
.webhook.webhoo
k-path

The path where the webhook endpoint will be
exposed (relative to basePath, if any).

 String

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

978

CHAPTER 54. XSLT
Only producer is supported

The XSLT component allows you to process a message using an XSLT template. This can be ideal when
using Templating to generate response for requests.

54.1. URI FORMAT

xslt:templateName[?options]

The URI format contains templateName, which can be one of the following:

the classpath-local URI of the template to invoke

the complete URL of the remote template.

You can append query options to the URI in the following format:

?option=value&option=value&…

Table 54.1. Table 1. Example URIs

URI Description

xslt:com/acme/mytransform.xsl Refers to the file com/acme/mytransform.xsl on the
classpath

xslt:file:///foo/bar.xsl Refers to the file /foo/bar.xsl

xslt:http://acme.com/cheese/foo.xsl Refers to the remote http resource

54.2. CONFIGURING OPTIONS

Camel components are configured on two separate levels:

component level

endpoint level

54.2.1. Configuring Component Options

The component level is the highest level which holds general and common configurations that are
inherited by the endpoints. For example a component may have security settings, credentials for
authentication, urls for network connection and so forth.

Some components only have a few options, and others may have many. Because components typically
have pre configured defaults that are commonly used, then you may often only need to configure a few
options on a component; or none at all.

Configuring components can be done with the Component DSL, in a configuration file
(application.properties|yaml), or directly with Java code.

CHAPTER 54. XSLT

979

http://www.w3.org/TR/xslt
https://camel.apache.org/manual/component-dsl.html

54.2.2. Configuring Endpoint Options

Where you find yourself configuring the most is on endpoints, as endpoints often have many options,
which allows you to configure what you need the endpoint to do. The options are also categorized into
whether the endpoint is used as consumer (from) or as a producer (to), or used for both.

Configuring endpoints is most often done directly in the endpoint URI as path and query parameters.
You can also use the Endpoint DSL as a type safe way of configuring endpoints.

A good practice when configuring options is to use Property Placeholders, which allows to not hardcode
urls, port numbers, sensitive information, and other settings. In other words placeholders allows to
externalize the configuration from your code, and gives more flexibility and reuse.

The following two sections lists all the options, firstly for the component followed by the endpoint.

54.3. COMPONENT OPTIONS

The XSLT component supports 7 options, which are listed below.

Name Description Defaul
t

Type

contentCache
(producer)

Cache for the resource content (the stylesheet file)
when it is loaded. If set to false Camel will reload the
stylesheet file on each message processing. This is
good for development. A cached stylesheet can be
forced to reload at runtime via JMX using the
clearCachedStylesheet operation.

true boolean

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

autowiredEnabled
(advanced)

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true boolean

transformerFacto
ryClass
(advanced)

To use a custom XSLT transformer factory, specified
as a FQN class name.

 String

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

980

https://camel.apache.org/manual/Endpoint-dsl.html
https://camel.apache.org/manual/using-propertyplaceholder.html

transformerFacto
ryConfigurationSt
rategy (advanced)

A configuration strategy to apply on freshly created
instances of TransformerFactory.

 TransformerFacto
ryConfigurationStr
ategy

uriResolver
(advanced)

To use a custom UriResolver. Should not be used
together with the option 'uriResolverFactory'.

 URIResolver

uriResolverFactor
y (advanced)

To use a custom UriResolver which depends on a
dynamic endpoint resource URI. Should not be used
together with the option 'uriResolver'.

 XsltUriResolverFa
ctory

Name Description Defaul
t

Type

54.4. ENDPOINT OPTIONS

The XSLT endpoint is configured using URI syntax:

xslt:resourceUri

with the following path and query parameters:

54.4.1. Path Parameters (1 parameters)

Name Description Defaul
t

Type

resourceUri
(producer)

Required Path to the template. The following is
supported by the default URIResolver. You can prefix
with: classpath, file, http, ref, or bean. classpath, file
and http loads the resource using these protocols
(classpath is default). ref will lookup the resource in
the registry. bean will call a method on a bean to be
used as the resource. For bean you can specify the
method name after dot, eg bean:myBean.myMethod.

 String

54.4.2. Query Parameters (13 parameters)

Name Description Defaul
t

Type

contentCache
(producer)

Cache for the resource content (the stylesheet file)
when it is loaded. If set to false Camel will reload the
stylesheet file on each message processing. This is
good for development. A cached stylesheet can be
forced to reload at runtime via JMX using the
clearCachedStylesheet operation.

true boolean

CHAPTER 54. XSLT

981

deleteOutputFile
(producer)

If you have output=file then this option dictates
whether or not the output file should be deleted
when the Exchange is done processing. For example
suppose the output file is a temporary file, then it can
be a good idea to delete it after use.

false boolean

failOnNullBody
(producer)

Whether or not to throw an exception if the input
body is null.

true boolean

lazyStartProduce
r (producer)

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false boolean

output (producer) Option to specify which output type to use. Possible
values are: string, bytes, DOM, file. The first three
options are all in memory based, where as file is
streamed directly to a java.io.File. For file you must
specify the filename in the IN header with the key
Exchange.XSLT_FILE_NAME which is also
CamelXsltFileName. Also any paths leading to the
filename must be created beforehand, otherwise an
exception is thrown at runtime.

Enum values:

string

bytes

DOM

file

string XsltOutput

transformerCach
eSize (producer)

The number of javax.xml.transform.Transformer
object that are cached for reuse to avoid calls to
Template.newTransformer().

0 int

entityResolver
(advanced)

To use a custom org.xml.sax.EntityResolver with
javax.xml.transform.sax.SAXSource.

 EntityResolver

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

982

errorListener
(advanced)

Allows to configure to use a custom
javax.xml.transform.ErrorListener. Beware when
doing this then the default error listener which
captures any errors or fatal errors and store
information on the Exchange as properties is not in
use. So only use this option for special use-cases.

 ErrorListener

resultHandlerFact
ory (advanced)

Allows you to use a custom
org.apache.camel.builder.xml.ResultHandlerFactory
which is capable of using custom
org.apache.camel.builder.xml.ResultHandler types.

 ResultHandlerFact
ory

transformerFacto
ry (advanced)

To use a custom XSLT transformer factory. TransformerFacto
ry

transformerFacto
ryClass
(advanced)

To use a custom XSLT transformer factory, specified
as a FQN class name.

 String

transformerFacto
ryConfigurationSt
rategy (advanced)

A configuration strategy to apply on freshly created
instances of TransformerFactory.

 TransformerFacto
ryConfigurationStr
ategy

uriResolver
(advanced)

To use a custom javax.xml.transform.URIResolver. URIResolver

Name Description Defaul
t

Type

54.5. USING XSLT ENDPOINTS

The following format is an example of using an XSLT template to formulate a response for a message for
InOut message exchanges (where there is a JMSReplyTo header)

If you want to use InOnly and consume the message and send it to another destination you could use the
following route:

54.6. GETTING USEABLE PARAMETERS INTO THE XSLT

By default, all headers are added as parameters which are then available in the XSLT.
To make the parameters useable, you will need to declare them.

from("activemq:My.Queue").
 to("xslt:com/acme/mytransform.xsl");

from("activemq:My.Queue").
 to("xslt:com/acme/mytransform.xsl").
 to("activemq:Another.Queue");

CHAPTER 54. XSLT

983

The parameter also needs to be declared in the top level of the XSLT for it to be available:

54.7. SPRING XML VERSIONS

To use the above examples in Spring XML you would use something like the following code:

54.8. USING XSL:INCLUDE

Camel provides its own implementation of URIResolver. This allows Camel to load included files from
the classpath.

For example the include file in the following code will be located relative to the starting endpoint.

This means that Camel will locate the file in the classpath as
org/apache/camel/component/xslt/staff_template.xsl

You can use classpath: or file: to instruct Camel to look either in the classpath or file system. If you
omit the prefix then Camel uses the prefix from the endpoint configuration. If no prefix is specified in
the endpoint configuration, the default is classpath:.

You can also refer backwards in the include paths. In the following example, the xsl file will be resolved
under org/apache/camel/component.

54.9. USING XSL:INCLUDE AND DEFAULT PREFIX

Camel will use the prefix from the endpoint configuration as the default prefix.

You can explicitly specify file: or classpath: loading. The two loading types can be mixed in a XSLT
script, if necessary.

<setHeader name="myParam"><constant>42</constant></setHeader>
<to uri="xslt:MyTransform.xsl"/>

<xsl: >

 <xsl:param name="myParam"/>

 <xsl:template ...>

 <camelContext xmlns="http://activemq.apache.org/camel/schema/spring">
 <route>
 <from uri="activemq:My.Queue"/>
 <to uri="xslt:org/apache/camel/spring/processor/example.xsl"/>
 <to uri="activemq:Another.Queue"/>
 </route>
 </camelContext>

<xsl:include href="staff_template.xsl"/>

 <xsl:include href="../staff_other_template.xsl"/>

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

984

54.10. DYNAMIC STYLESHEETS

To provide a dynamic stylesheet at runtime you can define a dynamic URI. See How to use a dynamic
URI in to() for more information.

54.11. ACCESSING WARNINGS, ERRORS AND FATALERRORS FROM
XSLT ERRORLISTENER

Any warning/error or fatalError is stored on the current Exchange as a property with the keys
Exchange.XSLT_ERROR, Exchange.XSLT_FATAL_ERROR, or Exchange.XSLT_WARNING which
allows end users to get hold of any errors happening during transformation.

For example in the stylesheet below, we want to terminate if a staff has an empty dob field. And to
include a custom error message using xsl:message.

The exception is stored on the Exchange as a warning with the key Exchange.XSLT_WARNING.

54.12. SPRING BOOT AUTO-CONFIGURATION

When using xslt with Spring Boot make sure to use the following Maven dependency to have support for
auto configuration:

The component supports 8 options, which are listed below.

Name Description Defaul
t

Type

<xsl:template match="/">
 <html>
 <body>
 <xsl:for-each select="staff/programmer">
 <p>Name: <xsl:value-of select="name"/>

 <xsl:if test="dob=''">
 <xsl:message terminate="yes">Error: DOB is an empty string!</xsl:message>
 </xsl:if>
 </p>
 </xsl:for-each>
 </body>
 </html>
</xsl:template>

<dependency>
 <groupId>org.apache.camel.springboot</groupId>
 <artifactId>camel-xslt-starter</artifactId>
 <version>3.14.5.redhat-00032</version>
 <!-- use the same version as your Camel core version -->
</dependency>

CHAPTER 54. XSLT

985

https://camel.apache.org/manual/faq/how-to-use-a-dynamic-uri-in-to.html

camel.component
.xslt.autowired-
enabled

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true Boolean

camel.component
.xslt.content-
cache

Cache for the resource content (the stylesheet file)
when it is loaded. If set to false Camel will reload the
stylesheet file on each message processing. This is
good for development. A cached stylesheet can be
forced to reload at runtime via JMX using the
clearCachedStylesheet operation.

true Boolean

camel.component
.xslt.enabled

Whether to enable auto configuration of the xslt
component. This is enabled by default.

 Boolean

camel.component
.xslt.lazy-start-
producer

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false Boolean

camel.component
.xslt.transformer-
factory-class

To use a custom XSLT transformer factory, specified
as a FQN class name.

 String

camel.component
.xslt.transformer-
factory-
configuration-
strategy

A configuration strategy to apply on freshly created
instances of TransformerFactory. The option is a
org.apache.camel.component.xslt.TransformerFactor
yConfigurationStrategy type.

 TransformerFacto
ryConfigurationStr
ategy

camel.component
.xslt.uri-resolver

To use a custom UriResolver. Should not be used
together with the option 'uriResolverFactory'. The
option is a javax.xml.transform.URIResolver type.

 URIResolver

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

986

camel.component
.xslt.uri-resolver-
factory

To use a custom UriResolver which depends on a
dynamic endpoint resource URI. Should not be used
together with the option 'uriResolver'. The option is a
org.apache.camel.component.xslt.XsltUriResolverFac
tory type.

 XsltUriResolverFa
ctory

Name Description Defaul
t

Type

CHAPTER 54. XSLT

987

CHAPTER 55. AVRO
This component provides a dataformat for avro, which allows serialization and deserialization of
messages using Apache Avro’s binary dataformat. Since Camel 3.2 rpc functionality was moved into
separate camel-avro-rpc component.

Maven users will need to add the following dependency to their pom.xml for this component:

You can easily generate classes from a schema, using maven, ant etc. More details can be found at the
Apache Avro documentation.

55.1. AVRO DATAFORMAT OPTIONS

The Avro dataformat supports 1 options, which are listed below.

Name Default Java
Type

Description

instanceClassNa
me

 String Class name to use for marshal and unmarshalling.

55.2. AVRO DATA FORMAT USAGE

Using the avro data format is as easy as specifying that the class that you want to marshal or unmarshal
in your route.

Where Value is an Avro Maven Plugin Generated class.

or in XML

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-avro</artifactId>
 <version>3.14.5.redhat-00018</version>
 <!-- use the same version as your Camel core version -->
</dependency>

AvroDataFormat format = new AvroDataFormat(Value.SCHEMA$);

from("direct:in").marshal(format).to("direct:marshal");
from("direct:back").unmarshal(format).to("direct:unmarshal");

 <camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="direct:in"/>
 <marshal>
 <avro instanceClass="org.apache.camel.dataformat.avro.Message"/>
 </marshal>
 <to uri="log:out"/>
 </route>
 </camelContext>

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

988

http://avro.apache.org/docs/current/

An alternative can be to specify the dataformat inside the context and reference it from your route.

In the same manner you can umarshal using the avro data format.

55.3. SPRING BOOT AUTO-CONFIGURATION

When using avro with Spring Boot make sure to use the following Maven dependency to have support
for auto configuration:

The component supports 2 options, which are listed below.

Name Description Defaul
t

Type

camel.dataformat
.avro.enabled

Whether to enable auto configuration of the avro
data format. This is enabled by default.

 Boolean

camel.dataformat
.avro.instance-
class-name

Class name to use for marshal and unmarshalling. String

 <camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
 <dataFormats>
 <avro id="avro" instanceClass="org.apache.camel.dataformat.avro.Message"/>
 </dataFormats>
 <route>
 <from uri="direct:in"/>
 <marshal><custom ref="avro"/></marshal>
 <to uri="log:out"/>
 </route>
 </camelContext>

<dependency>
 <groupId>org.apache.camel.springboot</groupId>
 <artifactId>camel-avro-starter</artifactId>
 <version>3.14.5.redhat-00032</version>
 <!-- Use your Camel Spring Boot version -->
</dependency>

CHAPTER 55. AVRO

989

CHAPTER 56. AVRO JACKSON
Jackson Avro is a Data Format which uses the Jackson library with the Avro extension to unmarshal an
Avro payload into Java objects or to marshal Java objects into an Avro payload.

NOTE

If you are familiar with Jackson, this Avro data format behaves in the same way as its
JSON counterpart, and thus can be used with classes annotated for JSON
serialization/deserialization.

56.1. CONFIGURING THE SCHEMARESOLVER

Since Avro serialization is schema-based, this data format requires that you provide a SchemaResolver
object that is able to lookup the schema for each exchange that is going to be marshalled/unmarshalled.

You can add a single SchemaResolver to the registry and it will be looked up automatically. Or you can
explicitly specify the reference to a custom SchemaResolver.

56.2. AVRO JACKSON OPTIONS

The Avro Jackson dataformat supports 18 options, which are listed below.

Name Default Java
Type

Description

objectMapper String Lookup and use the existing ObjectMapper with the given id
when using Jackson.

useDefaultObject
Mapper

 Boole
an

Whether to lookup and use default Jackson ObjectMapper from
the registry.

unmarshalType String Class name of the java type to use when unmarshalling.

jsonView String When marshalling a POJO to JSON you might want to exclude
certain fields from the JSON output. With Jackson you can use
JSON views to accomplish this. This option is to refer to the
class which has JsonView annotations.

include String If you want to marshal a pojo to JSON, and the pojo has some
fields with null values. And you want to skip these null values,
you can set this option to NON_NULL.

allowJmsType Boole
an

Used for JMS users to allow the JMSType header from the JMS
spec to specify a FQN classname to use to unmarshal to.

from("kafka:topic").
 unmarshal().avro(AvroLibrary.Jackson, JsonNode.class).
 to("log:info");

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

990

https://github.com/FasterXML/jackson/
https://github.com/FasterXML/jackson-dataformats-binary

collectionType String Refers to a custom collection type to lookup in the registry to
use. This option should rarely be used, but allows to use different
collection types than java.util.Collection based as default.

useList Boole
an

To unmarshal to a List of Map or a List of Pojo.

moduleClassNam
es

 String To use custom Jackson modules
com.fasterxml.jackson.databind.Module specified as a String
with FQN class names. Multiple classes can be separated by
comma.

moduleRefs String To use custom Jackson modules referred from the Camel
registry. Multiple modules can be separated by comma.

enableFeatures String Set of features to enable on the Jackson
com.fasterxml.jackson.databind.ObjectMapper. The features
should be a name that matches a enum from
com.fasterxml.jackson.databind.SerializationFeature,
com.fasterxml.jackson.databind.DeserializationFeature, or
com.fasterxml.jackson.databind.MapperFeature Multiple
features can be separated by comma.

disableFeatures String Set of features to disable on the Jackson
com.fasterxml.jackson.databind.ObjectMapper. The features
should be a name that matches a enum from
com.fasterxml.jackson.databind.SerializationFeature,
com.fasterxml.jackson.databind.DeserializationFeature, or
com.fasterxml.jackson.databind.MapperFeature Multiple
features can be separated by comma.

allowUnmarshallT
ype

 Boole
an

If enabled then Jackson is allowed to attempt to use the
CamelJacksonUnmarshalType header during the unmarshalling.
This should only be enabled when desired to be used.

timezone String If set then Jackson will use the Timezone when
marshalling/unmarshalling.

autoDiscoverObje
ctMapper

 Boole
an

If set to true then Jackson will lookup for an objectMapper into
the registry.

contentTypeHead
er

 Boole
an

Whether the data format should set the Content-Type header
with the type from the data format. For example application/xml
for data formats marshalling to XML, or application/json for data
formats marshalling to JSON.

Name Default Java
Type

Description

CHAPTER 56. AVRO JACKSON

991

schemaResolver String Optional schema resolver used to lookup schemas for the data in
transit.

autoDiscoverSche
maResolver

 Boole
an

When not disabled, the SchemaResolver will be looked up into
the registry.

Name Default Java
Type

Description

56.3. USING CUSTOM AVROMAPPER

You can configure JacksonAvroDataFormat to use a custom AvroMapper in case you need more
control of the mapping configuration.

If you setup a single AvroMapper in the registry, then Camel will automatic lookup and use this
AvroMapper.

56.4. DEPENDENCIES

To use Avro Jackson in your camel routes you need to add the dependency on camel-jackson-avro
which implements this data format.

If you use maven, add the following to your pom.xml, substituting the version number for the latest
version (see the download page for the latest version).

56.5. SPRING BOOT AUTO-CONFIGURATION

When using avro-jackson with Spring Boot make sure to use the following Maven dependency to have
support for auto configuration:

The component supports 19 options, which are listed below.

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-jackson-avro</artifactId>
 <version>3.14.5.redhat-00018</version>
 <!-- use the same version as your Camel core version -->
</dependency>

<dependency>
 <groupId>org.apache.camel.springboot</groupId>
 <artifactId>camel-jackson-avro-starter</artifactId>
 <version>3.14.5.redhat-00032</version>
 <!-- Use your Camel Spring Boot version -->
</dependency>

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

992

Name Description Defaul
t

Type

camel.dataformat
.avro-
jackson.allow-
jms-type

Used for JMS users to allow the JMSType header
from the JMS spec to specify a FQN classname to
use to unmarshal to.

false Boolean

camel.dataformat
.avro-
jackson.allow-
unmarshall-type

If enabled then Jackson is allowed to attempt to use
the CamelJacksonUnmarshalType header during the
unmarshalling. This should only be enabled when
desired to be used.

false Boolean

camel.dataformat
.avro-
jackson.auto-
discover-object-
mapper

If set to true then Jackson will lookup for an
objectMapper into the registry.

false Boolean

camel.dataformat
.avro-
jackson.auto-
discover-schema-
resolver

When not disabled, the SchemaResolver will be
looked up into the registry.

true Boolean

camel.dataformat
.avro-
jackson.collection
-type

Refers to a custom collection type to lookup in the
registry to use. This option should rarely be used, but
allows to use different collection types than
java.util.Collection based as default.

 String

camel.dataformat
.avro-
jackson.content-
type-header

Whether the data format should set the Content-
Type header with the type from the data format. For
example application/xml for data formats marshalling
to XML, or application/json for data formats
marshalling to JSON.

true Boolean

camel.dataformat
.avro-
jackson.disable-
features

Set of features to disable on the Jackson
com.fasterxml.jackson.databind.ObjectMapper. The
features should be a name that matches a enum from
com.fasterxml.jackson.databind.SerializationFeature,
com.fasterxml.jackson.databind.DeserializationFeatur
e, or com.fasterxml.jackson.databind.MapperFeature
Multiple features can be separated by comma.

 String

CHAPTER 56. AVRO JACKSON

993

camel.dataformat
.avro-
jackson.enable-
features

Set of features to enable on the Jackson
com.fasterxml.jackson.databind.ObjectMapper. The
features should be a name that matches a enum from
com.fasterxml.jackson.databind.SerializationFeature,
com.fasterxml.jackson.databind.DeserializationFeatur
e, or com.fasterxml.jackson.databind.MapperFeature
Multiple features can be separated by comma.

 String

camel.dataformat
.avro-
jackson.enabled

Whether to enable auto configuration of the avro-
jackson data format. This is enabled by default.

 Boolean

camel.dataformat
.avro-
jackson.include

If you want to marshal a pojo to JSON, and the pojo
has some fields with null values. And you want to skip
these null values, you can set this option to
NON_NULL.

 String

camel.dataformat
.avro-
jackson.json-view

When marshalling a POJO to JSON you might want
to exclude certain fields from the JSON output. With
Jackson you can use JSON views to accomplish this.
This option is to refer to the class which has
JsonView annotations.

 String

camel.dataformat
.avro-
jackson.module-
class-names

To use custom Jackson modules
com.fasterxml.jackson.databind.Module specified as
a String with FQN class names. Multiple classes can
be separated by comma.

 String

camel.dataformat
.avro-
jackson.module-
refs

To use custom Jackson modules referred from the
Camel registry. Multiple modules can be separated by
comma.

 String

camel.dataformat
.avro-
jackson.object-
mapper

Lookup and use the existing ObjectMapper with the
given id when using Jackson.

 String

camel.dataformat
.avro-
jackson.schema-
resolver

Optional schema resolver used to lookup schemas for
the data in transit.

 String

camel.dataformat
.avro-
jackson.timezone

If set then Jackson will use the Timezone when
marshalling/unmarshalling.

 String

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

994

camel.dataformat
.avro-
jackson.unmarsha
l-type

Class name of the java type to use when
unmarshalling.

 String

camel.dataformat
.avro-
jackson.use-
default-object-
mapper

Whether to lookup and use default Jackson
ObjectMapper from the registry.

true Boolean

camel.dataformat
.avro-
jackson.use-list

To unmarshal to a List of Map or a List of Pojo. false Boolean

Name Description Defaul
t

Type

CHAPTER 56. AVRO JACKSON

995

CHAPTER 57. BINDY
The goal of this component is to allow the parsing/binding of non-structured data (or to be more
precise non-XML data) to/from Java Beans that have binding mappings defined with annotations. Using
Bindy, you can bind data from sources such as :

CSV records,

Fixed-length records,

FIX messages,

or almost any other non-structured data

to one or many Plain Old Java Object (POJO). Bindy converts the data according to the type of the java
property. POJOs can be linked together with one-to-many relationships available in some cases.
Moreover, for data type like Date, Double, Float, Integer, Short, Long and BigDecimal, you can provide
the pattern to apply during the formatting of the property.

For the BigDecimal numbers, you can also define the precision and the decimal or grouping separators.

Type Format
Type

Pattern example Link

Date DateF
ormat

dd-MM-yyyy https://docs.oracl
e.com/en/java/jav
ase/11/docs/api/ja
va.base/java/text/
SimpleDateForma
t.html

Decima
l*

Decim
alFor
mat

..## https://docs.oracl
e.com/en/java/jav
ase/11/docs/api/ja
va.base/java/text/
DecimalFormat.ht
ml

Where Decimal = Double, Integer, Float, Short, Long

Format supported

This first release only support comma separated values fields and key value pair fields (e.g. : FIX
messages).

To work with camel-bindy, you must first define your model in a package (e.g. com.acme.model) and for
each model class (e.g. Order, Client, Instrument, …) add the required annotations (described hereafter)
to the Class or field.

Multiple models

As you configure bindy using class names instead of package names you can put multiple models in the
same package.

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

996

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/text/SimpleDateFormat.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/text/DecimalFormat.html

57.1. OPTIONS

The Bindy dataformat supports 5 options, which are listed below.

Name Default Java Type Description

type Enum Required Whether to use Csv, Fixed, or KeyValue.

Enum values:

Csv

Fixed

KeyValue

classType String Name of model class to use.

locale String To configure a default locale to use, such as us for
united states. To use the JVM platform default locale
then use the name default.

unwrapSingleInst
ance

 Boolean When unmarshalling should a single instance be
unwrapped and returned instead of wrapped in a
java.util.List.

allowEmptyStrea
m

 Boolean Whether to allow empty streams in the unmarshal
process. If true, no exception will be thrown when a
body without records is provided.

57.2. ANNOTATIONS

The annotations created allow to map different concept of your model to the POJO like:

Type of record (CSV, key value pair (e.g. FIX message), fixed length …),

Link (to link object in another object),

DataField and their properties (int, type, …),

KeyValuePairField (for key = value format like we have in FIX financial messages),

Section (to identify header, body and footer section),

OneToMany,

BindyConverter,

FormatFactories

This section will describe them.

CHAPTER 57. BINDY

997

57.2.1. 1. CsvRecord

The CsvRecord annotation is used to identified the root class of the model. It represents a record = "a
line of a CSV file" and can be linked to several children model classes.

Annotation
name

Record type Level

CsvRecord CSV Class

Parameter
name

Type Requi
red

Defau
lt
value

Info

separator String ✓ Separator used to split a record in tokens (mandatory) -
can be ',' or ';' or 'anything'. The only whitespace character
supported is tab (\t). No other whitespace characters
(spaces) are not supported. This value is interpreted as a
regular expression. If you want to use a sign which has a
special meaning in regular expressions, e.g. the '|' sign,
then you have to mask it, like '|'.

allowEmptyStrea
m

boole
an

 false The allowEmptyStream parameter will allow to prcoess the
unavaiable stream for CSV file.

autospanLine boole
an

 false Last record spans rest of line (optional) - if enabled then
the last column is auto spanned to end of line, for example
if its a comment, etc this allows the line to contain all
characters, also the delimiter char.

crlf String WIND
OWS

Character to be used to add a carriage return after each
record (optional) - allow to define the carriage return
character to use. If you specify a value other than the
three listed before, the value you enter (custom) will be
used as the CRLF character(s). Three values can be used :
WINDOWS, UNIX, MAC, or custom.

endWithLineBre
ak

boole
an

 true The endWithLineBreak parameter flags if the CSV file
should end with a line break or not (optional)

generateHeader
Columns

boole
an

 false The generateHeaderColumns parameter allow to add in
the CSV generated the header containing names of the
columns

isOrdered boole
an

 false Indicates if the message must be ordered in output

name String Name describing the record (optional)

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

998

quote String " Whether to marshal columns with the given quote
character (optional) - allow to specify a quote character
of the fields when CSV is generated. This annotation is
associated to the root class of the model and must be
declared one time.

quoting boole
an

 false Indicate if the values (and headers) must be quoted when
marshaling (optional)

quotingEscaped boole
an

 false Indicate if the values must be escaped when quoting
(optional)

removeQuotes boole
an

 true The remove quotes parameter flags if unmarshalling
should try to remove quotes for each field

skipField boole
an

 false The skipField parameter will allow to skip fields of a CSV
file. If some fields are not necessary, they can be skipped.

skipFirstLine boole
an

 false The skipFirstLine parameter will allow to skip or not the
first line of a CSV file. This line often contains columns
definition

Parameter
name

Type Requi
red

Defau
lt
value

Info

case 1 : separator = ','

The separator used to segregate the fields in the CSV record is , :

10, J, Pauline, M, XD12345678, Fortis Dynamic 15/15, 2500, USD, 08-01-2009

case 2 : separator = ';'

Compare to the previous case, the separator here is ; instead of , :

10; J; Pauline; M; XD12345678; Fortis Dynamic 15/15; 2500; USD; 08-01-2009

case 3 : separator = '|'

@CsvRecord(separator = ",")
public Class Order {

}

@CsvRecord(separator = ";")
public Class Order {

}

CHAPTER 57. BINDY

999

Compare to the previous case, the separator here is | instead of ; :

10| J| Pauline| M| XD12345678| Fortis Dynamic 15/15| 2500| USD| 08-01-2009

case 4 : separator = '\",\"'

Applies for Camel 2.8.2 or older

When the field to be parsed of the CSV record contains , or ; which is also used as separator, we should
find another strategy to tell camel bindy how to handle this case. To define the field containing the data
with a comma, you will use single or double quotes as delimiter (e.g : '10', 'Street 10, NY', 'USA' or "10",
"Street 10, NY", "USA").

__ In this case, the first and last character of the line
which are a single or double quotes will be removed
by bindy.

"10","J","Pauline"," M","XD12345678","Fortis Dynamic 15,15","2500","USD","08-01-2009"

Bindy automatically detects if the record is enclosed with either single or double quotes and automatic
remove those quotes when unmarshalling from CSV to Object. Therefore do not include the quotes in
the separator, but simply do as below:

"10","J","Pauline"," M","XD12345678","Fortis Dynamic 15,15","2500","USD","08-01-2009"

Notice that if you want to marshal from Object to CSV and use quotes, then you need to specify which
quote character to use, using the quote attribute on the @CsvRecord as shown below:

case 5 : separator & skipFirstLine

The feature is interesting when the client wants to have in the first line of the file, the name of the data

@CsvRecord(separator = "\\|")
public Class Order {

}

@CsvRecord(separator = "\",\"")
public Class Order {

}

@CsvRecord(separator = ",")
public Class Order {

}

@CsvRecord(separator = ",", quote = "\"")
public Class Order {

}

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1000

The feature is interesting when the client wants to have in the first line of the file, the name of the data
fields :

order id, client id, first name, last name, isin code, instrument name, quantity, currency, date

To inform bindy that this first line must be skipped during the parsing process, then we use the attribute
:

case 6 : generateHeaderColumns

To add at the first line of the CSV generated, the attribute generateHeaderColumns must be set to true
in the annotation like this :

As a result, Bindy during the unmarshaling process will generate CSV like this :

order id, client id, first name, last name, isin code, instrument name, quantity, currency, date
10, J, Pauline, M, XD12345678, Fortis Dynamic 15/15, 2500, USD, 08-01-2009

case 7 : carriage return

If the platform where camel-bindy will run is not Windows but Macintosh or Unix, then you can change
the crlf property like this. Three values are available : WINDOWS, UNIX or MAC

Additionally, if for some reason you need to add a different line ending character, you can opt to specify
it using the crlf parameter. In the following example, we can end the line with a comma followed by the
newline character:

case 8 : isOrdered

Sometimes, the order to follow during the creation of the CSV record from the model is different from
the order used during the parsing. Then, in this case, we can use the attribute isOrdered = true to
indicate this in combination with attribute position of the DataField annotation.

@CsvRecord(separator = ",", skipFirstLine = true)
public Class Order {

}

@CsvRecord(generateHeaderColumns = true)
public Class Order {

}

@CsvRecord(separator = ",", crlf="MAC")
public Class Order {

}

@CsvRecord(separator = ",", crlf=",\n")
public Class Order {

}

@CsvRecord(isOrdered = true)

CHAPTER 57. BINDY

1001

__ pos is used to parse the file stream, while position
is used to generate the CSV.

57.2.2. 2. Link

The link annotation will allow to link objects together.

Annotation
name

Record type Level

Link all Class & Property

Param
eter
name

Type Requir
ed

Default
value

Info

linkTyp
e

LinkTy
pe

 OneTo
One

Type of link identifying the relation between the classes

Only one-to-one relation is allowed as of the current version.

E.g : If the model class Client is linked to the Order class, then use annotation Link in the Order class like
this :

Property Link

And for the class Client :

Class Link

public Class Order {

 @DataField(pos = 1, position = 11)
 private int orderNr;

 @DataField(pos = 2, position = 10)
 private String clientNr;

}

@CsvRecord(separator = ",")
public class Order {

 @DataField(pos = 1)
 private int orderNr;

 @Link
 private Client client;
}

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1002

57.2.3. 3. DataField

The DataField annotation defines the property of the field. Each datafield is identified by its position in
the record, a type (string, int, date, …) and optionally of a pattern.

Annotation
name

Record type Level

DataField all Property

Param
eter
name

Type Requir
ed

Default
value

Info

pos int ✓ Position of the data in the input record, must start from 1
(mandatory). See the position parameter.

align String R Align the text to the right or left. Use values <tt>R</tt> or
<tt>L</tt>.

clip boolea
n

 false Indicates to clip data in the field if it exceeds the allowed length
when using fixed length.

column
Name

String Name of the header column (optional). Uses the name of the
property as default. Only applicable when CsvRecord has
generateHeaderColumns = true

decimal
Separa
tor

String Decimal Separator to be used with BigDecimal number

default
Value

String Field’s default value in case no value is set

delimit
er

String Optional delimiter to be used if the field has a variable length

groupin
gSepar
ator

String Grouping Separator to be used with BigDecimal number when
we would like to format/parse to number with grouping e.g.
123,456.789

@Link
public class Client {

}

CHAPTER 57. BINDY

1003

implied
Decima
lSepara
tor

boolea
n

 false Indicates if there is a decimal point implied at a specified
location

length int 0 Length of the data block (number of characters) if the record is
set to a fixed length

length
Pos

int 0 Identifies a data field in the record that defines the expected
fixed length for this field

metho
d

String Method name to call to apply such customization on DataField.
This must be the method on the datafield itself or you must
provide static fully qualified name of the class’s method e.g: see
unit test
org.apache.camel.dataformat.bindy.csv.BindySimpleCsvFunctio
nWithExternalMethodTest.replaceToBar

name String Name of the field (optional)

paddin
gChar

char The char to pad with if the record is set to a fixed length

pattern String Pattern that the Java formatter (SimpleDateFormat by
example) will use to transform the data (optional). If using
pattern, then setting locale on bindy data format is
recommended. Either set to a known locale such as "us" or use
"default" to use platform default locale.

positio
n

int 0 Position of the field in the output message generated (should
start from 1). Must be used when the position of the field in the
CSV generated (output message) must be different compare to
input position (pos). See the pos parameter.

precisi
on

int 0 precision of the \{@link java.math.BigDecimal} number to be
created

require
d

boolea
n

 false Indicates if the field is mandatory

roundin
g

String CEILIN
G

Round mode to be used to round/scale a BigDecimal Values :
UP, DOWN, CEILING, FLOOR, HALF_UP,
HALF_DOWN,HALF_EVEN, UNNECESSARY e.g : Number =
123456.789, Precision = 2, Rounding = CEILING Result :
123456.79

Param
eter
name

Type Requir
ed

Default
value

Info

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1004

timezo
ne

String Timezone to be used.

trim boolea
n

 false Indicates if the value should be trimmed

Param
eter
name

Type Requir
ed

Default
value

Info

case 1 : pos

This parameter/attribute represents the position of the field in the CSV record.

Position

As you can see in this example the position starts at 1 but continues at 5 in the class Order. The numbers
from 2 to 4 are defined in the class Client (see here after).

Position continues in another model class

case 2 : pattern

The pattern allows to enrich or validates the format of your data

Pattern

@CsvRecord(separator = ",")
public class Order {

 @DataField(pos = 1)
 private int orderNr;

 @DataField(pos = 5)
 private String isinCode;

}

public class Client {

 @DataField(pos = 2)
 private String clientNr;

 @DataField(pos = 3)
 private String firstName;

 @DataField(pos = 4)
 private String lastName;
}

@CsvRecord(separator = ",")
public class Order {

CHAPTER 57. BINDY

1005

case 3 : precision

The precision is helpful when you want to define the decimal part of your number.

Precision

case 4 : Position is different in output

The position attribute will inform bindy how to place the field in the CSV record generated. By default,
the position used corresponds to the position defined with the attribute pos. If the position is different
(that means that we have an asymetric processus comparing marshaling from unmarshaling) then we

 @DataField(pos = 1)
 private int orderNr;

 @DataField(pos = 5)
 private String isinCode;

 @DataField(name = "Name", pos = 6)
 private String instrumentName;

 @DataField(pos = 7, precision = 2)
 private BigDecimal amount;

 @DataField(pos = 8)
 private String currency;

 // pattern used during parsing or when the date is created
 @DataField(pos = 9, pattern = "dd-MM-yyyy")
 private Date orderDate;
}

@CsvRecord(separator = ",")
public class Order {

 @DataField(pos = 1)
 private int orderNr;

 @Link
 private Client client;

 @DataField(pos = 5)
 private String isinCode;

 @DataField(name = "Name", pos = 6)
 private String instrumentName;

 @DataField(pos = 7, precision = 2)
 private BigDecimal amount;

 @DataField(pos = 8)
 private String currency;

 @DataField(pos = 9, pattern = "dd-MM-yyyy")
 private Date orderDate;
}

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1006

can use position to indicate this.

Here is an example:

Position is different in output

This attribute of the annotation @DataField must be used in combination with attribute isOrdered =
true of the annotation @CsvRecord.

case 5 : required

If a field is mandatory, simply use the attribute required set to true.

Required

If this field is not present in the record, then an error will be raised by the parser with the following

@CsvRecord(separator = ",", isOrdered = true)
public class Order {

 // Positions of the fields start from 1 and not from 0

 @DataField(pos = 1, position = 11)
 private int orderNr;

 @DataField(pos = 2, position = 10)
 private String clientNr;

 @DataField(pos = 3, position = 9)
 private String firstName;

 @DataField(pos = 4, position = 8)
 private String lastName;

 @DataField(pos = 5, position = 7)
 private String instrumentCode;

 @DataField(pos = 6, position = 6)
 private String instrumentNumber;
}

@CsvRecord(separator = ",")
public class Order {

 @DataField(pos = 1)
 private int orderNr;

 @DataField(pos = 2, required = true)
 private String clientNr;

 @DataField(pos = 3, required = true)
 private String firstName;

 @DataField(pos = 4, required = true)
 private String lastName;
}

CHAPTER 57. BINDY

1007

If this field is not present in the record, then an error will be raised by the parser with the following
information :

Some fields are missing (optional or mandatory), line :

case 6 : trim

If a field has leading and/or trailing spaces which should be removed before they are processed, simply
use the attribute trim set to true.

Trim

case 7 : defaultValue

If a field is not defined then uses the value indicated by the defaultValue attribute.

Default value

case 8 : columnName

Specifies the column name for the property only if @CsvRecord has annotation
generateHeaderColumns = true.

@CsvRecord(separator = ",")
public class Order {

 @DataField(pos = 1, trim = true)
 private int orderNr;

 @DataField(pos = 2, trim = true)
 private Integer clientNr;

 @DataField(pos = 3, required = true)
 private String firstName;

 @DataField(pos = 4)
 private String lastName;
}

@CsvRecord(separator = ",")
public class Order {

 @DataField(pos = 1)
 private int orderNr;

 @DataField(pos = 2)
 private Integer clientNr;

 @DataField(pos = 3, required = true)
 private String firstName;

 @DataField(pos = 4, defaultValue = "Barin")
 private String lastName;
}

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1008

Column Name

This attribute is only applicable to optional fields.

57.2.4. 4. FixedLengthRecord

The FixedLengthRecord annotation is used to identified the root class of the model. It represents a
record = "a line of a file/message containing data fixed length (number of characters) formatted" and
can be linked to several children model classes. This format is a bit particular because data of a field can
be aligned to the right or to the left.

When the size of the data does not fill completely the length of the field, we can then add 'pad'
characters.

Annotation
name

Record type Level

FixedLengthRe
cord

fixed Class

Param
eter
name

Type Requir
ed

Default
value

Info

countG
raphem
e

boolea
n

 false Indicates how chars are counted

crlf String WINDO
WS

Character to be used to add a carriage return after each record
(optional). Possible values: WINDOWS, UNIX, MAC, or custom.
This option is used only during marshalling, whereas
unmarshalling uses system default JDK provided line delimiter
unless eol is customized.

@CsvRecord(separator = ",", generateHeaderColumns = true)
public class Order {

 @DataField(pos = 1)
 private int orderNr;

 @DataField(pos = 5, columnName = "ISIN")
 private String isinCode;

 @DataField(name = "Name", pos = 6)
 private String instrumentName;
}

CHAPTER 57. BINDY

1009

eol String Character to be used to process considering end of line after
each record while unmarshalling (optional - default: "", which
help default JDK provided line delimiter to be used unless any
other line delimiter provided) This option is used only during
unmarshalling, where marshalling uses system default provided
line delimiter as "WINDOWS" unless any other value is provided.

footer Class void Indicates that the record(s) of this type may be followed by a
single footer record at the end of the file

header Class void Indicates that the record(s) of this type may be preceded by a
single header record at the beginning of in the file

ignore
Missing
Chars

boolea
n

 false Indicates whether too short lines will be ignored

ignore
Trailing
Chars

boolea
n

 false Indicates that characters beyond the last mapped filed can be
ignored when unmarshalling / parsing. This annotation is
associated to the root class of the model and must be declared
one time.

length int 0 The fixed length of the record (number of characters). It means
that the record will always be that long padded with \
{#paddingChar()}'s

name String Name describing the record (optional)

paddin
gChar

char The char to pad with.

skipFo
oter

boolea
n

 false Configures the data format to skip marshalling / unmarshalling
of the footer record. Configure this parameter on the primary
record (e.g., not the header or footer).

skipHe
ader

boolea
n

 false Configures the data format to skip marshalling / unmarshalling
of the header record. Configure this parameter on the primary
record (e.g., not the header or footer).

Param
eter
name

Type Requir
ed

Default
value

Info

A record may not be both a header/footer and a primary fixed-length record.

case 1 : Simple fixed length record

This simple example shows how to design the model to parse/format a fixed message

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1010

10A9PaulineMISINXD12345678BUYShare2500.45USD01-08-2009

Fixed-simple

case 2 : Fixed length record with alignment and padding

This more elaborated example show how to define the alignment for a field and how to assign a padding
character which is ' ' here:

10A9 PaulineM ISINXD12345678BUYShare2500.45USD01-08-2009

Fixed-padding-align

@FixedLengthRecord(length=54, paddingChar=' ')
public static class Order {

 @DataField(pos = 1, length=2)
 private int orderNr;

 @DataField(pos = 3, length=2)
 private String clientNr;

 @DataField(pos = 5, length=7)
 private String firstName;

 @DataField(pos = 12, length=1, align="L")
 private String lastName;

 @DataField(pos = 13, length=4)
 private String instrumentCode;

 @DataField(pos = 17, length=10)
 private String instrumentNumber;

 @DataField(pos = 27, length=3)
 private String orderType;

 @DataField(pos = 30, length=5)
 private String instrumentType;

 @DataField(pos = 35, precision = 2, length=7)
 private BigDecimal amount;

 @DataField(pos = 42, length=3)
 private String currency;

 @DataField(pos = 45, length=10, pattern = "dd-MM-yyyy")
 private Date orderDate;
}

@FixedLengthRecord(length=60, paddingChar=' ')
public static class Order {

 @DataField(pos = 1, length=2)
 private int orderNr;

CHAPTER 57. BINDY

1011

case 3 : Field padding

Sometimes, the default padding defined for record cannnot be applied to the field as we have a number
format where we would like to pad with '0' instead of ' '. In this case, you can use in the model the
attribute paddingChar on @DataField to set this value.

10A9 PaulineM ISINXD12345678BUYShare000002500.45USD01-08-2009

Fixed-padding-field

 @DataField(pos = 3, length=2)
 private String clientNr;

 @DataField(pos = 5, length=9)
 private String firstName;

 @DataField(pos = 14, length=5, align="L") // align text to the LEFT zone of the block
 private String lastName;

 @DataField(pos = 19, length=4)
 private String instrumentCode;

 @DataField(pos = 23, length=10)
 private String instrumentNumber;

 @DataField(pos = 33, length=3)
 private String orderType;

 @DataField(pos = 36, length=5)
 private String instrumentType;

 @DataField(pos = 41, precision = 2, length=7)
 private BigDecimal amount;

 @DataField(pos = 48, length=3)
 private String currency;

 @DataField(pos = 51, length=10, pattern = "dd-MM-yyyy")
 private Date orderDate;
}

@FixedLengthRecord(length = 65, paddingChar = ' ')
public static class Order {

 @DataField(pos = 1, length = 2)
 private int orderNr;

 @DataField(pos = 3, length = 2)
 private String clientNr;

 @DataField(pos = 5, length = 9)
 private String firstName;

 @DataField(pos = 14, length = 5, align = "L")

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1012

case 4: Fixed length record with delimiter

Fixed-length records sometimes have delimited content within the record. The firstName and lastName
fields are delimited with the ̂ character in the following example:

10A9Pauline^M^ISINXD12345678BUYShare000002500.45USD01-08-2009

Fixed-delimited

 private String lastName;

 @DataField(pos = 19, length = 4)
 private String instrumentCode;

 @DataField(pos = 23, length = 10)
 private String instrumentNumber;

 @DataField(pos = 33, length = 3)
 private String orderType;

 @DataField(pos = 36, length = 5)
 private String instrumentType;

 @DataField(pos = 41, precision = 2, length = 12, paddingChar = '0')
 private BigDecimal amount;

 @DataField(pos = 53, length = 3)
 private String currency;

 @DataField(pos = 56, length = 10, pattern = "dd-MM-yyyy")
 private Date orderDate;
}

@FixedLengthRecord
public static class Order {

 @DataField(pos = 1, length = 2)
 private int orderNr;

 @DataField(pos = 2, length = 2)
 private String clientNr;

 @DataField(pos = 3, delimiter = "^")
 private String firstName;

 @DataField(pos = 4, delimiter = "^")
 private String lastName;

 @DataField(pos = 5, length = 4)
 private String instrumentCode;

 @DataField(pos = 6, length = 10)
 private String instrumentNumber;

 @DataField(pos = 7, length = 3)

CHAPTER 57. BINDY

1013

The pos value(s) in a fixed-length record may optionally be defined using ordinal, sequential values
instead of precise column numbers.

case 5 : Fixed length record with record-defined field length

Occasionally a fixed-length record may contain a field that define the expected length of another field
within the same record. In the following example the length of the instrumentNumber field value is
defined by the value of instrumentNumberLen field in the record.

10A9Pauline^M^ISIN10XD12345678BUYShare000002500.45USD01-08-2009

Fixed-delimited

 private String orderType;

 @DataField(pos = 8, length = 5)
 private String instrumentType;

 @DataField(pos = 9, precision = 2, length = 12, paddingChar = '0')
 private BigDecimal amount;

 @DataField(pos = 10, length = 3)
 private String currency;

 @DataField(pos = 11, length = 10, pattern = "dd-MM-yyyy")
 private Date orderDate;
}

@FixedLengthRecord
public static class Order {

 @DataField(pos = 1, length = 2)
 private int orderNr;

 @DataField(pos = 2, length = 2)
 private String clientNr;

 @DataField(pos = 3, delimiter = "^")
 private String firstName;

 @DataField(pos = 4, delimiter = "^")
 private String lastName;

 @DataField(pos = 5, length = 4)
 private String instrumentCode;

 @DataField(pos = 6, length = 2, align = "R", paddingChar = '0')
 private int instrumentNumberLen;

 @DataField(pos = 7, lengthPos=6)
 private String instrumentNumber;

 @DataField(pos = 8, length = 3)
 private String orderType;

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1014

case 6 : Fixed length record with header and footer

Bindy will discover fixed-length header and footer records that are configured as part of the model –
provided that the annotated classes exist either in the same package as the primary
@FixedLengthRecord class, or within one of the configured scan packages. The following text
illustrates two fixed-length records that are bracketed by a header record and footer record.

101-08-2009
10A9 PaulineM ISINXD12345678BUYShare000002500.45USD01-08-2009
10A9 RichN ISINXD12345678BUYShare000002700.45USD01-08-2009
9000000002

Fixed-header-and-footer-main-class

 @DataField(pos = 9, length = 5)
 private String instrumentType;

 @DataField(pos = 10, precision = 2, length = 12, paddingChar = '0')
 private BigDecimal amount;

 @DataField(pos = 11, length = 3)
 private String currency;

 @DataField(pos = 12, length = 10, pattern = "dd-MM-yyyy")
 private Date orderDate;
}

@FixedLengthRecord(header = OrderHeader.class, footer = OrderFooter.class)
public class Order {

 @DataField(pos = 1, length = 2)
 private int orderNr;

 @DataField(pos = 2, length = 2)
 private String clientNr;

 @DataField(pos = 3, length = 9)
 private String firstName;

 @DataField(pos = 4, length = 5, align = "L")
 private String lastName;

 @DataField(pos = 5, length = 4)
 private String instrumentCode;

 @DataField(pos = 6, length = 10)
 private String instrumentNumber;

 @DataField(pos = 7, length = 3)
 private String orderType;

 @DataField(pos = 8, length = 5)
 private String instrumentType;

 @DataField(pos = 9, precision = 2, length = 12, paddingChar = '0')

CHAPTER 57. BINDY

1015

case 7 : Skipping content when parsing a fixed length record

It is common to integrate with systems that provide fixed-length records containing more information
than needed for the target use case. It is useful in this situation to skip the declaration and parsing of
those fields that we do not need. To accomodate this, Bindy will skip forward to the next mapped field
within a record if the pos value of the next declared field is beyond the cursor position of the last parsed
field. Using absolute pos locations for the fields of interest (instead of ordinal values) causes Bindy to
skip content between two fields.

Similarly, it is possible that none of the content beyond some field is of interest. In this case, you can tell
Bindy to skip parsing of everything beyond the last mapped field by setting the ignoreTrailingChars
property on the @FixedLengthRecord declaration.

57.2.5. 5. Message

 private BigDecimal amount;

 @DataField(pos = 10, length = 3)
 private String currency;

 @DataField(pos = 11, length = 10, pattern = "dd-MM-yyyy")
 private Date orderDate;
}

@FixedLengthRecord
public class OrderHeader {
 @DataField(pos = 1, length = 1)
 private int recordType = 1;

 @DataField(pos = 2, length = 10, pattern = "dd-MM-yyyy")
 private Date recordDate;
}

@FixedLengthRecord
public class OrderFooter {

 @DataField(pos = 1, length = 1)
 private int recordType = 9;

 @DataField(pos = 2, length = 9, align = "R", paddingChar = '0')
 private int numberOfRecordsInTheFile;
}

@FixedLengthRecord(ignoreTrailingChars = true)
public static class Order {

 @DataField(pos = 1, length = 2)
 private int orderNr;

 @DataField(pos = 3, length = 2)
 private String clientNr;

 // any characters that appear beyond the last mapped field will be ignored

}

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1016

The Message annotation is used to identified the class of your model who will contain key value pairs
fields. This kind of format is used mainly in Financial Exchange Protocol Messages (FIX). Nevertheless,
this annotation can be used for any other format where data are identified by keys. The key pair values
are separated each other by a separator which can be a special character like a tab delimitor (unicode
representation : \u0009) or a start of heading (unicode representation : \u0001)

NOTE

To work with FIX messages, the model must contain a Header and Trailer classes linked to
the root message class which could be a Order class. This is not mandatory but will be
very helpful when you will use camel-bindy in combination with camel-fix which is a Fix
gateway based on quickFix project .

Annotation
name

Record type Level

Message key value pair Class

Param
eter
name

Type Requir
ed

Default
value

Info

keyVal
uePair
Separa
tor

String ✓ Key value pair separator is used to split the values from their
keys (mandatory). Can be '\u0001', '\u0009', '#', or 'anything'.

pairSep
arator

String ✓ Pair separator used to split the key value pairs in tokens
(mandatory). Can be '=', ';', or 'anything'.

crlf String WINDO
WS

Character to be used to add a carriage return after each record
(optional). Possible values = WINDOWS, UNIX, MAC, or custom.
If you specify a value other than the three listed before, the value
you enter (custom) will be used as the CRLF character(s).

isOrder
ed

boolea
n

 false Indicates if the message must be ordered in output. This
annotation is associated to the message class of the model and
must be declared one time.

name String Name describing the message (optional)

type String FIX type is used to define the type of the message (e.g. FIX, EMX, …)
(optional)

version String 4.1 version defines the version of the message (e.g. 4.1, …) (optional)

case 1 : separator = 'u0001'

The separator used to segregate the key value pair fields in a FIX message is the ASCII 01 character or in

CHAPTER 57. BINDY

1017

The separator used to segregate the key value pair fields in a FIX message is the ASCII 01 character or in
unicode format \u0001. This character must be escaped a second time to avoid a java runtime error.
Here is an example :

8=FIX.4.1 9=20 34=1 35=0 49=INVMGR 56=BRKR 1=BE.CHM.001 11=CHM0001-01 22=4 ...

and how to use the annotation:

FIX - message

Look at test cases

The ASCII character like tab, … cannot be displayed in WIKI page. So, have a look to the test case of
camel-bindy to see exactly how the FIX message looks like
(https://github.com/apache/camel/blob/main/components/camel-bindy/src/test/data/fix/fix.txt) and
the Order, Trailer, Header classes (https://github.com/apache/camel/blob/main/components/camel-
bindy/src/test/java/org/apache/camel/dataformat/bindy/model/fix/simple/Order.java).

57.2.6. 6. KeyValuePairField

The KeyValuePairField annotation defines the property of a key value pair field. Each KeyValuePairField
is identified by a tag (= key) and its value associated, a type (string, int, date, …), optionaly a pattern and
if the field is required.

Annotation
name

Record type Level

KeyValuePairFi
eld

Key Value Pair
- FIX

Property

Param
eter
name

Type Requir
ed

Default
value

Info

tag int ✓ tag identifying the field in the message (mandatory) - must be
unique

implied
Decima
lSepara
tor

boolea
n

 false Camel 2.11: Indicates if there is a decimal point implied at
a specified location

name String name of the field (optional)

pattern String pattern that the formater will use to transform the data
(optional)

@Message(keyValuePairSeparator = "=", pairSeparator = "\u0001", type="FIX", version="4.1")
public class Order {

}

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1018

https://github.com/apache/camel/blob/main/components/camel-bindy/src/test/data/fix/fix.txt
https://github.com/apache/camel/blob/main/components/camel-bindy/src/test/java/org/apache/camel/dataformat/bindy/model/fix/simple/Order.java

positio
n

int 0 Position of the field in the message generated - must be used
when the position of the key/tag in the FIX message must be
different

precisi
on

int 0 precision of the BigDecimal number to be created

require
d

boolea
n

 false Indicates if the field is mandatory

timezo
ne

String Timezone to be used.

Param
eter
name

Type Requir
ed

Default
value

Info

case 1 : tag

This parameter represents the key of the field in the message:

FIX message - Tag

case 2 : Different position in output

If the tags/keys that we will put in the FIX message must be sorted according to a predefine order, then
use the attribute position of the annotation @KeyValuePairField.

@Message(keyValuePairSeparator = "=", pairSeparator = "\u0001", type="FIX", version="4.1")
public class Order {

 @Link Header header;

 @Link Trailer trailer;

 @KeyValuePairField(tag = 1) // Client reference
 private String Account;

 @KeyValuePairField(tag = 11) // Order reference
 private String ClOrdId;

 @KeyValuePairField(tag = 22) // Fund ID type (Sedol, ISIN, ...)
 private String IDSource;

 @KeyValuePairField(tag = 48) // Fund code
 private String SecurityId;

 @KeyValuePairField(tag = 54) // Movement type (1 = Buy, 2 = sell)
 private String Side;

 @KeyValuePairField(tag = 58) // Free text
 private String Text;
}

CHAPTER 57. BINDY

1019

FIX message - Tag - sort

57.2.7. 7. Section

In FIX message of fixed length records, it is common to have different sections in the representation of
the information : header, body and section. The purpose of the annotation @Section is to inform bindy
about which class of the model represents the header (= section 1), body (= section 2) and footer (=
section 3)

Only one attribute/parameter exists for this annotation.

Annotation
name

Record type Level

Section FIX Class

Param
eter
name

Type Requir
ed

Default
value

Info

number int ✓ Number of the section

case 1 : Section

Definition of the header section:

FIX message - Section - Header

@Message(keyValuePairSeparator = "=", pairSeparator = "\\u0001", type = "FIX", version = "4.1",
isOrdered = true)
public class Order {

 @Link Header header;

 @Link Trailer trailer;

 @KeyValuePairField(tag = 1, position = 1) // Client reference
 private String account;

 @KeyValuePairField(tag = 11, position = 3) // Order reference
 private String clOrdId;
}

@Section(number = 1)
public class Header {

 @KeyValuePairField(tag = 8, position = 1) // Message Header
 private String beginString;

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1020

Definition of the body section:

FIX message - Section - Body

Definition of the footer section:

FIX message - Section - Footer

57.2.8. 8. OneToMany

The purpose of the annotation @OneToMany is to allow to work with a List<?> field defined a POJO
class or from a record containing repetitive groups.

NOTE

Restrictions for OneToMany
Be careful, the one to many of bindy does not allow to handle repetitions defined on
several levels of the hierarchy.

The relation OneToMany ONLY WORKS in the following cases :

Reading a FIX message containing repetitive groups (= group of tags/keys)

Generating a CSV with repetitive data

 @KeyValuePairField(tag = 9, position = 2) // Checksum
 private int bodyLength;
}

@Section(number = 2)
@Message(keyValuePairSeparator = "=", pairSeparator = "\\u0001", type = "FIX", version = "4.1",
isOrdered = true)
public class Order {

 @Link Header header;

 @Link Trailer trailer;

 @KeyValuePairField(tag = 1, position = 1) // Client reference
 private String account;

 @KeyValuePairField(tag = 11, position = 3) // Order reference
 private String clOrdId;

@Section(number = 3)
public class Trailer {

 @KeyValuePairField(tag = 10, position = 1)
 // CheckSum
 private int checkSum;

 public int getCheckSum() {
 return checkSum;
 }

CHAPTER 57. BINDY

1021

Annotation
name

Record type Level

OneToMany all Property

Param
eter
name

Type Requir
ed

Default
value

Info

mappe
dTo

String Class name associated to the type of the List<Type of the Class>

case 1 : Generating CSV with repetitive data

Here is the CSV output that we want :

Claus,Ibsen,Camel in Action 1,2010,35
Claus,Ibsen,Camel in Action 2,2012,35
Claus,Ibsen,Camel in Action 3,2013,35
Claus,Ibsen,Camel in Action 4,2014,35

NOTE

The repetitive data concern the title of the book and its publication date while first, last
name and age are common and the classes used to modeling this. The Author class
contains a List of Book.

Generate CSV with repetitive data

@CsvRecord(separator=",")
public class Author {

 @DataField(pos = 1)
 private String firstName;

 @DataField(pos = 2)
 private String lastName;

 @OneToMany
 private List<Book> books;

 @DataField(pos = 5)
 private String Age;
}

public class Book {

 @DataField(pos = 3)
 private String title;

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1022

case 2 : Reading FIX message containing group of tags/keys

Here is the message that we would like to process in our model :

8=FIX 4.19=2034=135=049=INVMGR56=BRKR
1=BE.CHM.00111=CHM0001-0158=this is a camel - bindy test
22=448=BE000124567854=1
22=548=BE000987654354=2
22=648=BE000999999954=3
10=220

Tags 22, 48 and 54 are repeated.

And the code:

Reading FIX message containing group of tags/keys

57.2.9. 9. BindyConverter

 @DataField(pos = 4)
 private String year;
}

public class Order {

 @Link Header header;

 @Link Trailer trailer;

 @KeyValuePairField(tag = 1) // Client reference
 private String account;

 @KeyValuePairField(tag = 11) // Order reference
 private String clOrdId;

 @KeyValuePairField(tag = 58) // Free text
 private String text;

 @OneToMany(mappedTo =
"org.apache.camel.dataformat.bindy.model.fix.complex.onetomany.Security")
 List<Security> securities;
}

public class Security {

 @KeyValuePairField(tag = 22) // Fund ID type (Sedol, ISIN, ...)
 private String idSource;

 @KeyValuePairField(tag = 48) // Fund code
 private String securityCode;

 @KeyValuePairField(tag = 54) // Movement type (1 = Buy, 2 = sell)
 private String side;
}

CHAPTER 57. BINDY

1023

The purpose of the annotation @BindyConverter is define a converter to be used on field level. The
provided class must implement the Format interface.

57.2.10. 10. FormatFactories

The purpose of the annotation @FormatFactories is to define a set of converters at record-level. The
provided classes must implement the FormatFactoryInterface interface.

@FixedLengthRecord(length = 10, paddingChar = ' ')
public static class DataModel {
 @DataField(pos = 1, length = 10, trim = true)
 @BindyConverter(CustomConverter.class)
 public String field1;
}

public static class CustomConverter implements Format<String> {
 @Override
 public String format(String object) throws Exception {
 return (new StringBuilder(object)).reverse().toString();
 }

 @Override
 public String parse(String string) throws Exception {
 return (new StringBuilder(string)).reverse().toString();
 }
}

@CsvRecord(separator = ",")
@FormatFactories({OrderNumberFormatFactory.class})
public static class Order {

 @DataField(pos = 1)
 private OrderNumber orderNr;

 @DataField(pos = 2)
 private String firstName;
}

public static class OrderNumber {
 private int orderNr;

 public static OrderNumber ofString(String orderNumber) {
 OrderNumber result = new OrderNumber();
 result.orderNr = Integer.valueOf(orderNumber);
 return result;
 }
}

public static class OrderNumberFormatFactory extends AbstractFormatFactory {

 {
 supportedClasses.add(OrderNumber.class);
 }

 @Override

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1024

57.3. SUPPORTED DATATYPES

The DefaultFormatFactory makes formatting of the following datatype available by returning an
instance of the interface FormatFactoryInterface based on the provided FormattingOptions:

BigDecimal

BigInteger

Boolean

Byte

Character

Date

Double

Enums

Float

Integer

LocalDate

LocalDateTime

LocalTime

Long

Short

String

The DefaultFormatFactory can be overridden by providing an instance of FactoryRegistry in the registry
in use (e.g. spring or JNDI).

57.4. USING THE JAVA DSL

 public Format<?> build(FormattingOptions formattingOptions) {
 return new Format<OrderNumber>() {
 @Override
 public String format(OrderNumber object) throws Exception {
 return String.valueOf(object.orderNr);
 }

 @Override
 public OrderNumber parse(String string) throws Exception {
 return OrderNumber.ofString(string);
 }
 };
 }
}

CHAPTER 57. BINDY

1025

The next step instantiates the DataFormat bindy class associated with this record type and providing a
class as a parameter.

For example the following uses the class BindyCsvDataFormat (which corresponds to the class
associated with the CSV record type) which is configured with com.acme.model.MyModel.class to
initialize the model objects configured in this package.

57.4.1. Setting locale

Bindy supports configuring the locale on the dataformat, such as

Or to use the platform default locale then use "default" as the locale name.

57.4.2. Unmarshaling

Alternatively, you can use a named reference to a data format which can then be defined in your Registry
e.g. your Spring XML file:

The Camel route will pick-up files in the inbox directory, unmarshall CSV records into a collection of
model objects and send the collection
to the route referenced by handleOrders.

The collection returned is a List of Map objects. Each Map within the list contains the model objects
that were marshalled out of each line of the CSV. The reason behind this is that each line can correspond
to more than one object. This can be confusing when you simply expect one object to be returned per
line.

Each object can be retrieve using its class name.

DataFormat bindy = new BindyCsvDataFormat(com.acme.model.MyModel.class);

BindyCsvDataFormat bindy = new BindyCsvDataFormat(com.acme.model.MyModel.class);

bindy.setLocale("us");

BindyCsvDataFormat bindy = new BindyCsvDataFormat(com.acme.model.MyModel.class);

bindy.setLocale("default");

from("file://inbox")
 .unmarshal(bindy)
 .to("direct:handleOrders");

from("file://inbox")
 .unmarshal("myBindyDataFormat")
 .to("direct:handleOrders");

List<Map<String, Object>> unmarshaledModels = (List<Map<String, Object>>)
exchange.getIn().getBody();

int modelCount = 0;
for (Map<String, Object> model : unmarshaledModels) {
 for (String className : model.keySet()) {

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1026

Assuming that you want to extract a single Order object from this map for processing in a route, you
could use a combination of a Splitter and a Processor as per the following:

Take care of the fact that Bindy uses CHARSET_NAME property or the CHARSET_NAME header as
define in the Exchange interface to do a characterset conversion of the inputstream received for
unmarshalling. In some producers (e.g. file-endpoint) you can define a characterset. The characterset
conversion can already been done by this producer. Sometimes you need to remove this property or
header from the exchange before sending it to the unmarshal. If you don’t remove it the conversion
might be done twice which might lead to unwanted results.

57.4.3. Marshaling

To generate CSV records from a collection of model objects, you create the following route :

57.5. USING SPRING XML

This is really easy to use Spring as your favorite DSL language to declare the routes to be used for
camel-bindy. The following example shows two routes where the first will pick-up records from files,
unmarshal the content and bind it to their model. The result is then send to a pojo (doing nothing
special) and place them into a queue.

The second route will extract the pojos from the queue and marshal the content to generate a file
containing the CSV record.

 Object obj = model.get(className);
 LOG.info("Count : " + modelCount + ", " + obj.toString());
 }
 modelCount++;
}

LOG.info("Total CSV records received by the csv bean : " + modelCount);

from("file://inbox")
 .unmarshal(bindy)
 .split(body())
 .process(new Processor() {
 public void process(Exchange exchange) throws Exception {
 Message in = exchange.getIn();
 Map<String, Object> modelMap = (Map<String, Object>) in.getBody();
 in.setBody(modelMap.get(Order.class.getCanonicalName()));
 }
 })
 .to("direct:handleSingleOrder")
 .end();

from("file://inbox?charset=Cp922")
 .removeProperty(Exchange.CHARSET_NAME)
 .unmarshal("myBindyDataFormat")
 .to("direct:handleOrders");

from("direct:handleOrders")
 .marshal(bindy)
 .to("file://outbox")

CHAPTER 57. BINDY

1027

Spring DSL

NOTE

Please verify that your model classes implements serializable otherwise the queue
manager will raise an error.

57.6. DEPENDENCIES

To use Bindy in your camel routes you need to add the a dependency on camel-bindy which implements
this data format.

If you use maven, add the following to your pom.xml, substituting the version number for the latest
version (see the download page for the latest version).

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://camel.apache.org/schema/spring
 http://camel.apache.org/schema/spring/camel-spring.xsd">

 <!-- Queuing engine - ActiveMq - work locally in mode virtual memory -->
 <bean id="activemq" class="org.apache.activemq.camel.component.ActiveMQComponent">
 <property name="brokerURL" value="vm://localhost:61616"/>
 </bean>

 <camelContext xmlns="http://camel.apache.org/schema/spring">
 <dataFormats>
 <bindy id="bindyDataformat" type="Csv" classType="org.apache.camel.bindy.model.Order"/>
 </dataFormats>

 <route>
 <from uri="file://src/data/csv/?noop=true" />
 <unmarshal ref="bindyDataformat" />
 <to uri="bean:csv" />
 <to uri="activemq:queue:in" />
 </route>

 <route>
 <from uri="activemq:queue:in" />
 <marshal ref="bindyDataformat" />
 <to uri="file://src/data/csv/out/" />
 </route>
 </camelContext>
</beans>

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-bindy</artifactId>

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1028

57.7. SPRING BOOT AUTO-CONFIGURATION

When using bindy-csv with Spring Boot make sure to use the following Maven dependency to have
support for auto configuration:

The component supports 18 options, which are listed below.

Name Description Defaul
t

Type

camel.dataformat
.bindy-csv.allow-
empty-stream

Whether to allow empty streams in the unmarshal
process. If true, no exception will be thrown when a
body without records is provided.

false Boolean

camel.dataformat
.bindy-csv.class-
type

Name of model class to use. String

camel.dataformat
.bindy-
csv.enabled

Whether to enable auto configuration of the bindy-
csv data format. This is enabled by default.

 Boolean

camel.dataformat
.bindy-csv.locale

To configure a default locale to use, such as us for
united states. To use the JVM platform default locale
then use the name default.

 String

camel.dataformat
.bindy-csv.type

Whether to use Csv, Fixed, or KeyValue. String

camel.dataformat
.bindy-
csv.unwrap-
single-instance

When unmarshalling should a single instance be
unwrapped and returned instead of wrapped in a
java.util.List.

true Boolean

camel.dataformat
.bindy-
fixed.allow-
empty-stream

Whether to allow empty streams in the unmarshal
process. If true, no exception will be thrown when a
body without records is provided.

false Boolean

 <version>3.14.5.redhat-00018</version>
</dependency>

<dependency>
 <groupId>org.apache.camel.springboot</groupId>
 <artifactId>camel-bindy-starter</artifactId>
 <version>3.14.5.redhat-00032</version>
 <!-- Use your Camel Spring Boot version -->
</dependency>

CHAPTER 57. BINDY

1029

camel.dataformat
.bindy-
fixed.class-type

Name of model class to use. String

camel.dataformat
.bindy-
fixed.enabled

Whether to enable auto configuration of the bindy-
fixed data format. This is enabled by default.

 Boolean

camel.dataformat
.bindy-
fixed.locale

To configure a default locale to use, such as us for
united states. To use the JVM platform default locale
then use the name default.

 String

camel.dataformat
.bindy-fixed.type

Whether to use Csv, Fixed, or KeyValue. String

camel.dataformat
.bindy-
fixed.unwrap-
single-instance

When unmarshalling should a single instance be
unwrapped and returned instead of wrapped in a
java.util.List.

true Boolean

camel.dataformat
.bindy-kvp.allow-
empty-stream

Whether to allow empty streams in the unmarshal
process. If true, no exception will be thrown when a
body without records is provided.

false Boolean

camel.dataformat
.bindy-kvp.class-
type

Name of model class to use. String

camel.dataformat
.bindy-
kvp.enabled

Whether to enable auto configuration of the bindy-
kvp data format. This is enabled by default.

 Boolean

camel.dataformat
.bindy-kvp.locale

To configure a default locale to use, such as us for
united states. To use the JVM platform default locale
then use the name default.

 String

camel.dataformat
.bindy-kvp.type

Whether to use Csv, Fixed, or KeyValue. String

camel.dataformat
.bindy-
kvp.unwrap-
single-instance

When unmarshalling should a single instance be
unwrapped and returned instead of wrapped in a
java.util.List.

true Boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1030

CHAPTER 58. HL7
The HL7 component is used for working with the HL7 MLLP protocol and HL7 v2 messages using the
HAPI library.

This component supports the following:

HL7 MLLP codec for Mina

HL7 MLLP codec for Netty

Type Converter from/to HAPI and String

HL7 DataFormat using the HAPI library

Maven users will need to add the following dependency to their pom.xml for this component:

58.1. HL7 MLLP PROTOCOL

HL7 is often used with the HL7 MLLP protocol, which is a text based TCP socket based protocol. This
component ships with a Mina and Netty Codec that conforms to the MLLP protocol so you can easily
expose an HL7 listener accepting HL7 requests over the TCP transport layer. To expose a HL7 listener
service, the camel-mina or link:camel-netty component is used with the HL7MLLPCodec (mina) or
HL7MLLPNettyDecoder/HL7MLLPNettyEncoder (Netty).

HL7 MLLP codec can be configured as follows:

Name Default
Value

Description

startByte 0x0b The start byte spanning the HL7 payload.

endByte1 0x1c The first end byte spanning the HL7 payload.

endByte2 0x0d The 2nd end byte spanning the HL7 payload.

charset JVM
Default

The encoding (a charset name) to use for the codec. If not provided, Camel
will use the JVM default Charset.

produceString true If true, the codec creates a string using the defined charset. If false, the
codec sends a plain byte array into the route, so that the HL7 Data Format
can determine the actual charset from the HL7 message content.

convertLFtoCR false Will convert \n to \r (0x0d, 13 decimal) as HL7 stipulates \r as segment
terminators. The HAPI library requires the use of \r.

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-hl7</artifactId>
 <version>3.14.5.redhat-00018</version>
 <!-- use the same version as your Camel core version -->
</dependency>

CHAPTER 58. HL7

1031

http://www.hl7.org/implement/standards/product_brief.cfm?product_id=185
http://hl7api.sourceforge.net
https://camel.apache.org/components/3.14.x/mina-component.html
https://camel.apache.org/components/3.14.x/netty-component.html
https://camel.apache.org/components/3.14.x/mina-component.html
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/camel_spring_boot_reference_3.14/index#csb-camel-netty-component-starter
http://docs.oracle.com/javase/6/docs/api/java/nio/charset/Charset.html
http://docs.oracle.com/javase/6/docs/api/java/nio/charset/Charset.html#defaultCharset()

58.1.1. Exposing an HL7 listener using Mina

In the Spring XML file, we configure a mina endpoint to listen for HL7 requests using TCP on port 8888:

sync=true indicates that this listener is synchronous and therefore will return a HL7 response to the
caller. The HL7 codec is setup with codec=#hl7codec. Note that hl7codec is just a Spring bean ID, so it
could be named mygreatcodecforhl7 or whatever. The codec is also set up in the Spring XML file:

The endpoint hl7MinaLlistener can then be used in a route as a consumer, as this Java DSL example
illustrates:

This is a very simple route that will listen for HL7 and route it to a service named patientLookupService.
This is also Spring bean ID, configured in the Spring XML as:

The business logic can be implemented in POJO classes that do not depend on Camel, as shown here:

58.1.2. Exposing an HL7 listener using Netty (available from Camel 2.15 onwards)

In the Spring XML file, we configure a netty endpoint to listen for HL7 requests using TCP on port 8888:

sync=true indicates that this listener is synchronous and therefore will return a HL7 response to the
caller. The HL7 codec is setup with encoders=#hl7encoder*and*decoders=#hl7decoder. Note that
hl7encoder and hl7decoder are just bean IDs, so they could be named differently. The beans can be set
in the Spring XML file:

<endpoint id="hl7MinaListener" uri="mina:tcp://localhost:8888?sync=true&codec=#hl7codec"/>

<bean id="hl7codec" class="org.apache.camel.component.hl7.HL7MLLPCodec">
 <property name="charset" value="iso-8859-1"/>
</bean>

from("hl7MinaListener")
 .bean("patientLookupService");

<bean id="patientLookupService"
class="com.mycompany.healthcare.service.PatientLookupService"/>

import ca.uhn.hl7v2.HL7Exception;
import ca.uhn.hl7v2.model.Message;
import ca.uhn.hl7v2.model.v24.segment.QRD;

public class PatientLookupService {
 public Message lookupPatient(Message input) throws HL7Exception {
 QRD qrd = (QRD)input.get("QRD");
 String patientId = qrd.getWhoSubjectFilter(0).getIDNumber().getValue();

 // find patient data based on the patient id and create a HL7 model object with the response
 Message response = ... create and set response data
 return response
 }

<endpoint id="hl7NettyListener" uri="netty:tcp://localhost:8888?
sync=true&encoders=#hl7encoder&decoders=#hl7decoder"/>

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1032

The endpoint hl7NettyListener can then be used in a route as a consumer, as this Java DSL example
illustrates:

58.2. HL7 MODEL USING JAVA.LANG.STRING OR BYTE[]

The HL7 MLLP codec uses plain String as its data format. Camel uses its Type Converter to convert
to/from strings to the HAPI HL7 model objects, but you can use the plain String objects if you prefer, for
instance if you wish to parse the data yourself.

You can also let both the Mina and Netty codecs use a plain byte[] as its data format by setting the
produceString property to false. The Type Converter is also capable of converting the byte[] to/from
HAPI HL7 model objects.

58.3. HL7V2 MODEL USING HAPI

The HL7v2 model uses Java objects from the HAPI library. Using this library, you can encode and
decode from the EDI format (ER7) that is mostly used with HL7v2.

The sample below is a request to lookup a patient with the patient ID 0101701234.

Using the HL7 model you can work with a ca.uhn.hl7v2.model.Message object, e.g. to retrieve a
patient ID:

This is powerful when combined with the HL7 listener, because you don’t have to work with byte[],
String or any other simple object formats. You can just use the HAPI HL7v2 model objects. If you know
the message type in advance, you can be more type-safe:

58.4. HL7 DATAFORMAT

The camel-hl7 JAR ships with a HL7 data format that can be used to marshal or unmarshal HL7 model
objects.

The HL7 dataformat supports 1 options, which are listed below.

<bean id="hl7decoder" class="org.apache.camel.component.hl7.HL7MLLPNettyDecoderFactory"/>
<bean id="hl7encoder" class="org.apache.camel.component.hl7.HL7MLLPNettyEncoderFactory"/>

from("hl7NettyListener")
 .bean("patientLookupService");

MSH|^~\\&|MYSENDER|MYRECEIVER|MYAPPLICATION||200612211200||QRY^A19|1234|P|2.4
QRD|200612211200|R|I|GetPatient|||1^RD|0101701234|DEM||

Message msg = exchange.getIn().getBody(Message.class);
QRD qrd = (QRD)msg.get("QRD");
String patientId = qrd.getWhoSubjectFilter(0).getIDNumber().getValue(); // 0101701234

QRY_A19 msg = exchange.getIn().getBody(QRY_A19.class);
String patientId = msg.getQRD().getWhoSubjectFilter(0).getIDNumber().getValue();

CHAPTER 58. HL7

1033

Name Default Java
Type

Description

validate Boole
an

Whether to validate the HL7 message Is by default true.

marshal = from Message to byte stream (can be used when responding using the HL7 MLLP
codec)

unmarshal = from byte stream to Message (can be used when receiving streamed data from
the HL7 MLLP

To use the data format, simply instantiate an instance and invoke the marshal or unmarshal operation in
the route builder:

In the sample above, the HL7 is marshalled from a HAPI Message object to a byte stream and put on a
JMS queue.
The next example is the opposite:

Here we unmarshal the byte stream into a HAPI Message object that is passed to our patient lookup
service.

58.4.1. Segment separators

Unmarshalling does not automatically fix segment separators anymore by converting \n to \r. If you
need this conversion, org.apache.camel.component.hl7.HL7#convertLFToCR provides a handy
Expression for this purpose.

58.4.2. Charset

Both marshal and unmarshal evaluate the charset provided in the field MSH-18. If this field is empty,
by default the charset contained in the corresponding Camel charset property/header is assumed. You
can even change this default behavior by overriding the guessCharsetName method when inheriting
from the HL7DataFormat class.

There is a shorthand syntax in Camel for well-known data formats that are commonly used. Then you
don’t need to create an instance of the HL7DataFormat object:

 DataFormat hl7 = new HL7DataFormat();

 from("direct:hl7in")
 .marshal(hl7)
 .to("jms:queue:hl7out");

 DataFormat hl7 = new HL7DataFormat();

 from("jms:queue:hl7out")
 .unmarshal(hl7)
 .to("patientLookupService");

 from("direct:hl7in")
 .marshal().hl7()
 .to("jms:queue:hl7out");

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1034

58.5. MESSAGE HEADERS

The unmarshal operation adds these fields from the MSH segment as headers on the Camel message:

Key MSH
field

Example

CamelHL7SendingApplication MSH-
3

MYSERVER

CamelHL7SendingFacility MSH-
4

MYSERVERAPP

CamelHL7ReceivingApplication MSH-
5

MYCLIENT

CamelHL7ReceivingFacility MSH-
6

MYCLIENTAPP

CamelHL7Timestamp MSH-
7

20071231235900

CamelHL7Security MSH-
8

null

CamelHL7MessageType MSH-
9-1

ADT

CamelHL7TriggerEvent MSH-
9-2

A01

CamelHL7MessageControl MSH-
10

1234

CamelHL7ProcessingId MSH-
11

P

CamelHL7VersionId MSH-
12

2.4

CamelHL7Context `` contains the that was used to parse the
message

 from("jms:queue:hl7out")
 .unmarshal().hl7()
 .to("patientLookupService");

CHAPTER 58. HL7

1035

CamelHL7Charset MSH-
18

UNICODE UTF-8

Key MSH
field

Example

All headers except CamelHL7Context are String types. If a header value is missing, its value is null.

58.6. DEPENDENCIES

To use HL7 in your Camel routes you’ll need to add a dependency on camel-hl7 listed above, which
implements this data format.

The HAPI library is split into a base library and several structure libraries, one for each HL7v2 message
version:

v2.1 structures library

v2.2 structures library

v2.3 structures library

v2.3.1 structures library

v2.4 structures library

v2.5 structures library

v2.5.1 structures library

v2.6 structures library

By default camel-hl7 only references the HAPI base library. Applications are responsible for including
structure libraries themselves. For example, if an application works with HL7v2 message versions 2.4 and
2.5 then the following dependencies must be added:

Alternatively, an OSGi bundle containing the base library, all structures libraries and required
dependencies (on the bundle classpath) can be downloaded from the central Maven repository.

<dependency>
 <groupId>ca.uhn.hapi</groupId>
 <artifactId>hapi-structures-v24</artifactId>
 <version>2.2</version>
 <!-- use the same version as your hapi-base version -->
</dependency>
<dependency>
 <groupId>ca.uhn.hapi</groupId>
 <artifactId>hapi-structures-v25</artifactId>
 <version>2.2</version>
 <!-- use the same version as your hapi-base version -->
</dependency>

<dependency>
 <groupId>ca.uhn.hapi</groupId>

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1036

https://repo1.maven.org/maven2/ca/uhn/hapi/hapi-base
https://repo1.maven.org/maven2/ca/uhn/hapi/hapi-structures-v21
https://repo1.maven.org/maven2/ca/uhn/hapi/hapi-structures-v22
https://repo1.maven.org/maven2/ca/uhn/hapi/hapi-structures-v23
https://repo1.maven.org/maven2/ca/uhn/hapi/hapi-structures-v231
https://repo1.maven.org/maven2/ca/uhn/hapi/hapi-structures-v24
https://repo1.maven.org/maven2/ca/uhn/hapi/hapi-structures-v25
https://repo1.maven.org/maven2/ca/uhn/hapi/hapi-structures-v251
https://repo1.maven.org/maven2/ca/uhn/hapi/hapi-structures-v26
https://repo1.maven.org/maven2/ca/uhn/hapi/hapi-base
https://repo1.maven.org/maven2/ca/uhn/hapi/hapi-osgi-base

58.7. SPRING BOOT AUTO-CONFIGURATION

When using hl7 with Spring Boot make sure to use the following Maven dependency to have support for
auto configuration:

The component supports 4 options, which are listed below.

Name Description Defaul
t

Type

camel.dataformat
.hl7.enabled

Whether to enable auto configuration of the hl7 data
format. This is enabled by default.

 Boolean

camel.dataformat
.hl7.validate

Whether to validate the HL7 message Is by default
true.

true Boolean

camel.language.hl
7terser.enabled

Whether to enable auto configuration of the hl7terser
language. This is enabled by default.

 Boolean

camel.language.hl
7terser.trim

Whether to trim the value to remove leading and
trailing whitespaces and line breaks.

true Boolean

 <artifactId>hapi-osgi-base</artifactId>
 <version>2.2</version>
</dependency>

<dependency>
 <groupId>org.apache.camel.springboot</groupId>
 <artifactId>camel-hl7-starter</artifactId>
 <version>3.14.5.redhat-00032</version>
 <!-- Use your Camel Spring Boot version -->
</dependency>

CHAPTER 58. HL7

1037

CHAPTER 59. JACKSONXML
Jackson XML is a Data Format which uses the Jackson library with the XMLMapper extension to
unmarshal an XML payload into Java objects or to marshal Java objects into an XML payload. NOTE: If
you are familiar with Jackson, this XML data format behaves in the same way as its JSON counterpart,
and thus can be used with classes annotated for JSON serialization/deserialization.

This extension also mimics JAXB’s "Code first" approach.

This data format relies on Woodstox (especially for features like pretty printing), a fast and efficient
XML processor.

59.1. JACKSONXML OPTIONS

The JacksonXML dataformat supports 15 options, which are listed below.

Name Default Java
Type

Description

xmlMapper String Lookup and use the existing XmlMapper with the given id.

prettyPrint false Boole
an

To enable pretty printing output nicely formatted. Is by default
false.

unmarshalType String Class name of the java type to use when unmarshalling.

jsonView String When marshalling a POJO to JSON you might want to exclude
certain fields from the JSON output. With Jackson you can use
JSON views to accomplish this. This option is to refer to the
class which has JsonView annotations.

include String If you want to marshal a pojo to JSON, and the pojo has some
fields with null values. And you want to skip these null values,
you can set this option to NON_NULL.

allowJmsType Boole
an

Used for JMS users to allow the JMSType header from the JMS
spec to specify a FQN classname to use to unmarshal to.

collectionType String Refers to a custom collection type to lookup in the registry to
use. This option should rarely be used, but allows to use different
collection types than java.util.Collection based as default.

useList Boole
an

To unmarshal to a List of Map or a List of Pojo.

from("activemq:My.Queue").
 unmarshal().jacksonxml().
 to("mqseries:Another.Queue");

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1038

https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson-dataformat-xml
https://github.com/FasterXML/jackson-dataformat-xml/blob/master/README.md
https://github.com/FasterXML/Woodstox

enableJaxbAnnot
ationModule

 Boole
an

Whether to enable the JAXB annotations module when using
jackson. When enabled then JAXB annotations can be used by
Jackson.

moduleClassNam
es

 String To use custom Jackson modules
com.fasterxml.jackson.databind.Module specified as a String
with FQN class names. Multiple classes can be separated by
comma.

moduleRefs String To use custom Jackson modules referred from the Camel
registry. Multiple modules can be separated by comma.

enableFeatures String Set of features to enable on the Jackson
com.fasterxml.jackson.databind.ObjectMapper. The features
should be a name that matches a enum from
com.fasterxml.jackson.databind.SerializationFeature,
com.fasterxml.jackson.databind.DeserializationFeature, or
com.fasterxml.jackson.databind.MapperFeature Multiple
features can be separated by comma.

disableFeatures String Set of features to disable on the Jackson
com.fasterxml.jackson.databind.ObjectMapper. The features
should be a name that matches a enum from
com.fasterxml.jackson.databind.SerializationFeature,
com.fasterxml.jackson.databind.DeserializationFeature, or
com.fasterxml.jackson.databind.MapperFeature Multiple
features can be separated by comma.

allowUnmarshallT
ype

 Boole
an

If enabled then Jackson is allowed to attempt to use the
CamelJacksonUnmarshalType header during the unmarshalling.
This should only be enabled when desired to be used.

contentTypeHead
er

 Boole
an

Whether the data format should set the Content-Type header
with the type from the data format. For example application/xml
for data formats marshalling to XML, or application/json for data
formats marshalling to JSON.

Name Default Java
Type

Description

59.1.1. Using Jackson XML in Spring DSL

When using Data Format in Spring DSL you need to declare the data formats first. This is done in the
DataFormats XML tag.

 <dataFormats>
 <!-- here we define a Xml data format with the id jack and that it should use the TestPojo as
the class type when
 doing unmarshal. The unmarshalType is optional, if not provided Camel will use a Map as
the type -->
 <jacksonxml id="jack" unmarshalType="org.apache.camel.component.jacksonxml.TestPojo"/>
 </dataFormats>

CHAPTER 59. JACKSONXML

1039

And then you can refer to this id in the route:

59.1.2. Excluding POJO fields from marshalling

When marshalling a POJO to XML you might want to exclude certain fields from the XML output. With
Jackson you can use JSON views to accomplish this. First create one or more marker classes.

Use the marker classes with the @JsonView annotation to include/exclude certain fields. The
annotation also works on getters.

Finally use the Camel JacksonXMLDataFormat to marshall the above POJO to XML.

Note that the weight field is missing in the resulting XML:

59.2. INCLUDE/EXCLUDE FIELDS USING THE JSONVIEW ATTRIBUTE
WITH `JACKSONXML`DATAFORMAT

As an example of using this attribute you can instead of:

Directly specify your JSON view inside the Java DSL as:

And the same in XML DSL:

59.3. SETTING SERIALIZATION INCLUDE OPTION

If you want to marshal a pojo to XML, and the pojo has some fields with null values. And you want to skip
these null values, then you need to set either an annotation on the pojo,

 <route>
 <from uri="direct:back"/>
 <unmarshal><custom ref="jack"/></unmarshal>
 <to uri="mock:reverse"/>
 </route>

<pojo age="30" weight="70"/>

JacksonXMLDataFormat ageViewFormat = new JacksonXMLDataFormat(TestPojoView.class,
Views.Age.class);
from("direct:inPojoAgeView").
 marshal(ageViewFormat);

from("direct:inPojoAgeView").
 marshal().jacksonxml(TestPojoView.class, Views.Age.class);

<from uri="direct:inPojoAgeView"/>
 <marshal>
 <jacksonxml unmarshalType="org.apache.camel.component.jacksonxml.TestPojoView"
jsonView="org.apache.camel.component.jacksonxml.Views$Age"/>
 </marshal>

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1040

https://github.com/FasterXML/jackson-annotations/blob/master/src/main/java/com/fasterxml/jackson/annotation/JsonView.java
https://github.com/FasterXML/jackson-annotations/blob/master/src/main/java/com/fasterxml/jackson/annotation/JsonView.java

But this requires you to include that annotation in your pojo source code. You can also configure the
Camel JacksonXMLDataFormat to set the include option, as shown below:

Or from XML DSL you configure this as

59.4. UNMARSHALLING FROM XML TO POJO WITH DYNAMIC CLASS
NAME

If you use jackson to unmarshal XML to POJO, then you can now specify a header in the message that
indicate which class name to unmarshal to.
The header has key CamelJacksonUnmarshalType if that header is present in the message, then
Jackson will use that as FQN for the POJO class to unmarshal the XML payload as.

 For JMS end users there is the JMSType header from the JMS spec that
indicates that also. To enable support for JMSType you would need to
turn that on, on the jackson data format as shown:

Or from XML DSL you configure this as

59.5. UNMARSHALLING FROM XML TO LIST<MAP> OR LIST<POJO>

If you are using Jackson to unmarshal XML to a list of map/pojo, you can now specify this by setting
useList="true" or use the org.apache.camel.component.jacksonxml.ListJacksonXMLDataFormat.
For example with Java you can do as shown below:

@JsonInclude(Include.NON_NULL)
public class MyPojo {
 ...
}

JacksonXMLDataFormat format = new JacksonXMLDataFormat();
format.setInclude("NON_NULL");

 <dataFormats>
 <jacksonxml id="jacksonxml" include="NON_NULL"/>
 </dataFormats>

JacksonDataFormat format = new JacksonDataFormat();
format.setAllowJmsType(true);

 <dataFormats>
 <jacksonxml id="jacksonxml" allowJmsType="true"/>
 </dataFormats>

JacksonXMLDataFormat format = new ListJacksonXMLDataFormat();
// or
JacksonXMLDataFormat format = new JacksonXMLDataFormat();
format.useList();
// and you can specify the pojo class type also
format.setUnmarshalType(MyPojo.class);

CHAPTER 59. JACKSONXML

1041

And if you use XML DSL then you configure to use list using useList attribute as shown below:

And you can specify the pojo type also

59.6. USING CUSTOM JACKSON MODULES

You can use custom Jackson modules by specifying the class names of those using the
moduleClassNames option as shown below.

When using moduleClassNames then the custom jackson modules are not configured, by created using
default constructor and used as-is. If a custom module needs any custom configuration, then an
instance of the module can be created and configured, and then use modulesRefs to refer to the
module as shown below:

 Multiple modules can be specified separated by comma, such as
moduleRefs="myJacksonModule,myOtherModule"

59.7. ENABLING OR DISABLE FEATURES USING JACKSON

Jackson has a number of features you can enable or disable, which its ObjectMapper uses. For example
to disable failing on unknown properties when marshalling, you can configure this using the
disableFeatures:

You can disable multiple features by separating the values using comma. The values for the features
must be the name of the enums from Jackson from the following enum classes

 <dataFormats>
 <jacksonxml id="jack" useList="true"/>
 </dataFormats>

 <dataFormats>
 <jacksonxml id="jack" useList="true" unmarshalType="com.foo.MyPojo"/>
 </dataFormats>

 <dataFormats>
 <jacksonxml id="jack" useList="true" unmarshalType="com.foo.MyPojo"
moduleClassNames="com.foo.MyModule,com.foo.MyOtherModule"/>
 </dataFormats>

 <bean id="myJacksonModule" class="com.foo.MyModule">
 ... // configure the module as you want
 </bean>

 <dataFormats>
 <jacksonxml id="jacksonxml" useList="true" unmarshalType="com.foo.MyPojo"
moduleRefs="myJacksonModule"/>
 </dataFormats>

 <dataFormats>
 <jacksonxml id="jacksonxml" unmarshalType="com.foo.MyPojo"
disableFeatures="FAIL_ON_UNKNOWN_PROPERTIES"/>
 </dataFormats>

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1042

com.fasterxml.jackson.databind.SerializationFeature

com.fasterxml.jackson.databind.DeserializationFeature

com.fasterxml.jackson.databind.MapperFeature

To enable a feature use the enableFeatures options instead.

From Java code you can use the type safe methods from camel-jackson module:

59.8. CONVERTING MAPS TO POJO USING JACKSON

Jackson ObjectMapper can be used to convert maps to POJO objects. Jackson component comes with
the data converter that can be used to convert java.util.Map instance to non-String, non-primitive and
non-Number objects.

If there is a single ObjectMapper instance available in the Camel registry, it will used by the converter to
perform the conversion. Otherwise the default mapper will be used.

59.9. FORMATTED XML MARSHALLING (PRETTY-PRINTING)

Using the prettyPrint option one can output a well formatted XML while marshalling:

And in Java DSL:

Please note that there are 5 different overloaded jacksonxml() DSL methods which support the
prettyPrint option in combination with other settings for unmarshalType, jsonView etc.

59.10. DEPENDENCIES

To use Jackson XML in your camel routes you need to add the dependency on camel-jacksonxml which
implements this data format. If you use maven, add the following to your pom.xml, substituting the
version number for the latest version (see the download page for the latest version).

JacksonDataFormat df = new JacksonDataFormat(MyPojo.class);
df.disableFeature(DeserializationFeature.FAIL_ON_UNKNOWN_PROPERTIES);
df.disableFeature(DeserializationFeature.FAIL_ON_NULL_FOR_PRIMITIVES);

Map<String, Object> invoiceData = new HashMap<String, Object>();
invoiceData.put("netValue", 500);
producerTemplate.sendBody("direct:mapToInvoice", invoiceData);
...
// Later in the processor
Invoice invoice = exchange.getIn().getBody(Invoice.class);

 <dataFormats>
 <jacksonxml id="jack" prettyPrint="true"/>
 </dataFormats>

from("direct:inPretty").marshal().jacksonxml(true);

<dependency>

CHAPTER 59. JACKSONXML

1043

59.11. SPRING BOOT AUTO-CONFIGURATION

When using jacksonxml with Spring Boot make sure to use the following Maven dependency to have
support for auto configuration:

The component supports 16 options, which are listed below.

Name Description Defaul
t

Type

camel.dataformat
.jacksonxml.allow-
jms-type

Used for JMS users to allow the JMSType header
from the JMS spec to specify a FQN classname to
use to unmarshal to.

false Boolean

camel.dataformat
.jacksonxml.allow-
unmarshall-type

If enabled then Jackson is allowed to attempt to use
the CamelJacksonUnmarshalType header during the
unmarshalling. This should only be enabled when
desired to be used.

false Boolean

camel.dataformat
.jacksonxml.collec
tion-type

Refers to a custom collection type to lookup in the
registry to use. This option should rarely be used, but
allows to use different collection types than
java.util.Collection based as default.

 String

camel.dataformat
.jacksonxml.conte
nt-type-header

Whether the data format should set the Content-
Type header with the type from the data format. For
example application/xml for data formats marshalling
to XML, or application/json for data formats
marshalling to JSON.

true Boolean

camel.dataformat
.jacksonxml.disabl
e-features

Set of features to disable on the Jackson
com.fasterxml.jackson.databind.ObjectMapper. The
features should be a name that matches a enum from
com.fasterxml.jackson.databind.SerializationFeature,
com.fasterxml.jackson.databind.DeserializationFeatur
e, or com.fasterxml.jackson.databind.MapperFeature
Multiple features can be separated by comma.

 String

 <groupId>org.apache.camel</groupId>
 <artifactId>camel-jacksonxml</artifactId>
 <version>3.14.5.redhat-00018</version>
 <!-- use the same version as your Camel core version -->
</dependency>

<dependency>
 <groupId>org.apache.camel.springboot</groupId>
 <artifactId>camel-jacksonxml-starter</artifactId>
 <version>3.14.5.redhat-00032</version>
 <!-- Use your Camel Spring Boot version -->
</dependency>

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1044

camel.dataformat
.jacksonxml.enabl
e-features

Set of features to enable on the Jackson
com.fasterxml.jackson.databind.ObjectMapper. The
features should be a name that matches a enum from
com.fasterxml.jackson.databind.SerializationFeature,
com.fasterxml.jackson.databind.DeserializationFeatur
e, or com.fasterxml.jackson.databind.MapperFeature
Multiple features can be separated by comma.

 String

camel.dataformat
.jacksonxml.enabl
e-jaxb-
annotation-
module

Whether to enable the JAXB annotations module
when using jackson. When enabled then JAXB
annotations can be used by Jackson.

false Boolean

camel.dataformat
.jacksonxml.enabl
ed

Whether to enable auto configuration of the
jacksonxml data format. This is enabled by default.

 Boolean

camel.dataformat
.jacksonxml.includ
e

If you want to marshal a pojo to JSON, and the pojo
has some fields with null values. And you want to skip
these null values, you can set this option to
NON_NULL.

 String

camel.dataformat
.jacksonxml.json-
view

When marshalling a POJO to JSON you might want
to exclude certain fields from the JSON output. With
Jackson you can use JSON views to accomplish this.
This option is to refer to the class which has
JsonView annotations.

 String

camel.dataformat
.jacksonxml.modu
le-class-names

To use custom Jackson modules
com.fasterxml.jackson.databind.Module specified as
a String with FQN class names. Multiple classes can
be separated by comma.

 String

camel.dataformat
.jacksonxml.modu
le-refs

To use custom Jackson modules referred from the
Camel registry. Multiple modules can be separated by
comma.

 String

camel.dataformat
.jacksonxml.prett
y-print

To enable pretty printing output nicely formatted. Is
by default false.

false Boolean

camel.dataformat
.jacksonxml.unma
rshal-type

Class name of the java type to use when
unmarshalling.

 String

Name Description Defaul
t

Type

CHAPTER 59. JACKSONXML

1045

camel.dataformat
.jacksonxml.use-
list

To unmarshal to a List of Map or a List of Pojo. false Boolean

camel.dataformat
.jacksonxml.xml-
mapper

Lookup and use the existing XmlMapper with the
given id.

 String

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1046

CHAPTER 60. JAXB
JAXB is a Data Format which uses the JAXB2 XML marshalling standard which is included in Java 6 to
unmarshal an XML payload into Java objects or to marshal Java objects into an XML payload.

60.1. OPTIONS

The JAXB dataformat supports 19 options, which are listed below.

Name Default Java
Type

Description

contextPath String Required Package name where your JAXB classes are located.

contextPathIsCla
ssName

 Boole
an

This can be set to true to mark that the contextPath is referring
to a classname and not a package name.

schema String To validate against an existing schema. Your can use the prefix
classpath:, file: or http: to specify how the resource should by
resolved. You can separate multiple schema files by using the ','
character.

schemaSeverityL
evel

 Enum Sets the schema severity level to use when validating against a
schema. This level determines the minimum severity error that
triggers JAXB to stop continue parsing. The default value of 0
(warning) means that any error (warning, error or fatal error) will
trigger JAXB to stop. There are the following three levels:
0=warning, 1=error, 2=fatal error.

Enum values:

0

1

2

prettyPrint Boole
an

To enable pretty printing output nicely formatted. Is by default
false.

objectFactory Boole
an

Whether to allow using ObjectFactory classes to create the
POJO classes during marshalling. This only applies to POJO
classes that has not been annotated with JAXB and providing
jaxb.index descriptor files.

ignoreJAXBElem
ent

 Boole
an

Whether to ignore JAXBElement elements - only needed to be
set to false in very special use-cases.

CHAPTER 60. JAXB

1047

mustBeJAXBEle
ment

 Boole
an

Whether marhsalling must be java objects with JAXB
annotations. And if not then it fails. This option can be set to
false to relax that, such as when the data is already in XML
format.

filterNonXmlChar
s

 Boole
an

To ignore non xml characheters and replace them with an empty
space.

encoding String To overrule and use a specific encoding.

fragment Boole
an

To turn on marshalling XML fragment trees. By default JAXB
looks for XmlRootElement annotation on given class to operate
on whole XML tree. This is useful but not always - sometimes
generated code does not have XmlRootElement annotation,
sometimes you need unmarshall only part of tree. In that case
you can use partial unmarshalling. To enable this behaviours you
need set property partClass. Camel will pass this class to JAXB’s
unmarshaler.

partClass String Name of class used for fragment parsing. See more details at
the fragment option.

partNamespace String XML namespace to use for fragment parsing. See more details
at the fragment option.

namespacePrefix
Ref

 String When marshalling using JAXB or SOAP then the JAXB
implementation will automatic assign namespace prefixes, such
as ns2, ns3, ns4 etc. To control this mapping, Camel allows you
to refer to a map which contains the desired mapping.

xmlStreamWriter
Wrapper

 String To use a custom xml stream writer.

schemaLocation String To define the location of the schema.

noNamespaceSch
emaLocation

 String To define the location of the namespaceless schema.

jaxbProviderProp
erties

 String Refers to a custom java.util.Map to lookup in the registry
containing custom JAXB provider properties to be used with the
JAXB marshaller.

contentTypeHead
er

 Boole
an

Whether the data format should set the Content-Type header
with the type from the data format. For example application/xml
for data formats marshalling to XML, or application/json for data
formats marshalling to JSON.

Name Default Java
Type

Description

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1048

60.2. USING THE JAVA DSL

For example the following uses a named DataFormat of jaxb which is configured with a number of Java
package names to initialize the JAXBContext.

You can if you prefer use a named reference to a data format which can then be defined in your Registry
such as via your Spring XML file. e.g.

60.3. USING SPRING XML

The following example shows how to configure the JaxbDataFormat and use it in multiple routes.

Multiple context paths

It is possible to use this data format with more than one context path. You can specify context path
using : as separator, for example com.mycompany:com.mycompany2. Note that this is handled by
JAXB implementation and might change if you use different vendor than RI.

DataFormat jaxb = new JaxbDataFormat("com.acme.model");

from("activemq:My.Queue").
 unmarshal(jaxb).
 to("mqseries:Another.Queue");

from("activemq:My.Queue").
 unmarshal("myJaxbDataType").
 to("mqseries:Another.Queue");

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
 http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/camel-spring.xsd">

 <bean id="myJaxb" class="org.apache.camel.converter.jaxb.JaxbDataFormat">
 <property name="contextPath" value="org.apache.camel.example"/>
 </bean>

 <camelContext xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="direct:start"/>
 <marshal><custom ref="myJaxb"/></marshal>
 <to uri="direct:marshalled"/>
 </route>
 <route>
 <from uri="direct:marshalled"/>
 <unmarshal><custom ref="myJaxb"/></unmarshal>
 <to uri="mock:result"/>
 </route>
 </camelContext>

</beans>

CHAPTER 60. JAXB

1049

http://java.sun.com/javase/6/docs/api/javax/xml/bind/JAXBContext.html

60.4. PARTIAL MARSHALLING/UNMARSHALLING

JAXB 2 supports marshalling and unmarshalling XML tree fragments. By default JAXB looks for
@XmlRootElement annotation on given class to operate on whole XML tree. This is useful but not
always - sometimes generated code does not have @XmlRootElement annotation, sometimes you need
unmarshall only part of tree.

In that case you can use partial unmarshalling. To enable this behaviours you need set property
partClass. Camel will pass this class to JAXB’s unmarshaler. If JaxbConstants.JAXB_PART_CLASS is
set as one of headers, (even if partClass property is set on DataFormat), the property on DataFormat is
surpassed and the one set in the headers is used.

For marshalling you have to add partNamespace attribute with QName of destination namespace.
Example of Spring DSL you can find above.

If JaxbConstants.JAXB_PART_NAMESPACE is set as one of headers, (even if partNamespace
property is set on DataFormat), the property on DataFormat is surpassed and the one set in the headers
is used. While setting partNamespace through JaxbConstants.JAXB_PART_NAMESPACE, please
note that you need to specify its value \{[namespaceUri]}[localPart]

60.5. FRAGMENT

JaxbDataFormat has new property fragment which can set the the Marshaller.JAXB_FRAGMENT
encoding property on the JAXB Marshaller. If you don’t want the JAXB Marshaller to generate the XML
declaration, you can set this option to be true. The default value of this property is false.

60.6. IGNORING THE NONXML CHARACTER

JaxbDataFormat supports to ignore the NonXML Character, you just need to set the filterNonXmlChars
property to be true, JaxbDataFormat will replace the NonXML character with " " when it is marshaling or
unmarshaling the message. You can also do it by setting the Exchange property
Exchange.FILTER_NON_XML_CHARS.

 JDK 1.5 JDK 1.6+

Filtering in use StAX
API
and
implem
entatio
n

No

Filtering not in use StAX
API
only

No

This feature has been tested with Woodstox 3.2.9 and Sun JDK 1.6 StAX implementation.

 ...
 .setHeader(JaxbConstants.JAXB_PART_NAMESPACE, simple("
{http://www.camel.apache.org/jaxb/example/address/1}address"));
 ...

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1050

http://www.w3.org/TR/2004/REC-xml-20040204/#NT-Char

JaxbDataFormat now allows you to customize the XMLStreamWriter used to marshal the stream to
XML. Using this configuration, you can add your own stream writer to completely remove, escape, or
replace non-xml characters.

The following example shows using the Spring DSL and also enabling Camel’s NonXML filtering:

60.7. WORKING WITH THE OBJECTFACTORY

If you use XJC to create the java class from the schema, you will get an ObjectFactory for you JAXB
context. Since the ObjectFactory uses JAXBElement to hold the reference of the schema and element
instance value, jaxbDataformat will ignore the JAXBElement by default and you will get the element
instance value instead of the JAXBElement object form the unmarshaled message body.

If you want to get the JAXBElement object form the unmarshaled message body, you need to set the
JaxbDataFormat object’s ignoreJAXBElement property to be false.

60.8. SETTING ENCODING

You can set the encoding option to use when marshalling. Its the Marshaller.JAXB_ENCODING
encoding property on the JAXB Marshaller.

You can setup which encoding to use when you declare the JAXB data format. You can also provide the
encoding in the Exchange property Exchange.CHARSET_NAME. This property will overrule the
encoding set on the JAXB data format.

In this Spring DSL we have defined to use iso-8859-1 as the encoding.

60.9. CONTROLLING NAMESPACE PREFIX MAPPING

When marshalling using JAXB or SOAP then the JAXB implementation will automatic assign namespace
prefixes, such as ns2, ns3, ns4 etc. To control this mapping, Camel allows you to refer to a map which
contains the desired mapping.

Notice this requires having JAXB-RI 2.1 or better (from SUN) on the classpath, as the mapping
functionality is dependent on the implementation of JAXB, whether its supported.

For example in Spring XML we can define a Map with the mapping. In the mapping file below, we map
SOAP to use soap as prefix. While our custom namespace "http://www.mycompany.com/foo/2" is not
using any prefix.

To use this in JAXB or SOAP you refer to this map, using the namespacePrefixRef attribute as shown

 JaxbDataFormat customWriterFormat = new JaxbDataFormat("org.apache.camel.foo.bar");
 customWriterFormat.setXmlStreamWriterWrapper(new TestXmlStreamWriter());

<bean id="testXmlStreamWriterWrapper" class="org.apache.camel.jaxb.TestXmlStreamWriter"/>
<jaxb filterNonXmlChars="true" contextPath="org.apache.camel.foo.bar"
xmlStreamWriterWrapper="#testXmlStreamWriterWrapper" />

 <util:map id="myMap">
 <entry key="http://www.w3.org/2003/05/soap-envelope" value="soap"/>
 <!-- we dont want any prefix for our namespace -->
 <entry key="http://www.mycompany.com/foo/2" value=""/>
 </util:map>

CHAPTER 60. JAXB

1051

http://java.sun.com/javase/6/docs/api/javax/xml/bind/JAXBElement.html
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/camel_spring_boot_reference_3.14/index#csb-camel-jaxb-dataformat-starter
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/camel_spring_boot_reference_3.14/index#csb-camel-soap-dataformat-starter

To use this in JAXB or SOAP you refer to this map, using the namespacePrefixRef attribute as shown
below. Then Camel will lookup in the Registry a java.util.Map with the id "myMap", which was what we
defined above.

60.10. SCHEMA VALIDATION

The JAXB Data Format supports validation by marshalling and unmarshalling from/to XML. Your can
use the prefix classpath:, file: or http: to specify how the resource should by resolved. You can separate
multiple schema files by using the ',' character.

Using the Java DSL, you can configure it in the following way:

You can do the same using the XML DSL:

Camel will create and pool the underling SchemaFactory instances on the fly, because the
SchemaFactory shipped with the JDK is not thread safe.
However, if you have a SchemaFactory implementation which is thread safe, you can configure the
JAXB data format to use this one:

60.11. SCHEMA LOCATION

The JAXB Data Format supports to specify the SchemaLocation when marshaling the XML.

Using the Java DSL, you can configure it in the following way:

You can do the same using the XML DSL:

60.12. MARSHAL DATA THAT IS ALREADY XML

 <marshal>
 <soapjaxb version="1.2" contextPath="com.mycompany.foo" namespacePrefixRef="myMap"/>
 </marshal>

JaxbDataFormat jaxbDataFormat = new JaxbDataFormat();
jaxbDataFormat.setContextPath(Person.class.getPackage().getName());
jaxbDataFormat.setSchema("classpath:person.xsd,classpath:address.xsd");

<marshal>
 <jaxb id="jaxb" schema="classpath:person.xsd,classpath:address.xsd"/>
</marshal>

JaxbDataFormat jaxbDataFormat = new JaxbDataFormat();
jaxbDataFormat.setSchemaFactory(thradSafeSchemaFactory);

JaxbDataFormat jaxbDataFormat = new JaxbDataFormat();
jaxbDataFormat.setContextPath(Person.class.getPackage().getName());
jaxbDataFormat.setSchemaLocation("schema/person.xsd");

<marshal>
 <jaxb id="jaxb" schemaLocation="schema/person.xsd"/>
</marshal>

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1052

https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/camel_spring_boot_reference_3.14/index#csb-camel-jaxb-dataformat-starter
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/camel_spring_boot_reference_3.14/index#csb-camel-soap-dataformat-starter

The JAXB marshaller requires that the message body is JAXB compatible, eg its a JAXBElement, eg a
java instance that has JAXB annotations, or extend JAXBElement. There can be situations where the
message body is already in XML, eg from a String type.

There is a new option mustBeJAXBElement you can set to false, to relax this check, so the JAXB
marshaller only attempts to marshal JAXBElements (javax.xml.bind.JAXBIntrospector#isElement
returns true). And in those situations the marshaller fallbacks to marshal the message body as-is.

60.13. DEPENDENCIES

To use JAXB in your camel routes you need to add the a dependency on camel-jaxb which implements
this data format.

If you use maven, add the following to your pom.xml, substituting the version number for the latest
version (see the download page for the latest version).

60.14. SPRING BOOT AUTO-CONFIGURATION

When using jaxb with Spring Boot make sure to use the following Maven dependency to have support
for auto configuration:

The component supports 20 options, which are listed below.

Name Description Defaul
t

Type

camel.dataformat
.jaxb.content-
type-header

Whether the data format should set the Content-
Type header with the type from the data format. For
example application/xml for data formats marshalling
to XML, or application/json for data formats
marshalling to JSON.

true Boolean

camel.dataformat
.jaxb.context-
path

Package name where your JAXB classes are located. String

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-jaxb</artifactId>
 <version>3.14.5.redhat-00018</version>
</dependency>

<dependency>
 <groupId>org.apache.camel.springboot</groupId>
 <artifactId>camel-jaxb-starter</artifactId>
 <version>3.14.5.redhat-00032</version>
 <!-- Use your Camel Spring Boot version -->
</dependency>

CHAPTER 60. JAXB

1053

camel.dataformat
.jaxb.context-
path-is-class-
name

This can be set to true to mark that the contextPath
is referring to a classname and not a package name.

false Boolean

camel.dataformat
.jaxb.enabled

Whether to enable auto configuration of the jaxb data
format. This is enabled by default.

 Boolean

camel.dataformat
.jaxb.encoding

To overrule and use a specific encoding. String

camel.dataformat
.jaxb.filter-non-
xml-chars

To ignore non xml characheters and replace them
with an empty space.

false Boolean

camel.dataformat
.jaxb.fragment

To turn on marshalling XML fragment trees. By
default JAXB looks for XmlRootElement annotation
on given class to operate on whole XML tree. This is
useful but not always - sometimes generated code
does not have XmlRootElement annotation,
sometimes you need unmarshall only part of tree. In
that case you can use partial unmarshalling. To enable
this behaviours you need set property partClass.
Camel will pass this class to JAXB’s unmarshaler.

false Boolean

camel.dataformat
.jaxb.ignore-j-a-
x-b-element

Whether to ignore JAXBElement elements - only
needed to be set to false in very special use-cases.

false Boolean

camel.dataformat
.jaxb.jaxb-
provider-
properties

Refers to a custom java.util.Map to lookup in the
registry containing custom JAXB provider properties
to be used with the JAXB marshaller.

 String

camel.dataformat
.jaxb.must-be-j-a-
x-b-element

Whether marhsalling must be java objects with JAXB
annotations. And if not then it fails. This option can be
set to false to relax that, such as when the data is
already in XML format.

false Boolean

camel.dataformat
.jaxb.namespace-
prefix-ref

When marshalling using JAXB or SOAP then the
JAXB implementation will automatic assign
namespace prefixes, such as ns2, ns3, ns4 etc. To
control this mapping, Camel allows you to refer to a
map which contains the desired mapping.

 String

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1054

camel.dataformat
.jaxb.no-
namespace-
schema-location

To define the location of the namespaceless schema. String

camel.dataformat
.jaxb.object-
factory

Whether to allow using ObjectFactory classes to
create the POJO classes during marshalling. This
only applies to POJO classes that has not been
annotated with JAXB and providing jaxb.index
descriptor files.

false Boolean

camel.dataformat
.jaxb.part-class

Name of class used for fragment parsing. See more
details at the fragment option.

 String

camel.dataformat
.jaxb.part-
namespace

XML namespace to use for fragment parsing. See
more details at the fragment option.

 String

camel.dataformat
.jaxb.pretty-print

To enable pretty printing output nicely formatted. Is
by default false.

false Boolean

camel.dataformat
.jaxb.schema

To validate against an existing schema. Your can use
the prefix classpath:, file: or http: to specify how the
resource should by resolved. You can separate
multiple schema files by using the ',' character.

 String

camel.dataformat
.jaxb.schema-
location

To define the location of the schema. String

camel.dataformat
.jaxb.schema-
severity-level

Sets the schema severity level to use when validating
against a schema. This level determines the minimum
severity error that triggers JAXB to stop continue
parsing. The default value of 0 (warning) means that
any error (warning, error or fatal error) will trigger
JAXB to stop. There are the following three levels:
0=warning, 1=error, 2=fatal error.

0 Integer

camel.dataformat
.jaxb.xml-stream-
writer-wrapper

To use a custom xml stream writer. String

Name Description Defaul
t

Type

CHAPTER 60. JAXB

1055

CHAPTER 61. JSON GSON
Gson is a Data Format which uses the Gson Library.

61.1. GSON OPTIONS

The JSON Gson dataformat supports 3 options, which are listed below.

Name Default Java
Type

Description

prettyPrint Boole
an

To enable pretty printing output nicely formatted. Is by default
false.

unmarshalType String Class name of the java type to use when unmarshalling.

contentTypeHead
er

 Boole
an

Whether the data format should set the Content-Type header
with the type from the data format. For example application/xml
for data formats marshalling to XML, or application/json for data
formats marshalling to JSON.

61.2. DEPENDENCIES

To use Gson in your camel routes you need to add the dependency on camel-gson which implements
this data format.

If you use maven, add the following to your pom.xml, substituting the version number for the latest
version (see the download page for the latest version).

61.3. SPRING BOOT AUTO-CONFIGURATION

When using json-gson with Spring Boot make sure to use the following Maven dependency to have
support for auto configuration:

from("activemq:My.Queue").
 marshal().json(JsonLibrary.Gson).
 to("mqseries:Another.Queue");

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-gson</artifactId>
 <version>3.14.5.redhat-00018</version>
 <!-- use the same version as your Camel core version -->
</dependency>

<dependency>
 <groupId>org.apache.camel.springboot</groupId>
 <artifactId>camel-gson-starter</artifactId>

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1056

https://github.com/google/gson

The component supports 4 options, which are listed below.

Name Description Defaul
t

Type

camel.dataformat
.json-
gson.content-
type-header

Whether the data format should set the Content-
Type header with the type from the data format. For
example application/xml for data formats marshalling
to XML, or application/json for data formats
marshalling to JSON.

true Boolean

camel.dataformat
.json-
gson.enabled

Whether to enable auto configuration of the json-
gson data format. This is enabled by default.

 Boolean

camel.dataformat
.json-gson.pretty-
print

To enable pretty printing output nicely formatted. Is
by default false.

false Boolean

camel.dataformat
.json-
gson.unmarshal-
type

Class name of the java type to use when
unmarshalling.

 String

 <version>3.14.5.redhat-00032</version>
 <!-- Use your Camel Spring Boot version -->
</dependency>

CHAPTER 61. JSON GSON

1057

CHAPTER 62. JSON JACKSON
Jackson is a Data Format which uses the Jackson Library

62.1. JACKSON OPTIONS

The JSON Jackson dataformat supports 20 options, which are listed below.

Name Default Java
Type

Description

objectMapper String Lookup and use
the existing
ObjectMapper
with the given id
when using
Jackson.

useDefaultObject
Mapper

 Boole
an

Whether to lookup
and use default
Jackson
ObjectMapper
from the registry.

prettyPrint Boole
an

To enable pretty
printing output
nicely formatted.
Is by default false.

unmarshalType String Class name of the
java type to use
when
unmarshalling.

from("activemq:My.Queue").
 marshal().json(JsonLibrary.Jackson).
 to("mqseries:Another.Queue");

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1058

https://github.com/FasterXML/jackson-core

jsonView String When marshalling
a POJO to JSON
you might want to
exclude certain
fields from the
JSON output.
With Jackson you
can use JSON
views to
accomplish this.
This option is to
refer to the class
which has
JsonView
annotations.

include String If you want to
marshal a pojo to
JSON, and the
pojo has some
fields with null
values. And you
want to skip these
null values, you
can set this option
to NON_NULL.

allowJmsType Boole
an

Used for JMS
users to allow the
JMSType header
from the JMS spec
to specify a FQN
classname to use
to unmarshal to.

collectionType String Refers to a custom
collection type to
lookup in the
registry to use.
This option should
rarely be used, but
allows to use
different
collection types
than
java.util.Collection
based as default.

Name Default Java
Type

Description

CHAPTER 62. JSON JACKSON

1059

useList Boole
an

To unmarshal to a
List of Map or a
List of Pojo.

moduleClassNam
es

 String To use custom
Jackson modules
com.fasterxml.jack
son.databind.Mod
ule specified as a
String with FQN
class names.
Multiple classes
can be separated
by comma.

moduleRefs String To use custom
Jackson modules
referred from the
Camel registry.
Multiple modules
can be separated
by comma.

enableFeatures String Set of features to
enable on the
Jackson
com.fasterxml.jack
son.databind.Obje
ctMapper. The
features should be
a name that
matches a enum
from
com.fasterxml.jack
son.databind.Seria
lizationFeature,
com.fasterxml.jack
son.databind.Dese
rializationFeature,
or
com.fasterxml.jack
son.databind.Map
perFeature
Multiple features
can be separated
by comma.

Name Default Java
Type

Description

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1060

disableFeatures String Set of features to
disable on the
Jackson
com.fasterxml.jack
son.databind.Obje
ctMapper. The
features should be
a name that
matches a enum
from
com.fasterxml.jack
son.databind.Seria
lizationFeature,
com.fasterxml.jack
son.databind.Dese
rializationFeature,
or
com.fasterxml.jack
son.databind.Map
perFeature
Multiple features
can be separated
by comma.

allowUnmarshallT
ype

 Boole
an

If enabled then
Jackson is allowed
to attempt to use
the
CamelJacksonUn
marshalType
header during the
unmarshalling.
This should only
be enabled when
desired to be
used.

timezone String If set then Jackson
will use the
Timezone when
marshalling/unmar
shalling. This
option will have no
effect on the
others Json
DataFormat, like
gson, fastjson and
xstream.

Name Default Java
Type

Description

CHAPTER 62. JSON JACKSON

1061

autoDiscoverObje
ctMapper

 Boole
an

If set to true then
Jackson will
lookup for an
objectMapper into
the registry.

contentTypeHead
er

 Boole
an

Whether the data
format should set
the Content-Type
header with the
type from the data
format. For
example
application/xml for
data formats
marshalling to
XML, or
application/json
for data formats
marshalling to
JSON.

schemaResolver String Optional schema
resolver used to
lookup schemas
for the data in
transit.

autoDiscoverSche
maResolver

 Boole
an

When not
disabled, the
SchemaResolver
will be looked up
into the registry.

Name Default Java
Type

Description

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1062

namingStrategy String If set then Jackson
will use the the
defined Property
Naming
Strategy.Possible
values are:
LOWER_CAMEL_
CASE,
LOWER_DOT_CA
SE,
LOWER_CASE,
KEBAB_CASE,
SNAKE_CASE and
UPPER_CAMEL_C
ASE.

Name Default Java
Type

Description

62.2. USING CUSTOM OBJECTMAPPER

You can configure JacksonDataFormat to use a custom ObjectMapper in case you need more control
of the mapping configuration.

If you setup a single ObjectMapper in the registry, then Camel will automatic lookup and use this
ObjectMapper. For example if you use Spring Boot, then Spring Boot can provide a default
ObjectMapper for you if you have Spring MVC enabled. And this would allow Camel to detect that there
is one bean of ObjectMapper class type in the Spring Boot bean registry and then use it. When this
happens you should set a INFO logging from Camel.

62.3. USING JACKSON FOR AUTOMATIC TYPE CONVERSION

The camel-jackson module allows integrating Jackson as a Type Converter. This works in a similar way
to JAXB that integrates with Camel’s type converter.

To use this camel-jackson must be enabled, which is done by setting the following options on the
CamelContext global options, as shown:

@Bean
CamelContextConfiguration contextConfiguration() {
 return new CamelContextConfiguration() {
 @Override
 public void beforeApplicationStart(CamelContext context) {
 // Enable Jackson JSON type converter.
 context.getGlobalOptions().put(JacksonConstants.ENABLE_TYPE_CONVERTER, "true");
 // Allow Jackson JSON to convert to pojo types also
 // (by default Jackson only converts to String and other simple types)
 getContext().getGlobalOptions().put(JacksonConstants.TYPE_CONVERTER_TO_POJO,
"true");
 }

CHAPTER 62. JSON JACKSON

1063

https://camel.apache.org/manual/type-converter.html

The camel-jackson type converter integrates with JAXB which means you can annotate POJO class
with JAXB annotations that Jackson can use. You can also use Jackson’s own annotations on your
POJO classes.

62.4. DEPENDENCIES

To use Jackson in your camel routes you need to add the dependency on camel-jackson which
implements this data format.

If you use maven, add the following to your pom.xml, substituting the version number for the latest
version (see the download page for the latest version).

62.5. SPRING BOOT AUTO-CONFIGURATION

When using json-jackson with Spring Boot make sure to use the following Maven dependency to have
support for auto configuration:

The component supports 21 options, which are listed below.

Name Description Defaul
t

Type

camel.dataformat
.json-
jackson.allow-
jms-type

Used for JMS users to allow the JMSType header
from the JMS spec to specify a FQN classname to
use to unmarshal to.

false Boolean

camel.dataformat
.json-
jackson.allow-
unmarshall-type

If enabled then Jackson is allowed to attempt to use
the CamelJacksonUnmarshalType header during the
unmarshalling. This should only be enabled when
desired to be used.

false Boolean

 @Override
 public void afterApplicationStart(CamelContext camelContext) {

 }
 };
}

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-jackson</artifactId>
 <version>3.14.5.redhat-00018</version>
 <!-- use the same version as your Camel core version -->
</dependency>

<dependency>
 <groupId>org.apache.camel.springboot</groupId>
 <artifactId>camel-jackson-starter</artifactId>
 <version>3.14.5.redhat-00032</version>
 <!-- Use your Camel Spring Boot version -->
</dependency>

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1064

camel.dataformat
.json-
jackson.auto-
discover-object-
mapper

If set to true then Jackson will lookup for an
objectMapper into the registry.

false Boolean

camel.dataformat
.json-
jackson.auto-
discover-schema-
resolver

When not disabled, the SchemaResolver will be
looked up into the registry.

true Boolean

camel.dataformat
.json-
jackson.collection
-type

Refers to a custom collection type to lookup in the
registry to use. This option should rarely be used, but
allows to use different collection types than
java.util.Collection based as default.

 String

camel.dataformat
.json-
jackson.content-
type-header

Whether the data format should set the Content-
Type header with the type from the data format. For
example application/xml for data formats marshalling
to XML, or application/json for data formats
marshalling to JSON.

true Boolean

camel.dataformat
.json-
jackson.disable-
features

Set of features to disable on the Jackson
com.fasterxml.jackson.databind.ObjectMapper. The
features should be a name that matches a enum from
com.fasterxml.jackson.databind.SerializationFeature,
com.fasterxml.jackson.databind.DeserializationFeatur
e, or com.fasterxml.jackson.databind.MapperFeature
Multiple features can be separated by comma.

 String

camel.dataformat
.json-
jackson.enable-
features

Set of features to enable on the Jackson
com.fasterxml.jackson.databind.ObjectMapper. The
features should be a name that matches a enum from
com.fasterxml.jackson.databind.SerializationFeature,
com.fasterxml.jackson.databind.DeserializationFeatur
e, or com.fasterxml.jackson.databind.MapperFeature
Multiple features can be separated by comma.

 String

camel.dataformat
.json-
jackson.enabled

Whether to enable auto configuration of the json-
jackson data format. This is enabled by default.

 Boolean

camel.dataformat
.json-
jackson.include

If you want to marshal a pojo to JSON, and the pojo
has some fields with null values. And you want to skip
these null values, you can set this option to
NON_NULL.

 String

Name Description Defaul
t

Type

CHAPTER 62. JSON JACKSON

1065

camel.dataformat
.json-
jackson.json-view

When marshalling a POJO to JSON you might want
to exclude certain fields from the JSON output. With
Jackson you can use JSON views to accomplish this.
This option is to refer to the class which has
JsonView annotations.

 String

camel.dataformat
.json-
jackson.module-
class-names

To use custom Jackson modules
com.fasterxml.jackson.databind.Module specified as
a String with FQN class names. Multiple classes can
be separated by comma.

 String

camel.dataformat
.json-
jackson.module-
refs

To use custom Jackson modules referred from the
Camel registry. Multiple modules can be separated by
comma.

 String

camel.dataformat
.json-
jackson.naming-
strategy

If set then Jackson will use the the defined Property
Naming Strategy.Possible values are:
LOWER_CAMEL_CASE, LOWER_DOT_CASE,
LOWER_CASE, KEBAB_CASE, SNAKE_CASE and
UPPER_CAMEL_CASE.

 String

camel.dataformat
.json-
jackson.object-
mapper

Lookup and use the existing ObjectMapper with the
given id when using Jackson.

 String

camel.dataformat
.json-
jackson.pretty-
print

To enable pretty printing output nicely formatted. Is
by default false.

false Boolean

camel.dataformat
.json-
jackson.schema-
resolver

Optional schema resolver used to lookup schemas for
the data in transit.

 String

camel.dataformat
.json-
jackson.timezone

If set then Jackson will use the Timezone when
marshalling/unmarshalling. This option will have no
effect on the others Json DataFormat, like gson,
fastjson and xstream.

 String

camel.dataformat
.json-
jackson.unmarsha
l-type

Class name of the java type to use when
unmarshalling.

 String

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1066

camel.dataformat
.json-jackson.use-
default-object-
mapper

Whether to lookup and use default Jackson
ObjectMapper from the registry.

true Boolean

camel.dataformat
.json-jackson.use-
list

To unmarshal to a List of Map or a List of Pojo. false Boolean

Name Description Defaul
t

Type

CHAPTER 62. JSON JACKSON

1067

CHAPTER 63. PROTOBUF JACKSON
Jackson Protobuf is a Data Format which uses the Jackson library with the Protobuf extension to
unmarshal a Protobuf payload into Java objects or to marshal Java objects into a Protobuf payload.

NOTE

If you are familiar with Jackson, this Protobuf data format behaves in the same way as its
JSON counterpart, and thus can be used with classes annotated for JSON
serialization/deserialization.

63.1. CONFIGURING THE SCHEMARESOLVER

Since Protobuf serialization is schema-based, this data format requires that you provide a
SchemaResolver object that is able to lookup the schema for each exchange that is going to be
marshalled/unmarshalled.

You can add a single SchemaResolver to the registry and it will be looked up automatically. Or you can
explicitly specify the reference to a custom SchemaResolver.

63.2. PROTOBUF JACKSON OPTIONS

The Protobuf Jackson dataformat supports 18 options, which are listed below.

Name Default Java
Type

Description

contentTypeHeader Boole
an

Whether the data format should set the Content-
Type header with the type from the data format. For
example application/xml for data formats marshalling
to XML, or application/json for data formats
marshalling to JSON.

objectMapper String Lookup and use the existing ObjectMapper with the
given id when using Jackson.

useDefaultObjectMapper Boole
an

Whether to lookup and use default Jackson
ObjectMapper from the registry.

unmarshalType String Class name of the java type to use when
unmarshalling.

from("kafka:topic").
 unmarshal().protobuf(ProtobufLibrary.Jackson, JsonNode.class).
 to("log:info");

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1068

https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson-dataformats-binary

jsonView String When marshalling a POJO to JSON you might want
to exclude certain fields from the JSON output. With
Jackson you can use JSON views to accomplish this.
This option is to refer to the class which has
JsonView annotations.

include String If you want to marshal a pojo to JSON, and the pojo
has some fields with null values. And you want to skip
these null values, you can set this option to
NON_NULL.

allowJmsType Boole
an

Used for JMS users to allow the JMSType header
from the JMS spec to specify a FQN classname to
use to unmarshal to.

collectionType String Refers to a custom collection type to lookup in the
registry to use. This option should rarely be used, but
allows to use different collection types than
java.util.Collection based as default.

useList Boole
an

To unmarshal to a List of Map or a List of Pojo.

moduleClassNames String To use custom Jackson modules
com.fasterxml.jackson.databind.Module specified as
a String with FQN class names. Multiple classes can
be separated by comma.

moduleRefs String To use custom Jackson modules referred from the
Camel registry. Multiple modules can be separated by
comma.

enableFeatures String Set of features to enable on the Jackson
com.fasterxml.jackson.databind.ObjectMapper. The
features should be a name that matches a enum
from
com.fasterxml.jackson.databind.SerializationFeature,
com.fasterxml.jackson.databind.DeserializationFeatu
re, or
com.fasterxml.jackson.databind.MapperFeature
Multiple features can be separated by comma.

Name Default Java
Type

Description

CHAPTER 63. PROTOBUF JACKSON

1069

disableFeatures String Set of features to disable on the Jackson
com.fasterxml.jackson.databind.ObjectMapper. The
features should be a name that matches a enum
from
com.fasterxml.jackson.databind.SerializationFeature,
com.fasterxml.jackson.databind.DeserializationFeatu
re, or
com.fasterxml.jackson.databind.MapperFeature
Multiple features can be separated by comma.

allowUnmarshallType Boole
an

If enabled then Jackson is allowed to attempt to use
the CamelJacksonUnmarshalType header during the
unmarshalling. This should only be enabled when
desired to be used.

timezone String If set then Jackson will use the Timezone when
marshalling/unmarshalling.

autoDiscoverObjectMapper Boole
an

If set to true then Jackson will lookup for an
objectMapper into the registry.

schemaResolver String Optional schema resolver used to lookup schemas
for the data in transit.

autoDiscoverSchemaResolv
er

 Boole
an

When not disabled, the SchemaResolver will be
looked up into the registry.

Name Default Java
Type

Description

63.3. USING CUSTOM PROTOBUFMAPPER

You can configure JacksonProtobufDataFormat to use a custom ProtobufMapper in case you need
more control of the mapping configuration.

If you setup a single ProtobufMapper in the registry, then Camel will automatic lookup and use this
ProtobufMapper.

63.4. DEPENDENCIES

To use Protobuf Jackson in your camel routes you need to add the dependency on camel-jackson-
protobuf which implements this data format.

If you use maven, add the following to your pom.xml, substituting the version number for the latest
version (see the download page for the latest version).

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-jackson-protobuf</artifactId>

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1070

63.5. SPRING BOOT AUTO-CONFIGURATION

When using protobuf-jackson with Spring Boot make sure to use the following Maven dependency to
have support for auto configuration:

The component supports 19 options, which are listed below.

Name Description Defaul
t

Type

camel.dataformat
.protobuf-
jackson.allow-
jms-type

Used for JMS users to allow the JMSType header
from the JMS spec to specify a FQN classname to
use to unmarshal to.

false Boolean

camel.dataformat
.protobuf-
jackson.allow-
unmarshall-type

If enabled then Jackson is allowed to attempt to use
the CamelJacksonUnmarshalType header during the
unmarshalling. This should only be enabled when
desired to be used.

false Boolean

camel.dataformat
.protobuf-
jackson.auto-
discover-object-
mapper

If set to true then Jackson will lookup for an
objectMapper into the registry.

false Boolean

camel.dataformat
.protobuf-
jackson.auto-
discover-schema-
resolver

When not disabled, the SchemaResolver will be
looked up into the registry.

true Boolean

camel.dataformat
.protobuf-
jackson.collection
-type

Refers to a custom collection type to lookup in the
registry to use. This option should rarely be used, but
allows to use different collection types than
java.util.Collection based as default.

 String

 <version>3.14.5.redhat-00018</version>
 <!-- use the same version as your Camel core version -->
</dependency>

<dependency>
 <groupId>org.apache.camel.springboot</groupId>
 <artifactId>camel-jackson-protobuf-starter</artifactId>
 <version>3.14.5.redhat-00032</version>
 <!-- use the same version as your Camel core version -->
</dependency>

CHAPTER 63. PROTOBUF JACKSON

1071

camel.dataformat
.protobuf-
jackson.content-
type-header

Whether the data format should set the Content-
Type header with the type from the data format. For
example application/xml for data formats marshalling
to XML, or application/json for data formats
marshalling to JSON.

true Boolean

camel.dataformat
.protobuf-
jackson.disable-
features

Set of features to disable on the Jackson
com.fasterxml.jackson.databind.ObjectMapper. The
features should be a name that matches a enum from
com.fasterxml.jackson.databind.SerializationFeature,
com.fasterxml.jackson.databind.DeserializationFeatur
e, or com.fasterxml.jackson.databind.MapperFeature
Multiple features can be separated by comma.

 String

camel.dataformat
.protobuf-
jackson.enable-
features

Set of features to enable on the Jackson
com.fasterxml.jackson.databind.ObjectMapper. The
features should be a name that matches a enum from
com.fasterxml.jackson.databind.SerializationFeature,
com.fasterxml.jackson.databind.DeserializationFeatur
e, or com.fasterxml.jackson.databind.MapperFeature
Multiple features can be separated by comma.

 String

camel.dataformat
.protobuf-
jackson.enabled

Whether to enable auto configuration of the
protobuf-jackson data format. This is enabled by
default.

 Boolean

camel.dataformat
.protobuf-
jackson.include

If you want to marshal a pojo to JSON, and the pojo
has some fields with null values. And you want to skip
these null values, you can set this option to
NON_NULL.

 String

camel.dataformat
.protobuf-
jackson.json-view

When marshalling a POJO to JSON you might want
to exclude certain fields from the JSON output. With
Jackson you can use JSON views to accomplish this.
This option is to refer to the class which has
JsonView annotations.

 String

camel.dataformat
.protobuf-
jackson.module-
class-names

To use custom Jackson modules
com.fasterxml.jackson.databind.Module specified as
a String with FQN class names. Multiple classes can
be separated by comma.

 String

camel.dataformat
.protobuf-
jackson.module-
refs

To use custom Jackson modules referred from the
Camel registry. Multiple modules can be separated by
comma.

 String

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1072

camel.dataformat
.protobuf-
jackson.object-
mapper

Lookup and use the existing ObjectMapper with the
given id when using Jackson.

 String

camel.dataformat
.protobuf-
jackson.schema-
resolver

Optional schema resolver used to lookup schemas for
the data in transit.

 String

camel.dataformat
.protobuf-
jackson.timezone

If set then Jackson will use the Timezone when
marshalling/unmarshalling.

 String

camel.dataformat
.protobuf-
jackson.unmarsha
l-type

Class name of the java type to use when
unmarshalling.

 String

camel.dataformat
.protobuf-
jackson.use-
default-object-
mapper

Whether to lookup and use default Jackson
ObjectMapper from the registry.

true Boolean

camel.dataformat
.protobuf-
jackson.use-list

To unmarshal to a List of Map or a List of Pojo. false Boolean

Name Description Defaul
t

Type

CHAPTER 63. PROTOBUF JACKSON

1073

CHAPTER 64. SOAP
SOAP is a Data Format which uses JAXB2 and JAX-WS annotations to marshal and unmarshal SOAP
payloads. It provides the basic features of Apache CXF without need for the CXF Stack.

Namespace prefix mapping

See JAXB for details how you can control namespace prefix mappings when marshalling using SOAP
data format.

64.1. SOAP OPTIONS

The SOAP dataformat supports 6 options, which are listed below.

Name Default Java
Type

Description

contextPath String Required Package name where your JAXB classes are located.

encoding String To overrule and use a specific encoding.

elementNameStr
ategyRef

 String Refers to an element strategy to lookup from the registry. An
element name strategy is used for two purposes. The first is to
find a xml element name for a given object and soap action
when marshaling the object into a SOAP message. The second
is to find an Exception class for a given soap fault name. The
following three element strategy class name is provided out of
the box. QNameStrategy - Uses a fixed qName that is
configured on instantiation. Exception lookup is not supported
TypeNameStrategy - Uses the name and namespace from the
XMLType annotation of the given type. If no namespace is set
then package-info is used. Exception lookup is not supported
ServiceInterfaceStrategy - Uses information from a webservice
interface to determine the type name and to find the exception
class for a SOAP fault All three classes is located in the package
name org.apache.camel.dataformat.soap.name If you have
generated the web service stub code with cxf-codegen or a
similar tool then you probably will want to use the
ServiceInterfaceStrategy. In the case you have no annotated
service interface you should use QNameStrategy or
TypeNameStrategy.

version String SOAP version should either be 1.1 or 1.2. Is by default 1.1.

namespacePrefix
Ref

 String When marshalling using JAXB or SOAP then the JAXB
implementation will automatic assign namespace prefixes, such
as ns2, ns3, ns4 etc. To control this mapping, Camel allows you
to refer to a map which contains the desired mapping.

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1074

https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/camel_spring_boot_reference_3.14/index#csb-camel-jaxb-dataformat-starter

schema String To validate against an existing schema. Your can use the prefix
classpath:, file: or http: to specify how the resource should by
resolved. You can separate multiple schema files by using the ','
character.

Name Default Java
Type

Description

64.2. ELEMENTNAMESTRATEGY

An element name strategy is used for two purposes. The first is to find a xml element name for a given
object and soap action when marshaling the object into a SOAP message. The second is to find an
Exception class for a given soap fault name.

Strate
gy

Usage

QName
Strateg
y

Uses a fixed qName that is configured on instantiation. Exception lookup is not supported

TypeN
ameStr
ategy

Uses the name and namespace from the @XMLType annotation of the given type. If no namespace
is set then package-info is used. Exception lookup is not supported

Service
Interfa
ceStrat
egy

Uses information from a webservice interface to determine the type name and to find the
exception class for a SOAP fault

If you have generated the web service stub code with cxf-codegen or a similar tool then you probably
will want to use the ServiceInterfaceStrategy. In the case you have no annotated service interface you
should use QNameStrategy or TypeNameStrategy.

64.3. USING THE JAVA DSL

The following example uses a named DataFormat of soap which is configured with the package
com.example.customerservice to initialize the JAXBContext. The second parameter is the
ElementNameStrategy. The route is able to marshal normal objects as well as exceptions. (Note the
below just sends a SOAP Envelope to a queue. A web service provider would actually need to be
listening to the queue for a SOAP call to actually occur, in which case it would be a one way SOAP
request. If you need request reply then you should look at the next example.)

NOTE

SoapJaxbDataFormat soap = new SoapJaxbDataFormat("com.example.customerservice", new
ServiceInterfaceStrategy(CustomerService.class));
from("direct:start")
 .marshal(soap)
 .to("jms:myQueue");

CHAPTER 64. SOAP

1075

http://java.sun.com/javase/6/docs/api/javax/xml/bind/JAXBContext.html

NOTE

See also
As the SOAP dataformat inherits from the JAXB dataformat most settings apply here as
well.

64.3.1. Using SOAP 1.2

Since Camel 2.11

When using XML DSL there is a version attribute you can set on the <soapjaxb> element.

And in the Camel route

64.4. MULTI-PART MESSAGES

Multi-part SOAP messages are supported by the ServiceInterfaceStrategy. The
ServiceInterfaceStrategy must be initialized with a service interface definition that is annotated in
accordance with JAX-WS 2.2 and meets the requirements of the Document Bare style. The target
method must meet the following criteria, as per the JAX-WS specification: 1) it must have at most one in
or in/out non-header parameter, 2) if it has a return type other than void it must have no in/out or out
non-header parameters, 3) if it it has a return type of void it must have at most one in/out or out non-
header parameter.

The ServiceInterfaceStrategy should be initialized with a boolean parameter that indicates whether the
mapping strategy applies to the request parameters or response parameters.

SoapJaxbDataFormat soap = new SoapJaxbDataFormat("com.example.customerservice", new
ServiceInterfaceStrategy(CustomerService.class));
soap.setVersion("1.2");
from("direct:start")
 .marshal(soap)
 .to("jms:myQueue");

 <!-- Defining a ServiceInterfaceStrategy for retrieving the element name when marshalling -->
 <bean id="myNameStrategy"
class="org.apache.camel.dataformat.soap.name.ServiceInterfaceStrategy">
 <constructor-arg value="com.example.customerservice.CustomerService"/>
 <constructor-arg value="true"/>
 </bean>

<route>
 <from uri="direct:start"/>
 <marshal>
 <soapjaxb contentPath="com.example.customerservice" version="1.2"
elementNameStrategyRef="myNameStrategy"/>
 </marshal>
 <to uri="jms:myQueue"/>
</route>

ServiceInterfaceStrategy strat = new
ServiceInterfaceStrategy(com.example.customerservice.multipart.MultiPartCustomerService.class,
true);

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1076

64.4.1. Holder Object mapping

JAX-WS specifies the use of a type-parameterized javax.xml.ws.Holder object for In/Out and Out
parameters. You may use an instance of the parameterized-type directly. The camel-soap DataFormat
marshals Holder values in accordance with the JAXB mapping for the class of the Holder’s value. No
mapping is provided for \'Holder objects in an unmarshalled response.

64.5. EXAMPLES

64.5.1. Webservice client

The following route supports marshalling the request and unmarshalling a response or fault.

The below snippet creates a proxy for the service interface and makes a SOAP call to the above route.

64.5.2. Webservice Server

Using the following route sets up a webservice server that listens on jms queue customerServiceQueue
and processes requests using the class CustomerServiceImpl. The customerServiceImpl of course
should implement the interface CustomerService. Instead of directly instantiating the server class it
could be defined in a spring context as a regular bean.

SoapJaxbDataFormat soapDataFormat = new
SoapJaxbDataFormat("com.example.customerservice.multipart", strat);

String WS_URI = "cxf://http://myserver/customerservice?
serviceClass=com.example.customerservice&dataFormat=RAW";
SoapJaxbDataFormat soapDF = new SoapJaxbDataFormat("com.example.customerservice", new
ServiceInterfaceStrategy(CustomerService.class));
from("direct:customerServiceClient")
 .onException(Exception.class)
 .handled(true)
 .unmarshal(soapDF)
 .end()
 .marshal(soapDF)
 .to(WS_URI)
 .unmarshal(soapDF);

import org.apache.camel.Endpoint;
import org.apache.camel.component.bean.ProxyHelper;
...

Endpoint startEndpoint = context.getEndpoint("direct:customerServiceClient");
ClassLoader classLoader = Thread.currentThread().getContextClassLoader();
// CustomerService below is the service endpoint interface, *not* the javax.xml.ws.Service subclass
CustomerService proxy = ProxyHelper.createProxy(startEndpoint, classLoader,
CustomerService.class);
GetCustomersByNameResponse response = proxy.getCustomersByName(new
GetCustomersByName());

SoapJaxbDataFormat soapDF = new SoapJaxbDataFormat("com.example.customerservice", new
ServiceInterfaceStrategy(CustomerService.class));
CustomerService serverBean = new CustomerServiceImpl();

CHAPTER 64. SOAP

1077

64.6. DEPENDENCIES

To use the SOAP dataformat in your camel routes you need to add the following dependency to your
pom.

64.7. SPRING BOOT AUTO-CONFIGURATION

When using soapjaxb with Spring Boot make sure to use the following Maven dependency to have
support for auto configuration:

The component supports 7 options, which are listed below.

Name Description Defaul
t

Type

camel.dataformat
.soapjaxb.context
-path

Package name where your JAXB classes are located. String

from("jms://queue:customerServiceQueue")
 .onException(Exception.class)
 .handled(true)
 .marshal(soapDF)
 .end()
 .unmarshal(soapDF)
 .bean(serverBean)
 .marshal(soapDF);

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-soap</artifactId>
 <version>3.14.5.redhat-00018</version>
</dependency>

<dependency>
 <groupId>org.apache.camel.springboot</groupId>
 <artifactId>camel-soap-starter</artifactId>
 <version>3.14.5.redhat-00032</version>
 <!-- Use your Camel Spring Boot version -->
</dependency>

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1078

camel.dataformat
.soapjaxb.element
-name-strategy-
ref

Refers to an element strategy to lookup from the
registry. An element name strategy is used for two
purposes. The first is to find a xml element name for
a given object and soap action when marshaling the
object into a SOAP message. The second is to find
an Exception class for a given soap fault name. The
following three element strategy class name is
provided out of the box. QNameStrategy - Uses a
fixed qName that is configured on instantiation.
Exception lookup is not supported
TypeNameStrategy - Uses the name and namespace
from the XMLType annotation of the given type. If no
namespace is set then package-info is used.
Exception lookup is not supported
ServiceInterfaceStrategy - Uses information from a
webservice interface to determine the type name and
to find the exception class for a SOAP fault All three
classes is located in the package name
org.apache.camel.dataformat.soap.name If you have
generated the web service stub code with cxf-
codegen or a similar tool then you probably will want
to use the ServiceInterfaceStrategy. In the case you
have no annotated service interface you should use
QNameStrategy or TypeNameStrategy.

 String

camel.dataformat
.soapjaxb.enabled

Whether to enable auto configuration of the soapjaxb
data format. This is enabled by default.

 Boolean

camel.dataformat
.soapjaxb.encodin
g

To overrule and use a specific encoding. String

camel.dataformat
.soapjaxb.namesp
ace-prefix-ref

When marshalling using JAXB or SOAP then the
JAXB implementation will automatic assign
namespace prefixes, such as ns2, ns3, ns4 etc. To
control this mapping, Camel allows you to refer to a
map which contains the desired mapping.

 String

camel.dataformat
.soapjaxb.schema

To validate against an existing schema. Your can use
the prefix classpath:, file: or http: to specify how the
resource should by resolved. You can separate
multiple schema files by using the ',' character.

 String

camel.dataformat
.soapjaxb.version

SOAP version should either be 1.1 or 1.2. Is by default
1.1.

1.1 String

Name Description Defaul
t

Type

CHAPTER 64. SOAP

1079

CHAPTER 65. ZIP FILE
The Zip File Data Format is a message compression and de-compression format. Messages can be
marshalled (compressed) to Zip files containing a single entry, and Zip files containing a single entry can
be unmarshalled (decompressed) to the original file contents. This data format supports ZIP64, as long
as Java 7 or later is being used].

65.1. ZIPFILE OPTIONS

The Zip File dataformat supports 4 options, which are listed below.

Name Default Java
Type

Description

usingIterator Boole
an

If the zip file has more then one entry, the setting this option to
true, allows to work with the splitter EIP, to split the data using
an iterator in a streaming mode.

allowEmptyDirect
ory

 Boole
an

If the zip file has more then one entry, setting this option to true,
allows to get the iterator even if the directory is empty.

preservePathEle
ments

 Boole
an

If the file name contains path elements, setting this option to
true, allows the path to be maintained in the zip file.

maxDecompresse
dSize

 Intege
r

Set the maximum decompressed size of a zip file (in bytes). The
default value if not specified corresponds to 1 gigabyte. An
IOException will be thrown if the decompressed size exceeds this
amount. Set to -1 to disable setting a maximum decompressed
size.

65.2. MARSHAL

In this example we marshal a regular text/XML payload to a compressed payload using Zip file
compression, and send it to an ActiveMQ queue called MY_QUEUE.

The name of the Zip entry inside the created Zip file is based on the incoming CamelFileName message
header, which is the standard message header used by the file component. Additionally, the outgoing
CamelFileName message header is automatically set to the value of the incoming CamelFileName
message header, with the ".zip" suffix. So for example, if the following route finds a file named "test.txt"
in the input directory, the output will be a Zip file named "test.txt.zip" containing a single Zip entry
named "test.txt":

If there is no incoming CamelFileName message header (for example, if the file component is not the

from("direct:start")
 .marshal().zipFile()
 .to("activemq:queue:MY_QUEUE");

from("file:input/directory?antInclude=*/.txt")
 .marshal().zipFile()
 .to("file:output/directory");

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1080

consumer), then the message ID is used by default, and since the message ID is normally a unique
generated ID, you will end up with filenames like ID-MACHINENAME-2443-1211718892437-1-0.zip. If
you want to override this behavior, then you can set the value of the CamelFileName header explicitly in
your route:

This route would result in a Zip file named "report.txt.zip" in the output directory, containing a single Zip
entry named "report.txt".

65.3. UNMARSHAL

In this example we unmarshal a Zip file payload from an ActiveMQ queue called MY_QUEUE to its
original format, and forward it for processing to the UnZippedMessageProcessor.

If the zip file has more then one entry, the usingIterator option of ZipFileDataFormat to be true, and you
can use splitter to do the further work.

Or you can use the ZipSplitter as an expression for splitter directly like this

65.3.1. Aggregate

NOTE

This aggregation strategy requires eager completion check to work properly.

In this example we aggregate all text files found in the input directory into a single Zip file that is stored
in the output directory.

from("direct:start")
 .setHeader(Exchange.FILE_NAME, constant("report.txt"))
 .marshal().zipFile()
 .to("file:output/directory");

from("activemq:queue:MY_QUEUE")
 .unmarshal().zipFile()
 .process(new UnZippedMessageProcessor());

ZipFileDataFormat zipFile = new ZipFileDataFormat();
zipFile.setUsingIterator(true);

from("file:src/test/resources/org/apache/camel/dataformat/zipfile/?delay=1000&noop=true")
 .unmarshal(zipFile)
 .split(body(Iterator.class)).streaming()
 .process(new UnZippedMessageProcessor())
 .end();

from("file:src/test/resources/org/apache/camel/dataformat/zipfile?delay=1000&noop=true")
 .split(new ZipSplitter()).streaming()
 .process(new UnZippedMessageProcessor())
 .end();

from("file:input/directory?antInclude=*/.txt")
 .aggregate(constant(true), new ZipAggregationStrategy())

CHAPTER 65. ZIP FILE

1081

The outgoing CamelFileName message header is created using java.io.File.createTempFile, with the
".zip" suffix. If you want to override this behavior, then you can set the value of the CamelFileName
header explicitly in your route:

65.4. DEPENDENCIES

To use Zip files in your camel routes you need to add a dependency on camel-zipfile which implements
this data format.

If you use maven, add the following to your pom.xml, substituting the version number for the latest
version (see the download page for the latest version).

65.5. SPRING BOOT AUTO-CONFIGURATION

When using zipfile with Spring Boot make sure to use the following Maven dependency to have support
for auto configuration:

The component supports 5 options, which are listed below.

Name Description Defaul
t

Type

camel.dataformat
.zipfile.allow-
empty-directory

If the zip file has more then one entry, setting this
option to true, allows to get the iterator even if the
directory is empty.

false Boolean

camel.dataformat
.zipfile.enabled

Whether to enable auto configuration of the zipfile
data format. This is enabled by default.

 Boolean

 .completionFromBatchConsumer().eagerCheckCompletion()
 .to("file:output/directory");

from("file:input/directory?antInclude=*/.txt")
 .aggregate(constant(true), new ZipAggregationStrategy())
 .completionFromBatchConsumer().eagerCheckCompletion()
 .setHeader(Exchange.FILE_NAME, constant("reports.zip"))
 .to("file:output/directory");

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-zipfile</artifactId>
 <version>3.14.5.redhat-00018</version>
 <!-- use the same version as your Camel core version -->
</dependency>

<dependency>
 <groupId>org.apache.camel.springboot</groupId>
 <artifactId>camel-zipfile-starter</artifactId>
 <version>3.14.5.redhat-00032</version>
 <!-- Use your Camel Spring Boot version -->
</dependency>

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1082

camel.dataformat
.zipfile.max-
decompressed-
size

Set the maximum decompressed size of a zip file (in
bytes). The default value if not specified corresponds
to 1 gigabyte. An IOException will be thrown if the
decompressed size exceeds this amount. Set to -1 to
disable setting a maximum decompressed size.

107374
1824

Long

camel.dataformat
.zipfile.preserve-
path-elements

If the file name contains path elements, setting this
option to true, allows the path to be maintained in the
zip file.

false Boolean

camel.dataformat
.zipfile.using-
iterator

If the zip file has more then one entry, the setting this
option to true, allows to work with the splitter EIP, to
split the data using an iterator in a streaming mode.

false Boolean

Name Description Defaul
t

Type

CHAPTER 65. ZIP FILE

1083

CHAPTER 66. CONSTANT
The Constant Expression Language is really just a way to use a constant value or object.

NOTE

This is a fixed constant value (or object) that is only set once during starting up the route,
do not use this if you want dynamic values during routing.

66.1. CONSTANT OPTIONS

The Constant language supports 2 options, which are listed below.

Name Default Java
Type

Description

resultType String Sets the class name of the constant type.

trim Boole
an

Whether to trim the value to remove leading and trailing
whitespaces and line breaks.

66.2. EXAMPLE

The setHeader EIP can utilize a constant expression like:

in this case, the message coming from the seda:a endpoint will have the header with key theHeader set
its value as the value (string type).

And the same example using Java DSL:

66.2.1. Specifying type of value

The option resultType can be used to specify the type of the value, when the value is given as a String
value, which happens when using XML or YAML DSL:

For example to set a header with int type you can do:

<route>
 <from uri="seda:a"/>
 <setHeader name="theHeader">
 <constant>the value</constant>
 </setHeader>
 <to uri="mock:b"/>
</route>

from("seda:a")
 .setHeader("theHeader", constant("the value"))
 .to("mock:b");

<route>
 <from uri="seda:a"/>

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1084

66.3. LOADING CONSTANT FROM EXTERNAL RESOURCE

You can externalize the constant and have Camel load it from a resource such as "classpath:", "file:",
or "http:".
This is done using the following syntax: "resource:scheme:location", eg to refer to a file on the
classpath you can do:

66.4. DEPENDENCIES

The Constant language is part of camel-core.

66.5. SPRING BOOT AUTO-CONFIGURATION

When using constant with Spring Boot make sure to use the following Maven dependency to have
support for auto configuration:

The component supports 147 options, which are listed below.

Name Description Defaul
t

Type

camel.cloud.cons
ul.service-
discovery.acl-
token

Sets the ACL token to be used with Consul. String

camel.cloud.cons
ul.service-
discovery.block-
seconds

The seconds to wait for a watch event, default 10
seconds.

10 Integer

camel.cloud.cons
ul.service-
discovery.configu
rations

Define additional configuration definitions. Map

 <setHeader name="zipCode">
 <constant resultType="int">90210</constant>
 </setHeader>
 <to uri="mock:b"/>
</route>

.setHeader("myHeader").constant("resource:classpath:constant.txt")

<dependency>
 <groupId>org.apache.camel.springboot</groupId>
 <artifactId>camel-core-starter</artifactId>
 <version>3.14.5.redhat-00032</version>
 <!-- use the same version as your Camel core version -->
</dependency>

CHAPTER 66. CONSTANT

1085

camel.cloud.cons
ul.service-
discovery.connect
-timeout-millis

Connect timeout for OkHttpClient. Long

camel.cloud.cons
ul.service-
discovery.datacen
ter

The data center. String

camel.cloud.cons
ul.service-
discovery.enabled

Enable the component. true Boolean

camel.cloud.cons
ul.service-
discovery.passwo
rd

Sets the password to be used for basic
authentication.

 String

camel.cloud.cons
ul.service-
discovery.propert
ies

Set client properties to use. These properties are
specific to what service call implementation are in
use. For example if using ribbon, then the client
properties are define in
com.netflix.client.config.CommonClientConfigKey.

 Map

camel.cloud.cons
ul.service-
discovery.read-
timeout-millis

Read timeout for OkHttpClient. Long

camel.cloud.cons
ul.service-
discovery.url

The Consul agent URL. String

camel.cloud.cons
ul.service-
discovery.user-
name

Sets the username to be used for basic
authentication.

 String

camel.cloud.cons
ul.service-
discovery.write-
timeout-millis

Write timeout for OkHttpClient. Long

camel.cloud.dns.s
ervice-
discovery.configu
rations

Define additional configuration definitions. Map

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1086

camel.cloud.dns.s
ervice-
discovery.domain

The domain name;. String

camel.cloud.dns.s
ervice-
discovery.enabled

Enable the component. true Boolean

camel.cloud.dns.s
ervice-
discovery.propert
ies

Set client properties to use. These properties are
specific to what service call implementation are in
use. For example if using ribbon, then the client
properties are define in
com.netflix.client.config.CommonClientConfigKey.

 Map

camel.cloud.dns.s
ervice-
discovery.proto

The transport protocol of the desired service. _tcp String

camel.cloud.etcd.
service-
discovery.configu
rations

Define additional configuration definitions. Map

camel.cloud.etcd.
service-
discovery.enabled

Enable the component. true Boolean

camel.cloud.etcd.
service-
discovery.passwo
rd

The password to use for basic authentication. String

camel.cloud.etcd.
service-
discovery.propert
ies

Set client properties to use. These properties are
specific to what service call implementation are in
use. For example if using ribbon, then the client
properties are define in
com.netflix.client.config.CommonClientConfigKey.

 Map

camel.cloud.etcd.
service-
discovery.service-
path

The path to look for for service discovery. /servic
es/

String

camel.cloud.etcd.
service-
discovery.timeout

To set the maximum time an action could take to
complete.

 Long

Name Description Defaul
t

Type

CHAPTER 66. CONSTANT

1087

camel.cloud.etcd.
service-
discovery.type

To set the discovery type, valid values are on-
demand and watch.

on-
deman
d

String

camel.cloud.etcd.
service-
discovery.uris

The URIs the client can connect to. String

camel.cloud.etcd.
service-
discovery.user-
name

The user name to use for basic authentication. String

camel.cloud.kuber
netes.service-
discovery.api-
version

Sets the API version when using client lookup. String

camel.cloud.kuber
netes.service-
discovery.ca-
cert-data

Sets the Certificate Authority data when using client
lookup.

 String

camel.cloud.kuber
netes.service-
discovery.ca-
cert-file

Sets the Certificate Authority data that are loaded
from the file when using client lookup.

 String

camel.cloud.kuber
netes.service-
discovery.client-
cert-data

Sets the Client Certificate data when using client
lookup.

 String

camel.cloud.kuber
netes.service-
discovery.client-
cert-file

Sets the Client Certificate data that are loaded from
the file when using client lookup.

 String

camel.cloud.kuber
netes.service-
discovery.client-
key-algo

Sets the Client Keystore algorithm, such as RSA when
using client lookup.

 String

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1088

camel.cloud.kuber
netes.service-
discovery.client-
key-data

Sets the Client Keystore data when using client
lookup.

 String

camel.cloud.kuber
netes.service-
discovery.client-
key-file

Sets the Client Keystore data that are loaded from
the file when using client lookup.

 String

camel.cloud.kuber
netes.service-
discovery.client-
key-passphrase

Sets the Client Keystore passphrase when using
client lookup.

 String

camel.cloud.kuber
netes.service-
discovery.configu
rations

Define additional configuration definitions. Map

camel.cloud.kuber
netes.service-
discovery.dns-
domain

Sets the DNS domain to use for DNS lookup. String

camel.cloud.kuber
netes.service-
discovery.enabled

Enable the component. true Boolean

camel.cloud.kuber
netes.service-
discovery.lookup

How to perform service lookup. Possible values:
client, dns, environment. When using client, then the
client queries the kubernetes master to obtain a list
of active pods that provides the service, and then
random (or round robin) select a pod. When using dns
the service name is resolved as
name.namespace.svc.dnsDomain. When using dnssrv
the service name is resolved with SRV query for .…
svc… When using environment then environment
variables are used to lookup the service. By default
environment is used.

environ
ment

String

camel.cloud.kuber
netes.service-
discovery.master-
url

Sets the URL to the master when using client lookup. String

Name Description Defaul
t

Type

CHAPTER 66. CONSTANT

1089

camel.cloud.kuber
netes.service-
discovery.namesp
ace

Sets the namespace to use. Will by default use
namespace from the ENV variable
KUBERNETES_MASTER.

 String

camel.cloud.kuber
netes.service-
discovery.oauth-
token

Sets the OAUTH token for authentication (instead of
username/password) when using client lookup.

 String

camel.cloud.kuber
netes.service-
discovery.passwo
rd

Sets the password for authentication when using
client lookup.

 String

camel.cloud.kuber
netes.service-
discovery.port-
name

Sets the Port Name to use for DNS/DNSSRV lookup. String

camel.cloud.kuber
netes.service-
discovery.port-
protocol

Sets the Port Protocol to use for DNS/DNSSRV
lookup.

 String

camel.cloud.kuber
netes.service-
discovery.propert
ies

Set client properties to use. These properties are
specific to what service call implementation are in
use. For example if using ribbon, then the client
properties are define in
com.netflix.client.config.CommonClientConfigKey.

 Map

camel.cloud.kuber
netes.service-
discovery.trust-
certs

Sets whether to turn on trust certificate check when
using client lookup.

false Boolean

camel.cloud.kuber
netes.service-
discovery.userna
me

Sets the username for authentication when using
client lookup.

 String

camel.cloud.ribbo
n.load-
balancer.client-
name

Sets the Ribbon client name. String

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1090

camel.cloud.ribbo
n.load-
balancer.configur
ations

Define additional configuration definitions. Map

camel.cloud.ribbo
n.load-
balancer.enabled

Enable the component. true Boolean

camel.cloud.ribbo
n.load-
balancer.namespa
ce

The namespace. String

camel.cloud.ribbo
n.load-
balancer.passwor
d

The password. String

camel.cloud.ribbo
n.load-
balancer.properti
es

Set client properties to use. These properties are
specific to what service call implementation are in
use. For example if using ribbon, then the client
properties are define in
com.netflix.client.config.CommonClientConfigKey.

 Map

camel.cloud.ribbo
n.load-
balancer.usernam
e

The username. String

camel.hystrix.allo
w-maximum-size-
to-diverge-from-
core-size

Allows the configuration for maximumSize to take
effect. That value can then be equal to, or higher,
than coreSize.

false Boolean

camel.hystrix.circ
uit-breaker-
enabled

Whether to use a HystrixCircuitBreaker or not. If
false no circuit-breaker logic will be used and all
requests permitted. This is similar in effect to
circuitBreakerForceClosed() except that continues
tracking metrics and knowing whether it should be
open/closed, this property results in not even
instantiating a circuit-breaker.

true Boolean

Name Description Defaul
t

Type

CHAPTER 66. CONSTANT

1091

camel.hystrix.circ
uit-breaker-
error-threshold-
percentage

Error percentage threshold (as whole number such as
50) at which point the circuit breaker will trip open
and reject requests. It will stay tripped for the
duration defined in
circuitBreakerSleepWindowInMilliseconds; The error
percentage this is compared against comes from
HystrixCommandMetrics.getHealthCounts().

50 Integer

camel.hystrix.circ
uit-breaker-
force-closed

If true the HystrixCircuitBreaker#allowRequest() will
always return true to allow requests regardless of the
error percentage from
HystrixCommandMetrics.getHealthCounts(). The
circuitBreakerForceOpen() property takes
precedence so if it set to true this property does
nothing.

false Boolean

camel.hystrix.circ
uit-breaker-
force-open

If true the HystrixCircuitBreaker.allowRequest() will
always return false, causing the circuit to be open
(tripped) and reject all requests. This property takes
precedence over circuitBreakerForceClosed();.

false Boolean

camel.hystrix.circ
uit-breaker-
request-volume-
threshold

Minimum number of requests in the
metricsRollingStatisticalWindowInMilliseconds() that
must exist before the HystrixCircuitBreaker will trip. If
below this number the circuit will not trip regardless
of error percentage.

20 Integer

camel.hystrix.circ
uit-breaker-
sleep-window-in-
milliseconds

The time in milliseconds after a HystrixCircuitBreaker
trips open that it should wait before trying requests
again.

5000 Integer

camel.hystrix.con
figurations

Define additional configuration definitions. Map

camel.hystrix.core
-pool-size

Core thread-pool size that gets passed to
java.util.concurrent.ThreadPoolExecutor#setCorePo
olSize(int).

10 Integer

camel.hystrix.ena
bled

Enable the component. true Boolean

camel.hystrix.exe
cution-isolation-
semaphore-max-
concurrent-
requests

Number of concurrent requests permitted to
HystrixCommand.run(). Requests beyond the
concurrent limit will be rejected. Applicable only when
executionIsolationStrategy == SEMAPHORE.

20 Integer

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1092

camel.hystrix.exe
cution-isolation-
strategy

What isolation strategy HystrixCommand.run() will be
executed with. If THREAD then it will be executed on
a separate thread and concurrent requests limited by
the number of threads in the thread-pool. If
SEMAPHORE then it will be executed on the calling
thread and concurrent requests limited by the
semaphore count.

THREA
D

String

camel.hystrix.exe
cution-isolation-
thread-interrupt-
on-timeout

Whether the execution thread should attempt an
interrupt (using Future#cancel) when a thread times
out. Applicable only when
executionIsolationStrategy() == THREAD.

true Boolean

camel.hystrix.exe
cution-timeout-
enabled

Whether the timeout mechanism is enabled for this
command.

true Boolean

camel.hystrix.exe
cution-timeout-
in-milliseconds

Time in milliseconds at which point the command will
timeout and halt execution. If
executionIsolationThreadInterruptOnTimeout == true
and the command is thread-isolated, the executing
thread will be interrupted. If the command is
semaphore-isolated and a
HystrixObservableCommand, that command will get
unsubscribed.

1000 Integer

camel.hystrix.fallb
ack-enabled

Whether HystrixCommand.getFallback() should be
attempted when failure occurs.

true Boolean

camel.hystrix.fallb
ack-isolation-
semaphore-max-
concurrent-
requests

Number of concurrent requests permitted to
HystrixCommand.getFallback(). Requests beyond
the concurrent limit will fail-fast and not attempt
retrieving a fallback.

10 Integer

camel.hystrix.gro
up-key

Sets the group key to use. The default value is
CamelHystrix.

Camel
Hystrix

String

camel.hystrix.kee
p-alive-time

Keep-alive time in minutes that gets passed to
ThreadPoolExecutor#setKeepAliveTime(long,TimeU
nit).

1 Integer

camel.hystrix.max
-queue-size

Max queue size that gets passed to BlockingQueue in
HystrixConcurrencyStrategy.getBlockingQueue(int)
This should only affect the instantiation of a
threadpool - it is not eliglible to change a queue size
on the fly. For that, use
queueSizeRejectionThreshold().

-1 Integer

Name Description Defaul
t

Type

CHAPTER 66. CONSTANT

1093

camel.hystrix.max
imum-size

Maximum thread-pool size that gets passed to
ThreadPoolExecutor#setMaximumPoolSize(int) .
This is the maximum amount of concurrency that can
be supported without starting to reject
HystrixCommands. Please note that this setting only
takes effect if you also set
allowMaximumSizeToDivergeFromCoreSize.

10 Integer

camel.hystrix.met
rics-health-
snapshot-
interval-in-
milliseconds

Time in milliseconds to wait between allowing health
snapshots to be taken that calculate success and
error percentages and affect
HystrixCircuitBreaker.isOpen() status. On high-
volume circuits the continual calculation of error
percentage can become CPU intensive thus this
controls how often it is calculated.

500 Integer

camel.hystrix.met
rics-rolling-
percentile-
bucket-size

Maximum number of values stored in each bucket of
the rolling percentile. This is passed into
HystrixRollingPercentile inside
HystrixCommandMetrics.

10 Integer

camel.hystrix.met
rics-rolling-
percentile-
enabled

Whether percentile metrics should be captured using
HystrixRollingPercentile inside
HystrixCommandMetrics.

true Boolean

camel.hystrix.met
rics-rolling-
percentile-
window-buckets

Number of buckets the rolling percentile window is
broken into. This is passed into
HystrixRollingPercentile inside
HystrixCommandMetrics.

6 Integer

camel.hystrix.met
rics-rolling-
percentile-
window-in-
milliseconds

Duration of percentile rolling window in milliseconds.
This is passed into HystrixRollingPercentile inside
HystrixCommandMetrics.

10000 Integer

camel.hystrix.met
rics-rolling-
statistical-
window-buckets

Number of buckets the rolling statistical window is
broken into. This is passed into HystrixRollingNumber
inside HystrixCommandMetrics.

10 Integer

camel.hystrix.met
rics-rolling-
statistical-
window-in-
milliseconds

This property sets the duration of the statistical
rolling window, in milliseconds. This is how long
metrics are kept for the thread pool. The window is
divided into buckets and rolls by those increments.

10000 Integer

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1094

camel.hystrix.que
ue-size-rejection-
threshold

Queue size rejection threshold is an artificial max size
at which rejections will occur even if maxQueueSize
has not been reached. This is done because the
maxQueueSize of a BlockingQueue can not be
dynamically changed and we want to support
dynamically changing the queue size that affects
rejections. This is used by HystrixCommand when
queuing a thread for execution.

5 Integer

camel.hystrix.req
uest-log-enabled

Whether HystrixCommand execution and events
should be logged to HystrixRequestLog.

true Boolean

camel.hystrix.thre
ad-pool-key

Sets the thread pool key to use. Will by default use
the same value as groupKey has been configured to
use.

Camel
Hystrix

String

camel.hystrix.thre
ad-pool-rolling-
number-
statistical-
window-buckets

Number of buckets the rolling statistical window is
broken into. This is passed into HystrixRollingNumber
inside each HystrixThreadPoolMetrics instance.

10 Integer

camel.hystrix.thre
ad-pool-rolling-
number-
statistical-
window-in-
milliseconds

Duration of statistical rolling window in milliseconds.
This is passed into HystrixRollingNumber inside each
HystrixThreadPoolMetrics instance.

10000 Integer

camel.language.c
onstant.enabled

Whether to enable auto configuration of the constant
language. This is enabled by default.

 Boolean

camel.language.c
onstant.trim

Whether to trim the value to remove leading and
trailing whitespaces and line breaks.

true Boolean

camel.language.c
simple.enabled

Whether to enable auto configuration of the csimple
language. This is enabled by default.

 Boolean

camel.language.c
simple.trim

Whether to trim the value to remove leading and
trailing whitespaces and line breaks.

true Boolean

camel.language.e
xchangeproperty.
enabled

Whether to enable auto configuration of the
exchangeProperty language. This is enabled by
default.

 Boolean

Name Description Defaul
t

Type

CHAPTER 66. CONSTANT

1095

camel.language.e
xchangeproperty.
trim

Whether to trim the value to remove leading and
trailing whitespaces and line breaks.

true Boolean

camel.language.fil
e.enabled

Whether to enable auto configuration of the file
language. This is enabled by default.

 Boolean

camel.language.fil
e.trim

Whether to trim the value to remove leading and
trailing whitespaces and line breaks.

true Boolean

camel.language.h
eader.enabled

Whether to enable auto configuration of the header
language. This is enabled by default.

 Boolean

camel.language.h
eader.trim

Whether to trim the value to remove leading and
trailing whitespaces and line breaks.

true Boolean

camel.language.re
f.enabled

Whether to enable auto configuration of the ref
language. This is enabled by default.

 Boolean

camel.language.re
f.trim

Whether to trim the value to remove leading and
trailing whitespaces and line breaks.

true Boolean

camel.language.si
mple.enabled

Whether to enable auto configuration of the simple
language. This is enabled by default.

 Boolean

camel.language.si
mple.trim

Whether to trim the value to remove leading and
trailing whitespaces and line breaks.

true Boolean

camel.language.t
okenize.enabled

Whether to enable auto configuration of the tokenize
language. This is enabled by default.

 Boolean

camel.language.t
okenize.group-
delimiter

Sets the delimiter to use when grouping. If this has
not been set then token will be used as the delimiter.

 String

camel.language.t
okenize.trim

Whether to trim the value to remove leading and
trailing whitespaces and line breaks.

true Boolean

camel.resilience4j
.automatic-
transition-from-
open-to-half-
open-enabled

Enables automatic transition from OPEN to
HALF_OPEN state once the
waitDurationInOpenState has passed.

false Boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1096

camel.resilience4j
.circuit-breaker-
ref

Refers to an existing
io.github.resilience4j.circuitbreaker.CircuitBreaker
instance to lookup and use from the registry. When
using this, then any other circuit breaker options are
not in use.

 String

camel.resilience4j
.config-ref

Refers to an existing
io.github.resilience4j.circuitbreaker.CircuitBreakerCo
nfig instance to lookup and use from the registry.

 String

camel.resilience4j
.configurations

Define additional configuration definitions. Map

camel.resilience4j
.enabled

Enable the component. true Boolean

camel.resilience4j
.failure-rate-
threshold

Configures the failure rate threshold in percentage. If
the failure rate is equal or greater than the threshold
the CircuitBreaker transitions to open and starts
short-circuiting calls. The threshold must be greater
than 0 and not greater than 100. Default value is 50
percentage.

 Float

camel.resilience4j
.minimum-
number-of-calls

Configures the minimum number of calls which are
required (per sliding window period) before the
CircuitBreaker can calculate the error rate. For
example, if minimumNumberOfCalls is 10, then at
least 10 calls must be recorded, before the failure rate
can be calculated. If only 9 calls have been recorded
the CircuitBreaker will not transition to open even if
all 9 calls have failed. Default
minimumNumberOfCalls is 100.

100 Integer

camel.resilience4j
.permitted-
number-of-calls-
in-half-open-
state

Configures the number of permitted calls when the
CircuitBreaker is half open. The size must be greater
than 0. Default size is 10.

10 Integer

Name Description Defaul
t

Type

CHAPTER 66. CONSTANT

1097

camel.resilience4j
.sliding-window-
size

Configures the size of the sliding window which is
used to record the outcome of calls when the
CircuitBreaker is closed. slidingWindowSize
configures the size of the sliding window. Sliding
window can either be count-based or time-based. If
slidingWindowType is COUNT_BASED, the last
slidingWindowSize calls are recorded and
aggregated. If slidingWindowType is TIME_BASED,
the calls of the last slidingWindowSize seconds are
recorded and aggregated. The slidingWindowSize
must be greater than 0. The minimumNumberOfCalls
must be greater than 0. If the slidingWindowType is
COUNT_BASED, the minimumNumberOfCalls
cannot be greater than slidingWindowSize . If the
slidingWindowType is TIME_BASED, you can pick
whatever you want. Default slidingWindowSize is 100.

100 Integer

camel.resilience4j
.sliding-window-
type

Configures the type of the sliding window which is
used to record the outcome of calls when the
CircuitBreaker is closed. Sliding window can either be
count-based or time-based. If slidingWindowType is
COUNT_BASED, the last slidingWindowSize calls are
recorded and aggregated. If slidingWindowType is
TIME_BASED, the calls of the last slidingWindowSize
seconds are recorded and aggregated. Default
slidingWindowType is COUNT_BASED.

COUN
T_BAS
ED

String

camel.resilience4j
.slow-call-
duration-
threshold

Configures the duration threshold (seconds) above
which calls are considered as slow and increase the
slow calls percentage. Default value is 60 seconds.

60 Integer

camel.resilience4j
.slow-call-rate-
threshold

Configures a threshold in percentage. The
CircuitBreaker considers a call as slow when the call
duration is greater than slowCallDurationThreshold
Duration. When the percentage of slow calls is equal
or greater the threshold, the CircuitBreaker
transitions to open and starts short-circuiting calls.
The threshold must be greater than 0 and not greater
than 100. Default value is 100 percentage which
means that all recorded calls must be slower than
slowCallDurationThreshold.

 Float

camel.resilience4j
.wait-duration-in-
open-state

Configures the wait duration (in seconds) which
specifies how long the CircuitBreaker should stay
open, before it switches to half open. Default value is
60 seconds.

60 Integer

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1098

camel.resilience4j
.writable-stack-
trace-enabled

Enables writable stack traces. When set to false,
Exception.getStackTrace returns a zero length array.
This may be used to reduce log spam when the circuit
breaker is open as the cause of the exceptions is
already known (the circuit breaker is short-circuiting
calls).

true Boolean

camel.rest.api-
component

The name of the Camel component to use as the
REST API (such as swagger) If no API Component
has been explicit configured, then Camel will lookup if
there is a Camel component responsible for servicing
and generating the REST API documentation, or if a
org.apache.camel.spi.RestApiProcessorFactory is
registered in the registry. If either one is found, then
that is being used.

 String

camel.rest.api-
context-path

Sets a leading API context-path the REST API
services will be using. This can be used when using
components such as camel-servlet where the
deployed web application is deployed using a
context-path.

 String

camel.rest.api-
context-route-id

Sets the route id to use for the route that services the
REST API. The route will by default use an auto
assigned route id.

 String

camel.rest.api-
host

To use an specific hostname for the API
documentation (eg swagger) This can be used to
override the generated host with this configured
hostname.

 String

camel.rest.api-
property

Allows to configure as many additional properties for
the api documentation (swagger). For example set
property api.title to my cool stuff.

 Map

camel.rest.api-
vendor-extension

Whether vendor extension is enabled in the Rest
APIs. If enabled then Camel will include additional
information as vendor extension (eg keys starting
with x-) such as route ids, class names etc. Not all 3rd
party API gateways and tools supports vendor-
extensions when importing your API docs.

false Boolean

camel.rest.bindin
g-mode

Sets the binding mode to use. The default value is
off.

 RestBindingMode

Name Description Defaul
t

Type

CHAPTER 66. CONSTANT

1099

camel.rest.client-
request-
validation

Whether to enable validation of the client request to
check whether the Content-Type and Accept
headers from the client is supported by the Rest-DSL
configuration of its consumes/produces settings.
This can be turned on, to enable this check. In case of
validation error, then HTTP Status codes 415 or 406
is returned. The default value is false.

false Boolean

camel.rest.compo
nent

The Camel Rest component to use for the REST
transport (consumer), such as netty-http, jetty,
servlet, undertow. If no component has been explicit
configured, then Camel will lookup if there is a Camel
component that integrates with the Rest DSL, or if a
org.apache.camel.spi.RestConsumerFactory is
registered in the registry. If either one is found, then
that is being used.

 String

camel.rest.compo
nent-property

Allows to configure as many additional properties for
the rest component in use.

 Map

camel.rest.consu
mer-property

Allows to configure as many additional properties for
the rest consumer in use.

 Map

camel.rest.contex
t-path

Sets a leading context-path the REST services will be
using. This can be used when using components such
as camel-servlet where the deployed web application
is deployed using a context-path. Or for components
such as camel-jetty or camel-netty-http that includes
a HTTP server.

 String

camel.rest.cors-
headers

Allows to configure custom CORS headers. Map

camel.rest.data-
format-property

Allows to configure as many additional properties for
the data formats in use. For example set property
prettyPrint to true to have json outputted in pretty
mode. The properties can be prefixed to denote the
option is only for either JSON or XML and for either
the IN or the OUT. The prefixes are: json.in. json.out.
xml.in. xml.out. For example a key with value
xml.out.mustBeJAXBElement is only for the XML
data format for the outgoing. A key without a prefix is
a common key for all situations.

 Map

camel.rest.enable
-cors

Whether to enable CORS headers in the HTTP
response. The default value is false.

false Boolean

camel.rest.endpoi
nt-property

Allows to configure as many additional properties for
the rest endpoint in use.

 Map

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1100

camel.rest.host The hostname to use for exposing the REST service. String

camel.rest.host-
name-resolver

If no hostname has been explicit configured, then this
resolver is used to compute the hostname the REST
service will be using.

 RestHostNameRe
solver

camel.rest.json-
data-format

Name of specific json data format to use. By default
json-jackson will be used. Important: This option is
only for setting a custom name of the data format,
not to refer to an existing data format instance.

 String

camel.rest.port The port number to use for exposing the REST
service. Notice if you use servlet component then the
port number configured here does not apply, as the
port number in use is the actual port number the
servlet component is using. eg if using Apache
Tomcat its the tomcat http port, if using Apache Karaf
its the HTTP service in Karaf that uses port 8181 by
default etc. Though in those situations setting the
port number here, allows tooling and JMX to know
the port number, so its recommended to set the port
number to the number that the servlet engine uses.

 String

camel.rest.produc
er-api-doc

Sets the location of the api document (swagger api)
the REST producer will use to validate the REST uri
and query parameters are valid accordingly to the api
document. This requires adding camel-swagger-java
to the classpath, and any miss configuration will let
Camel fail on startup and report the error(s). The
location of the api document is loaded from
classpath by default, but you can use file: or http: to
refer to resources to load from file or http url.

 String

camel.rest.produc
er-component

Sets the name of the Camel component to use as the
REST producer.

 String

camel.rest.schem
e

The scheme to use for exposing the REST service.
Usually http or https is supported. The default value
is http.

 String

camel.rest.skip-
binding-on-error-
code

Whether to skip binding on output if there is a custom
HTTP error code header. This allows to build custom
error messages that do not bind to json / xml etc, as
success messages otherwise will do.

false Boolean

camel.rest.use-x-
forward-headers

Whether to use X-Forward headers for Host and
related setting. The default value is true.

true Boolean

Name Description Defaul
t

Type

CHAPTER 66. CONSTANT

1101

camel.rest.xml-
data-format

Name of specific XML data format to use. By default
jaxb will be used. Important: This option is only for
setting a custom name of the data format, not to
refer to an existing data format instance.

 String

camel.rest.api-
context-id-
pattern

Deprecated Sets an CamelContext id pattern to only
allow Rest APIs from rest services within
CamelContext’s which name matches the pattern.
The pattern name refers to the CamelContext name,
to match on the current CamelContext only. For any
other value, the pattern uses the rules from
PatternHelper#matchPattern(String,String).

 String

camel.rest.api-
context-listing

Deprecated Sets whether listing of all available
CamelContext’s with REST services in the JVM is
enabled. If enabled it allows to discover these
contexts, if false then only the current CamelContext
is in use.

false Boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1102

CHAPTER 67. CSIMPLE
The CSimple language is compiled Simple language.

67.1. DIFFERENT BETWEEN CSIMPLE AND SIMPLE

The simple language is a dynamic expression language which is runtime parsed into a set of Camel
Expressions or Predicates.

The csimple language is parsed into regular Java source code and compiled together with all the other
source code, or compiled once during bootstrap via the camel-csimple-joor module.

The simple language is generally very lightweight and fast, however for some use-cases with dynamic
method calls via OGNL paths, then the simple language does runtime introspection and reflection calls.
This has an overhead on performance, and was one of the reasons why csimple was created.

The csimple language requires to be typesafe and method calls via OGNL paths requires to know the
type during parsing. This means for csimple languages expressions you would need to provide the class
type in the script, whereas simple introspects this at runtime.

In other words the simple language is using duck typing (if it looks like a duck, and quacks like a duck,
then it is a duck) and csimple is using Java type (typesafety). If there is a type error then simple will
report this at runtime, and with csimple there will be a Java compilation error.

67.1.1. Additional CSimple functions

The csimple language includes some additional functions to support common use-cases working with
Collection, Map or array types. The following functions bodyAsIndex, headerAsIndex, and
exchangePropertyAsIndex is used for these use-cases as they are typed.

Function Type Description

bodyAsIndex(type, index) Type To be used for collecting the body from an existing Collection,
Map or array (lookup by the index) and then converting the
body to the given type determined by its classname. The
converted body can be null.

mandatoryBodyAsIndex(type,
index)

Type To be used for collecting the body from an existing Collection,
Map or array (lookup by the index) and then converting the
body to the given type determined by its classname. Expects the
body to be not null.

headerAsIndex(key, type,
index)

Type To be used for collecting a header from an existing Collection,
Map or array (lookup by the index) and then converting the
header value to the given type determined by its classname. The
converted header can be null.

mandatoryHeaderAsIndex(key
, type, index)

Type To be used for collecting a header from an existing Collection,
Map or array (lookup by the index) and then converting the
header value to the given type determined by its classname.
Expects the header to be not null.

CHAPTER 67. CSIMPLE

1103

https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/camel_spring_boot_reference_3.14/index#csb-camel-simple-language-starter

exchangePropertyAsIndex(ke
y, type, index)

Type To be used for collecting an exchange property from an existing
Collection, Map or array (lookup by the index) and then
converting the exchange property to the given type determined
by its classname. The converted exchange property can be null.

mandatoryExchangeProperty
AsIndex(key, type, index)

Type To be used for collecting an exchange property from an existing
Collection, Map or array (lookup by the index) and then
converting the exchange property to the given type determined
by its classname. Expects the exchange property to be not null.

Function Type Description

For example given the following simple expression:

Hello $\{body[0].name}

This script has no type information, and the simple language will resolve this at runtime, by introspecting
the message body and if it’s a collection based then lookup the first element, and then invoke a method
named getName via reflection.

In csimple (compiled) we want to pre compile this and therefore the end user must provide type
information with the bodyAsIndex function:

Hello $\{bodyAsIndex(com.foo.MyUser, 0).name}

67.2. COMPILATION

The csimple language is parsed into regular Java source code and compiled together with all the other
source code, or it can be compiled once during bootstrap via the camel-csimple-joor module.

There are two ways to compile csimple

using the camel-csimple-maven-plugin generating source code at built time.

using camel-csimple-joor which does runtime in-memory compilation during bootstrap of
Camel.

67.2.1. Using camel-csimple-maven-plugin

The camel-csimple-maven-plugin Maven plugin is used for discovering all the csimple scripts from the
source code, and then automatic generate source code in the src/generated/java folder, which then
gets compiled together with all the other sources.

The maven plugin will do source code scanning of .java and .xml files (Java and XML DSL). The scanner
limits to detect certain code patterns, and it may miss discovering some csimple scripts if they are being
used in unusual/rare ways.

The runtime compilation using camel-csimple-joor does not have this limitation.

The benefit is all the csimple scripts will be compiled using the regular Java compiler and therefore

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1104

The benefit is all the csimple scripts will be compiled using the regular Java compiler and therefore
everything is included out of the box as .class files in the application JAR file, and no additional
dependencies is required at runtime.

To use camel-csimple-maven-plugin you need to add it to your pom.xml file as shown:

And then you must also add the build-helper-maven-plugin Maven plugin to include src/generated to
the list of source folders for the Java compiler, to ensure the generated source code is compiled and
included in the application JAR file.

See the camel-example-csimple example at Camel Examples which uses the maven plugin.

67.2.2. Using camel-csimple-joor

<plugins>
 <!-- generate source code for csimple languages -->
 <plugin>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-csimple-maven-plugin</artifactId>
 <version>${camel.version}</version>
 <executions>
 <execution>
 <id>generate</id>
 <goals>
 <goal>generate</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 <!-- include source code generated to maven sources paths -->
 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>build-helper-maven-plugin</artifactId>
 <version>3.1.0</version>
 <executions>
 <execution>
 <phase>generate-sources</phase>
 <goals>
 <goal>add-source</goal>
 <goal>add-resource</goal>
 </goals>
 <configuration>
 <sources>
 <source>src/generated/java</source>
 </sources>
 <resources>
 <resource>
 <directory>src/generated/resources</directory>
 </resource>
 </resources>
 </configuration>
 </execution>
 </executions>
 </plugin>
</plugins>

CHAPTER 67. CSIMPLE

1105

https://github.com/apache/camel-examples

The jOOR library integrates with the Java compiler and performs runtime compilation of Java code.

The supported runtime when using camel-simple-joor is intended for Java standalone, Spring Boot,
Camel Quarkus and other microservices runtimes. It is not supported in OSGi, Camel Karaf or any kind
of Java Application Server runtime.

jOOR does not support runtime compilation with Spring Boot using fat jar packaging
(https://github.com/jOOQ/jOOR/issues/69), it works with exploded classpath.

To use camel-simple-joor you simply just add it as dependency to the classpath:

There is no need for adding Maven plugins to the pom.xml file.

See the camel-example-csimple-joor example at Camel Examples which uses the jOOR compiler.

67.3. CSIMPLE LANGUAGE OPTIONS

The CSimple language supports 2 options, which are listed below.

Name Default Java
Type

Description

resultType String Sets the class name of the result type (type from
output).

trim Boole
an

Whether to trim the value to remove leading and
trailing whitespaces and line breaks.

67.4. LIMITATIONS

Currently, the csimple language does not support:

nested functions (aka functions inside functions)

the null safe operator (?).

For example the following scripts cannot compile:

67.5. AUTO IMPORTS

The csimple language will automatically import from:

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-csimple-joor</artifactId>
 <version>3.14.5.redhat-00032</version>
</dependency>

 Hello ${bean:greeter(${body}, ${header.counter})}

 ${bodyAs(MyUser)?.address?.zip} > 10000

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1106

https://github.com/jOOQ/jOOR/issues/69
https://github.com/apache/camel-examples

import java.util.*;
import java.util.concurrent.*;
import java.util.stream.*;
import org.apache.camel.*;
import org.apache.camel.util.*;

67.6. CONFIGURATION FILE

You can configure the csimple language in the camel-csimple.properties file which is loaded from the
root classpath.

For example you can add additional imports in the camel-csimple.properties file by adding:

import com.foo.MyUser;
import com.bar.*;
import static com.foo.MyHelper.*;

You can also add aliases (key=value) where an alias will be used as a shorthand replacement in the code.

echo()=${bodyAs(String)} ${bodyAs(String)}

Which allows to use echo() in the csimple language script such as:

The echo() alias will be replaced with its value resulting in a script as:

67.7. SEE ALSO

See the Simple language as csimple has the same set of functions as simple language.

67.8. SPRING BOOT AUTO-CONFIGURATION

When using csimple with Spring Boot make sure to use the following Maven dependency to have
support for auto configuration:

The component supports 147 options, which are listed below.

from("direct:hello")
 .transform(csimple("Hello echo()"))
 .log("You said ${body}");

 .transform(csimple("Hello ${bodyAs(String)} ${bodyAs(String)}"))

<dependency>
 <groupId>org.apache.camel.springboot</groupId>
 <artifactId>camel-core-starter</artifactId>
 <version>3.14.5.redhat-00032</version>
 <!-- Use your Camel Spring Boot version -->
</dependency>

CHAPTER 67. CSIMPLE

1107

https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/camel_spring_boot_reference_3.14/index#csb-camel-simple-language-starter

Name Description Defaul
t

Type

camel.cloud.cons
ul.service-
discovery.acl-
token

Sets the ACL token to be used with Consul. String

camel.cloud.cons
ul.service-
discovery.block-
seconds

The seconds to wait for a watch event, default 10
seconds.

10 Integer

camel.cloud.cons
ul.service-
discovery.configu
rations

Define additional configuration definitions. Map

camel.cloud.cons
ul.service-
discovery.connect
-timeout-millis

Connect timeout for OkHttpClient. Long

camel.cloud.cons
ul.service-
discovery.datacen
ter

The data center. String

camel.cloud.cons
ul.service-
discovery.enabled

Enable the component. true Boolean

camel.cloud.cons
ul.service-
discovery.passwo
rd

Sets the password to be used for basic
authentication.

 String

camel.cloud.cons
ul.service-
discovery.propert
ies

Set client properties to use. These properties are
specific to what service call implementation are in
use. For example if using ribbon, then the client
properties are define in
com.netflix.client.config.CommonClientConfigKey.

 Map

camel.cloud.cons
ul.service-
discovery.read-
timeout-millis

Read timeout for OkHttpClient. Long

camel.cloud.cons
ul.service-
discovery.url

The Consul agent URL. String

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1108

camel.cloud.cons
ul.service-
discovery.user-
name

Sets the username to be used for basic
authentication.

 String

camel.cloud.cons
ul.service-
discovery.write-
timeout-millis

Write timeout for OkHttpClient. Long

camel.cloud.dns.s
ervice-
discovery.configu
rations

Define additional configuration definitions. Map

camel.cloud.dns.s
ervice-
discovery.domain

The domain name;. String

camel.cloud.dns.s
ervice-
discovery.enabled

Enable the component. true Boolean

camel.cloud.dns.s
ervice-
discovery.propert
ies

Set client properties to use. These properties are
specific to what service call implementation are in
use. For example if using ribbon, then the client
properties are define in
com.netflix.client.config.CommonClientConfigKey.

 Map

camel.cloud.dns.s
ervice-
discovery.proto

The transport protocol of the desired service. _tcp String

camel.cloud.etcd.
service-
discovery.configu
rations

Define additional configuration definitions. Map

camel.cloud.etcd.
service-
discovery.enabled

Enable the component. true Boolean

camel.cloud.etcd.
service-
discovery.passwo
rd

The password to use for basic authentication. String

Name Description Defaul
t

Type

CHAPTER 67. CSIMPLE

1109

camel.cloud.etcd.
service-
discovery.propert
ies

Set client properties to use. These properties are
specific to what service call implementation are in
use. For example if using ribbon, then the client
properties are define in
com.netflix.client.config.CommonClientConfigKey.

 Map

camel.cloud.etcd.
service-
discovery.service-
path

The path to look for for service discovery. /servic
es/

String

camel.cloud.etcd.
service-
discovery.timeout

To set the maximum time an action could take to
complete.

 Long

camel.cloud.etcd.
service-
discovery.type

To set the discovery type, valid values are on-
demand and watch.

on-
deman
d

String

camel.cloud.etcd.
service-
discovery.uris

The URIs the client can connect to. String

camel.cloud.etcd.
service-
discovery.user-
name

The user name to use for basic authentication. String

camel.cloud.kuber
netes.service-
discovery.api-
version

Sets the API version when using client lookup. String

camel.cloud.kuber
netes.service-
discovery.ca-
cert-data

Sets the Certificate Authority data when using client
lookup.

 String

camel.cloud.kuber
netes.service-
discovery.ca-
cert-file

Sets the Certificate Authority data that are loaded
from the file when using client lookup.

 String

camel.cloud.kuber
netes.service-
discovery.client-
cert-data

Sets the Client Certificate data when using client
lookup.

 String

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1110

camel.cloud.kuber
netes.service-
discovery.client-
cert-file

Sets the Client Certificate data that are loaded from
the file when using client lookup.

 String

camel.cloud.kuber
netes.service-
discovery.client-
key-algo

Sets the Client Keystore algorithm, such as RSA when
using client lookup.

 String

camel.cloud.kuber
netes.service-
discovery.client-
key-data

Sets the Client Keystore data when using client
lookup.

 String

camel.cloud.kuber
netes.service-
discovery.client-
key-file

Sets the Client Keystore data that are loaded from
the file when using client lookup.

 String

camel.cloud.kuber
netes.service-
discovery.client-
key-passphrase

Sets the Client Keystore passphrase when using
client lookup.

 String

camel.cloud.kuber
netes.service-
discovery.configu
rations

Define additional configuration definitions. Map

camel.cloud.kuber
netes.service-
discovery.dns-
domain

Sets the DNS domain to use for DNS lookup. String

camel.cloud.kuber
netes.service-
discovery.enabled

Enable the component. true Boolean

Name Description Defaul
t

Type

CHAPTER 67. CSIMPLE

1111

camel.cloud.kuber
netes.service-
discovery.lookup

How to perform service lookup. Possible values:
client, dns, environment. When using client, then the
client queries the kubernetes master to obtain a list
of active pods that provides the service, and then
random (or round robin) select a pod. When using dns
the service name is resolved as
name.namespace.svc.dnsDomain. When using dnssrv
the service name is resolved with SRV query for .…
svc… When using environment then environment
variables are used to lookup the service. By default
environment is used.

environ
ment

String

camel.cloud.kuber
netes.service-
discovery.master-
url

Sets the URL to the master when using client lookup. String

camel.cloud.kuber
netes.service-
discovery.namesp
ace

Sets the namespace to use. Will by default use
namespace from the ENV variable
KUBERNETES_MASTER.

 String

camel.cloud.kuber
netes.service-
discovery.oauth-
token

Sets the OAUTH token for authentication (instead of
username/password) when using client lookup.

 String

camel.cloud.kuber
netes.service-
discovery.passwo
rd

Sets the password for authentication when using
client lookup.

 String

camel.cloud.kuber
netes.service-
discovery.port-
name

Sets the Port Name to use for DNS/DNSSRV lookup. String

camel.cloud.kuber
netes.service-
discovery.port-
protocol

Sets the Port Protocol to use for DNS/DNSSRV
lookup.

 String

camel.cloud.kuber
netes.service-
discovery.propert
ies

Set client properties to use. These properties are
specific to what service call implementation are in
use. For example if using ribbon, then the client
properties are define in
com.netflix.client.config.CommonClientConfigKey.

 Map

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1112

camel.cloud.kuber
netes.service-
discovery.trust-
certs

Sets whether to turn on trust certificate check when
using client lookup.

false Boolean

camel.cloud.kuber
netes.service-
discovery.userna
me

Sets the username for authentication when using
client lookup.

 String

camel.cloud.ribbo
n.load-
balancer.client-
name

Sets the Ribbon client name. String

camel.cloud.ribbo
n.load-
balancer.configur
ations

Define additional configuration definitions. Map

camel.cloud.ribbo
n.load-
balancer.enabled

Enable the component. true Boolean

camel.cloud.ribbo
n.load-
balancer.namespa
ce

The namespace. String

camel.cloud.ribbo
n.load-
balancer.passwor
d

The password. String

camel.cloud.ribbo
n.load-
balancer.properti
es

Set client properties to use. These properties are
specific to what service call implementation are in
use. For example if using ribbon, then the client
properties are define in
com.netflix.client.config.CommonClientConfigKey.

 Map

camel.cloud.ribbo
n.load-
balancer.usernam
e

The username. String

Name Description Defaul
t

Type

CHAPTER 67. CSIMPLE

1113

camel.hystrix.allo
w-maximum-size-
to-diverge-from-
core-size

Allows the configuration for maximumSize to take
effect. That value can then be equal to, or higher,
than coreSize.

false Boolean

camel.hystrix.circ
uit-breaker-
enabled

Whether to use a HystrixCircuitBreaker or not. If
false no circuit-breaker logic will be used and all
requests permitted. This is similar in effect to
circuitBreakerForceClosed() except that continues
tracking metrics and knowing whether it should be
open/closed, this property results in not even
instantiating a circuit-breaker.

true Boolean

camel.hystrix.circ
uit-breaker-
error-threshold-
percentage

Error percentage threshold (as whole number such as
50) at which point the circuit breaker will trip open
and reject requests. It will stay tripped for the
duration defined in
circuitBreakerSleepWindowInMilliseconds; The error
percentage this is compared against comes from
HystrixCommandMetrics.getHealthCounts().

50 Integer

camel.hystrix.circ
uit-breaker-
force-closed

If true the HystrixCircuitBreaker#allowRequest() will
always return true to allow requests regardless of the
error percentage from
HystrixCommandMetrics.getHealthCounts(). The
circuitBreakerForceOpen() property takes
precedence so if it set to true this property does
nothing.

false Boolean

camel.hystrix.circ
uit-breaker-
force-open

If true the HystrixCircuitBreaker.allowRequest() will
always return false, causing the circuit to be open
(tripped) and reject all requests. This property takes
precedence over circuitBreakerForceClosed();.

false Boolean

camel.hystrix.circ
uit-breaker-
request-volume-
threshold

Minimum number of requests in the
metricsRollingStatisticalWindowInMilliseconds() that
must exist before the HystrixCircuitBreaker will trip. If
below this number the circuit will not trip regardless
of error percentage.

20 Integer

camel.hystrix.circ
uit-breaker-
sleep-window-in-
milliseconds

The time in milliseconds after a HystrixCircuitBreaker
trips open that it should wait before trying requests
again.

5000 Integer

camel.hystrix.con
figurations

Define additional configuration definitions. Map

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1114

camel.hystrix.core
-pool-size

Core thread-pool size that gets passed to
java.util.concurrent.ThreadPoolExecutor#setCorePo
olSize(int).

10 Integer

camel.hystrix.ena
bled

Enable the component. true Boolean

camel.hystrix.exe
cution-isolation-
semaphore-max-
concurrent-
requests

Number of concurrent requests permitted to
HystrixCommand.run(). Requests beyond the
concurrent limit will be rejected. Applicable only when
executionIsolationStrategy == SEMAPHORE.

20 Integer

camel.hystrix.exe
cution-isolation-
strategy

What isolation strategy HystrixCommand.run() will be
executed with. If THREAD then it will be executed on
a separate thread and concurrent requests limited by
the number of threads in the thread-pool. If
SEMAPHORE then it will be executed on the calling
thread and concurrent requests limited by the
semaphore count.

THREA
D

String

camel.hystrix.exe
cution-isolation-
thread-interrupt-
on-timeout

Whether the execution thread should attempt an
interrupt (using Future#cancel) when a thread times
out. Applicable only when
executionIsolationStrategy() == THREAD.

true Boolean

camel.hystrix.exe
cution-timeout-
enabled

Whether the timeout mechanism is enabled for this
command.

true Boolean

camel.hystrix.exe
cution-timeout-
in-milliseconds

Time in milliseconds at which point the command will
timeout and halt execution. If
executionIsolationThreadInterruptOnTimeout == true
and the command is thread-isolated, the executing
thread will be interrupted. If the command is
semaphore-isolated and a
HystrixObservableCommand, that command will get
unsubscribed.

1000 Integer

camel.hystrix.fallb
ack-enabled

Whether HystrixCommand.getFallback() should be
attempted when failure occurs.

true Boolean

camel.hystrix.fallb
ack-isolation-
semaphore-max-
concurrent-
requests

Number of concurrent requests permitted to
HystrixCommand.getFallback(). Requests beyond
the concurrent limit will fail-fast and not attempt
retrieving a fallback.

10 Integer

Name Description Defaul
t

Type

CHAPTER 67. CSIMPLE

1115

camel.hystrix.gro
up-key

Sets the group key to use. The default value is
CamelHystrix.

Camel
Hystrix

String

camel.hystrix.kee
p-alive-time

Keep-alive time in minutes that gets passed to
ThreadPoolExecutor#setKeepAliveTime(long,TimeU
nit).

1 Integer

camel.hystrix.max
-queue-size

Max queue size that gets passed to BlockingQueue in
HystrixConcurrencyStrategy.getBlockingQueue(int)
This should only affect the instantiation of a
threadpool - it is not eliglible to change a queue size
on the fly. For that, use
queueSizeRejectionThreshold().

-1 Integer

camel.hystrix.max
imum-size

Maximum thread-pool size that gets passed to
ThreadPoolExecutor#setMaximumPoolSize(int) .
This is the maximum amount of concurrency that can
be supported without starting to reject
HystrixCommands. Please note that this setting only
takes effect if you also set
allowMaximumSizeToDivergeFromCoreSize.

10 Integer

camel.hystrix.met
rics-health-
snapshot-
interval-in-
milliseconds

Time in milliseconds to wait between allowing health
snapshots to be taken that calculate success and
error percentages and affect
HystrixCircuitBreaker.isOpen() status. On high-
volume circuits the continual calculation of error
percentage can become CPU intensive thus this
controls how often it is calculated.

500 Integer

camel.hystrix.met
rics-rolling-
percentile-
bucket-size

Maximum number of values stored in each bucket of
the rolling percentile. This is passed into
HystrixRollingPercentile inside
HystrixCommandMetrics.

10 Integer

camel.hystrix.met
rics-rolling-
percentile-
enabled

Whether percentile metrics should be captured using
HystrixRollingPercentile inside
HystrixCommandMetrics.

true Boolean

camel.hystrix.met
rics-rolling-
percentile-
window-buckets

Number of buckets the rolling percentile window is
broken into. This is passed into
HystrixRollingPercentile inside
HystrixCommandMetrics.

6 Integer

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1116

camel.hystrix.met
rics-rolling-
percentile-
window-in-
milliseconds

Duration of percentile rolling window in milliseconds.
This is passed into HystrixRollingPercentile inside
HystrixCommandMetrics.

10000 Integer

camel.hystrix.met
rics-rolling-
statistical-
window-buckets

Number of buckets the rolling statistical window is
broken into. This is passed into HystrixRollingNumber
inside HystrixCommandMetrics.

10 Integer

camel.hystrix.met
rics-rolling-
statistical-
window-in-
milliseconds

This property sets the duration of the statistical
rolling window, in milliseconds. This is how long
metrics are kept for the thread pool. The window is
divided into buckets and rolls by those increments.

10000 Integer

camel.hystrix.que
ue-size-rejection-
threshold

Queue size rejection threshold is an artificial max size
at which rejections will occur even if maxQueueSize
has not been reached. This is done because the
maxQueueSize of a BlockingQueue can not be
dynamically changed and we want to support
dynamically changing the queue size that affects
rejections. This is used by HystrixCommand when
queuing a thread for execution.

5 Integer

camel.hystrix.req
uest-log-enabled

Whether HystrixCommand execution and events
should be logged to HystrixRequestLog.

true Boolean

camel.hystrix.thre
ad-pool-key

Sets the thread pool key to use. Will by default use
the same value as groupKey has been configured to
use.

Camel
Hystrix

String

camel.hystrix.thre
ad-pool-rolling-
number-
statistical-
window-buckets

Number of buckets the rolling statistical window is
broken into. This is passed into HystrixRollingNumber
inside each HystrixThreadPoolMetrics instance.

10 Integer

camel.hystrix.thre
ad-pool-rolling-
number-
statistical-
window-in-
milliseconds

Duration of statistical rolling window in milliseconds.
This is passed into HystrixRollingNumber inside each
HystrixThreadPoolMetrics instance.

10000 Integer

Name Description Defaul
t

Type

CHAPTER 67. CSIMPLE

1117

camel.language.c
onstant.enabled

Whether to enable auto configuration of the constant
language. This is enabled by default.

 Boolean

camel.language.c
onstant.trim

Whether to trim the value to remove leading and
trailing whitespaces and line breaks.

true Boolean

camel.language.c
simple.enabled

Whether to enable auto configuration of the csimple
language. This is enabled by default.

 Boolean

camel.language.c
simple.trim

Whether to trim the value to remove leading and
trailing whitespaces and line breaks.

true Boolean

camel.language.e
xchangeproperty.
enabled

Whether to enable auto configuration of the
exchangeProperty language. This is enabled by
default.

 Boolean

camel.language.e
xchangeproperty.
trim

Whether to trim the value to remove leading and
trailing whitespaces and line breaks.

true Boolean

camel.language.fil
e.enabled

Whether to enable auto configuration of the file
language. This is enabled by default.

 Boolean

camel.language.fil
e.trim

Whether to trim the value to remove leading and
trailing whitespaces and line breaks.

true Boolean

camel.language.h
eader.enabled

Whether to enable auto configuration of the header
language. This is enabled by default.

 Boolean

camel.language.h
eader.trim

Whether to trim the value to remove leading and
trailing whitespaces and line breaks.

true Boolean

camel.language.re
f.enabled

Whether to enable auto configuration of the ref
language. This is enabled by default.

 Boolean

camel.language.re
f.trim

Whether to trim the value to remove leading and
trailing whitespaces and line breaks.

true Boolean

camel.language.si
mple.enabled

Whether to enable auto configuration of the simple
language. This is enabled by default.

 Boolean

camel.language.si
mple.trim

Whether to trim the value to remove leading and
trailing whitespaces and line breaks.

true Boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1118

camel.language.t
okenize.enabled

Whether to enable auto configuration of the tokenize
language. This is enabled by default.

 Boolean

camel.language.t
okenize.group-
delimiter

Sets the delimiter to use when grouping. If this has
not been set then token will be used as the delimiter.

 String

camel.language.t
okenize.trim

Whether to trim the value to remove leading and
trailing whitespaces and line breaks.

true Boolean

camel.resilience4j
.automatic-
transition-from-
open-to-half-
open-enabled

Enables automatic transition from OPEN to
HALF_OPEN state once the
waitDurationInOpenState has passed.

false Boolean

camel.resilience4j
.circuit-breaker-
ref

Refers to an existing
io.github.resilience4j.circuitbreaker.CircuitBreaker
instance to lookup and use from the registry. When
using this, then any other circuit breaker options are
not in use.

 String

camel.resilience4j
.config-ref

Refers to an existing
io.github.resilience4j.circuitbreaker.CircuitBreakerCo
nfig instance to lookup and use from the registry.

 String

camel.resilience4j
.configurations

Define additional configuration definitions. Map

camel.resilience4j
.enabled

Enable the component. true Boolean

camel.resilience4j
.failure-rate-
threshold

Configures the failure rate threshold in percentage. If
the failure rate is equal or greater than the threshold
the CircuitBreaker transitions to open and starts
short-circuiting calls. The threshold must be greater
than 0 and not greater than 100. Default value is 50
percentage.

 Float

camel.resilience4j
.minimum-
number-of-calls

Configures the minimum number of calls which are
required (per sliding window period) before the
CircuitBreaker can calculate the error rate. For
example, if minimumNumberOfCalls is 10, then at
least 10 calls must be recorded, before the failure rate
can be calculated. If only 9 calls have been recorded
the CircuitBreaker will not transition to open even if
all 9 calls have failed. Default
minimumNumberOfCalls is 100.

100 Integer

Name Description Defaul
t

Type

CHAPTER 67. CSIMPLE

1119

camel.resilience4j
.permitted-
number-of-calls-
in-half-open-
state

Configures the number of permitted calls when the
CircuitBreaker is half open. The size must be greater
than 0. Default size is 10.

10 Integer

camel.resilience4j
.sliding-window-
size

Configures the size of the sliding window which is
used to record the outcome of calls when the
CircuitBreaker is closed. slidingWindowSize
configures the size of the sliding window. Sliding
window can either be count-based or time-based. If
slidingWindowType is COUNT_BASED, the last
slidingWindowSize calls are recorded and
aggregated. If slidingWindowType is TIME_BASED,
the calls of the last slidingWindowSize seconds are
recorded and aggregated. The slidingWindowSize
must be greater than 0. The minimumNumberOfCalls
must be greater than 0. If the slidingWindowType is
COUNT_BASED, the minimumNumberOfCalls
cannot be greater than slidingWindowSize . If the
slidingWindowType is TIME_BASED, you can pick
whatever you want. Default slidingWindowSize is 100.

100 Integer

camel.resilience4j
.sliding-window-
type

Configures the type of the sliding window which is
used to record the outcome of calls when the
CircuitBreaker is closed. Sliding window can either be
count-based or time-based. If slidingWindowType is
COUNT_BASED, the last slidingWindowSize calls are
recorded and aggregated. If slidingWindowType is
TIME_BASED, the calls of the last slidingWindowSize
seconds are recorded and aggregated. Default
slidingWindowType is COUNT_BASED.

COUN
T_BAS
ED

String

camel.resilience4j
.slow-call-
duration-
threshold

Configures the duration threshold (seconds) above
which calls are considered as slow and increase the
slow calls percentage. Default value is 60 seconds.

60 Integer

camel.resilience4j
.slow-call-rate-
threshold

Configures a threshold in percentage. The
CircuitBreaker considers a call as slow when the call
duration is greater than slowCallDurationThreshold
Duration. When the percentage of slow calls is equal
or greater the threshold, the CircuitBreaker
transitions to open and starts short-circuiting calls.
The threshold must be greater than 0 and not greater
than 100. Default value is 100 percentage which
means that all recorded calls must be slower than
slowCallDurationThreshold.

 Float

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1120

camel.resilience4j
.wait-duration-in-
open-state

Configures the wait duration (in seconds) which
specifies how long the CircuitBreaker should stay
open, before it switches to half open. Default value is
60 seconds.

60 Integer

camel.resilience4j
.writable-stack-
trace-enabled

Enables writable stack traces. When set to false,
Exception.getStackTrace returns a zero length array.
This may be used to reduce log spam when the circuit
breaker is open as the cause of the exceptions is
already known (the circuit breaker is short-circuiting
calls).

true Boolean

camel.rest.api-
component

The name of the Camel component to use as the
REST API (such as swagger) If no API Component
has been explicit configured, then Camel will lookup if
there is a Camel component responsible for servicing
and generating the REST API documentation, or if a
org.apache.camel.spi.RestApiProcessorFactory is
registered in the registry. If either one is found, then
that is being used.

 String

camel.rest.api-
context-path

Sets a leading API context-path the REST API
services will be using. This can be used when using
components such as camel-servlet where the
deployed web application is deployed using a
context-path.

 String

camel.rest.api-
context-route-id

Sets the route id to use for the route that services the
REST API. The route will by default use an auto
assigned route id.

 String

camel.rest.api-
host

To use an specific hostname for the API
documentation (eg swagger) This can be used to
override the generated host with this configured
hostname.

 String

camel.rest.api-
property

Allows to configure as many additional properties for
the api documentation (swagger). For example set
property api.title to my cool stuff.

 Map

camel.rest.api-
vendor-extension

Whether vendor extension is enabled in the Rest
APIs. If enabled then Camel will include additional
information as vendor extension (eg keys starting
with x-) such as route ids, class names etc. Not all 3rd
party API gateways and tools supports vendor-
extensions when importing your API docs.

false Boolean

Name Description Defaul
t

Type

CHAPTER 67. CSIMPLE

1121

camel.rest.bindin
g-mode

Sets the binding mode to use. The default value is
off.

 RestBindingMode

camel.rest.client-
request-
validation

Whether to enable validation of the client request to
check whether the Content-Type and Accept
headers from the client is supported by the Rest-DSL
configuration of its consumes/produces settings.
This can be turned on, to enable this check. In case of
validation error, then HTTP Status codes 415 or 406
is returned. The default value is false.

false Boolean

camel.rest.compo
nent

The Camel Rest component to use for the REST
transport (consumer), such as netty-http, jetty,
servlet, undertow. If no component has been explicit
configured, then Camel will lookup if there is a Camel
component that integrates with the Rest DSL, or if a
org.apache.camel.spi.RestConsumerFactory is
registered in the registry. If either one is found, then
that is being used.

 String

camel.rest.compo
nent-property

Allows to configure as many additional properties for
the rest component in use.

 Map

camel.rest.consu
mer-property

Allows to configure as many additional properties for
the rest consumer in use.

 Map

camel.rest.contex
t-path

Sets a leading context-path the REST services will be
using. This can be used when using components such
as camel-servlet where the deployed web application
is deployed using a context-path. Or for components
such as camel-jetty or camel-netty-http that includes
a HTTP server.

 String

camel.rest.cors-
headers

Allows to configure custom CORS headers. Map

camel.rest.data-
format-property

Allows to configure as many additional properties for
the data formats in use. For example set property
prettyPrint to true to have json outputted in pretty
mode. The properties can be prefixed to denote the
option is only for either JSON or XML and for either
the IN or the OUT. The prefixes are: json.in. json.out.
xml.in. xml.out. For example a key with value
xml.out.mustBeJAXBElement is only for the XML
data format for the outgoing. A key without a prefix is
a common key for all situations.

 Map

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1122

camel.rest.enable
-cors

Whether to enable CORS headers in the HTTP
response. The default value is false.

false Boolean

camel.rest.endpoi
nt-property

Allows to configure as many additional properties for
the rest endpoint in use.

 Map

camel.rest.host The hostname to use for exposing the REST service. String

camel.rest.host-
name-resolver

If no hostname has been explicit configured, then this
resolver is used to compute the hostname the REST
service will be using.

 RestHostNameRe
solver

camel.rest.json-
data-format

Name of specific json data format to use. By default
json-jackson will be used. Important: This option is
only for setting a custom name of the data format,
not to refer to an existing data format instance.

 String

camel.rest.port The port number to use for exposing the REST
service. Notice if you use servlet component then the
port number configured here does not apply, as the
port number in use is the actual port number the
servlet component is using. eg if using Apache
Tomcat its the tomcat http port, if using Apache Karaf
its the HTTP service in Karaf that uses port 8181 by
default etc. Though in those situations setting the
port number here, allows tooling and JMX to know
the port number, so its recommended to set the port
number to the number that the servlet engine uses.

 String

camel.rest.produc
er-api-doc

Sets the location of the api document (swagger api)
the REST producer will use to validate the REST uri
and query parameters are valid accordingly to the api
document. This requires adding camel-swagger-java
to the classpath, and any miss configuration will let
Camel fail on startup and report the error(s). The
location of the api document is loaded from
classpath by default, but you can use file: or http: to
refer to resources to load from file or http url.

 String

camel.rest.produc
er-component

Sets the name of the Camel component to use as the
REST producer.

 String

camel.rest.schem
e

The scheme to use for exposing the REST service.
Usually http or https is supported. The default value
is http.

 String

Name Description Defaul
t

Type

CHAPTER 67. CSIMPLE

1123

camel.rest.skip-
binding-on-error-
code

Whether to skip binding on output if there is a custom
HTTP error code header. This allows to build custom
error messages that do not bind to json / xml etc, as
success messages otherwise will do.

false Boolean

camel.rest.use-x-
forward-headers

Whether to use X-Forward headers for Host and
related setting. The default value is true.

true Boolean

camel.rest.xml-
data-format

Name of specific XML data format to use. By default
jaxb will be used. Important: This option is only for
setting a custom name of the data format, not to
refer to an existing data format instance.

 String

camel.rest.api-
context-id-
pattern

Deprecated Sets an CamelContext id pattern to only
allow Rest APIs from rest services within
CamelContext’s which name matches the pattern.
The pattern name refers to the CamelContext name,
to match on the current CamelContext only. For any
other value, the pattern uses the rules from
PatternHelper#matchPattern(String,String).

 String

camel.rest.api-
context-listing

Deprecated Sets whether listing of all available
CamelContext’s with REST services in the JVM is
enabled. If enabled it allows to discover these
contexts, if false then only the current CamelContext
is in use.

false Boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1124

CHAPTER 68. EXCHANGEPROPERTY
The ExchangeProperty Expression Language allows you to extract values of named exchange
properties.

68.1. EXCHANGE PROPERTY OPTIONS

The ExchangeProperty language supports 1 options, which are listed below.

Name Default Java
Type

Description

trim Boole
an

Whether to trim the value to remove leading and trailing
whitespaces and line breaks.

68.2. EXAMPLE

The recipientList EIP can utilize a exchangeProperty like:

In this case, the list of recipients are contained in the property 'myProperty'.

And the same example in Java DSL:

68.3. DEPENDENCIES

The ExchangeProperty language is part of camel-core.

68.4. SPRING BOOT AUTO-CONFIGURATION

When using exchangeProperty with Spring Boot make sure to use the following Maven dependency to
have support for auto configuration:

The component supports 147 options, which are listed below.

<route>
 <from uri="direct:a" />
 <recipientList>
 <exchangeProperty>myProperty</exchangeProperty>
 </recipientList>
</route>

from("direct:a").recipientList(exchangeProperty("myProperty"));

<dependency>
 <groupId>org.apache.camel.springboot</groupId>
 <artifactId>camel-core-starter</artifactId>
 <version>3.14.5.redhat-00032</version>
 <!-- Use your Camel Spring Boot version -->
</dependency>

CHAPTER 68. EXCHANGEPROPERTY

1125

Name Description Defaul
t

Type

camel.cloud.cons
ul.service-
discovery.acl-
token

Sets the ACL token to be used with Consul. String

camel.cloud.cons
ul.service-
discovery.block-
seconds

The seconds to wait for a watch event, default 10
seconds.

10 Integer

camel.cloud.cons
ul.service-
discovery.configu
rations

Define additional configuration definitions. Map

camel.cloud.cons
ul.service-
discovery.connect
-timeout-millis

Connect timeout for OkHttpClient. Long

camel.cloud.cons
ul.service-
discovery.datacen
ter

The data center. String

camel.cloud.cons
ul.service-
discovery.enabled

Enable the component. true Boolean

camel.cloud.cons
ul.service-
discovery.passwo
rd

Sets the password to be used for basic
authentication.

 String

camel.cloud.cons
ul.service-
discovery.propert
ies

Set client properties to use. These properties are
specific to what service call implementation are in
use. For example if using ribbon, then the client
properties are define in
com.netflix.client.config.CommonClientConfigKey.

 Map

camel.cloud.cons
ul.service-
discovery.read-
timeout-millis

Read timeout for OkHttpClient. Long

camel.cloud.cons
ul.service-
discovery.url

The Consul agent URL. String

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1126

camel.cloud.cons
ul.service-
discovery.user-
name

Sets the username to be used for basic
authentication.

 String

camel.cloud.cons
ul.service-
discovery.write-
timeout-millis

Write timeout for OkHttpClient. Long

camel.cloud.dns.s
ervice-
discovery.configu
rations

Define additional configuration definitions. Map

camel.cloud.dns.s
ervice-
discovery.domain

The domain name;. String

camel.cloud.dns.s
ervice-
discovery.enabled

Enable the component. true Boolean

camel.cloud.dns.s
ervice-
discovery.propert
ies

Set client properties to use. These properties are
specific to what service call implementation are in
use. For example if using ribbon, then the client
properties are define in
com.netflix.client.config.CommonClientConfigKey.

 Map

camel.cloud.dns.s
ervice-
discovery.proto

The transport protocol of the desired service. _tcp String

camel.cloud.etcd.
service-
discovery.configu
rations

Define additional configuration definitions. Map

camel.cloud.etcd.
service-
discovery.enabled

Enable the component. true Boolean

camel.cloud.etcd.
service-
discovery.passwo
rd

The password to use for basic authentication. String

Name Description Defaul
t

Type

CHAPTER 68. EXCHANGEPROPERTY

1127

camel.cloud.etcd.
service-
discovery.propert
ies

Set client properties to use. These properties are
specific to what service call implementation are in
use. For example if using ribbon, then the client
properties are define in
com.netflix.client.config.CommonClientConfigKey.

 Map

camel.cloud.etcd.
service-
discovery.service-
path

The path to look for for service discovery. /servic
es/

String

camel.cloud.etcd.
service-
discovery.timeout

To set the maximum time an action could take to
complete.

 Long

camel.cloud.etcd.
service-
discovery.type

To set the discovery type, valid values are on-
demand and watch.

on-
deman
d

String

camel.cloud.etcd.
service-
discovery.uris

The URIs the client can connect to. String

camel.cloud.etcd.
service-
discovery.user-
name

The user name to use for basic authentication. String

camel.cloud.kuber
netes.service-
discovery.api-
version

Sets the API version when using client lookup. String

camel.cloud.kuber
netes.service-
discovery.ca-
cert-data

Sets the Certificate Authority data when using client
lookup.

 String

camel.cloud.kuber
netes.service-
discovery.ca-
cert-file

Sets the Certificate Authority data that are loaded
from the file when using client lookup.

 String

camel.cloud.kuber
netes.service-
discovery.client-
cert-data

Sets the Client Certificate data when using client
lookup.

 String

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1128

camel.cloud.kuber
netes.service-
discovery.client-
cert-file

Sets the Client Certificate data that are loaded from
the file when using client lookup.

 String

camel.cloud.kuber
netes.service-
discovery.client-
key-algo

Sets the Client Keystore algorithm, such as RSA when
using client lookup.

 String

camel.cloud.kuber
netes.service-
discovery.client-
key-data

Sets the Client Keystore data when using client
lookup.

 String

camel.cloud.kuber
netes.service-
discovery.client-
key-file

Sets the Client Keystore data that are loaded from
the file when using client lookup.

 String

camel.cloud.kuber
netes.service-
discovery.client-
key-passphrase

Sets the Client Keystore passphrase when using
client lookup.

 String

camel.cloud.kuber
netes.service-
discovery.configu
rations

Define additional configuration definitions. Map

camel.cloud.kuber
netes.service-
discovery.dns-
domain

Sets the DNS domain to use for DNS lookup. String

camel.cloud.kuber
netes.service-
discovery.enabled

Enable the component. true Boolean

Name Description Defaul
t

Type

CHAPTER 68. EXCHANGEPROPERTY

1129

camel.cloud.kuber
netes.service-
discovery.lookup

How to perform service lookup. Possible values:
client, dns, environment. When using client, then the
client queries the kubernetes master to obtain a list
of active pods that provides the service, and then
random (or round robin) select a pod. When using dns
the service name is resolved as
name.namespace.svc.dnsDomain. When using dnssrv
the service name is resolved with SRV query for .…
svc… When using environment then environment
variables are used to lookup the service. By default
environment is used.

environ
ment

String

camel.cloud.kuber
netes.service-
discovery.master-
url

Sets the URL to the master when using client lookup. String

camel.cloud.kuber
netes.service-
discovery.namesp
ace

Sets the namespace to use. Will by default use
namespace from the ENV variable
KUBERNETES_MASTER.

 String

camel.cloud.kuber
netes.service-
discovery.oauth-
token

Sets the OAUTH token for authentication (instead of
username/password) when using client lookup.

 String

camel.cloud.kuber
netes.service-
discovery.passwo
rd

Sets the password for authentication when using
client lookup.

 String

camel.cloud.kuber
netes.service-
discovery.port-
name

Sets the Port Name to use for DNS/DNSSRV lookup. String

camel.cloud.kuber
netes.service-
discovery.port-
protocol

Sets the Port Protocol to use for DNS/DNSSRV
lookup.

 String

camel.cloud.kuber
netes.service-
discovery.propert
ies

Set client properties to use. These properties are
specific to what service call implementation are in
use. For example if using ribbon, then the client
properties are define in
com.netflix.client.config.CommonClientConfigKey.

 Map

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1130

camel.cloud.kuber
netes.service-
discovery.trust-
certs

Sets whether to turn on trust certificate check when
using client lookup.

false Boolean

camel.cloud.kuber
netes.service-
discovery.userna
me

Sets the username for authentication when using
client lookup.

 String

camel.cloud.ribbo
n.load-
balancer.client-
name

Sets the Ribbon client name. String

camel.cloud.ribbo
n.load-
balancer.configur
ations

Define additional configuration definitions. Map

camel.cloud.ribbo
n.load-
balancer.enabled

Enable the component. true Boolean

camel.cloud.ribbo
n.load-
balancer.namespa
ce

The namespace. String

camel.cloud.ribbo
n.load-
balancer.passwor
d

The password. String

camel.cloud.ribbo
n.load-
balancer.properti
es

Set client properties to use. These properties are
specific to what service call implementation are in
use. For example if using ribbon, then the client
properties are define in
com.netflix.client.config.CommonClientConfigKey.

 Map

camel.cloud.ribbo
n.load-
balancer.usernam
e

The username. String

Name Description Defaul
t

Type

CHAPTER 68. EXCHANGEPROPERTY

1131

camel.hystrix.allo
w-maximum-size-
to-diverge-from-
core-size

Allows the configuration for maximumSize to take
effect. That value can then be equal to, or higher,
than coreSize.

false Boolean

camel.hystrix.circ
uit-breaker-
enabled

Whether to use a HystrixCircuitBreaker or not. If
false no circuit-breaker logic will be used and all
requests permitted. This is similar in effect to
circuitBreakerForceClosed() except that continues
tracking metrics and knowing whether it should be
open/closed, this property results in not even
instantiating a circuit-breaker.

true Boolean

camel.hystrix.circ
uit-breaker-
error-threshold-
percentage

Error percentage threshold (as whole number such as
50) at which point the circuit breaker will trip open
and reject requests. It will stay tripped for the
duration defined in
circuitBreakerSleepWindowInMilliseconds; The error
percentage this is compared against comes from
HystrixCommandMetrics.getHealthCounts().

50 Integer

camel.hystrix.circ
uit-breaker-
force-closed

If true the HystrixCircuitBreaker#allowRequest() will
always return true to allow requests regardless of the
error percentage from
HystrixCommandMetrics.getHealthCounts(). The
circuitBreakerForceOpen() property takes
precedence so if it set to true this property does
nothing.

false Boolean

camel.hystrix.circ
uit-breaker-
force-open

If true the HystrixCircuitBreaker.allowRequest() will
always return false, causing the circuit to be open
(tripped) and reject all requests. This property takes
precedence over circuitBreakerForceClosed();.

false Boolean

camel.hystrix.circ
uit-breaker-
request-volume-
threshold

Minimum number of requests in the
metricsRollingStatisticalWindowInMilliseconds() that
must exist before the HystrixCircuitBreaker will trip. If
below this number the circuit will not trip regardless
of error percentage.

20 Integer

camel.hystrix.circ
uit-breaker-
sleep-window-in-
milliseconds

The time in milliseconds after a HystrixCircuitBreaker
trips open that it should wait before trying requests
again.

5000 Integer

camel.hystrix.con
figurations

Define additional configuration definitions. Map

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1132

camel.hystrix.core
-pool-size

Core thread-pool size that gets passed to
java.util.concurrent.ThreadPoolExecutor#setCorePo
olSize(int).

10 Integer

camel.hystrix.ena
bled

Enable the component. true Boolean

camel.hystrix.exe
cution-isolation-
semaphore-max-
concurrent-
requests

Number of concurrent requests permitted to
HystrixCommand.run(). Requests beyond the
concurrent limit will be rejected. Applicable only when
executionIsolationStrategy == SEMAPHORE.

20 Integer

camel.hystrix.exe
cution-isolation-
strategy

What isolation strategy HystrixCommand.run() will be
executed with. If THREAD then it will be executed on
a separate thread and concurrent requests limited by
the number of threads in the thread-pool. If
SEMAPHORE then it will be executed on the calling
thread and concurrent requests limited by the
semaphore count.

THREA
D

String

camel.hystrix.exe
cution-isolation-
thread-interrupt-
on-timeout

Whether the execution thread should attempt an
interrupt (using Future#cancel) when a thread times
out. Applicable only when
executionIsolationStrategy() == THREAD.

true Boolean

camel.hystrix.exe
cution-timeout-
enabled

Whether the timeout mechanism is enabled for this
command.

true Boolean

camel.hystrix.exe
cution-timeout-
in-milliseconds

Time in milliseconds at which point the command will
timeout and halt execution. If
executionIsolationThreadInterruptOnTimeout == true
and the command is thread-isolated, the executing
thread will be interrupted. If the command is
semaphore-isolated and a
HystrixObservableCommand, that command will get
unsubscribed.

1000 Integer

camel.hystrix.fallb
ack-enabled

Whether HystrixCommand.getFallback() should be
attempted when failure occurs.

true Boolean

camel.hystrix.fallb
ack-isolation-
semaphore-max-
concurrent-
requests

Number of concurrent requests permitted to
HystrixCommand.getFallback(). Requests beyond
the concurrent limit will fail-fast and not attempt
retrieving a fallback.

10 Integer

Name Description Defaul
t

Type

CHAPTER 68. EXCHANGEPROPERTY

1133

camel.hystrix.gro
up-key

Sets the group key to use. The default value is
CamelHystrix.

Camel
Hystrix

String

camel.hystrix.kee
p-alive-time

Keep-alive time in minutes that gets passed to
ThreadPoolExecutor#setKeepAliveTime(long,TimeU
nit).

1 Integer

camel.hystrix.max
-queue-size

Max queue size that gets passed to BlockingQueue in
HystrixConcurrencyStrategy.getBlockingQueue(int)
This should only affect the instantiation of a
threadpool - it is not eliglible to change a queue size
on the fly. For that, use
queueSizeRejectionThreshold().

-1 Integer

camel.hystrix.max
imum-size

Maximum thread-pool size that gets passed to
ThreadPoolExecutor#setMaximumPoolSize(int) .
This is the maximum amount of concurrency that can
be supported without starting to reject
HystrixCommands. Please note that this setting only
takes effect if you also set
allowMaximumSizeToDivergeFromCoreSize.

10 Integer

camel.hystrix.met
rics-health-
snapshot-
interval-in-
milliseconds

Time in milliseconds to wait between allowing health
snapshots to be taken that calculate success and
error percentages and affect
HystrixCircuitBreaker.isOpen() status. On high-
volume circuits the continual calculation of error
percentage can become CPU intensive thus this
controls how often it is calculated.

500 Integer

camel.hystrix.met
rics-rolling-
percentile-
bucket-size

Maximum number of values stored in each bucket of
the rolling percentile. This is passed into
HystrixRollingPercentile inside
HystrixCommandMetrics.

10 Integer

camel.hystrix.met
rics-rolling-
percentile-
enabled

Whether percentile metrics should be captured using
HystrixRollingPercentile inside
HystrixCommandMetrics.

true Boolean

camel.hystrix.met
rics-rolling-
percentile-
window-buckets

Number of buckets the rolling percentile window is
broken into. This is passed into
HystrixRollingPercentile inside
HystrixCommandMetrics.

6 Integer

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1134

camel.hystrix.met
rics-rolling-
percentile-
window-in-
milliseconds

Duration of percentile rolling window in milliseconds.
This is passed into HystrixRollingPercentile inside
HystrixCommandMetrics.

10000 Integer

camel.hystrix.met
rics-rolling-
statistical-
window-buckets

Number of buckets the rolling statistical window is
broken into. This is passed into HystrixRollingNumber
inside HystrixCommandMetrics.

10 Integer

camel.hystrix.met
rics-rolling-
statistical-
window-in-
milliseconds

This property sets the duration of the statistical
rolling window, in milliseconds. This is how long
metrics are kept for the thread pool. The window is
divided into buckets and rolls by those increments.

10000 Integer

camel.hystrix.que
ue-size-rejection-
threshold

Queue size rejection threshold is an artificial max size
at which rejections will occur even if maxQueueSize
has not been reached. This is done because the
maxQueueSize of a BlockingQueue can not be
dynamically changed and we want to support
dynamically changing the queue size that affects
rejections. This is used by HystrixCommand when
queuing a thread for execution.

5 Integer

camel.hystrix.req
uest-log-enabled

Whether HystrixCommand execution and events
should be logged to HystrixRequestLog.

true Boolean

camel.hystrix.thre
ad-pool-key

Sets the thread pool key to use. Will by default use
the same value as groupKey has been configured to
use.

Camel
Hystrix

String

camel.hystrix.thre
ad-pool-rolling-
number-
statistical-
window-buckets

Number of buckets the rolling statistical window is
broken into. This is passed into HystrixRollingNumber
inside each HystrixThreadPoolMetrics instance.

10 Integer

camel.hystrix.thre
ad-pool-rolling-
number-
statistical-
window-in-
milliseconds

Duration of statistical rolling window in milliseconds.
This is passed into HystrixRollingNumber inside each
HystrixThreadPoolMetrics instance.

10000 Integer

camel.language.c
onstant.enabled

Whether to enable auto configuration of the constant
language. This is enabled by default.

 Boolean

Name Description Defaul
t

Type

CHAPTER 68. EXCHANGEPROPERTY

1135

camel.language.c
onstant.trim

Whether to trim the value to remove leading and
trailing whitespaces and line breaks.

true Boolean

camel.language.c
simple.enabled

Whether to enable auto configuration of the csimple
language. This is enabled by default.

 Boolean

camel.language.c
simple.trim

Whether to trim the value to remove leading and
trailing whitespaces and line breaks.

true Boolean

camel.language.e
xchangeproperty.
enabled

Whether to enable auto configuration of the
exchangeProperty language. This is enabled by
default.

 Boolean

camel.language.e
xchangeproperty.
trim

Whether to trim the value to remove leading and
trailing whitespaces and line breaks.

true Boolean

camel.language.fil
e.enabled

Whether to enable auto configuration of the file
language. This is enabled by default.

 Boolean

camel.language.fil
e.trim

Whether to trim the value to remove leading and
trailing whitespaces and line breaks.

true Boolean

camel.language.h
eader.enabled

Whether to enable auto configuration of the header
language. This is enabled by default.

 Boolean

camel.language.h
eader.trim

Whether to trim the value to remove leading and
trailing whitespaces and line breaks.

true Boolean

camel.language.re
f.enabled

Whether to enable auto configuration of the ref
language. This is enabled by default.

 Boolean

camel.language.re
f.trim

Whether to trim the value to remove leading and
trailing whitespaces and line breaks.

true Boolean

camel.language.si
mple.enabled

Whether to enable auto configuration of the simple
language. This is enabled by default.

 Boolean

camel.language.si
mple.trim

Whether to trim the value to remove leading and
trailing whitespaces and line breaks.

true Boolean

camel.language.t
okenize.enabled

Whether to enable auto configuration of the tokenize
language. This is enabled by default.

 Boolean

camel.language.t
okenize.group-
delimiter

Sets the delimiter to use when grouping. If this has
not been set then token will be used as the delimiter.

 String

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1136

camel.language.t
okenize.trim

Whether to trim the value to remove leading and
trailing whitespaces and line breaks.

true Boolean

camel.resilience4j
.automatic-
transition-from-
open-to-half-
open-enabled

Enables automatic transition from OPEN to
HALF_OPEN state once the
waitDurationInOpenState has passed.

false Boolean

camel.resilience4j
.circuit-breaker-
ref

Refers to an existing
io.github.resilience4j.circuitbreaker.CircuitBreaker
instance to lookup and use from the registry. When
using this, then any other circuit breaker options are
not in use.

 String

camel.resilience4j
.config-ref

Refers to an existing
io.github.resilience4j.circuitbreaker.CircuitBreakerCo
nfig instance to lookup and use from the registry.

 String

camel.resilience4j
.configurations

Define additional configuration definitions. Map

camel.resilience4j
.enabled

Enable the component. true Boolean

camel.resilience4j
.failure-rate-
threshold

Configures the failure rate threshold in percentage. If
the failure rate is equal or greater than the threshold
the CircuitBreaker transitions to open and starts
short-circuiting calls. The threshold must be greater
than 0 and not greater than 100. Default value is 50
percentage.

 Float

camel.resilience4j
.minimum-
number-of-calls

Configures the minimum number of calls which are
required (per sliding window period) before the
CircuitBreaker can calculate the error rate. For
example, if minimumNumberOfCalls is 10, then at
least 10 calls must be recorded, before the failure rate
can be calculated. If only 9 calls have been recorded
the CircuitBreaker will not transition to open even if
all 9 calls have failed. Default
minimumNumberOfCalls is 100.

100 Integer

Name Description Defaul
t

Type

CHAPTER 68. EXCHANGEPROPERTY

1137

camel.resilience4j
.permitted-
number-of-calls-
in-half-open-
state

Configures the number of permitted calls when the
CircuitBreaker is half open. The size must be greater
than 0. Default size is 10.

10 Integer

camel.resilience4j
.sliding-window-
size

Configures the size of the sliding window which is
used to record the outcome of calls when the
CircuitBreaker is closed. slidingWindowSize
configures the size of the sliding window. Sliding
window can either be count-based or time-based. If
slidingWindowType is COUNT_BASED, the last
slidingWindowSize calls are recorded and
aggregated. If slidingWindowType is TIME_BASED,
the calls of the last slidingWindowSize seconds are
recorded and aggregated. The slidingWindowSize
must be greater than 0. The minimumNumberOfCalls
must be greater than 0. If the slidingWindowType is
COUNT_BASED, the minimumNumberOfCalls
cannot be greater than slidingWindowSize . If the
slidingWindowType is TIME_BASED, you can pick
whatever you want. Default slidingWindowSize is 100.

100 Integer

camel.resilience4j
.sliding-window-
type

Configures the type of the sliding window which is
used to record the outcome of calls when the
CircuitBreaker is closed. Sliding window can either be
count-based or time-based. If slidingWindowType is
COUNT_BASED, the last slidingWindowSize calls are
recorded and aggregated. If slidingWindowType is
TIME_BASED, the calls of the last slidingWindowSize
seconds are recorded and aggregated. Default
slidingWindowType is COUNT_BASED.

COUN
T_BAS
ED

String

camel.resilience4j
.slow-call-
duration-
threshold

Configures the duration threshold (seconds) above
which calls are considered as slow and increase the
slow calls percentage. Default value is 60 seconds.

60 Integer

camel.resilience4j
.slow-call-rate-
threshold

Configures a threshold in percentage. The
CircuitBreaker considers a call as slow when the call
duration is greater than slowCallDurationThreshold
Duration. When the percentage of slow calls is equal
or greater the threshold, the CircuitBreaker
transitions to open and starts short-circuiting calls.
The threshold must be greater than 0 and not greater
than 100. Default value is 100 percentage which
means that all recorded calls must be slower than
slowCallDurationThreshold.

 Float

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1138

camel.resilience4j
.wait-duration-in-
open-state

Configures the wait duration (in seconds) which
specifies how long the CircuitBreaker should stay
open, before it switches to half open. Default value is
60 seconds.

60 Integer

camel.resilience4j
.writable-stack-
trace-enabled

Enables writable stack traces. When set to false,
Exception.getStackTrace returns a zero length array.
This may be used to reduce log spam when the circuit
breaker is open as the cause of the exceptions is
already known (the circuit breaker is short-circuiting
calls).

true Boolean

camel.rest.api-
component

The name of the Camel component to use as the
REST API (such as swagger) If no API Component
has been explicit configured, then Camel will lookup if
there is a Camel component responsible for servicing
and generating the REST API documentation, or if a
org.apache.camel.spi.RestApiProcessorFactory is
registered in the registry. If either one is found, then
that is being used.

 String

camel.rest.api-
context-path

Sets a leading API context-path the REST API
services will be using. This can be used when using
components such as camel-servlet where the
deployed web application is deployed using a
context-path.

 String

camel.rest.api-
context-route-id

Sets the route id to use for the route that services the
REST API. The route will by default use an auto
assigned route id.

 String

camel.rest.api-
host

To use an specific hostname for the API
documentation (eg swagger) This can be used to
override the generated host with this configured
hostname.

 String

camel.rest.api-
property

Allows to configure as many additional properties for
the api documentation (swagger). For example set
property api.title to my cool stuff.

 Map

camel.rest.api-
vendor-extension

Whether vendor extension is enabled in the Rest
APIs. If enabled then Camel will include additional
information as vendor extension (eg keys starting
with x-) such as route ids, class names etc. Not all 3rd
party API gateways and tools supports vendor-
extensions when importing your API docs.

false Boolean

Name Description Defaul
t

Type

CHAPTER 68. EXCHANGEPROPERTY

1139

camel.rest.bindin
g-mode

Sets the binding mode to use. The default value is
off.

 RestBindingMode

camel.rest.client-
request-
validation

Whether to enable validation of the client request to
check whether the Content-Type and Accept
headers from the client is supported by the Rest-DSL
configuration of its consumes/produces settings.
This can be turned on, to enable this check. In case of
validation error, then HTTP Status codes 415 or 406
is returned. The default value is false.

false Boolean

camel.rest.compo
nent

The Camel Rest component to use for the REST
transport (consumer), such as netty-http, jetty,
servlet, undertow. If no component has been explicit
configured, then Camel will lookup if there is a Camel
component that integrates with the Rest DSL, or if a
org.apache.camel.spi.RestConsumerFactory is
registered in the registry. If either one is found, then
that is being used.

 String

camel.rest.compo
nent-property

Allows to configure as many additional properties for
the rest component in use.

 Map

camel.rest.consu
mer-property

Allows to configure as many additional properties for
the rest consumer in use.

 Map

camel.rest.contex
t-path

Sets a leading context-path the REST services will be
using. This can be used when using components such
as camel-servlet where the deployed web application
is deployed using a context-path. Or for components
such as camel-jetty or camel-netty-http that includes
a HTTP server.

 String

camel.rest.cors-
headers

Allows to configure custom CORS headers. Map

camel.rest.data-
format-property

Allows to configure as many additional properties for
the data formats in use. For example set property
prettyPrint to true to have json outputted in pretty
mode. The properties can be prefixed to denote the
option is only for either JSON or XML and for either
the IN or the OUT. The prefixes are: json.in. json.out.
xml.in. xml.out. For example a key with value
xml.out.mustBeJAXBElement is only for the XML
data format for the outgoing. A key without a prefix is
a common key for all situations.

 Map

camel.rest.enable
-cors

Whether to enable CORS headers in the HTTP
response. The default value is false.

false Boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1140

camel.rest.endpoi
nt-property

Allows to configure as many additional properties for
the rest endpoint in use.

 Map

camel.rest.host The hostname to use for exposing the REST service. String

camel.rest.host-
name-resolver

If no hostname has been explicit configured, then this
resolver is used to compute the hostname the REST
service will be using.

 RestHostNameRe
solver

camel.rest.json-
data-format

Name of specific json data format to use. By default
json-jackson will be used. Important: This option is
only for setting a custom name of the data format,
not to refer to an existing data format instance.

 String

camel.rest.port The port number to use for exposing the REST
service. Notice if you use servlet component then the
port number configured here does not apply, as the
port number in use is the actual port number the
servlet component is using. eg if using Apache
Tomcat its the tomcat http port, if using Apache Karaf
its the HTTP service in Karaf that uses port 8181 by
default etc. Though in those situations setting the
port number here, allows tooling and JMX to know
the port number, so its recommended to set the port
number to the number that the servlet engine uses.

 String

camel.rest.produc
er-api-doc

Sets the location of the api document (swagger api)
the REST producer will use to validate the REST uri
and query parameters are valid accordingly to the api
document. This requires adding camel-swagger-java
to the classpath, and any miss configuration will let
Camel fail on startup and report the error(s). The
location of the api document is loaded from
classpath by default, but you can use file: or http: to
refer to resources to load from file or http url.

 String

camel.rest.produc
er-component

Sets the name of the Camel component to use as the
REST producer.

 String

camel.rest.schem
e

The scheme to use for exposing the REST service.
Usually http or https is supported. The default value
is http.

 String

camel.rest.skip-
binding-on-error-
code

Whether to skip binding on output if there is a custom
HTTP error code header. This allows to build custom
error messages that do not bind to json / xml etc, as
success messages otherwise will do.

false Boolean

Name Description Defaul
t

Type

CHAPTER 68. EXCHANGEPROPERTY

1141

camel.rest.use-x-
forward-headers

Whether to use X-Forward headers for Host and
related setting. The default value is true.

true Boolean

camel.rest.xml-
data-format

Name of specific XML data format to use. By default
jaxb will be used. Important: This option is only for
setting a custom name of the data format, not to
refer to an existing data format instance.

 String

camel.rest.api-
context-id-
pattern

Deprecated Sets an CamelContext id pattern to only
allow Rest APIs from rest services within
CamelContext’s which name matches the pattern.
The pattern name refers to the CamelContext name,
to match on the current CamelContext only. For any
other value, the pattern uses the rules from
PatternHelper#matchPattern(String,String).

 String

camel.rest.api-
context-listing

Deprecated Sets whether listing of all available
CamelContext’s with REST services in the JVM is
enabled. If enabled it allows to discover these
contexts, if false then only the current CamelContext
is in use.

false Boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1142

CHAPTER 69. FILE
The File Expression Language is an extension to the language, adding file related capabilities. These
capabilities are related to common use cases working with file path and names. The goal is to allow
expressions to be used with the

components for setting dynamic file patterns for both consumer and producer.

NOTE

The file language is merged with language which means you can use all the file syntax
directly within the simple language.

69.1. FILE LANGUAGE OPTIONS

The File language supports 2 options, which are listed below.

Name Default Java
Type

Description

resultType String Sets the class name of the result type (type from output).

trim Boole
an

Whether to trim the value to remove leading and trailing
whitespaces and line breaks.

69.2. SYNTAX

This language is an extension to the language so the syntax applies also. So the table below only lists
the additional file related functions.

All the file tokens use the same expression name as the method on the java.io.File object, for instance
file:absolute refers to the java.io.File.getAbsolute() method. Notice that not all expressions are
supported by the current Exchange. For instance the component supports some options, whereas the
File component supports all of them.

Expres
sion

Type File
Consu
mer

File
Produc
er

FTP
Consu
mer

FTP Producer Description

file:na
me

String yes no yes no refers to the file name
(is relative to the
starting directory, see
note below)

file:na
me.ext

String yes no yes no refers to the file
extension only

CHAPTER 69. FILE

1143

file:na
me.ext.
single

String yes no yes no refers to the file
extension. If the file
extension has multiple
dots, then this
expression strips and
only returns the last
part.

file:na
me.noe
xt

String yes no yes no refers to the file name
with no extension (is
relative to the starting
directory, see note
below)

file:na
me.noe
xt.singl
e

String yes no yes no refers to the file name
with no extension (is
relative to the starting
directory, see note
below). If the file
extension has multiple
dots, then this
expression strips only
the last part, and keep
the others.

file:only
name

String yes no yes no refers to the file name
only with no leading
paths.

file:only
name.n
oext

String yes no yes no refers to the file name
only with no extension
and with no leading
paths.

file:only
name.n
oext.sin
gle

String yes no yes no refers to the file name
only with no extension
and with no leading
paths. If the file
extension has multiple
dots, then this
expression strips only
the last part, and keep
the others.

file:ext String yes no yes no refers to the file
extension only

Expres
sion

Type File
Consu
mer

File
Produc
er

FTP
Consu
mer

FTP Producer Description

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1144

file:par
ent

String yes no yes no refers to the file parent

file:pat
h

String yes no yes no refers to the file path

file:abs
olute

Boolea
n

yes no no no refers to whether the file
is regarded as absolute
or relative

file:abs
olute.p
ath

String yes no no no refers to the absolute
file path

file:len
gth

Long yes no yes no refers to the file length
returned as a Long type

file:size Long yes no yes no refers to the file length
returned as a Long type

file:mo
dified

Date yes no yes no Refers to the file last
modified returned as a
Date type

date:_c
omman
d:patte
rn_

String yes yes yes yes for date formatting
using the
java.text.SimpleDate
Format patterns. Is an
extension to the
language. Additional
command is: file
(consumers only) for the
last modified timestamp
of the file. Notice: all the
commands from the
language can also be
used.

Expres
sion

Type File
Consu
mer

File
Produc
er

FTP
Consu
mer

FTP Producer Description

69.3. FILE TOKEN EXAMPLE

69.3.1. Relative paths

We have a java.io.File handle for the file hello.txt in the following relative directory: .\filelanguage\test.
And we configure our endpoint to use this starting directory .\filelanguage. The file tokens will return
as:

CHAPTER 69. FILE

1145

Expression Returns

file:name test\hello.txt

file:name.ext txt

file:name.noext test\hello

file:onlyname hello.txt

file:onlyname.noext hello

file:ext txt

file:parent filelanguage\test

file:path filelanguage\test\hello.txt

file:absolute false

file:absolute.path \workspace\camel\camel-
core\target\filelanguage\test\hello.txt

69.3.2. Absolute paths

We have a java.io.File handle for the file hello.txt in the following absolute directory:
\workspace\camel\camel-core\target\filelanguage\test. And we configure out endpoint to use the
absolute starting directory \workspace\camel\camel-core\target\filelanguage. The file tokens will
return as:

Expression Returns

file:name test\hello.txt

file:name.ext txt

file:name.noext test\hello

file:onlyname hello.txt

file:onlyname.noext hello

file:ext txt

file:parent \workspace\camel\camel-
core\target\filelanguage\test

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1146

file:path \workspace\camel\camel-
core\target\filelanguage\test\hello.txt

file:absolute true

file:absolute.path \workspace\camel\camel-
core\target\filelanguage\test\hello.txt

Expression Returns

69.4. SAMPLES

You can enter a fixed file name such as myfile.txt:

Let’s assume we use the file consumer to read files and want to move the read files to back up folder
with the current date as a sub folder. This can be done using an expression like:

relative folder names are also supported so suppose the backup folder should be a sibling folder then
you can append .. as shown:

As this is an extension to the language we have access to all the goodies from this language also, so in
this use case we want to use the in.header.type as a parameter in the dynamic expression:

If you have a custom date you want to use in the expression then Camel supports retrieving dates from
the message header:

And finally we can also use a bean expression to invoke a POJO class that generates some String output
(or convertible to String) to be used:

Of course all this can be combined in one expression where you can use the and the language in one
combined expression. This is pretty powerful for those common file path patterns.

69.5. DEPENDENCIES

The File language is part of camel-core.

fileName="myfile.txt"

fileName="backup/${date:now:yyyyMMdd}/${file:name.noext}.bak"

fileName="../backup/${date:now:yyyyMMdd}/${file:name.noext}.bak"

fileName="../backup/${date:now:yyyyMMdd}/type-${in.header.type}/backup-of-${file:name.noext}.bak"

fileName="orders/order-${in.header.customerId}-${date:in.header.orderDate:yyyyMMdd}.xml"

fileName="uniquefile-${bean:myguidgenerator.generateid}.txt"

CHAPTER 69. FILE

1147

69.6. SPRING BOOT AUTO-CONFIGURATION

When using file with Spring Boot make sure to use the following Maven dependency to have support for
auto configuration:

The component supports 147 options, which are listed below.

Name Description Defaul
t

Type

camel.cloud.cons
ul.service-
discovery.acl-
token

Sets the ACL token to be used with Consul. String

camel.cloud.cons
ul.service-
discovery.block-
seconds

The seconds to wait for a watch event, default 10
seconds.

10 Integer

camel.cloud.cons
ul.service-
discovery.configu
rations

Define additional configuration definitions. Map

camel.cloud.cons
ul.service-
discovery.connect
-timeout-millis

Connect timeout for OkHttpClient. Long

camel.cloud.cons
ul.service-
discovery.datacen
ter

The data center. String

camel.cloud.cons
ul.service-
discovery.enabled

Enable the component. true Boolean

camel.cloud.cons
ul.service-
discovery.passwo
rd

Sets the password to be used for basic
authentication.

 String

<dependency>
 <groupId>org.apache.camel.springboot</groupId>
 <artifactId>camel-core-starter</artifactId>
 <version>3.14.5.redhat-00032</version>
 <!-- Use your Camel Spring Boot version -->
</dependency>

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1148

camel.cloud.cons
ul.service-
discovery.propert
ies

Set client properties to use. These properties are
specific to what service call implementation are in
use. For example if using ribbon, then the client
properties are define in
com.netflix.client.config.CommonClientConfigKey.

 Map

camel.cloud.cons
ul.service-
discovery.read-
timeout-millis

Read timeout for OkHttpClient. Long

camel.cloud.cons
ul.service-
discovery.url

The Consul agent URL. String

camel.cloud.cons
ul.service-
discovery.user-
name

Sets the username to be used for basic
authentication.

 String

camel.cloud.cons
ul.service-
discovery.write-
timeout-millis

Write timeout for OkHttpClient. Long

camel.cloud.dns.s
ervice-
discovery.configu
rations

Define additional configuration definitions. Map

camel.cloud.dns.s
ervice-
discovery.domain

The domain name;. String

camel.cloud.dns.s
ervice-
discovery.enabled

Enable the component. true Boolean

camel.cloud.dns.s
ervice-
discovery.propert
ies

Set client properties to use. These properties are
specific to what service call implementation are in
use. For example if using ribbon, then the client
properties are define in
com.netflix.client.config.CommonClientConfigKey.

 Map

camel.cloud.dns.s
ervice-
discovery.proto

The transport protocol of the desired service. _tcp String

Name Description Defaul
t

Type

CHAPTER 69. FILE

1149

camel.cloud.etcd.
service-
discovery.configu
rations

Define additional configuration definitions. Map

camel.cloud.etcd.
service-
discovery.enabled

Enable the component. true Boolean

camel.cloud.etcd.
service-
discovery.passwo
rd

The password to use for basic authentication. String

camel.cloud.etcd.
service-
discovery.propert
ies

Set client properties to use. These properties are
specific to what service call implementation are in
use. For example if using ribbon, then the client
properties are define in
com.netflix.client.config.CommonClientConfigKey.

 Map

camel.cloud.etcd.
service-
discovery.service-
path

The path to look for for service discovery. /servic
es/

String

camel.cloud.etcd.
service-
discovery.timeout

To set the maximum time an action could take to
complete.

 Long

camel.cloud.etcd.
service-
discovery.type

To set the discovery type, valid values are on-
demand and watch.

on-
deman
d

String

camel.cloud.etcd.
service-
discovery.uris

The URIs the client can connect to. String

camel.cloud.etcd.
service-
discovery.user-
name

The user name to use for basic authentication. String

camel.cloud.kuber
netes.service-
discovery.api-
version

Sets the API version when using client lookup. String

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1150

camel.cloud.kuber
netes.service-
discovery.ca-
cert-data

Sets the Certificate Authority data when using client
lookup.

 String

camel.cloud.kuber
netes.service-
discovery.ca-
cert-file

Sets the Certificate Authority data that are loaded
from the file when using client lookup.

 String

camel.cloud.kuber
netes.service-
discovery.client-
cert-data

Sets the Client Certificate data when using client
lookup.

 String

camel.cloud.kuber
netes.service-
discovery.client-
cert-file

Sets the Client Certificate data that are loaded from
the file when using client lookup.

 String

camel.cloud.kuber
netes.service-
discovery.client-
key-algo

Sets the Client Keystore algorithm, such as RSA when
using client lookup.

 String

camel.cloud.kuber
netes.service-
discovery.client-
key-data

Sets the Client Keystore data when using client
lookup.

 String

camel.cloud.kuber
netes.service-
discovery.client-
key-file

Sets the Client Keystore data that are loaded from
the file when using client lookup.

 String

camel.cloud.kuber
netes.service-
discovery.client-
key-passphrase

Sets the Client Keystore passphrase when using
client lookup.

 String

camel.cloud.kuber
netes.service-
discovery.configu
rations

Define additional configuration definitions. Map

Name Description Defaul
t

Type

CHAPTER 69. FILE

1151

camel.cloud.kuber
netes.service-
discovery.dns-
domain

Sets the DNS domain to use for DNS lookup. String

camel.cloud.kuber
netes.service-
discovery.enabled

Enable the component. true Boolean

camel.cloud.kuber
netes.service-
discovery.lookup

How to perform service lookup. Possible values:
client, dns, environment. When using client, then the
client queries the kubernetes master to obtain a list
of active pods that provides the service, and then
random (or round robin) select a pod. When using dns
the service name is resolved as
name.namespace.svc.dnsDomain. When using dnssrv
the service name is resolved with SRV query for .…
svc… When using environment then environment
variables are used to lookup the service. By default
environment is used.

environ
ment

String

camel.cloud.kuber
netes.service-
discovery.master-
url

Sets the URL to the master when using client lookup. String

camel.cloud.kuber
netes.service-
discovery.namesp
ace

Sets the namespace to use. Will by default use
namespace from the ENV variable
KUBERNETES_MASTER.

 String

camel.cloud.kuber
netes.service-
discovery.oauth-
token

Sets the OAUTH token for authentication (instead of
username/password) when using client lookup.

 String

camel.cloud.kuber
netes.service-
discovery.passwo
rd

Sets the password for authentication when using
client lookup.

 String

camel.cloud.kuber
netes.service-
discovery.port-
name

Sets the Port Name to use for DNS/DNSSRV lookup. String

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1152

camel.cloud.kuber
netes.service-
discovery.port-
protocol

Sets the Port Protocol to use for DNS/DNSSRV
lookup.

 String

camel.cloud.kuber
netes.service-
discovery.propert
ies

Set client properties to use. These properties are
specific to what service call implementation are in
use. For example if using ribbon, then the client
properties are define in
com.netflix.client.config.CommonClientConfigKey.

 Map

camel.cloud.kuber
netes.service-
discovery.trust-
certs

Sets whether to turn on trust certificate check when
using client lookup.

false Boolean

camel.cloud.kuber
netes.service-
discovery.userna
me

Sets the username for authentication when using
client lookup.

 String

camel.cloud.ribbo
n.load-
balancer.client-
name

Sets the Ribbon client name. String

camel.cloud.ribbo
n.load-
balancer.configur
ations

Define additional configuration definitions. Map

camel.cloud.ribbo
n.load-
balancer.enabled

Enable the component. true Boolean

camel.cloud.ribbo
n.load-
balancer.namespa
ce

The namespace. String

camel.cloud.ribbo
n.load-
balancer.passwor
d

The password. String

Name Description Defaul
t

Type

CHAPTER 69. FILE

1153

camel.cloud.ribbo
n.load-
balancer.properti
es

Set client properties to use. These properties are
specific to what service call implementation are in
use. For example if using ribbon, then the client
properties are define in
com.netflix.client.config.CommonClientConfigKey.

 Map

camel.cloud.ribbo
n.load-
balancer.usernam
e

The username. String

camel.hystrix.allo
w-maximum-size-
to-diverge-from-
core-size

Allows the configuration for maximumSize to take
effect. That value can then be equal to, or higher,
than coreSize.

false Boolean

camel.hystrix.circ
uit-breaker-
enabled

Whether to use a HystrixCircuitBreaker or not. If
false no circuit-breaker logic will be used and all
requests permitted. This is similar in effect to
circuitBreakerForceClosed() except that continues
tracking metrics and knowing whether it should be
open/closed, this property results in not even
instantiating a circuit-breaker.

true Boolean

camel.hystrix.circ
uit-breaker-
error-threshold-
percentage

Error percentage threshold (as whole number such as
50) at which point the circuit breaker will trip open
and reject requests. It will stay tripped for the
duration defined in
circuitBreakerSleepWindowInMilliseconds; The error
percentage this is compared against comes from
HystrixCommandMetrics.getHealthCounts().

50 Integer

camel.hystrix.circ
uit-breaker-
force-closed

If true the HystrixCircuitBreaker#allowRequest() will
always return true to allow requests regardless of the
error percentage from
HystrixCommandMetrics.getHealthCounts(). The
circuitBreakerForceOpen() property takes
precedence so if it set to true this property does
nothing.

false Boolean

camel.hystrix.circ
uit-breaker-
force-open

If true the HystrixCircuitBreaker.allowRequest() will
always return false, causing the circuit to be open
(tripped) and reject all requests. This property takes
precedence over circuitBreakerForceClosed();.

false Boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1154

camel.hystrix.circ
uit-breaker-
request-volume-
threshold

Minimum number of requests in the
metricsRollingStatisticalWindowInMilliseconds() that
must exist before the HystrixCircuitBreaker will trip. If
below this number the circuit will not trip regardless
of error percentage.

20 Integer

camel.hystrix.circ
uit-breaker-
sleep-window-in-
milliseconds

The time in milliseconds after a HystrixCircuitBreaker
trips open that it should wait before trying requests
again.

5000 Integer

camel.hystrix.con
figurations

Define additional configuration definitions. Map

camel.hystrix.core
-pool-size

Core thread-pool size that gets passed to
java.util.concurrent.ThreadPoolExecutor#setCorePo
olSize(int).

10 Integer

camel.hystrix.ena
bled

Enable the component. true Boolean

camel.hystrix.exe
cution-isolation-
semaphore-max-
concurrent-
requests

Number of concurrent requests permitted to
HystrixCommand.run(). Requests beyond the
concurrent limit will be rejected. Applicable only when
executionIsolationStrategy == SEMAPHORE.

20 Integer

camel.hystrix.exe
cution-isolation-
strategy

What isolation strategy HystrixCommand.run() will be
executed with. If THREAD then it will be executed on
a separate thread and concurrent requests limited by
the number of threads in the thread-pool. If
SEMAPHORE then it will be executed on the calling
thread and concurrent requests limited by the
semaphore count.

THREA
D

String

camel.hystrix.exe
cution-isolation-
thread-interrupt-
on-timeout

Whether the execution thread should attempt an
interrupt (using Future#cancel) when a thread times
out. Applicable only when
executionIsolationStrategy() == THREAD.

true Boolean

camel.hystrix.exe
cution-timeout-
enabled

Whether the timeout mechanism is enabled for this
command.

true Boolean

Name Description Defaul
t

Type

CHAPTER 69. FILE

1155

camel.hystrix.exe
cution-timeout-
in-milliseconds

Time in milliseconds at which point the command will
timeout and halt execution. If
executionIsolationThreadInterruptOnTimeout == true
and the command is thread-isolated, the executing
thread will be interrupted. If the command is
semaphore-isolated and a
HystrixObservableCommand, that command will get
unsubscribed.

1000 Integer

camel.hystrix.fallb
ack-enabled

Whether HystrixCommand.getFallback() should be
attempted when failure occurs.

true Boolean

camel.hystrix.fallb
ack-isolation-
semaphore-max-
concurrent-
requests

Number of concurrent requests permitted to
HystrixCommand.getFallback(). Requests beyond
the concurrent limit will fail-fast and not attempt
retrieving a fallback.

10 Integer

camel.hystrix.gro
up-key

Sets the group key to use. The default value is
CamelHystrix.

Camel
Hystrix

String

camel.hystrix.kee
p-alive-time

Keep-alive time in minutes that gets passed to
ThreadPoolExecutor#setKeepAliveTime(long,TimeU
nit).

1 Integer

camel.hystrix.max
-queue-size

Max queue size that gets passed to BlockingQueue in
HystrixConcurrencyStrategy.getBlockingQueue(int)
This should only affect the instantiation of a
threadpool - it is not eliglible to change a queue size
on the fly. For that, use
queueSizeRejectionThreshold().

-1 Integer

camel.hystrix.max
imum-size

Maximum thread-pool size that gets passed to
ThreadPoolExecutor#setMaximumPoolSize(int) .
This is the maximum amount of concurrency that can
be supported without starting to reject
HystrixCommands. Please note that this setting only
takes effect if you also set
allowMaximumSizeToDivergeFromCoreSize.

10 Integer

camel.hystrix.met
rics-health-
snapshot-
interval-in-
milliseconds

Time in milliseconds to wait between allowing health
snapshots to be taken that calculate success and
error percentages and affect
HystrixCircuitBreaker.isOpen() status. On high-
volume circuits the continual calculation of error
percentage can become CPU intensive thus this
controls how often it is calculated.

500 Integer

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1156

camel.hystrix.met
rics-rolling-
percentile-
bucket-size

Maximum number of values stored in each bucket of
the rolling percentile. This is passed into
HystrixRollingPercentile inside
HystrixCommandMetrics.

10 Integer

camel.hystrix.met
rics-rolling-
percentile-
enabled

Whether percentile metrics should be captured using
HystrixRollingPercentile inside
HystrixCommandMetrics.

true Boolean

camel.hystrix.met
rics-rolling-
percentile-
window-buckets

Number of buckets the rolling percentile window is
broken into. This is passed into
HystrixRollingPercentile inside
HystrixCommandMetrics.

6 Integer

camel.hystrix.met
rics-rolling-
percentile-
window-in-
milliseconds

Duration of percentile rolling window in milliseconds.
This is passed into HystrixRollingPercentile inside
HystrixCommandMetrics.

10000 Integer

camel.hystrix.met
rics-rolling-
statistical-
window-buckets

Number of buckets the rolling statistical window is
broken into. This is passed into HystrixRollingNumber
inside HystrixCommandMetrics.

10 Integer

camel.hystrix.met
rics-rolling-
statistical-
window-in-
milliseconds

This property sets the duration of the statistical
rolling window, in milliseconds. This is how long
metrics are kept for the thread pool. The window is
divided into buckets and rolls by those increments.

10000 Integer

camel.hystrix.que
ue-size-rejection-
threshold

Queue size rejection threshold is an artificial max size
at which rejections will occur even if maxQueueSize
has not been reached. This is done because the
maxQueueSize of a BlockingQueue can not be
dynamically changed and we want to support
dynamically changing the queue size that affects
rejections. This is used by HystrixCommand when
queuing a thread for execution.

5 Integer

camel.hystrix.req
uest-log-enabled

Whether HystrixCommand execution and events
should be logged to HystrixRequestLog.

true Boolean

Name Description Defaul
t

Type

CHAPTER 69. FILE

1157

camel.hystrix.thre
ad-pool-key

Sets the thread pool key to use. Will by default use
the same value as groupKey has been configured to
use.

Camel
Hystrix

String

camel.hystrix.thre
ad-pool-rolling-
number-
statistical-
window-buckets

Number of buckets the rolling statistical window is
broken into. This is passed into HystrixRollingNumber
inside each HystrixThreadPoolMetrics instance.

10 Integer

camel.hystrix.thre
ad-pool-rolling-
number-
statistical-
window-in-
milliseconds

Duration of statistical rolling window in milliseconds.
This is passed into HystrixRollingNumber inside each
HystrixThreadPoolMetrics instance.

10000 Integer

camel.language.c
onstant.enabled

Whether to enable auto configuration of the constant
language. This is enabled by default.

 Boolean

camel.language.c
onstant.trim

Whether to trim the value to remove leading and
trailing whitespaces and line breaks.

true Boolean

camel.language.c
simple.enabled

Whether to enable auto configuration of the csimple
language. This is enabled by default.

 Boolean

camel.language.c
simple.trim

Whether to trim the value to remove leading and
trailing whitespaces and line breaks.

true Boolean

camel.language.e
xchangeproperty.
enabled

Whether to enable auto configuration of the
exchangeProperty language. This is enabled by
default.

 Boolean

camel.language.e
xchangeproperty.
trim

Whether to trim the value to remove leading and
trailing whitespaces and line breaks.

true Boolean

camel.language.fil
e.enabled

Whether to enable auto configuration of the file
language. This is enabled by default.

 Boolean

camel.language.fil
e.trim

Whether to trim the value to remove leading and
trailing whitespaces and line breaks.

true Boolean

camel.language.h
eader.enabled

Whether to enable auto configuration of the header
language. This is enabled by default.

 Boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1158

camel.language.h
eader.trim

Whether to trim the value to remove leading and
trailing whitespaces and line breaks.

true Boolean

camel.language.re
f.enabled

Whether to enable auto configuration of the ref
language. This is enabled by default.

 Boolean

camel.language.re
f.trim

Whether to trim the value to remove leading and
trailing whitespaces and line breaks.

true Boolean

camel.language.si
mple.enabled

Whether to enable auto configuration of the simple
language. This is enabled by default.

 Boolean

camel.language.si
mple.trim

Whether to trim the value to remove leading and
trailing whitespaces and line breaks.

true Boolean

camel.language.t
okenize.enabled

Whether to enable auto configuration of the tokenize
language. This is enabled by default.

 Boolean

camel.language.t
okenize.group-
delimiter

Sets the delimiter to use when grouping. If this has
not been set then token will be used as the delimiter.

 String

camel.language.t
okenize.trim

Whether to trim the value to remove leading and
trailing whitespaces and line breaks.

true Boolean

camel.resilience4j
.automatic-
transition-from-
open-to-half-
open-enabled

Enables automatic transition from OPEN to
HALF_OPEN state once the
waitDurationInOpenState has passed.

false Boolean

camel.resilience4j
.circuit-breaker-
ref

Refers to an existing
io.github.resilience4j.circuitbreaker.CircuitBreaker
instance to lookup and use from the registry. When
using this, then any other circuit breaker options are
not in use.

 String

camel.resilience4j
.config-ref

Refers to an existing
io.github.resilience4j.circuitbreaker.CircuitBreakerCo
nfig instance to lookup and use from the registry.

 String

camel.resilience4j
.configurations

Define additional configuration definitions. Map

camel.resilience4j
.enabled

Enable the component. true Boolean

Name Description Defaul
t

Type

CHAPTER 69. FILE

1159

camel.resilience4j
.failure-rate-
threshold

Configures the failure rate threshold in percentage. If
the failure rate is equal or greater than the threshold
the CircuitBreaker transitions to open and starts
short-circuiting calls. The threshold must be greater
than 0 and not greater than 100. Default value is 50
percentage.

 Float

camel.resilience4j
.minimum-
number-of-calls

Configures the minimum number of calls which are
required (per sliding window period) before the
CircuitBreaker can calculate the error rate. For
example, if minimumNumberOfCalls is 10, then at
least 10 calls must be recorded, before the failure rate
can be calculated. If only 9 calls have been recorded
the CircuitBreaker will not transition to open even if
all 9 calls have failed. Default
minimumNumberOfCalls is 100.

100 Integer

camel.resilience4j
.permitted-
number-of-calls-
in-half-open-
state

Configures the number of permitted calls when the
CircuitBreaker is half open. The size must be greater
than 0. Default size is 10.

10 Integer

camel.resilience4j
.sliding-window-
size

Configures the size of the sliding window which is
used to record the outcome of calls when the
CircuitBreaker is closed. slidingWindowSize
configures the size of the sliding window. Sliding
window can either be count-based or time-based. If
slidingWindowType is COUNT_BASED, the last
slidingWindowSize calls are recorded and
aggregated. If slidingWindowType is TIME_BASED,
the calls of the last slidingWindowSize seconds are
recorded and aggregated. The slidingWindowSize
must be greater than 0. The minimumNumberOfCalls
must be greater than 0. If the slidingWindowType is
COUNT_BASED, the minimumNumberOfCalls
cannot be greater than slidingWindowSize . If the
slidingWindowType is TIME_BASED, you can pick
whatever you want. Default slidingWindowSize is 100.

100 Integer

camel.resilience4j
.sliding-window-
type

Configures the type of the sliding window which is
used to record the outcome of calls when the
CircuitBreaker is closed. Sliding window can either be
count-based or time-based. If slidingWindowType is
COUNT_BASED, the last slidingWindowSize calls are
recorded and aggregated. If slidingWindowType is
TIME_BASED, the calls of the last slidingWindowSize
seconds are recorded and aggregated. Default
slidingWindowType is COUNT_BASED.

COUN
T_BAS
ED

String

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1160

camel.resilience4j
.slow-call-
duration-
threshold

Configures the duration threshold (seconds) above
which calls are considered as slow and increase the
slow calls percentage. Default value is 60 seconds.

60 Integer

camel.resilience4j
.slow-call-rate-
threshold

Configures a threshold in percentage. The
CircuitBreaker considers a call as slow when the call
duration is greater than slowCallDurationThreshold
Duration. When the percentage of slow calls is equal
or greater the threshold, the CircuitBreaker
transitions to open and starts short-circuiting calls.
The threshold must be greater than 0 and not greater
than 100. Default value is 100 percentage which
means that all recorded calls must be slower than
slowCallDurationThreshold.

 Float

camel.resilience4j
.wait-duration-in-
open-state

Configures the wait duration (in seconds) which
specifies how long the CircuitBreaker should stay
open, before it switches to half open. Default value is
60 seconds.

60 Integer

camel.resilience4j
.writable-stack-
trace-enabled

Enables writable stack traces. When set to false,
Exception.getStackTrace returns a zero length array.
This may be used to reduce log spam when the circuit
breaker is open as the cause of the exceptions is
already known (the circuit breaker is short-circuiting
calls).

true Boolean

camel.rest.api-
component

The name of the Camel component to use as the
REST API (such as swagger) If no API Component
has been explicit configured, then Camel will lookup if
there is a Camel component responsible for servicing
and generating the REST API documentation, or if a
org.apache.camel.spi.RestApiProcessorFactory is
registered in the registry. If either one is found, then
that is being used.

 String

camel.rest.api-
context-path

Sets a leading API context-path the REST API
services will be using. This can be used when using
components such as camel-servlet where the
deployed web application is deployed using a
context-path.

 String

camel.rest.api-
context-route-id

Sets the route id to use for the route that services the
REST API. The route will by default use an auto
assigned route id.

 String

Name Description Defaul
t

Type

CHAPTER 69. FILE

1161

camel.rest.api-
host

To use an specific hostname for the API
documentation (eg swagger) This can be used to
override the generated host with this configured
hostname.

 String

camel.rest.api-
property

Allows to configure as many additional properties for
the api documentation (swagger). For example set
property api.title to my cool stuff.

 Map

camel.rest.api-
vendor-extension

Whether vendor extension is enabled in the Rest
APIs. If enabled then Camel will include additional
information as vendor extension (eg keys starting
with x-) such as route ids, class names etc. Not all 3rd
party API gateways and tools supports vendor-
extensions when importing your API docs.

false Boolean

camel.rest.bindin
g-mode

Sets the binding mode to use. The default value is
off.

 RestBindingMode

camel.rest.client-
request-
validation

Whether to enable validation of the client request to
check whether the Content-Type and Accept
headers from the client is supported by the Rest-DSL
configuration of its consumes/produces settings.
This can be turned on, to enable this check. In case of
validation error, then HTTP Status codes 415 or 406
is returned. The default value is false.

false Boolean

camel.rest.compo
nent

The Camel Rest component to use for the REST
transport (consumer), such as netty-http, jetty,
servlet, undertow. If no component has been explicit
configured, then Camel will lookup if there is a Camel
component that integrates with the Rest DSL, or if a
org.apache.camel.spi.RestConsumerFactory is
registered in the registry. If either one is found, then
that is being used.

 String

camel.rest.compo
nent-property

Allows to configure as many additional properties for
the rest component in use.

 Map

camel.rest.consu
mer-property

Allows to configure as many additional properties for
the rest consumer in use.

 Map

camel.rest.contex
t-path

Sets a leading context-path the REST services will be
using. This can be used when using components such
as camel-servlet where the deployed web application
is deployed using a context-path. Or for components
such as camel-jetty or camel-netty-http that includes
a HTTP server.

 String

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1162

camel.rest.cors-
headers

Allows to configure custom CORS headers. Map

camel.rest.data-
format-property

Allows to configure as many additional properties for
the data formats in use. For example set property
prettyPrint to true to have json outputted in pretty
mode. The properties can be prefixed to denote the
option is only for either JSON or XML and for either
the IN or the OUT. The prefixes are: json.in. json.out.
xml.in. xml.out. For example a key with value
xml.out.mustBeJAXBElement is only for the XML
data format for the outgoing. A key without a prefix is
a common key for all situations.

 Map

camel.rest.enable
-cors

Whether to enable CORS headers in the HTTP
response. The default value is false.

false Boolean

camel.rest.endpoi
nt-property

Allows to configure as many additional properties for
the rest endpoint in use.

 Map

camel.rest.host The hostname to use for exposing the REST service. String

camel.rest.host-
name-resolver

If no hostname has been explicit configured, then this
resolver is used to compute the hostname the REST
service will be using.

 RestHostNameRe
solver

camel.rest.json-
data-format

Name of specific json data format to use. By default
json-jackson will be used. Important: This option is
only for setting a custom name of the data format,
not to refer to an existing data format instance.

 String

camel.rest.port The port number to use for exposing the REST
service. Notice if you use servlet component then the
port number configured here does not apply, as the
port number in use is the actual port number the
servlet component is using. eg if using Apache
Tomcat its the tomcat http port, if using Apache Karaf
its the HTTP service in Karaf that uses port 8181 by
default etc. Though in those situations setting the
port number here, allows tooling and JMX to know
the port number, so its recommended to set the port
number to the number that the servlet engine uses.

 String

Name Description Defaul
t

Type

CHAPTER 69. FILE

1163

camel.rest.produc
er-api-doc

Sets the location of the api document (swagger api)
the REST producer will use to validate the REST uri
and query parameters are valid accordingly to the api
document. This requires adding camel-swagger-java
to the classpath, and any miss configuration will let
Camel fail on startup and report the error(s). The
location of the api document is loaded from
classpath by default, but you can use file: or http: to
refer to resources to load from file or http url.

 String

camel.rest.produc
er-component

Sets the name of the Camel component to use as the
REST producer.

 String

camel.rest.schem
e

The scheme to use for exposing the REST service.
Usually http or https is supported. The default value
is http.

 String

camel.rest.skip-
binding-on-error-
code

Whether to skip binding on output if there is a custom
HTTP error code header. This allows to build custom
error messages that do not bind to json / xml etc, as
success messages otherwise will do.

false Boolean

camel.rest.use-x-
forward-headers

Whether to use X-Forward headers for Host and
related setting. The default value is true.

true Boolean

camel.rest.xml-
data-format

Name of specific XML data format to use. By default
jaxb will be used. Important: This option is only for
setting a custom name of the data format, not to
refer to an existing data format instance.

 String

camel.rest.api-
context-id-
pattern

Deprecated Sets an CamelContext id pattern to only
allow Rest APIs from rest services within
CamelContext’s which name matches the pattern.
The pattern name refers to the CamelContext name,
to match on the current CamelContext only. For any
other value, the pattern uses the rules from
PatternHelper#matchPattern(String,String).

 String

camel.rest.api-
context-listing

Deprecated Sets whether listing of all available
CamelContext’s with REST services in the JVM is
enabled. If enabled it allows to discover these
contexts, if false then only the current CamelContext
is in use.

false Boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1164

CHAPTER 70. HEADER
The Header Expression Language allows you to extract values of named headers.

70.1. HEADER OPTIONS

The Header language supports 1 options, which are listed below.

Name Default Java
Type

Description

trim Boole
an

Whether to trim the value to remove leading and trailing
whitespaces and line breaks.

70.2. EXAMPLE USAGE

The recipientList EIP can utilize a header:

In this case, the list of recipients are contained in the header 'myHeader'.

And the same example in Java DSL:

70.3. DEPENDENCIES

The Header language is part of camel-core.

70.4. SPRING BOOT AUTO-CONFIGURATION

When using header with Spring Boot make sure to use the following Maven dependency to have support
for auto configuration:

The component supports 147 options, which are listed below.

<route>
 <from uri="direct:a" />
 <recipientList>
 <header>myHeader</header>
 </recipientList>
</route>

from("direct:a").recipientList(header("myHeader"));

<dependency>
 <groupId>org.apache.camel.springboot</groupId>
 <artifactId>camel-core-starter</artifactId>
 <version>3.14.5.redhat-00032</version>
 <!-- Use your Camel Spring Boot version -->
</dependency>

CHAPTER 70. HEADER

1165

Name Description Defaul
t

Type

camel.cloud.cons
ul.service-
discovery.acl-
token

Sets the ACL token to be used with Consul. String

camel.cloud.cons
ul.service-
discovery.block-
seconds

The seconds to wait for a watch event, default 10
seconds.

10 Integer

camel.cloud.cons
ul.service-
discovery.configu
rations

Define additional configuration definitions. Map

camel.cloud.cons
ul.service-
discovery.connect
-timeout-millis

Connect timeout for OkHttpClient. Long

camel.cloud.cons
ul.service-
discovery.datacen
ter

The data center. String

camel.cloud.cons
ul.service-
discovery.enabled

Enable the component. true Boolean

camel.cloud.cons
ul.service-
discovery.passwo
rd

Sets the password to be used for basic
authentication.

 String

camel.cloud.cons
ul.service-
discovery.propert
ies

Set client properties to use. These properties are
specific to what service call implementation are in
use. For example if using ribbon, then the client
properties are define in
com.netflix.client.config.CommonClientConfigKey.

 Map

camel.cloud.cons
ul.service-
discovery.read-
timeout-millis

Read timeout for OkHttpClient. Long

camel.cloud.cons
ul.service-
discovery.url

The Consul agent URL. String

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1166

camel.cloud.cons
ul.service-
discovery.user-
name

Sets the username to be used for basic
authentication.

 String

camel.cloud.cons
ul.service-
discovery.write-
timeout-millis

Write timeout for OkHttpClient. Long

camel.cloud.dns.s
ervice-
discovery.configu
rations

Define additional configuration definitions. Map

camel.cloud.dns.s
ervice-
discovery.domain

The domain name;. String

camel.cloud.dns.s
ervice-
discovery.enabled

Enable the component. true Boolean

camel.cloud.dns.s
ervice-
discovery.propert
ies

Set client properties to use. These properties are
specific to what service call implementation are in
use. For example if using ribbon, then the client
properties are define in
com.netflix.client.config.CommonClientConfigKey.

 Map

camel.cloud.dns.s
ervice-
discovery.proto

The transport protocol of the desired service. _tcp String

camel.cloud.etcd.
service-
discovery.configu
rations

Define additional configuration definitions. Map

camel.cloud.etcd.
service-
discovery.enabled

Enable the component. true Boolean

camel.cloud.etcd.
service-
discovery.passwo
rd

The password to use for basic authentication. String

Name Description Defaul
t

Type

CHAPTER 70. HEADER

1167

camel.cloud.etcd.
service-
discovery.propert
ies

Set client properties to use. These properties are
specific to what service call implementation are in
use. For example if using ribbon, then the client
properties are define in
com.netflix.client.config.CommonClientConfigKey.

 Map

camel.cloud.etcd.
service-
discovery.service-
path

The path to look for for service discovery. /servic
es/

String

camel.cloud.etcd.
service-
discovery.timeout

To set the maximum time an action could take to
complete.

 Long

camel.cloud.etcd.
service-
discovery.type

To set the discovery type, valid values are on-
demand and watch.

on-
deman
d

String

camel.cloud.etcd.
service-
discovery.uris

The URIs the client can connect to. String

camel.cloud.etcd.
service-
discovery.user-
name

The user name to use for basic authentication. String

camel.cloud.kuber
netes.service-
discovery.api-
version

Sets the API version when using client lookup. String

camel.cloud.kuber
netes.service-
discovery.ca-
cert-data

Sets the Certificate Authority data when using client
lookup.

 String

camel.cloud.kuber
netes.service-
discovery.ca-
cert-file

Sets the Certificate Authority data that are loaded
from the file when using client lookup.

 String

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1168

camel.cloud.kuber
netes.service-
discovery.client-
cert-data

Sets the Client Certificate data when using client
lookup.

 String

camel.cloud.kuber
netes.service-
discovery.client-
cert-file

Sets the Client Certificate data that are loaded from
the file when using client lookup.

 String

camel.cloud.kuber
netes.service-
discovery.client-
key-algo

Sets the Client Keystore algorithm, such as RSA when
using client lookup.

 String

camel.cloud.kuber
netes.service-
discovery.client-
key-data

Sets the Client Keystore data when using client
lookup.

 String

camel.cloud.kuber
netes.service-
discovery.client-
key-file

Sets the Client Keystore data that are loaded from
the file when using client lookup.

 String

camel.cloud.kuber
netes.service-
discovery.client-
key-passphrase

Sets the Client Keystore passphrase when using
client lookup.

 String

camel.cloud.kuber
netes.service-
discovery.configu
rations

Define additional configuration definitions. Map

camel.cloud.kuber
netes.service-
discovery.dns-
domain

Sets the DNS domain to use for DNS lookup. String

camel.cloud.kuber
netes.service-
discovery.enabled

Enable the component. true Boolean

Name Description Defaul
t

Type

CHAPTER 70. HEADER

1169

camel.cloud.kuber
netes.service-
discovery.lookup

How to perform service lookup. Possible values:
client, dns, environment. When using client, then the
client queries the kubernetes master to obtain a list
of active pods that provides the service, and then
random (or round robin) select a pod. When using dns
the service name is resolved as
name.namespace.svc.dnsDomain. When using dnssrv
the service name is resolved with SRV query for .…
svc… When using environment then environment
variables are used to lookup the service. By default
environment is used.

environ
ment

String

camel.cloud.kuber
netes.service-
discovery.master-
url

Sets the URL to the master when using client lookup. String

camel.cloud.kuber
netes.service-
discovery.namesp
ace

Sets the namespace to use. Will by default use
namespace from the ENV variable
KUBERNETES_MASTER.

 String

camel.cloud.kuber
netes.service-
discovery.oauth-
token

Sets the OAUTH token for authentication (instead of
username/password) when using client lookup.

 String

camel.cloud.kuber
netes.service-
discovery.passwo
rd

Sets the password for authentication when using
client lookup.

 String

camel.cloud.kuber
netes.service-
discovery.port-
name

Sets the Port Name to use for DNS/DNSSRV lookup. String

camel.cloud.kuber
netes.service-
discovery.port-
protocol

Sets the Port Protocol to use for DNS/DNSSRV
lookup.

 String

camel.cloud.kuber
netes.service-
discovery.propert
ies

Set client properties to use. These properties are
specific to what service call implementation are in
use. For example if using ribbon, then the client
properties are define in
com.netflix.client.config.CommonClientConfigKey.

 Map

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1170

camel.cloud.kuber
netes.service-
discovery.trust-
certs

Sets whether to turn on trust certificate check when
using client lookup.

false Boolean

camel.cloud.kuber
netes.service-
discovery.userna
me

Sets the username for authentication when using
client lookup.

 String

camel.cloud.ribbo
n.load-
balancer.client-
name

Sets the Ribbon client name. String

camel.cloud.ribbo
n.load-
balancer.configur
ations

Define additional configuration definitions. Map

camel.cloud.ribbo
n.load-
balancer.enabled

Enable the component. true Boolean

camel.cloud.ribbo
n.load-
balancer.namespa
ce

The namespace. String

camel.cloud.ribbo
n.load-
balancer.passwor
d

The password. String

camel.cloud.ribbo
n.load-
balancer.properti
es

Set client properties to use. These properties are
specific to what service call implementation are in
use. For example if using ribbon, then the client
properties are define in
com.netflix.client.config.CommonClientConfigKey.

 Map

camel.cloud.ribbo
n.load-
balancer.usernam
e

The username. String

Name Description Defaul
t

Type

CHAPTER 70. HEADER

1171

camel.hystrix.allo
w-maximum-size-
to-diverge-from-
core-size

Allows the configuration for maximumSize to take
effect. That value can then be equal to, or higher,
than coreSize.

false Boolean

camel.hystrix.circ
uit-breaker-
enabled

Whether to use a HystrixCircuitBreaker or not. If
false no circuit-breaker logic will be used and all
requests permitted. This is similar in effect to
circuitBreakerForceClosed() except that continues
tracking metrics and knowing whether it should be
open/closed, this property results in not even
instantiating a circuit-breaker.

true Boolean

camel.hystrix.circ
uit-breaker-
error-threshold-
percentage

Error percentage threshold (as whole number such as
50) at which point the circuit breaker will trip open
and reject requests. It will stay tripped for the
duration defined in
circuitBreakerSleepWindowInMilliseconds; The error
percentage this is compared against comes from
HystrixCommandMetrics.getHealthCounts().

50 Integer

camel.hystrix.circ
uit-breaker-
force-closed

If true the HystrixCircuitBreaker#allowRequest() will
always return true to allow requests regardless of the
error percentage from
HystrixCommandMetrics.getHealthCounts(). The
circuitBreakerForceOpen() property takes
precedence so if it set to true this property does
nothing.

false Boolean

camel.hystrix.circ
uit-breaker-
force-open

If true the HystrixCircuitBreaker.allowRequest() will
always return false, causing the circuit to be open
(tripped) and reject all requests. This property takes
precedence over circuitBreakerForceClosed();.

false Boolean

camel.hystrix.circ
uit-breaker-
request-volume-
threshold

Minimum number of requests in the
metricsRollingStatisticalWindowInMilliseconds() that
must exist before the HystrixCircuitBreaker will trip. If
below this number the circuit will not trip regardless
of error percentage.

20 Integer

camel.hystrix.circ
uit-breaker-
sleep-window-in-
milliseconds

The time in milliseconds after a HystrixCircuitBreaker
trips open that it should wait before trying requests
again.

5000 Integer

camel.hystrix.con
figurations

Define additional configuration definitions. Map

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1172

camel.hystrix.core
-pool-size

Core thread-pool size that gets passed to
java.util.concurrent.ThreadPoolExecutor#setCorePo
olSize(int).

10 Integer

camel.hystrix.ena
bled

Enable the component. true Boolean

camel.hystrix.exe
cution-isolation-
semaphore-max-
concurrent-
requests

Number of concurrent requests permitted to
HystrixCommand.run(). Requests beyond the
concurrent limit will be rejected. Applicable only when
executionIsolationStrategy == SEMAPHORE.

20 Integer

camel.hystrix.exe
cution-isolation-
strategy

What isolation strategy HystrixCommand.run() will be
executed with. If THREAD then it will be executed on
a separate thread and concurrent requests limited by
the number of threads in the thread-pool. If
SEMAPHORE then it will be executed on the calling
thread and concurrent requests limited by the
semaphore count.

THREA
D

String

camel.hystrix.exe
cution-isolation-
thread-interrupt-
on-timeout

Whether the execution thread should attempt an
interrupt (using Future#cancel) when a thread times
out. Applicable only when
executionIsolationStrategy() == THREAD.

true Boolean

camel.hystrix.exe
cution-timeout-
enabled

Whether the timeout mechanism is enabled for this
command.

true Boolean

camel.hystrix.exe
cution-timeout-
in-milliseconds

Time in milliseconds at which point the command will
timeout and halt execution. If
executionIsolationThreadInterruptOnTimeout == true
and the command is thread-isolated, the executing
thread will be interrupted. If the command is
semaphore-isolated and a
HystrixObservableCommand, that command will get
unsubscribed.

1000 Integer

camel.hystrix.fallb
ack-enabled

Whether HystrixCommand.getFallback() should be
attempted when failure occurs.

true Boolean

camel.hystrix.fallb
ack-isolation-
semaphore-max-
concurrent-
requests

Number of concurrent requests permitted to
HystrixCommand.getFallback(). Requests beyond
the concurrent limit will fail-fast and not attempt
retrieving a fallback.

10 Integer

Name Description Defaul
t

Type

CHAPTER 70. HEADER

1173

camel.hystrix.gro
up-key

Sets the group key to use. The default value is
CamelHystrix.

Camel
Hystrix

String

camel.hystrix.kee
p-alive-time

Keep-alive time in minutes that gets passed to
ThreadPoolExecutor#setKeepAliveTime(long,TimeU
nit).

1 Integer

camel.hystrix.max
-queue-size

Max queue size that gets passed to BlockingQueue in
HystrixConcurrencyStrategy.getBlockingQueue(int)
This should only affect the instantiation of a
threadpool - it is not eliglible to change a queue size
on the fly. For that, use
queueSizeRejectionThreshold().

-1 Integer

camel.hystrix.max
imum-size

Maximum thread-pool size that gets passed to
ThreadPoolExecutor#setMaximumPoolSize(int) .
This is the maximum amount of concurrency that can
be supported without starting to reject
HystrixCommands. Please note that this setting only
takes effect if you also set
allowMaximumSizeToDivergeFromCoreSize.

10 Integer

camel.hystrix.met
rics-health-
snapshot-
interval-in-
milliseconds

Time in milliseconds to wait between allowing health
snapshots to be taken that calculate success and
error percentages and affect
HystrixCircuitBreaker.isOpen() status. On high-
volume circuits the continual calculation of error
percentage can become CPU intensive thus this
controls how often it is calculated.

500 Integer

camel.hystrix.met
rics-rolling-
percentile-
bucket-size

Maximum number of values stored in each bucket of
the rolling percentile. This is passed into
HystrixRollingPercentile inside
HystrixCommandMetrics.

10 Integer

camel.hystrix.met
rics-rolling-
percentile-
enabled

Whether percentile metrics should be captured using
HystrixRollingPercentile inside
HystrixCommandMetrics.

true Boolean

camel.hystrix.met
rics-rolling-
percentile-
window-buckets

Number of buckets the rolling percentile window is
broken into. This is passed into
HystrixRollingPercentile inside
HystrixCommandMetrics.

6 Integer

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1174

camel.hystrix.met
rics-rolling-
percentile-
window-in-
milliseconds

Duration of percentile rolling window in milliseconds.
This is passed into HystrixRollingPercentile inside
HystrixCommandMetrics.

10000 Integer

camel.hystrix.met
rics-rolling-
statistical-
window-buckets

Number of buckets the rolling statistical window is
broken into. This is passed into HystrixRollingNumber
inside HystrixCommandMetrics.

10 Integer

camel.hystrix.met
rics-rolling-
statistical-
window-in-
milliseconds

This property sets the duration of the statistical
rolling window, in milliseconds. This is how long
metrics are kept for the thread pool. The window is
divided into buckets and rolls by those increments.

10000 Integer

camel.hystrix.que
ue-size-rejection-
threshold

Queue size rejection threshold is an artificial max size
at which rejections will occur even if maxQueueSize
has not been reached. This is done because the
maxQueueSize of a BlockingQueue can not be
dynamically changed and we want to support
dynamically changing the queue size that affects
rejections. This is used by HystrixCommand when
queuing a thread for execution.

5 Integer

camel.hystrix.req
uest-log-enabled

Whether HystrixCommand execution and events
should be logged to HystrixRequestLog.

true Boolean

camel.hystrix.thre
ad-pool-key

Sets the thread pool key to use. Will by default use
the same value as groupKey has been configured to
use.

Camel
Hystrix

String

camel.hystrix.thre
ad-pool-rolling-
number-
statistical-
window-buckets

Number of buckets the rolling statistical window is
broken into. This is passed into HystrixRollingNumber
inside each HystrixThreadPoolMetrics instance.

10 Integer

camel.hystrix.thre
ad-pool-rolling-
number-
statistical-
window-in-
milliseconds

Duration of statistical rolling window in milliseconds.
This is passed into HystrixRollingNumber inside each
HystrixThreadPoolMetrics instance.

10000 Integer

camel.language.c
onstant.enabled

Whether to enable auto configuration of the constant
language. This is enabled by default.

 Boolean

Name Description Defaul
t

Type

CHAPTER 70. HEADER

1175

camel.language.c
onstant.trim

Whether to trim the value to remove leading and
trailing whitespaces and line breaks.

true Boolean

camel.language.c
simple.enabled

Whether to enable auto configuration of the csimple
language. This is enabled by default.

 Boolean

camel.language.c
simple.trim

Whether to trim the value to remove leading and
trailing whitespaces and line breaks.

true Boolean

camel.language.e
xchangeproperty.
enabled

Whether to enable auto configuration of the
exchangeProperty language. This is enabled by
default.

 Boolean

camel.language.e
xchangeproperty.
trim

Whether to trim the value to remove leading and
trailing whitespaces and line breaks.

true Boolean

camel.language.fil
e.enabled

Whether to enable auto configuration of the file
language. This is enabled by default.

 Boolean

camel.language.fil
e.trim

Whether to trim the value to remove leading and
trailing whitespaces and line breaks.

true Boolean

camel.language.h
eader.enabled

Whether to enable auto configuration of the header
language. This is enabled by default.

 Boolean

camel.language.h
eader.trim

Whether to trim the value to remove leading and
trailing whitespaces and line breaks.

true Boolean

camel.language.re
f.enabled

Whether to enable auto configuration of the ref
language. This is enabled by default.

 Boolean

camel.language.re
f.trim

Whether to trim the value to remove leading and
trailing whitespaces and line breaks.

true Boolean

camel.language.si
mple.enabled

Whether to enable auto configuration of the simple
language. This is enabled by default.

 Boolean

camel.language.si
mple.trim

Whether to trim the value to remove leading and
trailing whitespaces and line breaks.

true Boolean

camel.language.t
okenize.enabled

Whether to enable auto configuration of the tokenize
language. This is enabled by default.

 Boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1176

camel.language.t
okenize.group-
delimiter

Sets the delimiter to use when grouping. If this has
not been set then token will be used as the delimiter.

 String

camel.language.t
okenize.trim

Whether to trim the value to remove leading and
trailing whitespaces and line breaks.

true Boolean

camel.resilience4j
.automatic-
transition-from-
open-to-half-
open-enabled

Enables automatic transition from OPEN to
HALF_OPEN state once the
waitDurationInOpenState has passed.

false Boolean

camel.resilience4j
.circuit-breaker-
ref

Refers to an existing
io.github.resilience4j.circuitbreaker.CircuitBreaker
instance to lookup and use from the registry. When
using this, then any other circuit breaker options are
not in use.

 String

camel.resilience4j
.config-ref

Refers to an existing
io.github.resilience4j.circuitbreaker.CircuitBreakerCo
nfig instance to lookup and use from the registry.

 String

camel.resilience4j
.configurations

Define additional configuration definitions. Map

camel.resilience4j
.enabled

Enable the component. true Boolean

camel.resilience4j
.failure-rate-
threshold

Configures the failure rate threshold in percentage. If
the failure rate is equal or greater than the threshold
the CircuitBreaker transitions to open and starts
short-circuiting calls. The threshold must be greater
than 0 and not greater than 100. Default value is 50
percentage.

 Float

camel.resilience4j
.minimum-
number-of-calls

Configures the minimum number of calls which are
required (per sliding window period) before the
CircuitBreaker can calculate the error rate. For
example, if minimumNumberOfCalls is 10, then at
least 10 calls must be recorded, before the failure rate
can be calculated. If only 9 calls have been recorded
the CircuitBreaker will not transition to open even if
all 9 calls have failed. Default
minimumNumberOfCalls is 100.

100 Integer

Name Description Defaul
t

Type

CHAPTER 70. HEADER

1177

camel.resilience4j
.permitted-
number-of-calls-
in-half-open-
state

Configures the number of permitted calls when the
CircuitBreaker is half open. The size must be greater
than 0. Default size is 10.

10 Integer

camel.resilience4j
.sliding-window-
size

Configures the size of the sliding window which is
used to record the outcome of calls when the
CircuitBreaker is closed. slidingWindowSize
configures the size of the sliding window. Sliding
window can either be count-based or time-based. If
slidingWindowType is COUNT_BASED, the last
slidingWindowSize calls are recorded and
aggregated. If slidingWindowType is TIME_BASED,
the calls of the last slidingWindowSize seconds are
recorded and aggregated. The slidingWindowSize
must be greater than 0. The minimumNumberOfCalls
must be greater than 0. If the slidingWindowType is
COUNT_BASED, the minimumNumberOfCalls
cannot be greater than slidingWindowSize . If the
slidingWindowType is TIME_BASED, you can pick
whatever you want. Default slidingWindowSize is 100.

100 Integer

camel.resilience4j
.sliding-window-
type

Configures the type of the sliding window which is
used to record the outcome of calls when the
CircuitBreaker is closed. Sliding window can either be
count-based or time-based. If slidingWindowType is
COUNT_BASED, the last slidingWindowSize calls are
recorded and aggregated. If slidingWindowType is
TIME_BASED, the calls of the last slidingWindowSize
seconds are recorded and aggregated. Default
slidingWindowType is COUNT_BASED.

COUN
T_BAS
ED

String

camel.resilience4j
.slow-call-
duration-
threshold

Configures the duration threshold (seconds) above
which calls are considered as slow and increase the
slow calls percentage. Default value is 60 seconds.

60 Integer

camel.resilience4j
.slow-call-rate-
threshold

Configures a threshold in percentage. The
CircuitBreaker considers a call as slow when the call
duration is greater than slowCallDurationThreshold
Duration. When the percentage of slow calls is equal
or greater the threshold, the CircuitBreaker
transitions to open and starts short-circuiting calls.
The threshold must be greater than 0 and not greater
than 100. Default value is 100 percentage which
means that all recorded calls must be slower than
slowCallDurationThreshold.

 Float

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1178

camel.resilience4j
.wait-duration-in-
open-state

Configures the wait duration (in seconds) which
specifies how long the CircuitBreaker should stay
open, before it switches to half open. Default value is
60 seconds.

60 Integer

camel.resilience4j
.writable-stack-
trace-enabled

Enables writable stack traces. When set to false,
Exception.getStackTrace returns a zero length array.
This may be used to reduce log spam when the circuit
breaker is open as the cause of the exceptions is
already known (the circuit breaker is short-circuiting
calls).

true Boolean

camel.rest.api-
component

The name of the Camel component to use as the
REST API (such as swagger) If no API Component
has been explicit configured, then Camel will lookup if
there is a Camel component responsible for servicing
and generating the REST API documentation, or if a
org.apache.camel.spi.RestApiProcessorFactory is
registered in the registry. If either one is found, then
that is being used.

 String

camel.rest.api-
context-path

Sets a leading API context-path the REST API
services will be using. This can be used when using
components such as camel-servlet where the
deployed web application is deployed using a
context-path.

 String

camel.rest.api-
context-route-id

Sets the route id to use for the route that services the
REST API. The route will by default use an auto
assigned route id.

 String

camel.rest.api-
host

To use an specific hostname for the API
documentation (eg swagger) This can be used to
override the generated host with this configured
hostname.

 String

camel.rest.api-
property

Allows to configure as many additional properties for
the api documentation (swagger). For example set
property api.title to my cool stuff.

 Map

camel.rest.api-
vendor-extension

Whether vendor extension is enabled in the Rest
APIs. If enabled then Camel will include additional
information as vendor extension (eg keys starting
with x-) such as route ids, class names etc. Not all 3rd
party API gateways and tools supports vendor-
extensions when importing your API docs.

false Boolean

camel.rest.bindin
g-mode

Sets the binding mode to use. The default value is
off.

 RestBindingMode

Name Description Defaul
t

Type

CHAPTER 70. HEADER

1179

camel.rest.client-
request-
validation

Whether to enable validation of the client request to
check whether the Content-Type and Accept
headers from the client is supported by the Rest-DSL
configuration of its consumes/produces settings.
This can be turned on, to enable this check. In case of
validation error, then HTTP Status codes 415 or 406
is returned. The default value is false.

false Boolean

camel.rest.compo
nent

The Camel Rest component to use for the REST
transport (consumer), such as netty-http, jetty,
servlet, undertow. If no component has been explicit
configured, then Camel will lookup if there is a Camel
component that integrates with the Rest DSL, or if a
org.apache.camel.spi.RestConsumerFactory is
registered in the registry. If either one is found, then
that is being used.

 String

camel.rest.compo
nent-property

Allows to configure as many additional properties for
the rest component in use.

 Map

camel.rest.consu
mer-property

Allows to configure as many additional properties for
the rest consumer in use.

 Map

camel.rest.contex
t-path

Sets a leading context-path the REST services will be
using. This can be used when using components such
as camel-servlet where the deployed web application
is deployed using a context-path. Or for components
such as camel-jetty or camel-netty-http that includes
a HTTP server.

 String

camel.rest.cors-
headers

Allows to configure custom CORS headers. Map

camel.rest.data-
format-property

Allows to configure as many additional properties for
the data formats in use. For example set property
prettyPrint to true to have json outputted in pretty
mode. The properties can be prefixed to denote the
option is only for either JSON or XML and for either
the IN or the OUT. The prefixes are: json.in. json.out.
xml.in. xml.out. For example a key with value
xml.out.mustBeJAXBElement is only for the XML
data format for the outgoing. A key without a prefix is
a common key for all situations.

 Map

camel.rest.enable
-cors

Whether to enable CORS headers in the HTTP
response. The default value is false.

false Boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1180

camel.rest.endpoi
nt-property

Allows to configure as many additional properties for
the rest endpoint in use.

 Map

camel.rest.host The hostname to use for exposing the REST service. String

camel.rest.host-
name-resolver

If no hostname has been explicit configured, then this
resolver is used to compute the hostname the REST
service will be using.

 RestHostNameRe
solver

camel.rest.json-
data-format

Name of specific json data format to use. By default
json-jackson will be used. Important: This option is
only for setting a custom name of the data format,
not to refer to an existing data format instance.

 String

camel.rest.port The port number to use for exposing the REST
service. Notice if you use servlet component then the
port number configured here does not apply, as the
port number in use is the actual port number the
servlet component is using. eg if using Apache
Tomcat its the tomcat http port, if using Apache Karaf
its the HTTP service in Karaf that uses port 8181 by
default etc. Though in those situations setting the
port number here, allows tooling and JMX to know
the port number, so its recommended to set the port
number to the number that the servlet engine uses.

 String

camel.rest.produc
er-api-doc

Sets the location of the api document (swagger api)
the REST producer will use to validate the REST uri
and query parameters are valid accordingly to the api
document. This requires adding camel-swagger-java
to the classpath, and any miss configuration will let
Camel fail on startup and report the error(s). The
location of the api document is loaded from
classpath by default, but you can use file: or http: to
refer to resources to load from file or http url.

 String

camel.rest.produc
er-component

Sets the name of the Camel component to use as the
REST producer.

 String

camel.rest.schem
e

The scheme to use for exposing the REST service.
Usually http or https is supported. The default value
is http.

 String

camel.rest.skip-
binding-on-error-
code

Whether to skip binding on output if there is a custom
HTTP error code header. This allows to build custom
error messages that do not bind to json / xml etc, as
success messages otherwise will do.

false Boolean

Name Description Defaul
t

Type

CHAPTER 70. HEADER

1181

camel.rest.use-x-
forward-headers

Whether to use X-Forward headers for Host and
related setting. The default value is true.

true Boolean

camel.rest.xml-
data-format

Name of specific XML data format to use. By default
jaxb will be used. Important: This option is only for
setting a custom name of the data format, not to
refer to an existing data format instance.

 String

camel.rest.api-
context-id-
pattern

Deprecated Sets an CamelContext id pattern to only
allow Rest APIs from rest services within
CamelContext’s which name matches the pattern.
The pattern name refers to the CamelContext name,
to match on the current CamelContext only. For any
other value, the pattern uses the rules from
PatternHelper#matchPattern(String,String).

 String

camel.rest.api-
context-listing

Deprecated Sets whether listing of all available
CamelContext’s with REST services in the JVM is
enabled. If enabled it allows to discover these
contexts, if false then only the current CamelContext
is in use.

false Boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1182

CHAPTER 71. JSONPATH
Camel supports JSONPath to allow using Expression or Predicate on JSON messages.

71.1. JSONPATH OPTIONS

The JSONPath language supports 8 options, which are listed below.

Name Default Java
Type

Description

resultType String Sets the class name of the result type (type from output).

suppressExceptio
ns

 Boole
an

Whether to suppress exceptions such as
PathNotFoundException.

allowSimple Boole
an

Whether to allow in inlined Simple exceptions in the JSONPath
expression.

allowEasyPredica
te

 Boole
an

Whether to allow using the easy predicate parser to pre-parse
predicates.

writeAsString Boole
an

Whether to write the output of each row/element as a JSON
String value instead of a Map/POJO value.

headerName String Name of header to use as input, instead of the message body.

option Enum To configure additional options on JSONPath. Multiple values
can be separated by comma.

Enum values:

DEFAULT_PATH_LEAF_TO_NULL

ALWAYS_RETURN_LIST

AS_PATH_LIST

SUPPRESS_EXCEPTIONS

REQUIRE_PROPERTIES

trim Boole
an

Whether to trim the value to remove leading and trailing
whitespaces and line breaks.

71.2. EXAMPLES

For example, you can use JSONPath in a Predicate with the Content Based Router EIP .

from("queue:books.new")
 .choice()

CHAPTER 71. JSONPATH

1183

https://github.com/json-path/JsonPath/
https://camel.apache.org/manual/expression.html
https://camel.apache.org/manual/predicate.html
https://camel.apache.org/manual/predicate.html
https://camel.apache.org/components/3.14.x/eips/choice-eip.html

And in XML DSL:

71.3. JSONPATH SYNTAX

Using the JSONPath syntax takes some time to learn, even for basic predicates. So for example to find
out all the cheap books you have to do:

71.3.1. Easy JSONPath Syntax

However, what if you could just write it as:

And you can omit the path if you just want to look at nodes with a price key:

To support this there is a EasyPredicateParser which kicks-in if you have defined the predicate using a
basic style. That means the predicate must not start with the $ sign, and only include one operator.

The easy syntax is:

You can use Camel simple language in the right operator, eg:

 .when().jsonpath("$.store.book[?(@.price < 10)]")
 .to("jms:queue:book.cheap")
 .when().jsonpath("$.store.book[?(@.price < 30)]")
 .to("jms:queue:book.average")
 .otherwise()
 .to("jms:queue:book.expensive");

<route>
 <from uri="direct:start"/>
 <choice>
 <when>
 <jsonpath>$.store.book[?(@.price < 10)]</jsonpath>
 <to uri="mock:cheap"/>
 </when>
 <when>
 <jsonpath>$.store.book[?(@.price < 30)]</jsonpath>
 <to uri="mock:average"/>
 </when>
 <otherwise>
 <to uri="mock:expensive"/>
 </otherwise>
 </choice>
</route>

$.store.book[?(@.price < 20)]

store.book.price < 20

price < 20

left OP right

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1184

See the JSONPath project page for more syntax examples.

71.4. SUPPORTED MESSAGE BODY TYPES

Camel JSonPath supports message body using the following types:

Type Comment

File Reading from files

String Plain strings

Map Message bodies as java.util.Map types

List Message bodies as java.util.List types

POJO Optional If Jackson is on the classpath, then camel-jsonpath is able to use
Jackson to read the message body as POJO and convert to java.util.Map
which is supported by JSonPath. For example, you can add camel-jackson
as dependency to include Jackson.

InputStream If none of the above types matches, then Camel will attempt to read the
message body as a java.io.InputStream.

If a message body is of unsupported type then an exception is thrown by default, however you can
configure JSonPath to suppress exceptions (see below)

71.5. SUPPRESSING EXCEPTIONS

By default, jsonpath will throw an exception if the json payload does not have a valid path accordingly to
the configured jsonpath expression. In some use-cases you may want to ignore this in case the json
payload contains optional data. Therefore, you can set the option suppressExceptions to true to
ignore this as shown:

And in XML DSL:

store.book.price < ${header.limit}

from("direct:start")
 .choice()
 // use true to suppress exceptions
 .when().jsonpath("person.middlename", true)
 .to("mock:middle")
 .otherwise()
 .to("mock:other");

<route>
 <from uri="direct:start"/>
 <choice>
 <when>

CHAPTER 71. JSONPATH

1185

https://github.com/json-path/JsonPath

This option is also available on the @JsonPath annotation.

71.6. INLINE SIMPLE EXPRESSIONS

It’s possible to inlined Simple language in the JSONPath expression using the simple syntax ${xxx}.

An example is shown below:

And in XML DSL:

You can turn off support for inlined Simple expression by setting the option allowSimple to false as
shown:

And in XML DSL:

 <jsonpath suppressExceptions="true">person.middlename</jsonpath>
 <to uri="mock:middle"/>
 </when>
 <otherwise>
 <to uri="mock:other"/>
 </otherwise>
 </choice>
</route>

from("direct:start")
 .choice()
 .when().jsonpath("$.store.book[?(@.price < ${header.cheap})]")
 .to("mock:cheap")
 .when().jsonpath("$.store.book[?(@.price < ${header.average})]")
 .to("mock:average")
 .otherwise()
 .to("mock:expensive");

<route>
 <from uri="direct:start"/>
 <choice>
 <when>
 <jsonpath>$.store.book[?(@.price < ${header.cheap})]</jsonpath>
 <to uri="mock:cheap"/>
 </when>
 <when>
 <jsonpath>$.store.book[?(@.price < ${header.average})]</jsonpath>
 <to uri="mock:average"/>
 </when>
 <otherwise>
 <to uri="mock:expensive"/>
 </otherwise>
 </choice>
</route>

.when().jsonpath("$.store.book[?(@.price < 10)]", false, false)

<jsonpath allowSimple="false">$.store.book[?(@.price < 10)]</jsonpath>

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1186

https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/camel_spring_boot_reference_3.14/index#csb-camel-simple-language-starter

71.7. JSONPATH INJECTION

You can use Bean Integration to invoke a method on a bean and use various languages such as
JSONPath (via the @JsonPath annotation) to extract a value from the message and bind it to a
method parameter, as shown below:

71.8. ENCODING DETECTION

The encoding of the JSON document is detected automatically, if the document is encoded in unicode
(UTF-8, UTF-16LE, UTF-16BE, UTF-32LE, UTF-32BE) as specified in RFC-4627. If the encoding is a
non-unicode encoding, you can either make sure that you enter the document in String format to
JSONPath, or you can specify the encoding in the header CamelJsonPathJsonEncoding which is
defined as a constant in: JsonpathConstants.HEADER_JSON_ENCODING.

71.9. SPLIT JSON DATA INTO SUB ROWS AS JSON

You can use JSONPath to split a JSON document, such as:

Then each book is logged, however the message body is a Map instance. Sometimes you may want to
output this as plain String JSON value instead, which can be done with the writeAsString option as
shown:

Then each book is logged as a String JSON value.

71.10. USING HEADER AS INPUT

By default, JSONPath uses the message body as the input source. However, you can also use a header
as input by specifying the headerName option.

For example to count the number of books from a JSON document that was stored in a header named
books you can do:

public class Foo {

 @Consume("activemq:queue:books.new")
 public void doSomething(@JsonPath("$.store.book[*].author") String author, @Body String json) {
 // process the inbound message here
 }
}

from("direct:start")
 .split().jsonpath("$.store.book[*]")
 .to("log:book");

from("direct:start")
 .split().jsonpathWriteAsString("$.store.book[*]")
 .to("log:book");

from("direct:start")
 .setHeader("numberOfBooks")
 .jsonpath("$..store.book.length()", false, int.class, "books")
 .to("mock:result");

CHAPTER 71. JSONPATH

1187

https://camel.apache.org/manual/bean-integration.html

In the jsonpath expression above we specify the name of the header as books, and we also told that we
wanted the result to be converted as an integer by int.class.

The same example in XML DSL would be:

71.11. SPRING BOOT AUTO-CONFIGURATION

When using jsonpath with Spring Boot make sure to use the following Maven dependency to have
support for auto configuration:

The component supports 8 options, which are listed below.

Name Description Defaul
t

Type

camel.language.js
onpath.allow-
easy-predicate

Whether to allow using the easy predicate parser to
pre-parse predicates.

true Boolean

camel.language.js
onpath.allow-
simple

Whether to allow in inlined Simple exceptions in the
JSONPath expression.

true Boolean

camel.language.js
onpath.enabled

Whether to enable auto configuration of the jsonpath
language. This is enabled by default.

 Boolean

camel.language.js
onpath.header-
name

Name of header to use as input, instead of the
message body.

 String

camel.language.js
onpath.option

To configure additional options on JSONPath.
Multiple values can be separated by comma.

 String

camel.language.js
onpath.suppress-
exceptions

Whether to suppress exceptions such as
PathNotFoundException.

false Boolean

<route>
 <from uri="direct:start"/>
 <setHeader name="numberOfBooks">
 <jsonpath headerName="books" resultType="int">$..store.book.length()</jsonpath>
 </setHeader>
 <to uri="mock:result"/>
</route>

<dependency>
 <groupId>org.apache.camel.springboot</groupId>
 <artifactId>camel-jsonpath-starter</artifactId>
 <version>3.14.5.redhat-00032</version>
 <!-- Use your Camel Spring Boot version -->
</dependency>

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1188

camel.language.js
onpath.trim

Whether to trim the value to remove leading and
trailing whitespaces and line breaks.

true Boolean

camel.language.js
onpath.write-as-
string

Whether to write the output of each row/element as
a JSON String value instead of a Map/POJO value.

false Boolean

Name Description Defaul
t

Type

CHAPTER 71. JSONPATH

1189

CHAPTER 72. REF
The Ref Expression Language is really just a way to lookup a custom Expression or Predicate from the
Registry.

This is particular useable in XML DSLs.

72.1. REF LANGUAGE OPTIONS

The Ref language supports 1 options, which are listed below.

Name Default Java
Type

Description

trim Boole
an

Whether to trim the value to remove leading and trailing
whitespaces and line breaks.

72.2. EXAMPLE USAGE

The Splitter EIP in XML DSL can utilize a custom expression using <ref> like:

in this case, the message coming from the seda:a endpoint will be splitted using a custom Expression
which has the id myExpression in the Registry.

And the same example using Java DSL:

72.3. DEPENDENCIES

The Ref language is part of camel-core.

72.4. SPRING BOOT AUTO-CONFIGURATION

When using ref with Spring Boot make sure to use the following Maven dependency to have support for
auto configuration:

<bean id="myExpression" class="com.mycompany.MyCustomExpression"/>

<route>
 <from uri="seda:a"/>
 <split>
 <ref>myExpression</ref>
 <to uri="mock:b"/>
 </split>
</route>

from("seda:a").split().ref("myExpression").to("seda:b");

<dependency>
 <groupId>org.apache.camel.springboot</groupId>
 <artifactId>camel-core-starter</artifactId>

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1190

https://camel.apache.org/manual/registry.html
https://camel.apache.org/manual/registry.html

The component supports 147 options, which are listed below.

Name Description Defaul
t

Type

camel.cloud.cons
ul.service-
discovery.acl-
token

Sets the ACL token to be used with Consul. String

camel.cloud.cons
ul.service-
discovery.block-
seconds

The seconds to wait for a watch event, default 10
seconds.

10 Integer

camel.cloud.cons
ul.service-
discovery.configu
rations

Define additional configuration definitions. Map

camel.cloud.cons
ul.service-
discovery.connect
-timeout-millis

Connect timeout for OkHttpClient. Long

camel.cloud.cons
ul.service-
discovery.datacen
ter

The data center. String

camel.cloud.cons
ul.service-
discovery.enabled

Enable the component. true Boolean

camel.cloud.cons
ul.service-
discovery.passwo
rd

Sets the password to be used for basic
authentication.

 String

camel.cloud.cons
ul.service-
discovery.propert
ies

Set client properties to use. These properties are
specific to what service call implementation are in
use. For example if using ribbon, then the client
properties are define in
com.netflix.client.config.CommonClientConfigKey.

 Map

 <version>3.14.5.redhat-00032</version>
 <!-- Use your Camel Spring Boot version -->
</dependency>

CHAPTER 72. REF

1191

camel.cloud.cons
ul.service-
discovery.read-
timeout-millis

Read timeout for OkHttpClient. Long

camel.cloud.cons
ul.service-
discovery.url

The Consul agent URL. String

camel.cloud.cons
ul.service-
discovery.user-
name

Sets the username to be used for basic
authentication.

 String

camel.cloud.cons
ul.service-
discovery.write-
timeout-millis

Write timeout for OkHttpClient. Long

camel.cloud.dns.s
ervice-
discovery.configu
rations

Define additional configuration definitions. Map

camel.cloud.dns.s
ervice-
discovery.domain

The domain name;. String

camel.cloud.dns.s
ervice-
discovery.enabled

Enable the component. true Boolean

camel.cloud.dns.s
ervice-
discovery.propert
ies

Set client properties to use. These properties are
specific to what service call implementation are in
use. For example if using ribbon, then the client
properties are define in
com.netflix.client.config.CommonClientConfigKey.

 Map

camel.cloud.dns.s
ervice-
discovery.proto

The transport protocol of the desired service. _tcp String

camel.cloud.etcd.
service-
discovery.configu
rations

Define additional configuration definitions. Map

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1192

camel.cloud.etcd.
service-
discovery.enabled

Enable the component. true Boolean

camel.cloud.etcd.
service-
discovery.passwo
rd

The password to use for basic authentication. String

camel.cloud.etcd.
service-
discovery.propert
ies

Set client properties to use. These properties are
specific to what service call implementation are in
use. For example if using ribbon, then the client
properties are define in
com.netflix.client.config.CommonClientConfigKey.

 Map

camel.cloud.etcd.
service-
discovery.service-
path

The path to look for for service discovery. /servic
es/

String

camel.cloud.etcd.
service-
discovery.timeout

To set the maximum time an action could take to
complete.

 Long

camel.cloud.etcd.
service-
discovery.type

To set the discovery type, valid values are on-
demand and watch.

on-
deman
d

String

camel.cloud.etcd.
service-
discovery.uris

The URIs the client can connect to. String

camel.cloud.etcd.
service-
discovery.user-
name

The user name to use for basic authentication. String

camel.cloud.kuber
netes.service-
discovery.api-
version

Sets the API version when using client lookup. String

camel.cloud.kuber
netes.service-
discovery.ca-
cert-data

Sets the Certificate Authority data when using client
lookup.

 String

Name Description Defaul
t

Type

CHAPTER 72. REF

1193

camel.cloud.kuber
netes.service-
discovery.ca-
cert-file

Sets the Certificate Authority data that are loaded
from the file when using client lookup.

 String

camel.cloud.kuber
netes.service-
discovery.client-
cert-data

Sets the Client Certificate data when using client
lookup.

 String

camel.cloud.kuber
netes.service-
discovery.client-
cert-file

Sets the Client Certificate data that are loaded from
the file when using client lookup.

 String

camel.cloud.kuber
netes.service-
discovery.client-
key-algo

Sets the Client Keystore algorithm, such as RSA when
using client lookup.

 String

camel.cloud.kuber
netes.service-
discovery.client-
key-data

Sets the Client Keystore data when using client
lookup.

 String

camel.cloud.kuber
netes.service-
discovery.client-
key-file

Sets the Client Keystore data that are loaded from
the file when using client lookup.

 String

camel.cloud.kuber
netes.service-
discovery.client-
key-passphrase

Sets the Client Keystore passphrase when using
client lookup.

 String

camel.cloud.kuber
netes.service-
discovery.configu
rations

Define additional configuration definitions. Map

camel.cloud.kuber
netes.service-
discovery.dns-
domain

Sets the DNS domain to use for DNS lookup. String

camel.cloud.kuber
netes.service-
discovery.enabled

Enable the component. true Boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1194

camel.cloud.kuber
netes.service-
discovery.lookup

How to perform service lookup. Possible values:
client, dns, environment. When using client, then the
client queries the kubernetes master to obtain a list
of active pods that provides the service, and then
random (or round robin) select a pod. When using dns
the service name is resolved as
name.namespace.svc.dnsDomain. When using dnssrv
the service name is resolved with SRV query for .…
svc… When using environment then environment
variables are used to lookup the service. By default
environment is used.

environ
ment

String

camel.cloud.kuber
netes.service-
discovery.master-
url

Sets the URL to the master when using client lookup. String

camel.cloud.kuber
netes.service-
discovery.namesp
ace

Sets the namespace to use. Will by default use
namespace from the ENV variable
KUBERNETES_MASTER.

 String

camel.cloud.kuber
netes.service-
discovery.oauth-
token

Sets the OAUTH token for authentication (instead of
username/password) when using client lookup.

 String

camel.cloud.kuber
netes.service-
discovery.passwo
rd

Sets the password for authentication when using
client lookup.

 String

camel.cloud.kuber
netes.service-
discovery.port-
name

Sets the Port Name to use for DNS/DNSSRV lookup. String

camel.cloud.kuber
netes.service-
discovery.port-
protocol

Sets the Port Protocol to use for DNS/DNSSRV
lookup.

 String

camel.cloud.kuber
netes.service-
discovery.propert
ies

Set client properties to use. These properties are
specific to what service call implementation are in
use. For example if using ribbon, then the client
properties are define in
com.netflix.client.config.CommonClientConfigKey.

 Map

Name Description Defaul
t

Type

CHAPTER 72. REF

1195

camel.cloud.kuber
netes.service-
discovery.trust-
certs

Sets whether to turn on trust certificate check when
using client lookup.

false Boolean

camel.cloud.kuber
netes.service-
discovery.userna
me

Sets the username for authentication when using
client lookup.

 String

camel.cloud.ribbo
n.load-
balancer.client-
name

Sets the Ribbon client name. String

camel.cloud.ribbo
n.load-
balancer.configur
ations

Define additional configuration definitions. Map

camel.cloud.ribbo
n.load-
balancer.enabled

Enable the component. true Boolean

camel.cloud.ribbo
n.load-
balancer.namespa
ce

The namespace. String

camel.cloud.ribbo
n.load-
balancer.passwor
d

The password. String

camel.cloud.ribbo
n.load-
balancer.properti
es

Set client properties to use. These properties are
specific to what service call implementation are in
use. For example if using ribbon, then the client
properties are define in
com.netflix.client.config.CommonClientConfigKey.

 Map

camel.cloud.ribbo
n.load-
balancer.usernam
e

The username. String

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1196

camel.hystrix.allo
w-maximum-size-
to-diverge-from-
core-size

Allows the configuration for maximumSize to take
effect. That value can then be equal to, or higher,
than coreSize.

false Boolean

camel.hystrix.circ
uit-breaker-
enabled

Whether to use a HystrixCircuitBreaker or not. If
false no circuit-breaker logic will be used and all
requests permitted. This is similar in effect to
circuitBreakerForceClosed() except that continues
tracking metrics and knowing whether it should be
open/closed, this property results in not even
instantiating a circuit-breaker.

true Boolean

camel.hystrix.circ
uit-breaker-
error-threshold-
percentage

Error percentage threshold (as whole number such as
50) at which point the circuit breaker will trip open
and reject requests. It will stay tripped for the
duration defined in
circuitBreakerSleepWindowInMilliseconds; The error
percentage this is compared against comes from
HystrixCommandMetrics.getHealthCounts().

50 Integer

camel.hystrix.circ
uit-breaker-
force-closed

If true the HystrixCircuitBreaker#allowRequest() will
always return true to allow requests regardless of the
error percentage from
HystrixCommandMetrics.getHealthCounts(). The
circuitBreakerForceOpen() property takes
precedence so if it set to true this property does
nothing.

false Boolean

camel.hystrix.circ
uit-breaker-
force-open

If true the HystrixCircuitBreaker.allowRequest() will
always return false, causing the circuit to be open
(tripped) and reject all requests. This property takes
precedence over circuitBreakerForceClosed();.

false Boolean

camel.hystrix.circ
uit-breaker-
request-volume-
threshold

Minimum number of requests in the
metricsRollingStatisticalWindowInMilliseconds() that
must exist before the HystrixCircuitBreaker will trip. If
below this number the circuit will not trip regardless
of error percentage.

20 Integer

camel.hystrix.circ
uit-breaker-
sleep-window-in-
milliseconds

The time in milliseconds after a HystrixCircuitBreaker
trips open that it should wait before trying requests
again.

5000 Integer

camel.hystrix.con
figurations

Define additional configuration definitions. Map

Name Description Defaul
t

Type

CHAPTER 72. REF

1197

camel.hystrix.core
-pool-size

Core thread-pool size that gets passed to
java.util.concurrent.ThreadPoolExecutor#setCorePo
olSize(int).

10 Integer

camel.hystrix.ena
bled

Enable the component. true Boolean

camel.hystrix.exe
cution-isolation-
semaphore-max-
concurrent-
requests

Number of concurrent requests permitted to
HystrixCommand.run(). Requests beyond the
concurrent limit will be rejected. Applicable only when
executionIsolationStrategy == SEMAPHORE.

20 Integer

camel.hystrix.exe
cution-isolation-
strategy

What isolation strategy HystrixCommand.run() will be
executed with. If THREAD then it will be executed on
a separate thread and concurrent requests limited by
the number of threads in the thread-pool. If
SEMAPHORE then it will be executed on the calling
thread and concurrent requests limited by the
semaphore count.

THREA
D

String

camel.hystrix.exe
cution-isolation-
thread-interrupt-
on-timeout

Whether the execution thread should attempt an
interrupt (using Future#cancel) when a thread times
out. Applicable only when
executionIsolationStrategy() == THREAD.

true Boolean

camel.hystrix.exe
cution-timeout-
enabled

Whether the timeout mechanism is enabled for this
command.

true Boolean

camel.hystrix.exe
cution-timeout-
in-milliseconds

Time in milliseconds at which point the command will
timeout and halt execution. If
executionIsolationThreadInterruptOnTimeout == true
and the command is thread-isolated, the executing
thread will be interrupted. If the command is
semaphore-isolated and a
HystrixObservableCommand, that command will get
unsubscribed.

1000 Integer

camel.hystrix.fallb
ack-enabled

Whether HystrixCommand.getFallback() should be
attempted when failure occurs.

true Boolean

camel.hystrix.fallb
ack-isolation-
semaphore-max-
concurrent-
requests

Number of concurrent requests permitted to
HystrixCommand.getFallback(). Requests beyond
the concurrent limit will fail-fast and not attempt
retrieving a fallback.

10 Integer

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1198

camel.hystrix.gro
up-key

Sets the group key to use. The default value is
CamelHystrix.

Camel
Hystrix

String

camel.hystrix.kee
p-alive-time

Keep-alive time in minutes that gets passed to
ThreadPoolExecutor#setKeepAliveTime(long,TimeU
nit).

1 Integer

camel.hystrix.max
-queue-size

Max queue size that gets passed to BlockingQueue in
HystrixConcurrencyStrategy.getBlockingQueue(int)
This should only affect the instantiation of a
threadpool - it is not eliglible to change a queue size
on the fly. For that, use
queueSizeRejectionThreshold().

-1 Integer

camel.hystrix.max
imum-size

Maximum thread-pool size that gets passed to
ThreadPoolExecutor#setMaximumPoolSize(int) .
This is the maximum amount of concurrency that can
be supported without starting to reject
HystrixCommands. Please note that this setting only
takes effect if you also set
allowMaximumSizeToDivergeFromCoreSize.

10 Integer

camel.hystrix.met
rics-health-
snapshot-
interval-in-
milliseconds

Time in milliseconds to wait between allowing health
snapshots to be taken that calculate success and
error percentages and affect
HystrixCircuitBreaker.isOpen() status. On high-
volume circuits the continual calculation of error
percentage can become CPU intensive thus this
controls how often it is calculated.

500 Integer

camel.hystrix.met
rics-rolling-
percentile-
bucket-size

Maximum number of values stored in each bucket of
the rolling percentile. This is passed into
HystrixRollingPercentile inside
HystrixCommandMetrics.

10 Integer

camel.hystrix.met
rics-rolling-
percentile-
enabled

Whether percentile metrics should be captured using
HystrixRollingPercentile inside
HystrixCommandMetrics.

true Boolean

camel.hystrix.met
rics-rolling-
percentile-
window-buckets

Number of buckets the rolling percentile window is
broken into. This is passed into
HystrixRollingPercentile inside
HystrixCommandMetrics.

6 Integer

Name Description Defaul
t

Type

CHAPTER 72. REF

1199

camel.hystrix.met
rics-rolling-
percentile-
window-in-
milliseconds

Duration of percentile rolling window in milliseconds.
This is passed into HystrixRollingPercentile inside
HystrixCommandMetrics.

10000 Integer

camel.hystrix.met
rics-rolling-
statistical-
window-buckets

Number of buckets the rolling statistical window is
broken into. This is passed into HystrixRollingNumber
inside HystrixCommandMetrics.

10 Integer

camel.hystrix.met
rics-rolling-
statistical-
window-in-
milliseconds

This property sets the duration of the statistical
rolling window, in milliseconds. This is how long
metrics are kept for the thread pool. The window is
divided into buckets and rolls by those increments.

10000 Integer

camel.hystrix.que
ue-size-rejection-
threshold

Queue size rejection threshold is an artificial max size
at which rejections will occur even if maxQueueSize
has not been reached. This is done because the
maxQueueSize of a BlockingQueue can not be
dynamically changed and we want to support
dynamically changing the queue size that affects
rejections. This is used by HystrixCommand when
queuing a thread for execution.

5 Integer

camel.hystrix.req
uest-log-enabled

Whether HystrixCommand execution and events
should be logged to HystrixRequestLog.

true Boolean

camel.hystrix.thre
ad-pool-key

Sets the thread pool key to use. Will by default use
the same value as groupKey has been configured to
use.

Camel
Hystrix

String

camel.hystrix.thre
ad-pool-rolling-
number-
statistical-
window-buckets

Number of buckets the rolling statistical window is
broken into. This is passed into HystrixRollingNumber
inside each HystrixThreadPoolMetrics instance.

10 Integer

camel.hystrix.thre
ad-pool-rolling-
number-
statistical-
window-in-
milliseconds

Duration of statistical rolling window in milliseconds.
This is passed into HystrixRollingNumber inside each
HystrixThreadPoolMetrics instance.

10000 Integer

camel.language.c
onstant.enabled

Whether to enable auto configuration of the constant
language. This is enabled by default.

 Boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1200

camel.language.c
onstant.trim

Whether to trim the value to remove leading and
trailing whitespaces and line breaks.

true Boolean

camel.language.c
simple.enabled

Whether to enable auto configuration of the csimple
language. This is enabled by default.

 Boolean

camel.language.c
simple.trim

Whether to trim the value to remove leading and
trailing whitespaces and line breaks.

true Boolean

camel.language.e
xchangeproperty.
enabled

Whether to enable auto configuration of the
exchangeProperty language. This is enabled by
default.

 Boolean

camel.language.e
xchangeproperty.
trim

Whether to trim the value to remove leading and
trailing whitespaces and line breaks.

true Boolean

camel.language.fil
e.enabled

Whether to enable auto configuration of the file
language. This is enabled by default.

 Boolean

camel.language.fil
e.trim

Whether to trim the value to remove leading and
trailing whitespaces and line breaks.

true Boolean

camel.language.h
eader.enabled

Whether to enable auto configuration of the header
language. This is enabled by default.

 Boolean

camel.language.h
eader.trim

Whether to trim the value to remove leading and
trailing whitespaces and line breaks.

true Boolean

camel.language.re
f.enabled

Whether to enable auto configuration of the ref
language. This is enabled by default.

 Boolean

camel.language.re
f.trim

Whether to trim the value to remove leading and
trailing whitespaces and line breaks.

true Boolean

camel.language.si
mple.enabled

Whether to enable auto configuration of the simple
language. This is enabled by default.

 Boolean

camel.language.si
mple.trim

Whether to trim the value to remove leading and
trailing whitespaces and line breaks.

true Boolean

camel.language.t
okenize.enabled

Whether to enable auto configuration of the tokenize
language. This is enabled by default.

 Boolean

camel.language.t
okenize.group-
delimiter

Sets the delimiter to use when grouping. If this has
not been set then token will be used as the delimiter.

 String

Name Description Defaul
t

Type

CHAPTER 72. REF

1201

camel.language.t
okenize.trim

Whether to trim the value to remove leading and
trailing whitespaces and line breaks.

true Boolean

camel.resilience4j
.automatic-
transition-from-
open-to-half-
open-enabled

Enables automatic transition from OPEN to
HALF_OPEN state once the
waitDurationInOpenState has passed.

false Boolean

camel.resilience4j
.circuit-breaker-
ref

Refers to an existing
io.github.resilience4j.circuitbreaker.CircuitBreaker
instance to lookup and use from the registry. When
using this, then any other circuit breaker options are
not in use.

 String

camel.resilience4j
.config-ref

Refers to an existing
io.github.resilience4j.circuitbreaker.CircuitBreakerCo
nfig instance to lookup and use from the registry.

 String

camel.resilience4j
.configurations

Define additional configuration definitions. Map

camel.resilience4j
.enabled

Enable the component. true Boolean

camel.resilience4j
.failure-rate-
threshold

Configures the failure rate threshold in percentage. If
the failure rate is equal or greater than the threshold
the CircuitBreaker transitions to open and starts
short-circuiting calls. The threshold must be greater
than 0 and not greater than 100. Default value is 50
percentage.

 Float

camel.resilience4j
.minimum-
number-of-calls

Configures the minimum number of calls which are
required (per sliding window period) before the
CircuitBreaker can calculate the error rate. For
example, if minimumNumberOfCalls is 10, then at
least 10 calls must be recorded, before the failure rate
can be calculated. If only 9 calls have been recorded
the CircuitBreaker will not transition to open even if
all 9 calls have failed. Default
minimumNumberOfCalls is 100.

100 Integer

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1202

camel.resilience4j
.permitted-
number-of-calls-
in-half-open-
state

Configures the number of permitted calls when the
CircuitBreaker is half open. The size must be greater
than 0. Default size is 10.

10 Integer

camel.resilience4j
.sliding-window-
size

Configures the size of the sliding window which is
used to record the outcome of calls when the
CircuitBreaker is closed. slidingWindowSize
configures the size of the sliding window. Sliding
window can either be count-based or time-based. If
slidingWindowType is COUNT_BASED, the last
slidingWindowSize calls are recorded and
aggregated. If slidingWindowType is TIME_BASED,
the calls of the last slidingWindowSize seconds are
recorded and aggregated. The slidingWindowSize
must be greater than 0. The minimumNumberOfCalls
must be greater than 0. If the slidingWindowType is
COUNT_BASED, the minimumNumberOfCalls
cannot be greater than slidingWindowSize . If the
slidingWindowType is TIME_BASED, you can pick
whatever you want. Default slidingWindowSize is 100.

100 Integer

camel.resilience4j
.sliding-window-
type

Configures the type of the sliding window which is
used to record the outcome of calls when the
CircuitBreaker is closed. Sliding window can either be
count-based or time-based. If slidingWindowType is
COUNT_BASED, the last slidingWindowSize calls are
recorded and aggregated. If slidingWindowType is
TIME_BASED, the calls of the last slidingWindowSize
seconds are recorded and aggregated. Default
slidingWindowType is COUNT_BASED.

COUN
T_BAS
ED

String

camel.resilience4j
.slow-call-
duration-
threshold

Configures the duration threshold (seconds) above
which calls are considered as slow and increase the
slow calls percentage. Default value is 60 seconds.

60 Integer

camel.resilience4j
.slow-call-rate-
threshold

Configures a threshold in percentage. The
CircuitBreaker considers a call as slow when the call
duration is greater than slowCallDurationThreshold
Duration. When the percentage of slow calls is equal
or greater the threshold, the CircuitBreaker
transitions to open and starts short-circuiting calls.
The threshold must be greater than 0 and not greater
than 100. Default value is 100 percentage which
means that all recorded calls must be slower than
slowCallDurationThreshold.

 Float

Name Description Defaul
t

Type

CHAPTER 72. REF

1203

camel.resilience4j
.wait-duration-in-
open-state

Configures the wait duration (in seconds) which
specifies how long the CircuitBreaker should stay
open, before it switches to half open. Default value is
60 seconds.

60 Integer

camel.resilience4j
.writable-stack-
trace-enabled

Enables writable stack traces. When set to false,
Exception.getStackTrace returns a zero length array.
This may be used to reduce log spam when the circuit
breaker is open as the cause of the exceptions is
already known (the circuit breaker is short-circuiting
calls).

true Boolean

camel.rest.api-
component

The name of the Camel component to use as the
REST API (such as swagger) If no API Component
has been explicit configured, then Camel will lookup if
there is a Camel component responsible for servicing
and generating the REST API documentation, or if a
org.apache.camel.spi.RestApiProcessorFactory is
registered in the registry. If either one is found, then
that is being used.

 String

camel.rest.api-
context-path

Sets a leading API context-path the REST API
services will be using. This can be used when using
components such as camel-servlet where the
deployed web application is deployed using a
context-path.

 String

camel.rest.api-
context-route-id

Sets the route id to use for the route that services the
REST API. The route will by default use an auto
assigned route id.

 String

camel.rest.api-
host

To use an specific hostname for the API
documentation (eg swagger) This can be used to
override the generated host with this configured
hostname.

 String

camel.rest.api-
property

Allows to configure as many additional properties for
the api documentation (swagger). For example set
property api.title to my cool stuff.

 Map

camel.rest.api-
vendor-extension

Whether vendor extension is enabled in the Rest
APIs. If enabled then Camel will include additional
information as vendor extension (eg keys starting
with x-) such as route ids, class names etc. Not all 3rd
party API gateways and tools supports vendor-
extensions when importing your API docs.

false Boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1204

camel.rest.bindin
g-mode

Sets the binding mode to use. The default value is
off.

 RestBindingMode

camel.rest.client-
request-
validation

Whether to enable validation of the client request to
check whether the Content-Type and Accept
headers from the client is supported by the Rest-DSL
configuration of its consumes/produces settings.
This can be turned on, to enable this check. In case of
validation error, then HTTP Status codes 415 or 406
is returned. The default value is false.

false Boolean

camel.rest.compo
nent

The Camel Rest component to use for the REST
transport (consumer), such as netty-http, jetty,
servlet, undertow. If no component has been explicit
configured, then Camel will lookup if there is a Camel
component that integrates with the Rest DSL, or if a
org.apache.camel.spi.RestConsumerFactory is
registered in the registry. If either one is found, then
that is being used.

 String

camel.rest.compo
nent-property

Allows to configure as many additional properties for
the rest component in use.

 Map

camel.rest.consu
mer-property

Allows to configure as many additional properties for
the rest consumer in use.

 Map

camel.rest.contex
t-path

Sets a leading context-path the REST services will be
using. This can be used when using components such
as camel-servlet where the deployed web application
is deployed using a context-path. Or for components
such as camel-jetty or camel-netty-http that includes
a HTTP server.

 String

camel.rest.cors-
headers

Allows to configure custom CORS headers. Map

camel.rest.data-
format-property

Allows to configure as many additional properties for
the data formats in use. For example set property
prettyPrint to true to have json outputted in pretty
mode. The properties can be prefixed to denote the
option is only for either JSON or XML and for either
the IN or the OUT. The prefixes are: json.in. json.out.
xml.in. xml.out. For example a key with value
xml.out.mustBeJAXBElement is only for the XML
data format for the outgoing. A key without a prefix is
a common key for all situations.

 Map

Name Description Defaul
t

Type

CHAPTER 72. REF

1205

camel.rest.enable
-cors

Whether to enable CORS headers in the HTTP
response. The default value is false.

false Boolean

camel.rest.endpoi
nt-property

Allows to configure as many additional properties for
the rest endpoint in use.

 Map

camel.rest.host The hostname to use for exposing the REST service. String

camel.rest.host-
name-resolver

If no hostname has been explicit configured, then this
resolver is used to compute the hostname the REST
service will be using.

 RestHostNameRe
solver

camel.rest.json-
data-format

Name of specific json data format to use. By default
json-jackson will be used. Important: This option is
only for setting a custom name of the data format,
not to refer to an existing data format instance.

 String

camel.rest.port The port number to use for exposing the REST
service. Notice if you use servlet component then the
port number configured here does not apply, as the
port number in use is the actual port number the
servlet component is using. eg if using Apache
Tomcat its the tomcat http port, if using Apache Karaf
its the HTTP service in Karaf that uses port 8181 by
default etc. Though in those situations setting the
port number here, allows tooling and JMX to know
the port number, so its recommended to set the port
number to the number that the servlet engine uses.

 String

camel.rest.produc
er-api-doc

Sets the location of the api document (swagger api)
the REST producer will use to validate the REST uri
and query parameters are valid accordingly to the api
document. This requires adding camel-swagger-java
to the classpath, and any miss configuration will let
Camel fail on startup and report the error(s). The
location of the api document is loaded from
classpath by default, but you can use file: or http: to
refer to resources to load from file or http url.

 String

camel.rest.produc
er-component

Sets the name of the Camel component to use as the
REST producer.

 String

camel.rest.schem
e

The scheme to use for exposing the REST service.
Usually http or https is supported. The default value
is http.

 String

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1206

camel.rest.skip-
binding-on-error-
code

Whether to skip binding on output if there is a custom
HTTP error code header. This allows to build custom
error messages that do not bind to json / xml etc, as
success messages otherwise will do.

false Boolean

camel.rest.use-x-
forward-headers

Whether to use X-Forward headers for Host and
related setting. The default value is true.

true Boolean

camel.rest.xml-
data-format

Name of specific XML data format to use. By default
jaxb will be used. Important: This option is only for
setting a custom name of the data format, not to
refer to an existing data format instance.

 String

camel.rest.api-
context-id-
pattern

Deprecated Sets an CamelContext id pattern to only
allow Rest APIs from rest services within
CamelContext’s which name matches the pattern.
The pattern name refers to the CamelContext name,
to match on the current CamelContext only. For any
other value, the pattern uses the rules from
PatternHelper#matchPattern(String,String).

 String

camel.rest.api-
context-listing

Deprecated Sets whether listing of all available
CamelContext’s with REST services in the JVM is
enabled. If enabled it allows to discover these
contexts, if false then only the current CamelContext
is in use.

false Boolean

Name Description Defaul
t

Type

CHAPTER 72. REF

1207

CHAPTER 73. XQUERY
Camel supports XQuery to allow an Expression or Predicate to be used in the DSL.

For example, you could use XQuery to create a predicate in a Message Filter or as an expression for a
Recipient List.

73.1. XQUERY LANGUAGE OPTIONS

The XQuery language supports 4 options, which are listed below.

Name Default Java
Type

Description

type String Sets the class name of the result type (type from output) The
default result type is NodeSet.

headerName String Name of header to use as input, instead of the message body.

configurationRef String Reference to a saxon configuration instance in the registry to
use for xquery (requires camel-saxon). This may be needed to
add custom functions to a saxon configuration, so these custom
functions can be used in xquery expressions.

trim Boole
an

Whether to trim the value to remove leading and trailing
whitespaces and line breaks.

73.2. VARIABLES

The message body will be set as the contextItem. And the following variables are available as well:

Variable Type Description

exchange Exchan
ge

The current Exchange

in.body Object The message body

out.body Object deprecated The OUT message body (if any)

in.headers.* Object You can access the value of exchange.in.headers with key foo by using the
variable which name is in.headers.foo

out.headers.* Object deprecated You can access the value of exchange.out.headers with key foo
by using the variable which name is out.headers.foo variable

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1208

http://www.w3.org/TR/xquery/
https://camel.apache.org/manual/expression.html
https://camel.apache.org/manual/predicate.html
https://camel.apache.org/manual/dsl.html
https://camel.apache.org/components/3.14.x/eips/filter-eip.html
https://camel.apache.org/components/3.14.x/eips/recipientList-eip.html

key name Object Any exchange.properties and exchange.in.headers and any additional
parameters set using setParameters(Map). These parameters are added
with they own key name, for instance if there is an IN header with the key
name foo then its added as foo.

Variable Type Description

73.3. EXAMPLE

You can also use functions inside your query, in which case you need an explicit type conversion, or you
will get an org.w3c.dom.DOMException: HIERARCHY_REQUEST_ERR). You need to pass in the
expected output type of the function. For example the concat function returns a String which is done as
shown:

And in XML DSL:

73.3.1. Using namespaces

If you have a standard set of namespaces you wish to work with and wish to share them across many
XQuery expressions you can use the org.apache.camel.support.builder.Namespaces when using Java
DSL as shown:

Notice how the namespaces are provided to xquery with the ns variable that are passed in as the 2nd
parameter.

Each namespace is a key=value pair, where the prefix is the key. In the XQuery expression then the
namespace is used by its prefix, eg:

from("queue:foo")
 .filter().xquery("//foo")
 .to("queue:bar")

from("direct:start")
 .recipientList().xquery("concat('mock:foo.', /person/@city)", String.class);

<route>
 <from uri="direct:start"/>
 <recipientList>
 <xquery type="java.lang.String">concat('mock:foo.', /person/@city</xquery>
 </recipientList>
</route>

Namespaces ns = new Namespaces("c", "http://acme.com/cheese");

from("direct:start")
 .filter().xquery("/c:person[@name='James']", ns)
 .to("mock:result");

/c:person[@name='James']

CHAPTER 73. XQUERY

1209

The namespace builder supports adding multiple namespaces as shown:

When using namespaces in XML DSL then its different, as you setup the namespaces in the XML root
tag (or one of the camelContext, routes, route tags).

In the XML example below we use Spring XML where the namespace is declared in the root tag beans,
in the line with xmlns:foo="http://example.com/person":

This namespace uses foo as prefix, so the <xquery> expression uses /foo: to use this namespace.

73.4. USING XQUERY AS TRANSFORMATION

We can do a message translation using transform or setBody in the route, as shown below:

Notice that xquery will use DOMResult by default, so if we want to grab the value of the person node,
using text() we need to tell XQuery to use String as result type, as shown:

If you want to use Camel variables like headers, you have to explicitly declare them in the XQuery
expression.

Namespaces ns = new Namespaces("c", "http://acme.com/cheese")
 .add("w", "http://acme.com/wine")
 .add("b", "http://acme.com/beer");

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:foo="http://example.com/person"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
 http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/camel-
spring.xsd">

 <camelContext id="camel" xmlns="http://activemq.apache.org/camel/schema/spring">
 <route>
 <from uri="activemq:MyQueue"/>
 <filter>
 <xquery>/foo:person[@name='James']</xquery>
 <to uri="mqseries:SomeOtherQueue"/>
 </filter>
 </route>
 </camelContext>
</beans>

from("direct:start").
 transform().xquery("/people/person");

from("direct:start").
 transform().xquery("/people/person/text()", String.class);

<transform>
 <xquery>
 declare variable $in.headers.foo external;

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1210

73.5. LOADING SCRIPT FROM EXTERNAL RESOURCE

You can externalize the script and have Camel load it from a resource such as "classpath:", "file:", or
"http:". This is done using the following syntax: "resource:scheme:location", e.g. to refer to a file on
the classpath you can do:

73.6. LEARNING XQUERY

XQuery is a very powerful language for querying, searching, sorting and returning XML. For help
learning XQuery try these tutorials

Mike Kay’s XQuery Primer

The W3Schools XQuery Tutorial

73.7. DEPENDENCIES

To use XQuery in your camel routes you need to add the a dependency on camel-saxon which
implements the XQuery language.

If you use maven, add the following to your pom.xml, substituting the version number for the latest
version (see the download page for the latest version).

73.8. SPRING BOOT AUTO-CONFIGURATION

When using xquery with Spring Boot make sure to use the following Maven dependency to have support
for auto configuration:

The component supports 11 options, which are listed below.

 element item {$in.headers.foo}
 </xquery>
</transform>

.setHeader("myHeader").xquery("resource:classpath:myxquery.txt", String.class)

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-saxon</artifactId>
 <version>3.14.5.redhat-00018</version>
</dependency>

<dependency>
 <groupId>org.apache.camel.springboot</groupId>
 <artifactId>camel-saxon-starter</artifactId>
 <version>3.14.5.redhat-00032</version>
 <!-- Use your Camel Spring Boot version -->
</dependency>

CHAPTER 73. XQUERY

1211

http://www.stylusstudio.com/xquery_primer.html
http://www.w3schools.com/xquery/default.asp

Name Description Defaul
t

Type

camel.component
.xquery.autowired
-enabled

Whether autowiring is enabled. This is used for
automatic autowiring options (the option must be
marked as autowired) by looking up in the registry to
find if there is a single instance of matching type,
which then gets configured on the component. This
can be used for automatic configuring JDBC data
sources, JMS connection factories, AWS Clients, etc.

true Boolean

camel.component
.xquery.bridge-
error-handler

Allows for bridging the consumer to the Camel
routing Error Handler, which mean any exceptions
occurred while the consumer is trying to pickup
incoming messages, or the likes, will now be
processed as a message and handled by the routing
Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that will be logged at WARN or ERROR
level and ignored.

false Boolean

camel.component
.xquery.configura
tion

To use a custom Saxon configuration. The option is a
net.sf.saxon.Configuration type.

 Configuration

camel.component
.xquery.configura
tion-properties

To set custom Saxon configuration properties. Map

camel.component
.xquery.enabled

Whether to enable auto configuration of the xquery
component. This is enabled by default.

 Boolean

camel.component
.xquery.lazy-
start-producer

Whether the producer should be started lazy (on the
first message). By starting lazy you can use this to
allow CamelContext and routes to startup in
situations where a producer may otherwise fail during
starting and cause the route to fail being started. By
deferring this startup to be lazy then the startup
failure can be handled during routing messages via
Camel’s routing error handlers. Beware that when the
first message is processed then creating and starting
the producer may take a little time and prolong the
total processing time of the processing.

false Boolean

camel.component
.xquery.module-
u-r-i-resolver

To use the custom ModuleURIResolver. The option is
a net.sf.saxon.lib.ModuleURIResolver type.

 ModuleURIResolv
er

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1212

camel.language.x
query.configurati
on-ref

Reference to a saxon configuration instance in the
registry to use for xquery (requires camel-saxon).
This may be needed to add custom functions to a
saxon configuration, so these custom functions can
be used in xquery expressions.

 String

camel.language.x
query.enabled

Whether to enable auto configuration of the xquery
language. This is enabled by default.

 Boolean

camel.language.x
query.trim

Whether to trim the value to remove leading and
trailing whitespaces and line breaks.

true Boolean

camel.language.x
query.type

Sets the class name of the result type (type from
output) The default result type is NodeSet.

 String

Name Description Defaul
t

Type

CHAPTER 73. XQUERY

1213

CHAPTER 74. SIMPLE
The Simple Expression Language was a really simple language when it was created, but has since grown
more powerful. It is primarily intended for being a very small and simple language for evaluating
Expression or Predicate without requiring any new dependencies or knowledge of other scripting
languages such as Groovy.

The simple language is designed with intend to cover almost all the common use cases when little need
for scripting in your Camel routes.

However, for much more complex use cases then a more powerful language is recommended such as:

Groovy

MVEL

OGNL

NOTE

The simple language requires camel-bean JAR as classpath dependency if the simple
language uses OGNL expressions, such as calling a method named myMethod on the
message body: ${body.myMethod()}. At runtime the simple language will then us its
built-in OGNL support which requires the camel-bean component.

The simple language uses ${body} placeholders for complex expressions or functions.

NOTE

See also the CSimple language which is compiled.

NOTE

Alternative syntax
You can also use the alternative syntax which uses $simple{ } as placeholders. This can
be used in situations to avoid clashes when using for example Spring property
placeholder together with Camel.

74.1. SIMPLE LANGUAGE OPTIONS

The Simple language supports 2 options, which are listed below.

Name Default Java
Type

Description

resultType String Sets the class name of the result type (type from output).

trim Boole
an

Whether to trim the value to remove leading and trailing
whitespaces and line breaks.

74.2. VARIABLES

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1214

https://camel.apache.org/components/3.14.x/languages/groovy-language.html
https://camel.apache.org/components/3.14.x/languages/mvel-language.html
https://camel.apache.org/components/3.14.x/languages/ognl-language.html
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/camel_spring_boot_reference_3.14/index#csb-camel-csimple-language-starter

Variable Type Description

camelId String the CamelContext name

camelContext.OGNL Object the CamelContext invoked using a Camel OGNL expression.

exchange Exchan
ge

the Exchange

exchange.OGNL Object the Exchange invoked using a Camel OGNL expression.

exchangeId String the exchange id

id String the message id

messageTimestamp String the message timestamp (millis since epoc) that this message
originates from. Some systems like JMS, Kafka, AWS have a
timestamp on the event/message, that Camel received. This
method returns the timestamp, if a timestamp exists. The
message timestamp and exchange created are not the same. An
exchange always have a created timestamp which is the local
timestamp when Camel created the exchange. The message
timestamp is only available in some Camel components when
the consumer is able to extract the timestamp from the source
event. If the message has no timestamp then 0 is returned.

body Object the body

body.OGNL Object the body invoked using a Camel OGNL expression.

bodyAs(type) Type Converts the body to the given type determined by its
classname. The converted body can be null.

bodyAs(type).OGNL Object Converts the body to the given type determined by its
classname and then invoke methods using a Camel OGNL
expression. The converted body can be null.

bodyOneLine String Converts the body to a String and removes all line-breaks so the
string is in one line.

mandatoryBodyAs(type) Type Converts the body to the given type determined by its
classname, and expects the body to be not null.

mandatoryBodyAs(type).OG
NL

Object Converts the body to the given type determined by its
classname and then invoke methods using a Camel OGNL
expression.

header.foo Object refer to the foo header

CHAPTER 74. SIMPLE

1215

header[foo] Object refer to the foo header

headers.foo Object refer to the foo header

headers:foo Object refer to the foo header

headers[foo] Object refer to the foo header

header.foo[bar] Object regard foo header as a map and perform lookup on the map with
bar as key

header.foo.OGNL Object refer to the foo header and invoke its value using a Camel
OGNL expression.

headerAs(key,type) Type converts the header to the given type determined by its
classname

headers Map refer to the headers

exchangeProperty.foo Object refer to the foo property on the exchange

exchangeProperty[foo] Object refer to the foo property on the exchange

exchangeProperty.foo.OGNL Object refer to the foo property on the exchange and invoke its value
using a Camel OGNL expression.

sys.foo String refer to the JVM system property

sysenv.foo String refer to the system environment variable

env.foo String refer to the system environment variable

exception Object refer to the exception object on the exchange, is null if no
exception set on exchange. Will fallback and grab caught
exceptions (Exchange.EXCEPTION_CAUGHT) if the
Exchange has any.

exception.OGNL Object refer to the exchange exception invoked using a Camel OGNL
expression object

exception.message String refer to the exception.message on the exchange, is null if no
exception set on exchange. Will fallback and grab caught
exceptions (Exchange.EXCEPTION_CAUGHT) if the
Exchange has any.

Variable Type Description

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1216

exception.stacktrace String refer to the exception.stracktrace on the exchange, is null if no
exception set on exchange. Will fallback and grab caught
exceptions (Exchange.EXCEPTION_CAUGHT) if the
Exchange has any.

date:_command_ Date evaluates to a Date object. Supported commands are: now for
current timestamp, exchangeCreated for the timestamp when
the current exchange was created, header.xxx to use the
Long/Date object header with the key xxx.
exchangeProperty.xxx to use the Long/Date object in the
exchange property with the key xxx. file for the last modified
timestamp of the file (available with a File consumer). Command
accepts offsets such as: now-24h or header.xxx+1h or even
now+1h30m-100.

date:_command:pattern_ String Date formatting using java.text.SimpleDateFormat patterns.

date-with-
timezone:_command:timezone
:pattern_

String Date formatting using java.text.SimpleDateFormat
timezones and patterns.

bean:_bean expression_ Object Invoking a bean expression using the language. Specifying a
method name you must use dot as separator. We also support
the ?method=methodname syntax that is used by the
component. Camel will by default lookup a bean by the given
name. However if you need to refer to a bean class (such as
calling a static method) then you can prefix with type, such as
bean:type:fqnClassName.

properties:key:default String Lookup a property with the given key. If the key does not exists
or has no value, then an optional default value can be specified.

routeId String Returns the id of the current route the Exchange is being routed.

stepId String Returns the id of the current step the Exchange is being routed.

threadName String Returns the name of the current thread. Can be used for logging
purpose.

hostname String Returns the local hostname (may be empty if not possible to
resolve).

ref:xxx Object To lookup a bean from the Registry with the given id.

Variable Type Description

CHAPTER 74. SIMPLE

1217

type:name.field Object To refer to a type or field by its FQN name. To refer to a field
you can append .FIELD_NAME. For example, you can refer to
the constant field from Exchange as:
org.apache.camel.Exchange.FILE_NAME

null null represents a null

random(value) Integer returns a random Integer between 0 (included) and value
(excluded)

random(min,max) Integer returns a random Integer between min (included) and max
(excluded)

collate(group) List The collate function iterates the message body and groups the
data into sub lists of specified size. This can be used with the
Splitter EIP to split a message body and group/batch the
splitted sub message into a group of N sub lists. This method
works similar to the collate method in Groovy.

skip(number) Iterator The skip function iterates the message body and skips the first
number of items. This can be used with the Splitter EIP to split a
message body and skip the first N number of items.

messageHistory String The message history of the current exchange how it has been
routed. This is similar to the route stack-trace message history
the error handler logs in case of an unhandled exception.

messageHistory(false) String As messageHistory but without the exchange details (only
includes the route stack-trace). This can be used if you do not
want to log sensitive data from the message itself.

Variable Type Description

74.3. OGNL EXPRESSION SUPPORT

When using OGNL then camel-bean JAR is required to be on the classpath.

Camel’s OGNL support is for invoking methods only. You cannot access fields. Camel support accessing
the length field of Java arrays.

The Simple and Bean language now supports a Camel OGNL notation for invoking beans in a chain like
fashion. Suppose the Message IN body contains a POJO which has a getAddress() method.

Then you can use Camel OGNL notation to access the address object:

Camel understands the shorthand names for getters, but you can invoke any method or use the real

simple("${body.address}")
simple("${body.address.street}")
simple("${body.address.zip}")

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1218

https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/camel_spring_boot_reference_3.14/index#csb-camel-simple-language-starter

Camel understands the shorthand names for getters, but you can invoke any method or use the real
name such as:

You can also use the null safe operator (?.) to avoid NPE if for example the body does NOT have an
address

It is also possible to index in Map or List types, so you can do:

To assume the body is Map based and lookup the value with foo as key, and invoke the getName
method on that value.

If the key has space, then you must enclose the key with quotes, for example 'foo bar':

You can access the Map or List objects directly using their key name (with or without dots) :

Suppose there was no value with the key foo then you can use the null safe operator to avoid the NPE
as shown:

You can also access List types, for example to get lines from the address you can do:

There is a special last keyword which can be used to get the last value from a list.

And to get the 2nd last you can subtract a number, so we can use last-1 to indicate this:

And the 3rd last is of course:

simple("${body.address}")
simple("${body.getAddress.getStreet}")
simple("${body.address.getZip}")
simple("${body.doSomething}")

simple("${body?.address?.street}")

simple("${body[foo].name}")

simple("${body['foo bar'].name}")

simple("${body[foo]}")
simple("${body[this.is.foo]}")

simple("${body[foo]?.name}")

simple("${body.address.lines[0]}")
simple("${body.address.lines[1]}")
simple("${body.address.lines[2]}")

simple("${body.address.lines[last]}")

simple("${body.address.lines[last-1]}")

simple("${body.address.lines[last-2]}")

CHAPTER 74. SIMPLE

1219

And you can call the size method on the list with

Camel supports the length field for Java arrays as well, eg:

And yes you can combine this with the operator support as shown below:

74.4. OPERATOR SUPPORT

The parser is limited to only support a single operator.

To enable it the left value must be enclosed in $\\{ }. The syntax is:

Where the rightValue can be a String literal enclosed in ' ', null, a constant value or another expression
enclosed in $\{ }.

NOTE

There must be spaces around the operator.

Camel will automatically type convert the rightValue type to the leftValue type, so it is able to eg.
convert a string into a numeric, so you can use > comparison for numeric values.

The following operators are supported:

Operator Description

== equals

=~ equals ignore case (will ignore case when comparing String values)

> greater than

>= greater than or equals

< less than

⇐ less than or equals

simple("${body.address.lines.size}")

String[] lines = new String[]{"foo", "bar", "cat"};
exchange.getIn().setBody(lines);

simple("There are ${body.length} lines")

simple("${body.address.zip} > 1000")

${leftValue} OP rightValue

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1220

!= not equals

!=~ not equals ignore case (will ignore case when comparing String values)

contains For testing if contains in a string based value

!contains For testing if not contains in a string based value

~~ For testing if contains by ignoring case sensitivity in a string based value

!~~ For testing if not contains by ignoring case sensitivity in a string based value

regex For matching against a given regular expression pattern defined as a String
value

!regex For not matching against a given regular expression pattern defined as a
String value

in For matching if in a set of values, each element must be separated by
comma. If you want to include an empty value, then it must be defined using
double comma, eg ',,bronze,silver,gold', which is a set of four values with an
empty value and then the three medals.

!in For matching if not in a set of values, each element must be separated by
comma. If you want to include an empty value, then it must be defined using
double comma, eg ',,bronze,silver,gold', which is a set of four values with an
empty value and then the three medals.

is For matching if the left hand side type is an instance of the value.

!is For matching if the left hand side type is not an instance of the value.

range For matching if the left hand side is within a range of values defined as
numbers: from..to..

!range For matching if the left hand side is not within a range of values defined as
numbers: from..to. .

startsWith For testing if the left hand side string starts with the right hand string.

starts with Same as the startsWith operator.

endsWith For testing if the left hand side string ends with the right hand string.

ends with Same as the endsWith operator.

Operator Description

CHAPTER 74. SIMPLE

1221

And the following unary operators can be used:

Operator Description

++ To increment a number by one. The left hand side must be a function,
otherwise parsed as literal.

 —  To decrement a number by one. The left hand side must be a function,
otherwise parsed as literal.

\n To use newline character.

\t To use tab character.

\r To use carriage return character.

\} To use the } character as text. This may be needed when building a JSon
structure with the simple language.

And the following logical operators can be used to group expressions:

Operator Description

&& The logical and operator is used to group two expressions.

 The logical or operator is used to group two expressions.

The syntax for AND is:

And the syntax for OR is:

Some examples:

${leftValue} OP rightValue && ${leftValue} OP rightValue

${leftValue} OP rightValue || ${leftValue} OP rightValue

// exact equals match
simple("${header.foo} == 'foo'")

// ignore case when comparing, so if the header has value FOO this will match
simple("${header.foo} =~ 'foo'")

// here Camel will type convert '100' into the type of header.bar and if it is an Integer '100' will also be
converter to an Integer
simple("${header.bar} == '100'")

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1222

74.4.1. Comparing with different types

When you compare with different types such as String and int, then you have to take a bit care. Camel
will use the type from the left hand side as 1st priority. And fallback to the right hand side type if both
values couldn’t be compared based on that type.
This means you can flip the values to enforce a specific type. Suppose the bar value above is a String.
Then you can flip the equation:

which then ensures the int type is used as 1st priority.

This may change in the future if the Camel team improves the binary comparison operations to prefer
numeric types to String based. It’s most often the String type which causes problem when comparing
with numbers.

And a bit more advanced example where the right value is another expression

And an example with contains, testing if the title contains the word Camel

And an example with regex, testing if the number header is a 4 digit value:

And finally an example if the header equals any of the values in the list. Each element must be separated
by comma, and no space around.
This also works for numbers etc, as Camel will convert each element into the type of the left hand side.

And for all the last 3 we also support the negate test using not:

And you can test if the type is a certain instance, eg for instance a String

simple("${header.bar} == 100")

// 100 will be converter to the type of header.bar so we can do > comparison
simple("${header.bar} > 100")

simple("100 < ${header.bar}")

// testing for null
simple("${header.baz} == null")

// testing for not null
simple("${header.baz} != null")

simple("${header.date} == ${date:now:yyyyMMdd}")

simple("${header.type} == ${bean:orderService?method=getOrderType}")

simple("${header.title} contains 'Camel'")

simple("${header.number} regex '\\d{4}'")

simple("${header.type} in 'gold,silver'")

simple("${header.type} !in 'gold,silver'")

CHAPTER 74. SIMPLE

1223

We have added a shorthand for all java.lang types so you can write it as:

Ranges are also supported. The range interval requires numbers and both from and end are inclusive.
For instance to test whether a value is between 100 and 199:

Notice we use .. in the range without spaces. It is based on the same syntax as Groovy.

As the XML DSL does not have all the power as the Java DSL with all its various builder methods, you
have to resort to use some other languages for testing with simple operators. Now you can do this with
the simple language. In the sample below we want to test if the header is a widget order:

74.4.2. Using and / or

If you have two expressions you can combine them with the && or || operator.

For instance:

And of course the || is also supported. The sample would be:

74.5. EXAMPLES

In the XML DSL sample below we filter based on a header value:

The Simple language can be used for the predicate test above in the Message Filter pattern, where we
test if the in message has a foo header (a header with the key foo exists). If the expression evaluates to
true then the message is routed to the mock:fooOrders endpoint, otherwise the message is dropped.

simple("${header.type} is 'java.lang.String'")

simple("${header.type} is 'String'")

simple("${header.number} range 100..199")

simple("${header.number} range '100..199'")

<from uri="seda:orders">
 <filter>
 <simple>${header.type} == 'widget'</simple>
 <to uri="bean:orderService?method=handleWidget"/>
 </filter>
</from>

simple("${header.title} contains 'Camel' && ${header.type'} == 'gold'")

simple("${header.title} contains 'Camel' || ${header.type'} == 'gold'")

<from uri="seda:orders">
 <filter>
 <simple>${header.foo}</simple>
 <to uri="mock:fooOrders"/>
 </filter>
</from>

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1224

The same example in Java DSL:

You can also use the simple language for simple text concatenations such as:

Notice that we must use $\\{ } placeholders in the expression now to allow Camel to parse it correctly.

And this sample uses the date command to output current date.

And in the sample below we invoke the bean language to invoke a method on a bean to be included in
the returned string:

Where orderIdGenerator is the id of the bean registered in the Registry. If using Spring then it is the
Spring bean id.

If we want to declare which method to invoke on the order id generator bean we must prepend .method
name such as below where we invoke the generateId method.

We can use the ?method=methodname option that we are familiar with the Bean component itself:

You can also convert the body to a given type, for example to ensure that it is a String you can do:

There are a few types which have a shorthand notation, so we can use String instead of
java.lang.String. These are: byte[], String, Integer, Long. All other types must use their FQN name,
e.g. org.w3c.dom.Document.

from("seda:orders")
 .filter().simple("${header.foo}")
 .to("seda:fooOrders");

from("direct:hello")
 .transform().simple("Hello ${header.user} how are you?")
 .to("mock:reply");

from("direct:hello")
 .transform().simple("The today is ${date:now:yyyyMMdd} and it is a great day.")
 .to("mock:reply");

from("direct:order")
 .transform().simple("OrderId: ${bean:orderIdGenerator}")
 .to("mock:reply");

from("direct:order")
 .transform().simple("OrderId: ${bean:orderIdGenerator.generateId}")
 .to("mock:reply");

from("direct:order")
 .transform().simple("OrderId: ${bean:orderIdGenerator?method=generateId}")
 .to("mock:reply");

<transform>
 <simple>Hello ${bodyAs(String)} how are you?</simple>
</transform>

CHAPTER 74. SIMPLE

1225

It is also possible to lookup a value from a header Map:

In the code above we lookup the header with name type and regard it as a java.util.Map and we then
lookup with the key gold and return the value. If the header is not convertible to Map an exception is
thrown. If the header with name type does not exist null is returned.

You can nest functions, such as shown below:

74.6. SETTING RESULT TYPE

You can now provide a result type to the Simple expression, which means the result of the evaluation
will be converted to the desired type. This is most usable to define types such as booleans, integers, etc.

For example to set a header as a boolean type you can do:

And in XML DSL

74.7. USING NEW LINES OR TABS IN XML DSLS

It is easier to specify new lines or tabs in XML DSLs as you can escape the value now

74.8. LEADING AND TRAILING WHITESPACE HANDLING

The trim attribute of the expression can be used to control whether the leading and trailing whitespace
characters are removed or preserved. The default value is true, which removes the whitespace
characters.

<transform>
 <simple>The gold value is ${header.type[gold]}</simple>
</transform>

<setHeader name="myHeader">
 <simple>${properties:${header.someKey}}</simple>
</setHeader>

.setHeader("cool", simple("true", Boolean.class))

<setHeader name="cool">
 <!-- use resultType to indicate that the type should be a java.lang.Boolean -->
 <simple resultType="java.lang.Boolean">true</simple>
</setHeader>

<transform>
 <simple>The following text\nis on a new line</simple>
</transform>

<setBody>
 <simple trim="false">You get some trailing whitespace characters. </simple>
</setBody>

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1226

https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/camel_spring_boot_reference_3.14/index#csb-camel-simple-language-starter

74.9. LOADING SCRIPT FROM EXTERNAL RESOURCE

You can externalize the script and have Camel load it from a resource such as "classpath:", "file:", or
"http:". This is done using the following syntax: "resource:scheme:location", e.g. to refer to a file on
the classpath you can do:

74.10. SPRING BOOT AUTO-CONFIGURATION

When using simple with Spring Boot make sure to use the following Maven dependency to have support
for auto configuration:

The component supports 147 options, which are listed below.

Name Description Defaul
t

Type

camel.cloud.cons
ul.service-
discovery.acl-
token

Sets the ACL token to be used with Consul. String

camel.cloud.cons
ul.service-
discovery.block-
seconds

The seconds to wait for a watch event, default 10
seconds.

10 Integer

camel.cloud.cons
ul.service-
discovery.configu
rations

Define additional configuration definitions. Map

camel.cloud.cons
ul.service-
discovery.connect
-timeout-millis

Connect timeout for OkHttpClient. Long

camel.cloud.cons
ul.service-
discovery.datacen
ter

The data center. String

.setHeader("myHeader").simple("resource:classpath:mysimple.txt")

<dependency>
 <groupId>org.apache.camel.springboot</groupId>
 <artifactId>camel-core-starter</artifactId>
 <version>3.14.5.redhat-00032</version>
 <!-- Use your Camel Spring Boot version -->
</dependency>

CHAPTER 74. SIMPLE

1227

camel.cloud.cons
ul.service-
discovery.enabled

Enable the component. true Boolean

camel.cloud.cons
ul.service-
discovery.passwo
rd

Sets the password to be used for basic
authentication.

 String

camel.cloud.cons
ul.service-
discovery.propert
ies

Set client properties to use. These properties are
specific to what service call implementation are in
use. For example if using ribbon, then the client
properties are define in
com.netflix.client.config.CommonClientConfigKey.

 Map

camel.cloud.cons
ul.service-
discovery.read-
timeout-millis

Read timeout for OkHttpClient. Long

camel.cloud.cons
ul.service-
discovery.url

The Consul agent URL. String

camel.cloud.cons
ul.service-
discovery.user-
name

Sets the username to be used for basic
authentication.

 String

camel.cloud.cons
ul.service-
discovery.write-
timeout-millis

Write timeout for OkHttpClient. Long

camel.cloud.dns.s
ervice-
discovery.configu
rations

Define additional configuration definitions. Map

camel.cloud.dns.s
ervice-
discovery.domain

The domain name;. String

camel.cloud.dns.s
ervice-
discovery.enabled

Enable the component. true Boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1228

camel.cloud.dns.s
ervice-
discovery.propert
ies

Set client properties to use. These properties are
specific to what service call implementation are in
use. For example if using ribbon, then the client
properties are define in
com.netflix.client.config.CommonClientConfigKey.

 Map

camel.cloud.dns.s
ervice-
discovery.proto

The transport protocol of the desired service. _tcp String

camel.cloud.etcd.
service-
discovery.configu
rations

Define additional configuration definitions. Map

camel.cloud.etcd.
service-
discovery.enabled

Enable the component. true Boolean

camel.cloud.etcd.
service-
discovery.passwo
rd

The password to use for basic authentication. String

camel.cloud.etcd.
service-
discovery.propert
ies

Set client properties to use. These properties are
specific to what service call implementation are in
use. For example if using ribbon, then the client
properties are define in
com.netflix.client.config.CommonClientConfigKey.

 Map

camel.cloud.etcd.
service-
discovery.service-
path

The path to look for for service discovery. /servic
es/

String

camel.cloud.etcd.
service-
discovery.timeout

To set the maximum time an action could take to
complete.

 Long

camel.cloud.etcd.
service-
discovery.type

To set the discovery type, valid values are on-
demand and watch.

on-
deman
d

String

camel.cloud.etcd.
service-
discovery.uris

The URIs the client can connect to. String

Name Description Defaul
t

Type

CHAPTER 74. SIMPLE

1229

camel.cloud.etcd.
service-
discovery.user-
name

The user name to use for basic authentication. String

camel.cloud.kuber
netes.service-
discovery.api-
version

Sets the API version when using client lookup. String

camel.cloud.kuber
netes.service-
discovery.ca-
cert-data

Sets the Certificate Authority data when using client
lookup.

 String

camel.cloud.kuber
netes.service-
discovery.ca-
cert-file

Sets the Certificate Authority data that are loaded
from the file when using client lookup.

 String

camel.cloud.kuber
netes.service-
discovery.client-
cert-data

Sets the Client Certificate data when using client
lookup.

 String

camel.cloud.kuber
netes.service-
discovery.client-
cert-file

Sets the Client Certificate data that are loaded from
the file when using client lookup.

 String

camel.cloud.kuber
netes.service-
discovery.client-
key-algo

Sets the Client Keystore algorithm, such as RSA when
using client lookup.

 String

camel.cloud.kuber
netes.service-
discovery.client-
key-data

Sets the Client Keystore data when using client
lookup.

 String

camel.cloud.kuber
netes.service-
discovery.client-
key-file

Sets the Client Keystore data that are loaded from
the file when using client lookup.

 String

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1230

camel.cloud.kuber
netes.service-
discovery.client-
key-passphrase

Sets the Client Keystore passphrase when using
client lookup.

 String

camel.cloud.kuber
netes.service-
discovery.configu
rations

Define additional configuration definitions. Map

camel.cloud.kuber
netes.service-
discovery.dns-
domain

Sets the DNS domain to use for DNS lookup. String

camel.cloud.kuber
netes.service-
discovery.enabled

Enable the component. true Boolean

camel.cloud.kuber
netes.service-
discovery.lookup

How to perform service lookup. Possible values:
client, dns, environment. When using client, then the
client queries the kubernetes master to obtain a list
of active pods that provides the service, and then
random (or round robin) select a pod. When using dns
the service name is resolved as
name.namespace.svc.dnsDomain. When using dnssrv
the service name is resolved with SRV query for .…
svc… When using environment then environment
variables are used to lookup the service. By default
environment is used.

environ
ment

String

camel.cloud.kuber
netes.service-
discovery.master-
url

Sets the URL to the master when using client lookup. String

camel.cloud.kuber
netes.service-
discovery.namesp
ace

Sets the namespace to use. Will by default use
namespace from the ENV variable
KUBERNETES_MASTER.

 String

camel.cloud.kuber
netes.service-
discovery.oauth-
token

Sets the OAUTH token for authentication (instead of
username/password) when using client lookup.

 String

Name Description Defaul
t

Type

CHAPTER 74. SIMPLE

1231

camel.cloud.kuber
netes.service-
discovery.passwo
rd

Sets the password for authentication when using
client lookup.

 String

camel.cloud.kuber
netes.service-
discovery.port-
name

Sets the Port Name to use for DNS/DNSSRV lookup. String

camel.cloud.kuber
netes.service-
discovery.port-
protocol

Sets the Port Protocol to use for DNS/DNSSRV
lookup.

 String

camel.cloud.kuber
netes.service-
discovery.propert
ies

Set client properties to use. These properties are
specific to what service call implementation are in
use. For example if using ribbon, then the client
properties are define in
com.netflix.client.config.CommonClientConfigKey.

 Map

camel.cloud.kuber
netes.service-
discovery.trust-
certs

Sets whether to turn on trust certificate check when
using client lookup.

false Boolean

camel.cloud.kuber
netes.service-
discovery.userna
me

Sets the username for authentication when using
client lookup.

 String

camel.cloud.ribbo
n.load-
balancer.client-
name

Sets the Ribbon client name. String

camel.cloud.ribbo
n.load-
balancer.configur
ations

Define additional configuration definitions. Map

camel.cloud.ribbo
n.load-
balancer.enabled

Enable the component. true Boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1232

camel.cloud.ribbo
n.load-
balancer.namespa
ce

The namespace. String

camel.cloud.ribbo
n.load-
balancer.passwor
d

The password. String

camel.cloud.ribbo
n.load-
balancer.properti
es

Set client properties to use. These properties are
specific to what service call implementation are in
use. For example if using ribbon, then the client
properties are define in
com.netflix.client.config.CommonClientConfigKey.

 Map

camel.cloud.ribbo
n.load-
balancer.usernam
e

The username. String

camel.hystrix.allo
w-maximum-size-
to-diverge-from-
core-size

Allows the configuration for maximumSize to take
effect. That value can then be equal to, or higher,
than coreSize.

false Boolean

camel.hystrix.circ
uit-breaker-
enabled

Whether to use a HystrixCircuitBreaker or not. If
false no circuit-breaker logic will be used and all
requests permitted. This is similar in effect to
circuitBreakerForceClosed() except that continues
tracking metrics and knowing whether it should be
open/closed, this property results in not even
instantiating a circuit-breaker.

true Boolean

camel.hystrix.circ
uit-breaker-
error-threshold-
percentage

Error percentage threshold (as whole number such as
50) at which point the circuit breaker will trip open
and reject requests. It will stay tripped for the
duration defined in
circuitBreakerSleepWindowInMilliseconds; The error
percentage this is compared against comes from
HystrixCommandMetrics.getHealthCounts().

50 Integer

Name Description Defaul
t

Type

CHAPTER 74. SIMPLE

1233

camel.hystrix.circ
uit-breaker-
force-closed

If true the HystrixCircuitBreaker#allowRequest() will
always return true to allow requests regardless of the
error percentage from
HystrixCommandMetrics.getHealthCounts(). The
circuitBreakerForceOpen() property takes
precedence so if it set to true this property does
nothing.

false Boolean

camel.hystrix.circ
uit-breaker-
force-open

If true the HystrixCircuitBreaker.allowRequest() will
always return false, causing the circuit to be open
(tripped) and reject all requests. This property takes
precedence over circuitBreakerForceClosed();.

false Boolean

camel.hystrix.circ
uit-breaker-
request-volume-
threshold

Minimum number of requests in the
metricsRollingStatisticalWindowInMilliseconds() that
must exist before the HystrixCircuitBreaker will trip. If
below this number the circuit will not trip regardless
of error percentage.

20 Integer

camel.hystrix.circ
uit-breaker-
sleep-window-in-
milliseconds

The time in milliseconds after a HystrixCircuitBreaker
trips open that it should wait before trying requests
again.

5000 Integer

camel.hystrix.con
figurations

Define additional configuration definitions. Map

camel.hystrix.core
-pool-size

Core thread-pool size that gets passed to
java.util.concurrent.ThreadPoolExecutor#setCorePo
olSize(int).

10 Integer

camel.hystrix.ena
bled

Enable the component. true Boolean

camel.hystrix.exe
cution-isolation-
semaphore-max-
concurrent-
requests

Number of concurrent requests permitted to
HystrixCommand.run(). Requests beyond the
concurrent limit will be rejected. Applicable only when
executionIsolationStrategy == SEMAPHORE.

20 Integer

camel.hystrix.exe
cution-isolation-
strategy

What isolation strategy HystrixCommand.run() will be
executed with. If THREAD then it will be executed on
a separate thread and concurrent requests limited by
the number of threads in the thread-pool. If
SEMAPHORE then it will be executed on the calling
thread and concurrent requests limited by the
semaphore count.

THREA
D

String

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1234

camel.hystrix.exe
cution-isolation-
thread-interrupt-
on-timeout

Whether the execution thread should attempt an
interrupt (using Future#cancel) when a thread times
out. Applicable only when
executionIsolationStrategy() == THREAD.

true Boolean

camel.hystrix.exe
cution-timeout-
enabled

Whether the timeout mechanism is enabled for this
command.

true Boolean

camel.hystrix.exe
cution-timeout-
in-milliseconds

Time in milliseconds at which point the command will
timeout and halt execution. If
executionIsolationThreadInterruptOnTimeout == true
and the command is thread-isolated, the executing
thread will be interrupted. If the command is
semaphore-isolated and a
HystrixObservableCommand, that command will get
unsubscribed.

1000 Integer

camel.hystrix.fallb
ack-enabled

Whether HystrixCommand.getFallback() should be
attempted when failure occurs.

true Boolean

camel.hystrix.fallb
ack-isolation-
semaphore-max-
concurrent-
requests

Number of concurrent requests permitted to
HystrixCommand.getFallback(). Requests beyond
the concurrent limit will fail-fast and not attempt
retrieving a fallback.

10 Integer

camel.hystrix.gro
up-key

Sets the group key to use. The default value is
CamelHystrix.

Camel
Hystrix

String

camel.hystrix.kee
p-alive-time

Keep-alive time in minutes that gets passed to
ThreadPoolExecutor#setKeepAliveTime(long,TimeU
nit).

1 Integer

camel.hystrix.max
-queue-size

Max queue size that gets passed to BlockingQueue in
HystrixConcurrencyStrategy.getBlockingQueue(int)
This should only affect the instantiation of a
threadpool - it is not eliglible to change a queue size
on the fly. For that, use
queueSizeRejectionThreshold().

-1 Integer

camel.hystrix.max
imum-size

Maximum thread-pool size that gets passed to
ThreadPoolExecutor#setMaximumPoolSize(int) .
This is the maximum amount of concurrency that can
be supported without starting to reject
HystrixCommands. Please note that this setting only
takes effect if you also set
allowMaximumSizeToDivergeFromCoreSize.

10 Integer

Name Description Defaul
t

Type

CHAPTER 74. SIMPLE

1235

camel.hystrix.met
rics-health-
snapshot-
interval-in-
milliseconds

Time in milliseconds to wait between allowing health
snapshots to be taken that calculate success and
error percentages and affect
HystrixCircuitBreaker.isOpen() status. On high-
volume circuits the continual calculation of error
percentage can become CPU intensive thus this
controls how often it is calculated.

500 Integer

camel.hystrix.met
rics-rolling-
percentile-
bucket-size

Maximum number of values stored in each bucket of
the rolling percentile. This is passed into
HystrixRollingPercentile inside
HystrixCommandMetrics.

10 Integer

camel.hystrix.met
rics-rolling-
percentile-
enabled

Whether percentile metrics should be captured using
HystrixRollingPercentile inside
HystrixCommandMetrics.

true Boolean

camel.hystrix.met
rics-rolling-
percentile-
window-buckets

Number of buckets the rolling percentile window is
broken into. This is passed into
HystrixRollingPercentile inside
HystrixCommandMetrics.

6 Integer

camel.hystrix.met
rics-rolling-
percentile-
window-in-
milliseconds

Duration of percentile rolling window in milliseconds.
This is passed into HystrixRollingPercentile inside
HystrixCommandMetrics.

10000 Integer

camel.hystrix.met
rics-rolling-
statistical-
window-buckets

Number of buckets the rolling statistical window is
broken into. This is passed into HystrixRollingNumber
inside HystrixCommandMetrics.

10 Integer

camel.hystrix.met
rics-rolling-
statistical-
window-in-
milliseconds

This property sets the duration of the statistical
rolling window, in milliseconds. This is how long
metrics are kept for the thread pool. The window is
divided into buckets and rolls by those increments.

10000 Integer

camel.hystrix.que
ue-size-rejection-
threshold

Queue size rejection threshold is an artificial max size
at which rejections will occur even if maxQueueSize
has not been reached. This is done because the
maxQueueSize of a BlockingQueue can not be
dynamically changed and we want to support
dynamically changing the queue size that affects
rejections. This is used by HystrixCommand when
queuing a thread for execution.

5 Integer

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1236

camel.hystrix.req
uest-log-enabled

Whether HystrixCommand execution and events
should be logged to HystrixRequestLog.

true Boolean

camel.hystrix.thre
ad-pool-key

Sets the thread pool key to use. Will by default use
the same value as groupKey has been configured to
use.

Camel
Hystrix

String

camel.hystrix.thre
ad-pool-rolling-
number-
statistical-
window-buckets

Number of buckets the rolling statistical window is
broken into. This is passed into HystrixRollingNumber
inside each HystrixThreadPoolMetrics instance.

10 Integer

camel.hystrix.thre
ad-pool-rolling-
number-
statistical-
window-in-
milliseconds

Duration of statistical rolling window in milliseconds.
This is passed into HystrixRollingNumber inside each
HystrixThreadPoolMetrics instance.

10000 Integer

camel.language.c
onstant.enabled

Whether to enable auto configuration of the constant
language. This is enabled by default.

 Boolean

camel.language.c
onstant.trim

Whether to trim the value to remove leading and
trailing whitespaces and line breaks.

true Boolean

camel.language.c
simple.enabled

Whether to enable auto configuration of the csimple
language. This is enabled by default.

 Boolean

camel.language.c
simple.trim

Whether to trim the value to remove leading and
trailing whitespaces and line breaks.

true Boolean

camel.language.e
xchangeproperty.
enabled

Whether to enable auto configuration of the
exchangeProperty language. This is enabled by
default.

 Boolean

camel.language.e
xchangeproperty.
trim

Whether to trim the value to remove leading and
trailing whitespaces and line breaks.

true Boolean

camel.language.fil
e.enabled

Whether to enable auto configuration of the file
language. This is enabled by default.

 Boolean

camel.language.fil
e.trim

Whether to trim the value to remove leading and
trailing whitespaces and line breaks.

true Boolean

Name Description Defaul
t

Type

CHAPTER 74. SIMPLE

1237

camel.language.h
eader.enabled

Whether to enable auto configuration of the header
language. This is enabled by default.

 Boolean

camel.language.h
eader.trim

Whether to trim the value to remove leading and
trailing whitespaces and line breaks.

true Boolean

camel.language.re
f.enabled

Whether to enable auto configuration of the ref
language. This is enabled by default.

 Boolean

camel.language.re
f.trim

Whether to trim the value to remove leading and
trailing whitespaces and line breaks.

true Boolean

camel.language.si
mple.enabled

Whether to enable auto configuration of the simple
language. This is enabled by default.

 Boolean

camel.language.si
mple.trim

Whether to trim the value to remove leading and
trailing whitespaces and line breaks.

true Boolean

camel.language.t
okenize.enabled

Whether to enable auto configuration of the tokenize
language. This is enabled by default.

 Boolean

camel.language.t
okenize.group-
delimiter

Sets the delimiter to use when grouping. If this has
not been set then token will be used as the delimiter.

 String

camel.language.t
okenize.trim

Whether to trim the value to remove leading and
trailing whitespaces and line breaks.

true Boolean

camel.resilience4j
.automatic-
transition-from-
open-to-half-
open-enabled

Enables automatic transition from OPEN to
HALF_OPEN state once the
waitDurationInOpenState has passed.

false Boolean

camel.resilience4j
.circuit-breaker-
ref

Refers to an existing
io.github.resilience4j.circuitbreaker.CircuitBreaker
instance to lookup and use from the registry. When
using this, then any other circuit breaker options are
not in use.

 String

camel.resilience4j
.config-ref

Refers to an existing
io.github.resilience4j.circuitbreaker.CircuitBreakerCo
nfig instance to lookup and use from the registry.

 String

camel.resilience4j
.configurations

Define additional configuration definitions. Map

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1238

camel.resilience4j
.enabled

Enable the component. true Boolean

camel.resilience4j
.failure-rate-
threshold

Configures the failure rate threshold in percentage. If
the failure rate is equal or greater than the threshold
the CircuitBreaker transitions to open and starts
short-circuiting calls. The threshold must be greater
than 0 and not greater than 100. Default value is 50
percentage.

 Float

camel.resilience4j
.minimum-
number-of-calls

Configures the minimum number of calls which are
required (per sliding window period) before the
CircuitBreaker can calculate the error rate. For
example, if minimumNumberOfCalls is 10, then at
least 10 calls must be recorded, before the failure rate
can be calculated. If only 9 calls have been recorded
the CircuitBreaker will not transition to open even if
all 9 calls have failed. Default
minimumNumberOfCalls is 100.

100 Integer

camel.resilience4j
.permitted-
number-of-calls-
in-half-open-
state

Configures the number of permitted calls when the
CircuitBreaker is half open. The size must be greater
than 0. Default size is 10.

10 Integer

camel.resilience4j
.sliding-window-
size

Configures the size of the sliding window which is
used to record the outcome of calls when the
CircuitBreaker is closed. slidingWindowSize
configures the size of the sliding window. Sliding
window can either be count-based or time-based. If
slidingWindowType is COUNT_BASED, the last
slidingWindowSize calls are recorded and
aggregated. If slidingWindowType is TIME_BASED,
the calls of the last slidingWindowSize seconds are
recorded and aggregated. The slidingWindowSize
must be greater than 0. The minimumNumberOfCalls
must be greater than 0. If the slidingWindowType is
COUNT_BASED, the minimumNumberOfCalls
cannot be greater than slidingWindowSize . If the
slidingWindowType is TIME_BASED, you can pick
whatever you want. Default slidingWindowSize is 100.

100 Integer

Name Description Defaul
t

Type

CHAPTER 74. SIMPLE

1239

camel.resilience4j
.sliding-window-
type

Configures the type of the sliding window which is
used to record the outcome of calls when the
CircuitBreaker is closed. Sliding window can either be
count-based or time-based. If slidingWindowType is
COUNT_BASED, the last slidingWindowSize calls are
recorded and aggregated. If slidingWindowType is
TIME_BASED, the calls of the last slidingWindowSize
seconds are recorded and aggregated. Default
slidingWindowType is COUNT_BASED.

COUN
T_BAS
ED

String

camel.resilience4j
.slow-call-
duration-
threshold

Configures the duration threshold (seconds) above
which calls are considered as slow and increase the
slow calls percentage. Default value is 60 seconds.

60 Integer

camel.resilience4j
.slow-call-rate-
threshold

Configures a threshold in percentage. The
CircuitBreaker considers a call as slow when the call
duration is greater than slowCallDurationThreshold
Duration. When the percentage of slow calls is equal
or greater the threshold, the CircuitBreaker
transitions to open and starts short-circuiting calls.
The threshold must be greater than 0 and not greater
than 100. Default value is 100 percentage which
means that all recorded calls must be slower than
slowCallDurationThreshold.

 Float

camel.resilience4j
.wait-duration-in-
open-state

Configures the wait duration (in seconds) which
specifies how long the CircuitBreaker should stay
open, before it switches to half open. Default value is
60 seconds.

60 Integer

camel.resilience4j
.writable-stack-
trace-enabled

Enables writable stack traces. When set to false,
Exception.getStackTrace returns a zero length array.
This may be used to reduce log spam when the circuit
breaker is open as the cause of the exceptions is
already known (the circuit breaker is short-circuiting
calls).

true Boolean

camel.rest.api-
component

The name of the Camel component to use as the
REST API (such as swagger) If no API Component
has been explicit configured, then Camel will lookup if
there is a Camel component responsible for servicing
and generating the REST API documentation, or if a
org.apache.camel.spi.RestApiProcessorFactory is
registered in the registry. If either one is found, then
that is being used.

 String

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1240

camel.rest.api-
context-path

Sets a leading API context-path the REST API
services will be using. This can be used when using
components such as camel-servlet where the
deployed web application is deployed using a
context-path.

 String

camel.rest.api-
context-route-id

Sets the route id to use for the route that services the
REST API. The route will by default use an auto
assigned route id.

 String

camel.rest.api-
host

To use an specific hostname for the API
documentation (eg swagger) This can be used to
override the generated host with this configured
hostname.

 String

camel.rest.api-
property

Allows to configure as many additional properties for
the api documentation (swagger). For example set
property api.title to my cool stuff.

 Map

camel.rest.api-
vendor-extension

Whether vendor extension is enabled in the Rest
APIs. If enabled then Camel will include additional
information as vendor extension (eg keys starting
with x-) such as route ids, class names etc. Not all 3rd
party API gateways and tools supports vendor-
extensions when importing your API docs.

false Boolean

camel.rest.bindin
g-mode

Sets the binding mode to use. The default value is
off.

 RestBindingMode

camel.rest.client-
request-
validation

Whether to enable validation of the client request to
check whether the Content-Type and Accept
headers from the client is supported by the Rest-DSL
configuration of its consumes/produces settings.
This can be turned on, to enable this check. In case of
validation error, then HTTP Status codes 415 or 406
is returned. The default value is false.

false Boolean

camel.rest.compo
nent

The Camel Rest component to use for the REST
transport (consumer), such as netty-http, jetty,
servlet, undertow. If no component has been explicit
configured, then Camel will lookup if there is a Camel
component that integrates with the Rest DSL, or if a
org.apache.camel.spi.RestConsumerFactory is
registered in the registry. If either one is found, then
that is being used.

 String

Name Description Defaul
t

Type

CHAPTER 74. SIMPLE

1241

camel.rest.compo
nent-property

Allows to configure as many additional properties for
the rest component in use.

 Map

camel.rest.consu
mer-property

Allows to configure as many additional properties for
the rest consumer in use.

 Map

camel.rest.contex
t-path

Sets a leading context-path the REST services will be
using. This can be used when using components such
as camel-servlet where the deployed web application
is deployed using a context-path. Or for components
such as camel-jetty or camel-netty-http that includes
a HTTP server.

 String

camel.rest.cors-
headers

Allows to configure custom CORS headers. Map

camel.rest.data-
format-property

Allows to configure as many additional properties for
the data formats in use. For example set property
prettyPrint to true to have json outputted in pretty
mode. The properties can be prefixed to denote the
option is only for either JSON or XML and for either
the IN or the OUT. The prefixes are: json.in. json.out.
xml.in. xml.out. For example a key with value
xml.out.mustBeJAXBElement is only for the XML
data format for the outgoing. A key without a prefix is
a common key for all situations.

 Map

camel.rest.enable
-cors

Whether to enable CORS headers in the HTTP
response. The default value is false.

false Boolean

camel.rest.endpoi
nt-property

Allows to configure as many additional properties for
the rest endpoint in use.

 Map

camel.rest.host The hostname to use for exposing the REST service. String

camel.rest.host-
name-resolver

If no hostname has been explicit configured, then this
resolver is used to compute the hostname the REST
service will be using.

 RestHostNameRe
solver

camel.rest.json-
data-format

Name of specific json data format to use. By default
json-jackson will be used. Important: This option is
only for setting a custom name of the data format,
not to refer to an existing data format instance.

 String

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1242

camel.rest.port The port number to use for exposing the REST
service. Notice if you use servlet component then the
port number configured here does not apply, as the
port number in use is the actual port number the
servlet component is using. eg if using Apache
Tomcat its the tomcat http port, if using Apache Karaf
its the HTTP service in Karaf that uses port 8181 by
default etc. Though in those situations setting the
port number here, allows tooling and JMX to know
the port number, so its recommended to set the port
number to the number that the servlet engine uses.

 String

camel.rest.produc
er-api-doc

Sets the location of the api document (swagger api)
the REST producer will use to validate the REST uri
and query parameters are valid accordingly to the api
document. This requires adding camel-swagger-java
to the classpath, and any miss configuration will let
Camel fail on startup and report the error(s). The
location of the api document is loaded from
classpath by default, but you can use file: or http: to
refer to resources to load from file or http url.

 String

camel.rest.produc
er-component

Sets the name of the Camel component to use as the
REST producer.

 String

camel.rest.schem
e

The scheme to use for exposing the REST service.
Usually http or https is supported. The default value
is http.

 String

camel.rest.skip-
binding-on-error-
code

Whether to skip binding on output if there is a custom
HTTP error code header. This allows to build custom
error messages that do not bind to json / xml etc, as
success messages otherwise will do.

false Boolean

camel.rest.use-x-
forward-headers

Whether to use X-Forward headers for Host and
related setting. The default value is true.

true Boolean

camel.rest.xml-
data-format

Name of specific XML data format to use. By default
jaxb will be used. Important: This option is only for
setting a custom name of the data format, not to
refer to an existing data format instance.

 String

Name Description Defaul
t

Type

CHAPTER 74. SIMPLE

1243

camel.rest.api-
context-id-
pattern

Deprecated Sets an CamelContext id pattern to only
allow Rest APIs from rest services within
CamelContext’s which name matches the pattern.
The pattern name refers to the CamelContext name,
to match on the current CamelContext only. For any
other value, the pattern uses the rules from
PatternHelper#matchPattern(String,String).

 String

camel.rest.api-
context-listing

Deprecated Sets whether listing of all available
CamelContext’s with REST services in the JVM is
enabled. If enabled it allows to discover these
contexts, if false then only the current CamelContext
is in use.

false Boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1244

CHAPTER 75. TOKENIZE
The tokenizer language is a built-in language in camel-core, which is most often used with the Split EIP
to split a message using a token-based strategy.

The tokenizer language is intended to tokenize text documents using a specified delimiter pattern. It can
also be used to tokenize XML documents with some limited capability. For a truly XML-aware
tokenization, the use of the XML Tokenize language is recommended as it offers a faster, more efficient
tokenization specifically for XML documents.

75.1. TOKENIZE OPTIONS

The Tokenize language supports 11 options, which are listed below.

Name Default Java
Type

Description

token String Required The (start) token to use as tokenizer, for example you
can use the new line token. You can use simple language as the
token to support dynamic tokens.

endToken String The end token to use as tokenizer if using start/end token pairs.
You can use simple language as the token to support dynamic
tokens.

inheritNamespace
TagName

 String To inherit namespaces from a root/parent tag name when using
XML You can use simple language as the tag name to support
dynamic names.

headerName String Name of header to tokenize instead of using the message body.

regex Boole
an

If the token is a regular expression pattern. The default value is
false.

xml Boole
an

Whether the input is XML messages. This option must be set to
true if working with XML payloads.

includeTokens Boole
an

Whether to include the tokens in the parts when using pairs The
default value is false.

group String To group N parts together, for example to split big files into
chunks of 1000 lines. You can use simple language as the group
to support dynamic group sizes.

groupDelimiter String Sets the delimiter to use when grouping. If this has not been set
then token will be used as the delimiter.

skipFirst Boole
an

To skip the very first element.

CHAPTER 75. TOKENIZE

1245

https://camel.apache.org/components/3.14.x/eips/split-eip.html
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/camel_spring_boot_reference_3.14/index#csb-camel-xml-tokenize-language-starter

trim Boole
an

Whether to trim the value to remove leading and trailing
whitespaces and line breaks.

Name Default Java
Type

Description

75.2. EXAMPLE

The following example shows how to take a request from the direct:a endpoint then split it into pieces
using an Expression, then forward each piece to direct:b:

And in Java DSL:

75.3. SEE ALSO

For more examples see Split EIP.

75.4. SPRING BOOT AUTO-CONFIGURATION

When using tokenize with Spring Boot make sure to use the following Maven dependency to have
support for auto configuration:

The component supports 147 options, which are listed below.

<route>
 <from uri="direct:a"/>
 <split>
 <tokenize token="\n"/>
 <to uri="direct:b"/>
 </split>
</route>

from("direct:a")
 .split(body().tokenize("\n"))
 .to("direct:b");

<dependency>
 <groupId>org.apache.camel.springboot</groupId>
 <artifactId>camel-core-starter</artifactId>
 <version>3.14.5.redhat-00032</version>
 <!-- Use your Camel Spring Boot version -->
</dependency>

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1246

https://camel.apache.org/manual/expression.html
https://camel.apache.org/components/3.14.x/eips/split-eip.html

Name Description Defaul
t

Type

camel.cloud.cons
ul.service-
discovery.acl-
token

Sets the ACL token to be used with Consul. String

camel.cloud.cons
ul.service-
discovery.block-
seconds

The seconds to wait for a watch event, default 10
seconds.

10 Integer

camel.cloud.cons
ul.service-
discovery.configu
rations

Define additional configuration definitions. Map

camel.cloud.cons
ul.service-
discovery.connect
-timeout-millis

Connect timeout for OkHttpClient. Long

camel.cloud.cons
ul.service-
discovery.datacen
ter

The data center. String

camel.cloud.cons
ul.service-
discovery.enabled

Enable the component. true Boolean

camel.cloud.cons
ul.service-
discovery.passwo
rd

Sets the password to be used for basic
authentication.

 String

camel.cloud.cons
ul.service-
discovery.propert
ies

Set client properties to use. These properties are
specific to what service call implementation are in
use. For example if using ribbon, then the client
properties are define in
com.netflix.client.config.CommonClientConfigKey.

 Map

camel.cloud.cons
ul.service-
discovery.read-
timeout-millis

Read timeout for OkHttpClient. Long

camel.cloud.cons
ul.service-
discovery.url

The Consul agent URL. String

CHAPTER 75. TOKENIZE

1247

camel.cloud.cons
ul.service-
discovery.user-
name

Sets the username to be used for basic
authentication.

 String

camel.cloud.cons
ul.service-
discovery.write-
timeout-millis

Write timeout for OkHttpClient. Long

camel.cloud.dns.s
ervice-
discovery.configu
rations

Define additional configuration definitions. Map

camel.cloud.dns.s
ervice-
discovery.domain

The domain name;. String

camel.cloud.dns.s
ervice-
discovery.enabled

Enable the component. true Boolean

camel.cloud.dns.s
ervice-
discovery.propert
ies

Set client properties to use. These properties are
specific to what service call implementation are in
use. For example if using ribbon, then the client
properties are define in
com.netflix.client.config.CommonClientConfigKey.

 Map

camel.cloud.dns.s
ervice-
discovery.proto

The transport protocol of the desired service. _tcp String

camel.cloud.etcd.
service-
discovery.configu
rations

Define additional configuration definitions. Map

camel.cloud.etcd.
service-
discovery.enabled

Enable the component. true Boolean

camel.cloud.etcd.
service-
discovery.passwo
rd

The password to use for basic authentication. String

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1248

camel.cloud.etcd.
service-
discovery.propert
ies

Set client properties to use. These properties are
specific to what service call implementation are in
use. For example if using ribbon, then the client
properties are define in
com.netflix.client.config.CommonClientConfigKey.

 Map

camel.cloud.etcd.
service-
discovery.service-
path

The path to look for for service discovery. /servic
es/

String

camel.cloud.etcd.
service-
discovery.timeout

To set the maximum time an action could take to
complete.

 Long

camel.cloud.etcd.
service-
discovery.type

To set the discovery type, valid values are on-
demand and watch.

on-
deman
d

String

camel.cloud.etcd.
service-
discovery.uris

The URIs the client can connect to. String

camel.cloud.etcd.
service-
discovery.user-
name

The user name to use for basic authentication. String

camel.cloud.kuber
netes.service-
discovery.api-
version

Sets the API version when using client lookup. String

camel.cloud.kuber
netes.service-
discovery.ca-
cert-data

Sets the Certificate Authority data when using client
lookup.

 String

camel.cloud.kuber
netes.service-
discovery.ca-
cert-file

Sets the Certificate Authority data that are loaded
from the file when using client lookup.

 String

Name Description Defaul
t

Type

CHAPTER 75. TOKENIZE

1249

camel.cloud.kuber
netes.service-
discovery.client-
cert-data

Sets the Client Certificate data when using client
lookup.

 String

camel.cloud.kuber
netes.service-
discovery.client-
cert-file

Sets the Client Certificate data that are loaded from
the file when using client lookup.

 String

camel.cloud.kuber
netes.service-
discovery.client-
key-algo

Sets the Client Keystore algorithm, such as RSA when
using client lookup.

 String

camel.cloud.kuber
netes.service-
discovery.client-
key-data

Sets the Client Keystore data when using client
lookup.

 String

camel.cloud.kuber
netes.service-
discovery.client-
key-file

Sets the Client Keystore data that are loaded from
the file when using client lookup.

 String

camel.cloud.kuber
netes.service-
discovery.client-
key-passphrase

Sets the Client Keystore passphrase when using
client lookup.

 String

camel.cloud.kuber
netes.service-
discovery.configu
rations

Define additional configuration definitions. Map

camel.cloud.kuber
netes.service-
discovery.dns-
domain

Sets the DNS domain to use for DNS lookup. String

camel.cloud.kuber
netes.service-
discovery.enabled

Enable the component. true Boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1250

camel.cloud.kuber
netes.service-
discovery.lookup

How to perform service lookup. Possible values:
client, dns, environment. When using client, then the
client queries the kubernetes master to obtain a list
of active pods that provides the service, and then
random (or round robin) select a pod. When using dns
the service name is resolved as
name.namespace.svc.dnsDomain. When using dnssrv
the service name is resolved with SRV query for .…
svc… When using environment then environment
variables are used to lookup the service. By default
environment is used.

environ
ment

String

camel.cloud.kuber
netes.service-
discovery.master-
url

Sets the URL to the master when using client lookup. String

camel.cloud.kuber
netes.service-
discovery.namesp
ace

Sets the namespace to use. Will by default use
namespace from the ENV variable
KUBERNETES_MASTER.

 String

camel.cloud.kuber
netes.service-
discovery.oauth-
token

Sets the OAUTH token for authentication (instead of
username/password) when using client lookup.

 String

camel.cloud.kuber
netes.service-
discovery.passwo
rd

Sets the password for authentication when using
client lookup.

 String

camel.cloud.kuber
netes.service-
discovery.port-
name

Sets the Port Name to use for DNS/DNSSRV lookup. String

camel.cloud.kuber
netes.service-
discovery.port-
protocol

Sets the Port Protocol to use for DNS/DNSSRV
lookup.

 String

camel.cloud.kuber
netes.service-
discovery.propert
ies

Set client properties to use. These properties are
specific to what service call implementation are in
use. For example if using ribbon, then the client
properties are define in
com.netflix.client.config.CommonClientConfigKey.

 Map

Name Description Defaul
t

Type

CHAPTER 75. TOKENIZE

1251

camel.cloud.kuber
netes.service-
discovery.trust-
certs

Sets whether to turn on trust certificate check when
using client lookup.

false Boolean

camel.cloud.kuber
netes.service-
discovery.userna
me

Sets the username for authentication when using
client lookup.

 String

camel.cloud.ribbo
n.load-
balancer.client-
name

Sets the Ribbon client name. String

camel.cloud.ribbo
n.load-
balancer.configur
ations

Define additional configuration definitions. Map

camel.cloud.ribbo
n.load-
balancer.enabled

Enable the component. true Boolean

camel.cloud.ribbo
n.load-
balancer.namespa
ce

The namespace. String

camel.cloud.ribbo
n.load-
balancer.passwor
d

The password. String

camel.cloud.ribbo
n.load-
balancer.properti
es

Set client properties to use. These properties are
specific to what service call implementation are in
use. For example if using ribbon, then the client
properties are define in
com.netflix.client.config.CommonClientConfigKey.

 Map

camel.cloud.ribbo
n.load-
balancer.usernam
e

The username. String

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1252

camel.hystrix.allo
w-maximum-size-
to-diverge-from-
core-size

Allows the configuration for maximumSize to take
effect. That value can then be equal to, or higher,
than coreSize.

false Boolean

camel.hystrix.circ
uit-breaker-
enabled

Whether to use a HystrixCircuitBreaker or not. If
false no circuit-breaker logic will be used and all
requests permitted. This is similar in effect to
circuitBreakerForceClosed() except that continues
tracking metrics and knowing whether it should be
open/closed, this property results in not even
instantiating a circuit-breaker.

true Boolean

camel.hystrix.circ
uit-breaker-
error-threshold-
percentage

Error percentage threshold (as whole number such as
50) at which point the circuit breaker will trip open
and reject requests. It will stay tripped for the
duration defined in
circuitBreakerSleepWindowInMilliseconds; The error
percentage this is compared against comes from
HystrixCommandMetrics.getHealthCounts().

50 Integer

camel.hystrix.circ
uit-breaker-
force-closed

If true the HystrixCircuitBreaker#allowRequest() will
always return true to allow requests regardless of the
error percentage from
HystrixCommandMetrics.getHealthCounts(). The
circuitBreakerForceOpen() property takes
precedence so if it set to true this property does
nothing.

false Boolean

camel.hystrix.circ
uit-breaker-
force-open

If true the HystrixCircuitBreaker.allowRequest() will
always return false, causing the circuit to be open
(tripped) and reject all requests. This property takes
precedence over circuitBreakerForceClosed();.

false Boolean

camel.hystrix.circ
uit-breaker-
request-volume-
threshold

Minimum number of requests in the
metricsRollingStatisticalWindowInMilliseconds() that
must exist before the HystrixCircuitBreaker will trip. If
below this number the circuit will not trip regardless
of error percentage.

20 Integer

camel.hystrix.circ
uit-breaker-
sleep-window-in-
milliseconds

The time in milliseconds after a HystrixCircuitBreaker
trips open that it should wait before trying requests
again.

5000 Integer

camel.hystrix.con
figurations

Define additional configuration definitions. Map

Name Description Defaul
t

Type

CHAPTER 75. TOKENIZE

1253

camel.hystrix.core
-pool-size

Core thread-pool size that gets passed to
java.util.concurrent.ThreadPoolExecutor#setCorePo
olSize(int).

10 Integer

camel.hystrix.ena
bled

Enable the component. true Boolean

camel.hystrix.exe
cution-isolation-
semaphore-max-
concurrent-
requests

Number of concurrent requests permitted to
HystrixCommand.run(). Requests beyond the
concurrent limit will be rejected. Applicable only when
executionIsolationStrategy == SEMAPHORE.

20 Integer

camel.hystrix.exe
cution-isolation-
strategy

What isolation strategy HystrixCommand.run() will be
executed with. If THREAD then it will be executed on
a separate thread and concurrent requests limited by
the number of threads in the thread-pool. If
SEMAPHORE then it will be executed on the calling
thread and concurrent requests limited by the
semaphore count.

THREA
D

String

camel.hystrix.exe
cution-isolation-
thread-interrupt-
on-timeout

Whether the execution thread should attempt an
interrupt (using Future#cancel) when a thread times
out. Applicable only when
executionIsolationStrategy() == THREAD.

true Boolean

camel.hystrix.exe
cution-timeout-
enabled

Whether the timeout mechanism is enabled for this
command.

true Boolean

camel.hystrix.exe
cution-timeout-
in-milliseconds

Time in milliseconds at which point the command will
timeout and halt execution. If
executionIsolationThreadInterruptOnTimeout == true
and the command is thread-isolated, the executing
thread will be interrupted. If the command is
semaphore-isolated and a
HystrixObservableCommand, that command will get
unsubscribed.

1000 Integer

camel.hystrix.fallb
ack-enabled

Whether HystrixCommand.getFallback() should be
attempted when failure occurs.

true Boolean

camel.hystrix.fallb
ack-isolation-
semaphore-max-
concurrent-
requests

Number of concurrent requests permitted to
HystrixCommand.getFallback(). Requests beyond
the concurrent limit will fail-fast and not attempt
retrieving a fallback.

10 Integer

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1254

camel.hystrix.gro
up-key

Sets the group key to use. The default value is
CamelHystrix.

Camel
Hystrix

String

camel.hystrix.kee
p-alive-time

Keep-alive time in minutes that gets passed to
ThreadPoolExecutor#setKeepAliveTime(long,TimeU
nit).

1 Integer

camel.hystrix.max
-queue-size

Max queue size that gets passed to BlockingQueue in
HystrixConcurrencyStrategy.getBlockingQueue(int)
This should only affect the instantiation of a
threadpool - it is not eliglible to change a queue size
on the fly. For that, use
queueSizeRejectionThreshold().

-1 Integer

camel.hystrix.max
imum-size

Maximum thread-pool size that gets passed to
ThreadPoolExecutor#setMaximumPoolSize(int) .
This is the maximum amount of concurrency that can
be supported without starting to reject
HystrixCommands. Please note that this setting only
takes effect if you also set
allowMaximumSizeToDivergeFromCoreSize.

10 Integer

camel.hystrix.met
rics-health-
snapshot-
interval-in-
milliseconds

Time in milliseconds to wait between allowing health
snapshots to be taken that calculate success and
error percentages and affect
HystrixCircuitBreaker.isOpen() status. On high-
volume circuits the continual calculation of error
percentage can become CPU intensive thus this
controls how often it is calculated.

500 Integer

camel.hystrix.met
rics-rolling-
percentile-
bucket-size

Maximum number of values stored in each bucket of
the rolling percentile. This is passed into
HystrixRollingPercentile inside
HystrixCommandMetrics.

10 Integer

camel.hystrix.met
rics-rolling-
percentile-
enabled

Whether percentile metrics should be captured using
HystrixRollingPercentile inside
HystrixCommandMetrics.

true Boolean

camel.hystrix.met
rics-rolling-
percentile-
window-buckets

Number of buckets the rolling percentile window is
broken into. This is passed into
HystrixRollingPercentile inside
HystrixCommandMetrics.

6 Integer

Name Description Defaul
t

Type

CHAPTER 75. TOKENIZE

1255

camel.hystrix.met
rics-rolling-
percentile-
window-in-
milliseconds

Duration of percentile rolling window in milliseconds.
This is passed into HystrixRollingPercentile inside
HystrixCommandMetrics.

10000 Integer

camel.hystrix.met
rics-rolling-
statistical-
window-buckets

Number of buckets the rolling statistical window is
broken into. This is passed into HystrixRollingNumber
inside HystrixCommandMetrics.

10 Integer

camel.hystrix.met
rics-rolling-
statistical-
window-in-
milliseconds

This property sets the duration of the statistical
rolling window, in milliseconds. This is how long
metrics are kept for the thread pool. The window is
divided into buckets and rolls by those increments.

10000 Integer

camel.hystrix.que
ue-size-rejection-
threshold

Queue size rejection threshold is an artificial max size
at which rejections will occur even if maxQueueSize
has not been reached. This is done because the
maxQueueSize of a BlockingQueue can not be
dynamically changed and we want to support
dynamically changing the queue size that affects
rejections. This is used by HystrixCommand when
queuing a thread for execution.

5 Integer

camel.hystrix.req
uest-log-enabled

Whether HystrixCommand execution and events
should be logged to HystrixRequestLog.

true Boolean

camel.hystrix.thre
ad-pool-key

Sets the thread pool key to use. Will by default use
the same value as groupKey has been configured to
use.

Camel
Hystrix

String

camel.hystrix.thre
ad-pool-rolling-
number-
statistical-
window-buckets

Number of buckets the rolling statistical window is
broken into. This is passed into HystrixRollingNumber
inside each HystrixThreadPoolMetrics instance.

10 Integer

camel.hystrix.thre
ad-pool-rolling-
number-
statistical-
window-in-
milliseconds

Duration of statistical rolling window in milliseconds.
This is passed into HystrixRollingNumber inside each
HystrixThreadPoolMetrics instance.

10000 Integer

camel.language.c
onstant.enabled

Whether to enable auto configuration of the constant
language. This is enabled by default.

 Boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1256

camel.language.c
onstant.trim

Whether to trim the value to remove leading and
trailing whitespaces and line breaks.

true Boolean

camel.language.c
simple.enabled

Whether to enable auto configuration of the csimple
language. This is enabled by default.

 Boolean

camel.language.c
simple.trim

Whether to trim the value to remove leading and
trailing whitespaces and line breaks.

true Boolean

camel.language.e
xchangeproperty.
enabled

Whether to enable auto configuration of the
exchangeProperty language. This is enabled by
default.

 Boolean

camel.language.e
xchangeproperty.
trim

Whether to trim the value to remove leading and
trailing whitespaces and line breaks.

true Boolean

camel.language.fil
e.enabled

Whether to enable auto configuration of the file
language. This is enabled by default.

 Boolean

camel.language.fil
e.trim

Whether to trim the value to remove leading and
trailing whitespaces and line breaks.

true Boolean

camel.language.h
eader.enabled

Whether to enable auto configuration of the header
language. This is enabled by default.

 Boolean

camel.language.h
eader.trim

Whether to trim the value to remove leading and
trailing whitespaces and line breaks.

true Boolean

camel.language.re
f.enabled

Whether to enable auto configuration of the ref
language. This is enabled by default.

 Boolean

camel.language.re
f.trim

Whether to trim the value to remove leading and
trailing whitespaces and line breaks.

true Boolean

camel.language.si
mple.enabled

Whether to enable auto configuration of the simple
language. This is enabled by default.

 Boolean

camel.language.si
mple.trim

Whether to trim the value to remove leading and
trailing whitespaces and line breaks.

true Boolean

camel.language.t
okenize.enabled

Whether to enable auto configuration of the tokenize
language. This is enabled by default.

 Boolean

Name Description Defaul
t

Type

CHAPTER 75. TOKENIZE

1257

camel.language.t
okenize.group-
delimiter

Sets the delimiter to use when grouping. If this has
not been set then token will be used as the delimiter.

 String

camel.language.t
okenize.trim

Whether to trim the value to remove leading and
trailing whitespaces and line breaks.

true Boolean

camel.resilience4j
.automatic-
transition-from-
open-to-half-
open-enabled

Enables automatic transition from OPEN to
HALF_OPEN state once the
waitDurationInOpenState has passed.

false Boolean

camel.resilience4j
.circuit-breaker-
ref

Refers to an existing
io.github.resilience4j.circuitbreaker.CircuitBreaker
instance to lookup and use from the registry. When
using this, then any other circuit breaker options are
not in use.

 String

camel.resilience4j
.config-ref

Refers to an existing
io.github.resilience4j.circuitbreaker.CircuitBreakerCo
nfig instance to lookup and use from the registry.

 String

camel.resilience4j
.configurations

Define additional configuration definitions. Map

camel.resilience4j
.enabled

Enable the component. true Boolean

camel.resilience4j
.failure-rate-
threshold

Configures the failure rate threshold in percentage. If
the failure rate is equal or greater than the threshold
the CircuitBreaker transitions to open and starts
short-circuiting calls. The threshold must be greater
than 0 and not greater than 100. Default value is 50
percentage.

 Float

camel.resilience4j
.minimum-
number-of-calls

Configures the minimum number of calls which are
required (per sliding window period) before the
CircuitBreaker can calculate the error rate. For
example, if minimumNumberOfCalls is 10, then at
least 10 calls must be recorded, before the failure rate
can be calculated. If only 9 calls have been recorded
the CircuitBreaker will not transition to open even if
all 9 calls have failed. Default
minimumNumberOfCalls is 100.

100 Integer

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1258

camel.resilience4j
.permitted-
number-of-calls-
in-half-open-
state

Configures the number of permitted calls when the
CircuitBreaker is half open. The size must be greater
than 0. Default size is 10.

10 Integer

camel.resilience4j
.sliding-window-
size

Configures the size of the sliding window which is
used to record the outcome of calls when the
CircuitBreaker is closed. slidingWindowSize
configures the size of the sliding window. Sliding
window can either be count-based or time-based. If
slidingWindowType is COUNT_BASED, the last
slidingWindowSize calls are recorded and
aggregated. If slidingWindowType is TIME_BASED,
the calls of the last slidingWindowSize seconds are
recorded and aggregated. The slidingWindowSize
must be greater than 0. The minimumNumberOfCalls
must be greater than 0. If the slidingWindowType is
COUNT_BASED, the minimumNumberOfCalls
cannot be greater than slidingWindowSize . If the
slidingWindowType is TIME_BASED, you can pick
whatever you want. Default slidingWindowSize is 100.

100 Integer

camel.resilience4j
.sliding-window-
type

Configures the type of the sliding window which is
used to record the outcome of calls when the
CircuitBreaker is closed. Sliding window can either be
count-based or time-based. If slidingWindowType is
COUNT_BASED, the last slidingWindowSize calls are
recorded and aggregated. If slidingWindowType is
TIME_BASED, the calls of the last slidingWindowSize
seconds are recorded and aggregated. Default
slidingWindowType is COUNT_BASED.

COUN
T_BAS
ED

String

camel.resilience4j
.slow-call-
duration-
threshold

Configures the duration threshold (seconds) above
which calls are considered as slow and increase the
slow calls percentage. Default value is 60 seconds.

60 Integer

camel.resilience4j
.slow-call-rate-
threshold

Configures a threshold in percentage. The
CircuitBreaker considers a call as slow when the call
duration is greater than slowCallDurationThreshold
Duration. When the percentage of slow calls is equal
or greater the threshold, the CircuitBreaker
transitions to open and starts short-circuiting calls.
The threshold must be greater than 0 and not greater
than 100. Default value is 100 percentage which
means that all recorded calls must be slower than
slowCallDurationThreshold.

 Float

Name Description Defaul
t

Type

CHAPTER 75. TOKENIZE

1259

camel.resilience4j
.wait-duration-in-
open-state

Configures the wait duration (in seconds) which
specifies how long the CircuitBreaker should stay
open, before it switches to half open. Default value is
60 seconds.

60 Integer

camel.resilience4j
.writable-stack-
trace-enabled

Enables writable stack traces. When set to false,
Exception.getStackTrace returns a zero length array.
This may be used to reduce log spam when the circuit
breaker is open as the cause of the exceptions is
already known (the circuit breaker is short-circuiting
calls).

true Boolean

camel.rest.api-
component

The name of the Camel component to use as the
REST API (such as swagger) If no API Component
has been explicit configured, then Camel will lookup if
there is a Camel component responsible for servicing
and generating the REST API documentation, or if a
org.apache.camel.spi.RestApiProcessorFactory is
registered in the registry. If either one is found, then
that is being used.

 String

camel.rest.api-
context-path

Sets a leading API context-path the REST API
services will be using. This can be used when using
components such as camel-servlet where the
deployed web application is deployed using a
context-path.

 String

camel.rest.api-
context-route-id

Sets the route id to use for the route that services the
REST API. The route will by default use an auto
assigned route id.

 String

camel.rest.api-
host

To use an specific hostname for the API
documentation (eg swagger) This can be used to
override the generated host with this configured
hostname.

 String

camel.rest.api-
property

Allows to configure as many additional properties for
the api documentation (swagger). For example set
property api.title to my cool stuff.

 Map

camel.rest.api-
vendor-extension

Whether vendor extension is enabled in the Rest
APIs. If enabled then Camel will include additional
information as vendor extension (eg keys starting
with x-) such as route ids, class names etc. Not all 3rd
party API gateways and tools supports vendor-
extensions when importing your API docs.

false Boolean

camel.rest.bindin
g-mode

Sets the binding mode to use. The default value is
off.

 RestBindingMode

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1260

camel.rest.client-
request-
validation

Whether to enable validation of the client request to
check whether the Content-Type and Accept
headers from the client is supported by the Rest-DSL
configuration of its consumes/produces settings.
This can be turned on, to enable this check. In case of
validation error, then HTTP Status codes 415 or 406
is returned. The default value is false.

false Boolean

camel.rest.compo
nent

The Camel Rest component to use for the REST
transport (consumer), such as netty-http, jetty,
servlet, undertow. If no component has been explicit
configured, then Camel will lookup if there is a Camel
component that integrates with the Rest DSL, or if a
org.apache.camel.spi.RestConsumerFactory is
registered in the registry. If either one is found, then
that is being used.

 String

camel.rest.compo
nent-property

Allows to configure as many additional properties for
the rest component in use.

 Map

camel.rest.consu
mer-property

Allows to configure as many additional properties for
the rest consumer in use.

 Map

camel.rest.contex
t-path

Sets a leading context-path the REST services will be
using. This can be used when using components such
as camel-servlet where the deployed web application
is deployed using a context-path. Or for components
such as camel-jetty or camel-netty-http that includes
a HTTP server.

 String

camel.rest.cors-
headers

Allows to configure custom CORS headers. Map

camel.rest.data-
format-property

Allows to configure as many additional properties for
the data formats in use. For example set property
prettyPrint to true to have json outputted in pretty
mode. The properties can be prefixed to denote the
option is only for either JSON or XML and for either
the IN or the OUT. The prefixes are: json.in. json.out.
xml.in. xml.out. For example a key with value
xml.out.mustBeJAXBElement is only for the XML
data format for the outgoing. A key without a prefix is
a common key for all situations.

 Map

camel.rest.enable
-cors

Whether to enable CORS headers in the HTTP
response. The default value is false.

false Boolean

Name Description Defaul
t

Type

CHAPTER 75. TOKENIZE

1261

camel.rest.endpoi
nt-property

Allows to configure as many additional properties for
the rest endpoint in use.

 Map

camel.rest.host The hostname to use for exposing the REST service. String

camel.rest.host-
name-resolver

If no hostname has been explicit configured, then this
resolver is used to compute the hostname the REST
service will be using.

 RestHostNameRe
solver

camel.rest.json-
data-format

Name of specific json data format to use. By default
json-jackson will be used. Important: This option is
only for setting a custom name of the data format,
not to refer to an existing data format instance.

 String

camel.rest.port The port number to use for exposing the REST
service. Notice if you use servlet component then the
port number configured here does not apply, as the
port number in use is the actual port number the
servlet component is using. eg if using Apache
Tomcat its the tomcat http port, if using Apache Karaf
its the HTTP service in Karaf that uses port 8181 by
default etc. Though in those situations setting the
port number here, allows tooling and JMX to know
the port number, so its recommended to set the port
number to the number that the servlet engine uses.

 String

camel.rest.produc
er-api-doc

Sets the location of the api document (swagger api)
the REST producer will use to validate the REST uri
and query parameters are valid accordingly to the api
document. This requires adding camel-swagger-java
to the classpath, and any miss configuration will let
Camel fail on startup and report the error(s). The
location of the api document is loaded from
classpath by default, but you can use file: or http: to
refer to resources to load from file or http url.

 String

camel.rest.produc
er-component

Sets the name of the Camel component to use as the
REST producer.

 String

camel.rest.schem
e

The scheme to use for exposing the REST service.
Usually http or https is supported. The default value
is http.

 String

camel.rest.skip-
binding-on-error-
code

Whether to skip binding on output if there is a custom
HTTP error code header. This allows to build custom
error messages that do not bind to json / xml etc, as
success messages otherwise will do.

false Boolean

Name Description Defaul
t

Type

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1262

camel.rest.use-x-
forward-headers

Whether to use X-Forward headers for Host and
related setting. The default value is true.

true Boolean

camel.rest.xml-
data-format

Name of specific XML data format to use. By default
jaxb will be used. Important: This option is only for
setting a custom name of the data format, not to
refer to an existing data format instance.

 String

camel.rest.api-
context-id-
pattern

Deprecated Sets an CamelContext id pattern to only
allow Rest APIs from rest services within
CamelContext’s which name matches the pattern.
The pattern name refers to the CamelContext name,
to match on the current CamelContext only. For any
other value, the pattern uses the rules from
PatternHelper#matchPattern(String,String).

 String

camel.rest.api-
context-listing

Deprecated Sets whether listing of all available
CamelContext’s with REST services in the JVM is
enabled. If enabled it allows to discover these
contexts, if false then only the current CamelContext
is in use.

false Boolean

Name Description Defaul
t

Type

CHAPTER 75. TOKENIZE

1263

CHAPTER 76. XML TOKENIZE
The XML Tokenize language is a built-in language in camel-xml-jaxp, which is a truly XML-aware
tokenizer that can be used with the Split EIP as the conventional Tokenize to efficiently and effectively
tokenize XML documents..

XML Tokenize is capable of not only recognizing XML namespaces and hierarchical structures of the
document but also more efficiently tokenizing XML documents than the conventional Tokenize
language.

Additional dependency

In order to use this component, an additional dependency is required as follows:

or

76.1. XML TOKENIZER OPTIONS

The XML Tokenize language supports 4 options, which are listed below.

Name Default Java
Type

Description

headerName String Name of header to tokenize instead of using the message body.

mode Enum The extraction mode. The available extraction modes are: i -
injecting the contextual namespace bindings into the extracted
token (default) w - wrapping the extracted token in its ancestor
context u - unwrapping the extracted token to its child content t
- extracting the text content of the specified element.

Enum values:

i

w

u

t

<dependency>
 <groupId>org.codehaus.woodstox</groupId>
 <artifactId>woodstox-core-asl</artifactId>
 <version>4.4.1</version>
</dependency>

 <dependency>
 <groupId>org.apache.camel.springboot</groupId>
 <artifactId>camel-stax-starter</artifactId>
 </dependency>

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1264

https://camel.apache.org/components/3.14.x/languages/tokenize-language.html
https://camel.apache.org/components/3.14.x/languages/tokenize-language.html

group Intege
r

To group N parts together.

trim Boole
an

Whether to trim the value to remove leading and trailing
whitespaces and line breaks.

Name Default Java
Type

Description

76.2. EXAMPLE

See Split EIP which has examples using the XML Tokenize language.

76.3. SPRING BOOT AUTO-CONFIGURATION

When using xtokenize with Spring Boot make sure to use the following Maven dependency to have
support for auto configuration:

The component supports 3 options, which are listed below.

Name Description Defaul
t

Type

camel.language.xt
okenize.enabled

Whether to enable auto configuration of the
xtokenize language. This is enabled by default.

 Boolean

camel.language.xt
okenize.mode

The extraction mode. The available extraction modes
are: i - injecting the contextual namespace bindings
into the extracted token (default) w - wrapping the
extracted token in its ancestor context u -
unwrapping the extracted token to its child content t
- extracting the text content of the specified
element.

 String

camel.language.xt
okenize.trim

Whether to trim the value to remove leading and
trailing whitespaces and line breaks.

true Boolean

<dependency>
 <groupId>org.apache.camel.springboot</groupId>
 <artifactId>camel-xml-jaxp-starter</artifactId>
 <version>3.14.5.redhat-00032</version>
 <!-- Use your Camel Spring Boot version -->
</dependency>

CHAPTER 76. XML TOKENIZE

1265

https://camel.apache.org/components/3.14.x/eips/split-eip.html

CHAPTER 77. XPATH
Camel supports XPath to allow an Expression or Predicate to be used in the DSL.

For example, you could use XPath to create a predicate in a Message Filter or as an expression for a
Recipient List.

77.1. XPATH LANGUAGE OPTIONS

The XPath language supports 10 options, which are listed below.

Name Default Java
Type

Description

documentType String Name of class for document type The default value is
org.w3c.dom.Document.

resultType Enum Sets the class name of the result type (type from output) The
default result type is NodeSet.

Enum values:

NUMBER

STRING

BOOLEAN

NODESET

NODE

saxon Boole
an

Whether to use Saxon.

factoryRef String References to a custom XPathFactory to lookup in the registry.

objectModel String The XPath object model to use.

logNamespaces Boole
an

Whether to log namespaces which can assist during
troubleshooting.

headerName String Name of header to use as input, instead of the message body.

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1266

http://www.w3.org/TR/xpath
https://camel.apache.org/manual/expression.html
https://camel.apache.org/manual/predicate.html
https://camel.apache.org/manual/dsl.html
https://camel.apache.org/components/3.14.x/eips/filter-eip.html
https://camel.apache.org/components/3.14.x/eips/recipientList-eip.html

threadSafety Boole
an

Whether to enable thread-safety for the returned result of the
xpath expression. This applies to when using NODESET as the
result type, and the returned set has multiple elements. In this
situation there can be thread-safety issues if you process the
NODESET concurrently such as from a Camel Splitter EIP in
parallel processing mode. This option prevents concurrency
issues by doing defensive copies of the nodes. It is
recommended to turn this option on if you are using camel-
saxon or Saxon in your application. Saxon has thread-safety
issues which can be prevented by turning this option on.

preCompile Boole
an

Whether to enable pre-compiling the xpath expression during
initialization phase. pre-compile is enabled by default. This can
be used to turn off, for example in cases the compilation phase is
desired at the starting phase, such as if the application is ahead
of time compiled (for example with camel-quarkus) which would
then load the xpath factory of the built operating system, and
not a JVM runtime.

trim Boole
an

Whether to trim the value to remove leading and trailing
whitespaces and line breaks.

Name Default Java
Type

Description

77.2. NAMESPACES

You can easily use namespaces with XPath expressions using the Namespaces helper class.

77.3. VARIABLES

Variables in XPath is defined in different namespaces. The default namespace is
http://camel.apache.org/schema/spring.

Namespace URI Local
part

Type Description

http://camel.apache.org/xml/i
n/

in Messa
ge

the message

http://camel.apache.org/xml/
out/

out Messa
ge

deprecated the output message (do not use)

http://camel.apache.org/xml/
function/

functio
ns

Object Additional functions

CHAPTER 77. XPATH

1267

http://camel.apache.org/schema/spring
http://camel.apache.org/xml/in/
http://camel.apache.org/xml/out/
http://camel.apache.org/xml/function/

http://camel.apache.org/xml/
variables/environment-
variables

env Object OS environment variables

http://camel.apache.org/xml/
variables/system-properties

system Object Java System properties

http://camel.apache.org/xml/
variables/exchange-property

 Object the exchange property

Namespace URI Local
part

Type Description

Camel will resolve variables according to either:

namespace given

no namespace given

77.3.1. Namespace given

If the namespace is given then Camel is instructed exactly what to return. However, when resolving
Camel will try to resolve a header with the given local part first, and return it. If the local part has the
value body then the body is returned instead.

77.3.2. No namespace given

If there is no namespace given then Camel resolves only based on the local part. Camel will try to resolve
a variable in the following steps:

from variables that has been set using the variable(name, value) fluent builder

from message.in.header if there is a header with the given key

from exchange.properties if there is a property with the given key

77.4. FUNCTIONS

Camel adds the following XPath functions that can be used to access the exchange:

Function Argument Type Description

in:body none Object Will return the message body.

in:header the header name Object Will return the message header.

out:body none Object deprecated Will return the out message body.

out:header the header name Object deprecated Will return the out message header.

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1268

http://camel.apache.org/xml/variables/environment-variables
http://camel.apache.org/xml/variables/system-properties
http://camel.apache.org/xml/variables/exchange-property

function:properties key for property String To use a .

function:simple simple expression Object To evaluate a language.

Function Argument Type Description

NOTE

function:properties and function:simple is not supported when the return type is a
NodeSet, such as when using with a Split EIP.

Here’s an example showing some of these functions in use.

77.4.1. Functions example

If you prefer to configure your routes in your Spring XML file then you can use XPath expressions as
follows

Notice how we can reuse the namespace prefixes, foo in this case, in the XPath expression for easier
namespace based XPath expressions.

77.5. STREAM BASED MESSAGE BODIES

If the message body is stream based, which means the input it receives is submitted to Camel as a
stream. That means you will only be able to read the content of the stream once. So often when you use
XPath as Message Filter or Content Based Router then you need to access the data multiple times, and
you should use Stream Caching or convert the message body to a String prior which is safe to be re-
read multiple times.

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
 http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/camel-
spring.xsd">

 <camelContext id="camel" xmlns="http://activemq.apache.org/camel/schema/spring"
 xmlns:foo="http://example.com/person">
 <route>
 <from uri="activemq:MyQueue"/>
 <filter>
 <xpath>/foo:person[@name='James']</xpath>
 <to uri="mqseries:SomeOtherQueue"/>
 </filter>
 </route>
 </camelContext>
</beans>

from("queue:foo").
 filter().xpath("//foo")).
 to("queue:bar")

CHAPTER 77. XPATH

1269

https://camel.apache.org/components/3.14.x/eips/split-eip.html
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q1/html-single/camel_spring_boot_reference_3.14/index#csb-camel-xpath-language-starter

77.6. SETTING RESULT TYPE

The XPath expression will return a result type using native XML objects such as org.w3c.dom.NodeList.
However, many times you want a result type to be a String. To do this you have to instruct the XPath
which result type to use.

In Java DSL:

In XML DSL you use the resultType attribute to provide the fully qualified classname.

NOTE

Classes from java.lang can omit the FQN name, so you can use resultType="String"

Using @XPath annotation:

Where we use the xpath function concat to prefix the order name with foo-. In this case we have to
specify that we want a String as result type, so the concat function works.

77.7. USING XPATH ON HEADERS

Some users may have XML stored in a header. To apply an XPath to a header’s value you can do this by
defining the 'headerName' attribute.

And in Java DSL you specify the headerName as the 2nd parameter as shown:

77.8. EXAMPLE

Here is a simple example using an XPath expression as a predicate in a Message Filter:

And in XML

from("queue:foo").
 choice().xpath("//foo")).to("queue:bar").
 otherwise().to("queue:others");

xpath("/foo:person/@id", String.class)

<xpath resultType="java.lang.String">/foo:person/@id</xpath>

@XPath(value = "concat('foo-',//order/name/)", resultType = String.class) String name)

<xpath headerName="invoiceDetails">/invoice/@orderType = 'premium'</xpath>

xpath("/invoice/@orderType = 'premium'", "invoiceDetails")

from("direct:start")
 .filter().xpath("/person[@name='James']")
 .to("mock:result");

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1270

https://camel.apache.org/components/3.14.x/eips/filter-eip.html

77.9. USING NAMESPACES

If you have a standard set of namespaces you wish to work with and wish to share them across many
XPath expressions you can use the org.apache.camel.support.builder.Namespaces when using Java
DSL as shown:

Notice how the namespaces are provided to xpath with the ns variable that are passed in as the 2nd
parameter.

Each namespace is a key=value pair, where the prefix is the key. In the XPath expression then the
namespace is used by its prefix, eg:

The namespace builder supports adding multiple namespaces as shown:

When using namespaces in XML DSL then its different, as you setup the namespaces in the XML root
tag (or one of the camelContext, routes, route tags).

In the XML example below we use Spring XML where the namespace is declared in the root tag beans,
in the line with xmlns:foo="http://example.com/person":

<route>
 <from uri="direct:start"/>
 <filter>
 <xpath>/person[@name='James']</xpath>
 <to uri="mock:result"/>
 </filter>
</route>

Namespaces ns = new Namespaces("c", "http://acme.com/cheese");

from("direct:start")
 .filter(xpath("/c:person[@name='James']", ns))
 .to("mock:result");

/c:person[@name='James']

Namespaces ns = new Namespaces("c", "http://acme.com/cheese")
 .add("w", "http://acme.com/wine")
 .add("b", "http://acme.com/beer");

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:foo="http://example.com/person"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
 http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/camel-spring.xsd
 ">

 <camelContext xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="direct:start"/>
 <filter>

CHAPTER 77. XPATH

1271

This namespace uses foo as prefix, so the <xpath> expression uses /foo: to use this namespace.

77.10. USING @XPATH ANNOTATION FOR BEAN INTEGRATION

You can use Bean Integration to invoke a method on a bean and use various languages such as @XPath
to extract a value from the message and bind it to a method parameter.

NOTE

The default @XPath annotation has SOAP and XML namespaces available.

77.11. USING XPATHBUILDER WITHOUT AN EXCHANGE

You can now use the org.apache.camel.language.xpath.XPathBuilder without the need for an
Exchange. This comes handy if you want to use it as a helper to do custom XPath evaluations.

It requires that you pass in a CamelContext since a lot of the moving parts inside the XPathBuilder
requires access to the Camel Type Converter and hence why CamelContext is needed.

For example, you can do something like this:

This will match the given predicate.

You can also evaluate as shown in the following three examples:

Evaluating with a String result is a common requirement and make this simpler:

 <xpath logNamespaces="true">/foo:person[@name='James']</xpath>
 <to uri="mock:result"/>
 </filter>
 </route>
 </camelContext>

</beans>

public class Foo {

 @Consume(uri = "activemq:my.queue")
 public void doSomething(@XPath("/person/@name") String name, String xml) {
 // process the inbound message here
 }
}

boolean matches = XPathBuilder.xpath("/foo/bar/@xyz").matches(context, "<foo><bar xyz='cheese'/>
</foo>"));

String name = XPathBuilder.xpath("foo/bar").evaluate(context, "<foo><bar>cheese</bar></foo>",
String.class);
Integer number = XPathBuilder.xpath("foo/bar").evaluate(context, "<foo><bar>123</bar></foo>",
Integer.class);
Boolean bool = XPathBuilder.xpath("foo/bar").evaluate(context, "<foo><bar>true</bar></foo>",
Boolean.class);

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1272

https://camel.apache.org/manual/bean-integration.html
https://camel.apache.org/manual/type-converter.html

77.12. USING SAXON WITH XPATHBUILDER

You need to add camel-saxon as dependency to your project.

It’s now easier to use Saxon with the XPathBuilder which can be done in several ways as shown below

Using a custom XPathFactory

Using ObjectModel

77.12.1. Setting a custom XPathFactory using System Property

Camel now supports reading the JVM system property javax.xml.xpath.XPathFactory that can be
used to set a custom XPathFactory to use.

This unit test shows how this can be done to use Saxon instead:

Camel will log at INFO level if it uses a non default XPathFactory such as:

To use Apache Xerces you can configure the system property

77.12.2. Enabling Saxon from XML DSL

Similarly to Java DSL, to enable Saxon from XML DSL you have three options:

Referring to a custom factory:

And declare a bean with the factory:

Specifying the object model:

And the recommended approach is to set saxon=true as shown:

77.13. NAMESPACE AUDITING TO AID DEBUGGING

String name = XPathBuilder.xpath("foo/bar").evaluate(context, "<foo><bar>cheese</bar></foo>");

XPathBuilder INFO Using system property
javax.xml.xpath.XPathFactory:http://saxon.sf.net/jaxp/xpath/om with value:
 net.sf.saxon.xpath.XPathFactoryImpl when creating XPathFactory

-Djavax.xml.xpath.XPathFactory=org.apache.xpath.jaxp.XPathFactoryImpl

<xpath factoryRef="saxonFactory" resultType="java.lang.String">current-dateTime()</xpath>

<bean id="saxonFactory" class="net.sf.saxon.xpath.XPathFactoryImpl"/>

<xpath objectModel="http://saxon.sf.net/jaxp/xpath/om" resultType="java.lang.String">current-
dateTime()</xpath>

<xpath saxon="true" resultType="java.lang.String">current-dateTime()</xpath>

CHAPTER 77. XPATH

1273

http://saxon.sourceforge.net
http://java.sun.com/j2se/1.5.0/docs/api/javax/xml/xpath/XPathFactory.html#newInstance(java.lang.String)

Many XPath-related issues that users frequently face are linked to the usage of namespaces. You may
have some misalignment between the namespaces present in your message, and those that your XPath
expression is aware of or referencing. XPath predicates or expressions that are unable to locate the
XML elements and attributes due to namespaces issues may simply look like they are not working, when
in reality all there is to it is a lack of namespace definition.

Namespaces in XML are completely necessary, and while we would love to simplify their usage by
implementing some magic or voodoo to wire namespaces automatically, truth is that any action down
this path would disagree with the standards and would greatly hinder interoperability.

Therefore, the utmost we can do is assist you in debugging such issues by adding two new features to
the XPath Expression Language and are thus accessible from both predicates and expressions.

77.13.1. Logging the Namespace Context of your XPath expression/predicate

Every time a new XPath expression is created in the internal pool, Camel will log the namespace context
of the expression under the org.apache.camel.language.xpath.XPathBuilder logger. Since Camel
represents Namespace Contexts in a hierarchical fashion (parent-child relationships), the entire tree is
output in a recursive manner with the following format:

[me: {prefix -> namespace}, {prefix -> namespace}], [parent: [me: {prefix -> namespace}, {prefix ->
namespace}], [parent: [me: {prefix -> namespace}]]]

Any of these options can be used to activate this logging:

Enable TRACE logging on the org.apache.camel.language.xpath.XPathBuilder logger, or
some parent logger such as org.apache.camel or the root logger

Enable the logNamespaces option as indicated in the following section, in which case the
logging will occur on the INFO level

77.13.2. Auditing namespaces

Camel is able to discover and dump all namespaces present on every incoming message before
evaluating an XPath expression, providing all the richness of information you need to help you analyse
and pinpoint possible namespace issues.

To achieve this, it in turn internally uses another specially tailored XPath expression to extract all
namespace mappings that appear in the message, displaying the prefix and the full namespace URI(s)
for each individual mapping.

Some points to take into account:

The implicit XML namespace (xmlns:xml="http://www.w3.org/XML/1998/namespace") is
suppressed from the output because it adds no value

Default namespaces are listed under the DEFAULT keyword in the output

Keep in mind that namespaces can be remapped under different scopes. Think of a top-level 'a'
prefix which in inner elements can be assigned a different namespace, or the default namespace
changing in inner scopes. For each discovered prefix, all associated URIs are listed.

You can enable this option in Java DSL and XML DSL:

Java DSL:

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1274

XML DSL:

The result of the auditing will be appeared at the INFO level under the
org.apache.camel.language.xpath.XPathBuilder logger and will look like the following:

77.14. LOADING SCRIPT FROM EXTERNAL RESOURCE

You can externalize the script and have Camel load it from a resource such as "classpath:", "file:", or
"http:". This is done using the following syntax: "resource:scheme:location", eg to refer to a file on the
classpath you can do:

77.15. DEPENDENCIES

To use XPath in your camel routes you need to add the dependency on camel-xpath which implements
the XPath language.

If you use maven, add the following to your pom.xml, substituting the version number for the latest
version (see the download page for the latest version).

77.16. SPRING BOOT AUTO-CONFIGURATION

When using xpath with Spring Boot make sure to use the following Maven dependency to have support
for auto configuration:

The component supports 9 options, which are listed below.

XPathBuilder.xpath("/foo:person/@id", String.class).logNamespaces()

<xpath logNamespaces="true" resultType="String">/foo:person/@id</xpath>

2012-01-16 13:23:45,878 [stSaxonWithFlag] INFO XPathBuilder - Namespaces discovered in
message:
{xmlns:a=[http://apache.org/camel], DEFAULT=[http://apache.org/default],
xmlns:b=[http://apache.org/camelA, http://apache.org/camelB]}

.setHeader("myHeader").xpath("resource:classpath:myxpath.txt", String.class)

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-xpath</artifactId>
 <version>3.14.5.redhat-00032</version>
</dependency>

<dependency>
 <groupId>org.apache.camel.springboot</groupId>
 <artifactId>camel-xpath-starter</artifactId>
 <version>3.14.5.redhat-00018</version>
 <!-- Use your Camel Spring Boot version -->
</dependency>

CHAPTER 77. XPATH

1275

Name Description Defaul
t

Type

camel.language.x
path.document-
type

Name of class for document type The default value is
org.w3c.dom.Document.

 String

camel.language.x
path.enabled

Whether to enable auto configuration of the xpath
language. This is enabled by default.

 Boolean

camel.language.x
path.factory-ref

References to a custom XPathFactory to lookup in
the registry.

 String

camel.language.x
path.log-
namespaces

Whether to log namespaces which can assist during
troubleshooting.

false Boolean

camel.language.x
path.object-
model

The XPath object model to use. String

camel.language.x
path.pre-compile

Whether to enable pre-compiling the xpath
expression during initialization phase. pre-compile is
enabled by default. This can be used to turn off, for
example in cases the compilation phase is desired at
the starting phase, such as if the application is ahead
of time compiled (for example with camel-quarkus)
which would then load the xpath factory of the built
operating system, and not a JVM runtime.

true Boolean

camel.language.x
path.saxon

Whether to use Saxon. false Boolean

camel.language.x
path.thread-
safety

Whether to enable thread-safety for the returned
result of the xpath expression. This applies to when
using NODESET as the result type, and the returned
set has multiple elements. In this situation there can
be thread-safety issues if you process the NODESET
concurrently such as from a Camel Splitter EIP in
parallel processing mode. This option prevents
concurrency issues by doing defensive copies of the
nodes. It is recommended to turn this option on if you
are using camel-saxon or Saxon in your application.
Saxon has thread-safety issues which can be
prevented by turning this option on.

false Boolean

camel.language.x
path.trim

Whether to trim the value to remove leading and
trailing whitespaces and line breaks.

true Boolean

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1276

CHAPTER 78. OPENAPI JAVA
The Rest DSL can be integrated with the camel-openapi-java module which is used for exposing the
REST services and their APIs using OpenApi.

Maven users will need to add the following dependency to their pom.xml for this component:

The camel-openapi-java module can be used from the REST components (without the need for servlet)

78.1. USING OPENAPI IN REST-DSL

You can enable the OpenApi api from the rest-dsl by configuring the apiContextPath dsl as shown
below:

78.2. OPTIONS

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-openapi-java</artifactId>
 <version>3.14.5.redhat-00032</version>
 <!-- use the same version as your Camel core version -->
</dependency>

public class UserRouteBuilder extends RouteBuilder {
 @Override
 public void configure() throws Exception {
 // configure we want to use servlet as the component for the rest DSL
 // and we enable json binding mode
 restConfiguration().component("netty-http").bindingMode(RestBindingMode.json)
 // and output using pretty print
 .dataFormatProperty("prettyPrint", "true")
 // setup context path and port number that netty will use
 .contextPath("/").port(8080)
 // add OpenApi api-doc out of the box
 .apiContextPath("/api-doc")
 .apiProperty("api.title", "User API").apiProperty("api.version", "1.2.3")
 // and enable CORS
 .apiProperty("cors", "true");

 // this user REST service is json only
 rest("/user").description("User rest service")
 .consumes("application/json").produces("application/json")
 .get("/{id}").description("Find user by id").outType(User.class)
 .param().name("id").type(path).description("The id of the user to
get").dataType("int").endParam()
 .to("bean:userService?method=getUser(${header.id})")
 .put().description("Updates or create a user").type(User.class)
 .param().name("body").type(body).description("The user to update or create").endParam()
 .to("bean:userService?method=updateUser")
 .get("/findAll").description("Find all users").outType(User[].class)
 .to("bean:userService?method=listUsers");
 }
}

CHAPTER 78. OPENAPI JAVA

1277

https://www.openapis.org/

The OpenApi module can be configured using the following options. To configure using a servlet you use
the init-param as shown above. When configuring directly in the rest-dsl, you use the appropriate
method, such as enableCORS, host,contextPath, dsl. The options with api.xxx is configured using
apiProperty dsl.

Option Type Description

cors Boolea
n

Whether to enable CORS. Notice this only enables CORS for the api
browser, and not the actual access to the REST services. Is default false.

openapi.version String OpenApi spec version. Is default 3.0.

host String To setup the hostname. If not configured camel-openapi-java will calculate
the name as localhost based.

schemes String The protocol schemes to use. Multiple values can be separated by comma
such as "http,https". The default value is "http".

base.path String Required: To setup the base path where the REST services is available. The
path is relative (eg do not start with http/https) and camel-openapi-java will
calculate the absolute base path at runtime, which will be
protocol://host:port/context-path/base.path

api.path String To setup the path where the API is available (eg /api-docs). The path is
relative (eg do not start with http/https) and camel-openapi-java will
calculate the absolute base path at runtime, which will be
protocol://host:port/context-path/api.path So using relative paths is
much easier. See above for an example.

api.version String The version of the api. Is default 0.0.0.

api.title String The title of the application.

api.description String A short description of the application.

api.termsOfServic
e

String A URL to the Terms of Service of the API.

api.contact.name String Name of person or organization to contact

api.contact.email String An email to be used for API-related correspondence.

api.contact.url String A URL to a website for more contact information.

api.license.name String The license name used for the API.

api.license.url String A URL to the license used for the API.

78.3. ADDING SECURITY DEFINITIONS IN API DOC

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1278

The Rest DSL now supports declaring OpenApi securityDefinitions in the generated API document.
For example as shown below:

Here we have setup two security definitions

OAuth2 - with implicit authorization with the provided url

Api Key - using an api key that comes from HTTP header named myHeader

Then you need to specify on the rest operations which security to use by referring to their key
(petstore_auth or api_key).

Here the get operation is using the Api Key security and the put operation is using OAuth security with
permitted scopes of read and write pets.

78.4. JSON OR YAML

The camel-openapi-java module supports both JSon and Yaml out of the box. You can specify in the
request url what you want returned by using /openapi.json or /openapi.yaml for either one. If none is
specified then the HTTP Accept header is used to detect if json or yaml can be accepted. If either both
is accepted or none was set as accepted then json is returned as the default format.

78.5. USEXFORWARDHEADERS AND API URL RESOLUTION

The OpenApi specification allows you to specify the host, port & path that is serving the API. In OpenApi
V2 this is done via the host field and in OpenAPI V3 it is part of the servers field.

By default, the value for these fields is determined by X-Forwarded headers, X-Forwarded-Host & X-
Forwarded-Proto.

This can be overridden by disabling the lookup of X-Forwarded headers and by specifying your own
host, port & scheme on the REST configuration.

rest("/user").tag("dude").description("User rest service")
 // setup security definitions
 .securityDefinitions()
 .oauth2("petstore_auth").authorizationUrl("http://petstore.swagger.io/oauth/dialog").end()
 .apiKey("api_key").withHeader("myHeader").end()
 .end()
 .consumes("application/json").produces("application/json")

.get("/{id}/{date}").description("Find user by id and date").outType(User.class)
 .security("api_key")

...

.put().description("Updates or create a user").type(User.class)
 .security("petstore_auth", "write:pets,read:pets")

restConfiguration().component("netty-http")
 .useXForwardHeaders(false)
 .apiProperty("schemes", "https");
 .host("localhost")
 .port(8080);

CHAPTER 78. OPENAPI JAVA

1279

78.6. EXAMPLES

In the Apache Camel distribution we ship the camel-example-openapi-cdi and camel-example-spring-
boot-rest-openapi-simple which demonstrates using this OpenApi component.

78.7. SPRING BOOT AUTO-CONFIGURATION

When using openapi-java with Spring Boot make sure to use the following Maven dependency to have
support for auto configuration:

The component supports 1 options, which are listed below.

Name Description Defaul
t

Type

camel.openapi.en
abled

Enables Camel Rest DSL to automatic register its
OpenAPI (eg swagger doc) in Spring Boot which
allows tooling such as SpringDoc to integrate with
Camel.

true Boolean

<dependency>
 <groupId>org.apache.camel.springboot</groupId>
 <artifactId>camel-openapi-java-starter</artifactId>
 <version>3.14.5.redhat-00032</version>
 <!-- Use your Camel Spring Boot version -->
</dependency>

Red Hat Integration 2023.q1 Camel Spring Boot Reference 3.14

1280

	Table of Contents
	PREFACE
	MAKING OPEN SOURCE MORE INCLUSIVE

	CHAPTER 1. AWS CLOUDWATCH
	1.1. URI FORMAT
	1.2. CONFIGURING OPTIONS
	1.2.1. Configuring Component Options
	1.2.2. Configuring Endpoint Options

	1.3. COMPONENT OPTIONS
	1.4. ENDPOINT OPTIONS
	1.4.1. Path Parameters (1 parameters)
	1.4.2. Query Parameters (16 parameters)

	1.5. USAGE
	1.5.1. Static credentials vs Default Credential Provider
	1.5.2. Message headers evaluated by the CW producer
	1.5.3. Advanced CloudWatchClient configuration

	1.6. DEPENDENCIES
	1.7. EXAMPLES
	1.7.1. Producer Example

	1.8. SPRING BOOT AUTO-CONFIGURATION

	CHAPTER 2. AWS DYNAMODB
	2.1. URI FORMAT
	2.2. CONFIGURING OPTIONS
	2.2.1. Configuring Component Options
	2.2.2. Configuring Endpoint Options

	2.3. COMPONENT OPTIONS
	2.4. ENDPOINT OPTIONS
	2.4.1. Path Parameters (1 parameters)
	2.4.2. Query Parameters (20 parameters)

	2.5. USAGE
	2.5.1. Static credentials vs Default Credential Provider
	2.5.2. Message headers evaluated by the DDB producer
	2.5.3. Message headers set during BatchGetItems operation
	2.5.4. Message headers set during DeleteItem operation
	2.5.5. Message headers set during DeleteTable operation
	2.5.6. Message headers set during DescribeTable operation
	2.5.7. Message headers set during GetItem operation
	2.5.8. Message headers set during PutItem operation
	2.5.9. Message headers set during Query operation
	2.5.10. Message headers set during Scan operation
	2.5.11. Message headers set during UpdateItem operation
	2.5.12. Advanced AmazonDynamoDB configuration

	2.6. SUPPORTED PRODUCER OPERATIONS
	2.7. EXAMPLES
	2.7.1. Producer Examples

	2.8. SPRING BOOT AUTO-CONFIGURATION

	CHAPTER 3. AWS KINESIS
	3.1. URI FORMAT
	3.2. CONFIGURING OPTIONS
	3.2.1. Configuring Component Options
	3.2.2. Configuring Endpoint Options

	3.3. COMPONENT OPTIONS
	3.4. ENDPOINT OPTIONS
	3.4.1. Path Parameters (1 parameters)
	3.4.2. Query Parameters (38 parameters)

	3.5. BATCH CONSUMER
	3.6. USAGE
	3.6.1. Static credentials vs Default Credential Provider
	3.6.2. Message headers set by the Kinesis consumer
	3.6.3. AmazonKinesis configuration
	3.6.4. Providing AWS Credentials
	3.6.5. Message headers used by the Kinesis producer to write to Kinesis. The producer expects that the message body is a byte[].
	3.6.6. Message headers set by the Kinesis producer on successful storage of a Record

	3.7. DEPENDENCIES
	3.8. SPRING BOOT AUTO-CONFIGURATION

	CHAPTER 4. AWS 2 LAMBDA
	4.1. URI FORMAT
	4.2. CONFIGURING OPTIONS
	4.2.1. Configuring Component Options
	4.2.2. Configuring Endpoint Options

	4.3. COMPONENT OPTIONS
	4.4. ENDPOINT OPTIONS
	4.4.1. Path Parameters (1 parameters)
	4.4.2. Query Parameters (14 parameters)

	4.5. USAGE
	4.5.1. Static credentials vs Default Credential Provider
	4.5.2. Message headers evaluated by the Lambda producer

	4.6. LIST OF AVALAIBLE OPERATIONS
	4.7. EXAMPLES
	4.7.1. Producer Example
	4.7.2. Producer Examples

	4.8. USING A POJO AS BODY
	4.9. DEPENDENCIES
	4.10. SPRING BOOT AUTO-CONFIGURATION

	CHAPTER 5. AWS S3 STORAGE SERVICE
	5.1. URI FORMAT
	5.2. CONFIGURING OPTIONS
	5.2.1. Configuring Component Options
	5.2.2. Configuring Endpoint Options

	5.3. COMPONENT OPTIONS
	5.4. ENDPOINT OPTIONS
	5.4.1. Path Parameters (1 parameters)
	5.4.2. Query Parameters (68 parameters)

	5.5. BATCH CONSUMER
	5.6. USAGE
	5.6.1. Message headers evaluated by the S3 producer
	5.6.2. Message headers set by the S3 producer
	5.6.3. Message headers set by the S3 consumer
	5.6.4. S3 Producer operations
	5.6.5. Advanced AmazonS3 configuration
	5.6.6. Use KMS with the S3 component
	5.6.7. Static credentials vs Default Credential Provider
	5.6.8. S3 Producer Operation examples

	5.7. STREAMING UPLOAD MODE
	5.8. BUCKET AUTOCREATION
	5.9. MOVING STUFF BETWEEN A BUCKET AND ANOTHER BUCKET
	5.10. MOVEAFTERREAD CONSUMER OPTION
	5.11. USING CUSTOMER KEY AS ENCRYPTION
	5.12. USING A POJO AS BODY
	5.13. CREATE S3 CLIENT AND ADD COMPONENT TO REGISTRY
	5.14. DEPENDENCIES
	5.15. SPRING BOOT AUTO-CONFIGURATION

	CHAPTER 6. AWS SIMPLE NOTIFICATION SYSTEM (SNS)
	6.1. URI FORMAT
	6.2. URI OPTIONS
	6.2.1. Configuring Options
	6.2.1.1. Configuring Component Options
	6.2.1.2. Configuring Endpoint Options

	6.3. COMPONENT OPTIONS
	6.4. ENDPOINT OPTIONS
	6.4.1. Path Parameters (1 parameters)
	6.4.2. Query Parameters (23 parameters)

	6.5. USAGE
	6.5.1. Static credentials vs Default Credential Provider
	6.5.2. Message headers evaluated by the SNS producer
	6.5.3. Message headers set by the SNS producer
	6.5.4. Advanced AmazonSNS configuration
	6.5.5. Create a subscription between an AWS SNS Topic and an AWS SQS Queue

	6.6. TOPIC AUTOCREATION
	6.7. SNS FIFO
	6.7.1. SNS Fifo Topic Message group Id Strategy and message Deduplication Id Strategy

	6.8. EXAMPLES
	6.8.1. Producer Examples

	6.9. DEPENDENCIES
	6.10. SPRING BOOT AUTO-CONFIGURATION

	CHAPTER 7. AWS SIMPLE QUEUE SERVICE (SQS)
	7.1. URI FORMAT
	7.2. CONFIGURING OPTIONS
	7.2.1. Configuring Component Options
	7.2.2. Configuring Endpoint Options

	7.3. COMPONENT OPTIONS
	7.4. ENDPOINT OPTIONS
	7.4.1. Path Parameters (1 parameters)
	7.4.2. Query Parameters (61 parameters)

	7.5. BATCH CONSUMER
	7.6. USAGE
	7.6.1. Static credentials vs Default Credential Provider
	7.6.2. Message headers set by the SQS producer
	7.6.3. Message headers set by the SQS consumer
	7.6.4. Advanced AmazonSQS configuration
	7.6.5. Creating or updating an SQS Queue
	7.6.6. DelayQueue VS Delay for Single message
	7.6.7. Server Side Encryption

	7.7. JMS-STYLE SELECTORS
	7.8. AVAILABLE PRODUCER OPERATIONS
	7.9. SEND MESSAGE
	7.10. SEND BATCH MESSAGE
	7.11. DELETE SINGLE MESSAGE
	7.12. LIST QUEUES
	7.13. PURGE QUEUE
	7.14. QUEUE AUTOCREATION
	7.15. SEND BATCH MESSAGE AND MESSAGE DEDUPLICATION STRATEGY
	7.16. DEPENDENCIES
	7.17. SPRING BOOT AUTO-CONFIGURATION

	CHAPTER 8. AZURE STORAGE BLOB SERVICE
	8.1. URI FORMAT
	8.2. CONFIGURING OPTIONS
	8.2.1. Configuring Component Options
	8.2.2. Configuring Endpoint Options

	8.3. COMPONENT OPTIONS
	8.4. ENDPOINT OPTIONS
	8.4.1. Path Parameters (2 parameters)
	8.4.2. Query Parameters (48 parameters)

	8.5. USAGE
	8.5.1. Message headers evaluated by the component producer
	8.5.2. Message headers set by either component producer or consumer
	8.5.3. Advanced Azure Storage Blob configuration
	8.5.4. Automatic detection of BlobServiceClient client in registry
	8.5.5. Azure Storage Blob Producer operations
	8.5.6. Consumer Examples
	8.5.7. Producer Operations Examples
	8.5.8. Development Notes (Important)

	8.6. SPRING BOOT AUTO-CONFIGURATION

	CHAPTER 9. AZURE STORAGE QUEUE SERVICE
	9.1. URI FORMAT
	9.2. CONFIGURING OPTIONS
	9.2.1. Configuring Component Options
	9.2.2. Configuring Endpoint Options

	9.3. COMPONENT OPTIONS
	9.4. ENDPOINT OPTIONS
	9.4.1. Path Parameters (2 parameters)
	9.4.2. Query Parameters (31 parameters)

	9.5. USAGE
	9.5.1. Message headers evaluated by the component producer
	9.5.2. Message headers set by either component producer or consumer
	9.5.3. Advanced Azure Storage Queue configuration
	9.5.4. Automatic detection of QueueServiceClient client in registry
	9.5.5. Azure Storage Queue Producer operations
	9.5.6. Consumer Examples
	9.5.7. Producer Operations Examples
	9.5.8. Development Notes (Important)

	9.6. SPRING BOOT AUTO-CONFIGURATION

	CHAPTER 10. BEAN
	10.1. URI FORMAT
	10.2. CONFIGURING OPTIONS
	10.2.1. Configuring Component Options
	10.2.2. Configuring Endpoint Options

	10.3. COMPONENT OPTIONS
	10.4. ENDPOINT OPTIONS
	10.4.1. Path Parameters (1 parameters)
	10.4.2. Query Parameters (5 parameters)

	10.5. USING
	10.6. BEAN AS ENDPOINT
	10.7. JAVA DSL BEAN SYNTAX
	10.8. BEAN BINDING
	10.9. SPRING BOOT AUTO-CONFIGURATION

	CHAPTER 11. BEAN VALIDATOR
	11.1. URI FORMAT
	11.2. CONFIGURING OPTIONS
	11.2.1. Configuring Component Options
	11.2.2. Configuring Endpoint Options

	11.3. COMPONENT OPTIONS
	11.4. ENDPOINT OPTIONS
	11.4.1. Path Parameters (1 parameters)
	11.4.2. Query Parameters (8 parameters)

	11.5. OSGI DEPLOYMENT
	11.6. EXAMPLE
	11.7. SPRING BOOT AUTO-CONFIGURATION

	CHAPTER 12. BROWSE
	12.1. URI FORMAT
	12.2. CONFIGURING OPTIONS
	12.2.1. Configuring Component Options
	12.2.2. Configuring Endpoint Options

	12.3. COMPONENT OPTIONS
	12.4. ENDPOINT OPTIONS
	12.4.1. Path Parameters (1 parameters)
	12.4.2. Query Parameters (4 parameters)

	12.5. SAMPLE
	12.6. SPRING BOOT AUTO-CONFIGURATION

	CHAPTER 13. CASSANDRA CQL
	13.1. CONFIGURING OPTIONS
	13.1.1. Configuring Component Options
	13.1.2. Configuring Endpoint Options

	13.2. COMPONENT OPTIONS
	13.3. ENDPOINT OPTIONS
	13.3.1. Path Parameters (4 parameters)
	13.3.2. Query Parameters (30 parameters)

	13.4. ENDPOINT CONNECTION SYNTAX
	13.5. MESSAGES
	13.5.1. Incoming Message
	13.5.2. Outgoing Message

	13.6. REPOSITORIES
	13.7. IDEMPOTENT REPOSITORY
	13.8. AGGREGATION REPOSITORY
	13.9. EXAMPLES
	13.10. SPRING BOOT AUTO-CONFIGURATION

	CHAPTER 14. CONTROL BUS
	14.1. COMMANDS
	14.2. CONFIGURING OPTIONS
	14.2.1. Configuring Component Options
	14.2.2. Configuring Endpoint Options

	14.3. COMPONENT OPTIONS
	14.4. ENDPOINT OPTIONS
	14.4.1. Path Parameters (2 parameters)
	14.4.1.1. Query Parameters (6 parameters)

	14.5. USING ROUTE COMMAND
	14.6. GETTING PERFORMANCE STATISTICS
	14.7. USING SIMPLE LANGUAGE
	14.8. SPRING BOOT AUTO-CONFIGURATION

	CHAPTER 15. CRON
	15.1. CONFIGURING OPTIONS
	15.1.1. Configuring Component Options
	15.1.2. Configuring Endpoint Options

	15.2. COMPONENT OPTIONS
	15.3. ENDPOINT OPTIONS
	15.3.1. Path Parameters (1 parameters)
	15.3.2. Query Parameters (4 parameters)

	15.4. USAGE
	15.5. SPRING BOOT AUTO-CONFIGURATION

	CHAPTER 16. CXF
	16.1. URI FORMAT
	16.2. CONFIGURING OPTIONS
	16.2.1. Configuring Component Options
	16.2.2. Configuring Endpoint Options

	16.3. COMPONENT OPTIONS
	16.4. ENDPOINT OPTIONS
	16.4.1. Path Parameters (2 parameters)
	16.4.2. Query Parameters (35 parameters)
	16.4.3. Descriptions of the dataformats
	16.4.4. How to enable CXF’s LoggingOutInterceptor in RAW mode
	16.4.5. Description of relayHeaders option
	16.4.6. Available only in POJO mode

	16.5. CONFIGURE THE CXF ENDPOINTS WITH SPRING
	16.6. HOW TO MAKE THE CAMEL-CXF COMPONENT USE LOG4J INSTEAD OF JAVA.UTIL.LOGGING
	16.7. HOW TO LET CAMEL-CXF RESPONSE START WITH XML PROCESSING INSTRUCTION
	16.8. HOW TO OVERRIDE THE CXF PRODUCER ADDRESS FROM MESSAGE HEADER
	16.9. HOW TO CONSUME A MESSAGE FROM A CAMEL-CXF ENDPOINT IN POJO DATA FORMAT
	16.10. HOW TO PREPARE THE MESSAGE FOR THE CAMEL-CXF ENDPOINT IN POJO DATA FORMAT
	16.11. HOW TO DEAL WITH THE MESSAGE FOR A CAMEL-CXF ENDPOINT IN PAYLOAD DATA FORMAT
	16.12. HOW TO GET AND SET SOAP HEADERS IN POJO MODE
	16.13. HOW TO GET AND SET SOAP HEADERS IN PAYLOAD MODE
	16.14. SOAP HEADERS ARE NOT AVAILABLE IN RAW MODE
	16.15. HOW TO THROW A SOAP FAULT FROM CAMEL
	16.16. HOW TO PROPAGATE A CAMEL-CXF ENDPOINT’S REQUEST AND RESPONSE CONTEXT
	16.17. ATTACHMENT SUPPORT
	16.18. STREAMING SUPPORT IN PAYLOAD MODE
	16.19. USING THE GENERIC CXF DISPATCH MODE
	16.20. SPRING BOOT AUTO-CONFIGURATION

	CHAPTER 17. DATA FORMAT
	17.1. URI FORMAT
	17.2. DATAFORMAT OPTIONS
	17.2.1. Configuring Options
	17.2.1.1. Configuring Component Options
	17.2.1.2. Configuring Endpoint Options

	17.3. COMPONENT OPTIONS
	17.4. ENDPOINT OPTIONS
	17.4.1. Path Parameters (2 parameters)
	17.4.2. Query Parameters (1 parameters)

	17.5. SAMPLES
	17.6. SPRING BOOT AUTO-CONFIGURATION

	CHAPTER 18. DATASET
	18.1. URI FORMAT
	18.2. CONFIGURING OPTIONS
	18.2.1. Configuring Component Options
	18.2.2. Configuring Endpoint Options

	18.3. COMPONENT OPTIONS
	18.4. ENDPOINT OPTIONS
	18.4.1. Path Parameters (1 parameters)
	18.4.2. Query Parameters (21 parameters)

	18.5. CONFIGURING DATASET
	18.6. EXAMPLE
	18.7. DATASETSUPPORT (ABSTRACT CLASS)
	18.7.1. Properties on DataSetSupport

	18.8. SIMPLEDATASET
	18.8.1. Additional Properties on SimpleDataSet

	18.9. LISTDATASET
	18.9.1. Additional Properties on ListDataSet

	18.10. FILEDATASET
	18.10.1. Additional Properties on FileDataSet

	18.11. SPRING BOOT AUTO-CONFIGURATION

	CHAPTER 19. DIRECT
	19.1. URI FORMAT
	19.2. CONFIGURING OPTIONS
	19.2.1. Configuring Component Options
	19.2.2. Configuring Endpoint Options

	19.3. COMPONENT OPTIONS
	19.4. ENDPOINT OPTIONS
	19.4.1. Path Parameters (1 parameters)
	19.4.2. Query Parameters (8 parameters)

	19.5. SAMPLES
	19.6. SPRING BOOT AUTO-CONFIGURATION

	CHAPTER 20. FHIR
	20.1. URI FORMAT
	20.2. CONFIGURING OPTIONS
	20.2.1. Configuring Component Options
	20.2.2. Configuring Endpoint Options

	20.3. COMPONENT OPTIONS
	20.4. ENDPOINT OPTIONS
	20.4.1. Path Parameters (2 parameters)
	20.4.2. Query Parameters (44 parameters)

	20.5. API PARAMETERS (13 APIS)
	20.5.1. API: capabilities
	20.5.1.1. Method ofType

	20.5.2. API: create
	20.5.2.1. Method resource

	20.5.3. API: delete
	20.5.3.1. Method resource
	20.5.3.2. Method resourceById
	20.5.3.3. Method resourceConditionalByUrl

	20.5.4. API: history
	20.5.4.1. Method onInstance
	20.5.4.2. Method onServer
	20.5.4.3. Method onType

	20.5.5. API: load-page
	20.5.5.1. Method byUrl
	20.5.5.2. Method next
	20.5.5.3. Method previous

	20.5.6. API: meta
	20.5.6.1. Method add
	20.5.6.2. Method delete
	20.5.6.3. Method getFromResource
	20.5.6.4. Method getFromServer
	20.5.6.5. Method getFromType

	20.5.7. API: operation
	20.5.7.1. Method onInstance
	20.5.7.2. Method onInstanceVersion
	20.5.7.3. Method onServer
	20.5.7.4. Method onType
	20.5.7.5. Method processMessage

	20.5.8. API: patch
	20.5.8.1. Method patchById
	20.5.8.2. Method patchByUrl

	20.5.9. API: read
	20.5.9.1. Method resourceById
	20.5.9.2. Method resourceByUrl

	20.5.10. API: search
	20.5.10.1. Method searchByUrl

	20.5.11. API: transaction
	20.5.11.1. Method withBundle
	20.5.11.2. Method withResources

	20.5.12. API: update
	20.5.12.1. Method resource
	20.5.12.2. Method resourceBySearchUrl

	20.5.13. API: validate
	20.5.13.1. Method resource

	20.6. SPRING BOOT AUTO-CONFIGURATION

	CHAPTER 21. FILE
	21.1. URI FORMAT
	21.2. CONFIGURING OPTIONS
	21.2.1. Configuring Component Options
	21.2.2. Configuring Endpoint Options

	21.3. COMPONENT OPTIONS
	21.4. ENDPOINT OPTIONS
	21.4.1. Path Parameters (1 parameters)
	21.4.2. Query Parameters (94 parameters)

	21.5. MOVE AND DELETE OPERATIONS
	21.6. FINE GRAINED CONTROL OVER MOVE AND PREMOVE OPTION
	21.7. ABOUT MOVEFAILED
	21.8. MESSAGE HEADERS
	21.8.1. File producer only
	21.8.2. File consumer only

	21.9. BATCH CONSUMER
	21.10. EXCHANGE PROPERTIES, FILE CONSUMER ONLY
	21.11. USING CHARSET
	21.12. COMMON GOTCHAS WITH FOLDER AND FILENAMES
	21.13. FILENAME EXPRESSION
	21.14. CONSUMING FILES FROM FOLDERS WHERE OTHERS DROP FILES DIRECTLY
	21.15. USING DONE FILES
	21.16. WRITING DONE FILES
	21.17. SAMPLES
	21.17.1. Read from a directory and write to another directory
	21.17.2. Read from a directory and write to another directory using a overrule dynamic name
	21.17.3. Reading recursively from a directory and writing to another

	21.18. USING FLATTEN
	21.19. READING FROM A DIRECTORY AND THE DEFAULT MOVE OPERATION
	21.20. READ FROM A DIRECTORY AND PROCESS THE MESSAGE IN JAVA
	21.21. WRITING TO FILES
	21.21.1. Write to subdirectory using Exchange.FILE_NAME
	21.21.2. Writing file through the temporary directory relative to the final destination

	21.22. USING EXPRESSION FOR FILENAMES
	21.23. AVOIDING READING THE SAME FILE MORE THAN ONCE (IDEMPOTENT CONSUMER)
	21.24. USING A FILE BASED IDEMPOTENT REPOSITORY
	21.25. USING A JPA BASED IDEMPOTENT REPOSITORY
	21.26. FILTER USING ORG.APACHE.CAMEL.COMPONENT.FILE.GENERICFILEFILTER
	21.27. FILTERING USING ANT PATH MATCHER
	21.27.1. Sorting using Comparator
	21.27.2. Sorting using sortBy

	21.28. USING GENERICFILEPROCESSSTRATEGY
	21.29. USING FILTER
	21.30. USING BRIDGEERRORHANDLER
	21.31. DEBUG LOGGING
	21.32. SPRING BOOT AUTO-CONFIGURATION

	CHAPTER 22. FTP
	22.1. URI FORMAT
	22.2. CONFIGURING OPTIONS
	22.2.1. Configuring Component Options
	22.2.2. Configuring Endpoint Options

	22.3. COMPONENT OPTIONS
	22.4. ENDPOINT OPTIONS
	22.4.1. Path Parameters (3 parameters)
	22.4.2. Query Parameters (111 parameters)

	22.5. FTPS COMPONENT DEFAULT TRUST STORE
	22.6. EXAMPLES
	22.7. CONCURRENCY
	22.8. MORE INFORMATION
	22.9. DEFAULT WHEN CONSUMING FILES
	22.9.1. limitations

	22.10. MESSAGE HEADERS
	22.10.1. Exchange Properties

	22.11. ABOUT TIMEOUTS
	22.12. USING LOCAL WORK DIRECTORY
	22.13. STEPWISE CHANGING DIRECTORIES
	22.14. USING STEPWISE=TRUE (DEFAULT MODE)
	22.15. USING STEPWISE=FALSE
	22.16. SAMPLES
	22.16.1. Consuming a remote FTPS server (implicit SSL) and client authentication
	22.16.2. Consuming a remote FTPS server (explicit TLS) and a custom trust store configuration

	22.17. CUSTOM FILTERING
	22.18. FILTERING USING ANT PATH MATCHER
	22.19. USING A PROXY WITH SFTP
	22.20. SETTING PREFERRED SFTP AUTHENTICATION METHOD
	22.21. CONSUMING A SINGLE FILE USING A FIXED NAME
	22.22. DEBUG LOGGING
	22.23. SPRING BOOT AUTO-CONFIGURATION

	CHAPTER 23. HTTP
	23.1. URI FORMAT
	23.2. CONFIGURING OPTIONS
	23.2.1. Configuring Component Options
	23.2.2. Configuring Endpoint Options

	23.3. COMPONENT OPTIONS
	23.4. ENDPOINT OPTIONS
	23.4.1. Path Parameters (1 parameters)
	23.4.2. Query Parameters (51 parameters)

	23.5. MESSAGE HEADERS
	23.6. MESSAGE BODY
	23.7. USING SYSTEM PROPERTIES
	23.8. RESPONSE CODE
	23.9. EXCEPTIONS
	23.10. WHICH HTTP METHOD WILL BE USED
	23.11. HOW TO GET ACCESS TO HTTPSERVLETREQUEST AND HTTPSERVLETRESPONSE
	23.12. CONFIGURING URI TO CALL
	23.13. CONFIGURING URI PARAMETERS
	23.14. HOW TO SET THE HTTP METHOD (GET/PATCH/POST/PUT/DELETE/HEAD/OPTIONS/TRACE) TO THE HTTP PRODUCER
	23.15. USING CLIENT TIMEOUT - SO_TIMEOUT
	23.16. CONFIGURING A PROXY
	23.16.1. Using proxy settings outside of URI

	23.17. CONFIGURING CHARSET
	23.17.1. Sample with scheduled poll
	23.17.2. URI Parameters from the endpoint URI
	23.17.3. URI Parameters from the Message
	23.17.4. Getting the Response Code

	23.18. DISABLING COOKIES
	23.19. BASIC AUTH WITH THE STREAMING MESSAGE BODY
	23.20. ADVANCED USAGE
	23.20.1. Setting up SSL for HTTP Client

	23.21. SPRING BOOT AUTO-CONFIGURATION

	CHAPTER 24. INFINISPAN
	24.1. URI FORMAT
	24.2. CONFIGURING OPTIONS
	24.2.1. Configuring Component Options
	24.2.2. Configuring Endpoint Options

	24.3. COMPONENT OPTIONS
	24.4. ENDPOINT OPTIONS
	24.4.1. Path Parameters (1 parameters)
	24.4.2. Query Parameters (26 parameters)

	24.5. CAMEL OPERATIONS
	24.6. MESSAGE HEADERS
	24.7. EXAMPLES
	24.8. USING THE INFINISPAN BASED IDEMPOTENT REPOSITORY
	24.9. USING THE INFINISPAN BASED AGGREGATION REPOSITORY
	24.10. SPRING BOOT AUTO-CONFIGURATION

	CHAPTER 25. JIRA
	25.1. URI FORMAT
	25.2. CONFIGURING OPTIONS
	25.2.1. Configuring Component Options
	25.2.2. Configuring Endpoint Options

	25.3. COMPONENT OPTIONS
	25.4. ENDPOINT OPTIONS
	25.4.1. Path Parameters (1 parameters)
	25.4.2. Query Parameters (16 parameters)

	25.5. CLIENT FACTORY
	25.6. AUTHENTICATION
	25.6.1. Basic authentication requirements:
	25.6.2. OAuth authentication requirements:

	25.7. JQL
	25.8. OPERATIONS
	25.9. ADDISSUE
	25.10. ADDCOMMENT
	25.11. ATTACH
	25.12. DELETEISSUE
	25.13. TRANSITIONISSUE
	25.14. UPDATEISSUE
	25.15. WATCHER
	25.16. WATCHUPDATES (CONSUMER)
	25.17. SPRING BOOT AUTO-CONFIGURATION

	CHAPTER 26. JMS
	26.1. URI FORMAT
	26.1.1. Using ActiveMQ
	26.1.2. Transactions and Cache Levels
	26.1.3. Durable Subscriptions
	26.1.4. Message Header Mapping

	26.2. CONFIGURING OPTIONS
	26.2.1. Configuring Component Options
	26.2.2. Configuring Endpoint Options

	26.3. COMPONENT OPTIONS
	26.4. ENDPOINT OPTIONS
	26.4.1. Path Parameters (2 parameters)
	26.4.2. Query Parameters (95 parameters)

	26.5. SAMPLES
	26.5.1. Receiving from JMS
	26.5.2. Sending to JMS
	26.5.3. Using Annotations
	26.5.4. Spring DSL sample
	26.5.5. Other samples
	26.5.6. Using JMS as a Dead Letter Queue storing Exchange
	26.5.7. Using JMS as a Dead Letter Channel storing error only

	26.6. MESSAGE MAPPING BETWEEN JMS AND CAMEL
	26.6.1. Disabling auto-mapping of JMS messages
	26.6.2. Using a custom MessageConverter
	26.6.3. Controlling the mapping strategy selected

	26.7. MESSAGE FORMAT WHEN SENDING
	26.8. MESSAGE FORMAT WHEN RECEIVING
	26.9. ABOUT USING CAMEL TO SEND AND RECEIVE MESSAGES AND JMSREPLYTO
	26.9.1. JmsProducer
	26.9.2. JmsConsumer

	26.10. REUSE ENDPOINT AND SEND TO DIFFERENT DESTINATIONS COMPUTED AT RUNTIME
	26.11. CONFIGURING DIFFERENT JMS PROVIDERS
	26.11.1. Using JNDI to find the ConnectionFactory

	26.12. CONCURRENT CONSUMING
	26.12.1. Concurrent Consuming with async consumer

	26.13. REQUEST-REPLY OVER JMS
	26.13.1. Request-reply over JMS and using a shared fixed reply queue
	26.13.2. Request-reply over JMS and using an exclusive fixed reply queue

	26.14. SYNCHRONIZING CLOCKS BETWEEN SENDERS AND RECEIVERS
	26.15. ABOUT TIME TO LIVE
	26.16. ENABLING TRANSACTED CONSUMPTION
	26.17. USING JMSREPLYTO FOR LATE REPLIES
	26.18. USING A REQUEST TIMEOUT
	26.19. SENDING AN INONLY MESSAGE AND KEEPING THE JMSREPLYTO HEADER
	26.20. SETTING JMS PROVIDER OPTIONS ON THE DESTINATION
	26.21. SPRING BOOT AUTO-CONFIGURATION

	CHAPTER 27. KAFKA
	27.1. URI FORMAT
	27.2. CONFIGURING OPTIONS
	27.2.1. Configuring Component Options
	27.2.2. Configuring Endpoint Options

	27.3. COMPONENT OPTIONS
	27.4. ENDPOINT OPTIONS
	27.4.1. Path Parameters (1 parameters)
	27.4.2. Query Parameters (102 parameters)

	27.5. MESSAGE HEADERS
	27.5.1. Consumer headers
	27.5.2. Producer headers

	27.6. CONSUMER ERROR HANDLING
	27.7. SAMPLES
	27.7.1. Consuming messages from Kafka
	27.7.2. Producing messages to Kafka

	27.8. SSL CONFIGURATION
	27.9. USING THE KAFKA IDEMPOTENT REPOSITORY
	27.10. USING MANUAL COMMIT WITH KAFKA CONSUMER
	27.11. KAFKA HEADERS PROPAGATION
	27.12. SPRING BOOT AUTO-CONFIGURATION

	CHAPTER 28. KAMELET
	28.1. URI FORMAT
	28.2. CONFIGURING OPTIONS
	28.2.1. Configuring Component Options
	28.2.2. Configuring Endpoint Options

	28.3. COMPONENT OPTIONS
	28.4. ENDPOINT OPTIONS
	28.4.1. Path Parameters (2 parameters)
	28.4.2. Query Parameters (8 parameters)

	28.5. DISCOVERY
	28.6. SAMPLES
	28.7. SPRING BOOT AUTO-CONFIGURATION

	CHAPTER 29. LANGUAGE
	29.1. URI FORMAT
	29.2. CONFIGURING OPTIONS
	29.2.1. Configuring Component Options
	29.2.2. Configuring Endpoint Options

	29.3. COMPONENT OPTIONS
	29.4. ENDPOINT OPTIONS
	29.4.1. Path Parameters (2 parameters)
	29.4.2. Query Parameters (7 parameters)

	29.5. MESSAGE HEADERS
	29.6. EXAMPLES
	29.7. LOADING SCRIPTS FROM RESOURCES
	29.8. SPRING BOOT AUTO-CONFIGURATION

	CHAPTER 30. LOG
	30.1. URI FORMAT
	30.2. CONFIGURING OPTIONS
	30.2.1. Configuring Component Options
	30.2.2. Configuring Endpoint Options

	30.3. COMPONENT OPTIONS
	30.4. ENDPOINT OPTIONS
	30.4.1. Path Parameters (1 parameters)
	30.4.2. Query Parameters (27 parameters)

	30.5. REGULAR LOGGER SAMPLE
	30.6. REGULAR LOGGER WITH FORMATTER SAMPLE
	30.7. THROUGHPUT LOGGER WITH GROUPSIZE SAMPLE
	30.8. THROUGHPUT LOGGER WITH GROUPINTERVAL SAMPLE
	30.9. MASKING SENSITIVE INFORMATION LIKE PASSWORD
	30.10. FULL CUSTOMIZATION OF THE LOGGING OUTPUT
	30.10.1. Convention over configuration

	30.11. SPRING BOOT AUTO-CONFIGURATION

	CHAPTER 31. MAIL
	31.1. URI FORMAT
	31.2. CONFIGURING OPTIONS
	31.2.1. Configuring Component Options
	31.2.2. Configuring Endpoint Options

	31.3. COMPONENT OPTIONS
	31.4. ENDPOINT OPTIONS
	31.4.1. Path Parameters (2 parameters)
	31.4.2. Query Parameters (66 parameters)
	31.4.3. Sample endpoints
	31.4.4. Component alias names
	31.4.5. Default ports

	31.5. SSL SUPPORT
	31.5.1. Using the JSSE Configuration Utility
	31.5.2. Configuring JavaMail Directly

	31.6. MAIL MESSAGE CONTENT
	31.7. HEADERS TAKE PRECEDENCE OVER PRE-CONFIGURED RECIPIENTS
	31.8. MULTIPLE RECIPIENTS FOR EASIER CONFIGURATION
	31.9. SETTING SENDER NAME AND EMAIL
	31.10. JAVAMAIL API (EX SUN JAVAMAIL)
	31.11. SAMPLES
	31.12. SENDING MAIL WITH ATTACHMENT SAMPLE
	31.13. SSL SAMPLE
	31.14. CONSUMING MAILS WITH ATTACHMENT SAMPLE
	31.15. HOW TO SPLIT A MAIL MESSAGE WITH ATTACHMENTS
	31.16. USING CUSTOM SEARCHTERM
	31.17. POLLING OPTIMIZATION
	31.18. USING HEADERS WITH ADDITIONAL JAVA MAIL SENDER PROPERTIES
	31.19. SPRING BOOT AUTO-CONFIGURATION

	CHAPTER 32. MASTER
	32.1. USING THE MASTER ENDPOINT
	32.2. URI FORMAT
	32.3. CONFIGURING OPTIONS
	32.3.1. Configuring Component Options
	32.3.2. Configuring Endpoint Options

	32.4. COMPONENT OPTIONS
	32.5. ENDPOINT OPTIONS
	32.5.1. Path Parameters (2 parameters)
	32.5.2. Query Parameters (3 parameters)

	32.6. EXAMPLE
	32.7. IMPLEMENTATIONS
	32.8. SPRING BOOT AUTO-CONFIGURATION

	CHAPTER 33. MLLP
	33.1. CONFIGURING OPTIONS
	33.1.1. Configuring Component Options
	33.1.2. Configuring Endpoint Options

	33.2. COMPONENT OPTIONS
	33.3. ENDPOINT OPTIONS
	33.3.1. Path Parameters (2 parameters)
	33.3.2. Query Parameters (26 parameters)

	33.4. MLLP CONSUMER
	33.4.1. Message Headers
	33.4.2. Exchange Properties

	33.5. MLLP PRODUCER
	33.5.1. Message Headers
	33.5.2. Exchange Properties

	33.6. SPRING BOOT AUTO-CONFIGURATION

	CHAPTER 34. MOCK
	34.1. URI FORMAT
	34.2. CONFIGURING OPTIONS
	34.2.1. Configuring Component Options
	34.2.2. Configuring Endpoint Options

	34.3. COMPONENT OPTIONS
	34.4. ENDPOINT OPTIONS
	34.4.1. Path Parameters (1 parameters)
	34.4.2. Query Parameters (12 parameters)

	34.5. SIMPLE EXAMPLE
	34.6. USING ASSERTPERIOD
	34.7. SETTING EXPECTATIONS
	34.8. ADDING EXPECTATIONS TO SPECIFIC MESSAGES
	34.9. MOCKING EXISTING ENDPOINTS
	34.10. MOCKING EXISTING ENDPOINTS USING THE CAMEL-TEST COMPONENT
	34.11. MOCKING EXISTING ENDPOINTS WITH XML DSL
	34.12. MOCKING ENDPOINTS AND SKIP SENDING TO ORIGINAL ENDPOINT
	34.13. LIMITING THE NUMBER OF MESSAGES TO KEEP
	34.14. TESTING WITH ARRIVAL TIMES
	34.15. SPRING BOOT AUTO-CONFIGURATION

	CHAPTER 35. MONGODB
	35.1. URI FORMAT
	35.2. CONFIGURING OPTIONS
	35.2.1. Configuring Component Options
	35.2.2. Configuring Endpoint Options

	35.3. COMPONENT OPTIONS
	35.4. ENDPOINT OPTIONS
	35.4.1. Path Parameters (1 parameters)
	35.4.2. Query Parameters (27 parameters)

	35.5. CONFIGURATION OF DATABASE IN SPRING XML
	35.6. SAMPLE ROUTE
	35.7. MONGODB OPERATIONS - PRODUCER ENDPOINTS
	35.7.1. Query operations
	35.7.1.1. findById
	35.7.1.2. findOneByQuery
	35.7.1.3. Example without a query selector (returns the first document in a collection)
	35.7.1.4. Example with a query selector (returns the first matching document in a collection):
	35.7.1.5. findAll
	35.7.1.6. count
	35.7.1.7. Specifying a fields filter (projection)
	35.7.1.8. Specifying a sort clause

	35.7.2. Create/update operations
	35.7.2.1. insert
	35.7.2.2. save
	35.7.2.3. update

	35.7.3. Delete operations
	35.7.3.1. remove

	35.7.4. Bulk Write Operations
	35.7.4.1. bulkWrite

	35.7.5. Other operations
	35.7.5.1. aggregate
	35.7.5.2. getDbStats
	35.7.5.3. getColStats
	35.7.5.4. command

	35.7.6. Dynamic operations

	35.8. CONSUMERS
	35.8.1. Tailable Cursor Consumer

	35.9. HOW THE TAILABLE CURSOR CONSUMER WORKS
	35.10. PERSISTENT TAIL TRACKING
	35.11. ENABLING PERSISTENT TAIL TRACKING
	35.11.1. Change Streams Consumer

	35.12. TYPE CONVERSIONS
	35.13. SPRING BOOT AUTO-CONFIGURATION

	CHAPTER 36. NETTY
	36.1. URI FORMAT
	36.2. CONFIGURING OPTIONS
	36.2.1. Configuring Component Options
	36.2.2. Configuring Endpoint Options

	36.3. COMPONENT OPTIONS
	36.4. ENDPOINT OPTIONS
	36.4.1. Path Parameters (3 parameters)
	36.4.2. Query Parameters (71 parameters)

	36.5. REGISTRY BASED OPTIONS
	36.5.1. Using non shareable encoders or decoders

	36.6. SENDING MESSAGES TO/FROM A NETTY ENDPOINT
	36.6.1. Netty Producer
	36.6.2. Netty Consumer

	36.7. EXAMPLES
	36.7.1. A UDP Netty endpoint using Request-Reply and serialized object payload
	36.7.2. A TCP based Netty consumer endpoint using One-way communication
	36.7.3. An SSL/TCP based Netty consumer endpoint using Request-Reply communication
	36.7.4. Using Multiple Codecs

	36.8. CLOSING CHANNEL WHEN COMPLETE
	36.9. CUSTOM PIPELINE
	36.9.1. Using custom pipeline factory

	36.10. REUSING NETTY BOSS AND WORKER THREAD POOLS
	36.11. MULTIPLEXING CONCURRENT MESSAGES OVER A SINGLE CONNECTION WITH REQUEST/REPLY
	36.12. SPRING BOOT AUTO-CONFIGURATION

	CHAPTER 37. PAHO
	37.1. URI FORMAT
	37.2. CONFIGURING OPTIONS
	37.2.1. Configuring Component Options
	37.2.2. Configuring Endpoint Options

	37.3. COMPONENT OPTIONS
	37.4. ENDPOINT OPTIONS
	37.4.1. Path Parameters (1 parameters)
	37.4.2. Query Parameters (31 parameters)

	37.5. HEADERS
	37.6. DEFAULT PAYLOAD TYPE
	37.7. SAMPLES
	37.8. SPRING BOOT AUTO-CONFIGURATION

	CHAPTER 38. PAHO MQTT 5
	38.1. URI FORMAT
	38.2. CONFIGURING OPTIONS
	38.2.1. Configuring Component Options
	38.2.2. Configuring Endpoint Options

	38.3. COMPONENT OPTIONS
	38.4. ENDPOINT OPTIONS
	38.4.1. Path Parameters (1 parameters)
	38.4.2. Query Parameters (32 parameters)

	38.5. HEADERS
	38.6. DEFAULT PAYLOAD TYPE
	38.7. SAMPLES
	38.8. SPRING BOOT AUTO-CONFIGURATION

	CHAPTER 39. QUARTZ
	39.1. URI FORMAT
	39.2. CONFIGURING OPTIONS
	39.2.1. Configuring Component Options
	39.2.2. Configuring Endpoint Options

	39.3. COMPONENT OPTIONS
	39.4. ENDPOINT OPTIONS
	39.4.1. Path Parameters (2 parameters)
	39.4.2. Query Parameters (17 parameters)
	39.4.3. Configuring quartz.properties file

	39.5. ENABLING QUARTZ SCHEDULER IN JMX
	39.6. STARTING THE QUARTZ SCHEDULER
	39.7. CLUSTERING
	39.8. MESSAGE HEADERS
	39.9. USING CRON TRIGGERS
	39.10. SPECIFYING TIME ZONE
	39.11. CONFIGURING MISFIRE INSTRUCTIONS
	39.11.1. SimpleTrigger.MISFIRE_INSTRUCTION_FIRE_NOW = 1 (default)
	39.11.2. SimpleTrigger.MISFIRE_INSTRUCTION_RESCHEDULE_NOW_WITH_EXISTING_REPEAT_COUNT = 2
	39.11.3. SimpleTrigger.MISFIRE_INSTRUCTION_RESCHEDULE_NOW_WITH_REMAINING_REPEAT_COUNT = 3
	39.11.4. SimpleTrigger.MISFIRE_INSTRUCTION_RESCHEDULE_NEXT_WITH_REMAINING_COUNT = 4
	39.11.5. SimpleTrigger.MISFIRE_INSTRUCTION_RESCHEDULE_NEXT_WITH_EXISTING_COUNT = 5
	39.11.6. CronTrigger.MISFIRE_INSTRUCTION_FIRE_ONCE_NOW = 1 (default)
	39.11.7. CronTrigger.MISFIRE_INSTRUCTION_DO_NOTHING = 2

	39.12. USING QUARTZSCHEDULEDPOLLCONSUMERSCHEDULER
	39.13. CRON COMPONENT SUPPORT
	39.14. SPRING BOOT AUTO-CONFIGURATION

	CHAPTER 40. REF
	40.1. URI FORMAT
	40.2. CONFIGURING OPTIONS
	40.2.1. Configuring Component Options
	40.2.2. Configuring Endpoint Options

	40.3. COMPONENT OPTIONS
	40.4. ENDPOINT OPTIONS
	40.4.1. Path Parameters (1 parameters)
	40.4.2. Query Parameters (4 parameters)

	40.5. RUNTIME LOOKUP
	40.6. SAMPLE
	40.7. SPRING BOOT AUTO-CONFIGURATION

	CHAPTER 41. REST
	41.1. URI FORMAT
	41.2. CONFIGURING OPTIONS
	41.2.1. Configuring Component Options
	41.2.2. Configuring Endpoint Options

	41.3. COMPONENT OPTIONS
	41.4. ENDPOINT OPTIONS
	41.4.1. Path Parameters (3 parameters)
	41.4.2. Query Parameters (16 parameters)

	41.5. SUPPORTED REST COMPONENTS
	41.6. PATH AND URITEMPLATE SYNTAX
	41.7. REST PRODUCER EXAMPLES
	41.8. REST PRODUCER BINDING
	41.9. MORE EXAMPLES
	41.10. SPRING BOOT AUTO-CONFIGURATION

	CHAPTER 42. SAGA
	42.1. URI FORMAT
	42.2. CONFIGURING OPTIONS
	42.2.1. Configuring Component Options
	42.2.2. Configuring Endpoint Options

	42.3. COMPONENT OPTIONS
	42.4. ENDPOINT OPTIONS
	42.4.1. Path Parameters (1 parameters)
	42.4.2. Query Parameters (1 parameters)

	42.5. SPRING BOOT AUTO-CONFIGURATION

	CHAPTER 43. SALESFORCE
	43.1. CONFIGURING OPTIONS
	43.1.1. Configuring Component Options
	43.1.2. Configuring Endpoint Options

	43.2. COMPONENT OPTIONS
	43.3. ENDPOINT OPTIONS
	43.3.1. Path Parameters (2 parameters)
	43.3.2. Query Parameters (57 parameters)

	43.4. AUTHENTICATING TO SALESFORCE
	43.5. URI FORMAT
	43.6. PASSING IN SALESFORCE HEADERS AND FETCHING SALESFORCE RESPONSE HEADERS
	43.7. SUPPORTED SALESFORCE APIS
	43.7.1. Rest API
	43.7.2. Bulk 2.0 API
	43.7.3. Rest Bulk (original) API
	43.7.4. Rest Streaming API
	43.7.5. Platform events
	43.7.6. Change data capture events

	43.8. EXAMPLES
	43.8.1. Uploading a document to a ContentWorkspace

	43.9. USING SALESFORCE LIMITS API
	43.10. WORKING WITH APPROVALS
	43.11. USING SALESFORCE RECENT ITEMS API
	43.12. USING SALESFORCE COMPOSITE API TO SUBMIT SOBJECT TREE
	43.13. USING SALESFORCE COMPOSITE API TO SUBMIT MULTIPLE REQUESTS IN A BATCH
	43.14. USING SALESFORCE COMPOSITE API TO SUBMIT MULTIPLE CHAINED REQUESTS
	43.15. USING "RAW" SALESFORCE COMPOSITE
	43.16. USING RAW OPERATION
	43.16.1. Query example
	43.16.2. SObject example

	43.17. USING COMPOSITE SOBJECT COLLECTIONS
	43.17.1. compositeRetrieveSObjectCollections
	43.17.2. compositeCreateSObjectCollections
	43.17.3. compositeUpdateSObjectCollections
	43.17.4. compositeUpsertSObjectCollections
	43.17.5. compositeDeleteSObjectCollections

	43.18. SENDING NULL VALUES TO SALESFORCE
	43.19. GENERATING SOQL QUERY STRINGS
	43.20. CAMEL SALESFORCE MAVEN PLUGIN
	43.21. SPRING BOOT AUTO-CONFIGURATION

	CHAPTER 44. SCHEDULER
	44.1. URI FORMAT
	44.2. CONFIGURING OPTIONS
	44.2.1. Configuring Component Options
	44.2.2. Configuring Endpoint Options

	44.3. COMPONENT OPTIONS
	44.4. ENDPOINT OPTIONS
	44.4.1. Path Parameters (1 parameters)
	44.4.2. Query Parameters (21 parameters)

	44.5. MORE INFORMATION
	44.6. EXCHANGE PROPERTIES
	44.7. SAMPLE
	44.8. FORCING THE SCHEDULER TO TRIGGER IMMEDIATELY WHEN COMPLETED
	44.9. FORCING THE SCHEDULER TO BE IDLE
	44.10. SPRING BOOT AUTO-CONFIGURATION

	CHAPTER 45. SEDA
	45.1. URI FORMAT
	45.2. CONFIGURING OPTIONS
	45.2.1. Configuring Component Options
	45.2.2. Configuring Endpoint Options

	45.3. COMPONENT OPTIONS
	45.4. ENDPOINT OPTIONS
	45.4.1. Path Parameters (1 parameters)
	45.4.2. Query Parameters (18 parameters)

	45.5. CHOOSING BLOCKINGQUEUE IMPLEMENTATION
	45.6. USE OF REQUEST REPLY
	45.7. CONCURRENT CONSUMERS
	45.8. THREAD POOLS
	45.9. SAMPLE
	45.10. USING MULTIPLECONSUMERS
	45.11. EXTRACTING QUEUE INFORMATION
	45.12. SPRING BOOT AUTO-CONFIGURATION

	CHAPTER 46. SERVLET
	46.1. URI FORMAT
	46.2. CONFIGURING OPTIONS
	46.2.1. Configuring Component Options
	46.2.2. Configuring Endpoint Options

	46.3. COMPONENT OPTIONS
	46.4. ENDPOINT OPTIONS
	46.4.1. Path Parameters (1 parameters)
	46.4.2. Query Parameters (22 parameters)

	46.5. MESSAGE HEADERS
	46.6. USAGE
	46.7. SPRING BOOT AUTO-CONFIGURATION

	CHAPTER 47. SLACK
	47.1. URI FORMAT
	47.2. CONFIGURING OPTIONS
	47.2.1. Configuring Component Options
	47.2.2. Configuring Endpoint Options

	47.3. COMPONENT OPTIONS
	47.4. ENDPOINT OPTIONS
	47.4.1. Path Parameters (1 parameters)
	47.4.2. Query Parameters (29 parameters)

	47.5. CONFIGURING IN SPRINT XML
	47.6. EXAMPLE
	47.7. PRODUCER
	47.8. CONSUMER
	47.9. SPRING BOOT AUTO-CONFIGURATION

	CHAPTER 48. SQL
	48.1. URI FORMAT
	48.2. CONFIGURING OPTIONS
	48.2.1. Configuring Component Options
	48.2.2. Configuring Endpoint Options

	48.3. COMPONENT OPTIONS
	48.4. ENDPOINT OPTIONS
	48.4.1. Path Parameters (1 parameters)
	48.4.2. Query Parameters (45 parameters)

	48.5. TREATMENT OF THE MESSAGE BODY
	48.6. RESULT OF THE QUERY
	48.7. USING STREAMLIST
	48.8. HEADER VALUES
	48.9. GENERATED KEYS
	48.10. DATASOURCE
	48.11. USING NAMED PARAMETERS
	48.12. USING EXPRESSION PARAMETERS IN PRODUCERS
	48.12.1. Using expression parameters in consumers

	48.13. USING IN QUERIES WITH DYNAMIC VALUES
	48.14. USING THE JDBC BASED IDEMPOTENT REPOSITORY
	48.14.1. Customize the JDBC idempotency repository
	48.14.2. Orphan Lock aware Jdbc IdempotentRepository
	48.14.3. Caching Jdbc IdempotentRepository

	48.15. USING THE JDBC BASED AGGREGATION REPOSITORY
	48.15.1. Database

	48.16. STORING BODY AND HEADERS AS TEXT
	48.16.1. Codec (Serialization)
	48.16.2. Transaction
	48.16.2.1. Service (Start/Stop)

	48.16.3. Aggregator configuration
	48.16.4. Optimistic locking
	48.16.5. Propagation behavior
	48.16.6. PostgreSQL case

	48.17. CAMEL SQL STARTER
	48.18. SPRING BOOT AUTO-CONFIGURATION

	CHAPTER 49. STUB
	49.1. URI FORMAT
	49.2. CONFIGURING OPTIONS
	49.2.1. Configuring Component Options
	49.2.1.1. Configuring Endpoint Options

	49.3. COMPONENT OPTIONS
	49.4. ENDPOINT OPTIONS
	49.4.1. Path Parameters (1 parameters)
	49.4.2. Query Parameters (18 parameters)

	49.5. EXAMPLES
	49.6. SPRING BOOT AUTO-CONFIGURATION

	CHAPTER 50. TELEGRAM
	50.1. URI FORMAT
	50.2. CONFIGURING OPTIONS
	50.2.1. Configuring Component Options
	50.2.2. Configuring Endpoint Options

	50.3. COMPONENT OPTIONS
	50.4. ENDPOINT OPTIONS
	50.4.1. Path Parameters (1 parameters)
	50.4.2. Query Parameters (30 parameters)
	50.4.3. Message Headers

	50.5. USAGE
	50.6. PRODUCER EXAMPLE
	50.7. CONSUMER EXAMPLE
	50.8. REACTIVE CHAT-BOT EXAMPLE
	50.9. GETTING THE CHAT ID
	50.10. CUSTOMIZING KEYBOARD
	50.11. WEBHOOK MODE
	50.12. SPRING BOOT AUTO-CONFIGURATION

	CHAPTER 51. TIMER
	51.1. URI FORMAT
	51.2. CONFIGURING OPTIONS
	51.2.1. Configuring Component Options
	51.2.2. Configuring Endpoint Options

	51.3. COMPONENT OPTIONS
	51.4. ENDPOINT OPTIONS
	51.4.1. Path Parameters (1 parameters)
	51.4.2. Query Parameters (13 parameters)

	51.5. EXCHANGE PROPERTIES
	51.6. SAMPLE
	51.7. FIRING AS SOON AS POSSIBLE
	51.8. FIRING ONLY ONCE
	51.9. SPRING BOOT AUTO-CONFIGURATION

	CHAPTER 52. VALIDATOR
	52.1. URI FORMAT
	52.2. CONFIGURING OPTIONS
	52.2.1. Configuring Component Options
	52.2.2. Configuring Endpoint Options

	52.3. COMPONENT OPTIONS
	52.4. ENDPOINT OPTIONS
	52.4.1. Path Parameters (1 parameters)
	52.4.2. Query Parameters (10 parameters)

	52.5. EXAMPLE
	52.6. ADVANCED: JMX METHOD CLEARCACHEDSCHEMA
	52.7. SPRING BOOT AUTO-CONFIGURATION

	CHAPTER 53. WEBHOOK
	53.1. URI FORMAT
	53.2. CONFIGURING OPTIONS
	53.2.1. Configuring Component Options
	53.2.2. Configuring Endpoint Options

	53.3. COMPONENT OPTIONS
	53.4. ENDPOINT OPTIONS
	53.4.1. Path Parameters (1 parameters)
	53.4.2. Query Parameters (8 parameters)

	53.5. EXAMPLES
	53.6. SPRING BOOT AUTO-CONFIGURATION

	CHAPTER 54. XSLT
	54.1. URI FORMAT
	54.2. CONFIGURING OPTIONS
	54.2.1. Configuring Component Options
	54.2.2. Configuring Endpoint Options

	54.3. COMPONENT OPTIONS
	54.4. ENDPOINT OPTIONS
	54.4.1. Path Parameters (1 parameters)
	54.4.2. Query Parameters (13 parameters)

	54.5. USING XSLT ENDPOINTS
	54.6. GETTING USEABLE PARAMETERS INTO THE XSLT
	54.7. SPRING XML VERSIONS
	54.8. USING XSL:INCLUDE
	54.9. USING XSL:INCLUDE AND DEFAULT PREFIX
	54.10. DYNAMIC STYLESHEETS
	54.11. ACCESSING WARNINGS, ERRORS AND FATALERRORS FROM XSLT ERRORLISTENER
	54.12. SPRING BOOT AUTO-CONFIGURATION

	CHAPTER 55. AVRO
	55.1. AVRO DATAFORMAT OPTIONS
	55.2. AVRO DATA FORMAT USAGE
	55.3. SPRING BOOT AUTO-CONFIGURATION

	CHAPTER 56. AVRO JACKSON
	56.1. CONFIGURING THE SCHEMARESOLVER
	56.2. AVRO JACKSON OPTIONS
	56.3. USING CUSTOM AVROMAPPER
	56.4. DEPENDENCIES
	56.5. SPRING BOOT AUTO-CONFIGURATION

	CHAPTER 57. BINDY
	57.1. OPTIONS
	57.2. ANNOTATIONS
	57.2.1. 1. CsvRecord
	57.2.2. 2. Link
	57.2.3. 3. DataField
	57.2.4. 4. FixedLengthRecord
	57.2.5. 5. Message
	57.2.6. 6. KeyValuePairField
	57.2.7. 7. Section
	57.2.8. 8. OneToMany
	57.2.9. 9. BindyConverter
	57.2.10. 10. FormatFactories

	57.3. SUPPORTED DATATYPES
	57.4. USING THE JAVA DSL
	57.4.1. Setting locale
	57.4.2. Unmarshaling
	57.4.3. Marshaling

	57.5. USING SPRING XML
	57.6. DEPENDENCIES
	57.7. SPRING BOOT AUTO-CONFIGURATION

	CHAPTER 58. HL7
	58.1. HL7 MLLP PROTOCOL
	58.1.1. Exposing an HL7 listener using Mina
	58.1.2. Exposing an HL7 listener using Netty (available from Camel 2.15 onwards)

	58.2. HL7 MODEL USING JAVA.LANG.STRING OR BYTE[]
	58.3. HL7V2 MODEL USING HAPI
	58.4. HL7 DATAFORMAT
	58.4.1. Segment separators
	58.4.2. Charset

	58.5. MESSAGE HEADERS
	58.6. DEPENDENCIES
	58.7. SPRING BOOT AUTO-CONFIGURATION

	CHAPTER 59. JACKSONXML
	59.1. JACKSONXML OPTIONS
	59.1.1. Using Jackson XML in Spring DSL
	59.1.2. Excluding POJO fields from marshalling

	59.2. INCLUDE/EXCLUDE FIELDS USING THE JSONVIEW ATTRIBUTE WITH `JACKSONXML`DATAFORMAT
	59.3. SETTING SERIALIZATION INCLUDE OPTION
	59.4. UNMARSHALLING FROM XML TO POJO WITH DYNAMIC CLASS NAME
	59.5. UNMARSHALLING FROM XML TO LIST<MAP> OR LIST<POJO>
	59.6. USING CUSTOM JACKSON MODULES
	59.7. ENABLING OR DISABLE FEATURES USING JACKSON
	59.8. CONVERTING MAPS TO POJO USING JACKSON
	59.9. FORMATTED XML MARSHALLING (PRETTY-PRINTING)
	59.10. DEPENDENCIES
	59.11. SPRING BOOT AUTO-CONFIGURATION

	CHAPTER 60. JAXB
	60.1. OPTIONS
	60.2. USING THE JAVA DSL
	60.3. USING SPRING XML
	60.4. PARTIAL MARSHALLING/UNMARSHALLING
	60.5. FRAGMENT
	60.6. IGNORING THE NONXML CHARACTER
	60.7. WORKING WITH THE OBJECTFACTORY
	60.8. SETTING ENCODING
	60.9. CONTROLLING NAMESPACE PREFIX MAPPING
	60.10. SCHEMA VALIDATION
	60.11. SCHEMA LOCATION
	60.12. MARSHAL DATA THAT IS ALREADY XML
	60.13. DEPENDENCIES
	60.14. SPRING BOOT AUTO-CONFIGURATION

	CHAPTER 61. JSON GSON
	61.1. GSON OPTIONS
	61.2. DEPENDENCIES
	61.3. SPRING BOOT AUTO-CONFIGURATION

	CHAPTER 62. JSON JACKSON
	62.1. JACKSON OPTIONS
	62.2. USING CUSTOM OBJECTMAPPER
	62.3. USING JACKSON FOR AUTOMATIC TYPE CONVERSION
	62.4. DEPENDENCIES
	62.5. SPRING BOOT AUTO-CONFIGURATION

	CHAPTER 63. PROTOBUF JACKSON
	63.1. CONFIGURING THE SCHEMARESOLVER
	63.2. PROTOBUF JACKSON OPTIONS
	63.3. USING CUSTOM PROTOBUFMAPPER
	63.4. DEPENDENCIES
	63.5. SPRING BOOT AUTO-CONFIGURATION

	CHAPTER 64. SOAP
	64.1. SOAP OPTIONS
	64.2. ELEMENTNAMESTRATEGY
	64.3. USING THE JAVA DSL
	64.3.1. Using SOAP 1.2

	64.4. MULTI-PART MESSAGES
	64.4.1. Holder Object mapping

	64.5. EXAMPLES
	64.5.1. Webservice client
	64.5.2. Webservice Server

	64.6. DEPENDENCIES
	64.7. SPRING BOOT AUTO-CONFIGURATION

	CHAPTER 65. ZIP FILE
	65.1. ZIPFILE OPTIONS
	65.2. MARSHAL
	65.3. UNMARSHAL
	65.3.1. Aggregate

	65.4. DEPENDENCIES
	65.5. SPRING BOOT AUTO-CONFIGURATION

	CHAPTER 66. CONSTANT
	66.1. CONSTANT OPTIONS
	66.2. EXAMPLE
	66.2.1. Specifying type of value

	66.3. LOADING CONSTANT FROM EXTERNAL RESOURCE
	66.4. DEPENDENCIES
	66.5. SPRING BOOT AUTO-CONFIGURATION

	CHAPTER 67. CSIMPLE
	67.1. DIFFERENT BETWEEN CSIMPLE AND SIMPLE
	67.1.1. Additional CSimple functions

	67.2. COMPILATION
	67.2.1. Using camel-csimple-maven-plugin
	67.2.2. Using camel-csimple-joor

	67.3. CSIMPLE LANGUAGE OPTIONS
	67.4. LIMITATIONS
	67.5. AUTO IMPORTS
	67.6. CONFIGURATION FILE
	67.7. SEE ALSO
	67.8. SPRING BOOT AUTO-CONFIGURATION

	CHAPTER 68. EXCHANGEPROPERTY
	68.1. EXCHANGE PROPERTY OPTIONS
	68.2. EXAMPLE
	68.3. DEPENDENCIES
	68.4. SPRING BOOT AUTO-CONFIGURATION

	CHAPTER 69. FILE
	69.1. FILE LANGUAGE OPTIONS
	69.2. SYNTAX
	69.3. FILE TOKEN EXAMPLE
	69.3.1. Relative paths
	69.3.2. Absolute paths

	69.4. SAMPLES
	69.5. DEPENDENCIES
	69.6. SPRING BOOT AUTO-CONFIGURATION

	CHAPTER 70. HEADER
	70.1. HEADER OPTIONS
	70.2. EXAMPLE USAGE
	70.3. DEPENDENCIES
	70.4. SPRING BOOT AUTO-CONFIGURATION

	CHAPTER 71. JSONPATH
	71.1. JSONPATH OPTIONS
	71.2. EXAMPLES
	71.3. JSONPATH SYNTAX
	71.3.1. Easy JSONPath Syntax

	71.4. SUPPORTED MESSAGE BODY TYPES
	71.5. SUPPRESSING EXCEPTIONS
	71.6. INLINE SIMPLE EXPRESSIONS
	71.7. JSONPATH INJECTION
	71.8. ENCODING DETECTION
	71.9. SPLIT JSON DATA INTO SUB ROWS AS JSON
	71.10. USING HEADER AS INPUT
	71.11. SPRING BOOT AUTO-CONFIGURATION

	CHAPTER 72. REF
	72.1. REF LANGUAGE OPTIONS
	72.2. EXAMPLE USAGE
	72.3. DEPENDENCIES
	72.4. SPRING BOOT AUTO-CONFIGURATION

	CHAPTER 73. XQUERY
	73.1. XQUERY LANGUAGE OPTIONS
	73.2. VARIABLES
	73.3. EXAMPLE
	73.3.1. Using namespaces

	73.4. USING XQUERY AS TRANSFORMATION
	73.5. LOADING SCRIPT FROM EXTERNAL RESOURCE
	73.6. LEARNING XQUERY
	73.7. DEPENDENCIES
	73.8. SPRING BOOT AUTO-CONFIGURATION

	CHAPTER 74. SIMPLE
	74.1. SIMPLE LANGUAGE OPTIONS
	74.2. VARIABLES
	74.3. OGNL EXPRESSION SUPPORT
	74.4. OPERATOR SUPPORT
	74.4.1. Comparing with different types
	74.4.2. Using and / or

	74.5. EXAMPLES
	74.6. SETTING RESULT TYPE
	74.7. USING NEW LINES OR TABS IN XML DSLS
	74.8. LEADING AND TRAILING WHITESPACE HANDLING
	74.9. LOADING SCRIPT FROM EXTERNAL RESOURCE
	74.10. SPRING BOOT AUTO-CONFIGURATION

	CHAPTER 75. TOKENIZE
	75.1. TOKENIZE OPTIONS
	75.2. EXAMPLE
	75.3. SEE ALSO
	75.4. SPRING BOOT AUTO-CONFIGURATION

	CHAPTER 76. XML TOKENIZE
	76.1. XML TOKENIZER OPTIONS
	76.2. EXAMPLE
	76.3. SPRING BOOT AUTO-CONFIGURATION

	CHAPTER 77. XPATH
	77.1. XPATH LANGUAGE OPTIONS
	77.2. NAMESPACES
	77.3. VARIABLES
	77.3.1. Namespace given
	77.3.2. No namespace given

	77.4. FUNCTIONS
	77.4.1. Functions example

	77.5. STREAM BASED MESSAGE BODIES
	77.6. SETTING RESULT TYPE
	77.7. USING XPATH ON HEADERS
	77.8. EXAMPLE
	77.9. USING NAMESPACES
	77.10. USING @XPATH ANNOTATION FOR BEAN INTEGRATION
	77.11. USING XPATHBUILDER WITHOUT AN EXCHANGE
	77.12. USING SAXON WITH XPATHBUILDER
	77.12.1. Setting a custom XPathFactory using System Property
	77.12.2. Enabling Saxon from XML DSL

	77.13. NAMESPACE AUDITING TO AID DEBUGGING
	77.13.1. Logging the Namespace Context of your XPath expression/predicate
	77.13.2. Auditing namespaces

	77.14. LOADING SCRIPT FROM EXTERNAL RESOURCE
	77.15. DEPENDENCIES
	77.16. SPRING BOOT AUTO-CONFIGURATION

	CHAPTER 78. OPENAPI JAVA
	78.1. USING OPENAPI IN REST-DSL
	78.2. OPTIONS
	78.3. ADDING SECURITY DEFINITIONS IN API DOC
	78.4. JSON OR YAML
	78.5. USEXFORWARDHEADERS AND API URL RESOLUTION
	78.6. EXAMPLES
	78.7. SPRING BOOT AUTO-CONFIGURATION

