Limited Support Documentation for Maintaining Red Hat Enterprise Linux based RHHI for Virtualization
Limited Support Documentation for Maintaining Red Hat Enterprise Linux based RHHI for Virtualization

Laura Bailey
lbailey@redhat.com
Abstract

Red Hat Hyperconverged Infrastructure for Virtualization (RHHI for Virtualization) combines compute, storage, networking, and management capabilities into a single solution, simplifying deployment and reducing the cost of acquisition and maintenance. This document explains how to perform maintenance tasks specific to Red Hat Hyperconverged Infrastructure for Virtualization.
Table of Contents

PART I. CONFIGURATION TASKS ... 4.

CHAPTER 1. ADD COMPUTE AND STORAGE RESOURCES 5.
 1.1. EXPANDING THE HYPERCONVERGED CLUSTER BY ADDING A NEW VOLUME ON NEW NODES USING COCKPIT 5

CHAPTER 2. CONFIGURE HIGH AVAILABILITY USING FENCING POLICIES 9.
 2.1. CONFIGURING FENCING POLICIES IN THE CLUSTER 9
 2.2. CONFIGURING FENCING PARAMETERS ON THE HOSTS 9

 3.1. PREREQUISITES 13
 3.1.1. Prerequisites for geo-replication 13
 3.1.2. Prerequisites for failover and failback configuration 13
 3.2. SUPPORTED BACKUP AND RECOVERY CONFIGURATIONS 13
 3.3. CONFIGURING BACKUP TO A SECONDARY VOLUME 14
 3.3.1. Prerequisites 14
 3.3.1.1. Enable shared storage on the source volume 14
 3.3.1.2. Match encryption on source and target volumes 14
 3.3.2. Create a suitable target volume for geo-replication 15
 3.3.3. Configuring geo-replication for backing up volumes 15
 3.3.3.1. Creating a geo-replication session 15
 3.3.3.2. Verifying creation of a geo-replication session 16
 3.3.3.3. Synchronizing volume state using the Administration Portal 16
 3.3.4. Scheduling regular backups using geo-replication 16
 3.4. CONFIGURING FAILOVER TO AND FAILBACK FROM A SECONDARY CLUSTER 17
 3.4.1. Creating a secondary cluster for failover 17
 3.4.2. Creating a mapping file between source and target clusters 17
 3.4.3. Creating a failover playbook between source and target clusters 18
 3.4.4. Creating a failover cleanup playbook for your primary cluster 19
 3.4.5. Create a failback playbook between source and target clusters 19

CHAPTER 4. CONFIGURE ENCRYPTION WITH TRANSPORT LAYER SECURITY (TLS/SSL) 20.
 4.1. CONFIGURING TLS/SSL USING SELF-SIGNED CERTIFICATES 20
 4.2. CONFIGURING TLS/SSL USING CERTIFICATE AUTHORITY SIGNED CERTIFICATES 22

CHAPTER 5. CONFIGURE PERFORMANCE IMPROVEMENTS 25.
 5.1. CONFIGURING A LOGICAL VOLUME CACHE (LVMCACHE) FOR IMPROVED PERFORMANCE 25

PART II. MAINTENANCE TASKS .. 27.

CHAPTER 6. BASIC OPERATIONS .. 28.
 6.1. SHUTTING DOWN A HYPERCONVERGED CLUSTER 28
 6.2. STARTING UP A HYPERCONVERGED CLUSTER 28

CHAPTER 7. UPGRADING TO RED HAT HYPERCONVERGED INFRASTRUCTURE FOR VIRTUALIZATION 1.5 . 31
 7.1. MAJOR CHANGES IN VERSION 1.5 31
 7.2. UPGRADE WORKFLOW 32
 7.3. PREPARING TO UPGRADE 32
 7.3.1. Verify brick mount options 32
 7.3.2. Verify subscriptions 32
 7.3.3. Verify that data is not currently being synchronized using geo-replication 33
 7.4. UPGRAADING RED HAT HYPERCONVERGED INFRASTRUCTURE FOR VIRTUALIZATION 33
PART I. CONFIGURATION TASKS
CHAPTER 1. ADD COMPUTE AND STORAGE RESOURCES

Red Hat Hyperconverged Infrastructure for Virtualization (RHHI for Virtualization) can be scaled in multiples of three nodes to a maximum of twelve nodes.

1.1. EXPANDING THE HYPERCONVERGED CLUSTER BY ADDING A NEW VOLUME ON NEW NODES USING COCKPIT

Follow these instructions to use the Cockpit UI to expand your hyperconverged cluster.

Prerequisites

- Verify that your scaling plans are supported.
- If your existing deployment uses certificates signed by a Certificate Authority for encryption, prepare the certificates that will be required for the new nodes.
- Install three physical machines to serve as the new hyperconverged nodes. Follow the instructions in Deploying Red Hat Hyperconverged Infrastructure for Virtualization.
- Configure key-based SSH authentication without a password. Configure this from the node that is running Cockpit to all new nodes, and from the first new node to all other new nodes.

IMPORTANT

RHHI for Virtualization expects key-based SSH authentication without a password between these nodes for both IP addresses and FQDNs. Ensure that you configure key-based SSH authentication between these machines for the IP address and FQDN of all storage and management network interfaces.

Follow the instructions in Using key-based authentication to configure key-based SSH authentication without a password.

Procedure

1. Log in to Cockpit.
2. Click Virtualization → Hosted Engine and then click Manage Gluster.
 a. On the Hosts tab, enter the FQDN or IP address of the new hyperconverged nodes and click Next.
b. On the **Volumes** tab, specify the details of the volume you want to create.

```plaintext
<table>
<thead>
<tr>
<th>Name</th>
<th>Volume Type</th>
<th>Arbiter</th>
<th>Brick Dirs</th>
</tr>
</thead>
<tbody>
<tr>
<td>new_volume</td>
<td>Replicate</td>
<td></td>
<td>gluster_bricks/new_volume/</td>
</tr>
</tbody>
</table>
```

Add Volume

```
< Cancel  < Back  Next >
```

c. On the **Bricks** tab, specify the details of the disks to be used to create the Gluster volume.
d. On the Review tab, check the generated gdeploy file for any problems. When you are satisfied, click Deploy.
Deployment takes some time to complete. The following screen appears when the cluster has been successfully expanded.

![Expand Cluster](image)

Successfully expanded cluster

[Close]
CHAPTER 2. CONFIGURE HIGH AVAILABILITY USING FENCING POLICIES

Fencing allows a cluster to enforce performance and availability policies and react to unexpected host failures by automatically rebooting virtualization hosts.

Several policies specific to Red Hat Gluster Storage must be enabled to ensure that fencing activities do not disrupt storage services in a Red Hat Hyperconverged (RHHI for Virtualization) Infrastructure deployment.

This requires enabling and configuring fencing at both the cluster level and at the host level. See the following sections for details.

2.1. CONFIGURING FENCING POLICIES IN THE CLUSTER

1. In Red Hat Virtualization Manager, click **Compute → Clusters**.
2. Select the cluster and click **Edit**. The *Edit Cluster* window opens.
3. Click the **Fencing policy** tab.
4. Check the **Enable fencing** checkbox.
5. Check the checkboxes for at least the following fencing policies:
 - Skip fencing if gluster bricks are up
 - Skip fencing if gluster quorum not met

 See *Appendix A, Fencing Policies for Red Hat Gluster Storage* for details on the effects of these policies.
6. Click **OK** to save settings.

2.2. CONFIGURING FENCING PARAMETERS ON THE HOSTS

1. In Red Hat Virtualization Manager, click **Compute → Hosts**.
2. Select the host to configure, and click **Edit** to open the *Edit Host* window.
3. Click the **Power Management** tab.
4. Check the **Enable Power Management** check box. This enables other fields on the tab.

5. Check the **Kdump integration** check box to prevent the host from fencing while performing a kernel crash dump.

IMPORTANT

When you enable Kdump integration on an existing host, the host must be reinstalled for kdump to be configured. See Chapter 9, *Reinstalling a virtualization host* for instructions on reinstalling a host.

1. Click the plus (+) button to add a new power management device. The **Edit fence agent** window opens.
Figure 2.2. Edit fence agent

a. Enter the **Address**, **User Name**, and **Password** of the power management device.

b. Select the power management device **Type** from the drop-down list.

c. Enter the **SSH Port** number used by the power management device to communicate with the host.

d. Enter the **Slot** number used to identify the blade of the power management device.

e. Enter the **Options** for the power management device. Use a comma-separated list of `key=value` entries.

d. Check the **Secure** check box to enable the power management device to connect securely to the host.

e. Click the **Test** button to ensure the settings are correct. **Test Succeeded, Host Status is: on** displays upon successful verification.
f. Click **OK** to finish adding the fence agent.

1. Click **OK** to save your host configuration.

You are returned to the list of hosts. Note that the exclamation mark (!) next to the host’s name has now disappeared, signifying that power management has been successfully configured.

WARNING

Power management parameters (userid, password, options, etc.) are tested by Red Hat Virtualization Manager in two situations: during setup, and when parameter values are manually changed in Red Hat Virtualization Manager. If you choose to ignore alerts about incorrect parameters, or if the parameters are changed on the power management hardware without the corresponding change in Red Hat Virtualization Manager, fencing is likely to fail.
This chapter explains how to add disaster recovery capabilities to your Red Hat Hyperconverged Infrastructure for Virtualization deployment so that you can restore your cluster to a working state after a disk or server failure.

3.1. PREREQUISITES

3.1.1. Prerequisites for geo-replication

Be aware of the following requirements and limitations when configuring geo-replication:

One geo-replicated volume only

Red Hat Hyperconverged Infrastructure for Virtualization (RHHI for Virtualization) supports only one geo-replicated volume. Red Hat recommends backing up the volume that stores the data of your virtual machines, as this is usually contains the most valuable data.

Two different managers required

The source and destination volumes for geo-replication must be managed by different instances of Red Hat Virtualization Manager.

3.1.2. Prerequisites for failover and failback configuration

Versions must match between environments

Ensure that the primary and secondary environments have the same version of Red Hat Virtualization Manager, with identical data center compatibility versions, cluster compatibility versions, and PostgreSQL versions.

No virtual machine disks in the hosted engine storage domain

The storage domain used by the hosted engine virtual machine is not failed over, so any virtual machine disks in this storage domain will be lost.

Execute Ansible playbooks manually from a separate master node

Generate and execute Ansible playbooks manually from a separate machine that acts as an Ansible master node.

3.2. SUPPORTED BACKUP AND RECOVERY CONFIGURATIONS

There are two supported ways to add disaster recovery capabilities to your Red Hat Hyperconverged Infrastructure for Virtualization deployment.

Configure backing up to a secondary volume only

Regularly synchronizing your data to a remote secondary volume helps to ensure that your data is not lost in the event of disk or server failure.

This option is suitable if the following statements are true of your deployment.

- You require only a backup of your data for disaster recovery.
- You do not require highly available storage.
- You do not want to maintain a secondary cluster.
• You are willing to manually restore your data and reconfigure your backup solution after a failure has occurred.

Follow the instructions in Configuring backup to a secondary volume to configure this option.

Configure failing over to and failing back from a secondary cluster

This option provides failover and failback capabilities in addition to backing up data on a remote volume. Configuring failover of your primary cluster’s operations and storage domains to a secondary cluster helps to ensure that your data remains available in event of disk or server failure in the primary cluster.

This option is suitable if the following statements are true of your deployment.

• You require highly available storage.

• You are willing to maintain a secondary cluster.

• You do not want to manually restore your data or reconfigure your backup solution after a failure has occurred.

Follow the instructions in Configuring failover to and failback from a secondary cluster to configure this option.

Red Hat recommends that you configure at least a backup volume for production deployments.

3.3. CONFIGURING BACKUP TO A SECONDARY VOLUME

This section covers how to back up a gluster volume to a secondary gluster volume using geo-replication.

To do this, you must:

1. Ensure that all prerequisites are met.

2. Create a suitable volume to use as a geo-replication target.

3. Configure a geo-replication session between the source volume and the target volume.

4. Schedule the geo-replication process.

3.3.1. Prerequisites

3.3.1.1. Enable shared storage on the source volume

Ensure that the volume you want to back up (the source volume) has shared storage enabled. Run the following command on any server that hosts the source volume to enable shared storage.

```bash
# gluster volume set all cluster.enable-shared-storage enable
```

Ensure that a gluster volume named `gluster_shared_storage` is created in the source cluster, and is mounted at `/var/run/gluster/shared_storage` on all the nodes in the source cluster. See Setting Up Shared Storage for further information.

3.3.1.2. Match encryption on source and target volumes
If encryption is enabled on the volume that you want to back up, encryption must also be enabled on the volume that will hold your backed up data.

See Configure Encryption with Transport Layer Security (TLS/SSL) for details.

3.3.2. Create a suitable target volume for geo-replication

Prepare a secondary gluster volume to hold the geo-replicated copy of your source volume. This target volume should be in a separate cluster, hosted at a separate site, so that the risk of source and target volumes being affected by the same outages is minimised.

Ensure that the target volume for geo-replication has sharding enabled. Run the following command on any node that hosts the target volume to enable sharding on that volume.

```bash
# gluster volume set <volname> features.shard enable
```

3.3.3. Configuring geo-replication for backing up volumes

3.3.3.1. Creating a geo-replication session

A geo-replication session is required to replicate data from an active source volume to a passive target volume.

IMPORTANT

Only rsync based geo-replication is supported with Red Hat Hyperconverged Infrastructure for Virtualization.

1. Create a common `pem` `pub` file.

 Run the following command on a source node that has key-based SSH authentication without a password configured to the target nodes.

   ```bash
   # gluster system:: execute gsec_create
   ```

2. Create the geo-replication session

 Run the following command to create a geo-replication session between the source and target volumes, using the created `pem` `pub` file for authentication.

   ```bash
   # gluster volume geo-replication <SOURCE_VOL> <TARGET_NODE>::<TARGET_VOL> create push-pem
   ```

 For example, the following command creates a geo-replication session from a source volume `prodvol` to a target volume called `backupvol`, which is hosted by `backup.example.com`.

   ```bash
   # gluster volume geo-replication prodvol
   backup.example.com::backupvol create push-pem
   ```

 By default this command verifies that the target volume is a valid target with available space. You can append the `force` option to the command to ignore failed verification.

3. Configure a meta-volume
This relies on the source volume having shared storage configured, as described in Prerequisites.

```bash
# gluster volume geo-replication <SOURCE_VOL> <TARGET_HOST>::<TARGET_VOL> config use_meta_volume true
```

IMPORTANT

Do not start the geo-replication session. Starting the geo-replication session begins replication from your source volume to your target volume.

3.3.3.2. Verifying creation of a geo-replication session

1. Log in to Red Hat Virtualization Manager on any source node.
2. Click *Storage* → *Volumes*.
3. Check the *Info* column for the geo-replication icon. If this icon is present, geo-replication has been configured for that volume. If this icon is not present, try synchronizing the volume.

3.3.3.3. Synchronizing volume state using the Administration Portal

1. Log in to Red Hat Virtualization Manager.
2. Click *Compute* → *Volumes*.
3. Select the volume that you want to synchronize.
4. Click the *Geo-replication* sub-tab.
5. Click *Sync*.

3.3.4. Scheduling regular backups using geo-replication

1. Log in to Red Hat Virtualization Manager on any source node.
2. Click *Storage* → *Domains*.
3. Click the name of the storage domain that you want to back up.
4. Click the *Remote Data Sync Setup* subtab.
5. Click *Setup*. The *Setup Remote Data Synchronization* window opens.

 a. In the *Geo-replicated to* field, select the backup target.

 b. In the *Recurrence* field, select a recurrence interval type. Valid values are *WEEKLY* with at least one weekday checkbox selected, or *DAILY*.

 c. In the *Hours* and *Minutes* field, specify the time to start synchronizing.
NOTE
This time is based on the Hosted Engine’s timezone.

d. Click OK.

6. Check the Events subtab for the source volume at the time you specified to verify that synchronization works correctly.

3.4. CONFIGURING FAILOVER TO AND FAILBACK FROM A SECONDARY CLUSTER

This section covers how to configure your cluster to fail over to a remote secondary cluster in the event of server failure.

To do this, you must:

1. Configure backing up to a remote volume.
2. Create a suitable cluster to use as a failover target.
3. Prepare a mapping file for the source and target clusters.
4. Prepare a failover playbook.
5. Prepare a cleanup playbook for the primary cluster.
6. Prepare a failback playbook.

3.4.1. Creating a secondary cluster for failover

Install and configure a secondary cluster that can be used in place of the primary cluster in the event of failure.

This secondary cluster can be either of the following configurations:

Red Hat Hyperconverged Infrastructure
See Deploying Red Hat Hyperconverged Infrastructure for details.

Red Hat Gluster Storage configured for use as a Red Hat Virtualization storage domain
See Configuring Red Hat Virtualization with Red Hat Gluster Storage for details. Note that creating a storage domain is not necessary for this use case; the storage domain is imported as part of the failover process.

The storage on the secondary cluster must not be attached to a data center, so that it can be added to the secondary site’s data center during the failover process.

3.4.2. Creating a mapping file between source and target clusters

Follow this section to create a file that maps the storage in your source cluster to the storage in your target cluster.

Red Hat recommends that you create this file immediately after you first deploy your storage, and keep it up to date as your deployment changes. This helps to ensure that everything in your cluster fails over safely in the event of disaster.
1. Create a playbook to generate the mapping file.
 Create a playbook that passes information about your cluster to the `oVirt.disaster-recovery` role, using the `site`, `username`, `password`, and `ca` variables.

 Red Hat recommends creating this file in the
 `/usr/share/ansible/roles/oVirt.disaster-recovery` directory of the server that provides `ansible` and manages failover and failback.

 Example playbook file: dr-ovirt-setup.yml

   ```yaml
   ---
   - name: Collect mapping variables
     hosts: localhost
     connection: local
     vars:
       site: https://example.engine.redhat.com/ovirt-engine/api
       username: admin@internal
       password: my_password
       ca: /etc/pki/ovirt-engine/ca.pem
       var_file: disaster_recovery_vars.yml
     roles:
       - oVirt.disaster-recovery
   
   - name: Generate the mapping file
     hosts: localhost
     connection: local
     vars:
       dr_target_host: secondary
       dr_source_map: primary
     vars_files:
       - disaster_recovery_vars.yml
   ```

2. Generate the mapping file by running the playbook with the `generate_mapping` tag.

   ```bash
   # ansible-playbook dr-ovirt-setup.yml --tags "generate_mapping"
   ```

 This creates the mapping file, `disaster_recovery_vars.yml`.

3. Edit `disaster_recovery_vars.yml` and add information about the secondary cluster.

3.4.3. Creating a failover playbook between source and target clusters

Create a playbook file that passes the lists of virtualization hosts to use as a failover source and target to the `oVirt.disaster-recovery` role, using the `dr_target_host` and `dr_source_map` variables.

Red Hat recommends creating this file in the `/usr/share/ansible/roles/oVirt.disaster-recovery` directory of the server that provides `ansible` and manages failover and failback.

Example playbook file: dr-rhv-failover.yml

```yaml
---
- name: Failover RHV
  hosts: localhost
  connection: local
  vars:
    dr_target_host: secondary
    dr_source_map: primary
  vars_files:
    - disaster_recovery_vars.yml
```
For information about executing failover, see Failing over to a secondary cluster.

3.4.4. Creating a failover cleanup playbook for your primary cluster

Create a playbook file that cleans up your primary cluster so that you can use it as a failback target.

Red Hat recommends creating this file in the `/usr/share/ansible/roles/oVirt.disaster-recovery` directory of the server that provides ansible and manages failover and failback.

Example playbook file: dr-cleanup.yml

```yaml
---
- name: Clean RHV
  hosts: localhost
  connection: local
  vars:
    dr_source_map: primary
  vars_files:
    - disaster_recovery_vars.yml
  roles:
    - oVirt.disaster-recovery
```

For information about executing failback, see Failing back to a primary cluster.

3.4.5. Create a failback playbook between source and target clusters

Create a playbook file that passes the lists of virtualization hosts to use as a failback source and target to the `oVirt.disaster-recovery` role, using the `dr_target_host` and `dr_source_map` variables.

Red Hat recommends creating this file in the `/usr/share/ansible/roles/oVirt.disaster-recovery` directory of the server that provides ansible and manages failover and failback.

Example playbook file: dr-rhv-failback.yml

```yaml
---
- name: Failback RHV
  hosts: localhost
  connection: local
  vars:
    dr_target_host: primary
    dr_source_map: secondary
  vars_files:
    - disaster_recovery_vars.yml
    - passwords.yml
  roles:
    - oVirt.disaster-recovery
```

For information about executing failback, see Failing back to a primary cluster.
CHAPTER 4. CONFIGURE ENCRYPTION WITH TRANSPORT LAYER SECURITY (TLS/SSL)

Transport Layer Security (TLS/SSL) can be used to encrypt management and storage layer communications between nodes. This helps ensure that your data remains private.

Encryption can be configured using either self-signed certificates or certificates signed by a Certificate Authority.

This document assumes that you want to enable encryption on an existing deployment. However, encryption can also be configured as part of the deployment process. See Deploying Red Hat Enterprise Linux based RHHI for details.

4.1. CONFIGURING TLS/SSL USING SELF-SIGNED CERTIFICATES

IMPORTANT

Enabling or disabling encryption is a disruptive process that requires virtual machines and the Hosted Engine to be shut down.

1. Shut down all virtual machines

2. Move all storage domains except the hosted engine storage domain into Maintenance mode

3. Move the hosted engine into global maintenance mode
 Run the following command on the virtualization host that hosts the hosted engine:

   ```
   # hosted-engine --set-maintenance --mode=global
   ```

4. Shut down the hosted engine virtual machine
 Run the following command on the virtualization host that hosts the hosted engine:

   ```
   # hosted-engine --vm-shutdown
   ```

 Verify that the hosted engine has shut down by running the following command:

   ```
   # hosted-engine --vm-status
   ```

5. Stop all high availability services
 Run the following command on all virtualization hosts:

   ```
   # systemctl stop ovirt-ha-agent
   # systemctl stop ovirt-ha-broker
   ```
6. Unmount the hosted engine storage domain from all virtualization hosts

   ```
   # hosted-engine --disconnect-storage
   ```

7. Verify that all volumes are unmounted
 On each virtualization host, verify that all gluster volumes are no longer mounted.

   ```
   # mount
   ```

8. Create a gdeploy configuration file
 Use the template file in Section B.1, “Example gdeploy configuration file for setting up TLS/SSL”
 to create a new configuration file that will set up TLS/SSL on your deployment.

9. Run gdeploy using your new configuration file
 On the first physical machine, run gdeploy using the configuration file you created in the
 previous step:

   ```
   # gdeploy -c set_up_encryption.conf
   ```

 This may take some time to complete.

10. Verify that no TLS/SSL errors occurred
 Check the `/var/log/glusterfs/glusterd.log` file on each physical machine to ensure that no
 TLS/SSL related errors occurred, and setup completed successfully.

11. Start all high availability services
 Run the following commands on all virtualization hosts:

    ```
    # systemctl start ovirt-ha-agent
    # systemctl start ovirt-ha-broker
    ```

12. Move the hosted engine out of Global Maintenance mode

    ```
    # hosted-engine --set-maintenance --mode=none
    ```

 The hosted engine starts automatically after a short wait.

13. Wait for nodes to synchronize
 Run the following command on the first virtualization host to check synchronization status. If
 engine status is listed as `unknown stale-data`, synchronization requires several more minutes
 to complete.

 The following output indicates completed synchronization.

    ```
    # hosted-engine --vm-status | grep 'Engine status'
    Engine status : {"health": "good", "vm": "up", "detail": "up"}
    Engine status : {"reason": "vm not running on this host",
                     "health": "bad", "vm": "down", "detail": "unknown"}
    Engine status : {"reason": "vm not running on this host",
                     "health": "bad", "vm": "down", "detail": "unknown"}
    ```

14. Activate all storage domains
 Activate the master storage domain first, followed by all other storage domains.

15. Start all virtual machines

4.2. CONFIGURING TLS/SSL USING CERTIFICATE AUTHORITY SIGNED CERTIFICATES

IMPORTANT
Enabling or disabling encryption is a disruptive process that requires virtual machines and the Hosted Engine to be shut down.

IMPORTANT
Ensure that you have appropriate certificates signed by a Certificate Authority before proceeding. Obtaining certificates is outside the scope of this document, but further details are available in the Red Hat Gluster Storage Administration Guide: https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.4/html/administration_guide/chap-network_encryption#chap-Network_Encryption-Prereqs.

1. Shut down all virtual machines

2. Move all storage domains except the hosted engine storage domain into Maintenance mode

3. Move the hosted engine into global maintenance mode
Run the following command on the virtualization host that hosts the hosted engine:

```
# hosted-engine --set-maintenance --mode=global
```

4. Shut down the hosted engine virtual machine
Run the following command on the virtualization host that hosts the hosted engine:

```
# hosted-engine --vm-shutdown
```

Verify that the hosted engine has shut down by running the following command:

```
# hosted-engine --vm-status
```
5. Stop all high availability services
 Run the following command on all virtualization hosts:

   ```
   # systemctl stop ovirt-ha-agent
   # systemctl stop ovirt-ha-broker
   ```

6. Unmount the hosted engine storage domain from all virtualization hosts

   ```
   # hosted-engine --disconnect-storage
   ```

7. Verify that all volumes are unmounted
 On each virtualization host, verify that all gluster volumes are no longer mounted.

   ```
   # mount
   ```

8. Configure Certificate Authority signed encryption

 IMPORTANT

 Ensure that you have appropriate certificates signed by a Certificate Authority before proceeding. Obtaining certificates is outside the scope of this document.

 a. Place certificates in the following locations on all nodes.

 `/etc/ssl/glusterfs.key`
 The node’s private key.

 `/etc/ssl/glusterfs.pem`
 The certificate signed by the Certificate Authority, which becomes the node’s certificate.

 `/etc/ssl/glusterfs.ca`
 The Certificate Authority’s certificate.

 b. Stop all volumes

      ```
      # gluster volume stop all
      ```

 c. Restart glusterd on all nodes

      ```
      # systemctl restart glusterd
      ```

 d. Enable TLS/SSL encryption on all volumes

      ```
      # gluster volume set <volname> client.ssl on
      # gluster volume set <volname> server.ssl on
      ```

 e. Specify access permissions on all hosts

      ```
      # gluster volume set <volname> auth.ssl-allow "host1,host2,host3"
      ```

 f. Start all volumes
gluster volume start all

9. Verify that no TLS/SSL errors occurred
 Check the `/var/log/glustersfs/glusterd.log` file on each physical machine to ensure that no
 TLS/SSL related errors occurred, and setup completed successfully.

10. Start all high availability services
 Run the following commands on all virtualization hosts:

```
    # systemctl start ovirt-ha-agent
    # systemctl start ovirt-ha-broker
```

11. Move the hosted engine out of Global Maintenance mode

 ``
 # hosted-engine --set-maintenance --mode=none
 ``

 The hosted engine starts automatically after a short wait.

12. Wait for nodes to synchronize
 Run the following command on the first virtualization host to check synchronization status. If
 engine status is listed as **unknown stale-data**, synchronization requires several more minutes
 to complete.

 The following output indicates completed synchronization.

```
    # hosted-engine --vm-status | grep 'Engine status'
    Engine status : {"health": "good", "vm": "up", "detail": "up"}
    Engine status : {"reason": "vm not running on this host",
                     "health": "bad", "vm": "down", "detail": "unknown"}
    Engine status : {"reason": "vm not running on this host",
                     "health": "bad", "vm": "down", "detail": "unknown"}
```

13. Activate all storage domains
 Activate the master storage domain first, followed by all other storage domains.

 For details on activating storage domains, see Activating Storage Domains from Maintenance
 Mode in the Red Hat Virtualization documentation: https://access.redhat.com/documentation/en-
 us/red_hat_virtualization/4.2/html/administration_guide/sect-storage_tasks.

14. Start all virtual machines
 See Starting a Virtual Machine in the Red Hat Virtualization documentation for details:
 https://access.redhat.com/documentation/en-
 us/red_hat_virtualization/4.2/html/virtual_machine_management_guide/sect-
 starting_the_virtual_machine.
CHAPTER 5. CONFIGURE PERFORMANCE IMPROVEMENTS

Some deployments benefit from additional configuration to achieve optimal performance. This section covers recommended additional configuration for certain deployments.

5.1. CONFIGURING A LOGICAL VOLUME CACHE (LVMCACHE) FOR IMPROVED PERFORMANCE

If your main storage devices are not Solid State Disks (SSDs), Red Hat recommends configuring a logical volume cache (lvmcache) to achieve the required performance for Red Hat Hyperconverged Infrastructure for Virtualization deployments.

1. Create the gdeploy configuration file

 Create a gdeploy configuration file named *lvmcache.conf* that contains at least the following information. Note that the *ssd* value should be the device name, not the device path (for example, use *sdb* not */dev/sdb*).

 Example lvmcache.conf file

   ```
   [hosts]
   <Gluster_Network_NodeA>
   <Gluster_Network_NodeB>
   <Gluster_Network_NodeC>

   [lv1]
   action=setup-cache
   ssd=sdb
   vgname=gluster_vg_sdb
   poolname=gluster_thinpool_sdb
   cache_lv=lvcache
   cache_lvsize=220GB
   #cachemode=writethrough
   ```

 IMPORTANT

 Ensure that disks specified as part of this deployment process do not have any partitions or labels.

 IMPORTANT

 The default cache mode is *writethrough*, but *writeback* mode is also supported. To avoid the potential for data loss when implementing lvmcache in *writeback* mode, two separate SSD/NVMe devices are highly recommended. By configuring the two devices in a RAID-1 configuration (via software or hardware), the potential of data loss from lost writes is reduced significantly.

2. Run gdeploy

 Run the following command to apply the configuration specified in *lvmcache.conf*.

   ```
   # gdeploy -c lvmcache.conf
   ```
For further information about lvmcache configuration, see *Red Hat Enterprise Linux 7 LVM Administration*: https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Logical_Volume_Manager_Administration/LV.html#lvm_cache_volume_creation
PART II. MAINTENANCE TASKS
CHAPTER 6. BASIC OPERATIONS

Some basic operations are required for many administrative and troubleshooting tasks. This section covers how to safely perform basic tasks like shutting down and starting up the hyperconverged cluster.

6.1. SHUTTING DOWN A HYPERCONVERGED CLUSTER

Shutting down a hyperconverged cluster is more complex than shutting down a traditional compute or storage cluster. Follow these instructions to shut down your hyperconverged cluster safely.

1. Log in to the Administration Portal.

2. Place the hosted engine node into Global Maintenance mode.
 a. Click Compute → Hosts and select the hosted engine node.
 b. Click ⋮ → Enable Global HA Maintenance.

3. Shut down all virtual machines except the hosted engine virtual machine.
 a. Click Compute → Virtual Machines.
 b. Select all virtual machines on hyperconverged hosts, except the hosted engine virtual machine.
 c. Click Shut Down. This shuts the virtual machine down gracefully.
 If your virtual machine is not responding, click the dropdown arrow beside Shut Down and click Force Shut Down instead.

4. Shut down the hosted engine virtual machine.
 a. Log in to the hosted engine node.
 b. Run the following command on the hosted engine node to shut down the hosted engine virtual machine.

```
# hosted-engine --vm-shutdown
```

5. Shut down all hosts by running the following command on each host.

```
# shutdown -h now
```

6.2. STARTING UP A HYPERCONVERGED CLUSTER

Starting up a hyperconverged cluster is more complex than starting up a traditional compute or storage cluster. Follow these instructions to start up your hyperconverged cluster safely.

1. Power on all hosts in the cluster.

2. Ensure that the required services are available.
 a. Verify that the glusterd service started correctly on all hosts.

```
# systemctl status glusterd
● glusterd.service - GlusterFS, a clustered file-system server
```
If glusterd is not started, start it.

```bash
# systemctl start glusterd
```

b. Verify that host networks are available and hosts have IP addresses assigned to the required interfaces.

```bash
# ip addr show
```

c. Verify that all hosts are part of the storage cluster (listed as Peer in Cluster (Connected)).

```bash
# gluster peer status
```

```bash
Number of Peers: 2

Hostname: 10.70.37.101
Uuid: 773f1140-68f7-4861-a996-b1ba07586257
State: Peer in Cluster (Connected)

Hostname: 10.70.37.102
Uuid: fc4e7339-9a09-4a44-aa91-64dde2fe8d15
State: Peer in Cluster (Connected)
```

d. Verify that all bricks are shown as online.

```bash
# gluster volume status engine
```

```bash
Status of volume: engine
Gluster process TCP Port RDMA Port
Online Pid
---------------------------------------------
-----------------
Brick 10.70.37.28:/gluster_bricks/engine/engine 49153 0 Y 23160
Brick 10.70.37.29:/gluster_bricks/engine/engine 49160 0 Y 12392
Brick 10.70.37.30:/gluster_bricks/engine/engine 49157 0 Y 15200
Self-heal Daemon on localhost N/A N/A Y 23008
Self-heal Daemon on 10.70.37.30 N/A N/A Y 10905
Self-heal Daemon on 10.70.37.29 N/A N/A Y 13568
```
3. Start the hosted engine virtual machine.
 a. Run the following command on the host that you want to be the hosted engine node.

      ```
      # hosted-engine --vm-start
      ```
 b. Verify that the hosted engine virtual machine has started correctly.

      ```
      # hosted-engine --vm-status
      ```

4. Take the hosted engine virtual machine out of Global Maintenance mode.
 a. Log in to the Administration Portal.
 b. Click **Compute → Hosts** and select the hosted engine node.
 c. Click ⋮ → **Disable Global HA Maintenance**.

5. Start any other virtual machines using Cockpit.
 a. Click **Compute → Virtualization**.
 b. Select any virtual machines you want to start and click **Run**.
CHAPTER 7. UPGRADING TO RED HAT HYPERCONVERGED INFRASTRUCTURE FOR VIRTUALIZATION 1.5

Upgrading involves moving from one version of a product to a newer major release of the same product. This section shows you how to upgrade to Red Hat Hyperconverged Infrastructure for Virtualization 1.5 from version 1.1.

From a component standpoint, this involves the following:

- Upgrading the Hosted Engine virtual machine to Red Hat Virtualization Manager version 4.2.
- Upgrading the physical hosts to Red Hat Virtualization 4.2.

7.1. MAJOR CHANGES IN VERSION 1.5

Be aware of the following differences between Red Hat Hyperconverged Infrastructure for Virtualization 1.5 and previous versions.

Deduplication and compression support with Virtual Data Optimizer (VDO)

Configuring VDO at deployment time lets you reduce the amount of storage space required for data. You can configure Gluster bricks to use deduplication and compression, and monitor and configure notifications for VDO capacity usage so that you know when your storage is running out of space. The space saved by using Virtual Disk Optimization is displayed on the Brick and Volume detail pages of the Cockpit UI. See Understanding VDO and Monitoring VDO for more information.

Configure disaster recovery with failover and failback

Red Hat Hyperconverged Infrastructure for Virtualization now supports backup, failover, and failback to a remote secondary site. See Configuring backup and recovery options for an overview and information on configuring disaster recovery. See Recovering from disaster for the recovery process.

Scale using the user interface

New nodes can now be prepared and configured in Cockpit. See Expanding the hyperconverged cluster by adding a new volume on new nodes using Cockpit for details.

Upgrade using the user interface

Upgrade your deployment using the Administration Portal. See Upgrading Red Hat Hyperconverged Infrastructure for details.

Manage your storage and virtual machines in Cockpit

You can now view and manage your storage and your virtual machines from Cockpit. The Red Hat Virtualization Administration Console is still required for some more complex tasks, such as georeplication. See Managing Red Hat Gluster Storage using Cockpit for more information.

Configure different devices and device types

Previous versions of RHHI for Virtualization expected each virtualization host to be set up the same way, with the same device types and device names on each. As of version 1.5, you can specify different device and sizes as appropriate for each host and size arbiter bricks appropriately.

Updated user interfaces

Cockpit and the Administration Portal have seen a number of updates to their user interfaces. Operations are now better organised and easier to find, and a number of new options are available.

- Specify additional hosts during Cockpit setup instead of adding them manually after Hosted Engine deployment.
- Reset brick configuration after reinstalling a virtualization host.
Deploy on a single node

Single node deployments of Red Hat Hyperconverged Infrastructure for Virtualization are now supported. See Deploying RHHI for Virtualization in the data center for support limitations and deployment details.

Convert virtualization hosts

Red Hat Virtualization hosts can now be converted into hyperconverged hosts. See Converting a virtualization cluster to a hyperconverged cluster for details.

7.2. UPGRADE WORKFLOW

Red Hat Hyperconverged Infrastructure for Virtualization is a software solution comprised of several different components. Upgrade the components in the following order to minimize disruption to your deployment:

1. Prepare the systems to be upgraded
2. Upgrade the Hosted Engine virtual machine.
3. Upgrade the virtualization hosts.

7.3. PREPARING TO UPGRADE

7.3.1. Verify brick mount options

If you have configured Virtual Disk Optimizer for any of the volumes in this deployment, you may be affected by Bug 1649507. This bug incorrectly edited the mount options of brick devices.

Edit the `/etc/fstab` file on all hosts to ensure that the following are true:

- Only bricks on VDO volumes have the `x-systemd.requires=vdo.service` option.
- Bricks on VDO volumes have the `_netdev,x-systemd.device-timeout=0` options.

7.3.2. Verify subscriptions

You can check which repositories a machine has access to by running the following command as the root user:

```
# subscription-manager repos --list-enabled
```

- Verify that the Hosted Engine virtual machine is subscribed to the following repositories:
 - `rhel-7-server-rhv-4.2-manager-rpms`
 - `rhel-7-server-rhv-4-manager-tools-rpms`
 - `rhel-7-server-rpms`
 - `rhel-7-server-supplementary-rpms`
 - `jb-eap-7-for-rhel-7-server-rpms`
 - `rhel-7-server-ansible-2-rpms`
Verify that the Hosted Engine virtual machine is not subscribed to previous versions of the above repositories.

- `rhel-7-server-rhv-4.2-manager-rpms` replaces the `rhel-7-server-rhv-4.2-rpms` repository
- `rhel-7-server-rhv-4-manager-tools-rpms` replaces the `rhel-7-server-rhv-4-tools-rpms` repository

Verify that all Red Hat Enterprise Linux virtualization hosts are subscribed to the following repositories:

- `rhel-7-server-rpms`
- `rhel-7-server-rhv-4-mgmt-agent-rpms`
- `rhel-7-server-ansible-2-rpms`

NOTE

If you use Red Hat Enterprise Linux for POWER as a virtualization host, subscribe to these repositories instead.

- `rhel-7-server-rhv-4-mgmt-agent-for-power-le-rpms`
- `rhel-7-for-power-le-rpms`

Subscribe a machine to a repository by running the following command on that machine:

```bash
# subscription-manager repos --enable=<repository>
```

7.3.3. Verify that data is not currently being synchronized using geo-replication

- Click the **Tasks** icon at the top right of the Manager. Ensure that there are no ongoing tasks related to Data Synchronization. If data synchronization tasks are present, wait until they are complete before beginning the update.

- Stop all geo-replication sessions so that synchronization will not occur during the update. Click the **Geo-replication** subtab and select the session that you want to stop, then click **Stop**. Alternatively, run the following command to stop a geo-replication session:

  ```bash
  # gluster volume geo-replication <MASTER_VOL> <SLAVE_HOST>::<SLAVE_VOL> stop
  ```

7.4. UPGRADING RED HAT HYPERCONVERGED INFRASTRUCTURE FOR VIRTUALIZATION

7.4.1. Upgrading the Hosted Engine virtual machine

1. Place the cluster into Global Maintenance mode
 a. Log in to Cockpit.
b. Click Virtualization → Hosted Engine.

c. Click Put this cluster into global maintenance.

2. Upgrade Red Hat Virtualization Manager.

a. Log in to the Hosted Engine virtual machine.

b. Upgrade the setup packages:

```
# yum update ovirt*setup*
```

c. Run `engine-setup` and follow the prompts to upgrade the Manager.

d. Upgrade all other packages.

```
# yum update
```

e. Reboot the Hosted Engine virtual machine to ensure all updates are applied.

```
# reboot
```

3. Restart the Hosted Engine virtual machine.

a. Log in to any virtualization host.

b. Start the Hosted Engine virtual machine.

```
# hosted-engine --vm-start
```

c. Verify the status of the Hosted Engine virtual machine.

```
# hosted-engine --vm-status
```

4. Remove the cluster from Global Maintenance mode.

a. Log in to Cockpit.

b. Click Virtualization → Hosted Engine.

c. Click Remove this cluster from global maintenance.

7.4.2. Upgrading the physical hosts

Perform the following steps on one virtualization host at a time.

1. Upgrade the virtualization host.

a. In the Manager, click Compute → Hosts and select a node.

b. Click Installation → Upgrade.

c. Click OK to confirm the upgrade. Wait for the upgrade to complete, and for the host to become available again.
2. **Verify self-healing is complete before upgrading the next host.**

 a. Click the name of the host.

 b. Click the **Bricks** tab.

 c. Verify that the **Self-Heal Info** column of all bricks is listed as **OK** before upgrading the next host.

3. **Restart the host’s gluster daemon.**

   ```
   # systemctl restart glusterd
   ```

7.4.3. Cleaning up after upgrading

You may need to update the **virt** group profile after you upgrade. This is necessary because of **BZ1643730**, also described in the release notes.

1. Verify that the following parameters are included in the `/var/lib/glusterd/groups/virt` file on each server, adding them if necessary.

   ```
   cluster.choose-local=off
   client.event-threads=4
   server.event-threads=4
   performance.client-io-threads=on
   ```

2. If you needed to update the **virt** group profile, run the following command on each volume to apply the updated profile.

   ```
   # gluster volume set <volname> group virt
   ```
CHAPTER 8. ADD VIRTUALIZATION HOSTS TO RED HAT VIRTUALIZATION MANAGER

Follow this process to allow Red Hat Virtualization Manager to manage an existing virtualization host.

1. Log in to Red Hat Virtualization Manager.

2. Click **Compute → Hosts**.

3. Click **New**. The **New Host** window opens.

4. On the **General** tab, specify the following details about your virtualization host.
 - **Host Cluster**
 - **Name**
 - **Hostname**
 - **Password**

5. On the **General** tab, click the **Advanced Parameters** dropdown, and uncheck the **Automatically configure host firewall** checkbox.

6. Click **OK**.
CHAPTER 9. REINSTALLING A VIRTUALIZATION HOST

Some configuration changes require a virtualization host to be reinstalled before the configuration change can take effect. Follow these steps to reinstall a virtualization host.

1. Log in to Red Hat Virtualization Manager.

2. Click Compute → Hosts.

3. Select the host and click Management > Maintenance > OK to place this host in Maintenance mode.

4. Click Installation > Reinstall to open the Reinstall window.

5. On the General tab, uncheck the Automatically Configure Host firewall checkbox.

6. On the Hosted Engine tab, set the value of Choose hosted engine deployment action to Deploy.

7. Click OK to reinstall the host.
CHAPTER 10. REPLACING THE PRIMARY GLUSTER STORAGE NODE

IMPORTANT

When self-signed encryption is enabled, replacing a node is a disruptive process that requires virtual machines and the Hosted Engine to be shut down.

1. (Optional) If encryption using a Certificate Authority is enabled, follow the steps at the following link before continuing: https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.4/html/administration_guide/ch22s04.

2. Move the node to be replaced into Maintenance mode
 a. In Red Hat Virtualization Manager, click the **Hosts** tab and select the Red Hat Gluster Storage node in the results list.
 b. Click **Maintenance** to open the **Maintenance Host(s)** confirmation window.
 c. Click **OK** to move the host to Maintenance mode.

3. Install the replacement node
 Follow the instructions in the following sections of *Deploying Red Hat Enterprise Linux based RHHI* to install the physical machine and configure storage on the new node.
 a. **Installing host physical machines**
 b. **Configuring Public Key based SSH Authentication without a password**
 c. **Configuring RHGS for Hosted Engine using the Cockpit UI**

4. Prepare the replacement node
 a. Create a file called **replace_node_prep.conf** based on the template provided in Section B.2, “Example gdeploy configuration file for preparing a replacement host”.
 b. From a node with **gdeploy** installed (usually the node that hosts the Hosted Engine), run gdeploy using the new configuration file:

      ```
      # gdeploy -c replace_node_prep.conf
      ```

5. (Optional) If encryption with self-signed certificates is enabled
 b. On a healthy node, make a backup copy of the /etc/ssl/glusterfs.ca file:

      ```
      # cp /etc/ssl/glusterfs.ca /etc/ssl/glusterfs.ca.bk
      ```
 c. Append the new node’s certificate to the content of the /etc/ssl/glusterfs.ca file.
d. Distribute the /etc/ssl/glusterfs.ca file to all nodes in the cluster, including the new node.

e. Run the following command on the replacement node to enable management encryption:

```
# touch /var/lib/glusterd/secure-access
```

f. Include the new server in the value of the `auth.ssl-allow` volume option by running the following command for each volume.

```
# gluster volume set <volname> auth.ssl-allow "<old_node1>, <old_node2>,<new_node>"
```

g. Restart the glusterd service on all nodes

```
# systemctl restart glusterd
```

h. Follow the steps in Section 4.1, “Configuring TLS/SSL using self-signed certificates” to remount all gluster processes.

6. Add the replacement node to the cluster
 Run the following command from any node already in the cluster.

```
# peer probe <new_node>
```

7. Move the Hosted Engine into Maintenance mode:

```
# hosted-engine --set-maintenance --mode=global
```

8. Stop the ovirt-engine service

```
# systemctl stop ovirt-engine
```

9. Update the database

```
# sudo -u postgres psql
\c engine;
UPDATE storage_server_connections SET connection = '<replacement_node_IP>:/engine' WHERE connection = '<old_server_IP>:/engine';
UPDATE storage_server_connections SET connection = '<replacement_node_IP>:/vmstore' WHERE connection = '<old_server_IP>:/vmstore';
UPDATE storage_server_connections SET connection = '<replacement_node_IP>:/data' WHERE connection = '<old_server_IP>:/data';
```

10. Start the ovirt-engine service

```
# systemctl start ovirt-engine
```

11. Stop all virtual machines except the Hosted Engine.

12. Move all storage domains **except** the Hosted Engine domain into Maintenance mode
13. Stop the Hosted Engine virtual machine
 Run the following command on the existing node that hosts the Hosted Engine.

 # hosted-engine --vm-shutdown

14. Stop high availability services on all nodes

 # systemctl stop ovirt-ha-agent
 # systemctl stop ovirt-ha-broker

15. Disconnect Hosted Engine storage from the virtualization host
 Run the following command on the existing node that hosts the Hosted Engine.

 # hosted-engine --disconnect-storage

16. Update the Hosted Engine configuration file
 Edit the storage parameter in the /etc/ovirt-hosted-engine/hosted-engine.conf file to use the replacement server.

 storage=<replacement_server_IP>:/engine

17. Reboot the existing and replacement nodes
 Wait until both nodes are available before continuing.

18. Take the Hosted Engine out of Maintenance mode

 # hosted-engine --set-maintenance --mode=none

19. Verify replacement node is used
 On all virtualization hosts, verify that the engine volume is mounted from the replacement node by checking the IP address in the output of the mount command.

20. Activate storage domains
 Verify that storage domains mount using the IP address of the replacement node.

21. Remove the old node
 a. Using the RHV Management UI, remove the old node.

 b. Detach the old host from the cluster.

 # gluster peer detach <old_node_IP> force

22. Using the RHV Management UI, add the replacement node
 Specify that the replacement node be used to host the Hosted Engine.

23. Move the replacement node into Maintenance mode.

 # hosted-engine --set-maintenance --mode=global

24. Update the Hosted Engine configuration file
 Edit the storage parameter in the /etc/ovirt-hosted-engine/hosted-engine.conf file to use the replacement node.
storage=<replacement_node_IP>:/engine

25. Reboot the replacement node.
 Wait until the node is back online before continuing.

26. Activate the replacement node from the RHV Management UI.
 Ensure that all volumes are mounted using the IP address of the replacement node.

27. Replace engine volume brick
 Replace the brick on the old node that belongs to the engine volume with a new brick on the
 replacement node.

 a. Click the Volumes tab.
 b. Click the Bricks subtab.
 c. Select the brick to replace, and then click Replace brick.
 d. Select the node that hosts the brick being replaced.
 e. In the Replace brick window, provide the new brick’s path.

28. On the replacement node, run the following command to remove metadata from the previous
 host.

    ```
    # hosted-engine --clean-metadata --host-id=<old_host_id> --force-clean
    ```
CHAPTER 11. REPLACING A GLUSTER STORAGE HOST

If a Red Hat Gluster Storage host needs to be replaced, there are two options for the replacement host:

1. Replace the host with a new host that has a different fully-qualified domain name by following the instructions in Section 11.1, “Replacing a Gluster storage host (different FQDN).”

2. Replace the host with a new host that has the same fully-qualified domain name by following the instructions in Section 11.2, “Replacing a Gluster storage host (same FQDN).”

Follow the instructions in whichever section is appropriate for your deployment.

11.1. REPLACING A GLUSTER STORAGE HOST (DIFFERENT FQDN)

IMPORTANT

When self-signed encryption is enabled, replacing a node is a disruptive process that requires virtual machines and the Hosted Engine to be shut down.

1. Install the replacement host

 Follow the instructions in the following sections of Deploying Red Hat Enterprise Linux based RHHI to install the physical machine.

 a. Installing host physical machines

 b. Configuring Public Key based SSH Authentication

2. Stop any existing geo-replication sessions

 # gluster volume geo-replication MASTER_VOL SLAVE_HOST::SLAVE_VOL stop

3. Move the host to be replaced into Maintenance mode

 Perform the following steps in Red Hat Virtualization Manager:

 a. Click Compute → Hosts and select the Red Hat Gluster Storage host in the results list.

 b. Click Management → Maintenance and click OK to move the host to Maintenance mode.

4. Prepare the replacement host

 a. Configure key-based SSH authentication without a password

 Configure key-based SSH authentication without a password from a physical machine still in the cluster to the replacement host. For details, see Configuring Key-based SSH Authentication in Deploying Red Hat Enterprise Linux based RHHI.

 b. Prepare the replacement host

 Create a file called replace_host_prep.conf based on the template provided in Section B.2, “Example gdeploy configuration file for preparing a replacement host.”
From a host with `gdeploy` installed (usually the host that hosts the Hosted Engine), run `gdeploy` using the new configuration file:

```
# gdeploy -c replace_host_prep.conf
```

5. Create replacement brick directories
 Ensure the new directories are owned by the `vdsm` user and the `kvm` group.

```
# mkdir /gluster_bricks/engine/engine
# chmod vdsm:kvm /gluster_bricks/engine/engine
# mkdir /gluster_bricks/data/data
# chmod vdsm:kvm /gluster_bricks/data/data
# mkdir /gluster_bricks/vmstore/vmstore
# chmod vdsm:kvm /gluster_bricks/vmstore/vmstore
```

6. (Optional) If encryption is enabled
 If encryption using a Certificate Authority is enabled, follow the steps under Expanding Volumes in the Network Encryption chapter of the Red Hat Gluster Storage 3.4 Administration Guide.
 b. Add the new host’s certificate to existing certificates.
 i. On a healthy host, make a backup copy of the `/etc/ssl/glusterfs.ca` file.
 ii. Add the new host’s certificate to the `/etc/ssl/glusterfs.ca` file on the healthy host.
 iii. Distribute the updated `/etc/ssl/glusterfs.ca` file to all other hosts, including the new host.
 c. Enable management encryption
 Run the following command on the new host to enable management encryption:

 ``
 # touch /var/lib/glusterd/secure-access
 ``
 d. Include the new host in the value of the `auth.ssl-allow` volume option by running the following command for each volume.

      ```
      # gluster volume set <volname> auth.ssl-allow "<old_host1>,<old_host2>,<new_host>"
      ```
 e. Restart the glusterd service on all hosts

      ```
      # systemctl restart glusterd
      ```
 f. If encryption uses self-signed certificates, follow the steps in Section 4.1, "Configuring TLS/SSL using self-signed certificates" to remount all gluster processes.

7. Add the new host to the existing cluster
a. Run the following command from one of the healthy hosts:

```
# gluster peer probe <new_host>
```

b. Add the new host to the existing cluster

i. Click **Compute → Hosts** and then click **New** to open the **New Host** dialog.

ii. Provide a **Name**, **Address**, and **Password** for the new host.

iii. Uncheck the **Automatically configure host firewall** checkbox, as firewall rules are already configured by gdeploy.

iv. In the **Hosted Engine** tab of the **New Host** dialog, set the value of **Choose hosted engine deployment action** to **Deploy**.

v. Click **OK**.

vi. When the host is available, click the name of the new host.

vii. Click the **Network Interfaces** subtab and then click **Setup Host Networks**. The **Setup Host Networks** dialog appears.

viii. Drag and drop the network you created for gluster to the IP associated with this host, and click **OK**.

8. Configure and mount shared storage on the new host

```
# cp /etc/fstab /etc/fstab.bk
# echo "<new_host>:/gluster_shared_storage
/var/run/gluster/shared_storage/ glusterfs defaults 0 0" >>
/etc/fstab
# mount /gluster_shared_storage
```

9. Replace the old brick with the brick on the new host

a. In Red Hat Virtualization Manager, click **Storage → Volumes** and select the volume.

b. Click the **Bricks** subtab.

c. Select the brick that you want to replace and click **Replace Brick**. The **Replace Brick** dialog appears.

d. Specify the **Host** and the **Brick Directory** of the new brick.

e. Verify that brick heal completes successfully.

10. Click **Compute → Hosts**.

11. Select the old host and click **Remove**.

Use `gluster peer status` to verify that that the old host is no longer part of the cluster. If the old host is still present in the status output, run the following command to forcibly remove it:
12. Clean old host metadata.

```bash
# gluster peer detach <old_host> force
```

13. Set up new SSH keys for geo-replication of new brick.

```bash
# hosted-engine --clean-metadata --host-id=<old_host_id> --force-clean
```


```bash
# gluster system:: execute gsec_create
```

15. Start the geo-replication session.

```bash
# gluster volume geo-replication <MASTER_VOL> <SLAVE_HOST>::<SLAVE_VOL> start
```

11.2. REPLACING A GLUSTER STORAGE HOST (SAME FQDN)

IMPORTANT

When self-signed encryption is enabled, replacing a node is a disruptive process that requires virtual machines and the Hosted Engine to be shut down.

1. (Optional) If encryption using a Certificate Authority is enabled, follow the steps under Expanding Volumes in the Network Encryption chapter of the Red Hat Gluster Storage 3.4 Administration Guide.

2. Move the host to be replaced into Maintenance mode
 a. In Red Hat Virtualization Manager, click Compute → Hosts and select the Red Hat Gluster Storage host.
 b. Click Management → Maintenance.
 c. Click OK to move the host to Maintenance mode.

3. Prepare the replacement host
 Follow the instructions in the following sections of Deploying Red Hat Hyperconverged Infrastructure for Virtualization for Virtualization to install the physical machine and configure storage on the new host.
 a. Installing host physical machines
 b. Configuring Public Key based SSH Authentication without a password
 c. Configuring RHGS for Hosted Engine using the Cockpit UI

4. Prepare the replacement host
a. Create a file called `replace_host_prep.conf` based on the template provided in Section B.2, “Example gdeploy configuration file for preparing a replacement host.”

b. From a host with `gdeploy` installed (usually the host that hosts the Hosted Engine), run `gdeploy` using the new configuration file:

```
# gdeploy -c replace_host_prep.conf
```

5. (Optional) If encryption with self-signed certificates is enabled

 a. Generate the private key and self-signed certificate on the replacement host. See the Red Hat Gluster Storage Administration Guide for details:

 b. On a healthy host, make a backup copy of the `/etc/ssl/glusterfs.ca` file:

      ```
      # cp /etc/ssl/glusterfs.ca /etc/ssl/glusterfs.ca.bk
      ```

 c. Append the new host's certificate to the content of the `/etc/ssl/glusterfs.ca` file.

 d. Distribute the `/etc/ssl/glusterfs.ca` file to all hosts in the cluster, including the new host.

 e. Run the following command on the replacement host to enable management encryption:

      ```
      # touch /var/lib/glusterd/secure-access
      ```

6. Replace the host machine

 Follow the instructions in the Red Hat Gluster Storage Administration Guide to replace the host:

7. Restart the `glusterd` service on all hosts

   ```
   # systemctl restart glusterd
   ```

8. Verify that all hosts reconnect

   ```
   # gluster peer status
   ```

9. (Optional) If encryption uses self-signed certificates, follow the steps in Section 4.1, “Configuring TLS/SSL using self-signed certificates” to remount all gluster processes.

10. Verify that all hosts reconnect and that brick heal completes successfully

    ```
    # gluster peer status
    ```

11. Refresh fingerprint

 a. In Red Hat Virtualization Manager, click **Compute → Hosts** and select the new host.
b. Click **Edit**.

c. Click **Advanced Parameters** on the **General** tab.

d. Click **fetch** to fetch the fingerprint from the host.

e. Click **OK**.

12. Click **Installation → Reinstall** and provide the root password when prompted.

13. On the **Hosted Engine** tab set the value of **Choose hosted engine deployment action** to **Deploy**.

14. Attach the gluster network to the host

 a. Click **Compute → Hosts** and click the name of the host.

 b. Click the **Network Interfaces** subtab and then click **Setup Host Networks**.

 c. Drag and drop the newly created network to the correct interface.

 d. Ensure that the **Verify connectivity between Host and Engine** checkbox is checked.

 e. Ensure that the **Save network configuration** checkbox is checked.

 f. Click **OK** to save.

15. **Verify the health of the network**

 Check the state of the host’s network. If the network interface enters an "Out of sync" state or does not have an IPv4 Address, click **Management → Refresh Capabilities**.
CHAPTER 12. RECOVERING FROM DISASTER

This chapter explains how to restore your cluster to a working state after a disk or server failure.

You must have configured disaster recovery options previously in order to use this chapter. See Configuring backup and recovery options for details.

12.1. MANUALLY RESTORING DATA FROM A BACKUP VOLUME

This section covers how to restore data from a remote backup volume to a freshly installed replacement deployment of Red Hat Hyperconverged Infrastructure for Virtualization.

To do this, you must:

1. Install and configure a replacement deployment according to the instructions in Deploying Red Hat Hyperconverged Infrastructure for Virtualization.

12.1.1. Restoring a volume from a geo-replicated backup

1. Install and configure a replacement Hyperconverged Infrastructure deployment
 For instructions, refer to Deploying Red Hat Hyperconverged Infrastructure for Virtualization:

2. Import the backup of the storage domain
 From the new Hyperconverged Infrastructure deployment, in Red Hat Virtualization Manager:
 a. Click Storage → Domains.
 b. Click Import Domain. The Import Pre-Configured Domain window opens.
 c. In the Storage Type field, specify GlusterFS.
 d. In the Name field, specify a name for the new volume that will be created from the backup volume.
 e. In the Path field, specify the path to the backup volume.
 f. Click OK. The following warning appears, with any active data centers listed below:

 | This operation might be unrecoverable and destructive! |
 | Storage Domain(s) are already attached to a Data Center. Approving this operation might cause data corruption if both Data Centers are active. |

 g. Check the Approve operation checkbox and click OK.

3. Determine a list of virtual machines to import
 a. Determine the imported domain’s identifier by running the following command:

 # curl -v -k -X GET -u "admin@internal:password" -H "Accept: application/xml" https://$ENGINE_FQDN/ovirt-engine/api/storagedomains/
For example:

```
# curl -v -k -X GET -u "admin@example.com:mybadpassword" -H "Accept: application/xml" https://10.0.2.1/ovirt-engine/api/storagedomains/
```

b. Determine the list of unregistered disks by running the following command:

```
# curl -v -k -X GET -u "admin@internal:password" -H "Accept: application/xml" "https://$ENGINE_FQDN/ovirt-engine/api/storagedomains/DOMAIN_ID/vms;unregistered"
```

For example:

```
# curl -v -k -X GET -u "admin@example.com:mybadpassword" -H "Accept: application/xml" "https://10.0.2.1/ovirt-engine/api/storagedomains/5e1a37cf-933d-424c-8e3d-eb9e40b690a7/vms;unregistered"
```

4. Perform a partial import of each virtual machine to the storage domain

a. Determine cluster identifier
 The following command returns the cluster identifier.

```
# curl -v -k -X GET -u "admin@internal:password" -H "Accept: application/xml" https://$ENGINE_FQDN/ovirt-engine/api/clusters/
```

For example:

```
# curl -v -k -X GET -u "admin@example:mybadpassword" -H "Accept: application/xml" https://10.0.2.1/ovirt-engine/api/clusters/
```

b. Import the virtual machines
 The following command imports a virtual machine without requiring all disks to be available in the storage domain.

```
# curl -v -k -u 'admin@internal:password' -H "Content-type: application/xml" -d '<action> <cluster id="CLUSTER_ID"></cluster> <allow_partial_import>true</allow_partial_import> </action>' "https://ENGINE_FQDN/ovirt-engine/api/storagedomains/DOMAIN_ID/vms/VM_ID/register"
```

For example:

```
# curl -v -k -u 'admin@example.com:mybadpassword' -H "Content-type: application/xml" -d '<action> <cluster id="bf5a9e9e-5b52-4b0d-aeba-4ee4493f1072"></cluster> <allow_partial_import>true</allow_partial_import> </action>' "https://10.0.2.1/ovirt-engine/api/storagedomains/8d21980a-a50b-45e9-9f32-c8d8d2424882e/e164f8c6-769a-4cbd-ac2a-ef322c2c5f30/register"
```

5. Migrate the partially imported disks to the new storage domain
 In Red Hat Virtualization Manager, click Storage → Disks, and Click the Move Disk option. Move the imported disks from the synced volume to the replacement cluster’s storage domain. For further information, see the Red Hat Virtualization Administration Guide.

6. Attach the restored disks to the new virtual machines
 Follow the instructions in the Red Hat Virtualization Virtual Machine Management Guide to attach the replacement disks to each virtual machine.

12.2. FAILING OVER TO A SECONDARY CLUSTER

This section covers how to fail over from your primary cluster to a remote secondary cluster in the event of server failure.

1. Configure failover to a remote cluster.

2. Verify that the mapping file for the source and target clusters remains accurate.

3. Run the failover playbook with the fail_over tag.

 # ansible-playbook dr-rhv-failover.yml --tags "fail_over"

12.3. FAILING BACK TO A PRIMARY CLUSTER

This section covers how to fail back from your secondary cluster to the primary cluster after you have corrected the cause of a server failure.

1. Prepare the primary cluster for failback by running the cleanup playbook with the clean_engine tag.

 # ansible-playbook dr-cleanup.yml --tags "clean_engine"

2. Verify that the mapping file for the source and target clusters remains accurate.

3. Execute failback by running the failback playbook with the fail_back tag.

 # ansible-playbook dr-cleanup.yml --tags "fail_back"

12.4. STOPPING A GEO-REPLICATION SESSION USING RHV MANAGER

Stop a geo-replication session when you want to prevent data being replicated from an active source volume to a passive target volume via geo-replication.

1. Verify that data is not currently being synchronized
 Click the Tasks icon at the top right of the Manager, and review the Tasks page.
 Ensure that there are no ongoing tasks related to Data Synchronization.
If data synchronization tasks are present, wait until they are complete.

2. **Stop the geo-replication session**
 a. Click **Storage → Volumes**.
 b. Click the name of the volume that you want to prevent geo-replicating.
 c. Click the **Geo-replication** subtab.
 d. Select the session that you want to stop, then click **Stop**.

12.5. TURNING OFF SCHEDULED BACKUPS BY DELETING THE GEO-REPLICATION SCHEDULE

You can stop scheduled backups via geo-replication by deleting the geo-replication schedule.

1. Log in to Red Hat Virtualization Manager on any source node.
2. Click **Storage → Domains**.
3. Click the name of the storage domain that you want to back up.
4. Click the **Remote Data Sync Setup** subtab.
5. Click **Setup**.
 The **Setup Remote Data Synchronization** window opens.
6. In the **Recurrence** field, select a recurrence interval type of **NONE** and click **OK**.
7. (Optional) Remove the geo-replication session
 Run the following command from the geo-replication master node:

   ```bash
   # gluster volume geo-replication MASTER_VOL SLAVE_HOST::SLAVE_VOL delete
   ```

 You can also run this command with the `reset-sync-time` parameter. For further information about this parameter and deleting a geo-replication session, see [Deleting a Geo-replication Session](#) in the Red Hat Gluster Storage 3.4 Administration Guide.
PART III. REFERENCE MATERIAL
APPENDIX A. FENCING POLICIES FOR RED HAT GLUSTER STORAGE

The following fencing policies are required for Red Hat Hyperconverged Infrastructure for Virtualization (RHHI for Virtualization) deployments. They ensure that hosts are not shut down in situations where brick processes are still running, or when shutting down the host would remove the volume’s ability to reach a quorum.

These policies can be set in the New Cluster or Edit Cluster window in Red Hat Virtualization Manager when Red Hat Gluster Storage functionality is enabled.

Skip fencing if gluster bricks are up
 Fencing is skipped if bricks are running and can be reached from other peers.

Skip fencing if gluster quorum not met
 Fencing is skipped if bricks are running and shutting down the host will cause loss of quorum

These policies are checked after all other fencing policies when determining whether a node is fenced.

APPENDIX B. EXAMPLE GDEPLOY CONFIGURATION FILES

B.1. EXAMPLE GDEPLOY CONFIGURATION FILE FOR SETTING UP TLS/SSL

set_up_encryption.conf

IPs that corresponds to the Gluster Network
[hosts]
<Gluster_Network_NodeA>
<Gluster_Network_NodeB>
<Gluster_Network_NodeC>

STEP-1: Generate Keys, Certificates & CA files
The following section generates the keys, certificates, creates
ca file and distributes it to all the hosts
[volume1]
action=enable-ssl
volname=engine
ssl_clients=<Gluster_Network_NodeA>,<Gluster_Network_NodeB>,
<Gluster_Network_NodeC>
ignore_volume_errors=no

As the certificates are already generated, its enough to stop
rest of the volumes, set TLS/SSL related volume options, and
start the volume

STEP-2: Stop all the volumes
[volume2]
action=stop
volname=vmstore

[volume3]
action=stop
volname=data

STEP-3: Set volume options on all the volumes to enable TLS/SSL on the
volumes
[volume4]
action=set
volname=vmstore
key=client.ssl,server.ssl,auth.ssl-allow
value=on,on,"<Gluster_Network_NodeA>;<Gluster_Network_NodeB>;
<Gluster_Network_NodeC>"
ignore_volume_errors=no

[volume5]
action=set
volname=data
key=client.ssl,server.ssl,auth.ssl-allow
value=on,on,"<Gluster_Network_NodeA>;<Gluster_Network_NodeB>;
<Gluster_Network_NodeC>"
ignore_volume_errors=no
STEP-4: Start all the volumes
[volume6]
action=start
volname=vmstore

[volume7]
action=start
volname=data

B.2. EXAMPLE GDEPLOY CONFIGURATION FILE FOR PREPARING A REPLACEMENT HOST

IMPORTANT

If the disks must be replaced as well as the host, ensure that the [pv], [vg], and [lv] sections are not commented out of this file.

For details about how to safely replace a host, see Chapter 11, Replacing a Gluster storage host.

replace_node_prep.conf

EDITME: @1: Change to IP addresses of the network intended for gluster traffic
Values provided here are used to probe the gluster hosts.
[hosts]
10.70.X1.Y1

#EDITME : @2: Change to IP addresses of the network intended for gluster traffic
#of the node which is going to be replaced.
[script1]
action=execute
ignore_script_errors=no
file=/usr/share/ansible/gdeploy/scripts/grafton-sanity-check.sh -d sdc -h 10.70.X1.Y1

EDITME: @3: Specify the number of data disks in RAID configuration
[disktype]
raid6

[diskcount]
4

[stripesize]
256

EDITME : @4: Provide the subscription details
Register to RHSM only on the node which needs to be replaced
[RH-subscription1:10.70.X1.Y1]
action=register
username=<username>
password=<passwd>
pool=<pool-id>
[RH-subscription2]
action=disable-repos
repos=

[RH-subscription3]
action=enable-repos
repos=rhel-7-server-rpms,rh-gluster-3-for-rhel-7-server-rpms,rhel-7-server-rhv-4-mgmt-agent-rpms

[yum1]
action=install
packages=glusterfs-server,vdsm-gluster,ovirt-hosted-engine-setup,gdeploy,cockpit-ovirt-dashboard
update=yes

[service1]
action=enable
service=chronyd

[service2]
action=restart
service=chronyd

[shell1]
action=execute
command=gluster pool list

[shell2]
action=execute
command=vdsm-tool configure --force

Disable multipath
[script3]
action=execute
file=/usr/share/ansible/gdeploy/scripts/disable-multipath.sh

#EDIT ME: @5: UNCOMMENT SECTIONS ONLY: if original brick disks have to be replaced.
#[pv1]
#action=create
#devices=sdc
#ignore_pv_errors=no

#[vg1]
#action=create
#vgname=gluster_vg_sdc
#pvname=sdc
#ignore_vg_errors=no

#[lv2:10.70.X1:Y1]
#action=create
#poolname=gluster_thinpool_sdc
#ignore_lv_errors=no
#vgname=gluster_vg_sdc
#lvtype=thinpool
#poolmetadatasize=16GB
#size=14TB

#[lv3:10.70.X1:Y1]
#action=create
#lvname=gluster_lv_engine
#ignore_lv_errors=no
#vgname=gluster_vg_sdc
#mount=/gluster_bricks/engine
#size=100GB
#lvtype=thick

#[lv5:10.70.X1:Y1]
#action=create
#lvname=gluster_lv_data
#ignore_lv_errors=no
#vgname=gluster_vg_sdc
#mount=/gluster_bricks/data
#lvtype=thinlv
#poolname=gluster_thinpool_sdc
#virtualsize=12TB

#[lv7:10.70.X1:Y1]
#action=create
#lvname=gluster_lv_vmstore
#ignore_lv_errors=no
#vgname=gluster_vg_sdc
#mount=/gluster_bricks/vmstore
#lvtype=thinlv
#poolname=gluster_thinpool_sdc
#virtualsize=1TB

#[selinux]
#yes

[lv9:10.70.X1:Y1]
action=setup-cache
ssd=sdb
vgname=gluster_vg_sdc
poolname=lvthinpool
cache_lv=lvcache
cache_lvsize=180GB

[service3]
action=start
service=glusterd
slice_setup=yes

[firewalld]
action=add
ports=111/tcp,2049/tcp,54321/tcp,5900/tcp,5900-6923/tcp,5666/tcp,16514/tcp,54322/tcp
services=glusterfs
B.3. EXAMPLE GDEPLOY CONFIGURATION FILE FOR SCALING TO ADDITIONAL NODES ON A RHEL-BASED DEPLOYMENT

add_nodes.conf

Add the hosts to be added
[hosts]
<Gluster_Network_NodeD>
<Gluster_Network_NodeE>
<Gluster_Network_NodeF>

If using RHEL 7 as platform, enable required repos
RHVH has all the packages available
[RH-subscription]
ignore_register_errors=no
ignore_attach_pool_errors=no
ignore_enable_errors=no
action=register
username=<username>
password=<mypassword>
pool=<pool-id>
repos=rhel-7-server-rpms,rh-gluster-3-for-rhel-7-server-rpms,rhel-7-server-rhv-4-mgmt-agent-rpms
disable-repos=yes

If using RHEL 7 as platform, have the following section to install packages
[yum1]
action=install
packages=glusterfs-server,vdsm-gluster,ovirt-hosted-engine-setup,gdeploy,cockpit-ovirt-dashboard
update=yes
gpgcheck=yes
ignore_yum_errors=no

enable chronyd
[service1]
action=enable
service=chronyd

start chronyd service
[service2]
action=restart
service=chronyd

Setup glusterfs slice
[service3]
action=restart
service=glusterd
slice_setup=yes
Open the required ports and firewalld services
[firewalld]
action=add
ports=111/tcp,2049/tcp,54321/tcp,5900/tcp,5900-6923/tcp,5666/tcp,16514/tcp,54322/tcp
services=glusterfs

Disable gluster hook scripts
[script2]
action=execute
file=/usr/share/ansible/gdeploy/scripts/disable-gluster-hooks.sh