Red Hat Hyperconverged Infrastructure for Virtualization 1.6

Deploying Red Hat Hyperconverged Infrastructure for Virtualization on a single node

Create a hyperconverged configuration with a single server
Create a hyperconverged configuration with a single server

Laura Bailey
lbailey@redhat.com
Abstract

Read this for information about deploying a single self-contained Red Hat Hyperconverged Infrastructure for Virtualization server.
Table of Contents

CHAPTER 1. WORKFLOW FOR DEPLOYING A SINGLE HYPERCONVERGED HOST 3
CHAPTER 2. ADDITIONAL REQUIREMENTS FOR SINGLE NODE DEPLOYMENTS 4
CHAPTER 3. INSTALL HOST PHYSICAL MACHINE ... 5
 3.1. INSTALLING RED HAT VIRTUALIZATION HOST .. 5
 3.2. ENABLING SOFTWARE REPOSITORIES .. 7
CHAPTER 4. CONFIGURE KEY BASED SSH AUTHENTICATION WITHOUT A PASSWORD 8
 4.1. ADDING KNOWN HOSTS TO THE FIRST HOST ... 8
 4.2. GENERATING SSH KEY PAIRS WITHOUT A PASSWORD ... 9
 4.3. COPYING SSH KEYS .. 10
CHAPTER 5. CONFIGURING A SINGLE NODE RHVI FOR VIRTUALIZATION DEPLOYMENT 11
 5.1. CONFIGURING RED HAT GLUSTER STORAGE ON A SINGLE NODE 11
 5.2. DEPLOY THE HOSTED ENGINE ON A SINGLE NODE USING THE WEB CONSOLE 16
CHAPTER 6. CONFIGURE RED HAT GLUSTER STORAGE AS A RED HAT VIRTUALIZATION STORAGE
 DOMAINT .. 25
CHAPTER 7. VERIFY YOUR DEPLOYMENT .. 26
CHAPTER 8. NEXT STEPS .. 29
PART I. REFERENCE MATERIAL .. 30
APPENDIX A. GLOSSARY OF TERMS ... 31
 A.1. VIRTUALIZATION TERMS .. 31
 A.2. STORAGE TERMS .. 31
 A.3. HYPERCONVERGED INFRASTRUCTURE TERMS ... 32
CHAPTER 1. WORKFLOW FOR DEPLOYING A SINGLE HYPERCONVERGED HOST

1. Verify that your planned deployment meets Support Requirements, with exceptions described in Chapter 2, Additional requirements for single node deployments.

2. Install the hyperconverged host machine.

3. Configure key-based SSH without a password from the node to itself.

4. Browse to the Web Console and deploy a single hyperconverged node.

5. Browse to the Red Hat Virtualization Administration Console and configure Red Hat Gluster Storage as a Red Hat Virtualization storage domain.
CHAPTER 2. ADDITIONAL REQUIREMENTS FOR SINGLE NODE DEPLOYMENTS

Red Hat Hyperconverged Infrastructure for Virtualization is supported for deployment on a single node provided that all Support Requirements are met, with the following additions and exceptions.

A single node deployment requires a physical machine with:

- 1 Network Interface Controller
- at least 12 cores
- at least 64GB RAM
- at most 48TB storage

Single node deployments cannot be scaled, and are not highly available.
CHAPTER 3. INSTALL HOST PHYSICAL MACHINE

Your physical machine needs an operating system and access to the appropriate software repositories in order to be used as a hyperconverged host.

3.1. INSTALLING RED HAT VIRTUALIZATION HOST

Red Hat Virtualization Host is a minimal operating system designed for setting up a physical machine that acts as a hypervisor in Red Hat Virtualization, or a hyperconverged host in Red Hat Hyperconverged Infrastructure.

Prerequisites

- Ensure that your physical machine meets the requirements outlined in Physical machines.

Procedure

1. Download the Red Hat Virtualization Host ISO image from the Customer Portal:
 b. Click Downloads in the menu bar.
 c. Click Red Hat Virtualization. Scroll up and click Download Latest to access the product download page.
 d. Go to Hypervisor Image for RHV 4.3 and and click Download Now.
 e. Create a bootable media device. See Making Media in the Red Hat Enterprise Linux Installation Guide for more information.

2. Start the machine on which you are installing Red Hat Virtualization Host, and boot from the prepared installation media.

3. From the boot menu, select Install RHVH 4.3 and press Enter.

 NOTE
 You can also press the Tab key to edit the kernel parameters. Kernel parameters must be separated by a space, and you can boot the system using the specified kernel parameters by pressing the Enter key. Press the Esc key to clear any changes to the kernel parameters and return to the boot menu.

4. Select a language, and click Continue.

5. Select a time zone from the Date & Time screen and click Done.

 IMPORTANT
 Red Hat recommends using Coordinated Universal Time (UTC) on all hosts. This helps ensure that data collection and connectivity are not impacted by variation in local time, such as during daylight savings time.

6. Select a keyboard layout from the Keyboard screen and click Done.
7. Specify the installation location from the *Installation Destination* screen.

IMPORTANT

- Red Hat strongly recommends using the *Automatically configure partitioning* option.
- All disks are selected by default, so deselect disks that you do not want to use as installation locations.
- At-rest encryption is not supported. Do not enable encryption.
- Red Hat recommends increasing the size of `/var/log` to at least 15GB to provide sufficient space for the additional logging requirements of Red Hat Gluster Storage. Follow the instructions in *Growing a logical volume using the Web Console* to increase the size of this partition after installing the operating system.

Click **Done**.

8. Select the Ethernet network from the *Network & Host Name* screen.

 a. Click **Configure… → General** and select the **Automatically connect to this network when it is available** check box.

10. Click **Begin Installation**.

11. Set a root password and, optionally, create an additional user while Red Hat Virtualization Host installs.

WARNING

Red Hat strongly recommends not creating untrusted users on Red Hat Virtualization Host, as this can lead to exploitation of local security vulnerabilities.

12. Click **Reboot** to complete the installation.

NOTE

When Red Hat Virtualization Host restarts, `nodectl check` performs a health check on the host and displays the result when you log in on the command line. The message **node status: OK** or **node status: DEGRADED** indicates the health status. Run `nodectl check` to get more information. The service is enabled by default.
3.2. ENABLING SOFTWARE REPOSITORIES

1. Log in to the Web Console. Use the management FQDN and port 9090, for example, https://server1.example.com:9090/.

2. Navigate to Subscriptions, click Register System, and enter your Customer Portal user name and password. The Red Hat Virtualization Host subscription is automatically attached to the system.

3. Click Terminal.

4. Enable the Red Hat Virtualization Host 7 repository to allow later updates to the Red Hat Virtualization Host:

 # subscription-manager repos --enable=rhel-7-server-rhv-4-rpms
CHAPTER 4. CONFIGURE KEY BASED SSH AUTHENTICATION WITHOUT A PASSWORD

Configure key-based SSH authentication without a password for the root user from the host, to the FQDNs of both storage and management interfaces on the same host.

4.1. ADDING KNOWN HOSTS TO THE FIRST HOST

When you use SSH to log in to a host from a system that is not already known to the host, you are prompted to add that system as a known host.

1. Log in to the first hyperconverged host as the root user.

2. Perform the following steps for each host in the cluster, including the first host.
 a. Use SSH to log in to a host as the root user.

 [root@server1]# ssh root@server1.example.com

 b. Enter yes to continue connecting.

 [root@server1]# ssh root@server2.example.com
 The authenticity of host 'server2.example.com (192.51.100.28)' can't be established.
 ECDSA key fingerprint is SHA256:Td8KqgViPXDLSadfa2x8wn3/8asdBasdpnaGM.
 Are you sure you want to continue connecting (yes/no)?

 This automatically adds the host key of the first host to the known_hosts file on the target host.

 Are you sure you want to continue connecting (yes/no)? yes
 Warning: Permanently added '192.51.100.28' (ECDSA) to the list of known hosts.

 c. Enter the password for the root user on the target host to complete the login process.

 root@server2.example.com's password: **************
 Last login: Mon May 27 10:04:49 2019
 [root@server2]#

 d. Log out of the host.

 [root@server2]# exit
 [root@server1]#

 NOTE

 When you log out of the SSH session from the first host to itself, the user and server in the command line prompt stay the same; it is only the session that changes.

 [root@server1]# exit
 [root@server1]#
4.2. GENERATING SSH KEY PAIRS WITHOUT A PASSWORD

Generating a public/private key pair lets you use key-based SSH authentication. Generating a key pair that does not use a password makes it simpler to use Ansible to automate deployment and configuration processes.

Procedure

1. Log in to the first hyperconverged host as the root user.

2. Generate an SSH key that does not use a password.

 a. Start the key generation process.

      ```
      # ssh-keygen -t rsa
      Generating public/private rsa key pair.
      ```

 b. Enter a location for the key.
 The default location, shown in parentheses, is used if no other input is provided.

      ```
      Enter file in which to save the key (/home/username/.ssh/id_rsa): <location>/<keyname>
      ```

 c. Specify and confirm an empty passphrase by pressing Enter twice.

      ```
      Enter passphrase (empty for no passphrase):
      Enter same passphrase again:
      ```

 The private key is saved in <location>/<keyname>. The public key is saved in <location>/<keyname>.pub.

 Your identification has been saved in <location>/<keyname>.
 Your public key has been saved in <location>/<keyname>.pub.
 The key fingerprint is SHA256:8BhZageKrLXM99z5fjAM9aPo/KAUd8ZZFPCpFWqK6+Mr
 root@server1.example.com
 The key’s randomart image is:
 +----[ECDSA 256]----+
 | .. +=|
 | . . = 0.0|
 | + * 0...|
 | = . * . + +..|
 | . + . So o * ..|
 | . . + = ..|
 | 0 00 ..=..|
 | 000...+|
 | ..E++oo |
 +----[SHA256]----+
4.3. COPYING SSH KEYS

To access a host using your private key, that host needs a copy of your public key.

Prerequisites

- Generate a public/private key pair.
- SSH access from the root user on the host to all storage and management interfaces on the same host, using both IP addresses and FQDNs.

Procedure

1. Log in to the first host as the root user.
2. Copy your public key to the host that you want to access.

```
# ssh-copy-id -i <location>/<keyname>.pub <user>@<hostname>
```

Enter the password for `<user>@<hostname>` if prompted.

WARNING

Your identification in this output is your private key. Never share your private key. Possession of your private key allows someone else to impersonate you on any system that has your public key.

Make sure that you use the file that ends in .pub. Never share your private key. Possession of your private key allows someone else to impersonate you on any system that has your public key.
5.1. CONFIGURING RED HAT GLUSTER STORAGE ON A SINGLE NODE

IMPORTANT

Ensure that disks specified as part of this deployment process do not have any partitions or labels.

1. **Log into the Web Console**
 Browse to the the Web Console management interface of the first hyperconverged host, for example, `https://node1.example.com:9090/`, and log in with the credentials you created in the previous section.

2. **Start the deployment wizard**
 a. Click **Virtualization → Hosted Engine** and click **Start** underneath **Hyperconverged**.

 The **Gluster Configuration** window opens.

 b. Click the **Run Gluster Wizard for Single Node** button.
The *Gluster Deployment* window opens in single node mode.

3. **Specify hyperconverged host**
 Specify the back-end FQDN on the storage network of the hyperconverged host and click **Next**.

4. **Specify volumes**
 Specify the volumes to create.

5. **Specify bricks**
 Specify the bricks to create.
RAID

Specify the RAID configuration to use. This should match the RAID configuration of your host. Supported values are `raid5`, `raid6`, and `jbod`. Setting this option ensures that your storage is correctly tuned for your RAID configuration.

Stripe Size

Specify the RAID stripe size in KB. Do not enter units, only the number. This can be ignored for `jbod` configurations.

Disk Count

Specify the number of data disks in a RAID volume. This can be ignored for `jbod` configurations.

LV Name

The name of the logical volume to be created. This is pre-filled with the name that you specified on the previous page of the wizard.

Device

Specify the raw device you want to use. Red Hat recommends an unpartitioned device.

 a. **With multipath devices**

 If the environment has multipath devices for the Gluster deployment from the cockpit, use multipath WWIDs.

 For example:
b. **Without the multipath devices**
 If there are no multipath devices in the environment. Blacklist these devices.

 NOTE

 Blacklist Listing of specific devices that will not be considered for multipath.

 There are different ways to blacklist the device. For more information, refer to RHEL 7 DM Multipath, chapter 4.2.

 - To blacklist the device /dev/sdb
 i. Create a directory: /etc/multipath/conf.d/
 ii. Create a file under this directory with the following content:
         ```
         blacklist {
         devnodes "<device>"
         }
         ```
 For example:
         ```
         [root@ ~]# cat /etc/multipath/conf.d/99-custom-multipath.conf
         blacklist {
         devnodes "sdb"
         }
         ```

 IMPORTANT

 Local disks should not have multipath names. Use `lsblk` command to check for multipath names.

 If there are multipath names on the disks, after blacklisting the disks, reboot the hosts.

Size

Specify the size of the logical volume to create in GB. Do not enter units, only the number. This number should be the same for all bricks in a replicated set. Arbiter bricks can be smaller than other bricks in their replication set.

Mount Point

The mount point for the logical volume. This is pre-filled with the brick directory that you specified on the previous page of the wizard.

Thinp

This option is enabled and volumes are thinly provisioned by default, except for the `engine` volume, which must be thickly provisioned.

Enable Dedupe & Compression

Specify whether to provision the volume using VDO for compression and deduplication at deployment time.
Specify the logical size of the VDO volume. This can be up to 10 times the size of the physical volume, with an absolute maximum logical size of 4 PB.

Configure LV Cache

Optionally, check this checkbox to configure a small, fast SSD device as a logical volume cache for a larger, slower logical volume. Add the device path to the **SSD** field, the size to the **LV Size (GB)** field, and set the **Cache Mode** used by the device.

WARNING

To avoid data loss when using write-back mode, Red Hat recommends using two separate SSD/NVMe devices. Configuring the two devices in a RAID-1 configuration (via software or hardware), significantly reduces the potential of data loss from lost writes.

For further information about lvmcache configuration, see Red Hat Enterprise Linux 7 LVM Administration.

6. **Review and edit configuration**

Review the contents of the generated configuration file and click **Edit** to modify the file, and **Save** to keep your changes.

Click **Deploy** when you are satisfied with the configuration file.

7. **Wait for deployment to complete**

You can watch the deployment process in the text field.
The window displays **Successfully deployed gluster** when complete.

Click **Continue to Hosted Engine Deployment** and continue the deployment process with the instructions in Section 5.2, “Deploy the Hosted Engine on a single node using the Web Console”.

IMPORTANT

If deployment fails, click the **Redeploy** button. This returns you to the **Review and edit configuration** tab so that you can correct any issues in the generated configuration file before reattempting deployment.

If you want to start over again from scratch, run the following command to clean up the attempted deployment.

```
# ansible-playbook -i /etc/ansible/hc_wizard_inventory.yml /etc/ansible/roles/gluster.ansible/playbooks/hc-ansible-deployment/tasks/gluster_cleanup.yml
```

5.2. DEPLOY THE HOSTED ENGINE ON A SINGLE NODE USING THE WEB CONSOLE

This section shows you how to deploy the Hosted Engine on a single node using the Web Console. Following this process results in Red Hat Virtualization Manager running in a virtual machine on your node, and managing that virtual machine. It also configures a Default cluster consisting only of that node, and enables Red Hat Gluster Storage functionality and the **virtual-host tuned** performance profile for the cluster of one.

Prerequisites

- Configure Red Hat Gluster Storage on a single node
- Gather the information you need for Hosted Engine deployment

 Have the following information ready before you start the deployment process.

 - IP address for a pingable gateway to the hyperconverged host
 - IP address of the front-end management network
 - Fully-qualified domain name (FQDN) for the Hosted Engine virtual machine
 - MAC address that resolves to the static FQDN and IP address of the Hosted Engine

Procedure

1. **Open the Hosted Engine Deployment wizard**

 If you continued directly from the end of **Configure Red Hat Gluster Storage on a single node**, the wizard is already open.

 Otherwise:

 a. Click **Virtualization → Hosted Engine**.

 b. Click **Start** underneath **Hyperconverged**.
c. Click **Use existing configuration**.

IMPORTANT

If the previous deployment attempt failed, click **Clean up** instead of **Use existing configuration** to discard the previous attempt and start from scratch.

2. **Specify virtual machine details**

 ![Hosted Engine Deployment](image)

 VM Settings

 - **Engine VM FQDN**: engine.example.com
 - **MAC Address**: 00:00:00:00:00:00
 - **Network Configuration**: DHCP
 - **Bridge Interface**: ens2f0
 - **Root Password**: ********
 - **Root SSH Access**: Yes
 - **Number of Virtual CPUs**: 4
 - **Memory Size (MB)**: 16348 / 62,047 MB available

 Advanced

 ![virtual machine settings]

 a. Enter the following details:

 Engine VM FQDN

 The fully qualified domain name to be used for the Hosted Engine virtual machine, for example, **engine.example.com**.

 MAC Address

 The MAC address associated with the **Engine VM FQDN**

 IMPORTANT

 The pre-populated MAC address must be replaced.

 Root password

 The root password to be used for the Hosted Engine virtual machine.
b. Click **Next**. Your FQDNs are validated before the next screen appears.

3. **Specify virtualization management details**

 a. Enter the password to be used by the **admin** account in the Administration Portal. You can also specify notification behaviour here.

 ![Hosted Engine Deployment](image)

 Engine Credentials

 Admin Portal Password: ******

 Notification Settings

 Server Name: localhost
 Server Port Number: 25
 Sender E-Mail Address: root@localhost
 Recipient E-Mail Addresses: root@localhost

 b. Click **Next**.

4. **Review virtual machine configuration**

 a. Ensure that the details listed on this tab are correct. Click **Back** to correct any incorrect information.
Please review the configuration. Once you click the ‘Prepare VM’ button, a local virtual machine will be started and used to prepare the management services and their data. This operation may take some time depending on your hardware.

VM
- **Engine FQDN:** engine.example.com
- **MAC Address:** 00:0C:29:00:00:00:00
- **Network Configuration:** Static
- **VM IP Address:** 192.168.0.104
- **Gateway Address:** 192.168.0.104
- **DNS Servers:** 192.168.0.254
- **Root User SSH Access:** yes
- **Number of Virtual CPUs:** 4
- **Memory Size (MiB):** 16348
- **Root User SSH Public Key:** (None)
- **Add Lines to /etc/hosts:** yes
- **Bridge Name:** ovirtmgmt

Engine
- **SMTP Server Name:** localhost
- **SMTP Server Port Number:** 25
- **Sender E-Mail Address:** root@localhost

b. Click **Prepare VM**.

c. Wait for virtual machine preparation to complete.
If preparation does not occur successfully, see Viewing Hosted Engine deployment errors.

d. Click Next.

5. **Specify storage for the Hosted Engine virtual machine**

 a. Specify the back-end address and location of the *engine* volume.
b. Click Next.

6. **Finalize Hosted Engine deployment**

a. Review your deployment details and verify that they are correct.

NOTE

The responses you provided during configuration are saved to an answer file to help you reinstall the hosted engine if necessary. The answer file is created at `/etc/ovirt-hosted-engine/answers.conf` by default. This file should not be modified manually without assistance from Red Hat Support.
b. Click **Finish Deployment**.

7. **Wait for deployment to complete**
 This takes up to 30 minutes.

 The window displays the following when complete.
IMPORTANT

If deployment does not complete successfully, see Viewing Hosted Engine deployment errors.

Click Close.

8. **Verify hosted engine deployment**

Browse to the Administration Portal (for example, http://engine.example.com/ovirt-engine) and verify that you can log in using the administrative credentials you configured earlier. Click Dashboard and look for your hosts, storage domains, and virtual machines.
Next steps

- Log in to the Administration Portal to complete configuration.
CHAPTER 6. CONFIGURE RED HAT GLUSTER STORAGE AS A RED HAT VIRTUALIZATION STORAGE DOMAIN

The hosted engine storage domain is imported automatically, but other storage domains must be added to be used.

1. Click the **Storage** tab and then click **New Domain**.
2. Select **GlusterFS** as the **Storage Type** and provide a **Name** for the domain.
3. Check the **Use managed gluster volume** option and select the volume to use.
4. Click **OK** to save.
CHAPTER 7. VERIFY YOUR DEPLOYMENT

After deployment is complete, verify that your deployment has completed successfully.

 Administration Console Login

 ![Administration Console Login](image)

 RED HAT VIRTUALIZATION

 Username: [Input]
 Password: [Input]
 Profile: internal

 Log In

2. Log in using the administrative credentials added during hosted engine deployment. When login is successful, the Dashboard appears.

 Administration Console Dashboard

 ![Administration Console Dashboard](image)
3. Verify that your cluster is available.

 Administration Console Dashboard - Clusters

 1 Clusters
 [Cluster icon]

4. Verify that one host is available.

 a. Click Compute → Hosts.
 b. Verify that your host is listed with a Status of Up.

5. Verify that all storage domains are available.

 a. Click Storage → Domains.
 b. Verify that the Active icon is shown in the first column.

 Administration Console - Storage Domains
Storage Domains

<table>
<thead>
<tr>
<th>Domain Name</th>
<th>Comment</th>
<th>Domain Type</th>
<th>Storage Type</th>
<th>Format</th>
<th>Cross Data Center Status</th>
<th>Total Space</th>
<th>Free Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>data</td>
<td></td>
<td>Data</td>
<td>GlusterFS</td>
<td>V4</td>
<td>Active</td>
<td>4096 GB</td>
<td>4563 GB</td>
</tr>
<tr>
<td>hosted_storage</td>
<td></td>
<td>Data (Write)</td>
<td>GlusterFS</td>
<td>V4</td>
<td>Active</td>
<td>996 GB</td>
<td>88 GB</td>
</tr>
<tr>
<td>vsstore</td>
<td></td>
<td>Data</td>
<td>GlusterFS</td>
<td>V4</td>
<td>Active</td>
<td>9968 GB</td>
<td>5284 GB</td>
</tr>
</tbody>
</table>
CHAPTER 8. NEXT STEPS

- Learn to create and manage Red Hat Gluster Storage using the Administration Portal in *Managing Red Hat Gluster Storage using the RHV Administration Portal*.

- Learn to create and manage virtual machines in the Red Hat Virtualization *Virtual Machine Management Guide*.

- Review the *RHHI for Virtualization documentation* on the Red Hat Customer Portal.
PART I. REFERENCE MATERIAL
APPENDIX A. GLOSSARY OF TERMS

A.1. VIRTUALIZATION TERMS

Administration Portal
A web user interface provided by Red Hat Virtualization Manager, based on the oVirt engine web user interface. It allows administrators to manage and monitor cluster resources like networks, storage domains, and virtual machine templates.

Hosted Engine
The instance of Red Hat Virtualization Manager that manages RHHI for Virtualization.

Hosted Engine virtual machine
The virtual machine that acts as Red Hat Virtualization Manager. The Hosted Engine virtual machine runs on a virtualization host that is managed by the instance of Red Hat Virtualization Manager that is running on the Hosted Engine virtual machine.

Manager node
A virtualization host that runs Red Hat Virtualization Manager directly, rather than running it in a Hosted Engine virtual machine.

Red Hat Enterprise Linux host
A physical machine installed with Red Hat Enterprise Linux plus additional packages to provide the same capabilities as a Red Hat Virtualization host. This type of host is not supported for use with RHHI for Virtualization.

Red Hat Virtualization
An operating system and management interface for virtualizing resources, processes, and applications for Linux and Microsoft Windows workloads.

Red Hat Virtualization host
A physical machine installed with Red Hat Virtualization that provides the physical resources to support the virtualization of resources, processes, and applications for Linux and Microsoft Windows workloads. This is the only type of host supported with RHHI for Virtualization.

Red Hat Virtualization Manager
A server that runs the management and monitoring capabilities of Red Hat Virtualization.

Self-Hosted Engine node
A virtualization host that contains the Hosted Engine virtual machine. All hosts in a RHHI for Virtualization deployment are capable of becoming Self-Hosted Engine nodes, but there is only one Self-Hosted Engine node at a time.

storage domain
A named collection of images, templates, snapshots, and metadata. A storage domain can be comprised of block devices or file systems. Storage domains are attached to data centers in order to provide access to the collection of images, templates, and so on to hosts in the data center.

virtualization host
A physical machine with the ability to virtualize physical resources, processes, and applications for client access.

VM Portal
A web user interface provided by Red Hat Virtualization Manager. It allows users to manage and monitor virtual machines.

A.2. STORAGE TERMS
brick
An exported directory on a server in a trusted storage pool.

cache logical volume
A small, fast logical volume used to improve the performance of a large, slow logical volume.

geo-replication
One way asynchronous replication of data from a source Gluster volume to a target volume. Geo-replication works across local and wide area networks as well as the Internet. The target volume can be a Gluster volume in a different trusted storage pool, or another type of storage.

gluster volume
A logical group of bricks that can be configured to distribute, replicate, or disperse data according to workload requirements.

logical volume management (LVM)
A method of combining physical disks into larger virtual partitions. Physical volumes are placed in volume groups to form a pool of storage that can be divided into logical volumes as needed.

Red Hat Gluster Storage
An operating system based on Red Hat Enterprise Linux with additional packages that provide support for distributed, software-defined storage.

source volume
The Gluster volume that data is being copied from during geo-replication.

storage host
A physical machine that provides storage for client access.

target volume
The Gluster volume or other storage volume that data is being copied to during geo-replication.

thin provisioning
Provisioning storage such that only the space that is required is allocated at creation time, with further space being allocated dynamically according to need over time.

thick provisioning
Provisioning storage such that all space is allocated at creation time, regardless of whether that space is required immediately.

trusted storage pool
A group of Red Hat Gluster Storage servers that recognise each other as trusted peers.

A.3. HYPERCONVERGED INFRASTRUCTURE TERMS

Red Hat Hyperconverged Infrastructure (RHHI) for Virtualization
RHHI for Virtualization is a single product that provides both virtual compute and virtual storage resources. Red Hat Virtualization and Red Hat Gluster Storage are installed in a converged configuration, where the services of both products are available on each physical machine in a cluster.

hyperconverged host
A physical machine that provides physical storage, which is virtualized and consumed by virtualized processes and applications run on the same host. All hosts installed with RHHI for Virtualization are hyperconverged hosts.

Web Console
The web user interface for deploying, managing, and monitoring RHHI for Virtualization. The Web Console is provided by the Web Console service and plugins for Red Hat Virtualization Manager.