& RedHat

Red Hat Integration 2022.Q2

Getting Started with Camel Extensions for
Quarkus

Getting Started with Camel Extensions for Quarkus

Last Updated: 2022-05-23






Red Hat Integration 2022.Q2 Getting Started with Camel Extensions for
Quarkus

Getting Started with Camel Extensions for Quarkus



Legal Notice

Copyright © 2022 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide introduces Camel Extensions for Quarkus and explains the various ways to create and
deploy an application using Camel Extensions for Quarkus.



Table of Contents

PREF ACE . e e e

MAKING OPEN SOURCE MORE INCLUSIVE

CHAPTER 1. GETTING STARTED WITH CAMEL EXTENSIONS FOR QUARKUS .........

1.1. CAMEL EXTENSIONS FOR QUARKUS OVERVIEW
1.2. TOOLING
1.2.1. IDE plugins
1.2.2. Camel content assist
1.3. BUILDING YOUR FIRST PROJECT WITH CAMEL EXTENSIONS FOR QUARKUS
1.3.1. Overview
1.3.2. Generating the skeleton application
1.3.3. Explore the application code
1.3.4. Adding a simple Camel route
1.3.5. Development mode
1.3.6. Testing
1.3.6.1. JVM mode
1.3.6.2. Native mode
1.3.7. Package and run the application
1.3.7.1. JVM mode
1.3.7.2. Native mode

CHAPTER 2. DEPLOYING QUARKUS APPLICATIONS ...

CHAPTER 3. EXAMPLES ... i e i e

3.1. GETTING STARTED WITH THE FILE CONSUMER QUICKSTART EXAMPLE

Table of Contents

O 0 0 N O U1 Ul Ul T M DN N D

= 5 O O

.................. 12

.................. 13



Red Hat Integration 2022.Q2 Getting Started with Camel Extensions for Quarkus




PREFACE

PREFACE

MAKING OPEN SOURCE MORE INCLUSIVE

Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright's message.


https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

Red Hat Integration 2022.Q2 Getting Started with Camel Extensions for Quarkus

CHAPTER 1. GETTING STARTED WITH CAMEL EXTENSIONS
FOR QUARKUS

This guide introduces Camel Extensions for Quarkus, the various ways to create a project and how to
get started building an application using Camel Extensions for Quarkus:

® Section 1.1, “Camel Extensions for Quarkus overview”
® Section 1.2, “Tooling”

® Section 1.3, “Building your first project with Camel Extensions for Quarkus”

NOTE

Red Hat provides Maven repositories that host the content we ship with our products.
These repositories are available to download from the software downloads page.

For Camel Extensions for Quarkus the following repositories are required:
® rhi-camel-extensions-for-quarkus

Installation of Camel Extensions for Quarkus in offline mode is not supported in this
release.

For information on using the Apache Maven repository for Camel Quarkus, see Chapter
2.2. "Downloading and configuring the Quarkus Maven repository” in the Developing and
compiling your Quarkus applications with Apache Maven guide

1.1. CAMEL EXTENSIONS FOR QUARKUS OVERVIEW

Camel Extensions for Quarkus brings the integration capabilities of Apache Camel and its vast
component library to the Quarkus runtime.

The benefits of using Camel Extensions for Quarkus include the following:

® Enables users to take advantage of the performance benefits, developer joy and the container
first ethos which Quarkus provides.

® Provides Quarkus extensions for many of the Apache Camel components.

® Takes advantage of the many performance improvements made in Camel 3, which results in a
lower memory footprint, less reliance on reflection and faster startup times.

® You can define Camel routes using the Java DSL.

1.2. TOOLING

IMPORTANT

Red Hat does not provide support for these developer tools.

1.2.1. IDE plugins


https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/2.2/guide/e75e6f99-0d92-4236-bfb8-2de30a6a605d#proc-download-maven_quarkus-getting-started

CHAPTER 1. GETTING STARTED WITH CAMEL EXTENSIONS FOR QUARKUS

Quarkus has plugins for most of the popular development IDEs which provide Quarkus language
support, code/configuration completion, project creation wizards and much more. The plugins are
available at each respective IDE marketplace.

® Eclipse plugin

® |IntelliJ plugin

® VSCode plugin

Check the plugin documentation to discover how to create projects for your preferred IDE.

1.2.2. Camel content assist

The following plugins provide support for content assist when editing Camel routes and
application.properties:

® VS Code Language support for Camel - a part of the Camel extension pack
® Eclipse Desktop Language Support for Camel - a part of Jboss Tools and CodeReady Studio
® Apache Camel IDEA plugin (not always up to date)

® Users of other IDEs supporting Language Server Protocol may choose to install and configure
Camel Language Server manually

1.3. BUILDING YOUR FIRST PROJECT WITH CAMEL EXTENSIONS FOR
QUARKUS

1.3.1. Overview

You can use code.quarkus.redhat.com to generate a Quarkus Maven project which automatically adds
and configures the extensions that you want to use in your application.

This section walks you through the process of creating a Quarkus Maven project with Camel Extensions
for Quarkus including:

® Creating the skeleton application using code.quarkus.redhat.com
® Adding a simple Camel route

® Exploring the application code

® Compiling the application in development mode

® Testing the application

1.3.2. Generating the skeleton application

Projects can be bootstrapped and generated at code.quarkus.redhat.com. The Camel Extensions for
Quarkus extensions are located under the 'Integration’ heading.

Use the 'search’ field to find the extensions that you require.


https://marketplace.eclipse.org/content/quarkus-tools
https://plugins.jetbrains.com/plugin/13234-quarkus-tools
https://marketplace.visualstudio.com/items?itemName=redhat.vscode-quarkus
https://marketplace.visualstudio.com/items?itemName=redhat.vscode-apache-camel
https://marketplace.visualstudio.com/items?itemName=redhat.apache-camel-extension-pack
https://marketplace.eclipse.org/content/language-support-apache-camel
https://tools.jboss.org/
https://developers.redhat.com/products/codeready-studio
https://plugins.jetbrains.com/plugin/9371-apache-camel-idea-plugin
https://microsoft.github.io/language-server-protocol/implementors/tools/
https://github.com/camel-tooling/camel-language-server
https://code.quarkus.redhat.com
https://code.quarkus.redhat.com
https://code.quarkus.redhat.com

Red Hat Integration 2022.Q2 Getting Started with Camel Extensions for Quarkus

Select the component extensions that you want to work with and click the 'Generate your application’
button to download a basic skeleton project. There is also the option to push the project directly to
GitHub.

For more information about using code.quarkus.redhat.com to generate Quarkus Maven projects, see
Creating a Quarkus Maven project using code.quarkus.redhat.com in the Getting Started with Quarkus
guide.

Procedure
1. Using the code.quarkus.redhat.com website, select the following extensions for this example:

o camel-quarkus-rest

o camel-quarkus-jackson

NOTE

You should not compile the application as stated in the final step of the
above procedure as you will perform that task as part of this guide.

2. Navigate to the directory where you extracted the generated project files from the previous
step:

I $ cd <directory_name>

1.3.3. Explore the application code

The application has two compile dependencies which are managed within the
com.redhat.quarkus.platform:quarkus-camel-bom that is imported in <dependencyManagements.:

pom.xml

<quarkus.platform.artifact-id>quarkus-bom</quarkus.platform.artifact-id>
<quarkus.platform.group-id>com.redhat.quarkus.platform</quarkus.platform.group-id>
<quarkus.platform.version>

<I-- The latest 2.2.x version from
https.://maven.repository.redhat.com/ga/com/redhat/quarkus/platform/quarkus-bom -->
</quarkus.platform.version>

<dependency>
<groupld>${quarkus.platform.group-id}</groupld>
<artifactld>${quarkus.platform.artifact-id}</artifactld>
<version>${quarkus.platform.version}</version>
<type>pom</type>
<scope>import</scope>

</dependency>

<dependency>
<groupld>${quarkus.platform.group-id}</groupld>
<artifactld>quarkus-camel-bom</artifactld>
<version>${quarkus.platform.version}</version>
<type>pom</type>
<scope>import</scope>

</dependency>


https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/2.2/guide/e75e6f99-0d92-4236-bfb8-2de30a6a605d#proc-creating-quarkus-project-using-code-quarkus-redhat-com_quarkus-getting-started

CHAPTER 1. GETTING STARTED WITH CAMEL EXTENSIONS FOR QUARKUS

NOTE

For more information about BOM dependency management, see Developing
Applications with Camel Extensions for Quarkus

The application is configured by properties defined within src/main/resources/application.properties,
for example, the camel.context.name can be set there.

1.3.4. Adding a simple Camel route

Procedure

1. Create a file named Routes.java in the src/main/java/org/acme/ subfolder.
2. Add a Camel Rest route as shown in the following code snippet:

Routes.java

package org.acme;

import java.util.Arrays;

import java.util.List;

import java.util.Objects;

import java.util.concurrent.CopyOnWriteArrayList;

import org.apache.camel.builder.RouteBuilder;
import org.apache.camel.model.rest.RestBindingMode;

import io.quarkus.runtime.annotations.RegisterForReflection;

public class Routes extends RouteBuilder {
private final List<Fruit> fruits = new CopyOnWriteArrayList<>(Arrays.asList(new
Fruit("Apple")));

@Override
public void configure() throws Exception {
restConfiguration().bindingMode(RestBindingMode.json);

rest("/fruits")
.get()
.route()
.setBody(e -> fruits)
.endRest()

.post()

type(Fruit.class)

.route()

.process().body(Fruit.class, (Fruit f) -> fruits.add(f))
.endRest();

}

@RegisterForReflection // Let Quarkus register this class for reflection during the native
build
public static class Fruit {


https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/developing_applications_with_camel_extensions_for_quarkus/index

Red Hat Integration 2022.Q2 Getting Started with Camel Extensions for Quarkus

private String name;

public Fruit() {
}

public Fruit(String name) {
this.name = name;

}

public String getName() {
return name;

}

public void setName(String name) {
this.name = name;

}

@Override
public int hashCode() {
return Objects.hash(name);

}

@Override
public boolean equals(Object obj) {
if (this == obj)
return true;
if (obj == null)
return false;
if (getClass() != obj.getClass())
return false;
Fruit other = (Fruit) obj;
return Objects.equals(name, other.name);

1.3.5. Development mode
I $ mvn clean compile quarkus:dev

This command compiles the project, starts your application and lets the Quarkus tooling watch for
changes in your workspace. Any modifications in your project will automatically take effect in the running
application.

Check the application in the browser, for example, http://localhost:8080/fruits for the rest-json
example

If you change the application code, for example, change 'Apple’ to '‘Orange’, your application will be
automatically updated. To see the changes applied, simply refresh your browser.

Please refer to Quarkus documentation for more details about the development mode.

1.3.6. Testing


http://localhost:8080/fruits
https://quarkus.io/guides/maven-tooling#dev-mode

CHAPTER 1. GETTING STARTED WITH CAMEL EXTENSIONS FOR QUARKUS

1.3.6.1. JVM mode

To test the Camel Rest route that we have created in JVM mode, you can add a test class as follows:

Procedure

1. Create a file named RoutesTest.java in the src/test/java/org/acme/ subfolder.
2. Add the RoutesTest class as shown in the following code snippet:

RoutesTest.java

package org.acme;

import io.quarkus.test.junit.QuarkusTest;
import org.junit.jupiter.api.Test;

import static io.restassured.RestAssured.given;
import org.hamcrest.Matchers;

@QuarkusTest
public class RoutesTest {

@Test
public void testFruitsEndpoint() {

/* Assert the initial fruit is there */
given()
.when().get("/fruits")
.then()
.statusCode(200)
.body(
"$.size()", Matchers.is(1),
"name", Matchers.contains("Orange"));

/* Add a new fruit */

given()
body("{\"name\": \"Pear\"}")
.header("Content-Type", "application/json")
.when()
.post("/fruits")
.then()
.statusCode(200);

/* Assert that pear was added */
given()
.when().get("/fruits")
.then()
.statusCode(200)
.body(
"$.size()", Matchers.is(2),
"name", Matchers.contains("Orange", "Pear"));



Red Hat Integration 2022.Q2 Getting Started with Camel Extensions for Quarkus

The JVM mode tests are run by maven-surefire-plugin in the test Maven phase:

I $ mvn clean test

1.3.6.2. Native mode

To test the Camel Rest route that we have created in Native mode, you can add a test class as follows:

Procedure

1. Create a file named NativeRoutesIT.java in the src/test/java/org/acme/ subfolder.
2. Add the NativeRoutesIT class as shown in the following code snippet:

NativeRoutesIT.java

package org.acme;
import io.quarkus.test.junit.NativelmageTest;

@NativelmageTest
public class NativeRoutesIT extends RoutesTest {

/I Execute the same tests but in native mode.

The native mode tests are verified by maven-failsafe-plugin in the verify phase. Pass the native
property to activate the profile that runs them:

I $ mvn clean verify -Pnative

1.3.7. Package and run the application

1.3.7.1. JVM mode

mvn package prepares a thin jar for running on a stock JVM:

$ mvn clean package
$ Is -Ih target/quarkus-app

-rw-r--r--. 1 user user 238K Oct 11 18:55 quarkus-run.jar

You can run it as follows:

$ java -jar target/quarkus-app/quarkus-run.jar

[io.quarkus] (main) Quarkus started in 1.163s. Listening on: http://[::]:8080

Notice the boot time around a second.

10



CHAPTER 1. GETTING STARTED WITH CAMEL EXTENSIONS FOR QUARKUS

The thin jar contains just the application code. To run it, the dependenciesin target/quarkus-app/lib are
required too.

1.3.7.2. Native mode

NOTE

See Producing a native executable in the Compiling your Quarkus applications to native
executables guide, for additional information about preparing a native executable.

To prepare a native executable, run the following command:

$ mvn clean package -Pnative
$ Is -Ih target

-rwxr-xr-x. 1 user user 46M Oct 11 18:57 code-with-quarkus-1.0.0-SNAPSHOT-runner

Note that the runner in the listing above has no .jar extension and has the X (executable) permission
set. Thus it can be run directly:

$ ./target/*-runner

[io.quarkus] (main) Quarkus started in 0.013s. Listening on: http://[::]:8080

Note that the application started in just 13 milliseconds. To see how it handles memory efficiently, enter
the following command:

$ ps -o rss,command -p $(pgrep code-with)
RSS COMMAND
65852 ./target/code-with-quarkus-1.0.0-SNAPSHOT-runner

In the above example, the application uses just 65 MB of memory.

TIP

Quarkus Native executable guide contains more details including steps for creating a container image.

1


https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/2.2/guide/819fc552-29b3-4659-b0d3-4c96418be718#_2f3d13fd-67ac-4857-9f1a-dac7cbae6762
https://quarkus.io/guides/building-native-image-guide.html
https://quarkus.io/guides/building-native-image-guide.html#creating-a-container

Red Hat Integration 2022.Q2 Getting Started with Camel Extensions for Quarkus

CHAPTER 2. DEPLOYING QUARKUS APPLICATIONS

You can deploy your Quarkus application on OpenShift by using any of the the following build strategies:
® Docker build
® S2?|Binary
® Source S2|

For more details about each of these build strategies, see Chapter 1. OpenShift build strategies and
Quarkus of the Deploying your Quarkus applications to OpenShift guide.

NOTE

The OpenShift Docker build strategy is the preferred build strategy that supports
Quarkus applications targeted for JVM as well as Quarkus applications compiled to native
executables. You can configure the deployment strategy using the
quarkus.openshift.build-strategy property.

12


https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/2.2/guide/9f629efb-0765-445e-9c2f-6ff721bd86bd#ref-openshift-build-strategies-and-quarkus_quarkus-openshift

CHAPTER 3. EXAMPLES

CHAPTER 3. EXAMPLES

The quickstart examples listed in the following table can be cloned or downloaded from the Camel
Quarkus Examples Git repository.

Number of Examples: 2

Example Description

File consumer with Bindy and Shows how to consume CSV files, marshal & unmarshal the data and send it
FTP onwards via FTP
Kafka example Shows how to produce and consume messages in a Kafka topic, using

Strimzi Operator

3.1. GETTING STARTED WITH THE FILE CONSUMER QUICKSTART
EXAMPLE

You can download or clone the quickstarts from the Camel Quarkus Examples Git repository. The
example is in the file-bindy-ftp directory.

Extract the contents of the zip file or clone the repository to a local folder, for example a new folder
named quickstarts.

You can run this example in development mode on your local machine from the command line. Using
development mode, you can iterate quickly on integrations in development and get fast feedback on
your code. Please refer to the Development mode section of the Camel Quarkus User guide for more
details.

NOTE

If you need to configure container resource limits or enable the Quarkus Kubernetes
client to trust self signed certificates, you can find these configuration options in the
src/main/resources/application.properties file.

Prerequisites

® You have cluster admin access to the OpenShift cluster.
® You have access to an SFTP server and you have set the server properties (which are prefixed

by ftp) in the application properties configuration file:
src/main/resources/application.properties.

Procedure

1. Use Maven to build the example application in development mode:

$ cd quickstarts/file-bindy-ftp
$ mvn clean compile quarkus:dev

13


https://github.com/jboss-fuse/camel-quarkus-examples/tree/camel-quarkus-examples-2.2.0-product/
https://github.com/jboss-fuse/camel-quarkus-examples/tree/camel-quarkus-examples-2.2.0-product/
https://camel.apache.org/camel-quarkus/latest/user-guide/first-steps.html#_development_mode

Red Hat Integration 2022.Q2 Getting Started with Camel Extensions for Quarkus

14

The application triggers the timer component every 10 seconds, generates some random
"books” data and creates a CSV file in a temporary directory with 100 entries. The following
message is displayed in the console:

I [route1] (Camel (camel-1) thread #3 - timer://generateBooks) Generating randomized books
CSV data

Next, the CSV file is read by a file consumer and Bindy is used to marshal the individual data
rows into Book objects:

[route2] (Camel (camel-1) thread #1 - file:///tmp/books) Reading books CSV data from
89A0EE24CB03A69-0000000000000000

Next the collection of Book objects is split into individual items and is aggregated based on the
genre property:

[route3] (Camel (camel-1) thread #0 - Aggregate TimeoutChecker) Processed 34 books for
genre "Action’
[route3] (Camel (camel-1) thread #0 - Aggregate TimeoutChecker) Processed 31 books for
genre 'Crime’
[route3] (Camel (camel-1) thread #0 - Aggregate TimeoutChecker) Processed 35 books for
genre 'Horror'

Finally, the aggregated book collections are unmarshalled back to CSV format and uploaded to
the test FTP server.

[route4] (Camel (camel-1) thread #2 - seda./processed) Uploaded books-Action-
89A0EE24CB03A69-0000000000000069.csv
[route4] (Camel (camel-1) thread #2 - seda./processed) Uploaded books-Crime-
89A0EE24CB03A69-0000000000000069.csv
[route4] (Camel (camel-1) thread #2 - seda./processed) Uploaded books-Horror-
89A0EE24CB03A69-0000000000000069.csv

2. Torun the application in JVM mode, enter the following commands:

$ mvn clean package -DskipTests
$ java -jar target/*-runner.jar

3. You can build and deploy the example application to OpenShift, by entering the following

command:

I $ mvn clean package -DskipTests -Dquarkus.kubernetes.deploy=true

4. Check that the pods are running:

$oc get pods

NAME READY STATUS RESTARTS AGE
camel-quarkus-examples-file-bindy-ftp-1-d72mb  1/1  Running 0 5m15s
ssh-server-deployment-5f6f685658-jtr9n 1/1 Running 0 5m28s

5. Optional: Enter the following command to monitor the application log:



CHAPTER 3. EXAMPLES

I oc logs -f camel-quarkus-examples-file-bindy-ftp-5d48f4d85c-sjl8k

Additional resources

® Developing Applications with Camel Extensions for Quarkus

® Camel Quarkus User guide

15


https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/developing_applications_with_camel_extensions_for_quarkus/index
https://camel.apache.org/camel-quarkus/latest/user-guide/first-steps.html#_development_mode/

	Table of Contents
	PREFACE
	MAKING OPEN SOURCE MORE INCLUSIVE

	CHAPTER 1. GETTING STARTED WITH CAMEL EXTENSIONS FOR QUARKUS
	1.1. CAMEL EXTENSIONS FOR QUARKUS OVERVIEW
	1.2. TOOLING
	1.2.1. IDE plugins
	1.2.2. Camel content assist

	1.3. BUILDING YOUR FIRST PROJECT WITH CAMEL EXTENSIONS FOR QUARKUS
	1.3.1. Overview
	1.3.2. Generating the skeleton application
	1.3.3. Explore the application code
	1.3.4. Adding a simple Camel route
	1.3.5. Development mode
	1.3.6. Testing
	1.3.6.1. JVM mode
	1.3.6.2. Native mode

	1.3.7. Package and run the application
	1.3.7.1. JVM mode
	1.3.7.2. Native mode



	CHAPTER 2. DEPLOYING QUARKUS APPLICATIONS
	CHAPTER 3. EXAMPLES
	3.1. GETTING STARTED WITH THE FILE CONSUMER QUICKSTART EXAMPLE


