
Red Hat Integration 2022.Q2

Debezium User Guide

For use with Debezium 1.7

Last Updated: 2022-05-23

Red Hat Integration 2022.Q2 Debezium User Guide

For use with Debezium 1.7

Legal Notice

Copyright © 2022 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide describes how to use the connectors provided with Debezium.

. .

. .

. .

. .

. .

Table of Contents

PREFACE
MAKING OPEN SOURCE MORE INCLUSIVE

CHAPTER 1. HIGH LEVEL OVERVIEW OF DEBEZIUM
1.1. DEBEZIUM FEATURES
1.2. DESCRIPTION OF DEBEZIUM ARCHITECTURE

CHAPTER 2. REQUIRED CUSTOM RESOURCE UPGRADES

CHAPTER 3. DEBEZIUM CONNECTOR FOR DB2
3.1. OVERVIEW OF DEBEZIUM DB2 CONNECTOR
3.2. HOW DEBEZIUM DB2 CONNECTORS WORK

3.2.1. How Debezium Db2 connectors perform database snapshots
3.2.1.1. Ad hoc snapshots
3.2.1.2. Incremental snapshots

3.2.2. How Debezium Db2 connectors read change-data tables
3.2.3. Default names of Kafka topics that receive Debezium Db2 change event records
3.2.4. About the Debezium Db2 connector schema change topic
3.2.5. Debezium Db2 connector-generated events that represent transaction boundaries

3.3. DESCRIPTIONS OF DEBEZIUM DB2 CONNECTOR DATA CHANGE EVENTS
3.3.1. About keys in Debezium db2 change events
3.3.2. About values in Debezium Db2 change events

3.4. HOW DEBEZIUM DB2 CONNECTORS MAP DATA TYPES
3.5. SETTING UP DB2 TO RUN A DEBEZIUM CONNECTOR

3.5.1. Configuring Db2 tables for change data capture
3.5.2. Effect of Db2 capture agent configuration on server load and latency
3.5.3. Db2 capture agent configuration parameters

3.6. DEPLOYMENT OF DEBEZIUM DB2 CONNECTORS
3.6.1. Obtaining the Db2 JDBC driver
3.6.2. Db2 connector deployment using AMQ Streams
3.6.3. Using AMQ Streams to deploy a Debezium Db2 connector
3.6.4. Deploying a Debezium Db2 connector by building a custom Kafka Connect container image from a
Dockerfile
3.6.5. Verifying that the Debezium Db2 connector is running
3.6.6. Description of Debezium Db2 connector configuration properties

3.7. MONITORING DEBEZIUM DB2 CONNECTOR PERFORMANCE
3.7.1. Monitoring Debezium during snapshots of Db2 databases
3.7.2. Monitoring Debezium Db2 connector record streaming
3.7.3. Monitoring Debezium Db2 connector schema history

3.8. MANAGING DEBEZIUM DB2 CONNECTORS
3.9. UPDATING SCHEMAS FOR DB2 TABLES IN CAPTURE MODE FOR DEBEZIUM CONNECTORS

3.9.1. Performing offline schema updates for Debezium Db2 connectors
3.9.2. Performing online schema updates for Debezium Db2 connectors

CHAPTER 4. DEBEZIUM CONNECTOR FOR MONGODB
4.1. OVERVIEW OF DEBEZIUM MONGODB CONNECTOR
4.2. HOW DEBEZIUM MONGODB CONNECTORS WORK

4.2.1. MongoDB topologies supported by Debezium connectors
4.2.2. How Debezium MongoDB connectors use logical names for replica sets and sharded clusters
4.2.3. How Debezium MongoDB connectors perform snapshots
4.2.4. How the Debezium MongoDB connector streams change event records
4.2.5. Default names of Kafka topics that receive Debezium MongoDB change event records

8
8

9
9

10

11

12
12
13
14
14
16

20
20
21
25
26
28
30
39
44
45
47
47
48
48
48
49

53
57
61
75
75
78
80
80
81

82
82

84
84
85
86
87
87
88
88

Table of Contents

1

. .

. .

4.2.6. How event keys control topic partitioning for the Debezium MongoDB connector
4.2.7. Debezium MongoDB connector-generated events that represent transaction boundaries

4.3. DESCRIPTIONS OF DEBEZIUM MONGODB CONNECTOR DATA CHANGE EVENTS
4.3.1. About keys in Debezium MongoDB change events
4.3.2. About values in Debezium MongoDB change events

4.4. SETTING UP MONGODB TO WORK WITH A DEBEZIUM CONNECTOR
4.5. DEPLOYMENT OF DEBEZIUM MONGODB CONNECTORS

4.5.1. MongoDB connector deployment using AMQ Streams
4.5.2. Using AMQ Streams to deploy a Debezium MongoDB connector
4.5.3. Deploying a Debezium MongoDB connector by building a custom Kafka Connect container image from a
Dockerfile
4.5.4. Verifying that the Debezium MongoDB connector is running
4.5.5. Description of Debezium Db2 connector configuration properties

4.6. MONITORING DEBEZIUM MONGODB CONNECTOR PERFORMANCE
4.6.1. Monitoring Debezium during MongoDB snapshots
4.6.2. Monitoring Debezium MongoDB connector record streaming

4.7. HOW DEBEZIUM MONGODB CONNECTORS HANDLE FAULTS AND PROBLEMS

CHAPTER 5. DEBEZIUM CONNECTOR FOR MYSQL
5.1. HOW DEBEZIUM MYSQL CONNECTORS WORK

5.1.1. MySQL topologies supported by Debezium connectors
5.1.2. How Debezium MySQL connectors handle database schema changes
5.1.3. How Debezium MySQL connectors expose database schema changes
5.1.4. How Debezium MySQL connectors perform database snapshots

5.1.4.1. Ad hoc snapshots
5.1.4.2. Incremental snapshots

5.1.5. Default names of Kafka topics that receive Debezium MySQL change event records
5.2. DESCRIPTIONS OF DEBEZIUM MYSQL CONNECTOR DATA CHANGE EVENTS

5.2.1. About keys in Debezium MySQL change events
5.2.2. About values in Debezium MySQL change events

5.3. HOW DEBEZIUM MYSQL CONNECTORS MAP DATA TYPES
5.4. SETTING UP MYSQL TO RUN A DEBEZIUM CONNECTOR

5.4.1. Creating a MySQL user for a Debezium connector
5.4.2. Enabling the MySQL binlog for Debezium
5.4.3. Enabling MySQL Global Transaction Identifiers for Debezium
5.4.4. Configuring MySQL session timesouts for Debezium
5.4.5. Enabling query log events for Debezium MySQL connectors

5.5. DEPLOYMENT OF DEBEZIUM MYSQL CONNECTORS
5.5.1. MySQL connector deployment using AMQ Streams
5.5.2. Using AMQ Streams to deploy a Debezium MySQL connector
5.5.3. Deploying Debezium MySQL connectors by building a custom Kafka Connect container image from a
Dockerfile
5.5.4. Verifying that the Debezium MySQL connector is running
5.5.5. Description of Debezium MySQL connector configuration properties

5.6. MONITORING DEBEZIUM MYSQL CONNECTOR PERFORMANCE
5.6.1. Monitoring Debezium during snapshots of MySQL databases
5.6.2. Monitoring Debezium MySQL connector record streaming
5.6.3. Monitoring Debezium MySQL connector schema history

5.7. HOW DEBEZIUM MYSQL CONNECTORS HANDLE FAULTS AND PROBLEMS

CHAPTER 6. DEBEZIUM CONNECTOR FOR ORACLE (TECHNOLOGY PREVIEW)
6.1. HOW DEBEZIUM ORACLE CONNECTORS WORK

6.1.1. How Debezium Oracle connectors perform database snapshots

89
89
91

92
94

103
103
104
104

108
112
116

124
124
126
128

132
132
133
134
134
139
141

142
146
148
150
151

162
168
168
169
170
171
172
173
173
174

178
181

186
207
207
210
212
213

216
216
217

Red Hat Integration 2022.Q2 Debezium User Guide

2

. .

6.1.1.1. Ad hoc snapshots
6.1.1.2. Incremental snapshots

6.1.2. Default names of Kafka topics that receive Debezium Oracle change event records
6.1.3. How Debezium Oracle connectors expose database schema changes
6.1.4. Debezium Oracle connector-generated events that represent transaction boundaries

6.1.4.1. Change data event enrichment
6.1.5. Gaps between Oracle SCN values

6.2. DESCRIPTIONS OF DEBEZIUM ORACLE CONNECTOR DATA CHANGE EVENTS
6.2.1. About keys in Debezium Oracle connector change events
6.2.2. About values in Debezium Oracle connector change events

6.3. HOW DEBEZIUM ORACLE CONNECTORS MAP DATA TYPES
6.4. SETTING UP ORACLE TO WORK WITH DEBEZIUM

6.4.1. Preparing Oracle databases for use with Debezium
6.4.2. Redo log sizing
6.4.3. Creating an Oracle user for the Debezium Oracle connector

6.5. DEPLOYMENT OF DEBEZIUM ORACLE CONNECTORS
6.5.1. Debezium Oracle connector deployment using AMQ Streams
6.5.2. Using AMQ Streams to deploy a Debezium Oracle connector
6.5.3. Deploying a Debezium Oracle connector by building a custom Kafka Connect container image from a
Dockerfile
6.5.4. Obtaining the Oracle JDBC driver
6.5.5. Configuration of container databases and non-container-databases
6.5.6. Verifying that the Debezium Oracle connector is running

6.6. DESCRIPTIONS OF DEBEZIUM ORACLE CONNECTOR CONFIGURATION PROPERTIES
6.7. MONITORING DEBEZIUM ORACLE CONNECTOR PERFORMANCE

6.7.1. Debezium Oracle connector snapshot metrics
6.7.2. Debezium Oracle connector streaming metrics
6.7.3. Debezium Oracle connector schema history metrics

6.8. HOW DEBEZIUM ORACLE CONNECTORS HANDLE FAULTS AND PROBLEMS

CHAPTER 7. DEBEZIUM CONNECTOR FOR POSTGRESQL
7.1. OVERVIEW OF DEBEZIUM POSTGRESQL CONNECTOR
7.2. HOW DEBEZIUM POSTGRESQL CONNECTORS WORK

7.2.1. Security for PostgreSQL connector
7.2.2. How Debezium PostgreSQL connectors perform database snapshots

7.2.2.1. Ad hoc snapshots
7.2.2.2. Incremental snapshots

7.2.3. How Debezium PostgreSQL connectors stream change event records
7.2.4. Default names of Kafka topics that receive Debezium PostgreSQL change event records
7.2.5. Metadata in Debezium PostgreSQL change event records
7.2.6. Debezium PostgreSQL connector-generated events that represent transaction boundaries

7.3. DESCRIPTIONS OF DEBEZIUM POSTGRESQL CONNECTOR DATA CHANGE EVENTS
7.3.1. About keys in Debezium PostgreSQL change events
7.3.2. About values in Debezium PostgreSQL change events

7.4. HOW DEBEZIUM POSTGRESQL CONNECTORS MAP DATA TYPES
7.5. SETTING UP POSTGRESQL TO RUN A DEBEZIUM CONNECTOR

7.5.1. Configuring a replication slot for the Debezium pgoutput plug-in
7.5.2. Setting up PostgreSQL permissions for the Debezium connector
7.5.3. Setting privileges to enable Debezium to create PostgreSQL publications
7.5.4. Configuring PostgreSQL to allow replication with the Debezium connector host
7.5.5. Configuring PostgreSQL to manage Debezium WAL disk space consumption

7.6. DEPLOYMENT OF DEBEZIUM POSTGRESQL CONNECTORS
7.6.1. PostgreSQL connector deployment using AMQ Streams

218
219
223
224
228
229
230
230
231

232
238
244
244
245
245
246
247
247

251
255
256
256
260
280
280
282
290
290

292
292
293
294
294
295
296
300
301
302
303
304
306
308
320
332
332
333
333
334
335
336
336

Table of Contents

3

. .

. .

7.6.2. Using AMQ Streams to deploy a Debezium PostgreSQL connector
7.6.3. Deploying a Debezium PostgreSQL connector by building a custom Kafka Connect container image from
a Dockerfile
7.6.4. Verifying that the Debezium PostgreSQL connector is running
7.6.5. Description of Debezium PostgreSQL connector configuration properties

7.7. MONITORING DEBEZIUM POSTGRESQL CONNECTOR PERFORMANCE
7.7.1. Monitoring Debezium during snapshots of PostgreSQL databases
7.7.2. Monitoring Debezium PostgreSQL connector record streaming

7.8. HOW DEBEZIUM POSTGRESQL CONNECTORS HANDLE FAULTS AND PROBLEMS

CHAPTER 8. DEBEZIUM CONNECTOR FOR SQL SERVER
8.1. OVERVIEW OF DEBEZIUM SQL SERVER CONNECTOR
8.2. HOW DEBEZIUM SQL SERVER CONNECTORS WORK

8.2.1. How Debezium SQL Server connectors perform database snapshots
8.2.1.1. Ad hoc snapshots
8.2.1.2. Incremental snapshots

8.2.2. How Debezium SQL Server connectors read change data tables
8.2.3. Default names of Kafka topics that receive Debezium SQL Server change event records
8.2.4. How the Debezium SQL Server connector uses the schema change topic
8.2.5. Descriptions of Debezium SQL Server connector data change events

8.2.5.1. About keys in Debezium SQL Server change events
8.2.5.2. About values in Debezium SQL Server change events

8.2.6. Debezium SQL Server connector-generated events that represent transaction boundaries
8.2.6.1. Change data event enrichment

8.2.7. How Debezium SQL Server connectors map data types
8.3. SETTING UP SQL SERVER TO RUN A DEBEZIUM CONNECTOR

8.3.1. Enabling CDC on the SQL Server database
8.3.2. Enabling CDC on a SQL Server table
8.3.3. Verifying that the user has access to the CDC table
8.3.4. SQL Server on Azure
8.3.5. Effect of SQL Server capture job agent configuration on server load and latency
8.3.6. SQL Server capture job agent configuration parameters

8.4. DEPLOYMENT OF DEBEZIUM SQL SERVER CONNECTORS
8.4.1. SQL Server connector deployment using AMQ Streams
8.4.2. Using AMQ Streams to deploy a Debezium SQL Server connector
8.4.3. Deploying a Debezium SQL Server connector by building a custom Kafka Connect container image from
a Dockerfile
8.4.4. Descriptions of Debezium SQL Server connector configuration properties

8.5. REFRESHING CAPTURE TABLES AFTER A SCHEMA CHANGE
8.5.1. Running an offline update after a schema change
8.5.2. Running an online update after a schema change

8.6. MONITORING DEBEZIUM SQL SERVER CONNECTOR PERFORMANCE
8.6.1. Debezium SQL Server connector snapshot metrics
8.6.2. Debezium SQL Server connector streaming metrics
8.6.3. Debezium SQL Server connector schema history metrics

CHAPTER 9. MONITORING DEBEZIUM
9.1. METRICS FOR MONITORING DEBEZIUM CONNECTORS
9.2. ENABLING JMX IN LOCAL INSTALLATIONS

9.2.1. Zookeeper JMX environment variables
9.2.2. Kafka JMX environment variables
9.2.3. Kafka Connect JMX environment variables

9.3. MONITORING DEBEZIUM ON OPENSHIFT

337

341
344
348
369
369
372
374

377
377
378
378
379
380
384
384
385
389
391

392
401

403
403
409
409
410
411
411

412
412
413
413
414

418
426
443
444
444
446
446
449
451

452
452
452
452
453
453
453

Red Hat Integration 2022.Q2 Debezium User Guide

4

. .

. .

. .

CHAPTER 10. DEBEZIUM LOGGING
10.1. DEBEZIUM LOGGING CONCEPTS
10.2. DEFAULT DEBEZIUM LOGGING CONFIGURATION
10.3. CONFIGURING DEBEZIUM LOGGING

10.3.1. Changing the Debezium logging level by configuring loggers
10.3.2. Dynamically changing the Debezium logging level with the Kafka Connect API
10.3.3. Changing the Debezium logging levely by adding mapped diagnostic contexts

10.4. DEBEZIUM LOGGING ON OPENSHIFT

CHAPTER 11. CONFIGURING DEBEZIUM CONNECTORS FOR YOUR APPLICATION
11.1. CUSTOMIZATION OF KAFKA CONNECT AUTOMATIC TOPIC CREATION

11.1.1. Disabling automatic topic creation for the Kafka broker
11.1.2. Configuring automatic topic creation in Kafka Connect
11.1.3. Configuration of automatically created topics

11.1.3.1. Topic creation groups
11.1.3.2. Topic creation group configuration properties
11.1.3.3. Specifying the configuration for the Debezium default topic creation group
11.1.3.4. Specifying the configuration for Debezium custom topic creation groups
11.1.3.5. Registering Debezium custom topic creation groups

11.2. CONFIGURING DEBEZIUM CONNECTORS TO USE AVRO SERIALIZATION
11.2.1. About the Service Registry
11.2.2. Overview of deploying a Debezium connector that uses Avro serialization
11.2.3. Deploying connectors that use Avro in Debezium containers
11.2.4. About Avro name requirements

11.3. EMITTING DEBEZIUM CHANGE EVENT RECORDS IN CLOUDEVENTS FORMAT
11.3.1. Example Debezium change event records in CloudEvents format
11.3.2. Example of configuring Debezium CloudEvents converter
11.3.3. Debezium CloudEvents converter configuration options

11.4. SENDING SIGNALS TO A DEBEZIUM CONNECTOR
11.4.1. Enabling Debezium signaling

11.4.1.1. Required structure of a Debezium signaling data collection
11.4.1.2. Creating a Debezium signaling data collection

11.4.2. Types of Debezium signal actions
11.4.2.1. Logging signals
11.4.2.2. Ad hoc snapshot signals
11.4.2.3. Incremental snapshots

CHAPTER 12. APPLYING TRANSFORMATIONS TO MODIFY MESSAGES EXCHANGED WITH APACHE KAFKA

12.1. APPLYING TRANSFORMATIONS SELECTIVELY WITH SMT PREDICATES
12.1.1. About SMT predicates
12.1.2. Defining SMT predicates
12.1.3. Ignoring tombstone events

12.2. ROUTING DEBEZIUM EVENT RECORDS TO TOPICS THAT YOU SPECIFY
12.2.1. Use case for routing Debezium records to topics that you specify
12.2.2. Example of routing Debezium records for multiple tables to one topic
12.2.3. Ensuring unique keys across Debezium records routed to the same topic
12.2.4. Options for applying the topic routing transformation selectively
12.2.5. Options for configuring Debezium topic routing transformation

12.3. ROUTING CHANGE EVENT RECORDS TO TOPICS ACCORDING TO EVENT CONTENT
12.3.1. Setting up the Debezium content-based-routing SMT
12.3.2. Example: Debezium basic content-based routing configuration
12.3.3. Variables for use in Debezium content-based routing expressions

454
454
454
455
455
456
457
458

459
459
460
460
461
461
461

462
463
464
466
466
467
467
471
471
472
474
475
475
476
477
477
478
478
479
479

481
481
481

483
484
485
486
486
487
488
488
489
490
491
491

Table of Contents

5

12.3.4. Options for applying the content-based routing transformation selectively
12.3.5. Configuration of content-based routing conditions for other scripting languages
12.3.6. Options for configuring the content-based routing transformation

12.4. FILTERING DEBEZIUM CHANGE EVENT RECORDS
12.4.1. Setting up the Debezium filter SMT
12.4.2. Example: Debezium basic filter SMT configuration
12.4.3. Variables for use in filter expressions
12.4.4. Options for applying the filter transformation selectively
12.4.5. Filter condition configuration for other scripting languages
12.4.6. Options for configuring filter transformation

12.5. EXTRACTING SOURCE RECORD AFTER STATE FROM DEBEZIUM CHANGE EVENTS
12.5.1. Description of Debezium change event structure
12.5.2. Behavior of Debezium event flattening transformation
12.5.3. Configuration of Debezium event flattening transformation
12.5.4. Example of adding Debezium metadata to the Kafka record
12.5.5. Options for applying the event flattening transformation selectively
12.5.6. Options for configuring Debezium event flattening transformation

12.6. CONFIGURING DEBEZIUM CONNECTORS TO USE THE OUTBOX PATTERN
12.6.1. Example of a Debezium outbox message
12.6.2. Outbox table structure expected by Debezium outbox event router SMT
12.6.3. Basic Debezium outbox event router SMT configuration
12.6.4. Options for applying the Outbox event router transformation selectively
12.6.5. Using Avro as the payload format in Debezium outbox messages
12.6.6. Emitting additional fields in Debezium outbox messages
12.6.7. Expanding escaped JSON String as JSON
12.6.8. Options for configuring outbox event router transformation

12.7. CONFIGURING DEBEZIUM MONGODB CONNECTORS TO USE THE OUTBOX PATTERN
12.7.1. Example of a Debezium MongoDB outbox message
12.7.2. Outbox collection structure expected by Debezium mongodb outbox event router SMT
12.7.3. Basic Debezium MongoDB outbox event router SMT configuration
12.7.4. Options for applying the MongoDB outbox event router transformation selectively
12.7.5. Using Avro as the payload format in Debezium MongoDB outbox messages
12.7.6. Emitting additional fields in Debezium MongoDB outbox messages
12.7.7. Expanding escaped JSON String as JSON
12.7.8. Options for configuring outbox event router transformation

492
492
493
494
495
495
496
497
497
498
498
499
500
500
501

502
502
506
507
508
509
510
510
510
511
511

514
515
516
518
518
518
519
519

520

Red Hat Integration 2022.Q2 Debezium User Guide

6

Table of Contents

7

PREFACE
Debezium is a set of distributed services that capture row-level changes in your databases so that your
applications can see and respond to those changes. Debezium records all row-level changes committed
to each database table. Each application reads the transaction logs of interest to view all operations in
the order in which they occurred.

This guide provides details about using the following Debezium topics:

Chapter 1, High level overview of Debezium

Chapter 2, Required custom resource upgrades

Chapter 3, Debezium connector for Db2

Chapter 4, Debezium connector for MongoDB

Chapter 5, Debezium connector for MySQL

Chapter 6, Debezium Connector for Oracle (Technology Preview)

Chapter 7, Debezium connector for PostgreSQL

Chapter 8, Debezium connector for SQL Server

Chapter 9, Monitoring Debezium

Chapter 10, Debezium logging

Chapter 11, Configuring Debezium connectors for your application

Chapter 12, Applying transformations to modify messages exchanged with Apache Kafka

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

Red Hat Integration 2022.Q2 Debezium User Guide

8

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

CHAPTER 1. HIGH LEVEL OVERVIEW OF DEBEZIUM
Debezium is a set of distributed services that capture changes in your databases. Your applications can
consume and respond to those changes. Debezium captures each row-level change in each database
table in a change event record and streams these records to Kafka topics. Applications read these
streams, which provide the change event records in the same order in which they were generated.

More details are in the following sections:

Section 1.1, “Debezium Features”

Section 1.2, “Description of Debezium architecture”

1.1. DEBEZIUM FEATURES

Debezium is a set of source connectors for Apache Kafka Connect. Each connector ingests changes
from a different database by using that database’s features for change data capture (CDC). Unlike
other approaches, such as polling or dual writes, log-based CDC as implemented by Debezium:

Ensures that all data changes are captured.

Produces change events with a very low delay while avoiding increased CPU usage required for
frequent polling. For example, for MySQL or PostgreSQL, the delay is in the millisecond range.

Requires no changes to your data model, such as a "Last Updated" column.

Can capture deletes.

Can capture old record state and additional metadata such as transaction ID and causing
query, depending on the database’s capabilities and configuration.

Five Advantages of Log-Based Change Data Capture is a blog post that provides more details.

Debezium connectors capture data changes with a range of related capabilities and options:

Snapshots: optionally, an initial snapshot of a database’s current state can be taken if a
connector is started and not all logs still exist. Typically, this is the case when the database has
been running for some time and has discarded trannsaction logs that are no longer needed for
transaction recovery or replication. There are different modes for performing snapshots,
including support for incremental snapshots, which can be triggered at connector runtime. For
more details, see the documentation for the connector that you are using.

Filters: you can configure the set of captured schemas, tables and columns with
include/exclude list filters.

Masking: the values from specific columns can be masked, for example, when they contain
sensitive data.

Monitoring: most connectors can be monitored by using JMX.

Ready-to-use single message transformations (SMTs) for message routing, filtering, event
flattening, and more. For more information about the SMTs that Debezium provides, see
Applying transformations to modify messages exchanged with Apache Kafka .

The documentation for each connector provides details about the connectors features and
configuration options.

CHAPTER 1. HIGH LEVEL OVERVIEW OF DEBEZIUM

9

https://debezium.io/blog/2018/07/19/advantages-of-log-based-change-data-capture/

1.2. DESCRIPTION OF DEBEZIUM ARCHITECTURE

You deploy Debezium by means of Apache Kafka Connect. Kafka Connect is a framework and runtime
for implementing and operating:

Source connectors such as Debezium that send records into Kafka

Sink connectors that propagate records from Kafka topics to other systems

The following image shows the architecture of a change data capture pipeline based on Debezium:

As shown in the image, the Debezium connectors for MySQL and PostgresSQL are deployed to capture
changes to these two types of databases. Each Debezium connector establishes a connection to its
source database:

The MySQL connector uses a client library for accessing the binlog.

The PostgreSQL connector reads from a logical replication stream.

Kafka Connect operates as a separate service besides the Kafka broker.

By default, changes from one database table are written to a Kafka topic whose name corresponds to
the table name. If needed, you can adjust the destination topic name by configuring Debezium’s topic
routing transformation. For example, you can:

Route records to a topic whose name is different from the table’s name

Stream change event records for multiple tables into a single topic

After change event records are in Apache Kafka, different connectors in the Kafka Connect eco-system
can stream the records to other systems and databases such as Elasticsearch, data warehouses and
analytics systems, or caches such as Infinispan. Depending on the chosen sink connector, you might
need to configure Debezium’s new record state extraction transformation. This Kafka Connect SMT
propagates the after structure from Debezium’s change event to the sink connector. This is in place of
the verbose change event record that is propagated by default.

Red Hat Integration 2022.Q2 Debezium User Guide

10

https://kafka.apache.org/documentation/#connect
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#routing-debezium-event-records-to-topics-that-you-specify
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#extracting-source-record-after-state-from-debezium-change-events

CHAPTER 2. REQUIRED CUSTOM RESOURCE UPGRADES
Debezium is a Kafka connector plugin that is deployed to an Apache Kafka cluster that runs on AMQ
Streams on OpenShift. To prepare for OpenShift CRD v1, in the current version of AMQ Streams the
required version of the custom resource definitions (CRD) API is now set to v1beta2. The v1beta2
version of the API replaces the previously supported v1beta1 and v1alpha1 API versions. Support for
the v1alpha1 and v1beta1 API versions is now deprecated in AMQ Streams. Those earlier versions are
now removed from most AMQ Streams custom resources, including the KafkaConnect and
KafkaConnector resources that you use to configure Debezium connectors.

The CRDs that are based on the v1beta2 API version use the OpenAPI structural schema. Custom
resources based on the superseded v1alpha1 or v1beta1 APIs do not support structural schemas, and are
incompatible with the current version of AMQ Streams. Before you upgrade to AMQ Streams2.0, you
must upgrade existing custom resources to use API version kafka.strimzi.io/v1beta2. You can upgrade
custom resources any time after you upgrade to AMQ Streams 1.7. You must complete the upgrade to
the v1beta2 API before you upgrade to AMQ Streams2.0 or newer.

To facilitate the upgrade of CRDs and custom resources, AMQ Streams provides an API conversion tool
that automatically upgrades them to a format that is compatible with v1beta2. For more information
about the tool and for the complete instructions about how to upgrade AMQ Streams, see Deploying
and Upgrading AMQ Streams on OpenShift.

NOTE

The requirement to update custom resources applies only to Debezium deployments that
run on AMQ Streams on OpenShift. The requirement does not apply to Debezium on Red
Hat Enterprise Linux

CHAPTER 2. REQUIRED CUSTOM RESOURCE UPGRADES

11

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#assembly-upgrade-resources-str

CHAPTER 3. DEBEZIUM CONNECTOR FOR DB2
Debezium’s Db2 connector can capture row-level changes in the tables of a Db2 database. For
information about the Db2 Database versions that are compatible with this connector, see the
Debezium Supported Configurations page .

This connector is strongly inspired by the Debezium implementation of SQL Server, which uses a SQL-
based polling model that puts tables into "capture mode". When a table is in capture mode, the
Debezium Db2 connector generates and streams a change event for each row-level update to that
table.

A table that is in capture mode has an associated change-data table, which Db2 creates. For each
change to a table that is in capture mode, Db2 adds data about that change to the table’s associated
change-data table. A change-data table contains an entry for each state of a row. It also has special
entries for deletions. The Debezium Db2 connector reads change events from change-data tables and
emits the events to Kafka topics.

The first time a Debezium Db2 connector connects to a Db2 database, the connector reads a consistent
snapshot of the tables for which the connector is configured to capture changes. By default, this is all
non-system tables. There are connector configuration properties that let you specify which tables to put
into capture mode, or which tables to exclude from capture mode.

When the snapshot is complete the connector begins emitting change events for committed updates to
tables that are in capture mode. By default, change events for a particular table go to a Kafka topic that
has the same name as the table. Applications and services consume change events from these topics.

NOTE

The connector requires the use of the abstract syntax notation (ASN) libraries, which are
available as a standard part of Db2 for Linux. To use the ASN libraries, you must have a
license for IBM InfoSphere Data Replication (IIDR). You do not have to install IIDR to use
the ASN libraries.

Information and procedures for using a Debezium Db2 connector is organized as follows:

Section 3.1, “Overview of Debezium Db2 connector”

Section 3.2, “How Debezium Db2 connectors work”

Section 3.3, “Descriptions of Debezium Db2 connector data change events”

Section 3.4, “How Debezium Db2 connectors map data types”

Section 3.5, “Setting up Db2 to run a Debezium connector”

Section 3.6, “Deployment of Debezium Db2 connectors”

Section 3.7, “Monitoring Debezium Db2 connector performance”

Section 3.8, “Managing Debezium Db2 connectors”

Section 3.9, “Updating schemas for Db2 tables in capture mode for Debezium connectors”

3.1. OVERVIEW OF DEBEZIUM DB2 CONNECTOR

The Debezium Db2 connector is based on the ASN Capture/Apply agents that enable SQL Replication

Red Hat Integration 2022.Q2 Debezium User Guide

12

https://access.redhat.com/articles/4938181

The Debezium Db2 connector is based on the ASN Capture/Apply agents that enable SQL Replication
in Db2. A capture agent:

Generates change-data tables for tables that are in capture mode.

Monitors tables in capture mode and stores change events for updates to those tables in their
corresponding change-data tables.

The Debezium connector uses a SQL interface to query change-data tables for change events.

The database administrator must put the tables for which you want to capture changes into capture
mode. For convenience and for automating testing, there are Debezium user-defined functions (UDFs)
in C that you can compile and then use to do the following management tasks:

Start, stop, and reinitialize the ASN agent

Put tables into capture mode

Create the replication (ASN) schemas and change-data tables

Remove tables from capture mode

Alternatively, you can use Db2 control commands to accomplish these tasks.

After the tables of interest are in capture mode, the connector reads their corresponding change-data
tables to obtain change events for table updates. The connector emits a change event for each row-
level insert, update, and delete operation to a Kafka topic that has the same name as the changed table.
This is default behavior that you can modify. Client applications read the Kafka topics that correspond
to the database tables of interest and can react to each row-level change event.

Typically, the database administrator puts a table into capture mode in the middle of the life of a table.
This means that the connector does not have the complete history of all changes that have been made
to the table. Therefore, when the Db2 connector first connects to a particular Db2 database, it starts by
performing a consistent snapshot of each table that is in capture mode. After the connector completes
the snapshot, the connector streams change events from the point at which the snapshot was made. In
this way, the connector starts with a consistent view of the tables that are in capture mode, and does not
drop any changes that were made while it was performing the snapshot.

Debezium connectors are tolerant of failures. As the connector reads and produces change events, it
records the log sequence number (LSN) of the change-data table entry. The LSN is the position of the
change event in the database log. If the connector stops for any reason, including communication
failures, network problems, or crashes, upon restarting it continues reading the change-data tables
where it left off. This includes snapshots. That is, if the snapshot was not complete when the connector
stopped, upon restart the connector begins a new snapshot.

3.2. HOW DEBEZIUM DB2 CONNECTORS WORK

To optimally configure and run a Debezium Db2 connector, it is helpful to understand how the connector
performs snapshots, streams change events, determines Kafka topic names, and handles schema
changes.

Details are in the following topics:

Section 3.2.1, “How Debezium Db2 connectors perform database snapshots”

Section 3.2.2, “How Debezium Db2 connectors read change-data tables”

CHAPTER 3. DEBEZIUM CONNECTOR FOR DB2

13

https://www.ibm.com/support/pages/q-replication-and-sql-replication-product-documentation-pdf-format-version-101-linux-unix-and-windows
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#managing-debezium-db2-connectors

Section 3.2.3, “Default names of Kafka topics that receive Debezium Db2 change event
records”

Section 3.2.4, “About the Debezium Db2 connector schema change topic”

Section 3.2.5, “Debezium Db2 connector-generated events that represent transaction
boundaries”

3.2.1. How Debezium Db2 connectors perform database snapshots

Db2`s replication feature is not designed to store the complete history of database changes.
Consequently, when a Debezium Db2 connector connects to a database for the first time, it takes a
consistent snapshot of tables that are in capture mode and streams this state to Kafka. This establishes
the baseline for table content.

By default, when a Db2 connector performs a snapshot, it does the following:

1. Determines which tables are in capture mode, and thus must be included in the snapshot. By
default, all non-system tables are in capture mode. Connector configuration properties, such as
table.exclude.list and table.include.list let you specify which tables should be in capture mode.

2. Obtains a lock on each of the tables in capture mode. This ensures that no schema changes can
occur in those tables during the snapshot. The level of the lock is determined by the
snapshot.isolation.mode connector configuration property.

3. Reads the highest (most recent) LSN position in the server’s transaction log.

4. Captures the schema of all tables that are in capture mode. The connector persists this
information in its internal database history topic.

5. Optional, releases the locks obtained in step 2. Typically, these locks are held for only a short
time.

6. At the LSN position read in step 3, the connector scans the capture mode tables as well as their
schemas. During the scan, the connector:

a. Confirms that the table was created before the start of the snapshot. If it was not, the
snapshot skips that table. After the snapshot is complete, and the connector starts emitting
change events, the connector produces change events for any tables that were created
during the snapshot.

b. Produces a read event for each row in each table that is in capture mode. All read events
contain the same LSN position, which is the LSN position that was obtained in step 3.

c. Emits each read event to the Kafka topic that has the same name as the table.

7. Records the successful completion of the snapshot in the connector offsets.

3.2.1.1. Ad hoc snapshots

IMPORTANT

Red Hat Integration 2022.Q2 Debezium User Guide

14

IMPORTANT

The use of ad hoc snapshots is a Technology Preview feature. Technology Preview
features are not supported with Red Hat production service-level agreements (SLAs) and
might not be functionally complete; therefore, Red Hat does not recommend
implementing any Technology Preview features in production environments. This
Technology Preview feature provides early access to upcoming product innovations,
enabling you to test functionality and provide feedback during the development process.
For more information about support scope, see Technology Preview Features Support
Scope.

By default, a connector runs an initial snapshot operation only after it starts for the first time. Following
this initial snapshot, under normal circumstances, the connector does not repeat the snapshot process.
Any future change event data that the connector captures comes in through the streaming process
only.

However, in some situations the data that the connector obtained during the initial snapshot might
become stale, lost, or incomplete. To provide a mechanism for recapturing table data, Debezium
includes an option to perform ad hoc snapshots. The following changes in a database might be cause for
performing an ad hoc snapshot:

The connector configuration is modified to capture a different set of tables.

Kafka topics are deleted and must be rebuilt.

Data corruption occurs due to a configuration error or some other problem.

You can re-run a snapshot for a table for which you previously captured a snapshot by initiating a so-
called ad-hoc snapshot . Ad hoc snapshots require the use of signaling tables. You initiate an ad hoc
snapshot by sending a signal request to the Debezium signaling table.

When you initiate an ad hoc snapshot of an existing table, the connector appends content to the topic
that already exists for the table. If a previously existing topic was removed, Debezium can create a topic
automatically if automatic topic creation is enabled.

Ad hoc snapshot signals specify the tables to include in the snapshot. The snapshot can capture the
entire contents of the database, or capture only a subset of the tables in the database.

You specify the tables to capture by sending an execute-snapshot message to the signaling table. Set
the type of the execute-snapshot signal to incremental, and provide the names of the tables to
include in the snapshot, as described in the following table:

Table 3.1. Example of an ad hoc execute-snapshot signal record

Field Default Value

type incremental Specifies the type of snapshot that you want to run.
Setting the type is optional. Currently, you can request only
incremental snapshots.

data-collections N/A An array that contains the fully-qualified names of the table to
be snapshotted.
The format of the names is the same as for the
signal.data.collection configuration option.

CHAPTER 3. DEBEZIUM CONNECTOR FOR DB2

15

https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#sending-signals-to-a-debezium-connector
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index.xml#customizing-debezium-automatically-created-topics

Triggering an ad hoc snapshot

You initiate an ad hoc snapshot by adding an entry with the execute-snapshot signal type to the
signaling table. After the connector processes the message, it begins the snapshot operation. The
snapshot process reads the first and last primary key values and uses those values as the start and end
point for each table. Based on the number of entries in the table, and the configured chunk size,
Debezium divides the table into chunks, and proceeds to snapshot each chunk, in succession, one at a
time.

Currently, the execute-snapshot action type triggers incremental snapshots only. For more
information, see Incremental snapshots.

3.2.1.2. Incremental snapshots

IMPORTANT

The use of incremental snapshots is a Technology Preview feature. Technology Preview
features are not supported with Red Hat production service-level agreements (SLAs) and
might not be functionally complete; therefore, Red Hat does not recommend
implementing any Technology Preview features in production environments. This
Technology Preview feature provides early access to upcoming product innovations,
enabling you to test functionality and provide feedback during the development process.
For more information about support scope, see Technology Preview Features Support
Scope.

To provide flexibility in managing snapshots, Debezium includes a supplementary snapshot mechanism,
known as incremental snapshotting . Incremental snapshots rely on the Debezium mechanism for sending
signals to a Debezium connector.

In an incremental snapshot, instead of capturing the full state of a database all at once, as in an initial
snapshot, Debezium captures each table in phases, in a series of configurable chunks. You can specify
the tables that you want the snapshot to capture and the size of each chunk . The chunk size determines
the number of rows that the snapshot collects during each fetch operation on the database. The default
chunk size for incremental snapshots is 1 KB.

As an incremental snapshot proceeds, Debezium uses watermarks to track its progress, maintaining a
record of each table row that it captures. This phased approach to capturing data provides the following
advantages over the standard initial snapshot process:

You can run incremental snapshots in parallel with streamed data capture, instead of postponing
streaming until the snapshot completes. The connector continues to capture near real-time
events from the change log throughout the snapshot process, and neither operation blocks the
other.

If the progress of an incremental snapshot is interrupted, you can resume it without losing any
data. After the process resumes, the snapshot begins at the point where it stopped, rather than
recapturing the table from the beginning.

You can run an incremental snapshot on demand at any time, and repeat the process as needed
to adapt to database updates. For example, you might re-run a snapshot after you modify the
connector configuration to add a table to its table.include.list property.

Incremental snapshot process

When you run an incremental snapshot, Debezium sorts each table by primary key and then splits the
table into chunks based on the configured chunk size. Working chunk by chunk, it then captures each

Red Hat Integration 2022.Q2 Debezium User Guide

16

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index.xml#debezium-signaling-incremental-snapshots
https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index.xml#sending-signals-to-a-debezium-connector

table row in a chunk. For each row that it captures, the snapshot emits a READ event. That event
represents the value of the row when the snapshot for the chunk began.

As a snapshot proceeds, it’s likely that other processes continue to access the database, potentially
modifying table records. To reflect such changes, INSERT, UPDATE, or DELETE operations are
committed to the transaction log as per usual. Similarly, the ongoing Debezium streaming process
continues to detect these change events and emits corresponding change event records to Kafka.

How Debezium resolves collisions among records with the same primary key

In some cases, the UPDATE or DELETE events that the streaming process emits are received out of
sequence. That is, the streaming process might emit an event that modifies a table row before the
snapshot captures the chunk that contains the READ event for that row. When the snapshot eventually
emits the corresponding READ event for the row, its value is already superseded. To ensure that
incremental snapshot events that arrive out of sequence are processed in the correct logical order,
Debezium employs a buffering scheme for resolving collisions. Only after collisions between the
snapshot events and the streamed events are resolved does Debezium emit an event record to Kafka.

Snapshot window

To assist in resolving collisions between late-arriving READ events and streamed events that modify
the same table row, Debezium employs a so-called snapshot window. The snapshot windows demarcates
the interval during which an incremental snapshot captures data for a specified table chunk. Before the
snapshot window for a chunk opens, Debezium follows its usual behavior and emits events from the
transaction log directly downstream to the target Kafka topic. But from the moment that the snapshot
for a particular chunk opens, until it closes, Debezium performs a de-duplication step to resolve
collisions between events that have the same primary key..

For each data collection, the Debezium emits two types of events, and stores the records for them both
in a single destination Kafka topic. The snapshot records that it captures directly from a table are
emitted as READ operations. Meanwhile, as users continue to update records in the data collection, and
the transaction log is updated to reflect each commit, Debezium emits UPDATE or DELETE operations
for each change.

As the snapshot window opens, and Debezium begins processing a snapshot chunk, it delivers snapshot
records to a memory buffer. During the snapshot windows, the primary keys of the READ events in the
buffer are compared to the primary keys of the incoming streamed events. If no match is found, the
streamed event record is sent directly to Kafka. If Debezium detects a match, it discards the buffered
READ event, and writes the streamed record to the destination topic, because the streamed event
logically supersede the static snapshot event. After the snapshot window for the chunk closes, the
buffer contains only READ events for which no related transaction log events exist. Debezium emits
these remaining READ events to the table’s Kafka topic.

The connector repeats the process for each snapshot chunk.

Triggering an incremental snapshot

Currently, the only way to initiate an incremental snapshot is to send an ad hoc snapshot signal to the
signaling table on the source database. You submit signals to the table as SQL INSERT queries. After
Debezium detects the change in the signaling table, it reads the signal, and runs the requested snapshot
operation.

The query that you submit specifies the tables to include in the snapshot, and, optionally, specifies the
kind of snapshot operation. Currently, the only valid option for snapshots operations is the default value,
incremental.

To specify the tables to include in the snapshot, provide a data-collections array that lists the tables,

CHAPTER 3. DEBEZIUM CONNECTOR FOR DB2

17

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index.xml#debezium-signaling-ad-hoc-snapshots

To specify the tables to include in the snapshot, provide a data-collections array that lists the tables,
for example,
{"data-collections": ["public.MyFirstTable", "public.MySecondTable"]}

The data-collections array for an incremental snapshot signal has no default value. If the data-
collections array is empty, Debezium detects that no action is required and does not perform a
snapshot.

Prerequisites

Signaling is enabled.

A signaling data collection exists on the source database and the connector is configured to
capture it.

The signaling data collection is specified in the signal.data.collection property.

Procedure

1. Send a SQL query to add the ad hoc incremental snapshot request to the signaling table:

For example,

The values of the id,type, and data parameters in the command correspond to the fields of the
signaling table.

The following table describes the these parameters:

Table 3.2. Descriptions of fields in a SQL command for sending an incremental snapshot
signal to the signaling table

Value Description

myschema.de
bezium_signal

Specifies the fully-qualified name of the signaling table on the source database

ad-hoc-1 The id parameter specifies an arbitrary string that is assigned as the id identifier
for the signal request.
Use this string to identify logging messages to entries in the signaling table.
Debezium does not use this string. Rather, during the snapshot, Debezium
generates its own id string as a watermarking signal.

execute-
snapshot

Specifies type parameter specifies the operation that the signal is intended to
trigger.

INSERT INTO _<signalTable>_ (id, type, data) VALUES (_'<id>'_, _'<snapshotType>'_,
'{"data-collections": ["_<tableName>_","_<tableName>_"],"type":"_<snapshotType>_"}');

INSERT INTO myschema.debezium_signal (id, type, data) VALUES('ad-hoc-1', 'execute-
snapshot', '{"data-collections": ["schema1.table1", "schema2.table2"],"type":"incremental"}');

Red Hat Integration 2022.Q2 Debezium User Guide

18

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index.xml#debezium-signaling-enabling-signaling
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index.xml#debezium-signaling-required-structure-of-a-signaling-data-collection

data-
collections

A required component of the data field of a signal that specifies an array of
table names to include in the snapshot.
The array lists tables by their fully-qualified names, using the same format as you
use to specify the name of the connector’s signaling table in the
signal.data.collection configuration property.

incremental An optional type component of the data field of a signal that specifies the kind
of snapshot operation to run.
Currently, the only valid option is the default value, incremental.
Specifying a type value in the SQL query that you submit to the signaling table
is optional.
If you do not specify a value, the connector runs an incremental snapshot.

Value Description

The following example, shows the JSON for an incremental snapshot event that is captured by a
connector.

Example: Incremental snapshot event message

Item Field name Description

1 snapshot Specifies the type of snapshot operation to run.
Currently, the only valid option is the default value, incremental.
Specifying a type value in the SQL query that you submit to the
signaling table is optional.
If you do not specify a value, the connector runs an incremental
snapshot.

2 op Specifies the event type.
The value for snapshot events is r, signifying a READ operation.

{
 "before":null,
 "after": {
 "pk":"1",
 "value":"New data"
 },
 "source": {
 ...
 "snapshot":"incremental" 1
 },
 "op":"r", 2
 "ts_ms":"1620393591654",
 "transaction":null
}

CHAPTER 3. DEBEZIUM CONNECTOR FOR DB2

19

WARNING

The Debezium connector for Db2 does not support schema changes while an
incremental snapshot is running.

3.2.2. How Debezium Db2 connectors read change-data tables

After a complete snapshot, when a Debezium Db2 connector starts for the first time, the connector
identifies the change-data table for each source table that is in capture mode. The connector does the
following for each change-data table:

1. Reads change events that were created between the last stored, highest LSN and the current,
highest LSN.

2. Orders the change events according to the commit LSN and the change LSN for each event.
This ensures that the connector emits the change events in the order in which the table
changes occurred.

3. Passes commit and change LSNs as offsets to Kafka Connect.

4. Stores the highest LSN that the connector passed to Kafka Connect.

After a restart, the connector resumes emitting change events from the offset (commit and change
LSNs) where it left off. While the connector is running and emitting change events, if you remove a table
from capture mode or add a table to capture mode, the connector detects the change, and modifies its
behavior accordingly.

3.2.3. Default names of Kafka topics that receive Debezium Db2 change event
records

By default, the Db2 connector writes change events for all of the INSERT, UPDATE, and DELETE
operations that occur in a table to a single Apache Kafka topic that is specific to that table. The
connector uses the following convention to name change event topics:

databaseName.schemaName.tableName

The following list provides definitions for the components of the default name:

databaseName

The logical name of the connector as specified by the database.server.name connector
configuration property.

schemaName

The name of the schema in which the operation occurred.

tableName

The name of the table in which the operation occurred.

For example, consider a Db2 installation with the mydatabase database, which contains four tables:
PRODUCTS, PRODUCTS_ON_HAND, CUSTOMERS, and ORDERS that are in the MYSCHEMA
schema. The connector would emit events to these four Kafka topics:

Red Hat Integration 2022.Q2 Debezium User Guide

20

mydatabase.MYSCHEMA.PRODUCTS

mydatabase.MYSCHEMA.PRODUCTS_ON_HAND

mydatabase.MYSCHEMA.CUSTOMERS

mydatabase.MYSCHEMA.ORDERS

The connector applies similar naming conventions to label its internal database history topics, schema
change topics, and transaction metadata topics.

If the default topic name do not meet your requirements, you can configure custom topic names. To
configure custom topic names, you specify regular expressions in the logical topic routing SMT. For
more information about using the logical topic routing SMT to customize topic naming, see Topic
routing.

3.2.4. About the Debezium Db2 connector schema change topic

You can configure a Debezium Db2 connector to produce schema change events that describe schema
changes that are applied to captured tables in the database.

Debezium emits a message to the schema change topic when:

A new table goes into capture mode.

A table is removed from capture mode.

During a database schema update, there is a change in the schema for a table that is in capture
mode.

The connector writes schema change events to a Kafka schema change topic that has the name
<serverName> where <serverName> is the logical server name that is specified in the
database.server.name connector configuration property. Messages that the connector sends to the
schema change topic contain a payload that includes the following elements:

databaseName

The name of the database to which the statements are applied. The value of databaseName serves
as the message key.

pos

The position in the binlog where the statements appear.

tableChanges

A structured representation of the entire table schema after the schema change. The tableChanges
field contains an array that includes entries for each column of the table. Because the structured
representation presents data in JSON or Avro format, consumers can easily read messages without
first processing them through a DDL parser.

IMPORTANT

For a table that is in capture mode, the connector not only stores the history of schema
changes in the schema change topic, but also in an internal database history topic. The
internal database history topic is for connector use only and it is not intended for direct
use by consuming applications. Ensure that applications that require notifications about
schema changes consume that information only from the schema change topic.

IMPORTANT

CHAPTER 3. DEBEZIUM CONNECTOR FOR DB2

21

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#routing-debezium-event-records-to-topics-that-you-specify
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#updating-schemas-for-db2-tables-in-capture-mode-for-debezium-connectors

IMPORTANT

Never partition the database history topic. For the database history topic to function
correctly, it must maintain a consistent, global order of the event records that the
connector emits to it.

To ensure that the topic is not split among partitions, set the partition count for the topic
by using one of the following methods:

If you create the database history topic manually, specify a partition count of 1.

If you use the Apache Kafka broker to create the database history topic
automatically, the topic is created, set the value of the Kafka num.partitions
configuration option to 1.

WARNING

The format of messages that a connector emits to its schema change topic is in an
incubating state and can change without notice.

Example: Message emitted to the Db2 connector schema change topic

The following example shows a message in the schema change topic. The message contains a logical
representation of the table schema.

{
 "schema": {
 ...
 },
 "payload": {
 "source": {
 "version": "1.7.2.Final",
 "connector": "db2",
 "name": "db2",
 "ts_ms": 1588252618953,
 "snapshot": "true",
 "db": "testdb",
 "schema": "DB2INST1",
 "table": "CUSTOMERS",
 "change_lsn": null,
 "commit_lsn": "00000025:00000d98:00a2",
 "event_serial_no": null
 },
 "databaseName": "TESTDB", 1
 "schemaName": "DB2INST1",
 "ddl": null, 2
 "tableChanges": [3
 {
 "type": "CREATE", 4
 "id": "\"DB2INST1\".\"CUSTOMERS\"", 5

Red Hat Integration 2022.Q2 Debezium User Guide

22

https://kafka.apache.org/documentation/#brokerconfigs_num.partitions

 "table": { 6
 "defaultCharsetName": null,
 "primaryKeyColumnNames": [7
 "ID"
],
 "columns": [8
 {
 "name": "ID",
 "jdbcType": 4,
 "nativeType": null,
 "typeName": "int identity",
 "typeExpression": "int identity",
 "charsetName": null,
 "length": 10,
 "scale": 0,
 "position": 1,
 "optional": false,
 "autoIncremented": false,
 "generated": false
 },
 {
 "name": "FIRST_NAME",
 "jdbcType": 12,
 "nativeType": null,
 "typeName": "varchar",
 "typeExpression": "varchar",
 "charsetName": null,
 "length": 255,
 "scale": null,
 "position": 2,
 "optional": false,
 "autoIncremented": false,
 "generated": false
 },
 {
 "name": "LAST_NAME",
 "jdbcType": 12,
 "nativeType": null,
 "typeName": "varchar",
 "typeExpression": "varchar",
 "charsetName": null,
 "length": 255,
 "scale": null,
 "position": 3,
 "optional": false,
 "autoIncremented": false,
 "generated": false
 },
 {
 "name": "EMAIL",
 "jdbcType": 12,
 "nativeType": null,
 "typeName": "varchar",
 "typeExpression": "varchar",
 "charsetName": null,
 "length": 255,

CHAPTER 3. DEBEZIUM CONNECTOR FOR DB2

23

Table 3.3. Descriptions of fields in messages emitted to the schema change topic

Item Field name Description

1 databaseName
schemaName

Identifies the database and the schema that contain the change.

2 ddl Always null for the Db2 connector. For other connectors, this
field contains the DDL responsible for the schema change. This
DDL is not available to Db2 connectors.

3 tableChanges An array of one or more items that contain the schema changes
generated by a DDL command.

4 type Describes the kind of change. The value is one of the following:

CREATE - table created

ALTER - table modified

DROP - table deleted

5 id Full identifier of the table that was created, altered, or dropped.

6 table Represents table metadata after the applied change.

7 primaryKeyColumnName
s

List of columns that compose the table’s primary key.

8 columns Metadata for each column in the changed table.

In messages that the connector sends to the schema change topic, the message key is the name of the
database that contains the schema change. In the following example, the payload field contains the key:

 "scale": null,
 "position": 4,
 "optional": false,
 "autoIncremented": false,
 "generated": false
 }
]
 }
 }
]
 }
}

{
 "schema": {
 "type": "struct",
 "fields": [
 {

Red Hat Integration 2022.Q2 Debezium User Guide

24

3.2.5. Debezium Db2 connector-generated events that represent transaction
boundaries

Debezium can generate events that represent transaction boundaries and that enrich change data
event messages.

LIMITS ON WHEN DEBEZIUM RECEIVES TRANSACTION METADATA

Debezium registers and receives metadata only for transactions that occur after you
deploy the connector. Metadata for transactions that occur before you deploy the
connector is not available.

Debezium generates transaction boundary events for the BEGIN and END delimiters in every
transaction. Transaction boundary events contain the following fields:

status

BEGIN or END.

id

String representation of the unique transaction identifier.

event_count (for END events)

Total number of events emitted by the transaction.

data_collections (for END events)

An array of pairs of data_collection and event_count elements. that indicates the number of events
that the connector emits for changes that originate from a data collection.

Example

 "type": "string",
 "optional": false,
 "field": "databaseName"
 }
],
 "optional": false,
 "name": "io.debezium.connector.db2.SchemaChangeKey"
 },
 "payload": {
 "databaseName": "TESTDB"
 }
}

{
 "status": "BEGIN",
 "id": "00000025:00000d08:0025",
 "event_count": null,
 "data_collections": null
}

{
 "status": "END",
 "id": "00000025:00000d08:0025",
 "event_count": 2,
 "data_collections": [

CHAPTER 3. DEBEZIUM CONNECTOR FOR DB2

25

The connector emits transaction events to the <database.server.name>.transaction topic.

Data change event enrichment

When transaction metadata is enabled the connector enriches the change event Envelope with a new
transaction field. This field provides information about every event in the form of a composite of fields:

id

String representation of unique transaction identifier.

total_order

The absolute position of the event among all events generated by the transaction.

data_collection_order

The per-data collection position of the event among all events that were emitted by the transaction.

Following is an example of a message:

3.3. DESCRIPTIONS OF DEBEZIUM DB2 CONNECTOR DATA CHANGE
EVENTS

The Debezium Db2 connector generates a data change event for each row-level INSERT, UPDATE, and
DELETE operation. Each event contains a key and a value. The structure of the key and the value
depends on the table that was changed.

Debezium and Kafka Connect are designed around continuous streams of event messages . However, the

 {
 "data_collection": "testDB.dbo.tablea",
 "event_count": 1
 },
 {
 "data_collection": "testDB.dbo.tableb",
 "event_count": 1
 }
]
}

{
 "before": null,
 "after": {
 "pk": "2",
 "aa": "1"
 },
 "source": {
...
 },
 "op": "c",
 "ts_ms": "1580390884335",
 "transaction": {
 "id": "00000025:00000d08:0025",
 "total_order": "1",
 "data_collection_order": "1"
 }
}

Red Hat Integration 2022.Q2 Debezium User Guide

26

structure of these events may change over time, which can be difficult for consumers to handle. To
address this, each event contains the schema for its content or, if you are using a schema registry, a
schema ID that a consumer can use to obtain the schema from the registry. This makes each event self-
contained.

The following skeleton JSON shows the basic four parts of a change event. However, how you configure
the Kafka Connect converter that you choose to use in your application determines the representation
of these four parts in change events. A schema field is in a change event only when you configure the
converter to produce it. Likewise, the event key and event payload are in a change event only if you
configure a converter to produce it. If you use the JSON converter and you configure it to produce all
four basic change event parts, change events have this structure:

Table 3.4. Overview of change event basic content

Item Field name Description

1 schema The first schema field is part of the event key. It specifies a Kafka Connect
schema that describes what is in the event key’s payload portion. In other
words, the first schema field describes the structure of the primary key, or
the unique key if the table does not have a primary key, for the table that
was changed.

It is possible to override the table’s primary key by setting the
message.key.columns connector configuration property. In this case,
the first schema field describes the structure of the the key identified by
that property.

2 payload The first payload field is part of the event key. It has the structure
described by the previous schema field and it contains the key for the row
that was changed.

3 schema The second schema field is part of the event value. It specifies the Kafka
Connect schema that describes what is in the event value’s payload
portion. In other words, the second schema describes the structure of the
row that was changed. Typically, this schema contains nested schemas.

{
 "schema": { 1
 ...
 },
 "payload": { 2
 ...
 },
 "schema": { 3
 ...
 },
 "payload": { 4
 ...
 },
}

CHAPTER 3. DEBEZIUM CONNECTOR FOR DB2

27

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#db2-property-message-key-columns

4 payload The second payload field is part of the event value. It has the structure
described by the previous schema field and it contains the actual data for
the row that was changed.

Item Field name Description

By default, the connector streams change event records to topics with names that are the same as the
event’s originating table. See topic names.

WARNING

The Debezium Db2 connector ensures that all Kafka Connect schema names
adhere to the Avro schema name format . This means that the logical server name
must start with a Latin letter or an underscore, that is, a-z, A-Z, or _. Each remaining
character in the logical server name and each character in the database and table
names must be a Latin letter, a digit, or an underscore, that is, a-z, A-Z, 0-9, or _. If
there is an invalid character it is replaced with an underscore character.

This can lead to unexpected conflicts if the logical server name, a database name, or
a table name contains invalid characters, and the only characters that distinguish
names from one another are invalid and thus replaced with underscores.

Also, Db2 names for databases, schemas, and tables can be case sensitive. This
means that the connector could emit event records for more than one table to the
same Kafka topic.

Details are in the following topics:

Section 3.3.1, “About keys in Debezium db2 change events”

Section 3.3.2, “About values in Debezium Db2 change events”

3.3.1. About keys in Debezium db2 change events

A change event’s key contains the schema for the changed table’s key and the changed row’s actual
key. Both the schema and its corresponding payload contain a field for each column in the changed
table’s PRIMARY KEY (or unique constraint) at the time the connector created the event.

Consider the following customers table, which is followed by an example of a change event key for this
table.

Example table

CREATE TABLE customers (
 ID INTEGER IDENTITY(1001,1) NOT NULL PRIMARY KEY,
 FIRST_NAME VARCHAR(255) NOT NULL,

Red Hat Integration 2022.Q2 Debezium User Guide

28

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#default-names-of-kafka-topics-that-receive-db2-change-event-records
http://avro.apache.org/docs/current/spec.html#names

Example change event key

Every change event that captures a change to the customers table has the same event key schema.
For as long as the customers table has the previous definition, every change event that captures a
change to the customers table has the following key structure. In JSON, it looks like this:

Table 3.5. Description of change event key

Item Field name Description

1 schema The schema portion of the key specifies a Kafka Connect schema that
describes what is in the key’s payload portion.

2 fields Specifies each field that is expected in the payload, including each field’s
name, type, and whether it is required.

3 optional Indicates whether the event key must contain a value in its payload field. In
this example, a value in the key’s payload is required. A value in the key’s
payload field is optional when a table does not have a primary key.

 LAST_NAME VARCHAR(255) NOT NULL,
 EMAIL VARCHAR(255) NOT NULL UNIQUE
);

{
 "schema": { 1
 "type": "struct",
 "fields": [2
 {
 "type": "int32",
 "optional": false,
 "field": "ID"
 }
],
 "optional": false, 3
 "name": "mydatabase.MYSCHEMA.CUSTOMERS.Key" 4
 },
 "payload": { 5
 "ID": 1004
 }
}

CHAPTER 3. DEBEZIUM CONNECTOR FOR DB2

29

4 mydatabase.MY
SCHEMA.CUST
OMERS.Key

Name of the schema that defines the structure of the key’s payload. This
schema describes the structure of the primary key for the table that was
changed. Key schema names have the format connector-name.database-
name.table-name.Key. In this example:

mydatabase is the name of the connector that generated this
event.

MYSCHEMA is the database schema that contains the table that
was changed.

CUSTOMERS is the table that was updated.

5 payload Contains the key for the row for which this change event was generated. In
this example, the key, contains a single ID field whose value is 1004.

Item Field name Description

3.3.2. About values in Debezium Db2 change events

The value in a change event is a bit more complicated than the key. Like the key, the value has a schema
section and a payload section. The schema section contains the schema that describes the Envelope
structure of the payload section, including its nested fields. Change events for operations that create,
update or delete data all have a value payload with an envelope structure.

Consider the same sample table that was used to show an example of a change event key:

Example table

The event value portion of every change event for the customers table specifies the same schema.
The event value’s payload varies according to the event type:

create events

update events

delete events

create events

The following example shows the value portion of a change event that the connector generates for an
operation that creates data in the customers table:

CREATE TABLE customers (
 ID INTEGER IDENTITY(1001,1) NOT NULL PRIMARY KEY,
 FIRST_NAME VARCHAR(255) NOT NULL,
 LAST_NAME VARCHAR(255) NOT NULL,
 EMAIL VARCHAR(255) NOT NULL UNIQUE
);

{
 "schema": { 1
 "type": "struct",
 "fields": [

Red Hat Integration 2022.Q2 Debezium User Guide

30

 {
 "type": "struct",
 "fields": [
 {
 "type": "int32",
 "optional": false,
 "field": "ID"
 },
 {
 "type": "string",
 "optional": false,
 "field": "FIRST_NAME"
 },
 {
 "type": "string",
 "optional": false,
 "field": "LAST_NAME"
 },
 {
 "type": "string",
 "optional": false,
 "field": "EMAIL"
 }
],
 "optional": true,
 "name": "mydatabase.MYSCHEMA.CUSTOMERS.Value", 2
 "field": "before"
 },
 {
 "type": "struct",
 "fields": [
 {
 "type": "int32",
 "optional": false,
 "field": "ID"
 },
 {
 "type": "string",
 "optional": false,
 "field": "FIRST_NAME"
 },
 {
 "type": "string",
 "optional": false,
 "field": "LAST_NAME"
 },
 {
 "type": "string",
 "optional": false,
 "field": "EMAIL"
 }
],
 "optional": true,
 "name": "mydatabase.MYSCHEMA.CUSTOMERS.Value",
 "field": "after"
 },

CHAPTER 3. DEBEZIUM CONNECTOR FOR DB2

31

 {
 "type": "struct",
 "fields": [
 {
 "type": "string",
 "optional": false,
 "field": "version"
 },
 {
 "type": "string",
 "optional": false,
 "field": "connector"
 },
 {
 "type": "string",
 "optional": false,
 "field": "name"
 },
 {
 "type": "int64",
 "optional": false,
 "field": "ts_ms"
 },
 {
 "type": "boolean",
 "optional": true,
 "default": false,
 "field": "snapshot"
 },
 {
 "type": "string",
 "optional": false,
 "field": "db"
 },
 {
 "type": "string",
 "optional": false,
 "field": "schema"
 },
 {
 "type": "string",
 "optional": false,
 "field": "table"
 },
 {
 "type": "string",
 "optional": true,
 "field": "change_lsn"
 },
 {
 "type": "string",
 "optional": true,
 "field": "commit_lsn"
 },
],
 "optional": false,

Red Hat Integration 2022.Q2 Debezium User Guide

32

Table 3.6. Descriptions of create event value fields

Item Field name Description

1 schema The value’s schema, which describes the structure of the value’s payload. A
change event’s value schema is the same in every change event that the
connector generates for a particular table.

 "name": "io.debezium.connector.db2.Source", 3
 "field": "source"
 },
 {
 "type": "string",
 "optional": false,
 "field": "op"
 },
 {
 "type": "int64",
 "optional": true,
 "field": "ts_ms"
 }
],
 "optional": false,
 "name": "mydatabase.MYSCHEMA.CUSTOMERS.Envelope" 4
 },
 "payload": { 5
 "before": null, 6
 "after": { 7
 "ID": 1005,
 "FIRST_NAME": "john",
 "LAST_NAME": "doe",
 "EMAIL": "john.doe@example.org"
 },
 "source": { 8
 "version": "1.7.2.Final",
 "connector": "db2",
 "name": "myconnector",
 "ts_ms": 1559729468470,
 "snapshot": false,
 "db": "mydatabase",
 "schema": "MYSCHEMA",
 "table": "CUSTOMERS",
 "change_lsn": "00000027:00000758:0003",
 "commit_lsn": "00000027:00000758:0005",
 },
 "op": "c", 9
 "ts_ms": 1559729471739 10
 }
}

CHAPTER 3. DEBEZIUM CONNECTOR FOR DB2

33

2 name In the schema section, each name field specifies the schema for a field in
the value’s payload.

mydatabase.MYSCHEMA.CUSTOMERS.Value is the schema for the
payload’s before and after fields. This schema is specific to the
customers table. The connector uses this schema for all rows in the
MYSCHEMA.CUSTOMERS table.

Names of schemas for before and after fields are of the form
logicalName.schemaName.tableName.Value, which ensures that the
schema name is unique in the database. This means that when using the
Avro converter, the resulting Avro schema for each table in each logical
source has its own evolution and history.

3 name io.debezium.connector.db2.Source is the schema for the payload’s
source field. This schema is specific to the Db2 connector. The connector
uses it for all events that it generates.

4 name mydatabase.MYSCHEMA.CUSTOMERS.Envelope is the schema for
the overall structure of the payload, where mydatabase is the database,
MYSCHEMA is the schema, and CUSTOMERS is the table.

5 payload The value’s actual data. This is the information that the change event is
providing.

It may appear that JSON representations of events are much larger than
the rows they describe. This is because a JSON representation must include
the schema portion and the payload portion of the message. However, by
using the Avro converter, you can significantly decrease the size of the
messages that the connector streams to Kafka topics.

6 before An optional field that specifies the state of the row before the event
occurred. When the op field is c for create, as it is in this example, the
before field is null since this change event is for new content.

7 after An optional field that specifies the state of the row after the event
occurred. In this example, the after field contains the values of the new row’s
ID, FIRST_NAME, LAST_NAME, and EMAIL columns.

Item Field name Description

Red Hat Integration 2022.Q2 Debezium User Guide

34

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#configuring-debezium-connectors-to-use-avro-serialization
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#configuring-debezium-connectors-to-use-avro-serialization

8 source Mandatory field that describes the source metadata for the event. The
source structure shows Db2 information about this change, which provides
traceability. It also has information you can use to compare to other events
in the same topic or in other topics to know whether this event occurred
before, after, or as part of the same commit as other events. The source
metadata includes:

Debezium version

Connector type and name

Timestamp for when the change was made in the database

Whether the event is part of an ongoing snapshot

Name of the database, schema, and table that contain the new row

Change LSN

Commit LSN (omitted if this event is part of a snapshot)

9 op Mandatory string that describes the type of operation that caused the
connector to generate the event. In this example, c indicates that the
operation created a row. Valid values are:

c = create

u = update

d = delete

r = read (applies to only snapshots)

10 ts_ms Optional field that displays the time at which the connector processed the
event. The time is based on the system clock in the JVM running the Kafka
Connect task.

In the source object, ts_ms indicates the time that the change was made
in the database. By comparing the value for payload.source.ts_ms with
the value for payload.ts_ms, you can determine the lag between the
source database update and Debezium.

Item Field name Description

update events

The value of a change event for an update in the sample customers table has the same schema as a
create event for that table. Likewise, the update event value’s payload has the same structure. However,
the event value payload contains different values in an update event. Here is an example of a change
event value in an event that the connector generates for an update in the customers table:

{
 "schema": { ... },
 "payload": {
 "before": { 1

CHAPTER 3. DEBEZIUM CONNECTOR FOR DB2

35

Table 3.7. Descriptions of update event value fields

Item Field name Description

1 before An optional field that specifies the state of the row before the event
occurred. In an update event value, the before field contains a field for each
table column and the value that was in that column before the database
commit. In this example, note that the EMAIL value is
john.doe@example.com.

2 after An optional field that specifies the state of the row after the event
occurred. You can compare the before and after structures to determine
what the update to this row was. In the example, the EMAIL value is now
noreply@example.com.

 "ID": 1005,
 "FIRST_NAME": "john",
 "LAST_NAME": "doe",
 "EMAIL": "john.doe@example.org"
 },
 "after": { 2
 "ID": 1005,
 "FIRST_NAME": "john",
 "LAST_NAME": "doe",
 "EMAIL": "noreply@example.org"
 },
 "source": { 3
 "version": "1.7.2.Final",
 "connector": "db2",
 "name": "myconnector",
 "ts_ms": 1559729995937,
 "snapshot": false,
 "db": "mydatabase",
 "schema": "MYSCHEMA",
 "table": "CUSTOMERS",
 "change_lsn": "00000027:00000ac0:0002",
 "commit_lsn": "00000027:00000ac0:0007",
 },
 "op": "u", 4
 "ts_ms": 1559729998706 5
 }
}

Red Hat Integration 2022.Q2 Debezium User Guide

36

3 source Mandatory field that describes the source metadata for the event. The
source field structure contains the same fields as in a create event, but
some values are different, for example, the sample update event has
different LSNs. You can use this information to compare this event to other
events to know whether this event occurred before, after, or as part of the
same commit as other events. The source metadata includes:

Debezium version

Connector type and name

Timestamp for when the change was made in the database

Whether the event is part of an ongoing snapshot

Name of the database, schema, and table that contain the new row

Change LSN

Commit LSN (omitted if this event is part of a snapshot)

4 op Mandatory string that describes the type of operation. In an update event
value, the op field value is u, signifying that this row changed because of an
update.

5 ts_ms Optional field that displays the time at which the connector processed the
event. The time is based on the system clock in the JVM running the Kafka
Connect task.

In the source object, ts_ms indicates the time that the change was made
in the database. By comparing the value for payload.source.ts_ms with
the value for payload.ts_ms, you can determine the lag between the
source database update and Debezium.

Item Field name Description

NOTE

Updating the columns for a row’s primary/unique key changes the value of the row’s key.
When a key changes, Debezium outputs three events: a DELETE event and a tombstone
event with the old key for the row, followed by an event with the new key for the row.

delete events

The value in a delete change event has the same schema portion as create and update events for the
same table. The event value payload in a delete event for the sample customers table looks like this:

{
 "schema": { ... },
 },
 "payload": {
 "before": { 1
 "ID": 1005,
 "FIRST_NAME": "john",

CHAPTER 3. DEBEZIUM CONNECTOR FOR DB2

37

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#db2-tombstone-events

Table 3.8. Descriptions of delete event value fields

Item Field name Description

1 before Optional field that specifies the state of the row before the event occurred.
In a delete event value, the before field contains the values that were in the
row before it was deleted with the database commit.

2 after Optional field that specifies the state of the row after the event occurred. In
a delete event value, the after field is null, signifying that the row no longer
exists.

3 source Mandatory field that describes the source metadata for the event. In a
delete event value, the source field structure is the same as for create and
update events for the same table. Many source field values are also the
same. In a delete event value, the ts_ms and LSN field values, as well as
other values, might have changed. But the source field in a delete event
value provides the same metadata:

Debezium version

Connector type and name

Timestamp for when the change was made in the database

Whether the event is part of an ongoing snapshot

Name of the database, schema, and table that contain the new row

Change LSN

Commit LSN (omitted if this event is part of a snapshot)

 "LAST_NAME": "doe",
 "EMAIL": "noreply@example.org"
 },
 "after": null, 2
 "source": { 3
 "version": "1.7.2.Final",
 "connector": "db2",
 "name": "myconnector",
 "ts_ms": 1559730445243,
 "snapshot": false,
 "db": "mydatabase",
 "schema": "MYSCHEMA",
 "table": "CUSTOMERS",
 "change_lsn": "00000027:00000db0:0005",
 "commit_lsn": "00000027:00000db0:0007"
 },
 "op": "d", 4
 "ts_ms": 1559730450205 5
 }
}

Red Hat Integration 2022.Q2 Debezium User Guide

38

4 op Mandatory string that describes the type of operation. The op field value is
d, signifying that this row was deleted.

5 ts_ms Optional field that displays the time at which the connector processed the
event. The time is based on the system clock in the JVM running the Kafka
Connect task.

In the source object, ts_ms indicates the time that the change was made
in the database. By comparing the value for payload.source.ts_ms with
the value for payload.ts_ms, you can determine the lag between the
source database update and Debezium.

Item Field name Description

A delete change event record provides a consumer with the information it needs to process the removal
of this row. The old values are included because some consumers might require them in order to
properly handle the removal.

Db2 connector events are designed to work with Kafka log compaction. Log compaction enables
removal of some older messages as long as at least the most recent message for every key is kept. This
lets Kafka reclaim storage space while ensuring that the topic contains a complete data set and can be
used for reloading key-based state.

When a row is deleted, the delete event value still works with log compaction, because Kafka can remove
all earlier messages that have that same key. However, for Kafka to remove all messages that have that
same key, the message value must be null. To make this possible, after Debezium’s Db2 connector
emits a delete event, the connector emits a special tombstone event that has the same key but a null
value.

3.4. HOW DEBEZIUM DB2 CONNECTORS MAP DATA TYPES

Db2’s data types are described in Db2 SQL Data Types.

The Db2 connector represents changes to rows with events that are structured like the table in which
the row exists. The event contains a field for each column value. How that value is represented in the
event depends on the Db2 data type of the column. This section describes these mappings.

Details are in the following sections:

Basic types

Temporal types

Timestamp types

Table 3.12, “Decimal types”

Basic types

The following table describes how the connector maps each of the Db2 data types to a literal type and a
semantic type in event fields.

literal type describes how the value is represented using Kafka Connect schema types: INT8,

CHAPTER 3. DEBEZIUM CONNECTOR FOR DB2

39

https://kafka.apache.org/documentation/#compaction
https://www.ibm.com/support/knowledgecenter/en/SSEPGG_11.5.0/com.ibm.db2.luw.sql.ref.doc/doc/r0008483.html

literal type describes how the value is represented using Kafka Connect schema types: INT8,
INT16, INT32, INT64, FLOAT32, FLOAT64, BOOLEAN, STRING, BYTES, ARRAY, MAP, and
STRUCT.

semantic type describes how the Kafka Connect schema captures the meaning of the field using
the name of the Kafka Connect schema for the field.

Table 3.9. Mappings for Db2 basic data types

Db2 data type Literal type
(schema type)

Semantic type (schema name) and Notes

BOOLEAN BOOLEAN Only snapshots can be taken from tables with BOOLEAN
type columns. Currently SQL Replication on Db2 does not
support BOOLEAN, so Debezium can not perform CDC on
those tables. Consider using a different type.

BIGINT INT64 n/a

BINARY BYTES n/a

BLOB BYTES n/a

CHAR[(N)] STRING n/a

CLOB STRING n/a

DATE INT32 io.debezium.time.Date

String representation of a timestamp without timezone
information

DECFLOAT BYTES org.apache.kafka.connect.data.Decimal

DECIMAL BYTES org.apache.kafka.connect.data.Decimal

DBCLOB STRING n/a

DOUBLE FLOAT64 n/a

INTEGER INT32 n/a

REAL FLOAT32 n/a

SMALLINT INT16 n/a

TIME INT32 io.debezium.time.Time

String representation of a time without timezone
information

Red Hat Integration 2022.Q2 Debezium User Guide

40

TIMESTAMP INT64 io.debezium.time.MicroTimestamp

String representation of a timestamp without timezone
information

VARBINARY BYTES n/a

VARCHAR[(N)] STRING n/a

VARGRAPHIC STRING n/a

XML STRING io.debezium.data.Xml

String representation of an XML document

Db2 data type Literal type
(schema type)

Semantic type (schema name) and Notes

If present, a column’s default value is propagated to the corresponding field’s Kafka Connect schema.
Change events contain the field’s default value unless an explicit column value had been given.
Consequently, there is rarely a need to obtain the default value from the schema.

Temporal types

Other than Db2’s DATETIMEOFFSET data type, which contains time zone information, how temporal
types are mapped depends on the value of the time.precision.mode connector configuration property.
The following sections describe these mappings:

time.precision.mode=adaptive

time.precision.mode=connect

time.precision.mode=adaptive

When the time.precision.mode configuration property is set to adaptive, the default, the connector
determines the literal type and semantic type based on the column’s data type definition. This ensures
that events exactly represent the values in the database.

Table 3.10. Mappings when time.precision.mode is adaptive

Db2 data type Literal type
(schema type)

Semantic type (schema name) and Notes

DATE INT32 io.debezium.time.Date

Represents the number of days since the epoch.

TIME(0), TIME(1),
TIME(2), TIME(3)

INT32 io.debezium.time.Time

Represents the number of milliseconds past midnight, and
does not include timezone information.

CHAPTER 3. DEBEZIUM CONNECTOR FOR DB2

41

TIME(4), TIME(5),
TIME(6)

INT64 io.debezium.time.MicroTime

Represents the number of microseconds past midnight,
and does not include timezone information.

TIME(7) INT64 io.debezium.time.NanoTime

Represents the number of nanoseconds past midnight,
and does not include timezone information.

DATETIME INT64 io.debezium.time.Timestamp

Represents the number of milliseconds since the epoch,
and does not include timezone information.

SMALLDATETIME INT64 io.debezium.time.Timestamp

Represents the number of milliseconds since the epoch,
and does not include timezone information.

DATETIME2(0),
DATETIME2(1),
DATETIME2(2),
DATETIME2(3)

INT64 io.debezium.time.Timestamp

Represents the number of milliseconds since the epoch,
and does not include timezone information.

DATETIME2(4),
DATETIME2(5),
DATETIME2(6)

INT64 io.debezium.time.MicroTimestamp

Represents the number of microseconds since the epoch,
and does not include timezone information.

DATETIME2(7) INT64 io.debezium.time.NanoTimestamp

Represents the number of nanoseconds past the epoch,
and does not include timezone information.

Db2 data type Literal type
(schema type)

Semantic type (schema name) and Notes

time.precision.mode=connect

When the time.precision.mode configuration property is set to connect, the connector uses Kafka
Connect logical types. This may be useful when consumers can handle only the built-in Kafka Connect
logical types and are unable to handle variable-precision time values. However, since Db2 supports tenth
of a microsecond precision, the events generated by a connector with the connect time precision
results in a loss of precision when the database column has a fractional second precision value that is
greater than 3.

Table 3.11. Mappings when time.precision.mode is connect

Red Hat Integration 2022.Q2 Debezium User Guide

42

Db2 data type Literal type
(schema type)

Semantic type (schema name) and Notes

DATE INT32 org.apache.kafka.connect.data.Date

Represents the number of days since the epoch.

TIME([P]) INT64 org.apache.kafka.connect.data.Time

Represents the number of milliseconds since midnight, and
does not include timezone information. Db2 allows P to be
in the range 0-7 to store up to tenth of a microsecond
precision, though this mode results in a loss of precision
when P is greater than 3.

DATETIME INT64 org.apache.kafka.connect.data.Timestamp

Represents the number of milliseconds since the epoch,
and does not include timezone information.

SMALLDATETIME INT64 org.apache.kafka.connect.data.Timestamp

Represents the number of milliseconds since the epoch,
and does not include timezone information.

DATETIME2 INT64 org.apache.kafka.connect.data.Timestamp

Represents the number of milliseconds since the epoch,
and does not include timezone information. Db2 allows P
to be in the range 0-7 to store up to tenth of a
microsecond precision, though this mode results in a loss
of precision when P is greater than 3.

Timestamp types

The DATETIME, SMALLDATETIME and DATETIME2 types represent a timestamp without time zone
information. Such columns are converted into an equivalent Kafka Connect value based on UTC. For
example, the DATETIME2 value "2018-06-20 15:13:16.945104" is represented by an
io.debezium.time.MicroTimestamp with the value "1529507596945104".

The timezone of the JVM running Kafka Connect and Debezium does not affect this conversion.

Table 3.12. Decimal types

Db2 data type Literal type
(schema type)

Semantic type (schema name) and Notes

CHAPTER 3. DEBEZIUM CONNECTOR FOR DB2

43

NUMERIC[(P[,S])] BYTES org.apache.kafka.connect.data.Decimal

The scale schema parameter contains an integer that
represents how many digits the decimal point is shifted.
The connect.decimal.precision schema parameter
contains an integer that represents the precision of the
given decimal value.

DECIMAL[(P[,S])] BYTES org.apache.kafka.connect.data.Decimal

The scale schema parameter contains an integer that
represents how many digits the decimal point is shifted.
The connect.decimal.precision schema parameter
contains an integer that represents the precision of the
given decimal value.

SMALLMONEY BYTES org.apache.kafka.connect.data.Decimal

The scale schema parameter contains an integer that
represents how many digits the decimal point iss shifted.
The connect.decimal.precision schema parameter
contains an integer that represents the precision of the
given decimal value.

MONEY BYTES org.apache.kafka.connect.data.Decimal

The scale schema parameter contains an integer that
represents how many digits the decimal point is shifted.
The connect.decimal.precision schema parameter
contains an integer that represents the precision of the
given decimal value.

Db2 data type Literal type
(schema type)

Semantic type (schema name) and Notes

3.5. SETTING UP DB2 TO RUN A DEBEZIUM CONNECTOR

For Debezium to capture change events that are committed to Db2 tables, a Db2 database
administrator with the necessary privileges must configure tables in the database for change data
capture. After you begin to run Debezium you can adjust the configuration of the capture agent to
optimize performance.

For details about setting up Db2 for use with the Debezium connector, see the following sections:

Section 3.5.1, “Configuring Db2 tables for change data capture”

Section 3.5.2, “Effect of Db2 capture agent configuration on server load and latency”

Section 3.5.3, “Db2 capture agent configuration parameters”

Red Hat Integration 2022.Q2 Debezium User Guide

44

3.5.1. Configuring Db2 tables for change data capture

To put tables into capture mode, Debezium provides a set of user-defined functions (UDFs) for your
convenience. The procedure here shows how to install and run these management UDFs. Alternatively,
you can run Db2 control commands to put tables into capture mode. The administrator must then
enable CDC for each table that you want Debezium to capture.

Prerequisites

You are logged in to Db2 as the db2instl user.

On the Db2 host, the Debezium management UDFs are available in the
$HOME/asncdctools/src directory. UDFs are available from the Debezium examples repository.

Procedure

1. Compile the Debezium management UDFs on the Db2 server host by using the bldrtn
command provided with Db2:

2. Start the database if it is not already running. Replace DB_NAME with the name of the
database that you want Debezium to connect to.

3. Ensure that JDBC can read the Db2 metadata catalog:

4. Ensure that the database was recently backed-up. The ASN agents must have a recent starting
point to read from. If you need to perform a backup, run the following commands, which prune
the data so that only the most recent version is available. If you do not need to retain the older
versions of the data, specify dev/null for the backup location.

a. Back up the database. Replace DB_NAME and BACK_UP_LOCATION with appropriate
values:

b. Restart the database:

5. Connect to the database to install the Debezium management UDFs. It is assumed that you are
logged in as the db2instl user so the UDFs should be installed on the db2inst1 user.

cd $HOME/asncdctools/src

./bldrtn asncdc

db2 start db DB_NAME

cd $HOME/sqllib/bnd

db2 bind db2schema.bnd blocking all grant public sqlerror continue

db2 backup db DB_NAME to BACK_UP_LOCATION

db2 restart db DB_NAME

db2 connect to DB_NAME

CHAPTER 3. DEBEZIUM CONNECTOR FOR DB2

45

https://github.com/debezium/debezium-examples/tree/master/tutorial/debezium-db2-init/db2server

6. Copy the Debezium management UDFs and set permissions for them:

7. Enable the Debezium UDF that starts and stops the ASN capture agent:

8. Create the ASN control tables:

9. Enable the Debezium UDF that adds tables to capture mode and removes tables from capture
mode:

After you set up the Db2 server, use the UDFs to control Db2 replication (ASN) with SQL
commands. Some of the UDFs expect a return value in which case you use the SQL VALUE
statement to invoke them. For other UDFs, use the SQL CALL statement.

10. Start the ASN agent:

The preceding statement returns one of the following results:

asncap is already running

start --> <COMMAND>
In this case, enter the specified <COMMAND> in the terminal window as shown in the
following example:

11. Put tables into capture mode. Invoke the following statement for each table that you want to
put into capture. Replace MYSCHEMA with the name of the schema that contains the table you
want to put into capture mode. Likewise, replace MYTABLE with the name of the table to put
into capture mode:

12. Reinitialize the ASN service:

Additional resources

Reference table for Debezium Db2 management UDFs

cp $HOME/asncdctools/src/asncdc $HOME/sqllib/function

chmod 777 $HOME/sqllib/function

db2 -tvmf $HOME/asncdctools/src/asncdc_UDF.sql

$ db2 -tvmf $HOME/asncdctools/src/asncdctables.sql

$ db2 -tvmf $HOME/asncdctools/src/asncdcaddremove.sql

VALUES ASNCDC.ASNCDCSERVICES('start','asncdc');

/database/config/db2inst1/sqllib/bin/asncap capture_schema=asncdc
capture_server=SAMPLE &

CALL ASNCDC.ADDTABLE('MYSCHEMA', 'MYTABLE');

VALUES ASNCDC.ASNCDCSERVICES('reinit','asncdc');

Red Hat Integration 2022.Q2 Debezium User Guide

46

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#managing-debezium-db2-connectors

3.5.2. Effect of Db2 capture agent configuration on server load and latency

When a database administrator enables change data capture for a source table, the capture agent
begins to run. The agent reads new change event records from the transaction log and replicates the
event records to a capture table. Between the time that a change is committed in the source table, and
the time that the change appears in the corresponding change table, there is always a small latency
interval. This latency interval represents a gap between when changes occur in the source table and
when they become available for Debezium to stream to Apache Kafka.

Ideally, for applications that must respond quickly to changes in data, you want to maintain close
synchronization between the source and capture tables. You might imagine that running the capture
agent to continuously process change events as rapidly as possible might result in increased throughput
and reduced latency — populating change tables with new event records as soon as possible after the
events occur, in near real time. However, this is not necessarily the case. There is a performance penalty
to pay in the pursuit of more immediate synchronization. Each time that the change agent queries the
database for new event records, it increases the CPU load on the database host. The additional load on
the server can have a negative effect on overall database performance, and potentially reduce
transaction efficiency, especially during times of peak database use.

It’s important to monitor database metrics so that you know if the database reaches the point where the
server can no longer support the capture agent’s level of activity. If you experience performance issues
while running the capture agent, adjust capture agent settings to reduce CPU load.

3.5.3. Db2 capture agent configuration parameters

On Db2, the IBMSNAP_CAPPARMS table contains parameters that control the behavior of the capture
agent. You can adjust the values for these parameters to balance the configuration of the capture
process to reduce CPU load and still maintain acceptable levels of latency.

NOTE

Specific guidance about how to configure Db2 capture agent parameters is beyond the
scope of this documentation.

In the IBMSNAP_CAPPARMS table, the following parameters have the greatest effect on reducing
CPU load:

COMMIT_INTERVAL

Specifies the number of seconds that the capture agent waits to commit data to the change
data tables.

A higher value reduces the load on the database host and increases latency.

The default value is 30.

SLEEP_INTERVAL

Specifies the number of seconds that the capture agent waits to start a new commit cycle
after it reaches the end of the active transaction log.

A higher value reduces the load on the server, and increases latency.

The default value is 5.

CHAPTER 3. DEBEZIUM CONNECTOR FOR DB2

47

Additional resources

For more information about capture agent parameters, see the Db2 documentation.

3.6. DEPLOYMENT OF DEBEZIUM DB2 CONNECTORS

You can use either of the following methods to deploy a Debezium Db2 connector:

Use AMQ Streams to automatically create an image that includes the connector plug-in .
This is the preferred method.

Build a custom Kafka Connect container image from a Dockerfile .

The Debezium Db2 connector requires the Db2 JDBC driver to connect to Db2 databases. For
information about how to obtain the driver, see Obtaining the Db2 JDBC driver .

Additional resources

Section 3.6.6, “Description of Debezium Db2 connector configuration properties”

3.6.1. Obtaining the Db2 JDBC driver

Due to licensing requirements, the Db2 JDBC driver file is not included in the Debezium Db2 connector
archive. Regardless of the deployment method that you use, you must download the driver file to
complete the deployment.

The following steps describe how to obtain the driver and use it your your environment.

Procedure

1. From a browser, navigate to the IBM Support site and download the JDBC driver that matches
your version of Db2.

If you use a Dockerfile to build the connector , copy the downloaded file to the directory that
contains the Debezium Db2 connector files, for example, <kafka_home>/libs directory.

If you use AMQ Streams to add the connector to your Kafka Connect image :

a. Deploy the driver to a Maven repository or to another HTTP server that is available to
your OpenShift cluster.

b. Add the artifact URL to the KafkaConnect custom resource.

After you apply the KafkaConnector resource to deploy the connector, the connector is configured to
use the specified driver.

3.6.2. Db2 connector deployment using AMQ Streams

Beginning with Debezium 1.7, the preferred method for deploying a Debezium connector is to use AMQ
Streams to build a Kafka Connect container image that includes the connector plug-in.

During the deployment process, you create and use the following custom resources (CRs):

A KafkaConnect CR that defines your Kafka Connect instance and includes information about
the connector artifacts needs to include in the image.

A KafkaConnector CR that provides details that include information the connector uses to

Red Hat Integration 2022.Q2 Debezium User Guide

48

https://www.ibm.com/support/pages/db2-jdbc-driver-versions-and-downloads

A KafkaConnector CR that provides details that include information the connector uses to
access the source database. After AMQ Streams starts the Kafka Connect pod, you start the
connector by applying the KafkaConnector CR.

In the build specification for the Kafka Connect image, you can specify the connectors that are available
to deploy. For each connector plug-in, you can also specify other components that you want to make
available for deployment. For example, you can add Service Registry artifacts, or the Debezium scripting
component. When AMQ Streams builds the Kafka Connect image, it downloads the specified artifacts,
and incorporates them into the image.

The spec.build.output parameter in the KafkaConnect CR specifies where to store the resulting Kafka
Connect container image. Container images can be stored in a Docker registry, or in an OpenShift
ImageStream. To store images in an ImageStream, you must create the ImageStream before you deploy
Kafka Connect. ImageStreams are not created automatically.

NOTE

If you use a KafkaConnect resource to create a cluster, afterwards you cannot use the
Kafka Connect REST API to create or update connectors. You can still use the REST API
to retrieve information.

Additional resources

Configuring Kafka Connect in Using AMQ Streams on OpenShift.

Creating a new container image automatically using AMQ Streams in Deploying and Upgrading
AMQ Streams on OpenShift.

3.6.3. Using AMQ Streams to deploy a Debezium Db2 connector

With earlier versions of AMQ Streams, to deploy Debezium connectors on OpenShift, it was necessary
to first build a Kafka Connect image for the connector. The current preferred method for deploying
connectors on OpenShift is to use a build configuration in AMQ Streams to automatically build a Kafka
Connect container image that includes the Debezium connector plug-ins that you want to use.

During the build process, the AMQ Streams Operator transforms input parameters in a KafkaConnect
custom resource, including Debezium connector definitions, into a Kafka Connect container image. The
build downloads the necessary artifacts from the Red Hat Maven repository or another configured
HTTP server. The newly created container is pushed to the container registry that is specified in
.spec.build.output, and is used to deploy a Kafka Connect pod. After AMQ Streams builds the Kafka
Connect image, you create KafkaConnector custom resources to start the connectors that are included
in the build.

Prerequisites

You have access to an OpenShift cluster on which the cluster Operator is installed.

The AMQ Streams Operator is running.

An Apache Kafka cluster is deployed as documented in Deploying and Upgrading AMQ Streams
on OpenShift.

You have a Red Hat Integration license.

Kafka Connect is deployed on AMQ Streams .

The OpenShift oc CLI client is installed or you have access to the OpenShift Container Platform

CHAPTER 3. DEBEZIUM CONNECTOR FOR DB2

49

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/using_amq_streams_on_openshift/index#proc-kafka-connect-config-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#creating-new-image-using-kafka-connect-build-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#kafka-cluster-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#kafka-connect-str

The OpenShift oc CLI client is installed or you have access to the OpenShift Container Platform
web console.

Depending on how you intend to store the Kafka Connect build image, you need registry
permissions or you must create an ImageStream resource:

To store the build image in an image registry, such as Red Hat Quay.io or Docker Hub

An account and permissions to create and manage images in the registry.

To store the build image as a native OpenShift ImageStream

An ImageStream resource is deployed to the cluster. You must explicitly create an
ImageStream for the cluster. ImageStreams are not available by default.

Procedure

1. Log in to the OpenShift cluster.

2. Create a Debezium KafkaConnect custom resource (CR) for the connector, or modify an
existing one. For example, create a KafkaConnect CR that specifies the
metadata.annotations and spec.build properties, as shown in the following example. Save the
file with a name such as dbz-connect.yaml.

Example 3.1. A dbz-connect.yaml file that defines a KafkaConnect custom resource that
includes a Debezium connector

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
 name: debezium-kafka-connect-cluster
 annotations:
 strimzi.io/use-connector-resources: "true" 1
spec:
 version: 3.00
 build: 2
 output: 3
 type: imagestream 4
 image: debezium-streams-connect:latest
 plugins: 5
 - name: debezium-connector-db2
 artifacts:
 - type: zip 6
 url: https://maven.repository.redhat.com/ga/io/debezium/debezium-connector-
db2/1.7.2.Final-redhat-<build_number>/debezium-connector-db2-1.7.2.Final-
redhat-<build_number>-plugin.zip 7
 - type: zip
 url: https://maven.repository.redhat.com/ga/io/apicurio/apicurio-registry-distro-
connect-converter/2.0-redhat-<build-number>/apicurio-registry-distro-connect-converter-
2.0-redhat-<build-number>.zip
 - type: zip
 url: https://maven.repository.redhat.com/ga/io/debezium/debezium-
scripting/1.7.2.Final/debezium-scripting-1.7.2.Final.zip

 bootstrapServers: debezium-kafka-cluster-kafka-bootstrap:9093

Red Hat Integration 2022.Q2 Debezium User Guide

50

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/cli_tools/index#installing-openshift-cli
https://docs.openshift.com/container-platform/latest/openshift_images/images-understand.html#images-imagestream-use_images-understand

Table 3.13. Descriptions of Kafka Connect configuration settings

Item Description

1 Sets the strimzi.io/use-connector-resources annotation to "true" to enable
the Cluster Operator to use KafkaConnector resources to configure connectors in
this Kafka Connect cluster.

2 The spec.build configuration specifies where to store the build image and lists the
plug-ins to include in the image, along with the location of the plug-in artifacts.

3 The build.output specifies the registry in which the newly built image is stored.

4 Specifies the name and image name for the image output. Valid values for
output.type are docker to push into a container registry like Docker Hub or Quay,
or imagestream to push the image to an internal OpenShift ImageStream. To use
an ImageStream, an ImageStream resource must be deployed to the cluster. For
more information about specifying the build.output in the KafkaConnect
configuration, see the AMQ Streams Build schema reference documentation.

5 The plugins configuration lists all of the connectors that you want to include in the
Kafka Connect image. For each entry in the list, specify a plug-in name, and
information for about the artifacts that are required to build the connector.
Optionally, for each connector plug-in, you can include other components that you
want to be available for use with the connector. For example, you can add Service
Registry artifacts, or the Debezium scripting component.

6 The value of artifacts.type specifies the file type of the artifact specified in the
artifacts.url. Valid types are zip, tgz, or jar. Debezium connector archives are
provided in .zip file format. JDBC driver files are in .jar format. The type value must
match the type of the file that is referenced in the url field.

7 The value of artifacts.url specifies the address of an HTTP server, such as a Maven
repository, that stores the file for the connector artifact. The OpenShift cluster must
have access to the specified server.

3. Apply the KafkaConnect build specification to the OpenShift cluster by entering the following
command:

Based on the configuration specified in the custom resource, the Streams Operator prepares a
Kafka Connect image to deploy.
After the build completes, the Operator pushes the image to the specified registry or
ImageStream, and starts the Kafka Connect cluster. The connector artifacts that you listed in
the configuration are available in the cluster.

4. Create a KafkaConnector resource to define an instance of each connector that you want to
deploy.
For example, create the following KafkaConnector CR, and save it as db2-inventory-
connector.yaml

oc create -f dbz-connect.yaml

CHAPTER 3. DEBEZIUM CONNECTOR FOR DB2

51

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/using_amq_streams_on_openshift/index#type-Build-reference

Example 3.2. A db2-inventory-connector.yaml file that defines the KafkaConnector
custom resource for a Debezium connector

Table 3.14. Descriptions of connector configuration settings

Item Description

1 The name of the connector to register with the Kafka Connect cluster.

2 The name of the connector class.

3 The number of tasks that can operate concurrently.

4 The connector’s configuration.

5 The address of the host database instance.

6 The port number of the database instance.

7 The name of the user account through which Debezium connects to the database.

8 The password for the database user account.

9 The name of the database to capture changes from.

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnector
metadata:
 labels:
 strimzi.io/cluster: debezium-kafka-connect-cluster
 name: inventory-connector-db2 1
spec:
 class: io.debezium.connector.db2.Db2ConnectorConnector 2
 tasksMax: 1 3
 config: 4
 database.history.kafka.bootstrap.servers: 'debezium-kafka-cluster-kafka-
bootstrap.debezium.svc.cluster.local:9092'
 database.history.kafka.topic: schema-changes.inventory
 database.hostname: db2.debezium-db2.svc.cluster.local 5
 database.port: 3306 6
 database.user: debezium 7
 database.password: dbz 8
 database.dbname: mydatabase 9
 database.server.name: inventory_connector_db2 10
 database.include.list: public.inventory 11

Red Hat Integration 2022.Q2 Debezium User Guide

52

10 The logical name of the database instance or cluster.
The specified name must be formed only from alphanumeric characters or underscores.
Because the logical name is used as the prefix for any Kafka topics that receive change
events from this connector, the name must be unique among the connectors in the
cluster.
The namespace is also used in the names of related Kafka Connect schemas, and the
namespaces of a corresponding Avro schema if you integrate the connector with the
Avro connector.

11 The list of tables from which the connector captures change events.

Item Description

5. Create the connector resource by running the following command:

For example,

The connector is registered to the Kafka Connect cluster and starts to run against the database
that is specified by spec.config.database.dbname in the KafkaConnector CR. After the
connector pod is ready, Debezium is running.

You are now ready to verify the Debezium Db2 deployment.

3.6.4. Deploying a Debezium Db2 connector by building a custom Kafka Connect
container image from a Dockerfile

To deploy a Debezium Db2 connector, you must build a custom Kafka Connect container image that
contains the Debezium connector archive, and then push this container image to a container registry.
You then need to create the following custom resources (CRs):

A KafkaConnect CR that defines your Kafka Connect instance. The image property in the CR
specifies the name of the container image that you create to run your Debezium connector. You
apply this CR to the OpenShift instance where Red Hat AMQ Streams is deployed. AMQ
Streams offers operators and images that bring Apache Kafka to OpenShift.

A KafkaConnector CR that defines your Debezium Db2 connector. Apply this CR to the same
OpenShift instance where you applied the KafkaConnect CR.

Prerequisites

Db2 is running and you completed the steps to set up Db2 to work with a Debezium connector .

AMQ Streams is deployed on OpenShift and is running Apache Kafka and Kafka Connect. For
more information, see Deploying and Upgrading AMQ Streams on OpenShift .

Podman or Docker is installed.

You obtained the required JDBC driver for Db2.

You have an account and permissions to create and manage containers in the container registry

oc create -n <namespace> -f <kafkaConnector>.yaml

oc create -n debezium -f {context}-inventory-connector.yaml

CHAPTER 3. DEBEZIUM CONNECTOR FOR DB2

53

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#configuring-debezium-connectors-to-use-avro-serialization
https://access.redhat.com/products/red-hat-amq#streams
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#setting-up-db2-to-run-a-debezium-connector
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/deploying_and_upgrading_amq_streams_on_openshift/index
https://www.ibm.com/support/pages/db2-jdbc-driver-versions-and-downloads

1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2

You have an account and permissions to create and manage containers in the container registry
(such as quay.io or docker.io) to which you plan to add the container that will run your
Debezium connector.

Procedure

1. Create the Debezium Db2 container for Kafka Connect:

a. Download the Debezium Db2 connector archive.

b. Extract the Debezium Db2 connector archive to create a directory structure for the
connector plug-in, for example:

./my-plugins/
├── debezium-connector-db2
│ ├── ...

c. Create a Dockerfile that uses registry.redhat.io/amq7/amq-streams-kafka-30-rhel8:2.0.0
as the base image. For example, from a terminal window, enter the following, replacing my-
plugins with the name of your plug-ins directory:

You can specify any file name that you want.

Replace my-plugins with the name of your plug-ins
directory.

The command creates a Dockerfile with the name debezium-container-for-db2.yaml in the
current directory.

d. Build the container image from the debezium-container-for-db2.yaml Docker file that you
created in the previous step. From the directory that contains the file, open a terminal
window and enter one of the following commands:

The preceding commands build a container image with the name debezium-container-for-
db2.

e. Push your custom image to a container registry, such as quay.io or an internal container
registry. The container registry must be available to the OpenShift instance where you want
to deploy the image. Enter one of the following commands:

cat <<EOF >debezium-container-for-db2.yaml 1
FROM registry.redhat.io/amq7/amq-streams-kafka-30-rhel8:2.0.0
USER root:root
COPY ./<my-plugins>/ /opt/kafka/plugins/ 2
USER 1001
EOF

podman build -t debezium-container-for-db2:latest .

docker build -t debezium-container-for-db2:latest .

podman push <myregistry.io>/debezium-container-for-db2:latest

Red Hat Integration 2022.Q2 Debezium User Guide

54

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=red.hat.integration&downloadType=distributions

1

2

f. Create a new Debezium Db2 KafkaConnect custom resource (CR). For example, create a
KafkaConnect CR with the name dbz-connect.yaml that specifies annotations and
image properties as shown in the following example:

metadata.annotations indicates to the Cluster Operator that KafkaConnector
resources are used to configure connectors in this Kafka Connect cluster.

spec.image specifies the name of the image that you created to run your Debezium
connector. This property overrides the
STRIMZI_DEFAULT_KAFKA_CONNECT_IMAGE variable in the Cluster Operator.

g. Apply the KafkaConnect CR to the OpenShift Kafka Connect environment by entering the
following command:

The command adds a Kafka Connect instance that specifies the name of the image that you
created to run your Debezium connector.

2. Create a KafkaConnector custom resource that configures your Debezium Db2 connector
instance.
You configure a Debezium Db2 connector in a .yaml file that specifies the configuration
properties for the connector. The connector configuration might instruct Debezium to produce
events for a subset of the schemas and tables, or it might set properties so that Debezium
ignores, masks, or truncates values in specified columns that are sensitive, too large, or not
needed.

The following example configures a Debezium connector that connects to a Db2 server host,
192.168.99.100, on port 50000. This host has a database named mydatabase, a table with the
name inventory, and fulfillment is the server’s logical name.

Db2 inventory-connector.yaml

docker push <myregistry.io>/debezium-container-for-db2:latest

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
 name: my-connect-cluster
 annotations:
 strimzi.io/use-connector-resources: "true" 1
spec:
 #...
 image: debezium-container-for-db2 2

oc create -f dbz-connect.yaml

apiVersion: kafka.strimzi.io/v1beta2
 kind: KafkaConnector
 metadata:
 name: inventory-connector 1
 labels:
 strimzi.io/cluster: my-connect-cluster
 annotations:
 strimzi.io/use-connector-resources: 'true'

CHAPTER 3. DEBEZIUM CONNECTOR FOR DB2

55

Table 3.15. Descriptions of connector configuration settings

Item Description

1 The name of the connector when we register it with a Kafka Connect cluster.

2 The name of this Db2 connector class.

3 Only one task should operate at any one time.

4 The connector’s configuration.

5 The database host, which is the address of the Db2 instance.

6 The port number of the Db2 instance.

7 The name of the Db2 user.

8 The password for the Db2 user.

9 The name of the database to capture changes from.

10 The logical name of the Db2 instance/cluster, which forms a namespace and is used in
the names of the Kafka topics to which the connector writes, the names of Kafka
Connect schemas, and the namespaces of the corresponding Avro schema when the
Avro Connector is used.

11 A list of all tables whose changes Debezium should capture.

3. Create your connector instance with Kafka Connect. For example, if you saved your
KafkaConnector resource in the inventory-connector.yaml file, you would run the following
command:

The preceding command registers inventory-connector and the connector starts to run against
the mydatabase database as defined in the KafkaConnector CR.

 spec:
 class: io.debezium.connector.db2.Db2Connector 2
 tasksMax: 1 3
 config: 4
 database.hostname: 192.168.99.100 5
 database.port: 50000 6
 database.user: db2inst1 7
 database.password: Password! 8
 database.dbname: mydatabase 9
 database.server.name: fullfillment 10
 database.include.list: public.inventory 11

oc apply -f inventory-connector.yaml

Red Hat Integration 2022.Q2 Debezium User Guide

56

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#configuring-debezium-connectors-to-use-avro-serialization

For the complete list of the configuration properties that you can set for the Debezium Db2 connector,
see Db2 connector properties.

Results

After the connector starts, it performs a consistent snapshot of the Db2 database tables that the
connector is configured to capture changes for. The connector then starts generating data change
events for row-level operations and streaming change event records to Kafka topics.

3.6.5. Verifying that the Debezium Db2 connector is running

If the connector starts correctly without errors, it creates a topic for each table that the connector is
configured to capture. Downstream applications can subscribe to these topics to retrieve information
events that occur in the source database.

To verify that the connector is running, you perform the following operations from the OpenShift
Container Platform web console, or through the OpenShift CLI tool (oc):

Verify the connector status.

Verify that the connector generates topics.

Verify that topics are populated with events for read operations ("op":"r") that the connector
generates during the initial snapshot of each table.

Prerequisites

A Debezium connector is deployed to AMQ Streams on OpenShift.

The OpenShift oc CLI client is installed.

You have access to the OpenShift Container Platform web console.

Procedure

1. Check the status of the KafkaConnector resource by using one of the following methods:

From the OpenShift Container Platform web console:

a. Navigate to Home → Search.

b. On the Search page, click Resources to open the Select Resource box, and then type
KafkaConnector.

c. From the KafkaConnectors list, click the name of the connector that you want to
check, for example inventory-connector-db2.

d. In the Conditions section, verify that the values in the Type and Status columns are set
to Ready and True.

From a terminal window:

a. Enter the following command:

For example,

oc describe KafkaConnector <connector-name> -n <project>

CHAPTER 3. DEBEZIUM CONNECTOR FOR DB2

57

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index.xml#descriptions-of-debezium-db2-connector-configuration-properties
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index.xml#how-debezium-db2-connectors-perform-database-snapshots

The command returns status information that is similar to the following output:

Example 3.3. KafkaConnector resource status

2. Verify that the connector created Kafka topics:

From the OpenShift Container Platform web console.

a. Navigate to Home → Search.

b. On the Search page, click Resources to open the Select Resource box, and then type
KafkaTopic.

c. From the KafkaTopics list, click the name of the topic that you want to check, for
example, inventory-connector-db2.inventory.orders---
ac5e98ac6a5d91e04d8ec0dc9078a1ece439081d.

d. In the Conditions section, verify that the values in the Type and Status columns are set

oc describe KafkaConnector inventory-connector-db2 -n debezium

Name: inventory-connector-db2
Namespace: debezium
Labels: strimzi.io/cluster=debezium-kafka-connect-cluster
Annotations: <none>
API Version: kafka.strimzi.io/v1beta2
Kind: KafkaConnector

...

Status:
 Conditions:
 Last Transition Time: 2021-12-08T17:41:34.897153Z
 Status: True
 Type: Ready
 Connector Status:
 Connector:
 State: RUNNING
 worker_id: 10.131.1.124:8083
 Name: inventory-connector-db2
 Tasks:
 Id: 0
 State: RUNNING
 worker_id: 10.131.1.124:8083
 Type: source
 Observed Generation: 1
 Tasks Max: 1
 Topics:
 inventory_connector_db2
 inventory_connector_db2.inventory.addresses
 inventory_connector_db2.inventory.customers
 inventory_connector_db2.inventory.geom
 inventory_connector_db2.inventory.orders
 inventory_connector_db2.inventory.products
 inventory_connector_db2.inventory.products_on_hand
Events: <none>

Red Hat Integration 2022.Q2 Debezium User Guide

58

d. In the Conditions section, verify that the values in the Type and Status columns are set
to Ready and True.

From a terminal window:

a. Enter the following command:

The command returns status information that is similar to the following output:

Example 3.4. KafkaTopic resource status

NAME CLUSTER
PARTITIONS REPLICATION FACTOR READY
connect-cluster-configs debezium-
kafka-cluster 1 1 True
connect-cluster-offsets debezium-
kafka-cluster 25 1 True
connect-cluster-status debezium-
kafka-cluster 5 1 True
consumer-offsets---84e7a678d08f4bd226872e5cdd4eb527fadc1c6a
debezium-kafka-cluster 50 1 True
inventory-connector-db2---a96f69b23d6118ff415f772679da623fbbb99421
debezium-kafka-cluster 1 1 True
inventory-connector-db2.inventory.addresses---
1b6beaf7b2eb57d177d92be90ca2b210c9a56480 debezium-kafka-cluster
1 1 True
inventory-connector-db2.inventory.customers---
9931e04ec92ecc0924f4406af3fdace7545c483b debezium-kafka-cluster 1
1 True
inventory-connector-db2.inventory.geom---
9f7e136091f071bf49ca59bf99e86c713ee58dd5 debezium-kafka-cluster
1 1 True
inventory-connector-db2.inventory.orders---
ac5e98ac6a5d91e04d8ec0dc9078a1ece439081d debezium-kafka-cluster
1 1 True
inventory-connector-db2.inventory.products---
df0746db116844cee2297fab611c21b56f82dcef debezium-kafka-cluster 1
1 True
inventory-connector-db2.inventory.products-on-hand---
8649e0f17ffcc9212e266e31a7aeea4585e5c6b5 debezium-kafka-cluster 1
1 True
schema-changes.inventory
debezium-kafka-cluster 1 1 True
strimzi-store-topic---effb8e3e057afce1ecf67c3f5d8e4e3ff177fc55
debezium-kafka-cluster 1 1 True
strimzi-topic-operator-kstreams-topic-store-changelog---
b75e702040b99be8a9263134de3507fc0cc4017b debezium-kafka-cluster 1
1 True

3. Check topic content.

From a terminal window, enter the following command:

oc get kafkatopics

CHAPTER 3. DEBEZIUM CONNECTOR FOR DB2

59

For example,

The format for specifying the topic name is the same as the oc describe command returns in
Step 1, for example, inventory_connector_db2.inventory.addresses.

For each event in the topic, the command returns information that is similar to the following
output:

Example 3.5. Content of a Debezium change event

{"schema":{"type":"struct","fields":
[{"type":"int32","optional":false,"field":"product_id"}],"optional":false,"name":"inventory_conne
ctor_db2.inventory.products_on_hand.Key"},"payload":{"product_id":101}} {"schema":
{"type":"struct","fields":[{"type":"struct","fields":
[{"type":"int32","optional":false,"field":"product_id"},
{"type":"int32","optional":false,"field":"quantity"}],"optional":true,"name":"inventory_connector
_db2.inventory.products_on_hand.Value","field":"before"},{"type":"struct","fields":
[{"type":"int32","optional":false,"field":"product_id"},
{"type":"int32","optional":false,"field":"quantity"}],"optional":true,"name":"inventory_connector
_db2.inventory.products_on_hand.Value","field":"after"},{"type":"struct","fields":
[{"type":"string","optional":false,"field":"version"},
{"type":"string","optional":false,"field":"connector"},
{"type":"string","optional":false,"field":"name"},
{"type":"int64","optional":false,"field":"ts_ms"},
{"type":"string","optional":true,"name":"io.debezium.data.Enum","version":1,"parameters":
{"allowed":"true,last,false"},"default":"false","field":"snapshot"},
{"type":"string","optional":false,"field":"db"},
{"type":"string","optional":true,"field":"sequence"},
{"type":"string","optional":true,"field":"table"},
{"type":"int64","optional":false,"field":"server_id"},
{"type":"string","optional":true,"field":"gtid"},{"type":"string","optional":false,"field":"file"},
{"type":"int64","optional":false,"field":"pos"},{"type":"int32","optional":false,"field":"row"},
{"type":"int64","optional":true,"field":"thread"},
{"type":"string","optional":true,"field":"query"}],"optional":false,"name":"io.debezium.connecto
r.db2.Source","field":"source"},{"type":"string","optional":false,"field":"op"},
{"type":"int64","optional":true,"field":"ts_ms"},{"type":"struct","fields":
[{"type":"string","optional":false,"field":"id"},
{"type":"int64","optional":false,"field":"total_order"},
{"type":"int64","optional":false,"field":"data_collection_order"}],"optional":true,"field":"transacti
on"}],"optional":false,"name":"inventory_connector_db2.inventory.products_on_hand.Envelo
pe"},"payload":{"before":null,"after":{"product_id":101,"quantity":3},"source":
{"version":"1.7.2.Final-redhat-

oc exec -n <project> -it <kafka-cluster> -- /opt/kafka/bin/kafka-console-consumer.sh \
> --bootstrap-server localhost:9092 \
> --from-beginning \
> --property print.key=true \
> --topic=<topic-name>

 oc exec -n debezium -it debezium-kafka-cluster-kafka-0 -- /opt/kafka/bin/kafka-console-
consumer.sh \
> --bootstrap-server localhost:9092 \
> --from-beginning \
> --property print.key=true \
> --topic=inventory_connector_db2.inventory.products_on_hand

Red Hat Integration 2022.Q2 Debezium User Guide

60

00001","connector":"db2","name":"inventory_connector_db2","ts_ms":1638985247805,"sna
pshot":"true","db":"inventory","sequence":null,"table":"products_on_hand","server_id":0,"gtid
":null,"file":"db2-
bin.000003","pos":156,"row":0,"thread":null,"query":null},"op":"r","ts_ms":1638985247805,"t
ransaction":null}}

In the preceding example, the payload value shows that the connector snapshot generated a
read ("op" ="r") event from the table inventory.products_on_hand. The "before" state of the
product_id record is null, indicating that no previous value exists for the record. The "after"
state shows a quantity of 3 for the item with product_id 101.

3.6.6. Description of Debezium Db2 connector configuration properties

The Debezium Db2 connector has numerous configuration properties that you can use to achieve the
right connector behavior for your application. Many properties have default values. Information about
the properties is organized as follows:

Required configuration properties

Advanced configuration properties

Database history connector configuration properties that control how Debezium processes
events that it reads from the database history topic.

Pass-through database history properties

Pass-through database driver properties that control the behavior of the database driver.

Required Debezium Db2 connector configuration properties

The following configuration properties are required unless a default value is available.

Property Default Description

name No default Unique name for the connector. Attempting to
register again with the same name will fail. This
property is required by all Kafka Connect
connectors.

connector.class No default The name of the Java class for the connector.
Always use a value of
io.debezium.connector.db2.Db2Connect
or for the Db2 connector.

tasks.max 1 The maximum number of tasks that should be
created for this connector. The Db2 connector
always uses a single task and therefore does
not use this value, so the default is always
acceptable.

database.hostname No default IP address or hostname of the Db2 database
server.

CHAPTER 3. DEBEZIUM CONNECTOR FOR DB2

61

database.port 50000 Integer port number of the Db2 database
server.

database.user No default Name of the Db2 database user for connecting
to the Db2 database server.

database.password No default Password to use when connecting to the Db2
database server.

database.dbname No default The name of the Db2 database from which to
stream the changes

database.server.name No default Logical name that identifies and provides a
namespace for the particular Db2 database
server that hosts the database for which
Debezium is capturing changes. Only
alphanumeric characters, hyphens, dots and
underscores must be used in the database
server logical name. The logical name should
be unique across all other connectors, since it is
used as a topic name prefix for all Kafka topics
that receive records from this connector.

table.include.list No default An optional, comma-separated list of regular
expressions that match fully-qualified table
identifiers for tables whose changes you want
the connector to capture. Any table not
included in the include list does not have its
changes captured. Each identifier is of the form
schemaName.tableName. By default, the
connector captures changes in every non-
system table. Do not also set the
table.exclude.list property.

table.exclude.list No default An optional, comma-separated list of regular
expressions that match fully-qualified table
identifiers for tables whose changes you do not
want the connector to capture. The connector
captures changes in each non-system table
that is not included in the exclude list. Each
identifier is of the form
schemaName.tableName. Do not also set the
table.include.list property.

Property Default Description

Red Hat Integration 2022.Q2 Debezium User Guide

62

column.exclude.list empty string An optional, comma-separated list of regular
expressions that match the fully-qualified
names of columns to exclude from change
event values. Fully-qualified names for columns
are of the form
schemaName.tableName.columnName. Primary
key columns are always included in the event’s
key, even if they are excluded from the value.

column.mask.hash.hashA
lgorithm.with.salt.salt

n/a An optional, comma-separated list of regular
expressions that match the fully-qualified
names of character-based columns. Fully-
qualified names for columns are of the form
schemaName.tableName.columnName. In the
resulting change event record, the values for
the specified columns are replaced with
pseudonyms.

A pseudonym consists of the hashed value that
results from applying the specified
hashAlgorithm and salt. Based on the hash
function that is used, referential integrity is
maintained, while column values are replaced
with pseudonyms. Supported hash functions
are described in the MessageDigest section of
the Java Cryptography Architecture Standard
Algorithm Name Documentation.

In the following example, CzQMA0cB5K is a
randomly selected salt.

column.mask.hash.SHA-
256.with.salt.CzQMA0cB5K =
inventory.orders.customerName,
inventory.shipment.customerName

If necessary, the pseudonym is automatically
shortened to the length of the column. The
connector configuration can include multiple
properties that specify different hash
algorithms and salts.

Depending on the hashAlgorithm used, the salt
selected, and the actual data set, the resulting
data set might not be completely masked.

Property Default Description

CHAPTER 3. DEBEZIUM CONNECTOR FOR DB2

63

https://docs.oracle.com/javase/7/docs/technotes/guides/security/StandardNames.html#MessageDigest

time.precision.mode adaptive Time, date, and timestamps can be
represented with different kinds of precision:

adaptive captures the time and timestamp
values exactly as in the database using either
millisecond, microsecond, or nanosecond
precision values based on the database
column’s type.

connect always represents time and
timestamp values by using Kafka Connect’s
built-in representations for Time, Date, and
Timestamp, which uses millisecond precision
regardless of the database columns' precision.
See temporal values.

tombstones.on.delete true Controls whether a delete event is followed by
a tombstone event.

true - a delete operation is represented by a
delete event and a subsequent tombstone
event.

false - only a delete event is emitted.

After a source record is deleted, emitting a
tombstone event (the default behavior) allows
Kafka to completely delete all events that
pertain to the key of the deleted row in case
log compaction is enabled for the topic.

include.schema.changes true Boolean value that specifies whether the
connector should publish changes in the
database schema to a Kafka topic with the
same name as the database server ID. Each
schema change is recorded with a key that
contains the database name and a value that is
a JSON structure that describes the schema
update. This is independent of how the
connector internally records database history.

Property Default Description

Red Hat Integration 2022.Q2 Debezium User Guide

64

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#db2-temporal-values
https://kafka.apache.org/documentation/#compaction

column.truncate.to._lengt
h_.chars

n/a An optional, comma-separated list of regular
expressions that match the fully-qualified
names of character-based columns. Fully-
qualified names for columns are of the form
schemaName.tableName.columnName. In
change event records, values in these columns
are truncated if they are longer than the
number of characters specified by length in the
property name. You can specify multiple
properties with different lengths in a single
configuration. Length must be a positive
integer, for example,
column.truncate.to.20.chars.

column.mask.with._lengt
h_.chars

n/a An optional, comma-separated list of regular
expressions that match the fully-qualified
names of character-based columns. Fully-
qualified names for columns are of the form
schemaName.tableName.columnName. In
change event values, the values in the specified
table columns are replaced with length number
of asterisk (*) characters. You can specify
multiple properties with different lengths in a
single configuration. Length must be a positive
integer or zero. When you specify zero, the
connector replaces a value with an empty
string.

column.propagate.source
.type

n/a An optional, comma-separated list of regular
expressions that match the fully-qualified
names of columns. Fully-qualified names for
columns are of the form
databaseName.tableName.columnName, or
databaseName.schemaName.tableName.colum
nName.

For each specified column, the connector adds
the column’s original type and original length as
parameters to the corresponding field schemas
in the emitted change records. Add the
following schema parameters to propagate the
original type name and the original length for
variable-width types:

__debezium.source.column.type
__debezium.source.column.length
__debezium.source.column.scale

This property is useful for properly sizing
corresponding columns in sink databases.

Property Default Description

CHAPTER 3. DEBEZIUM CONNECTOR FOR DB2

65

datatype.propagate.sourc
e.type

n/a An optional, comma-separated list of regular
expressions that match the database-specific
data type name for some columns. Fully-
qualified data type names are of the form
databaseName.tableName.typeName, or
databaseName.schemaName.tableName.typeN
ame.

For these data types, the connector adds
parameters to the corresponding field schemas
in emitted change records. The added
parameters specify the original type and length
of the column:

__debezium.source.column.type
__debezium.source.column.length
__debezium.source.column.scale

These parameters propagate a column’s
original type name and length, for variable-
width types, respectively. This property is useful
for properly sizing corresponding columns in
sink databases.

See Db2 data types for the list of Db2-specific
data type names.

Property Default Description

Red Hat Integration 2022.Q2 Debezium User Guide

66

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#how-debezium-db2-connectors-map-data-types

message.key.columns empty string A list of expressions that specify the columns
that the connector uses to form custom
message keys for change event records that it
publishes to the Kafka topics for specified
tables.

By default, Debezium uses the primary key
column of a table as the message key for
records that it emits. In place of the default, or
to specify a key for tables that lack a primary
key, you can configure custom message keys
based on one or more columns.

To establish a custom message key for a table,
list the table, followed by the columns to use as
the message key. Each list entry takes the
following format:

<fully-
qualified_tableName>:_<keyColumn>_,<
keyColumn>

To base a table key on multiple column names,
insert commas between the column names.
Each fully-qualified table name is a regular
expression in the following format:

<schemaName>.<tableName>

The property can list entries for multiple tables.
Use a semicolon to separate entries for
different tables in the list.

The following example sets the message key
for the tables inventory.customers and
purchaseorders:

inventory.customers:pk1,pk2;
(.*).purchaseorders:pk3,pk4

In the preceding example, the columns pk1 and
pk2 are specified as the message key for the
table inventory.customer. For
purchaseorders tables in any schema, the
columns pk3 and pk4 serve as the message
key.

Property Default Description

Advanced connector configuration properties

The following advanced configuration properties have defaults that work in most situations and
therefore rarely need to be specified in the connector’s configuration.

CHAPTER 3. DEBEZIUM CONNECTOR FOR DB2

67

Property Default Description

snapshot.mode initial Specifies the criteria for performing a snapshot
when the connector starts:

initial - For tables in capture mode, the
connector takes a snapshot of the schema for
the table and the data in the table. This is useful
for populating Kafka topics with a complete
representation of the data.

schema_only - For tables in capture mode,
the connector takes a snapshot of only the
schema for the table. This is useful when only
the changes that are happening from now on
need to be emitted to Kafka topics. After the
snapshot is complete, the connector continues
by reading change events from the database’s
redo logs.

snapshot.isolation.mode repeatable_read During a snapshot, controls the transaction
isolation level and how long the connector
locks the tables that are in capture mode. The
possible values are:

read_uncommitted - Does not prevent other
transactions from updating table rows during
an initial snapshot. This mode has no data
consistency guarantees; some data might be
lost or corrupted.

read_committed - Does not prevent other
transactions from updating table rows during
an initial snapshot. It is possible for a new
record to appear twice: once in the initial
snapshot and once in the streaming phase.
However, this consistency level is appropriate
for data mirroring.

repeatable_read - Prevents other
transactions from updating table rows during
an initial snapshot. It is possible for a new
record to appear twice: once in the initial
snapshot and once in the streaming phase.
However, this consistency level is appropriate
for data mirroring.

exclusive - Uses repeatable read isolation
level but takes an exclusive lock for all tables to
be read. This mode prevents other transactions
from updating table rows during an initial
snapshot. Only exclusive mode guarantees
full consistency; the initial snapshot and
streaming logs constitute a linear history.

Red Hat Integration 2022.Q2 Debezium User Guide

68

event.processing.failure.h
andling.mode

fail Specifies how the connector handles
exceptions during processing of events. The
possible values are:

fail - The connector logs the offset of the
problematic event and stops processing.

warn - The connector logs the offset of the
problematic event and continues processing
with the next event.

skip - The connector skips the problematic
event and continues processing with the next
event.

poll.interval.ms 1000 Positive integer value that specifies the
number of milliseconds the connector should
wait for new change events to appear before it
starts processing a batch of events. Defaults to
1000 milliseconds, or 1 second.

max.queue.size 8192 Positive integer value for the maximum size of
the blocking queue. The connector places
change events that it reads from the database
log into the blocking queue before writing them
to Kafka. This queue can provide backpressure
for reading change-data tables when, for
example, writing records to Kafka is slower than
it should be or Kafka is not available. Events
that appear in the queue are not included in the
offsets that are periodically recorded by the
connector. The max.queue.size value should
always be larger than the value of the
max.batch.size connector configuration
property.

max.batch.size 2048 Positive integer value that specifies the
maximum size of each batch of events that the
connector processes.

max.queue.size.in.bytes 0 Long value for the maximum size in bytes of the
blocking queue. The feature is disabled by
default, it will be active if it’s set with a positive
long value.

Property Default Description

CHAPTER 3. DEBEZIUM CONNECTOR FOR DB2

69

heartbeat.interval.ms 0 Controls how frequently the connector sends
heartbeat messages to a Kafka topic. The
default behavior is that the connector does not
send heartbeat messages.

Heartbeat messages are useful for monitoring
whether the connector is receiving change
events from the database. Heartbeat
messages might help decrease the number of
change events that need to be re-sent when a
connector restarts. To send heartbeat
messages, set this property to a positive
integer, which indicates the number of
milliseconds between heartbeat messages.

Heartbeat messages are useful when there are
many updates in a database that is being
tracked but only a tiny number of updates are
in tables that are in capture mode. In this
situation, the connector reads from the
database transaction log as usual but rarely
emits change records to Kafka. This means
that the connector has few opportunities to
send the latest offset to Kafka. Sending
heartbeat messages enables the connector to
send the latest offset to Kafka.

heartbeat.topics.prefix __debezium-
heartbeat

Specifies the prefix for the name of the topic to
which the connector sends heartbeat
messages. The format for this topic name is
<heartbeat.topics.prefix>.
<server.name>.

snapshot.delay.ms No default An interval in milliseconds that the connector
should wait before performing a snapshot when
the connector starts. If you are starting
multiple connectors in a cluster, this property is
useful for avoiding snapshot interruptions,
which might cause re-balancing of connectors.

snapshot.fetch.size 2000 During a snapshot, the connector reads table
content in batches of rows. This property
specifies the maximum number of rows in a
batch.

Property Default Description

Red Hat Integration 2022.Q2 Debezium User Guide

70

snapshot.lock.timeout.ms 10000 Positive integer value that specifies the
maximum amount of time (in milliseconds) to
wait to obtain table locks when performing a
snapshot. If the connector cannot acquire table
locks in this interval, the snapshot fails. How the
connector performs snapshots provides
details. Other possible settings are:

0 - The connector immediately fails when it
cannot obtain a lock.

-1 - The connector waits infinitely.

Property Default Description

CHAPTER 3. DEBEZIUM CONNECTOR FOR DB2

71

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#how-debezium-db2-connectors-perform-database-snapshots

snapshot.select.statemen
t.overrides

No default Specifies the table rows to include in a
snapshot. Use the property if you want a
snapshot to include only a subset of the rows in
a table. This property affects snapshots only. It
does not apply to events that the connector
reads from the log.

The property contains a comma-separated list
of fully-qualified table names in the form
<schemaName>.<tableName>. For
example,

"snapshot.select.statement.overrides":
"inventory.products,customers.orders"

For each table in the list, add a further
configuration property that specifies the
SELECT statement for the connector to run
on the table when it takes a snapshot. The
specified SELECT statement determines the
subset of table rows to include in the snapshot.
Use the following format to specify the name
of this SELECT statement property:

snapshot.select.statement.overrides.<s
chemaName>.<tableName>. For example,
snapshot.select.statement.overrides.cu
stomers.orders.

Example:

From a customers.orders table that
includes the soft-delete column, delete_flag,
add the following properties if you want a
snapshot to include only those records that are
not soft-deleted:

"snapshot.select.statement.overrides":
"customer.orders",
"snapshot.select.statement.overrides.cus
tomer.orders": "SELECT * FROM
[customers].[orders] WHERE
delete_flag = 0 ORDER BY id DESC"

In the resulting snapshot, the connector
includes only the records for which
delete_flag = 0.

Property Default Description

Red Hat Integration 2022.Q2 Debezium User Guide

72

sanitize.field.names true if connector
configuration sets the
key.converter or
value.converter
property to the Avro
converter.

false if not.

Indicates whether field names are sanitized to
adhere to Avro naming requirements.

provide.transaction.meta
data

false Determines whether the connector generates
events with transaction boundaries and
enriches change event envelopes with
transaction metadata. Specify true if you want
the connector to do this. See Transaction
metadata for details.

skipped.operations No default comma-separated list of operation types that
will be skipped during streaming. The
operations include: c for inserts/create, u for
updates, and d for deletes. By default, no
operations are skipped.

signal.data.collection No default Fully-qualified name of the data collection that
is used to send signals to the connector. Use
the following format to specify the collection
name:
<schemaName>.<tableName>

Signaling is a Technology Preview feature.

incremental.snapshot.chu
nk.size

1024 The maximum number of rows that the
connector fetches and reads into memory
during an incremental snapshot chunk.
Increasing the chunk size provides greater
efficiency, because the snapshot runs fewer
snapshot queries of a greater size. However,
larger chunk sizes also require more memory to
buffer the snapshot data. Adjust the chunk size
to a value that provides the best performance
in your environment.

Incremental snapshots is a Technology Preview
feature.

Property Default Description

Debezium connector database history configuration properties

Debezium provides a set of database.history.* properties that control how the connector interacts with
the schema history topic.

The following table describes the database.history properties for configuring the Debezium connector.

Table 3.16. Connector database history configuration properties

CHAPTER 3. DEBEZIUM CONNECTOR FOR DB2

73

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#about-avro-name-requirements
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#debezium-db2-connector-generated-events-that-represent-transaction-boundaries
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#debezium-signaling-enabling-signaling

Property Default Description

database.history.kafka.topic The full name of the Kafka topic where the connector
stores the database schema history.

database.history.kafka.boots
trap.servers

 A list of host/port pairs that the connector uses for
establishing an initial connection to the Kafka cluster.
This connection is used for retrieving the database
schema history previously stored by the connector,
and for writing each DDL statement read from the
source database. Each pair should point to the same
Kafka cluster used by the Kafka Connect process.

database.history.kafka.recov
ery.poll.interval.ms

100 An integer value that specifies the maximum number
of milliseconds the connector should wait during
startup/recovery while polling for persisted data. The
default is 100ms.

database.history.kafka.recov
ery.attempts

4 The maximum number of times that the connector
should try to read persisted history data before the
connector recovery fails with an error. The maximum
amount of time to wait after receiving no data is
recovery.attempts x recovery.poll.interval.ms.

database.history.skip.unpar
seable.ddl

false A Boolean value that specifies whether the
connector should ignore malformed or unknown
database statements or stop processing so a human
can fix the issue. The safe default is false. Skipping
should be used only with care as it can lead to data
loss or mangling when the binlog is being processed.

database.history.store.only.
monitored.tables.ddl

Deprecated and scheduled for
removal in a future release; use
database.history.store.only.
captured.tables.ddl instead.

false A Boolean value that specifies whether the
connector should record all DDL statements

true records only those DDL statements that are
relevant to tables whose changes are being captured
by Debezium. Set to true with care because missing
data might become necessary if you change which
tables have their changes captured.

The safe default is false.

database.history.store.only.
captured.tables.ddl

false A Boolean value that specifies whether the
connector should record all DDL statements

true records only those DDL statements that are
relevant to tables whose changes are being captured
by Debezium. Set to true with care because missing
data might become necessary if you change which
tables have their changes captured.

The safe default is false.

Red Hat Integration 2022.Q2 Debezium User Guide

74

Pass-through database history properties for configuring producer and consumer clients

Debezium relies on a Kafka producer to write schema changes to database history topics. Similarly, it
relies on a Kafka consumer to read from database history topics when a connector starts. You define the
configuration for the Kafka producer and consumer clients by assigning values to a set of pass-through
configuration properties that begin with the database.history.producer.* and
database.history.consumer.* prefixes. The pass-through producer and consumer database history
properties control a range of behaviors, such as how these clients secure connections with the Kafka
broker, as shown in the following example:

database.history.producer.security.protocol=SSL
database.history.producer.ssl.keystore.location=/var/private/ssl/kafka.server.keystore.jks
database.history.producer.ssl.keystore.password=test1234
database.history.producer.ssl.truststore.location=/var/private/ssl/kafka.server.truststore.jks
database.history.producer.ssl.truststore.password=test1234
database.history.producer.ssl.key.password=test1234

database.history.consumer.security.protocol=SSL
database.history.consumer.ssl.keystore.location=/var/private/ssl/kafka.server.keystore.jks
database.history.consumer.ssl.keystore.password=test1234
database.history.consumer.ssl.truststore.location=/var/private/ssl/kafka.server.truststore.jks
database.history.consumer.ssl.truststore.password=test1234
database.history.consumer.ssl.key.password=test1234

Debezium strips the prefix from the property name before it passes the property to the Kafka client.

See the Kafka documentation for more details about Kafka producer configuration properties and Kafka
consumer configuration properties.

Debezium connector pass-through database driver configuration properties

The Debezium connector provides for pass-through configuration of the database driver. Pass-through
database properties begin with the prefix database.*. For example, the connector passes properties
such as database.foobar=false to the JDBC URL.

As is the case with the pass-through properties for database history clients , Debezium strips the prefixes
from the properties before it passes them to the database driver.

3.7. MONITORING DEBEZIUM DB2 CONNECTOR PERFORMANCE

The Debezium Db2 connector provides three types of metrics that are in addition to the built-in support
for JMX metrics that Apache ZooKeeper, Apache Kafka, and Kafka Connect provide.

Snapshot metrics provide information about connector operation while performing a snapshot.

Streaming metrics provide information about connector operation when the connector is
capturing changes and streaming change event records.

Schema history metrics provide information about the status of the connector’s schema history.

Debezium monitoring documentation provides details for how to expose these metrics by using JMX.

3.7.1. Monitoring Debezium during snapshots of Db2 databases

The MBean is debezium.db2:type=connector-

CHAPTER 3. DEBEZIUM CONNECTOR FOR DB2

75

https://kafka.apache.org/documentation.html#producerconfigs
https://kafka.apache.org/documentation.html#consumerconfigs
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#monitoring-debezium-during-snapshots-of-db2-databases
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#monitoring-debezium-db2-connector-record-streaming
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#monitoring-debezium-db2-connector-schema-history
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index

The MBean is debezium.db2:type=connector-
metrics,context=snapshot,server=<db2.server.name>.

Snapshot metrics are not exposed unless a snapshot operation is active, or if a snapshot has occurred
since the last connector start.

The following table lists the shapshot metrics that are available.

Attributes Type Description

LastEvent string The last snapshot event that
the connector has read.

MilliSecondsSinceLastEvent long The number of milliseconds
since the connector has read
and processed the most
recent event.

TotalNumberOfEventsSeen long The total number of events
that this connector has seen
since last started or reset.

NumberOfEventsFiltered long The number of events that
have been filtered by
include/exclude list filtering
rules configured on the
connector.

MonitoredTables
Deprecated and scheduled for removal in a
future release; use the CapturedTables
metric instead.

string[] The list of tables that are
monitored by the connector.

CapturedTables string[] The list of tables that are
captured by the connector.

QueueTotalCapacity int The length the queue used to
pass events between the
snapshotter and the main
Kafka Connect loop.

QueueRemainingCapacity int The free capacity of the
queue used to pass events
between the snapshotter and
the main Kafka Connect loop.

TotalTableCount int The total number of tables
that are being included in the
snapshot.

RemainingTableCount int The number of tables that the
snapshot has yet to copy.

Red Hat Integration 2022.Q2 Debezium User Guide

76

SnapshotRunning boolean Whether the snapshot was
started.

SnapshotAborted boolean Whether the snapshot was
aborted.

SnapshotCompleted boolean Whether the snapshot
completed.

SnapshotDurationInSeconds long The total number of seconds
that the snapshot has taken
so far, even if not complete.

RowsScanned Map<String, Long> Map containing the number of
rows scanned for each table in
the snapshot. Tables are
incrementally added to the
Map during processing.
Updates every 10,000 rows
scanned and upon completing
a table.

MaxQueueSizeInBytes long The maximum buffer of the
queue in bytes. It will be
enabled if
max.queue.size.in.bytes is
passed with a positive long
value.

CurrentQueueSizeInBytes long The current data of records in
the queue in bytes.

Attributes Type Description

The connector also provides the following additional snapshot metrics when an incremental snapshot is
executed:

Attributes Type Description

ChunkId string The identifier of the current
snapshot chunk.

ChunkFrom string The lower bound of the
primary key set defining the
current chunk.

ChunkTo string The upper bound of the
primary key set defining the
current chunk.

CHAPTER 3. DEBEZIUM CONNECTOR FOR DB2

77

TableFrom string The lower bound of the
primary key set of the
currently snapshotted table.

TableTo string The upper bound of the
primary key set of the
currently snapshotted table.

Attributes Type Description

IMPORTANT

Incremental snapshots is a Technology Preview feature only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs) and
might not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.
For more information about the support scope of Red Hat Technology Preview features,
see https://access.redhat.com/support/offerings/techpreview.

3.7.2. Monitoring Debezium Db2 connector record streaming

The MBean is debezium.db2:type=connector-
metrics,context=streaming,server=<db2.server.name>.

The following table lists the streaming metrics that are available.

Attributes Type Description

LastEvent string The last streaming event that
the connector has read.

MilliSecondsSinceLastEvent long The number of milliseconds
since the connector has read
and processed the most
recent event.

TotalNumberOfEventsSeen long The total number of events
that this connector has seen
since last started or reset.

NumberOfEventsFiltered long The number of events that
have been filtered by
include/exclude list filtering
rules configured on the
connector.

Red Hat Integration 2022.Q2 Debezium User Guide

78

https://access.redhat.com/support/offerings/techpreview

MonitoredTables
Deprecated and scheduled for removal in a
future release; use the 'CapturedTables' metric
instead

string[] The list of tables that are
monitored by the connector.

CapturedTables string[] The list of tables that are
captured by the connector.

QueueTotalCapacity int The length the queue used to
pass events between the
streamer and the main Kafka
Connect loop.

QueueRemainingCapacity int The free capacity of the
queue used to pass events
between the streamer and the
main Kafka Connect loop.

Connected boolean Flag that denotes whether the
connector is currently
connected to the database
server.

MilliSecondsBehindSource long The number of milliseconds
between the last change
event’s timestamp and the
connector processing it. The
values will incoporate any
differences between the
clocks on the machines where
the database server and the
connector are running.

NumberOfCommittedTransactions long The number of processed
transactions that were
committed.

SourceEventPosition Map<String, String> The coordinates of the last
received event.

LastTransactionId string Transaction identifier of the
last processed transaction.

MaxQueueSizeInBytes long The maximum buffer of the
queue in bytes.

CurrentQueueSizeInBytes long The current data of records in
the queue in bytes.

Attributes Type Description

CHAPTER 3. DEBEZIUM CONNECTOR FOR DB2

79

3.7.3. Monitoring Debezium Db2 connector schema history

The MBean is debezium.db2:type=connector-metrics,context=schema-
history,server=<db2.server.name>.

The following table lists the schema history metrics that are available.

Attributes Type Description

Status string One of STOPPED,
RECOVERING (recovering
history from the storage),
RUNNING describing the
state of the database history.

RecoveryStartTime long The time in epoch seconds at
what recovery has started.

ChangesRecovered long The number of changes that
were read during recovery
phase.

ChangesApplied long the total number of schema
changes applied during
recovery and runtime.

MilliSecondsSinceLast
RecoveredChange

long The number of milliseconds
that elapsed since the last
change was recovered from
the history store.

MilliSecondsSinceLast AppliedChange long The number of milliseconds
that elapsed since the last
change was applied.

LastRecoveredChange string The string representation of
the last change recovered
from the history store.

LastAppliedChange string The string representation of
the last applied change.

3.8. MANAGING DEBEZIUM DB2 CONNECTORS

After you deploy a Debezium Db2 connector, use the Debezium management UDFs to control Db2
replication (ASN) with SQL commands. Some of the UDFs expect a return value in which case you use
the SQL VALUE statement to invoke them. For other UDFs, use the SQL CALL statement.

Table 3.17. Descriptions of Debezium management UDFs

Red Hat Integration 2022.Q2 Debezium User Guide

80

Task Command and notes

Start the ASN
agent

VALUES ASNCDC.ASNCDCSERVICES('start','asncdc');

Stop the ASN
agent

VALUES ASNCDC.ASNCDCSERVICES('stop','asncdc');

Check the status
of the ASN agent

VALUES ASNCDC.ASNCDCSERVICES('status','asncdc');

Put a table into
capture mode

CALL ASNCDC.ADDTABLE('MYSCHEMA', 'MYTABLE');

Replace MYSCHEMA with the name of the schema that contains the table you want
to put into capture mode. Likewise, replace MYTABLE with the name of the table to
put into capture mode.

Remove a table
from capture
mode

CALL ASNCDC.REMOVETABLE('MYSCHEMA', 'MYTABLE');

Reinitialize the
ASN service

VALUES ASNCDC.ASNCDCSERVICES('reinit','asncdc');

Do this after you put a table into capture mode or after you remove a table from
capture mode.

3.9. UPDATING SCHEMAS FOR DB2 TABLES IN CAPTURE MODE FOR
DEBEZIUM CONNECTORS

While a Debezium Db2 connector can capture schema changes, to update a schema, you must
collaborate with a database administrator to ensure that the connector continues to produce change
events. This is required by the way that Db2 implements replication.

For each table in capture mode, Db2’s replication feature creates a change-data table that contains all
changes to that source table. However, change-data table schemas are static. If you update the schema
for a table in capture mode then you must also update the schema of its corresponding change-data
table. A Debezium Db2 connector cannot do this. A database administrator with elevated privileges
must update schemas for tables that are in capture mode.

WARNING

It is vital to execute a schema update procedure completely before there is a new
schema update on the same table. Consequently, the recommendation is to
execute all DDLs in a single batch so the schema update procedure is done only
once.

CHAPTER 3. DEBEZIUM CONNECTOR FOR DB2

81

There are generally two procedures for updating table schemas:

Offline - executed while Debezium is stopped

Online - executed while Debezium is running

Each approach has advantages and disadvantages.

3.9.1. Performing offline schema updates for Debezium Db2 connectors

You stop the Debezium Db2 connector before you perform an offline schema update. While this is the
safer schema update procedure, it might not be feasible for applications with high-availability
requirements.

Prerequisites

One or more tables that are in capture mode require schema updates.

Procedure

1. Suspend the application that updates the database.

2. Wait for the Debezium connector to stream all unstreamed change event records.

3. Stop the Debezium connector.

4. Apply all changes to the source table schema.

5. In the ASN register table, mark the tables with updated schemas as INACTIVE.

6. Reinitialize the ASN capture service .

7. Remove the source table with the old schema from capture mode by running the Debezium
UDF for removing tables from capture mode.

8. Add the source table with the new schema to capture mode by running the Debezium UDF for
adding tables to capture mode.

9. In the ASN register table, mark the updated source tables as ACTIVE.

10. Reinitialize the ASN capture service.

11. Resume the application that updates the database.

12. Restart the Debezium connector.

3.9.2. Performing online schema updates for Debezium Db2 connectors

An online schema update does not require application and data processing downtime. That is, you do not
stop the Debezium Db2 connector before you perform an online schema update. Also, an online schema
update procedure is simpler than the procedure for an offline schema update.

However, when a table is in capture mode, after a change to a column name, the Db2 replication feature
continues to use the old column name. The new column name does not appear in Debezium change
events. You must restart the connector to see the new column name in change events.

Red Hat Integration 2022.Q2 Debezium User Guide

82

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#performing-offline-schema-updates-for-debezium-db2-connectors
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#db2-online-schema-update
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#debezium-db2-reinitialize-asn-service
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#debezium-db2-remove-capture-mode
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#debezium-db2-put-capture-mode
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#debezium-db2-reinitialize-asn-service

Prerequisites

One or more tables that are in capture mode require schema updates.

Procedure when adding a column to the end of a table

1. Lock the source tables whose schema you want to change.

2. In the ASN register table, mark the locked tables as INACTIVE.

3. Reinitialize the ASN capture service.

4. Apply all changes to the schemas for the source tables.

5. Apply all changes to the schemas for the corresponding change-data tables.

6. In the ASN register table, mark the source tables as ACTIVE.

7. Reinitialize the ASN capture service.

8. Optional. Restart the connector to see updated column names in change events.

Procedure when adding a column to the middle of a table

1. Lock the source table(s) to be changed.

2. In the ASN register table, mark the locked tables as INACTIVE.

3. Reinitialize the ASN capture service.

4. For each source table to be changed:

a. Export the data in the source table.

b. Truncate the source table.

c. Alter the source table and add the column.

d. Load the exported data into the altered source table.

e. Export the data in the source table’s corresponding change-data table.

f. Truncate the change-data table.

g. Alter the change-data table and add the column.

h. Load the exported data into the altered change-data table.

5. In the ASN register table, mark the tables as INACTIVE. This marks the old change-data tables
as inactive, which allows the data in them to remain but they are no longer updated.

6. Reinitialize the ASN capture service.

7. Optional. Restart the connector to see updated column names in change events.

CHAPTER 3. DEBEZIUM CONNECTOR FOR DB2

83

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#debezium-db2-reinitialize-asn-service
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#debezium-db2-reinitialize-asn-service
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#debezium-db2-reinitialize-asn-service
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#debezium-db2-reinitialize-asn-service

CHAPTER 4. DEBEZIUM CONNECTOR FOR MONGODB
Debezium’s MongoDB connector tracks a MongoDB replica set or a MongoDB sharded cluster for
document changes in databases and collections, recording those changes as events in Kafka topics. The
connector automatically handles the addition or removal of shards in a sharded cluster, changes in
membership of each replica set, elections within each replica set, and awaiting the resolution of
communications problems.

For information about the MongoDB versions that are compatible with this connector, see the
Debezium Supported Configurations page .

Information and procedures for using a Debezium MongoDB connector is organized as follows:

Section 4.1, “Overview of Debezium MongoDB connector”

Section 4.2, “How Debezium MongoDB connectors work”

Section 4.3, “Descriptions of Debezium MongoDB connector data change events”

Section 4.4, “Setting up MongoDB to work with a Debezium connector”

Section 4.5, “Deployment of Debezium MongoDB connectors”

Section 4.6, “Monitoring Debezium MongoDB connector performance”

Section 4.7, “How Debezium MongoDB connectors handle faults and problems”

4.1. OVERVIEW OF DEBEZIUM MONGODB CONNECTOR

MongoDB’s replication mechanism provides redundancy and high availability, and is the preferred way to
run MongoDB in production. MongoDB connector captures the changes in a replica set or sharded
cluster.

A MongoDB replica set consists of a set of servers that all have copies of the same data, and replication
ensures that all changes made by clients to documents on the replica set’s primary are correctly applied
to the other replica set’s servers, called secondaries. MongoDB replication works by having the primary
record the changes in its oplog (or operation log), and then each of the secondaries reads the primary’s
oplog and applies in order all of the operations to their own documents. When a new server is added to a
replica set, that server first performs an snapshot of all of the databases and collections on the primary,
and then reads the primary’s oplog to apply all changes that might have been made since it began the
snapshot. This new server becomes a secondary (and able to handle queries) when it catches up to the
tail of the primary’s oplog.

The MongoDB connector uses this same replication mechanism, though it does not actually become a
member of the replica set. Just like MongoDB secondaries, however, the connector always reads the
oplog of the replica set’s primary. And, when the connector sees a replica set for the first time, it looks at
the oplog to get the last recorded transaction and then performs a snapshot of the primary’s databases
and collections. When all the data is copied, the connector then starts streaming changes from the
position it read earlier from the oplog. Operations in the MongoDB oplog are idempotent, so no matter
how many times the operations are applied, they result in the same end state.

As the MongoDB connector processes changes, it periodically records the position in the oplog where
the event originated. When the MongoDB connector stops, it records the last oplog position that it
processed, so that upon restart it simply begins streaming from that position. In other words, the
connector can be stopped, upgraded or maintained, and restarted some time later, and it will pick up
exactly where it left off without losing a single event. Of course, MongoDB’s oplogs are usually capped

Red Hat Integration 2022.Q2 Debezium User Guide

84

https://access.redhat.com/articles/4938181
https://docs.mongodb.com/manual/core/replica-set-sync/
https://docs.mongodb.com/manual/core/replica-set-oplog/

at a maximum size, which means that the connector should not be stopped for too long, or else some of
the operations in the oplog might be purged before the connector has a chance to read them. In this
case, upon restart the connector will detect the missing oplog operations, perform a snapshot, and then
proceed with streaming the changes.

The MongoDB connector is also quite tolerant of changes in membership and leadership of the replica
sets, of additions or removals of shards within a sharded cluster, and network problems that might cause
communication failures. The connector always uses the replica set’s primary node to stream changes, so
when the replica set undergoes an election and a different node becomes primary, the connector will
immediately stop streaming changes, connect to the new primary, and start streaming changes using
the new primary node. Likewise, if connector experiences any problems communicating with the replica
set primary, it will try to reconnect (using exponential backoff so as to not overwhelm the network or
replica set) and continue streaming changes from where it last left off. In this way the connector is able
to dynamically adjust to changes in replica set membership and to automatically handle communication
failures.

Additional resources

Replication mechanism

Replica set

Replica set elections

Sharded cluster

Shard addition

Shard removal

4.2. HOW DEBEZIUM MONGODB CONNECTORS WORK

An overview of the MongoDB topologies that the connector supports is useful for planning your
application.

When a MongoDB connector is configured and deployed, it starts by connecting to the MongoDB
servers at the seed addresses, and determines the details about each of the available replica sets. Since
each replica set has its own independent oplog, the connector will try to use a separate task for each
replica set. The connector can limit the maximum number of tasks it will use, and if not enough tasks are
available the connector will assign multiple replica sets to each task, although the task will still use a
separate thread for each replica set.

NOTE

When running the connector against a sharded cluster, use a value of tasks.max that is
greater than the number of replica sets. This will allow the connector to create one task
for each replica set, and will let Kafka Connect coordinate, distribute, and manage the
tasks across all of the available worker processes.

The following topics provide details about how the Debezium MongoDB connector works:

Section 4.2.1, “MongoDB topologies supported by Debezium connectors”

Section 4.2.2, “How Debezium MongoDB connectors use logical names for replica sets and
sharded clusters”

CHAPTER 4. DEBEZIUM CONNECTOR FOR MONGODB

85

https://docs.mongodb.com/manual/replication/
https://docs.mongodb.com/manual/tutorial/deploy-replica-set/
https://docs.mongodb.com/manual/core/replica-set-elections/
https://docs.mongodb.com/manual/core/sharded-cluster-components/
https://docs.mongodb.com/manual/tutorial/add-shards-to-shard-cluster/
https://docs.mongodb.com/manual/tutorial/remove-shards-from-cluster/

Section 4.2.3, “How Debezium MongoDB connectors perform snapshots”

Section 4.2.4, “How the Debezium MongoDB connector streams change event records”

Section 4.2.5, “Default names of Kafka topics that receive Debezium MongoDB change event
records”

Section 4.2.6, “How event keys control topic partitioning for the Debezium MongoDB
connector”

Section 4.2.7, “Debezium MongoDB connector-generated events that represent transaction
boundaries”

4.2.1. MongoDB topologies supported by Debezium connectors

The MongoDB connector supports the following MongoDB topologies:

MongoDB replica set

The Debezium MongoDB connector can capture changes from a single MongoDB replica set.
Production replica sets require a minimum of at least three members.
To use the MongoDB connector with a replica set, provide the addresses of one or more replica set
servers as seed addresses through the connector’s mongodb.hosts property. The connector will use
these seeds to connect to the replica set, and then once connected will get from the replica set the
complete set of members and which member is primary. The connector will start a task to connect to
the primary and capture the changes from the primary’s oplog. When the replica set elects a new
primary, the task will automatically switch over to the new primary.

NOTE

When MongoDB is fronted by a proxy (such as with Docker on OS X or Windows), then
when a client connects to the replica set and discovers the members, the MongoDB
client will exclude the proxy as a valid member and will attempt and fail to connect
directly to the members rather than go through the proxy.

In such a case, set the connector’s optional mongodb.members.auto.discover
configuration property to false to instruct the connector to forgo membership
discovery and instead simply use the first seed address (specified via the
mongodb.hosts property) as the primary node. This may work, but still make cause
issues when election occurs.

MongoDB sharded cluster

A MongoDB sharded cluster consists of:

One or more shards, each deployed as a replica set;

A separate replica set that acts as the cluster’s configuration server

One or more routers (also called mongos) to which clients connect and that routes requests
to the appropriate shards
To use the MongoDB connector with a sharded cluster, configure the connector with the
host addresses of the configuration server replica set. When the connector connects to this
replica set, it discovers that it is acting as the configuration server for a sharded cluster,
discovers the information about each replica set used as a shard in the cluster, and will then

Red Hat Integration 2022.Q2 Debezium User Guide

86

https://docs.mongodb.com/manual/replication/
https://docs.mongodb.com/manual/core/replica-set-architecture-three-members/
https://docs.mongodb.com/manual/sharding/

start up a separate task to capture the changes from each replica set. If new shards are
added to the cluster or existing shards removed, the connector will automatically adjust its
tasks accordingly.

MongoDB standalone server

The MongoDB connector is not capable of monitoring the changes of a standalone MongoDB server,
since standalone servers do not have an oplog. The connector will work if the standalone server is
converted to a replica set with one member.

NOTE

MongoDB does not recommend running a standalone server in production. For more
information, see the MongoDB documentation.

4.2.2. How Debezium MongoDB connectors use logical names for replica sets and
sharded clusters

The connector configuration property mongodb.name serves as a logical name for the MongoDB
replica set or sharded cluster. The connector uses the logical name in a number of ways: as the prefix for
all topic names, and as a unique identifier when recording the oplog position of each replica set.

You should give each MongoDB connector a unique logical name that meaningfully describes the
source MongoDB system. We recommend logical names begin with an alphabetic or underscore
character, and remaining characters that are alphanumeric or underscore.

4.2.3. How Debezium MongoDB connectors perform snapshots

When a task starts up using a replica set, it uses the connector’s logical name and the replica set name to
find an offset that describes the position where the connector previously stopped reading changes. If an
offset can be found and it still exists in the oplog, then the task immediately proceeds with streaming
changes, starting at the recorded offset position.

However, if no offset is found or if the oplog no longer contains that position, the task must first obtain
the current state of the replica set contents by performing a snapshot. This process starts by recording
the current position of the oplog and recording that as the offset (along with a flag that denotes a
snapshot has been started). The task will then proceed to copy each collection, spawning as many
threads as possible (up to the value of the snapshot.max.threads configuration property) to perform
this work in parallel. The connector will record a separate read event for each document it sees, and that
read event will contain the object’s identifier, the complete state of the object, and source information
about the MongoDB replica set where the object was found. The source information will also include a
flag that denotes the event was produced during a snapshot.

This snapshot will continue until it has copied all collections that match the connector’s filters. If the
connector is stopped before the tasks' snapshots are completed, upon restart the connector begins the
snapshot again.

NOTE

Try to avoid task reassignment and reconfiguration while the connector is performing a
snapshot of any replica sets. The connector does log messages with the progress of the
snapshot. For utmost control, run a separate cluster of Kafka Connect for each
connector.

CHAPTER 4. DEBEZIUM CONNECTOR FOR MONGODB

87

https://docs.mongodb.com/manual/core/replica-set-architectures/
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#how-the-debezium-mongodb-connector-streams-change-event-records

4.2.4. How the Debezium MongoDB connector streams change event records

After the connector task for a replica set records an offset, it uses the offset to determine the position
in the oplog where it should start streaming changes. The task then connects to the replica set’s primary
node and start streaming changes from that position. It processes all of create, insert, and delete
operations, and converts them into Debezium change events. Each change event includes the position
in the oplog where the operation was found, and the connector periodically records this as its most
recent offset. The interval at which the offset is recorded is governed by offset.flush.interval.ms, which
is a Kafka Connect worker configuration property.

When the connector is stopped gracefully, the last offset processed is recorded so that, upon restart,
the connector will continue exactly where it left off. If the connector’s tasks terminate unexpectedly,
however, then the tasks may have processed and generated events after it last records the offset but
before the last offset is recorded; upon restart, the connector begins at the last recorded offset,
possibly generating some the same events that were previously generated just prior to the crash.

NOTE

When everything is operating nominally, Kafka consumers will actually see every message
exactly once. However, when things go wrong Kafka can only guarantee consumers will
see every message at least once. Therefore, your consumers need to anticipate seeing
messages more than once.

As mentioned above, the connector tasks always use the replica set’s primary node to stream changes
from the oplog, ensuring that the connector sees the most up-to-date operations as possible and can
capture the changes with lower latency than if secondaries were to be used instead. When the replica
set elects a new primary, the connector immediately stops streaming changes, connects to the new
primary, and starts streaming changes from the new primary node at the same position. Likewise, if the
connector experiences any problems communicating with the replica set members, it tries to reconnect,
by using exponential backoff so as to not overwhelm the replica set, and once connected it continues
streaming changes from where it last left off. In this way, the connector is able to dynamically adjust to
changes in replica set membership and automatically handle communication failures.

To summarize, the MongoDB connector continues running in most situations. Communication problems
might cause the connector to wait until the problems are resolved.

4.2.5. Default names of Kafka topics that receive Debezium MongoDB change event
records

The MongoDB connector writes events for all insert, update, and delete operations to documents in
each collection to a single Kafka topic. The name of the Kafka topics always takes the form
logicalName.databaseName.collectionName, where logicalName is the logical name of the connector as
specified with the mongodb.name configuration property, databaseName is the name of the database
where the operation occurred, and collectionName is the name of the MongoDB collection in which the
affected document existed.

For example, consider a MongoDB replica set with an inventory database that contains four collections:
products, products_on_hand, customers, and orders. If the connector monitoring this database were
given a logical name of fulfillment, then the connector would produce events on these four Kafka
topics:

fulfillment.inventory.products

fulfillment.inventory.products_on_hand

Red Hat Integration 2022.Q2 Debezium User Guide

88

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#descriptions-of-debezium-mongodb-connector-data-change-events
https://kafka.apache.org/documentation/#offset.flush.interval.ms
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#how-debezium-mongodb-connectors-use-logical-names-for-replica-sets-and-sharded-clusters

fulfillment.inventory.customers

fulfillment.inventory.orders

Notice that the topic names do not incorporate the replica set name or shard name. As a result, all
changes to a sharded collection (where each shard contains a subset of the collection’s documents) all
go to the same Kafka topic.

You can set up Kafka to auto-create the topics as they are needed. If not, then you must use Kafka
administration tools to create the topics before starting the connector.

4.2.6. How event keys control topic partitioning for the Debezium MongoDB
connector

The MongoDB connector does not make any explicit determination about how to partition topics for
events. Instead, it allows Kafka to determine how to partition topics based on event keys. You can
change Kafka’s partitioning logic by defining the name of the Partitioner implementation in the Kafka
Connect worker configuration.

Kafka maintains total order only for events written to a single topic partition. Partitioning the events by
key does mean that all events with the same key always go to the same partition. This ensures that all
events for a specific document are always totally ordered.

4.2.7. Debezium MongoDB connector-generated events that represent transaction
boundaries

Debezium can generate events that represents transaction metadata boundaries and enrich change
data event messages.

LIMITS ON WHEN DEBEZIUM RECEIVES TRANSACTION METADATA

Debezium registers and receives metadata only for transactions that occur after you
deploy the connector. Metadata for transactions that occur before you deploy the
connector is not available.

For every transaction BEGIN and END, Debezium generates an event that contains the following fields:

status

BEGIN or END

id

String representation of unique transaction identifier.

event_count (for END events)

Total number of events emitted by the transaction.

data_collections (for END events)

An array of pairs of data_collection and event_count that provides number of events emitted by
changes originating from given data collection.

The following example shows a typical message:

{
 "status": "BEGIN",
 "id": "1462833718356672513",

CHAPTER 4. DEBEZIUM CONNECTOR FOR MONGODB

89

https://kafka.apache.org/documentation.html#basic_ops_add_topic

Unless overridden via the transaction.topic option, transaction events are written to the topic named
database.server.name.transaction.

Change data event enrichment

When transaction metadata is enabled, the data message Envelope is enriched with a new transaction
field. This field provides information about every event in the form of a composite of fields:

id

String representation of unique transaction identifier.

total_order

The absolute position of the event among all events generated by the transaction.

data_collection_order

The per-data collection position of the event among all events that were emitted by the transaction.

Following is an example of what a message looks like:

4.3. DESCRIPTIONS OF DEBEZIUM MONGODB CONNECTOR DATA

 "event_count": null,
 "data_collections": null
}

{
 "status": "END",
 "id": "1462833718356672513",
 "event_count": 2,
 "data_collections": [
 {
 "data_collection": "rs0.testDB.collectiona",
 "event_count": 1
 },
 {
 "data_collection": "rs0.testDB.collectionb",
 "event_count": 1
 }
]
}

{
 "patch": null,
 "after": "{\"_id\" : {\"$numberLong\" : \"1004\"},\"first_name\" : \"Anne\",\"last_name\" :
\"Kretchmar\",\"email\" : \"annek@noanswer.org\"}",
 "source": {
...
 },
 "op": "c",
 "ts_ms": "1580390884335",
 "transaction": {
 "id": "1462833718356672513",
 "total_order": "1",
 "data_collection_order": "1"
 }
}

Red Hat Integration 2022.Q2 Debezium User Guide

90

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#mongodb-property-transaction-topic

4.3. DESCRIPTIONS OF DEBEZIUM MONGODB CONNECTOR DATA
CHANGE EVENTS

The Debezium MongoDB connector generates a data change event for each document-level operation
that inserts, updates, or deletes data. Each event contains a key and a value. The structure of the key
and the value depends on the collection that was changed.

Debezium and Kafka Connect are designed around continuous streams of event messages . However, the
structure of these events may change over time, which can be difficult for consumers to handle. To
address this, each event contains the schema for its content or, if you are using a schema registry, a
schema ID that a consumer can use to obtain the schema from the registry. This makes each event self-
contained.

The following skeleton JSON shows the basic four parts of a change event. However, how you configure
the Kafka Connect converter that you choose to use in your application determines the representation
of these four parts in change events. A schema field is in a change event only when you configure the
converter to produce it. Likewise, the event key and event payload are in a change event only if you
configure a converter to produce it. If you use the JSON converter and you configure it to produce all
four basic change event parts, change events have this structure:

Table 4.1. Overview of change event basic content

Item Field name Description

1 schema The first schema field is part of the event key. It specifies a Kafka Connect
schema that describes what is in the event key’s payload portion. In other
words, the first schema field describes the structure of the key for the
document that was changed.

2 payload The first payload field is part of the event key. It has the structure
described by the previous schema field and it contains the key for the
document that was changed.

3 schema The second schema field is part of the event value. It specifies the Kafka
Connect schema that describes what is in the event value’s payload
portion. In other words, the second schema describes the structure of the
document that was changed. Typically, this schema contains nested
schemas.

{
 "schema": { 1
 ...
 },
 "payload": { 2
 ...
 },
 "schema": { 3
 ...
 },
 "payload": { 4
 ...
 },
}

CHAPTER 4. DEBEZIUM CONNECTOR FOR MONGODB

91

4 payload The second payload field is part of the event value. It has the structure
described by the previous schema field and it contains the actual data for
the document that was changed.

Item Field name Description

By default, the connector streams change event records to topics with names that are the same as the
event’s originating collection. See topic names.

WARNING

The MongoDB connector ensures that all Kafka Connect schema names adhere to
the Avro schema name format . This means that the logical server name must start
with a Latin letter or an underscore, that is, a-z, A-Z, or _. Each remaining character
in the logical server name and each character in the database and collection names
must be a Latin letter, a digit, or an underscore, that is, a-z, A-Z, 0-9, or _. If there is
an invalid character it is replaced with an underscore character.

This can lead to unexpected conflicts if the logical server name, a database name, or
a collection name contains invalid characters, and the only characters that
distinguish names from one another are invalid and thus replaced with underscores.

For more information, see the following topics:

Section 4.3.1, “About keys in Debezium MongoDB change events”

Section 4.3.2, “About values in Debezium MongoDB change events”

4.3.1. About keys in Debezium MongoDB change events

A change event’s key contains the schema for the changed document’s key and the changed
document’s actual key. For a given collection, both the schema and its corresponding payload contain a
single id field. The value of this field is the document’s identifier represented as a string that is derived
from MongoDB extended JSON serialization strict mode .

Consider a connector with a logical name of fulfillment, a replica set containing an inventory database,
and a customers collection that contains documents such as the following.

Example document

Example change event key

{
 "_id": 1004,
 "first_name": "Anne",
 "last_name": "Kretchmar",
 "email": "annek@noanswer.org"
}

Red Hat Integration 2022.Q2 Debezium User Guide

92

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#default-names-of-kafka-topics-that-receive-debezium-mongodb-change-event-records
http://avro.apache.org/docs/current/spec.html#names
https://docs.mongodb.com/manual/reference/mongodb-extended-json/

Every change event that captures a change to the customers collection has the same event key
schema. For as long as the customers collection has the previous definition, every change event that
captures a change to the customers collection has the following key structure. In JSON, it looks like
this:

Table 4.2. Description of change event key

Item Field name Description

1 schema The schema portion of the key specifies a Kafka Connect schema that
describes what is in the key’s payload portion.

2 fulfillment.inven
tory.customers.
Key

Name of the schema that defines the structure of the key’s payload. This
schema describes the structure of the key for the document that was
changed. Key schema names have the format connector-name.database-
name.collection-name.Key. In this example:

fulfillment is the name of the connector that generated this
event.

inventory is the database that contains the collection that was
changed.

customers is the collection that contains the document that was
updated.

3 optional Indicates whether the event key must contain a value in its payload field. In
this example, a value in the key’s payload is required. A value in the key’s
payload field is optional when a document does not have a key.

4 fields Specifies each field that is expected in the payload, including each field’s
name, type, and whether it is required.

{
 "schema": { 1
 "type": "struct",
 "name": "fulfillment.inventory.customers.Key", 2
 "optional": false, 3
 "fields": [4
 {
 "field": "id",
 "type": "string",
 "optional": false
 }
]
 },
 "payload": { 5
 "id": "1004"
 }
}

CHAPTER 4. DEBEZIUM CONNECTOR FOR MONGODB

93

5 payload Contains the key for the document for which this change event was
generated. In this example, the key contains a single id field of type string
whose value is 1004.

Item Field name Description

This example uses a document with an integer identifier, but any valid MongoDB document identifier
works the same way, including a document identifier. For a document identifier, an event key’s
payload.id value is a string that represents the updated document’s original _id field as a MongoDB
extended JSON serialization that uses strict mode. The following table provides examples of how
different types of _id fields are represented.

Table 4.3. Examples of representing document _id fields in event key payloads

Type MongoDB _id Value Key’s payload

Integer 1234 { "id" : "1234" }

Float 12.34 { "id" : "12.34" }

String "1234" { "id" : "\"1234\"" }

Document { "hi" : "kafka", "nums" :
[10.0, 100.0, 1000.0] }

{ "id" : "{\"hi\" : \"kafka\",
\"nums\" : [10.0, 100.0,
1000.0]}" }

ObjectId ObjectId("596e275826f08b27
30779e1f")

{ "id" : "{\"$oid\" :
\"596e275826f08b2730779e1f\
"}" }

Binary BinData("a2Fma2E=",0) { "id" : "{\"$binary\" :
\"a2Fma2E=\", \"$type\" :
\"00\"}" }

4.3.2. About values in Debezium MongoDB change events

The value in a change event is a bit more complicated than the key. Like the key, the value has a schema
section and a payload section. The schema section contains the schema that describes the Envelope
structure of the payload section, including its nested fields. Change events for operations that create,
update or delete data all have a value payload with an envelope structure.

Consider the same sample document that was used to show an example of a change event key:

Example document

{
 "_id": 1004,
 "first_name": "Anne",

Red Hat Integration 2022.Q2 Debezium User Guide

94

The value portion of a change event for a change to this document is described for each event type:

create events

update events

delete events

Tombstone events

create events

The following example shows the value portion of a change event that the connector generates for an
operation that creates data in the customers collection:

 "last_name": "Kretchmar",
 "email": "annek@noanswer.org"
}

{
 "schema": { 1
 "type": "struct",
 "fields": [
 {
 "type": "string",
 "optional": true,
 "name": "io.debezium.data.Json", 2
 "version": 1,
 "field": "after"
 },
 {
 "type": "string",
 "optional": true,
 "name": "io.debezium.data.Json",
 "version": 1,
 "field": "patch"
 },
 {
 "type": "struct",
 "fields": [
 {
 "type": "string",
 "optional": false,
 "field": "version"
 },
 {
 "type": "string",
 "optional": false,
 "field": "connector"
 },
 {
 "type": "string",
 "optional": false,
 "field": "name"
 },
 {

CHAPTER 4. DEBEZIUM CONNECTOR FOR MONGODB

95

 "type": "int64",
 "optional": false,
 "field": "ts_ms"
 },
 {
 "type": "boolean",
 "optional": true,
 "default": false,
 "field": "snapshot"
 },
 {
 "type": "string",
 "optional": false,
 "field": "db"
 },
 {
 "type": "string",
 "optional": false,
 "field": "rs"
 },
 {
 "type": "string",
 "optional": false,
 "field": "collection"
 },
 {
 "type": "int32",
 "optional": false,
 "field": "ord"
 },
 {
 "type": "int64",
 "optional": true,
 "field": "h"
 }
],
 "optional": false,
 "name": "io.debezium.connector.mongo.Source", 3
 "field": "source"
 },
 {
 "type": "string",
 "optional": true,
 "field": "op"
 },
 {
 "type": "int64",
 "optional": true,
 "field": "ts_ms"
 }
],
 "optional": false,
 "name": "dbserver1.inventory.customers.Envelope" 4
 },
 "payload": { 5
 "after": "{\"_id\" : {\"$numberLong\" : \"1004\"},\"first_name\" : \"Anne\",\"last_name\" :

Red Hat Integration 2022.Q2 Debezium User Guide

96

Table 4.4. Descriptions of create event value fields

Item Field name Description

1 schema The value’s schema, which describes the structure of the value’s payload. A
change event’s value schema is the same in every change event that the
connector generates for a particular collection.

2 name In the schema section, each name field specifies the schema for a field in
the value’s payload.

io.debezium.data.Json is the schema for the payload’s after, patch, and
filter fields. This schema is specific to the customers collection. A create
event is the only kind of event that contains an after field. An update event
contains a filter field and a patch field. A delete event contains a filter
field, but not an after field nor a patch field.

3 name io.debezium.connector.mongo.Source is the schema for the
payload’s source field. This schema is specific to the MongoDB connector.
The connector uses it for all events that it generates.

4 name dbserver1.inventory.customers.Envelope is the schema for the
overall structure of the payload, where dbserver1 is the connector name,
inventory is the database, and customers is the collection. This schema
is specific to the collection.

\"Kretchmar\",\"email\" : \"annek@noanswer.org\"}", 6
 "patch": null,
 "source": { 7
 "version": "1.7.2.Final",
 "connector": "mongodb",
 "name": "fulfillment",
 "ts_ms": 1558965508000,
 "snapshot": false,
 "db": "inventory",
 "rs": "rs0",
 "collection": "customers",
 "ord": 31,
 "h": 1546547425148721999
 },
 "op": "c", 8
 "ts_ms": 1558965515240 9
 }
 }

CHAPTER 4. DEBEZIUM CONNECTOR FOR MONGODB

97

5 payload The value’s actual data. This is the information that the change event is
providing.

It may appear that the JSON representations of the events are much larger
than the documents they describe. This is because the JSON
representation must include the schema and the payload portions of the
message. However, by using the Avro converter, you can significantly
decrease the size of the messages that the connector streams to Kafka
topics.

6 after An optional field that specifies the state of the document after the event
occurred. In this example, the after field contains the values of the new
document’s _id, first_name, last_name, and email fields. The after
value is always a string. By convention, it contains a JSON representation of
the document. MongoDB’s oplog entries contain the full state of a
document only for _create_ events; in other words, a create event is the only
kind of event that contains an after field.

7 source Mandatory field that describes the source metadata for the event. This field
contains information that you can use to compare this event with other
events, with regard to the origin of the events, the order in which the events
occurred, and whether events were part of the same transaction. The
source metadata includes:

Debezium version.

Name of the connector that generated the event.

Logical name of the MongoDB replica set, which forms a
namespace for generated events and is used in Kafka topic names
to which the connector writes.

Names of the collection and database that contain the new
document.

If the event was part of a snapshot.

Timestamp for when the change was made in the database and
ordinal of the event within the timestamp.

Unique identifier of the MongoDB operation, which depends on
the version of MongoDB. It is either the h field in the oplog event,
or a field named stxnid, which represents the lsid and
txnNumber fields from the oplog event.

Item Field name Description

Red Hat Integration 2022.Q2 Debezium User Guide

98

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#configuring-debezium-connectors-to-use-avro-serialization

8 op Mandatory string that describes the type of operation that caused the
connector to generate the event. In this example, c indicates that the
operation created a document. Valid values are:

c = create

u = update

d = delete

r = read (applies to only snapshots)

9 ts_ms Optional field that displays the time at which the connector processed the
event. The time is based on the system clock in the JVM running the Kafka
Connect task.

In the source object, ts_ms indicates the time that the change was made
in the database. By comparing the value for payload.source.ts_ms with
the value for payload.ts_ms, you can determine the lag between the
source database update and Debezium.

Item Field name Description

update events

The value of a change event for an update in the sample customers collection has the same schema as
a create event for that collection. Likewise, the event value’s payload has the same structure. However,
the event value payload contains different values in an update event. An update event does not have an
after value. Instead, it has these two fields:

patch is a string field that contains the JSON representation of the idempotent update
operation

filter is a string field that contains the JSON representation of the selection criteria for the
update. The filter string can include multiple shard key fields for sharded collections.

Here is an example of a change event value in an event that the connector generates for an update in
the customers collection:

{
 "schema": { ... },
 "payload": {
 "op": "u", 1
 "ts_ms": 1465491461815, 2
 "patch": "{\"$set\":{\"first_name\":\"Anne Marie\"}}", 3
 "filter": "{\"_id\" : {\"$numberLong\" : \"1004\"}}", 4
 "source": { 5
 "version": "1.7.2.Final",
 "connector": "mongodb",
 "name": "fulfillment",
 "ts_ms": 1558965508000,
 "snapshot": true,
 "db": "inventory",
 "rs": "rs0",

CHAPTER 4. DEBEZIUM CONNECTOR FOR MONGODB

99

Table 4.5. Descriptions of update event value fields

Item Field name Description

1 op Mandatory string that describes the type of operation that caused the
connector to generate the event. In this example, u indicates that the
operation updated a document.

2 ts_ms Optional field that displays the time at which the connector processed the
event. The time is based on the system clock in the JVM running the Kafka
Connect task.

In the source object, ts_ms indicates the time that the change was made
in the database. By comparing the value for payload.source.ts_ms with
the value for payload.ts_ms, you can determine the lag between the
source database update and Debezium.

3 patch Contains the JSON string representation of the actual MongoDB
idempotent change to the document. In this example, the update changed
the first_name field to a new value.

An update event value does not contain an after field.

4 filter Contains the JSON string representation of the MongoDB selection criteria
that was used to identify the document to be updated.

 "collection": "customers",
 "ord": 6,
 "h": 1546547425148721999
 }
 }
 }

Red Hat Integration 2022.Q2 Debezium User Guide

100

5 source Mandatory field that describes the source metadata for the event. This field
contains the same information as a create event for the same collection, but
the values are different since this event is from a different position in the
oplog. The source metadata includes:

Debezium version.

Name of the connector that generated the event.

Logical name of the MongoDB replica set, which forms a
namespace for generated events and is used in Kafka topic names
to which the connector writes.

Names of the collection and database that contain the updated
document.

If the event was part of a snapshot.

Timestamp for when the change was made in the database and
ordinal of the event within the timestamp.

Unique identifier of the MongoDB operation, which depends on
the version of MongoDB. It is either the h field in the oplog event,
or a field named stxnid, which represents the lsid and
txnNumber fields from the oplog event.

Item Field name Description

WARNING

In a Debezium change event, MongoDB provides the content of the patch field.
The format of this field depends on the version of the MongoDB database.
Consequently, be prepared for potential changes to the format when you upgrade
to a newer MongoDB database version. Examples in this document were obtained
from MongoDB 3.4, In your application, event formats might be different.

NOTE

In MongoDB’s oplog, update events do not contain the before or after states of the
changed document. Consequently, it is not possible for a Debezium connector to provide
this information. However, a Debezium connector provides a document’s starting state in
create and read events. Downstream consumers of the stream can reconstruct document
state by keeping the latest state for each document and comparing the state in a new
event with the saved state. Debezium connector’s are not able to keep this state.

delete events

The value in a delete change event has the same schema portion as create and update events for the
same collection. The payload portion in a delete event contains values that are different from create
and update events for the same collection. In particular, a delete event contains neither an after value
nor a patch value. Here is an example of a delete event for a document in the customers collection:

CHAPTER 4. DEBEZIUM CONNECTOR FOR MONGODB

101

Table 4.6. Descriptions of delete event value fields

Item Field name Description

1 op Mandatory string that describes the type of operation. The op field value is
d, signifying that this document was deleted.

2 ts_ms Optional field that displays the time at which the connector processed the
event. The time is based on the system clock in the JVM running the Kafka
Connect task.

In the source object, ts_ms indicates the time that the change was made
in the database. By comparing the value for payload.source.ts_ms with
the value for payload.ts_ms, you can determine the lag between the
source database update and Debezium.

3 filter Contains the JSON string representation of the MongoDB selection criteria
that was used to identify the document to be deleted.

{
 "schema": { ... },
 "payload": {
 "op": "d", 1
 "ts_ms": 1465495462115, 2
 "filter": "{\"_id\" : {\"$numberLong\" : \"1004\"}}", 3
 "source": { 4
 "version": "1.7.2.Final",
 "connector": "mongodb",
 "name": "fulfillment",
 "ts_ms": 1558965508000,
 "snapshot": true,
 "db": "inventory",
 "rs": "rs0",
 "collection": "customers",
 "ord": 6,
 "h": 1546547425148721999
 }
 }
 }

Red Hat Integration 2022.Q2 Debezium User Guide

102

4 source Mandatory field that describes the source metadata for the event. This field
contains the same information as a create or update event for the same
collection, but the values are different since this event is from a different
position in the oplog. The source metadata includes:

Debezium version.

Name of the connector that generated the event.

Logical name of the MongoDB replica set, which forms a
namespace for generated events and is used in Kafka topic names
to which the connector writes.

Names of the collection and database that contained the deleted
document.

If the event was part of a snapshot.

Timestamp for when the change was made in the database and
ordinal of the event within the timestamp.

Unique identifier of the MongoDB operation, which depends on
the version of MongoDB. It is either the h field in the oplog event,
or a field named stxnid, which represents the lsid and
txnNumber fields from the oplog event.

Item Field name Description

MongoDB connector events are designed to work with Kafka log compaction. Log compaction enables
removal of some older messages as long as at least the most recent message for every key is kept. This
lets Kafka reclaim storage space while ensuring that the topic contains a complete data set and can be
used for reloading key-based state.

Tombstone events

All MongoDB connector events for a uniquely identified document have exactly the same key. When a
document is deleted, the delete event value still works with log compaction because Kafka can remove
all earlier messages that have that same key. However, for Kafka to remove all messages that have that
key, the message value must be null. To make this possible, after Debezium’s MongoDB connector
emits a delete event, the connector emits a special tombstone event that has the same key but a null
value. A tombstone event informs Kafka that all messages with that same key can be removed.

4.4. SETTING UP MONGODB TO WORK WITH A DEBEZIUM
CONNECTOR

The MongoDB connector uses MongoDB’s oplog to capture the changes, so the connector works only
with MongoDB replica sets or with sharded clusters where each shard is a separate replica set. See the
MongoDB documentation for setting up a replica set or sharded cluster. Also, be sure to understand
how to enable access control and authentication with replica sets.

You must also have a MongoDB user that has the appropriate roles to read the admin database where
the oplog can be read. Additionally, the user must also be able to read the config database in the
configuration server of a sharded cluster and must have listDatabases privilege action.

4.5. DEPLOYMENT OF DEBEZIUM MONGODB CONNECTORS

CHAPTER 4. DEBEZIUM CONNECTOR FOR MONGODB

103

https://kafka.apache.org/documentation/#compaction
https://docs.mongodb.com/manual/replication/
https://docs.mongodb.com/manual/sharding/
https://docs.mongodb.com/manual/tutorial/deploy-replica-set-with-keyfile-access-control/#deploy-repl-set-with-auth

You can use either of the following methods to deploy a Debezium MongoDB connector:

Use AMQ Streams to automatically create an image that includes the connector plug-in .
This is the preferred method.

Build a custom Kafka Connect container image from a Dockerfile .

Additional resources

Section 4.5.5, “Description of Debezium Db2 connector configuration properties”

4.5.1. MongoDB connector deployment using AMQ Streams

Beginning with Debezium 1.7, the preferred method for deploying a Debezium connector is to use AMQ
Streams to build a Kafka Connect container image that includes the connector plug-in.

During the deployment process, you create and use the following custom resources (CRs):

A KafkaConnect CR that defines your Kafka Connect instance and includes information about
the connector artifacts needs to include in the image.

A KafkaConnector CR that provides details that include information the connector uses to
access the source database. After AMQ Streams starts the Kafka Connect pod, you start the
connector by applying the KafkaConnector CR.

In the build specification for the Kafka Connect image, you can specify the connectors that are available
to deploy. For each connector plug-in, you can also specify other components that you want to make
available for deployment. For example, you can add Service Registry artifacts, or the Debezium scripting
component. When AMQ Streams builds the Kafka Connect image, it downloads the specified artifacts,
and incorporates them into the image.

The spec.build.output parameter in the KafkaConnect CR specifies where to store the resulting Kafka
Connect container image. Container images can be stored in a Docker registry, or in an OpenShift
ImageStream. To store images in an ImageStream, you must create the ImageStream before you deploy
Kafka Connect. ImageStreams are not created automatically.

NOTE

If you use a KafkaConnect resource to create a cluster, afterwards you cannot use the
Kafka Connect REST API to create or update connectors. You can still use the REST API
to retrieve information.

Additional resources

Configuring Kafka Connect in Using AMQ Streams on OpenShift.

Creating a new container image automatically using AMQ Streams in Deploying and Upgrading
AMQ Streams on OpenShift.

4.5.2. Using AMQ Streams to deploy a Debezium MongoDB connector

With earlier versions of AMQ Streams, to deploy Debezium connectors on OpenShift, it was necessary
to first build a Kafka Connect image for the connector. The current preferred method for deploying
connectors on OpenShift is to use a build configuration in AMQ Streams to automatically build a Kafka
Connect container image that includes the Debezium connector plug-ins that you want to use.

Red Hat Integration 2022.Q2 Debezium User Guide

104

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/using_amq_streams_on_openshift/index#proc-kafka-connect-config-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#creating-new-image-using-kafka-connect-build-str

During the build process, the AMQ Streams Operator transforms input parameters in a KafkaConnect
custom resource, including Debezium connector definitions, into a Kafka Connect container image. The
build downloads the necessary artifacts from the Red Hat Maven repository or another configured
HTTP server. The newly created container is pushed to the container registry that is specified in
.spec.build.output, and is used to deploy a Kafka Connect pod. After AMQ Streams builds the Kafka
Connect image, you create KafkaConnector custom resources to start the connectors that are included
in the build.

Prerequisites

You have access to an OpenShift cluster on which the cluster Operator is installed.

The AMQ Streams Operator is running.

An Apache Kafka cluster is deployed as documented in Deploying and Upgrading AMQ Streams
on OpenShift.

You have a Red Hat Integration license.

Kafka Connect is deployed on AMQ Streams .

The OpenShift oc CLI client is installed or you have access to the OpenShift Container Platform
web console.

Depending on how you intend to store the Kafka Connect build image, you need registry
permissions or you must create an ImageStream resource:

To store the build image in an image registry, such as Red Hat Quay.io or Docker Hub

An account and permissions to create and manage images in the registry.

To store the build image as a native OpenShift ImageStream

An ImageStream resource is deployed to the cluster. You must explicitly create an
ImageStream for the cluster. ImageStreams are not available by default.

Procedure

1. Log in to the OpenShift cluster.

2. Create a Debezium KafkaConnect custom resource (CR) for the connector, or modify an
existing one. For example, create a KafkaConnect CR that specifies the
metadata.annotations and spec.build properties, as shown in the following example. Save the
file with a name such as dbz-connect.yaml.

Example 4.1. A dbz-connect.yaml file that defines a KafkaConnect custom resource that
includes a Debezium connector

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
 name: debezium-kafka-connect-cluster
 annotations:
 strimzi.io/use-connector-resources: "true" 1
spec:
 version: 3.00

CHAPTER 4. DEBEZIUM CONNECTOR FOR MONGODB

105

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#kafka-cluster-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#kafka-connect-str
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/cli_tools/index#installing-openshift-cli
https://docs.openshift.com/container-platform/latest/openshift_images/images-understand.html#images-imagestream-use_images-understand

Table 4.7. Descriptions of Kafka Connect configuration settings

Item Description

1 Sets the strimzi.io/use-connector-resources annotation to "true" to enable
the Cluster Operator to use KafkaConnector resources to configure connectors in
this Kafka Connect cluster.

2 The spec.build configuration specifies where to store the build image and lists the
plug-ins to include in the image, along with the location of the plug-in artifacts.

3 The build.output specifies the registry in which the newly built image is stored.

4 Specifies the name and image name for the image output. Valid values for
output.type are docker to push into a container registry like Docker Hub or Quay,
or imagestream to push the image to an internal OpenShift ImageStream. To use
an ImageStream, an ImageStream resource must be deployed to the cluster. For
more information about specifying the build.output in the KafkaConnect
configuration, see the AMQ Streams Build schema reference documentation.

5 The plugins configuration lists all of the connectors that you want to include in the
Kafka Connect image. For each entry in the list, specify a plug-in name, and
information for about the artifacts that are required to build the connector.
Optionally, for each connector plug-in, you can include other components that you
want to be available for use with the connector. For example, you can add Service
Registry artifacts, or the Debezium scripting component.

6 The value of artifacts.type specifies the file type of the artifact specified in the
artifacts.url. Valid types are zip, tgz, or jar. Debezium connector archives are
provided in .zip file format. JDBC driver files are in .jar format. The type value must
match the type of the file that is referenced in the url field.

 build: 2
 output: 3
 type: imagestream 4
 image: debezium-streams-connect:latest
 plugins: 5
 - name: debezium-connector-mongodb
 artifacts:
 - type: zip 6
 url: https://maven.repository.redhat.com/ga/io/debezium/debezium-connector-
mongodb/1.7.2.Final-redhat-<build_number>/debezium-connector-mongodb-1.7.2.Final-
redhat-<build_number>-plugin.zip 7
 - type: zip
 url: https://maven.repository.redhat.com/ga/io/apicurio/apicurio-registry-distro-
connect-converter/2.0-redhat-<build-number>/apicurio-registry-distro-connect-converter-
2.0-redhat-<build-number>.zip
 - type: zip
 url: https://maven.repository.redhat.com/ga/io/debezium/debezium-
scripting/1.7.2.Final/debezium-scripting-1.7.2.Final.zip

 bootstrapServers: debezium-kafka-cluster-kafka-bootstrap:9093

Red Hat Integration 2022.Q2 Debezium User Guide

106

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/using_amq_streams_on_openshift/index#type-Build-reference

7 The value of artifacts.url specifies the address of an HTTP server, such as a Maven
repository, that stores the file for the connector artifact. The OpenShift cluster must
have access to the specified server.

Item Description

3. Apply the KafkaConnect build specification to the OpenShift cluster by entering the following
command:

Based on the configuration specified in the custom resource, the Streams Operator prepares a
Kafka Connect image to deploy.
After the build completes, the Operator pushes the image to the specified registry or
ImageStream, and starts the Kafka Connect cluster. The connector artifacts that you listed in
the configuration are available in the cluster.

4. Create a KafkaConnector resource to define an instance of each connector that you want to
deploy.
For example, create the following KafkaConnector CR, and save it as mongodb-inventory-
connector.yaml

Example 4.2. A mongodb-inventory-connector.yaml file that defines the
KafkaConnector custom resource for a Debezium connector

Table 4.8. Descriptions of connector configuration settings

oc create -f dbz-connect.yaml

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnector
metadata:
 labels:
 strimzi.io/cluster: debezium-kafka-connect-cluster
 name: inventory-connector-mongodb 1
spec:
 class: io.debezium.connector.mongodb.MongoDbConnector 2
 tasksMax: 1 3
 config: 4
 database.history.kafka.bootstrap.servers: 'debezium-kafka-cluster-kafka-
bootstrap.debezium.svc.cluster.local:9092'
 database.history.kafka.topic: schema-changes.inventory
 database.hostname: mongodb.debezium-mongodb.svc.cluster.local 5
 database.port: 3306 6
 database.user: debezium 7
 database.password: dbz 8
 database.dbname: mydatabase 9
 database.server.name: inventory_connector_mongodb 10
 database.include.list: public.inventory 11

CHAPTER 4. DEBEZIUM CONNECTOR FOR MONGODB

107

Item Description

1 The name of the connector to register with the Kafka Connect cluster.

2 The name of the connector class.

3 The number of tasks that can operate concurrently.

4 The connector’s configuration.

5 The address of the host database instance.

6 The port number of the database instance.

7 The name of the user account through which Debezium connects to the database.

8 The password for the database user account.

9 The name of the database to capture changes from.

10 The logical name of the database instance or cluster.
The specified name must be formed only from alphanumeric characters or underscores.
Because the logical name is used as the prefix for any Kafka topics that receive change
events from this connector, the name must be unique among the connectors in the
cluster.
The namespace is also used in the names of related Kafka Connect schemas, and the
namespaces of a corresponding Avro schema if you integrate the connector with the
Avro connector.

11 The list of tables from which the connector captures change events.

5. Create the connector resource by running the following command:

For example,

The connector is registered to the Kafka Connect cluster and starts to run against the database
that is specified by spec.config.database.dbname in the KafkaConnector CR. After the
connector pod is ready, Debezium is running.

You are now ready to verify the Debezium MongoDB deployment.

4.5.3. Deploying a Debezium MongoDB connector by building a custom Kafka
Connect container image from a Dockerfile

To deploy a Debezium MongoDB connector, you must build a custom Kafka Connect container image

oc create -n <namespace> -f <kafkaConnector>.yaml

oc create -n debezium -f {context}-inventory-connector.yaml

Red Hat Integration 2022.Q2 Debezium User Guide

108

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#configuring-debezium-connectors-to-use-avro-serialization

1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2

To deploy a Debezium MongoDB connector, you must build a custom Kafka Connect container image
that contains the Debezium connector archive and then push this container image to a container
registry. You then create two custom resources (CRs):

A KafkaConnect CR that defines your Kafka Connect instance. The image property in the CR
specifies the name of the container image that you create to run your Debezium connector. You
apply this CR to the OpenShift instance where Red Hat AMQ Streams is deployed. AMQ
Streams offers operators and images that bring Apache Kafka to OpenShift.

A KafkaConnector CR that defines your Debezium MongoDB connector. Apply this CR to the
same OpenShift instance where you apply the KafkaConnect CR.

Prerequisites

MongoDB is running and you completed the steps to set up MongoDB to work with a Debezium
connector.

AMQ Streams is deployed on OpenShift and is running Apache Kafka and Kafka Connect. For
more information, see Deploying and Upgrading AMQ Streams on OpenShift .

Podman or Docker is installed.

You have an account and permissions to create and manage containers in the container registry
(such as quay.io or docker.io) to which you plan to add the container that will run your
Debezium connector.

Procedure

1. Create the Debezium MongoDB container for Kafka Connect:

a. Download the Debezium MongoDB connector archive.

b. Extract the Debezium MongoDB connector archive to create a directory structure for the
connector plug-in, for example:

./my-plugins/
├── debezium-connector-mongodb
│ ├── ...

c. Create a Dockerfile that uses registry.redhat.io/amq7/amq-streams-kafka-30-rhel8:2.0.0
as the base image. For example, from a terminal window, enter the following, replacing my-
plugins with the name of your plug-ins directory:

You can specify any file name that you want.

Replace my-plugins with the name of your plug-ins directory.

The command creates a Dockerfile with the name debezium-container-for-mongodb.yaml

cat <<EOF >debezium-container-for-mongodb.yaml 1
FROM registry.redhat.io/amq7/amq-streams-kafka-30-rhel8:2.0.0
USER root:root
COPY ./<my-plugins>/ /opt/kafka/plugins/ 2
USER 1001
EOF

CHAPTER 4. DEBEZIUM CONNECTOR FOR MONGODB

109

https://access.redhat.com/products/red-hat-amq#streams
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#setting-up-mongodb
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/deploying_and_upgrading_amq_streams_on_openshift/index
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=red.hat.integration&downloadType=distributions

1

2

The command creates a Dockerfile with the name debezium-container-for-mongodb.yaml
in the current directory.

d. Build the container image from the debezium-container-for-mongodb.yaml Docker file
that you created in the previous step. From the directory that contains the file, open a
terminal window and enter one of the following commands:

The preceding commands build a container image with the name debezium-container-for-
mongodb.

e. Push your custom image to a container registry, such as quay.io or an internal container
registry. The container registry must be available to the OpenShift instance where you want
to deploy the image. Enter one of the following commands:

f. Create a new Debezium MongoDB KafkaConnect custom resource (CR). For example,
create a KafkaConnect CR with the name dbz-connect.yaml that specifies annotations
and image properties as shown in the following example:

metadata.annotations indicates to the Cluster Operator that KafkaConnector
resources are used to configure connectors in this Kafka Connect cluster.

spec.image specifies the name of the image that you created to run your Debezium
connector. This property overrides the
STRIMZI_DEFAULT_KAFKA_CONNECT_IMAGE variable in the Cluster Operator.

g. Apply the KafkaConnect CR to the OpenShift Kafka Connect environment by entering the
following command:

The command adds a Kafka Connect instance that specifies the name of the image that you
created to run your Debezium connector.

2. Create a KafkaConnector custom resource that configures your Debezium MongoDB
connector instance.

podman build -t debezium-container-for-mongodb:latest .

docker build -t debezium-container-for-mongodb:latest .

podman push <myregistry.io>/debezium-container-for-mongodb:latest

docker push <myregistry.io>/debezium-container-for-mongodb:latest

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
 name: my-connect-cluster
 annotations:
 strimzi.io/use-connector-resources: "true" 1
spec:
 #...
 image: debezium-container-for-mongodb 2

oc create -f dbz-connect.yaml

Red Hat Integration 2022.Q2 Debezium User Guide

110

1

2

3

4

5

You configure a Debezium MongoDB connector in a .yaml file that specifies the configuration
properties for the connector. The connector configuration might instruct Debezium to produce
change events for a subset of MongoDB replica sets or sharded clusters. Optionally, you can set
properties that filter out collections that are not needed.

The following example configures a Debezium connector that connects to a MongoDB replica
set rs0 at port 27017 on 192.168.99.100, and captures changes that occur in the inventory
collection. fullfillment is the logical name of the replica set.

MongoDB inventory-connector.yaml

The name that is used to register the connector with Kafka Connect.

The name of the MongoDB connector class.

The host addresses to use to connect to the MongoDB replica set.

The logical name of the MongoDB replica set, which forms a namespace for generated
events and is used in all the names of the Kafka topics to which the connector writes, the
Kafka Connect schema names, and the namespaces of the corresponding Avro schema
when the Avro converter is used.

An optional list of regular expressions that match the collection namespaces (for example,
<dbName>.<collectionName>) of all collections to be monitored.

3. Create your connector instance with Kafka Connect. For example, if you saved your
KafkaConnector resource in the inventory-connector.yaml file, you would run the following
command:

The preceding command registers inventory-connector and the connector starts to run against
the inventory collection as defined in the KafkaConnector CR.

For the complete list of the configuration properties that you can set for the Debezium MongoDB
connector, see MongoDB connector configuration properties .

Results

After the connector starts, it completes the following actions:

Performs a consistent snapshot of the collections in your MongoDB replica sets.

apiVersion: kafka.strimzi.io/v1beta2
 kind: KafkaConnector
 metadata:
 name: inventory-connector 1
 labels: strimzi.io/cluster: my-connect-cluster
 spec:
 class: io.debezium.connector.mongodb.MongoDbConnector 2
 config:
 mongodb.hosts: rs0/192.168.99.100:27017 3
 mongodb.name: fulfillment 4
 collection.include.list: inventory[.]* 5

oc apply -f inventory-connector.yaml

CHAPTER 4. DEBEZIUM CONNECTOR FOR MONGODB

111

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#mongodb-connector-properties
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#how-debezium-mongodb-connectors-perform-snapshots

Reads the oplogs for the replica sets.

Produces change events for every inserted, updated, and deleted document.

Streams change event records to Kafka topics.

4.5.4. Verifying that the Debezium MongoDB connector is running

If the connector starts correctly without errors, it creates a topic for each table that the connector is
configured to capture. Downstream applications can subscribe to these topics to retrieve information
events that occur in the source database.

To verify that the connector is running, you perform the following operations from the OpenShift
Container Platform web console, or through the OpenShift CLI tool (oc):

Verify the connector status.

Verify that the connector generates topics.

Verify that topics are populated with events for read operations ("op":"r") that the connector
generates during the initial snapshot of each table.

Prerequisites

A Debezium connector is deployed to AMQ Streams on OpenShift.

The OpenShift oc CLI client is installed.

You have access to the OpenShift Container Platform web console.

Procedure

1. Check the status of the KafkaConnector resource by using one of the following methods:

From the OpenShift Container Platform web console:

a. Navigate to Home → Search.

b. On the Search page, click Resources to open the Select Resource box, and then type
KafkaConnector.

c. From the KafkaConnectors list, click the name of the connector that you want to
check, for example inventory-connector-mongodb.

d. In the Conditions section, verify that the values in the Type and Status columns are set
to Ready and True.

From a terminal window:

a. Enter the following command:

For example,

oc describe KafkaConnector <connector-name> -n <project>

oc describe KafkaConnector inventory-connector-mongodb -n debezium

Red Hat Integration 2022.Q2 Debezium User Guide

112

The command returns status information that is similar to the following output:

Example 4.3. KafkaConnector resource status

2. Verify that the connector created Kafka topics:

From the OpenShift Container Platform web console.

a. Navigate to Home → Search.

b. On the Search page, click Resources to open the Select Resource box, and then type
KafkaTopic.

c. From the KafkaTopics list, click the name of the topic that you want to check, for
example, inventory-connector-mongodb.inventory.orders---
ac5e98ac6a5d91e04d8ec0dc9078a1ece439081d.

d. In the Conditions section, verify that the values in the Type and Status columns are set
to Ready and True.

Name: inventory-connector-mongodb
Namespace: debezium
Labels: strimzi.io/cluster=debezium-kafka-connect-cluster
Annotations: <none>
API Version: kafka.strimzi.io/v1beta2
Kind: KafkaConnector

...

Status:
 Conditions:
 Last Transition Time: 2021-12-08T17:41:34.897153Z
 Status: True
 Type: Ready
 Connector Status:
 Connector:
 State: RUNNING
 worker_id: 10.131.1.124:8083
 Name: inventory-connector-mongodb
 Tasks:
 Id: 0
 State: RUNNING
 worker_id: 10.131.1.124:8083
 Type: source
 Observed Generation: 1
 Tasks Max: 1
 Topics:
 inventory_connector_mongodb
 inventory_connector_mongodb.inventory.addresses
 inventory_connector_mongodb.inventory.customers
 inventory_connector_mongodb.inventory.geom
 inventory_connector_mongodb.inventory.orders
 inventory_connector_mongodb.inventory.products
 inventory_connector_mongodb.inventory.products_on_hand
Events: <none>

CHAPTER 4. DEBEZIUM CONNECTOR FOR MONGODB

113

From a terminal window:

a. Enter the following command:

The command returns status information that is similar to the following output:

Example 4.4. KafkaTopic resource status

NAME CLUSTER
PARTITIONS REPLICATION FACTOR READY
connect-cluster-configs debezium-
kafka-cluster 1 1 True
connect-cluster-offsets debezium-
kafka-cluster 25 1 True
connect-cluster-status debezium-
kafka-cluster 5 1 True
consumer-offsets---84e7a678d08f4bd226872e5cdd4eb527fadc1c6a
debezium-kafka-cluster 50 1 True
inventory-connector-mongodb---a96f69b23d6118ff415f772679da623fbbb99421
debezium-kafka-cluster 1 1 True
inventory-connector-mongodb.inventory.addresses---
1b6beaf7b2eb57d177d92be90ca2b210c9a56480 debezium-kafka-cluster
1 1 True
inventory-connector-mongodb.inventory.customers---
9931e04ec92ecc0924f4406af3fdace7545c483b debezium-kafka-cluster 1
1 True
inventory-connector-mongodb.inventory.geom---
9f7e136091f071bf49ca59bf99e86c713ee58dd5 debezium-kafka-cluster
1 1 True
inventory-connector-mongodb.inventory.orders---
ac5e98ac6a5d91e04d8ec0dc9078a1ece439081d debezium-kafka-cluster
1 1 True
inventory-connector-mongodb.inventory.products---
df0746db116844cee2297fab611c21b56f82dcef debezium-kafka-cluster 1
1 True
inventory-connector-mongodb.inventory.products-on-hand---
8649e0f17ffcc9212e266e31a7aeea4585e5c6b5 debezium-kafka-cluster 1
1 True
schema-changes.inventory
debezium-kafka-cluster 1 1 True
strimzi-store-topic---effb8e3e057afce1ecf67c3f5d8e4e3ff177fc55
debezium-kafka-cluster 1 1 True
strimzi-topic-operator-kstreams-topic-store-changelog---
b75e702040b99be8a9263134de3507fc0cc4017b debezium-kafka-cluster 1
1 True

3. Check topic content.

From a terminal window, enter the following command:

oc get kafkatopics

oc exec -n <project> -it <kafka-cluster> -- /opt/kafka/bin/kafka-console-consumer.sh \
> --bootstrap-server localhost:9092 \

Red Hat Integration 2022.Q2 Debezium User Guide

114

For example,

The format for specifying the topic name is the same as the oc describe command returns in
Step 1, for example, inventory_connector_mongodb.inventory.addresses.

For each event in the topic, the command returns information that is similar to the following
output:

Example 4.5. Content of a Debezium change event

{"schema":{"type":"struct","fields":
[{"type":"int32","optional":false,"field":"product_id"}],"optional":false,"name":"inventory_conne
ctor_mongodb.inventory.products_on_hand.Key"},"payload":{"product_id":101}}
{"schema":{"type":"struct","fields":[{"type":"struct","fields":
[{"type":"int32","optional":false,"field":"product_id"},
{"type":"int32","optional":false,"field":"quantity"}],"optional":true,"name":"inventory_connector
_mongodb.inventory.products_on_hand.Value","field":"before"},{"type":"struct","fields":
[{"type":"int32","optional":false,"field":"product_id"},
{"type":"int32","optional":false,"field":"quantity"}],"optional":true,"name":"inventory_connector
_mongodb.inventory.products_on_hand.Value","field":"after"},{"type":"struct","fields":
[{"type":"string","optional":false,"field":"version"},
{"type":"string","optional":false,"field":"connector"},
{"type":"string","optional":false,"field":"name"},
{"type":"int64","optional":false,"field":"ts_ms"},
{"type":"string","optional":true,"name":"io.debezium.data.Enum","version":1,"parameters":
{"allowed":"true,last,false"},"default":"false","field":"snapshot"},
{"type":"string","optional":false,"field":"db"},
{"type":"string","optional":true,"field":"sequence"},
{"type":"string","optional":true,"field":"table"},
{"type":"int64","optional":false,"field":"server_id"},
{"type":"string","optional":true,"field":"gtid"},{"type":"string","optional":false,"field":"file"},
{"type":"int64","optional":false,"field":"pos"},{"type":"int32","optional":false,"field":"row"},
{"type":"int64","optional":true,"field":"thread"},
{"type":"string","optional":true,"field":"query"}],"optional":false,"name":"io.debezium.connecto
r.mongodb.Source","field":"source"},{"type":"string","optional":false,"field":"op"},
{"type":"int64","optional":true,"field":"ts_ms"},{"type":"struct","fields":
[{"type":"string","optional":false,"field":"id"},
{"type":"int64","optional":false,"field":"total_order"},
{"type":"int64","optional":false,"field":"data_collection_order"}],"optional":true,"field":"transacti
on"}],"optional":false,"name":"inventory_connector_mongodb.inventory.products_on_hand.
Envelope"},"payload":{"before":null,"after":{"product_id":101,"quantity":3},"source":
{"version":"1.7.2.Final-redhat-
00001","connector":"mongodb","name":"inventory_connector_mongodb","ts_ms":16389852
47805,"snapshot":"true","db":"inventory","sequence":null,"table":"products_on_hand","serve

> --from-beginning \
> --property print.key=true \
> --topic=<topic-name>

 oc exec -n debezium -it debezium-kafka-cluster-kafka-0 -- /opt/kafka/bin/kafka-console-
consumer.sh \
> --bootstrap-server localhost:9092 \
> --from-beginning \
> --property print.key=true \
> --topic=inventory_connector_mongodb.inventory.products_on_hand

CHAPTER 4. DEBEZIUM CONNECTOR FOR MONGODB

115

r_id":0,"gtid":null,"file":"mongodb-
bin.000003","pos":156,"row":0,"thread":null,"query":null},"op":"r","ts_ms":1638985247805,"t
ransaction":null}}

In the preceding example, the payload value shows that the connector snapshot generated a
read ("op" ="r") event from the table inventory.products_on_hand. The "before" state of the
product_id record is null, indicating that no previous value exists for the record. The "after"
state shows a quantity of 3 for the item with product_id 101.

4.5.5. Description of Debezium Db2 connector configuration properties

The Debezium MongoDB connector has numerous configuration properties that you can use to achieve
the right connector behavior for your application. Many properties have default values. Information
about the properties is organized as follows:

Required Debezium MongoDB connector configuration properties

Advanced Debezium MongoDB connector configuration properties

The following configuration properties are required unless a default value is available.

Table 4.9. Required Debezium MongoDB connector configuration properties

Property Default Description

name Unique name for the connector. Attempting to
register again with the same name will fail. (This
property is required by all Kafka Connect
connectors.)

connector.class The name of the Java class for the connector.
Always use a value of
io.debezium.connector.mongodb.Mong
oDbConnector for the MongoDB connector.

mongodb.hosts The comma-separated list of hostname and
port pairs (in the form 'host' or 'host:port') of
the MongoDB servers in the replica set. The list
can contain a single hostname and port pair. If
mongodb.members.auto.discover is set
to false, then the host and port pair should be
prefixed with the replica set name (e.g.,
rs0/localhost:27017).

Red Hat Integration 2022.Q2 Debezium User Guide

116

mongodb.name A unique name that identifies the connector
and/or MongoDB replica set or sharded cluster
that this connector monitors. Each server
should be monitored by at most one Debezium
connector, since this server name prefixes all
persisted Kafka topics emanating from the
MongoDB replica set or cluster. Only
alphanumeric characters, hyphens, dots and
underscores must be used.

mongodb.user Name of the database user to be used when
connecting to MongoDB. This is required only
when MongoDB is configured to use
authentication.

mongodb.password Password to be used when connecting to
MongoDB. This is required only when
MongoDB is configured to use authentication.

mongodb.authsource admin Database (authentication source) containing
MongoDB credentials. This is required only
when MongoDB is configured to use
authentication with another authentication
database than admin.

mongodb.ssl.enabled false Connector will use SSL to connect to
MongoDB instances.

mongodb.ssl.invalid.host
name.allowed

false When SSL is enabled this setting controls
whether strict hostname checking is disabled
during connection phase. If true the
connection will not prevent man-in-the-middle
attacks.

database.include.list empty string An optional comma-separated list of regular
expressions that match database names to be
monitored; any database name not included in
database.include.list is excluded from
monitoring. By default all databases are
monitored. Must not be used with
database.exclude.list.

database.exclude.list empty string An optional comma-separated list of regular
expressions that match database names to be
excluded from monitoring; any database name
not included in database.exclude.list is
monitored. Must not be used with
database.include.list.

Property Default Description

CHAPTER 4. DEBEZIUM CONNECTOR FOR MONGODB

117

collection.include.list empty string An optional comma-separated list of regular
expressions that match fully-qualified
namespaces for MongoDB collections to be
monitored; any collection not included in
collection.include.list is excluded from
monitoring. Each identifier is of the form
databaseName.collectionName. By default the
connector will monitor all collections except
those in the local and admin databases. Must
not be used with collection.exclude.list.

collection.exclude.list empty string An optional comma-separated list of regular
expressions that match fully-qualified
namespaces for MongoDB collections to be
excluded from monitoring; any collection not
included in collection.exclude.list is
monitored. Each identifier is of the form
databaseName.collectionName. Must not be
used with collection.include.list.

snapshot.mode initial Specifies the criteria for running a snapshot
upon startup of the connector. The default is
initial, and specifies the connector reads a
snapshot when either no offset is found or if
the oplog no longer contains the previous
offset. The never option specifies that the
connector should never use snapshots, instead
the connector should proceed to tail the log.

snapshot.include.collecti
on.list

All collections specified
in
collection.include.lis
t

An optional, comma-separated list of regular
expressions that match names of schemas
specified in collection.include.list for which
you want to take the snapshot.

field.exclude.list empty string An optional comma-separated list of the fully-
qualified names of fields that should be
excluded from change event message values.
Fully-qualified names for fields are of the form
databaseName.collectionName.fieldName.neste
dFieldName, where databaseName and
collectionName may contain the wildcard (*)
which matches any characters.

Property Default Description

Red Hat Integration 2022.Q2 Debezium User Guide

118

field.renames empty string An optional comma-separated list of the fully-
qualified replacements of fields that should be
used to rename fields in change event message
values. Fully-qualified replacements for fields
are of the form
databaseName.collectionName.fieldName.neste
dFieldName:newNestedFieldName, where
databaseName and collectionName may
contain the wildcard (*) which matches any
characters, the colon character (:) is used to
determine rename mapping of field. The next
field replacement is applied to the result of the
previous field replacement in the list, so keep
this in mind when renaming multiple fields that
are in the same path.

tasks.max 1 The maximum number of tasks that should be
created for this connector. The MongoDB
connector will attempt to use a separate task
for each replica set, so the default is
acceptable when using the connector with a
single MongoDB replica set. When using the
connector with a MongoDB sharded cluster, we
recommend specifying a value that is equal to
or more than the number of shards in the
cluster, so that the work for each replica set can
be distributed by Kafka Connect.

snapshot.max.threads 1 Positive integer value that specifies the
maximum number of threads used to perform
an intial sync of the collections in a replica set.
Defaults to 1.

tombstones.on.delete true Controls whether a delete event is followed by
a tombstone event.

true - a delete operation is represented by a
delete event and a subsequent tombstone
event.

false - only a delete event is emitted.

After a source record is deleted, emitting a
tombstone event (the default behavior) allows
Kafka to completely delete all events that
pertain to the key of the deleted row in case
log compaction is enabled for the topic.

Property Default Description

CHAPTER 4. DEBEZIUM CONNECTOR FOR MONGODB

119

https://kafka.apache.org/documentation/#compaction

snapshot.delay.ms An interval in milliseconds that the connector
should wait before taking a snapshot after
starting up;
Can be used to avoid snapshot interruptions
when starting multiple connectors in a cluster,
which may cause re-balancing of connectors.

snapshot.fetch.size 0 Specifies the maximum number of documents
that should be read in one go from each
collection while taking a snapshot. The
connector will read the collection contents in
multiple batches of this size.
Defaults to 0, which indicates that the server
chooses an appropriate fetch size.

Property Default Description

The following advanced configuration properties have good defaults that will work in most situations
and therefore rarely need to be specified in the connector’s configuration.

Table 4.10. Required Debezium MongoDB connector advanced configuration properties

Property Default Description

max.queue.size 8192 Positive integer value that specifies the
maximum size of the blocking queue into which
change events read from the database log are
placed before they are written to Kafka. This
queue can provide backpressure to the oplog
reader when, for example, writes to Kafka are
slower or if Kafka is not available. Events that
appear in the queue are not included in the
offsets periodically recorded by this connector.
Defaults to 8192, and should always be larger
than the maximum batch size specified in the
max.batch.size property.

max.batch.size 2048 Positive integer value that specifies the
maximum size of each batch of events that
should be processed during each iteration of
this connector. Defaults to 2048.

max.queue.size.in.bytes 0 Long value for the maximum size in bytes of the
blocking queue. The feature is disabled by
default, it will be active if it’s set with a positive
long value.

poll.interval.ms 1000 Positive integer value that specifies the
number of milliseconds the connector should
wait during each iteration for new change
events to appear. Defaults to 1000
milliseconds, or 1 second.

Red Hat Integration 2022.Q2 Debezium User Guide

120

connect.backoff.initial.del
ay.ms

1000 Positive integer value that specifies the initial
delay when trying to reconnect to a primary
after the first failed connection attempt or
when no primary is available. Defaults to 1
second (1000 ms).

connect.backoff.max.dela
y.ms

1000 Positive integer value that specifies the
maximum delay when trying to reconnect to a
primary after repeated failed connection
attempts or when no primary is available.
Defaults to 120 seconds (120,000 ms).

connect.max.attempts 16 Positive integer value that specifies the
maximum number of failed connection
attempts to a replica set primary before an
exception occurs and task is aborted. Defaults
to 16, which with the defaults for
connect.backoff.initial.delay.ms and
connect.backoff.max.delay.ms results in
just over 20 minutes of attempts before failing.

mongodb.members.auto.
discover

true Boolean value that specifies whether the
addresses in 'mongodb.hosts' are seeds that
should be used to discover all members of the
cluster or replica set (true), or whether the
address(es) in mongodb.hosts should be
used as is (false). The default is true and
should be used in all cases except where
MongoDB is fronted by a proxy.

Property Default Description

CHAPTER 4. DEBEZIUM CONNECTOR FOR MONGODB

121

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#mongodb-replicaset

heartbeat.interval.ms 0 Controls how frequently heartbeat messages
are sent.
This property contains an interval in
milliseconds that defines how frequently the
connector sends messages into a heartbeat
topic. This can be used to monitor whether the
connector is still receiving change events from
the database. You also should leverage
heartbeat messages in cases where only
records in non-captured collections are
changed for a longer period of time. In such
situation the connector would proceed to read
the oplog from the database but never emit
any change messages into Kafka, which in turn
means that no offset updates are committed
to Kafka. This will cause the oplog files to be
rotated out but connector will not notice it so
on restart some events are no longer available
which leads to the need of re-execution of the
initial snapshot.

Set this parameter to 0 to not send heartbeat
messages at all.
Disabled by default.

heartbeat.topics.prefix __debezium-
heartbeat

Controls the naming of the topic to which
heartbeat messages are sent.
The topic is named according to the pattern
<heartbeat.topics.prefix>.
<server.name>.

sanitize.field.names true when connector
configuration explicitly
specifies the
key.converter or
value.converter
parameters to use Avro,
otherwise defaults to
false.

Whether field names are sanitized to adhere to
Avro naming requirements.

skipped.operations comma-separated list of operation types that
will be skipped during streaming. The
operations include: c for inserts/create, u for
updates, and d for deletes. By default, no
operations are skipped.

Property Default Description

Red Hat Integration 2022.Q2 Debezium User Guide

122

snapshot.collection.filter.
overrides

 Controls which collection items are included in
snapshot. This property affects snapshots only.
Specify a comma-separated list of collection
names in the form
databaseName.collectionName.

For each collection that you specify, also
specify another configuration property:
snapshot.collection.filter.overrides.data
baseName.collectionName. For example,
the name of the other configuration property
might be:
snapshot.collection.filter.overrides.cust
omers.orders. Set this property to a valid
filter expression that retrieves only the items
that you want in the snapshot. When the
connector performs a snapshot, it retrieves
only the items that matches the filter
expression.

provide.transaction.meta
data

false When set to true Debezium generates events
with transaction boundaries and enriches data
events envelope with transaction metadata.

See Transaction Metadata for additional
details.

retriable.restart.connecto
r.wait.ms

10000 (10 seconds) The number of milliseconds to wait before
restarting a connector after a retriable error
occurs.

mongodb.poll.interval.ms 30000 The interval in which the connector polls for
new, removed, or changed replica sets.

mongodb.connect.timeou
t.ms

10000 (10 seconds) The number of milliseconds the driver will wait
before a new connection attempt is aborted.

mongodb.socket.timeout.
ms

0 The number of milliseconds before a
send/receive on the socket can take before a
timeout occurs. A value of 0 disables this
behavior.

mongodb.server.selectio
n.timeout.ms

30000 (30 seconds) The number of milliseconds the driver will wait
to select a server before it times out and
throws an error.

Property Default Description

CHAPTER 4. DEBEZIUM CONNECTOR FOR MONGODB

123

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#debezium-mongodb-connector-generated-events-that-represent-transaction-boundaries

cursor.max.await.time.ms 0 Specifies the maximum number of milliseconds
the oplog cursor will wait for the server to
produce a result before causing an execution
timeout exception. A value of 0 indicates using
the server/driver default wait timeout.

Property Default Description

4.6. MONITORING DEBEZIUM MONGODB CONNECTOR
PERFORMANCE

The Debezium MongoDB connector has two metric types in addition to the built-in support for JMX
metrics that Zookeeper, Kafka, and Kafka Connect have.

Snapshot metrics provide information about connector operation while performing a snapshot.

Streaming metrics provide information about connector operation when the connector is
capturing changes and streaming change event records.

The Debezium monitoring documentation provides details about how to expose these metrics by using
JMX.

4.6.1. Monitoring Debezium during MongoDB snapshots

The MBean is debezium.mongodb:type=connector-
metrics,context=snapshot,server=<mongodb.server.name>.

Snapshot metrics are not exposed unless a snapshot operation is active, or if a snapshot has occurred
since the last connector start.

The following table lists the shapshot metrics that are available.

Attributes Type Description

LastEvent string The last snapshot event that
the connector has read.

MilliSecondsSinceLastEvent long The number of milliseconds
since the connector has read
and processed the most
recent event.

TotalNumberOfEventsSeen long The total number of events
that this connector has seen
since last started or reset.

NumberOfEventsFiltered long The number of events that
have been filtered by
include/exclude list filtering
rules configured on the
connector.

Red Hat Integration 2022.Q2 Debezium User Guide

124

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#monitoring-debezium-during-mongodb-snapshots
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#monitoring-debezium-mongodb-connector-record-streaming
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#monitoring-debezium

MonitoredTables
Deprecated and scheduled for removal in a
future release; use the CapturedTables
metric instead.

string[] The list of tables that are
monitored by the connector.

CapturedTables string[] The list of tables that are
captured by the connector.

QueueTotalCapacity int The length the queue used to
pass events between the
snapshotter and the main
Kafka Connect loop.

QueueRemainingCapacity int The free capacity of the
queue used to pass events
between the snapshotter and
the main Kafka Connect loop.

TotalTableCount int The total number of tables
that are being included in the
snapshot.

RemainingTableCount int The number of tables that the
snapshot has yet to copy.

SnapshotRunning boolean Whether the snapshot was
started.

SnapshotAborted boolean Whether the snapshot was
aborted.

SnapshotCompleted boolean Whether the snapshot
completed.

SnapshotDurationInSeconds long The total number of seconds
that the snapshot has taken
so far, even if not complete.

RowsScanned Map<String, Long> Map containing the number of
rows scanned for each table in
the snapshot. Tables are
incrementally added to the
Map during processing.
Updates every 10,000 rows
scanned and upon completing
a table.

Attributes Type Description

CHAPTER 4. DEBEZIUM CONNECTOR FOR MONGODB

125

MaxQueueSizeInBytes long The maximum buffer of the
queue in bytes. It will be
enabled if
max.queue.size.in.bytes is
passed with a positive long
value.

CurrentQueueSizeInBytes long The current data of records in
the queue in bytes.

Attributes Type Description

The Debezium MongoDB connector also provides the following custom snapshot metrics:

Attribute Type Description

NumberOfDisconnects long Number of database disconnects.

4.6.2. Monitoring Debezium MongoDB connector record streaming

The MBean is debezium.mongodb:type=connector-
metrics,context=streaming,server=<mongodb.server.name>.

The following table lists the streaming metrics that are available.

Attributes Type Description

LastEvent string The last streaming event that
the connector has read.

MilliSecondsSinceLastEvent long The number of milliseconds
since the connector has read
and processed the most
recent event.

TotalNumberOfEventsSeen long The total number of events
that this connector has seen
since last started or reset.

NumberOfEventsFiltered long The number of events that
have been filtered by
include/exclude list filtering
rules configured on the
connector.

MonitoredTables
Deprecated and scheduled for removal in a
future release; use the 'CapturedTables' metric
instead

string[] The list of tables that are
monitored by the connector.

Red Hat Integration 2022.Q2 Debezium User Guide

126

CapturedTables string[] The list of tables that are
captured by the connector.

QueueTotalCapacity int The length the queue used to
pass events between the
streamer and the main Kafka
Connect loop.

QueueRemainingCapacity int The free capacity of the
queue used to pass events
between the streamer and the
main Kafka Connect loop.

Connected boolean Flag that denotes whether the
connector is currently
connected to the database
server.

MilliSecondsBehindSource long The number of milliseconds
between the last change
event’s timestamp and the
connector processing it. The
values will incoporate any
differences between the
clocks on the machines where
the database server and the
connector are running.

NumberOfCommittedTransactions long The number of processed
transactions that were
committed.

SourceEventPosition Map<String, String> The coordinates of the last
received event.

LastTransactionId string Transaction identifier of the
last processed transaction.

MaxQueueSizeInBytes long The maximum buffer of the
queue in bytes.

CurrentQueueSizeInBytes long The current data of records in
the queue in bytes.

Attributes Type Description

The Debezium MongoDB connector also provides the following custom streaming metrics:

CHAPTER 4. DEBEZIUM CONNECTOR FOR MONGODB

127

Attribute Type Description

NumberOfDisconnects long Number of database disconnects.

NumberOfPrimaryElectio
ns

long Number of primary node elections.

4.7. HOW DEBEZIUM MONGODB CONNECTORS HANDLE FAULTS
AND PROBLEMS

Debezium is a distributed system that captures all changes in multiple upstream databases, and will
never miss or lose an event. When the system is operating normally and is managed carefully, then
Debezium provides exactly once delivery of every change event.

If a fault occurs, the system does not lose any events. However, while it is recovering from the fault, it
might repeat some change events. In such situations, Debezium, like Kafka, provides at least once
delivery of change events.

The following topics provide details about how the Debezium MongoDB connector handles various
kinds of faults and problems.

Configuration and startup errors

MongoDB becomes unavailable

Kafka Connect process stops gracefully

Kafka Connect process crashes

Kafka becomes unavailable

Connector is stopped for a long interval

MongoDB loses writes

Configuration and startup errors

In the following situations, the connector fails when trying to start, reports an error or exception in the
log, and stops running:

The connector’s configuration is invalid.

The connector cannot successfully connect to MongoDB by using the specified connection
parameters.

After a failure, the connector attempts to reconnect by using exponential backoff. You can configure
the maximum number of reconnection attempts.

In these cases, the error will have more details about the problem and possibly a suggested work around.
The connector can be restarted when the configuration has been corrected or the MongoDB problem
has been addressed.

MongoDB becomes unavailable

Once the connector is running, if the primary node of any of the MongoDB replica sets become

Red Hat Integration 2022.Q2 Debezium User Guide

128

Once the connector is running, if the primary node of any of the MongoDB replica sets become
unavailable or unreachable, the connector will repeatedly attempt to reconnect to the primary node,
using exponential backoff to prevent saturating the network or servers. If the primary remains
unavailable after the configurable number of connection attempts, the connector will fail.

The attempts to reconnect are controlled by three properties:

connect.backoff.initial.delay.ms - The delay before attempting to reconnect for the first
time, with a default of 1 second (1000 milliseconds).

connect.backoff.max.delay.ms - The maximum delay before attempting to reconnect, with a
default of 120 seconds (120,000 milliseconds).

connect.max.attempts - The maximum number of attempts before an error is produced, with a
default of 16.

Each delay is double that of the prior delay, up to the maximum delay. Given the default values, the
following table shows the delay for each failed connection attempt and the total accumulated time
before failure.

Reconnection attempt
number

Delay before attempt, in
seconds

Total delay before attempt, in minutes
and seconds

1 1 00:01

2 2 00:03

3 4 00:07

4 8 00:15

5 16 00:31

6 32 01:03

7 64 02:07

8 120 04:07

9 120 06:07

10 120 08:07

11 120 10:07

12 120 12:07

13 120 14:07

14 120 16:07

CHAPTER 4. DEBEZIUM CONNECTOR FOR MONGODB

129

15 120 18:07

16 120 20:07

Reconnection attempt
number

Delay before attempt, in
seconds

Total delay before attempt, in minutes
and seconds

Kafka Connect process stops gracefully

If Kafka Connect is being run in distributed mode, and a Kafka Connect process is stopped gracefully,
then prior to shutdown of that processes Kafka Connect will migrate all of the process' connector tasks
to another Kafka Connect process in that group, and the new connector tasks will pick up exactly where
the prior tasks left off. There is a short delay in processing while the connector tasks are stopped
gracefully and restarted on the new processes.

If the group contains only one process and that process is stopped gracefully, then Kafka Connect will
stop the connector and record the last offset for each replica set. Upon restart, the replica set tasks will
continue exactly where they left off.

Kafka Connect process crashes

If the Kafka Connector process stops unexpectedly, then any connector tasks it was running will
terminate without recording their most recently-processed offsets. When Kafka Connect is being run in
distributed mode, it will restart those connector tasks on other processes. However, the MongoDB
connectors will resume from the last offset recorded by the earlier processes, which means that the new
replacement tasks may generate some of the same change events that were processed just prior to the
crash. The number of duplicate events depends on the offset flush period and the volume of data
changes just before the crash.

NOTE

Because there is a chance that some events may be duplicated during a recovery from
failure, consumers should always anticipate some events may be duplicated. Debezium
changes are idempotent, so a sequence of events always results in the same state.

Debezium also includes with each change event message the source-specific information
about the origin of the event, including the MongoDB event’s unique transaction
identifier (h) and timestamp (sec and ord). Consumers can keep track of other of these
values to know whether it has already seen a particular event.

Kafka becomes unavailable

As the connector generates change events, the Kafka Connect framework records those events in Kafka
using the Kafka producer API. Kafka Connect will also periodically record the latest offset that appears in
those change events, at a frequency that you have specified in the Kafka Connect worker configuration.
If the Kafka brokers become unavailable, the Kafka Connect worker process running the connectors will
simply repeatedly attempt to reconnect to the Kafka brokers. In other words, the connector tasks will
simply pause until a connection can be reestablished, at which point the connectors will resume exactly
where they left off.

Connector is stopped for a long interval

If the connector is gracefully stopped, the replica sets can continue to be used and any new changes are
recorded in MongoDB’s oplog. When the connector is restarted, it will resume streaming changes for
each replica set where it last left off, recording change events for all of the changes that were made

Red Hat Integration 2022.Q2 Debezium User Guide

130

while the connector was stopped. If the connector is stopped long enough such that MongoDB purges
from its oplog some operations that the connector has not read, then upon startup the connector will
perform a snapshot.

A properly configured Kafka cluster is capable of massive throughput. Kafka Connect is written with
Kafka best practices, and given enough resources will also be able to handle very large numbers of
database change events. Because of this, when a connector has been restarted after a while, it is very
likely to catch up with the database, though how quickly will depend upon the capabilities and
performance of Kafka and the volume of changes being made to the data in MongoDB.

NOTE

If the connector remains stopped for long enough, MongoDB might purge older oplog
files and the connector’s last position may be lost. In this case, when the connector
configured with initial snapshot mode (the default) is finally restarted, the MongoDB
server will no longer have the starting point and the connector will fail with an error.

MongoDB loses writes

In certain failure situations, MongoDB can lose commits, which results in the MongoDB connector being
unable to capture the lost changes. For example, if the primary crashes suddenly after it applies a
change and records the change to its oplog, the oplog might become unavailable before secondary
nodes can read its contents. As a result, the secondary node that is elected as the new primary node
might be missing the most recent changes from its oplog.

At this time, there is no way to prevent this side effect in MongoDB.

CHAPTER 4. DEBEZIUM CONNECTOR FOR MONGODB

131

CHAPTER 5. DEBEZIUM CONNECTOR FOR MYSQL

IMPORTANT

This release of the Debezium MySQL connector includes a new default capturing
implementation that is based on the common connector framework that is used by the
other Debezium connectors. The revised capturing implementation is a Technology
Preview feature. Technology Preview features are not supported with Red Hat production
service-level agreements (SLAs) and might not be functionally complete; therefore, Red
Hat does not recommend implementing any Technology Preview features in production
environments. This Technology Preview feature provides early access to upcoming
product innovations, enabling you to test functionality and provide feedback during the
development process. For more information about support scope, see Technology
Preview Features Support Scope.

If the connector generates errors or unexpected behavior while running with the new
capturing implementation, you can revert to the earlier implementation by setting the
following configuration option:

internal.implementation=legacy

MySQL has a binary log (binlog) that records all operations in the order in which they are committed to
the database. This includes changes to table schemas as well as changes to the data in tables. MySQL
uses the binlog for replication and recovery.

The Debezium MySQL connector reads the binlog, produces change events for row-level INSERT,
UPDATE, and DELETE operations, and emits the change events to Kafka topics. Client applications
read those Kafka topics.

As MySQL is typically set up to purge binlogs after a specified period of time, the MySQL connector
performs an initial consistent snapshot of each of your databases. The MySQL connector reads the
binlog from the point at which the snapshot was made.

For information about the MySQL Database versions that are compatible with this connector, see the
Debezium Supported Configurations page .

Information and procedures for using a Debezium MySQL connector are organized as follows:

Section 5.1, “How Debezium MySQL connectors work”

Section 5.2, “Descriptions of Debezium MySQL connector data change events”

Section 5.3, “How Debezium MySQL connectors map data types”

Section 5.4, “Setting up MySQL to run a Debezium connector”

Section 5.5, “Deployment of Debezium MySQL connectors”

Section 5.6, “Monitoring Debezium MySQL connector performance”

Section 5.7, “How Debezium MySQL connectors handle faults and problems”

5.1. HOW DEBEZIUM MYSQL CONNECTORS WORK

An overview of the MySQL topologies that the connector supports is useful for planning your

Red Hat Integration 2022.Q2 Debezium User Guide

132

https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/articles/4938181

An overview of the MySQL topologies that the connector supports is useful for planning your
application. To optimally configure and run a Debezium MySQL connector, it is helpful to understand
how the connector tracks the structure of tables, exposes schema changes, performs snapshots, and
determines Kafka topic names.

Details are in the following topics:

Section 5.1.1, “MySQL topologies supported by Debezium connectors”

Section 5.1.2, “How Debezium MySQL connectors handle database schema changes”

Section 5.1.3, “How Debezium MySQL connectors expose database schema changes”

Section 5.1.4, “How Debezium MySQL connectors perform database snapshots”

Section 5.1.5, “Default names of Kafka topics that receive Debezium MySQL change event
records”

5.1.1. MySQL topologies supported by Debezium connectors

The Debezium MySQL connector supports the following MySQL topologies:

Standalone

When a single MySQL server is used, the server must have the binlog enabled (and optionally GTIDs
enabled) so the Debezium MySQL connector can monitor the server. This is often acceptable, since
the binary log can also be used as an incremental backup. In this case, the MySQL connector always
connects to and follows this standalone MySQL server instance.

Primary and replica

The Debezium MySQL connector can follow one of the primary servers or one of the replicas (if that
replica has its binlog enabled), but the connector sees changes in only the cluster that is visible to
that server. Generally, this is not a problem except for the multi-primary topologies.
The connector records its position in the server’s binlog, which is different on each server in the
cluster. Therefore, the connector must follow just one MySQL server instance. If that server fails,
that server must be restarted or recovered before the connector can continue.

High available clusters

A variety of high availability solutions exist for MySQL, and they make it significantly easier to
tolerate and almost immediately recover from problems and failures. Most HA MySQL clusters use
GTIDs so that replicas are able to keep track of all changes on any of the primary servers.

Multi-primary

Network Database (NDB) cluster replication uses one or more MySQL replica nodes that each
replicate from multiple primary servers. This is a powerful way to aggregate the replication of
multiple MySQL clusters. This topology requires the use of GTIDs.
A Debezium MySQL connector can use these multi-primary MySQL replicas as sources, and can fail
over to different multi-primary MySQL replicas as long as the new replica is caught up to the old
replica. That is, the new replica has all transactions that were seen on the first replica. This works even
if the connector is using only a subset of databases and/or tables, as the connector can be
configured to include or exclude specific GTID sources when attempting to reconnect to a new
multi-primary MySQL replica and find the correct position in the binlog.

Hosted

There is support for the Debezium MySQL connector to use hosted options such as Amazon RDS
and Amazon Aurora.

Because these hosted options do not allow a global read lock, table-level locks are used to create the

CHAPTER 5. DEBEZIUM CONNECTOR FOR MYSQL

133

https://dev.mysql.com/doc/refman/8.0/en/backup-methods.html
https://dev.mysql.com/doc/mysql-ha-scalability/en/
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-replication-multi-source.html

Because these hosted options do not allow a global read lock, table-level locks are used to create the
consistent snapshot.

5.1.2. How Debezium MySQL connectors handle database schema changes

When a database client queries a database, the client uses the database’s current schema. However, the
database schema can be changed at any time, which means that the connector must be able to identify
what the schema was at the time each insert, update, or delete operation was recorded. Also, a
connector cannot just use the current schema because the connector might be processing events that
are relatively old that were recorded before the tables' schemas were changed.

To ensure correct processing of changes that occur after a schema change, MySQL includes in the
binlog not only the row-level changes to the data, but also the DDL statements that are applied to the
database. As the connector reads the binlog and comes across these DDL statements, it parses them
and updates an in-memory representation of each table’s schema. The connector uses this schema
representation to identify the structure of the tables at the time of each insert, update, or delete
operation and to produce the appropriate change event. In a separate database history Kafka topic, the
connector records all DDL statements along with the position in the binlog where each DDL statement
appeared.

When the connector restarts after having crashed or been stopped gracefully, the connector starts
reading the binlog from a specific position, that is, from a specific point in time. The connector rebuilds
the table structures that existed at this point in time by reading the database history Kafka topic and
parsing all DDL statements up to the point in the binlog where the connector is starting.

This database history topic is for connector use only. The connector can optionally emit schema change
events to a different topic that is intended for consumer applications.

When the MySQL connector captures changes in a table to which a schema change tool such as gh-ost
or pt-online-schema-change is applied, there are helper tables created during the migration process.
The connector needs to be configured to capture change to these helper tables. If consumers do not
need the records generated for helper tables, then a single message transform can be applied to filter
them out.

See default names for topics that receive Debezium event records.

5.1.3. How Debezium MySQL connectors expose database schema changes

You can configure a Debezium MySQL connector to produce schema change events that describe
schema changes that are applied to captured tables in the database. The connector writes schema
change events to a Kafka topic named <serverName>, where serverName is the logical server name
that is specified in the database.server.name connector configuration property. Messages that the
connector sends to the schema change topic contain a payload, and, optionally, also contain the schema
of the change event message.

The payload of a schema change event message includes the following elements:

ddl

Provides the SQL CREATE, ALTER, or DROP statement that results in the schema change.

databaseName

The name of the database to which the DDL statements are applied. The value of databaseName
serves as the message key.

pos

Red Hat Integration 2022.Q2 Debezium User Guide

134

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#default-names-of-kafka-topics-that-receive-debezium-mysql-change-event-records

The position in the binlog where the statements appear.

tableChanges

A structured representation of the entire table schema after the schema change. The tableChanges
field contains an array that includes entries for each column of the table. Because the structured
representation presents data in JSON or Avro format, consumers can easily read messages without
first processing them through a DDL parser.

IMPORTANT

For a table that is in capture mode, the connector not only stores the history of schema
changes in the schema change topic, but also in an internal database history topic. The
internal database history topic is for connector use only and it is not intended for direct
use by consuming applications. Ensure that applications that require notifications about
schema changes consume that information only from the schema change topic.

IMPORTANT

Never partition the database history topic. For the database history topic to function
correctly, it must maintain a consistent, global order of the event records that the
connector emits to it.

To ensure that the topic is not split among partitions, set the partition count for the topic
by using one of the following methods:

If you create the database history topic manually, specify a partition count of 1.

If you use the Apache Kafka broker to create the database history topic
automatically, the topic is created, set the value of the Kafka num.partitions
configuration option to 1.

WARNING

The format of the messages that a connector emits to its schema change topic is in
an incubating state and is subject to change without notice.

Example: Message emitted to the MySQL connector schema change topic

The following example shows a typical schema change message in JSON format. The message contains
a logical representation of the table schema.

{
 "schema": {
 ...
 },
 "payload": {
 "source": { // (1)
 "version": "1.7.2.Final",
 "connector": "mysql",
 "name": "dbserver1",
 "ts_ms": 0,

CHAPTER 5. DEBEZIUM CONNECTOR FOR MYSQL

135

https://kafka.apache.org/documentation/#brokerconfigs_num.partitions

 "snapshot": "false",
 "db": "inventory",
 "sequence": null,
 "table": "customers",
 "server_id": 0,
 "gtid": null,
 "file": "mysql-bin.000003",
 "pos": 219,
 "row": 0,
 "thread": null,
 "query": null
 },
 "databaseName": "inventory", // (2)
 "schemaName": null,
 "ddl": "ALTER TABLE customers ADD COLUMN middle_name VARCHAR(2000)", // (3)
 "tableChanges": [// (4)
 {
 "type": "ALTER", // (5)
 "id": "\"inventory\".\"customers\"", // (6)
 "table": { // (7)
 "defaultCharsetName": "latin1",
 "primaryKeyColumnNames": [// (8)
 "id"
],
 "columns": [// (9)
 {
 "name": "id",
 "jdbcType": 4,
 "nativeType": null,
 "typeName": "INT",
 "typeExpression": "INT",
 "charsetName": null,
 "length": 11,
 "scale": null,
 "position": 1,
 "optional": false,
 "autoIncremented": true,
 "generated": true
 },
 {
 "name": "first_name",
 "jdbcType": 12,
 "nativeType": null,
 "typeName": "VARCHAR",
 "typeExpression": "VARCHAR",
 "charsetName": "latin1",
 "length": 255,
 "scale": null,
 "position": 2,
 "optional": false,
 "autoIncremented": false,
 "generated": false
 }, {
 "name": "last_name",
 "jdbcType": 12,
 "nativeType": null,

Red Hat Integration 2022.Q2 Debezium User Guide

136

 "typeName": "VARCHAR",
 "typeExpression": "VARCHAR",
 "charsetName": "latin1",
 "length": 255,
 "scale": null,
 "position": 3,
 "optional": false,
 "autoIncremented": false,
 "generated": false
 },
 {
 "name": "email",
 "jdbcType": 12,
 "nativeType": null,
 "typeName": "VARCHAR",
 "typeExpression": "VARCHAR",
 "charsetName": "latin1",
 "length": 255,
 "scale": null,
 "position": 4,
 "optional": false,
 "autoIncremented": false,
 "generated": false
 },
 {
 "name": "middle_name",
 "jdbcType": 12,
 "nativeType": null,
 "typeName": "VARCHAR",
 "typeExpression": "VARCHAR",
 "charsetName": "latin1",
 "length": 2000,
 "scale": null,
 "position": 5,
 "optional": true,
 "autoIncremented": false,
 "generated": false
 }
]
 }
 }
]
 },
 "payload": {
 "databaseName": "inventory",
 "ddl": "CREATE TABLE products (id INTEGER NOT NULL AUTO_INCREMENT PRIMARY KEY,
name VARCHAR(255) NOT NULL, description VARCHAR(512), weight FLOAT); ALTER TABLE
products AUTO_INCREMENT = 101;",
 "source" : {
 "version": "1.7.2.Final",
 "name": "mysql-server-1",
 "server_id": 0,
 "ts_ms": 0,
 "gtid": null,
 "file": "mysql-bin.000003",
 "pos": 154,

CHAPTER 5. DEBEZIUM CONNECTOR FOR MYSQL

137

Table 5.1. Descriptions of fields in messages emitted to the schema change topic

Item Field name Description

1 source The source field is structured exactly as standard
data change events that the connector writes to
table-specific topics. This field is useful to correlate
events on different topics.

2 databaseName
schemaName

Identifies the database and the schema that contains
the change. The value of the databaseName field
is used as the message key for the record.

3 ddl This field contains the DDL that is responsible for the
schema change. The ddl field can contain multiple
DDL statements. Each statement applies to the
database in the databaseName field. Multiple DDL
statements appear in the order in which they were
applied to the database.

Clients can submit multiple DDL statements that
apply to multiple databases. If MySQL applies them
atomically, the connector takes the DDL statements
in order, groups them by database, and creates a
schema change event for each group. If MySQL
applies them individually, the connector creates a
separate schema change event for each statement.

4 tableChanges An array of one or more items that contain the
schema changes generated by a DDL command.

5 type Describes the kind of change. The value is one of the
following:

CREATE
Table created.

ALTER
Table modified.

DROP
Table deleted.

 "row": 0,
 "snapshot": true,
 "thread": null,
 "db": null,
 "table": null,
 "query": null
 }
 }
}

Red Hat Integration 2022.Q2 Debezium User Guide

138

6 id Full identifier of the table that was created, altered,
or dropped. In the case of a table rename, this
identifier is a concatenation of <old>,<new> table
names.

7 table Represents table metadata after the applied change.

8 primaryKeyColumnNames List of columns that compose the table’s primary key.

9 columns Metadata for each column in the changed table.

Item Field name Description

See also: schema history topic.

5.1.4. How Debezium MySQL connectors perform database snapshots

When a Debezium MySQL connector is first started, it performs an initial consistent snapshot of your
database. The following flow describes how the connector creates this snapshot. This flow is for the
default snapshot mode, which is initial. For information about other snapshot modes, see the MySQL
connector snapshot.mode configuration property .

Table 5.2. Workflow for performing an initial snapshot with a global read lock

Step Action

1 Grabs a global read lock that blocks writes by other database clients.

The snapshot itself does not prevent other clients from applying DDL that might interfere with the
connector’s attempt to read the binlog position and table schemas. The connector keeps the global
read lock while it reads the binlog position, and releases the lock as described in a later step.

2 Starts a transaction with repeatable read semantics to ensure that all subsequent reads within the
transaction are done against the consistent snapshot.

3 Reads the current binlog position.

4 Reads the schema of the databases and tables for which the connector is configured to capture
changes.

5 Releases the global read lock. Other database clients can now write to the database.

6 If applicable, writes the DDL changes to the schema change topic, including all necessary DROP…
and CREATE… DDL statements.

7 Scans the database tables. For each row, the connector emits CREATE events to the relevant
table-specific Kafka topics.

8 Commits the transaction.

CHAPTER 5. DEBEZIUM CONNECTOR FOR MYSQL

139

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#how-debezium-mysql-connectors-handle-database-schema-changes
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#mysql-property-snapshot-mode
https://dev.mysql.com/doc/refman/8.0/en/innodb-consistent-read.html

9 Records the completed snapshot in the connector offsets.

Step Action

Connector restarts

If the connector fails, stops, or is rebalanced while performing the initial snapshot, then after the
connector restarts, it performs a new snapshot. After that intial snapshot is completed, the Debezium
MySQL connector restarts from the same position in the binlog so it does not miss any updates.
If the connector stops for long enough, MySQL could purge old binlog files and the connector’s
position would be lost. If the position is lost, the connector reverts to the initial snapshot for its
starting position. For more tips on troubleshooting the Debezium MySQL connector, see behavior
when things go wrong.

Global read locks not allowed

Some environments do not allow global read locks. If the Debezium MySQL connector detects that
global read locks are not permitted, the connector uses table-level locks instead and performs a
snapshot with this method. This requires the database user for the Debezium connector to have
LOCK TABLES privileges.

Table 5.3. Workflow for performing an initial snapshot with table-level locks

Step Action

1 Obtains table-level locks.

2 Starts a transaction with repeatable read semantics to ensure that all subsequent reads within
the transaction are done against the consistent snapshot.

3 Reads and filters the names of the databases and tables.

4 Reads the current binlog position.

5 Reads the schema of the databases and tables for which the connector is configured to capture
changes.

6 If applicable, writes the DDL changes to the schema change topic, including all necessary
DROP… and CREATE… DDL statements.

7 Scans the database tables. For each row, the connector emits CREATE events to the relevant
table-specific Kafka topics.

8 Commits the transaction.

9 Releases the table-level locks.

10 Records the completed snapshot in the connector offsets.

Red Hat Integration 2022.Q2 Debezium User Guide

140

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#how-debezium-mysql-connectors-handle-faults-and-problems
https://dev.mysql.com/doc/refman/8.0/en/innodb-consistent-read.html

5.1.4.1. Ad hoc snapshots

IMPORTANT

The use of ad hoc snapshots is a Technology Preview feature. Technology Preview
features are not supported with Red Hat production service-level agreements (SLAs) and
might not be functionally complete; therefore, Red Hat does not recommend
implementing any Technology Preview features in production environments. This
Technology Preview feature provides early access to upcoming product innovations,
enabling you to test functionality and provide feedback during the development process.
For more information about support scope, see Technology Preview Features Support
Scope.

By default, a connector runs an initial snapshot operation only after it starts for the first time. Following
this initial snapshot, under normal circumstances, the connector does not repeat the snapshot process.
Any future change event data that the connector captures comes in through the streaming process
only.

However, in some situations the data that the connector obtained during the initial snapshot might
become stale, lost, or incomplete. To provide a mechanism for recapturing table data, Debezium
includes an option to perform ad hoc snapshots. The following changes in a database might be cause for
performing an ad hoc snapshot:

The connector configuration is modified to capture a different set of tables.

Kafka topics are deleted and must be rebuilt.

Data corruption occurs due to a configuration error or some other problem.

You can re-run a snapshot for a table for which you previously captured a snapshot by initiating a so-
called ad-hoc snapshot . Ad hoc snapshots require the use of signaling tables. You initiate an ad hoc
snapshot by sending a signal request to the Debezium signaling table.

When you initiate an ad hoc snapshot of an existing table, the connector appends content to the topic
that already exists for the table. If a previously existing topic was removed, Debezium can create a topic
automatically if automatic topic creation is enabled.

Ad hoc snapshot signals specify the tables to include in the snapshot. The snapshot can capture the
entire contents of the database, or capture only a subset of the tables in the database.

You specify the tables to capture by sending an execute-snapshot message to the signaling table. Set
the type of the execute-snapshot signal to incremental, and provide the names of the tables to
include in the snapshot, as described in the following table:

Table 5.4. Example of an ad hoc execute-snapshot signal record

Field Default Value

type incremental Specifies the type of snapshot that you want to run.
Setting the type is optional. Currently, you can request only
incremental snapshots.

CHAPTER 5. DEBEZIUM CONNECTOR FOR MYSQL

141

https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#sending-signals-to-a-debezium-connector
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index.xml#customizing-debezium-automatically-created-topics

data-collections N/A An array that contains the fully-qualified names of the table to
be snapshotted.
The format of the names is the same as for the
signal.data.collection configuration option.

Field Default Value

Triggering an ad hoc snapshot

You initiate an ad hoc snapshot by adding an entry with the execute-snapshot signal type to the
signaling table. After the connector processes the message, it begins the snapshot operation. The
snapshot process reads the first and last primary key values and uses those values as the start and end
point for each table. Based on the number of entries in the table, and the configured chunk size,
Debezium divides the table into chunks, and proceeds to snapshot each chunk, in succession, one at a
time.

Currently, the execute-snapshot action type triggers incremental snapshots only. For more
information, see Incremental snapshots.

5.1.4.2. Incremental snapshots

IMPORTANT

The use of incremental snapshots is a Technology Preview feature. Technology Preview
features are not supported with Red Hat production service-level agreements (SLAs) and
might not be functionally complete; therefore, Red Hat does not recommend
implementing any Technology Preview features in production environments. This
Technology Preview feature provides early access to upcoming product innovations,
enabling you to test functionality and provide feedback during the development process.
For more information about support scope, see Technology Preview Features Support
Scope.

To provide flexibility in managing snapshots, Debezium includes a supplementary snapshot mechanism,
known as incremental snapshotting . Incremental snapshots rely on the Debezium mechanism for sending
signals to a Debezium connector.

In an incremental snapshot, instead of capturing the full state of a database all at once, as in an initial
snapshot, Debezium captures each table in phases, in a series of configurable chunks. You can specify
the tables that you want the snapshot to capture and the size of each chunk . The chunk size determines
the number of rows that the snapshot collects during each fetch operation on the database. The default
chunk size for incremental snapshots is 1 KB.

As an incremental snapshot proceeds, Debezium uses watermarks to track its progress, maintaining a
record of each table row that it captures. This phased approach to capturing data provides the following
advantages over the standard initial snapshot process:

You can run incremental snapshots in parallel with streamed data capture, instead of postponing
streaming until the snapshot completes. The connector continues to capture near real-time
events from the change log throughout the snapshot process, and neither operation blocks the
other.

If the progress of an incremental snapshot is interrupted, you can resume it without losing any

Red Hat Integration 2022.Q2 Debezium User Guide

142

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index.xml#debezium-signaling-incremental-snapshots
https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index.xml#sending-signals-to-a-debezium-connector

If the progress of an incremental snapshot is interrupted, you can resume it without losing any
data. After the process resumes, the snapshot begins at the point where it stopped, rather than
recapturing the table from the beginning.

You can run an incremental snapshot on demand at any time, and repeat the process as needed
to adapt to database updates. For example, you might re-run a snapshot after you modify the
connector configuration to add a table to its table.include.list property.

Incremental snapshot process

When you run an incremental snapshot, Debezium sorts each table by primary key and then splits the
table into chunks based on the configured chunk size. Working chunk by chunk, it then captures each
table row in a chunk. For each row that it captures, the snapshot emits a READ event. That event
represents the value of the row when the snapshot for the chunk began.

As a snapshot proceeds, it’s likely that other processes continue to access the database, potentially
modifying table records. To reflect such changes, INSERT, UPDATE, or DELETE operations are
committed to the transaction log as per usual. Similarly, the ongoing Debezium streaming process
continues to detect these change events and emits corresponding change event records to Kafka.

How Debezium resolves collisions among records with the same primary key

In some cases, the UPDATE or DELETE events that the streaming process emits are received out of
sequence. That is, the streaming process might emit an event that modifies a table row before the
snapshot captures the chunk that contains the READ event for that row. When the snapshot eventually
emits the corresponding READ event for the row, its value is already superseded. To ensure that
incremental snapshot events that arrive out of sequence are processed in the correct logical order,
Debezium employs a buffering scheme for resolving collisions. Only after collisions between the
snapshot events and the streamed events are resolved does Debezium emit an event record to Kafka.

Snapshot window

To assist in resolving collisions between late-arriving READ events and streamed events that modify
the same table row, Debezium employs a so-called snapshot window. The snapshot windows demarcates
the interval during which an incremental snapshot captures data for a specified table chunk. Before the
snapshot window for a chunk opens, Debezium follows its usual behavior and emits events from the
transaction log directly downstream to the target Kafka topic. But from the moment that the snapshot
for a particular chunk opens, until it closes, Debezium performs a de-duplication step to resolve
collisions between events that have the same primary key..

For each data collection, the Debezium emits two types of events, and stores the records for them both
in a single destination Kafka topic. The snapshot records that it captures directly from a table are
emitted as READ operations. Meanwhile, as users continue to update records in the data collection, and
the transaction log is updated to reflect each commit, Debezium emits UPDATE or DELETE operations
for each change.

As the snapshot window opens, and Debezium begins processing a snapshot chunk, it delivers snapshot
records to a memory buffer. During the snapshot windows, the primary keys of the READ events in the
buffer are compared to the primary keys of the incoming streamed events. If no match is found, the
streamed event record is sent directly to Kafka. If Debezium detects a match, it discards the buffered
READ event, and writes the streamed record to the destination topic, because the streamed event
logically supersede the static snapshot event. After the snapshot window for the chunk closes, the
buffer contains only READ events for which no related transaction log events exist. Debezium emits
these remaining READ events to the table’s Kafka topic.

The connector repeats the process for each snapshot chunk.

Triggering an incremental snapshot

CHAPTER 5. DEBEZIUM CONNECTOR FOR MYSQL

143

Currently, the only way to initiate an incremental snapshot is to send an ad hoc snapshot signal to the
signaling table on the source database. You submit signals to the table as SQL INSERT queries. After
Debezium detects the change in the signaling table, it reads the signal, and runs the requested snapshot
operation.

The query that you submit specifies the tables to include in the snapshot, and, optionally, specifies the
kind of snapshot operation. Currently, the only valid option for snapshots operations is the default value,
incremental.

To specify the tables to include in the snapshot, provide a data-collections array that lists the tables,
for example,
{"data-collections": ["public.MyFirstTable", "public.MySecondTable"]}

The data-collections array for an incremental snapshot signal has no default value. If the data-
collections array is empty, Debezium detects that no action is required and does not perform a
snapshot.

Prerequisites

Signaling is enabled.

A signaling data collection exists on the source database and the connector is configured to
capture it.

The signaling data collection is specified in the signal.data.collection property.

Procedure

1. Send a SQL query to add the ad hoc incremental snapshot request to the signaling table:

For example,

The values of the id,type, and data parameters in the command correspond to the fields of the
signaling table.

The following table describes the these parameters:

Table 5.5. Descriptions of fields in a SQL command for sending an incremental snapshot
signal to the signaling table

Value Description

myschema.de
bezium_signal

Specifies the fully-qualified name of the signaling table on the source database

INSERT INTO _<signalTable>_ (id, type, data) VALUES (_'<id>'_, _'<snapshotType>'_,
'{"data-collections": ["_<tableName>_","_<tableName>_"],"type":"_<snapshotType>_"}');

INSERT INTO myschema.debezium_signal (id, type, data) VALUES('ad-hoc-1', 'execute-
snapshot', '{"data-collections": ["schema1.table1", "schema2.table2"],"type":"incremental"}');

Red Hat Integration 2022.Q2 Debezium User Guide

144

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index.xml#debezium-signaling-ad-hoc-snapshots
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index.xml#debezium-signaling-enabling-signaling
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index.xml#debezium-signaling-required-structure-of-a-signaling-data-collection

ad-hoc-1 The id parameter specifies an arbitrary string that is assigned as the id identifier
for the signal request.
Use this string to identify logging messages to entries in the signaling table.
Debezium does not use this string. Rather, during the snapshot, Debezium
generates its own id string as a watermarking signal.

execute-
snapshot

Specifies type parameter specifies the operation that the signal is intended to
trigger.

data-
collections

A required component of the data field of a signal that specifies an array of
table names to include in the snapshot.
The array lists tables by their fully-qualified names, using the same format as you
use to specify the name of the connector’s signaling table in the
signal.data.collection configuration property.

incremental An optional type component of the data field of a signal that specifies the kind
of snapshot operation to run.
Currently, the only valid option is the default value, incremental.
Specifying a type value in the SQL query that you submit to the signaling table
is optional.
If you do not specify a value, the connector runs an incremental snapshot.

Value Description

The following example, shows the JSON for an incremental snapshot event that is captured by a
connector.

Example: Incremental snapshot event message

Item Field name Description

{
 "before":null,
 "after": {
 "pk":"1",
 "value":"New data"
 },
 "source": {
 ...
 "snapshot":"incremental" 1
 },
 "op":"r", 2
 "ts_ms":"1620393591654",
 "transaction":null
}

CHAPTER 5. DEBEZIUM CONNECTOR FOR MYSQL

145

1 snapshot Specifies the type of snapshot operation to run.
Currently, the only valid option is the default value, incremental.
Specifying a type value in the SQL query that you submit to the
signaling table is optional.
If you do not specify a value, the connector runs an incremental
snapshot.

2 op Specifies the event type.
The value for snapshot events is r, signifying a READ operation.

Item Field name Description

5.1.5. Default names of Kafka topics that receive Debezium MySQL change event
records

By default, the MySQL connector writes change events for all of the INSERT, UPDATE, and DELETE
operations that occur in a table to a single Apache Kafka topic that is specific to that table.

The connector uses the following convention to name change event topics:

serverName.databaseName.tableName

Suppose that fulfillment is the server name, inventory is the database name, and the database contains
tables named orders, customers, and products. The Debezium MySQL connector emits events to
three Kafka topics, one for each table in the database:

fulfillment.inventory.orders
fulfillment.inventory.customers
fulfillment.inventory.products

The following list provides definitions for the components of the default name:

serverName

The logical name of the server as specified by the database.server.name connector configuration
property.

schemaName

The name of the schema in which the operation occurred.

tableName

The name of the table in which the operation occurred.

The connector applies similar naming conventions to label its internal database history topics, schema
change topics, and transaction metadata topics.

If the default topic name do not meet your requirements, you can configure custom topic names. To
configure custom topic names, you specify regular expressions in the logical topic routing SMT. For
more information about using the logical topic routing SMT to customize topic naming, see Topic
routing.

Transaction metadata

Debezium can generate events that represent transaction boundaries and that enrich data change
event messages.

Red Hat Integration 2022.Q2 Debezium User Guide

146

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#routing-debezium-event-records-to-topics-that-you-specify

LIMITS ON WHEN DEBEZIUM RECEIVES TRANSACTION METADATA

Debezium registers and receives metadata only for transactions that occur after you
deploy the connector. Metadata for transactions that occur before you deploy the
connector is not available.

Debezium generates transaction boundary events for the BEGIN and END delimiters in every
transaction. Transaction boundary events contain the following fields:

status

BEGIN or END.

id

String representation of the unique transaction identifier.

event_count (for END events)

Total number of events emitted by the transaction.

data_collections (for END events)

An array of pairs of data_collection and event_count elements. that indicates the number of events
that the connector emits for changes that originate from a data collection.

Example

The connector emits transaction events to the <database.server.name>.transaction topic.

Change data event enrichment

When transaction metadata is enabled the data message Envelope is enriched with a new transaction
field. This field provides information about every event in the form of a composite of fields:

id - string representation of unique transaction identifier

{
 "status": "BEGIN",
 "id": "0e4d5dcd-a33b-11ea-80f1-02010a22a99e:10",
 "event_count": null,
 "data_collections": null
}

{
 "status": "END",
 "id": "0e4d5dcd-a33b-11ea-80f1-02010a22a99e:10",
 "event_count": 2,
 "data_collections": [
 {
 "data_collection": "s1.a",
 "event_count": 1
 },
 {
 "data_collection": "s2.a",
 "event_count": 1
 }
]
}

CHAPTER 5. DEBEZIUM CONNECTOR FOR MYSQL

147

total_order - absolute position of the event among all events generated by the transaction

data_collection_order - the per-data collection position of the event among all events that
were emitted by the transaction

Following is an example of a message:

For systems which don’t have GTID enabled, the transaction identifier is constructed using the
combination of binlog filename and binlog position. For example, if the binlog filename and position
corresponding to the transaction BEGIN event are mysql-bin.000002 and 1913 respectively then the
Debezium constructed transaction identifier would be file=mysql-bin.000002,pos=1913.

5.2. DESCRIPTIONS OF DEBEZIUM MYSQL CONNECTOR DATA
CHANGE EVENTS

The Debezium MySQL connector generates a data change event for each row-level INSERT, UPDATE,
and DELETE operation. Each event contains a key and a value. The structure of the key and the value
depends on the table that was changed.

Debezium and Kafka Connect are designed around continuous streams of event messages . However, the
structure of these events may change over time, which can be difficult for consumers to handle. To
address this, each event contains the schema for its content or, if you are using a schema registry, a
schema ID that a consumer can use to obtain the schema from the registry. This makes each event self-
contained.

The following skeleton JSON shows the basic four parts of a change event. However, how you configure
the Kafka Connect converter that you choose to use in your application determines the representation
of these four parts in change events. A schema field is in a change event only when you configure the
converter to produce it. Likewise, the event key and event payload are in a change event only if you
configure a converter to produce it. If you use the JSON converter and you configure it to produce all
four basic change event parts, change events have this structure:

{
 "before": null,
 "after": {
 "pk": "2",
 "aa": "1"
 },
 "source": {
...
 },
 "op": "c",
 "ts_ms": "1580390884335",
 "transaction": {
 "id": "0e4d5dcd-a33b-11ea-80f1-02010a22a99e:10",
 "total_order": "1",
 "data_collection_order": "1"
 }
}

{
 "schema": { 1
 ...
 },
 "payload": { 2

Red Hat Integration 2022.Q2 Debezium User Guide

148

Table 5.6. Overview of change event basic content

Item Field name Description

1 schema The first schema field is part of the event key. It specifies a Kafka Connect
schema that describes what is in the event key’s payload portion. In other
words, the first schema field describes the structure of the primary key, or
the unique key if the table does not have a primary key, for the table that
was changed.

It is possible to override the table’s primary key by setting the
message.key.columns connector configuration property. In this case,
the first schema field describes the structure of the key identified by that
property.

2 payload The first payload field is part of the event key. It has the structure
described by the previous schema field and it contains the key for the row
that was changed.

3 schema The second schema field is part of the event value. It specifies the Kafka
Connect schema that describes what is in the event value’s payload
portion. In other words, the second schema describes the structure of the
row that was changed. Typically, this schema contains nested schemas.

4 payload The second payload field is part of the event value. It has the structure
described by the previous schema field and it contains the actual data for
the row that was changed.

By default, the connector streams change event records to topics with names that are the same as the
event’s originating table. See topic names.

 ...
 },
 "schema": { 3
 ...
 },
 "payload": { 4
 ...
 },
}

CHAPTER 5. DEBEZIUM CONNECTOR FOR MYSQL

149

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#mysql-property-message-key-columns
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#default-names-of-kafka-topics-that-receive-debezium-mysql-change-event-records

WARNING

The MySQL connector ensures that all Kafka Connect schema names adhere to the
Avro schema name format . This means that the logical server name must start with
a Latin letter or an underscore, that is, a-z, A-Z, or _. Each remaining character in the
logical server name and each character in the database and table names must be a
Latin letter, a digit, or an underscore, that is, a-z, A-Z, 0-9, or _. If there is an invalid
character it is replaced with an underscore character.

This can lead to unexpected conflicts if the logical server name, a database name, or
a table name contains invalid characters, and the only characters that distinguish
names from one another are invalid and thus replaced with underscores.

More details are in the following topics:

Section 5.2.1, “About keys in Debezium MySQL change events”

Section 5.2.2, “About values in Debezium MySQL change events”

5.2.1. About keys in Debezium MySQL change events

A change event’s key contains the schema for the changed table’s key and the changed row’s actual
key. Both the schema and its corresponding payload contain a field for each column in the changed
table’s PRIMARY KEY (or unique constraint) at the time the connector created the event.

Consider the following customers table, which is followed by an example of a change event key for this
table.

Every change event that captures a change to the customers table has the same event key schema.
For as long as the customers table has the previous definition, every change event that captures a
change to the customers table has the following key structure. In JSON, it looks like this:

CREATE TABLE customers (
 id INTEGER NOT NULL AUTO_INCREMENT PRIMARY KEY,
 first_name VARCHAR(255) NOT NULL,
 last_name VARCHAR(255) NOT NULL,
 email VARCHAR(255) NOT NULL UNIQUE KEY
) AUTO_INCREMENT=1001;

{
 "schema": { 1
 "type": "struct",
 "name": "mysql-server-1.inventory.customers.Key", 2
 "optional": false, 3
 "fields": [4
 {
 "field": "id",
 "type": "int32",
 "optional": false
 }

Red Hat Integration 2022.Q2 Debezium User Guide

150

http://avro.apache.org/docs/current/spec.html#names

Table 5.7. Description of change event key

Item Field name Description

1 schema The schema portion of the key specifies a Kafka Connect schema that
describes what is in the key’s payload portion.

2 mysql-server-
1.inventory.cust
omers.Key

Name of the schema that defines the structure of the key’s payload. This
schema describes the structure of the primary key for the table that was
changed. Key schema names have the format connector-name.database-
name.table-name.Key. In this example:

mysql-server-1 is the name of the connector that generated this
event.

inventory is the database that contains the table that was
changed.

customers is the table that was updated.

3 optional Indicates whether the event key must contain a value in its payload field. In
this example, a value in the key’s payload is required. A value in the key’s
payload field is optional when a table does not have a primary key.

4 fields Specifies each field that is expected in the payload, including each field’s
name, type, and whether it is required.

5 payload Contains the key for the row for which this change event was generated. In
this example, the key, contains a single id field whose value is 1001.

5.2.2. About values in Debezium MySQL change events

The value in a change event is a bit more complicated than the key. Like the key, the value has a schema
section and a payload section. The schema section contains the schema that describes the Envelope
structure of the payload section, including its nested fields. Change events for operations that create,
update or delete data all have a value payload with an envelope structure.

Consider the same sample table that was used to show an example of a change event key:

]
 },
 "payload": { 5
 "id": 1001
 }
}

CREATE TABLE customers (
 id INTEGER NOT NULL AUTO_INCREMENT PRIMARY KEY,
 first_name VARCHAR(255) NOT NULL,
 last_name VARCHAR(255) NOT NULL,
 email VARCHAR(255) NOT NULL UNIQUE KEY
) AUTO_INCREMENT=1001;

CHAPTER 5. DEBEZIUM CONNECTOR FOR MYSQL

151

The value portion of a change event for a change to this table is described for:

create events

update events

Primary key updates

delete events

Tombstone events

create events

The following example shows the value portion of a change event that the connector generates for an
operation that creates data in the customers table:

{
 "schema": { 1
 "type": "struct",
 "fields": [
 {
 "type": "struct",
 "fields": [
 {
 "type": "int32",
 "optional": false,
 "field": "id"
 },
 {
 "type": "string",
 "optional": false,
 "field": "first_name"
 },
 {
 "type": "string",
 "optional": false,
 "field": "last_name"
 },
 {
 "type": "string",
 "optional": false,
 "field": "email"
 }
],
 "optional": true,
 "name": "mysql-server-1.inventory.customers.Value", 2
 "field": "before"
 },
 {
 "type": "struct",
 "fields": [
 {
 "type": "int32",
 "optional": false,
 "field": "id"

Red Hat Integration 2022.Q2 Debezium User Guide

152

 },
 {
 "type": "string",
 "optional": false,
 "field": "first_name"
 },
 {
 "type": "string",
 "optional": false,
 "field": "last_name"
 },
 {
 "type": "string",
 "optional": false,
 "field": "email"
 }
],
 "optional": true,
 "name": "mysql-server-1.inventory.customers.Value",
 "field": "after"
 },
 {
 "type": "struct",
 "fields": [
 {
 "type": "string",
 "optional": false,
 "field": "version"
 },
 {
 "type": "string",
 "optional": false,
 "field": "connector"
 },
 {
 "type": "string",
 "optional": false,
 "field": "name"
 },
 {
 "type": "int64",
 "optional": false,
 "field": "ts_ms"
 },
 {
 "type": "boolean",
 "optional": true,
 "default": false,
 "field": "snapshot"
 },
 {
 "type": "string",
 "optional": false,
 "field": "db"
 },
 {

CHAPTER 5. DEBEZIUM CONNECTOR FOR MYSQL

153

 "type": "string",
 "optional": true,
 "field": "table"
 },
 {
 "type": "int64",
 "optional": false,
 "field": "server_id"
 },
 {
 "type": "string",
 "optional": true,
 "field": "gtid"
 },
 {
 "type": "string",
 "optional": false,
 "field": "file"
 },
 {
 "type": "int64",
 "optional": false,
 "field": "pos"
 },
 {
 "type": "int32",
 "optional": false,
 "field": "row"
 },
 {
 "type": "int64",
 "optional": true,
 "field": "thread"
 },
 {
 "type": "string",
 "optional": true,
 "field": "query"
 }
],
 "optional": false,
 "name": "io.debezium.connector.mysql.Source", 3
 "field": "source"
 },
 {
 "type": "string",
 "optional": false,
 "field": "op"
 },
 {
 "type": "int64",
 "optional": true,
 "field": "ts_ms"
 }
],
 "optional": false,

Red Hat Integration 2022.Q2 Debezium User Guide

154

Table 5.8. Descriptions of create event value fields

Item Field name Description

1 schema The value’s schema, which describes the structure of the value’s payload. A
change event’s value schema is the same in every change event that the
connector generates for a particular table.

2 name In the schema section, each name field specifies the schema for a field in
the value’s payload.

mysql-server-1.inventory.customers.Value is the schema for the
payload’s before and after fields. This schema is specific to the
customers table.

Names of schemas for before and after fields are of the form
logicalName.tableName.Value, which ensures that the schema name is
unique in the database. This means that when using the Avro converter, the
resulting Avro schema for each table in each logical source has its own
evolution and history.

 "name": "mysql-server-1.inventory.customers.Envelope" 4
 },
 "payload": { 5
 "op": "c", 6
 "ts_ms": 1465491411815, 7
 "before": null, 8
 "after": { 9
 "id": 1004,
 "first_name": "Anne",
 "last_name": "Kretchmar",
 "email": "annek@noanswer.org"
 },
 "source": { 10
 "version": "1.7.2.Final",
 "connector": "mysql",
 "name": "mysql-server-1",
 "ts_ms": 0,
 "snapshot": false,
 "db": "inventory",
 "table": "customers",
 "server_id": 0,
 "gtid": null,
 "file": "mysql-bin.000003",
 "pos": 154,
 "row": 0,
 "thread": 7,
 "query": "INSERT INTO customers (first_name, last_name, email) VALUES ('Anne', 'Kretchmar',
'annek@noanswer.org')"
 }
 }
}

CHAPTER 5. DEBEZIUM CONNECTOR FOR MYSQL

155

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#configuring-debezium-connectors-to-use-avro-serialization

3 name io.debezium.connector.mysql.Source is the schema for the payload’s
source field. This schema is specific to the MySQL connector. The
connector uses it for all events that it generates.

4 name mysql-server-1.inventory.customers.Envelope is the schema for the
overall structure of the payload, where mysql-server-1 is the connector
name, inventory is the database, and customers is the table.

5 payload The value’s actual data. This is the information that the change event is
providing.

It may appear that the JSON representations of the events are much larger
than the rows they describe. This is because the JSON representation must
include the schema and the payload portions of the message. However, by
using the Avro converter, you can significantly decrease the size of the
messages that the connector streams to Kafka topics.

6 op Mandatory string that describes the type of operation that caused the
connector to generate the event. In this example, c indicates that the
operation created a row. Valid values are:

c = create

u = update

d = delete

r = read (applies to only snapshots)

7 ts_ms Optional field that displays the time at which the connector processed the
event. The time is based on the system clock in the JVM running the Kafka
Connect task.

In the source object, ts_ms indicates the time that the change was made
in the database. By comparing the value for payload.source.ts_ms with
the value for payload.ts_ms, you can determine the lag between the
source database update and Debezium.

8 before An optional field that specifies the state of the row before the event
occurred. When the op field is c for create, as it is in this example, the
before field is null since this change event is for new content.

9 after An optional field that specifies the state of the row after the event
occurred. In this example, the after field contains the values of the new row’s
id, first_name, last_name, and email columns.

Item Field name Description

Red Hat Integration 2022.Q2 Debezium User Guide

156

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#configuring-debezium-connectors-to-use-avro-serialization

10 source Mandatory field that describes the source metadata for the event. This field
contains information that you can use to compare this event with other
events, with regard to the origin of the events, the order in which the events
occurred, and whether events were part of the same transaction. The
source metadata includes:

Debezium version

Connector name

binlog name where the event was recorded

binlog position

Row within the event

If the event was part of a snapshot

Name of the database and table that contain the new row

ID of the MySQL thread that created the event (non-snapshot
only)

MySQL server ID (if available)

Timestamp for when the change was made in the database

If the binlog_rows_query_log_events MySQL configuration option is
enabled and the connector configuration include.query property is
enabled, the source field also provides the query field, which contains the
original SQL statement that caused the change event.

Item Field name Description

update events

The value of a change event for an update in the sample customers table has the same schema as a
create event for that table. Likewise, the event value’s payload has the same structure. However, the
event value payload contains different values in an update event. Here is an example of a change event
value in an event that the connector generates for an update in the customers table:

{
 "schema": { ... },
 "payload": {
 "before": { 1
 "id": 1004,
 "first_name": "Anne",
 "last_name": "Kretchmar",
 "email": "annek@noanswer.org"
 },
 "after": { 2
 "id": 1004,
 "first_name": "Anne Marie",
 "last_name": "Kretchmar",
 "email": "annek@noanswer.org"
 },

CHAPTER 5. DEBEZIUM CONNECTOR FOR MYSQL

157

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#enabling-query-log-events-for-debezium-mysql-connectors

Table 5.9. Descriptions of update event value fields

Item Field name Description

1 before An optional field that specifies the state of the row before the event
occurred. In an update event value, the before field contains a field for each
table column and the value that was in that column before the database
commit. In this example, the first_name value is Anne.

2 after An optional field that specifies the state of the row after the event
occurred. You can compare the before and after structures to determine
what the update to this row was. In the example, the first_name value is
now Anne Marie.

 "source": { 3
 "version": "1.7.2.Final",
 "name": "mysql-server-1",
 "connector": "mysql",
 "name": "mysql-server-1",
 "ts_ms": 1465581029100,
 "snapshot": false,
 "db": "inventory",
 "table": "customers",
 "server_id": 223344,
 "gtid": null,
 "file": "mysql-bin.000003",
 "pos": 484,
 "row": 0,
 "thread": 7,
 "query": "UPDATE customers SET first_name='Anne Marie' WHERE id=1004"
 },
 "op": "u", 4
 "ts_ms": 1465581029523 5
 }
}

Red Hat Integration 2022.Q2 Debezium User Guide

158

3 source Mandatory field that describes the source metadata for the event. The
source field structure has the same fields as in a create event, but some
values are different, for example, the sample update event is from a
different position in the binlog. The source metadata includes:

Debezium version

Connector name

binlog name where the event was recorded

binlog position

Row within the event

If the event was part of a snapshot

Name of the database and table that contain the updated row

ID of the MySQL thread that created the event (non-snapshot
only)

MySQL server ID (if available)

Timestamp for when the change was made in the database

If the binlog_rows_query_log_events MySQL configuration option is
enabled and the connector configuration include.query property is
enabled, the source field also provides the query field, which contains the
original SQL statement that caused the change event.

4 op Mandatory string that describes the type of operation. In an update event
value, the op field value is u, signifying that this row changed because of an
update.

5 ts_ms Optional field that displays the time at which the connector processed the
event. The time is based on the system clock in the JVM running the Kafka
Connect task.

In the source object, ts_ms indicates the time that the change was made
in the database. By comparing the value for payload.source.ts_ms with
the value for payload.ts_ms, you can determine the lag between the
source database update and Debezium.

Item Field name Description

NOTE

Updating the columns for a row’s primary/unique key changes the value of the row’s key.
When a key changes, Debezium outputs three events: a DELETE event and a tombstone
event with the old key for the row, followed by an event with the new key for the row.
Details are in the next section.

Primary key updates

An UPDATE operation that changes a row’s primary key field(s) is known as a primary key change. For a
primary key change, in place of an UPDATE event record, the connector emits a DELETE event record

CHAPTER 5. DEBEZIUM CONNECTOR FOR MYSQL

159

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#enabling-query-log-events-for-debezium-mysql-connectors
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#mysql-tombstone-events

for the old key and a CREATE event record for the new (updated) key. These events have the usual
structure and content, and in addition, each one has a message header related to the primary key
change:

The DELETE event record has __debezium.newkey as a message header. The value of this
header is the new primary key for the updated row.

The CREATE event record has __debezium.oldkey as a message header. The value of this
header is the previous (old) primary key that the updated row had.

delete events

The value in a delete change event has the same schema portion as create and update events for the
same table. The payload portion in a delete event for the sample customers table looks like this:

Table 5.10. Descriptions of delete event value fields

Item Field name Description

1 before Optional field that specifies the state of the row before the event occurred.
In a delete event value, the before field contains the values that were in the
row before it was deleted with the database commit.

{
 "schema": { ... },
 "payload": {
 "before": { 1
 "id": 1004,
 "first_name": "Anne Marie",
 "last_name": "Kretchmar",
 "email": "annek@noanswer.org"
 },
 "after": null, 2
 "source": { 3
 "version": "1.7.2.Final",
 "connector": "mysql",
 "name": "mysql-server-1",
 "ts_ms": 1465581902300,
 "snapshot": false,
 "db": "inventory",
 "table": "customers",
 "server_id": 223344,
 "gtid": null,
 "file": "mysql-bin.000003",
 "pos": 805,
 "row": 0,
 "thread": 7,
 "query": "DELETE FROM customers WHERE id=1004"
 },
 "op": "d", 4
 "ts_ms": 1465581902461 5
 }
}

Red Hat Integration 2022.Q2 Debezium User Guide

160

2 after Optional field that specifies the state of the row after the event occurred. In
a delete event value, the after field is null, signifying that the row no longer
exists.

3 source Mandatory field that describes the source metadata for the event. In a
delete event value, the source field structure is the same as for create and
update events for the same table. Many source field values are also the
same. In a delete event value, the ts_ms and pos field values, as well as
other values, might have changed. But the source field in a delete event
value provides the same metadata:

Debezium version

Connector name

binlog name where the event was recorded

binlog position

Row within the event

If the event was part of a snapshot

Name of the database and table that contain the updated row

ID of the MySQL thread that created the event (non-snapshot
only)

MySQL server ID (if available)

Timestamp for when the change was made in the database

If the binlog_rows_query_log_events MySQL configuration option is
enabled and the connector configuration include.query property is
enabled, the source field also provides the query field, which contains the
original SQL statement that caused the change event.

4 op Mandatory string that describes the type of operation. The op field value is
d, signifying that this row was deleted.

5 ts_ms Optional field that displays the time at which the connector processed the
event. The time is based on the system clock in the JVM running the Kafka
Connect task.

In the source object, ts_ms indicates the time that the change was made
in the database. By comparing the value for payload.source.ts_ms with
the value for payload.ts_ms, you can determine the lag between the
source database update and Debezium.

Item Field name Description

A delete change event record provides a consumer with the information it needs to process the removal
of this row. The old values are included because some consumers might require them in order to
properly handle the removal.

MySQL connector events are designed to work with Kafka log compaction. Log compaction enables

CHAPTER 5. DEBEZIUM CONNECTOR FOR MYSQL

161

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#enabling-query-log-events-for-debezium-mysql-connectors
https://kafka.apache.org/documentation/#compaction

removal of some older messages as long as at least the most recent message for every key is kept. This
lets Kafka reclaim storage space while ensuring that the topic contains a complete data set and can be
used for reloading key-based state.

Tombstone events

When a row is deleted, the delete event value still works with log compaction, because Kafka can remove
all earlier messages that have that same key. However, for Kafka to remove all messages that have that
same key, the message value must be null. To make this possible, after Debezium’s MySQL connector
emits a delete event, the connector emits a special tombstone event that has the same key but a null
value.

5.3. HOW DEBEZIUM MYSQL CONNECTORS MAP DATA TYPES

The Debezium MySQL connector represents changes to rows with events that are structured like the
table in which the row exists. The event contains a field for each column value. The MySQL data type of
that column dictates how Debezium represents the value in the event.

Columns that store strings are defined in MySQL with a character set and collation. The MySQL
connector uses the column’s character set when reading the binary representation of the column values
in the binlog events.

The connector can map MySQL data types to both literal and semantic types.

Literal type: how the value is represented using Kafka Connect schema types

Semantic type: how the Kafka Connect schema captures the meaning of the field (schema
name)

Details are in the following sections:

Basic types

Temporal types

Decimal types

Boolean values

Spatial types

Basic types

The following table shows how the connector maps basic MySQL data types.

Table 5.11. Descriptions of basic type mappings

MySQL type Literal type Semantic type

BOOLEAN, BOOL BOOLEAN n/a

BIT(1) BOOLEAN n/a

Red Hat Integration 2022.Q2 Debezium User Guide

162

BIT(>1) BYTES io.debezium.data.Bits
The length schema parameter contains an integer that
represents the number of bits. The byte[] contains the
bits in little-endian form and is sized to contain the
specified number of bits. For example, where n is bits:
numBytes = n/8 + (n%8== 0 ? 0 : 1)

TINYINT INT16 n/a

SMALLINT[(M)] INT16 n/a

MEDIUMINT[(M)] INT32 n/a

INT, INTEGER[(M)] INT32 n/a

BIGINT[(M)] INT64 n/a

REAL[(M,D)] FLOAT32 n/a

FLOAT[(M,D)] FLOAT64 n/a

DOUBLE[(M,D)] FLOAT64 n/a

CHAR(M)] STRING n/a

VARCHAR(M)] STRING n/a

BINARY(M)] BYTES or
STRING

n/a
Either the raw bytes (the default), a base64-encoded
String, or a hex-encoded String, based on the
binary.handling.mode connector configuration
property setting.

VARBINARY(M)] BYTES or
STRING

n/a
Either the raw bytes (the default), a base64-encoded
String, or a hex-encoded String, based on the
binary.handling.mode connector configuration
property setting.

TINYBLOB BYTES or
STRING

n/a
Either the raw bytes (the default), a base64-encoded
String, or a hex-encoded String, based on the
binary.handling.mode connector configuration
property setting.

TINYTEXT STRING n/a

MySQL type Literal type Semantic type

CHAPTER 5. DEBEZIUM CONNECTOR FOR MYSQL

163

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#mysql-property-binary-handling-mode
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#mysql-property-binary-handling-mode
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#mysql-property-binary-handling-mode

BLOB BYTES or
STRING

n/a
Either the raw bytes (the default), a base64-encoded
String, or a hex-encoded String, based on the
binary.handling.mode connector configuration
property setting.

TEXT STRING n/a

MEDIUMBLOB BYTES or
STRING

n/a
Either the raw bytes (the default), a base64-encoded
String, or a hex-encoded String, based on the
binary.handling.mode connector configuration
property setting.

MEDIUMTEXT STRING n/a

LONGBLOB BYTES or
STRING

n/a
Either the raw bytes (the default), a base64-encoded
String, or a hex-encoded String, based on the
binary.handling.mode connector configuration
property setting.

LONGTEXT STRING n/a

JSON STRING io.debezium.data.Json
Contains the string representation of a JSON document,
array, or scalar.

ENUM STRING io.debezium.data.Enum
The allowed schema parameter contains the comma-
separated list of allowed values.

SET STRING io.debezium.data.EnumSet
The allowed schema parameter contains the comma-
separated list of allowed values.

YEAR[(2|4)] INT32 io.debezium.time.Year

TIMESTAMP[(M)] STRING io.debezium.time.ZonedTimestamp
In ISO 8601 format with microsecond precision. MySQL
allows M to be in the range of 0-6.

MySQL type Literal type Semantic type

Temporal types

Excluding the TIMESTAMP data type, MySQL temporal types depend on the value of the
time.precision.mode connector configuration property. For TIMESTAMP columns whose default value
is specified as CURRENT_TIMESTAMP or NOW, the value 1970-01-01 00:00:00 is used as the default
value in the Kafka Connect schema.

Red Hat Integration 2022.Q2 Debezium User Guide

164

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#mysql-property-binary-handling-mode
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#mysql-property-binary-handling-mode
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#mysql-property-binary-handling-mode
https://www.iso.org/iso-8601-date-and-time-format.html

MySQL allows zero-values for DATE, DATETIME, and TIMESTAMP columns because zero-values are
sometimes preferred over null values. The MySQL connector represents zero-values as null values when
the column definition allows null values, or as the epoch day when the column does not allow null values.

Temporal values without time zones

The DATETIME type represents a local date and time such as "2018-01-13 09:48:27". As you can see,
there is no time zone information. Such columns are converted into epoch milliseconds or microseconds
based on the column’s precision by using UTC. The TIMESTAMP type represents a timestamp without
time zone information. It is converted by MySQL from the server (or session’s) current time zone into
UTC when writing and from UTC into the server (or session’s) current time zone when reading back the
value. For example:

DATETIME with a value of 2018-06-20 06:37:03 becomes 1529476623000.

TIMESTAMP with a value of 2018-06-20 06:37:03 becomes 2018-06-20T13:37:03Z.

Such columns are converted into an equivalent io.debezium.time.ZonedTimestamp in UTC based on
the server (or session’s) current time zone. The time zone will be queried from the server by default. If
this fails, it must be specified explicitly by the database connectionTimeZone MySQL configuration
option. For example, if the database’s time zone (either globally or configured for the connector by
means of the connectionTimeZone option) is "America/Los_Angeles", the TIMESTAMP value "2018-
06-20 06:37:03" is represented by a ZonedTimestamp with the value "2018-06-20T13:37:03Z".

The time zone of the JVM running Kafka Connect and Debezium does not affect these conversions.

More details about properties related to temporal values are in the documentation for MySQL
connector configuration properties.

time.precision.mode=adaptive_time_microseconds(default)

The MySQL connector determines the literal type and semantic type based on the column’s data
type definition so that events represent exactly the values in the database. All time fields are in
microseconds. Only positive TIME field values in the range of 00:00:00.000000 to 23:59:59.999999
can be captured correctly.

Table 5.12. Mappings when time.precision.mode=adaptive_time_microseconds

MySQL type Literal type Semantic type

DATE INT32 io.debezium.time.Date
Represents the number of days since the epoch.

TIME[(M)] INT64 io.debezium.time.MicroTime
Represents the time value in microseconds and does not
include time zone information. MySQL allows M to be in
the range of 0-6.

DATETIME,
DATETIME(0),
DATETIME(1),
DATETIME(2),
DATETIME(3)

INT64 io.debezium.time.Timestamp
Represents the number of milliseconds past the epoch
and does not include time zone information.

CHAPTER 5. DEBEZIUM CONNECTOR FOR MYSQL

165

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#descriptions-of-debezium-mysql-connector-configuration-properties

DATETIME(4),
DATETIME(5),
DATETIME(6)

INT64 io.debezium.time.MicroTimestamp
Represents the number of microseconds past the epoch
and does not include time zone information.

MySQL type Literal type Semantic type

time.precision.mode=connect

The MySQL connector uses defined Kafka Connect logical types. This approach is less precise than
the default approach and the events could be less precise if the database column has a fractional
second precision value of greater than 3. Values in only the range of 00:00:00.000 to 23:59:59.999
can be handled. Set time.precision.mode=connect only if you can ensure that the TIME values in
your tables never exceed the supported ranges. The connect setting is expected to be removed in a
future version of Debezium.

Table 5.13. Mappings when time.precision.mode=connect

MySQL type Literal type Semantic type

DATE INT32 org.apache.kafka.connect.data.Date
Represents the number of days since the epoch.

TIME[(M)] INT64 org.apache.kafka.connect.data.Time
Represents the time value in microseconds since
midnight and does not include time zone information.

DATETIME[(M)] INT64 org.apache.kafka.connect.data.Timestamp
Represents the number of milliseconds since the epoch,
and does not include time zone information.

Decimal types

Debezium connectors handle decimals according to the setting of the decimal.handling.mode
connector configuration property.

decimal.handling.mode=precise

Table 5.14. Mappings when decimal.handing.mode=precise

MySQL type Literal type Semantic type

NUMERIC[(M[,D])] BYTES org.apache.kafka.connect.data.Decimal
The scale schema parameter contains an integer that
represents how many digits the decimal point shifted.

DECIMAL[(M[,D])] BYTES org.apache.kafka.connect.data.Decimal
The scale schema parameter contains an integer that
represents how many digits the decimal point shifted.

decimal.handling.mode=double

Red Hat Integration 2022.Q2 Debezium User Guide

166

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#mysql-property-decimal-handling-mode

Table 5.15. Mappings when decimal.handing.mode=double

MySQL type Literal type Semantic type

NUMERIC[(M[,D])] FLOAT64 n/a

DECIMAL[(M[,D])] FLOAT64 n/a

decimal.handling.mode=string

Table 5.16. Mappings when decimal.handing.mode=string

MySQL type Literal type Semantic type

NUMERIC[(M[,D])] STRING n/a

DECIMAL[(M[,D])] STRING n/a

Boolean values

MySQL handles the BOOLEAN value internally in a specific way. The BOOLEAN column is internally
mapped to the TINYINT(1) data type. When the table is created during streaming then it uses proper
BOOLEAN mapping as Debezium receives the original DDL. During snapshots, Debezium executes
SHOW CREATE TABLE to obtain table definitions that return TINYINT(1) for both BOOLEAN and
TINYINT(1) columns. Debezium then has no way to obtain the original type mapping and so maps to
TINYINT(1).

Following is an example configuration:

converters=boolean
boolean.type=io.debezium.connector.mysql.converters.TinyIntOneToBooleanConverter
boolean.selector=db1.table1.*, db1.table2.column1

Spatial types

Currently, the Debezium MySQL connector supports the following spatial data types.

Table 5.17. Description of spatial type mappings

MySQL type Literal type Semantic type

CHAPTER 5. DEBEZIUM CONNECTOR FOR MYSQL

167

GEOMETRY,
 LINESTRING,
 POLYGON,
 MULTIPOINT,
 MULTILINESTRING,
 MULTIPOLYGON,
 GEOMETRYCOLLECTION

STRUCT io.debezium.data.geometry.Geometry
Contains a structure with two fields:

srid (INT32: spatial reference system ID
that defines the type of geometry object
stored in the structure

wkb (BYTES): binary representation of the
geometry object encoded in the Well-
Known-Binary (wkb) format. See the Open
Geospatial Consortium for more details.

MySQL type Literal type Semantic type

5.4. SETTING UP MYSQL TO RUN A DEBEZIUM CONNECTOR

Some MySQL setup tasks are required before you can install and run a Debezium connector.

Details are in the following sections:

Section 5.4.1, “Creating a MySQL user for a Debezium connector”

Section 5.4.2, “Enabling the MySQL binlog for Debezium”

Section 5.4.3, “Enabling MySQL Global Transaction Identifiers for Debezium”

Section 5.4.4, “Configuring MySQL session timesouts for Debezium”

Section 5.4.5, “Enabling query log events for Debezium MySQL connectors”

5.4.1. Creating a MySQL user for a Debezium connector

A Debezium MySQL connector requires a MySQL user account. This MySQL user must have
appropriate permissions on all databases for which the Debezium MySQL connector captures changes.

Prerequisites

A MySQL server.

Basic knowledge of SQL commands.

Procedure

1. Create the MySQL user:

2. Grant the required permissions to the user:

The table below describes the permissions.

IMPORTANT

mysql> CREATE USER 'user'@'localhost' IDENTIFIED BY 'password';

mysql> GRANT SELECT, RELOAD, SHOW DATABASES, REPLICATION SLAVE,
REPLICATION CLIENT ON *.* TO 'user' IDENTIFIED BY 'password';

Red Hat Integration 2022.Q2 Debezium User Guide

168

https://www.opengeospatial.org/standards/sfa

IMPORTANT

If using a hosted option such as Amazon RDS or Amazon Aurora that does not
allow a global read lock, table-level locks are used to create the consistent
snapshot. In this case, you need to also grant LOCK TABLES permissions to the
user that you create. See snapshots for more details.

3. Finalize the user’s permissions:

Table 5.18. Descriptions of user permissions

Keyword Description

SELECT Enables the connector to select rows from tables in databases. This is used
only when performing a snapshot.

RELOAD Enables the connector the use of the FLUSH statement to clear or reload
internal caches, flush tables, or acquire locks. This is used only when
performing a snapshot.

SHOW DATABASES Enables the connector to see database names by issuing the SHOW
DATABASE statement. This is used only when performing a snapshot.

REPLICATION SLAVE Enables the connector to connect to and read the MySQL server binlog.

REPLICATION CLIENT Enables the connector the use of the following statements:

SHOW MASTER STATUS

SHOW SLAVE STATUS

SHOW BINARY LOGS

The connector always requires this.

ON Identifies the database to which the permissions apply.

TO 'user' Specifies the user to grant the permissions to.

IDENTIFIED BY
'password'

Specifies the user’s MySQL password.

5.4.2. Enabling the MySQL binlog for Debezium

You must enable binary logging for MySQL replication. The binary logs record transaction updates for
replication tools to propagate changes.

Prerequisites

A MySQL server.

mysql> FLUSH PRIVILEGES;

CHAPTER 5. DEBEZIUM CONNECTOR FOR MYSQL

169

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#how-debezium-mysql-connectors-perform-database-snapshots

Appropriate MySQL user privileges.

Procedure

1. Check whether the log-bin option is already on:

2. If it is OFF, configure your MySQL server configuration file with the following properties, which
are described in the table below:

3. Confirm your changes by checking the binlog status once more:

Table 5.19. Descriptions of MySQL binlog configuration properties

Property Description

server-id The value for the server-id must be unique for each server and replication client in the
MySQL cluster. During MySQL connector set up, Debezium assigns a unique server ID
to the connector.

log_bin The value of log_bin is the base name of the sequence of binlog files.

binlog_format The binlog-format must be set to ROW or row.

binlog_row_ima
ge

The binlog_row_image must be set to FULL or full.

expire_logs_da
ys

This is the number of days for automatic binlog file removal. The default is 0, which
means no automatic removal. Set the value to match the needs of your environment.
See MySQL purges binlog files.

5.4.3. Enabling MySQL Global Transaction Identifiers for Debezium

Global transaction identifiers (GTIDs) uniquely identify transactions that occur on a server within a
cluster. Though not required for a Debezium MySQL connector, using GTIDs simplifies replication and
enables you to more easily confirm if primary and replica servers are consistent.

GTIDs are available in MySQL 5.6.5 and later. See the MySQL documentation for more details.

Prerequisites

mysql> SELECT variable_value as "BINARY LOGGING STATUS (log-bin) ::"
FROM information_schema.global_variables WHERE variable_name='log_bin';

server-id = 223344
log_bin = mysql-bin
binlog_format = ROW
binlog_row_image = FULL
expire_logs_days = 10

mysql> SELECT variable_value as "BINARY LOGGING STATUS (log-bin) ::"
FROM information_schema.global_variables WHERE variable_name='log_bin';

Red Hat Integration 2022.Q2 Debezium User Guide

170

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#mysql-purges-binlog-files-used-by-debezium
https://dev.mysql.com/doc/refman/8.0/en/replication-options-gtids.html#option_mysqld_gtid-mode

A MySQL server.

Basic knowledge of SQL commands.

Access to the MySQL configuration file.

Procedure

1. Enable gtid_mode:

2. Enable enforce_gtid_consistency:

3. Confirm the changes:

Result

Table 5.20. Descriptions of GTID options

Option Description

gtid_mode Boolean that specifies whether GTID mode of the MySQL server is enabled
or not.

ON = enabled

OFF = disabled

enforce_gtid_consistency Boolean that specifies whether the server enforces GTID consistency by
allowing the execution of statements that can be logged in a transactionally
safe manner. Required when using GTIDs.

ON = enabled

OFF = disabled

5.4.4. Configuring MySQL session timesouts for Debezium

When an initial consistent snapshot is made for large databases, your established connection could

mysql> gtid_mode=ON

mysql> enforce_gtid_consistency=ON

mysql> show global variables like '%GTID%';

+--------------------------+-------+
| Variable_name | Value |
+--------------------------+-------+
| enforce_gtid_consistency | ON |
| gtid_mode | ON |
+--------------------------+-------+

CHAPTER 5. DEBEZIUM CONNECTOR FOR MYSQL

171

When an initial consistent snapshot is made for large databases, your established connection could
timeout while the tables are being read. You can prevent this behavior by configuring
interactive_timeout and wait_timeout in your MySQL configuration file.

Prerequisites

A MySQL server.

Basic knowledge of SQL commands.

Access to the MySQL configuration file.

Procedure

1. Configure interactive_timeout:

2. Configure wait_timeout:

Table 5.21. Descriptions of MySQL session timeout options

Option Description

interactive_timeout The number of seconds the server waits for activity on an interactive
connection before closing it. See MySQL’s documentation for more details.

wait_timeout The number of seconds the server waits for activity on a non-interactive
connection before closing it. See MySQL’s documentation for more details.

5.4.5. Enabling query log events for Debezium MySQL connectors

You might want to see the original SQL statement for each binlog event. Enabling the
binlog_rows_query_log_events option in the MySQL configuration file allows you to do this.

This option is available in MySQL 5.6 and later.

Prerequisites

A MySQL server.

Basic knowledge of SQL commands.

Access to the MySQL configuration file.

Procedure

Enable binlog_rows_query_log_events:

mysql> interactive_timeout=<duration-in-seconds>

mysql> wait_timeout=<duration-in-seconds>

mysql> binlog_rows_query_log_events=ON

Red Hat Integration 2022.Q2 Debezium User Guide

172

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_interactive_timeout
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_wait_timeout

binlog_rows_query_log_events is set to a value that enables/disables support for including
the original SQL statement in the binlog entry.

ON = enabled

OFF = disabled

5.5. DEPLOYMENT OF DEBEZIUM MYSQL CONNECTORS

You can use either of the following methods to deploy a Debezium MySQL connector:

Use AMQ Streams to automatically create an image that includes the connector plug-in .
This is the preferred method.

Build a custom Kafka Connect container image from a Dockerfile .

Additional resources

Section 5.5.5, “Description of Debezium MySQL connector configuration properties”

5.5.1. MySQL connector deployment using AMQ Streams

Beginning with Debezium 1.7, the preferred method for deploying a Debezium connector is to use AMQ
Streams to build a Kafka Connect container image that includes the connector plug-in.

During the deployment process, you create and use the following custom resources (CRs):

A KafkaConnect CR that defines your Kafka Connect instance and includes information about
the connector artifacts needs to include in the image.

A KafkaConnector CR that provides details that include information the connector uses to
access the source database. After AMQ Streams starts the Kafka Connect pod, you start the
connector by applying the KafkaConnector CR.

In the build specification for the Kafka Connect image, you can specify the connectors that are available
to deploy. For each connector plug-in, you can also specify other components that you want to make
available for deployment. For example, you can add Service Registry artifacts, or the Debezium scripting
component. When AMQ Streams builds the Kafka Connect image, it downloads the specified artifacts,
and incorporates them into the image.

The spec.build.output parameter in the KafkaConnect CR specifies where to store the resulting Kafka
Connect container image. Container images can be stored in a Docker registry, or in an OpenShift
ImageStream. To store images in an ImageStream, you must create the ImageStream before you deploy
Kafka Connect. ImageStreams are not created automatically.

NOTE

If you use a KafkaConnect resource to create a cluster, afterwards you cannot use the
Kafka Connect REST API to create or update connectors. You can still use the REST API
to retrieve information.

Additional resources

Configuring Kafka Connect in Using AMQ Streams on OpenShift.

Creating a new container image automatically using AMQ Streams in Deploying and Upgrading

CHAPTER 5. DEBEZIUM CONNECTOR FOR MYSQL

173

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/using_amq_streams_on_openshift/index#proc-kafka-connect-config-str

Creating a new container image automatically using AMQ Streams in Deploying and Upgrading
AMQ Streams on OpenShift.

5.5.2. Using AMQ Streams to deploy a Debezium MySQL connector

With earlier versions of AMQ Streams, to deploy Debezium connectors on OpenShift, it was necessary
to first build a Kafka Connect image for the connector. The current preferred method for deploying
connectors on OpenShift is to use a build configuration in AMQ Streams to automatically build a Kafka
Connect container image that includes the Debezium connector plug-ins that you want to use.

During the build process, the AMQ Streams Operator transforms input parameters in a KafkaConnect
custom resource, including Debezium connector definitions, into a Kafka Connect container image. The
build downloads the necessary artifacts from the Red Hat Maven repository or another configured
HTTP server. The newly created container is pushed to the container registry that is specified in
.spec.build.output, and is used to deploy a Kafka Connect pod. After AMQ Streams builds the Kafka
Connect image, you create KafkaConnector custom resources to start the connectors that are included
in the build.

Prerequisites

You have access to an OpenShift cluster on which the cluster Operator is installed.

The AMQ Streams Operator is running.

An Apache Kafka cluster is deployed as documented in Deploying and Upgrading AMQ Streams
on OpenShift.

You have a Red Hat Integration license.

Kafka Connect is deployed on AMQ Streams .

The OpenShift oc CLI client is installed or you have access to the OpenShift Container Platform
web console.

Depending on how you intend to store the Kafka Connect build image, you need registry
permissions or you must create an ImageStream resource:

To store the build image in an image registry, such as Red Hat Quay.io or Docker Hub

An account and permissions to create and manage images in the registry.

To store the build image as a native OpenShift ImageStream

An ImageStream resource is deployed to the cluster. You must explicitly create an
ImageStream for the cluster. ImageStreams are not available by default.

Procedure

1. Log in to the OpenShift cluster.

2. Create a Debezium KafkaConnect custom resource (CR) for the connector, or modify an
existing one. For example, create a KafkaConnect CR that specifies the
metadata.annotations and spec.build properties, as shown in the following example. Save the
file with a name such as dbz-connect.yaml.

Red Hat Integration 2022.Q2 Debezium User Guide

174

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#creating-new-image-using-kafka-connect-build-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#kafka-cluster-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#kafka-connect-str
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/cli_tools/index#installing-openshift-cli
https://docs.openshift.com/container-platform/latest/openshift_images/images-understand.html#images-imagestream-use_images-understand

Example 5.1. A dbz-connect.yaml file that defines a KafkaConnect custom resource that
includes a Debezium connector

Table 5.22. Descriptions of Kafka Connect configuration settings

Item Description

1 Sets the strimzi.io/use-connector-resources annotation to "true" to enable
the Cluster Operator to use KafkaConnector resources to configure connectors in
this Kafka Connect cluster.

2 The spec.build configuration specifies where to store the build image and lists the
plug-ins to include in the image, along with the location of the plug-in artifacts.

3 The build.output specifies the registry in which the newly built image is stored.

4 Specifies the name and image name for the image output. Valid values for
output.type are docker to push into a container registry like Docker Hub or Quay,
or imagestream to push the image to an internal OpenShift ImageStream. To use
an ImageStream, an ImageStream resource must be deployed to the cluster. For
more information about specifying the build.output in the KafkaConnect
configuration, see the AMQ Streams Build schema reference documentation.

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
 name: debezium-kafka-connect-cluster
 annotations:
 strimzi.io/use-connector-resources: "true" 1
spec:
 version: 3.00
 build: 2
 output: 3
 type: imagestream 4
 image: debezium-streams-connect:latest
 plugins: 5
 - name: debezium-connector-mysql
 artifacts:
 - type: zip 6
 url: https://maven.repository.redhat.com/ga/io/debezium/debezium-connector-
mysql/1.7.2.Final-redhat-<build_number>/debezium-connector-mysql-1.7.2.Final-
redhat-<build_number>-plugin.zip 7
 - type: zip
 url: https://maven.repository.redhat.com/ga/io/apicurio/apicurio-registry-distro-
connect-converter/2.0-redhat-<build-number>/apicurio-registry-distro-connect-converter-
2.0-redhat-<build-number>.zip
 - type: zip
 url: https://maven.repository.redhat.com/ga/io/debezium/debezium-
scripting/1.7.2.Final/debezium-scripting-1.7.2.Final.zip

 bootstrapServers: debezium-kafka-cluster-kafka-bootstrap:9093

CHAPTER 5. DEBEZIUM CONNECTOR FOR MYSQL

175

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/using_amq_streams_on_openshift/index#type-Build-reference

5 The plugins configuration lists all of the connectors that you want to include in the
Kafka Connect image. For each entry in the list, specify a plug-in name, and
information for about the artifacts that are required to build the connector.
Optionally, for each connector plug-in, you can include other components that you
want to be available for use with the connector. For example, you can add Service
Registry artifacts, or the Debezium scripting component.

6 The value of artifacts.type specifies the file type of the artifact specified in the
artifacts.url. Valid types are zip, tgz, or jar. Debezium connector archives are
provided in .zip file format. JDBC driver files are in .jar format. The type value must
match the type of the file that is referenced in the url field.

7 The value of artifacts.url specifies the address of an HTTP server, such as a Maven
repository, that stores the file for the connector artifact. The OpenShift cluster must
have access to the specified server.

Item Description

3. Apply the KafkaConnect build specification to the OpenShift cluster by entering the following
command:

Based on the configuration specified in the custom resource, the Streams Operator prepares a
Kafka Connect image to deploy.
After the build completes, the Operator pushes the image to the specified registry or
ImageStream, and starts the Kafka Connect cluster. The connector artifacts that you listed in
the configuration are available in the cluster.

4. Create a KafkaConnector resource to define an instance of each connector that you want to
deploy.
For example, create the following KafkaConnector CR, and save it as mysql-inventory-
connector.yaml

Example 5.2. A mysql-inventory-connector.yaml file that defines the KafkaConnector
custom resource for a Debezium connector

oc create -f dbz-connect.yaml

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnector
metadata:
 labels:
 strimzi.io/cluster: debezium-kafka-connect-cluster
 name: inventory-connector-mysql 1
spec:
 class: io.debezium.connector.mysql.MySqlConnector 2
 tasksMax: 1 3
 config: 4
 database.history.kafka.bootstrap.servers: 'debezium-kafka-cluster-kafka-
bootstrap.debezium.svc.cluster.local:9092'
 database.history.kafka.topic: schema-changes.inventory
 database.hostname: mysql.debezium-mysql.svc.cluster.local 5

Red Hat Integration 2022.Q2 Debezium User Guide

176

Table 5.23. Descriptions of connector configuration settings

Item Description

1 The name of the connector to register with the Kafka Connect cluster.

2 The name of the connector class.

3 The number of tasks that can operate concurrently.

4 The connector’s configuration.

5 The address of the host database instance.

6 The port number of the database instance.

7 The name of the user account through which Debezium connects to the database.

8 The password for the database user account.

9 The name of the database to capture changes from.

10 The logical name of the database instance or cluster.
The specified name must be formed only from alphanumeric characters or underscores.
Because the logical name is used as the prefix for any Kafka topics that receive change
events from this connector, the name must be unique among the connectors in the
cluster.
The namespace is also used in the names of related Kafka Connect schemas, and the
namespaces of a corresponding Avro schema if you integrate the connector with the
Avro connector.

11 The list of tables from which the connector captures change events.

5. Create the connector resource by running the following command:

For example,

 database.port: 3306 6
 database.user: debezium 7
 database.password: dbz 8
 database.dbname: mydatabase 9
 database.server.name: inventory_connector_mysql 10
 database.include.list: public.inventory 11

oc create -n <namespace> -f <kafkaConnector>.yaml

oc create -n debezium -f {context}-inventory-connector.yaml

CHAPTER 5. DEBEZIUM CONNECTOR FOR MYSQL

177

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#configuring-debezium-connectors-to-use-avro-serialization

The connector is registered to the Kafka Connect cluster and starts to run against the database
that is specified by spec.config.database.dbname in the KafkaConnector CR. After the
connector pod is ready, Debezium is running.

You are now ready to verify the Debezium MySQL deployment.

5.5.3. Deploying Debezium MySQL connectors by building a custom Kafka Connect
container image from a Dockerfile

To deploy a Debezium MySQL connector, you must build a custom Kafka Connect container image that
contains the Debezium connector archive, and then push this container image to a container registry.
You then need to create the following custom resources (CRs):

A KafkaConnect CR that defines your Kafka Connect instance. The image property in the CR
specifies the name of the container image that you create to run your Debezium connector. You
apply this CR to the OpenShift instance where Red Hat AMQ Streams is deployed. AMQ
Streams offers operators and images that bring Apache Kafka to OpenShift.

A KafkaConnector CR that defines your Debezium MySQL connector. Apply this CR to the
same OpenShift instance where you apply the KafkaConnect CR.

Prerequisites

MySQL is running and you completed the steps to set up MySQL to work with a Debezium
connector.

AMQ Streams is deployed on OpenShift and is running Apache Kafka and Kafka Connect. For
more information, see Deploying and Upgrading AMQ Streams on OpenShift .

Podman or Docker is installed.

You have an account and permissions to create and manage containers in the container registry
(such as quay.io or docker.io) to which you plan to add the container that will run your
Debezium connector.

Procedure

1. Create the Debezium MySQL container for Kafka Connect:

a. Download the Debezium MySQL connector archive.

b. Extract the Debezium MySQL connector archive to create a directory structure for the
connector plug-in, for example:

./my-plugins/
├── debezium-connector-mysql
│ ├── ...

c. Create a Dockerfile that uses registry.redhat.io/amq7/amq-streams-kafka-30-rhel8:2.0.0
as the base image. For example, from a terminal window, enter the following, replacing my-
plugins with the name of your plug-ins directory:

cat <<EOF >debezium-container-for-mysql.yaml 1
FROM registry.redhat.io/amq7/amq-streams-kafka-30-rhel8:2.0.0
USER root:root

Red Hat Integration 2022.Q2 Debezium User Guide

178

https://access.redhat.com/products/red-hat-amq#streams
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#setting-up-mysql-to-run-a-debezium-connector
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/deploying_and_upgrading_amq_streams_on_openshift/index
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=red.hat.integration&downloadType=distributions

1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2

1

2

You can specify any file name that you want.

Replace my-plugins with the name of your plug-ins directory.

The command creates a Dockerfile with the name debezium-container-for-mysql.yaml in
the current directory.

d. Build the container image from the debezium-container-for-mysql.yaml Docker file that
you created in the previous step. From the directory that contains the file, open a terminal
window and enter one of the following commands:

The preceding commands build a container image with the name debezium-container-for-
mysql.

e. Push your custom image to a container registry, such as quay.io or an internal container
registry. The container registry must be available to the OpenShift instance where you want
to deploy the image. Enter one of the following commands:

f. Create a new Debezium MySQL KafkaConnect custom resource (CR). For example, create
a KafkaConnect CR with the name dbz-connect.yaml that specifies annotations and
image properties as shown in the following example:

metadata.annotations indicates to the Cluster Operator that KafkaConnector
resources are used to configure connectors in this Kafka Connect cluster.

spec.image specifies the name of the image that you created to run your Debezium
connector. This property overrides the
STRIMZI_DEFAULT_KAFKA_CONNECT_IMAGE variable in the Cluster Operator.

g. Apply the KafkaConnect CR to the OpenShift Kafka Connect environment by entering the

COPY ./<my-plugins>/ /opt/kafka/plugins/ 2
USER 1001
EOF

podman build -t debezium-container-for-mysql:latest .

docker build -t debezium-container-for-mysql:latest .

podman push <myregistry.io>/debezium-container-for-mysql:latest

docker push <myregistry.io>/debezium-container-for-mysql:latest

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
 name: my-connect-cluster
 annotations:
 strimzi.io/use-connector-resources: "true" 1
spec:
 #...
 image: debezium-container-for-mysql 2

CHAPTER 5. DEBEZIUM CONNECTOR FOR MYSQL

179

g. Apply the KafkaConnect CR to the OpenShift Kafka Connect environment by entering the
following command:

The command adds a Kafka Connect instance that specifies the name of the image that you
created to run your Debezium connector.

2. Create a KafkaConnector custom resource that configures your Debezium MySQL connector
instance.
You configure a Debezium MySQL connector in a .yaml file that specifies the configuration
properties for the connector. The connector configuration might instruct Debezium to produce
events for a subset of the schemas and tables, or it might set properties so that Debezium
ignores, masks, or truncates values in specified columns that are sensitive, too large, or not
needed.

The following example configures a Debezium connector that connects to a MySQL host,
192.168.99.100, on port 3306, and captures changes to the inventory database. dbserver1 is
the server’s logical name.

MySQL inventory-connector.yaml

Table 5.24. Descriptions of connector configuration settings

Item Description

1 The name of the connector.

oc create -f dbz-connect.yaml

 apiVersion: kafka.strimzi.io/v1beta2
 kind: KafkaConnector
 metadata:
 name: inventory-connector 1
 labels:
 strimzi.io/cluster: my-connect-cluster
 spec:
 class: io.debezium.connector.mysql.MySqlConnector
 tasksMax: 1 2
 config: 3
 database.hostname: mysql 4
 database.port: 3306
 database.user: debezium
 database.password: dbz
 database.server.id: 184054 5
 database.server.name: dbserver1 6
 database.include.list: inventory 7
 database.history.kafka.bootstrap.servers: my-cluster-kafka-bootstrap:9092 8
 database.history.kafka.topic: schema-changes.inventory 9

Red Hat Integration 2022.Q2 Debezium User Guide

180

2 Only one task should operate at any one time. Because the MySQL connector reads the
MySQL server’s binlog, using a single connector task ensures proper order and event
handling. The Kafka Connect service uses connectors to start one or more tasks that do
the work, and it automatically distributes the running tasks across the cluster of Kafka
Connect services. If any of the services stop or crash, those tasks will be redistributed to
running services.

3 The connector’s configuration.

4 The database host, which is the name of the container running the MySQL server
(mysql).

5 Unique ID of the connector.

6 Logical name of the MySQL server or cluster. This name is used as the prefix for all
Kafka topics that receive change event records.

7 Changes in only the inventory database are captured.

8 The list of Kafka brokers that this connector will use to write and recover DDL
statements to the database history topic. Upon restart, the connector recovers the
schemas of the database that existed at the point in time in the binlog when the
connector should begin reading.

9 The name of the database history topic. This topic is for internal use only and should not
be used by consumers.

Item Description

3. Create your connector instance with Kafka Connect. For example, if you saved your
KafkaConnector resource in the inventory-connector.yaml file, you would run the following
command:

The preceding command registers inventory-connector and the connector starts to run against
the inventory database as defined in the KafkaConnector CR.

For the complete list of the configuration properties that you can set for the Debezium MySQL
connector, see MySQL connector configuration properties .

Results

After the connector starts, it performs a consistent snapshot of the MySQL databases that the
connector is configured for. The connector then starts generating data change events for row-level
operations and streaming change event records to Kafka topics.

5.5.4. Verifying that the Debezium MySQL connector is running

oc apply -f inventory-connector.yaml

CHAPTER 5. DEBEZIUM CONNECTOR FOR MYSQL

181

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#descriptions-of-debezium-mysql-connector-configuration-properties
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#how-debezium-mysql-connectors-perform-database-snapshots

If the connector starts correctly without errors, it creates a topic for each table that the connector is
configured to capture. Downstream applications can subscribe to these topics to retrieve information
events that occur in the source database.

To verify that the connector is running, you perform the following operations from the OpenShift
Container Platform web console, or through the OpenShift CLI tool (oc):

Verify the connector status.

Verify that the connector generates topics.

Verify that topics are populated with events for read operations ("op":"r") that the connector
generates during the initial snapshot of each table.

Prerequisites

A Debezium connector is deployed to AMQ Streams on OpenShift.

The OpenShift oc CLI client is installed.

You have access to the OpenShift Container Platform web console.

Procedure

1. Check the status of the KafkaConnector resource by using one of the following methods:

From the OpenShift Container Platform web console:

a. Navigate to Home → Search.

b. On the Search page, click Resources to open the Select Resource box, and then type
KafkaConnector.

c. From the KafkaConnectors list, click the name of the connector that you want to
check, for example inventory-connector-mysql.

d. In the Conditions section, verify that the values in the Type and Status columns are set
to Ready and True.

From a terminal window:

a. Enter the following command:

For example,

The command returns status information that is similar to the following output:

Example 5.3. KafkaConnector resource status

oc describe KafkaConnector <connector-name> -n <project>

oc describe KafkaConnector inventory-connector-mysql -n debezium

Name: inventory-connector-mysql
Namespace: debezium
Labels: strimzi.io/cluster=debezium-kafka-connect-cluster

Red Hat Integration 2022.Q2 Debezium User Guide

182

2. Verify that the connector created Kafka topics:

From the OpenShift Container Platform web console.

a. Navigate to Home → Search.

b. On the Search page, click Resources to open the Select Resource box, and then type
KafkaTopic.

c. From the KafkaTopics list, click the name of the topic that you want to check, for
example, inventory-connector-mysql.inventory.orders---
ac5e98ac6a5d91e04d8ec0dc9078a1ece439081d.

d. In the Conditions section, verify that the values in the Type and Status columns are set
to Ready and True.

From a terminal window:

a. Enter the following command:

Annotations: <none>
API Version: kafka.strimzi.io/v1beta2
Kind: KafkaConnector

...

Status:
 Conditions:
 Last Transition Time: 2021-12-08T17:41:34.897153Z
 Status: True
 Type: Ready
 Connector Status:
 Connector:
 State: RUNNING
 worker_id: 10.131.1.124:8083
 Name: inventory-connector-mysql
 Tasks:
 Id: 0
 State: RUNNING
 worker_id: 10.131.1.124:8083
 Type: source
 Observed Generation: 1
 Tasks Max: 1
 Topics:
 inventory_connector_mysql
 inventory_connector_mysql.inventory.addresses
 inventory_connector_mysql.inventory.customers
 inventory_connector_mysql.inventory.geom
 inventory_connector_mysql.inventory.orders
 inventory_connector_mysql.inventory.products
 inventory_connector_mysql.inventory.products_on_hand
Events: <none>

oc get kafkatopics

CHAPTER 5. DEBEZIUM CONNECTOR FOR MYSQL

183

The command returns status information that is similar to the following output:

Example 5.4. KafkaTopic resource status

NAME CLUSTER
PARTITIONS REPLICATION FACTOR READY
connect-cluster-configs debezium-
kafka-cluster 1 1 True
connect-cluster-offsets debezium-
kafka-cluster 25 1 True
connect-cluster-status debezium-
kafka-cluster 5 1 True
consumer-offsets---84e7a678d08f4bd226872e5cdd4eb527fadc1c6a
debezium-kafka-cluster 50 1 True
inventory-connector-mysql---a96f69b23d6118ff415f772679da623fbbb99421
debezium-kafka-cluster 1 1 True
inventory-connector-mysql.inventory.addresses---
1b6beaf7b2eb57d177d92be90ca2b210c9a56480 debezium-kafka-cluster
1 1 True
inventory-connector-mysql.inventory.customers---
9931e04ec92ecc0924f4406af3fdace7545c483b debezium-kafka-cluster 1
1 True
inventory-connector-mysql.inventory.geom---
9f7e136091f071bf49ca59bf99e86c713ee58dd5 debezium-kafka-cluster
1 1 True
inventory-connector-mysql.inventory.orders---
ac5e98ac6a5d91e04d8ec0dc9078a1ece439081d debezium-kafka-cluster
1 1 True
inventory-connector-mysql.inventory.products---
df0746db116844cee2297fab611c21b56f82dcef debezium-kafka-cluster 1
1 True
inventory-connector-mysql.inventory.products-on-hand---
8649e0f17ffcc9212e266e31a7aeea4585e5c6b5 debezium-kafka-cluster 1
1 True
schema-changes.inventory
debezium-kafka-cluster 1 1 True
strimzi-store-topic---effb8e3e057afce1ecf67c3f5d8e4e3ff177fc55
debezium-kafka-cluster 1 1 True
strimzi-topic-operator-kstreams-topic-store-changelog---
b75e702040b99be8a9263134de3507fc0cc4017b debezium-kafka-cluster 1
1 True

3. Check topic content.

From a terminal window, enter the following command:

For example,

oc exec -n <project> -it <kafka-cluster> -- /opt/kafka/bin/kafka-console-consumer.sh \
> --bootstrap-server localhost:9092 \
> --from-beginning \
> --property print.key=true \
> --topic=<topic-name>

Red Hat Integration 2022.Q2 Debezium User Guide

184

The format for specifying the topic name is the same as the oc describe command returns in
Step 1, for example, inventory_connector_mysql.inventory.addresses.

For each event in the topic, the command returns information that is similar to the following
output:

Example 5.5. Content of a Debezium change event

{"schema":{"type":"struct","fields":
[{"type":"int32","optional":false,"field":"product_id"}],"optional":false,"name":"inventory_conne
ctor_mysql.inventory.products_on_hand.Key"},"payload":{"product_id":101}} {"schema":
{"type":"struct","fields":[{"type":"struct","fields":
[{"type":"int32","optional":false,"field":"product_id"},
{"type":"int32","optional":false,"field":"quantity"}],"optional":true,"name":"inventory_connector
_mysql.inventory.products_on_hand.Value","field":"before"},{"type":"struct","fields":
[{"type":"int32","optional":false,"field":"product_id"},
{"type":"int32","optional":false,"field":"quantity"}],"optional":true,"name":"inventory_connector
_mysql.inventory.products_on_hand.Value","field":"after"},{"type":"struct","fields":
[{"type":"string","optional":false,"field":"version"},
{"type":"string","optional":false,"field":"connector"},
{"type":"string","optional":false,"field":"name"},
{"type":"int64","optional":false,"field":"ts_ms"},
{"type":"string","optional":true,"name":"io.debezium.data.Enum","version":1,"parameters":
{"allowed":"true,last,false"},"default":"false","field":"snapshot"},
{"type":"string","optional":false,"field":"db"},
{"type":"string","optional":true,"field":"sequence"},
{"type":"string","optional":true,"field":"table"},
{"type":"int64","optional":false,"field":"server_id"},
{"type":"string","optional":true,"field":"gtid"},{"type":"string","optional":false,"field":"file"},
{"type":"int64","optional":false,"field":"pos"},{"type":"int32","optional":false,"field":"row"},
{"type":"int64","optional":true,"field":"thread"},
{"type":"string","optional":true,"field":"query"}],"optional":false,"name":"io.debezium.connecto
r.mysql.Source","field":"source"},{"type":"string","optional":false,"field":"op"},
{"type":"int64","optional":true,"field":"ts_ms"},{"type":"struct","fields":
[{"type":"string","optional":false,"field":"id"},
{"type":"int64","optional":false,"field":"total_order"},
{"type":"int64","optional":false,"field":"data_collection_order"}],"optional":true,"field":"transacti
on"}],"optional":false,"name":"inventory_connector_mysql.inventory.products_on_hand.Env
elope"},"payload":{"before":null,"after":{"product_id":101,"quantity":3},"source":
{"version":"1.7.2.Final-redhat-
00001","connector":"mysql","name":"inventory_connector_mysql","ts_ms":1638985247805,"
snapshot":"true","db":"inventory","sequence":null,"table":"products_on_hand","server_id":0,"
gtid":null,"file":"mysql-
bin.000003","pos":156,"row":0,"thread":null,"query":null},"op":"r","ts_ms":1638985247805,"t
ransaction":null}}

In the preceding example, the payload value shows that the connector snapshot generated a

 oc exec -n debezium -it debezium-kafka-cluster-kafka-0 -- /opt/kafka/bin/kafka-console-
consumer.sh \
> --bootstrap-server localhost:9092 \
> --from-beginning \
> --property print.key=true \
> --topic=inventory_connector_mysql.inventory.products_on_hand

CHAPTER 5. DEBEZIUM CONNECTOR FOR MYSQL

185

read ("op" ="r") event from the table inventory.products_on_hand. The "before" state of the
product_id record is null, indicating that no previous value exists for the record. The "after"
state shows a quantity of 3 for the item with product_id 101.

5.5.5. Description of Debezium MySQL connector configuration properties

The Debezium MySQL connector has numerous configuration properties that you can use to achieve
the right connector behavior for your application. Many properties have default values. Information
about the properties is organized as follows:

Required connector configuration properties

Advanced connector configuration properties

Database history connector configuration properties that control how Debezium processes
events that it reads from the database history topic.

Pass-through database history properties

Pass-through database driver properties that control the behavior of the database driver.

The following configuration properties are required unless a default value is available.

Table 5.25. Required Debezium MySQL connector configuration properties

Property Default Description

name No default Unique name for the connector. Attempting to
register again with the same name fails. This property
is required by all Kafka Connect connectors.

connector.class No default The name of the Java class for the connector. Always
specify
io.debezium.connector.mysql.MySqlConnect
or for the MySQL connector.

tasks.max 1 The maximum number of tasks that should be
created for this connector. The MySQL connector
always uses a single task and therefore does not use
this value, so the default is always acceptable.

database.hostname No default IP address or host name of the MySQL database
server.

database.port 3306 Integer port number of the MySQL database server.

database.user No default Name of the MySQL user to use when connecting to
the MySQL database server.

database.password No default Password to use when connecting to the MySQL
database server.

Red Hat Integration 2022.Q2 Debezium User Guide

186

database.server.name No default Logical name that identifies and provides a
namespace for the particular MySQL database
server/cluster in which Debezium is capturing
changes. The logical name should be unique across
all other connectors, since it is used as a prefix for all
Kafka topic names that receive events emitted by
this connector. Only alphanumeric characters,
hyphens, dots and underscores must be used in the
database server logical name.

database.server.id random A numeric ID of this database client, which must be
unique across all currently-running database
processes in the MySQL cluster. This connector joins
the MySQL database cluster as another server (with
this unique ID) so it can read the binlog. By default, a
random number between 5400 and 6400 is
generated, though the recommendation is to
explicitly set a value.

database.include.list empty string An optional, comma-separated list of regular
expressions that match the names of the databases
for which to capture changes. The connector does
not capture changes in any database whose name is
not in database.include.list. By default, the
connector captures changes in all databases. Do not
also set the database.exclude.list connector
confiuration property.

database.exclude.list empty string An optional, comma-separated list of regular
expressions that match the names of databases for
which you do not want to capture changes. The
connector captures changes in any database whose
name is not in the database.exclude.list. Do not
also set the database.include.list connector
configuration property.

table.include.list empty string An optional, comma-separated list of regular
expressions that match fully-qualified table
identifiers of tables whose changes you want to
capture. The connector does not capture changes in
any table not included in table.include.list. Each
identifier is of the form databaseName.tableName. By
default, the connector captures changes in every
non-system table in each database whose changes
are being captured. Do not also specify the
table.exclude.list connector configuration
property.

Property Default Description

CHAPTER 5. DEBEZIUM CONNECTOR FOR MYSQL

187

table.exclude.list empty string An optional, comma-separated list of regular
expressions that match fully-qualified table
identifiers for tables whose changes you do not want
to capture. The connector captures changes in any
table not included in table.exclude.list. Each
identifier is of the form databaseName.tableName.
Do not also specify the table.include.list connector
configuration property.

column.exclude.list empty string An optional, comma-separated list of regular
expressions that match the fully-qualified names of
columns to exclude from change event record
values. Fully-qualified names for columns are of the
form databaseName.tableName.columnName.

column.include.list empty string An optional, comma-separated list of regular
expressions that match the fully-qualified names of
columns to include in change event record values.
Fully-qualified names for columns are of the form
databaseName.tableName.columnName.

column.truncate.to._length_.
chars

n/a An optional, comma-separated list of regular
expressions that match the fully-qualified names of
character-based columns whose values should be
truncated in the change event record values if the
field values are longer than the specified number of
characters. You can configure multiple properties
with different lengths in a single configuration. The
length must be a positive integer. Fully-qualified
names for columns are of the form
databaseName.tableName.columnName.

column.mask.with._length_.
chars

n/a An optional, comma-separated list of regular
expressions that match the fully-qualified names of
character-based columns whose values should be
replaced in the change event message values with a
field value consisting of the specified number of
asterisk (*) characters. You can configure multiple
properties with different lengths in a single
configuration. Each length must be a positive integer
or zero. Fully-qualified names for columns are of the
form databaseName.tableName.columnName.

Property Default Description

Red Hat Integration 2022.Q2 Debezium User Guide

188

column.mask.hash.hashAlg
orithm.with.salt.salt

n/a An optional, comma-separated list of regular
expressions that match the fully-qualified names of
character-based columns. Fully-qualified names for
columns are of the form
<databaseName>.<tableName>.<columnNam
e>. In the resulting change event record, the values
for the specified columns are replaced with
pseudonyms.

A pseudonym consists of the hashed value that
results from applying the specified hashAlgorithm
and salt. Based on the hash function that is used,
referential integrity is maintained, while column
values are replaced with pseudonyms. Supported
hash functions are described in the MessageDigest
section of the Java Cryptography Architecture
Standard Algorithm Name Documentation.

In the following example, CzQMA0cB5K is a
randomly selected salt.

column.mask.hash.SHA-
256.with.salt.CzQMA0cB5K =
inventory.orders.customerName,
inventory.shipment.customerName

If necessary, the pseudonym is automatically
shortened to the length of the column. The
connector configuration can include multiple
properties that specify different hash algorithms and
salts.

Depending on the hashAlgorithm used, the salt
selected, and the actual data set, the resulting data
set might not be completely masked.

Property Default Description

CHAPTER 5. DEBEZIUM CONNECTOR FOR MYSQL

189

https://docs.oracle.com/javase/7/docs/technotes/guides/security/StandardNames.html#MessageDigest

column.propagate.source.ty
pe

n/a An optional, comma-separated list of regular
expressions that match the fully-qualified names of
columns whose original type and length should be
added as a parameter to the corresponding field
schemas in the emitted change event records. These
schema parameters:

__Debezium.source.column.type

__Debezium.source.column.length

__Debezium.source.column.scale

are used to propagate the original type name and
length for variable-width types, respectively. This is
useful to properly size corresponding columns in sink
databases. Fully-qualified names for columns are of
one of these forms:

databaseName.tableName.columnName

databaseName.schemaName.tableName.columnName

datatype.propagate.source.t
ype

n/a An optional, comma-separated list of regular
expressions that match the database-specific data
type name of columns whose original type and length
should be added as a parameter to the
corresponding field schemas in the emitted change
event records. These schema parameters:

__debezium.source.column.type

__debezium.source.column.length

__debezium.source.column.scale

are used to propagate the original type name and
length for variable-width types, respectively. This is
useful to properly size corresponding columns in sink
databases. Fully-qualified data type names are of
one of these forms:

databaseName.tableName.typeName

databaseName.schemaName.tableName.typeName

See how MySQL connectors map data types for the
list of MySQL-specific data type names.

Property Default Description

Red Hat Integration 2022.Q2 Debezium User Guide

190

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#how-debezium-mysql-connectors-map-data-types

time.precision.mode adaptive_tim
e_microseco
nds

Time, date, and timestamps can be represented with
different kinds of precision, including:

adaptive_time_microseconds (the default)
captures the date, datetime and timestamp values
exactly as in the database using either millisecond,
microsecond, or nanosecond precision values based
on the database column’s type, with the exception of
TIME type fields, which are always captured as
microseconds.

connect always represents time and timestamp
values using Kafka Connect’s built-in representations
for Time, Date, and Timestamp, which use
millisecond precision regardless of the database
columns' precision.

decimal.handling.mode precise Specifies how the connector should handle values for
DECIMAL and NUMERIC columns:

precise (the default) represents them precisely
using java.math.BigDecimal values represented in
change events in a binary form.

double represents them using double values, which
may result in a loss of precision but is easier to use.

string encodes values as formatted strings, which is
easy to consume but semantic information about the
real type is lost.

bigint.unsigned.handling.mo
de

long Specifies how BIGINT UNSIGNED columns should be
represented in change events. Possible settings are:

long represents values by using Java’s long, which
might not offer the precision but which is easy to use
in consumers. long is usually the preferred setting.

precise uses java.math.BigDecimal to represent
values, which are encoded in the change events by
using a binary representation and Kafka Connect’s
org.apache.kafka.connect.data.Decimal type.
Use this setting when working with values larger than
2^63, because these values cannot be conveyed by
using long.

Property Default Description

CHAPTER 5. DEBEZIUM CONNECTOR FOR MYSQL

191

include.schema.changes true Boolean value that specifies whether the connector
should publish changes in the database schema to a
Kafka topic with the same name as the database
server ID. Each schema change is recorded by using a
key that contains the database name and whose
value includes the DDL statement(s). This is
independent of how the connector internally records
database history.

include.query false Boolean value that specifies whether the connector
should include the original SQL query that generated
the change event.

If you set this option to true then you must also
configure MySQL with the
binlog_rows_query_log_events option set to
ON. When include.query is true, the query is not
present for events that the snapshot process
generates.

Setting include.query to true might expose tables
or fields that are explicitly excluded or masked by
including the original SQL statement in the change
event. For this reason, the default setting is false.

event.deserialization.failure.
handling.mode

fail Specifies how the connector should react to
exceptions during deserialization of binlog events.

fail propagates the exception, which indicates the
problematic event and its binlog offset, and causes
the connector to stop.

warn logs the problematic event and its binlog
offset and then skips the event.

ignore passes over the problematic event and does
not log anything.

Property Default Description

Red Hat Integration 2022.Q2 Debezium User Guide

192

inconsistent.schema.handlin
g.mode

fail Specifies how the connector should react to binlog
events that relate to tables that are not present in
internal schema representation. That is, the internal
representation is not consistent with the database.

fail throws an exception that indicates the
problematic event and its binlog offset, and causes
the connector to stop.

warn logs the problematic event and its binlog
offset and skips the event.

skip passes over the problematic event and does
not log anything.

max.queue.size 8192 Positive integer value that specifies the maximum
size of the blocking queue into which change events
read from the database log are placed before they
are written to Kafka. This queue can provide
backpressure to the binlog reader when, for example,
writes to Kafka are slow or if Kafka is not available.
Events that appear in the queue are not included in
the offsets periodically recorded by this connector.
Defaults to 8192, and should always be larger than
the maximum batch size specified by the
max.batch.size property.

max.batch.size 2048 Positive integer value that specifies the maximum
size of each batch of events that should be
processed during each iteration of this connector.
Defaults to 2048.

max.queue.size.in.bytes 0 Long value for the maximum size in bytes of the
blocking queue. The feature is disabled by default, it
will be active if it’s set with a positive long value.

poll.interval.ms 1000 Positive integer value that specifies the number of
milliseconds the connector should wait for new
change events to appear before it starts processing
a batch of events. Defaults to 1000 milliseconds, or 1
second.

connect.timeout.ms 30000 A positive integer value that specifies the maximum
time in milliseconds this connector should wait after
trying to connect to the MySQL database server
before timing out. Defaults to 30 seconds.

Property Default Description

CHAPTER 5. DEBEZIUM CONNECTOR FOR MYSQL

193

gtid.source.includes No default A comma-separated list of regular expressions that
match source UUIDs in the GTID set used to find the
binlog position in the MySQL server. Only the GTID
ranges that have sources that match one of these
include patterns are used. Do not also specify a
setting for gtid.source.excludes.

gtid.source.excludes No default A comma-separated list of regular expressions that
match source UUIDs in the GTID set used to find the
binlog position in the MySQL server. Only the GTID
ranges that have sources that do not match any of
these exclude patterns are used. Do not also specify
a value for gtid.source.includes.

tombstones.on.delete true Controls whether a delete event is followed by a
tombstone event.

true - a delete operation is represented by a delete
event and a subsequent tombstone event.

false - only a delete event is emitted.

After a source record is deleted, emitting a
tombstone event (the default behavior) allows Kafka
to completely delete all events that pertain to the
key of the deleted row in case log compaction is
enabled for the topic.

Property Default Description

Red Hat Integration 2022.Q2 Debezium User Guide

194

https://kafka.apache.org/documentation/#compaction

message.key.columns n/a A list of expressions that specify the columns that
the connector uses to form custom message keys for
change event records that it publishes to the Kafka
topics for specified tables.

By default, Debezium uses the primary key column of
a table as the message key for records that it emits.
In place of the default, or to specify a key for tables
that lack a primary key, you can configure custom
message keys based on one or more columns.

To establish a custom message key for a table, list
the table, followed by the columns to use as the
message key. Each list entry takes the following
format:

<fully-
qualified_tableName>:_<keyColumn>_,<keyC
olumn>

To base a table key on multiple column names, insert
commas between the column names.

Each fully-qualified table name is a regular
expression in the following format:

<databaseName>.<tableName>

The property can include entries for multiple tables.
Use a semicolon to separate table entries in the list.

The following example sets the message key for the
tables inventory.customers and
purchase.orders:

inventory.customers:pk1,pk2;
(.*).purchaseorders:pk3,pk4

For the table inventory.customer, the columns
pk1 and pk2 are specified as the message key. For
the purchaseorders tables in any database, the
columns pk3 and pk4 server as the message key.

There is no limit to the number of columns that you
use to create custom message keys. However, it’s
best to use the minimum number that are required to
specify a unique key.

Property Default Description

CHAPTER 5. DEBEZIUM CONNECTOR FOR MYSQL

195

binary.handling.mode bytes Specifies how binary columns, for example, blob,
binary, varbinary, should be represented in change
events. Possible settings:

bytes represents binary data as a byte array.

base64 represents binary data as a base64-
encoded String.

hex represents binary data as a hex-encoded
(base16) String.

Property Default Description

Advanced MySQL connector configuration properties

The following table describes advanced MySQL connector properties . The default values for these
properties rarely need to be changed. Therefore, you do not need to specify them in the connector
configuration.

Table 5.26. Descriptions of MySQL connector advanced configuration properties

Property Default Description

connect.keep.alive true A Boolean value that specifies whether a separate
thread should be used to ensure that the connection
to the MySQL server/cluster is kept alive.

table.ignore.builtin true A Boolean value that specifies whether built-in
system tables should be ignored. This applies
regardless of the table include and exclude lists. By
default, system tables are excluded from having their
changes captured, and no events are generated
when changes are made to any system tables.

Red Hat Integration 2022.Q2 Debezium User Guide

196

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#mysql-advanced-connector-configuration-properties

database.ssl.mode disabled Specifies whether to use an encrypted connection.
Possible settings are:

disabled specifies the use of an unencrypted
connection.

preferred establishes an encrypted connection if
the server supports secure connections. If the server
does not support secure connections, falls back to an
unencrypted connection.

required establishes an encrypted connection or
fails if one cannot be made for any reason.

verify_ca behaves like required but additionally it
verifies the server TLS certificate against the
configured Certificate Authority (CA) certificates
and fails if the server TLS certificate does not match
any valid CA certificates.

verify_identity behaves like verify_ca but
additionally verifies that the server certificate
matches the host of the remote connection.

Property Default Description

CHAPTER 5. DEBEZIUM CONNECTOR FOR MYSQL

197

snapshot.mode initial Specifies the criteria for running a snapshot when the
connector starts. Possible settings are:

initial - the connector runs a snapshot only when no
offsets have been recorded for the logical server
name.

initial_only - the connector runs a snapshot only
when no offsets have been recorded for the logical
server name and then stops; i.e. it will not read
change events from the binlog.

when_needed - the connector runs a snapshot
upon startup whenever it deems it necessary. That is,
when no offsets are available, or when a previously
recorded offset specifies a binlog location or GTID
that is not available in the server.

never - the connector never uses snapshots. Upon
first startup with a logical server name, the connector
reads from the beginning of the binlog. Configure
this behavior with care. It is valid only when the binlog
is guaranteed to contain the entire history of the
database.

schema_only - the connector runs a snapshot of
the schemas and not the data. This setting is useful
when you do not need the topics to contain a
consistent snapshot of the data but need them to
have only the changes since the connector was
started.

schema_only_recovery - this is a recovery
setting for a connector that has already been
capturing changes. When you restart the connector,
this setting enables recovery of a corrupted or lost
database history topic. You might set it periodically
to "clean up" a database history topic that has been
growing unexpectedly. Database history topics
require infinite retention.

Property Default Description

Red Hat Integration 2022.Q2 Debezium User Guide

198

snapshot.locking.mode minimal Controls whether and how long the connector holds
the global MySQL read lock, which prevents any
updates to the database, while the connector is
performing a snapshot. Possible settings are:

minimal - the connector holds the global read lock
for only the initial portion of the snapshot during
which the connector reads the database schemas
and other metadata. The remaining work in a
snapshot involves selecting all rows from each table.
The connector can do this in a consistent fashion by
using a REPEATABLE READ transaction. This is the
case even when the global read lock is no longer held
and other MySQL clients are updating the database.

minimal_percona - the connector holds the global
backup lock for only the initial portion of the
snapshot during which the connector reads the
database schemas and other metadata. The
remaining work in a snapshot involves selecting all
rows from each table. The connector can do this in a
consistent fashion by using a REPEATABLE READ
transaction. This is the case even when the global
backup lock is no longer held and other MySQL
clients are updating the database. This mode does
not flush tables to disk, is not blocked by long-
running reads, and is available only in Percona Server.

extended - blocks all writes for the duration of the
snapshot. Use this setting if there are clients that are
submitting operations that MySQL excludes from
REPEATABLE READ semantics.

none - prevents the connector from acquiring any
table locks during the snapshot. While this setting is
allowed with all snapshot modes, it is safe to use if
and only if no schema changes are happening while
the snapshot is running. For tables defined with
MyISAM engine, the tables would still be locked
despite this property being set as MyISAM acquires a
table lock. This behavior is unlike InnoDB engine,
which acquires row level locks.

Property Default Description

CHAPTER 5. DEBEZIUM CONNECTOR FOR MYSQL

199

https://www.percona.com/doc/percona-server/5.7/management/backup_locks.html

snapshot.include.collecti
on.list

All tables specified
in
table.include.lis
t

An optional, comma-separated list of regular
expressions that match the fully-qualified names
(<databaseName>.<tableName>) of the tables
to include in a snapshot. The specified items must be
named in the connector’s table.include.list
property. This property takes effect only if the
connector’s snapshot.mode property is set to a
value other than never.
This property does not affect the behavior of
incremental snapshots.

Property Default Description

Red Hat Integration 2022.Q2 Debezium User Guide

200

snapshot.select.statemen
t.overrides

No default Specifies the table rows to include in a snapshot. Use
the property if you want a snapshot to include only a
subset of the rows in a table. This property affects
snapshots only. It does not apply to events that the
connector reads from the log.

The property contains a comma-separated list of
fully-qualified table names in the form
<databaseName>.<tableName>. For example,

"snapshot.select.statement.overrides":
"inventory.products,customers.orders"

For each table in the list, add a further configuration
property that specifies the SELECT statement for
the connector to run on the table when it takes a
snapshot. The specified SELECT statement
determines the subset of table rows to include in the
snapshot. Use the following format to specify the
name of this SELECT statement property:

snapshot.select.statement.overrides.<databa
seName>.<tableName>. For example,
snapshot.select.statement.overrides.custom
ers.orders.

Example:

From a customers.orders table that includes the
soft-delete column, delete_flag, add the following
properties if you want a snapshot to include only
those records that are not soft-deleted:

"snapshot.select.statement.overrides":
"customer.orders",
"snapshot.select.statement.overrides.customer
.orders": "SELECT * FROM [customers].
[orders] WHERE delete_flag = 0 ORDER BY
id DESC"

In the resulting snapshot, the connector includes only
the records for which delete_flag = 0.

Property Default Description

CHAPTER 5. DEBEZIUM CONNECTOR FOR MYSQL

201

min.row.count.to.stream.r
esults

1000 During a snapshot, the connector queries each table
for which the connector is configured to capture
changes. The connector uses each query result to
produce a read event that contains data for all rows
in that table. This property determines whether the
MySQL connector puts results for a table into
memory, which is fast but requires large amounts of
memory, or streams the results, which can be slower
but work for very large tables. The setting of this
property specifies the minimum number of rows a
table must contain before the connector streams
results.

To skip all table size checks and always stream all
results during a snapshot, set this property to 0.

heartbeat.interval.ms 0 Controls how frequently the connector sends
heartbeat messages to a Kafka topic. The default
behavior is that the connector does not send
heartbeat messages.

Heartbeat messages are useful for monitoring
whether the connector is receiving change events
from the database. Heartbeat messages might help
decrease the number of change events that need to
be re-sent when a connector restarts. To send
heartbeat messages, set this property to a positive
integer, which indicates the number of milliseconds
between heartbeat messages.

heartbeat.topics.prefix __debezium-
heartbeat

Controls the name of the topic to which the
connector sends heartbeat messages. The topic
name has this pattern:

heartbeat.topics.prefix.server.name

For example, if the database server name is
fulfillment, the default topic name is __debezium-
heartbeat.fulfillment.

database.initial.statement
s

No default A semicolon separated list of SQL statements to be
executed when a JDBC connection, not the
connection that is reading the transaction log, to the
database is established. To specify a semicolon as a
character in a SQL statement and not as a delimiter,
use two semicolons, (;;).

The connector might establish JDBC connections at
its own discretion, so this property is ony for
configuring session parameters. It is not for
executing DML statements.

Property Default Description

Red Hat Integration 2022.Q2 Debezium User Guide

202

snapshot.delay.ms No default An interval in milliseconds that the connector should
wait before performing a snapshot when the
connector starts. If you are starting multiple
connectors in a cluster, this property is useful for
avoiding snapshot interruptions, which might cause
re-balancing of connectors.

snapshot.fetch.size No default During a snapshot, the connector reads table content
in batches of rows. This property specifies the
maximum number of rows in a batch.

snapshot.lock.timeout.ms 10000 Positive integer that specifies the maximum amount
of time (in milliseconds) to wait to obtain table locks
when performing a snapshot. If the connector cannot
acquire table locks in this time interval, the snapshot
fails. See how MySQL connectors perform database
snapshots.

enable.time.adjuster true Boolean value that indicates whether the connector
converts a 2-digit year specification to 4 digits. Set
to false when conversion is fully delegated to the
database.

MySQL allows users to insert year values with either
2-digits or 4-digits. For 2-digit values, the value gets
mapped to a year in the range 1970 - 2069. The
default behavior is that the connector does the
conversion.

sanitize.field.names true if connector
configuration sets
the
key.converter or
value.converter
property to the
Avro converter.
false if not.

Indicates whether field names are sanitized to
adhere to Avro naming requirements.

skipped.operations No default Comma-separated list of operation types to skip
during streaming. The following values are possible: c
for inserts/create, u for updates, d for deletes. By
default, no operations are skipped.

Property Default Description

CHAPTER 5. DEBEZIUM CONNECTOR FOR MYSQL

203

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#how-debezium-mysql-connectors-perform-database-snapshots
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#about-avro-name-requirements

signal.data.collection No default value Fully-qualified name of the data collection that is
used to send signals to the connector.
Use the following format to specify the collection
name:
<databaseName>.<tableName>

Signaling is a Technology Preview feature.

incremental.snapshot.chu
nk.size

1024 The maximum number of rows that the connector
fetches and reads into memory during an
incremental snapshot chunk. Increasing the chunk
size provides greater efficiency, because the
snapshot runs fewer snapshot queries of a greater
size. However, larger chunk sizes also require more
memory to buffer the snapshot data. Adjust the
chunk size to a value that provides the best
performance in your environment.

Incremental snapshots is a Technology Preview
feature.

read.only false Switch to alternative incremental snapshot
watermarks implementation to avoid writes to signal
data collection

provide.transaction.meta
data

false Determines whether the connector generates events
with transaction boundaries and enriches change
event envelopes with transaction metadata. Specify
true if you want the connector to do this. See
Transaction metadata for details.

Property Default Description

Debezium connector database history configuration properties

Debezium provides a set of database.history.* properties that control how the connector interacts with
the schema history topic.

The following table describes the database.history properties for configuring the Debezium connector.

Table 5.27. Connector database history configuration properties

Property Default Description

database.history.kafka.topic The full name of the Kafka topic where the connector
stores the database schema history.

Red Hat Integration 2022.Q2 Debezium User Guide

204

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#debezium-signaling-enabling-signaling
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#mysql-transaction-metadata

database.history.kafka.boots
trap.servers

 A list of host/port pairs that the connector uses for
establishing an initial connection to the Kafka cluster.
This connection is used for retrieving the database
schema history previously stored by the connector,
and for writing each DDL statement read from the
source database. Each pair should point to the same
Kafka cluster used by the Kafka Connect process.

database.history.kafka.recov
ery.poll.interval.ms

100 An integer value that specifies the maximum number
of milliseconds the connector should wait during
startup/recovery while polling for persisted data. The
default is 100ms.

database.history.kafka.recov
ery.attempts

4 The maximum number of times that the connector
should try to read persisted history data before the
connector recovery fails with an error. The maximum
amount of time to wait after receiving no data is
recovery.attempts x recovery.poll.interval.ms.

database.history.skip.unpar
seable.ddl

false A Boolean value that specifies whether the
connector should ignore malformed or unknown
database statements or stop processing so a human
can fix the issue. The safe default is false. Skipping
should be used only with care as it can lead to data
loss or mangling when the binlog is being processed.

database.history.store.only.
monitored.tables.ddl

Deprecated and scheduled for
removal in a future release; use
database.history.store.only.
captured.tables.ddl instead.

false A Boolean value that specifies whether the
connector should record all DDL statements

true records only those DDL statements that are
relevant to tables whose changes are being captured
by Debezium. Set to true with care because missing
data might become necessary if you change which
tables have their changes captured.

The safe default is false.

database.history.store.only.
captured.tables.ddl

false A Boolean value that specifies whether the
connector should record all DDL statements

true records only those DDL statements that are
relevant to tables whose changes are being captured
by Debezium. Set to true with care because missing
data might become necessary if you change which
tables have their changes captured.

The safe default is false.

Property Default Description

CHAPTER 5. DEBEZIUM CONNECTOR FOR MYSQL

205

Pass-through database history properties for configuring producer and consumer clients

Debezium relies on a Kafka producer to write schema changes to database history topics. Similarly, it
relies on a Kafka consumer to read from database history topics when a connector starts. You define the
configuration for the Kafka producer and consumer clients by assigning values to a set of pass-through
configuration properties that begin with the database.history.producer.* and
database.history.consumer.* prefixes. The pass-through producer and consumer database history
properties control a range of behaviors, such as how these clients secure connections with the Kafka
broker, as shown in the following example:

database.history.producer.security.protocol=SSL
database.history.producer.ssl.keystore.location=/var/private/ssl/kafka.server.keystore.jks
database.history.producer.ssl.keystore.password=test1234
database.history.producer.ssl.truststore.location=/var/private/ssl/kafka.server.truststore.jks
database.history.producer.ssl.truststore.password=test1234
database.history.producer.ssl.key.password=test1234

database.history.consumer.security.protocol=SSL
database.history.consumer.ssl.keystore.location=/var/private/ssl/kafka.server.keystore.jks
database.history.consumer.ssl.keystore.password=test1234
database.history.consumer.ssl.truststore.location=/var/private/ssl/kafka.server.truststore.jks
database.history.consumer.ssl.truststore.password=test1234
database.history.consumer.ssl.key.password=test1234

Debezium strips the prefix from the property name before it passes the property to the Kafka client.

See the Kafka documentation for more details about Kafka producer configuration properties and Kafka
consumer configuration properties.

Debezium connector Kafka signals configuration properties

When the MySQL connector is configured as read-only, the alternative for the signaling table is the
signals Kafka topic.

Debezium provides a set of signal.* properties that control how the connector interacts with the Kafka
signals topic.

The following table describes the signal properties.

Table 5.28. Kafka signals configuration properties

Property Default Description

signal.kafka.topic The name of the Kafka topic that the connector
monitors for ad hoc signals.

signal.kafka.bootstrap.serve
rs

 A list of host/port pairs that the connector uses for
establishing an initial connection to the Kafka cluster.
Each pair should point to the same Kafka cluster used
by the Kafka Connect process.

signal.kafka.poll.timeout.ms 100 An integer value that specifies the maximum number
of milliseconds the connector should wait when
polling signals. The default is 100ms.

Red Hat Integration 2022.Q2 Debezium User Guide

206

https://kafka.apache.org/documentation.html#producerconfigs
https://kafka.apache.org/documentation.html#consumerconfigs

Debezium connector pass-through signals Kafka consumer client configuration properties

The Debezium connector provides for pass-through configuration of the signals Kafka consumer. Pass-
through signals properties begin with the prefix signals.consumer.*. For example, the connector
passes properties such as signal.consumer.security.protocol=SSL to the Kafka consumer.

As is the case with the pass-through properties for database history clients , Debezium strips the prefixes
from the properties before it passes them to the Kafka signals consumer.

Debezium connector pass-through database driver configuration properties

The Debezium connector provides for pass-through configuration of the database driver. Pass-through
database properties begin with the prefix database.*. For example, the connector passes properties
such as database.foobar=false to the JDBC URL.

As is the case with the pass-through properties for database history clients , Debezium strips the prefixes
from the properties before it passes them to the database driver.

5.6. MONITORING DEBEZIUM MYSQL CONNECTOR PERFORMANCE

The Debezium MySQL connector provides three types of metrics that are in addition to the built-in
support for JMX metrics that Zookeeper, Kafka, and Kafka Connect provide.

Snapshot metrics provide information about connector operation while performing a snapshot.

Streaming metrics provide information about connector operation when the connector is
reading the binlog.

Schema history metrics provide information about the status of the connector’s schema history.

Debezium monitoring documentation provides details for how to expose these metrics by using JMX.

5.6.1. Monitoring Debezium during snapshots of MySQL databases

The MBean is debezium.mysql:type=connector-
metrics,context=snapshot,server=<mysql.server.name>.

Snapshot metrics are not exposed unless a snapshot operation is active, or if a snapshot has occurred
since the last connector start.

The following table lists the shapshot metrics that are available.

Attributes Type Description

LastEvent string The last snapshot event that
the connector has read.

MilliSecondsSinceLastEvent long The number of milliseconds
since the connector has read
and processed the most
recent event.

CHAPTER 5. DEBEZIUM CONNECTOR FOR MYSQL

207

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#monitoring-debezium-during-snapshots-of-mysql-databases
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#monitoring-debezium-mysql-connector-record-streaming
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#monitoring-debezium-mysql-connector-schema-history
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index

TotalNumberOfEventsSeen long The total number of events
that this connector has seen
since last started or reset.

NumberOfEventsFiltered long The number of events that
have been filtered by
include/exclude list filtering
rules configured on the
connector.

MonitoredTables
Deprecated and scheduled for removal in a
future release; use the CapturedTables
metric instead.

string[] The list of tables that are
monitored by the connector.

CapturedTables string[] The list of tables that are
captured by the connector.

QueueTotalCapacity int The length the queue used to
pass events between the
snapshotter and the main
Kafka Connect loop.

QueueRemainingCapacity int The free capacity of the
queue used to pass events
between the snapshotter and
the main Kafka Connect loop.

TotalTableCount int The total number of tables
that are being included in the
snapshot.

RemainingTableCount int The number of tables that the
snapshot has yet to copy.

SnapshotRunning boolean Whether the snapshot was
started.

SnapshotAborted boolean Whether the snapshot was
aborted.

SnapshotCompleted boolean Whether the snapshot
completed.

SnapshotDurationInSeconds long The total number of seconds
that the snapshot has taken
so far, even if not complete.

Attributes Type Description

Red Hat Integration 2022.Q2 Debezium User Guide

208

RowsScanned Map<String, Long> Map containing the number of
rows scanned for each table in
the snapshot. Tables are
incrementally added to the
Map during processing.
Updates every 10,000 rows
scanned and upon completing
a table.

MaxQueueSizeInBytes long The maximum buffer of the
queue in bytes. It will be
enabled if
max.queue.size.in.bytes is
passed with a positive long
value.

CurrentQueueSizeInBytes long The current data of records in
the queue in bytes.

Attributes Type Description

The connector also provides the following additional snapshot metrics when an incremental snapshot is
executed:

Attributes Type Description

ChunkId string The identifier of the current
snapshot chunk.

ChunkFrom string The lower bound of the
primary key set defining the
current chunk.

ChunkTo string The upper bound of the
primary key set defining the
current chunk.

TableFrom string The lower bound of the
primary key set of the
currently snapshotted table.

TableTo string The upper bound of the
primary key set of the
currently snapshotted table.

IMPORTANT

CHAPTER 5. DEBEZIUM CONNECTOR FOR MYSQL

209

IMPORTANT

Incremental snapshots is a Technology Preview feature only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs) and
might not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.
For more information about the support scope of Red Hat Technology Preview features,
see https://access.redhat.com/support/offerings/techpreview.

The Debezium MySQL connector also provides the HoldingGlobalLock custom snapshot metric. This
metric is set to a Boolean value that indicates whether the connector currently holds a global or table
write lock.

5.6.2. Monitoring Debezium MySQL connector record streaming

Transaction-related attributes are available only if binlog event buffering is enabled. See
binlog.buffer.size in the advanced connector configuration properties for more details.

The MBean is debezium.mysql:type=connector-
metrics,context=streaming,server=<mysql.server.name>.

The following table lists the streaming metrics that are available.

Attributes Type Description

LastEvent string The last streaming event that
the connector has read.

MilliSecondsSinceLastEvent long The number of milliseconds
since the connector has read
and processed the most
recent event.

TotalNumberOfEventsSeen long The total number of events
that this connector has seen
since last started or reset.

NumberOfEventsFiltered long The number of events that
have been filtered by
include/exclude list filtering
rules configured on the
connector.

MonitoredTables
Deprecated and scheduled for removal in a
future release; use the 'CapturedTables' metric
instead

string[] The list of tables that are
monitored by the connector.

CapturedTables string[] The list of tables that are
captured by the connector.

Red Hat Integration 2022.Q2 Debezium User Guide

210

https://access.redhat.com/support/offerings/techpreview
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#mysql-property-binlog-buffer-size

QueueTotalCapacity int The length the queue used to
pass events between the
streamer and the main Kafka
Connect loop.

QueueRemainingCapacity int The free capacity of the
queue used to pass events
between the streamer and the
main Kafka Connect loop.

Connected boolean Flag that denotes whether the
connector is currently
connected to the database
server.

MilliSecondsBehindSource long The number of milliseconds
between the last change
event’s timestamp and the
connector processing it. The
values will incoporate any
differences between the
clocks on the machines where
the database server and the
connector are running.

NumberOfCommittedTransactions long The number of processed
transactions that were
committed.

SourceEventPosition Map<String, String> The coordinates of the last
received event.

LastTransactionId string Transaction identifier of the
last processed transaction.

MaxQueueSizeInBytes long The maximum buffer of the
queue in bytes.

CurrentQueueSizeInBytes long The current data of records in
the queue in bytes.

Attributes Type Description

The Debezium MySQL connector also provides the following additional streaming metrics:

Table 5.29. Descriptions of additional streaming metrics

CHAPTER 5. DEBEZIUM CONNECTOR FOR MYSQL

211

Attribute Type Description

BinlogFilename string The name of the binlog file that the connector has
most recently read.

BinlogPosition long The most recent position (in bytes) within the binlog
that the connector has read.

IsGtidModeEnabled boolean Flag that denotes whether the connector is currently
tracking GTIDs from MySQL server.

GtidSet string The string representation of the most recent GTID
set processed by the connector when reading the
binlog.

NumberOfSkippedEvents long The number of events that have been skipped by the
MySQL connector. Typically events are skipped due
to a malformed or unparseable event from MySQL’s
binlog.

NumberOfDisconnects long The number of disconnects by the MySQL
connector.

NumberOfRolledBackTra
nsactions

long The number of processed transactions that were
rolled back and not streamed.

NumberOfNotWellFormed
Transactions

long The number of transactions that have not conformed
to the expected protocol of BEGIN +
COMMIT/ROLLBACK. This value should be 0
under normal conditions.

NumberOfLargeTransacti
ons

long The number of transactions that have not fit into the
look-ahead buffer. For optimal performance, this
value should be significantly smaller than
NumberOfCommittedTransactions and
NumberOfRolledBackTransactions.

5.6.3. Monitoring Debezium MySQL connector schema history

The MBean is debezium.mysql:type=connector-metrics,context=schema-
history,server=<mysql.server.name>.

The following table lists the schema history metrics that are available.

Attributes Type Description

Red Hat Integration 2022.Q2 Debezium User Guide

212

Status string One of STOPPED,
RECOVERING (recovering
history from the storage),
RUNNING describing the
state of the database history.

RecoveryStartTime long The time in epoch seconds at
what recovery has started.

ChangesRecovered long The number of changes that
were read during recovery
phase.

ChangesApplied long the total number of schema
changes applied during
recovery and runtime.

MilliSecondsSinceLast
RecoveredChange

long The number of milliseconds
that elapsed since the last
change was recovered from
the history store.

MilliSecondsSinceLast AppliedChange long The number of milliseconds
that elapsed since the last
change was applied.

LastRecoveredChange string The string representation of
the last change recovered
from the history store.

LastAppliedChange string The string representation of
the last applied change.

Attributes Type Description

5.7. HOW DEBEZIUM MYSQL CONNECTORS HANDLE FAULTS AND
PROBLEMS

Debezium is a distributed system that captures all changes in multiple upstream databases; it never
misses or loses an event. When the system is operating normally or being managed carefully then
Debezium provides exactly once delivery of every change event record.

If a fault does happen then the system does not lose any events. However, while it is recovering from the
fault, it might repeat some change events. In these abnormal situations, Debezium, like Kafka, provides
at least once delivery of change events.

Details are in the following sections:

Configuration and startup errors

CHAPTER 5. DEBEZIUM CONNECTOR FOR MYSQL

213

MySQL becomes unavailable

Kafka Connect stops gracefully

Kafka Connect process crashes

Kafka becomes unavailable

MySQL purges binlog files

Configuration and startup errors

In the following situations, the connector fails when trying to start, reports an error or exception in the
log, and stops running:

The connector’s configuration is invalid.

The connector cannot successfully connect to the MySQL server by using the specified
connection parameters.

The connector is attempting to restart at a position in the binlog for which MySQL no longer has
the history available.

In these cases, the error message has details about the problem and possibly a suggested workaround.
After you correct the configuration or address the MySQL problem, restart the connector.

MySQL becomes unavailable

If your MySQL server becomes unavailable, the Debezium MySQL connector fails with an error and the
connector stops. When the server is available again, restart the connector.

However, if GTIDs are enabled for a highly available MySQL cluster, you can restart the connector
immediately. It will connect to a different MySQL server in the cluster, find the location in the server’s
binlog that represents the last transaction, and begin reading the new server’s binlog from that specific
location.

If GTIDs are not enabled, the connector records the binlog position of only the MySQL server to which it
was connected. To restart from the correct binlog position, you must reconnect to that specific server.

Kafka Connect stops gracefully

When Kafka Connect stops gracefully, there is a short delay while the Debezium MySQL connector tasks
are stopped and restarted on new Kafka Connect processes.

Kafka Connect process crashes

If Kafka Connect crashes, the process stops and any Debezium MySQL connector tasks terminate
without their most recently-processed offsets being recorded. In distributed mode, Kafka Connect
restarts the connector tasks on other processes. However, the MySQL connector resumes from the last
offset recorded by the earlier processes. This means that the replacement tasks might generate some
of the same events processed prior to the crash, creating duplicate events.

Each change event message includes source-specific information that you can use to identify duplicate
events, for example:

Event origin

MySQL server’s event time

Red Hat Integration 2022.Q2 Debezium User Guide

214

The binlog file name and position

GTIDs (if used)

Kafka becomes unavailable

The Kafka Connect framework records Debezium change events in Kafka by using the Kafka producer
API. If the Kafka brokers become unavailable, the Debezium MySQL connector pauses until the
connection is reestablished and the connector resumes where it left off.

MySQL purges binlog files

If the Debezium MySQL connector stops for too long, the MySQL server purges older binlog files and
the connector’s last position may be lost. When the connector is restarted, the MySQL server no longer
has the starting point and the connector performs another initial snapshot. If the snapshot is disabled,
the connector fails with an error.

See snapshots for details about how MySQL connectors perform initial snapshots.

CHAPTER 5. DEBEZIUM CONNECTOR FOR MYSQL

215

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#how-debezium-mysql-connectors-perform-database-snapshots

CHAPTER 6. DEBEZIUM CONNECTOR FOR ORACLE
(TECHNOLOGY PREVIEW)

Debezium’s Oracle connector captures and records row-level changes that occur in databases on an
Oracle server, including tables that are added while the connector is running. You can configure the
connector to emit change events for specific subsets of schemas and tables, or to ignore, mask, or
truncate values in specific columns.

For information about the Oracle Database versions that are compatible with this connector, see the
Debezium Supported Configurations page .

Debezium ingests change events from Oracle by using the native LogMiner database package .

IMPORTANT

Debezium Oracle connector is a Technology Preview feature only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs) and
might not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.
For more information about the support scope of Red Hat Technology Preview features,
see https://access.redhat.com/support/offerings/techpreview.

Information and procedures for using a Debezium Oracle connector are organized as follows:

Section 6.1, “How Debezium Oracle connectors work”

Section 6.2, “Descriptions of Debezium Oracle connector data change events”

Section 6.3, “How Debezium Oracle connectors map data types”

Section 6.4, “Setting up Oracle to work with Debezium”

Section 6.5, “Deployment of Debezium Oracle connectors”

Section 6.7, “Monitoring Debezium Oracle connector performance”

Section 6.8, “How Debezium Oracle connectors handle faults and problems”

6.1. HOW DEBEZIUM ORACLE CONNECTORS WORK

To optimally configure and run a Debezium Oracle connector, it is helpful to understand how the
connector performs snapshots, streams change events, determines Kafka topic names, and uses
metadata.

Details are in the following topics:

Section 6.1.1, “How Debezium Oracle connectors perform database snapshots”

Section 6.1.2, “Default names of Kafka topics that receive Debezium Oracle change event
records”

Section 6.1.3, “How Debezium Oracle connectors expose database schema changes”

Section 6.1.4, “Debezium Oracle connector-generated events that represent transaction

Red Hat Integration 2022.Q2 Debezium User Guide

216

https://access.redhat.com/articles/4938181
https://access.redhat.com/support/offerings/techpreview

Section 6.1.4, “Debezium Oracle connector-generated events that represent transaction
boundaries”

6.1.1. How Debezium Oracle connectors perform database snapshots

Typically, the redo logs on an Oracle server are configured to not retain the complete history of the
database. As a result, the Debezium Oracle connector cannot retrieve the entire history of the database
from the logs. To enable the connector to establish a baseline for the current state of the database, the
first time that the connector starts, it performs an initial consistent snapshot of the database.

You can customize the way that the connector creates snapshots by setting the value of the
snapshot.mode connector configuration property. By default, the connector’s snapshot mode is set to
initial.

Default connector workflow for creating an initial snapshot

When the snapshot mode is set to the default, the connector completes the following tasks to create a
snapshot:

1. Determines the tables to be captured

2. Obtains a ROW SHARE MODE lock on each of the monitored tables to prevent structural
changes from occurring during creation of the snapshot. Debezium holds the locks for only a
short time.

3. Reads the current system change number (SCN) position from the server’s redo log.

4. Captures the structure of all relevant tables.

5. Releases the locks obtained in Step 2.

6. Scans all of the relevant database tables and schemas as valid at the SCN position that was
read in Step 3 (SELECT * FROM … AS OF SCN 123), generates a READ event for each row,
and then writes the event records to the table-specific Kafka topic.

7. Records the successful completion of the snapshot in the connector offsets.

After the snapshot process begins, if the process is interrupted due to connector failure, rebalancing, or
other reasons, the process restarts after the connector restarts. After the connector completes the
initial snapshot, it continues streaming from the position that it read in Step 3 so that it does not miss
any updates. If the connector stops again for any reason, after it restarts, it resumes streaming changes
from where it previously left off.

Table 6.1. Settings for snapshot.mode connector configuration property

Setting Description

initial The connector performs a database snapshot as described in the default
workflow for creating an initial snapshot. After the snapshot completes, the
connector begins to stream event records for subsequent database
changes.

schema_only The connector captures the structure of all relevant tables, performing all of
the steps described in the default snapshot workflow, except that it does
not create READ events to represent the data set at the point of the
connector’s start-up (Step 6).

CHAPTER 6. DEBEZIUM CONNECTOR FOR ORACLE (TECHNOLOGY PREVIEW)

217

6.1.1.1. Ad hoc snapshots

IMPORTANT

The use of ad hoc snapshots is a Technology Preview feature. Technology Preview
features are not supported with Red Hat production service-level agreements (SLAs) and
might not be functionally complete; therefore, Red Hat does not recommend
implementing any Technology Preview features in production environments. This
Technology Preview feature provides early access to upcoming product innovations,
enabling you to test functionality and provide feedback during the development process.
For more information about support scope, see Technology Preview Features Support
Scope.

By default, a connector runs an initial snapshot operation only after it starts for the first time. Following
this initial snapshot, under normal circumstances, the connector does not repeat the snapshot process.
Any future change event data that the connector captures comes in through the streaming process
only.

However, in some situations the data that the connector obtained during the initial snapshot might
become stale, lost, or incomplete. To provide a mechanism for recapturing table data, Debezium
includes an option to perform ad hoc snapshots. The following changes in a database might be cause for
performing an ad hoc snapshot:

The connector configuration is modified to capture a different set of tables.

Kafka topics are deleted and must be rebuilt.

Data corruption occurs due to a configuration error or some other problem.

You can re-run a snapshot for a table for which you previously captured a snapshot by initiating a so-
called ad-hoc snapshot . Ad hoc snapshots require the use of signaling tables. You initiate an ad hoc
snapshot by sending a signal request to the Debezium signaling table.

When you initiate an ad hoc snapshot of an existing table, the connector appends content to the topic
that already exists for the table. If a previously existing topic was removed, Debezium can create a topic
automatically if automatic topic creation is enabled.

Ad hoc snapshot signals specify the tables to include in the snapshot. The snapshot can capture the
entire contents of the database, or capture only a subset of the tables in the database.

You specify the tables to capture by sending an execute-snapshot message to the signaling table. Set
the type of the execute-snapshot signal to incremental, and provide the names of the tables to
include in the snapshot, as described in the following table:

Table 6.2. Example of an ad hoc execute-snapshot signal record

Field Default Value

type incremental Specifies the type of snapshot that you want to run.
Setting the type is optional. Currently, you can request only
incremental snapshots.

Red Hat Integration 2022.Q2 Debezium User Guide

218

https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#sending-signals-to-a-debezium-connector
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index.xml#customizing-debezium-automatically-created-topics

data-collections N/A An array that contains the fully-qualified names of the table to
be snapshotted.
The format of the names is the same as for the
signal.data.collection configuration option.

Field Default Value

Triggering an ad hoc snapshot

You initiate an ad hoc snapshot by adding an entry with the execute-snapshot signal type to the
signaling table. After the connector processes the message, it begins the snapshot operation. The
snapshot process reads the first and last primary key values and uses those values as the start and end
point for each table. Based on the number of entries in the table, and the configured chunk size,
Debezium divides the table into chunks, and proceeds to snapshot each chunk, in succession, one at a
time.

Currently, the execute-snapshot action type triggers incremental snapshots only. For more
information, see Incremental snapshots.

6.1.1.2. Incremental snapshots

IMPORTANT

The use of incremental snapshots is a Technology Preview feature. Technology Preview
features are not supported with Red Hat production service-level agreements (SLAs) and
might not be functionally complete; therefore, Red Hat does not recommend
implementing any Technology Preview features in production environments. This
Technology Preview feature provides early access to upcoming product innovations,
enabling you to test functionality and provide feedback during the development process.
For more information about support scope, see Technology Preview Features Support
Scope.

To provide flexibility in managing snapshots, Debezium includes a supplementary snapshot mechanism,
known as incremental snapshotting . Incremental snapshots rely on the Debezium mechanism for sending
signals to a Debezium connector.

In an incremental snapshot, instead of capturing the full state of a database all at once, as in an initial
snapshot, Debezium captures each table in phases, in a series of configurable chunks. You can specify
the tables that you want the snapshot to capture and the size of each chunk . The chunk size determines
the number of rows that the snapshot collects during each fetch operation on the database. The default
chunk size for incremental snapshots is 1 KB.

As an incremental snapshot proceeds, Debezium uses watermarks to track its progress, maintaining a
record of each table row that it captures. This phased approach to capturing data provides the following
advantages over the standard initial snapshot process:

You can run incremental snapshots in parallel with streamed data capture, instead of postponing
streaming until the snapshot completes. The connector continues to capture near real-time
events from the change log throughout the snapshot process, and neither operation blocks the
other.

If the progress of an incremental snapshot is interrupted, you can resume it without losing any

CHAPTER 6. DEBEZIUM CONNECTOR FOR ORACLE (TECHNOLOGY PREVIEW)

219

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index.xml#debezium-signaling-incremental-snapshots
https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index.xml#sending-signals-to-a-debezium-connector

If the progress of an incremental snapshot is interrupted, you can resume it without losing any
data. After the process resumes, the snapshot begins at the point where it stopped, rather than
recapturing the table from the beginning.

You can run an incremental snapshot on demand at any time, and repeat the process as needed
to adapt to database updates. For example, you might re-run a snapshot after you modify the
connector configuration to add a table to its table.include.list property.

Incremental snapshot process

When you run an incremental snapshot, Debezium sorts each table by primary key and then splits the
table into chunks based on the configured chunk size. Working chunk by chunk, it then captures each
table row in a chunk. For each row that it captures, the snapshot emits a READ event. That event
represents the value of the row when the snapshot for the chunk began.

As a snapshot proceeds, it’s likely that other processes continue to access the database, potentially
modifying table records. To reflect such changes, INSERT, UPDATE, or DELETE operations are
committed to the transaction log as per usual. Similarly, the ongoing Debezium streaming process
continues to detect these change events and emits corresponding change event records to Kafka.

How Debezium resolves collisions among records with the same primary key

In some cases, the UPDATE or DELETE events that the streaming process emits are received out of
sequence. That is, the streaming process might emit an event that modifies a table row before the
snapshot captures the chunk that contains the READ event for that row. When the snapshot eventually
emits the corresponding READ event for the row, its value is already superseded. To ensure that
incremental snapshot events that arrive out of sequence are processed in the correct logical order,
Debezium employs a buffering scheme for resolving collisions. Only after collisions between the
snapshot events and the streamed events are resolved does Debezium emit an event record to Kafka.

Snapshot window

To assist in resolving collisions between late-arriving READ events and streamed events that modify
the same table row, Debezium employs a so-called snapshot window. The snapshot windows demarcates
the interval during which an incremental snapshot captures data for a specified table chunk. Before the
snapshot window for a chunk opens, Debezium follows its usual behavior and emits events from the
transaction log directly downstream to the target Kafka topic. But from the moment that the snapshot
for a particular chunk opens, until it closes, Debezium performs a de-duplication step to resolve
collisions between events that have the same primary key..

For each data collection, the Debezium emits two types of events, and stores the records for them both
in a single destination Kafka topic. The snapshot records that it captures directly from a table are
emitted as READ operations. Meanwhile, as users continue to update records in the data collection, and
the transaction log is updated to reflect each commit, Debezium emits UPDATE or DELETE operations
for each change.

As the snapshot window opens, and Debezium begins processing a snapshot chunk, it delivers snapshot
records to a memory buffer. During the snapshot windows, the primary keys of the READ events in the
buffer are compared to the primary keys of the incoming streamed events. If no match is found, the
streamed event record is sent directly to Kafka. If Debezium detects a match, it discards the buffered
READ event, and writes the streamed record to the destination topic, because the streamed event
logically supersede the static snapshot event. After the snapshot window for the chunk closes, the
buffer contains only READ events for which no related transaction log events exist. Debezium emits
these remaining READ events to the table’s Kafka topic.

The connector repeats the process for each snapshot chunk.

Triggering an incremental snapshot

Red Hat Integration 2022.Q2 Debezium User Guide

220

Currently, the only way to initiate an incremental snapshot is to send an ad hoc snapshot signal to the
signaling table on the source database. You submit signals to the table as SQL INSERT queries. After
Debezium detects the change in the signaling table, it reads the signal, and runs the requested snapshot
operation.

The query that you submit specifies the tables to include in the snapshot, and, optionally, specifies the
kind of snapshot operation. Currently, the only valid option for snapshots operations is the default value,
incremental.

To specify the tables to include in the snapshot, provide a data-collections array that lists the tables,
for example,
{"data-collections": ["public.MyFirstTable", "public.MySecondTable"]}

The data-collections array for an incremental snapshot signal has no default value. If the data-
collections array is empty, Debezium detects that no action is required and does not perform a
snapshot.

Prerequisites

Signaling is enabled.

A signaling data collection exists on the source database and the connector is configured to
capture it.

The signaling data collection is specified in the signal.data.collection property.

Procedure

1. Send a SQL query to add the ad hoc incremental snapshot request to the signaling table:

For example,

The values of the id,type, and data parameters in the command correspond to the fields of the
signaling table.

The following table describes the these parameters:

Table 6.3. Descriptions of fields in a SQL command for sending an incremental snapshot
signal to the signaling table

Value Description

myschema.de
bezium_signal

Specifies the fully-qualified name of the signaling table on the source database

INSERT INTO _<signalTable>_ (id, type, data) VALUES (_'<id>'_, _'<snapshotType>'_,
'{"data-collections": ["_<tableName>_","_<tableName>_"],"type":"_<snapshotType>_"}');

INSERT INTO myschema.debezium_signal (id, type, data) VALUES('ad-hoc-1', 'execute-
snapshot', '{"data-collections": ["schema1.table1", "schema2.table2"],"type":"incremental"}');

CHAPTER 6. DEBEZIUM CONNECTOR FOR ORACLE (TECHNOLOGY PREVIEW)

221

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index.xml#debezium-signaling-ad-hoc-snapshots
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index.xml#debezium-signaling-enabling-signaling
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index.xml#debezium-signaling-required-structure-of-a-signaling-data-collection

ad-hoc-1 The id parameter specifies an arbitrary string that is assigned as the id identifier
for the signal request.
Use this string to identify logging messages to entries in the signaling table.
Debezium does not use this string. Rather, during the snapshot, Debezium
generates its own id string as a watermarking signal.

execute-
snapshot

Specifies type parameter specifies the operation that the signal is intended to
trigger.

data-
collections

A required component of the data field of a signal that specifies an array of
table names to include in the snapshot.
The array lists tables by their fully-qualified names, using the same format as you
use to specify the name of the connector’s signaling table in the
signal.data.collection configuration property.

incremental An optional type component of the data field of a signal that specifies the kind
of snapshot operation to run.
Currently, the only valid option is the default value, incremental.
Specifying a type value in the SQL query that you submit to the signaling table
is optional.
If you do not specify a value, the connector runs an incremental snapshot.

Value Description

The following example, shows the JSON for an incremental snapshot event that is captured by a
connector.

Example: Incremental snapshot event message

Item Field name Description

{
 "before":null,
 "after": {
 "pk":"1",
 "value":"New data"
 },
 "source": {
 ...
 "snapshot":"incremental" 1
 },
 "op":"r", 2
 "ts_ms":"1620393591654",
 "transaction":null
}

Red Hat Integration 2022.Q2 Debezium User Guide

222

1 snapshot Specifies the type of snapshot operation to run.
Currently, the only valid option is the default value, incremental.
Specifying a type value in the SQL query that you submit to the
signaling table is optional.
If you do not specify a value, the connector runs an incremental
snapshot.

2 op Specifies the event type.
The value for snapshot events is r, signifying a READ operation.

Item Field name Description

WARNING

The Debezium connector for Oracle does not support schema changes while an
incremental snapshot is running.

6.1.2. Default names of Kafka topics that receive Debezium Oracle change event
records

By default, the Oracle connector writes change events for all INSERT, UPDATE, and DELETE
operations that occur in a table to a single Apache Kafka topic that is specific to that table. The
connector uses the following convention to name change event topics:

serverName.schemaName.tableName

The following list provides definitions for the components of the default name:

serverName

The logical name of the server as specified by the database.server.name connector configuration
property.

schemaName

The name of the schema in which the operation occurred.

tableName

The name of the table in which the operation occurred.

For example, if fulfillment is the server name, inventory is the schema name, and the database contains
tables with the names orders, customers, and products, the Debezium Oracle connector emits events
to the following Kafka topics, one for each table in the database:

fulfillment.inventory.orders
fulfillment.inventory.customers
fulfillment.inventory.products

The connector applies similar naming conventions to label its internal database history topics, schema
change topics, and transaction metadata topics.

CHAPTER 6. DEBEZIUM CONNECTOR FOR ORACLE (TECHNOLOGY PREVIEW)

223

If the default topic name do not meet your requirements, you can configure custom topic names. To
configure custom topic names, you specify regular expressions in the logical topic routing SMT. For
more information about using the logical topic routing SMT to customize topic naming, see Topic
routing.

6.1.3. How Debezium Oracle connectors expose database schema changes

You can configure a Debezium Oracle connector to produce schema change events that describe
schema changes that are applied to captured tables in the database. The connector writes schema
change events to a Kafka topic named <serverName>, where serverName is the logical server name
that is specified in the database.server.name configuration property.

Debezium emits a new message to this topic whenever it streams data from a new table.

Messages that the connector sends to the schema change topic contain a payload, and, optionally, also
contain the schema of the change event message. The payload of a schema change event message
includes the following elements:

ddl

Provides the SQL CREATE, ALTER, or DROP statement that results in the schema change.

databaseName

The name of the database to which the statements are applied. The value of databaseName serves
as the message key.

tableChanges

A structured representation of the entire table schema after the schema change. The tableChanges
field contains an array that includes entries for each column of the table. Because the structured
representation presents data in JSON or Avro format, consumers can easily read messages without
first processing them through a DDL parser.

IMPORTANT

When the connector is configured to capture a table, it stores the history of the table’s
schema changes not only in the schema change topic, but also in an internal database
history topic. The internal database history topic is for connector use only and it is not
intended for direct use by consuming applications. Ensure that applications that require
notifications about schema changes consume that information only from the schema
change topic.

IMPORTANT

Never partition the database history topic. For the database history topic to function
correctly, it must maintain a consistent, global order of the event records that the
connector emits to it.

To ensure that the topic is not split among partitions, set the partition count for the topic
by using one of the following methods:

If you create the database history topic manually, specify a partition count of 1.

If you use the Apache Kafka broker to create the database history topic
automatically, the topic is created, set the value of the Kafka num.partitions
configuration option to 1.

Red Hat Integration 2022.Q2 Debezium User Guide

224

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#routing-debezium-event-records-to-topics-that-you-specify
https://kafka.apache.org/documentation/#brokerconfigs_num.partitions

Example: Message emitted to the Oracle connector schema change topic

The following example shows a typical schema change message in JSON format. The message contains
a logical representation of the table schema.

{
 "schema": {
 ...
 },
 "payload": {
 "source": {
 "version": "1.7.2.Final",
 "connector": "oracle",
 "name": "server1",
 "ts_ms": 1588252618953,
 "snapshot": "true",
 "db": "ORCLPDB1",
 "schema": "DEBEZIUM",
 "table": "CUSTOMERS",
 "txId" : null,
 "scn" : "1513734",
 "commit_scn": "1513734",
 "lcr_position" : null
 },
 "databaseName": "ORCLPDB1", 1
 "schemaName": "DEBEZIUM", //
 "ddl": "CREATE TABLE \"DEBEZIUM\".\"CUSTOMERS\" \n (\"ID\" NUMBER(9,0) NOT NULL
ENABLE, \n \"FIRST_NAME\" VARCHAR2(255), \n \"LAST_NAME" VARCHAR2(255), \n
\"EMAIL\" VARCHAR2(255), \n PRIMARY KEY (\"ID\") ENABLE, \n SUPPLEMENTAL LOG
DATA (ALL) COLUMNS\n) SEGMENT CREATION IMMEDIATE \n PCTFREE 10 PCTUSED 40
INITRANS 1 MAXTRANS 255 \n NOCOMPRESS LOGGING\n STORAGE(INITIAL 65536 NEXT
1048576 MINEXTENTS 1 MAXEXTENTS 2147483645\n PCTINCREASE 0 FREELISTS 1
FREELIST GROUPS 1\n BUFFER_POOL DEFAULT FLASH_CACHE DEFAULT
CELL_FLASH_CACHE DEFAULT)\n TABLESPACE \"USERS\" ", 2
 "tableChanges": [3
 {
 "type": "CREATE", 4
 "id": "\"ORCLPDB1\".\"DEBEZIUM\".\"CUSTOMERS\"", 5
 "table": { 6
 "defaultCharsetName": null,
 "primaryKeyColumnNames": [7
 "ID"
],
 "columns": [8
 {
 "name": "ID",
 "jdbcType": 2,
 "nativeType": null,
 "typeName": "NUMBER",
 "typeExpression": "NUMBER",
 "charsetName": null,
 "length": 9,
 "scale": 0,
 "position": 1,
 "optional": false,

CHAPTER 6. DEBEZIUM CONNECTOR FOR ORACLE (TECHNOLOGY PREVIEW)

225

Table 6.4. Descriptions of fields in messages emitted to the schema change topic

 "autoIncremented": false,
 "generated": false
 },
 {
 "name": "FIRST_NAME",
 "jdbcType": 12,
 "nativeType": null,
 "typeName": "VARCHAR2",
 "typeExpression": "VARCHAR2",
 "charsetName": null,
 "length": 255,
 "scale": null,
 "position": 2,
 "optional": false,
 "autoIncremented": false,
 "generated": false
 },
 {
 "name": "LAST_NAME",
 "jdbcType": 12,
 "nativeType": null,
 "typeName": "VARCHAR2",
 "typeExpression": "VARCHAR2",
 "charsetName": null,
 "length": 255,
 "scale": null,
 "position": 3,
 "optional": false,
 "autoIncremented": false,
 "generated": false
 },
 {
 "name": "EMAIL",
 "jdbcType": 12,
 "nativeType": null,
 "typeName": "VARCHAR2",
 "typeExpression": "VARCHAR2",
 "charsetName": null,
 "length": 255,
 "scale": null,
 "position": 4,
 "optional": false,
 "autoIncremented": false,
 "generated": false
 }
]
 }
 }
]
 }
}

Red Hat Integration 2022.Q2 Debezium User Guide

226

Item Field name Description

1 databaseName
schemaName

Identifies the database and the schema that contains
the change.

2 ddl This field contains the DDL that is responsible for the
schema change.

3 tableChanges An array of one or more items that contain the
schema changes generated by a DDL command.

4 type Describes the kind of change. The value is one of the
following:

CREATE
Table created.

ALTER
Table modified.

DROP
Table deleted.

5 id Full identifier of the table that was created, altered,
or dropped. In the case of a table rename, this
identifier is a concatenation of <old>,<new> table
names.

6 table Represents table metadata after the applied change.

7 primaryKeyColumnNames List of columns that compose the table’s primary key.

8 columns Metadata for each column in the changed table.

In messages that the connector sends to the schema change topic, the message key is the name of the
database that contains the schema change. In the following example, the payload field contains the key:

{
 "schema": {
 "type": "struct",
 "fields": [
 {
 "type": "string",
 "optional": false,
 "field": "databaseName"
 }
],
 "optional": false,
 "name": "io.debezium.connector.oracle.SchemaChangeKey"
 },

CHAPTER 6. DEBEZIUM CONNECTOR FOR ORACLE (TECHNOLOGY PREVIEW)

227

6.1.4. Debezium Oracle connector-generated events that represent transaction
boundaries

Debezium can generate events that represent transaction metadata boundaries and that enrich data
change event messages.

LIMITS ON WHEN DEBEZIUM RECEIVES TRANSACTION METADATA

Debezium registers and receives metadata only for transactions that occur after you
deploy the connector. Metadata for transactions that occur before you deploy the
connector is not available.

Database transactions are represented by a statement block that is enclosed between the BEGIN and
END keywords. Debezium generates transaction boundary events for the BEGIN and END delimiters in
every transaction. Transaction boundary events contain the following fields:

status

BEGIN or END

id

String representation of unique transaction identifier.

event_count (for END events)

Total number of events emmitted by the transaction.

data_collections (for END events)

An array of pairs of data_collection and event_count elements that indicates number of events
that the connector emits for changes that originate from a data collection.

The following example shows a typical transaction boundary message:

Example: Oracle connector transaction boundary event

 "payload": {
 "databaseName": "ORCLPDB1"
 }
}

{
 "status": "BEGIN",
 "id": "5.6.641",
 "event_count": null,
 "data_collections": null
}

{
 "status": "END",
 "id": "5.6.641",
 "event_count": 2,
 "data_collections": [
 {
 "data_collection": "ORCLPDB1.DEBEZIUM.CUSTOMER",
 "event_count": 1
 },
 {

Red Hat Integration 2022.Q2 Debezium User Guide

228

The connector emits transaction events to the <database.server.name>.transaction topic.

6.1.4.1. Change data event enrichment

When transaction metadata is enabled, the data message Envelope is enriched with a new transaction
field. This field provides information about every event in the form of a composite of fields:

id

String representation of unique transaction identifier.

total_order

The absolute position of the event among all events generated by the transaction.

data_collection_order

The per-data collection position of the event among all events that were emitted by the transaction.

The following example shows a typical transaction event message:

Event buffering

Oracle writes all changes to the redo logs in the order in which they occur, including changes that are
later discarded by a rollback. As a result, concurrent changes from separate transactions are intertwined.
When the connector first reads the stream of changes, because it cannot immediately determine which
changes are committed or rolled back, it temporarily stores the change events in an internal buffer. After
a change is committed, the connector writes the change event from the buffer to Kafka. The connector
drops change events that are discarded by a rollback.

You can configure the buffering mechanism that the connector uses by setting the property
log.mining.buffer.type.

Heap

 "data_collection": "ORCLPDB1.DEBEZIUM.ORDER",
 "event_count": 1
 }
]
}

{
 "before": null,
 "after": {
 "pk": "2",
 "aa": "1"
 },
 "source": {
...
 },
 "op": "c",
 "ts_ms": "1580390884335",
 "transaction": {
 "id": "5.6.641",
 "total_order": "1",
 "data_collection_order": "1"
 }
}

CHAPTER 6. DEBEZIUM CONNECTOR FOR ORACLE (TECHNOLOGY PREVIEW)

229

The default buffer type is configured using memory. Under the default memory setting, the connector
uses the heap memory of the JVM process to allocate and manage buffered event records. If you use
the memory buffer setting, be sure that the amount of memory that you allocate to the Java process
can accommodate long-running and large transactions in your environment.

6.1.5. Gaps between Oracle SCN values

When the Debezium Oracle connector is configured to use LogMiner, it collects change events from
Oracle by using a start and end range that is based on system change numbers (SCNs). The connector
manages this range automatically, increasing or decreasing the range depending on whether the
connector is able to stream changes in near real-time, or must process a backlog because of large or
bulk transactions in the database.

Under certain circumstances, the Oracle database advances the system change number by an unusually
high amount, rather than increasing it at a constant rate. Such a jump in the SCN value can occur
because of the way that a particular integration interacts with the database, or as a result of events such
as hot backups.

The Debezium Oracle connector relies on the following configuration properties to detect the SCN gap
and adjust the mining range.

log.mining.scn.gap.detection.gap.size.min

Specifies the minimum gap size.

log.mining.scn.gap.detection.time.interval.max.ms

Specifies the maximum time interval.

The connector first compares the difference in the number of changes between the current SCN and
the highest SCN in the current mining range. If this difference is greater than the minimum gap size, then
the connector has potentially detected a SCN gap. To confirm whether a gap exists, the connector next
compares the timestamps of the current SCN and the SCN at the end of the previous mining range. If
the difference between the timestamps is less than the maximum time interval, then the existence of an
SCN gap is confirmed.

When an SCN gap occurs, the Debezium connector automatically uses the current SCN as the end point
for the range of the current mining session. This allows the connector to quickly catch up to the real-
time events without mining smaller ranges in between that return no changes because the SCN value
was increased by an unexpectedly large number. Additionally, the connector will ignore the mining
maximum batch size for this iteration only when this occurs.

WARNING

SCN gap detection is available only if the large SCN increment occurs while the
connector is running and processing near real-time events.

6.2. DESCRIPTIONS OF DEBEZIUM ORACLE CONNECTOR DATA
CHANGE EVENTS

Every data change event that the Oracle connector emits has a key and a value. The structures of the

Red Hat Integration 2022.Q2 Debezium User Guide

230

Every data change event that the Oracle connector emits has a key and a value. The structures of the
key and value depend on the table from which the change events originate. For information about how
Debezium constructs topic names, see Topic names).

WARNING

The Debezium Oracle connector ensures that all Kafka Connect schema names are
valid Avro schema names . This means that the logical server name must start with
alphabetic characters or an underscore ([a-z,A-Z,_]), and the remaining characters
in the logical server name and all characters in the schema and table names must be
alphanumeric characters or an underscore ([a-z,A-Z,0-9,_]). The connector
automatically replaces invalid characters with an underscore character.

Unexpected naming conflicts can result when the only distinguishing characters
between multiple logical server names, schema names, or table names are not valid
characters, and those characters are replaced with underscores.

Debezium and Kafka Connect are designed around continuous streams of event messages . However, the
structure of these events might change over time, which can be difficult for topic consumers to handle.
To facilitate the processing of mutable event structures, each event in Kafka Connect is self-contained.
Every message key and value has two parts: a schema and payload. The schema describes the structure
of the payload, while the payload contains the actual data.

WARNING

Changes that are performed by the SYS or SYSTEM user accounts are not
captured by the connector.

The following topics contain more details about data change events:

Section 6.2.1, “About keys in Debezium Oracle connector change events”

Section 6.2.2, “About values in Debezium Oracle connector change events”

6.2.1. About keys in Debezium Oracle connector change events

For each changed table, the change event key is structured such that a field exists for each column in
the primary key (or unique key constraint) of the table at the time when the event is created.

For example, a customers table that is defined in the inventory database schema, might have the
following change event key:

CREATE TABLE customers (
 id NUMBER(9) GENERATED BY DEFAULT ON NULL AS IDENTITY (START WITH 1001) NOT
NULL PRIMARY KEY,

CHAPTER 6. DEBEZIUM CONNECTOR FOR ORACLE (TECHNOLOGY PREVIEW)

231

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#default-names-of-kafka-topics-that-receive-debezium-oracle-change-event-records
http://avro.apache.org/docs/current/spec.html#names

If the value of the <database.server.name>.transaction configuration property is set to server1, the
JSON representation for every change event that occurs in the customers table in the database
features the following key structure:

The schema portion of the key contains a Kafka Connect schema that describes the content of the key
portion. In the preceding example, the payload value is not optional, the structure is defined by a
schema named server1.DEBEZIUM.CUSTOMERS.Key, and there is one required field named id of
type int32. The value of the key’s payload field indicates that it is indeed a structure (which in JSON is
just an object) with a single id field, whose value is 1004.

Therefore, you can interpret this key as describing the row in the inventory.customers table (output
from the connector named server1) whose id primary key column had a value of 1004.

6.2.2. About values in Debezium Oracle connector change events

Like the message key, the value of a change event message has a schema section and payload section.
The payload section of every change event value produced by the Oracle connector has an envelope
structure with the following fields:

op

A mandatory field that contains a string value describing the type of operation. Values for the Oracle
connector are c for create (or insert), u for update, d for delete, and r for read (in the case of a
snapshot).

before

An optional field that, if present, contains the state of the row before the event occurred. The
structure is described by the server1.INVENTORY.CUSTOMERS.Value Kafka Connect schema,
which the server1 connector uses for all rows in the inventory.customers table.

after

An optional field that if present contains the state of the row after the event occurred. The structure

 first_name VARCHAR2(255) NOT NULL,
 last_name VARCHAR2(255) NOT NULL,
 email VARCHAR2(255) NOT NULL UNIQUE
);

{
 "schema": {
 "type": "struct",
 "fields": [
 {
 "type": "int32",
 "optional": false,
 "field": "ID"
 }
],
 "optional": false,
 "name": "server1.INVENTORY.CUSTOMERS.Key"
 },
 "payload": {
 "ID": 1004
 }
}

Red Hat Integration 2022.Q2 Debezium User Guide

232

An optional field that if present contains the state of the row after the event occurred. The structure
is described by the same server1.INVENTORY.CUSTOMERS.Value Kafka Connect schema used in
before.

source

A mandatory field that contains a structure describing the source metadata for the event, which in
the case of Oracle contains these fields: the Debezium version, the connector name, whether the
event is part of an ongoing snapshot or not, the transaction id (not while snapshotting), the SCN of
the change, and a timestamp representing the point in time when the record was changed in the
source database (during snapshotting, this is the point in time of snapshotting).

TIP

The commit_scn field is optional and describes the SCN of the transaction commit that the change
event participates within. This field is only present when using the LogMiner connection adapter.

ts_ms

An optional field that, if present, contains the time (using the system clock in the JVM running the
Kafka Connect task) at which the connector processed the event.

And of course, the schema portion of the event message’s value contains a schema that describes this
envelope structure and the nested fields within it.

create events

Let’s look at what a create event value might look like for our customers table:

{
 "schema": {
 "type": "struct",
 "fields": [
 {
 "type": "struct",
 "fields": [
 {
 "type": "int32",
 "optional": false,
 "field": "ID"
 },
 {
 "type": "string",
 "optional": false,
 "field": "FIRST_NAME"
 },
 {
 "type": "string",
 "optional": false,
 "field": "LAST_NAME"
 },
 {
 "type": "string",
 "optional": false,
 "field": "EMAIL"
 }
],
 "optional": true,

CHAPTER 6. DEBEZIUM CONNECTOR FOR ORACLE (TECHNOLOGY PREVIEW)

233

 "name": "server1.DEBEZIUM.CUSTOMERS.Value",
 "field": "before"
 },
 {
 "type": "struct",
 "fields": [
 {
 "type": "int32",
 "optional": false,
 "field": "ID"
 },
 {
 "type": "string",
 "optional": false,
 "field": "FIRST_NAME"
 },
 {
 "type": "string",
 "optional": false,
 "field": "LAST_NAME"
 },
 {
 "type": "string",
 "optional": false,
 "field": "EMAIL"
 }
],
 "optional": true,
 "name": "server1.DEBEZIUM.CUSTOMERS.Value",
 "field": "after"
 },
 {
 "type": "struct",
 "fields": [
 {
 "type": "string",
 "optional": true,
 "field": "version"
 },
 {
 "type": "string",
 "optional": false,
 "field": "name"
 },
 {
 "type": "int64",
 "optional": true,
 "field": "ts_ms"
 },
 {
 "type": "string",
 "optional": true,
 "field": "txId"
 },
 {
 "type": "string",

Red Hat Integration 2022.Q2 Debezium User Guide

234

Examining the schema portion of the preceding event’s value, we can see how the following schema are
defined:

 "optional": true,
 "field": "scn"
 },
 {
 "type": "string",
 "optional": true,
 "field": "commit_scn"
 },
 {
 "type": "boolean",
 "optional": true,
 "field": "snapshot"
 }
],
 "optional": false,
 "name": "io.debezium.connector.oracle.Source",
 "field": "source"
 },
 {
 "type": "string",
 "optional": false,
 "field": "op"
 },
 {
 "type": "int64",
 "optional": true,
 "field": "ts_ms"
 }
],
 "optional": false,
 "name": "server1.DEBEZIUM.CUSTOMERS.Envelope"
 },
 "payload": {
 "before": null,
 "after": {
 "ID": 1004,
 "FIRST_NAME": "Anne",
 "LAST_NAME": "Kretchmar",
 "EMAIL": "annek@noanswer.org"
 },
 "source": {
 "version": "1.7.2.Final",
 "name": "server1",
 "ts_ms": 1520085154000,
 "txId": "6.28.807",
 "scn": "2122185",
 "commit_scn": "2122185",
 "snapshot": false
 },
 "op": "c",
 "ts_ms": 1532592105975
 }
}

CHAPTER 6. DEBEZIUM CONNECTOR FOR ORACLE (TECHNOLOGY PREVIEW)

235

The envelope

The source structure (which is specific to the Oracle connector and reused across all events).

The table-specific schemas for the before and after fields.

TIP

The names of the schemas for the before and after fields are of the form
<logicalName>.<schemaName>.<tableName>.Value, and thus are entirely independent from the
schemas for all other tables. This means that when using the Avro Converter, the resulting Avro schems
for each table in each logical source have their own evolution and history.

The payload portion of this event’s value, provides information about the event. It describes that a row
was created (op=c), and shows that the after field value contains the values that were inserted into the
ID, FIRST_NAME, LAST_NAME, and EMAIL columns of the row.

TIP

By default, the JSON representations of events are much larger than the rows they describe. This is
true, because the JSON representation must include the schema and the payload portions of the
message. You can use the Avro Converter to significantly decrease the size of the messages that the
connector writes to Kafka topics.

update events

The value of an update change event on this table has the same schema as the create event. The
payload uses the same structure, but it holds different values. Here’s an example:

{
 "schema": { ... },
 "payload": {
 "before": {
 "ID": 1004,
 "FIRST_NAME": "Anne",
 "LAST_NAME": "Kretchmar",
 "EMAIL": "annek@noanswer.org"
 },
 "after": {
 "ID": 1004,
 "FIRST_NAME": "Anne",
 "LAST_NAME": "Kretchmar",
 "EMAIL": "anne@example.com"
 },
 "source": {
 "version": "1.7.2.Final",
 "name": "server1",
 "ts_ms": 1520085811000,
 "txId": "6.9.809",
 "scn": "2125544",
 "commit_scn": "2125544",
 "snapshot": false
 },
 "op": "u",

Red Hat Integration 2022.Q2 Debezium User Guide

236

/docs/faq/#avro-converter
/docs/faq/#avro-converter

Comparing the value of the update event to the create (insert) event, notice the following differences in
the payload section:

The op field value is now u, signifying that this row changed because of an update

The before field now has the state of the row with the values before the database commit

The after field now has the updated state of the row, and here was can see that the EMAIL
value is now anne@example.com.

The source field structure has the same fields as before, but the values are different since this
event is from a different position in the redo log.

The ts_ms shows the timestamp that Debezium processed this event.

The payload section reveals several other useful pieces of information. For example, by comparing the
before and after structures, we can determine how a row changed as the result of a commit. The source
structure provides information about Oracle’s record of this change, providing traceability. It also gives
us insight into when this event occurred in relation to other events in this topic and in other topics. Did it
occur before, after, or as part of the same commit as another event?

NOTE

When the columns for a row’s primary/unique key are updated, the value of the row’s key
changes. As a result, Debezium emits three events after such an update:

A DELETE event.

A tombstone event with the old key for the row.

An INSERT event that provides the new key for the row.

delete events

So far we’ve seen samples of create and update events. Now, let’s look at the value of a delete event for
the same table. As is the case with create and update events, for a delete event, the schema portion of
the value is exactly the same:

 "ts_ms": 1532592713485
 }
}

{
 "schema": { ... },
 "payload": {
 "before": {
 "ID": 1004,
 "FIRST_NAME": "Anne",
 "LAST_NAME": "Kretchmar",
 "EMAIL": "anne@example.com"
 },
 "after": null,
 "source": {
 "version": "1.7.2.Final",
 "name": "server1",
 "ts_ms": 1520085153000,

CHAPTER 6. DEBEZIUM CONNECTOR FOR ORACLE (TECHNOLOGY PREVIEW)

237

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#oracle-tombstone-events

If we look at the payload portion, we see a number of differences compared with the create or update
event payloads:

The op field value is now d, signifying that this row was deleted

The before field now has the state of the row that was deleted with the database commit.

The after field is null, signifying that the row no longer exists

The source field structure has many of the same values as before, except the ts_ms, scn and
txId fields have changed

The ts_ms shows the timestamp that Debezium processed this event.

This event gives a consumer all kinds of information that it can use to process the removal of this row.

The Oracle connector’s events are designed to work with Kafka log compaction, which allows for the
removal of some older messages as long as at least the most recent message for every key is kept. This
allows Kafka to reclaim storage space while ensuring the topic contains a complete dataset and can be
used for reloading key-based state.

When a row is deleted, the delete event value listed above still works with log compaction, since Kafka
can still remove all earlier messages with that same key. The message value must be set to null to
instruct Kafka to remove all messages that share the same key. To make this possible, by default,
Debezium’s Oracle connector always follows a delete event with a special tombstone event that has the
same key but null value. You can change the default behavior by setting the connector property
tombstones.on.delete.

6.3. HOW DEBEZIUM ORACLE CONNECTORS MAP DATA TYPES

To represent changes that occur in a table rows, the Debezium Oracle connector emits change events
that are structured like the table in which the rows exists. The event contains a field for each column
value. Column values are represented according to the Oracle data type of the column. The following
sections describe how the connector maps oracle data types to a literal type and a semantic type in
event fields.

literal type

Describes how the value is literally represented using Kafka Connect schema types: INT8, INT16,
INT32, INT64, FLOAT32, FLOAT64, BOOLEAN, STRING, BYTES, ARRAY, MAP, and STRUCT.

semantic type

Describes how the Kafka Connect schema captures the meaning of the field using the name of the
Kafka Connect schema for the field.

Details are in the following sections:

 "txId": "6.28.807",
 "scn": "2122184",
 "commit_scn": "2122184",
 "snapshot": false
 },
 "op": "d",
 "ts_ms": 1532592105960
 }
}

Red Hat Integration 2022.Q2 Debezium User Guide

238

https://cwiki.apache.org/confluence/display/KAFKA/Log+Compaction

Character types

Numeric types

Decimal types

Temporal types

Character types

The following table describes how the connector maps basic character types.

Table 6.5. Mappings for Oracle basic character types

Oracle Data Type Literal type
(schema type)

Semantic type (schema name) and Notes

CHAR[(M)] STRING n/a

NCHAR[(M)] STRING n/a

NVARCHAR2[(M)] STRING n/a

VARCHAR[(M)] STRING n/a

VARCHAR2[(M)] STRING n/a

Binary and Character LOB types

The following table describes how the connector maps binary and character large object (LOB) data
types.

Table 6.6. Mappings for Oracle binary and character LOB types

Oracle Data Type Literal type
(schema type)

Semantic type (schema name) and Notes

BLOB BYTES The raw bytes.

CLOB STRING n/a

LONG n/a This data type is not supported.

LONG RAW n/a This data type is not supported.

NCLOB STRING n/a

RAW n/a This data type is not supported.

NOTE

CHAPTER 6. DEBEZIUM CONNECTOR FOR ORACLE (TECHNOLOGY PREVIEW)

239

NOTE

Oracle only supplies column values for CLOB, NCLOB, and BLOB data types if they’re
explicitly set or changed in a SQL statement. This means that change events will never
contain the value of an unchanged CLOB, NCLOB, or BLOB column, but a placeholder as
defined by the connector property, unavailable.value.placeholder.

If the value of a CLOB, NCLOB, or BLOB column gets updated, the new value will be
contained in the after part of the corresponding update change events whereas the
unavailable value placeholder will be used in the before part.

Numeric types

The following table describes how the connector maps numeric types.

Table 6.7. Mappings for Oracle numeric data types

Oracle Data Type Literal type
(schema type)

Semantic type (schema name) and Notes

BINARY_FLOAT FLOAT32 n/a

BINARY_DOUBLE FLOAT64 n/a

DECIMAL[(P, S)] BYTES / INT8
/ INT16 /
INT32 / INT64

org.apache.kafka.connect.data.Decimal if using BYTES

Handled equivalently to NUMBER (note that S defaults to 0 for
DECIMAL).

DOUBLE
PRECISION

STRUCT io.debezium.data.VariableScaleDecimal

Contains a structure with two fields: scale of type INT32 that
contains the scale of the transferred value and value of type
BYTES containing the original value in an unscaled form.

FLOAT[(P)] STRUCT io.debezium.data.VariableScaleDecimal

Contains a structure with two fields: scale of type INT32 that
contains the scale of the transferred value and value of type
BYTES containing the original value in an unscaled form.

INTEGER, INT BYTES org.apache.kafka.connect.data.Decimal

INTEGER is mapped in Oracle to NUMBER(38,0) and hence can
hold values larger than any of the INT types could store

NUMBER[(P[, *])] STRUCT io.debezium.data.VariableScaleDecimal

Contains a structure with two fields: scale of type INT32 that
contains the scale of the transferred value and value of type
BYTES containing the original value in an unscaled form.

Red Hat Integration 2022.Q2 Debezium User Guide

240

NUMBER(P, S <=
0)

INT8 / INT16 /
INT32 / INT64

NUMBER columns with a scale of 0 represent integer numbers.
A negative scale indicates rounding in Oracle, for example, a scale
of -2 causes rounding to hundreds.

Depending on the precision and scale, one of the following
matching Kafka Connect integer type is chosen:

P - S < 3, INT8

P - S < 5, INT16

P - S < 10, INT32

P - S < 19, INT64

P - S >= 19, BYTES
(org.apache.kafka.connect.data.Decimal).

NUMBER(P, S > 0) BYTES org.apache.kafka.connect.data.Decimal

NUMERIC[(P, S)] BYTES / INT8
/ INT16 /
INT32 / INT64

org.apache.kafka.connect.data.Decimal if using BYTES

Handled equivalently to NUMBER (note that S defaults to 0 for
NUMERIC).

SMALLINT BYTES org.apache.kafka.connect.data.Decimal

SMALLINT is mapped in Oracle to NUMBER(38,0) and hence
can hold values larger than any of the INT types could store

REAL STRUCT io.debezium.data.VariableScaleDecimal

Contains a structure with two fields: scale of type INT32 that
contains the scale of the transferred value and value of type
BYTES containing the original value in an unscaled form.

Oracle Data Type Literal type
(schema type)

Semantic type (schema name) and Notes

Boolean types

Oracle does not natively have support for a BOOLEAN data type; however, it is common practice to use
other data types with certain semantics to simulate the concept of a logical BOOLEAN data type.

The operator can configure the out-of-the-box NumberOneToBooleanConverter custom converter
that would either map all NUMBER(1) columns to a BOOLEAN or if the selector parameter is set, then
a subset of columns could be enumerated using a comma-separated list of regular expressions.

Following is an example configuration:

CHAPTER 6. DEBEZIUM CONNECTOR FOR ORACLE (TECHNOLOGY PREVIEW)

241

converters=boolean
boolean.type=io.debezium.connector.oracle.converters.NumberOneToBooleanConverter
boolean.selector=.*MYTABLE.FLAG,.*.IS_ARCHIVED

Decimal types

The setting of the Oracle connector configuration property, decimal.handling.mode determines how
the connector maps decimal types.

When the decimal.handling.mode property is set to precise, the connector uses Kafka Connect
org.apache.kafka.connect.data.Decimal logical type for all DECIMAL and NUMERIC columns. This is
the default mode.

However, when the decimal.handling.mode property is set to double, the connector represents the
values as Java double values with schema type FLOAT64.

You can also set the decimal.handling.mode configuration property to use the string option. When
the property is set to string, the connector represents DECIMAL and NUMERIC values as their
formatted string representation with schema type STRING.

Temporal types

Other than Oracle’s INTERVAL, TIMESTAMP WITH TIME ZONE and TIMESTAMP WITH LOCAL TIME
ZONE data types, the other temporal types depend on the value of the time.precision.mode
configuration property.

When the time.precision.mode configuration property is set to adaptive (the default), then the
connector determines the literal and semantic type for the temporal types based on the column’s data
type definition so that events exactly represent the values in the database:

Oracle data type Literal type
(schema type)

Semantic type (schema name) and Notes

DATE INT64 io.debezium.time.Timestamp

Represents the number of milliseconds past epoch, and
does not include timezone information.

INTERVAL DAY[(M)]
TO SECOND

FLOAT64 io.debezium.time.MicroDuration

The number of micro seconds for a time interval using the
365.25 / 12.0 formula for days per month average.

INTERVAL
YEAR[(M)] TO
MONTH

FLOAT64 io.debezium.time.MicroDuration

The number of micro seconds for a time interval using the
365.25 / 12.0 formula for days per month average.

TIMESTAMP(0 - 3) INT64 io.debezium.time.Timestamp

Represents the number of milliseconds past epoch, and
does not include timezone information.

Red Hat Integration 2022.Q2 Debezium User Guide

242

TIMESTAMP,
TIMESTAMP(4 - 6)

INT64 io.debezium.time.MicroTimestamp

Represents the number of microseconds past epoch, and
does not include timezone information.

TIMESTAMP(7 - 9) INT64 io.debezium.time.NanoTimestamp

Represents the number of nanoseconds past epoch, and
does not include timezone information.

TIMESTAMP WITH
TIME ZONE

STRING io.debezium.time.ZonedTimestamp

A string representation of a timestamp with timezone
information.

TIMESTAMP WITH
LOCAL TIME ZONE

STRING io.debezium.time.ZonedTimestamp

A string representation of a timestamp in UTC.

Oracle data type Literal type
(schema type)

Semantic type (schema name) and Notes

When the time.precision.mode configuration property is set to connect, then the connector uses the
predefined Kafka Connect logical types. This can be useful when consumers only know about the built-in
Kafka Connect logical types and are unable to handle variable-precision time values. Because the level
of precision that Oracle supports exceeds the level that the logical types in Kafka Connect support, if
you set time.precision.mode to connect, a loss of precision results when the fractional second
precision value of a database column is greater than 3:

Oracle data type Literal type
(schema type)

Semantic type (schema name) and Notes

DATE INT32 org.apache.kafka.connect.data.Date

Represents the number of days since the epoch.

INTERVAL DAY[(M)]
TO SECOND

FLOAT64 io.debezium.time.MicroDuration

The number of micro seconds for a time interval using the
365.25 / 12.0 formula for days per month average.

INTERVAL
YEAR[(M)] TO
MONTH

FLOAT64 io.debezium.time.MicroDuration

The number of micro seconds for a time interval using the
365.25 / 12.0 formula for days per month average.

CHAPTER 6. DEBEZIUM CONNECTOR FOR ORACLE (TECHNOLOGY PREVIEW)

243

TIMESTAMP(0 - 3) INT64 org.apache.kafka.connect.data.Timestamp

Represents the number of milliseconds since epoch, and
does not include timezone information.

TIMESTAMP(4 - 6) INT64 org.apache.kafka.connect.data.Timestamp

Represents the number of milliseconds since epoch, and
does not include timezone information.

TIMESTAMP(7 - 9) INT64 org.apache.kafka.connect.data.Timestamp

Represents the number of milliseconds since epoch, and
does not include timezone information.

TIMESTAMP WITH
TIME ZONE

STRING io.debezium.time.ZonedTimestamp

A string representation of a timestamp with timezone
information.

TIMESTAMP WITH
LOCAL TIME ZONE

STRING io.debezium.time.ZonedTimestamp

A string representation of a timestamp in UTC.

Oracle data type Literal type
(schema type)

Semantic type (schema name) and Notes

6.4. SETTING UP ORACLE TO WORK WITH DEBEZIUM

The following steps are necessary to set up Oracle for use with the Debezium Oracle connector. These
steps assume the use of the multi-tenancy configuration with a container database and at least one
pluggable database. If you do not intend to use a multi-tenant configuration, it might be necessary to
adjust the following steps.

For information about using Vagrant to set up Oracle in a virtual machine, see the Debezium Vagrant
Box for Oracle database GitHub repository.

For details about setting up Oracle for use with the Debezium connector, see the following sections:

Section 6.4.1, “Preparing Oracle databases for use with Debezium”

Section 6.4.2, “Redo log sizing”

Section 6.4.3, “Creating an Oracle user for the Debezium Oracle connector”

6.4.1. Preparing Oracle databases for use with Debezium

Configuration needed for Oracle LogMiner

ORACLE_SID=ORACLCDB dbz_oracle sqlplus /nolog

Red Hat Integration 2022.Q2 Debezium User Guide

244

https://github.com/debezium/oracle-vagrant-box/

CONNECT sys/top_secret AS SYSDBA
alter system set db_recovery_file_dest_size = 10G;
alter system set db_recovery_file_dest = '/opt/oracle/oradata/recovery_area' scope=spfile;
shutdown immediate
startup mount
alter database archivelog;
alter database open;
-- Should now "Database log mode: Archive Mode"
archive log list

exit;

In addition, supplemental logging must be enabled for captured tables or the database in order for data
changes to capture the before state of changed database rows. The following illustrates how to
configure this on a specific table, which is the ideal choice to minimize the amount of information
captured in the Oracle redo logs.

ALTER TABLE inventory.customers ADD SUPPLEMENTAL LOG DATA (ALL) COLUMNS;

Minimal supplemental logging must be enabled at the database level and can be configured as follows.

ALTER DATABASE ADD SUPPLEMENTAL LOG DATA;

6.4.2. Redo log sizing

Depending on the database configuration, the size and number of redo logs might not be sufficient to
achieve acceptable performance. Before you set up the Debezium Oracle connector, ensure that the
capacity of the redo logs is sufficient to support the database.

The capacity of the redo logs for a database must be sufficient to store its data dictionary. In general,
the size of the data dictionary increases with the number of tables and columns in the database. If the
redo log lacks sufficient capacity, both the database and the Debezium connector might experience
performance problems.

Consult with your database administrator to evaluate whether the database might require increased log
capacity.

6.4.3. Creating an Oracle user for the Debezium Oracle connector

For the Debezium Oracle connector to capture change events, it must run as an Oracle LogMiner user
that has specific permissions. The following example shows the SQL for creating an Oracle user account
for the connector in a multi-tenant database model.

WARNING

The connector captures database changes that are made by its own Oracle user
account. However, it does not capture changes that are made by the SYS or
SYSTEM user accounts.

CHAPTER 6. DEBEZIUM CONNECTOR FOR ORACLE (TECHNOLOGY PREVIEW)

245

Creating the connector’s LogMiner user

6.5. DEPLOYMENT OF DEBEZIUM ORACLE CONNECTORS

You can use either of the following methods to deploy a Debezium Oracle connector:

Use AMQ Streams to automatically create an image that includes the connector plug-in .
This is the preferred method.

sqlplus sys/top_secret@//localhost:1521/ORCLCDB as sysdba
 CREATE TABLESPACE logminer_tbs DATAFILE '/opt/oracle/oradata/ORCLCDB/logminer_tbs.dbf'
 SIZE 25M REUSE AUTOEXTEND ON MAXSIZE UNLIMITED;
 exit;

sqlplus sys/top_secret@//localhost:1521/ORCLPDB1 as sysdba
 CREATE TABLESPACE logminer_tbs DATAFILE
'/opt/oracle/oradata/ORCLCDB/ORCLPDB1/logminer_tbs.dbf'
 SIZE 25M REUSE AUTOEXTEND ON MAXSIZE UNLIMITED;
 exit;

sqlplus sys/top_secret@//localhost:1521/ORCLCDB as sysdba

 CREATE USER c##dbzuser IDENTIFIED BY dbz
 DEFAULT TABLESPACE logminer_tbs
 QUOTA UNLIMITED ON logminer_tbs
 CONTAINER=ALL;

 GRANT CREATE SESSION TO c##dbzuser CONTAINER=ALL;
 GRANT SET CONTAINER TO c##dbzuser CONTAINER=ALL;
 GRANT SELECT ON V_$DATABASE to c##dbzuser CONTAINER=ALL;
 GRANT FLASHBACK ANY TABLE TO c##dbzuser CONTAINER=ALL;
 GRANT SELECT ANY TABLE TO c##dbzuser CONTAINER=ALL;
 GRANT SELECT_CATALOG_ROLE TO c##dbzuser CONTAINER=ALL;
 GRANT EXECUTE_CATALOG_ROLE TO c##dbzuser CONTAINER=ALL;
 GRANT SELECT ANY TRANSACTION TO c##dbzuser CONTAINER=ALL;
 GRANT LOGMINING TO c##dbzuser CONTAINER=ALL;

 GRANT CREATE TABLE TO c##dbzuser CONTAINER=ALL;
 GRANT LOCK ANY TABLE TO c##dbzuser CONTAINER=ALL;
 GRANT CREATE SEQUENCE TO c##dbzuser CONTAINER=ALL;

 GRANT EXECUTE ON DBMS_LOGMNR TO c##dbzuser CONTAINER=ALL;
 GRANT EXECUTE ON DBMS_LOGMNR_D TO c##dbzuser CONTAINER=ALL;

 GRANT SELECT ON V_$LOG TO c##dbzuser CONTAINER=ALL;
 GRANT SELECT ON V_$LOG_HISTORY TO c##dbzuser CONTAINER=ALL;
 GRANT SELECT ON V_$LOGMNR_LOGS TO c##dbzuser CONTAINER=ALL;
 GRANT SELECT ON V_$LOGMNR_CONTENTS TO c##dbzuser CONTAINER=ALL;
 GRANT SELECT ON V_$LOGMNR_PARAMETERS TO c##dbzuser CONTAINER=ALL;
 GRANT SELECT ON V_$LOGFILE TO c##dbzuser CONTAINER=ALL;
 GRANT SELECT ON V_$ARCHIVED_LOG TO c##dbzuser CONTAINER=ALL;
 GRANT SELECT ON V_$ARCHIVE_DEST_STATUS TO c##dbzuser CONTAINER=ALL;

 exit;

Red Hat Integration 2022.Q2 Debezium User Guide

246

Build a custom Kafka Connect container image from a Dockerfile .

The Debezium Oracle connector requires the Oracle JDBC driver (ojdbc8.jar) to connect to Oracle
databases. For information about how to obtain the driver, see Obtaining the Oracle JDBC driver .

Additional resources

Section 6.6, “Descriptions of Debezium Oracle connector configuration properties”

6.5.1. Debezium Oracle connector deployment using AMQ Streams

Beginning with Debezium 1.7, the preferred method for deploying a Debezium connector is to use AMQ
Streams to build a Kafka Connect container image that includes the connector plug-in.

During the deployment process, you create and use the following custom resources (CRs):

A KafkaConnect CR that defines your Kafka Connect instance and includes information about
the connector artifacts needs to include in the image.

A KafkaConnector CR that provides details that include information the connector uses to
access the source database. After AMQ Streams starts the Kafka Connect pod, you start the
connector by applying the KafkaConnector CR.

In the build specification for the Kafka Connect image, you can specify the connectors that are available
to deploy. For each connector plug-in, you can also specify other components that you want to make
available for deployment. For example, you can add Service Registry artifacts, or the Debezium scripting
component. When AMQ Streams builds the Kafka Connect image, it downloads the specified artifacts,
and incorporates them into the image.

The spec.build.output parameter in the KafkaConnect CR specifies where to store the resulting Kafka
Connect container image. Container images can be stored in a Docker registry, or in an OpenShift
ImageStream. To store images in an ImageStream, you must create the ImageStream before you deploy
Kafka Connect. ImageStreams are not created automatically.

NOTE

If you use a KafkaConnect resource to create a cluster, afterwards you cannot use the
Kafka Connect REST API to create or update connectors. You can still use the REST API
to retrieve information.

Additional resources

Configuring Kafka Connect in Using AMQ Streams on OpenShift.

Creating a new container image automatically using AMQ Streams in Deploying and Upgrading
AMQ Streams on OpenShift.

6.5.2. Using AMQ Streams to deploy a Debezium Oracle connector

With earlier versions of AMQ Streams, to deploy Debezium connectors on OpenShift, it was necessary
to first build a Kafka Connect image for the connector. The current preferred method for deploying
connectors on OpenShift is to use a build configuration in AMQ Streams to automatically build a Kafka
Connect container image that includes the Debezium connector plug-ins that you want to use.

During the build process, the AMQ Streams Operator transforms input parameters in a KafkaConnect

CHAPTER 6. DEBEZIUM CONNECTOR FOR ORACLE (TECHNOLOGY PREVIEW)

247

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/using_amq_streams_on_openshift/index#proc-kafka-connect-config-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#creating-new-image-using-kafka-connect-build-str

custom resource, including Debezium connector definitions, into a Kafka Connect container image. The
build downloads the necessary artifacts from the Red Hat Maven repository or another configured
HTTP server. The newly created container is pushed to the container registry that is specified in
.spec.build.output, and is used to deploy a Kafka Connect pod. After AMQ Streams builds the Kafka
Connect image, you create KafkaConnector custom resources to start the connectors that are included
in the build.

Prerequisites

You have access to an OpenShift cluster on which the cluster Operator is installed.

The AMQ Streams Operator is running.

An Apache Kafka cluster is deployed as documented in Deploying and Upgrading AMQ Streams
on OpenShift.

You have a Red Hat Integration license.

Kafka Connect is deployed on AMQ Streams .

The OpenShift oc CLI client is installed or you have access to the OpenShift Container Platform
web console.

Depending on how you intend to store the Kafka Connect build image, you need registry
permissions or you must create an ImageStream resource:

To store the build image in an image registry, such as Red Hat Quay.io or Docker Hub

An account and permissions to create and manage images in the registry.

To store the build image as a native OpenShift ImageStream

An ImageStream resource is deployed to the cluster. You must explicitly create an
ImageStream for the cluster. ImageStreams are not available by default.

Procedure

1. Log in to the OpenShift cluster.

2. Create a Debezium KafkaConnect custom resource (CR) for the connector, or modify an
existing one. For example, create a KafkaConnect CR that specifies the
metadata.annotations and spec.build properties, as shown in the following example. Save the
file with a name such as dbz-connect.yaml.

Example 6.1. A dbz-connect.yaml file that defines a KafkaConnect custom resource that
includes a Debezium connector

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
 name: debezium-kafka-connect-cluster
 annotations:
 strimzi.io/use-connector-resources: "true" 1
spec:
 version: 3.00
 build: 2

Red Hat Integration 2022.Q2 Debezium User Guide

248

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#kafka-cluster-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#kafka-connect-str
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/cli_tools/index#installing-openshift-cli
https://docs.openshift.com/container-platform/latest/openshift_images/images-understand.html#images-imagestream-use_images-understand

Table 6.8. Descriptions of Kafka Connect configuration settings

Item Description

1 Sets the strimzi.io/use-connector-resources annotation to "true" to enable
the Cluster Operator to use KafkaConnector resources to configure connectors in
this Kafka Connect cluster.

2 The spec.build configuration specifies where to store the build image and lists the
plug-ins to include in the image, along with the location of the plug-in artifacts.

3 The build.output specifies the registry in which the newly built image is stored.

4 Specifies the name and image name for the image output. Valid values for
output.type are docker to push into a container registry like Docker Hub or Quay,
or imagestream to push the image to an internal OpenShift ImageStream. To use
an ImageStream, an ImageStream resource must be deployed to the cluster. For
more information about specifying the build.output in the KafkaConnect
configuration, see the AMQ Streams Build schema reference documentation.

5 The plugins configuration lists all of the connectors that you want to include in the
Kafka Connect image. For each entry in the list, specify a plug-in name, and
information for about the artifacts that are required to build the connector.
Optionally, for each connector plug-in, you can include other components that you
want to be available for use with the connector. For example, you can add Service
Registry artifacts, or the Debezium scripting component.

6 The value of artifacts.type specifies the file type of the artifact specified in the
artifacts.url. Valid types are zip, tgz, or jar. Debezium connector archives are
provided in .zip file format. JDBC driver files are in .jar format. The type value must
match the type of the file that is referenced in the url field.

 output: 3
 type: imagestream 4
 image: debezium-streams-connect:latest
 plugins: 5
 - name: debezium-connector-oracle
 artifacts:
 - type: zip 6
 url: https://maven.repository.redhat.com/ga/io/debezium/debezium-connector-
oracle/1.7.2.Final-redhat-<build_number>/debezium-connector-oracle-1.7.2.Final-
redhat-<build_number>-plugin.zip 7
 - type: zip
 url: https://maven.repository.redhat.com/ga/io/apicurio/apicurio-registry-distro-
connect-converter/2.0-redhat-<build-number>/apicurio-registry-distro-connect-converter-
2.0-redhat-<build-number>.zip
 - type: zip
 url: https://maven.repository.redhat.com/ga/io/debezium/debezium-
scripting/1.7.2.Final/debezium-scripting-1.7.2.Final.zip

 bootstrapServers: debezium-kafka-cluster-kafka-bootstrap:9093

CHAPTER 6. DEBEZIUM CONNECTOR FOR ORACLE (TECHNOLOGY PREVIEW)

249

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/using_amq_streams_on_openshift/index#type-Build-reference

7 The value of artifacts.url specifies the address of an HTTP server, such as a Maven
repository, that stores the file for the connector artifact. The OpenShift cluster must
have access to the specified server.

Item Description

3. Apply the KafkaConnect build specification to the OpenShift cluster by entering the following
command:

Based on the configuration specified in the custom resource, the Streams Operator prepares a
Kafka Connect image to deploy.
After the build completes, the Operator pushes the image to the specified registry or
ImageStream, and starts the Kafka Connect cluster. The connector artifacts that you listed in
the configuration are available in the cluster.

4. Create a KafkaConnector resource to define an instance of each connector that you want to
deploy.
For example, create the following KafkaConnector CR, and save it as oracle-inventory-
connector.yaml

Example 6.2. A oracle-inventory-connector.yaml file that defines the KafkaConnector
custom resource for a Debezium connector

Table 6.9. Descriptions of connector configuration settings

oc create -f dbz-connect.yaml

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnector
metadata:
 labels:
 strimzi.io/cluster: debezium-kafka-connect-cluster
 name: inventory-connector-oracle 1
spec:
 class: io.debezium.connector.oracle.MySqlConnector 2
 tasksMax: 1 3
 config: 4
 database.history.kafka.bootstrap.servers: 'debezium-kafka-cluster-kafka-
bootstrap.debezium.svc.cluster.local:9092'
 database.history.kafka.topic: schema-changes.inventory
 database.hostname: oracle.debezium-oracle.svc.cluster.local 5
 database.port: 3306 6
 database.user: debezium 7
 database.password: dbz 8
 database.dbname: mydatabase 9
 database.server.name: inventory_connector_oracle 10
 database.include.list: public.inventory 11

Red Hat Integration 2022.Q2 Debezium User Guide

250

Item Description

1 The name of the connector to register with the Kafka Connect cluster.

2 The name of the connector class.

3 The number of tasks that can operate concurrently.

4 The connector’s configuration.

5 The address of the host database instance.

6 The port number of the database instance.

7 The name of the user account through which Debezium connects to the database.

8 The password for the database user account.

9 The name of the database to capture changes from.

10 The logical name of the database instance or cluster.
The specified name must be formed only from alphanumeric characters or underscores.
Because the logical name is used as the prefix for any Kafka topics that receive change
events from this connector, the name must be unique among the connectors in the
cluster.
The namespace is also used in the names of related Kafka Connect schemas, and the
namespaces of a corresponding Avro schema if you integrate the connector with the
Avro connector.

11 The list of tables from which the connector captures change events.

5. Create the connector resource by running the following command:

For example,

The connector is registered to the Kafka Connect cluster and starts to run against the database
that is specified by spec.config.database.dbname in the KafkaConnector CR. After the
connector pod is ready, Debezium is running.

You are now ready to verify the Debezium Oracle deployment.

6.5.3. Deploying a Debezium Oracle connector by building a custom Kafka Connect
container image from a Dockerfile

To deploy a Debezium Oracle connector, you must build a custom Kafka Connect container image that

oc create -n <namespace> -f <kafkaConnector>.yaml

oc create -n debezium -f {context}-inventory-connector.yaml

CHAPTER 6. DEBEZIUM CONNECTOR FOR ORACLE (TECHNOLOGY PREVIEW)

251

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#configuring-debezium-connectors-to-use-avro-serialization

1 1 1 1 1 1

To deploy a Debezium Oracle connector, you must build a custom Kafka Connect container image that
contains the Debezium connector archive, and then push this container image to a container registry.
You then need to create the following custom resources (CRs):

A KafkaConnect CR that defines your Kafka Connect instance. The image property in the CR
specifies the name of the container image that you create to run your Debezium connector. You
apply this CR to the OpenShift instance where Red Hat AMQ Streams is deployed. AMQ
Streams offers operators and images that bring Apache Kafka to OpenShift.

A KafkaConnector CR that defines your Debezium Oracle connector. Apply this CR to the
same OpenShift instance where you apply the KafkaConnect CR.

Prerequisites

Oracle Database is running and you completed the steps to set up Oracle to work with a
Debezium connector.

AMQ Streams is deployed on OpenShift and is running Apache Kafka and Kafka Connect. For
more information, see Deploying and Upgrading AMQ Streams on OpenShift

Podman or Docker is installed.

You have an account and permissions to create and manage containers in the container registry
(such as quay.io or docker.io) to which you plan to add the container that will run your
Debezium connector.

You have a copy of the Oracle JDBC driver. Due to licensing requirements, the Debezium Oracle
connector does not include the required driver file.
For more information, see Obtaining the Oracle JDBC driver .

Procedure

1. Create the Debezium Oracle container for Kafka Connect:

a. Download the Debezium Oracle connector archive.

b. Extract the Debezium Oracle connector archive to create a directory structure for the
connector plug-in, for example:

./my-plugins/
├── debezium-connector-oracle
│ ├── ...

c. Create a Dockerfile that uses registry.redhat.io/amq7/amq-streams-kafka-30-rhel8:2.0.0
as the base image. For example, from a terminal window, enter the following, replacing my-
plugins with the name of your plug-ins directory:

You can specify any file name that you want.

cat <<EOF >debezium-container-for-oracle.yaml 1
FROM registry.redhat.io/amq7/amq-streams-kafka-30-rhel8:2.0.0
USER root:root
COPY ./<my-plugins>/ /opt/kafka/plugins/ 2
USER 1001
EOF

Red Hat Integration 2022.Q2 Debezium User Guide

252

https://access.redhat.com/products/red-hat-amq#streams
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#setting-up-oracle-for-use-with-the-debezium-oracle-connector
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/deploying_and_upgrading_amq_streams_on_openshift/index
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#obtaining-the-oracle-jdbc-driver
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=red.hat.integration&downloadType=distributions

2 2 2 2 2 2

1

2

Replace my-plugins with the name of your plug-ins directory.

The command creates a Dockerfile with the name debezium-container-for-oracle.yaml in
the current directory.

d. Build the container image from the debezium-container-for-oracle.yaml Docker file that
you created in the previous step. From the directory that contains the file, open a terminal
window and enter one of the following commands:

The preceding commands build a container image with the name debezium-container-for-
oracle.

e. Push your custom image to a container registry, such as quay.io or an internal container
registry. The container registry must be available to the OpenShift instance where you want
to deploy the image. Enter one of the following commands:

f. Create a new Debezium Oracle KafkaConnect custom resource (CR). For example, create a
KafkaConnect CR with the name dbz-connect.yaml that specifies annotations and image
properties as shown in the following example:

metadata.annotations indicates to the Cluster Operator that KafkaConnector
resources are used to configure connectors in this Kafka Connect cluster.

spec.image specifies the name of the image that you created to run your Debezium
connector. This property overrides the
STRIMZI_DEFAULT_KAFKA_CONNECT_IMAGE variable in the Cluster Operator

g. Apply the KafkaConnect CR to the OpenShift Kafka Connect environment by entering the
following command:

The command adds a Kafka Connect instance that specifies the name of the image that you
created to run your Debezium connector.

podman build -t debezium-container-for-oracle:latest .

docker build -t debezium-container-for-oracle:latest .

podman push <myregistry.io>/debezium-container-for-oracle:latest

docker push <myregistry.io>/debezium-container-for-oracle:latest

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
 name: my-connect-cluster
 annotations:
 strimzi.io/use-connector-resources: "true" 1
spec:
 #...
 image: debezium-container-for-oracle 2

oc create -f dbz-connect.yaml

CHAPTER 6. DEBEZIUM CONNECTOR FOR ORACLE (TECHNOLOGY PREVIEW)

253

2. Create a KafkaConnector custom resource that configures your Debezium Oracle connector
instance.
You configure a Debezium Oracle connector in a .yaml file that specifies the configuration
properties for the connector. The connector configuration might instruct Debezium to produce
events for a subset of the schemas and tables, or it might set properties so that Debezium
ignores, masks, or truncates values in specified columns that are sensitive, too large, or not
needed.

The following example configures a Debezium connector that connects to an Oracle host IP
address, on port 1521. This host has a database named ORCLCDB, and server1 is the server’s
logical name.

Oracle inventory-connector.yaml

Table 6.10. Descriptions of connector configuration settings

Item Description

1 The name of our connector when we register it with a Kafka Connect service.

2 The name of this Oracle connector class.

3 The address of the Oracle instance.

4 The port number of the Oracle instance.

5 The name of the Oracle user, as specified in Creating users for the connector.

6 The password for the Oracle user, as specified in Creating users for the connector.

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnector
metadata:
 name: inventory-connector 1
 labels:
 strimzi.io/cluster: my-connect-cluster
 annotations:
 strimzi.io/use-connector-resources: 'true'
spec:
 class: io.debezium.connector.oracle.OracleConnector 2
 config:
 database.hostname: <oracle_ip_address> 3
 database.port: 1521 4
 database.user: c##dbzuser 5
 database.password: dbz 6
 database.dbname: ORCLCDB 7
 database.pdb.name : ORCLPDB1, 8
 database.server.name: server1 9
 database.history.kafka.bootstrap.servers: kafka:9092 10
 database.history.kafka.topic: schema-changes.inventory 11

Red Hat Integration 2022.Q2 Debezium User Guide

254

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#creating-an-oracle-user-for-the-debezium-oracle-connector
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#creating-an-oracle-user-for-the-debezium-oracle-connector

7 The name of the database to capture changes from.

8 The name of the Oracle pluggable database that the connector captures changes from.
Used in container database (CDB) installations only.

9 Logical name that identifies and provides a namespace for the Oracle database server
from which the connector captures changes.

10 The list of Kafka brokers that this connector uses to write and recover DDL statements
to the database history topic.

11 The name of the database history topic where the connector writes and recovers DDL
statements. This topic is for internal use only and should not be used by consumers.

Item Description

3. Create your connector instance with Kafka Connect. For example, if you saved your
KafkaConnector resource in the inventory-connector.yaml file, you would run the following
command:

The preceding command registers inventory-connector and the connector starts to run against
the server1 database as defined in the KafkaConnector CR.

6.5.4. Obtaining the Oracle JDBC driver

Due to licensing requirements, the required driver file is not included in the Debezium Oracle connector
archive. Regardless of which deployment method that you use, you have obtain the Oracle JDBC driver
to complete the deployment.

There are two methods for obtaining the driver, depending on the deployment method that you use.

If you use AMQ Streams to add the connector to your Kafka Connect image , add an artifact
reference to the KafkaConnect custom resource and then add the location of the artifact as
the url value.

If you use a Dockerfile to build the connector , download the required driver file directly from
Oracle and add it to your Kafka Connect environment.

The following steps describe how to make the driver and available in your environment.

Procedure

1. Complete one of the following procedures, depending on your deployment type:

If you use AMQ Streams to deploy the connector:

a. Navigate to Maven Central and locate the ojdbc8.jar file for your release of Oracle
Database.

b. In the YAML for the KafkaConnector custom resource (CR), add the URL path for the

oc apply -f inventory-connector.yaml

CHAPTER 6. DEBEZIUM CONNECTOR FOR ORACLE (TECHNOLOGY PREVIEW)

255

https://repo1.maven.org/maven2/com/oracle/database/jdbc/

b. In the YAML for the KafkaConnector custom resource (CR), add the URL path for the
driver to the artifacts.url field for the debezium-connector-oracle artifact.
For more information about the YAML file for the KafkaConnector CR, see Using AMQ
Streams to deploy a Debezium Oracle connector.

If you use a Dockerfile to deploy the connector:

a. From a browser, navigate to the Oracle JDBC and UCP Downloads page .

b. Locate and download the ojdbc8.jar driver file for your version of Oracle Database.

c. Copy the downloaded file to the directory that stores the Debezium Oracle connector
files, for example, <kafka_home>/libs.
When the connector starts, it is automatically configured to use the specified driver.

6.5.5. Configuration of container databases and non-container-databases

Oracle Database supports the following deployment types:

Container database (CDB)

A database that can contain multiple pluggable databases (PDBs). Database clients connect to each
PDB as if it were a standard, non-CDB database.

Non-container database (non-CDB)

A standard Oracle database, which does not support the creation of pluggable databases.

For the complete list of the configuration properties that you can set for the Debezium Oracle
connector, see Oracle connector properties .

Results

After the connector starts, it performs a consistent snapshot of the Oracle databases that the
connector is configured for. The connector then starts generating data change events for row-level
operations and streaming the change event records to Kafka topics.

6.5.6. Verifying that the Debezium Oracle connector is running

If the connector starts correctly without errors, it creates a topic for each table that the connector is
configured to capture. Downstream applications can subscribe to these topics to retrieve information
events that occur in the source database.

To verify that the connector is running, you perform the following operations from the OpenShift
Container Platform web console, or through the OpenShift CLI tool (oc):

Verify the connector status.

Verify that the connector generates topics.

Verify that topics are populated with events for read operations ("op":"r") that the connector
generates during the initial snapshot of each table.

Prerequisites

A Debezium connector is deployed to AMQ Streams on OpenShift.

The OpenShift oc CLI client is installed.

Red Hat Integration 2022.Q2 Debezium User Guide

256

https://www.oracle.com/database/technologies/appdev/jdbc-downloads.html
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#descriptions-of-debezium-oracle-connector-configuration-properties
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#how-debezium-oracle-connectors-perform-database-snapshots

You have access to the OpenShift Container Platform web console.

Procedure

1. Check the status of the KafkaConnector resource by using one of the following methods:

From the OpenShift Container Platform web console:

a. Navigate to Home → Search.

b. On the Search page, click Resources to open the Select Resource box, and then type
KafkaConnector.

c. From the KafkaConnectors list, click the name of the connector that you want to
check, for example inventory-connector-oracle.

d. In the Conditions section, verify that the values in the Type and Status columns are set
to Ready and True.

From a terminal window:

a. Enter the following command:

For example,

The command returns status information that is similar to the following output:

Example 6.3. KafkaConnector resource status

oc describe KafkaConnector <connector-name> -n <project>

oc describe KafkaConnector inventory-connector-oracle -n debezium

Name: inventory-connector-oracle
Namespace: debezium
Labels: strimzi.io/cluster=debezium-kafka-connect-cluster
Annotations: <none>
API Version: kafka.strimzi.io/v1beta2
Kind: KafkaConnector

...

Status:
 Conditions:
 Last Transition Time: 2021-12-08T17:41:34.897153Z
 Status: True
 Type: Ready
 Connector Status:
 Connector:
 State: RUNNING
 worker_id: 10.131.1.124:8083
 Name: inventory-connector-oracle
 Tasks:
 Id: 0
 State: RUNNING
 worker_id: 10.131.1.124:8083

CHAPTER 6. DEBEZIUM CONNECTOR FOR ORACLE (TECHNOLOGY PREVIEW)

257

2. Verify that the connector created Kafka topics:

From the OpenShift Container Platform web console.

a. Navigate to Home → Search.

b. On the Search page, click Resources to open the Select Resource box, and then type
KafkaTopic.

c. From the KafkaTopics list, click the name of the topic that you want to check, for
example, inventory-connector-oracle.inventory.orders---
ac5e98ac6a5d91e04d8ec0dc9078a1ece439081d.

d. In the Conditions section, verify that the values in the Type and Status columns are set
to Ready and True.

From a terminal window:

a. Enter the following command:

The command returns status information that is similar to the following output:

Example 6.4. KafkaTopic resource status

NAME CLUSTER
PARTITIONS REPLICATION FACTOR READY
connect-cluster-configs debezium-
kafka-cluster 1 1 True
connect-cluster-offsets debezium-
kafka-cluster 25 1 True
connect-cluster-status debezium-
kafka-cluster 5 1 True
consumer-offsets---84e7a678d08f4bd226872e5cdd4eb527fadc1c6a
debezium-kafka-cluster 50 1 True
inventory-connector-oracle---a96f69b23d6118ff415f772679da623fbbb99421
debezium-kafka-cluster 1 1 True
inventory-connector-oracle.inventory.addresses---
1b6beaf7b2eb57d177d92be90ca2b210c9a56480 debezium-kafka-cluster
1 1 True
inventory-connector-oracle.inventory.customers---

 Type: source
 Observed Generation: 1
 Tasks Max: 1
 Topics:
 inventory_connector_oracle
 inventory_connector_oracle.inventory.addresses
 inventory_connector_oracle.inventory.customers
 inventory_connector_oracle.inventory.geom
 inventory_connector_oracle.inventory.orders
 inventory_connector_oracle.inventory.products
 inventory_connector_oracle.inventory.products_on_hand
Events: <none>

oc get kafkatopics

Red Hat Integration 2022.Q2 Debezium User Guide

258

9931e04ec92ecc0924f4406af3fdace7545c483b debezium-kafka-cluster 1
1 True
inventory-connector-oracle.inventory.geom---
9f7e136091f071bf49ca59bf99e86c713ee58dd5 debezium-kafka-cluster
1 1 True
inventory-connector-oracle.inventory.orders---
ac5e98ac6a5d91e04d8ec0dc9078a1ece439081d debezium-kafka-cluster
1 1 True
inventory-connector-oracle.inventory.products---
df0746db116844cee2297fab611c21b56f82dcef debezium-kafka-cluster 1
1 True
inventory-connector-oracle.inventory.products-on-hand---
8649e0f17ffcc9212e266e31a7aeea4585e5c6b5 debezium-kafka-cluster 1
1 True
schema-changes.inventory
debezium-kafka-cluster 1 1 True
strimzi-store-topic---effb8e3e057afce1ecf67c3f5d8e4e3ff177fc55
debezium-kafka-cluster 1 1 True
strimzi-topic-operator-kstreams-topic-store-changelog---
b75e702040b99be8a9263134de3507fc0cc4017b debezium-kafka-cluster 1
1 True

3. Check topic content.

From a terminal window, enter the following command:

For example,

The format for specifying the topic name is the same as the oc describe command returns in
Step 1, for example, inventory_connector_oracle.inventory.addresses.

For each event in the topic, the command returns information that is similar to the following
output:

Example 6.5. Content of a Debezium change event

{"schema":{"type":"struct","fields":
[{"type":"int32","optional":false,"field":"product_id"}],"optional":false,"name":"inventory_conne
ctor_oracle.inventory.products_on_hand.Key"},"payload":{"product_id":101}} {"schema":
{"type":"struct","fields":[{"type":"struct","fields":
[{"type":"int32","optional":false,"field":"product_id"},

oc exec -n <project> -it <kafka-cluster> -- /opt/kafka/bin/kafka-console-consumer.sh \
> --bootstrap-server localhost:9092 \
> --from-beginning \
> --property print.key=true \
> --topic=<topic-name>

 oc exec -n debezium -it debezium-kafka-cluster-kafka-0 -- /opt/kafka/bin/kafka-console-
consumer.sh \
> --bootstrap-server localhost:9092 \
> --from-beginning \
> --property print.key=true \
> --topic=inventory_connector_oracle.inventory.products_on_hand

CHAPTER 6. DEBEZIUM CONNECTOR FOR ORACLE (TECHNOLOGY PREVIEW)

259

{"type":"int32","optional":false,"field":"quantity"}],"optional":true,"name":"inventory_connector
_oracle.inventory.products_on_hand.Value","field":"before"},{"type":"struct","fields":
[{"type":"int32","optional":false,"field":"product_id"},
{"type":"int32","optional":false,"field":"quantity"}],"optional":true,"name":"inventory_connector
_oracle.inventory.products_on_hand.Value","field":"after"},{"type":"struct","fields":
[{"type":"string","optional":false,"field":"version"},
{"type":"string","optional":false,"field":"connector"},
{"type":"string","optional":false,"field":"name"},
{"type":"int64","optional":false,"field":"ts_ms"},
{"type":"string","optional":true,"name":"io.debezium.data.Enum","version":1,"parameters":
{"allowed":"true,last,false"},"default":"false","field":"snapshot"},
{"type":"string","optional":false,"field":"db"},
{"type":"string","optional":true,"field":"sequence"},
{"type":"string","optional":true,"field":"table"},
{"type":"int64","optional":false,"field":"server_id"},
{"type":"string","optional":true,"field":"gtid"},{"type":"string","optional":false,"field":"file"},
{"type":"int64","optional":false,"field":"pos"},{"type":"int32","optional":false,"field":"row"},
{"type":"int64","optional":true,"field":"thread"},
{"type":"string","optional":true,"field":"query"}],"optional":false,"name":"io.debezium.connecto
r.oracle.Source","field":"source"},{"type":"string","optional":false,"field":"op"},
{"type":"int64","optional":true,"field":"ts_ms"},{"type":"struct","fields":
[{"type":"string","optional":false,"field":"id"},
{"type":"int64","optional":false,"field":"total_order"},
{"type":"int64","optional":false,"field":"data_collection_order"}],"optional":true,"field":"transacti
on"}],"optional":false,"name":"inventory_connector_oracle.inventory.products_on_hand.Env
elope"},"payload":{"before":null,"after":{"product_id":101,"quantity":3},"source":
{"version":"1.7.2.Final-redhat-
00001","connector":"oracle","name":"inventory_connector_oracle","ts_ms":1638985247805,
"snapshot":"true","db":"inventory","sequence":null,"table":"products_on_hand","server_id":0,
"gtid":null,"file":"oracle-
bin.000003","pos":156,"row":0,"thread":null,"query":null},"op":"r","ts_ms":1638985247805,"t
ransaction":null}}

In the preceding example, the payload value shows that the connector snapshot generated a
read ("op" ="r") event from the table inventory.products_on_hand. The "before" state of the
product_id record is null, indicating that no previous value exists for the record. The "after"
state shows a quantity of 3 for the item with product_id 101.

6.6. DESCRIPTIONS OF DEBEZIUM ORACLE CONNECTOR
CONFIGURATION PROPERTIES

The Debezium Oracle connector has numerous configuration properties that you can use to achieve the
right connector behavior for your application. Many properties have default values. Information about
the properties is organized as follows:

Required Debezium Oracle connector configuration properties

Database history connector configuration properties that control how Debezium processes
events that it reads from the database history topic.

Pass-through database history properties

Pass-through database driver properties that control the behavior of the database driver.

Red Hat Integration 2022.Q2 Debezium User Guide

260

Required Debezium Oracle connector configuration properties

The following configuration properties are required unless a default value is available.

Property Default Description

name No default Unique name for the connector. Attempting to
register again with the same name will fail. (This
property is required by all Kafka Connect
connectors.)

connector.class No default The name of the Java class for the connector.
Always use a value of
io.debezium.connector.oracle.OracleCo
nnector for the Oracle connector.

tasks.max 1 The maximum number of tasks that should be
created for this connector. The Oracle
connector always uses a single task and
therefore does not use this value, so the default
is always acceptable.

database.hostname No default IP address or hostname of the Oracle database
server.

database.port No default Integer port number of the Oracle database
server.

database.user No default Name of the Oracle user account that the
connector uses to connect to the Oracle
database server.

database.password No default Password to use when connecting to the
Oracle database server.

database.dbname No default Name of the database to connect to. Must be
the CDB name when working with the CDB +
PDB model.

database.url No default Specifies the raw database JDBC URL. Use
this property to provide flexibility in defining
that database connection. Valid values include
raw TNS names and RAC connection strings.

database.pdb.name No default Name of the Oracle pluggable database to
connect to. Use this property with container
database (CDB) installations only.

CHAPTER 6. DEBEZIUM CONNECTOR FOR ORACLE (TECHNOLOGY PREVIEW)

261

database.server.name No default Logical name that identifies and provides a
namespace for the Oracle database server
from which the connector captures changes.
The value that you set is used as a prefix for all
Kafka topic names that the connector emits.
Specify a logical name that is unique among all
connectors in your Debezium environment. The
following characters are valid: alphanumeric
characters, hyphens, dots, and underscores.

database.connection.ada
pter

logminer The adapter implementation that the
connector uses when it streams database
changes. You can set the following values:

logminer(default)
The connector uses the native Oracle
LogMiner API.

xstream
The connector uses the Oracle XStreams
API.

snapshot.mode initial Specifies the mode that the connector uses to
take snapshots of a captured table. You can set
the following values:

initial
The snapshot includes the structure and
data of captured tables. Specify this value
to populate topics with a complete
representation of the data from the
captured tables.

schema_only
The snapshot includes only the structure of
captured tables. Specify this value if you
want the connector to capture data only for
changes that occur after the snapshot.

After the snapshot is complete, the connector
continues to read change events from the
database’s redo logs.

Red Hat Integration 2022.Q2 Debezium User Guide

262

snapshot.locking.mode shared Controls whether and for how long the
connector holds a table lock. Table locks
prevent certain types of changes table
operations from occurring while the connector
performs a snapshot. You can set the following
values:

shared
Enables concurrent access to the table, but
prevents any session from acquiring an
exclusive table lock. The connector
acquires a ROW SHARE level lock while it
captures table schema.

none
Prevents the connector from acquiring any
table locks during the snapshot. Use this
setting only if no schema changes might
occur during the creation of the snapshot.

snapshot.include.collecti
on.list

All tables specified in
table.include.list

An optional, comma-separated list of regular
expressions that match the fully-qualified
names (<schemaName>.<tableName>) of
the tables to include in a snapshot. The
specified items must be named in the
connector’s table.include.list property. This
property takes effect only if the connector’s
snapshot.mode property is set to a value
other than never.

This property does not affect the behavior of
incremental snapshots.

CHAPTER 6. DEBEZIUM CONNECTOR FOR ORACLE (TECHNOLOGY PREVIEW)

263

snapshot.select.statemen
t.overrides

No default Specifies the table rows to include in a
snapshot. Use the property if you want a
snapshot to include only a subset of the rows in
a table. This property affects snapshots only. It
does not apply to events that the connector
reads from the log.

The property contains a comma-separated list
of fully-qualified table names in the form
<schemaName>.<tableName>. For
example,

"snapshot.select.statement.overrides":
"inventory.products,customers.orders"

For each table in the list, add a further
configuration property that specifies the
SELECT statement for the connector to run
on the table when it takes a snapshot. The
specified SELECT statement determines the
subset of table rows to include in the snapshot.
Use the following format to specify the name
of this SELECT statement property:

snapshot.select.statement.overrides.<s
chemaName>.<tableName>

For example,
snapshot.select.statement.overrides.cu
stomers.orders

Example:

From a customers.orders table that
includes the soft-delete column, delete_flag,
add the following properties if you want a
snapshot to include only those records that are
not soft-deleted:

"snapshot.select.statement.overrides":
"customer.orders",
"snapshot.select.statement.overrides.cus
tomer.orders": "SELECT * FROM
[customers].[orders] WHERE
delete_flag = 0 ORDER BY id DESC"

In the resulting snapshot, the connector
includes only the records for which
delete_flag = 0.

Red Hat Integration 2022.Q2 Debezium User Guide

264

schema.include.list No default An optional, comma-separated list of regular
expressions that match names of schemas for
which you want to capture changes. Any
schema name not included in
schema.include.list is excluded from having
its changes captured. By default, all non-
system schemas have their changes captured.
Do not also set the schema.exclude.list
property. In environments that use the
LogMiner implementation, you must use
POSIX regular expressions only.

schema.exclude.list No default An optional, comma-separated list of regular
expressions that match names of schemas for
which you do not want to capture changes. Any
schema whose name is not included in
schema.exclude.list has its changes
captured, with the exception of system
schemas. Do not also set the
schema.include.list property. In
environments that use the LogMiner
implementation, you must use POSIX regular
expressions only.

table.include.list No default An optional comma-separated list of regular
expressions that match fully-qualified table
identifiers for tables to be monitored. Tables
that are not included in the include list are
excluded from monitoring. Each table identifier
uses the following format:

<schema_name>.<table_name>

By default, the connector monitors every non-
system table in each monitored database. Do
not use this property in combination with
table.exclude.list. If you use the LogMiner
implementation, use only POSIX regular
expressions with this property.

CHAPTER 6. DEBEZIUM CONNECTOR FOR ORACLE (TECHNOLOGY PREVIEW)

265

table.exclude.list No default An optional comma-separated list of regular
expressions that match fully-qualified table
identifiers for tables to be excluded from
monitoring. The connector captures change
events from any table that is not specified in
the exclude list. Specify the identifier for each
table using the following format:

<schemaName>.<tableName>.

Do not use this property in combination with
table.include.list. If you use the LogMiner
implementation, use only POSIX regular
expressions with this property.

column.include.list No default An optional comma-separated list of regular
expressions that match the fully-qualified
names of columns that want to include in the
change event message values. Fully-qualified
names for columns use the following format: +
 `<Schema_name>.<table_name>.
<column_name>

The primary key column is always included in an
event’s key, even if you do not use this property
to explicitly include its value. If you include this
property in the configuration, do not also set
the column.exclude.list property.

column.exclude.list No default An optional comma-separated list of regular
expressions that match the fully-qualified
names of columns that you want to exclude
from change event message values. Fully-
qualified column names use the following
format:

<schema_name>.<table_name>.
<column_name>

The primary key column is always included in an
event’s key, even if you use this property to
explicitly exclude its value. If you include this
property in the configuration, do not set the
column.include.list property.

Red Hat Integration 2022.Q2 Debezium User Guide

266

column.mask.hash.<hash
Algorithm>.with.salt.<salt
>

No default An optional, comma-separated list of regular
expressions that match the fully-qualified
names of character-based columns. Fully-
qualified names for columns are of the form
<schemaName>.<tableName>.<columnN
ame>.

In the resulting change event record, the values
for the specified columns are replaced with
pseudonyms.

A pseudonym consists of the hashed value that
results from applying the specified
hashAlgorithm and salt. Based on the hash
function that is used, referential integrity is
maintained, while column values are replaced
with pseudonyms. Supported hash functions
are described in the MessageDigest section of
the Java Cryptography Architecture Standard
Algorithm Name Documentation.

In the following example, CzQMA0cB5K is a
randomly selected salt.

column.mask.hash.SHA-
256.with.salt.CzQMA0cB5K =
inventory.orders.customerName,
inventory.shipment.customerName

If necessary, the pseudonym is automatically
shortened to the length of the column. The
connector configuration can include multiple
properties that specify different hash
algorithms and salts.

Depending on the hashAlgorithm used, the salt
selected, and the actual data set, the resulting
data set might not be completely masked.

CHAPTER 6. DEBEZIUM CONNECTOR FOR ORACLE (TECHNOLOGY PREVIEW)

267

https://docs.oracle.com/javase/7/docs/technotes/guides/security/StandardNames.html#MessageDigest

decimal.handling.mode precise Specifies how the connector should handle
floating point values for NUMBER, DECIMAL
and NUMERIC columns. You can set one of
the following options:

precise (default)
Represents values precisely by using
java.math.BigDecimal values
represented in change events in a binary
form.

double
Represents values by using double values.
Using double values is easier, but can result
in a loss of precision.

string
Encodes values as formatted strings. Using
the string option is easier to consume, but
results in a loss of semantic information
about the real type. For more information,
see Decimal types.

event.processing.failure.h
andling.mode

fail Specifies how the connector should react to
exceptions during processing of events. You
can set one of the following options:

fail
Propagates the exception (indicating the
offset of the problematic event), causing
the connector to stop.

warn
Causes the problematic event to be
skipped. The offset of the problematic
event is then logged.

skip
Causes the problematic event to be
skipped.

max.queue.size 8192 A positive integer value that specifies the
maximum size of the blocking queue. Change
events read from the database log are placed
in the blocking queue before they are written
to Kafka. This queue can provide backpressure
to the binlog reader when, for example, writes
to Kafka are slow, or if Kafka is not available.
Events that appear in the queue are not
included in the offsets that the connector
records periodically. Always specify a value that
is larger than the maximum batch size that
specified for the max.batch.size property.

max.batch.size 2048 A positive integer value that specifies the
maximum size of each batch of events to
process during each iteration of this connector.

Red Hat Integration 2022.Q2 Debezium User Guide

268

max.queue.size.in.bytes 0 (disabled) Long value for the maximum size in bytes of the
blocking queue. To activate the feature, set the
value to a positive long data type.

poll.interval.ms 1000 (1 second) Positive integer value that specifies the
number of milliseconds the connector should
wait during each iteration for new change
events to appear.

tombstones.on.delete true Controls whether a delete event is followed by
a tombstone event. The following values are
possible:

true
For each delete operation, the connector
emits a delete event and a subsequent
tombstone event.

false
For each delete operation, the connector
emits only a delete event.

After a source record is deleted, a tombstone
event (the default behavior) enables Kafka to
completely delete all events that share the key
of the deleted row in topics that have log
compaction enabled.

CHAPTER 6. DEBEZIUM CONNECTOR FOR ORACLE (TECHNOLOGY PREVIEW)

269

https://kafka.apache.org/documentation/#compaction

message.key.columns No default A list of expressions that specify the columns
that the connector uses to form custom
message keys for change event records that it
publishes to the Kafka topics for specified
tables.

By default, Debezium uses the primary key
column of a table as the message key for
records that it emits. In place of the default, or
to specify a key for tables that lack a primary
key, you can configure custom message keys
based on one or more columns.
To establish a custom message key for a table,
list the table, followed by the columns to use as
the message key. Each list entry takes the
following format:

<fullyQualifiedTableName>:<keyColumn
>,<keyColumn>

To base a table key on multiple column names,
insert commas between the column names.
Each fully-qualified table name is a regular
expression in the following format:

<schemaName>.<tableName>

The property can include entries for multiple
tables. Use a semicolon to separate table
entries in the list.
The following example sets the message key
for the tables inventory.customers and
purchase.orders:

inventory.customers:pk1,pk2;
(.*).purchaseorders:pk3,pk4

For the table inventory.customer, the
columns pk1 and pk2 are specified as the
message key. For the purchaseorders tables
in any schema, the columns pk3 and pk4
server as the message key.
There is no limit to the number of columns that
you use to create custom message keys.
However, it’s best to use the minimum number
that are required to specify a unique key.

Red Hat Integration 2022.Q2 Debezium User Guide

270

column.truncate.to.length
.chars

No default An optional comma-separated list of regular
expressions that match the fully-qualified
names of character-based columns to be
truncated in change event messages if their
length exceeds the specified number of
characters. Length is specified as a positive
integer. A configuration can include multiple
properties that specify different lengths.
Specify the fully-qualified name for columns by
using the following format:
<schemaName>.<tableName>.<columnN
ame>.

column.mask.with.length.
chars

No default An optional comma-separated list of regular
expressions for masking column names in
change event messages by replacing
characters with asterisks (*).
Specify the number of characters to replace in
the name of the property, for example,
column.mask.with.8.chars.
Specify length as a positive integer or zero.
Then add regular expressions to the list for
each character-based column name where you
want to apply a mask.
Use the following format to specify fully-
qualified column names:
<schemaName>.<tableName>.<columnN
ame>.

The connector configuration can include
multiple properties that specify different
lengths.

column.propagate.source
.type

No default An optional comma-separated list of regular
expressions that match the fully-qualified
names of columns whose original type and
length should be added as a parameter to the
corresponding field schemas in the emitted
change messages. The schema parameters
__debezium.source.column.type,
__debezium.source.column.length, and
__debezium.source.column.scale are
used to propagate the original type name and
length (for variable-width types), respectively.
Useful to properly size corresponding columns
in sink databases.

Fully-qualified names for columns are of the
form <tableName>.<columnName>, or
<schemaName>.<tableName>.<columnN
ame>.

CHAPTER 6. DEBEZIUM CONNECTOR FOR ORACLE (TECHNOLOGY PREVIEW)

271

datatype.propagate.sourc
e.type

No default An optional comma-separated list of regular
expressions that match the database-specific
data type name of columns whose original type
and length should be added as a parameter to
the corresponding field schemas in the emitted
change messages. The schema parameters
__debezium.source.column.type,
__debezium.source.column.length and
__debezium.source.column.scale are
used to propagate the original type name and
length (for variable-width types), respectively.
Useful to properly size corresponding columns
in sink databases.

Fully-qualified data type names are of the form
<tableName>.<typeName>, or
<schemaName>.<tableName>.<typeNam
e>.
See the list of Oracle-specific data type names.

heartbeat.interval.ms 0 Specifies, in milliseconds, how frequently the
connector sends messages to a heartbeat
topic.
Use this property to determine whether the
connector continues to receive change events
from the source database.
It can also be useful to set the property in
situations where the connector no change
events occur in captured tables for an
extended period.
In such a a case, although the connector
continues to read the redo log, it emits no
change event messages, so that the offset in
the Kafka topic remains unchanged. Because
the connector does not flush the latest system
change number (SCN) that it read from the
database, the database might retain the redo
log files for longer than necessary. If the
connector restarts, the extended retention
period could result in the connector
redundantly sending some change events.
The default value of 0 prevents the connector
from sending any heartbeat messages.

heartbeat.topics.prefix __debezium-
heartbeat

Specifies the string that prefixes the name of
the topic to which the connector sends
heartbeat messages.
The topic is named according to the pattern
<heartbeat.topics.prefix>.
<serverName>.

Red Hat Integration 2022.Q2 Debezium User Guide

272

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#how-debezium-oracle-connectors-map-data-types

snapshot.delay.ms No default Specifies an interval in milliseconds that the
connector waits after it starts before it takes a
snapshot.
Use this property to prevent snapshot
interruptions when you start multiple
connectors in a cluster, which might cause re-
balancing of connectors.

snapshot.fetch.size 2000 Specifies the maximum number of rows that
should be read in one go from each table while
taking a snapshot. The connector reads table
contents in multiple batches of the specified
size.

sanitize.field.names true when the
connector configuration
explicitly specifies the
key.converter or
value.converter
parameters to use Avro,
otherwise defaults to
false.

Specifies whether field names are normalized
to comply with Avro naming requirements. For
more information, see Avro naming.

provide.transaction.meta
data

false Set the property to true if you want Debezium
to generate events with transaction boundaries
and enriches data events envelope with
transaction metadata.

See Transaction Metadata for additional
details.

log.mining.strategy redo_log_catalog Specifies the mining strategy that controls how
Oracle LogMiner builds and uses a given data
dictionary for resolving table and column ids to
names.

redo_log_catalog:: Writes the data dictionary
to the online redo logs causing more archive
logs to be generated over time. This also
enables tracking DDL changes against
captured tables, so if the schema changes
frequently this is the ideal choice.

online_catalog:: Uses the database’s current
data dictionary to resolve object ids and does
not write any extra information to the online
redo logs. This allows LogMiner to mine
substantially faster but at the expense that
DDL changes cannot be tracked. If the
captured table(s) schema changes infrequently
or never, this is the ideal choice.

CHAPTER 6. DEBEZIUM CONNECTOR FOR ORACLE (TECHNOLOGY PREVIEW)

273

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#about-avro-name-requirements
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#debezium-oracle-connector-generated-events-that-represent-transaction-boundaries

log.mining.buffer.type memory The buffer type controls how the connector
manages buffering transaction data.

memory - Uses the JVM process' heap to
buffer all transaction data. Choose this option
if you don’t expect the connector to process a
high number of long-running or large
transactions. When this option is active, the
buffer state is not persisted across restarts.
Following a restart, recreate the buffer from
the SCN value of the current offset.

log.mining.batch.size.min 1000 The minimum SCN interval size that this
connector attempts to read from redo/archive
logs. Active batch size is also
increased/decreased by this amount for tuning
connector throughput when needed.

log.mining.batch.size.ma
x

100000 The maximum SCN interval size that this
connector uses when reading from
redo/archive logs.

log.mining.batch.size.def
ault

20000 The starting SCN interval size that the
connector uses for reading data from
redo/archive logs.

log.mining.sleep.time.min
.ms

0 The minimum amount of time that the
connector sleeps after reading data from
redo/archive logs and before starting reading
data again. Value is in milliseconds.

log.mining.sleep.time.ma
x.ms

3000 The maximum amount of time that the
connector ill sleeps after reading data from
redo/archive logs and before starting reading
data again. Value is in milliseconds.

log.mining.sleep.time.def
ault.ms

1000 The starting amount of time that the connector
sleeps after reading data from redo/archive
logs and before starting reading data again.
Value is in milliseconds.

log.mining.sleep.time.incr
ement.ms

200 The maximum amount of time up or down that
the connector uses to tune the optimal sleep
time when reading data from logminer. Value is
in milliseconds.

log.mining.view.fetch.size 10000 The number of content records that the
connector fetches from the LogMiner content
view.

Red Hat Integration 2022.Q2 Debezium User Guide

274

log.mining.archive.log.ho
urs

0 The number of hours in the past from
SYSDATE to mine archive logs. When the
default setting (0) is used, the connector mines
all archive logs.

log.mining.archive.log.onl
y.mode

false Controls whether or not the connector mines
changes from just archive logs or a
combination of the online redo logs and archive
logs (the default).

Redo logs use a circular buffer that can be
archived at any point. In environments where
online redo logs are archived frequently, this
can lead to LogMiner session failures. In
contrast to redo logs, archive logs are
guaranteed to be reliable. Set this option to
true to force the connector to mine archive
logs only. After you set the connector to mine
only the archive logs, the latency between an
operation being committed and the connector
emitting an associated change event might
increase. The degree of latency depends on
how frequently the database is configured to
archive online redo logs.

log.mining.archive.log.onl
y.scn.poll.interval.ms

10000 The number of milliseconds the connector will
sleep in between polling to determine if the
starting system change number is in the archive
logs. If log.mining.archive.log.only.mode
is not enabled, this setting is not used.

log.mining.transaction.ret
ention.hours

0 Positive integer value that specifies the
number of hours to retain long running
transactions between redo log switches. When
set to 0, transactions are retained until a
commit or rollback is detected.

The LogMiner adapter maintains an in-memory
buffer of all running transactions. Because all
of the DML operations that are part of a
transaction are buffered until a commit or
rollback is detected, long-running transactions
should be avoided in order to not overflow that
buffer. Any transaction that exceeds this
configured value is discarded entirely, and the
connector does not emit any messages for the
operations that were part of the transaction.

CHAPTER 6. DEBEZIUM CONNECTOR FOR ORACLE (TECHNOLOGY PREVIEW)

275

log.mining.archive.destin
ation.name

No default Specifies the configured Oracle archive
destination to use when mining archive logs
with LogMiner.

The default behavior automatically selects the
first valid, local configured destination.
However, you can use a specific destination
can be used by providing the destination name,
for example, LOG_ARCHIVE_DEST_5.

log.mining.username.excl
ude.list

No default List of database users to exclude from the
LogMiner query. It can be useful to set this
property if you want the capturing process to
always exclude the changes that specific users
make.

log.mining.scn.gap.detect
ion.gap.size.min

1000000 Specifies a value that the connector compares
to the difference between the current and
previous SCN values to determine whether an
SCN gap exists. If the difference between the
SCN values is greater than the specified value,
and the time difference is smaller than
log.mining.scn.gap.detection.time.interv
al.max.ms then an SCN gap is detected, and
the connector uses a mining window larger than
the configured maximum batch.

log.mining.scn.gap.detect
ion.time.interval.max.ms

20000 Specifies a value, in milliseconds, that the
connector compares to the difference between
the current and previous SCN timestamps to
determine whether an SCN gap exists. If the
difference between the timestamps is less than
the specified value, and the SCN delta is
greater than
log.mining.scn.gap.detection.gap.size.m
in, then an SCN gap is detected and the
connector uses a mining window larger than the
configured maximum batch.

lob.enabled false Controls whether or not large object (CLOB or
BLOB) column values are emitted in change
events.

By default, change events have large object
columns, but the columns contain no values.
There is a certain amount of overhead in
processing and managing large object column
types and payloads. To capture large object
values and serialized them in change events,
set this option to true.

Red Hat Integration 2022.Q2 Debezium User Guide

276

unavailable.value.placeho
lder

__debezium_unavail
able_value

Specifies the constant that the connector
provides to indicate that the original value is
unchanged and not provided by the database.

rac.nodes No default A comma-separated list of Oracle Real
Application Clusters (RAC) node host names or
addresses. This field is required to enable
Oracle RAC support. Specify the list of RAC
nodes by using one of the following methods:

Specify a value for database.port,
and use the specified port value for
each address in the rac.nodes list.
For example:

Specify a value for database.port,
and override the default port for one
or more entries in the list. The list can
include entries that use the default
database.port value, and entries
that define their own unique port
values. For example:

If you supply a raw JDBC URL for the database
by using the database.url property, instead of
defining a value for database.port, each RAC
node entry must explicitly specify a port value.

skipped.operations No default A comma-separated list of the operation types
that you want the connector to skip during
streaming. You can configure the connector to
skip the following types of operations:

c (insert/create)

u (update)

d (delete)

By default, no operations are skipped.

signal.data.collection No default value Fully-qualified name of the data collection that
is used to send signals to the connector.
Use the following format to specify the
collection name:
<databaseName>.<schemaName>.<tabl
eName>

database.port=1521
rac.nodes=192.168.1.100,192.1
68.1.101

database.port=1521
rac.nodes=192.168.1.100,192.1
68.1.101:1522

CHAPTER 6. DEBEZIUM CONNECTOR FOR ORACLE (TECHNOLOGY PREVIEW)

277

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#debezium-signaling-enabling-signaling

incremental.snapshot.chu
nk.size

1024 The maximum number of rows that the
connector fetches and reads into memory
during an incremental snapshot chunk.
Increasing the chunk size provides greater
efficiency, because the snapshot runs fewer
snapshot queries of a greater size. However,
larger chunk sizes also require more memory to
buffer the snapshot data. Adjust the chunk size
to a value that provides the best performance
in your environment.

Debezium Oracle connector database history configuration properties

Debezium provides a set of database.history.* properties that control how the connector interacts with
the schema history topic.

The following table describes the database.history properties for configuring the Debezium connector.

Table 6.11. Connector database history configuration properties

Property Default Description

database.history.kafka.topic The full name of the Kafka topic where the connector
stores the database schema history.

database.history.kafka.boots
trap.servers

 A list of host/port pairs that the connector uses for
establishing an initial connection to the Kafka cluster.
This connection is used for retrieving the database
schema history previously stored by the connector,
and for writing each DDL statement read from the
source database. Each pair should point to the same
Kafka cluster used by the Kafka Connect process.

database.history.kafka.recov
ery.poll.interval.ms

100 An integer value that specifies the maximum number
of milliseconds the connector should wait during
startup/recovery while polling for persisted data. The
default is 100ms.

database.history.kafka.recov
ery.attempts

4 The maximum number of times that the connector
should try to read persisted history data before the
connector recovery fails with an error. The maximum
amount of time to wait after receiving no data is
recovery.attempts x recovery.poll.interval.ms.

database.history.skip.unpar
seable.ddl

false A Boolean value that specifies whether the
connector should ignore malformed or unknown
database statements or stop processing so a human
can fix the issue. The safe default is false. Skipping
should be used only with care as it can lead to data
loss or mangling when the binlog is being processed.

Red Hat Integration 2022.Q2 Debezium User Guide

278

database.history.store.only.
monitored.tables.ddl

Deprecated and scheduled for
removal in a future release; use
database.history.store.only.
captured.tables.ddl instead.

false A Boolean value that specifies whether the
connector should record all DDL statements

true records only those DDL statements that are
relevant to tables whose changes are being captured
by Debezium. Set to true with care because missing
data might become necessary if you change which
tables have their changes captured.

The safe default is false.

database.history.store.only.
captured.tables.ddl

false A Boolean value that specifies whether the
connector should record all DDL statements

true records only those DDL statements that are
relevant to tables whose changes are being captured
by Debezium. Set to true with care because missing
data might become necessary if you change which
tables have their changes captured.

The safe default is false.

Property Default Description

Pass-through database history properties for configuring producer and consumer clients

Debezium relies on a Kafka producer to write schema changes to database history topics. Similarly, it
relies on a Kafka consumer to read from database history topics when a connector starts. You define the
configuration for the Kafka producer and consumer clients by assigning values to a set of pass-through
configuration properties that begin with the database.history.producer.* and
database.history.consumer.* prefixes. The pass-through producer and consumer database history
properties control a range of behaviors, such as how these clients secure connections with the Kafka
broker, as shown in the following example:

database.history.producer.security.protocol=SSL
database.history.producer.ssl.keystore.location=/var/private/ssl/kafka.server.keystore.jks
database.history.producer.ssl.keystore.password=test1234
database.history.producer.ssl.truststore.location=/var/private/ssl/kafka.server.truststore.jks
database.history.producer.ssl.truststore.password=test1234
database.history.producer.ssl.key.password=test1234

database.history.consumer.security.protocol=SSL
database.history.consumer.ssl.keystore.location=/var/private/ssl/kafka.server.keystore.jks
database.history.consumer.ssl.keystore.password=test1234
database.history.consumer.ssl.truststore.location=/var/private/ssl/kafka.server.truststore.jks
database.history.consumer.ssl.truststore.password=test1234
database.history.consumer.ssl.key.password=test1234

Debezium strips the prefix from the property name before it passes the property to the Kafka client.

See the Kafka documentation for more details about Kafka producer configuration properties and Kafka
consumer configuration properties.

Debezium Oracle connector pass-through database driver configuration properties

CHAPTER 6. DEBEZIUM CONNECTOR FOR ORACLE (TECHNOLOGY PREVIEW)

279

https://kafka.apache.org/documentation.html#producerconfigs
https://kafka.apache.org/documentation.html#consumerconfigs

The Debezium connector provides for pass-through configuration of the database driver. Pass-through
database properties begin with the prefix database.*. For example, the connector passes properties
such as database.foobar=false to the JDBC URL.

As is the case with the pass-through properties for database history clients , Debezium strips the prefixes
from the properties before it passes them to the database driver.

6.7. MONITORING DEBEZIUM ORACLE CONNECTOR PERFORMANCE

The Debezium Oracle connector provides three metric types in addition to the built-in support for JMX
metrics that Apache Zookeeper, Apache Kafka, and Kafka Connect have.

snapshot metrics; for monitoring the connector when performing snapshots

streaming metrics; for monitoring the connector when processing change events

schema history metrics; for monitoring the status of the connector’s schema history

Please refer to the monitoring documentation for details of how to expose these metrics via JMX.

6.7.1. Debezium Oracle connector snapshot metrics

The MBean is debezium.oracle:type=connector-
metrics,context=snapshot,server=<oracle.server.name>.

Snapshot metrics are not exposed unless a snapshot operation is active, or if a snapshot has occurred
since the last connector start.

The following table lists the shapshot metrics that are available.

Attributes Type Description

LastEvent string The last snapshot event that
the connector has read.

MilliSecondsSinceLastEvent long The number of milliseconds
since the connector has read
and processed the most
recent event.

TotalNumberOfEventsSeen long The total number of events
that this connector has seen
since last started or reset.

NumberOfEventsFiltered long The number of events that
have been filtered by
include/exclude list filtering
rules configured on the
connector.

Red Hat Integration 2022.Q2 Debezium User Guide

280

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#debezium-oracle-connector-snapshot-metrics
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#debezium-oracle-connector-streaming-metrics
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#debezium-oracle-connector-schema-history-metrics
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#monitoring-debezium

MonitoredTables
Deprecated and scheduled for removal in a
future release; use the CapturedTables
metric instead.

string[] The list of tables that are
monitored by the connector.

CapturedTables string[] The list of tables that are
captured by the connector.

QueueTotalCapacity int The length the queue used to
pass events between the
snapshotter and the main
Kafka Connect loop.

QueueRemainingCapacity int The free capacity of the
queue used to pass events
between the snapshotter and
the main Kafka Connect loop.

TotalTableCount int The total number of tables
that are being included in the
snapshot.

RemainingTableCount int The number of tables that the
snapshot has yet to copy.

SnapshotRunning boolean Whether the snapshot was
started.

SnapshotAborted boolean Whether the snapshot was
aborted.

SnapshotCompleted boolean Whether the snapshot
completed.

SnapshotDurationInSeconds long The total number of seconds
that the snapshot has taken
so far, even if not complete.

RowsScanned Map<String, Long> Map containing the number of
rows scanned for each table in
the snapshot. Tables are
incrementally added to the
Map during processing.
Updates every 10,000 rows
scanned and upon completing
a table.

Attributes Type Description

CHAPTER 6. DEBEZIUM CONNECTOR FOR ORACLE (TECHNOLOGY PREVIEW)

281

MaxQueueSizeInBytes long The maximum buffer of the
queue in bytes. It will be
enabled if
max.queue.size.in.bytes is
passed with a positive long
value.

CurrentQueueSizeInBytes long The current data of records in
the queue in bytes.

Attributes Type Description

The connector also provides the following additional snapshot metrics when an incremental snapshot is
executed:

Attributes Type Description

ChunkId string The identifier of the current
snapshot chunk.

ChunkFrom string The lower bound of the
primary key set defining the
current chunk.

ChunkTo string The upper bound of the
primary key set defining the
current chunk.

TableFrom string The lower bound of the
primary key set of the
currently snapshotted table.

TableTo string The upper bound of the
primary key set of the
currently snapshotted table.

IMPORTANT

Incremental snapshots is a Technology Preview feature only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs) and
might not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.
For more information about the support scope of Red Hat Technology Preview features,
see https://access.redhat.com/support/offerings/techpreview.

6.7.2. Debezium Oracle connector streaming metrics

The MBean is debezium.oracle:type=connector-
metrics,context=streaming,server=<oracle.server.name>.

Red Hat Integration 2022.Q2 Debezium User Guide

282

https://access.redhat.com/support/offerings/techpreview

The following table lists the streaming metrics that are available.

Attributes Type Description

LastEvent string The last streaming event that
the connector has read.

MilliSecondsSinceLastEvent long The number of milliseconds
since the connector has read
and processed the most
recent event.

TotalNumberOfEventsSeen long The total number of events
that this connector has seen
since last started or reset.

NumberOfEventsFiltered long The number of events that
have been filtered by
include/exclude list filtering
rules configured on the
connector.

MonitoredTables
Deprecated and scheduled for removal in a
future release; use the 'CapturedTables' metric
instead

string[] The list of tables that are
monitored by the connector.

CapturedTables string[] The list of tables that are
captured by the connector.

QueueTotalCapacity int The length the queue used to
pass events between the
streamer and the main Kafka
Connect loop.

QueueRemainingCapacity int The free capacity of the
queue used to pass events
between the streamer and the
main Kafka Connect loop.

Connected boolean Flag that denotes whether the
connector is currently
connected to the database
server.

CHAPTER 6. DEBEZIUM CONNECTOR FOR ORACLE (TECHNOLOGY PREVIEW)

283

MilliSecondsBehindSource long The number of milliseconds
between the last change
event’s timestamp and the
connector processing it. The
values will incoporate any
differences between the
clocks on the machines where
the database server and the
connector are running.

NumberOfCommittedTransactions long The number of processed
transactions that were
committed.

SourceEventPosition Map<String, String> The coordinates of the last
received event.

LastTransactionId string Transaction identifier of the
last processed transaction.

MaxQueueSizeInBytes long The maximum buffer of the
queue in bytes.

CurrentQueueSizeInBytes long The current data of records in
the queue in bytes.

Attributes Type Description

The Debezium Oracle connector also provides the following additional streaming metrics:

Table 6.12. Descriptions of additional streaming metrics

Attributes Type Description

CurrentScn string The most recent system
change number that has been
processed.

OldestScn string The oldest system change
number in the transaction
buffer.

ComittedScn string The last committed system
change number from the
transaction buffer.

OffsetScn string The system change number
currently written to the
connector’s offsets.

Red Hat Integration 2022.Q2 Debezium User Guide

284

CurrentRedoLogFileName string[] Array of the log files that are
currently mined.

MinimumMinedLogCount long The minimum number of logs
specified for any LogMiner
session.

MaximumMinedLogCount long The maximum number of logs
specified for any LogMiner
session.

RedoLogStatus string[] Array of the current state for
each mined logfile with the
format filename|status.

SwitchCounter int The number of times the
database has performed a log
switch for the last day.

LastCapturedDmlCount long The number of DML
operations observed in the
last LogMiner session query.

MaxCapturedDmlInBatch long The maximum number of DML
operations observed while
processing a single LogMiner
session query.

TotalCapturedDmlCount long The total number of DML
operations observed.

FetchingQueryCount long The total number of LogMiner
session query (aka batches)
performed.

LastDurationOfFetchQueryInMillisecond
s

long The duration of the last
LogMiner session query’s
fetch in milliseconds.

MaxDurationOfFetchQueryInMillisecond
s

long The maximum duration of any
LogMiner session query’s
fetch in milliseconds.

LastBatchProcessingTimeInMillisecond
s

long The duration for processing
the last LogMiner query batch
results in milliseconds.

Attributes Type Description

CHAPTER 6. DEBEZIUM CONNECTOR FOR ORACLE (TECHNOLOGY PREVIEW)

285

TotalParseTimeInMilliseconds long The time in milliseconds spent
parsing DML event SQL
statements.

LastMiningSessionStartTimeInMilliseco
nds

long The duration in milliseconds to
start the last LogMiner
session.

MaxMiningSessionStartTimeInMillisecon
ds

long The longest duration in
milliseconds to start a
LogMiner session.

TotalMiningSessionStartTimeInMilliseco
nds

long The total duration in
milliseconds spent by the
connector starting LogMiner
sessions.

MinBatchProcessingTimeInMilliseconds long The minimum duration in
milliseconds spent processing
results from a single LogMiner
session.

MaxBatchProcessingTimeInMilliseconds long The maximum duration in
milliseconds spent processing
results from a single LogMiner
session.

TotalProcessingTimeInMilliseconds long The total duration in
milliseconds spent processing
results from LogMiner
sessions.

TotalResultSetNextTimeInMilliseconds long The total duration in
milliseconds spent by the
JDBC driver fetching the next
row to be processed from the
log mining view.

TotalProcessedRows long The total number of rows
processed from the log mining
view across all sessions.

BatchSize int The number of entries
fetched by the log mining
query per database round-
trip.

Attributes Type Description

Red Hat Integration 2022.Q2 Debezium User Guide

286

MillisecondToSleepBetweenMiningQuer
y

long The number of milliseconds
the connector sleeps before
fetching another batch of
results from the log mining
view.

MaxBatchProcessingThroughput long The maximum number of
rows/second processed from
the log mining view.

AverageBatchProcessingThroughput long The average number of
rows/second processed from
the log mining.

LastBatchProcessingThroughput long The average number of
rows/second processed from
the log mining view for the last
batch.

NetworkConnectionProblemsCounter long The number of connection
problems detected.

HoursToKeepTransactionInBuffer int The number of hours that
transactions are retained by
the connector’s in-memory
buffer without being
committed or rolled back
before being discarded. See
log.mining.transaction.ret
ention for more details.

NumberOfActiveTransactions long The number of current active
transactions in the transaction
buffer.

NumberOfCommittedTransactions long The number of committed
transactions in the transaction
buffer.

NumberOfRolledBackTransactions long The number of rolled back
transactions in the transaction
buffer.

CommitThroughput long The average number of
committed transactions per
second in the transaction
buffer.

Attributes Type Description

CHAPTER 6. DEBEZIUM CONNECTOR FOR ORACLE (TECHNOLOGY PREVIEW)

287

RegisteredDmlCount long The number of registered
DML operations in the
transaction buffer.

LagFromSourceInMilliseconds long The time difference in
milliseconds between when a
change occurred in the
transaction logs and when its
added to the transaction
buffer.

MaxLagFromSourceInMilliseconds long The maximum time difference
in milliseconds between when
a change occurred in the
transaction logs and when its
added to the transaction
buffer.

MinLagFromSourceInMilliseconds long The minimum time difference
in milliseconds between when
a change occurred in the
transaction logs and when its
added to the transaction
buffer.

AbandonedTransactionIds string[] An array of abandoned
transaction identifiers
removed from the transaction
buffer due to their age. See
log.mining.transaction.ret
ention.hours for details.

RolledBackTransactionIds string[] An array of transaction
identifiers that have been
mined and rolled back in the
transaction buffer.

LastCommitDurationInMilliseconds long The duration of the last
transaction buffer commit
operation in milliseconds.

MaxCommitDurationInMilliseconds long The duration of the longest
transaction buffer commit
operation in milliseconds.

ErrorCount int The number of errors
detected.

Attributes Type Description

Red Hat Integration 2022.Q2 Debezium User Guide

288

WarningCount int The number of warnings
detected.

ScnFreezeCount int The number of times the
system change number has
been checked for
advancement and remains
unchanged. This is an
indicator that long-running
transaction(s) are ongoing
and preventing the connector
from flushing the latest
processed system change
number to the connector’s
offsets. Under optimal
operations, this should always
be or remain close to 0.

UnparsableDdlCount int The number of DDL records
that have been detected but
could not be parsed by the
DDL parser. This should
always be 0; however when
allowing unparsable DDL to
be skipped, this metric can be
used to determine if any
warnings have been written to
the connector logs.

MiningSessionUserGlobalAreaMemoryIn
Bytes

long The current mining session’s
user global area (UGA)
memory consumption in
bytes.

MiningSessionUserGlobalAreaMaxMem
oryInBytes

long The maximum mining
session’s user global area
(UGA) memory consumption
in bytes across all mining
sessions.

MiningSessionProcessGlobalAreaMemo
ryInBytes

long The current mining session’s
process global area (PGA)
memory consumption in
bytes.

MiningSessionProcessGlobalAreaMaxM
emoryInBytes

long The maximum mining
session’s process global area
(PGA) memory consumption
in bytes across all mining
sessions.

Attributes Type Description

CHAPTER 6. DEBEZIUM CONNECTOR FOR ORACLE (TECHNOLOGY PREVIEW)

289

6.7.3. Debezium Oracle connector schema history metrics

The MBean is debezium.oracle:type=connector-metrics,context=schema-
history,server=<oracle.server.name>.

The following table lists the schema history metrics that are available.

Attributes Type Description

Status string One of STOPPED,
RECOVERING (recovering
history from the storage),
RUNNING describing the
state of the database history.

RecoveryStartTime long The time in epoch seconds at
what recovery has started.

ChangesRecovered long The number of changes that
were read during recovery
phase.

ChangesApplied long the total number of schema
changes applied during
recovery and runtime.

MilliSecondsSinceLast
RecoveredChange

long The number of milliseconds
that elapsed since the last
change was recovered from
the history store.

MilliSecondsSinceLast AppliedChange long The number of milliseconds
that elapsed since the last
change was applied.

LastRecoveredChange string The string representation of
the last change recovered
from the history store.

LastAppliedChange string The string representation of
the last applied change.

6.8. HOW DEBEZIUM ORACLE CONNECTORS HANDLE FAULTS AND
PROBLEMS

Debezium is a distributed system that captures all changes in multiple upstream databases; it never
misses or loses an event. When the system is operating normally or being managed carefully then
Debezium provides exactly once delivery of every change event record.

If a fault occurs, Debezium does not lose any events. However, while it is recovering from the fault, it

Red Hat Integration 2022.Q2 Debezium User Guide

290

If a fault occurs, Debezium does not lose any events. However, while it is recovering from the fault, it
might repeat some change events. In these abnormal situations, Debezium, like Kafka, provides at least
once delivery of change events.

The rest of this section describes how Debezium handles various kinds of faults and problems.

ORA-25191 - Cannot reference overflow table of an index-organized table

Oracle might issue this error during the snapshot phase when encountering an index-organized table
(IOT). This error means that the connector has attempted to execute an operation that must be
executed against the parent index-organized table that contains the specified overflow table.

To resolve this, the IOT name used in the SQL operation should be replaced with the parent index-
organized table name. To determine the parent index-organized table name, use the following SQL:

SELECT IOT_NAME
 FROM DBA_TABLES
 WHERE OWNER='<tablespace-owner>'
 AND TABLE_NAME='<iot-table-name-that-failed>'

The connector’s table.include.list or table.exclude.list configuration options should then be adjusted
to explicitly include or exclude the appropriate tables to avoid the connector from attempting to
capture changes from the child index-organized table.

LogMiner adapter does not capture changes made by SYS or SYSTEM

Oracle uses the SYS and SYSTEM accounts for lots of internal changes and therefore the connector
automatically filters changes made by these users when fetching changes from LogMiner. Never use the
SYS or SYSTEM user accounts for changes to be emitted by the Debezium Oracle connector.

CHAPTER 6. DEBEZIUM CONNECTOR FOR ORACLE (TECHNOLOGY PREVIEW)

291

CHAPTER 7. DEBEZIUM CONNECTOR FOR POSTGRESQL
The Debezium PostgreSQL connector captures row-level changes in the schemas of a PostgreSQL
database. For information about the PostgreSQL versions that are compatible with the connector, see
the Debezium Supported Configurations page .

The first time it connects to a PostgreSQL server or cluster, the connector takes a consistent snapshot
of all schemas. After that snapshot is complete, the connector continuously captures row-level changes
that insert, update, and delete database content and that were committed to a PostgreSQL database.
The connector generates data change event records and streams them to Kafka topics. For each table,
the default behavior is that the connector streams all generated events to a separate Kafka topic for
that table. Applications and services consume data change event records from that topic.

Information and procedures for using a Debezium PostgreSQL connector is organized as follows:

Section 7.1, “Overview of Debezium PostgreSQL connector”

Section 7.2, “How Debezium PostgreSQL connectors work”

Section 7.3, “Descriptions of Debezium PostgreSQL connector data change events”

Section 7.4, “How Debezium PostgreSQL connectors map data types”

Section 7.5, “Setting up PostgreSQL to run a Debezium connector”

Section 7.6, “Deployment of Debezium PostgreSQL connectors”

Section 7.7, “Monitoring Debezium PostgreSQL connector performance”

Section 7.8, “How Debezium PostgreSQL connectors handle faults and problems”

7.1. OVERVIEW OF DEBEZIUM POSTGRESQL CONNECTOR

PostgreSQL’s logical decoding feature was introduced in version 9.4. It is a mechanism that allows the
extraction of the changes that were committed to the transaction log and the processing of these
changes in a user-friendly manner with the help of an output plug-in . The output plug-in enables clients
to consume the changes.

The PostgreSQL connector contains two main parts that work together to read and process database
changes:

pgoutput is the standard logical decoding output plug-in in PostgreSQL 10+. This is the only
supported logical decoding output plug-in in this Debezium release. This plug-in is maintained
by the PostgreSQL community, and used by PostgreSQL itself for logical replication. This plug-
in is always present so no additional libraries need to be installed. The Debezium connector
interprets the raw replication event stream directly into change events.

Java code (the actual Kafka Connect connector) that reads the changes produced by the
logical decoding output plug-in by using PostgreSQL’s streaming replication protocol and the
PostgreSQL JDBC driver.

The connector produces a change event for every row-level insert, update, and delete operation that
was captured and sends change event records for each table in a separate Kafka topic. Client
applications read the Kafka topics that correspond to the database tables of interest, and can react to
every row-level event they receive from those topics.

PostgreSQL normally purges write-ahead log (WAL) segments after some period of time. This means

Red Hat Integration 2022.Q2 Debezium User Guide

292

https://access.redhat.com/articles/4938181
https://www.postgresql.org/docs/current/static/logicaldecoding-explanation.html
https://www.postgresql.org/docs/current/static/logicaldecoding-output-plugin.html
https://www.postgresql.org/docs/current/logical-replication-architecture.html
https://www.postgresql.org/docs/current/static/logicaldecoding-walsender.html
https://github.com/pgjdbc/pgjdbc

PostgreSQL normally purges write-ahead log (WAL) segments after some period of time. This means
that the connector does not have the complete history of all changes that have been made to the
database. Therefore, when the PostgreSQL connector first connects to a particular PostgreSQL
database, it starts by performing a consistent snapshot of each of the database schemas. After the
connector completes the snapshot, it continues streaming changes from the exact point at which the
snapshot was made. This way, the connector starts with a consistent view of all of the data, and does not
omit any changes that were made while the snapshot was being taken.

The connector is tolerant of failures. As the connector reads changes and produces events, it records
the WAL position for each event. If the connector stops for any reason (including communication
failures, network problems, or crashes), upon restart the connector continues reading the WAL where it
last left off. This includes snapshots. If the connector stops during a snapshot, the connector begins a
new snapshot when it restarts.

IMPORTANT

The connector relies on and reflects the PostgreSQL logical decoding feature, which has
the following limitations:

Logical decoding does not support DDL changes. This means that the connector
is unable to report DDL change events back to consumers.

Logical decoding replication slots are supported on only primary servers. When
there is a cluster of PostgreSQL servers, the connector can run on only the active
primary server. It cannot run on hot or warm standby replicas. If the primary
server fails or is demoted, the connector stops. After the primary server has
recovered, you can restart the connector. If a different PostgreSQL server has
been promoted to primary, adjust the connector configuration before restarting
the connector.

Behavior when things go wrong describes what the connector does when there is a
problem.

IMPORTANT

Debezium currently supports databases with UTF-8 character encoding only. With a
single byte character encoding, it is not possible to correctly process strings that contain
extended ASCII code characters.

7.2. HOW DEBEZIUM POSTGRESQL CONNECTORS WORK

To optimally configure and run a Debezium PostgreSQL connector, it is helpful to understand how the
connector performs snapshots, streams change events, determines Kafka topic names, and uses
metadata.

Details are in the following topics:

Section 7.2.2, “How Debezium PostgreSQL connectors perform database snapshots”

Section 7.2.3, “How Debezium PostgreSQL connectors stream change event records”

Section 7.2.4, “Default names of Kafka topics that receive Debezium PostgreSQL change event
records”

Section 7.2.5, “Metadata in Debezium PostgreSQL change event records”

CHAPTER 7. DEBEZIUM CONNECTOR FOR POSTGRESQL

293

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#postgresql-when-things-go-wrong

Section 7.2.6, “Debezium PostgreSQL connector-generated events that represent transaction
boundaries”

7.2.1. Security for PostgreSQL connector

To use the Debezium connector to stream changes from a PostgreSQL database, the connector must
operate with specific privileges in the database. Although one way to grant the necessary privileges is to
provide the user with superuser privileges, doing so potentially exposes your PostgreSQL data to
unauthorized access. Rather than granting excessive privileges to the Debezium user, it is best to create
a dedicated Debezium replication user to which you grant specific privileges.

For more information about configuring privileges for the Debezium PostgreSQL user, see Setting up
permissions. For more information about PostgreSQL logical replication security, see the PostgreSQL
documentation.

7.2.2. How Debezium PostgreSQL connectors perform database snapshots

Most PostgreSQL servers are configured to not retain the complete history of the database in the WAL
segments. This means that the PostgreSQL connector would be unable to see the entire history of the
database by reading only the WAL. Consequently, the first time that the connector starts, it performs an
initial consistent snapshot of the database. The default behavior for performing a snapshot consists of
the following steps. You can change this behavior by setting the snapshot.mode connector
configuration property to a value other than initial.

1. Start a transaction with a SERIALIZABLE, READ ONLY, DEFERRABLE isolation level to ensure
that subsequent reads in this transaction are against a single consistent version of the data. Any
changes to the data due to subsequent INSERT, UPDATE, and DELETE operations by other
clients are not visible to this transaction.

2. Read the current position in the server’s transaction log.

3. Scan the database tables and schemas, generate a READ event for each row and write that
event to the appropriate table-specific Kafka topic.

4. Commit the transaction.

5. Record the successful completion of the snapshot in the connector offsets.

If the connector fails, is rebalanced, or stops after Step 1 begins but before Step 6 completes, upon
restart the connector begins a new snapshot. After the connector completes its initial snapshot, the
PostgreSQL connector continues streaming from the position that it read in step 3. This ensures that
the connector does not miss any updates. If the connector stops again for any reason, upon restart, the
connector continues streaming changes from where it previously left off.

Table 7.1. Settings for snapshot.mode connector configuration property

Setting Description

Red Hat Integration 2022.Q2 Debezium User Guide

294

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#postgresql-permissions
https://www.postgresql.org/docs/current/logical-replication-security.html
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#postgresql-property-snapshot-mode
https://www.postgresql.org/docs/current/static/sql-set-transaction.html

always The connector always performs a snapshot when it starts. After the snapshot
completes, the connector continues streaming changes from step 3 in the above
sequence. This mode is useful in these situations:

It is known that some WAL segments have been deleted and are no longer
available.

After a cluster failure, a new primary has been promoted. The always
snapshot mode ensures that the connector does not miss any changes that
were made after the new primary had been promoted but before the
connector was restarted on the new primary.

never The connector never performs snapshots. When a connector is configured this way, its
behavior when it starts is as follows. If there is a previously stored LSN in the Kafka
offsets topic, the connector continues streaming changes from that position. If no LSN
has been stored, the connector starts streaming changes from the point in time when
the PostgreSQL logical replication slot was created on the server. The never snapshot
mode is useful only when you know all data of interest is still reflected in the WAL.

initial_only The connector performs a database snapshot and stops before streaming any change
event records. If the connector had started but did not complete a snapshot before
stopping, the connector restarts the snapshot process and stops when the snapshot
completes.

exported Deprecated, all modes are lockless.

Setting Description

7.2.2.1. Ad hoc snapshots

IMPORTANT

The use of ad hoc snapshots is a Technology Preview feature. Technology Preview
features are not supported with Red Hat production service-level agreements (SLAs) and
might not be functionally complete; therefore, Red Hat does not recommend
implementing any Technology Preview features in production environments. This
Technology Preview feature provides early access to upcoming product innovations,
enabling you to test functionality and provide feedback during the development process.
For more information about support scope, see Technology Preview Features Support
Scope.

By default, a connector runs an initial snapshot operation only after it starts for the first time. Following
this initial snapshot, under normal circumstances, the connector does not repeat the snapshot process.
Any future change event data that the connector captures comes in through the streaming process
only.

However, in some situations the data that the connector obtained during the initial snapshot might
become stale, lost, or incomplete. To provide a mechanism for recapturing table data, Debezium
includes an option to perform ad hoc snapshots. The following changes in a database might be cause for
performing an ad hoc snapshot:

CHAPTER 7. DEBEZIUM CONNECTOR FOR POSTGRESQL

295

https://access.redhat.com/support/offerings/techpreview/

The connector configuration is modified to capture a different set of tables.

Kafka topics are deleted and must be rebuilt.

Data corruption occurs due to a configuration error or some other problem.

You can re-run a snapshot for a table for which you previously captured a snapshot by initiating a so-
called ad-hoc snapshot . Ad hoc snapshots require the use of signaling tables. You initiate an ad hoc
snapshot by sending a signal request to the Debezium signaling table.

When you initiate an ad hoc snapshot of an existing table, the connector appends content to the topic
that already exists for the table. If a previously existing topic was removed, Debezium can create a topic
automatically if automatic topic creation is enabled.

Ad hoc snapshot signals specify the tables to include in the snapshot. The snapshot can capture the
entire contents of the database, or capture only a subset of the tables in the database.

You specify the tables to capture by sending an execute-snapshot message to the signaling table. Set
the type of the execute-snapshot signal to incremental, and provide the names of the tables to
include in the snapshot, as described in the following table:

Table 7.2. Example of an ad hoc execute-snapshot signal record

Field Default Value

type incremental Specifies the type of snapshot that you want to run.
Setting the type is optional. Currently, you can request only
incremental snapshots.

data-collections N/A An array that contains the fully-qualified names of the table to
be snapshotted.
The format of the names is the same as for the
signal.data.collection configuration option.

Triggering an ad hoc snapshot

You initiate an ad hoc snapshot by adding an entry with the execute-snapshot signal type to the
signaling table. After the connector processes the message, it begins the snapshot operation. The
snapshot process reads the first and last primary key values and uses those values as the start and end
point for each table. Based on the number of entries in the table, and the configured chunk size,
Debezium divides the table into chunks, and proceeds to snapshot each chunk, in succession, one at a
time.

Currently, the execute-snapshot action type triggers incremental snapshots only. For more
information, see Incremental snapshots.

7.2.2.2. Incremental snapshots

IMPORTANT

Red Hat Integration 2022.Q2 Debezium User Guide

296

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#sending-signals-to-a-debezium-connector
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index.xml#customizing-debezium-automatically-created-topics
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index.xml#debezium-signaling-incremental-snapshots

IMPORTANT

The use of incremental snapshots is a Technology Preview feature. Technology Preview
features are not supported with Red Hat production service-level agreements (SLAs) and
might not be functionally complete; therefore, Red Hat does not recommend
implementing any Technology Preview features in production environments. This
Technology Preview feature provides early access to upcoming product innovations,
enabling you to test functionality and provide feedback during the development process.
For more information about support scope, see Technology Preview Features Support
Scope.

To provide flexibility in managing snapshots, Debezium includes a supplementary snapshot mechanism,
known as incremental snapshotting . Incremental snapshots rely on the Debezium mechanism for sending
signals to a Debezium connector.

In an incremental snapshot, instead of capturing the full state of a database all at once, as in an initial
snapshot, Debezium captures each table in phases, in a series of configurable chunks. You can specify
the tables that you want the snapshot to capture and the size of each chunk . The chunk size determines
the number of rows that the snapshot collects during each fetch operation on the database. The default
chunk size for incremental snapshots is 1 KB.

As an incremental snapshot proceeds, Debezium uses watermarks to track its progress, maintaining a
record of each table row that it captures. This phased approach to capturing data provides the following
advantages over the standard initial snapshot process:

You can run incremental snapshots in parallel with streamed data capture, instead of postponing
streaming until the snapshot completes. The connector continues to capture near real-time
events from the change log throughout the snapshot process, and neither operation blocks the
other.

If the progress of an incremental snapshot is interrupted, you can resume it without losing any
data. After the process resumes, the snapshot begins at the point where it stopped, rather than
recapturing the table from the beginning.

You can run an incremental snapshot on demand at any time, and repeat the process as needed
to adapt to database updates. For example, you might re-run a snapshot after you modify the
connector configuration to add a table to its table.include.list property.

Incremental snapshot process

When you run an incremental snapshot, Debezium sorts each table by primary key and then splits the
table into chunks based on the configured chunk size. Working chunk by chunk, it then captures each
table row in a chunk. For each row that it captures, the snapshot emits a READ event. That event
represents the value of the row when the snapshot for the chunk began.

As a snapshot proceeds, it’s likely that other processes continue to access the database, potentially
modifying table records. To reflect such changes, INSERT, UPDATE, or DELETE operations are
committed to the transaction log as per usual. Similarly, the ongoing Debezium streaming process
continues to detect these change events and emits corresponding change event records to Kafka.

How Debezium resolves collisions among records with the same primary key

In some cases, the UPDATE or DELETE events that the streaming process emits are received out of
sequence. That is, the streaming process might emit an event that modifies a table row before the
snapshot captures the chunk that contains the READ event for that row. When the snapshot eventually
emits the corresponding READ event for the row, its value is already superseded. To ensure that

CHAPTER 7. DEBEZIUM CONNECTOR FOR POSTGRESQL

297

https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index.xml#sending-signals-to-a-debezium-connector

incremental snapshot events that arrive out of sequence are processed in the correct logical order,
Debezium employs a buffering scheme for resolving collisions. Only after collisions between the
snapshot events and the streamed events are resolved does Debezium emit an event record to Kafka.

Snapshot window

To assist in resolving collisions between late-arriving READ events and streamed events that modify
the same table row, Debezium employs a so-called snapshot window. The snapshot windows demarcates
the interval during which an incremental snapshot captures data for a specified table chunk. Before the
snapshot window for a chunk opens, Debezium follows its usual behavior and emits events from the
transaction log directly downstream to the target Kafka topic. But from the moment that the snapshot
for a particular chunk opens, until it closes, Debezium performs a de-duplication step to resolve
collisions between events that have the same primary key..

For each data collection, the Debezium emits two types of events, and stores the records for them both
in a single destination Kafka topic. The snapshot records that it captures directly from a table are
emitted as READ operations. Meanwhile, as users continue to update records in the data collection, and
the transaction log is updated to reflect each commit, Debezium emits UPDATE or DELETE operations
for each change.

As the snapshot window opens, and Debezium begins processing a snapshot chunk, it delivers snapshot
records to a memory buffer. During the snapshot windows, the primary keys of the READ events in the
buffer are compared to the primary keys of the incoming streamed events. If no match is found, the
streamed event record is sent directly to Kafka. If Debezium detects a match, it discards the buffered
READ event, and writes the streamed record to the destination topic, because the streamed event
logically supersede the static snapshot event. After the snapshot window for the chunk closes, the
buffer contains only READ events for which no related transaction log events exist. Debezium emits
these remaining READ events to the table’s Kafka topic.

The connector repeats the process for each snapshot chunk.

Triggering an incremental snapshot

Currently, the only way to initiate an incremental snapshot is to send an ad hoc snapshot signal to the
signaling table on the source database. You submit signals to the table as SQL INSERT queries. After
Debezium detects the change in the signaling table, it reads the signal, and runs the requested snapshot
operation.

The query that you submit specifies the tables to include in the snapshot, and, optionally, specifies the
kind of snapshot operation. Currently, the only valid option for snapshots operations is the default value,
incremental.

To specify the tables to include in the snapshot, provide a data-collections array that lists the tables,
for example,
{"data-collections": ["public.MyFirstTable", "public.MySecondTable"]}

The data-collections array for an incremental snapshot signal has no default value. If the data-
collections array is empty, Debezium detects that no action is required and does not perform a
snapshot.

Prerequisites

Signaling is enabled.

A signaling data collection exists on the source database and the connector is configured to
capture it.

Red Hat Integration 2022.Q2 Debezium User Guide

298

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index.xml#debezium-signaling-ad-hoc-snapshots
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index.xml#debezium-signaling-enabling-signaling

The signaling data collection is specified in the signal.data.collection property.

Procedure

1. Send a SQL query to add the ad hoc incremental snapshot request to the signaling table:

For example,

The values of the id,type, and data parameters in the command correspond to the fields of the
signaling table.

The following table describes the these parameters:

Table 7.3. Descriptions of fields in a SQL command for sending an incremental snapshot
signal to the signaling table

Value Description

myschema.de
bezium_signal

Specifies the fully-qualified name of the signaling table on the source database

ad-hoc-1 The id parameter specifies an arbitrary string that is assigned as the id identifier
for the signal request.
Use this string to identify logging messages to entries in the signaling table.
Debezium does not use this string. Rather, during the snapshot, Debezium
generates its own id string as a watermarking signal.

execute-
snapshot

Specifies type parameter specifies the operation that the signal is intended to
trigger.

data-
collections

A required component of the data field of a signal that specifies an array of
table names to include in the snapshot.
The array lists tables by their fully-qualified names, using the same format as you
use to specify the name of the connector’s signaling table in the
signal.data.collection configuration property.

incremental An optional type component of the data field of a signal that specifies the kind
of snapshot operation to run.
Currently, the only valid option is the default value, incremental.
Specifying a type value in the SQL query that you submit to the signaling table
is optional.
If you do not specify a value, the connector runs an incremental snapshot.

The following example, shows the JSON for an incremental snapshot event that is captured by a
connector.

INSERT INTO _<signalTable>_ (id, type, data) VALUES (_'<id>'_, _'<snapshotType>'_,
'{"data-collections": ["_<tableName>_","_<tableName>_"],"type":"_<snapshotType>_"}');

INSERT INTO myschema.debezium_signal (id, type, data) VALUES('ad-hoc-1', 'execute-
snapshot', '{"data-collections": ["schema1.table1", "schema2.table2"],"type":"incremental"}');

CHAPTER 7. DEBEZIUM CONNECTOR FOR POSTGRESQL

299

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index.xml#debezium-signaling-required-structure-of-a-signaling-data-collection

Example: Incremental snapshot event message

Item Field name Description

1 snapshot Specifies the type of snapshot operation to run.
Currently, the only valid option is the default value, incremental.
Specifying a type value in the SQL query that you submit to the
signaling table is optional.
If you do not specify a value, the connector runs an incremental
snapshot.

2 op Specifies the event type.
The value for snapshot events is r, signifying a READ operation.

WARNING

The Debezium connector for PostgreSQL does not support schema changes while
an incremental snapshot is running. If a schema change is performed before the
incremental snapshot start but after sending the signal then passthrough config
option database.autosave is set to conservative to correctly process the schema
change.

7.2.3. How Debezium PostgreSQL connectors stream change event records

The PostgreSQL connector typically spends the vast majority of its time streaming changes from the
PostgreSQL server to which it is connected. This mechanism relies on PostgreSQL’s replication protocol .
This protocol enables clients to receive changes from the server as they are committed in the server’s
transaction log at certain positions, which are referred to as Log Sequence Numbers (LSNs).

Whenever the server commits a transaction, a separate server process invokes a callback function from
the logical decoding plug-in. This function processes the changes from the transaction, converts them
to a specific format (Protobuf or JSON in the case of Debezium plug-in) and writes them on an output
stream, which can then be consumed by clients.

{
 "before":null,
 "after": {
 "pk":"1",
 "value":"New data"
 },
 "source": {
 ...
 "snapshot":"incremental" 1
 },
 "op":"r", 2
 "ts_ms":"1620393591654",
 "transaction":null
}

Red Hat Integration 2022.Q2 Debezium User Guide

300

https://www.postgresql.org/docs/current/static/protocol-replication.html
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#postgresql-output-plugin

The Debezium PostgreSQL connector acts as a PostgreSQL client. When the connector receives
changes it transforms the events into Debezium create, update, or delete events that include the LSN
of the event. The PostgreSQL connector forwards these change events in records to the Kafka
Connect framework, which is running in the same process. The Kafka Connect process asynchronously
writes the change event records in the same order in which they were generated to the appropriate
Kafka topic.

Periodically, Kafka Connect records the most recent offset in another Kafka topic. The offset indicates
source-specific position information that Debezium includes with each event. For the PostgreSQL
connector, the LSN recorded in each change event is the offset.

When Kafka Connect gracefully shuts down, it stops the connectors, flushes all event records to Kafka,
and records the last offset received from each connector. When Kafka Connect restarts, it reads the last
recorded offset for each connector, and starts each connector at its last recorded offset. When the
connector restarts, it sends a request to the PostgreSQL server to send the events starting just after
that position.

NOTE

The PostgreSQL connector retrieves schema information as part of the events sent by
the logical decoding plug-in. However, the connector does not retrieve information about
which columns compose the primary key. The connector obtains this information from
the JDBC metadata (side channel). If the primary key definition of a table changes (by
adding, removing or renaming primary key columns), there is a tiny period of time when
the primary key information from JDBC is not synchronized with the change event that
the logical decoding plug-in generates. During this tiny period, a message could be
created with an inconsistent key structure. To prevent this inconsistency, update primary
key structures as follows:

1. Put the database or an application into a read-only mode.

2. Let Debezium process all remaining events.

3. Stop Debezium.

4. Update the primary key definition in the relevant table.

5. Put the database or the application into read/write mode.

6. Restart Debezium.

PostgreSQL 10+ logical decoding support (pgoutput)

As of PostgreSQL 10+, there is a logical replication stream mode, called pgoutput that is natively
supported by PostgreSQL. This means that a Debezium PostgreSQL connector can consume that
replication stream without the need for additional plug-ins. This is particularly valuable for environments
where installation of plug-ins is not supported or not allowed.

See Setting up PostgreSQL for more details.

7.2.4. Default names of Kafka topics that receive Debezium PostgreSQL change
event records

By default, the PostgreSQL connector writes change events for all INSERT, UPDATE, and DELETE
operations that occur in a table to a single Apache Kafka topic that is specific to that table. The
connector uses the following convention to name change event topics:

CHAPTER 7. DEBEZIUM CONNECTOR FOR POSTGRESQL

301

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#setting-up-postgresql

serverName.schemaName.tableName

The following list provides definitions for the components of the default name:

serverName

The logical name of the connector, as specified by the database.server.name configuration
property.

schemaName

The name of the database schema in which the change event occurred.

tableName

The name of the database table in which the change event occurred.

For example, suppose that fulfillment is the logical server name in the configuration for a connector
that is capturing changes in a PostgreSQL installation that has a postgres database and an inventory
schema that contains four tables: products, products_on_hand, customers, and orders. The
connector would stream records to these four Kafka topics:

fulfillment.inventory.products

fulfillment.inventory.products_on_hand

fulfillment.inventory.customers

fulfillment.inventory.orders

Now suppose that the tables are not part of a specific schema but were created in the default public
PostgreSQL schema. The names of the Kafka topics would be:

fulfillment.public.products

fulfillment.public.products_on_hand

fulfillment.public.customers

fulfillment.public.orders

The connector applies similar naming conventions to label its transaction metadata topics.

If the default topic name do not meet your requirements, you can configure custom topic names. To
configure custom topic names, you specify regular expressions in the logical topic routing SMT. For
more information about using the logical topic routing SMT to customize topic naming, see Topic
routing.

7.2.5. Metadata in Debezium PostgreSQL change event records

In addition to a database change event, each record produced by a PostgreSQL connector contains
some metadata. Metadata includes where the event occurred on the server, the name of the source
partition and the name of the Kafka topic and partition where the event should go, for example:

"sourcePartition": {
 "server": "fulfillment"
 },
 "sourceOffset": {
 "lsn": "24023128",
 "txId": "555",

Red Hat Integration 2022.Q2 Debezium User Guide

302

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#topic-routing
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#postgresql-events

sourcePartition always defaults to the setting of the database.server.name connector
configuration property.

sourceOffset contains information about the location of the server where the event occurred:

lsn represents the PostgreSQL Log Sequence Number or offset in the transaction log.

txId represents the identifier of the server transaction that caused the event.

ts_ms represents the server time at which the transaction was committed in the form of the
number of milliseconds since the epoch.

kafkaPartition with a setting of null means that the connector does not use a specific Kafka
partition. The PostgreSQL connector uses only one Kafka Connect partition and it places the
generated events into one Kafka partition.

7.2.6. Debezium PostgreSQL connector-generated events that represent
transaction boundaries

Debezium can generate events that represent transaction boundaries and that enrich data change
event messages.

LIMITS ON WHEN DEBEZIUM RECEIVES TRANSACTION METADATA

Debezium registers and receives metadata only for transactions that occur after you
deploy the connector. Metadata for transactions that occur before you deploy the
connector is not available.

For every transaction BEGIN and END, Debezium generates an event that contains the following fields:

status - BEGIN or END

id - string representation of unique transaction identifier

event_count (for END events) - total number of events emitted by the transaction

data_collections (for END events) - an array of pairs of data_collection and event_count that
provides the number of events emitted by changes originating from given data collection

Example

 "ts_ms": "1482918357011"
 },
 "kafkaPartition": null

{
 "status": "BEGIN",
 "id": "571",
 "event_count": null,
 "data_collections": null
}

{
 "status": "END",
 "id": "571",

CHAPTER 7. DEBEZIUM CONNECTOR FOR POSTGRESQL

303

https://www.postgresql.org/docs/current/static/datatype-pg-lsn.html

Transaction events are written to the topic named database.server.name.transaction.

Change data event enrichment

When transaction metadata is enabled the data message Envelope is enriched with a new transaction
field. This field provides information about every event in the form of a composite of fields:

id - string representation of unique transaction identifier

total_order - absolute position of the event among all events generated by the transaction

data_collection_order - the per-data collection position of the event among all events that
were emitted by the transaction

Following is an example of a message:

7.3. DESCRIPTIONS OF DEBEZIUM POSTGRESQL CONNECTOR DATA
CHANGE EVENTS

The Debezium PostgreSQL connector generates a data change event for each row-level INSERT,
UPDATE, and DELETE operation. Each event contains a key and a value. The structure of the key and
the value depends on the table that was changed.

Debezium and Kafka Connect are designed around continuous streams of event messages . However, the

 "event_count": 2,
 "data_collections": [
 {
 "data_collection": "s1.a",
 "event_count": 1
 },
 {
 "data_collection": "s2.a",
 "event_count": 1
 }
]
}

{
 "before": null,
 "after": {
 "pk": "2",
 "aa": "1"
 },
 "source": {
 ...
 },
 "op": "c",
 "ts_ms": "1580390884335",
 "transaction": {
 "id": "571",
 "total_order": "1",
 "data_collection_order": "1"
 }
}

Red Hat Integration 2022.Q2 Debezium User Guide

304

structure of these events may change over time, which can be difficult for consumers to handle. To
address this, each event contains the schema for its content or, if you are using a schema registry, a
schema ID that a consumer can use to obtain the schema from the registry. This makes each event self-
contained.

The following skeleton JSON shows the basic four parts of a change event. However, how you configure
the Kafka Connect converter that you choose to use in your application determines the representation
of these four parts in change events. A schema field is in a change event only when you configure the
converter to produce it. Likewise, the event key and event payload are in a change event only if you
configure a converter to produce it. If you use the JSON converter and you configure it to produce all
four basic change event parts, change events have this structure:

Table 7.4. Overview of change event basic content

Item Field name Description

1 schema The first schema field is part of the event key. It specifies a Kafka Connect
schema that describes what is in the event key’s payload portion. In other
words, the first schema field describes the structure of the primary key, or
the unique key if the table does not have a primary key, for the table that
was changed.

It is possible to override the table’s primary key by setting the
message.key.columns connector configuration property. In this case,
the first schema field describes the structure of the key identified by that
property.

2 payload The first payload field is part of the event key. It has the structure
described by the previous schema field and it contains the key for the row
that was changed.

3 schema The second schema field is part of the event value. It specifies the Kafka
Connect schema that describes what is in the event value’s payload
portion. In other words, the second schema describes the structure of the
row that was changed. Typically, this schema contains nested schemas.

{
 "schema": { 1
 ...
 },
 "payload": { 2
 ...
 },
 "schema": { 3
 ...
 },
 "payload": { 4
 ...
 },
}

CHAPTER 7. DEBEZIUM CONNECTOR FOR POSTGRESQL

305

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#postgresql-property-message-key-columns

4 payload The second payload field is part of the event value. It has the structure
described by the previous schema field and it contains the actual data for
the row that was changed.

Item Field name Description

By default behavior is that the connector streams change event records to topics with names that are
the same as the event’s originating table.

NOTE

Starting with Kafka 0.10, Kafka can optionally record the event key and value with the
timestamp at which the message was created (recorded by the producer) or written to
the log by Kafka.

WARNING

The PostgreSQL connector ensures that all Kafka Connect schema names adhere
to the Avro schema name format . This means that the logical server name must
start with a Latin letter or an underscore, that is, a-z, A-Z, or _. Each remaining
character in the logical server name and each character in the schema and table
names must be a Latin letter, a digit, or an underscore, that is, a-z, A-Z, 0-9, or _. If
there is an invalid character it is replaced with an underscore character.

This can lead to unexpected conflicts if the logical server name, a schema name, or a
table name contains invalid characters, and the only characters that distinguish
names from one another are invalid and thus replaced with underscores.

Details are in the following topics:

Section 7.3.1, “About keys in Debezium PostgreSQL change events”

Section 7.3.2, “About values in Debezium PostgreSQL change events”

7.3.1. About keys in Debezium PostgreSQL change events

For a given table, the change event’s key has a structure that contains a field for each column in the
primary key of the table at the time the event was created. Alternatively, if the table has REPLICA
IDENTITY set to FULL or USING INDEX there is a field for each unique key constraint.

Consider a customers table defined in the public database schema and the example of a change event
key for that table.

Example table

CREATE TABLE customers (

Red Hat Integration 2022.Q2 Debezium User Guide

306

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#default-names-of-kafka-topics-that-receive-debezium-postgresql-change-event-records
https://kafka.apache.org/documentation.html#upgrade_10_performance_impact
http://avro.apache.org/docs/current/spec.html#names

Example change event key

If the database.server.name connector configuration property has the value PostgreSQL_server,
every change event for the customers table while it has this definition has the same key structure,
which in JSON looks like this:

Table 7.5. Description of change event key

Item Field name Description

1 schema The schema portion of the key specifies a Kafka Connect schema that
describes what is in the key’s payload portion.

2 PostgreSQL_se
rver.inventory.c
ustomers.Key

Name of the schema that defines the structure of the key’s payload. This
schema describes the structure of the primary key for the table that was
changed. Key schema names have the format connector-name.database-
name.table-name.Key. In this example:

PostgreSQL_server is the name of the connector that
generated this event.

inventory is the database that contains the table that was
changed.

customers is the table that was updated.

 id SERIAL,
 first_name VARCHAR(255) NOT NULL,
 last_name VARCHAR(255) NOT NULL,
 email VARCHAR(255) NOT NULL,
 PRIMARY KEY(id)
);

{
 "schema": { 1
 "type": "struct",
 "name": "PostgreSQL_server.public.customers.Key", 2
 "optional": false, 3
 "fields": [4
 {
 "name": "id",
 "index": "0",
 "schema": {
 "type": "INT32",
 "optional": "false"
 }
 }
]
 },
 "payload": { 5
 "id": "1"
 },
}

CHAPTER 7. DEBEZIUM CONNECTOR FOR POSTGRESQL

307

3 optional Indicates whether the event key must contain a value in its payload field. In
this example, a value in the key’s payload is required. A value in the key’s
payload field is optional when a table does not have a primary key.

4 fields Specifies each field that is expected in the payload, including each field’s
name, index, and schema.

5 payload Contains the key for the row for which this change event was generated. In
this example, the key, contains a single id field whose value is 1.

Item Field name Description

NOTE

Although the column.exclude.list and column.include.list connector configuration
properties allow you to capture only a subset of table columns, all columns in a primary or
unique key are always included in the event’s key.

WARNING

If the table does not have a primary or unique key, then the change event’s key is
null. The rows in a table without a primary or unique key constraint cannot be
uniquely identified.

7.3.2. About values in Debezium PostgreSQL change events

The value in a change event is a bit more complicated than the key. Like the key, the value has a schema
section and a payload section. The schema section contains the schema that describes the Envelope
structure of the payload section, including its nested fields. Change events for operations that create,
update or delete data all have a value payload with an envelope structure.

Consider the same sample table that was used to show an example of a change event key:

The value portion of a change event for a change to this table varies according to the REPLICA
IDENTITY setting and the operation that the event is for.

Details follow in these sections:

Replica identity

CREATE TABLE customers (
 id SERIAL,
 first_name VARCHAR(255) NOT NULL,
 last_name VARCHAR(255) NOT NULL,
 email VARCHAR(255) NOT NULL,
 PRIMARY KEY(id)
);

Red Hat Integration 2022.Q2 Debezium User Guide

308

create events

update events

Primary key updates

delete events

Tombstone events

Replica identity

REPLICA IDENTITY is a PostgreSQL-specific table-level setting that determines the amount of
information that is available to the logical decoding plug-in for UPDATE and DELETE events. More
specifically, the setting of REPLICA IDENTITY controls what (if any) information is available for the
previous values of the table columns involved, whenever an UPDATE or DELETE event occurs.

There are 4 possible values for REPLICA IDENTITY:

DEFAULT - The default behavior is that UPDATE and DELETE events contain the previous
values for the primary key columns of a table if that table has a primary key. For an UPDATE
event, only the primary key columns with changed values are present.
If a table does not have a primary key, the connector does not emit UPDATE or DELETE events
for that table. For a table without a primary key, the connector emits only create events.
Typically, a table without a primary key is used for appending messages to the end of the table,
which means that UPDATE and DELETE events are not useful.

NOTHING - Emitted events for UPDATE and DELETE operations do not contain any
information about the previous value of any table column.

FULL - Emitted events for UPDATE and DELETE operations contain the previous values of all
columns in the table.

INDEX index-name - Emitted events for UPDATE and DELETE operations contain the
previous values of the columns contained in the specified index. UPDATE events also contain
the indexed columns with the updated values.

create events

The following example shows the value portion of a change event that the connector generates for an
operation that creates data in the customers table:

{
 "schema": { 1
 "type": "struct",
 "fields": [
 {
 "type": "struct",
 "fields": [
 {
 "type": "int32",
 "optional": false,
 "field": "id"
 },
 {
 "type": "string",
 "optional": false,

CHAPTER 7. DEBEZIUM CONNECTOR FOR POSTGRESQL

309

https://www.postgresql.org/docs/current/static/sql-altertable.html#SQL-CREATETABLE-REPLICA-IDENTITY

 "field": "first_name"
 },
 {
 "type": "string",
 "optional": false,
 "field": "last_name"
 },
 {
 "type": "string",
 "optional": false,
 "field": "email"
 }
],
 "optional": true,
 "name": "PostgreSQL_server.inventory.customers.Value", 2
 "field": "before"
 },
 {
 "type": "struct",
 "fields": [
 {
 "type": "int32",
 "optional": false,
 "field": "id"
 },
 {
 "type": "string",
 "optional": false,
 "field": "first_name"
 },
 {
 "type": "string",
 "optional": false,
 "field": "last_name"
 },
 {
 "type": "string",
 "optional": false,
 "field": "email"
 }
],
 "optional": true,
 "name": "PostgreSQL_server.inventory.customers.Value",
 "field": "after"
 },
 {
 "type": "struct",
 "fields": [
 {
 "type": "string",
 "optional": false,
 "field": "version"
 },
 {
 "type": "string",
 "optional": false,

Red Hat Integration 2022.Q2 Debezium User Guide

310

 "field": "connector"
 },
 {
 "type": "string",
 "optional": false,
 "field": "name"
 },
 {
 "type": "int64",
 "optional": false,
 "field": "ts_ms"
 },
 {
 "type": "boolean",
 "optional": true,
 "default": false,
 "field": "snapshot"
 },
 {
 "type": "string",
 "optional": false,
 "field": "db"
 },
 {
 "type": "string",
 "optional": false,
 "field": "schema"
 },
 {
 "type": "string",
 "optional": false,
 "field": "table"
 },
 {
 "type": "int64",
 "optional": true,
 "field": "txId"
 },
 {
 "type": "int64",
 "optional": true,
 "field": "lsn"
 },
 {
 "type": "int64",
 "optional": true,
 "field": "xmin"
 }
],
 "optional": false,
 "name": "io.debezium.connector.postgresql.Source", 3
 "field": "source"
 },
 {
 "type": "string",
 "optional": false,

CHAPTER 7. DEBEZIUM CONNECTOR FOR POSTGRESQL

311

Table 7.6. Descriptions of create event value fields

Item Field name Description

1 schema The value’s schema, which describes the structure of the value’s payload. A
change event’s value schema is the same in every change event that the
connector generates for a particular table.

 "field": "op"
 },
 {
 "type": "int64",
 "optional": true,
 "field": "ts_ms"
 }
],
 "optional": false,
 "name": "PostgreSQL_server.inventory.customers.Envelope" 4
 },
 "payload": { 5
 "before": null, 6
 "after": { 7
 "id": 1,
 "first_name": "Anne",
 "last_name": "Kretchmar",
 "email": "annek@noanswer.org"
 },
 "source": { 8
 "version": "1.7.2.Final",
 "connector": "postgresql",
 "name": "PostgreSQL_server",
 "ts_ms": 1559033904863,
 "snapshot": true,
 "db": "postgres",
 "sequence": "[\"24023119\",\"24023128\"]"
 "schema": "public",
 "table": "customers",
 "txId": 555,
 "lsn": 24023128,
 "xmin": null
 },
 "op": "c", 9
 "ts_ms": 1559033904863 10
 }
}

Red Hat Integration 2022.Q2 Debezium User Guide

312

2 name In the schema section, each name field specifies the schema for a field in
the value’s payload.

PostgreSQL_server.inventory.customers.Value is the schema for
the payload’s before and after fields. This schema is specific to the
customers table.

Names of schemas for before and after fields are of the form
logicalName.tableName.Value, which ensures that the schema name is
unique in the database. This means that when using the Avro converter, the
resulting Avro schema for each table in each logical source has its own
evolution and history.

3 name io.debezium.connector.postgresql.Source is the schema for the
payload’s source field. This schema is specific to the PostgreSQL
connector. The connector uses it for all events that it generates.

4 name PostgreSQL_server.inventory.customers.Envelope is the schema
for the overall structure of the payload, where PostgreSQL_server is the
connector name, inventory is the database, and customers is the table.

5 payload The value’s actual data. This is the information that the change event is
providing.

It may appear that the JSON representations of the events are much larger
than the rows they describe. This is because the JSON representation must
include the schema and the payload portions of the message. However, by
using the Avro converter, you can significantly decrease the size of the
messages that the connector streams to Kafka topics.

6 before An optional field that specifies the state of the row before the event
occurred. When the op field is c for create, as it is in this example, the
before field is null since this change event is for new content.

NOTE

Whether or not this field is available is dependent on the
REPLICA IDENTITY setting for each table.

7 after An optional field that specifies the state of the row after the event
occurred. In this example, the after field contains the values of the new row’s
id, first_name, last_name, and email columns.

Item Field name Description

CHAPTER 7. DEBEZIUM CONNECTOR FOR POSTGRESQL

313

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#configuring-debezium-connectors-to-use-avro-serialization
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#configuring-debezium-connectors-to-use-avro-serialization
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#postgresql-replica-identity

8 source Mandatory field that describes the source metadata for the event. This field
contains information that you can use to compare this event with other
events, with regard to the origin of the events, the order in which the events
occurred, and whether events were part of the same transaction. The
source metadata includes:

Debezium version

Connector type and name

Database and table that contains the new row

Stringified JSON array of additional offset information. The first
value is always the last committed LSN, the second value is always
the current LSN. Either value may be null.

Schema name

If the event was part of a snapshot

ID of the transaction in which the operation was performed

Offset of the operation in the database log

Timestamp for when the change was made in the database

9 op Mandatory string that describes the type of operation that caused the
connector to generate the event. In this example, c indicates that the
operation created a row. Valid values are:

c = create

u = update

d = delete

r = read (applies to only snapshots)

10 ts_ms Optional field that displays the time at which the connector processed the
event. The time is based on the system clock in the JVM running the Kafka
Connect task.

In the source object, ts_ms indicates the time that the change was made
in the database. By comparing the value for payload.source.ts_ms with
the value for payload.ts_ms, you can determine the lag between the
source database update and Debezium.

Item Field name Description

update events

The value of a change event for an update in the sample customers table has the same schema as a
create event for that table. Likewise, the event value’s payload has the same structure. However, the
event value payload contains different values in an update event. Here is an example of a change event
value in an event that the connector generates for an update in the customers table:

Red Hat Integration 2022.Q2 Debezium User Guide

314

Table 7.7. Descriptions of update event value fields

Item Field name Description

1 before An optional field that contains values that were in the row before the
database commit. In this example, only the primary key column, id, is present
because the table’s REPLICA IDENTITY setting is, by default, DEFAULT.
+ For an update event to contain the previous values of all columns in the
row, you would have to change the customers table by running ALTER
TABLE customers REPLICA IDENTITY FULL.

2 after An optional field that specifies the state of the row after the event
occurred. In this example, the first_name value is now Anne Marie.

{
 "schema": { ... },
 "payload": {
 "before": { 1
 "id": 1
 },
 "after": { 2
 "id": 1,
 "first_name": "Anne Marie",
 "last_name": "Kretchmar",
 "email": "annek@noanswer.org"
 },
 "source": { 3
 "version": "1.7.2.Final",
 "connector": "postgresql",
 "name": "PostgreSQL_server",
 "ts_ms": 1559033904863,
 "snapshot": false,
 "db": "postgres",
 "schema": "public",
 "table": "customers",
 "txId": 556,
 "lsn": 24023128,
 "xmin": null
 },
 "op": "u", 4
 "ts_ms": 1465584025523 5
 }
}

CHAPTER 7. DEBEZIUM CONNECTOR FOR POSTGRESQL

315

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#postgresql-replica-identity

3 source Mandatory field that describes the source metadata for the event. The
source field structure has the same fields as in a create event, but some
values are different. The source metadata includes:

Debezium version

Connector type and name

Database and table that contains the new row

Schema name

If the event was part of a snapshot (always false for update
events)

ID of the transaction in which the operation was performed

Offset of the operation in the database log

Timestamp for when the change was made in the database

4 op Mandatory string that describes the type of operation. In an update event
value, the op field value is u, signifying that this row changed because of an
update.

5 ts_ms Optional field that displays the time at which the connector processed the
event. The time is based on the system clock in the JVM running the Kafka
Connect task.

In the source object, ts_ms indicates the time that the change was made
in the database. By comparing the value for payload.source.ts_ms with
the value for payload.ts_ms, you can determine the lag between the
source database update and Debezium.

Item Field name Description

NOTE

Updating the columns for a row’s primary/unique key changes the value of the row’s key.
When a key changes, Debezium outputs three events: a DELETE event and a tombstone
event with the old key for the row, followed by an event with the new key for the row.
Details are in the next section.

Primary key updates

An UPDATE operation that changes a row’s primary key field(s) is known as a primary key change. For a
primary key change, in place of sending an UPDATE event record, the connector sends a DELETE
event record for the old key and a CREATE event record for the new (updated) key. These events have
the usual structure and content, and in addition, each one has a message header related to the primary
key change:

The DELETE event record has __debezium.newkey as a message header. The value of this
header is the new primary key for the updated row.

The CREATE event record has __debezium.oldkey as a message header. The value of this

Red Hat Integration 2022.Q2 Debezium User Guide

316

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#postgresql-tombstone-events

The CREATE event record has __debezium.oldkey as a message header. The value of this
header is the previous (old) primary key that the updated row had.

delete events

The value in a delete change event has the same schema portion as create and update events for the
same table. The payload portion in a delete event for the sample customers table looks like this:

Table 7.8. Descriptions of delete event value fields

Item Field name Description

1 before Optional field that specifies the state of the row before the event occurred.
In a delete event value, the before field contains the values that were in the
row before it was deleted with the database commit.

In this example, the before field contains only the primary key column
because the table’s REPLICA IDENTITY setting is DEFAULT.

2 after Optional field that specifies the state of the row after the event occurred. In
a delete event value, the after field is null, signifying that the row no longer
exists.

{
 "schema": { ... },
 "payload": {
 "before": { 1
 "id": 1
 },
 "after": null, 2
 "source": { 3
 "version": "1.7.2.Final",
 "connector": "postgresql",
 "name": "PostgreSQL_server",
 "ts_ms": 1559033904863,
 "snapshot": false,
 "db": "postgres",
 "schema": "public",
 "table": "customers",
 "txId": 556,
 "lsn": 46523128,
 "xmin": null
 },
 "op": "d", 4
 "ts_ms": 1465581902461 5
 }
}

CHAPTER 7. DEBEZIUM CONNECTOR FOR POSTGRESQL

317

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#postgresql-replica-identity

3 source Mandatory field that describes the source metadata for the event. In a
delete event value, the source field structure is the same as for create and
update events for the same table. Many source field values are also the
same. In a delete event value, the ts_ms and lsn field values, as well as
other values, might have changed. But the source field in a delete event
value provides the same metadata:

Debezium version

Connector type and name

Database and table that contained the deleted row

Schema name

If the event was part of a snapshot (always false for delete events)

ID of the transaction in which the operation was performed

Offset of the operation in the database log

Timestamp for when the change was made in the database

4 op Mandatory string that describes the type of operation. The op field value is
d, signifying that this row was deleted.

5 ts_ms Optional field that displays the time at which the connector processed the
event. The time is based on the system clock in the JVM running the Kafka
Connect task.

In the source object, ts_ms indicates the time that the change was made
in the database. By comparing the value for payload.source.ts_ms with
the value for payload.ts_ms, you can determine the lag between the
source database update and Debezium.

Item Field name Description

A delete change event record provides a consumer with the information it needs to process the removal
of this row.

WARNING

For a consumer to be able to process a delete event generated for a table that does
not have a primary key, set the table’s REPLICA IDENTITY to FULL. When a table
does not have a primary key and the table’s REPLICA IDENTITY is set to
DEFAULT or NOTHING, a delete event has no before field.

PostgreSQL connector events are designed to work with Kafka log compaction. Log compaction
enables removal of some older messages as long as at least the most recent message for every key is
kept. This lets Kafka reclaim storage space while ensuring that the topic contains a complete data set

Red Hat Integration 2022.Q2 Debezium User Guide

318

https://kafka.apache.org/documentation#compaction

and can be used for reloading key-based state.

Tombstone events

When a row is deleted, the delete event value still works with log compaction, because Kafka can remove
all earlier messages that have that same key. However, for Kafka to remove all messages that have that
same key, the message value must be null. To make this possible, the PostgreSQL connector follows a
delete event with a special tombstone event that has the same key but a null value.

truncate events

A truncate change event signals that a table has been truncated. The message key is null in this case,
the message value looks like this:

Table 7.9. Descriptions of truncate event value fields

Item Field name Description

{
 "schema": { ... },
 "payload": {
 "source": { 1
 "version": "1.7.2.Final",
 "connector": "postgresql",
 "name": "PostgreSQL_server",
 "ts_ms": 1559033904863,
 "snapshot": false,
 "db": "postgres",
 "schema": "public",
 "table": "customers",
 "txId": 556,
 "lsn": 46523128,
 "xmin": null
 },
 "op": "t", 2
 "ts_ms": 1559033904961 3
 }
}

CHAPTER 7. DEBEZIUM CONNECTOR FOR POSTGRESQL

319

1 source Mandatory field that describes the source metadata for the event. In a
truncate event value, the source field structure is the same as for create,
update, and delete events for the same table, provides this metadata:

Debezium version

Connector type and name

Database and table that contains the new row

Schema name

If the event was part of a snapshot (always false for delete events)

ID of the transaction in which the operation was performed

Offset of the operation in the database log

Timestamp for when the change was made in the database

2 op Mandatory string that describes the type of operation. The op field value is
t, signifying that this table was truncated.

3 ts_ms Optional field that displays the time at which the connector processed the
event. The time is based on the system clock in the JVM running the Kafka
Connect task.

In the source object, ts_ms indicates the time that the change was made
in the database. By comparing the value for payload.source.ts_ms with
the value for payload.ts_ms, you can determine the lag between the
source database update and Debezium.

Item Field name Description

In case a single TRUNCATE statement applies to multiple tables, one truncate change event record for
each truncated table will be emitted.

Note that since truncate events represent a change made to an entire table and don’t have a message
key, unless you’re working with topics with a single partition, there are no ordering guarantees for the
change events pertaining to a table (create, update, etc.) and truncate events for that table. For
instance a consumer may receive an update event only after a truncate event for that table, when those
events are read from different partitions.

7.4. HOW DEBEZIUM POSTGRESQL CONNECTORS MAP DATA TYPES

The PostgreSQL connector represents changes to rows with events that are structured like the table in
which the row exists. The event contains a field for each column value. How that value is represented in
the event depends on the PostgreSQL data type of the column. The following sections describe how
the connector maps PostgreSQL data types to a literal type and a semantic type in event fields.

literal type describes how the value is literally represented using Kafka Connect schema types:
INT8, INT16, INT32, INT64, FLOAT32, FLOAT64, BOOLEAN, STRING, BYTES, ARRAY, MAP,
and STRUCT.

semantic type describes how the Kafka Connect schema captures the meaning of the field using

Red Hat Integration 2022.Q2 Debezium User Guide

320

semantic type describes how the Kafka Connect schema captures the meaning of the field using
the name of the Kafka Connect schema for the field.

Details are in the following sections:

Basic types

Temporal types

TIMESTAMP type

Decimal types

HSTORE type

Domain types

Network address types

PostGIS types

Toasted values

Basic types

The following table describes how the connector maps basic types.

Table 7.10. Mappings for PostgreSQL basic data types

PostgreSQL data type Literal type
(schema type)

Semantic type (schema name) and Notes

BOOLEAN BOOLEAN n/a

BIT(1) BOOLEAN n/a

BIT(> 1) BYTES io.debezium.data.Bits

The length schema parameter contains an integer that
represents the number of bits. The resulting byte[]
contains the bits in little-endian form and is sized to
contain the specified number of bits. For example,
numBytes = n/8 + (n % 8 == 0 ? 0 : 1) where n is the
number of bits.

BIT VARYING[(M)] BYTES io.debezium.data.Bits

The length schema parameter contains an integer that
represents the number of bits (2^31 - 1 in case no length is
given for the column). The resulting byte[] contains the
bits in little-endian form and is sized based on the content.
The specified size (M) is stored in the length parameter of
the io.debezium.data.Bits type.

CHAPTER 7. DEBEZIUM CONNECTOR FOR POSTGRESQL

321

SMALLINT,
SMALLSERIAL

INT16 n/a

INTEGER, SERIAL INT32 n/a

BIGINT, BIGSERIAL,
OID

INT64 n/a

REAL FLOAT32 n/a

DOUBLE PRECISION FLOAT64 n/a

CHAR[(M)] STRING n/a

VARCHAR[(M)] STRING n/a

CHARACTER[(M)] STRING n/a

CHARACTER
VARYING[(M)]

STRING n/a

TIMESTAMPTZ,
TIMESTAMP WITH
TIME ZONE

STRING io.debezium.time.ZonedTimestamp

A string representation of a timestamp with timezone
information, where the timezone is GMT.

TIMETZ, TIME WITH
TIME ZONE

STRING io.debezium.time.ZonedTime

A string representation of a time value with timezone
information, where the timezone is GMT.

INTERVAL [P] INT64 io.debezium.time.MicroDuration
(default)

The approximate number of microseconds for a time
interval using the 365.25 / 12.0 formula for days per
month average.

PostgreSQL data type Literal type
(schema type)

Semantic type (schema name) and Notes

Red Hat Integration 2022.Q2 Debezium User Guide

322

INTERVAL [P] STRING io.debezium.time.Interval
(when interval.handling.mode is set to string)

The string representation of the interval value that follows
the pattern
P<years>Y<months>M<days>DT<hours>H<minute
s>M<seconds>S, for example,
P1Y2M3DT4H5M6.78S.

BYTEA BYTES or
STRING

n/a

Either the raw bytes (the default), a base64-encoded
string, or a hex-encoded string, based on the connector’s
binary handling mode setting.

JSON, JSONB STRING io.debezium.data.Json

Contains the string representation of a JSON document,
array, or scalar.

XML STRING io.debezium.data.Xml

Contains the string representation of an XML document.

UUID STRING io.debezium.data.Uuid

Contains the string representation of a PostgreSQL UUID
value.

POINT STRUCT io.debezium.data.geometry.Point

Contains a structure with two FLOAT64 fields, (x,y). Each
field represents the coordinates of a geometric point.

LTREE STRING io.debezium.data.Ltree

Contains the string representation of a PostgreSQL
LTREE value.

CITEXT STRING n/a

INET STRING n/a

INT4RANGE STRING n/a

Range of integer.

PostgreSQL data type Literal type
(schema type)

Semantic type (schema name) and Notes

CHAPTER 7. DEBEZIUM CONNECTOR FOR POSTGRESQL

323

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#postgresql-property-binary-handling-mode

INT8RANGE STRING n/a

Range of bigint.

NUMRANGE STRING n/a

Range of numeric.

TSRANGE STRING n/a

Contains the string representation of a timestamp range
without a time zone.

TSTZRANGE STRING n/a

Contains the string representation of a timestamp range
with the local system time zone.

DATERANGE STRING n/a

Contains the string representation of a date range. It
always has an exclusive upper-bound.

ENUM STRING io.debezium.data.Enum

Contains the string representation of the PostgreSQL
ENUM value. The set of allowed values is maintained in the
allowed schema parameter.

PostgreSQL data type Literal type
(schema type)

Semantic type (schema name) and Notes

Temporal types

Other than PostgreSQL’s TIMESTAMPTZ and TIMETZ data types, which contain time zone information,
how temporal types are mapped depends on the value of the time.precision.mode connector
configuration property. The following sections describe these mappings:

time.precision.mode=adaptive

time.precision.mode=adaptive_time_microseconds

time.precision.mode=connect

time.precision.mode=adaptive

When the time.precision.mode property is set to adaptive, the default, the connector determines the
literal type and semantic type based on the column’s data type definition. This ensures that events
exactly represent the values in the database.

Table 7.11. Mappings when time.precision.mode is adaptive

Red Hat Integration 2022.Q2 Debezium User Guide

324

PostgreSQL data type Literal type
(schema type)

Semantic type (schema name) and Notes

DATE INT32 io.debezium.time.Date

Represents the number of days since the epoch.

TIME(1), TIME(2),
TIME(3)

INT32 io.debezium.time.Time

Represents the number of milliseconds past midnight, and
does not include timezone information.

TIME(4), TIME(5),
TIME(6)

INT64 io.debezium.time.MicroTime

Represents the number of microseconds past midnight,
and does not include timezone information.

TIMESTAMP(1),
TIMESTAMP(2),
TIMESTAMP(3)

INT64 io.debezium.time.Timestamp

Represents the number of milliseconds since the epoch,
and does not include timezone information.

TIMESTAMP(4),
TIMESTAMP(5),
TIMESTAMP(6),
TIMESTAMP

INT64 io.debezium.time.MicroTimestamp

Represents the number of microseconds since the epoch,
and does not include timezone information.

time.precision.mode=adaptive_time_microseconds

When the time.precision.mode configuration property is set to adaptive_time_microseconds, the
connector determines the literal type and semantic type for temporal types based on the column’s data
type definition. This ensures that events exactly represent the values in the database, except all TIME
fields are captured as microseconds.

Table 7.12. Mappings when time.precision.mode is adaptive_time_microseconds

PostgreSQL data type Literal type
(schema type)

Semantic type (schema name) and Notes

DATE INT32 io.debezium.time.Date

Represents the number of days since the epoch.

TIME([P]) INT64 io.debezium.time.MicroTime

Represents the time value in microseconds and does not
include timezone information. PostgreSQL allows precision
P to be in the range 0-6 to store up to microsecond
precision.

CHAPTER 7. DEBEZIUM CONNECTOR FOR POSTGRESQL

325

TIMESTAMP(1) ,
TIMESTAMP(2),
TIMESTAMP(3)

INT64 io.debezium.time.Timestamp

Represents the number of milliseconds past the epoch,
and does not include timezone information.

TIMESTAMP(4) ,
TIMESTAMP(5),
TIMESTAMP(6),
TIMESTAMP

INT64 io.debezium.time.MicroTimestamp

Represents the number of microseconds past the epoch,
and does not include timezone information.

PostgreSQL data type Literal type
(schema type)

Semantic type (schema name) and Notes

time.precision.mode=connect

When the time.precision.mode configuration property is set to connect, the connector uses Kafka
Connect logical types. This may be useful when consumers can handle only the built-in Kafka Connect
logical types and are unable to handle variable-precision time values. However, since PostgreSQL
supports microsecond precision, the events generated by a connector with the connect time precision
mode results in a loss of precision when the database column has a fractional second precision value
that is greater than 3.

Table 7.13. Mappings when time.precision.mode is connect

PostgreSQL data type Literal type
(schema type)

Semantic type (schema name) and Notes

DATE INT32 org.apache.kafka.connect.data.Date

Represents the number of days since the epoch.

TIME([P]) INT64 org.apache.kafka.connect.data.Time

Represents the number of milliseconds since midnight, and
does not include timezone information. PostgreSQL allows
P to be in the range 0-6 to store up to microsecond
precision, though this mode results in a loss of precision
when P is greater than 3.

TIMESTAMP([P]) INT64 org.apache.kafka.connect.data.Timestamp

Represents the number of milliseconds since the epoch,
and does not include timezone information. PostgreSQL
allows P to be in the range 0-6 to store up to microsecond
precision, though this mode results in a loss of precision
when P is greater than 3.

TIMESTAMP type

The TIMESTAMP type represents a timestamp without time zone information. Such columns are

Red Hat Integration 2022.Q2 Debezium User Guide

326

converted into an equivalent Kafka Connect value based on UTC. For example, the TIMESTAMP value
"2018-06-20 15:13:16.945104" is represented by an io.debezium.time.MicroTimestamp with the value
"1529507596945104" when time.precision.mode is not set to connect.

The timezone of the JVM running Kafka Connect and Debezium does not affect this conversion.

PostgreSQL supports using +/-infinite values in TIMESTAMP columns. These special values are
converted to timestamps with value 9223372036825200000 in case of positive infinity or -
9223372036832400000 in case of negative infinity. This behaviour mimics the standard behaviour of
PostgreSQL JDBC driver - see org.postgresql.PGStatement interface for reference.

Decimal types

The setting of the PostgreSQL connector configuration property, decimal.handling.mode determines
how the connector maps decimal types.

When the decimal.handling.mode property is set to precise, the connector uses the Kafka Connect
org.apache.kafka.connect.data.Decimal logical type for all DECIMAL and NUMERIC columns. This is
the default mode.

Table 7.14. Mappings when decimal.handling.mode is precise

PostgreSQL data type Literal type
(schema type)

Semantic type (schema name) and Notes

NUMERIC[(M[,D])] BYTES org.apache.kafka.connect.data.Decimal

The scale schema parameter contains an integer
representing how many digits the decimal point was
shifted.

DECIMAL[(M[,D])] BYTES org.apache.kafka.connect.data.Decimal

The scale schema parameter contains an integer
representing how many digits the decimal point was
shifted.

There is an exception to this rule. When the NUMERIC or DECIMAL types are used without scale
constraints, the values coming from the database have a different (variable) scale for each value. In this
case, the connector uses io.debezium.data.VariableScaleDecimal, which contains both the value and
the scale of the transferred value.

Table 7.15. Mappings of decimal types when there are no scale constraints

PostgreSQL data type Literal type
(schema type)

Semantic type (schema name) and Notes

NUMERIC STRUCT io.debezium.data.VariableScaleDecimal

Contains a structure with two fields: scale of type INT32
that contains the scale of the transferred value and value
of type BYTES containing the original value in an unscaled
form.

CHAPTER 7. DEBEZIUM CONNECTOR FOR POSTGRESQL

327

DECIMAL STRUCT io.debezium.data.VariableScaleDecimal

Contains a structure with two fields: scale of type INT32
that contains the scale of the transferred value and value
of type BYTES containing the original value in an unscaled
form.

PostgreSQL data type Literal type
(schema type)

Semantic type (schema name) and Notes

When the decimal.handling.mode property is set to double, the connector represents all DECIMAL
and NUMERIC values as Java double values and encodes them as shown in the following table.

Table 7.16. Mappings when decimal.handling.mode is double

PostgreSQL data type Literal type (schema type) Semantic type (schema name)

NUMERIC[(M[,D])] FLOAT64

DECIMAL[(M[,D])] FLOAT64

The last possible setting for the decimal.handling.mode configuration property is string. In this case,
the connector represents DECIMAL and NUMERIC values as their formatted string representation, and
encodes them as shown in the following table.

Table 7.17. Mappings when decimal.handling.mode is string

PostgreSQL data type Literal type (schema type) Semantic type (schema name)

NUMERIC[(M[,D])] STRING

DECIMAL[(M[,D])] STRING

PostgreSQL supports NaN (not a number) as a special value to be stored in DECIMAL/NUMERIC values
when the setting of decimal.handling.mode is string or double. In this case, the connector encodes
NaN as either Double.NaN or the string constant NAN.

HSTORE type

When the hstore.handling.mode connector configuration property is set to json (the default), the
connector represents HSTORE values as string representations of JSON values and encodes them as
shown in the following table. When the hstore.handling.mode property is set to map, the connector
uses the MAP schema type for HSTORE values.

Table 7.18. Mappings for HSTORE data type

PostgreSQL data type Literal type
(schema type)

Semantic type (schema name) and Notes

Red Hat Integration 2022.Q2 Debezium User Guide

328

HSTORE STRING io.debezium.data.Json

Example: output representation using the JSON converter
is {"key" : "val"}

HSTORE MAP n/a

Example: output representation using the JSON converter
is {"key" : "val"}

PostgreSQL data type Literal type
(schema type)

Semantic type (schema name) and Notes

Domain types

PostgreSQL supports user-defined types that are based on other underlying types. When such column
types are used, Debezium exposes the column’s representation based on the full type hierarchy.

IMPORTANT

Capturing changes in columns that use PostgreSQL domain types requires special
consideration. When a column is defined to contain a domain type that extends one of
the default database types and the domain type defines a custom length or scale, the
generated schema inherits that defined length or scale.

When a column is defined to contain a domain type that extends another domain type
that defines a custom length or scale, the generated schema does not inherit the defined
length or scale because that information is not available in the PostgreSQL driver’s
column metadata.

Network address types

PostgreSQL has data types that can store IPv4, IPv6, and MAC addresses. It is better to use these types
instead of plain text types to store network addresses. Network address types offer input error checking
and specialized operators and functions.

Table 7.19. Mappings for network address types

PostgreSQL data type Literal type
(schema type)

Semantic type (schema name) and Notes

INET STRING n/a

IPv4 and IPv6 networks

CIDR STRING n/a

IPv4 and IPv6 hosts and networks

CHAPTER 7. DEBEZIUM CONNECTOR FOR POSTGRESQL

329

MACADDR STRING n/a

MAC addresses

MACADDR8 STRING n/a

MAC addresses in EUI-64 format

PostgreSQL data type Literal type
(schema type)

Semantic type (schema name) and Notes

PostGIS types

The PostgreSQL connector supports all PostGIS data types.

Table 7.20. Mappings of PostGIS data types

PostGIS data type Literal type
(schema type)

Semantic type (schema name) and Notes

GEOMETRY
(planar)

STRUCT io.debezium.data.geometry.Geometry

Contains a structure with two fields:

srid (INT32) - Spatial Reference System
Identifier that defines what type of geometry
object is stored in the structure.

wkb (BYTES) - A binary representation of the
geometry object encoded in the Well-Known-
Binary format.

For format details, see Open Geospatial Consortium
Simple Features Access specification.

GEOGRAPHY
(spherical)

STRUCT io.debezium.data.geometry.Geography

Contains a structure with two fields:

srid (INT32) - Spatial Reference System
Identifier that defines what type of geography
object is stored in the structure.

wkb (BYTES) - A binary representation of the
geometry object encoded in the Well-Known-
Binary format.

For format details, see Open Geospatial Consortium
Simple Features Access specification.

Toasted values

PostgreSQL has a hard limit on the page size. This means that values that are larger than around 8 KBs

Red Hat Integration 2022.Q2 Debezium User Guide

330

http://postgis.net
http://www.opengeospatial.org/standards/sfa
http://www.opengeospatial.org/standards/sfa

need to be stored by using TOAST storage. This impacts replication messages that are coming from the
database. Values that were stored by using the TOAST mechanism and that have not been changed are
not included in the message, unless they are part of the table’s replica identity. There is no safe way for
Debezium to read the missing value out-of-bands directly from the database, as this would potentially
lead to race conditions. Consequently, Debezium follows these rules to handle toasted values:

Tables with REPLICA IDENTITY FULL - TOAST column values are part of the before and after
fields in change events just like any other column.

Tables with REPLICA IDENTITY DEFAULT - When receiving an UPDATE event from the
database, any unchanged TOAST column value that is not part of the replica identity is not
contained in the event. Similarly, when receiving a DELETE event, no TOAST columns, if any, are
in the before field. As Debezium cannot safely provide the column value in this case, the
connector returns a placeholder value as defined by the connector configuration property,
unavailable.value.placeholder.

Default values

If a default value is specified for a column in the database schema, the PostgreSQL connector will
attempt to propagate this value to the Kafka schema whenever possible. Most common data types are
supported, including:

BOOLEAN

Numeric types (INT, FLOAT, NUMERIC, etc.)

Text types (CHAR, VARCHAR, TEXT, etc.)

Temporal types (DATE, TIME, INTERVAL, TIMESTAMP, TIMESTAMPTZ)

JSON, JSONB, XML

UUID

Note that for temporal types, parsing of the default value is provided by PostgreSQL libraries; therefore,
any string representation which is normally supported by PostgreSQL should also be supported by the
connector.

In the case that the default value is generated by a function rather than being directly specified in-line,
the connector will instead export the equivalent of 0 for the given data type. These values include:

FALSE for BOOLEAN

0 with appropriate precision, for numeric types

Empty string for text/XML types

{} for JSON types

1970-01-01 for DATE, TIMESTAMP, TIMESTAMPTZ types

00:00 for TIME

EPOCH for INTERVAL

00000000-0000-0000-0000-000000000000 for UUID

This support currently extends only to explicit usage of functions. For example,

CHAPTER 7. DEBEZIUM CONNECTOR FOR POSTGRESQL

331

https://www.postgresql.org/docs/current/storage-toast.html

This support currently extends only to explicit usage of functions. For example,
CURRENT_TIMESTAMP(6) is supported with parentheses, but CURRENT_TIMESTAMP is not.

IMPORTANT

Support for the propagation of default values exists primarily to allow for safe schema
evolution when using the PostgreSQL connector with a schema registry which enforces
compatibility between schema versions. Due to this primary concern, as well as the
refresh behaviours of the different plug-ins, the default value present in the Kafka
schema is not guaranteed to always be in-sync with the default value in the database
schema.

Default values may appear 'late' in the Kafka schema, depending on when/how a
given plugin triggers refresh of the in-memory schema. Values may never
appear/be skipped in the Kafka schema if the default changes multiple times in-
between refreshes

Default values may appear 'early' in the Kafka schema, if a schema refresh is
triggered while the connector has records waiting to be processed. This is due to
the column metadata being read from the database at refresh time, rather than
being present in the replication message. This may occur if the connector is
behind and a refresh occurs, or on connector start if the connector was stopped
for a time while updates continued to be written to the source database.

This behaviour may be unexpected, but it is still safe. Only the schema definition is
affected, while the real values present in the message will remain consistent with what
was written to the source database.

7.5. SETTING UP POSTGRESQL TO RUN A DEBEZIUM CONNECTOR

This release of Debezium supports only the native pgoutput logical replication stream. To set up
PostgreSQL so that it uses the pgoutput plug-in, you must enable a replication slot, and configure a
user with sufficient privileges to perform the replication.

Details are in the following topics:

Section 7.5.1, “Configuring a replication slot for the Debezium pgoutput plug-in”

Section 7.5.2, “Setting up PostgreSQL permissions for the Debezium connector”

Section 7.5.3, “Setting privileges to enable Debezium to create PostgreSQL publications”

Section 7.5.4, “Configuring PostgreSQL to allow replication with the Debezium connector host”

Section 7.5.5, “Configuring PostgreSQL to manage Debezium WAL disk space consumption”

7.5.1. Configuring a replication slot for the Debezium pgoutput plug-in

PostgreSQL’s logical decoding uses replication slots. To configure a replication slot, specify the
following in the postgresql.conf file:

wal_level=logical
max_wal_senders=1
max_replication_slots=1

Red Hat Integration 2022.Q2 Debezium User Guide

332

These settings instruct the PostgreSQL server as follows:

wal_level - Use logical decoding with the write-ahead log.

max_wal_senders - Use a maximum of one separate process for processing WAL changes.

max_replication_slots - Allow a maximum of one replication slot to be created for streaming
WAL changes.

Replication slots are guaranteed to retain all WAL entries that are required for Debezium even during
Debezium outages. Consequently, it is important to closely monitor replication slots to avoid:

Too much disk consumption

Any conditions, such as catalog bloat, that can happen if a replication slot stays unused for too
long

For more information, see the PostgreSQL documentation for replication slots .

NOTE

Familiarity with the mechanics and configuration of the PostgreSQL write-ahead log is
helpful for using the Debezium PostgreSQL connector.

7.5.2. Setting up PostgreSQL permissions for the Debezium connector

Setting up a PostgreSQL server to run a Debezium connector requires a database user that can perform
replications. Replication can be performed only by a database user that has appropriate permissions and
only for a configured number of hosts.

Although, by default, superusers have the necessary REPLICATION and LOGIN roles, as mentioned in
Security, it is best not to provide the Debezium replication user with elevated privileges. Instead, create
a Debezium user that has the the minimum required privileges.

Prerequisites

PostgreSQL administrative permissions.

Procedure

1. To provide a user with replication permissions, define a PostgreSQL role that has at least the
REPLICATION and LOGIN permissions, and then grant that role to the user. For example:

7.5.3. Setting privileges to enable Debezium to create PostgreSQL publications

Debezium streams change events for PostgreSQL source tables from publications that are created for
the tables. Publications contain a filtered set of change events that are generated from one or more
tables. The data in each publication is filtered based on the publication specification. The specification
can be created by the PostgreSQL database administrator or by the Debezium connector. To permit the
Debezium PostgreSQL connector to create publications and specify the data to replicate to them, the
connector must operate with specific privileges in the database.

There are several options for determining how publications are created. In general, it is best to manually

CREATE ROLE <name> REPLICATION LOGIN;

CHAPTER 7. DEBEZIUM CONNECTOR FOR POSTGRESQL

333

https://www.postgresql.org/docs/current/warm-standby.html#STREAMING-REPLICATION-SLOTS
https://www.postgresql.org/docs/current/static/wal-configuration.html
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#postgresql-security

create publications for the tables that you want to capture, before you set up the connector. However,
you can configure your environment in a way that permits Debezium to create publications
automatically, and to specify the data that is added to them.

Debezium uses include list and exclude list properties to specify how data is inserted in the publication.
For more information about the options for enabling Debezium to create publications, see
publication.autocreate.mode.

For Debezium to create a PostgreSQL publication, it must run as a user that has the following privileges:

Replication privileges in the database to add the table to a publication.

CREATE privileges on the database to add publications.

SELECT privileges on the tables to copy the initial table data. Table owners automatically have
SELECT permission for the table.

To add tables to a publication, the user be an owner of the table. But because the source table already
exists, you need a mechanism to share ownership with the original owner. To enable shared ownership,
you create a PostgreSQL replication group, and then add the existing table owner and the replication
user to the group.

Procedure

1. Create a replication group.

2. Add the original owner of the table to the group.

3. Add the Debezium replication user to the group.

4. Transfer ownership of the table to <replication_group>.

For Debezium to specify the capture configuration, the value of publication.autocreate.mode must be
set to filtered.

7.5.4. Configuring PostgreSQL to allow replication with the Debezium connector
host

To enable Debezium to replicate PostgreSQL data, you must configure the database to permit
replication with the host that runs the PostgreSQL connector. To specify the clients that are permitted
to replicate with the database, add entries to the PostgreSQL host-based authentication file,
pg_hba.conf. For more information about the pg_hba.conf file, see the PostgreSQL documentation.

Procedure

Add entries to the pg_hba.conf file to specify the Debezium connector hosts that can replicate

CREATE ROLE <replication_group>;

GRANT REPLICATION_GROUP TO <original_owner>;

GRANT REPLICATION_GROUP TO <replication_user>;

ALTER TABLE <table_name> OWNER TO REPLICATION_GROUP;

Red Hat Integration 2022.Q2 Debezium User Guide

334

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#postgresql-publication-autocreate-mode
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#postgresql-publication-autocreate-mode
https://www.postgresql.org/docs/10/auth-pg-hba-conf.html

1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3

Add entries to the pg_hba.conf file to specify the Debezium connector hosts that can replicate
with the database host. For example,

pg_hba.conf file example:

local replication <youruser> trust 1
host replication <youruser> 127.0.0.1/32 trust 2
host replication <youruser> ::1/128 trust 3

Instructs the server to allow replication for <youruser> locally, that
is, on the server machine.

Instructs the server to allow <youruser> on localhost to receive
replication changes using IPV4.

Instructs the server to allow <youruser> on localhost to receive
replication changes using IPV6.

NOTE

For more information about network masks, see the PostgreSQL documentation.

7.5.5. Configuring PostgreSQL to manage Debezium WAL disk space consumption

In certain cases, it is possible for PostgreSQL disk space consumed by WAL files to spike or increase out
of usual proportions. There are several possible reasons for this situation:

The LSN up to which the connector has received data is available in the confirmed_flush_lsn
column of the server’s pg_replication_slots view. Data that is older than this LSN is no longer
available, and the database is responsible for reclaiming the disk space.
Also in the pg_replication_slots view, the restart_lsn column contains the LSN of the oldest
WAL that the connector might require. If the value for confirmed_flush_lsn is regularly
increasing and the value of restart_lsn lags then the database needs to reclaim the space.

The database typically reclaims disk space in batch blocks. This is expected behavior and no
action by a user is necessary.

There are many updates in a database that is being tracked but only a tiny number of updates
are related to the table(s) and schema(s) for which the connector is capturing changes. This
situation can be easily solved with periodic heartbeat events. Set the heartbeat.interval.ms
connector configuration property.

The PostgreSQL instance contains multiple databases and one of them is a high-traffic
database. Debezium captures changes in another database that is low-traffic in comparison to
the other database. Debezium then cannot confirm the LSN as replication slots work per-
database and Debezium is not invoked. As WAL is shared by all databases, the amount used
tends to grow until an event is emitted by the database for which Debezium is capturing
changes. To overcome this, it is necessary to:

Enable periodic heartbeat record generation with the heartbeat.interval.ms connector
configuration property.

Regularly emit change events from the database for which Debezium is capturing changes.

CHAPTER 7. DEBEZIUM CONNECTOR FOR POSTGRESQL

335

https://www.postgresql.org/docs/current/static/datatype-net-types.html
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#postgresql-property-heartbeat-interval-ms

A separate process would then periodically update the table by either inserting a new row or
repeatedly updating the same row. PostgreSQL then invokes Debezium, which confirms the
latest LSN and allows the database to reclaim the WAL space. This task can be automated by
means of the heartbeat.action.query connector configuration property.

7.6. DEPLOYMENT OF DEBEZIUM POSTGRESQL CONNECTORS

You can use either of the following methods to deploy a Debezium PostgreSQL connector:

Use AMQ Streams to automatically create an image that includes the connector plug-in .
This is the preferred method.

Build a custom Kafka Connect container image from a Dockerfile .

Additional resources

Section 7.6.5, “Description of Debezium PostgreSQL connector configuration properties”

7.6.1. PostgreSQL connector deployment using AMQ Streams

Beginning with Debezium 1.7, the preferred method for deploying a Debezium connector is to use AMQ
Streams to build a Kafka Connect container image that includes the connector plug-in.

During the deployment process, you create and use the following custom resources (CRs):

A KafkaConnect CR that defines your Kafka Connect instance and includes information about
the connector artifacts needs to include in the image.

A KafkaConnector CR that provides details that include information the connector uses to
access the source database. After AMQ Streams starts the Kafka Connect pod, you start the
connector by applying the KafkaConnector CR.

In the build specification for the Kafka Connect image, you can specify the connectors that are available
to deploy. For each connector plug-in, you can also specify other components that you want to make
available for deployment. For example, you can add Service Registry artifacts, or the Debezium scripting
component. When AMQ Streams builds the Kafka Connect image, it downloads the specified artifacts,
and incorporates them into the image.

The spec.build.output parameter in the KafkaConnect CR specifies where to store the resulting Kafka
Connect container image. Container images can be stored in a Docker registry, or in an OpenShift
ImageStream. To store images in an ImageStream, you must create the ImageStream before you deploy
Kafka Connect. ImageStreams are not created automatically.

NOTE

If you use a KafkaConnect resource to create a cluster, afterwards you cannot use the
Kafka Connect REST API to create or update connectors. You can still use the REST API
to retrieve information.

Additional resources

Configuring Kafka Connect in Using AMQ Streams on OpenShift.

Creating a new container image automatically using AMQ Streams in Deploying and Upgrading
AMQ Streams on OpenShift.

Red Hat Integration 2022.Q2 Debezium User Guide

336

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#postgresql-property-heartbeat-action-query
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/using_amq_streams_on_openshift/index#proc-kafka-connect-config-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#creating-new-image-using-kafka-connect-build-str

7.6.2. Using AMQ Streams to deploy a Debezium PostgreSQL connector

With earlier versions of AMQ Streams, to deploy Debezium connectors on OpenShift, it was necessary
to first build a Kafka Connect image for the connector. The current preferred method for deploying
connectors on OpenShift is to use a build configuration in AMQ Streams to automatically build a Kafka
Connect container image that includes the Debezium connector plug-ins that you want to use.

During the build process, the AMQ Streams Operator transforms input parameters in a KafkaConnect
custom resource, including Debezium connector definitions, into a Kafka Connect container image. The
build downloads the necessary artifacts from the Red Hat Maven repository or another configured
HTTP server. The newly created container is pushed to the container registry that is specified in
.spec.build.output, and is used to deploy a Kafka Connect pod. After AMQ Streams builds the Kafka
Connect image, you create KafkaConnector custom resources to start the connectors that are included
in the build.

Prerequisites

You have access to an OpenShift cluster on which the cluster Operator is installed.

The AMQ Streams Operator is running.

An Apache Kafka cluster is deployed as documented in Deploying and Upgrading AMQ Streams
on OpenShift.

You have a Red Hat Integration license.

Kafka Connect is deployed on AMQ Streams .

The OpenShift oc CLI client is installed or you have access to the OpenShift Container Platform
web console.

Depending on how you intend to store the Kafka Connect build image, you need registry
permissions or you must create an ImageStream resource:

To store the build image in an image registry, such as Red Hat Quay.io or Docker Hub

An account and permissions to create and manage images in the registry.

To store the build image as a native OpenShift ImageStream

An ImageStream resource is deployed to the cluster. You must explicitly create an
ImageStream for the cluster. ImageStreams are not available by default.

Procedure

1. Log in to the OpenShift cluster.

2. Create a new Debezium KafkaConnect custom resource (CR) for the connector. For example,
create a KafkaConnect CR that specifies the metadata.annotations and spec.build
properties, as shown in the following example. Save the file with a name such as dbz-
connect.yaml.

Example 7.1. A dbz-connect.yaml file that defines a KafkaConnect custom resource that
includes a Debezium connector

apiVersion: kafka.strimzi.io/v1beta2

CHAPTER 7. DEBEZIUM CONNECTOR FOR POSTGRESQL

337

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#kafka-cluster-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#kafka-connect-str
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/cli_tools/index#installing-openshift-cli
https://docs.openshift.com/container-platform/latest/openshift_images/images-understand.html#images-imagestream-use_images-understand

Table 7.21. Descriptions of Kafka Connect configuration settings

Item Description

1 Sets the strimzi.io/use-connector-resources annotation to "true" to enable
the Cluster Operator to use KafkaConnector resources to configure connectors in
this Kafka Connect cluster.

2 The spec.build configuration specifies where to store the build image and lists the
plug-ins to include in the image, along with the location of the plug-in artifacts.

3 The build.output specifies the registry in which the newly built image is stored.

4 Specifies the name and image name for the image output. Valid values for
output.type are docker to push into a container registry like Docker Hub or Quay,
or imagestream to push the image to an internal OpenShift ImageStream. To use
an ImageStream, an ImageStream resource must be deployed to the cluster. For
more information about specifying the build.output in the KafkaConnect
configuration, see the AMQ Streams Build schema reference documentation.

kind: KafkaConnect
metadata:
 name: debezium-kafka-connect-cluster
 annotations:
 strimzi.io/use-connector-resources: "true" 1
spec:
 version: 3.00
 build: 2
 output: 3
 type: imagestream 4
 image: debezium-streams-connect:latest
 plugins: 5
 - name: debezium-connector-postgres
 artifacts:
 - type: zip 6
 url: https://maven.repository.redhat.com/ga/io/debezium/debezium-connector-
postgres/1.7.2.Final-redhat-<build_number>/debezium-connector-postgres-1.7.2.Final-
redhat-<build_number>-plugin.zip 7
 - type: zip
 url: https://maven.repository.redhat.com/ga/io/apicurio/apicurio-registry-distro-
connect-converter/2.0-redhat-<build-number>/apicurio-registry-distro-connect-converter-
2.0-redhat-<build-number>.zip
 - type: zip
 url: https://maven.repository.redhat.com/ga/io/debezium/debezium-
scripting/1.7.2.Final/debezium-scripting-1.7.2.Final.zip

 bootstrapServers: debezium-kafka-cluster-kafka-bootstrap:9093

Red Hat Integration 2022.Q2 Debezium User Guide

338

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/using_amq_streams_on_openshift/index#type-Build-reference

5 The plugins configuration lists all of the connectors that you want to include in the
Kafka Connect image. For each entry in the list, specify a plug-in name, and
information for about the artifacts that are required to build the connector.
Optionally, for each connector plug-in, you can include other components that you
want to be available for use with the connector. For example, you can add Service
Registry artifacts, or the Debezium scripting component.

6 The value of artifacts.type specifies the file type of the artifact specified in the
artifacts.url. Valid types are zip, tgz, or jar. Debezium connector archives are
provided in .zip file format. JDBC driver files are in .jar format. The type value must
match the type of the file that is referenced in the url field.

7 The value of artifacts.url specifies the address of an HTTP server, such as a Maven
repository, that stores the file for the connector artifact. The OpenShift cluster must
have access to the specified server.

Item Description

3. Apply the KafkaConnect build specification to the OpenShift cluster by entering the following
command:

Based on the configuration specified in the custom resource, the Streams Operator prepares a
Kafka Connect image to deploy.
After the build completes, the Operator pushes the image to the specified registry or
ImageStream, and starts the Kafka Connect cluster. The connector artifacts that you listed in
the configuration are available in the cluster.

4. Create a KafkaConnector resource to define an instance of each connector that you want to
deploy.
For example, create the following KafkaConnector CR, and save it as postgresql-inventory-
connector.yaml

Example 7.2. A postgresql-inventory-connector.yaml file that defines the
KafkaConnector custom resource for a Debezium connector

oc create -f dbz-connect.yaml

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnector
metadata:
 labels:
 strimzi.io/cluster: debezium-kafka-connect-cluster
 name: inventory-connector-postgresql 1
spec:
 class: io.debezium.connector.postgresql.PostgresConnector 2
 tasksMax: 1 3
 config: 4
 database.history.kafka.bootstrap.servers: 'debezium-kafka-cluster-kafka-
bootstrap.debezium.svc.cluster.local:9092'
 database.history.kafka.topic: schema-changes.inventory
 database.hostname: postgresql.debezium-postgresql.svc.cluster.local 5
 database.port: 3306 6

CHAPTER 7. DEBEZIUM CONNECTOR FOR POSTGRESQL

339

Table 7.22. Descriptions of connector configuration settings

Item Description

1 The name of the connector to register with the Kafka Connect cluster.

2 The name of the connector class.

3 The number of tasks that can operate concurrently.

4 The connector’s configuration.

5 The address of the host database instance.

6 The port number of the database instance.

7 The name of the user account through which Debezium connects to the database.

8 The password for the database user account.

9 The name of the database to capture changes from.

10 The logical name of the database instance or cluster.
The specified name must be formed only from alphanumeric characters or underscores.
Because the logical name is used as the prefix for any Kafka topics that receive change
events from this connector, the name must be unique among the connectors in the
cluster.
The namespace is also used in the names of related Kafka Connect schemas, and the
namespaces of a corresponding Avro schema if you integrate the connector with the
Avro connector.

11 The list of tables from which the connector captures change events.

5. Create the connector resource by running the following command:

For example,

The connector is registered to the Kafka Connect cluster and starts to run against the database

 database.user: debezium 7
 database.password: dbz 8
 database.dbname: mydatabase 9
 database.server.name: inventory_connector_postgresql 10
 database.include.list: public.inventory 11

oc create -n <namespace> -f <kafkaConnector>.yaml

oc create -n debezium -f {context}-inventory-connector.yaml

Red Hat Integration 2022.Q2 Debezium User Guide

340

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#configuring-debezium-connectors-to-use-avro-serialization

The connector is registered to the Kafka Connect cluster and starts to run against the database
that is specified by spec.config.database.dbname in the KafkaConnector CR. After the
connector pod is ready, Debezium is running.

You are now ready to verify the Debezium PostgreSQL deployment.

7.6.3. Deploying a Debezium PostgreSQL connector by building a custom Kafka
Connect container image from a Dockerfile

To deploy a Debezium PostgreSQL connector, you need to build a custom Kafka Connect container
image that contains the Debezium connector archive and push this container image to a container
registry. You then need to create two custom resources (CRs):

A KafkaConnect CR that defines your Kafka Connect instance. The image property in the CR
specifies the name of the container image that you create to run your Debezium connector. You
apply this CR to the OpenShift instance where Red Hat AMQ Streams is deployed. AMQ
Streams offers operators and images that bring Apache Kafka to OpenShift.

A KafkaConnector CR that defines your Debezium Db2 connector. Apply this CR to the same
OpenShift instance where you applied the KafkaConnect CR.

Prerequisites

PostgreSQL is running and you performed the steps to set up PostgreSQL to run a Debezium
connector.

AMQ Streams is deployed on OpenShift and is running Apache Kafka and Kafka Connect. For
more information, see Deploying and Upgrading AMQ Streams on OpenShift .

Podman or Docker is installed.

You have an account and permissions to create and manage containers in the container registry
(such as quay.io or docker.io) to which you plan to add the container that will run your
Debezium connector.

Procedure

1. Create the Debezium PostgreSQL container for Kafka Connect:

a. Download the Debezium PostgreSQL connector archive.

b. Extract the Debezium PostgreSQL connector archive to create a directory structure for the
connector plug-in, for example:

./my-plugins/
├── debezium-connector-postgresql
│ ├── ...

c. Create a Dockerfile that uses registry.redhat.io/amq7/amq-streams-kafka-30-rhel8:2.0.0
as the base image. For example, from a terminal window, enter the following, replacing my-
plugins with the name of your plug-ins directory:

cat <<EOF >debezium-container-for-postgresql.yaml 1
FROM registry.redhat.io/amq7/amq-streams-kafka-30-rhel8:2.0.0
USER root:root

CHAPTER 7. DEBEZIUM CONNECTOR FOR POSTGRESQL

341

https://access.redhat.com/products/red-hat-amq#streams
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#setting-up-postgresql-to-run-a-debezium-connector
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/deploying_and_upgrading_amq_streams_on_openshift/index
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=red.hat.integration&downloadType=distributions

1 1 1

2 2 2

1

2

You can specify any file name that you want.

Replace my-plugins with the name of your plug-ins directory.

The command creates a Dockerfile with the name debezium-container-for-
postgresql.yaml in the current directory.

d. Build the container image from the debezium-container-for-postgresql.yaml Docker file
that you created in the previous step. From the directory that contains the file, open a
terminal window and enter one of the following commands:

The build command builds a container image with the name debezium-container-for-
postgresql.

e. Push your custom image to a container registry such as quay.io or an internal container
registry. The container registry must be available to the OpenShift instance where you want
to deploy the image. Enter one of the following commands:

f. Create a new Debezium PostgreSQL KafkaConnect custom resource (CR). For example,
create a KafkaConnect CR with the name dbz-connect.yaml that specifies annotations
and image properties as shown in the following example:

metadata.annotations indicates to the Cluster Operator that KafkaConnector
resources are used to configure connectors in this Kafka Connect cluster.

spec.image specifies the name of the image that you created to run your Debezium
connector. This property overrides the
STRIMZI_DEFAULT_KAFKA_CONNECT_IMAGE variable in the Cluster Operator.

g. Apply your KafkaConnect CR to the OpenShift Kafka instance by running the following
command:

COPY ./<my-plugins>/ /opt/kafka/plugins/ 2
USER 1001
EOF

podman build -t debezium-container-for-postgresql:latest .

docker build -t debezium-container-for-postgresql:latest .

podman push <myregistry.io>/debezium-container-for-postgresql:latest

docker push <myregistry.io>/debezium-container-for-postgresql:latest

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
 name: my-connect-cluster
 annotations: strimzi.io/use-connector-resources: "true" 1
spec:
 image: debezium-container-for-postgresql 2

Red Hat Integration 2022.Q2 Debezium User Guide

342

1

2

3

4

This updates your Kafka Connect environment in OpenShift to add a Kafka Connector
instance that specifies the name of the image that you created to run your Debezium
connector.

2. Create a KafkaConnector custom resource that configures your Debezium PostgreSQL
connector instance.
You configure a Debezium PostgreSQL connector in a .yaml file that specifies the
configuration properties for the connector. The connector configuration might instruct
Debezium to produce events for a subset of the schemas and tables, or it might set properties
so that Debezium ignores, masks, or truncates values in specified columns that are sensitive, too
large, or not needed. For the complete list of the configuration properties that you can set for
the Debezium PostgreSQL connector, see PostgreSQL connector properties.

The following example configures a Debezium connector that connects to a PostgreSQL server
host, 192.168.99.100, on port 5432. This host has a database named sampledb, a schema
named public, and fulfillment is the server’s logical name.

fulfillment-connector.yaml

The name of the connector.

Only one task should operate at any one time. Because the PostgreSQL connector reads
the PostgreSQL server’s binlog, using a single connector task ensures proper order and
event handling. The Kafka Connect service uses connectors to start one or more tasks that
do the work, and it automatically distributes the running tasks across the cluster of Kafka
Connect services. If any of the services stop or crash, those tasks will be redistributed to
running services.

The connector’s configuration.

The name of the database host that is running the PostgreSQL server. In this example, the
database host name is 192.168.99.100.

oc create -f dbz-connect.yaml

apiVersion: kafka.strimzi.io/v1beta2
 kind: KafkaConnector
 metadata:
 name: fulfillment-connector 1
 labels:
 strimzi.io/cluster: my-connect-cluster
 spec:
 class: io.debezium.connector.postgresql.PostgresConnector
 tasksMax: 1 2
 config: 3
 database.hostname: 192.168.99.100 4
 database.port: 5432
 database.user: debezium
 database.password: dbz
 database.dbname: sampledb
 database.server.name: fulfillment 5
 schema.include.list: public 6
 plugin.name: pgoutput 7

CHAPTER 7. DEBEZIUM CONNECTOR FOR POSTGRESQL

343

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#descriptions-of-debezium-sql-server-connector-configuration-properties

5

6

7

A unique server name. The server name is the logical identifier for the PostgreSQL server
or cluster of servers. This name is used as the prefix for all Kafka topics that receive change

The connector captures changes in only the public schema. It is possible to configure the
connector to capture changes in only the tables that you choose. See table.include.list
connector configuration property.

The name of the PostgreSQL logical decoding plug-in installed on the PostgreSQL server.
While the only supported value for PostgreSQL 10 and later is pgoutput, you must
explicitly set plugin.name to pgoutput.

3. Create your connector instance with Kafka Connect. For example, if you saved your
KafkaConnector resource in the fulfillment-connector.yaml file, you would run the following
command:

This registers fulfillment-connector and the connector starts to run against the sampledb
database as defined in the KafkaConnector CR.

Results

After the connector starts, it performs a consistent snapshot of the PostgreSQL server databases that
the connector is configured for. The connector then starts generating data change events for row-level
operations and streaming change event records to Kafka topics.

7.6.4. Verifying that the Debezium PostgreSQL connector is running

If the connector starts correctly without errors, it creates a topic for each table that the connector is
configured to capture. Downstream applications can subscribe to these topics to retrieve information
events that occur in the source database.

To verify that the connector is running, you perform the following operations from the OpenShift
Container Platform web console, or through the OpenShift CLI tool (oc):

Verify the connector status.

Verify that the connector generates topics.

Verify that topics are populated with events for read operations ("op":"r") that the connector
generates during the initial snapshot of each table.

Prerequisites

A Debezium connector is deployed to AMQ Streams on OpenShift.

The OpenShift oc CLI client is installed.

You have access to the OpenShift Container Platform web console.

Procedure

1. Check the status of the KafkaConnector resource by using one of the following methods:

From the OpenShift Container Platform web console:

oc apply -f fulfillment-connector.yaml

Red Hat Integration 2022.Q2 Debezium User Guide

344

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#postgresql-property-table-include-list
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#postgresql-output-plugin
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#postgresql-snapshots

a. Navigate to Home → Search.

b. On the Search page, click Resources to open the Select Resource box, and then type
KafkaConnector.

c. From the KafkaConnectors list, click the name of the connector that you want to
check, for example inventory-connector-postgresql.

d. In the Conditions section, verify that the values in the Type and Status columns are set
to Ready and True.

From a terminal window:

a. Enter the following command:

For example,

The command returns status information that is similar to the following output:

Example 7.3. KafkaConnector resource status

oc describe KafkaConnector <connector-name> -n <project>

oc describe KafkaConnector inventory-connector-postgresql -n debezium

Name: inventory-connector-postgresql
Namespace: debezium
Labels: strimzi.io/cluster=debezium-kafka-connect-cluster
Annotations: <none>
API Version: kafka.strimzi.io/v1beta2
Kind: KafkaConnector

...

Status:
 Conditions:
 Last Transition Time: 2021-12-08T17:41:34.897153Z
 Status: True
 Type: Ready
 Connector Status:
 Connector:
 State: RUNNING
 worker_id: 10.131.1.124:8083
 Name: inventory-connector-postgresql
 Tasks:
 Id: 0
 State: RUNNING
 worker_id: 10.131.1.124:8083
 Type: source
 Observed Generation: 1
 Tasks Max: 1
 Topics:
 inventory_connector_postgresql
 inventory_connector_postgresql.inventory.addresses
 inventory_connector_postgresql.inventory.customers

CHAPTER 7. DEBEZIUM CONNECTOR FOR POSTGRESQL

345

2. Verify that the connector created Kafka topics:

From the OpenShift Container Platform web console.

a. Navigate to Home → Search.

b. On the Search page, click Resources to open the Select Resource box, and then type
KafkaTopic.

c. From the KafkaTopics list, click the name of the topic that you want to check, for
example, inventory-connector-postgresql.inventory.orders---
ac5e98ac6a5d91e04d8ec0dc9078a1ece439081d.

d. In the Conditions section, verify that the values in the Type and Status columns are set
to Ready and True.

From a terminal window:

a. Enter the following command:

The command returns status information that is similar to the following output:

Example 7.4. KafkaTopic resource status

NAME CLUSTER
PARTITIONS REPLICATION FACTOR READY
connect-cluster-configs debezium-
kafka-cluster 1 1 True
connect-cluster-offsets debezium-
kafka-cluster 25 1 True
connect-cluster-status debezium-
kafka-cluster 5 1 True
consumer-offsets---84e7a678d08f4bd226872e5cdd4eb527fadc1c6a
debezium-kafka-cluster 50 1 True
inventory-connector-postgresql---a96f69b23d6118ff415f772679da623fbbb99421
debezium-kafka-cluster 1 1 True
inventory-connector-postgresql.inventory.addresses---
1b6beaf7b2eb57d177d92be90ca2b210c9a56480 debezium-kafka-cluster
1 1 True
inventory-connector-postgresql.inventory.customers---
9931e04ec92ecc0924f4406af3fdace7545c483b debezium-kafka-cluster 1
1 True
inventory-connector-postgresql.inventory.geom---
9f7e136091f071bf49ca59bf99e86c713ee58dd5 debezium-kafka-cluster
1 1 True
inventory-connector-postgresql.inventory.orders---
ac5e98ac6a5d91e04d8ec0dc9078a1ece439081d debezium-kafka-cluster

 inventory_connector_postgresql.inventory.geom
 inventory_connector_postgresql.inventory.orders
 inventory_connector_postgresql.inventory.products
 inventory_connector_postgresql.inventory.products_on_hand
Events: <none>

oc get kafkatopics

Red Hat Integration 2022.Q2 Debezium User Guide

346

1 1 True
inventory-connector-postgresql.inventory.products---
df0746db116844cee2297fab611c21b56f82dcef debezium-kafka-cluster 1
1 True
inventory-connector-postgresql.inventory.products-on-hand---
8649e0f17ffcc9212e266e31a7aeea4585e5c6b5 debezium-kafka-cluster 1
1 True
schema-changes.inventory
debezium-kafka-cluster 1 1 True
strimzi-store-topic---effb8e3e057afce1ecf67c3f5d8e4e3ff177fc55
debezium-kafka-cluster 1 1 True
strimzi-topic-operator-kstreams-topic-store-changelog---
b75e702040b99be8a9263134de3507fc0cc4017b debezium-kafka-cluster 1
1 True

3. Check topic content.

From a terminal window, enter the following command:

For example,

The format for specifying the topic name is the same as the oc describe command returns in
Step 1, for example, inventory_connector_postgresql.inventory.addresses.

For each event in the topic, the command returns information that is similar to the following
output:

Example 7.5. Content of a Debezium change event

{"schema":{"type":"struct","fields":
[{"type":"int32","optional":false,"field":"product_id"}],"optional":false,"name":"inventory_conne
ctor_postgresql.inventory.products_on_hand.Key"},"payload":{"product_id":101}}
{"schema":{"type":"struct","fields":[{"type":"struct","fields":
[{"type":"int32","optional":false,"field":"product_id"},
{"type":"int32","optional":false,"field":"quantity"}],"optional":true,"name":"inventory_connector
_postgresql.inventory.products_on_hand.Value","field":"before"},{"type":"struct","fields":
[{"type":"int32","optional":false,"field":"product_id"},
{"type":"int32","optional":false,"field":"quantity"}],"optional":true,"name":"inventory_connector
_postgresql.inventory.products_on_hand.Value","field":"after"},{"type":"struct","fields":
[{"type":"string","optional":false,"field":"version"},
{"type":"string","optional":false,"field":"connector"},

oc exec -n <project> -it <kafka-cluster> -- /opt/kafka/bin/kafka-console-consumer.sh \
> --bootstrap-server localhost:9092 \
> --from-beginning \
> --property print.key=true \
> --topic=<topic-name>

 oc exec -n debezium -it debezium-kafka-cluster-kafka-0 -- /opt/kafka/bin/kafka-console-
consumer.sh \
> --bootstrap-server localhost:9092 \
> --from-beginning \
> --property print.key=true \
> --topic=inventory_connector_postgresql.inventory.products_on_hand

CHAPTER 7. DEBEZIUM CONNECTOR FOR POSTGRESQL

347

{"type":"string","optional":false,"field":"name"},
{"type":"int64","optional":false,"field":"ts_ms"},
{"type":"string","optional":true,"name":"io.debezium.data.Enum","version":1,"parameters":
{"allowed":"true,last,false"},"default":"false","field":"snapshot"},
{"type":"string","optional":false,"field":"db"},
{"type":"string","optional":true,"field":"sequence"},
{"type":"string","optional":true,"field":"table"},
{"type":"int64","optional":false,"field":"server_id"},
{"type":"string","optional":true,"field":"gtid"},{"type":"string","optional":false,"field":"file"},
{"type":"int64","optional":false,"field":"pos"},{"type":"int32","optional":false,"field":"row"},
{"type":"int64","optional":true,"field":"thread"},
{"type":"string","optional":true,"field":"query"}],"optional":false,"name":"io.debezium.connecto
r.postgresql.Source","field":"source"},{"type":"string","optional":false,"field":"op"},
{"type":"int64","optional":true,"field":"ts_ms"},{"type":"struct","fields":
[{"type":"string","optional":false,"field":"id"},
{"type":"int64","optional":false,"field":"total_order"},
{"type":"int64","optional":false,"field":"data_collection_order"}],"optional":true,"field":"transacti
on"}],"optional":false,"name":"inventory_connector_postgresql.inventory.products_on_hand.
Envelope"},"payload":{"before":null,"after":{"product_id":101,"quantity":3},"source":
{"version":"1.7.2.Final-redhat-
00001","connector":"postgresql","name":"inventory_connector_postgresql","ts_ms":1638985
247805,"snapshot":"true","db":"inventory","sequence":null,"table":"products_on_hand","serv
er_id":0,"gtid":null,"file":"postgresql-
bin.000003","pos":156,"row":0,"thread":null,"query":null},"op":"r","ts_ms":1638985247805,"t
ransaction":null}}

In the preceding example, the payload value shows that the connector snapshot generated a
read ("op" ="r") event from the table inventory.products_on_hand. The "before" state of the
product_id record is null, indicating that no previous value exists for the record. The "after"
state shows a quantity of 3 for the item with product_id 101.

7.6.5. Description of Debezium PostgreSQL connector configuration properties

The Debezium PostgreSQL connector has many configuration properties that you can use to achieve
the right connector behavior for your application. Many properties have default values. Information
about the properties is organized as follows:

Required configuration properties

Advanced configuration properties

Pass-through configuration properties

The following configuration properties are required unless a default value is available.

Table 7.23. Required connector configuration properties

Property Default Description

name No default Unique name for the connector. Attempting to
register again with the same name will fail. This
property is required by all Kafka Connect
connectors.

Red Hat Integration 2022.Q2 Debezium User Guide

348

connector.class No default The name of the Java class for the connector.
Always use a value of
io.debezium.connector.postgresql.Post
gresConnector for the PostgreSQL
connector.

tasks.max 1 The maximum number of tasks that should be
created for this connector. The PostgreSQL
connector always uses a single task and
therefore does not use this value, so the default
is always acceptable.

plugin.name decoderbufs The name of the PostgreSQL logical decoding
plug-in installed on the PostgreSQL server.

The only supported value is pgoutput. You
must explicitly set plugin.name to pgoutput.

slot.name debezium The name of the PostgreSQL logical decoding
slot that was created for streaming changes
from a particular plug-in for a particular
database/schema. The server uses this slot to
stream events to the Debezium connector that
you are configuring.

Slot names must conform to PostgreSQL
replication slot naming rules, which state: "Each
replication slot has a name, which can contain
lower-case letters, numbers, and the
underscore character."

slot.drop.on.stop false Whether or not to delete the logical replication
slot when the connector stops in a graceful,
expected way. The default behavior is that the
replication slot remains configured for the
connector when the connector stops. When the
connector restarts, having the same replication
slot enables the connector to start processing
where it left off.

Set to true in only testing or development
environments. Dropping the slot allows the
database to discard WAL segments. When the
connector restarts it performs a new snapshot
or it can continue from a persistent offset in the
Kafka Connect offsets topic.

Property Default Description

CHAPTER 7. DEBEZIUM CONNECTOR FOR POSTGRESQL

349

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#postgresql-output-plugin
https://www.postgresql.org/docs/current/static/warm-standby.html#STREAMING-REPLICATION-SLOTS-MANIPULATION

publication.name dbz_publication The name of the PostgreSQL publication
created for streaming changes when using
pgoutput.

This publication is created at start-up if it does
not already exist and it includes all tables.
Debezium then applies its own include/exclude
list filtering, if configured, to limit the
publication to change events for the specific
tables of interest. The connector user must
have superuser permissions to create this
publication, so it is usually preferable to create
the publication before starting the connector
for the first time.

If the publication already exists, either for all
tables or configured with a subset of tables,
Debezium uses the publication as it is defined.

database.hostname No default IP address or hostname of the PostgreSQL
database server.

database.port 5432 Integer port number of the PostgreSQL
database server.

database.user No default Name of the PostgreSQL database user for
connecting to the PostgreSQL database
server.

database.password No default Password to use when connecting to the
PostgreSQL database server.

database.dbname No default The name of the PostgreSQL database from
which to stream the changes.

database.server.name No default Logical name that identifies and provides a
namespace for the particular PostgreSQL
database server or cluster in which Debezium is
capturing changes. Only alphanumeric
characters, hyphens, dots and underscores
must be used in the database server logical
name. The logical name should be unique
across all other connectors, since it is used as a
topic name prefix for all Kafka topics that
receive records from this connector.

Property Default Description

Red Hat Integration 2022.Q2 Debezium User Guide

350

schema.include.list No default An optional, comma-separated list of regular
expressions that match names of schemas for
which you want to capture changes. Any
schema name not included in
schema.include.list is excluded from having
its changes captured. By default, all non-
system schemas have their changes captured.
Do not also set the schema.exclude.list
property.

schema.exclude.list No default An optional, comma-separated list of regular
expressions that match names of schemas for
which you do not want to capture changes. Any
schema whose name is not included in
schema.exclude.list has its changes
captured, with the exception of system
schemas. Do not also set the
schema.include.list property.

table.include.list No default An optional, comma-separated list of regular
expressions that match fully-qualified table
identifiers for tables whose changes you want
to capture. Any table not included in
table.include.list does not have its changes
captured. Each identifier is of the form
schemaName.tableName. By default, the
connector captures changes in every non-
system table in each schema whose changes
are being captured. Do not also set the
table.exclude.list property.

table.exclude.list No default An optional, comma-separated list of regular
expressions that match fully-qualified table
identifiers for tables whose changes you do not
want to capture. Any table not included in
table.exclude.list has it changes captured.
Each identifier is of the form
schemaName.tableName. Do not also set the
table.include.list property.

column.include.list No default An optional, comma-separated list of regular
expressions that match the fully-qualified
names of columns that should be included in
change event record values. Fully-qualified
names for columns are of the form
schemaName.tableName.columnName. Do not
also set the column.exclude.list property.

Property Default Description

CHAPTER 7. DEBEZIUM CONNECTOR FOR POSTGRESQL

351

column.exclude.list No default An optional, comma-separated list of regular
expressions that match the fully-qualified
names of columns that should be excluded
from change event record values. Fully-
qualified names for columns are of the form
schemaName.tableName.columnName. Do not
also set the column.include.list property.

time.precision.mode adaptive Time, date, and timestamps can be
represented with different kinds of precision:

adaptive captures the time and timestamp
values exactly as in the database using either
millisecond, microsecond, or nanosecond
precision values based on the database
column’s type.

adaptive_time_microseconds captures
the date, datetime and timestamp values
exactly as in the database using either
millisecond, microsecond, or nanosecond
precision values based on the database
column’s type. An exception is TIME type
fields, which are always captured as
microseconds.

connect always represents time and
timestamp values by using Kafka Connect’s
built-in representations for Time, Date, and
Timestamp, which use millisecond precision
regardless of the database columns' precision.
See temporal values.

decimal.handling.mode precise Specifies how the connector should handle
values for DECIMAL and NUMERIC columns:

precise represents values by using
java.math.BigDecimal to represent values
in binary form in change events.

double represents values by using double
values, which might result in a loss of precision
but which is easier to use.

string encodes values as formatted strings,
which are easy to consume but semantic
information about the real type is lost. See
Decimal types.

Property Default Description

Red Hat Integration 2022.Q2 Debezium User Guide

352

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#postgresql-temporal-values
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#postgresql-decimal-types

hstore.handling.mode map Specifies how the connector should handle
values for hstore columns:

map represents values by using MAP.

json represents values by using json string.
This setting encodes values as formatted
strings such as {"key" : "val"}. See
PostgreSQL HSTORE type.

interval.handling.mode numeric Specifies how the connector should handle
values for interval columns:

numeric represents intervals using
approximate number of microseconds.

string represents intervals exactly by using the
string pattern representation
P<years>Y<months>M<days>DT<hours>
H<minutes>M<seconds>S. For example:
P1Y2M3DT4H5M6.78S. See PostgreSQL
basic types.

database.sslmode disable Whether to use an encrypted connection to the
PostgreSQL server. Options include:

disable uses an unencrypted connection.

require uses a secure (encrypted) connection,
and fails if one cannot be established.

verify-ca behaves like require but also
verifies the server TLS certificate against the
configured Certificate Authority (CA)
certificates, or fails if no valid matching CA
certificates are found.

verify-full behaves like verify-ca but also
verifies that the server certificate matches the
host to which the connector is trying to
connect. See the PostgreSQL documentation
for more information.

database.sslcert No default The path to the file that contains the SSL
certificate for the client. See the PostgreSQL
documentation for more information.

database.sslkey No default The path to the file that contains the SSL
private key of the client. See the PostgreSQL
documentation for more information.

Property Default Description

CHAPTER 7. DEBEZIUM CONNECTOR FOR POSTGRESQL

353

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#postgresql-hstore-type
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#postgresql-basic-types
https://www.postgresql.org/docs/current/static/libpq-connect.html
https://www.postgresql.org/docs/current/static/libpq-connect.html
https://www.postgresql.org/docs/current/static/libpq-connect.html

database.sslpassword No default The password to access the client private key
from the file specified by database.sslkey.
See the PostgreSQL documentation for more
information.

database.sslrootcert No default The path to the file that contains the root
certificate(s) against which the server is
validated. See the PostgreSQL documentation
for more information.

database.tcpKeepAlive true Enable TCP keep-alive probe to verify that the
database connection is still alive. See the
PostgreSQL documentation for more
information.

tombstones.on.delete true Controls whether a delete event is followed by
a tombstone event.

true - a delete operation is represented by a
delete event and a subsequent tombstone
event.

false - only a delete event is emitted.

After a source record is deleted, emitting a
tombstone event (the default behavior) allows
Kafka to completely delete all events that
pertain to the key of the deleted row in case
log compaction is enabled for the topic.

column.truncate.to._lengt
h_.chars

n/a An optional, comma-separated list of regular
expressions that match the fully-qualified
names of character-based columns. Fully-
qualified names for columns are of the form
schemaName.tableName.columnName. In
change event records, values in these columns
are truncated if they are longer than the
number of characters specified by length in the
property name. You can specify multiple
properties with different lengths in a single
configuration. Length must be a positive
integer, for example,
+column.truncate.to.20.chars.

Property Default Description

Red Hat Integration 2022.Q2 Debezium User Guide

354

https://www.postgresql.org/docs/current/static/libpq-connect.html
https://www.postgresql.org/docs/current/static/libpq-connect.html
https://www.postgresql.org/docs/current/static/libpq-connect.html
https://kafka.apache.org/documentation/#compaction

column.mask.with._lengt
h_.chars

n/a An optional, comma-separated list of regular
expressions that match the fully-qualified
names of character-based columns. Fully-
qualified names for columns are of the form
schemaName.tableName.columnName. In
change event values, the values in the specified
table columns are replaced with length number
of asterisk (*) characters. You can specify
multiple properties with different lengths in a
single configuration. Length must be a positive
integer or zero. When you specify zero, the
connector replaces a value with an empty
string.

column.mask.hash.hashA
lgorithm.with.salt.salt

n/a An optional, comma-separated list of regular
expressions that match the fully-qualified
names of character-based columns. Fully-
qualified names for columns are of the form
<schemaName>.<tableName>.<columnName>. In
the resulting change event record, the values
for the specified columns are replaced with
pseudonyms.

A pseudonym consists of the hashed value that
results from applying the specified
hashAlgorithm and salt. Based on the hash
function that is used, referential integrity is
maintained, while column values are replaced
with pseudonyms. Supported hash functions
are described in the MessageDigest section of
the Java Cryptography Architecture Standard
Algorithm Name Documentation.

In the following example, CzQMA0cB5K is a
randomly selected salt.

column.mask.hash.SHA-
256.with.salt.CzQMA0cB5K =
inventory.orders.customerName,
inventory.shipment.customerName

If necessary, the pseudonym is automatically
shortened to the length of the column. The
connector configuration can include multiple
properties that specify different hash
algorithms and salts.

Depending on the hashAlgorithm used, the salt
selected, and the actual data set, the resulting
data set might not be completely masked.

Property Default Description

CHAPTER 7. DEBEZIUM CONNECTOR FOR POSTGRESQL

355

https://docs.oracle.com/javase/7/docs/technotes/guides/security/StandardNames.html#MessageDigest

column.propagate.source
.type

n/a An optional, comma-separated list of regular
expressions that match the fully-qualified
names of columns. Fully-qualified names for
columns are of the form
databaseName.tableName.columnName, or
databaseName.schemaName.tableName.colum
nName.

For each specified column, the connector adds
the column’s original type and original length as
parameters to the corresponding field schemas
in the emitted change records. The following
added schema parameters propagate the
original type name and also the original length
for variable-width types:

__debezium.source.column.type +
__debezium.source.column.length +
__debezium.source.column.scale

This property is useful for properly sizing
corresponding columns in sink databases.

datatype.propagate.sourc
e.type

n/a An optional, comma-separated list of regular
expressions that match the database-specific
data type name for some columns. Fully-
qualified data type names are of the form
databaseName.tableName.typeName, or
databaseName.schemaName.tableName.typeN
ame.

For these data types, the connector adds
parameters to the corresponding field schemas
in emitted change records. The added
parameters specify the original type and length
of the column:

__debezium.source.column.type +
__debezium.source.column.length +
__debezium.source.column.scale

These parameters propagate a column’s
original type name and length, for variable-
width types, respectively. This property is useful
for properly sizing corresponding columns in
sink databases.

See the list of PostgreSQL-specific data type
names.

Property Default Description

Red Hat Integration 2022.Q2 Debezium User Guide

356

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#postgresql-data-types

message.key.columns empty string A list of expressions that specify the columns
that the connector uses to form custom
message keys for change event records that it
publishes to the Kafka topics for specified
tables.

By default, Debezium uses the primary key
column of a table as the message key for
records that it emits. In place of the default, or
to specify a key for tables that lack a primary
key, you can configure custom message keys
based on one or more columns.

To establish a custom message key for a table,
list the table, followed by the columns to use as
the message key. Each list entry takes the
following format:

<fully-
qualified_tableName>:_<keyColumn>_,<
keyColumn>

To base a table key on multiple column names,
insert commas between the column names.

Each fully-qualified table name is a regular
expression in the following format:

<schemaName>.<tableName>

The property can include entries for multiple
tables. Use a semicolon to separate table
entries in the list.

The following example sets the message key
for the tables inventory.customers and
purchase.orders:

inventory.customers:pk1,pk2;
(.*).purchaseorders:pk3,pk4

For the table inventory.customer, the
columns pk1 and pk2 are specified as the
message key. For the purchaseorders tables
in any schema, the columns pk3 and pk4
server as the message key.

There is no limit to the number of columns that
you use to create custom message keys.
However, it’s best to use the minimum number
that are required to specify a unique key.

Property Default Description

CHAPTER 7. DEBEZIUM CONNECTOR FOR POSTGRESQL

357

publication.autocreate.m
ode

all_tables Applies only when streaming changes by using
the pgoutput plug-in. The setting determines
how creation of a publication should work.
Possible settings are:

all_tables - If a publication exists, the
connector uses it. If a publication does not
exist, the connector creates a publication for all
tables in the database for which the connector
is capturing changes. This requires that the
database user that has permission to perform
replications also has permission to create a
publication. This is granted with CREATE
PUBLICATION <publication_name> FOR
ALL TABLES;.

disabled - The connector does not attempt
to create a publication. A database
administrator or the user configured to
perform replications must have created the
publication before running the connector. If the
connector cannot find the publication, the
connector throws an exception and stops.

filtered - If a publication exists, the connector
uses it. If no publication exists, the connector
creates a new publication for tables that match
the current filter configuration as specified by
the database.exclude.list,
schema.include.list, schema.exclude.list,
and table.include.list connector
configuration properties. For example:
CREATE PUBLICATION
<publication_name> FOR TABLE <tbl1,
tbl2, tbl3>.

binary.handling.mode bytes Specifies how binary (bytea) columns should
be represented in change events:

bytes represents binary data as byte array.

base64 represents binary data as base64-
encoded strings.

hex represents binary data as hex-encoded
(base16) strings.

Property Default Description

Red Hat Integration 2022.Q2 Debezium User Guide

358

https://www.postgresql.org/docs/current/sql-createpublication.html
https://www.postgresql.org/docs/current/logical-replication-publication.html

truncate.handling.mode bytes Specifies how whether TRUNCATE events
should be propagated or not (only available
when using the pgoutput plug-in with
Postgres 11 or later):

skip causes those event to be omitted (the
default).

include causes those events to be included.

For information about the structure of truncate
events and about their ordering semantics, see
truncate events.

Property Default Description

The following advanced configuration properties have defaults that work in most situations and
therefore rarely need to be specified in the connector’s configuration.

Table 7.24. Advanced connector configuration properties

Property Default Description

CHAPTER 7. DEBEZIUM CONNECTOR FOR POSTGRESQL

359

snapshot.mode initial Specifies the criteria for performing a
snapshot when the connector starts:

initial - The connector performs a
snapshot only when no offsets have been
recorded for the logical server name.

always - The connector performs a
snapshot each time the connector starts.

never - The connector never performs
snapshots. When a connector is configured
this way, its behavior when it starts is as
follows. If there is a previously stored LSN in
the Kafka offsets topic, the connector
continues streaming changes from that
position. If no LSN has been stored, the
connector starts streaming changes from
the point in time when the PostgreSQL
logical replication slot was created on the
server. The never snapshot mode is useful
only when you know all data of interest is
still reflected in the WAL.

initial_only - The connector performs an
initial snapshot and then stops, without
processing any subsequent changes.

exported - deprecated

Thereference table for snapshot mode
settings has more details.

snapshot.include.collecti
on.list

All tables specified in
table.include.list

An optional, comma-separated list of
regular expressions that match the fully-
qualified names (<schemaName>.
<tableName>) of the tables to include in a
snapshot. The specified items must be
named in the connector’s
table.include.list property. This property
takes effect only if the connector’s
snapshot.mode property is set to a value
other than never.

This property does not affect the behavior
of incremental snapshots.

Property Default Description

Red Hat Integration 2022.Q2 Debezium User Guide

360

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#snapshot-mode-settings

snapshot.lock.timeout.ms 10000 Positive integer value that specifies the
maximum amount of time (in milliseconds)
to wait to obtain table locks when
performing a snapshot. If the connector
cannot acquire table locks in this time
interval, the snapshot fails. How the
connector performs snapshots provides
details.

Property Default Description

CHAPTER 7. DEBEZIUM CONNECTOR FOR POSTGRESQL

361

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#postgresql-snapshots

snapshot.select.statemen
t.overrides

No default Specifies the table rows to include in a
snapshot. Use the property if you want a
snapshot to include only a subset of the
rows in a table. This property affects
snapshots only. It does not apply to events
that the connector reads from the log.

The property contains a comma-separated
list of fully-qualified table names in the form
<schemaName>.<tableName>. For
example,

"snapshot.select.statement.overrides
":
"inventory.products,customers.order
s"

For each table in the list, add a further
configuration property that specifies the
SELECT statement for the connector to
run on the table when it takes a snapshot.
The specified SELECT statement
determines the subset of table rows to
include in the snapshot. Use the following
format to specify the name of this SELECT
statement property:

snapshot.select.statement.overrides.
<schemaName>.<tableName>. For
example,
snapshot.select.statement.overrides.
customers.orders.

Example:

From a customers.orders table that
includes the soft-delete column,
delete_flag, add the following properties if
you want a snapshot to include only those
records that are not soft-deleted:

"snapshot.select.statement.overrides"
: "customer.orders",
"snapshot.select.statement.overrides.
customer.orders": "SELECT * FROM
[customers].[orders] WHERE
delete_flag = 0 ORDER BY id
DESC"

In the resulting snapshot, the connector
includes only the records for which
delete_flag = 0.

Property Default Description

Red Hat Integration 2022.Q2 Debezium User Guide

362

event.processing.failure.h
andling.mode

fail Specifies how the connector should react
to exceptions during processing of events:

fail propagates the exception, indicates the
offset of the problematic event, and causes
the connector to stop.

warn logs the offset of the problematic
event, skips that event, and continues
processing.

skip skips the problematic event and
continues processing.

max.queue.size 20240 Positive integer value for the maximum size
of the blocking queue. The connector
places change events received from
streaming replication in the blocking queue
before writing them to Kafka. This queue
can provide backpressure when, for
example, writing records to Kafka is slower
that it should be or Kafka is not available.

max.batch.size 10240 Positive integer value that specifies the
maximum size of each batch of events that
the connector processes.

max.queue.size.in.bytes 0 Long value for the maximum size in bytes of
the blocking queue. The feature is disabled
by default, it will be active if it’s set with a
positive long value.

poll.interval.ms 1000 Positive integer value that specifies the
number of milliseconds the connector
should wait for new change events to
appear before it starts processing a batch
of events. Defaults to 1000 milliseconds, or 1
second.

Property Default Description

CHAPTER 7. DEBEZIUM CONNECTOR FOR POSTGRESQL

363

include.unknown.datatyp
es

false Specifies connector behavior when the
connector encounters a field whose data
type is unknown. The default behavior is
that the connector omits the field from the
change event and logs a warning.

Set this property to true if you want the
change event to contain an opaque binary
representation of the field. This lets
consumers decode the field. You can
control the exact representation by setting
the binary handling mode property.

NOTE

Consumers risk backward
compatibility issues when
include.unknown.datat
ypes is set to true. Not
only may the database-
specific binary
representation change
between releases, but if the
data type is eventually
supported by Debezium,
the data type will be sent
downstream in a logical
type, which would require
adjustments by consumers.
In general, when
encountering unsupported
data types, create a feature
request so that support can
be added.

database.initial.statement
s

No default A semicolon separated list of SQL
statements that the connector executes
when it establishes a JDBC connection to
the database. To use a semicolon as a
character and not as a delimiter, specify two
consecutive semicolons, ;;.

The connector may establish JDBC
connections at its own discretion.
Consequently, this property is useful for
configuration of session parameters only,
and not for executing DML statements.

The connector does not execute these
statements when it creates a connection for
reading the transaction log.

Property Default Description

Red Hat Integration 2022.Q2 Debezium User Guide

364

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#postgresql-property-binary-handling-mode

+status.update.interval.m
s

10000 Frequency for sending replication
connection status updates to the server,
given in milliseconds.
The property also controls how frequently
the database status is checked to detect a
dead connection in case the database was
shut down.

heartbeat.interval.ms 0 Controls how frequently the connector
sends heartbeat messages to a Kafka topic.
The default behavior is that the connector
does not send heartbeat messages.

Heartbeat messages are useful for
monitoring whether the connector is
receiving change events from the database.
Heartbeat messages might help decrease
the number of change events that need to
be re-sent when a connector restarts. To
send heartbeat messages, set this property
to a positive integer, which indicates the
number of milliseconds between heartbeat
messages.

Heartbeat messages are needed when
there are many updates in a database that
is being tracked but only a tiny number of
updates are related to the table(s) and
schema(s) for which the connector is
capturing changes. In this situation, the
connector reads from the database
transaction log as usual but rarely emits
change records to Kafka. This means that
no offset updates are committed to Kafka
and the connector does not have an
opportunity to send the latest retrieved
LSN to the database. The database retains
WAL files that contain events that have
already been processed by the connector.
Sending heartbeat messages enables the
connector to send the latest retrieved LSN
to the database, which allows the database
to reclaim disk space being used by no
longer needed WAL files.

Property Default Description

CHAPTER 7. DEBEZIUM CONNECTOR FOR POSTGRESQL

365

heartbeat.topics.prefix __debezium-heartbeat Controls the name of the topic to which the
connector sends heartbeat messages. The
topic name has this pattern:

<heartbeat.topics.prefix>.<server.name>

For example, if the database server name is
fulfillment, the default topic name is
__debezium-heartbeat.fulfillment.

heartbeat.action.query No default Specifies a query that the connector
executes on the source database when the
connector sends a heartbeat message.

This is useful for resolving the situation
described in WAL disk space consumption,
where capturing changes from a low-traffic
database on the same host as a high-traffic
database prevents Debezium from
processing WAL records and thus
acknowledging WAL positions with the
database. To address this situation, create a
heartbeat table in the low-traffic database,
and set this property to a statement that
inserts records into that table, for example:

INSERT INTO test_heartbeat_table
(text) VALUES ('test_heartbeat')

This allows the connector to receive
changes from the low-traffic database and
acknowledge their LSNs, which prevents
unbounded WAL growth on the database
host.

Property Default Description

Red Hat Integration 2022.Q2 Debezium User Guide

366

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#postgresql-wal-disk-space

schema.refresh.mode columns_diff Specify the conditions that trigger a refresh
of the in-memory schema for a table.

columns_diff is the safest mode. It
ensures that the in-memory schema stays
in sync with the database table’s schema at
all times.

columns_diff_exclude_unchanged_t
oast instructs the connector to refresh the
in-memory schema cache if there is a
discrepancy with the schema derived from
the incoming message, unless unchanged
TOASTable data fully accounts for the
discrepancy.

This setting can significantly improve
connector performance if there are
frequently-updated tables that have
TOASTed data that are rarely part of
updates. However, it is possible for the in-
memory schema to become outdated if
TOASTable columns are dropped from the
table.

snapshot.delay.ms No default An interval in milliseconds that the
connector should wait before performing a
snapshot when the connector starts. If you
are starting multiple connectors in a cluster,
this property is useful for avoiding snapshot
interruptions, which might cause re-
balancing of connectors.

snapshot.fetch.size 10240 During a snapshot, the connector reads
table content in batches of rows. This
property specifies the maximum number of
rows in a batch.

slot.stream.params No default Semicolon separated list of parameters to
pass to the configured logical decoding
plug-in. For example, add-
tables=public.table,public.table2;incl
ude-lsn=true.

sanitize.field.names true if connector
configuration sets the
key.converter or
value.converter property
to the Avro converter.

false if not.

Indicates whether field names are sanitized
to adhere to Avro naming requirements.

Property Default Description

CHAPTER 7. DEBEZIUM CONNECTOR FOR POSTGRESQL

367

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#about-avro-name-requirements

slot.max.retries 6 If connecting to a replication slot fails, this is
the maximum number of consecutive
attempts to connect.

slot.retry.delay.ms 10000 (10 seconds) The number of milliseconds to wait between
retry attempts when the connector fails to
connect to a replication slot.

toasted.value.placeholder __debezium_unavailabl
e_value

Specifies the constant that the connector
provides to indicate that the original value is
a toasted value that is not provided by the
database. If the setting of
toasted.value.placeholder starts with
the hex: prefix it is expected that the rest
of the string represents hexadecimally
encoded octets. See toasted values for
additional details.

This option is deprecated, please use
unavailable.value.placeholder instead.

unavailable.value.placeho
lder

__debezium_unavailabl
e_value

Specifies the constant that the connector
provides to indicate that the original value is
a toasted value that is not provided by the
database. If the setting of
unavailable.value.placeholder starts
with the hex: prefix it is expected that the
rest of the string represents hexadecimally
encoded octets. See toasted values for
additional details.

provide.transaction.meta
data

false Determines whether the connector
generates events with transaction
boundaries and enriches change event
envelopes with transaction metadata.
Specify true if you want the connector to
do this. See Transaction metadata for
details.

retriable.restart.connecto
r.wait.ms

10000 (10 seconds) The number of milliseconds to wait before
restarting a connector after a retriable error
occurs.

skipped.operations No default A comma-separated list of operation types
that will be skipped during streaming. The
operations include: c for inserts/create, u
for updates, and d for deletes. By default,
no operations are skipped.

Property Default Description

Red Hat Integration 2022.Q2 Debezium User Guide

368

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#postgresql-transaction-metadata

signal.data.collection No default value Fully-qualified name of the data collection
that is used to send signals to the
connector.
Use the following format to specify the
collection name:
<schemaName>.<tableName>

Signaling is a Technology Preview feature.

incremental.snapshot.chu
nk.size

1024 The maximum number of rows that the
connector fetches and reads into memory
during an incremental snapshot chunk.
Increasing the chunk size provides greater
efficiency, because the snapshot runs fewer
snapshot queries of a greater size. However,
larger chunk sizes also require more
memory to buffer the snapshot data. Adjust
the chunk size to a value that provides the
best performance in your environment.

Incremental snapshots is a Technology
Preview feature.

Property Default Description

Pass-through connector configuration properties

The connector also supports pass-through configuration properties that are used when creating the
Kafka producer and consumer.

Be sure to consult the Kafka documentation for all of the configuration properties for Kafka producers
and consumers. The PostgreSQL connector does use the new consumer configuration properties .

7.7. MONITORING DEBEZIUM POSTGRESQL CONNECTOR
PERFORMANCE

The Debezium PostgreSQL connector provides two types of metrics that are in addition to the built-in
support for JMX metrics that Zookeeper, Kafka, and Kafka Connect provide.

Snapshot metrics provide information about connector operation while performing a snapshot.

Streaming metrics provide information about connector operation when the connector is
capturing changes and streaming change event records.

Debezium monitoring documentation provides details for how to expose these metrics by using JMX.

7.7.1. Monitoring Debezium during snapshots of PostgreSQL databases

The MBean is debezium.postgres:type=connector-
metrics,context=snapshot,server=<postgresql.server.name>.

Snapshot metrics are not exposed unless a snapshot operation is active, or if a snapshot has occurred
since the last connector start.

CHAPTER 7. DEBEZIUM CONNECTOR FOR POSTGRESQL

369

https://kafka.apache.org/documentation.html
https://kafka.apache.org/documentation.html#consumerconfigs
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#postgresql-snapshot-metrics
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#postgresql-streaming-metrics
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#monitoring-debezium

The following table lists the shapshot metrics that are available.

Attributes Type Description

LastEvent string The last snapshot event that
the connector has read.

MilliSecondsSinceLastEvent long The number of milliseconds
since the connector has read
and processed the most
recent event.

TotalNumberOfEventsSeen long The total number of events
that this connector has seen
since last started or reset.

NumberOfEventsFiltered long The number of events that
have been filtered by
include/exclude list filtering
rules configured on the
connector.

MonitoredTables
Deprecated and scheduled for removal in a
future release; use the CapturedTables
metric instead.

string[] The list of tables that are
monitored by the connector.

CapturedTables string[] The list of tables that are
captured by the connector.

QueueTotalCapacity int The length the queue used to
pass events between the
snapshotter and the main
Kafka Connect loop.

QueueRemainingCapacity int The free capacity of the
queue used to pass events
between the snapshotter and
the main Kafka Connect loop.

TotalTableCount int The total number of tables
that are being included in the
snapshot.

RemainingTableCount int The number of tables that the
snapshot has yet to copy.

SnapshotRunning boolean Whether the snapshot was
started.

Red Hat Integration 2022.Q2 Debezium User Guide

370

SnapshotAborted boolean Whether the snapshot was
aborted.

SnapshotCompleted boolean Whether the snapshot
completed.

SnapshotDurationInSeconds long The total number of seconds
that the snapshot has taken
so far, even if not complete.

RowsScanned Map<String, Long> Map containing the number of
rows scanned for each table in
the snapshot. Tables are
incrementally added to the
Map during processing.
Updates every 10,000 rows
scanned and upon completing
a table.

MaxQueueSizeInBytes long The maximum buffer of the
queue in bytes. It will be
enabled if
max.queue.size.in.bytes is
passed with a positive long
value.

CurrentQueueSizeInBytes long The current data of records in
the queue in bytes.

Attributes Type Description

The connector also provides the following additional snapshot metrics when an incremental snapshot is
executed:

Attributes Type Description

ChunkId string The identifier of the current
snapshot chunk.

ChunkFrom string The lower bound of the
primary key set defining the
current chunk.

ChunkTo string The upper bound of the
primary key set defining the
current chunk.

CHAPTER 7. DEBEZIUM CONNECTOR FOR POSTGRESQL

371

TableFrom string The lower bound of the
primary key set of the
currently snapshotted table.

TableTo string The upper bound of the
primary key set of the
currently snapshotted table.

Attributes Type Description

IMPORTANT

Incremental snapshots is a Technology Preview feature only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs) and
might not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.
For more information about the support scope of Red Hat Technology Preview features,
see https://access.redhat.com/support/offerings/techpreview.

7.7.2. Monitoring Debezium PostgreSQL connector record streaming

The MBean is debezium.postgres:type=connector-
metrics,context=streaming,server=<postgresql.server.name>.

The following table lists the streaming metrics that are available.

Attributes Type Description

LastEvent string The last streaming event that
the connector has read.

MilliSecondsSinceLastEvent long The number of milliseconds
since the connector has read
and processed the most
recent event.

TotalNumberOfEventsSeen long The total number of events
that this connector has seen
since last started or reset.

NumberOfEventsFiltered long The number of events that
have been filtered by
include/exclude list filtering
rules configured on the
connector.

Red Hat Integration 2022.Q2 Debezium User Guide

372

https://access.redhat.com/support/offerings/techpreview

MonitoredTables
Deprecated and scheduled for removal in a
future release; use the 'CapturedTables' metric
instead

string[] The list of tables that are
monitored by the connector.

CapturedTables string[] The list of tables that are
captured by the connector.

QueueTotalCapacity int The length the queue used to
pass events between the
streamer and the main Kafka
Connect loop.

QueueRemainingCapacity int The free capacity of the
queue used to pass events
between the streamer and the
main Kafka Connect loop.

Connected boolean Flag that denotes whether the
connector is currently
connected to the database
server.

MilliSecondsBehindSource long The number of milliseconds
between the last change
event’s timestamp and the
connector processing it. The
values will incoporate any
differences between the
clocks on the machines where
the database server and the
connector are running.

NumberOfCommittedTransactions long The number of processed
transactions that were
committed.

SourceEventPosition Map<String, String> The coordinates of the last
received event.

LastTransactionId string Transaction identifier of the
last processed transaction.

MaxQueueSizeInBytes long The maximum buffer of the
queue in bytes.

CurrentQueueSizeInBytes long The current data of records in
the queue in bytes.

Attributes Type Description

CHAPTER 7. DEBEZIUM CONNECTOR FOR POSTGRESQL

373

7.8. HOW DEBEZIUM POSTGRESQL CONNECTORS HANDLE FAULTS
AND PROBLEMS

Debezium is a distributed system that captures all changes in multiple upstream databases; it never
misses or loses an event. When the system is operating normally or being managed carefully then
Debezium provides exactly once delivery of every change event record.

If a fault does happen then the system does not lose any events. However, while it is recovering from the
fault, it might repeat some change events. In these abnormal situations, Debezium, like Kafka, provides
at least once delivery of change events.

Details are in the following sections:

Configuration and startup errors

PostgreSQL becomes unavailable

Cluster failures

Kafka Connect process stops gracefully

Kafka Connect process crashes

Kafka becomes unavailable

Connector is stopped for a duration

Configuration and startup errors

In the following situations, the connector fails when trying to start, reports an error/exception in the log,
and stops running:

The connector’s configuration is invalid.

The connector cannot successfully connect to PostgreSQL by using the specified connection
parameters.

The connector is restarting from a previously-recorded position in the PostgreSQL WAL (by
using the LSN) and PostgreSQL no longer has that history available.

In these cases, the error message has details about the problem and possibly a suggested workaround.
After you correct the configuration or address the PostgreSQL problem, restart the connector.

PostgreSQL becomes unavailable

When the connector is running, the PostgreSQL server that it is connected to could become unavailable
for any number of reasons. If this happens, the connector fails with an error and stops. When the server
is available again, restart the connector.

The PostgreSQL connector externally stores the last processed offset in the form of a PostgreSQL
LSN. After a connector restarts and connects to a server instance, the connector communicates with
the server to continue streaming from that particular offset. This offset is available as long as the
Debezium replication slot remains intact. Never drop a replication slot on the primary server or you will
lose data. See the next section for failure cases in which a slot has been removed.

Cluster failures

As of release 12, PostgreSQL allows logical replication slots only on primary servers . This means that you

Red Hat Integration 2022.Q2 Debezium User Guide

374

can point a Debezium PostgreSQL connector to only the active primary server of a database cluster.
Also, replication slots themselves are not propagated to replicas. If the primary server goes down, a new
primary must be promoted.

The new primary must have a replication slot that is configured for use by the pgoutput plug-in and the
database in which you want to capture changes. Only then can you point the connector to the new server
and restart the connector.

There are important caveats when failovers occur and you should pause Debezium until you can verify
that you have an intact replication slot that has not lost data. After a failover:

There must be a process that re-creates the Debezium replication slot before allowing the
application to write to the new primary. This is crucial. Without this process, your application can
miss change events.

You might need to verify that Debezium was able to read all changes in the slot before the old
primary failed.

One reliable method of recovering and verifying whether any changes were lost is to recover a backup
of the failed primary to the point immediately before it failed. While this can be administratively difficult,
it allows you to inspect the replication slot for any unconsumed changes.

Kafka Connect process stops gracefully

Suppose that Kafka Connect is being run in distributed mode and a Kafka Connect process is stopped
gracefully. Prior to shutting down that process, Kafka Connect migrates the process’s connector tasks
to another Kafka Connect process in that group. The new connector tasks start processing exactly
where the prior tasks stopped. There is a short delay in processing while the connector tasks are
stopped gracefully and restarted on the new processes.

Kafka Connect process crashes

If the Kafka Connector process stops unexpectedly, any connector tasks it was running terminate
without recording their most recently processed offsets. When Kafka Connect is being run in distributed
mode, Kafka Connect restarts those connector tasks on other processes. However, PostgreSQL
connectors resume from the last offset that was recorded by the earlier processes. This means that the
new replacement tasks might generate some of the same change events that were processed just prior
to the crash. The number of duplicate events depends on the offset flush period and the volume of data
changes just before the crash.

Because there is a chance that some events might be duplicated during a recovery from failure,
consumers should always anticipate some duplicate events. Debezium changes are idempotent, so a
sequence of events always results in the same state.

In each change event record, Debezium connectors insert source-specific information about the origin
of the event, including the PostgreSQL server’s time of the event, the ID of the server transaction, and
the position in the write-ahead log where the transaction changes were written. Consumers can keep
track of this information, especially the LSN, to determine whether an event is a duplicate.

Kafka becomes unavailable

As the connector generates change events, the Kafka Connect framework records those events in Kafka
by using the Kafka producer API. Periodically, at a frequency that you specify in the Kafka Connect
configuration, Kafka Connect records the latest offset that appears in those change events. If the Kafka
brokers become unavailable, the Kafka Connect process that is running the connectors repeatedly tries
to reconnect to the Kafka brokers. In other words, the connector tasks pause until a connection can be
re-established, at which point the connectors resume exactly where they left off.

CHAPTER 7. DEBEZIUM CONNECTOR FOR POSTGRESQL

375

Connector is stopped for a duration

If the connector is gracefully stopped, the database can continue to be used. Any changes are recorded
in the PostgreSQL WAL. When the connector restarts, it resumes streaming changes where it left off.
That is, it generates change event records for all database changes that were made while the connector
was stopped.

A properly configured Kafka cluster is able to handle massive throughput. Kafka Connect is written
according to Kafka best practices, and given enough resources a Kafka Connect connector can also
handle very large numbers of database change events. Because of this, after being stopped for a while,
when a Debezium connector restarts, it is very likely to catch up with the database changes that were
made while it was stopped. How quickly this happens depends on the capabilities and performance of
Kafka and the volume of changes being made to the data in PostgreSQL.

Red Hat Integration 2022.Q2 Debezium User Guide

376

CHAPTER 8. DEBEZIUM CONNECTOR FOR SQL SERVER
The Debezium SQL Server connector captures row-level changes that occur in the schemas of a SQL
Server database.

For information about the SQL Server versions that are compatible with this connector, see the
Debezium Supported Configurations page .

For details about the Debezium SQL Server connector and its use, see following topics:

Section 8.1, “Overview of Debezium SQL Server connector”

Section 8.2, “How Debezium SQL Server connectors work”

Section 8.2.5, “Descriptions of Debezium SQL Server connector data change events”

Section 8.2.7, “How Debezium SQL Server connectors map data types”

Section 8.3, “Setting up SQL Server to run a Debezium connector”

Section 8.4, “Deployment of Debezium SQL Server connectors”

Section 8.5, “Refreshing capture tables after a schema change”

Section 8.6, “Monitoring Debezium SQL Server connector performance”

The first time that the Debezium SQL Server connector connects to a SQL Server database or cluster,
it takes a consistent snapshot of the schemas in the database. After the initial snapshot is complete, the
connector continuously captures row-level changes for INSERT, UPDATE, or DELETE operations that
are committed to the SQL Server databases that are enabled for CDC. The connector produces events
for each data change operation, and streams them to Kafka topics. The connector streams all of the
events for a table to a dedicated Kafka topic. Applications and services can then consume data change
event records from that topic.

8.1. OVERVIEW OF DEBEZIUM SQL SERVER CONNECTOR

The Debezium SQL Server connector is based on the change data capture feature that is available in
SQL Server 2016 Service Pack 1 (SP1) and later Standard edition or Enterprise edition. The SQL Server
capture process monitors designated databases and tables, and stores the changes into specifically
created change tables that have stored procedure facades.

To enable the Debezium SQL Server connector to capture change event records for database
operations, you must first enable change data capture on the SQL Server database. CDC must be
enabled on both the database and on each table that you want to capture. After you set up CDC on the
source database, the connector can capture row-level INSERT, UPDATE, and DELETE operations that
occur in the database. The connector writes event records for each source table to a Kafka topic
especially dedicated to that table. One topic exists for each captured table. Client applications read the
Kafka topics for the database tables that they follow, and can respond to the row-level events they
consume from those topics.

The first time that the connector connects to a SQL Server database or cluster, it takes a consistent
snapshot of the schemas for all tables for which it is configured to capture changes, and streams this
state to Kafka. After the snapshot is complete, the connector continuously captures subsequent row-
level changes that occur. By first establishing a consistent view of all of the data, the connector can
continue reading without having lost any of the changes that were made while the snapshot was taking
place.

CHAPTER 8. DEBEZIUM CONNECTOR FOR SQL SERVER

377

https://access.redhat.com/articles/4938181
https://docs.microsoft.com/en-us/sql/relational-databases/track-changes/about-change-data-capture-sql-server?view=sql-server-2017
https://blogs.msdn.microsoft.com/sqlreleaseservices/sql-server-2016-service-pack-1-sp1-released/

The Debezium SQL Server connector is tolerant of failures. As the connector reads changes and
produces events, it periodically records the position of events in the database log (LSN / Log Sequence
Number). If the connector stops for any reason (including communication failures, network problems, or
crashes), after a restart the connector resumes reading the SQL Server CDC tables from the last point
that it read.

NOTE

Offsets are committed periodically. They are not committed at the time that a change
event occurs. As a result, following an outage, duplicate events might be generated.

Fault tolerance also applies to snapshots. That is, if the connector stops during a snapshot, the
connector begins a new snapshot when it restarts.

8.2. HOW DEBEZIUM SQL SERVER CONNECTORS WORK

To optimally configure and run a Debezium SQL Server connector, it is helpful to understand how the
connector performs snapshots, streams change events, determines Kafka topic names, and uses
metadata.

For details about how the connector works, see the following sections:

Section 8.2.1, “How Debezium SQL Server connectors perform database snapshots”

Section 8.2.2, “How Debezium SQL Server connectors read change data tables”

Section 8.2.3, “Default names of Kafka topics that receive Debezium SQL Server change event
records”

Section 8.2.4, “How the Debezium SQL Server connector uses the schema change topic”

Section 8.2.5, “Descriptions of Debezium SQL Server connector data change events”

Section 8.2.6, “Debezium SQL Server connector-generated events that represent transaction
boundaries”

8.2.1. How Debezium SQL Server connectors perform database snapshots

SQL Server CDC is not designed to store a complete history of database changes. For the Debezium
SQL Server connector to establish a baseline for the current state of the database, it uses a process
called snapshotting.

You can configure how the connector creates snapshots. By default, the connector’s snapshot mode is
set to initial. Based on this initial snapshot mode, the first time that the connector starts, it performs an
initial consistent snapshot of the database. This initial snapshot captures the structure and data for any
tables that match the criteria defined by the include and exclude properties that are configured for the
connector (for example, table.include.list, column.include.list, table.exclude.list, and so forth).

When the connector creates a snapshot, it completes the following tasks:

1. Determines the tables to be captured.

2. Obtains a lock on the SQL Server tables for which CDC is enabled to prevent structural changes
from occurring during creation of the snapshot. The level of the lock is determined by
snapshot.isolation.mode configuration option.

Red Hat Integration 2022.Q2 Debezium User Guide

378

3. Reads the maximum log sequence number (LSN) position in the server’s transaction log.

4. Captures the structure of all relevant tables.

5. Releases the locks obtained in Step 2, if necessary. In most cases, locks are held for only a short
period of time.

6. Scans the SQL Server source tables and schemas to be captured based on the LSN position
that was read in Step 3, generates a READ event for each row in the table, and writes the
events to the Kafka topic for the table.

7. Records the successful completion of the snapshot in the connector offsets.

The resulting initial snapshot captures the current state of each row in the tables that are enabled for
CDC. From this baseline state, the connector captures subsequent changes as they occur.

8.2.1.1. Ad hoc snapshots

IMPORTANT

The use of ad hoc snapshots is a Technology Preview feature. Technology Preview
features are not supported with Red Hat production service-level agreements (SLAs) and
might not be functionally complete; therefore, Red Hat does not recommend
implementing any Technology Preview features in production environments. This
Technology Preview feature provides early access to upcoming product innovations,
enabling you to test functionality and provide feedback during the development process.
For more information about support scope, see Technology Preview Features Support
Scope.

By default, a connector runs an initial snapshot operation only after it starts for the first time. Following
this initial snapshot, under normal circumstances, the connector does not repeat the snapshot process.
Any future change event data that the connector captures comes in through the streaming process
only.

However, in some situations the data that the connector obtained during the initial snapshot might
become stale, lost, or incomplete. To provide a mechanism for recapturing table data, Debezium
includes an option to perform ad hoc snapshots. The following changes in a database might be cause for
performing an ad hoc snapshot:

The connector configuration is modified to capture a different set of tables.

Kafka topics are deleted and must be rebuilt.

Data corruption occurs due to a configuration error or some other problem.

You can re-run a snapshot for a table for which you previously captured a snapshot by initiating a so-
called ad-hoc snapshot . Ad hoc snapshots require the use of signaling tables. You initiate an ad hoc
snapshot by sending a signal request to the Debezium signaling table.

When you initiate an ad hoc snapshot of an existing table, the connector appends content to the topic
that already exists for the table. If a previously existing topic was removed, Debezium can create a topic
automatically if automatic topic creation is enabled.

Ad hoc snapshot signals specify the tables to include in the snapshot. The snapshot can capture the
entire contents of the database, or capture only a subset of the tables in the database.

CHAPTER 8. DEBEZIUM CONNECTOR FOR SQL SERVER

379

https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#sending-signals-to-a-debezium-connector
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index.xml#customizing-debezium-automatically-created-topics

You specify the tables to capture by sending an execute-snapshot message to the signaling table. Set
the type of the execute-snapshot signal to incremental, and provide the names of the tables to
include in the snapshot, as described in the following table:

Table 8.1. Example of an ad hoc execute-snapshot signal record

Field Default Value

type incremental Specifies the type of snapshot that you want to run.
Setting the type is optional. Currently, you can request only
incremental snapshots.

data-collections N/A An array that contains the fully-qualified names of the table to
be snapshotted.
The format of the names is the same as for the
signal.data.collection configuration option.

Triggering an ad hoc snapshot

You initiate an ad hoc snapshot by adding an entry with the execute-snapshot signal type to the
signaling table. After the connector processes the message, it begins the snapshot operation. The
snapshot process reads the first and last primary key values and uses those values as the start and end
point for each table. Based on the number of entries in the table, and the configured chunk size,
Debezium divides the table into chunks, and proceeds to snapshot each chunk, in succession, one at a
time.

Currently, the execute-snapshot action type triggers incremental snapshots only. For more
information, see Incremental snapshots.

8.2.1.2. Incremental snapshots

IMPORTANT

The use of incremental snapshots is a Technology Preview feature. Technology Preview
features are not supported with Red Hat production service-level agreements (SLAs) and
might not be functionally complete; therefore, Red Hat does not recommend
implementing any Technology Preview features in production environments. This
Technology Preview feature provides early access to upcoming product innovations,
enabling you to test functionality and provide feedback during the development process.
For more information about support scope, see Technology Preview Features Support
Scope.

To provide flexibility in managing snapshots, Debezium includes a supplementary snapshot mechanism,
known as incremental snapshotting . Incremental snapshots rely on the Debezium mechanism for sending
signals to a Debezium connector.

In an incremental snapshot, instead of capturing the full state of a database all at once, as in an initial
snapshot, Debezium captures each table in phases, in a series of configurable chunks. You can specify
the tables that you want the snapshot to capture and the size of each chunk . The chunk size determines
the number of rows that the snapshot collects during each fetch operation on the database. The default
chunk size for incremental snapshots is 1 KB.

As an incremental snapshot proceeds, Debezium uses watermarks to track its progress, maintaining a

Red Hat Integration 2022.Q2 Debezium User Guide

380

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index.xml#debezium-signaling-incremental-snapshots
https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index.xml#sending-signals-to-a-debezium-connector

As an incremental snapshot proceeds, Debezium uses watermarks to track its progress, maintaining a
record of each table row that it captures. This phased approach to capturing data provides the following
advantages over the standard initial snapshot process:

You can run incremental snapshots in parallel with streamed data capture, instead of postponing
streaming until the snapshot completes. The connector continues to capture near real-time
events from the change log throughout the snapshot process, and neither operation blocks the
other.

If the progress of an incremental snapshot is interrupted, you can resume it without losing any
data. After the process resumes, the snapshot begins at the point where it stopped, rather than
recapturing the table from the beginning.

You can run an incremental snapshot on demand at any time, and repeat the process as needed
to adapt to database updates. For example, you might re-run a snapshot after you modify the
connector configuration to add a table to its table.include.list property.

Incremental snapshot process

When you run an incremental snapshot, Debezium sorts each table by primary key and then splits the
table into chunks based on the configured chunk size. Working chunk by chunk, it then captures each
table row in a chunk. For each row that it captures, the snapshot emits a READ event. That event
represents the value of the row when the snapshot for the chunk began.

As a snapshot proceeds, it’s likely that other processes continue to access the database, potentially
modifying table records. To reflect such changes, INSERT, UPDATE, or DELETE operations are
committed to the transaction log as per usual. Similarly, the ongoing Debezium streaming process
continues to detect these change events and emits corresponding change event records to Kafka.

How Debezium resolves collisions among records with the same primary key

In some cases, the UPDATE or DELETE events that the streaming process emits are received out of
sequence. That is, the streaming process might emit an event that modifies a table row before the
snapshot captures the chunk that contains the READ event for that row. When the snapshot eventually
emits the corresponding READ event for the row, its value is already superseded. To ensure that
incremental snapshot events that arrive out of sequence are processed in the correct logical order,
Debezium employs a buffering scheme for resolving collisions. Only after collisions between the
snapshot events and the streamed events are resolved does Debezium emit an event record to Kafka.

Snapshot window

To assist in resolving collisions between late-arriving READ events and streamed events that modify
the same table row, Debezium employs a so-called snapshot window. The snapshot windows demarcates
the interval during which an incremental snapshot captures data for a specified table chunk. Before the
snapshot window for a chunk opens, Debezium follows its usual behavior and emits events from the
transaction log directly downstream to the target Kafka topic. But from the moment that the snapshot
for a particular chunk opens, until it closes, Debezium performs a de-duplication step to resolve
collisions between events that have the same primary key..

For each data collection, the Debezium emits two types of events, and stores the records for them both
in a single destination Kafka topic. The snapshot records that it captures directly from a table are
emitted as READ operations. Meanwhile, as users continue to update records in the data collection, and
the transaction log is updated to reflect each commit, Debezium emits UPDATE or DELETE operations
for each change.

As the snapshot window opens, and Debezium begins processing a snapshot chunk, it delivers snapshot
records to a memory buffer. During the snapshot windows, the primary keys of the READ events in the
buffer are compared to the primary keys of the incoming streamed events. If no match is found, the

CHAPTER 8. DEBEZIUM CONNECTOR FOR SQL SERVER

381

streamed event record is sent directly to Kafka. If Debezium detects a match, it discards the buffered
READ event, and writes the streamed record to the destination topic, because the streamed event
logically supersede the static snapshot event. After the snapshot window for the chunk closes, the
buffer contains only READ events for which no related transaction log events exist. Debezium emits
these remaining READ events to the table’s Kafka topic.

The connector repeats the process for each snapshot chunk.

Triggering an incremental snapshot

Currently, the only way to initiate an incremental snapshot is to send an ad hoc snapshot signal to the
signaling table on the source database. You submit signals to the table as SQL INSERT queries. After
Debezium detects the change in the signaling table, it reads the signal, and runs the requested snapshot
operation.

The query that you submit specifies the tables to include in the snapshot, and, optionally, specifies the
kind of snapshot operation. Currently, the only valid option for snapshots operations is the default value,
incremental.

To specify the tables to include in the snapshot, provide a data-collections array that lists the tables,
for example,
{"data-collections": ["public.MyFirstTable", "public.MySecondTable"]}

The data-collections array for an incremental snapshot signal has no default value. If the data-
collections array is empty, Debezium detects that no action is required and does not perform a
snapshot.

Prerequisites

Signaling is enabled.

A signaling data collection exists on the source database and the connector is configured to
capture it.

The signaling data collection is specified in the signal.data.collection property.

Procedure

1. Send a SQL query to add the ad hoc incremental snapshot request to the signaling table:

For example,

The values of the id,type, and data parameters in the command correspond to the fields of the
signaling table.

The following table describes the these parameters:

Table 8.2. Descriptions of fields in a SQL command for sending an incremental snapshot
signal to the signaling table

INSERT INTO _<signalTable>_ (id, type, data) VALUES (_'<id>'_, _'<snapshotType>'_,
'{"data-collections": ["_<tableName>_","_<tableName>_"],"type":"_<snapshotType>_"}');

INSERT INTO myschema.debezium_signal (id, type, data) VALUES('ad-hoc-1', 'execute-
snapshot', '{"data-collections": ["schema1.table1", "schema2.table2"],"type":"incremental"}');

Red Hat Integration 2022.Q2 Debezium User Guide

382

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index.xml#debezium-signaling-ad-hoc-snapshots
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index.xml#debezium-signaling-enabling-signaling
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index.xml#debezium-signaling-required-structure-of-a-signaling-data-collection

Value Description

myschema.de
bezium_signal

Specifies the fully-qualified name of the signaling table on the source database

ad-hoc-1 The id parameter specifies an arbitrary string that is assigned as the id identifier
for the signal request.
Use this string to identify logging messages to entries in the signaling table.
Debezium does not use this string. Rather, during the snapshot, Debezium
generates its own id string as a watermarking signal.

execute-
snapshot

Specifies type parameter specifies the operation that the signal is intended to
trigger.

data-
collections

A required component of the data field of a signal that specifies an array of
table names to include in the snapshot.
The array lists tables by their fully-qualified names, using the same format as you
use to specify the name of the connector’s signaling table in the
signal.data.collection configuration property.

incremental An optional type component of the data field of a signal that specifies the kind
of snapshot operation to run.
Currently, the only valid option is the default value, incremental.
Specifying a type value in the SQL query that you submit to the signaling table
is optional.
If you do not specify a value, the connector runs an incremental snapshot.

The following example, shows the JSON for an incremental snapshot event that is captured by a
connector.

Example: Incremental snapshot event message

Item Field name Description

{
 "before":null,
 "after": {
 "pk":"1",
 "value":"New data"
 },
 "source": {
 ...
 "snapshot":"incremental" 1
 },
 "op":"r", 2
 "ts_ms":"1620393591654",
 "transaction":null
}

CHAPTER 8. DEBEZIUM CONNECTOR FOR SQL SERVER

383

1 snapshot Specifies the type of snapshot operation to run.
Currently, the only valid option is the default value, incremental.
Specifying a type value in the SQL query that you submit to the
signaling table is optional.
If you do not specify a value, the connector runs an incremental
snapshot.

2 op Specifies the event type.
The value for snapshot events is r, signifying a READ operation.

Item Field name Description

WARNING

The Debezium connector for SQL Server does not support schema changes while
an incremental snapshot is running.

8.2.2. How Debezium SQL Server connectors read change data tables

When the connector first starts, it takes a structural snapshot of the structure of the captured tables and
persists this information to its internal database history topic. The connector then identifies a change
table for each source table, and completes the following steps.

1. For each change table, the connector read all of the changes that were created between the
last stored maximum LSN and the current maximum LSN.

2. The connector sorts the changes that it reads in ascending order, based on the values of their
commit LSN and change LSN. This sorting order ensures that the changes are replayed by
Debezium in the same order in which they occurred in the database.

3. The connector passes the commit and change LSNs as offsets to Kafka Connect.

4. The connector stores the maximum LSN and restarts the process from Step 1.

After a restart, the connector resumes processing from the last offset (commit and change LSNs) that
it read.

The connector is able to detect whether CDC is enabled or disabled for included source tables and
adjust its behavior.

8.2.3. Default names of Kafka topics that receive Debezium SQL Server change
event records

By default, the SQL Server connector writes events for all INSERT, UPDATE, and DELETE operations
that occur in a table to a single Apache Kafka topic that is specific to that table. The connector uses the
following convention to name change event topics: <serverName>.<schemaName>.<tableName>

Red Hat Integration 2022.Q2 Debezium User Guide

384

The following list provides definitions for the components of the default name:

serverName

The logical name of the server, as specified by the database.server.name configuration property.

schemaName

The name of the database schema in which the change event occurred.

tableName

The name of the database table in which the change event occurred.

For example, if fulfillment is the server name, and dbo is the schema name, and the database contains
tables with the names products, products_on_hand, customers, and orders, the connector would
stream change event records to the following Kafka topics:

fulfillment.dbo.products

fulfillment.dbo.products_on_hand

fulfillment.dbo.customers

fulfillment.dbo.orders

The connector applies similar naming conventions to label its internal database history topics, schema
change topics, and transaction metadata topics.

If the default topic name do not meet your requirements, you can configure custom topic names. To
configure custom topic names, you specify regular expressions in the logical topic routing SMT. For
more information about using the logical topic routing SMT to customize topic naming, see Topic
routing.

8.2.4. How the Debezium SQL Server connector uses the schema change topic

For each table for which CDC is enabled, the Debezium SQL Server connector stores a history of the
schema change events that are applied to captured tables in the database. The connector writes
schema change events to a Kafka topic named <serverName>, where serverName is the logical server
name that is specified in the database.server.name configuration property.

Messages that the connector sends to the schema change topic contain a payload, and, optionally, also
contain the schema of the change event message. The payload of a schema change event message
includes the following elements:

databaseName

The name of the database to which the statements are applied. The value of databaseName serves
as the message key.

tableChanges

A structured representation of the entire table schema after the schema change. The tableChanges
field contains an array that includes entries for each column of the table. Because the structured
representation presents data in JSON or Avro format, consumers can easily read messages without
first processing them through a DDL parser.

IMPORTANT

CHAPTER 8. DEBEZIUM CONNECTOR FOR SQL SERVER

385

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#routing-debezium-event-records-to-topics-that-you-specify

IMPORTANT

When the connector is configured to capture a table, it stores the history of the table’s
schema changes not only in the schema change topic, but also in an internal database
history topic. The internal database history topic is for connector use only and it is not
intended for direct use by consuming applications. Ensure that applications that require
notifications about schema changes consume that information only from the schema
change topic.

WARNING

The format of the messages that a connector emits to its schema change topic is in
an incubating state and can change without notice.

Debezium emits a message to the schema change topic when the following events occur:

You enable CDC for a table.

You disable CDC for a table.

You alter the structure of a table for which CDC is enabled by following the schema evolution
procedure.

Example: Message emitted to the SQL Server connector schema change topic

The following example shows a message in the schema change topic. The message contains a logical
representation of the table schema.

{
 "schema": {
 ...
 },
 "payload": {
 "source": {
 "version": "1.7.2.Final",
 "connector": "sqlserver",
 "name": "server1",
 "ts_ms": 1588252618953,
 "snapshot": "true",
 "db": "testDB",
 "schema": "dbo",
 "table": "customers",
 "change_lsn": null,
 "commit_lsn": "00000025:00000d98:00a2",
 "event_serial_no": null
 },
 "databaseName": "testDB", 1
 "schemaName": "dbo",
 "ddl": null, 2
 "tableChanges": [3
 {

Red Hat Integration 2022.Q2 Debezium User Guide

386

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#refreshing-capture-tables-after-a-schema-change

 "type": "CREATE", 4
 "id": "\"testDB\".\"dbo\".\"customers\"", 5
 "table": { 6
 "defaultCharsetName": null,
 "primaryKeyColumnNames": [7
 "id"
],
 "columns": [8
 {
 "name": "id",
 "jdbcType": 4,
 "nativeType": null,
 "typeName": "int identity",
 "typeExpression": "int identity",
 "charsetName": null,
 "length": 10,
 "scale": 0,
 "position": 1,
 "optional": false,
 "autoIncremented": false,
 "generated": false
 },
 {
 "name": "first_name",
 "jdbcType": 12,
 "nativeType": null,
 "typeName": "varchar",
 "typeExpression": "varchar",
 "charsetName": null,
 "length": 255,
 "scale": null,
 "position": 2,
 "optional": false,
 "autoIncremented": false,
 "generated": false
 },
 {
 "name": "last_name",
 "jdbcType": 12,
 "nativeType": null,
 "typeName": "varchar",
 "typeExpression": "varchar",
 "charsetName": null,
 "length": 255,
 "scale": null,
 "position": 3,
 "optional": false,
 "autoIncremented": false,
 "generated": false
 },
 {
 "name": "email",
 "jdbcType": 12,
 "nativeType": null,
 "typeName": "varchar",

CHAPTER 8. DEBEZIUM CONNECTOR FOR SQL SERVER

387

Table 8.3. Descriptions of fields in messages emitted to the schema change topic

Item Field name Description

1 databaseName
schemaName

Identifies the database and the schema that contain
the change.

2 ddl Always null for the SQL Server connector. For other
connectors, this field contains the DDL responsible
for the schema change. This DDL is not available to
SQL Server connectors.

3 tableChanges An array of one or more items that contain the
schema changes generated by a DDL command.

4 type Describes the kind of change. The value is one of the
following:

CREATE - table created

ALTER - table modified

DROP - table deleted

5 id Full identifier of the table that was created, altered,
or dropped.

6 table Represents table metadata after the applied change.

7 primaryKeyColumnNames List of columns that compose the table’s primary key.

8 columns Metadata for each column in the changed table.

In messages that the connector sends to the schema change topic, the key is the name of the database
that contains the schema change. In the following example, the payload field contains the key:

 "typeExpression": "varchar",
 "charsetName": null,
 "length": 255,
 "scale": null,
 "position": 4,
 "optional": false,
 "autoIncremented": false,
 "generated": false
 }
]
 }
 }
]
 }
}

Red Hat Integration 2022.Q2 Debezium User Guide

388

8.2.5. Descriptions of Debezium SQL Server connector data change events

The Debezium SQL Server connector generates a data change event for each row-level INSERT,
UPDATE, and DELETE operation. Each event contains a key and a value. The structure of the key and
the value depends on the table that was changed.

Debezium and Kafka Connect are designed around continuous streams of event messages . However, the
structure of these events may change over time, which can be difficult for consumers to handle. To
address this, each event contains the schema for its content or, if you are using a schema registry, a
schema ID that a consumer can use to obtain the schema from the registry. This makes each event self-
contained.

The following skeleton JSON shows the basic four parts of a change event. However, how you configure
the Kafka Connect converter that you choose to use in your application determines the representation
of these four parts in change events. A schema field is in a change event only when you configure the
converter to produce it. Likewise, the event key and event payload are in a change event only if you
configure a converter to produce it. If you use the JSON converter and you configure it to produce all
four basic change event parts, change events have this structure:

Table 8.4. Overview of change event basic content

{
 "schema": {
 "type": "struct",
 "fields": [
 {
 "type": "string",
 "optional": false,
 "field": "databaseName"
 }
],
 "optional": false,
 "name": "io.debezium.connector.sqlserver.SchemaChangeKey"
 },
 "payload": {
 "databaseName": "testDB"
 }
}

{
 "schema": { 1
 ...
 },
 "payload": { 2
 ...
 },
 "schema": { 3
 ...
 },
 "payload": { 4
 ...
 },
}

CHAPTER 8. DEBEZIUM CONNECTOR FOR SQL SERVER

389

Item Field name Description

1 schema The first schema field is part of the event key. It specifies a Kafka Connect
schema that describes what is in the event key’s payload portion. In other
words, the first schema field describes the structure of the primary key, or
the unique key if the table does not have a primary key, for the table that
was changed.

It is possible to override the table’s primary key by setting the
message.key.columns connector configuration property. In this case,
the first schema field describes the structure of the key identified by that
property.

2 payload The first payload field is part of the event key. It has the structure
described by the previous schema field and it contains the key for the row
that was changed.

3 schema The second schema field is part of the event value. It specifies the Kafka
Connect schema that describes what is in the event value’s payload
portion. In other words, the second schema describes the structure of the
row that was changed. Typically, this schema contains nested schemas.

4 payload The second payload field is part of the event value. It has the structure
described by the previous schema field and it contains the actual data for
the row that was changed.

By default, the connector streams change event records to topics with names that are the same as the
event’s originating table. See topic names.

WARNING

The SQL Server connector ensures that all Kafka Connect schema names adhere to
the Avro schema name format . This means that the logical server name must start
with a Latin letter or an underscore, that is, a-z, A-Z, or _. Each remaining character
in the logical server name and each character in the database and table names must
be a Latin letter, a digit, or an underscore, that is, a-z, A-Z, 0-9, or _. If there is an
invalid character it is replaced with an underscore character.

This can lead to unexpected conflicts if the logical server name, a database name, or
a table name contains invalid characters, and the only characters that distinguish
names from one another are invalid and thus replaced with underscores.

For details about change events, see the following topics:

Section 8.2.5.1, “About keys in Debezium SQL Server change events”

Section 8.2.5.2, “About values in Debezium SQL Server change events”

Red Hat Integration 2022.Q2 Debezium User Guide

390

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#sqlserver-property-message-key-columns
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#default-names-of-kafka-topics-that-receive-debezium-sql-server-change-event-records
http://avro.apache.org/docs/current/spec.html#names

8.2.5.1. About keys in Debezium SQL Server change events

A change event’s key contains the schema for the changed table’s key and the changed row’s actual
key. Both the schema and its corresponding payload contain a field for each column in the changed
table’s primary key (or unique key constraint) at the time the connector created the event.

Consider the following customers table, which is followed by an example of a change event key for this
table.

Example table

Example change event key

Every change event that captures a change to the customers table has the same event key schema.
For as long as the customers table has the previous definition, every change event that captures a
change to the customers table has the following key structure, which in JSON, looks like this:

Table 8.5. Description of change event key

Item Field name Description

1 schema The schema portion of the key specifies a Kafka Connect schema that
describes what is in the key’s payload portion.

2 fields Specifies each field that is expected in the payload, including each field’s
name, type, and whether it is required. In this example, there is one required
field named id of type int32.

CREATE TABLE customers (
 id INTEGER IDENTITY(1001,1) NOT NULL PRIMARY KEY,
 first_name VARCHAR(255) NOT NULL,
 last_name VARCHAR(255) NOT NULL,
 email VARCHAR(255) NOT NULL UNIQUE
);

{
 "schema": { 1
 "type": "struct",
 "fields": [2
 {
 "type": "int32",
 "optional": false,
 "field": "id"
 }
],
 "optional": false, 3
 "name": "server1.dbo.customers.Key" 4
 },
 "payload": { 5
 "id": 1004
 }
}

CHAPTER 8. DEBEZIUM CONNECTOR FOR SQL SERVER

391

3 optional Indicates whether the event key must contain a value in its payload field. In
this example, a value in the key’s payload is required. A value in the key’s
payload field is optional when a table does not have a primary key.

4 server1.dbo.cus
tomers.Key

Name of the schema that defines the structure of the key’s payload. This
schema describes the structure of the primary key for the table that was
changed. Key schema names have the format connector-name.database-
schema-name.table-name.Key. In this example:

server1 is the name of the connector that generated this event.

dbo is the database schema for the table that was changed.

customers is the table that was updated.

5 payload Contains the key for the row for which this change event was generated. In
this example, the key, contains a single id field whose value is 1004.

Item Field name Description

8.2.5.2. About values in Debezium SQL Server change events

The value in a change event is a bit more complicated than the key. Like the key, the value has a schema
section and a payload section. The schema section contains the schema that describes the Envelope
structure of the payload section, including its nested fields. Change events for operations that create,
update or delete data all have a value payload with an envelope structure.

Consider the same sample table that was used to show an example of a change event key:

The value portion of a change event for a change to this table is described for each event type.

create events

update events

delete events

create events

The following example shows the value portion of a change event that the connector generates for an
operation that creates data in the customers table:

CREATE TABLE customers (
 id INTEGER IDENTITY(1001,1) NOT NULL PRIMARY KEY,
 first_name VARCHAR(255) NOT NULL,
 last_name VARCHAR(255) NOT NULL,
 email VARCHAR(255) NOT NULL UNIQUE
);

{
 "schema": { 1
 "type": "struct",

Red Hat Integration 2022.Q2 Debezium User Guide

392

 "fields": [
 {
 "type": "struct",
 "fields": [
 {
 "type": "int32",
 "optional": false,
 "field": "id"
 },
 {
 "type": "string",
 "optional": false,
 "field": "first_name"
 },
 {
 "type": "string",
 "optional": false,
 "field": "last_name"
 },
 {
 "type": "string",
 "optional": false,
 "field": "email"
 }
],
 "optional": true,
 "name": "server1.dbo.customers.Value", 2
 "field": "before"
 },
 {
 "type": "struct",
 "fields": [
 {
 "type": "int32",
 "optional": false,
 "field": "id"
 },
 {
 "type": "string",
 "optional": false,
 "field": "first_name"
 },
 {
 "type": "string",
 "optional": false,
 "field": "last_name"
 },
 {
 "type": "string",
 "optional": false,
 "field": "email"
 }
],
 "optional": true,
 "name": "server1.dbo.customers.Value",
 "field": "after"

CHAPTER 8. DEBEZIUM CONNECTOR FOR SQL SERVER

393

 },
 {
 "type": "struct",
 "fields": [
 {
 "type": "string",
 "optional": false,
 "field": "version"
 },
 {
 "type": "string",
 "optional": false,
 "field": "connector"
 },
 {
 "type": "string",
 "optional": false,
 "field": "name"
 },
 {
 "type": "int64",
 "optional": false,
 "field": "ts_ms"
 },
 {
 "type": "boolean",
 "optional": true,
 "default": false,
 "field": "snapshot"
 },
 {
 "type": "string",
 "optional": false,
 "field": "db"
 },
 {
 "type": "string",
 "optional": false,
 "field": "schema"
 },
 {
 "type": "string",
 "optional": false,
 "field": "table"
 },
 {
 "type": "string",
 "optional": true,
 "field": "change_lsn"
 },
 {
 "type": "string",
 "optional": true,
 "field": "commit_lsn"
 },
 {

Red Hat Integration 2022.Q2 Debezium User Guide

394

Table 8.6. Descriptions of create event value fields

Item Field name Description

 "type": "int64",
 "optional": true,
 "field": "event_serial_no"
 }
],
 "optional": false,
 "name": "io.debezium.connector.sqlserver.Source", 3
 "field": "source"
 },
 {
 "type": "string",
 "optional": false,
 "field": "op"
 },
 {
 "type": "int64",
 "optional": true,
 "field": "ts_ms"
 }
],
 "optional": false,
 "name": "server1.dbo.customers.Envelope" 4
 },
 "payload": { 5
 "before": null, 6
 "after": { 7
 "id": 1005,
 "first_name": "john",
 "last_name": "doe",
 "email": "john.doe@example.org"
 },
 "source": { 8
 "version": "1.7.2.Final",
 "connector": "sqlserver",
 "name": "server1",
 "ts_ms": 1559729468470,
 "snapshot": false,
 "db": "testDB",
 "schema": "dbo",
 "table": "customers",
 "change_lsn": "00000027:00000758:0003",
 "commit_lsn": "00000027:00000758:0005",
 "event_serial_no": "1"
 },
 "op": "c", 9
 "ts_ms": 1559729471739 10
 }
}

CHAPTER 8. DEBEZIUM CONNECTOR FOR SQL SERVER

395

1 schema The value’s schema, which describes the structure of the value’s payload. A
change event’s value schema is the same in every change event that the
connector generates for a particular table.

2 name In the schema section, each name field specifies the schema for a field in
the value’s payload.

server1.dbo.customers.Value is the schema for the payload’s before
and after fields. This schema is specific to the customers table.

Names of schemas for before and after fields are of the form
logicalName.database-schemaName.tableName.Value, which
ensures that the schema name is unique in the database. This means that
when using the Avro converter, the resulting Avro schema for each table in
each logical source has its own evolution and history.

3 name io.debezium.connector.sqlserver.Source is the schema for the
payload’s source field. This schema is specific to the SQL Server
connector. The connector uses it for all events that it generates.

4 name server1.dbo.customers.Envelope is the schema for the overall
structure of the payload, where server1 is the connector name, dbo is the
database schema name, and customers is the table.

5 payload The value’s actual data. This is the information that the change event is
providing.

It may appear that the JSON representations of the events are much larger
than the rows they describe. This is because the JSON representation must
include the schema and the payload portions of the message. However, by
using the Avro converter, you can significantly decrease the size of the
messages that the connector streams to Kafka topics.

6 before An optional field that specifies the state of the row before the event
occurred. When the op field is c for create, as it is in this example, the
before field is null since this change event is for new content.

7 after An optional field that specifies the state of the row after the event
occurred. In this example, the after field contains the values of the new row’s
id, first_name, last_name, and email columns.

Item Field name Description

Red Hat Integration 2022.Q2 Debezium User Guide

396

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#configuring-debezium-connectors-to-use-avro-serialization

8 source Mandatory field that describes the source metadata for the event. This field
contains information that you can use to compare this event with other
events, with regard to the origin of the events, the order in which the events
occurred, and whether events were part of the same transaction. The
source metadata includes:

Debezium version

Connector type and name

Database and schema names

Timestamp for when the change was made in the database

If the event was part of a snapshot

Name of the table that contains the new row

Server log offsets

9 op Mandatory string that describes the type of operation that caused the
connector to generate the event. In this example, c indicates that the
operation created a row. Valid values are:

c = create

u = update

d = delete

r = read (applies to only snapshots)

10 ts_ms Optional field that displays the time at which the connector processed the
event. In the event message envelope, the time is based on the system clock
in the JVM running the Kafka Connect task.

In the source object, ts_ms indicates the time when a change was
committed in the database. By comparing the value for
payload.source.ts_ms with the value for payload.ts_ms, you can
determine the lag between the source database update and Debezium.

Item Field name Description

update events

The value of a change event for an update in the sample customers table has the same schema as a
create event for that table. Likewise, the event value’s payload has the same structure. However, the
event value payload contains different values in an update event. Here is an example of a change event
value in an event that the connector generates for an update in the customers table:

{
 "schema": { ... },
 "payload": {
 "before": { 1

CHAPTER 8. DEBEZIUM CONNECTOR FOR SQL SERVER

397

Table 8.7. Descriptions of update event value fields

Item Field name Description

1 before An optional field that specifies the state of the row before the event
occurred. In an update event value, the before field contains a field for each
table column and the value that was in that column before the database
commit. In this example, the email value is john.doe@example.org.

2 after An optional field that specifies the state of the row after the event
occurred. You can compare the before and after structures to determine
what the update to this row was. In the example, the email value is now
noreply@example.org.

 "id": 1005,
 "first_name": "john",
 "last_name": "doe",
 "email": "john.doe@example.org"
 },
 "after": { 2
 "id": 1005,
 "first_name": "john",
 "last_name": "doe",
 "email": "noreply@example.org"
 },
 "source": { 3
 "version": "1.7.2.Final",
 "connector": "sqlserver",
 "name": "server1",
 "ts_ms": 1559729995937,
 "snapshot": false,
 "db": "testDB",
 "schema": "dbo",
 "table": "customers",
 "change_lsn": "00000027:00000ac0:0002",
 "commit_lsn": "00000027:00000ac0:0007",
 "event_serial_no": "2"
 },
 "op": "u", 4
 "ts_ms": 1559729998706 5
 }
}

Red Hat Integration 2022.Q2 Debezium User Guide

398

3 source Mandatory field that describes the source metadata for the event. The
source field structure has the same fields as in a create event, but some
values are different, for example, the sample update event has a different
offset. The source metadata includes:

Debezium version

Connector type and name

Database and schema names

Timestamp for when the change was made in the database

If the event was part of a snapshot

Name of the table that contains the new row

Server log offsets

The event_serial_no field differentiates events that have the same
commit and change LSN. Typical situations for when this field has a value
other than 1:

update events have the value set to 2 because the update
generates two events in the CDC change table of SQL Server (see
the source documentation for details). The first event contains the
old values and the second contains contains new values. The
connector uses values in the first event to create the second event.
The connector drops the first event.

When a primary key is updated SQL Server emits two evemts. A
delete event for the removal of the record with the old primary key
value and a create event for the addition of the record with the
new primary key. Both operations share the same commit and
change LSN and their event numbers are 1 and 2, respectively.

4 op Mandatory string that describes the type of operation. In an update event
value, the op field value is u, signifying that this row changed because of an
update.

5 ts_ms Optional field that displays the time at which the connector processed the
event. In the event message envelope, the time is based on the system clock
in the JVM running the Kafka Connect task.

In the source object, ts_ms indicates the time when the change was
committed to the database. By comparing the value for
payload.source.ts_ms with the value for payload.ts_ms, you can
determine the lag between the source database update and Debezium.

Item Field name Description

NOTE

CHAPTER 8. DEBEZIUM CONNECTOR FOR SQL SERVER

399

https://docs.microsoft.com/en-us/sql/relational-databases/system-tables/cdc-capture-instance-ct-transact-sql?view=sql-server-2017

NOTE

Updating the columns for a row’s primary/unique key changes the value of the row’s key.
When a key changes, Debezium outputs three events: a delete event and a tombstone
event with the old key for the row, followed by a create event with the new key for the
row.

delete events

The value in a delete change event has the same schema portion as create and update events for the
same table. The payload portion in a delete event for the sample customers table looks like this:

Table 8.8. Descriptions of delete event value fields

Item Field name Description

1 before Optional field that specifies the state of the row before the event occurred.
In a delete event value, the before field contains the values that were in the
row before it was deleted with the database commit.

2 after Optional field that specifies the state of the row after the event occurred. In
a delete event value, the after field is null, signifying that the row no longer
exists.

{
 "schema": { ... },
 },
 "payload": {
 "before": { <>
 "id": 1005,
 "first_name": "john",
 "last_name": "doe",
 "email": "noreply@example.org"
 },
 "after": null, 1
 "source": { 2
 "version": "1.7.2.Final",
 "connector": "sqlserver",
 "name": "server1",
 "ts_ms": 1559730445243,
 "snapshot": false,
 "db": "testDB",
 "schema": "dbo",
 "table": "customers",
 "change_lsn": "00000027:00000db0:0005",
 "commit_lsn": "00000027:00000db0:0007",
 "event_serial_no": "1"
 },
 "op": "d", 3
 "ts_ms": 1559730450205 4
 }
}

Red Hat Integration 2022.Q2 Debezium User Guide

400

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#sqlserver-tombstone-events

3 source Mandatory field that describes the source metadata for the event. In a
delete event value, the source field structure is the same as for create and
update events for the same table. Many source field values are also the
same. In a delete event value, the ts_ms and pos field values, as well as
other values, might have changed. But the source field in a delete event
value provides the same metadata:

Debezium version

Connector type and name

Database and schema names

Timestamp for when the change was made in the database

If the event was part of a snapshot

Name of the table that contains the new row

Server log offsets

4 op Mandatory string that describes the type of operation. The op field value is
d, signifying that this row was deleted.

5 ts_ms Optional field that displays the time at which the connector processed the
event. In the event message envelope, the time is based on the system clock
in the JVM running the Kafka Connect task.

In the source object, ts_ms indicates the time that the change was made
in the database. By comparing the value for payload.source.ts_ms with
the value for payload.ts_ms, you can determine the lag between the
source database update and Debezium.

Item Field name Description

SQL Server connector events are designed to work with Kafka log compaction. Log compaction enables
removal of some older messages as long as at least the most recent message for every key is kept. This
lets Kafka reclaim storage space while ensuring that the topic contains a complete data set and can be
used for reloading key-based state.

Tombstone events

When a row is deleted, the delete event value still works with log compaction, because Kafka can remove
all earlier messages that have that same key. However, for Kafka to remove all messages that have that
same key, the message value must be null. To make this possible, after Debezium’s SQL Server
connector emits a delete event, the connector emits a special tombstone event that has the same key
but a null value.

8.2.6. Debezium SQL Server connector-generated events that represent
transaction boundaries

Debezium can generate events that represent transaction boundaries and that enrich data change
event messages.

CHAPTER 8. DEBEZIUM CONNECTOR FOR SQL SERVER

401

https://kafka.apache.org/documentation/#compaction

LIMITS ON WHEN DEBEZIUM RECEIVES TRANSACTION METADATA

Debezium registers and receives metadata only for transactions that occur after you
deploy the connector. Metadata for transactions that occur before you deploy the
connector is not available.

Database transactions are represented by a statement block that is enclosed between the BEGIN and
END keywords. Debezium generates transaction boundary events for the BEGIN and END delimiters in
every transaction. Transaction boundary events contain the following fields:

status

BEGIN or END

id

String representation of unique transaction identifier.

event_count (for END events)

Total number of events emitted by the transaction.

data_collections (for END events)

An array of pairs of data_collection and event_count that provides the number of events emitted
by changes originating from given data collection.

WARNING

There is no way for Debezium to reliably identify when a transaction has ended. The
transaction END marker is thus emitted only after the first event of another
transaction arrives. This can lead to the delayed delivery of END marker in case of a
low-traffic system.

The following example shows a typical transaction boundary message:

Example: SQL Server connector transaction boundary event

{
 "status": "BEGIN",
 "id": "00000025:00000d08:0025",
 "event_count": null,
 "data_collections": null
}

{
 "status": "END",
 "id": "00000025:00000d08:0025",
 "event_count": 2,
 "data_collections": [
 {
 "data_collection": "testDB.dbo.tablea",
 "event_count": 1
 },
 {

Red Hat Integration 2022.Q2 Debezium User Guide

402

The transaction events are written to the topic named <database.server.name>.transaction.

8.2.6.1. Change data event enrichment

When transaction metadata is enabled, the data message Envelope is enriched with a new transaction
field. This field provides information about every event in the form of a composite of fields:

id

String representation of unique transaction identifier

total_order

The absolute position of the event among all events generated by the transaction

data_collection_order

The per-data collection position of the event among all events that were emitted by the transaction

The following example shows what a typical message looks like:

8.2.7. How Debezium SQL Server connectors map data types

The Debezium SQL Server connector represents changes to table row data by producing events that
are structured like the table in which the row exists. Each event contains fields to represent the column
values for the row. The way in which an event represents the column values for an operation depends on
the SQL data type of the column. In the event, the connector maps the fields for each SQL Server data
type to both a literal type and a semantic type .

The connector can map SQL Server data types to both literal and semantic types.

Literal type

Describes how the value is literally represented by using Kafka Connect schema types, namely INT8,

 "data_collection": "testDB.dbo.tableb",
 "event_count": 1
 }
]
}

{
 "before": null,
 "after": {
 "pk": "2",
 "aa": "1"
 },
 "source": {
...
 },
 "op": "c",
 "ts_ms": "1580390884335",
 "transaction": {
 "id": "00000025:00000d08:0025",
 "total_order": "1",
 "data_collection_order": "1"
 }
}

CHAPTER 8. DEBEZIUM CONNECTOR FOR SQL SERVER

403

Describes how the value is literally represented by using Kafka Connect schema types, namely INT8,
INT16, INT32, INT64, FLOAT32, FLOAT64, BOOLEAN, STRING, BYTES, ARRAY, MAP, and
STRUCT.

Semantic type

Describes how the Kafka Connect schema captures the meaning of the field using the name of the
Kafka Connect schema for the field.

For more information about data type mappings, see the following sections:

Basic types

Temporal values

Decimal values

Timestamp values

Basic types

The following table shows how the connector maps basic SQL Server data types.

Table 8.9. Data type mappings used by the SQL Server connector

SQL Server data type Literal type (schema
type)

Semantic type (schema name) and Notes

BIT BOOLEAN n/a

TINYINT INT16 n/a

SMALLINT INT16 n/a

INT INT32 n/a

BIGINT INT64 n/a

REAL FLOAT32 n/a

FLOAT[(N)] FLOAT64 n/a

CHAR[(N)] STRING n/a

VARCHAR[(N)] STRING n/a

TEXT STRING n/a

NCHAR[(N)] STRING n/a

NVARCHAR[(N)] STRING n/a

NTEXT STRING n/a

Red Hat Integration 2022.Q2 Debezium User Guide

404

XML STRING io.debezium.data.Xml

Contains the string representation of an XML
document

DATETIMEOFFSET[(P)] STRING io.debezium.time.ZonedTimestamp

A string representation of a timestamp with
timezone information, where the timezone is
GMT

SQL Server data type Literal type (schema
type)

Semantic type (schema name) and Notes

Other data type mappings are described in the following sections.

If present, a column’s default value is propagated to the corresponding field’s Kafka Connect schema.
Change messages will contain the field’s default value (unless an explicit column value had been given),
so there should rarely be the need to obtain the default value from the schema.

Temporal values

Other than SQL Server’s DATETIMEOFFSET data type (which contain time zone information), the
other temporal types depend on the value of the time.precision.mode configuration property. When
the time.precision.mode configuration property is set to adaptive (the default), then the connector
will determine the literal type and semantic type for the temporal types based on the column’s data
type definition so that events exactly represent the values in the database:

SQL Server data type Literal type (schema
type)

Semantic type (schema name) and Notes

DATE INT32 io.debezium.time.Date

Represents the number of days since the
epoch.

TIME(0), TIME(1), TIME(2),
TIME(3)

INT32 io.debezium.time.Time

Represents the number of milliseconds past
midnight, and does not include timezone
information.

TIME(4), TIME(5), TIME(6) INT64 io.debezium.time.MicroTime

Represents the number of microseconds past
midnight, and does not include timezone
information.

CHAPTER 8. DEBEZIUM CONNECTOR FOR SQL SERVER

405

TIME(7) INT64 io.debezium.time.NanoTime

Represents the number of nanoseconds past
midnight, and does not include timezone
information.

DATETIME INT64 io.debezium.time.Timestamp

Represents the number of milliseconds past
the epoch, and does not include timezone
information.

SMALLDATETIME INT64 io.debezium.time.Timestamp

Represents the number of milliseconds past
the epoch, and does not include timezone
information.

DATETIME2(0),
DATETIME2(1),
DATETIME2(2),
DATETIME2(3)

INT64 io.debezium.time.Timestamp

Represents the number of milliseconds past
the epoch, and does not include timezone
information.

DATETIME2(4),
DATETIME2(5),
DATETIME2(6)

INT64 io.debezium.time.MicroTimestamp

Represents the number of microseconds past
the epoch, and does not include timezone
information.

DATETIME2(7) INT64 io.debezium.time.NanoTimestamp

Represents the number of nanoseconds past
the epoch, and does not include timezone
information.

SQL Server data type Literal type (schema
type)

Semantic type (schema name) and Notes

When the time.precision.mode configuration property is set to connect, then the connector will use
the predefined Kafka Connect logical types. This may be useful when consumers only know about the
built-in Kafka Connect logical types and are unable to handle variable-precision time values. On the
other hand, since SQL Server supports tenth of microsecond precision, the events generated by a
connector with the connect time precision mode will result in a loss of precision when the database
column has a fractional second precision value greater than 3:

Red Hat Integration 2022.Q2 Debezium User Guide

406

SQL Server data type Literal type
(schema type)

Semantic type (schema name) and Notes

DATE INT32 org.apache.kafka.connect.data.Date

Represents the number of days since the epoch.

TIME([P]) INT64 org.apache.kafka.connect.data.Time

Represents the number of milliseconds since midnight, and
does not include timezone information. SQL Server allows
P to be in the range 0-7 to store up to tenth of a
microsecond precision, though this mode results in a loss
of precision when P > 3.

DATETIME INT64 org.apache.kafka.connect.data.Timestamp

Represents the number of milliseconds since the epoch,
and does not include timezone information.

SMALLDATETIME INT64 org.apache.kafka.connect.data.Timestamp

Represents the number of milliseconds past the epoch,
and does not include timezone information.

DATETIME2 INT64 org.apache.kafka.connect.data.Timestamp

Represents the number of milliseconds since the epoch,
and does not include timezone information. SQL Server
allows P to be in the range 0-7 to store up to tenth of a
microsecond precision, though this mode results in a loss
of precision when P > 3.

Timestamp values

The DATETIME, SMALLDATETIME and DATETIME2 types represent a timestamp without time zone
information. Such columns are converted into an equivalent Kafka Connect value based on UTC. So for
instance the DATETIME2 value "2018-06-20 15:13:16.945104" is represented by a
io.debezium.time.MicroTimestamp with the value "1529507596945104".

Note that the timezone of the JVM running Kafka Connect and Debezium does not affect this
conversion.

Decimal values

Debezium connectors handle decimals according to the setting of the decimal.handling.mode
connector configuration property.

decimal.handling.mode=precise

Table 8.10. Mappings when decimal.handing.mode=precise

CHAPTER 8. DEBEZIUM CONNECTOR FOR SQL SERVER

407

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#sqlserver-property-decimal-handling-mode

SQL Server type Literal type
(schema
type)

Semantic type (schema name)

NUMERIC[(P[,S])] BYTES org.apache.kafka.connect.data.Decimal
The scale schema parameter contains an integer that
represents how many digits the decimal point shifted.

DECIMAL[(P[,S])] BYTES org.apache.kafka.connect.data.Decimal
The scale schema parameter contains an integer that
represents how many digits the decimal point shifted.

SMALLMONEY BYTES org.apache.kafka.connect.data.Decimal
The scale schema parameter contains an integer that
represents how many digits the decimal point shifted.

MONEY BYTES org.apache.kafka.connect.data.Decimal
The scale schema parameter contains an integer that
represents how many digits the decimal point shifted.

decimal.handling.mode=double

Table 8.11. Mappings when decimal.handing.mode=double

SQL Server type Literal type Semantic type

NUMERIC[(M[,D])] FLOAT64 n/a

DECIMAL[(M[,D])] FLOAT64 n/a

SMALLMONEY[(M[,D])] FLOAT64 n/a

MONEY[(M[,D])] FLOAT64 n/a

decimal.handling.mode=string

Table 8.12. Mappings when decimal.handing.mode=string

SQL Server type Literal type Semantic type

NUMERIC[(M[,D])] STRING n/a

DECIMAL[(M[,D])] STRING n/a

SMALLMONEY[(M[,D])] STRING n/a

MONEY[(M[,D])] STRING n/a

Red Hat Integration 2022.Q2 Debezium User Guide

408

8.3. SETTING UP SQL SERVER TO RUN A DEBEZIUM CONNECTOR

For Debezium to capture change events from SQL Server tables, a SQL Server administrator with the
necessary privileges must first run a query to enable CDC on the database. The administrator must then
enable CDC for each table that you want Debezium to capture.

For details about setting up SQL Server for use with the Debezium connector, see the following
sections:

Section 8.3.1, “Enabling CDC on the SQL Server database”

Section 8.3.2, “Enabling CDC on a SQL Server table”

Section 8.3.3, “Verifying that the user has access to the CDC table”

Section 8.3.4, “SQL Server on Azure”

Section 8.3.5, “Effect of SQL Server capture job agent configuration on server load and
latency”

Section 8.3.6, “SQL Server capture job agent configuration parameters”

After CDC is applied, it captures all of the INSERT, UPDATE, and DELETE operations that are
committed to the tables for which CDD is enabled. The Debezium connector can then capture these
events and emit them to Kafka topics.

8.3.1. Enabling CDC on the SQL Server database

Before you can enable CDC for a table, you must enable it for the SQL Server database. A SQL Server
administrator enables CDC by running a system stored procedure. System stored procedures can be run
by using SQL Server Management Studio, or by using Transact-SQL.

Prerequisites

You are a member of the sysadmin fixed server role for the SQL Server.

You are a db_owner of the database.

The SQL Server Agent is running.

NOTE

The SQL Server CDC feature processes changes that occur in user-created tables only.
You cannot enable CDC on the SQL Server master database.

Procedure

1. From the View menu in SQL Server Management Studio, click Template Explorer.

2. In the Template Browser, expand SQL Server Templates.

3. Expand Change Data Capture > Configuration and then click Enable Database for CDC.

4. In the template, replace the database name in the USE statement with the name of the
database that you want to enable for CDC.

CHAPTER 8. DEBEZIUM CONNECTOR FOR SQL SERVER

409

5. Run the stored procedure sys.sp_cdc_enable_db to enable the database for CDC.
After the database is enabled for CDC, a schema with the name cdc is created, along with a
CDC user, metadata tables, and other system objects.

The following example shows how to enable CDC for the database MyDB:

Example: Enabling a SQL Server database for the CDC template

8.3.2. Enabling CDC on a SQL Server table

A SQL Server administrator must enable change data capture on the source tables that you want to
Debezium to capture. The database must already be enabled for CDC. To enable CDC on a table, a SQL
Server administrator runs the stored procedure sys.sp_cdc_enable_table for the table. The stored
procedures can be run by using SQL Server Management Studio, or by using Transact-SQL. SQL Server
CDC must be enabled for every table that you want to capture.

Prerequisites

CDC is enabled on the SQL Server database.

The SQL Server Agent is running.

You are a member of the db_owner fixed database role for the database.

Procedure

1. From the View menu in SQL Server Management Studio, click Template Explorer.

2. In the Template Browser, expand SQL Server Templates.

3. Expand Change Data Capture > Configuration, and then click Enable Table Specifying
Filegroup Option.

4. In the template, replace the table name in the USE statement with the name of the table that
you want to capture.

5. Run the stored procedure sys.sp_cdc_enable_table.
The following example shows how to enable CDC for the table MyTable:

Example: Enabling CDC for a SQL Server table

USE MyDB
GO
EXEC sys.sp_cdc_enable_db
GO

USE MyDB
GO

EXEC sys.sp_cdc_enable_table
@source_schema = N'dbo',
@source_name = N'MyTable', //<.>
@role_name = N'MyRole', //<.>

Red Hat Integration 2022.Q2 Debezium User Guide

410

<.> Specifies the name of the table that you want to capture. <.> Specifies a role MyRole to
which you can add users to whom you want to grant SELECT permission on the captured
columns of the source table. Users in the sysadmin or db_owner role also have access to the
specified change tables. Set the value of @role_name to NULL, to allow only members in the
sysadmin or db_owner to have full access to captured information. <.> Specifies the filegroup
where SQL Server places the change table for the captured table. The named filegroup must
already exist. It is best not to locate change tables in the same filegroup that you use for source
tables.

8.3.3. Verifying that the user has access to the CDC table

A SQL Server administrator can run a system stored procedure to query a database or table to retrieve
its CDC configuration information. The stored procedures can be run by using SQL Server Management
Studio, or by using Transact-SQL.

Prerequisites

You have SELECT permission on all of the captured columns of the capture instance. Members
of the db_owner database role can view information for all of the defined capture instances.

You have membership in any gating roles that are defined for the table information that the
query includes.

Procedure

1. From the View menu in SQL Server Management Studio, click Object Explorer.

2. From the Object Explorer, expand Databases, and then expand your database object, for
example, MyDB.

3. Expand Programmability > Stored Procedures > System Stored Procedures.

4. Run the sys.sp_cdc_help_change_data_capture stored procedure to query the table.
Queries should not return empty results.

The following example runs the stored precedure sys.sp_cdc_help_change_data_capture on
the database MyDB:

Example: Querying a table for CDC configuration information

The query returns configuration information for each table in the database that is enabled for
CDC and that contains change data that the caller is authorized to access. If the result is empty,
verify that the user has privileges to access both the capture instance and the CDC tables.

8.3.4. SQL Server on Azure

@filegroup_name = N'MyDB_CT',//<.>
@supports_net_changes = 0
GO

USE MyDB;
GO
EXEC sys.sp_cdc_help_change_data_capture
GO

CHAPTER 8. DEBEZIUM CONNECTOR FOR SQL SERVER

411

The Debezium SQL Server connector has not been tested with SQL Server on Azure.

8.3.5. Effect of SQL Server capture job agent configuration on server load and
latency

When a database administrator enables change data capture for a source table, the capture job agent
begins to run. The agent reads new change event records from the transaction log and replicates the
event records to a change data table. Between the time that a change is committed in the source table,
and the time that the change appears in the corresponding change table, there is always a small latency
interval. This latency interval represents a gap between when changes occur in the source table and
when they become available for Debezium to stream to Apache Kafka.

Ideally, for applications that must respond quickly to changes in data, you want to maintain close
synchronization between the source and change tables. You might imagine that running the capture
agent to continuously process change events as rapidly as possible might result in increased throughput
and reduced latency — populating change tables with new event records as soon as possible after the
events occur, in near real time. However, this is not necessarily the case. There is a performance penalty
to pay in the pursuit of more immediate synchronization. Each time that the capture job agent queries
the database for new event records, it increases the CPU load on the database host. The additional load
on the server can have a negative effect on overall database performance, and potentially reduce
transaction efficiency, especially during times of peak database use.

It’s important to monitor database metrics so that you know if the database reaches the point where the
server can no longer support the capture agent’s level of activity. If you notice performance problems,
there are SQL Server capture agent settings that you can modify to help balance the overall CPU load
on the database host with a tolerable degree of latency.

8.3.6. SQL Server capture job agent configuration parameters

On SQL Server, parameters that control the behavior of the capture job agent are defined in the SQL
Server table msdb.dbo.cdc_jobs. If you experience performance issues while running the capture job
agent, adjust capture jobs settings to reduce CPU load by running the sys.sp_cdc_change_job stored
procedure and supplying new values.

NOTE

Specific guidance about how to configure SQL Server capture job agent parameters is
beyond the scope of this documentation.

The following parameters are the most significant for modifying capture agent behavior for use with the
Debezium SQL Server connector:

pollinginterval

Specifies the number of seconds that the capture agent waits between log scan cycles.

A higher value reduces the load on the database host and increases latency.

A value of 0 specifies no wait between scans.

The default value is 5.

maxtrans

Specifies the maximum number of transactions to process during each log scan cycle. After

Red Hat Integration 2022.Q2 Debezium User Guide

412

https://docs.microsoft.com/en-us/sql/relational-databases/system-tables/dbo-cdc-jobs-transact-sql?view=latest
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sys-sp-cdc-change-job-transact-sql?view=latest

Specifies the maximum number of transactions to process during each log scan cycle. After
the capture job processes the specified number of transactions, it pauses for the length of
time that the pollinginterval specifies before the next scan begins.

A lower value reduces the load on the database host and increases latency.

The default value is 500.

maxscans

Specifies a limit on the number of scan cycles that the capture job can attempt in capturing
the full contents of the database transaction log. If the continuous parameter is set to 1, the
job pauses for the length of time that the pollinginterval specifies before it resumes
scanning.

A lower values reduces the load on the database host and increases latency.

The default value is 10.

Additional resources

For more information about capture agent parameters, see the SQL Server documentation.

8.4. DEPLOYMENT OF DEBEZIUM SQL SERVER CONNECTORS

You can use either of the following methods to deploy a Debezium SQL Server connector:

Use AMQ Streams to automatically create an image that includes the connector plug-in .
This is the preferred method.

Build a custom Kafka Connect container image from a Dockerfile .

Additional resources

Section 8.4.4, “Descriptions of Debezium SQL Server connector configuration properties”

8.4.1. SQL Server connector deployment using AMQ Streams

Beginning with Debezium 1.7, the preferred method for deploying a Debezium connector is to use AMQ
Streams to build a Kafka Connect container image that includes the connector plug-in.

During the deployment process, you create and use the following custom resources (CRs):

A KafkaConnect CR that defines your Kafka Connect instance and includes information about
the connector artifacts needs to include in the image.

A KafkaConnector CR that provides details that include information the connector uses to
access the source database. After AMQ Streams starts the Kafka Connect pod, you start the
connector by applying the KafkaConnector CR.

In the build specification for the Kafka Connect image, you can specify the connectors that are available
to deploy. For each connector plug-in, you can also specify other components that you want to make
available for deployment. For example, you can add Service Registry artifacts, or the Debezium scripting
component. When AMQ Streams builds the Kafka Connect image, it downloads the specified artifacts,
and incorporates them into the image.

CHAPTER 8. DEBEZIUM CONNECTOR FOR SQL SERVER

413

The spec.build.output parameter in the KafkaConnect CR specifies where to store the resulting Kafka
Connect container image. Container images can be stored in a Docker registry, or in an OpenShift
ImageStream. To store images in an ImageStream, you must create the ImageStream before you deploy
Kafka Connect. ImageStreams are not created automatically.

NOTE

If you use a KafkaConnect resource to create a cluster, afterwards you cannot use the
Kafka Connect REST API to create or update connectors. You can still use the REST API
to retrieve information.

Additional resources

Configuring Kafka Connect in Using AMQ Streams on OpenShift.

Creating a new container image automatically using AMQ Streams in Deploying and Upgrading
AMQ Streams on OpenShift.

8.4.2. Using AMQ Streams to deploy a Debezium SQL Server connector

With earlier versions of AMQ Streams, to deploy Debezium connectors on OpenShift, it was necessary
to first build a Kafka Connect image for the connector. The current preferred method for deploying
connectors on OpenShift is to use a build configuration in AMQ Streams to automatically build a Kafka
Connect container image that includes the Debezium connector plug-ins that you want to use.

During the build process, the AMQ Streams Operator transforms input parameters in a KafkaConnect
custom resource, including Debezium connector definitions, into a Kafka Connect container image. The
build downloads the necessary artifacts from the Red Hat Maven repository or another configured
HTTP server. The newly created container is pushed to the container registry that is specified in
.spec.build.output, and is used to deploy a Kafka Connect pod. After AMQ Streams builds the Kafka
Connect image, you create KafkaConnector custom resources to start the connectors that are included
in the build.

Prerequisites

You have access to an OpenShift cluster on which the cluster Operator is installed.

The AMQ Streams Operator is running.

An Apache Kafka cluster is deployed as documented in Deploying and Upgrading AMQ Streams
on OpenShift.

You have a Red Hat Integration license.

Kafka Connect is deployed on AMQ Streams .

The OpenShift oc CLI client is installed or you have access to the OpenShift Container Platform
web console.

Depending on how you intend to store the Kafka Connect build image, you need registry
permissions or you must create an ImageStream resource:

To store the build image in an image registry, such as Red Hat Quay.io or Docker Hub

An account and permissions to create and manage images in the registry.

Red Hat Integration 2022.Q2 Debezium User Guide

414

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/using_amq_streams_on_openshift/index#proc-kafka-connect-config-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#creating-new-image-using-kafka-connect-build-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#kafka-cluster-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#kafka-connect-str
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/cli_tools/index#installing-openshift-cli

To store the build image as a native OpenShift ImageStream

An ImageStream resource is deployed to the cluster. You must explicitly create an
ImageStream for the cluster. ImageStreams are not available by default.

Procedure

1. Log in to the OpenShift cluster.

2. Create a Debezium KafkaConnect custom resource (CR) for the connector, or modify an
existing one. For example, create a KafkaConnect CR that specifies the
metadata.annotations and spec.build properties, as shown in the following example. Save the
file with a name such as dbz-connect.yaml.

Example 8.1. A dbz-connect.yaml file that defines a KafkaConnect custom resource that
includes a Debezium connector

Table 8.13. Descriptions of Kafka Connect configuration settings

Item Description

1 Sets the strimzi.io/use-connector-resources annotation to "true" to enable
the Cluster Operator to use KafkaConnector resources to configure connectors in
this Kafka Connect cluster.

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
 name: debezium-kafka-connect-cluster
 annotations:
 strimzi.io/use-connector-resources: "true" 1
spec:
 version: 3.00
 build: 2
 output: 3
 type: imagestream 4
 image: debezium-streams-connect:latest
 plugins: 5
 - name: debezium-connector-sqlserver
 artifacts:
 - type: zip 6
 url: https://maven.repository.redhat.com/ga/io/debezium/debezium-connector-
sqlserver/1.7.2.Final-redhat-<build_number>/debezium-connector-sqlserver-1.7.2.Final-
redhat-<build_number>-plugin.zip 7
 - type: zip
 url: https://maven.repository.redhat.com/ga/io/apicurio/apicurio-registry-distro-
connect-converter/2.0-redhat-<build-number>/apicurio-registry-distro-connect-converter-
2.0-redhat-<build-number>.zip
 - type: zip
 url: https://maven.repository.redhat.com/ga/io/debezium/debezium-
scripting/1.7.2.Final/debezium-scripting-1.7.2.Final.zip

 bootstrapServers: debezium-kafka-cluster-kafka-bootstrap:9093

CHAPTER 8. DEBEZIUM CONNECTOR FOR SQL SERVER

415

https://docs.openshift.com/container-platform/latest/openshift_images/images-understand.html#images-imagestream-use_images-understand

2 The spec.build configuration specifies where to store the build image and lists the
plug-ins to include in the image, along with the location of the plug-in artifacts.

3 The build.output specifies the registry in which the newly built image is stored.

4 Specifies the name and image name for the image output. Valid values for
output.type are docker to push into a container registry like Docker Hub or Quay,
or imagestream to push the image to an internal OpenShift ImageStream. To use
an ImageStream, an ImageStream resource must be deployed to the cluster. For
more information about specifying the build.output in the KafkaConnect
configuration, see the AMQ Streams Build schema reference documentation.

5 The plugins configuration lists all of the connectors that you want to include in the
Kafka Connect image. For each entry in the list, specify a plug-in name, and
information for about the artifacts that are required to build the connector.
Optionally, for each connector plug-in, you can include other components that you
want to be available for use with the connector. For example, you can add Service
Registry artifacts, or the Debezium scripting component.

6 The value of artifacts.type specifies the file type of the artifact specified in the
artifacts.url. Valid types are zip, tgz, or jar. Debezium connector archives are
provided in .zip file format. JDBC driver files are in .jar format. The type value must
match the type of the file that is referenced in the url field.

7 The value of artifacts.url specifies the address of an HTTP server, such as a Maven
repository, that stores the file for the connector artifact. The OpenShift cluster must
have access to the specified server.

Item Description

3. Apply the KafkaConnect build specification to the OpenShift cluster by entering the following
command:

Based on the configuration specified in the custom resource, the Streams Operator prepares a
Kafka Connect image to deploy.
After the build completes, the Operator pushes the image to the specified registry or
ImageStream, and starts the Kafka Connect cluster. The connector artifacts that you listed in
the configuration are available in the cluster.

4. Create a KafkaConnector resource to define an instance of each connector that you want to
deploy.
For example, create the following KafkaConnector CR, and save it as sqlserver-inventory-
connector.yaml

Example 8.2. A sqlserver-inventory-connector.yaml file that defines the
KafkaConnector custom resource for a Debezium connector

oc create -f dbz-connect.yaml

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnector

Red Hat Integration 2022.Q2 Debezium User Guide

416

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/using_amq_streams_on_openshift/index#type-Build-reference

Table 8.14. Descriptions of connector configuration settings

Item Description

1 The name of the connector to register with the Kafka Connect cluster.

2 The name of the connector class.

3 The number of tasks that can operate concurrently.

4 The connector’s configuration.

5 The address of the host database instance.

6 The port number of the database instance.

7 The name of the user account through which Debezium connects to the database.

8 The password for the database user account.

9 The name of the database to capture changes from.

metadata:
 labels:
 strimzi.io/cluster: debezium-kafka-connect-cluster
 name: inventory-connector-sqlserver 1
spec:
 class: io.debezium.connector.sqlserver.SqlServerConnector 2
 tasksMax: 1 3
 config: 4
 database.history.kafka.bootstrap.servers: 'debezium-kafka-cluster-kafka-
bootstrap.debezium.svc.cluster.local:9092'
 database.history.kafka.topic: schema-changes.inventory
 database.hostname: sqlserver.debezium-sqlserver.svc.cluster.local 5
 database.port: 3306 6
 database.user: debezium 7
 database.password: dbz 8
 database.dbname: mydatabase 9
 database.server.name: inventory_connector_sqlserver 10
 database.include.list: public.inventory 11

CHAPTER 8. DEBEZIUM CONNECTOR FOR SQL SERVER

417

10 The logical name of the database instance or cluster.
The specified name must be formed only from alphanumeric characters or underscores.
Because the logical name is used as the prefix for any Kafka topics that receive change
events from this connector, the name must be unique among the connectors in the
cluster.
The namespace is also used in the names of related Kafka Connect schemas, and the
namespaces of a corresponding Avro schema if you integrate the connector with the
Avro connector.

11 The list of tables from which the connector captures change events.

Item Description

5. Create the connector resource by running the following command:

For example,

The connector is registered to the Kafka Connect cluster and starts to run against the database
that is specified by spec.config.database.dbname in the KafkaConnector CR. After the
connector pod is ready, Debezium is running.

You are now ready to verify the Debezium SQL Server deployment.

8.4.3. Deploying a Debezium SQL Server connector by building a custom Kafka
Connect container image from a Dockerfile

To deploy a Debezium SQL Server connector, you must build a custom Kafka Connect container image
that contains the Debezium connector archive, and then push this container image to a container
registry. You then need to create the following custom resources (CRs):

A KafkaConnect CR that defines your Kafka Connect instance. The image property in the CR
specifies the name of the container image that you create to run your Debezium connector. You
apply this CR to the OpenShift instance where Red Hat AMQ Streams is deployed. AMQ
Streams offers operators and images that bring Apache Kafka to OpenShift.

A KafkaConnector CR that defines your Debezium SQL Server connector. Apply this CR to the
same OpenShift instance where you apply the KafkaConnect CR.

Prerequisites

SQL Server is running and you completed the steps to set up SQL Server to work with a
Debezium connector.

AMQ Streams is deployed on OpenShift and is running Apache Kafka and Kafka Connect. For
more information, see Deploying and Upgrading AMQ Streams on OpenShift

Podman or Docker is installed.

oc create -n <namespace> -f <kafkaConnector>.yaml

oc create -n debezium -f {context}-inventory-connector.yaml

Red Hat Integration 2022.Q2 Debezium User Guide

418

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#configuring-debezium-connectors-to-use-avro-serialization
https://access.redhat.com/products/red-hat-amq#streams
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#setting-up-sql-server-for-use-with-the-debezium-sql-server-connector
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/deploying_and_upgrading_amq_streams_on_openshift/index

1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 1 2 2 2

You have an account and permissions to create and manage containers in the container registry
(such as quay.io or docker.io) to which you plan to add the container that will run your
Debezium connector.

Procedure

1. Create the Debezium SQL Server container for Kafka Connect:

a. Download the Debezium SQL Server connector archive.

b. Extract the Debezium SQL Server connector archive to create a directory structure for the
connector plug-in, for example:

./my-plugins/
├── debezium-connector-sqlserver
│ ├── ...

c. Create a Dockerfile that uses registry.redhat.io/amq7/amq-streams-kafka-30-rhel8:2.0.0
as the base image. For example, from a terminal window, enter the following, replacing my-
plugins with the name of your plug-ins directory:

You can specify any file name that you want.

Replace my-plugins with the name of your plug-ins
directory.

The command creates a Dockerfile with the name debezium-container-for-sqlserver.yaml
in the current directory.

d. Build the container image from the debezium-container-for-sqlserver.yaml Docker file
that you created in the previous step. From the directory that contains the file, open a
terminal window and enter one of the following commands:

The preceding commands build a container image with the name debezium-container-for-
sqlserver.

e. Push your custom image to a container registry, such as quay.io or an internal container
registry. The container registry must be available to the OpenShift instance where you want
to deploy the image. Enter one of the following commands:

cat <<EOF >debezium-container-for-sqlserver.yaml 1
FROM registry.redhat.io/amq7/amq-streams-kafka-30-rhel8:2.0.0
USER root:root
COPY ./<my-plugins>/ /opt/kafka/plugins/ 2
USER 1001
EOF

podman build -t debezium-container-for-sqlserver:latest .

docker build -t debezium-container-for-sqlserver:latest .

podman push <myregistry.io>/debezium-container-for-sqlserver:latest

CHAPTER 8. DEBEZIUM CONNECTOR FOR SQL SERVER

419

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=red.hat.integration&downloadType=distributions

1

2

f. Create a new Debezium SQL Server KafkaConnect custom resource (CR). For example,
create a KafkaConnect CR with the name dbz-connect.yaml that specifies annotations
and image properties as shown in the following example:

metadata.annotations indicates to the Cluster Operator that KafkaConnector
resources are used to configure connectors in this Kafka Connect cluster.

spec.image specifies the name of the image that you created to run your Debezium
connector. This property overrides the
STRIMZI_DEFAULT_KAFKA_CONNECT_IMAGE variable in the Cluster Operator

g. Apply the KafkaConnect CR to the OpenShift Kafka Connect environment by entering the
following command:

The command adds a Kafka Connect instance that specifies the name of the image that you
created to run your Debezium connector.

2. Create a KafkaConnector custom resource that configures your Debezium SQL Server
connector instance.
You configure a Debezium SQL Server connector in a .yaml file that specifies the configuration
properties for the connector. The connector configuration might instruct Debezium to produce
events for a subset of the schemas and tables, or it might set properties so that Debezium
ignores, masks, or truncates values in specified columns that are sensitive, too large, or not
needed.

The following example configures a Debezium connector that connects to a SQL server host,
192.168.99.100, on port 1433. This host has a database named testDB, a table with the name
customers, and fulfillment is the server’s logical name.

SQL Server fulfillment-connector.yaml

docker push <myregistry.io>/debezium-container-for-sqlserver:latest

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
 name: my-connect-cluster
 annotations:
 strimzi.io/use-connector-resources: "true" 1
spec:
 #...
 image: debezium-container-for-sqlserver 2

oc create -f dbz-connect.yaml

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnector
metadata:
 name: fulfillment-connector 1
 labels:
 strimzi.io/cluster: my-connect-cluster
 annotations:
 strimzi.io/use-connector-resources: 'true'

Red Hat Integration 2022.Q2 Debezium User Guide

420

Table 8.15. Descriptions of connector configuration settings

Item Description

1 The name of our connector when we register it with a Kafka Connect service.

2 The name of this SQL Server connector class.

3 The address of the SQL Server instance.

4 The port number of the SQL Server instance.

5 The name of the SQL Server user.

6 The password for the SQL Server user.

7 The name of the database to capture changes from.

8 The logical name of the SQL Server instance/cluster, which forms a namespace and is
used in all the names of the Kafka topics to which the connector writes, the Kafka
Connect schema names, and the namespaces of the corresponding Avro schema when
the Avro converter is used.

9 A list of all tables whose changes Debezium should capture.

10 The list of Kafka brokers that this connector will use to write and recover DDL
statements to the database history topic.

11 The name of the database history topic where the connector will write and recover DDL
statements. This topic is for internal use only and should not be used by consumers.

3. Create your connector instance with Kafka Connect. For example, if you saved your
KafkaConnector resource in the fulfillment-connector.yaml file, you would run the following
command:

The preceding command registers fulfillment-connector and the connector starts to run

spec:
 class: io.debezium.connector.sqlserver.SqlServerConnector 2
 config:
 database.hostname: 192.168.99.100 3
 database.port: 1433 4
 database.user: debezium 5
 database.password: dbz 6
 database.dbname: testDB 7
 database.server.name: fullfullment 8
 database.include.list: dbo.customers 9
 database.history.kafka.bootstrap.servers: my-cluster-kafka-bootstrap:9092 10
 database.history.kafka.topic: dbhistory.fullfillment 11

oc apply -f fulfillment-connector.yaml

CHAPTER 8. DEBEZIUM CONNECTOR FOR SQL SERVER

421

The preceding command registers fulfillment-connector and the connector starts to run
against the testDB database as defined in the KafkaConnector CR.

Verifying that the Debezium SQL Server connector is running

If the connector starts correctly without errors, it creates a topic for each table that the connector is
configured to capture. Downstream applications can subscribe to these topics to retrieve information
events that occur in the source database.

To verify that the connector is running, you perform the following operations from the OpenShift
Container Platform web console, or through the OpenShift CLI tool (oc):

Verify the connector status.

Verify that the connector generates topics.

Verify that topics are populated with events for read operations ("op":"r") that the connector
generates during the initial snapshot of each table.

Prerequisites

A Debezium connector is deployed to AMQ Streams on OpenShift.

The OpenShift oc CLI client is installed.

You have access to the OpenShift Container Platform web console.

Procedure

1. Check the status of the KafkaConnector resource by using one of the following methods:

From the OpenShift Container Platform web console:

a. Navigate to Home → Search.

b. On the Search page, click Resources to open the Select Resource box, and then type
KafkaConnector.

c. From the KafkaConnectors list, click the name of the connector that you want to
check, for example inventory-connector-sqlserver.

d. In the Conditions section, verify that the values in the Type and Status columns are set
to Ready and True.

From a terminal window:

a. Enter the following command:

For example,

The command returns status information that is similar to the following output:

Example 8.3. KafkaConnector resource status

oc describe KafkaConnector <connector-name> -n <project>

oc describe KafkaConnector inventory-connector-sqlserver -n debezium

Red Hat Integration 2022.Q2 Debezium User Guide

422

2. Verify that the connector created Kafka topics:

From the OpenShift Container Platform web console.

a. Navigate to Home → Search.

b. On the Search page, click Resources to open the Select Resource box, and then type
KafkaTopic.

c. From the KafkaTopics list, click the name of the topic that you want to check, for
example, inventory-connector-sqlserver.inventory.orders---
ac5e98ac6a5d91e04d8ec0dc9078a1ece439081d.

d. In the Conditions section, verify that the values in the Type and Status columns are set
to Ready and True.

From a terminal window:

a. Enter the following command:

Name: inventory-connector-sqlserver
Namespace: debezium
Labels: strimzi.io/cluster=debezium-kafka-connect-cluster
Annotations: <none>
API Version: kafka.strimzi.io/v1beta2
Kind: KafkaConnector

...

Status:
 Conditions:
 Last Transition Time: 2021-12-08T17:41:34.897153Z
 Status: True
 Type: Ready
 Connector Status:
 Connector:
 State: RUNNING
 worker_id: 10.131.1.124:8083
 Name: inventory-connector-sqlserver
 Tasks:
 Id: 0
 State: RUNNING
 worker_id: 10.131.1.124:8083
 Type: source
 Observed Generation: 1
 Tasks Max: 1
 Topics:
 inventory_connector_sqlserver
 inventory_connector_sqlserver.inventory.addresses
 inventory_connector_sqlserver.inventory.customers
 inventory_connector_sqlserver.inventory.geom
 inventory_connector_sqlserver.inventory.orders
 inventory_connector_sqlserver.inventory.products
 inventory_connector_sqlserver.inventory.products_on_hand
Events: <none>

CHAPTER 8. DEBEZIUM CONNECTOR FOR SQL SERVER

423

The command returns status information that is similar to the following output:

Example 8.4. KafkaTopic resource status

NAME CLUSTER
PARTITIONS REPLICATION FACTOR READY
connect-cluster-configs debezium-
kafka-cluster 1 1 True
connect-cluster-offsets debezium-
kafka-cluster 25 1 True
connect-cluster-status debezium-
kafka-cluster 5 1 True
consumer-offsets---84e7a678d08f4bd226872e5cdd4eb527fadc1c6a
debezium-kafka-cluster 50 1 True
inventory-connector-sqlserver---a96f69b23d6118ff415f772679da623fbbb99421
debezium-kafka-cluster 1 1 True
inventory-connector-sqlserver.inventory.addresses---
1b6beaf7b2eb57d177d92be90ca2b210c9a56480 debezium-kafka-cluster
1 1 True
inventory-connector-sqlserver.inventory.customers---
9931e04ec92ecc0924f4406af3fdace7545c483b debezium-kafka-cluster 1
1 True
inventory-connector-sqlserver.inventory.geom---
9f7e136091f071bf49ca59bf99e86c713ee58dd5 debezium-kafka-cluster
1 1 True
inventory-connector-sqlserver.inventory.orders---
ac5e98ac6a5d91e04d8ec0dc9078a1ece439081d debezium-kafka-cluster
1 1 True
inventory-connector-sqlserver.inventory.products---
df0746db116844cee2297fab611c21b56f82dcef debezium-kafka-cluster 1
1 True
inventory-connector-sqlserver.inventory.products-on-hand---
8649e0f17ffcc9212e266e31a7aeea4585e5c6b5 debezium-kafka-cluster 1
1 True
schema-changes.inventory
debezium-kafka-cluster 1 1 True
strimzi-store-topic---effb8e3e057afce1ecf67c3f5d8e4e3ff177fc55
debezium-kafka-cluster 1 1 True
strimzi-topic-operator-kstreams-topic-store-changelog---
b75e702040b99be8a9263134de3507fc0cc4017b debezium-kafka-cluster 1
1 True

3. Check topic content.

From a terminal window, enter the following command:

oc get kafkatopics

oc exec -n <project> -it <kafka-cluster> -- /opt/kafka/bin/kafka-console-consumer.sh \
> --bootstrap-server localhost:9092 \
> --from-beginning \
> --property print.key=true \
> --topic=<topic-name>

Red Hat Integration 2022.Q2 Debezium User Guide

424

For example,

The format for specifying the topic name is the same as the oc describe command returns in
Step 1, for example, inventory_connector_sqlserver.inventory.addresses.

For each event in the topic, the command returns information that is similar to the following
output:

Example 8.5. Content of a Debezium change event

{"schema":{"type":"struct","fields":
[{"type":"int32","optional":false,"field":"product_id"}],"optional":false,"name":"inventory_conne
ctor_sqlserver.inventory.products_on_hand.Key"},"payload":{"product_id":101}}
{"schema":{"type":"struct","fields":[{"type":"struct","fields":
[{"type":"int32","optional":false,"field":"product_id"},
{"type":"int32","optional":false,"field":"quantity"}],"optional":true,"name":"inventory_connector
_sqlserver.inventory.products_on_hand.Value","field":"before"},{"type":"struct","fields":
[{"type":"int32","optional":false,"field":"product_id"},
{"type":"int32","optional":false,"field":"quantity"}],"optional":true,"name":"inventory_connector
_sqlserver.inventory.products_on_hand.Value","field":"after"},{"type":"struct","fields":
[{"type":"string","optional":false,"field":"version"},
{"type":"string","optional":false,"field":"connector"},
{"type":"string","optional":false,"field":"name"},
{"type":"int64","optional":false,"field":"ts_ms"},
{"type":"string","optional":true,"name":"io.debezium.data.Enum","version":1,"parameters":
{"allowed":"true,last,false"},"default":"false","field":"snapshot"},
{"type":"string","optional":false,"field":"db"},
{"type":"string","optional":true,"field":"sequence"},
{"type":"string","optional":true,"field":"table"},
{"type":"int64","optional":false,"field":"server_id"},
{"type":"string","optional":true,"field":"gtid"},{"type":"string","optional":false,"field":"file"},
{"type":"int64","optional":false,"field":"pos"},{"type":"int32","optional":false,"field":"row"},
{"type":"int64","optional":true,"field":"thread"},
{"type":"string","optional":true,"field":"query"}],"optional":false,"name":"io.debezium.connecto
r.sqlserver.Source","field":"source"},{"type":"string","optional":false,"field":"op"},
{"type":"int64","optional":true,"field":"ts_ms"},{"type":"struct","fields":
[{"type":"string","optional":false,"field":"id"},
{"type":"int64","optional":false,"field":"total_order"},
{"type":"int64","optional":false,"field":"data_collection_order"}],"optional":true,"field":"transacti
on"}],"optional":false,"name":"inventory_connector_sqlserver.inventory.products_on_hand.E
nvelope"},"payload":{"before":null,"after":{"product_id":101,"quantity":3},"source":
{"version":"1.7.2.Final-redhat-
00001","connector":"sqlserver","name":"inventory_connector_sqlserver","ts_ms":163898524
7805,"snapshot":"true","db":"inventory","sequence":null,"table":"products_on_hand","server
_id":0,"gtid":null,"file":"sqlserver-
bin.000003","pos":156,"row":0,"thread":null,"query":null},"op":"r","ts_ms":1638985247805,"t
ransaction":null}}

 oc exec -n debezium -it debezium-kafka-cluster-kafka-0 -- /opt/kafka/bin/kafka-console-
consumer.sh \
> --bootstrap-server localhost:9092 \
> --from-beginning \
> --property print.key=true \
> --topic=inventory_connector_sqlserver.inventory.products_on_hand

CHAPTER 8. DEBEZIUM CONNECTOR FOR SQL SERVER

425

In the preceding example, the payload value shows that the connector snapshot generated a
read ("op" ="r") event from the table inventory.products_on_hand. The "before" state of the
product_id record is null, indicating that no previous value exists for the record. The "after"
state shows a quantity of 3 for the item with product_id 101.

For the complete list of the configuration properties that you can set for the Debezium SQL Server
connector, see SQL Server connector properties.

Results

When the connector starts, it performs a consistent snapshot of the SQL Server databases that the
connector is configured for. The connector then starts generating data change events for row-level
operations and streaming the change event records to Kafka topics.

8.4.4. Descriptions of Debezium SQL Server connector configuration properties

The Debezium SQL Server connector has numerous configuration properties that you can use to
achieve the right connector behavior for your application. Many properties have default values.

Information about the properties is organized as follows:

Required connector configuration properties

Advanced connector configuration properties

Database history connector configuration properties that control how Debezium processes
events that it reads from the database history topic.

Pass-through database history properties

Pass-through database driver properties that control the behavior of the database driver.

Required Debezium SQL Server connector configuration properties

The following configuration properties are required unless a default value is available.

Property Default Description

name No default Unique name for the connector. Attempting to
register again with the same name will fail. (This
property is required by all Kafka Connect
connectors.)

connector.class No default The name of the Java class for the connector.
Always use a value of
io.debezium.connector.sqlserver.SqlSer
verConnector for the SQL Server connector.

tasks.max 1 The maximum number of tasks that should be
created for this connector. The SQL Server
connector always uses a single task and
therefore does not use this value, so the default
is always acceptable.

Red Hat Integration 2022.Q2 Debezium User Guide

426

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#descriptions-of-debezium-sqlserver-connector-configuration-properties
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#how-debezium-sql-server-connectors-perform-database-snapshots

database.hostname No default IP address or hostname of the SQL Server
database server.

database.port 1433 Integer port number of the SQL Server
database server.

database.user No default Username to use when connecting to the SQL
Server database server.

database.password No default Password to use when connecting to the SQL
Server database server.

database.dbname No default The name of the SQL Server database from
which to stream the changes Must not be used
with database.names.

database.names No default The comma-separated list of the SQL Server
database names from which to stream the
changes. Currently, only one database name is
supported. Must not be used with
database.dbname.

This option is experimental and must not be
used in production. Using it will make the
behavior of the connector incompatible with
the default configuration with no upgrade or
downgrade path:

The connector will use different keys
for its committed offset messages.

The SQL statements used in
snapshot.select.statement.overr
ides will have to use the database
name as part of the fully-qualified
table name.

database.server.name No default Logical name that identifies and provides a
namespace for the SQL Server database
server that you want Debezium to capture. The
logical name should be unique across all other
connectors, since it is used as a prefix for all
Kafka topic names emanating from this
connector. Only alphanumeric characters,
hyphens, dots and underscores must be used.

Property Default Description

CHAPTER 8. DEBEZIUM CONNECTOR FOR SQL SERVER

427

table.include.list No default An optional comma-separated list of regular
expressions that match fully-qualified table
identifiers for tables that you want Debezium
to capture; any table that is not included in
table.include.list is excluded from capture.
Each identifier is of the form
schemaName.tableName. By default, the
connector captures all non-system tables for
the designated schemas. Must not be used with
table.exclude.list.

table.exclude.list No default An optional comma-separated list of regular
expressions that match fully-qualified table
identifiers for the tables that you want to
exclude from being captured; Debezium
captures all tables that are not included in
table.exclude.list. Each identifier is of the
form schemaName.tableName. Must not be
used with table.include.list.

column.include.list empty string An optional comma-separated list of regular
expressions that match the fully-qualified
names of columns that should be included in
the change event message values. Fully-
qualified names for columns are of the form
schemaName.tableName.columnName. Note
that primary key columns are always included in
the event’s key, even if not included in the
value. Do not also set the
column.exclude.list property.

column.exclude.list empty string An optional comma-separated list of regular
expressions that match the fully-qualified
names of columns that should be excluded
from change event message values. Fully-
qualified names for columns are of the form
schemaName.tableName.columnName. Note
that primary key columns are always included in
the event’s key, also if excluded from the value.
Do not also set the column.include.list
property.

Property Default Description

Red Hat Integration 2022.Q2 Debezium User Guide

428

column.mask.hash.hashA
lgorithm.with.salt.salt

n/a An optional, comma-separated list of regular
expressions that match the fully-qualified
names of character-based columns. Fully-
qualified names for columns are of the form
`<schemaName>.<tableName>._<columnName>
`. In the resulting change event record, the
values for the specified columns are replaced
with pseudonyms.

A pseudonym consists of the hashed value that
results from applying the specified
hashAlgorithm and salt. Based on the hash
function that is used, referential integrity is
maintained, while column values are replaced
with pseudonyms. Supported hash functions
are described in the MessageDigest section of
the Java Cryptography Architecture Standard
Algorithm Name Documentation.

In the following example, CzQMA0cB5K is a
randomly selected salt.

column.mask.hash.SHA-
256.with.salt.CzQMA0cB5K =
inventory.orders.customerName,
inventory.shipment.customerName

If necessary, the pseudonym is automatically
shortened to the length of the column. The
connector configuration can include multiple
properties that specify different hash
algorithms and salts.

Depending on the hashAlgorithm used, the salt
selected, and the actual data set, the resulting
data set might not be completely masked.

Property Default Description

CHAPTER 8. DEBEZIUM CONNECTOR FOR SQL SERVER

429

https://docs.oracle.com/javase/7/docs/technotes/guides/security/StandardNames.html#MessageDigest

time.precision.mode adaptive Time, date, and timestamps can be
represented with different kinds of precision,
including: adaptive (the default) captures the
time and timestamp values exactly as in the
database using either millisecond, microsecond,
or nanosecond precision values based on the
database column’s type; or connect always
represents time and timestamp values using
Kafka Connect’s built-in representations for
Time, Date, and Timestamp, which uses
millisecond precision regardless of the
database columns' precision. See temporal
values.

decimal.handling.mode precise Specifies how the connector should handle
values for DECIMAL and NUMERIC columns:

precise (the default) represents them
precisely using java.math.BigDecimal values
represented in change events in a binary form.

double represents them using double values,
which may result in a loss of precision but is
easier to use.

string encodes values as formatted strings,
which is easy to consume but semantic
information about the real type is lost.

include.schema.changes true Boolean value that specifies whether the
connector should publish changes in the
database schema to a Kafka topic with the
same name as the database server ID. Each
schema change is recorded with a key that
contains the database name and a value that is
a JSON structure that describes the schema
update. This is independent of how the
connector internally records database history.
The default is true.

Property Default Description

Red Hat Integration 2022.Q2 Debezium User Guide

430

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#sqlserver-temporal-values

tombstones.on.delete true Controls whether a delete event is followed by
a tombstone event.

true - a delete operation is represented by a
delete event and a subsequent tombstone
event.

false - only a delete event is emitted.

After a source record is deleted, emitting a
tombstone event (the default behavior) allows
Kafka to completely delete all events that
pertain to the key of the deleted row in case
log compaction is enabled for the topic.

column.truncate.to._lengt
h_.chars

n/a An optional comma-separated list of regular
expressions that match the fully-qualified
names of character-based columns whose
values should be truncated in the change event
message values if the field values are longer
than the specified number of characters.
Multiple properties with different lengths can
be used in a single configuration, although in
each the length must be a positive integer.
Fully-qualified names for columns are of the
form schemaName.tableName.columnName.

column.mask.with._lengt
h_.chars

n/a An optional comma-separated list of regular
expressions that match the fully-qualified
names of character-based columns whose
values should be replaced in the change event
message values with a field value consisting of
the specified number of asterisk (*) characters.
Multiple properties with different lengths can
be used in a single configuration, although in
each the length must be a positive integer or
zero. Fully-qualified names for columns are of
the form
schemaName.tableName.columnName.

Property Default Description

CHAPTER 8. DEBEZIUM CONNECTOR FOR SQL SERVER

431

https://kafka.apache.org/documentation/#compaction

column.propagate.source
.type

n/a An optional comma-separated list of regular
expressions that match the fully-qualified
names of columns whose original type and
length should be added as a parameter to the
corresponding field schemas in the emitted
change messages. The schema parameters
__debezium.source.column.type,
__debezium.source.column.length and
__debezium.source.column.scale is used
to propagate the original type name and length
(for variable-width types), respectively. Useful
to properly size corresponding columns in sink
databases. Fully-qualified names for columns
are of the form
schemaName.tableName.columnName.

datatype.propagate.sourc
e.type+

n/a An optional comma-separated list of regular
expressions that match the database-specific
data type name of columns whose original type
and length should be added as a parameter to
the corresponding field schemas in the emitted
change messages. The schema parameters
__debezium.source.column.type,
__debezium.source.column.length and
__debezium.source.column.scale will be
used to propagate the original type name and
length (for variable-width types), respectively.
Useful to properly size corresponding columns
in sink databases. Fully-qualified data type
names are of the form
schemaName.tableName.typeName. See SQL
Server data types for the list of SQL Server-
specific data type names.

Property Default Description

Red Hat Integration 2022.Q2 Debezium User Guide

432

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#how-debezium-sql-server-connectors-map-data-types

message.key.columns n/a A list of expressions that specify the columns
that the connector uses to form custom
message keys for change event records that it
publishes to the Kafka topics for specified
tables.

By default, Debezium uses the primary key
column of a table as the message key for
records that it emits. In place of the default, or
to specify a key for tables that lack a primary
key, you can configure custom message keys
based on one or more columns.

To establish a custom message key for a table,
list the table, followed by the columns to use as
the message key. Each list entry takes the
following format:

<fully-
qualified_tableName>:_<keyColumn>_,<
keyColumn>

To base a table key on multiple column names,
insert commas between the column names.

Each fully-qualified table name is a regular
expression in the following format:

<schemaName>.<tableName>

The property can include entries for multiple
tables. Use a semicolon to separate table
entries in the list.

The following example sets the message key
for the tables inventory.customers and
purchase.orders:

inventory.customers:pk1,pk2;
(.*).purchaseorders:pk3,pk4

For the table inventory.customer, the
columns pk1 and pk2 are specified as the
message key. For the purchaseorders tables
in any schema, the columns pk3 and pk4
server as the message key.

There is no limit to the number of columns that
you use to create custom message keys.
However, it’s best to use the minimum number
that are required to specify a unique key.

Property Default Description

CHAPTER 8. DEBEZIUM CONNECTOR FOR SQL SERVER

433

binary.handling.mode bytes Specifies how binary (binary, varbinary)
columns should be represented in change
events, including: bytes represents binary data
as byte array (default), base64 represents
binary data as base64-encoded String, hex
represents binary data as hex-encoded
(base16) String

Property Default Description

Advanced SQL Server connector configuration properties

The following advanced configuration properties have good defaults that will work in most situations
and therefore rarely need to be specified in the connector’s configuration.

Property Default Description

snapshot.mode initial A mode for taking an initial snapshot of the
structure and optionally data of captured
tables. Once the snapshot is complete, the
connector will continue reading change events
from the database’s redo logs. The following
values are supported:

initial: Takes a snapshot of structure
and data of captured tables; useful if
topics should be populated with a
complete representation of the data
from the captured tables.

initial_only: Takes a snapshot of
structure and data like initial but
instead does not transition into
streaming changes once the snapshot
has completed.

schema_only: Takes a snapshot of
the structure of captured tables only;
useful if only changes happening from
now onwards should be propagated to
topics.

Red Hat Integration 2022.Q2 Debezium User Guide

434

snapshot.include.collecti
on.list

All tables specified in
table.include.list

An optional, comma-separated list of regular
expressions that match the fully-qualified
names
(<dbName>.<schemaName>.<tableNam
e>) of the tables to include in a snapshot. The
specified items must be named in the
connector’s table.include.list property. This
property takes effect only if the connector’s
snapshot.mode property is set to a value
other than never.

This property does not affect the behavior of
incremental snapshots.

snapshot.isolation.mode repeatable_read Mode to control which transaction isolation
level is used and how long the connector locks
tables that are designated for capture. The
following values are supported:

read_uncommitted

read_committed

repeatable_read

snapshot

exclusive (exclusive mode uses
repeatable read isolation level,
however, it takes the exclusive lock on
all tables to be read).

The snapshot, read_committed and
read_uncommitted modes do not prevent
other transactions from updating table rows
during initial snapshot. The exclusive and
repeatable_read modes do prevent
concurrent updates.

Mode choice also affects data consistency.
Only exclusive and snapshot modes
guarantee full consistency, that is, initial
snapshot and streaming logs constitute a linear
history. In case of repeatable_read and
read_committed modes, it might happen
that, for instance, a record added appears
twice - once in initial snapshot and once in
streaming phase. Nonetheless, that
consistency level should do for data mirroring.
For read_uncommitted there are no data
consistency guarantees at all (some data might
be lost or corrupted).

Property Default Description

CHAPTER 8. DEBEZIUM CONNECTOR FOR SQL SERVER

435

event.processing.failure.h
andling.mode

fail Specifies how the connector should react to
exceptions during processing of events. fail will
propagate the exception (indicating the offset
of the problematic event), causing the
connector to stop.
warn will cause the problematic event to be
skipped and the offset of the problematic
event to be logged.
skip will cause the problematic event to be
skipped.

poll.interval.ms 1000 Positive integer value that specifies the
number of milliseconds the connector should
wait during each iteration for new change
events to appear. Defaults to 1000
milliseconds, or 1 second.

max.queue.size 8192 Positive integer value that specifies the
maximum size of the blocking queue into which
change events read from the database log are
placed before they are written to Kafka. This
queue can provide backpressure to the CDC
table reader when, for example, writes to Kafka
are slower or if Kafka is not available. Events
that appear in the queue are not included in the
offsets periodically recorded by this connector.
Defaults to 8192, and should always be larger
than the maximum batch size specified in the
max.batch.size property.

max.batch.size 2048 Positive integer value that specifies the
maximum size of each batch of events that
should be processed during each iteration of
this connector. Defaults to 2048.

Property Default Description

Red Hat Integration 2022.Q2 Debezium User Guide

436

heartbeat.interval.ms 0 Controls how frequently heartbeat messages
are sent.
This property contains an interval in
milliseconds that defines how frequently the
connector sends messages to a heartbeat
topic. The property can be used to confirm
whether the connector is still receiving change
events from the database. You also should
leverage heartbeat messages in cases where
only records in non-captured tables are
changed for a longer period of time. In such
situation the connector would proceed to read
the log from the database but never emit any
change messages into Kafka, which in turn
means that no offset updates are committed
to Kafka. This may result in more change
events to be re-sent after a connector restart.
Set this parameter to 0 to not send heartbeat
messages at all.
Disabled by default.

heartbeat.topics.prefix __debezium-
heartbeat

Controls the naming of the topic to which
heartbeat messages are sent.
The topic is named according to the pattern
<heartbeat.topics.prefix>.
<server.name>.

snapshot.delay.ms No default An interval in milli-seconds that the connector
should wait before taking a snapshot after
starting up;
Can be used to avoid snapshot interruptions
when starting multiple connectors in a cluster,
which may cause re-balancing of connectors.

snapshot.fetch.size 2000 Specifies the maximum number of rows that
should be read in one go from each table while
taking a snapshot. The connector will read the
table contents in multiple batches of this size.
Defaults to 2000.

query.fetch.size No default Specifies the number of rows that will be
fetched for each database round-trip of a
given query. Defaults to the JDBC driver’s
default fetch size.

Property Default Description

CHAPTER 8. DEBEZIUM CONNECTOR FOR SQL SERVER

437

snapshot.lock.timeout.ms 10000 An integer value that specifies the maximum
amount of time (in milliseconds) to wait to
obtain table locks when performing a snapshot.
If table locks cannot be acquired in this time
interval, the snapshot will fail (also see
snapshots).
When set to 0 the connector will fail
immediately when it cannot obtain the lock.
Value -1 indicates infinite waiting.

Property Default Description

Red Hat Integration 2022.Q2 Debezium User Guide

438

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#how-debezium-sql-server-connectors-perform-database-snapshots

snapshot.select.statemen
t.overrides

No default Specifies the table rows to include in a
snapshot. Use the property if you want a
snapshot to include only a subset of the rows in
a table. This property affects snapshots only. It
does not apply to events that the connector
reads from the log.

The property contains a comma-separated list
of fully-qualified table names in the form
<schemaName>.<tableName>. For
example,

"snapshot.select.statement.overrides":
"inventory.products,customers.orders"

For each table in the list, add a further
configuration property that specifies the
SELECT statement for the connector to run
on the table when it takes a snapshot. The
specified SELECT statement determines the
subset of table rows to include in the snapshot.
Use the following format to specify the name
of this SELECT statement property:

snapshot.select.statement.overrides.<s
chemaName>.<tableName>. For example,
snapshot.select.statement.overrides.cu
stomers.orders.

Example:

From a customers.orders table that
includes the soft-delete column, delete_flag,
add the following properties if you want a
snapshot to include only those records that are
not soft-deleted:

"snapshot.select.statement.overrides":
"customer.orders",
"snapshot.select.statement.overrides.cus
tomer.orders": "SELECT * FROM
[customers].[orders] WHERE
delete_flag = 0 ORDER BY id DESC"

In the resulting snapshot, the connector
includes only the records for which
delete_flag = 0.

Property Default Description

CHAPTER 8. DEBEZIUM CONNECTOR FOR SQL SERVER

439

sanitize.field.names true when connector
configuration explicitly
specifies the
key.converter or
value.converter
parameters to use Avro,
otherwise defaults to
false.

Whether field names are sanitized to adhere to
Avro naming requirements.

provide.transaction.meta
data

false When set to true Debezium generates events
with transaction boundaries and enriches data
events envelope with transaction metadata.

See Transaction Metadata for additional
details.

retriable.restart.connecto
r.wait.ms

10000 (10 seconds) The number of milli-seconds to wait before
restarting a connector after a retriable error
occurs.

skipped.operations No default comma-separated list of operation types that
will be skipped during streaming. The
operations include: c for inserts/create, u for
updates, and d for deletes. By default, no
operations are skipped.

signal.data.collection No default value Fully-qualified name of the data collection that
is used to send signals to the connector.
Use the following format to specify the
collection name:
<databaseName>.<schemaName>.<tabl
eName>

Signaling is a Technology Preview feature.

incremental.snapshot.chu
nk.size

1024 The maximum number of rows that the
connector fetches and reads into memory
during an incremental snapshot chunk.
Increasing the chunk size provides greater
efficiency, because the snapshot runs fewer
snapshot queries of a greater size. However,
larger chunk sizes also require more memory to
buffer the snapshot data. Adjust the chunk size
to a value that provides the best performance
in your environment.

Property Default Description

Red Hat Integration 2022.Q2 Debezium User Guide

440

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#debezium-sql-server-connector-generated-events-that-represent-transaction-boundaries
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/indexdebezium-signaling-enabling-signaling

max.iteration.transaction
s

0 Specifies the maximum number of transactions
per iteration to be used to reduce the memory
footprint when streaming changes from
multiple tables in a database. When set to 0
(the default), the connector uses the current
maximum LSN as the range to fetch changes
from. When set to a value greater than zero,
the connector uses the n-th LSN specified by
this setting as the range to fetch changes from.

Property Default Description

Debezium SQL Server connector database history configuration properties

Debezium provides a set of database.history.* properties that control how the connector interacts with
the schema history topic.

The following table describes the database.history properties for configuring the Debezium connector.

Table 8.16. Connector database history configuration properties

Property Default Description

database.history.kafka.topic The full name of the Kafka topic where the connector
stores the database schema history.

database.history.kafka.boots
trap.servers

 A list of host/port pairs that the connector uses for
establishing an initial connection to the Kafka cluster.
This connection is used for retrieving the database
schema history previously stored by the connector,
and for writing each DDL statement read from the
source database. Each pair should point to the same
Kafka cluster used by the Kafka Connect process.

database.history.kafka.recov
ery.poll.interval.ms

100 An integer value that specifies the maximum number
of milliseconds the connector should wait during
startup/recovery while polling for persisted data. The
default is 100ms.

database.history.kafka.recov
ery.attempts

4 The maximum number of times that the connector
should try to read persisted history data before the
connector recovery fails with an error. The maximum
amount of time to wait after receiving no data is
recovery.attempts x recovery.poll.interval.ms.

database.history.skip.unpar
seable.ddl

false A Boolean value that specifies whether the
connector should ignore malformed or unknown
database statements or stop processing so a human
can fix the issue. The safe default is false. Skipping
should be used only with care as it can lead to data
loss or mangling when the binlog is being processed.

CHAPTER 8. DEBEZIUM CONNECTOR FOR SQL SERVER

441

database.history.store.only.
monitored.tables.ddl

Deprecated and scheduled for
removal in a future release; use
database.history.store.only.
captured.tables.ddl instead.

false A Boolean value that specifies whether the
connector should record all DDL statements

true records only those DDL statements that are
relevant to tables whose changes are being captured
by Debezium. Set to true with care because missing
data might become necessary if you change which
tables have their changes captured.

The safe default is false.

database.history.store.only.
captured.tables.ddl

false A Boolean value that specifies whether the
connector should record all DDL statements

true records only those DDL statements that are
relevant to tables whose changes are being captured
by Debezium. Set to true with care because missing
data might become necessary if you change which
tables have their changes captured.

The safe default is false.

Property Default Description

Pass-through database history properties for configuring producer and consumer clients

Debezium relies on a Kafka producer to write schema changes to database history topics. Similarly, it
relies on a Kafka consumer to read from database history topics when a connector starts. You define the
configuration for the Kafka producer and consumer clients by assigning values to a set of pass-through
configuration properties that begin with the database.history.producer.* and
database.history.consumer.* prefixes. The pass-through producer and consumer database history
properties control a range of behaviors, such as how these clients secure connections with the Kafka
broker, as shown in the following example:

database.history.producer.security.protocol=SSL
database.history.producer.ssl.keystore.location=/var/private/ssl/kafka.server.keystore.jks
database.history.producer.ssl.keystore.password=test1234
database.history.producer.ssl.truststore.location=/var/private/ssl/kafka.server.truststore.jks
database.history.producer.ssl.truststore.password=test1234
database.history.producer.ssl.key.password=test1234

database.history.consumer.security.protocol=SSL
database.history.consumer.ssl.keystore.location=/var/private/ssl/kafka.server.keystore.jks
database.history.consumer.ssl.keystore.password=test1234
database.history.consumer.ssl.truststore.location=/var/private/ssl/kafka.server.truststore.jks
database.history.consumer.ssl.truststore.password=test1234
database.history.consumer.ssl.key.password=test1234

Debezium strips the prefix from the property name before it passes the property to the Kafka client.

See the Kafka documentation for more details about Kafka producer configuration properties and Kafka
consumer configuration properties.

Red Hat Integration 2022.Q2 Debezium User Guide

442

https://kafka.apache.org/documentation.html#producerconfigs
https://kafka.apache.org/documentation.html#consumerconfigs

Debezium SQL Server connector pass-through database driver configuration properties

The Debezium connector provides for pass-through configuration of the database driver. Pass-through
database properties begin with the prefix database.*. For example, the connector passes properties
such as database.foobar=false to the JDBC URL.

As is the case with the pass-through properties for database history clients , Debezium strips the prefixes
from the properties before it passes them to the database driver.

8.5. REFRESHING CAPTURE TABLES AFTER A SCHEMA CHANGE

When change data capture is enabled for a SQL Server table, as changes occur in the table, event
records are persisted to a capture table on the server. If you introduce a change in the structure of the
source table change, for example, by adding a new column, that change is not dynamically reflected in
the change table. For as long as the capture table continues to use the outdated schema, the Debezium
connector is unable to emit data change events for the table correctly. You must intervene to refresh
the capture table to enable the connector to resume processing change events.

Because of the way that CDC is implemented in SQL Server, you cannot use Debezium to update
capture tables. To refresh capture tables, one must be a SQL Server database operator with elevated
privileges. As a Debezium user, you must coordinate tasks with the SQL Server database operator to
complete the schema refresh and restore streaming to Kafka topics.

You can use one of the following methods to update capture tables after a schema change:

Offline schema updates require you to stop the Debezium connector before you can update
capture tables.

Online schema updates can update capture tables while the Debezium connector is running.

There are advantages and disadvantages to using each type of procedure.

WARNING

Whether you use the online or offline update method, you must complete the entire
schema update process before you apply subsequent schema updates on the same
source table. The best practice is to execute all DDLs in a single batch so the
procedure can be run only once.

NOTE

Some schema changes are not supported on source tables that have CDC enabled. For
example, if CDC is enabled on a table, SQL Server does not allow you to change the
schema of the table if you renamed one of its columns or changed the column type.

NOTE

CHAPTER 8. DEBEZIUM CONNECTOR FOR SQL SERVER

443

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#debezium-sql-server-connector-running-an-offline-update-after-a-schema-change
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#debezium-sql-server-connector-running-an-online-update-after-a-schema-change

NOTE

After you change a column in a source table from NULL to NOT NULL or vice versa, the
SQL Server connector cannot correctly capture the changed information until after you
create a new capture instance. If you do not create a new capture table after a change to
the column designation, change event records that the connector emits do not correctly
indicate whether the column is optional. That is, columns that were previously defined as
optional (or NULL) continue to be, despite now being defined as NOT NULL. Similarly,
columns that had been defined as required (NOT NULL), retain that designation,
although they are now defined as NULL.

8.5.1. Running an offline update after a schema change

Offline schema updates provide the safest method for updating capture tables. However, offline
updates might not be feasible for use with applications that require high-availability.

Prerequisites

An update was committed to the schema of a SQL Server table that has CDC enabled.

You are a SQL Server database operator with elevated privileges.

Procedure

1. Suspend the application that updates the database.

2. Wait for the Debezium connector to stream all unstreamed change event records.

3. Stop the Debezium connector.

4. Apply all changes to the source table schema.

5. Create a new capture table for the update source table using sys.sp_cdc_enable_table
procedure with a unique value for parameter @capture_instance.

6. Resume the application that you suspended in Step 1.

7. Start the Debezium connector.

8. After the Debezium connector starts streaming from the new capture table, drop the old
capture table by running the stored procedure sys.sp_cdc_disable_table with the parameter
@capture_instance set to the old capture instance name.

8.5.2. Running an online update after a schema change

The procedure for completing an online schema updates is simpler than the procedure for running an
offline schema update, and you can complete it without requiring any downtime in application and data
processing. However, with online schema updates, a potential processing gap can occur after you
update the schema in the source database, but before you create the new capture instance. During that
interval, change events continue to be captured by the old instance of the change table, Q and the
change data that is saved to the old table retains the structure of the earlier schema. So, for example, if
you added a new column to a source table, change events that are produced before the new capture
table is ready, do not contain a field for the new column. If your application does not tolerate such a
transition period, it is best to use the offline schema update procedure.

Red Hat Integration 2022.Q2 Debezium User Guide

444

Prerequisites

An update was committed to the schema of a SQL Server table that has CDC enabled.

You are a SQL Server database operator with elevated privileges.

Procedure

1. Apply all changes to the source table schema.

2. Create a new capture table for the update source table by running the
sys.sp_cdc_enable_table stored procedure with a unique value for the parameter
@capture_instance.

3. When Debezium starts streaming from the new capture table, you can drop the old capture
table by running the sys.sp_cdc_disable_table stored procedure with the parameter
@capture_instance set to the old capture instance name.

Example: Running an online schema update after a database schema change

The following example shows how to complete an online schema update in the change table after the
column phone_number is added to the customers source table.

1. Modify the schema of the customers source table by running the following query to add the
phone_number field:

2. Create the new capture instance by running the sys.sp_cdc_enable_table stored procedure.

3. Insert new data into the customers table by running the following query:

The Kafka Connect log reports on configuration updates through entries similar to the following
message:

ALTER TABLE customers ADD phone_number VARCHAR(32);

EXEC sys.sp_cdc_enable_table @source_schema = 'dbo', @source_name = 'customers',
@role_name = NULL, @supports_net_changes = 0, @capture_instance =
'dbo_customers_v2';
GO

INSERT INTO customers(first_name,last_name,email,phone_number) VALUES
('John','Doe','john.doe@example.com', '+1-555-123456');
GO

connect_1 | 2019-01-17 10:11:14,924 INFO || Multiple capture instances present for the
same table: Capture instance "dbo_customers" [sourceTableId=testDB.dbo.customers,
changeTableId=testDB.cdc.dbo_customers_CT, startLsn=00000024:00000d98:0036,
changeTableObjectId=1525580473, stopLsn=00000025:00000ef8:0048] and Capture
instance "dbo_customers_v2" [sourceTableId=testDB.dbo.customers,
changeTableId=testDB.cdc.dbo_customers_v2_CT, startLsn=00000025:00000ef8:0048,
changeTableObjectId=1749581271, stopLsn=NULL]
[io.debezium.connector.sqlserver.SqlServerStreamingChangeEventSource]
connect_1 | 2019-01-17 10:11:14,924 INFO || Schema will be changed for ChangeTable
[captureInstance=dbo_customers_v2, sourceTableId=testDB.dbo.customers,
changeTableId=testDB.cdc.dbo_customers_v2_CT, startLsn=00000025:00000ef8:0048,

CHAPTER 8. DEBEZIUM CONNECTOR FOR SQL SERVER

445

Eventually, the phone_number field is added to the schema and its value appears in messages
written to the Kafka topic.

4. Drop the old capture instance by running the sys.sp_cdc_disable_table stored procedure.

8.6. MONITORING DEBEZIUM SQL SERVER CONNECTOR
PERFORMANCE

The Debezium SQL Server connector provides three types of metrics that are in addition to the built-in
support for JMX metrics that Zookeeper, Kafka, and Kafka Connect provide. The connector provides
the following metrics:

Snapshot metrics for monitoring the connector when performing snapshots.

Streaming metrics for monitoring the connector when reading CDC table data.

Schema history metrics for monitoring the status of the connector’s schema history.

For information about how to expose the preceding metrics through JMX, see the Debezium monitoring
documentation.

8.6.1. Debezium SQL Server connector snapshot metrics

The MBean is debezium.sql_server:type=connector-
metrics,context=snapshot,server=<sqlserver.server.name>.

Snapshot metrics are not exposed unless a snapshot operation is active, or if a snapshot has occurred

changeTableObjectId=1749581271, stopLsn=NULL]
[io.debezium.connector.sqlserver.SqlServerStreamingChangeEventSource]
...
connect_1 | 2019-01-17 10:11:33,719 INFO || Migrating schema to ChangeTable
[captureInstance=dbo_customers_v2, sourceTableId=testDB.dbo.customers,
changeTableId=testDB.cdc.dbo_customers_v2_CT, startLsn=00000025:00000ef8:0048,
changeTableObjectId=1749581271, stopLsn=NULL]
[io.debezium.connector.sqlserver.SqlServerStreamingChangeEventSource]

...
 {
 "type": "string",
 "optional": true,
 "field": "phone_number"
 }
...
 "after": {
 "id": 1005,
 "first_name": "John",
 "last_name": "Doe",
 "email": "john.doe@example.com",
 "phone_number": "+1-555-123456"
 },

EXEC sys.sp_cdc_disable_table @source_schema = 'dbo', @source_name =
'dbo_customers', @capture_instance = 'dbo_customers';
GO

Red Hat Integration 2022.Q2 Debezium User Guide

446

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index

Snapshot metrics are not exposed unless a snapshot operation is active, or if a snapshot has occurred
since the last connector start.

The following table lists the shapshot metrics that are available.

Attributes Type Description

LastEvent string The last snapshot event that
the connector has read.

MilliSecondsSinceLastEvent long The number of milliseconds
since the connector has read
and processed the most
recent event.

TotalNumberOfEventsSeen long The total number of events
that this connector has seen
since last started or reset.

NumberOfEventsFiltered long The number of events that
have been filtered by
include/exclude list filtering
rules configured on the
connector.

MonitoredTables
Deprecated and scheduled for removal in a
future release; use the CapturedTables
metric instead.

string[] The list of tables that are
monitored by the connector.

CapturedTables string[] The list of tables that are
captured by the connector.

QueueTotalCapacity int The length the queue used to
pass events between the
snapshotter and the main
Kafka Connect loop.

QueueRemainingCapacity int The free capacity of the
queue used to pass events
between the snapshotter and
the main Kafka Connect loop.

TotalTableCount int The total number of tables
that are being included in the
snapshot.

RemainingTableCount int The number of tables that the
snapshot has yet to copy.

CHAPTER 8. DEBEZIUM CONNECTOR FOR SQL SERVER

447

SnapshotRunning boolean Whether the snapshot was
started.

SnapshotAborted boolean Whether the snapshot was
aborted.

SnapshotCompleted boolean Whether the snapshot
completed.

SnapshotDurationInSeconds long The total number of seconds
that the snapshot has taken
so far, even if not complete.

RowsScanned Map<String, Long> Map containing the number of
rows scanned for each table in
the snapshot. Tables are
incrementally added to the
Map during processing.
Updates every 10,000 rows
scanned and upon completing
a table.

MaxQueueSizeInBytes long The maximum buffer of the
queue in bytes. It will be
enabled if
max.queue.size.in.bytes is
passed with a positive long
value.

CurrentQueueSizeInBytes long The current data of records in
the queue in bytes.

Attributes Type Description

The connector also provides the following additional snapshot metrics when an incremental snapshot is
executed:

Attributes Type Description

ChunkId string The identifier of the current
snapshot chunk.

ChunkFrom string The lower bound of the
primary key set defining the
current chunk.

ChunkTo string The upper bound of the
primary key set defining the
current chunk.

Red Hat Integration 2022.Q2 Debezium User Guide

448

TableFrom string The lower bound of the
primary key set of the
currently snapshotted table.

TableTo string The upper bound of the
primary key set of the
currently snapshotted table.

Attributes Type Description

IMPORTANT

Incremental snapshots is a Technology Preview feature only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs) and
might not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.
For more information about the support scope of Red Hat Technology Preview features,
see https://access.redhat.com/support/offerings/techpreview.

8.6.2. Debezium SQL Server connector streaming metrics

The MBean is debezium.sql_server:type=connector-
metrics,context=streaming,server=<sqlserver.server.name>.

The following table lists the streaming metrics that are available.

Attributes Type Description

LastEvent string The last streaming event that
the connector has read.

MilliSecondsSinceLastEvent long The number of milliseconds
since the connector has read
and processed the most
recent event.

TotalNumberOfEventsSeen long The total number of events
that this connector has seen
since last started or reset.

NumberOfEventsFiltered long The number of events that
have been filtered by
include/exclude list filtering
rules configured on the
connector.

CHAPTER 8. DEBEZIUM CONNECTOR FOR SQL SERVER

449

https://access.redhat.com/support/offerings/techpreview

MonitoredTables
Deprecated and scheduled for removal in a
future release; use the 'CapturedTables' metric
instead

string[] The list of tables that are
monitored by the connector.

CapturedTables string[] The list of tables that are
captured by the connector.

QueueTotalCapacity int The length the queue used to
pass events between the
streamer and the main Kafka
Connect loop.

QueueRemainingCapacity int The free capacity of the
queue used to pass events
between the streamer and the
main Kafka Connect loop.

Connected boolean Flag that denotes whether the
connector is currently
connected to the database
server.

MilliSecondsBehindSource long The number of milliseconds
between the last change
event’s timestamp and the
connector processing it. The
values will incoporate any
differences between the
clocks on the machines where
the database server and the
connector are running.

NumberOfCommittedTransactions long The number of processed
transactions that were
committed.

SourceEventPosition Map<String, String> The coordinates of the last
received event.

LastTransactionId string Transaction identifier of the
last processed transaction.

MaxQueueSizeInBytes long The maximum buffer of the
queue in bytes.

CurrentQueueSizeInBytes long The current data of records in
the queue in bytes.

Attributes Type Description

Red Hat Integration 2022.Q2 Debezium User Guide

450

8.6.3. Debezium SQL Server connector schema history metrics

The MBean is debezium.sql_server:type=connector-metrics,context=schema-
history,server=<sqlserver.server.name>.

The following table lists the schema history metrics that are available.

Attributes Type Description

Status string One of STOPPED,
RECOVERING (recovering
history from the storage),
RUNNING describing the
state of the database history.

RecoveryStartTime long The time in epoch seconds at
what recovery has started.

ChangesRecovered long The number of changes that
were read during recovery
phase.

ChangesApplied long the total number of schema
changes applied during
recovery and runtime.

MilliSecondsSinceLast
RecoveredChange

long The number of milliseconds
that elapsed since the last
change was recovered from
the history store.

MilliSecondsSinceLast AppliedChange long The number of milliseconds
that elapsed since the last
change was applied.

LastRecoveredChange string The string representation of
the last change recovered
from the history store.

LastAppliedChange string The string representation of
the last applied change.

CHAPTER 8. DEBEZIUM CONNECTOR FOR SQL SERVER

451

CHAPTER 9. MONITORING DEBEZIUM
You can use the JMX metrics provided by Apache Zookeeper, Apache Kafka, and Kafka Connect to
monitor Debezium. To use these metrics, you must enable them when you start the Zookeeper, Kafka,
and Kafka Connect services. Enabling JMX involves setting the correct environment variables.

NOTE

If you are running multiple services on the same machine, be sure to use distinct JMX
ports for each service.

9.1. METRICS FOR MONITORING DEBEZIUM CONNECTORS

In addition to the built-in support for JMX metrics in Kafka, Zookeeper, and Kafka Connect, each
connector provides additional metrics that you can use to monitor their activities.

MySQL connector metrics

MongoDB connector metrics

PostgreSQL connector metrics

SQL Server connector metrics

Db2 connector metrics

9.2. ENABLING JMX IN LOCAL INSTALLATIONS

With Zookeeper, Kafka, and Kafka Connect, you enable JMX by setting the appropriate environment
variables when you start each service.

9.2.1. Zookeeper JMX environment variables

Zookeeper has built-in support for JMX. When running Zookeeper using a local installation, the
zkServer.sh script recognizes the following environment variables:

JMXPORT

Enables JMX and specifies the port number that will be used for JMX. The value is used to specify
the JVM parameter -Dcom.sun.management.jmxremote.port=$JMXPORT.

JMXAUTH

Whether JMX clients must use password authentication when connecting. Must be either true or
false. The default is false. The value is used to specify the JVM parameter -
Dcom.sun.management.jmxremote.authenticate=$JMXAUTH.

JMXSSL

Whether JMX clients connect using SSL/TLS. Must be either true or false. The default is false. The
value is used to specify the JVM parameter -Dcom.sun.management.jmxremote.ssl=$JMXSSL.

JMXLOG4J

Whether the Log4J JMX MBeans should be disabled. Must be either true (default) or false. The
default is true. The value is used to specify the JVM parameter -
Dzookeeper.jmx.log4j.disable=$JMXLOG4J.

Red Hat Integration 2022.Q2 Debezium User Guide

452

https://zookeeper.apache.org/doc/r3.1.2/zookeeperJMX.html
https://kafka.apache.org/documentation/#monitoring
https://kafka.apache.org/documentation/#connect_monitoring
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#monitoring-debezium-mysql-connector-performance
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#monitoring-debezium-mongodb-connector-performance
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#monitoring-debezium-postgresql-connector-performance
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#monitoring-debezium-sql-server-connector-performance
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#monitoring-debezium-db2-connector-performance

9.2.2. Kafka JMX environment variables

When running Kafka using a local installation, the kafka-server-start.sh script recognizes the following
environment variables:

JMX_PORT

Enables JMX and specifies the port number that will be used for JMX. The value is used to specify
the JVM parameter -Dcom.sun.management.jmxremote.port=$JMX_PORT.

KAFKA_JMX_OPTS

The JMX options, which are passed directly to the JVM during startup. The default options are:

-Dcom.sun.management.jmxremote

-Dcom.sun.management.jmxremote.authenticate=false

-Dcom.sun.management.jmxremote.ssl=false

9.2.3. Kafka Connect JMX environment variables

When running Kafka using a local installation, the connect-distributed.sh script recognizes the
following environment variables:

JMX_PORT

Enables JMX and specifies the port number that will be used for JMX. The value is used to specify
the JVM parameter -Dcom.sun.management.jmxremote.port=$JMX_PORT.

KAFKA_JMX_OPTS

The JMX options, which are passed directly to the JVM during startup. The default options are:

-Dcom.sun.management.jmxremote

-Dcom.sun.management.jmxremote.authenticate=false

-Dcom.sun.management.jmxremote.ssl=false

9.3. MONITORING DEBEZIUM ON OPENSHIFT

If you are using Debezium on OpenShift, you can obtain JMX metrics by opening a JMX port on 9999.
For more information, see JMX Options in Using AMQ Streams on OpenShift.

In addition, you can use Prometheus and Grafana to monitor the JMX metrics. For more information,
see Introducing Metrics to Kafka , in Deploying and Upgrading AMQ Streams on OpenShift.

CHAPTER 9. MONITORING DEBEZIUM

453

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/using_amq_streams_on_openshift/index#assembly-jmx-options-deployment-configuration-kafka
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/deploying_and_upgrading_amq_streams_on_openshift/index/#assembly-metrics-str

CHAPTER 10. DEBEZIUM LOGGING
Debezium has extensive logging built into its connectors, and you can change the logging configuration
to control which of these log statements appear in the logs and where those logs are sent. Debezium (as
well as Kafka, Kafka Connect, and Zookeeper) use the Log4j logging framework for Java.

By default, the connectors produce a fair amount of useful information when they start up, but then
produce very few logs when the connector is keeping up with the source databases. This is often
sufficient when the connector is operating normally, but may not be enough when the connector is
behaving unexpectedly. In such cases, you can change the logging level so that the connector generates
much more verbose log messages describing what the connector is doing and what it is not doing.

10.1. DEBEZIUM LOGGING CONCEPTS

Before configuring logging, you should understand what Log4J loggers, log levels, and appenders are.

Loggers

Each log message produced by the application is sent to a specific logger (for example,
io.debezium.connector.mysql). Loggers are arranged in hierarchies. For example, the
io.debezium.connector.mysql logger is the child of the io.debezium.connector logger, which is the
child of the io.debezium logger. At the top of the hierarchy, the root logger defines the default logger
configuration for all of the loggers beneath it.

Log levels

Every log message produced by the application also has a specific log level:

1. ERROR - errors, exceptions, and other significant problems

2. WARN - potential problems and issues

3. INFO - status and general activity (usually low-volume)

4. DEBUG - more detailed activity that would be useful in diagnosing unexpected behavior

5. TRACE - very verbose and detailed activity (usually very high-volume)

Appenders

An appender is essentially a destination where log messages are written. Each appender controls the
format of its log messages, giving you even more control over what the log messages look like.

To configure logging, you specify the desired level for each logger and the appender(s) where those log
messages should be written. Since loggers are hierarchical, the configuration for the root logger serves
as a default for all of the loggers below it, although you can override any child (or descendant) logger.

10.2. DEFAULT DEBEZIUM LOGGING CONFIGURATION

If you are running Debezium connectors in a Kafka Connect process, then Kafka Connect uses the Log4j
configuration file (for example, /opt/kafka/config/connect-log4j.properties) in the Kafka installation. By
default, this file contains the following configuration:

connect-log4j.properties

log4j.rootLogger=INFO, stdout 1

Red Hat Integration 2022.Q2 Debezium User Guide

454

https://logging.apache.org/log4j/1.2/

1 1

2 2

3 3

4 4

The root logger, which defines the default logger configuration. By default, loggers include INFO,
WARN, and ERROR messages. These log messages are written to the stdout appender.

The stdout appender writes log messages to the console (as opposed to a file).

The stdout appender uses a pattern matching algorithm to format the log messages.

The pattern for the stdout appender (see the Log4j documentation for details).

Unless you configure other loggers, all of the loggers that Debezium uses inherit the rootLogger
configuration.

10.3. CONFIGURING DEBEZIUM LOGGING

By default, Debezium connectors write all INFO, WARN, and ERROR messages to the console. You can
change the default logging configuration by using one of the following methods:

Setting the logging level by configuring loggers

Dynamically setting the logging level with the Kafka Connect REST API

Setting the logging level by adding mapped diagnostic contexts

NOTE

There are other methods that you can use to configure Debezium logging with Log4j. For
more information, search for tutorials about setting up and using appenders to send log
messages to specific destinations.

10.3.1. Changing the Debezium logging level by configuring loggers

The default Debezium logging level provides sufficient information to show whether a connector is
healthy or not. However, if a connector is not healthy, you can change its logging level to troubleshoot
the issue.

In general, Debezium connectors send their log messages to loggers with names that match the fully-
qualified name of the Java class that is generating the log message. Debezium uses packages to
organize code with similar or related functions. This means that you can control all of the log messages
for a specific class or for all of the classes within or under a specific package.

Procedure

1. Open the log4j.properties file.

2. Configure a logger for the connector.
This example configures loggers for the MySQL connector and the database history
implementation used by the connector, and sets them to log DEBUG level messages:

log4j.appender.stdout=org.apache.log4j.ConsoleAppender 2
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout 3
log4j.appender.stdout.layout.ConversionPattern=[%d] %p %m (%c)%n 4
...

CHAPTER 10. DEBEZIUM LOGGING

455

https://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/PatternLayout.html

1

2

3 4

log4j.properties

Configures the logger named io.debezium.connector.mysql to send DEBUG, INFO,
WARN, and ERROR messages to the stdout appender.

Configures the logger named io.debezium.relational.history to send DEBUG, INFO,
WARN, and ERROR messages to the stdout appender.

Turns off additivity, which results in log messages not being sent to the appenders of
parent loggers (this can prevent seeing duplicate log messages when using multiple
appenders).

3. If necessary, change the logging level for a specific subset of the classes within the connector.
Increasing the logging level for the entire connector increases the log verbosity, which can make
it difficult to understand what is happening. In these cases, you can change the logging level just
for the subset of classes that are related to the issue that you are troubleshooting.

a. Set the connector’s logging level to either DEBUG or TRACE.

b. Review the connector’s log messages.
Find the log messages that are related to the issue that you are troubleshooting. The end of
each log message shows the name of the Java class that produced the message.

c. Set the connector’s logging level back to INFO.

d. Configure a logger for each Java class that you identified.
For example, consider a scenario in which you are unsure why the MySQL connector is
skipping some events when it is processing the binlog. Rather than turn on DEBUG or
TRACE logging for the entire connector, you can keep the connector’s logging level at
INFO and then configure DEBUG or TRACE on just the class that is reading the binlog:

log4j.properties

10.3.2. Dynamically changing the Debezium logging level with the Kafka Connect API

You can use the Kafka Connect REST API to set logging levels for a connector dynamically at runtime.

...
log4j.logger.io.debezium.connector.mysql=DEBUG, stdout 1
log4j.logger.io.debezium.relational.history=DEBUG, stdout 2

log4j.additivity.io.debezium.connector.mysql=false 3
log4j.additivity.io.debezium.relational.history=false 4
...

...
log4j.logger.io.debezium.connector.mysql=INFO, stdout
log4j.logger.io.debezium.connector.mysql.BinlogReader=DEBUG, stdout
log4j.logger.io.debezium.relational.history=INFO, stdout

log4j.additivity.io.debezium.connector.mysql=false
log4j.additivity.io.debezium.relational.history=false
log4j.additivity.io.debezium.connector.mysql.BinlogReader=false
...

Red Hat Integration 2022.Q2 Debezium User Guide

456

You can use the Kafka Connect REST API to set logging levels for a connector dynamically at runtime.
Unlike log level changes that you set in log4j.properties, changes that you make via the API take effect
immediately, and do not require you to restart the worker.

The log level setting that you specify in the API applies only to the worker at the endpoint that receives
the request. The log levels of other workers in the cluster remain unchanged.

The specified level is not persisted after the worker restarts. To make persistent changes to the logging
level, set the log level in log4j.properties by configuring loggers or adding mapped diagnostic contexts .

Procedure

Set the log level by sending a PUT request to the admin/loggers endpoint that specifies the
following information:

The package for which you want to change the log level.

The log level that you want to set.

For example, to log debug information for a Debezium MySQL connector, send the
following request to Kafka Connect:

10.3.3. Changing the Debezium logging levely by adding mapped diagnostic
contexts

Most Debezium connectors (and the Kafka Connect workers) use multiple threads to perform different
activities. This can make it difficult to look at a log file and find only those log messages for a particular
logical activity. To make the log messages easier to find, Debezium provides several mapped diagnostic
contexts (MDC) that provide additional information for each thread.

Debezium provides the following MDC properties:

dbz.connectorType

A short alias for the type of connector. For example, MySql, Mongo, Postgres, and so on. All threads
associated with the same type of connector use the same value, so you can use this to find all log
messages produced by a given type of connector.

dbz.connectorName

The name of the connector or database server as defined in the connector’s configuration. For
example products, serverA, and so on. All threads associated with a specific connector instance use
the same value, so you can find all of the log messages produced by a specific connector instance.

dbz.connectorContext

A short name for an activity running as a separate thread running within the connector’s task. For
example, main, binlog, snapshot, and so on. In some cases, when a connector assigns threads to
specific resources (such as a table or collection), the name of that resource could be used instead.
Each thread associated with a connector would use a distinct value, so you can find all of the log
messages associated with this particular activity.

curl -s -X PUT -H "Content-Type:application/json"
http://localhost:8083/admin/loggers/io.debezium.connector.<connector_package> -d
'{"level": "<log_level>"}'

curl -s -X PUT -H "Content-Type:application/json"
http://localhost:8083/admin/loggers/io.debezium.connector.mysql -d '{"level": "DEBUG"}'

CHAPTER 10. DEBEZIUM LOGGING

457

To enable MDC for a connector, you configure an appender in the log4j.properties file.

Procedure

1. Open the log4j.properties file.

2. Configure an appender to use any of the supported Debezium MDC properties.
In the following example, the stdout appender is configured to use these MDC properties:

log4j.properties

The configuration in the preceding example produces log messages similar to the ones in the
following output:

Each line in the log includes the connector type (for example, MySQL), the name of the
connector (for example, dbserver1), and the activity of the thread (for example, snapshot).

10.4. DEBEZIUM LOGGING ON OPENSHIFT

If you are using Debezium on OpenShift, you can use the Kafka Connect loggers to configure the
Debezium loggers and logging levels. For more information about configuring logging properties in a
Kafka Connect schema, see Using AMQ Streams on OpenShift .

...
log4j.appender.stdout.layout.ConversionPattern=%d{ISO8601} %-5p
%X{dbz.connectorType}|%X{dbz.connectorName}|%X{dbz.connectorContext} %m [%c]%n
...

...
2017-02-07 20:49:37,692 INFO MySQL|dbserver1|snapshot Starting snapshot for
jdbc:mysql://mysql:3306/?
useInformationSchema=true&nullCatalogMeansCurrent=false&useSSL=false&useUnicode=true
&characterEncoding=UTF-8&characterSetResults=UTF-
8&zeroDateTimeBehavior=convertToNull with user 'debezium'
[io.debezium.connector.mysql.SnapshotReader]
2017-02-07 20:49:37,696 INFO MySQL|dbserver1|snapshot Snapshot is using user
'debezium' with these MySQL grants: [io.debezium.connector.mysql.SnapshotReader]
2017-02-07 20:49:37,697 INFO MySQL|dbserver1|snapshot GRANT SELECT, RELOAD,
SHOW DATABASES, REPLICATION SLAVE, REPLICATION CLIENT ON *.* TO
'debezium'@'%' [io.debezium.connector.mysql.SnapshotReader]
...

Red Hat Integration 2022.Q2 Debezium User Guide

458

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.0/html-single/using_amq_streams_on_openshift/index#type-KafkaConnectSpec-schema-reference

CHAPTER 11. CONFIGURING DEBEZIUM CONNECTORS FOR
YOUR APPLICATION

When the default Debezium connector behavior is not right for your application, you can use the
following Debezium features to configure the behavior you need.

Kafka Connect automatic topic creation

Enables Connect to create topics at runtime, and apply configuration settings to those topics based
on their names.

Avro serialization

Support for configuring Debezium PostgreSQL, MongoDB, or SQL Server connectors to use Avro to
serialize message keys and value, making it easier for change event record consumers to adapt to a
changing record schema.

CloudEvents converter

Enables a Debezium connector to emit change event records that conform to the CloudEvents
specification.

Sending signals to a Debezium connector

Provides a way to modify the behavior of a connector, or trigger an action, such as initiating an ad hoc
snapshot.

11.1. CUSTOMIZATION OF KAFKA CONNECT AUTOMATIC TOPIC
CREATION

Kafka provides two mechanisms for creating topics automatically. You can enable automatic topic
creation for the Kafka broker, and, beginning with Kafka 2.6.0, you can also enable Kafka Connect to
create topics. The Kafka broker uses the auto.create.topics.enable property to control automatic topic
creation. In Kafka Connect, the topic.creation.enable property specifies whether Kafka Connect is
permitted to create topics. In both cases, the default settings for the properties enables automatic topic
creation.

When automatic topic creation is enabled, if a Debezium source connector emits a change event record
for a table for which no target topic already exists, the topic is created at runtime as the event record is
ingested into Kafka.

Differences between automatic topic creation at the broker and in Kafka Connect

Topics that the broker creates are limited to sharing a single default configuration. The broker cannot
apply unique configurations to different topics or sets of topics. By contrast, Kafka Connect can apply
any of several configurations when creating topics, setting the replication factor, number of partitions,
and other topic-specific settings as specified in the Debezium connector configuration. The connector
configuration defines a set of topic creation groups, and associates a set of topic configuration
properties with each group.

The broker configuration and the Kafka Connect configuration are independent of each other. Kafka
Connect can create topics regardless of whether you disable topic creation at the broker. If you enable
automatic topic creation at both the broker and in Kafka Connect, the Connect configuration takes
precedence, and the broker creates topics only if none of the settings in the Kafka Connect
configuration apply.

See the following topics for more information:

Section 11.1.1, “Disabling automatic topic creation for the Kafka broker”

CHAPTER 11. CONFIGURING DEBEZIUM CONNECTORS FOR YOUR APPLICATION

459

Section 11.1.2, “Configuring automatic topic creation in Kafka Connect”

Section 11.1.3, “Configuration of automatically created topics”

Section 11.1.3.1, “Topic creation groups”

Section 11.1.3.2, “Topic creation group configuration properties”

Section 11.1.3.3, “Specifying the configuration for the Debezium default topic creation group”

Section 11.1.3.4, “Specifying the configuration for Debezium custom topic creation groups”

Section 11.1.3.5, “Registering Debezium custom topic creation groups”

11.1.1. Disabling automatic topic creation for the Kafka broker

By default, the Kafka broker configuration enables the broker to create topics at runtime if the topics do
not already exist. Topics created by the broker cannot be configured with custom properties. If you use
a Kafka version earlier than 2.6.0, and you want to create topics with specific configurations, you must to
disable automatic topic creation at the broker, and then explicitly create the topics, either manually, or
through a custom deployment process.

Procedure

In the broker configuration, set the value of auto.create.topics.enable to false.

11.1.2. Configuring automatic topic creation in Kafka Connect

Automatic topic creation in Kafka Connect is controlled by the topic.creation.enable property. The
default value for the property is true, enabling automatic topic creation, as shown in the following
example:

topic.creation.enable = true

The setting for the topic.creation.enable property applies to all workers in the Connect cluster.

Kafka Connect automatic topic creation requires you to define the configuration properties that Kafka
Connect applies when creating topics. You specify topic configuration properties in the Debezium
connector configuration by defining topic groups, and then specifying the properties to apply to each
group. The connector configuration defines a default topic creation group, and, optionally, one or more
custom topic creation groups. Custom topic creation groups use lists of topic name patterns to specify
the topics to which the group’s settings apply.

For details about how Kafka Connect matches topics to topic creation groups, see Topic creation
groups. For more information about how configuration properties are assigned to groups, see Topic
creation group configuration properties.

By default, topics that Kafka Connect creates are named based on the pattern server.schema.table,
for example, dbserver.myschema.inventory.

Procedure

To prevent Kafka Connect from creating topics automatically, set the value of
topic.creation.enable to false in the Kafka Connect custom resource, as in the following
example:

Red Hat Integration 2022.Q2 Debezium User Guide

460

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#debezium-connector-topic-creation-groups
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#debezium-connector-topic-creation-group-configuration-properties

NOTE

Kafka Connect automatic topic creation requires the replication.factor and partitions
properties to be set for at least the default topic creation group. It is valid for groups to
obtain the values for the required properties from the default values for the Kafka broker.

11.1.3. Configuration of automatically created topics

For Kafka Connect to create topics automatically, it requires information from the source connector
about the configuration properties to apply when creating topics. You define the properties that control
topic creation in the configuration for each Debezium connector. As Kafka Connect creates topics for
event records that a connector emits, the resulting topics obtain their configuration from the applicable
group. The configuration applies to event records emitted by that connector only.

11.1.3.1. Topic creation groups

A set of topic properties is associated with a topic creation group. Minimally, you must define a default
topic creation group and specify its configuration properties. Beyond that you can optionally define one
or more custom topic creation groups and specify unique properties for each.

When you create custom topic creation groups, you define the member topics for each group based on
topic name patterns. You can specify naming patterns that describe the topics to include or exclude
from each group. The include and exclude properties contain comma-separated lists of regular
expressions that define topic name patterns. For example, if you want a group to include all topics that
start with the string dbserver1.inventory, set the value of its topic.creation.inventory.include
property to dbserver1\\.inventory\\.*.

NOTE

If you specify both include and exclude properties for a custom topic group, the
exclusion rules take precedence, and override the inclusion rules.

11.1.3.2. Topic creation group configuration properties

The default topic creation group and each custom group is associated with a unique set of
configuration properties. You can configure a group to include any of the Kafka topic-level
configuration properties. For example, you can specify the cleanup policy for old topic segments ,
retention time, or the topic compression type for a topic group. You must define at least a minimum set
of properties to describe the configuration of the topics to be created.

If no custom groups are registered, or if the include patterns for any registered groups don’t match the
names of any topics to be created, then Kafka Connect uses the configuration of the default group to
create topics.

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaConnect
metadata:
 name: my-connect-cluster

...

spec:
 config:
 topic.creation.enable: "false"

CHAPTER 11. CONFIGURING DEBEZIUM CONNECTORS FOR YOUR APPLICATION

461

https://kafka.apache.org/documentation/#topicconfigs
https://kafka.apache.org/documentation/#topicconfigs_cleanup.policy
https://kafka.apache.org/documentation/#topicconfigs_retention.ms
https://kafka.apache.org/documentation/#topicconfigs_compression.type

For general information about configuring topics, see Kafka topic creation recommendations in Installing
Debezium on OpenShift.

11.1.3.3. Specifying the configuration for the Debezium default topic creation group

Before you can use Kafka Connect automatic topic creation, you must create a default topic creation
group and define a configuration for it. The configuration for the default topic creation group is applied
to any topics with names that do not match the include list pattern of a custom topic creation group.

Prerequisites

In the Kafka Connect custom resource, the use-connector-resources value in
metadata.annotations specifies that the cluster Operator uses KafkaConnector custom
resources to configure connectors in the cluster. For example:

Procedure

To define properties for the topic.creation.default group, add them to spec.config in the
connector custom resource, as shown in the following example:

You can include any Kafka topic-level configuration property in the configuration for the
default group.

Table 11.1. Connector configuration for the default topic creation group

Item Description

 ...
 metadata:
 name: my-connect-cluster
 annotations: strimzi.io/use-connector-resources: "true"
 ...

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaConnector
metadata:
 name: inventory-connector
 labels:
 strimzi.io/cluster: my-connect-cluster
spec:
...

 config:
...
 topic.creation.default.replication.factor: 3 1
 topic.creation.default.partitions: 10 2
 topic.creation.default.cleanup.policy: compact 3
 topic.creation.default.compression.type: lz4 4
...

Red Hat Integration 2022.Q2 Debezium User Guide

462

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/installing_debezium_on_openshift/#kafka-topic-creation-recommendations
https://kafka.apache.org/documentation/#topicconfigs

1 topic.creation.default.replication.factor defines the replication factor for topics created by
the default group.
replication.factor is mandatory for the default group but optional for custom groups. Custom
groups will fall back to the default group’s value if not set. Use -1 to use the Kafka broker’s default
value.

2 topic.creation.default.partitions defines the number of partitions for topics created by the
default group.
partitions is mandatory for the default group but optional for custom groups. Custom groups will
fall back to the default group’s value if not set. Use -1 to use the Kafka broker’s default value.

3 topic.creation.default.cleanup.policy is mapped to the cleanup.policy property of the topic
level configuration parameters and defines the log retention policy.

4 topic.creation.default.compression.type is mapped to the compression.type property of
the topic level configuration parameters and defines how messages are compressed on hard disk.

Item Description

NOTE

Custom groups fall back to the default group settings only for the required
replication.factor and partitions properties. If the configuration for a custom topic
group leaves other properties undefined, the values specified in the default group are not
applied.

11.1.3.4. Specifying the configuration for Debezium custom topic creation groups

You can define multiple custom topic groups, each with its own configuration.

Procedure

To define a custom topic group, add a topic.creation.<group_name>.include property to
spec.config in the connector custom resource, followed by the configuration properties that
you want to apply to topics in the custom group.
The following example shows an excerpt of a custom resource that defines the custom topic
creation groups inventory and applicationlogs:

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaConnector
metadata:
 name: inventory-connector
...
spec:
...

 config:
... 1
 topic.creation.inventory.include: dbserver1\\.inventory\\.* 2
 topic.creation.inventory.partitions: 20

CHAPTER 11. CONFIGURING DEBEZIUM CONNECTORS FOR YOUR APPLICATION

463

https://kafka.apache.org/documentation/#cleanup.policy
https://kafka.apache.org/documentation/#topicconfigs
https://kafka.apache.org/documentation/#compression.type
https://kafka.apache.org/documentation/#topicconfigs

Table 11.2. Connector configuration for custom inventory and applicationlogs topic creation groups

Item Description

1 Defines the configuration for the inventory group.
The replication.factor and partitions properties are optional for custom groups. If no value is
set, custom groups fall back to the value set for the default group. Set the value to -1 to use the
value that is set for the Kafka broker.

2 topic.creation.inventory.include defines a regular expression to match all topics that start
with dbserver1.inventory.. The configuration that is defined for the inventory group is applied
only to topics with names that match the specified regular expression.

3 Defines the configuration for the applicationlogs group.
The replication.factor and partitions properties are optional for custom groups. If no value is
set, custom groups fall back to the value set for the default group. Set the value to -1 to use the
value that is set for the Kafka broker.

4 topic.creation.applicationlogs.include defines a regular expression to match all topics that
start with dbserver1.logs.applog-. The configuration that is defined for the applicationlogs
group is applied only to topics with names that match the specified regular expression. Because an
exclude property is also defined for this group, the topics that match the include regular
expression might be further restricted by the that exclude property.

5 topic.creation.applicationlogs.exclude defines a regular expression to match all topics that
start with dbserver1.logs.applog-old-. The configuration that is defined for the
applicationlogs group is applied only to topics with name that do not match the given regular
expression. Because an include property is also defined for this group, the configuration of the
applicationlogs group is applied only to topics with names that match the specified include
regular expressions and that do not match the specified exclude regular expressions.

11.1.3.5. Registering Debezium custom topic creation groups

After you specify the configuration for any custom topic creation groups, register the groups.

Procedure

Register custom groups by adding the topic.creation.groups property to the connector

 topic.creation.inventory.cleanup.policy: compact
 topic.creation.inventory.delete.retention.ms: 7776000000

 3
 topic.creation.applicationlogs.include: dbserver1\\.logs\\.applog-.* 4
 topic.creation.applicationlogs.exclude": dbserver1\\.logs\\.applog-old-.* 5
 topic.creation.applicationlogs.replication.factor: 1
 topic.creation.applicationlogs.partitions: 20
 topic.creation.applicationlogs.cleanup.policy: delete
 topic.creation.applicationlogs.retention.ms: 7776000000
 topic.creation.applicationlogs.compression.type: lz4
...
...

Red Hat Integration 2022.Q2 Debezium User Guide

464

Register custom groups by adding the topic.creation.groups property to the connector
custom resource, and specifying a comma-separated list of custom topic creation groups.
The following excerpt from a connector custom resource registers the custom topic creation
groups inventory and applicationlogs:

Completed configuration

The following example shows a completed configuration that includes the configuration for a default
topic group, along with the configurations for an inventory and an applicationlogs custom topic
creation group:

Example: Configuration for a default topic creation group and two custom groups

11.2. CONFIGURING DEBEZIUM CONNECTORS TO USE AVRO

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaConnector
metadata:
 name: inventory-connector
...
spec:
...

 config:
 topic.creation.groups: inventory,applicationlogs

...

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaConnector
metadata:
 name: inventory-connector
...
spec:
...

 config:
...
 topic.creation.default.replication.factor: 3,
 topic.creation.default.partitions: 10,
 topic.creation.default.cleanup.policy: compact
 topic.creation.default.compression.type: lz4
 topic.creation.groups: inventory,applicationlogs
 topic.creation.inventory.include: dbserver1\\.inventory\\.*
 topic.creation.inventory.partitions: 20
 topic.creation.inventory.cleanup.policy: compact
 topic.creation.inventory.delete.retention.ms: 7776000000
 topic.creation.applicationlogs.include: dbserver1\\.logs\\.applog-.*
 topic.creation.applicationlogs.exclude": dbserver1\\.logs\\.applog-old-.*
 topic.creation.applicationlogs.replication.factor: 1
 topic.creation.applicationlogs.partitions: 20
 topic.creation.applicationlogs.cleanup.policy: delete
 topic.creation.applicationlogs.retention.ms: 7776000000
 topic.creation.applicationlogs.compression.type: lz4
...

CHAPTER 11. CONFIGURING DEBEZIUM CONNECTORS FOR YOUR APPLICATION

465

11.2. CONFIGURING DEBEZIUM CONNECTORS TO USE AVRO
SERIALIZATION

A Debezium connector works in the Kafka Connect framework to capture each row-level change in a
database by generating a change event record. For each change event record, the Debezium connector
completes the following actions:

1. Applies configured transformations.

2. Serializes the record key and value into a binary form by using the configured Kafka Connect
converters.

3. Writes the record to the correct Kafka topic.

You can specify converters for each individual Debezium connector instance. Kafka Connect provides a
JSON converter that serializes the record keys and values into JSON documents. The default behavior
is that the JSON converter includes the record’s message schema, which makes each record very
verbose. The Getting Started with Debezium guide shows what the records look like when both payload
and schemas are included. If you want records to be serialized with JSON, consider setting the following
connector configuration properties to false:

key.converter.schemas.enable

value.converter.schemas.enable

Setting these properties to false excludes the verbose schema information from each record.

Alternatively, you can serialize the record keys and values by using Apache Avro. The Avro binary format
is compact and efficient. Avro schemas make it possible to ensure that each record has the correct
structure. Avro’s schema evolution mechanism enables schemas to evolve. This is essential for Debezium
connectors, which dynamically generate each record’s schema to match the structure of the database
table that was changed. Over time, change event records written to the same Kafka topic might have
different versions of the same schema. Avro serialization makes it easier for the consumers of change
event records to adapt to a changing record schema.

To use Apache Avro serialization, you must deploy a schema registry that manages Avro message
schemas and their versions. For information about setting up this registry, see the Red Hat Integration -
Service Registry documentation.

11.2.1. About the Service Registry

Red Hat Integration - Service Registry provides the following components that work with Avro:

An Avro converter that you can specify in Debezium connector configurations. This converter
maps Kafka Connect schemas to Avro schemas. The converter then uses the Avro schemas to
serialize the record keys and values into Avro’s compact binary form.

An API and schema registry that tracks:

Avro schemas that are used in Kafka topics.

Where the Avro converter sends the generated Avro schemas.

Because the Avro schemas are stored in this registry, each record needs to contain only a tiny
schema identifier. This makes each record even smaller. For an I/O bound system like Kafka, this
means more total throughput for producers and consumers.

Red Hat Integration 2022.Q2 Debezium User Guide

466

https://kafka.apache.org/documentation/#connect_running
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/getting_started_with_debezium/index
https://avro.apache.org/
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-q4/html-single/getting_started_with_service_registry/index
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/service_registry_user_guide/index

Avro Serdes (serializers and deserializers) for Kafka producers and consumers. Kafka consumer
applications that you write to consume change event records can use Avro Serdes to deserialize
the change event records.

To use the Service Registry with Debezium, add Service Registry converters and their dependencies to
the Kafka Connect container image that you are using for running a Debezium connector.

NOTE

The Service Registry project also provides a JSON converter. This converter combines
the advantage of less verbose messages with human-readable JSON. Messages do not
contain the schema information themselves, but only a schema ID.

NOTE

To use converters provided by Service Registry you need to provide
apicurio.registry.url.

11.2.2. Overview of deploying a Debezium connector that uses Avro serialization

To deploy a Debezium connector that uses Avro serialization, you must complete three main tasks:

1. Deploy a Red Hat Integration - Service Registry instance by following the instructions in
Installing and deploying Service Registry on OpenShift .

2. Install the Avro converter by downloading the Debezium Service Registry Kafka Connect zip file
and extracting it into the Debezium connector’s directory.

3. Configure a Debezium connector instance to use Avro serialization by setting configuration
properties as follows:

key.converter=io.apicurio.registry.utils.converter.AvroConverter
key.converter.apicurio.registry.url=http://apicurio:8080/apis/registry/v2
key.converter.apicurio.registry.auto-register=true
key.converter.apicurio.registry.find-latest=true
value.converter=io.apicurio.registry.utils.converter.AvroConverter
value.converter.apicurio.registry.url=http://apicurio:8080/apis/registry/v2
value.converter.apicurio.registry.auto-register=true
value.converter.apicurio.registry.find-latest=true

Internally, Kafka Connect always uses JSON key/value converters for storing configuration and offsets.

11.2.3. Deploying connectors that use Avro in Debezium containers

In your environment, you might want to use a provided Debezium container to deploy Debezium
connectors that use Avro serialization. Complete the following procedure to build a custom Kafka
Connect container image for Debezium, and configure the Debezium connector to use the Avro
converter.

Prerequisites

You have Docker installed and sufficient rights to create and manage containers.

You downloaded the Debezium connector plug-in(s) that you want to deploy with Avro

CHAPTER 11. CONFIGURING DEBEZIUM CONNECTORS FOR YOUR APPLICATION

467

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/installing_and_deploying_service_registry_on_openshift/index
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=red.hat.integration&downloadType=distributions

You downloaded the Debezium connector plug-in(s) that you want to deploy with Avro
serialization.

Procedure

1. Deploy an instance of Service Registry. See Installing and deploying Service Registry on
OpenShift, which provides instructions for:

Installing Service Registry

Installing AMQ Streams

Setting up AMQ Streams storage

2. Extract the Debezium connector archives to create a directory structure for the connector
plug-ins. If you downloaded and extracted the archives for multiple Debezium connectors, the
resulting directory structure looks like the one in the following example:

tree ./my-plugins/
./my-plugins/
├── debezium-connector-mongodb
| ├── ...
├── debezium-connector-mysql
│ ├── ...
├── debezium-connector-postgres
│ ├── ...
└── debezium-connector-sqlserver
 ├── ...

3. Add the Avro converter to the directory that contains the Debezium connector that you want to
configure to use Avro serialization:

a. Go to the Red Hat Integration download site and download the Service Registry Kafka
Connect zip file.

b. Extract the archive into the desired Debezium connector directory.

To configure more than one type of Debezium connector to use Avro serialization, extract the
archive into the directory for each relevant connector type. Although extracting the archive to
each directory duplicates the files, by doing so you remove the possibility of conflicting
dependencies.

4. Create and publish a custom image for running Debezium connectors that are configured to use
the Avro converter:

a. Create a new Dockerfile by using registry.redhat.io/amq7/amq-streams-kafka-30-
rhel8:2.0.0 as the base image. In the following example, replace my-plugins with the name
of your plug-ins directory:

FROM registry.redhat.io/amq7/amq-streams-kafka-30-rhel8:2.0.0
USER root:root
COPY ./my-plugins/ /opt/kafka/plugins/
USER 1001

Before Kafka Connect starts running the connector, Kafka Connect loads any third-party
plug-ins that are in the /opt/kafka/plugins directory.

Red Hat Integration 2022.Q2 Debezium User Guide

468

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/installing_and_deploying_service_registry_on_openshift/index
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=red.hat.integration&downloadType=distributions

b. Build the docker container image. For example, if you saved the docker file that you created
in the previous step as debezium-container-with-avro, then you would run the following
command:
docker build -t debezium-container-with-avro:latest

c. Push your custom image to your container registry, for example:
docker push <myregistry.io>/debezium-container-with-avro:latest

d. Point to the new container image. Do one of the following:

Edit the KafkaConnect.spec.image property of the KafkaConnect custom resource. If
set, this property overrides the STRIMZI_DEFAULT_KAFKA_CONNECT_IMAGE
variable in the Cluster Operator. For example:

In the install/cluster-operator/050-Deployment-strimzi-cluster-operator.yaml file,
edit the STRIMZI_DEFAULT_KAFKA_CONNECT_IMAGE variable to point to the new
container image and reinstall the Cluster Operator. If you edit this file you will need to
apply it to your OpenShift cluster.

5. Deploy each Debezium connector that is configured to use the Avro converter. For each
Debezium connector:

a. Create a Debezium connector instance. The following inventory-connector.yaml file
example creates a KafkaConnector custom resource that defines a MySQL connector
instance that is configured to use the Avro converter:

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
 name: my-connect-cluster
spec:
 #...
 image: debezium-container-with-avro

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaConnector
metadata:
 name: inventory-connector
 labels:
 strimzi.io/cluster: my-connect-cluster
spec:
 class: io.debezium.connector.mysql.MySqlConnector
 tasksMax: 1
 config:
 database.hostname: mysql
 database.port: 3306
 database.user: debezium
 database.password: dbz
 database.server.id: 184054
 database.server.name: dbserver1
 database.include.list: inventory
 database.history.kafka.bootstrap.servers: my-cluster-kafka-bootstrap:9092
 database.history.kafka.topic: schema-changes.inventory
 key.converter: io.apicurio.registry.utils.converter.AvroConverter
 key.converter.apicurio.registry.url: http://apicurio:8080/api
 key.converter.apicurio.registry.global-id:

CHAPTER 11. CONFIGURING DEBEZIUM CONNECTORS FOR YOUR APPLICATION

469

b. Apply the connector instance, for example:
oc apply -f inventory-connector.yaml

This registers inventory-connector and the connector starts to run against the inventory
database.

6. Verify that the connector was created and has started to track changes in the specified
database. You can verify the connector instance by watching the Kafka Connect log output as,
for example, inventory-connector starts.

a. Display the Kafka Connect log output:

b. Review the log output to verify that the initial snapshot has been executed. You should see
something like the following lines:

Taking the snapshot involves a number of steps:

io.apicurio.registry.utils.serde.strategy.GetOrCreateIdStrategy
 value.converter: io.apicurio.registry.utils.converter.AvroConverter
 value.converter.apicurio.registry.url: http://apicurio:8080/api
 value.converter.apicurio.registry.global-id:
io.apicurio.registry.utils.serde.strategy.GetOrCreateIdStrategy

oc logs $(oc get pods -o name -l strimzi.io/name=my-connect-cluster-connect)

...
2020-02-21 17:57:30,801 INFO Starting snapshot for jdbc:mysql://mysql:3306/?
useInformationSchema=true&nullCatalogMeansCurrent=false&useSSL=false&useUnicode=
true&characterEncoding=UTF-8&characterSetResults=UTF-
8&zeroDateTimeBehavior=CONVERT_TO_NULL&connectTimeout=30000 with user
'debezium' with locking mode 'minimal' (io.debezium.connector.mysql.SnapshotReader)
[debezium-mysqlconnector-dbserver1-snapshot]
2020-02-21 17:57:30,805 INFO Snapshot is using user 'debezium' with these MySQL
grants: (io.debezium.connector.mysql.SnapshotReader) [debezium-mysqlconnector-
dbserver1-snapshot]
...

...
2020-02-21 17:57:30,822 INFO Step 0: disabling autocommit, enabling repeatable read
transactions, and setting lock wait timeout to 10
(io.debezium.connector.mysql.SnapshotReader) [debezium-mysqlconnector-dbserver1-
snapshot]
2020-02-21 17:57:30,836 INFO Step 1: flush and obtain global read lock to prevent
writes to database (io.debezium.connector.mysql.SnapshotReader) [debezium-
mysqlconnector-dbserver1-snapshot]
2020-02-21 17:57:30,839 INFO Step 2: start transaction with consistent snapshot
(io.debezium.connector.mysql.SnapshotReader) [debezium-mysqlconnector-dbserver1-
snapshot]
2020-02-21 17:57:30,840 INFO Step 3: read binlog position of MySQL primary server
(io.debezium.connector.mysql.SnapshotReader) [debezium-mysqlconnector-dbserver1-
snapshot]
2020-02-21 17:57:30,843 INFO using binlog 'mysql-bin.000003' at position '154' and gtid
'' (io.debezium.connector.mysql.SnapshotReader) [debezium-mysqlconnector-dbserver1-
snapshot]
...

Red Hat Integration 2022.Q2 Debezium User Guide

470

After completing the snapshot, Debezium begins tracking changes in, for example, the
inventory database’s binlog for change events:

11.2.4. About Avro name requirements

As stated in the Avro documentation, names must adhere to the following rules:

Start with [A-Za-z_]

Subsequently contains only [A-Za-z0-9_] characters

Debezium uses the column’s name as the basis for the corresponding Avro field. This can lead to
problems during serialization if the column name does not also adhere to the Avro naming rules. Each
Debezium connector provides a configuration property, sanitize.field.names that you can set to true if
you have columns that do not adhere to Avro rules for names. Setting sanitize.field.names to true
allows serialization of non-conformant fields without having to actually modify your schema.

11.3. EMITTING DEBEZIUM CHANGE EVENT RECORDS IN
CLOUDEVENTS FORMAT

CloudEvents is a specification for describing event data in a common way. Its aim is to provide
interoperability across services, platforms and systems. Debezium enables you to configure a MongoDB,
MySQL, PostgreSQL, or SQL Server connector to emit change event records that conform to the
CloudEvents specification.

IMPORTANT

2020-02-21 17:57:34,423 INFO Step 9: committing transaction
(io.debezium.connector.mysql.SnapshotReader) [debezium-mysqlconnector-dbserver1-
snapshot]
2020-02-21 17:57:34,424 INFO Completed snapshot in 00:00:03.632
(io.debezium.connector.mysql.SnapshotReader) [debezium-mysqlconnector-dbserver1-
snapshot]
...

...
2020-02-21 17:57:35,584 INFO Transitioning from the snapshot reader to the binlog
reader (io.debezium.connector.mysql.ChainedReader) [task-thread-inventory-connector-
0]
2020-02-21 17:57:35,613 INFO Creating thread debezium-mysqlconnector-dbserver1-
binlog-client (io.debezium.util.Threads) [task-thread-inventory-connector-0]
2020-02-21 17:57:35,630 INFO Creating thread debezium-mysqlconnector-dbserver1-
binlog-client (io.debezium.util.Threads) [blc-mysql:3306]
Feb 21, 2020 5:57:35 PM com.github.shyiko.mysql.binlog.BinaryLogClient connect
INFO: Connected to mysql:3306 at mysql-bin.000003/154 (sid:184054, cid:5)
2020-02-21 17:57:35,775 INFO Connected to MySQL binlog at mysql:3306, starting at
binlog file 'mysql-bin.000003', pos=154, skipping 0 events plus 0 rows
(io.debezium.connector.mysql.BinlogReader) [blc-mysql:3306]
...

CHAPTER 11. CONFIGURING DEBEZIUM CONNECTORS FOR YOUR APPLICATION

471

https://avro.apache.org/docs/current/spec.html#names
https://cloudevents.io/

IMPORTANT

Emitting change event records in CloudEvents format is a Technology Preview feature.
Technology Preview features are not supported with Red Hat production service-level
agreements (SLAs) and might not be functionally complete; therefore, Red Hat does not
recommend implementing any Technology Preview features in production environments.
This Technology Preview feature provides early access to upcoming product innovations,
enabling you to test functionality and provide feedback during the development process.
For more information about support scope, see Technology Preview Features Support
Scope.

The CloudEvents specification defines:

A set of standardized event attributes

Rules for defining custom attributes

Encoding rules for mapping event formats to serialized representations such as JSON or Avro

Protocol bindings for transport layers such as Apache Kafka, HTTP or AMQP

To configure a Debezium connector to emit change event records that conform to the CloudEvents
specification, Debezium provides the io.debezium.converters.CloudEventsConverter, which is a Kafka
Connect message converter.

Currently, only structured mapping mode is supported. The CloudEvents change event envelope can be
JSON or Avro and each envelope type supports JSON or Avro as the data format. It is expected that a
future Debezium release will support binary mapping mode.

Information about emitting change events in CloudEvents format is organized as follows:

Section 11.3.1, “Example Debezium change event records in CloudEvents format”

Section 11.3.2, “Example of configuring Debezium CloudEvents converter”

Section 11.3.3, “Debezium CloudEvents converter configuration options”

For information about using Avro, see:

Avro serialization

Apicurio Registry

11.3.1. Example Debezium change event records in CloudEvents format

The following example shows what a CloudEvents change event record emitted by a PostgreSQL
connector looks like. In this example, the PostgreSQL connector is configured to use JSON as the
CloudEvents format envelope and also as the data format.

{
 "id" : "name:test_server;lsn:29274832;txId:565", 1
 "source" : "/debezium/postgresql/test_server", 2
 "specversion" : "1.0", 3
 "type" : "io.debezium.postgresql.datachangeevent", 4
 "time" : "2020-01-13T13:55:39.738Z", 5

Red Hat Integration 2022.Q2 Debezium User Guide

472

https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#configuring-debezium-connectors-to-use-avro-serialization
https://github.com/Apicurio/apicurio-registry

1 1 1

2 2 2

3 3 3

4 4 4

5 5

6

7

8

9

10

Unique ID that the connector generates for the change event based on the change event’s
content.

The source of the event, which is the logical name of the database as specified by the
database.server.name property in the connector’s configuration.

The CloudEvents specification version.

Connector type that generated the change event. The format of this field is
io.debezium.CONNECTOR_TYPE.datachangeevent. The value of CONNECTOR_TYPE is

mongodb, mysql, postgresql, or sqlserver.

Time of the change in the source database.

Describes the content type of the data attribute, which is JSON in this example. The only
alternative is Avro.

An operation identifier. Possible values are r for read, c for create, u for update, or d for delete.

All source attributes that are known from Debezium change events are mapped to CloudEvents
extension attributes by using the iodebezium prefix for the attribute name.

When enabled in the connector, each transaction attribute that is known from Debezium change
events is mapped to a CloudEvents extension attribute by using the iodebeziumtx prefix for the
attribute name.

The actual data change itself. Depending on the operation and the connector, the data might
contain before, after and/or patch fields.

The following example also shows what a CloudEvents change event record emitted by a PostgreSQL

 "datacontenttype" : "application/json", 6
 "iodebeziumop" : "r", 7
 "iodebeziumversion" : "1.7.2.Final", 8
 "iodebeziumconnector" : "postgresql",
 "iodebeziumname" : "test_server",
 "iodebeziumtsms" : "1578923739738",
 "iodebeziumsnapshot" : "true",
 "iodebeziumdb" : "postgres",
 "iodebeziumschema" : "s1",
 "iodebeziumtable" : "a",
 "iodebeziumtxId" : "565",
 "iodebeziumlsn" : "29274832",
 "iodebeziumxmin" : null,
 "iodebeziumtxid": "565", 9
 "iodebeziumtxtotalorder": "1",
 "iodebeziumtxdatacollectionorder": "1",
 "data" : { 10
 "before" : null,
 "after" : {
 "pk" : 1,
 "name" : "Bob"
 }
 }
}

CHAPTER 11. CONFIGURING DEBEZIUM CONNECTORS FOR YOUR APPLICATION

473

1

2

3

connector looks like. In this example, the PostgreSQL connector is again configured to use JSON as the
CloudEvents format envelope, but this time the connector is configured to use Avro for the data
format.

Indicates that the data attribute contains Avro binary data.

URI of the schema to which the Avro data adheres.

The data attribute contains base64-encoded Avro binary data.

It is also possible to use Avro for the envelope as well as the data attribute.

11.3.2. Example of configuring Debezium CloudEvents converter

Configure io.debezium.converters.CloudEventsConverter in your Debezium connector configuration.
The following example shows how to configure the CloudEvents converter to emit change event
records that have the following characteristics:

Use JSON as the envelope.

Use the schema registry at http://my-registry/schemas/ids/1 to serialize the data attribute as
binary Avro data.

{
 "id" : "name:test_server;lsn:33227720;txId:578",
 "source" : "/debezium/postgresql/test_server",
 "specversion" : "1.0",
 "type" : "io.debezium.postgresql.datachangeevent",
 "time" : "2020-01-13T14:04:18.597Z",
 "datacontenttype" : "application/avro", 1
 "dataschema" : "http://my-registry/schemas/ids/1", 2
 "iodebeziumop" : "r",
 "iodebeziumversion" : "1.7.2.Final",
 "iodebeziumconnector" : "postgresql",
 "iodebeziumname" : "test_server",
 "iodebeziumtsms" : "1578924258597",
 "iodebeziumsnapshot" : "true",
 "iodebeziumdb" : "postgres",
 "iodebeziumschema" : "s1",
 "iodebeziumtable" : "a",
 "iodebeziumtxId" : "578",
 "iodebeziumlsn" : "33227720",
 "iodebeziumxmin" : null,
 "iodebeziumtxid": "578",
 "iodebeziumtxtotalorder": "1",
 "iodebeziumtxdatacollectionorder": "1",
 "data" : "AAAAAAEAAgICAg==" 3
}

...
"value.converter": "io.debezium.converters.CloudEventsConverter",
"value.converter.serializer.type" : "json", 1

Red Hat Integration 2022.Q2 Debezium User Guide

474

1 Specifying the serializer.type is optional, because json is the default.

The CloudEvents converter converts Kafka record values. In the same connector configuration, you can
specify key.converter if you want to operate on record keys. For example, you might specify
StringConverter, LongConverter, JsonConverter, or AvroConverter.

11.3.3. Debezium CloudEvents converter configuration options

When you configure a Debezium connector to use the CloudEvent converter you can specify the
following options.

Table 11.3. Descriptions of CloudEvents converter configuration options

Option Default Description

serializer.type json The encoding type to use for the CloudEvents
envelope structure. The value can be json or
avro.

data.serializer.type json The encoding type to use for the data
attribute. The value can be json or avro.

json. ... N/A Any configuration options to be passed
through to the underlying converter when using
JSON. The json. prefix is removed.

avro. ... N/A Any configuration options to be passed
through to the underlying converter when using
Avro. The avro. prefix is removed. For
example, for Avro data, you would specify the
avro.schema.registry.url option.

11.4. SENDING SIGNALS TO A DEBEZIUM CONNECTOR

IMPORTANT

Signaling is a Technology Preview feature. Technology Preview features are not
supported with Red Hat production service-level agreements (SLAs) and might not be
functionally complete; therefore, Red Hat does not recommend implementing any
Technology Preview features in production environments. This Technology Preview
feature provides early access to upcoming product innovations, enabling you to test
functionality and provide feedback during the development process. For more
information about support scope, see Technology Preview Features Support Scope .

The Debezium signaling mechanism provides a way to modify the behavior of a connector, or to trigger a
one-time action, such as initiating an ad hoc snapshot of a table. To trigger a connector to perform a
specified action, you issue a SQL command to add a signal message to a specialized signaling table, also

"value.converter.data.serializer.type" : "avro",
"value.converter.avro.schema.registry.url": "http://my-registry/schemas/ids/1"
...

CHAPTER 11. CONFIGURING DEBEZIUM CONNECTORS FOR YOUR APPLICATION

475

https://access.redhat.com/support/offerings/techpreview/

referred to as a signaling data collection. The signaling table, which you create on the source database,
is designated exclusively for communicating with Debezium. When Debezium detects that a new logging
record or ad hoc snapshot record is added to the signaling table, it reads the signal, and initiates the
requested operation.

Signaling is available for use with the following Debezium connectors:

Db2

MySQL

Oracle

PostgreSQL

SQL Server

11.4.1. Enabling Debezium signaling

By default, the Debezium signaling mechanism is disabled. You must explicitly enable signaling for each
connector that you want to use it with.

Procedure

1. On the source database, create a signaling data collection table for sending signals to the
connector. For information about the required structure of the signaling data collection, see
Structure of a signaling data collection .

2. For source databases such as Db2 or SQL Server that implement a native change data capture
(CDC) mechanism, enable CDC for the signaling table.

3. Add the name of the signaling data collection to the Debezium connector configuration.
In the connector configuration, add the property signal.data.collection, and set its value to the
fully-qualified name of the signaling data collection that you created in Step 1.

For example, signal.data.collection = inventory.debezium_signals.

The format for the fully-qualified name of the signaling collection depends on the connector.
The following example shows the naming formats to use for each connector:

Db2

<schemaName>.<tableName>

MySQL

<databaseName>.<tableName>

PostgreSQL

<schemaName>.<tableName>

SQL Server

<databaseName>.<schemaName>.<tableName>

For more information about setting the signal.data.collection property, see the table of
configuration properties for your connector.

4. Add the signaling table to the list of tables to monitor.
In the configuration for the Debezium connector, add the name of the data collection that you

Red Hat Integration 2022.Q2 Debezium User Guide

476

created in Step 1 to the table.include.list property.

For more information about the table.include.list property, see the table of configuration
properties for your connector.

11.4.1.1. Required structure of a Debezium signaling data collection

A signaling data collection, or signaling table, stores signals that you send to a connector to trigger a
specified operation. The structure of the signaling table must conform to the following standard format.

Contains three fields (columns).

Fields are arranged in a specific order, as shown in Table 1.

Table 11.4. Required structure of a signaling data collection

Field Type Description

id
(requi
red)

strin
g

An arbitrary unique string that identifies a signal instance.
You assign an id to each signal that you submit to the signaling table.
Typically the ID is a UUID string.
You can use signal instances for logging, debugging, or de-duplication.
When a signal triggers Debezium to perform an incremental snapshot, it generates a
signal message with an arbitrary id string. The id string that the generated message
contains is unrelated to the id string in the submitted signal.

type
(requi
red)

strin
g

Specifies the type of signal to send.
You can use some signal types with any connector for which signaling is available, while
other signal types are available for specific connectors only.

data
(optio
nal)

strin
g

Specifies JSON-formatted parameters to pass to a signal action.
Each signal type requires a specific set of data.

NOTE

The field names in a data collection are arbitrary. The preceding table provides suggested
names. If you use a different naming convention, ensure that the values in each field are
consistent with the expected content.

11.4.1.2. Creating a Debezium signaling data collection

You create a signaling table by submitting a standard SQL DDL query to the source database.

Prerequisites

You have sufficient access privileges to create a table on the target database.

Procedure

Submit a SQL query to the source database to create a table that is consistent with the required
structure, as shown in the following example:

CHAPTER 11. CONFIGURING DEBEZIUM CONNECTORS FOR YOUR APPLICATION

477

CREATE TABLE <tableName> (id VARCHAR(<varcharValue>) PRIMARY KEY, type
VARCHAR(<varcharValue>) NOT NULL, data VARCHAR(<varcharValue>) NULL);

NOTE

The amount of space that you allocate to the VARCHAR parameter of the id variable
must be sufficient to accommodate the size of the ID strings of signals sent to the
signaling table.
If the size of an ID exceeds the available space, the connector cannot process the signal.

The following example shows a CREATE TABLE command that creates a three-column
debezium_signal table:

11.4.2. Types of Debezium signal actions

You can use signaling to initiate the following actions:

Add messages to the log .

Trigger ad hoc snapshots .

Some signals are not compatible with all connectors.

11.4.2.1. Logging signals

You can request a connector to add an entry to the log by creating a signaling table entry with the log
signal type. After processing the signal, the connector prints the specified message to the log.
Optionally, you can configure the signal so that the resulting message includes the streaming
coordinates.

Table 11.5. Example of a signaling record for adding a log message

C
ol
u
m
n

Value Description

id 924e3ff8-2245-43ca-ba77-2af9af02fa07

ty
p
e

log The action type of the signal.

d
at
a

{"message": "Signal message at offset {}"} The message parameter specifies the string to
print to the log.
If you add a placeholder ({}) to the message, it is
replaced with streaming coordinates.

CREATE TABLE debezium_signal (id VARCHAR(42) PRIMARY KEY, type VARCHAR(32) NOT
NULL, data VARCHAR(2048) NULL);

Red Hat Integration 2022.Q2 Debezium User Guide

478

11.4.2.2. Ad hoc snapshot signals

You can request a connector to initiate an ad hoc snapshot by creating a signaling table entry with the
execute-snapshot signal type. After processing the signal, the connector runs the requested snapshot
operation.

Unlike the initial snapshot that a connector runs after it first starts, an ad hoc snapshot occurs during
runtime, after the connector has already begun to stream change events from a database. You can
initiate ad hoc snapshots at any time.

Ad hoc snapshots are available for the following Debezium connectors:

Db2

MySQL

PostgreSQL

SQL Server

Table 11.6. Example of an ad hoc snapshot signal record

Colum
n

Value

id d139b9b7-7777-4547-917d-e1775ea61d41

type execute-snapshot

data {"data-collections": ["public.MyFirstTable", "public.MySecondTable"]}

Currently, the execute-snapshot action triggers incremental snapshots only.

For more information about ad hoc snapshots, see the Snapshots topic in the documentation for your
connector.

Additional resources

Db2 connector ad hoc snapshots

MySQL connector ad hoc snapshots

PostgreSQL connector ad hoc snapshots

SQL Server connector ad hoc snapshots

11.4.2.3. Incremental snapshots

Incremental snapshots are a specific type of ad hoc snapshot. In an incremental snapshot, the connector
captures the baseline state of the tables that you specify, similar to an initial snapshot. However, unlike
an initial snapshot, an incremental snapshot captures tables in chunks, rather than all at once. The
connector uses a watermarking method to track the progress of the snapshot.

By capturing the initial state of the specified tables in chunks rather than in a single monolithic

CHAPTER 11. CONFIGURING DEBEZIUM CONNECTORS FOR YOUR APPLICATION

479

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index.xml#db2-ad-hoc-snapshots
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index.xml#mysql-ad-hoc-snapshots
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index.xml#postgresql-ad-hoc-snapshots
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index.xml#sqlserver-ad-hoc-snapshots

By capturing the initial state of the specified tables in chunks rather than in a single monolithic
operation, incremental snapshots provide the following advantages over the initial snapshot process:

While the connector captures the baseline state of the specified tables, streaming of near real-
time events from the transaction log continues uninterrupted.

If the incremental snapshot process is interrupted, it can be resumed from the point at which it
stopped.

You can initiate an incremental snapshot at any time.

For more information about incremental snapshots, see the Snapshots topic in the documentation for
your connector.

Additional resources

Db2 connector incremental snapshots

MySQL connector incremental snapshots

PostgreSQL connector incremental snapshots

SQL Server connector incremental snapshots

Red Hat Integration 2022.Q2 Debezium User Guide

480

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index.xml#db2-incremental-snapshots
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index.xml#mysql-incremental-snapshots
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index.xml#postgresql-incremental-snapshots
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index.xml#sqlserver-incremental-snapshots

CHAPTER 12. APPLYING TRANSFORMATIONS TO MODIFY
MESSAGES EXCHANGED WITH APACHE KAFKA

Debezium provides several single message transformations (SMTs) that you can use to modify change
event records. You can configure a connector to apply a transformation that modifies records before its
sends them to Apache Kafka. You can also apply the Debezium SMTs to a sink connector to modify
records before the connector reads from a Kafka topic.

If you want to apply transformations selectively to specific messages only , you can configure a Kafka
Connect predicate to define the conditions for applying the SMT.

Debezium provides the following SMTs:

Topic router SMT

Reroutes change event records to specific topics based on a regular expression that is applied to the
original topic name.

Content-based router SMT

Reroutes specified change event records based on the event content.

Message filtering SMT

Enables you to propagate a subset of event records to the destination Kafka topic. The
transformation applies a regular expression to the change event records that a connector emits,
based on the content of the event record. Only records that match the expression are written to the
target topic. Other records are ignored.

New record state extraction SMT

Flattens the complex structure of a Debezium change event record into a simplified format. The
simplified structure enables processing by sink connectors that cannot consume the original
structure.

Outbox event router SMT

Provides support for the outbox pattern to enable safe and reliable data exchange among multiple
services.

MongoDB outbox event router SMT

Provides support for using the outbox pattern with the MongoDB connector to enable safe and
reliable data exchange among multiple services.

12.1. APPLYING TRANSFORMATIONS SELECTIVELY WITH SMT
PREDICATES

When you configure a single message transformation (SMT) for a connector, you can define a predicate
for the transformation. The predicate specifies how to apply the transformation conditionally to a subset
of the messages that the connector processes. You can assign predicates to transformations that you
configure for source connectors, such as Debezium, or to sink connectors.

12.1.1. About SMT predicates

Debezium provides several single message transformations (SMTs) that you can use to modify event
records before Kafka Connect saves the records to Kafka topics. By default, when you configure one of
these SMTs for a Debezium connector, Kafka Connect applies that transformation to every record that
the connector emits. However, there might be instances in which you want to apply a transformation
selectively, so that it modifies only that subset of change event messages that share a common
characteristic.

CHAPTER 12. APPLYING TRANSFORMATIONS TO MODIFY MESSAGES EXCHANGED WITH APACHE KAFKA

481

For example, for a Debezium connector, you might want to run the transformation only on event
messages from a specific table or that include a specific header key. In environments that run Apache
Kafka 2.6 or greater, you can append a predicate statement to a transformation to instruct Kafka
Connect to apply the SMT only to certain records. In the predicate, you specify a condition that Kafka
Connect uses to evaluate each message that it processes. When a Debezium connector emits a change
event message, Kafka Connect checks the message against the configured predicate condition. If the
condition is true for the event message, Kafka Connect applies the transformation, and then writes the
message to a Kafka topic. Messages that do not match the condition are sent to Kafka unmodified.

The situation is similar for predicates that you define for a sink connector SMT. The connector reads
messages from a Kafka topic and Kafka Connect evaluates the messages against the predicate
condition. If a message matches the condition, Kafka Connect applies the transformation and then
passes the messages to the sink connector.

After you define a predicate, you can reuse it and apply it to multiple transforms. Predicates also include
a negate option that you can use to invert a predicate so that the predicate condition is applied only to
records that do not match the condition that is defined in the predicate statement. You can use the
negate option to pair the predicate with other transforms that are based on negating the condition.

Predicate elements

Predicates include the following elements:

predicates prefix

Alias (for example, isOutboxTable)

Type (for example, org.apache.kafka.connect.transforms.predicates.TopicNameMatches).
Kafka Connect provides a set of default predicate types, which you can supplement by defining
your own custom predicates.

Condition statement and any additional configuration properties, depending on the type of
predicate (for example, a regex naming pattern)

Default predicate types

The following predicate types are available by default:

HasHeaderKey

Specifies a key name in the header in the event message that you want Kafka Connect to evaluate.
The predicate evaluates to true for any records that include a header key that has the specified
name.

RecordIsTombstone

Matches Kafka tombstone records. The predicate evaluates to true for any record that has a null
value. Use this predicate in combination with a filter SMT to remove tombstone records. This
predicate has no configuration parameters.
A tombstone in Kafka is a record that has a key with a 0-byte, null payload. When a Debezium
connector processes a delete operation in the source database, the connector emits two change
events for the delete operation:

A delete operation ("op" : "d") event that provides the previous value of the database
record.

A tombstone event that has the same key, but a null value.
The tombstone represents a delete marker for the row. When log compaction is enabled for
Kafka, during compaction Kafka removes all events that share the same key as the

Red Hat Integration 2022.Q2 Debezium User Guide

482

https://kafka.apache.org/documentation#compaction

tombstone. Log compaction occurs periodically, with the compaction interval controlled by
the delete.retention.ms setting for the topic.

Although it is possible to configure Debezium so that it does not emit tombstone events , it’s
best to permit Debezium to emit tombstones to maintain the expected behavior during log
compaction. Suppressing tombstones prevents Kafka from removing records for a deleted
key during log compaction. If your environment includes sink connectors that cannot process
tombstones, you can configure the sink connector to use an SMT with the
RecordIsTombstone predicate to filter out the tombstone records.

TopicNameMatches

A regular expression that specifies the name of a topic that you want Kafka Connect to match. The
predicate is true for connector records in which the topic name matches the specified regular
expression. Use this predicate to apply an SMT to records based on the name of the source table.

Additional resources

KIP-585: Filter and Conditional SMTs

Apache Kafka documentation for Kafka Connect predicates

12.1.2. Defining SMT predicates

By default, Kafka Connect applies each single message transformation in the Debezium connector
configuration to every change event record that it receives from Debezium. Beginning with Apache
Kafka 2.6, you can define an SMT predicate for a transformation in the connector configuration that
controls how Kafka Connect applies the transformation. The predicate statement defines the conditions
under which Kafka Connect applies the transformation to event records emitted by Debezium. Kafka
Connect evaluates the predicate statement and then applies the SMT selectively to the subset of
records that match the condition that is defined in the predicate. Configuring Kafka Connect predicates
is similar to configuring transforms. You specify a predicate alias, associate the alias with a transform,
and then define the type and configuration for the predicate.

Prerequisites

The Debezium environment runs Apache Kafka 2.6 or greater.

An SMT is configured for the Debezium connector.

Procedure

1. In the Debezium connector configuration, specify a predicate alias for the predicates
parameter, for example, IsOutboxTable.

2. Associate the predicate alias with the transform that you want to apply conditionally, by
appending the predicate alias to the transform alias in the connector configuration:

transforms.<TRANSFORM_ALIAS>.predicate=<PREDICATE_ALIAS>

For example:

transforms.outbox.predicate=IsOutboxTable

3. Configure the predicate by specifying its type and providing values for configuration

CHAPTER 12. APPLYING TRANSFORMATIONS TO MODIFY MESSAGES EXCHANGED WITH APACHE KAFKA

483

https://kafka.apache.org/documentation#topicconfigs_delete.retention.ms
https://cwiki.apache.org/confluence/display/KAFKA/KIP-585%3A+Filter+and+Conditional+SMTs
https://kafka.apache.org/documentation/#connect_predicates

3. Configure the predicate by specifying its type and providing values for configuration
parameters.

a. For the type, specify one of the following default types that are available in Kafka Connect:

HasHeaderKey

RecordIsTombstone

TopicNameMatches
For example:

predicates.IsOutboxTable.type=org.apache.kafka.connect.predicates.TopicNameMatch

b. For the TopicNameMatch or HasHeaderKey predicates, specify a regular expression for
the topic or header name that you want to match.
For example:

predicates.IsOutboxTable.pattern=outbox.event.*

4. If you want to negate a condition, append the negate keyword to the transform alias and set it
to true.
For example:

transforms.outbox.negate=true

The preceding property inverts the set of records that the predicate matches, so that Kafka
Connect applies the transform to any record that does not match the condition specified in the
predicate.

Example: TopicNameMatch predicate for the outbox event router transformation

The following example shows a Debezium connector configuration that applies the outbox event router
transformation only to messages that Debezium emits to the Kafka outbox.event.order topic.

Because the TopicNameMatch predicate evaluates to true only for messages from the outbox table
(outbox.event.*), the transformation is not applied to messages that originate from other tables in the
database.

transforms=outbox
transforms.outbox.predicate=IsOutboxTable
transforms.outbox.type=io.debezium.transforms.outbox.EventRouter
predicates=IsOutboxTable
predicates.IsOutboxTable.type=org.apache.kafka.connect.predicates.TopicNameMatch
predicates.IsOutboxTable.pattern=outbox.event.*

12.1.3. Ignoring tombstone events

You can control whether Debezium emits tombstone events, and how long Kafka retains them.
Depending on your data pipeline, you might want to set the tombstones.on.delete property for a
connector so that Debezium does not emit tombstone events.

Whether you enable Debezium to emit tombstones depends on how topics are consumed in your
environment and by the characteristics of the sink consumer. Some sink connectors rely on tombstone
events to remove records from downstream data stores. In cases where sink connectors rely on

Red Hat Integration 2022.Q2 Debezium User Guide

484

tombstone records to indicate when to delete records in downstream data stores, configure Debezium
to emit them.

When you configure Debezium to generate tombstones, further configuration is required to ensure that
sink connectors receive the tombstone events. The retention policy for a topic must be set so that the
connector has time to read event messages before Kafka removes them during log compaction. The
length of time that a topic retains tombstones before compaction is controlled by the
delete.retention.ms property for the topic.

By default, the tombstones.on.delete property for a connector is set to true so that the connector
generates a tombstone after each delete event. If you set the property to false to prevent Debezium
from saving tombstone records to Kafka topics, the absence of tombstone records might lead to
unintended consequences. Kafka relies on tombstone during log compaction to remove records that are
related to a deleted key.

If you need to support sink connectors or downstream Kafka consumers that cannot process records
with null values, rather than preventing Debezium from emitting tombstones, consider configuring an
SMT for the connector with a predicate that uses the RecordIsTombstone predicate type to remove
tombstone messages before consumers read them.

Procedure

To prevent Debezium from emitting tombstone events for deleted database records, set the
connector option tombstones.on.delete to false.
For example:

“tombstones.on.delete”: “false”

12.2. ROUTING DEBEZIUM EVENT RECORDS TO TOPICS THAT YOU
SPECIFY

Each Kafka record that contains a data change event has a default destination topic. If you need to, you
can re-route records to topics that you specify before the records reach the Kafka Connect converter.
To do this, Debezium provides the topic routing single message transformation (SMT). Configure this
transformation in the Debezium connector’s Kafka Connect configuration. Configuration options enable
you to specify the following:

An expression for identifying the records to re-route

An expression that resolves to the destination topic

How to ensure a unique key among the records being re-routed to the destination topic

It is up to you to ensure that the transformation configuration provides the behavior that you want.
Debezium does not validate the behavior that results from your configuration of the transformation.

The topic routing transformation is a Kafka Connect SMT.

The following topics provide details:

Section 12.2.1, “Use case for routing Debezium records to topics that you specify”

Section 12.2.2, “Example of routing Debezium records for multiple tables to one topic”

Section 12.2.3, “Ensuring unique keys across Debezium records routed to the same topic”

CHAPTER 12. APPLYING TRANSFORMATIONS TO MODIFY MESSAGES EXCHANGED WITH APACHE KAFKA

485

https://kafka.apache.org/documentation#topicconfigs_delete.retention.ms
https://kafka.apache.org/documentation/#connect_transforms

Section 12.2.5, “Options for configuring Debezium topic routing transformation”

12.2.1. Use case for routing Debezium records to topics that you specify

The default behavior is that a Debezium connector sends each change event record to a topic whose
name is formed from the name of the database and the name of the table in which the change was
made. In other words, a topic receives records for one physical table. When you want a topic to receive
records for more than one physical table, you must configure the Debezium connector to re-route the
records to that topic.

Logical tables

A logical table is a common use case for routing records for multiple physical tables to one topic. In a
logical table, there are multiple physical tables that all have the same schema. For example, sharded
tables have the same schema. A logical table might consist of two or more sharded tables:
db_shard1.my_table and db_shard2.my_table. The tables are in different shards and are physically
distinct but together they form a logical table. You can re-route change event records for tables in any
of the shards to the same topic.

Partitioned PostgreSQL tables

When the Debezium PostgreSQL connector captures changes in a partitioned table, the default
behavior is that change event records are routed to a different topic for each partition. To emit records
from all partitions to one topic, configure the topic routing SMT. Because each key in a partitioned table
is guaranteed to be unique, configure key.enforce.uniqueness=false so that the SMT does not add a
key field to ensure unique keys. The addition of a key field is default behavior.

12.2.2. Example of routing Debezium records for multiple tables to one topic

To route change event records for multiple physical tables to the same topic, configure the topic
routing transformation in the Kafka Connect configuration for the Debezium connector. Configuration
of the topic routing SMT requires you to specify regular expressions that determine:

The tables for which to route records. These tables must all have the same schema.

The destination topic name.

For example, configuration in a .properties file looks like this:

transforms=Reroute
transforms.Reroute.type=io.debezium.transforms.ByLogicalTableRouter
transforms.Reroute.topic.regex=(.*)customers_shard(.*)
transforms.Reroute.topic.replacement=$1customers_all_shards

topic.regex

Specifies a regular expression that the transformation applies to each change event record to
determine if it should be routed to a particular topic.
In the example, the regular expression, (.*)customers_shard(.*) matches records for changes to
tables whose names include the customers_shard string. This would re-route records for tables
with the following names:

myserver.mydb.customers_shard1
myserver.mydb.customers_shard2
myserver.mydb.customers_shard3

Red Hat Integration 2022.Q2 Debezium User Guide

486

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#by-logical-table-router-key-enforce-uniqueness

topic.replacement

Specifies a regular expression that represents the destination topic name. The transformation routes
each matching record to the topic identified by this expression. In this example, records for the three
sharded tables listed above would be routed to the myserver.mydb.customers_all_shards topic.

12.2.3. Ensuring unique keys across Debezium records routed to the same topic

A Debezium change event key uses the table columns that make up the table’s primary key. To route
records for multiple physical tables to one topic, the event key must be unique across all of those tables.
However, it is possible for each physical table to have a primary key that is unique within only that table.
For example, a row in the myserver.mydb.customers_shard1 table might have the same key value as a
row in the myserver.mydb.customers_shard2 table.

To ensure that each event key is unique across the tables whose change event records go to the same
topic, the topic routing transformation inserts a field into change event keys. By default, the name of
the inserted field is __dbz__physicalTableIdentifier. The value of the inserted field is the default
destination topic name.

If you want to, you can configure the topic routing transformation to insert a different field into the key.
To do this, specify the key.field.name option and set it to a field name that does not clash with existing
primary key field names. For example:

transforms=Reroute
transforms.Reroute.type=io.debezium.transforms.ByLogicalTableRouter
transforms.Reroute.topic.regex=(.*)customers_shard(.*)
transforms.Reroute.topic.replacement=$1customers_all_shards
transforms.Reroute.key.field.name=shard_id

This example adds the shard_id field to the key structure in routed records.

If you want to adjust the value of the key’s new field, configure both of these options:

key.field.regex

Specifies a regular expression that the transformation applies to the default destination topic name
to capture one or more groups of characters.

key.field.replacement

Specifies a regular expression for determining the value of the inserted key field in terms of those
captured groups.

For example:

transforms.Reroute.key.field.regex=(.*)customers_shard(.*)
transforms.Reroute.key.field.replacement=$2

With this configuration, suppose that the default destination topic names are:

myserver.mydb.customers_shard1
myserver.mydb.customers_shard2
myserver.mydb.customers_shard3

The transformation uses the values in the second captured group, the shard numbers, as the value of
the key’s new field. In this example, the inserted key field’s values would be 1, 2, or 3.

If your tables contain globally unique keys and you do not need to change the key structure, you can set

CHAPTER 12. APPLYING TRANSFORMATIONS TO MODIFY MESSAGES EXCHANGED WITH APACHE KAFKA

487

If your tables contain globally unique keys and you do not need to change the key structure, you can set
the key.enforce.uniqueness option to false:

...
transforms.Reroute.key.enforce.uniqueness=false
...

12.2.4. Options for applying the topic routing transformation selectively

In addition to the change event messages that a Debezium connector emits when a database change
occurs, the connector also emits other types of messages, including heartbeat messages, and metadata
messages about schema changes and transactions. Because the structure of these other messages
differs from the structure of the change event messages that the SMT is designed to process, it’s best
to configure the connector to selectively apply the SMT, so that it processes only the intended data
change messages.

You can use one of the following methods to configure the connector to apply the SMT selectively:

Configure an SMT predicate for the transformation .

Use the topic.regex configuration option for the SMT.

12.2.5. Options for configuring Debezium topic routing transformation

The following table describes topic routing SMT configuration options.

Table 12.1. Topic routing SMT configuration options

Option Default Description

topic.regex Specifies a regular expression that the
transformation applies to each change event
record to determine if it should be routed to a
particular topic.

topic.replacement Specifies a regular expression that represents
the destination topic name. The transformation
routes each matching record to the topic
identified by this expression. This expression
can refer to groups captured by the regular
expression that you specify for topic.regex.
To refer to a group, specify $1, $2, and so on.

Red Hat Integration 2022.Q2 Debezium User Guide

488

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#applying-transformation-selectively

key.enforce .uniqueness true Indicates whether to add a field to the record’s
change event key. Adding a key field ensures
that each event key is unique across the tables
whose change event records go to the same
topic. This helps to prevent collisions of change
events for records that have the same key but
that originate from different source tables.

Specify false if you do not want the
transformation to add a key field. For example,
if you are routing records from a partitioned
PostgreSQL table to one topic, you can
configure key.enforce.uniqueness=false
because unique keys are guaranteed in
partitioned PostgreSQL tables.

key.field.name __dbz__physicalTabl
eIdentifier

Name of a field to be added to the change
event key. The value of this field identifies the
original table name. For the SMT to add this
field, key.enforce.uniqueness must be
true, which is the default.

key.field.regex Specifies a regular expression that the
transformation applies to the default
destination topic name to capture one or more
groups of characters. For the SMT to apply this
expression, key.enforce.uniqueness must
be true, which is the default.

key.field .replacement Specifies a regular expression for determining
the value of the inserted key field in terms of
the groups captured by the expression
specified for key.field.regex. For the SMT to
apply this expression,
key.enforce.uniqueness must be true,
which is the default.

Option Default Description

12.3. ROUTING CHANGE EVENT RECORDS TO TOPICS ACCORDING
TO EVENT CONTENT

By default, Debezium streams all of the change events that it reads from a table to a single static topic.
However, there might be situations in which you might want to reroute selected events to other topics,
based on the event content. The process of routing messages based on their content is described in the
Content-based routing messaging pattern. To apply this pattern in Debezium, you use the content-
based routing single message transform (SMT) to write expressions that are evaluated for each event.
Depending how an event is evaluated, the SMT either routes the event message to the original
destination topic, or reroutes it to the topic that you specify in the expression.

IMPORTANT

CHAPTER 12. APPLYING TRANSFORMATIONS TO MODIFY MESSAGES EXCHANGED WITH APACHE KAFKA

489

https://www.enterpriseintegrationpatterns.com/patterns/messaging/ContentBasedRouter.html
https://cwiki.apache.org/confluence/display/KAFKA/KIP-66%3A+Single+Message+Transforms+for+Kafka+Connect

IMPORTANT

The Debezium content-based routing SMT is a Technology Preview feature. Technology
Preview features are not supported with Red Hat production service-level agreements
(SLAs) and might not be functionally complete; therefore, Red Hat does not recommend
implementing any Technology Preview features in production environments. This
Technology Preview feature provides early access to upcoming product innovations,
enabling you to test functionality and provide feedback during the development process.
For more information about support scope, see Technology Preview Features Support
Scope.

While it is possible to use Java to create a custom SMT to encode routing logic, using a custom-coded
SMT has its drawbacks. For example:

It is necessary to compile the transformation up front and deploy it to Kafka Connect.

Every change needs code recompilation and redeployment, leading to inflexible operations.

The content-based routing SMT supports scripting languages that integrate with JSR 223 (Scripting
for the Java™ Platform).

Debezium does not come with any implementations of the JSR 223 API. To use an expression language
with Debezium, you must download the JSR 223 script engine implementation for the language, and add
to your Debezium connector plug-in directories, along any other JAR files used by the language
implementation. For example, for Groovy 3, you can download its JSR 223 implementation from
https://groovy-lang.org/. The JSR 223 implementation for GraalVM JavaScript is available at
https://github.com/graalvm/graaljs.

12.3.1. Setting up the Debezium content-based-routing SMT

For security reasons, the content-based routing SMT is not included with the Debezium connector
archives. Instead, it is provided in a separate artifact, debezium-scripting-1.7.2.Final.tar.gz. To use the
content-based routing SMT with a Debezium connector plug-in, you must explicitly add the SMT
artifact to your Kafka Connect environment.

IMPORTANT

After the routing SMT is present in a Kafka Connect instance, any user who is allowed to
add a connector to the instance can run scripting expressions. To ensure that scripting
expressions can be run only by authorized users, be sure to secure the Kafka Connect
instance and its configuration interface before you add the routing SMT.

Procedure

1. From a browser, open the Red Hat Integration download site , and download the Debezium
scripting SMT archive (debezium-scripting-1.7.2.Final.tar.gz).

2. Extract the contents of the archive into the Debezium plug-in directories of your Kafka Connect
environment.

3. Obtain a JSR-223 script engine implementation and add its contents to the Debezium plug-in
directories of your Kafka Connect environment.

4. Restart the Kafka Connect process to pick up the new JAR files.

Red Hat Integration 2022.Q2 Debezium User Guide

490

https://access.redhat.com/support/offerings/techpreview/
https://jcp.org/en/jsr/detail?id=223
https://groovy-lang.org/
https://github.com/graalvm/graaljs
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=red.hat.integration&downloadType=distributions

The Groovy language needs the following libraries on the classpath:

groovy

groovy-json (optional)

groovy-jsr223

The JavaScript language needs the following libraries on the classpath:

graalvm.js

graalvm.js.scriptengine

12.3.2. Example: Debezium basic content-based routing configuration

To configure a Debezium connector to route change event records based on the event content, you
configure the ContentBasedRouter SMT in the Kafka Connect configuration for the connector.

Configuration of the content-based routing SMT requires you to specify a regular expression that
defines the filtering criteria. In the configuration, you create a regular expression that defines routing
criteria. The expression defines a pattern for evaluating event records. It also specifies the name of a
destination topic where events that match the pattern are routed. The pattern that you specify might
designate an event type, such as a table insert, update, or delete operation. You might also define a
pattern that matches a value in a specific column or row.

For example, to reroute all update (u) records to an updates topic, you might add the following
configuration to your connector configuration:

...
transforms=route
transforms.route.type=io.debezium.transforms.ContentBasedRouter
transforms.route.language=jsr223.groovy
transforms.route.topic.expression=value.op == 'u' ? 'updates' : null
...

The preceding example specifies the use of the Groovy expression language.

Records that do not match the pattern are routed to the default topic.

12.3.3. Variables for use in Debezium content-based routing expressions

Debezium binds certain variables into the evaluation context for the SMT. When you create expressions
to specify conditions to control the routing destination, the SMT can look up and interpret the values of
these variables to evaluate conditions in an expression.

The following table lists the variables that Debezium binds into the evaluation context for the content-
based routing SMT:

Table 12.2. Content-based routing expression variables

Name Description Type

key A key of the message. org.apache.kafka.connect .data
.Struct

CHAPTER 12. APPLYING TRANSFORMATIONS TO MODIFY MESSAGES EXCHANGED WITH APACHE KAFKA

491

value A value of the message. org.apache.kafka.connect .data
.Struct

keySchema Schema of the message key. org.apache.kafka.connect .data
.Schema

valueSchema Schema of the message value. org.apache.kafka.connect .data
.Schema

topic Name of the target topic. String

headers A Java map of message headers.
The key field is the header name.
The headers variable exposes the
following properties:

value (of type Object)

schema (of type
org.apache.kafka
.connect .data .Schema)

java.util.Map <String, io.debezium
.transforms .scripting
.RecordHeader>

Name Description Type

An expression can invoke arbitrary methods on its variables. Expressions should resolve to a Boolean
value that determines how the SMT dispositions the message. When the routing condition in an
expression evaluates to true, the message is retained. When the routing condition evaluates to false,
the message is removed.

Expressions should not result in any side-effects. That is, they should not modify any variables that they
pass.

12.3.4. Options for applying the content-based routing transformation selectively

In addition to the change event messages that a Debezium connector emits when a database change
occurs, the connector also emits other types of messages, including heartbeat messages, and metadata
messages about schema changes and transactions. Because the structure of these other messages
differs from the structure of the change event messages that the SMT is designed to process, it’s best
to configure the connector to selectively apply the SMT, so that it processes only the intended data
change messages. You can use one of the following methods to configure the connector to apply the
SMT selectively:

Configure an SMT predicate for the transformation .

Use the topic.regex configuration option for the SMT.

12.3.5. Configuration of content-based routing conditions for other scripting
languages

The way that you express content-based routing conditions depends on the scripting language that you
use. For example, as shown in the basic configuration example , when you use Groovy as the expression
language, the following expression reroutes all update (u) records to the updates topic, while routing

Red Hat Integration 2022.Q2 Debezium User Guide

492

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#applying-transformation-selectively
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#example-debezium-basic-content-based-routing-configuration

other records to the default topic:

Other languages use different methods to express the same condition.

TIP

The Debezium MongoDB connector emits the after and patch fields as serialized JSON documents
rather than as structures. To use the ContentBasedRouting SMT with the MongoDB connector, you
must first unwind the fields by applying the ExtractNewDocumentState SMT.

You could also take the approach of using a JSON parser within the expression. For example, if you use
Groovy as the expression language, add the groovy-json artifact to the classpath, and then add an
expression such as (new groovy.json.JsonSlurper()).parseText(value.after).last_name ==
'Kretchmar'.

Javascript

When you use JavaScript as the expression language, you can call the Struct#get() method to specify
the content-based routing condition, as in the following example:

Javascript with Graal.js

When you create content-based routing conditions by using JavaScript with Graal.js, you use an
approach that is similar to the one use with Groovy. For example:

12.3.6. Options for configuring the content-based routing transformation

Property Default Description

topic.regex An optional regular expression that evaluates
the name of the destination topic for an event
to determine whether to apply the condition
logic. If the name of the destination topic
matches the value in topic.regex, the
transformation applies the condition logic
before it passes the event to the topic. If the
name of the topic does not match the value in
topic.regex, the SMT passes the event to the
topic unmodified.

language The language in which the expression is written.
Must begin with jsr223., for example,
jsr223.groovy, or jsr223.graal.js. Debezium
supports bootstrapping through the JSR 223
API ("Scripting for the Java ™ Platform") only.

value.op == 'u' ? 'updates' : null

value.get('op') == 'u' ? 'updates' : null

value.op == 'u' ? 'updates' : null

CHAPTER 12. APPLYING TRANSFORMATIONS TO MODIFY MESSAGES EXCHANGED WITH APACHE KAFKA

493

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index
https://jcp.org/en/jsr/detail?id=223

topic.expression The expression to be evaluated for every
message. Must evaluate to a String value
where a result of non-null reroutes the
message to a new topic, and a null value
routes the message to the default topic.

null.handling.mode keep Specifies how the transformation handles null
(tombstone) messages. You can specify one of
the following options:

keep
(Default) Pass the messages through.

drop
Remove the messages completely.

evaluate
Apply the condition logic to the messages.

12.4. FILTERING DEBEZIUM CHANGE EVENT RECORDS

By default, Debezium delivers every data change event that it receives to the Kafka broker. However, in
many cases, you might be interested in only a subset of the events emitted by the producer. To enable
you to process only the records that are relevant to you, Debezium provides the filter single message
transform (SMT).

IMPORTANT

The Debezium filter SMT is a Technology Preview feature. Technology Preview features
are not supported with Red Hat production service-level agreements (SLAs) and might
not be functionally complete; therefore, Red Hat does not recommend implementing any
Technology Preview features in production environments. This Technology Preview
feature provides early access to upcoming product innovations, enabling you to test
functionality and provide feedback during the development process. For more
information about support scope, see Technology Preview Features Support Scope .

While it is possible to use Java to create a custom SMT to encode filtering logic, using a custom-coded
SMT has its drawbacks. For example:

It is necessary to compile the transformation up front and deploy it to Kafka Connect.

Every change needs code recompilation and redeployment, leading to inflexible operations.

The filter SMT supports scripting languages that integrate with JSR 223 (Scripting for the Java™
Platform).

Debezium does not come with any implementations of the JSR 223 API. To use an expression language
with Debezium, you must download the JSR 223 script engine implementation for the language, and add
to your Debezium connector plug-in directories, along any other JAR files used by the language
implementation. For example, for Groovy 3, you can download its JSR 223 implementation from
https://groovy-lang.org/. The JSR223 implementation for GraalVM JavaScript is available at
https://github.com/graalvm/graaljs.

Red Hat Integration 2022.Q2 Debezium User Guide

494

https://cwiki.apache.org/confluence/display/KAFKA/KIP-66%3A+Single+Message+Transforms+for+Kafka+Connect
https://access.redhat.com/support/offerings/techpreview/
https://jcp.org/en/jsr/detail?id=223
https://groovy-lang.org/
https://github.com/graalvm/graaljs

12.4.1. Setting up the Debezium filter SMT

For security reasons, the filter SMT is not included with the Debezium connector archives. Instead, it is
provided in a separate artifact, debezium-scripting-1.7.2.Final.tar.gz. To use the filter SMT with a
Debezium connector plug-in, you must explicitly add the SMT artifact to your Kafka Connect
environment.

IMPORTANT

After the filter SMT is present in a Kafka Connect instance, any user who is allowed to add
a connector to the instance can run scripting expressions. To ensure that scripting
expressions can be run only by authorized users, be sure to secure the Kafka Connect
instance and its configuration interface before you add the filter SMT.

Procedure

1. From a browser, open the Red Hat Integration download site , and download the Debezium
scripting SMT archive (debezium-scripting-1.7.2.Final.tar.gz).

2. Extract the contents of the archive into the Debezium plug-in directories of your Kafka Connect
environment.

3. Obtain a JSR-223 script engine implementation and add its contents to the Debezium plug-in
directories of your Kafka Connect environment.

4. Restart the Kafka Connect process to pick up the new JAR files.

The Groovy language needs the following libraries on the classpath:

groovy

groovy-json (optional)

groovy-jsr223

The JavaScript language needs the following libraries on the classpath:

graalvm.js

graalvm.js.scriptengine

12.4.2. Example: Debezium basic filter SMT configuration

You configure the filter transformation in the Debezium connector’s Kafka Connect configuration. In the
configuration, you specify the events that you are interested in by defining filter conditions that are
based on business rules. As the filter SMT processes the event stream, it evaluates each event against
the configured filter conditions. Only events that meet the criteria of the filter conditions are passed to
the broker.

To configure a Debezium connector to filter change event records, configure the Filter SMT in the
Kafka Connect configuration for the Debezium connector. Configuration of the filter SMT requires you
to specify a regular expression that defines the filtering criteria.

For example, you might add the following configuration in your connector configuration.

...

CHAPTER 12. APPLYING TRANSFORMATIONS TO MODIFY MESSAGES EXCHANGED WITH APACHE KAFKA

495

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=red.hat.integration&downloadType=distributions

transforms=filter
transforms.filter.type=io.debezium.transforms.Filter
transforms.filter.language=jsr223.groovy
transforms.filter.condition=value.op == 'u' && value.before.id == 2
...

The preceding example specifies the use of the Groovy expression language. The regular expression
value.op == 'u' && value.before.id == 2 removes all messages, except those that represent update (u)
records with id values that are equal to 2.

12.4.3. Variables for use in filter expressions

Debezium binds certain variables into the evaluation context for the filter SMT. When you create
expressions to specify filter conditions, you can use the variables that Debezium binds into the
evaluation context. By binding variables, Debezium enables the SMT to look up and interpret their values
as it evaluates the conditions in an expression.

The following table lists the variables that Debezium binds into the evaluation context for the filter SMT:

Table 12.3. Filter expression variables

Name Description Type

key A key of the message. org.apache.kafka.connect .data
.Struct

value A value of the message. org.apache.kafka.connect.data
.Struct

keySchema Schema of the message key. org.apache.kafka.connect .data
.Schema

valueSchema Schema of the message value. org.apache.kafka.connect .data
.Schema

topic Name of the target topic. String

headers A Java map of message headers.
The key field is the header name.
The headers variable exposes the
following properties:

value (of type Object)

schema (of type
org.apache.kafka
.connect .data .Schema)

java.util.Map <String,
io.debezium.transforms .scripting
.RecordHeader>

An expression can invoke arbitrary methods on its variables. Expressions should resolve to a Boolean
value that determines how the SMT dispositions the message. When the filter condition in an expression
evaluates to true, the message is retained. When the filter condition evaluates to false, the message is
removed.

Red Hat Integration 2022.Q2 Debezium User Guide

496

Expressions should not result in any side-effects. That is, they should not modify any variables that they
pass.

12.4.4. Options for applying the filter transformation selectively

In addition to the change event messages that a Debezium connector emits when a database change
occurs, the connector also emits other types of messages, including heartbeat messages, and metadata
messages about schema changes and transactions. Because the structure of these other messages
differs from the structure of the change event messages that the SMT is designed to process, it’s best
to configure the connector to selectively apply the SMT, so that it processes only the intended data
change messages. You can use one of the following methods to configure the connector to apply the
SMT selectively:

Configure an SMT predicate for the transformation .

Use the topic.regex configuration option for the SMT.

12.4.5. Filter condition configuration for other scripting languages

The way that you express filtering conditions depends on the scripting language that you use.

For example, as shown in the basic configuration example , when you use Groovy as the expression
language, the following expression removes all messages, except for update records that have id values
set to 2:

Other languages use different methods to express the same condition.

TIP

The Debezium MongoDB connector emits the after and patch fields as serialized JSON documents
rather than as structures. To use the filter SMT with the MongoDB connector, you must first unwind the
fields by applying the ExtractNewDocumentState SMT.

You could also take the approach of using a JSON parser within the expression. For example, if you use
Groovy as the expression language, add the groovy-json artifact to the classpath, and then add an
expression such as (new groovy.json.JsonSlurper()).parseText(value.after).last_name ==
'Kretchmar'.

Javascript

If you use JavaScript as the expression language, you can call the Struct#get() method to specify the
filtering condition, as in the following example:

Javascript with Graal.js

If you use JavaScript with Graal.js to define filtering conditions, you use an approach that is similar to
the one that you use with Groovy. For example:

value.op == 'u' && value.before.id == 2

value.get('op') == 'u' && value.get('before').get('id') == 2

value.op == 'u' && value.before.id == 2

CHAPTER 12. APPLYING TRANSFORMATIONS TO MODIFY MESSAGES EXCHANGED WITH APACHE KAFKA

497

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#applying-transformation-selectively
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#example-basic-debezium-filter-smt-configuration
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index

12.4.6. Options for configuring filter transformation

The following table lists the configuration options that you can use with the filter SMT.

Table 12.4. filter SMT configuration options

Property Default Description

topic.regex An optional regular expression that evaluates
the name of the destination topic for an event
to determine whether to apply filtering logic. If
the name of the destination topic matches the
value in topic.regex, the transformation
applies the filter logic before it passes the
event to the topic. If the name of the topic
does not match the value in topic.regex, the
SMT passes the event to the topic unmodified.

language The language in which the expression is written.
Must begin with jsr223., for example,
jsr223.groovy, or jsr223.graal.js. Debezium
supports bootstrapping through the JSR 223
API ("Scripting for the Java ™ Platform") only.

condition The expression to be evaluated for every
message. Must evaluate to a Boolean value
where a result of true keeps the message, and
a result of false removes it.

null.handling.mode keep Specifies how the transformation handles null
(tombstone) messages. You can specify one of
the following options:

keep
(Default) Pass the messages through.

drop
Remove the messages completely.

evaluate
Apply the filter condition to the messages.

12.5. EXTRACTING SOURCE RECORD AFTER STATE FROM DEBEZIUM
CHANGE EVENTS

A Debezium data change event has a complex structure that provides a wealth of information. Kafka
records that convey Debezium change events contain all of this information. However, parts of a Kafka
ecosystem might expect Kafka records that provide a flat structure of field names and values. To
provide this kind of record, Debezium provides the event flattening single message transformation
(SMT). Configure this transformation when consumers need Kafka records that have a format that is
simpler than Kafka records that contain Debezium change events.

The event flattening transformation is a Kafka Connect SMT.

Red Hat Integration 2022.Q2 Debezium User Guide

498

https://jcp.org/en/jsr/detail?id=223
https://kafka.apache.org/documentation/#connect_transforms

This transformation is available to only SQL database connectors.

The following topics provide details:

Section 12.5.1, “Description of Debezium change event structure”

Section 12.5.2, “Behavior of Debezium event flattening transformation”

Section 12.5.3, “Configuration of Debezium event flattening transformation”

Section 12.5.4, “Example of adding Debezium metadata to the Kafka record”

Section 12.5.6, “Options for configuring Debezium event flattening transformation”

12.5.1. Description of Debezium change event structure

Debezium generates data change events that have a complex structure. Each event consists of three
parts:

Metadata, which includes but is not limited to:

The operation that made the change

Source information such as the names of the database and table where the change was
made

Time stamp for when the change was made

Optional transaction information

Row data before the change

Row data after the change

For example, part of the structure of an UPDATE change event looks like this:

This complex format provides the most information about changes happening in the system. However,
other connectors or other parts of the Kafka ecosystem usually expect the data in a simple format like
this:

{
 "op": "u",
 "source": {
 ...
 },
 "ts_ms" : "...",
 "before" : {
 "field1" : "oldvalue1",
 "field2" : "oldvalue2"
 },
 "after" : {
 "field1" : "newvalue1",
 "field2" : "newvalue2"
 }
}

CHAPTER 12. APPLYING TRANSFORMATIONS TO MODIFY MESSAGES EXCHANGED WITH APACHE KAFKA

499

To provide the needed Kafka record format for consumers, configure the event flattening SMT.

12.5.2. Behavior of Debezium event flattening transformation

The event flattening SMT extracts the after field from a Debezium change event in a Kafka record. The
SMT replaces the original change event with only its after field to create a simple Kafka record.

You can configure the event flattening SMT for a Debezium connector or for a sink connector that
consumes messages emitted by a Debezium connector. The advantage of configuring event flattening
for a sink connector is that records stored in Apache Kafka contain whole Debezium change events. The
decision to apply the SMT to a source or sink connector depends on your particular use case.

You can configure the transformation to do any of the following:

Add metadata from the change event to the simplified Kafka record. The default behavior is
that the SMT does not add metadata.

Keep Kafka records that contain change events for DELETE operations in the stream. The
default behavior is that the SMT drops Kafka records for DELETE operation change events
because most consumers cannot yet handle them.

A database DELETE operation causes Debezium to generate two Kafka records:

A record that contains "op": "d", the before row data, and some other fields.

A tombstone record that has the same key as the deleted row and a value of null. This record is
a marker for Apache Kafka. It indicates that log compaction can remove all records that have
this key.

Instead of dropping the record that contains the before row data, you can configure the event
flattening SMT to do one of the following:

Keep the record in the stream and edit it to have only the "value": "null" field.

Keep the record in the stream and edit it to have a value field that contains the key/value pairs
that were in the before field with an added "__deleted": "true" entry.

Similary, instead of dropping the tombstone record, you can configure the event flattening SMT to keep
the tombstone record in the stream.

12.5.3. Configuration of Debezium event flattening transformation

Configure the Debezium event flattening SMT in a Kafka Connect source or sink connector by adding
the SMT configuration details to your connector’s configuration. To obtain the default behavior, in a
.properties file, you would specify something like the following:

transforms=unwrap,...
transforms.unwrap.type=io.debezium.transforms.ExtractNewRecordState

As for any Kafka Connect connector configuration, you can set transforms= to multiple, comma-

{
 "field1" : "newvalue1",
 "field2" : "newvalue2"
}

Red Hat Integration 2022.Q2 Debezium User Guide

500

https://kafka.apache.org/documentation/#compaction

As for any Kafka Connect connector configuration, you can set transforms= to multiple, comma-
separated, SMT aliases in the order in which you want Kafka Connect to apply the SMTs.

The following .properties example sets several event flattening SMT options:

transforms=unwrap,...
transforms.unwrap.type=io.debezium.transforms.ExtractNewRecordState
transforms.unwrap.drop.tombstones=false
transforms.unwrap.delete.handling.mode=rewrite
transforms.unwrap.add.fields=table,lsn

drop.tombstones=false

Keeps tombstone records for DELETE operations in the event stream.

delete.handling.mode=rewrite

For DELETE operations, edits the Kafka record by flattening the value field that was in the change
event. The value field directly contains the key/value pairs that were in the before field. The SMT
adds __deleted and sets it to true, for example:

add.fields=table,lsn

Adds change event metadata for the table and lsn fields to the simplified Kafka record.

12.5.4. Example of adding Debezium metadata to the Kafka record

The event flattening SMT can add original, change event metadata to the simplified Kafka record. For
example, you might want the simplified record’s header or value to contain any of the following:

The type of operation that made the change

The name of the database or table that was changed

Connector-specific fields such as the Postgres LSN field

To add metadata to the simplified Kafka record’s header, specify the add.header option. To add
metadata to the simplified Kafka record’s value, specify the add.fields option. Each of these options
takes a comma separated list of change event field names. Do not specify spaces. When there are
duplicate field names, to add metadata for one of those fields, specify the struct as well as the field. For
example:

transforms=unwrap,...
transforms.unwrap.type=io.debezium.transforms.ExtractNewRecordState
transforms.unwrap.add.fields=op,table,lsn,source.ts_ms
transforms.unwrap.add.headers=db
transforms.unwrap.delete.handling.mode=rewrite

With that configuration, a simplified Kafka record would contain something like the following:

"value": {
 "pk": 2,
 "cola": null,
 "__deleted": "true"
}

{

CHAPTER 12. APPLYING TRANSFORMATIONS TO MODIFY MESSAGES EXCHANGED WITH APACHE KAFKA

501

Also, simplified Kafka records would have a __db header.

In the simplified Kafka record, the SMT prefixes the metadata field names with a double underscore.
When you specify a struct, the SMT also inserts an underscore between the struct name and the field
name.

To add metadata to a simplified Kafka record that is for a DELETE operation, you must also configure
delete.handling.mode=rewrite.

12.5.5. Options for applying the event flattening transformation selectively

In addition to the change event messages that a Debezium connector emits when a database change
occurs, the connector also emits other types of messages, including heartbeat messages, and metadata
messages about schema changes and transactions. Because the structure of these other messages
differs from the structure of the change event messages that the SMT is designed to process, it’s best
to configure the connector to selectively apply the SMT, so that it processes only the intended data
change messages.

For more information about how to apply the SMT selectively, see Configure an SMT predicate for the
transformation.

12.5.6. Options for configuring Debezium event flattening transformation

The following table describes the options that you can specify to configure the event flattening SMT.

Table 12.5. Descriptions of event flattening SMT configuration options

Option Default Description

drop.tombstones true Debezium generates a tombstone record for
each DELETE operation. The default behavior
is that event flattening SMT removes
tombstone records from the stream. To keep
tombstone records in the stream, specify
drop.tombstones=false.

 ...
 "__op" : "c",
 "__table": "MY_TABLE",
 "__lsn": "123456789",
 "__source_ts_ms" : "123456789",
 ...
}

Red Hat Integration 2022.Q2 Debezium User Guide

502

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#applying-transformation-selectively
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#extract-new-record-state-drop-tombstones

delete.handling .mode drop Debezium generates a change event record for
each DELETE operation. The default behavior
is that event flattening SMT removes these
records from the stream. To keep Kafka
records for DELETE operations in the stream,
set delete.handling.mode to none or
rewrite.

Specify none to keep the change event record
in the stream. The record contains only
"value": "null".

Specify rewrite to keep the change event
record in the stream and edit the record to
have a value field that contains the key/value
pairs that were in the before field and also add
__deleted: true to the value. This is another
way to indicate that the record has been
deleted.

When you specify rewrite, the updated
simplified records for DELETE operations
might be all you need to track deleted records.
You can consider accepting the default
behavior of dropping the tombstone records
that the Debezium connector creates.

Option Default Description

CHAPTER 12. APPLYING TRANSFORMATIONS TO MODIFY MESSAGES EXCHANGED WITH APACHE KAFKA

503

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#extract-new-record-state-delete-handling-mode

route.by.field To use row data to determine the topic to route
the record to, set this option to an after field
attribute. The SMT routes the record to the
topic whose name matches the value of the
specified after field attribute. For a DELETE
operation, set this option to a before field
attribute.

For example, configuration of
route.by.field=destination routes records
to the topic whose name is the value of
after.destination. The default behavior is
that a Debezium connector sends each change
event record to a topic whose name is formed
from the name of the database and the name
of the table in which the change was made.

If you are configuring the event flattening SMT
on a sink connector, setting this option might
be useful when the destination topic name
dictates the name of the database table that
will be updated with the simplified change
event record. If the topic name is not correct
for your use case, you can configure
route.by.field to re-route the event.

add.fields.prefix __ (double-underscore) Set this optional string to prefix a field.

Option Default Description

Red Hat Integration 2022.Q2 Debezium User Guide

504

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#extract-new-record-state-route-by-field
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#extract-new-record-state-add-fields-prefix

add.fields Set this option to a comma-separated list, with
no spaces, of metadata fields to add to the
simplified Kafka record’s value. When there are
duplicate field names, to add metadata for one
of those fields, specify the struct as well as the
field, for example source.ts_ms.

Optionally, you can override the field name via
<field name>:<new field name>, e.g. like
so: new field name like version:VERSION,
connector:CONNECTOR,
source.ts_ms:EVENT_TIMESTAMP.
Please note that the new field name is case-
sensitive.

When the SMT adds metadata fields to the
simplified record’s value, it prefixes each
metadata field name with a double underscore.
For a struct specification, the SMT also inserts
an underscore between the struct name and
the field name.

If you specify a field that is not in the change
event record, the SMT still adds the field to the
record’s value.

add.headers.prefix __ (double-underscore) Set this optional string to prefix a header.

Option Default Description

CHAPTER 12. APPLYING TRANSFORMATIONS TO MODIFY MESSAGES EXCHANGED WITH APACHE KAFKA

505

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#extract-new-record-state-add-fields
https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#extract-new-record-state-add-headers-prefix

add.headers Set this option to a comma-separated list, with
no spaces, of metadata fields to add to the
header of the simplified Kafka record. When
there are duplicate field names, to add
metadata for one of those fields, specify the
struct as well as the field, for example
source.ts_ms.

Optionally, you can override the field name via
<field name>:<new field name>, e.g. like
so: new field name like version:VERSION,
connector:CONNECTOR,
source.ts_ms:EVENT_TIMESTAMP.
Please note that the new field name is case-
sensitive.

When the SMT adds metadata fields to the
simplified record’s header, it prefixes each
metadata field name with a double underscore.
For a struct specification, the SMT also inserts
an underscore between the struct name and
the field name.

If you specify a field that is not in the change
event record, the SMT does not add the field to
the header.

Option Default Description

12.6. CONFIGURING DEBEZIUM CONNECTORS TO USE THE OUTBOX
PATTERN

The outbox pattern is a way to safely and reliably exchange data between multiple (micro) services. An
outbox pattern implementation avoids inconsistencies between a service’s internal state (as typically
persisted in its database) and state in events consumed by services that need the same data.

To implement the outbox pattern in a Debezium application, configure a Debezium connector to:

Capture changes in an outbox table

Apply the Debezium outbox event router single message transformation (SMT)

A Debezium connector that is configured to apply the outbox SMT should capture changes that occur in
an outbox table only. For more information, see Options for applying the transformation selectively.

A connector can capture changes in more than one outbox table only if each outbox table has the same
structure.

See Reliable Microservices Data Exchange With the Outbox Pattern to learn about why the outbox
pattern is useful and how it works.

NOTE

Red Hat Integration 2022.Q2 Debezium User Guide

506

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#extract-new-record-state-add-headers
https://debezium.io/blog/2019/02/19/reliable-microservices-data-exchange-with-the-outbox-pattern/

NOTE

The outbox event router SMT is not compatible with the MongoDB connector.

MongoDB users can run the MongoDB outbox event router SMT .

The following topics provide details:

Section 12.6.1, “Example of a Debezium outbox message”

Section 12.6.2, “Outbox table structure expected by Debezium outbox event router SMT”

Section 12.6.3, “Basic Debezium outbox event router SMT configuration”

Section 12.6.4, “Options for applying the Outbox event router transformation selectively”

Section 12.6.5, “Using Avro as the payload format in Debezium outbox messages”

Section 12.6.6, “Emitting additional fields in Debezium outbox messages”

Section 12.6.7, “Expanding escaped JSON String as JSON”

Section 12.6.8, “Options for configuring outbox event router transformation”

12.6.1. Example of a Debezium outbox message

To understand how the Debezium outbox event router SMT is configured, review the following example
of a Debezium outbox message:

A Debezium connector that is configured to apply the outbox event router SMT generates the above
message by transforming a Debezium raw message like this:

Kafka Topic: outbox.event.order
Kafka Message key: "1"
Kafka Message Headers: "id=4d47e190-0402-4048-bc2c-89dd54343cdc"
Kafka Message Timestamp: 1556890294484
{
 "{\"id\": 1, \"lineItems\": [{\"id\": 1, \"item\": \"Debezium in Action\", \"status\": \"ENTERED\",
\"quantity\": 2, \"totalPrice\": 39.98}, {\"id\": 2, \"item\": \"Debezium for Dummies\", \"status\":
\"ENTERED\", \"quantity\": 1, \"totalPrice\": 29.99}], \"orderDate\": \"2019-01-31T12:13:01\",
\"customerId\": 123}"
}

Kafka Message key: "406c07f3-26f0-4eea-a50c-109940064b8f"
Kafka Message Headers: ""
Kafka Message Timestamp: 1556890294484
{
 "before": null,
 "after": {
 "id": "406c07f3-26f0-4eea-a50c-109940064b8f",
 "aggregateid": "1",
 "aggregatetype": "Order",
 "payload": "{\"id\": 1, \"lineItems\": [{\"id\": 1, \"item\": \"Debezium in Action\", \"status\":
\"ENTERED\", \"quantity\": 2, \"totalPrice\": 39.98}, {\"id\": 2, \"item\": \"Debezium for Dummies\",
\"status\": \"ENTERED\", \"quantity\": 1, \"totalPrice\": 29.99}], \"orderDate\": \"2019-01-31T12:13:01\",

CHAPTER 12. APPLYING TRANSFORMATIONS TO MODIFY MESSAGES EXCHANGED WITH APACHE KAFKA

507

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#configuring-debezium-mongodb-connectors-to-use-the-outbox-pattern

This example of a Debezium outbox message is based on the default outbox event router configuration ,
which assumes an outbox table structure and event routing based on aggregates. To customize
behavior, the outbox event router SMT provides numerous configuration options.

12.6.2. Outbox table structure expected by Debezium outbox event router SMT

To apply the default outbox event router SMT configuration, your outbox table is assumed to have the
following columns:

Column | Type | Modifiers
--------------+------------------------+-----------
id | uuid | not null
aggregatetype | character varying(255) | not null
aggregateid | character varying(255) | not null
type | character varying(255) | not null
payload | jsonb |

Table 12.6. Descriptions of expected outbox table columns

Column Effect

id Contains the unique ID of the event. In an outbox message, this value is a
header. You can use this ID, for example, to remove duplicate messages.

To obtain the unique ID of the event from a different outbox table column,
set the table.field.event.id SMT option in the connector configuration.

\"customerId\": 123}",
 "timestamp": 1556890294344,
 "type": "OrderCreated"
 },
 "source": {
 "version": "1.7.2.Final",
 "connector": "postgresql",
 "name": "dbserver1-bare",
 "db": "orderdb",
 "ts_usec": 1556890294448870,
 "txId": 584,
 "lsn": 24064704,
 "schema": "inventory",
 "table": "outboxevent",
 "snapshot": false,
 "last_snapshot_record": null,
 "xmin": null
 },
 "op": "c",
 "ts_ms": 1556890294484
}

Red Hat Integration 2022.Q2 Debezium User Guide

508

aggregatetype Contains a value that the SMT appends to the name of the topic to which
the connector emits an outbox message. The default behavior is that this
value replaces the default ${routedByValue} variable in the
route.topic.replacement SMT option.

For example, in a default configuration, the route.by.field SMT option is
set to aggregatetype and the route.topic.replacement SMT option is
set to outbox.event.${routedByValue}. Suppose that your application
adds two records to the outbox table. In the first record, the value in the
aggregatetype column is customers. In the second record, the value in
the aggregatetype column is orders. The connector emits the first record
to the outbox.event.customers topic. The connector emits the second
record to the outbox.event.orders topic.

To obtain this value from a different outbox table column, set the
route.by.field SMT option in the connector configuration.

aggregateid Contains the event key, which provides an ID for the payload. The SMT uses
this value as the key in the emitted outbox message. This is important for
maintaining correct order in Kafka partitions.

To obtain the event key from a different outbox table column, set the
table.field.event.key SMT option in the connector configuration.

payload A representation of the outbox change event. The default structure is
JSON. By default, the Kafka message value is solely comprised of the
payload value. However, if the outbox event is configured to include
additional fields, the Kafka message value contains an envelope
encapsulating both payload and the additional fields, and each field is
represented separately. For more information, see Emitting messages with
additional fields.

To obtain the event payload from a different outbox table column, set the
table.field.event.payload SMT option in the connector configuration.

Additional custom columns Any additional columns from the outbox table can be added to outbox
events either within the payload section or as a message header.

One example could be a column eventType which conveys a user-defined
value that helps to categorize or organize events.

Column Effect

12.6.3. Basic Debezium outbox event router SMT configuration

To configure a Debezium connector to support the outbox pattern, configure the outbox.EventRouter
SMT. For example, the basic configuration in a .properties file looks like this:

transforms=outbox,...
transforms.outbox.type=io.debezium.transforms.outbox.EventRouter

CHAPTER 12. APPLYING TRANSFORMATIONS TO MODIFY MESSAGES EXCHANGED WITH APACHE KAFKA

509

12.6.4. Options for applying the Outbox event router transformation selectively

In addition to the change event messages that a Debezium connector emits when a database change
occurs, the connector also emits other types of messages, including heartbeat messages, and metadata
messages about schema changes and transactions. Because the structure of these other messages
differs from the structure of the change event messages that the SMT is designed to process, it’s best
to configure the connector to selectively apply the SMT, so that it processes only the intended data
change messages. You can use one of the following methods to configure the connector to apply the
SMT selectively:

Configure an SMT predicate for the transformation .

Use the route.topic.regex configuration option for the SMT.

12.6.5. Using Avro as the payload format in Debezium outbox messages

The outbox event router SMT supports arbitrary payload formats. The payload column value in an
outbox table is passed on transparently. An alternative to working with JSON is to use Avro. This can be
beneficial for message format governance and for ensuring that outbox event schemas evolve in a
backwards-compatible way.

How a source application produces Avro formatted content for outbox message payloads is out of the
scope of this documentation. One possibility is to leverage the KafkaAvroSerializer class to serialize
GenericRecord instances. To ensure that the Kafka message value is the exact Avro binary data, apply
the following configuration to the connector:

transforms=outbox,...
transforms.outbox.type=io.debezium.transforms.outbox.EventRouter
value.converter=io.debezium.converters.ByteBufferConverter

By default, the payload column value (the Avro data) is the only message value. Configuration of
ByteBufferConverter as the value converter propagates the payload column value as-is into the Kafka
message value.

The Debezium connectors may be configured to emit heartbeat, transaction metadata, or schema
change events (support varies by connector). These events cannot be serialized by the
ByteBufferConverter so additional configuration must be provided so the converter knows how to
serialize these events. As an example, the following configuration illustrates using the Apache Kafka
JsonConverter with no schemas:

transforms=outbox,...
transforms.outbox.type=io.debezium.transforms.outbox.EventRouter
value.converter=io.debezium.converters.ByteBufferConverter
value.converter.delegate.converter.type=org.apache.kafka.connect.json.JsonConverter
value.converter.delegate.converter.type.schemas.enable=false

The delegate Converter implementation is specified by the delegate.converter.type option. If any
extra configuration options are needed by the converter, they can also be specified, such as the
disablement of schemas shown above using schemas.enable=false.

12.6.6. Emitting additional fields in Debezium outbox messages

Your outbox table might contain columns whose values you want to add to the emitted outbox
messages. For example, consider an outbox table that has a value of purchase-order in the
aggregatetype column and another column, eventType, whose possible values are order-created and

Red Hat Integration 2022.Q2 Debezium User Guide

510

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index.xml#applying-transformation-selectively

order-shipped. To emit the eventType column value in the outbox message header, configure the SMT
like this:

transforms=outbox,...
transforms.outbox.type=io.debezium.transforms.outbox.EventRouter
transforms.outbox.table.fields.additional.placement=type:header:eventType

To emit the eventType column value in the outbox message envelope, configure the SMT like this:

transforms=outbox,...
transforms.outbox.type=io.debezium.transforms.outbox.EventRouter
transforms.outbox.table.fields.additional.placement=type:envelope:eventType

12.6.7. Expanding escaped JSON String as JSON

You may have noticed that the Debezium outbox message contains the payload represented as a
String. So when this string, is actually JSON, it appears as escaped in the result Kafka message like
shown below:

The outbox event router allows you to expand this message content to "real" JSON with the companion
schema being deduced from the JSON document itself. That way the result in Kafka message looks like:

To enable this transformation, you have to set the table.expand.json.payload to true and use the
StringConverter like below:

transforms=outbox,...
transforms.outbox.type=io.debezium.transforms.outbox.EventRouter
transforms.outbox.table.expand.json.payload=true
value.converter=org.apache.kafka.connect.storage.StringConverter

12.6.8. Options for configuring outbox event router transformation

The following table describes the options that you can specify for the outbox event router SMT. In the

Kafka Topic: outbox.event.order
Kafka Message key: "1"
Kafka Message Headers: "id=4d47e190-0402-4048-bc2c-89dd54343cdc"
Kafka Message Timestamp: 1556890294484
{
 "{\"id\": 1, \"lineItems\": [{\"id\": 1, \"item\": \"Debezium in Action\", \"status\": \"ENTERED\",
\"quantity\": 2, \"totalPrice\": 39.98}, {\"id\": 2, \"item\": \"Debezium for Dummies\", \"status\":
\"ENTERED\", \"quantity\": 1, \"totalPrice\": 29.99}], \"orderDate\": \"2019-01-31T12:13:01\",
\"customerId\": 123}"
}

Kafka Topic: outbox.event.order
Kafka Message key: "1"
Kafka Message Headers: "id=4d47e190-0402-4048-bc2c-89dd54343cdc"
Kafka Message Timestamp: 1556890294484
{
 "id": 1, "lineItems": [{"id": 1, "item": "Debezium in Action", "status": "ENTERED", "quantity": 2,
"totalPrice": 39.98}, {"id": 2, "item": "Debezium for Dummies", "status": "ENTERED", "quantity": 1,
"totalPrice": 29.99}], "orderDate": "2019-01-31T12:13:01", "customerId": 123
}

CHAPTER 12. APPLYING TRANSFORMATIONS TO MODIFY MESSAGES EXCHANGED WITH APACHE KAFKA

511

The following table describes the options that you can specify for the outbox event router SMT. In the
table, the Group column indicates a configuration option classification for Kafka.

Table 12.7. Descriptions of outbox event router SMT configuration options

Option Default Group Description

table.op.invalid.behavior warn Table Determines the behavior of the SMT
when there is an UPDATE operation on
the outbox table. Possible settings are:

warn - The SMT logs a warning
and continues to the next
outbox table record.

error - The SMT logs an error
and continues to the next
outbox table record.

fatal - The SMT logs an error
and the connector stops
processing.

All changes in an outbox table are
expected to be INSERT operations. That
is, an outbox table functions as a queue;
updates to records in an outbox table are
not allowed. The SMT automatically filters
out DELETE operations on an outbox
table.

table.field.event.id id Table Specifies the outbox table column that
contains the unique event ID. This ID will
be stored in the emitted event’s headers
under the id key.

table.field.event.key aggregateid Table Specifies the outbox table column that
contains the event key. When this column
contains a value, the SMT uses that value
as the key in the emitted outbox
message. This is important for
maintaining correct order in Kafka
partitions.

table.field.event.timestam
p

 Table By default, the timestamp in the emitted
outbox message is the Debezium event
timestamp. To use a different timestamp
in outbox messages, set this option to an
outbox table column that contains the
timestamp that you want to be in emitted
outbox messages.

table.field.event.payload payload Table Specifies the outbox table column that
contains the event payload.

Red Hat Integration 2022.Q2 Debezium User Guide

512

table.field.event.payload.i
d

aggregateid Table Specifies the outbox table column that
contains the payload ID. This ID will be
used as the emitted event’s key.

This option is deprecated, use
table.field.event.key instead.

table.expand.json.payloa
d

false Table Specifies whether the JSON expansion of
a String payload should be done. If no
content found or in case of parsing error,
the content is kept "as is".

Fore more details, please see the
expanding escaped json section.

table.fields.additional.pla
cement

 Table,
Envelo
pe

Specifies one or more outbox table
columns that you want to add to outbox
message headers or envelopes. Specify a
comma-separated list of pairs. In each
pair, specify the name of a column and
whether you want the value to be in the
header or the envelope. Separate the
values in the pair with a colon, for
example:

id:header,my-field:envelope

To specify an alias for the column, specify
a trio with the alias as the third value, for
example:

id:header,my-field:envelope:my-
alias

The second value is the placement and it
must always be header or envelope.

Configuration examples are in emitting
additional fields in Debezium outbox
messages.

table.field.event.schema.v
ersion

 Table,
Schem
a

When set, this value is used as the
schema version as described in the Kafka
Connect Schema Javadoc.

Option Default Group Description

CHAPTER 12. APPLYING TRANSFORMATIONS TO MODIFY MESSAGES EXCHANGED WITH APACHE KAFKA

513

https://kafka.apache.org/20/javadoc/org/apache/kafka/connect/data/ConnectSchema.html#version--

route.by.field aggregatetype Router Specifies the name of a column in the
outbox table. The default behavior is that
the value in this column becomes a part
of the name of the topic to which the
connector emits the outbox messages.
An example is in the description of the
expected outbox table.

route.topic.regex (?
<routedByValue
>.*)

Router Specifies a regular expression that the
outbox SMT applies in the RegexRouter
to outbox table records. This regular
expression is part of the setting of the
route.topic.replacement SMT option.

The default behavior is that the SMT
replaces the default ${routedByValue}
variable in the setting of the
route.topic.replacement SMT option
with the setting of the route.by.field
outbox SMT option.

route.topic.replacement outbox.event
.${routedByValu
e}

Router Specifies the name of the topic to which
the connector emits outbox messages.
The default topic name is outbox.event.
followed by the aggregatetype column
value in the outbox table record. For
example, if the aggregatetype value is
customers, the topic name is
outbox.event.customers.

To change the topic name, you can:

Set the route.by.field option
to a different column.

Set the route.topic.regex option
to a different regular expression.

route.tombstone.on.empt
y.payload

false Router Indicates whether an empty or null
payload causes the connector to emit a
tombstone event.

Option Default Group Description

12.7. CONFIGURING DEBEZIUM MONGODB CONNECTORS TO USE
THE OUTBOX PATTERN

NOTE

This SMT is for use with the Debezium MongoDB connector only. For information about
using the outbox event router SMT for relational databases, see Outbox event router.

Red Hat Integration 2022.Q2 Debezium User Guide

514

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#configuring-debezium-connectors-to-use-the-outbox-pattern

The outbox pattern is a way to safely and reliably exchange data between multiple (micro) services. An
outbox pattern implementation avoids inconsistencies between a service’s internal state (as typically
persisted in its database) and state in events consumed by services that need the same data.

To implement the outbox pattern in a Debezium application, configure a Debezium connector to:

Capture changes in an outbox collection

Apply the Debezium MongoDB outbox event router single message transformation (SMT)

A Debezium connector that is configured to apply the MongoDB outbox SMT should capture changes
that occur in an outbox collection only. For more information, see Options for applying the
transformation selectively.

A connector can capture changes in more than one outbox collection only if each outbox collection has
the same structure.

NOTE

To use this SMT, operations on the actual business collection(s) and the insert into the
outbox collection must be done as part of a multi-document transaction, which have been
being supported since MongoDB 4.0, to prevent potential data inconsistencies between
business collection(s) and outbox collection. For future update, to enable updating
existing data and inserting outbox event in an ACID transaction without multi-document
transactions, we have planned to support additional configurations for storing outbox
events in a form of a sub-document of the existing collection, rather than an independent
outbox collection.

For more information about the outbox pattern, see Reliable Microservices Data Exchange With the
Outbox Pattern.

The following topics provide details:

Section 12.7.1, “Example of a Debezium MongoDB outbox message”

Section 12.7.2, “Outbox collection structure expected by Debezium mongodb outbox event
router SMT”

Section 12.7.3, “Basic Debezium MongoDB outbox event router SMT configuration”

Section 12.7.5, “Using Avro as the payload format in Debezium MongoDB outbox messages”

Section 12.7.6, “Emitting additional fields in Debezium MongoDB outbox messages”

Section 12.7.8, “Options for configuring outbox event router transformation”

12.7.1. Example of a Debezium MongoDB outbox message

To understand how to configure the Debezium MongoDB outbox event router SMT, consider the
following example of a Debezium outbox message:

Kafka Topic: outbox.event.order
Kafka Message key: "b2730779e1f596e275826f08"
Kafka Message Headers: "id=596e275826f08b2730779e1f"
Kafka Message Timestamp: 1556890294484
{

CHAPTER 12. APPLYING TRANSFORMATIONS TO MODIFY MESSAGES EXCHANGED WITH APACHE KAFKA

515

https://debezium.io/blog/2019/02/19/reliable-microservices-data-exchange-with-the-outbox-pattern/

A Debezium connector that is configured to apply the MongoDB outbox event router SMT generates
the preceding message by transforming a raw Debezium change event message as in the following
example:

This example of a Debezium outbox message is based on the default outbox event router configuration ,
which assumes an outbox collection structure and event routing based on aggregates. To customize
behavior, the outbox event router SMT provides numerous configuration options.

12.7.2. Outbox collection structure expected by Debezium mongodb outbox event
router SMT

To apply the default MongoDB outbox event router SMT configuration, your outbox collection is
assumed to have the following fields:

{
 "_id": "objectId",
 "aggregatetype": "string",
 "aggregateid": "objectId",
 "type": "string",
 "payload": "object"
}

 "{\"id\": {\"$oid\": \"da8d6de63b7745ff8f4457db\"}, \"lineItems\": [{\"id\": 1, \"item\": \"Debezium in
Action\", \"status\": \"ENTERED\", \"quantity\": 2, \"totalPrice\": 39.98}, {\"id\": 2, \"item\": \"Debezium
for Dummies\", \"status\": \"ENTERED\", \"quantity\": 1, \"totalPrice\": 29.99}], \"orderDate\": \"2019-01-
31T12:13:01\", \"customerId\": 123}"
}

Kafka Message key: { "id": "{\"$oid\": \"596e275826f08b2730779e1f\"}" }
Kafka Message Headers: ""
Kafka Message Timestamp: 1556890294484
{
 "patch": null,
 "after": "{\"_id\": {\"$oid\": \"596e275826f08b2730779e1f\"}, \"aggregateid\": {\"$oid\":
\"b2730779e1f596e275826f08\"}, \"aggregatetype\": \"Order\", \"type\": \"OrderCreated\", \"payload\":
{\"_id\": {\"$oid\": \"da8d6de63b7745ff8f4457db\"}, \"lineItems\": [{\"id\": 1, \"item\": \"Debezium in
Action\", \"status\": \"ENTERED\", \"quantity\": 2, \"totalPrice\": 39.98}, {\"id\": 2, \"item\": \"Debezium
for Dummies\", \"status\": \"ENTERED\", \"quantity\": 1, \"totalPrice\": 29.99}], \"orderDate\": \"2019-01-
31T12:13:01\", \"customerId\": 123}}",
 "source": {
 "version": "1.7.2.Final",
 "connector": "mongodb",
 "name": "fulfillment",
 "ts_ms": 1558965508000,
 "snapshot": false,
 "db": "inventory",
 "rs": "rs0",
 "collection": "customers",
 "ord": 31,
 "h": 1546547425148721999
 },
 "op": "c",
 "ts_ms": 1556890294484
}

Red Hat Integration 2022.Q2 Debezium User Guide

516

Table 12.8. Descriptions of expected outbox collection fields

Field Effect

id Contains the unique ID of the event. In an outbox message, this value is a
header. You can use this ID, for example, to remove duplicate messages.

To obtain the unique ID of the event from a different outbox collection
field, set the collection.field.event.id SMT option in the connector
configuration.

aggregatetype Contains a value that the SMT appends to the name of the topic to which
the connector emits an outbox message. The default behavior is that this
value replaces the default ${routedByValue} variable in the
route.topic.replacement SMT option.

For example, in a default configuration, the route.by.field SMT option is
set to aggregatetype and the route.topic.replacement SMT option is
set to outbox.event.${routedByValue}. Suppose that your application
adds two documents to the outbox collection. In the first document, the
value in the aggregatetype field is customers. In the second document,
the value in the aggregatetype field is orders. The connector emits the
first document to the outbox.event.customers topic. The connector
emits the second document to the outbox.event.orders topic.

To obtain this value from a different outbox collection field, set the
route.by.field SMT option in the connector configuration.

aggregateid Contains the event key, which provides an ID for the payload. The SMT uses
this value as the key in the emitted outbox message. This is important for
maintaining correct order in Kafka partitions.

To obtain the event key from a different outbox collection field, set the
collection.field.event.key SMT option in the connector configuration.

payload A representation of the outbox change event. The default structure is
JSON. By default, the Kafka message value is solely comprised of the
payload value. However, if the outbox event is configured to include
additional fields, the Kafka message value contains an envelope
encapsulating both payload and the additional fields, and each field is
represented separately. For more information, see Emitting messages with
additional fields.

To obtain the event payload from a different outbox collection field, set the
collection.field.event.payload SMT option in the connector
configuration.

Additional custom fields Any additional fields from the outbox collection can be added to outbox
events either within the payload section or as a message header.

One example could be a field eventType which conveys a user-defined
value that helps to categorize or organize events.

CHAPTER 12. APPLYING TRANSFORMATIONS TO MODIFY MESSAGES EXCHANGED WITH APACHE KAFKA

517

12.7.3. Basic Debezium MongoDB outbox event router SMT configuration

To configure a Debezium connector to support the outbox pattern, configure the outbox.EventRouter
SMT. The following example shows the basic configuration for the SMT in a .properties file:

transforms=outbox,...
transforms.outbox.type=io.debezium.connector.mongodb.transforms.outbox.MongoEventRouter

12.7.4. Options for applying the MongoDB outbox event router transformation
selectively

In addition to the change event messages that a Debezium connector emits when a database change
occurs, the connector also emits other types of messages, including heartbeat messages, and metadata
messages about schema changes and transactions. Because the structure of these other messages
differs from the structure of the change event messages that the SMT is designed to process, it’s best
to configure the connector to selectively apply the SMT, so that it processes only the intended data
change messages. You can use one of the following methods to configure the connector to apply the
SMT selectively:

Configure an SMT predicate for the transformation .

Use the route.topic.regex configuration option for the SMT.

12.7.5. Using Avro as the payload format in Debezium MongoDB outbox messages

The MongoDB outbox event router SMT supports arbitrary payload formats. The payload field value in
an outbox collection is passed on transparently. An alternative to working with JSON is to use Avro. This
can be beneficial for message format governance and for ensuring that outbox event schemas evolve in
a backwards-compatible way.

How a source application produces Avro formatted content for outbox message payloads is out of the
scope of this documentation. One possibility is to leverage the KafkaAvroSerializer class to serialize
GenericRecord instances. To ensure that the Kafka message value is the exact Avro binary data, apply
the following configuration to the connector:

transforms=outbox,...
transforms.outbox.type=io.debezium.connector.mongodb.transforms.outbox.MongoEventRouter
value.converter=io.debezium.converters.ByteBufferConverter

By default, the payload field value (the Avro data) is the only message value. Configuration of
ByteBufferConverter as the value converter propagates the payload field value as-is into the Kafka
message value.

The Debezium connectors may be configured to emit heartbeat, transaction metadata, or schema
change events (support varies by connector). These events cannot be serialized by the
ByteBufferConverter so additional configuration must be provided so the converter knows how to
serialize these events. As an example, the following configuration illustrates using the Apache Kafka
JsonConverter with no schemas:

transforms=outbox,...
transforms.outbox.type=io.debezium.connector.mongodb.transforms.outbox.MongoEventRouter
value.converter=io.debezium.converters.ByteBufferConverter
value.converter.delegate.converter.type=org.apache.kafka.connect.json.JsonConverter
value.converter.delegate.converter.type.schemas.enable=false

Red Hat Integration 2022.Q2 Debezium User Guide

518

https://access.redhat.com/documentation/en-us/red_hat_integration/2022.q1/html-single/debezium_user_guide/index#applying-transformations-selectively-with-smt-predicates

The delegate Converter implementation is specified by the delegate.converter.type option. If any
extra configuration options are needed by the converter, they can also be specified, such as the
disablement of schemas shown above using schemas.enable=false.

12.7.6. Emitting additional fields in Debezium MongoDB outbox messages

Your outbox collection might contain fields whose values you want to add to the emitted outbox
messages. For example, consider an outbox collection that has a value of purchase-order in the
aggregatetype field and another field, eventType, whose possible values are order-created and order-
shipped. To emit the eventType field value in the outbox message header, configure the SMT like this:

transforms=outbox,...
transforms.outbox.type=io.debezium.connector.mongodb.transforms.outbox.MongoEventRouter
transforms.outbox.collection.fields.additional.placement=type:header:eventType

To emit the eventType field value in the outbox message envelope, configure the SMT like this:

transforms=outbox,...
transforms.outbox.type=io.debezium.connector.mongodb.transforms.outbox.MongoEventRouter
transforms.outbox.collection.fields.additional.placement=type:envelope:eventType

12.7.7. Expanding escaped JSON String as JSON

By default, the payload of the Debezium outbox message is represented as a string. When the original
source of the string is in JSON format, the resulting Kafka message uses escape sequences to represent
the string, as shown in the following example:

You can configure the outbox event router to expand the message content, converting the escaped
JSON back to its original, unescaped JSON format. In the converted string, the companion schema is
deduced from the original JSON document. The following examples shows the expanded JSON in the
resulting Kafka message:

Kafka Topic: outbox.event.order
Kafka Message key: "1"
Kafka Message Headers: "id=596e275826f08b2730779e1f"
Kafka Message Timestamp: 1556890294484
{
 "{\"id\": {\"$oid\": \"da8d6de63b7745ff8f4457db\"}, \"lineItems\": [{\"id\": 1, \"item\": \"Debezium in
Action\", \"status\": \"ENTERED\", \"quantity\": 2, \"totalPrice\": 39.98}, {\"id\": 2, \"item\": \"Debezium
for Dummies\", \"status\": \"ENTERED\", \"quantity\": 1, \"totalPrice\": 29.99}], \"orderDate\": \"2019-01-
31T12:13:01\", \"customerId\": 123}"
}

Kafka Topic: outbox.event.order
Kafka Message key: "1"
Kafka Message Headers: "id=596e275826f08b2730779e1f"
Kafka Message Timestamp: 1556890294484
{
 "id": "da8d6de63b7745ff8f4457db", "lineItems": [{"id": 1, "item": "Debezium in Action", "status":
"ENTERED", "quantity": 2, "totalPrice": 39.98}, {"id": 2, "item": "Debezium for Dummies", "status":
"ENTERED", "quantity": 1, "totalPrice": 29.99}], "orderDate": "2019-01-31T12:13:01", "customerId":
123
}

CHAPTER 12. APPLYING TRANSFORMATIONS TO MODIFY MESSAGES EXCHANGED WITH APACHE KAFKA

519

To enable string conversion in the transformation, set the value of collection.expand.json.payload to
true and use the StringConverter as shown in the following example:

transforms=outbox,...
transforms.outbox.type=io.debezium.connector.mongodb.transforms.outbox.MongoEventRouter
transforms.outbox.collection.expand.json.payload=true
value.converter=org.apache.kafka.connect.storage.StringConverter

12.7.8. Options for configuring outbox event router transformation

The following table describes the options that you can specify for the outbox event router SMT. In the
table, the Group column indicates a configuration option classification for Kafka.

Table 12.9. Descriptions of outbox event router SMT configuration options

Option Default Group Description

collection.op.invalid.beha
vior

warn Collect
ion

Determines the behavior of the SMT
when there is an update operation on the
outbox collection. Possible settings are:

warn - The SMT logs a warning
and continues to the next
outbox collection document.

error - The SMT logs an error
and continues to the next
outbox collection document.

fatal - The SMT logs an error
and the connector stops
processing.

All changes in an outbox collection are
expected to be an insert or delete
operation. That is, an outbox collection
functions as a queue; updates to
documents in an outbox collection are
not allowed. The SMT automatically filters
out delete operations (for removing
proceeded outbox events) on an outbox
collection.

collection.field.event.id _id Collect
ion

Specifies the outbox collection field that
contains the unique event ID. This ID will
be stored in the emitted event’s headers
under the id key.

collection.field.event.key aggregateid Collect
ion

Specifies the outbox collection field that
contains the event key. When this field
contains a value, the SMT uses that value
as the key in the emitted outbox
message. This is important for
maintaining correct order in Kafka
partitions.

Red Hat Integration 2022.Q2 Debezium User Guide

520

collection.field.event.time
stamp

 Collect
ion

By default, the timestamp in the emitted
outbox message is the Debezium event
timestamp. To use a different timestamp
in outbox messages, set this option to an
outbox collection field that contains the
timestamp that you want to be in emitted
outbox messages.

collection.field.event.payl
oad

payload Collect
ion

Specifies the outbox collection field that
contains the event payload.

collection.expand.json.pa
yload

false Collect
ion

Specifies whether the JSON expansion of
a String payload should be done. If no
content found or in case of parsing error,
the content is kept "as is".

Fore more details, please see the
expanding escaped json section.

collection.fields.additiona
l.placement

 Collect
ion,
Envelo
pe

Specifies one or more outbox collection
fields that you want to add to outbox
message headers or envelopes. Specify a
comma-separated list of pairs. In each
pair, specify the name of a field and
whether you want the value to be in the
header or the envelope. Separate the
values in the pair with a colon, for
example:

id:header,my-field:envelope

To specify an alias for the field, specify a
trio with the alias as the third value, for
example:

id:header,my-field:envelope:my-
alias

The second value is the placement and it
must always be header or envelope.

Configuration examples are in emitting
additional fields in Debezium outbox
messages.

collection.field.event.sch
ema.version

 Collect
ion,
Schem
a

When set, this value is used as the
schema version as described in the Kafka
Connect Schema Javadoc.

Option Default Group Description

CHAPTER 12. APPLYING TRANSFORMATIONS TO MODIFY MESSAGES EXCHANGED WITH APACHE KAFKA

521

https://kafka.apache.org/20/javadoc/org/apache/kafka/connect/data/ConnectSchema.html#version--

route.by.field aggregatetype Router Specifies the name of a field in the
outbox collection. By default, the value
specified in this field becomes a part of
the name of the topic to which the
connector emits the outbox messages.
For an example, see the description of the
expected outbox collection.

route.topic.regex (?
<routedByValue
>.*)

Router Specifies a regular expression that the
outbox SMT applies in the RegexRouter
to outbox collection documents. This
regular expression is part of the setting of
the route.topic.replacement SMT
option.

+ The default behavior is that the SMT
replaces the default ${routedByValue}
variable in the setting of the
route.topic.replacement SMT option
with the setting of the route.by.field
outbox SMT option.

route.topic.replacement outbox.event
.${routedByValu
e}

Router Specifies the name of the topic to which
the connector emits outbox messages.
The default topic name is outbox.event.
followed by the aggregatetype field
value in the outbox collection document.
For example, if the aggregatetype value
is customers, the topic name is
outbox.event.customers.

+ To change the topic name, you can:

Set the route.by.field option
to a different field.

Set the route.topic.regex
option to a different regular
expression.

route.tombstone.on.empt
y.payload

false Router Indicates whether an empty or null
payload causes the connector to emit a
tombstone event.

Option Default Group Description

Revised on 2022-05-23 09:57:09 UTC

Red Hat Integration 2022.Q2 Debezium User Guide

522

CHAPTER 12. APPLYING TRANSFORMATIONS TO MODIFY MESSAGES EXCHANGED WITH APACHE KAFKA

523

	Table of Contents
	PREFACE
	MAKING OPEN SOURCE MORE INCLUSIVE

	CHAPTER 1. HIGH LEVEL OVERVIEW OF DEBEZIUM
	1.1. DEBEZIUM FEATURES
	1.2. DESCRIPTION OF DEBEZIUM ARCHITECTURE

	CHAPTER 2. REQUIRED CUSTOM RESOURCE UPGRADES
	CHAPTER 3. DEBEZIUM CONNECTOR FOR DB2
	3.1. OVERVIEW OF DEBEZIUM DB2 CONNECTOR
	3.2. HOW DEBEZIUM DB2 CONNECTORS WORK
	3.2.1. How Debezium Db2 connectors perform database snapshots
	3.2.1.1. Ad hoc snapshots
	3.2.1.2. Incremental snapshots

	3.2.2. How Debezium Db2 connectors read change-data tables
	3.2.3. Default names of Kafka topics that receive Debezium Db2 change event records
	3.2.4. About the Debezium Db2 connector schema change topic
	3.2.5. Debezium Db2 connector-generated events that represent transaction boundaries

	3.3. DESCRIPTIONS OF DEBEZIUM DB2 CONNECTOR DATA CHANGE EVENTS
	3.3.1. About keys in Debezium db2 change events
	3.3.2. About values in Debezium Db2 change events

	3.4. HOW DEBEZIUM DB2 CONNECTORS MAP DATA TYPES
	3.5. SETTING UP DB2 TO RUN A DEBEZIUM CONNECTOR
	3.5.1. Configuring Db2 tables for change data capture
	3.5.2. Effect of Db2 capture agent configuration on server load and latency
	3.5.3. Db2 capture agent configuration parameters

	3.6. DEPLOYMENT OF DEBEZIUM DB2 CONNECTORS
	3.6.1. Obtaining the Db2 JDBC driver
	3.6.2. Db2 connector deployment using AMQ Streams
	3.6.3. Using AMQ Streams to deploy a Debezium Db2 connector
	3.6.4. Deploying a Debezium Db2 connector by building a custom Kafka Connect container image from a Dockerfile
	3.6.5. Verifying that the Debezium Db2 connector is running
	3.6.6. Description of Debezium Db2 connector configuration properties

	3.7. MONITORING DEBEZIUM DB2 CONNECTOR PERFORMANCE
	3.7.1. Monitoring Debezium during snapshots of Db2 databases
	3.7.2. Monitoring Debezium Db2 connector record streaming
	3.7.3. Monitoring Debezium Db2 connector schema history

	3.8. MANAGING DEBEZIUM DB2 CONNECTORS
	3.9. UPDATING SCHEMAS FOR DB2 TABLES IN CAPTURE MODE FOR DEBEZIUM CONNECTORS
	3.9.1. Performing offline schema updates for Debezium Db2 connectors
	3.9.2. Performing online schema updates for Debezium Db2 connectors

	CHAPTER 4. DEBEZIUM CONNECTOR FOR MONGODB
	4.1. OVERVIEW OF DEBEZIUM MONGODB CONNECTOR
	4.2. HOW DEBEZIUM MONGODB CONNECTORS WORK
	4.2.1. MongoDB topologies supported by Debezium connectors
	4.2.2. How Debezium MongoDB connectors use logical names for replica sets and sharded clusters
	4.2.3. How Debezium MongoDB connectors perform snapshots
	4.2.4. How the Debezium MongoDB connector streams change event records
	4.2.5. Default names of Kafka topics that receive Debezium MongoDB change event records
	4.2.6. How event keys control topic partitioning for the Debezium MongoDB connector
	4.2.7. Debezium MongoDB connector-generated events that represent transaction boundaries

	4.3. DESCRIPTIONS OF DEBEZIUM MONGODB CONNECTOR DATA CHANGE EVENTS
	4.3.1. About keys in Debezium MongoDB change events
	4.3.2. About values in Debezium MongoDB change events

	4.4. SETTING UP MONGODB TO WORK WITH A DEBEZIUM CONNECTOR
	4.5. DEPLOYMENT OF DEBEZIUM MONGODB CONNECTORS
	4.5.1. MongoDB connector deployment using AMQ Streams
	4.5.2. Using AMQ Streams to deploy a Debezium MongoDB connector
	4.5.3. Deploying a Debezium MongoDB connector by building a custom Kafka Connect container image from a Dockerfile
	4.5.4. Verifying that the Debezium MongoDB connector is running
	4.5.5. Description of Debezium Db2 connector configuration properties

	4.6. MONITORING DEBEZIUM MONGODB CONNECTOR PERFORMANCE
	4.6.1. Monitoring Debezium during MongoDB snapshots
	4.6.2. Monitoring Debezium MongoDB connector record streaming

	4.7. HOW DEBEZIUM MONGODB CONNECTORS HANDLE FAULTS AND PROBLEMS

	CHAPTER 5. DEBEZIUM CONNECTOR FOR MYSQL
	5.1. HOW DEBEZIUM MYSQL CONNECTORS WORK
	5.1.1. MySQL topologies supported by Debezium connectors
	5.1.2. How Debezium MySQL connectors handle database schema changes
	5.1.3. How Debezium MySQL connectors expose database schema changes
	5.1.4. How Debezium MySQL connectors perform database snapshots
	5.1.4.1. Ad hoc snapshots
	5.1.4.2. Incremental snapshots

	5.1.5. Default names of Kafka topics that receive Debezium MySQL change event records

	5.2. DESCRIPTIONS OF DEBEZIUM MYSQL CONNECTOR DATA CHANGE EVENTS
	5.2.1. About keys in Debezium MySQL change events
	5.2.2. About values in Debezium MySQL change events

	5.3. HOW DEBEZIUM MYSQL CONNECTORS MAP DATA TYPES
	5.4. SETTING UP MYSQL TO RUN A DEBEZIUM CONNECTOR
	5.4.1. Creating a MySQL user for a Debezium connector
	5.4.2. Enabling the MySQL binlog for Debezium
	5.4.3. Enabling MySQL Global Transaction Identifiers for Debezium
	5.4.4. Configuring MySQL session timesouts for Debezium
	5.4.5. Enabling query log events for Debezium MySQL connectors

	5.5. DEPLOYMENT OF DEBEZIUM MYSQL CONNECTORS
	5.5.1. MySQL connector deployment using AMQ Streams
	5.5.2. Using AMQ Streams to deploy a Debezium MySQL connector
	5.5.3. Deploying Debezium MySQL connectors by building a custom Kafka Connect container image from a Dockerfile
	5.5.4. Verifying that the Debezium MySQL connector is running
	5.5.5. Description of Debezium MySQL connector configuration properties

	5.6. MONITORING DEBEZIUM MYSQL CONNECTOR PERFORMANCE
	5.6.1. Monitoring Debezium during snapshots of MySQL databases
	5.6.2. Monitoring Debezium MySQL connector record streaming
	5.6.3. Monitoring Debezium MySQL connector schema history

	5.7. HOW DEBEZIUM MYSQL CONNECTORS HANDLE FAULTS AND PROBLEMS

	CHAPTER 6. DEBEZIUM CONNECTOR FOR ORACLE (TECHNOLOGY PREVIEW)
	6.1. HOW DEBEZIUM ORACLE CONNECTORS WORK
	6.1.1. How Debezium Oracle connectors perform database snapshots
	6.1.1.1. Ad hoc snapshots
	6.1.1.2. Incremental snapshots

	6.1.2. Default names of Kafka topics that receive Debezium Oracle change event records
	6.1.3. How Debezium Oracle connectors expose database schema changes
	6.1.4. Debezium Oracle connector-generated events that represent transaction boundaries
	6.1.4.1. Change data event enrichment

	6.1.5. Gaps between Oracle SCN values

	6.2. DESCRIPTIONS OF DEBEZIUM ORACLE CONNECTOR DATA CHANGE EVENTS
	6.2.1. About keys in Debezium Oracle connector change events
	6.2.2. About values in Debezium Oracle connector change events

	6.3. HOW DEBEZIUM ORACLE CONNECTORS MAP DATA TYPES
	6.4. SETTING UP ORACLE TO WORK WITH DEBEZIUM
	6.4.1. Preparing Oracle databases for use with Debezium
	6.4.2. Redo log sizing
	6.4.3. Creating an Oracle user for the Debezium Oracle connector

	6.5. DEPLOYMENT OF DEBEZIUM ORACLE CONNECTORS
	6.5.1. Debezium Oracle connector deployment using AMQ Streams
	6.5.2. Using AMQ Streams to deploy a Debezium Oracle connector
	6.5.3. Deploying a Debezium Oracle connector by building a custom Kafka Connect container image from a Dockerfile
	6.5.4. Obtaining the Oracle JDBC driver
	6.5.5. Configuration of container databases and non-container-databases
	6.5.6. Verifying that the Debezium Oracle connector is running

	6.6. DESCRIPTIONS OF DEBEZIUM ORACLE CONNECTOR CONFIGURATION PROPERTIES
	6.7. MONITORING DEBEZIUM ORACLE CONNECTOR PERFORMANCE
	6.7.1. Debezium Oracle connector snapshot metrics
	6.7.2. Debezium Oracle connector streaming metrics
	6.7.3. Debezium Oracle connector schema history metrics

	6.8. HOW DEBEZIUM ORACLE CONNECTORS HANDLE FAULTS AND PROBLEMS

	CHAPTER 7. DEBEZIUM CONNECTOR FOR POSTGRESQL
	7.1. OVERVIEW OF DEBEZIUM POSTGRESQL CONNECTOR
	7.2. HOW DEBEZIUM POSTGRESQL CONNECTORS WORK
	7.2.1. Security for PostgreSQL connector
	7.2.2. How Debezium PostgreSQL connectors perform database snapshots
	7.2.2.1. Ad hoc snapshots
	7.2.2.2. Incremental snapshots

	7.2.3. How Debezium PostgreSQL connectors stream change event records
	7.2.4. Default names of Kafka topics that receive Debezium PostgreSQL change event records
	7.2.5. Metadata in Debezium PostgreSQL change event records
	7.2.6. Debezium PostgreSQL connector-generated events that represent transaction boundaries

	7.3. DESCRIPTIONS OF DEBEZIUM POSTGRESQL CONNECTOR DATA CHANGE EVENTS
	7.3.1. About keys in Debezium PostgreSQL change events
	7.3.2. About values in Debezium PostgreSQL change events

	7.4. HOW DEBEZIUM POSTGRESQL CONNECTORS MAP DATA TYPES
	7.5. SETTING UP POSTGRESQL TO RUN A DEBEZIUM CONNECTOR
	7.5.1. Configuring a replication slot for the Debezium pgoutput plug-in
	7.5.2. Setting up PostgreSQL permissions for the Debezium connector
	7.5.3. Setting privileges to enable Debezium to create PostgreSQL publications
	7.5.4. Configuring PostgreSQL to allow replication with the Debezium connector host
	7.5.5. Configuring PostgreSQL to manage Debezium WAL disk space consumption

	7.6. DEPLOYMENT OF DEBEZIUM POSTGRESQL CONNECTORS
	7.6.1. PostgreSQL connector deployment using AMQ Streams
	7.6.2. Using AMQ Streams to deploy a Debezium PostgreSQL connector
	7.6.3. Deploying a Debezium PostgreSQL connector by building a custom Kafka Connect container image from a Dockerfile
	7.6.4. Verifying that the Debezium PostgreSQL connector is running
	7.6.5. Description of Debezium PostgreSQL connector configuration properties

	7.7. MONITORING DEBEZIUM POSTGRESQL CONNECTOR PERFORMANCE
	7.7.1. Monitoring Debezium during snapshots of PostgreSQL databases
	7.7.2. Monitoring Debezium PostgreSQL connector record streaming

	7.8. HOW DEBEZIUM POSTGRESQL CONNECTORS HANDLE FAULTS AND PROBLEMS

	CHAPTER 8. DEBEZIUM CONNECTOR FOR SQL SERVER
	8.1. OVERVIEW OF DEBEZIUM SQL SERVER CONNECTOR
	8.2. HOW DEBEZIUM SQL SERVER CONNECTORS WORK
	8.2.1. How Debezium SQL Server connectors perform database snapshots
	8.2.1.1. Ad hoc snapshots
	8.2.1.2. Incremental snapshots

	8.2.2. How Debezium SQL Server connectors read change data tables
	8.2.3. Default names of Kafka topics that receive Debezium SQL Server change event records
	8.2.4. How the Debezium SQL Server connector uses the schema change topic
	8.2.5. Descriptions of Debezium SQL Server connector data change events
	8.2.5.1. About keys in Debezium SQL Server change events
	8.2.5.2. About values in Debezium SQL Server change events

	8.2.6. Debezium SQL Server connector-generated events that represent transaction boundaries
	8.2.6.1. Change data event enrichment

	8.2.7. How Debezium SQL Server connectors map data types

	8.3. SETTING UP SQL SERVER TO RUN A DEBEZIUM CONNECTOR
	8.3.1. Enabling CDC on the SQL Server database
	8.3.2. Enabling CDC on a SQL Server table
	8.3.3. Verifying that the user has access to the CDC table
	8.3.4. SQL Server on Azure
	8.3.5. Effect of SQL Server capture job agent configuration on server load and latency
	8.3.6. SQL Server capture job agent configuration parameters

	8.4. DEPLOYMENT OF DEBEZIUM SQL SERVER CONNECTORS
	8.4.1. SQL Server connector deployment using AMQ Streams
	8.4.2. Using AMQ Streams to deploy a Debezium SQL Server connector
	8.4.3. Deploying a Debezium SQL Server connector by building a custom Kafka Connect container image from a Dockerfile
	8.4.4. Descriptions of Debezium SQL Server connector configuration properties

	8.5. REFRESHING CAPTURE TABLES AFTER A SCHEMA CHANGE
	8.5.1. Running an offline update after a schema change
	8.5.2. Running an online update after a schema change

	8.6. MONITORING DEBEZIUM SQL SERVER CONNECTOR PERFORMANCE
	8.6.1. Debezium SQL Server connector snapshot metrics
	8.6.2. Debezium SQL Server connector streaming metrics
	8.6.3. Debezium SQL Server connector schema history metrics

	CHAPTER 9. MONITORING DEBEZIUM
	9.1. METRICS FOR MONITORING DEBEZIUM CONNECTORS
	9.2. ENABLING JMX IN LOCAL INSTALLATIONS
	9.2.1. Zookeeper JMX environment variables
	9.2.2. Kafka JMX environment variables
	9.2.3. Kafka Connect JMX environment variables

	9.3. MONITORING DEBEZIUM ON OPENSHIFT

	CHAPTER 10. DEBEZIUM LOGGING
	10.1. DEBEZIUM LOGGING CONCEPTS
	10.2. DEFAULT DEBEZIUM LOGGING CONFIGURATION
	10.3. CONFIGURING DEBEZIUM LOGGING
	10.3.1. Changing the Debezium logging level by configuring loggers
	10.3.2. Dynamically changing the Debezium logging level with the Kafka Connect API
	10.3.3. Changing the Debezium logging levely by adding mapped diagnostic contexts

	10.4. DEBEZIUM LOGGING ON OPENSHIFT

	CHAPTER 11. CONFIGURING DEBEZIUM CONNECTORS FOR YOUR APPLICATION
	11.1. CUSTOMIZATION OF KAFKA CONNECT AUTOMATIC TOPIC CREATION
	11.1.1. Disabling automatic topic creation for the Kafka broker
	11.1.2. Configuring automatic topic creation in Kafka Connect
	11.1.3. Configuration of automatically created topics
	11.1.3.1. Topic creation groups
	11.1.3.2. Topic creation group configuration properties
	11.1.3.3. Specifying the configuration for the Debezium default topic creation group
	11.1.3.4. Specifying the configuration for Debezium custom topic creation groups
	11.1.3.5. Registering Debezium custom topic creation groups

	11.2. CONFIGURING DEBEZIUM CONNECTORS TO USE AVRO SERIALIZATION
	11.2.1. About the Service Registry
	11.2.2. Overview of deploying a Debezium connector that uses Avro serialization
	11.2.3. Deploying connectors that use Avro in Debezium containers
	11.2.4. About Avro name requirements

	11.3. EMITTING DEBEZIUM CHANGE EVENT RECORDS IN CLOUDEVENTS FORMAT
	11.3.1. Example Debezium change event records in CloudEvents format
	11.3.2. Example of configuring Debezium CloudEvents converter
	11.3.3. Debezium CloudEvents converter configuration options

	11.4. SENDING SIGNALS TO A DEBEZIUM CONNECTOR
	11.4.1. Enabling Debezium signaling
	11.4.1.1. Required structure of a Debezium signaling data collection
	11.4.1.2. Creating a Debezium signaling data collection

	11.4.2. Types of Debezium signal actions
	11.4.2.1. Logging signals
	11.4.2.2. Ad hoc snapshot signals
	11.4.2.3. Incremental snapshots

	CHAPTER 12. APPLYING TRANSFORMATIONS TO MODIFY MESSAGES EXCHANGED WITH APACHE KAFKA
	12.1. APPLYING TRANSFORMATIONS SELECTIVELY WITH SMT PREDICATES
	12.1.1. About SMT predicates
	12.1.2. Defining SMT predicates
	12.1.3. Ignoring tombstone events

	12.2. ROUTING DEBEZIUM EVENT RECORDS TO TOPICS THAT YOU SPECIFY
	12.2.1. Use case for routing Debezium records to topics that you specify
	12.2.2. Example of routing Debezium records for multiple tables to one topic
	12.2.3. Ensuring unique keys across Debezium records routed to the same topic
	12.2.4. Options for applying the topic routing transformation selectively
	12.2.5. Options for configuring Debezium topic routing transformation

	12.3. ROUTING CHANGE EVENT RECORDS TO TOPICS ACCORDING TO EVENT CONTENT
	12.3.1. Setting up the Debezium content-based-routing SMT
	12.3.2. Example: Debezium basic content-based routing configuration
	12.3.3. Variables for use in Debezium content-based routing expressions
	12.3.4. Options for applying the content-based routing transformation selectively
	12.3.5. Configuration of content-based routing conditions for other scripting languages
	12.3.6. Options for configuring the content-based routing transformation

	12.4. FILTERING DEBEZIUM CHANGE EVENT RECORDS
	12.4.1. Setting up the Debezium filter SMT
	12.4.2. Example: Debezium basic filter SMT configuration
	12.4.3. Variables for use in filter expressions
	12.4.4. Options for applying the filter transformation selectively
	12.4.5. Filter condition configuration for other scripting languages
	12.4.6. Options for configuring filter transformation

	12.5. EXTRACTING SOURCE RECORD AFTER STATE FROM DEBEZIUM CHANGE EVENTS
	12.5.1. Description of Debezium change event structure
	12.5.2. Behavior of Debezium event flattening transformation
	12.5.3. Configuration of Debezium event flattening transformation
	12.5.4. Example of adding Debezium metadata to the Kafka record
	12.5.5. Options for applying the event flattening transformation selectively
	12.5.6. Options for configuring Debezium event flattening transformation

	12.6. CONFIGURING DEBEZIUM CONNECTORS TO USE THE OUTBOX PATTERN
	12.6.1. Example of a Debezium outbox message
	12.6.2. Outbox table structure expected by Debezium outbox event router SMT
	12.6.3. Basic Debezium outbox event router SMT configuration
	12.6.4. Options for applying the Outbox event router transformation selectively
	12.6.5. Using Avro as the payload format in Debezium outbox messages
	12.6.6. Emitting additional fields in Debezium outbox messages
	12.6.7. Expanding escaped JSON String as JSON
	12.6.8. Options for configuring outbox event router transformation

	12.7. CONFIGURING DEBEZIUM MONGODB CONNECTORS TO USE THE OUTBOX PATTERN
	12.7.1. Example of a Debezium MongoDB outbox message
	12.7.2. Outbox collection structure expected by Debezium mongodb outbox event router SMT
	12.7.3. Basic Debezium MongoDB outbox event router SMT configuration
	12.7.4. Options for applying the MongoDB outbox event router transformation selectively
	12.7.5. Using Avro as the payload format in Debezium MongoDB outbox messages
	12.7.6. Emitting additional fields in Debezium MongoDB outbox messages
	12.7.7. Expanding escaped JSON String as JSON
	12.7.8. Options for configuring outbox event router transformation

