Limited Support Documentation for Deploying Red Hat Enterprise Linux based RHHI for Virtualization

Laura Bailey
lbailey@redhat.com
Abstract

This document outlines how to deploy Red Hat Hyperconverged Infrastructure for Virtualization (RHHI for Virtualization) across three physical machines, using Red Hat Gluster Storage 3.4 and Red Hat Virtualization 4.2. This creates a discrete cluster for use in remote office branch office (ROBO) environments, where a remote office synchronizes data to a central data center on a regular basis, but can remain fully functional if connectivity to the central data center is lost.
Table of Contents

PART I. PLAN ... 4.

CHAPTER 1. ARCHITECTURE ... 5.

CHAPTER 2. SUPPORT REQUIREMENTS 6.
 2.1. OPERATING SYSTEM ... 6
 2.2. PHYSICAL MACHINES .. 6
 2.3. HOSTED ENGINE VIRTUAL MACHINE 7
 2.4. NETWORKING .. 7
 2.5. STORAGE .. 8
 2.5.1. Disks .. 8
 2.5.2. RAID .. 9
 2.5.3. JBOD .. 9
 2.5.4. Logical volumes ... 9
 2.5.5. Red Hat Gluster Storage volumes 9
 2.5.6. Volume types .. 10
 2.6. VIRTUAL DATA OPTIMIZER (VDO) 10
 2.7. SCALING .. 10
 2.8. EXISTING RED HAT GLUSTER STORAGE CONFIGURATIONS 10
 2.9. DISASTER RECOVERY .. 11
 2.9.1. Prerequisites for geo-replication 11
 2.9.2. Prerequisites for failover and failback configuration 11
 2.10. ADDITIONAL REQUIREMENTS FOR SINGLE NODE DEPLOYMENTS 11

PART II. DEPLOY .. 13.

CHAPTER 3. DEPLOYMENT WORKFLOW 14.

CHAPTER 4. INSTALL HOST PHYSICAL MACHINES 15.

CHAPTER 5. CONFIGURE PUBLIC KEY BASED SSH AUTHENTICATION WITHOUT A PASSWORD 16.

CHAPTER 6. SETTING UP THE COCKPIT UI 17.
 6.1. INSTALLING THE COCKPIT UI 17
 6.2. STARTING THE COCKPIT UI ... 17
 6.3. CONFIGURING THE FIREWALL FOR COCKPIT TRAFFIC 17

CHAPTER 7. CONFIGURE RED HAT GLUSTER STORAGE FOR HOSTED ENGINE USING THE COCKPIT UI 18

CHAPTER 9. CONFIGURE RED HAT GLUSTER STORAGE AS A RED HAT VIRTUALIZATION STORAGE DOMAIN 35.
 9.1. CREATE THE LOGICAL NETWORK FOR GLUSTER TRAFFIC 35
 9.2. CREATE STORAGE DOMAINS .. 35
 9.3. ADD ADDITIONAL VIRTUALIZATION HOSTS TO THE HOSTED ENGINE 36

PART III. VERIFY .. 38.

CHAPTER 10. VERIFY YOUR DEPLOYMENT 39.

PART IV. NEXT STEPS ... 42.

CHAPTER 11. POST-DEPLOYMENT CONFIGURATION SUGGESTIONS 43.
 11.1. CONFIGURE A LOGICAL VOLUME CACHE FOR IMPROVED PERFORMANCE 43
PART 1. PLAN
CHAPTER 1. ARCHITECTURE

Red Hat Hyperconverged Infrastructure for Virtualization (RHHI for Virtualization) combines compute, storage, networking, and management capabilities in one deployment.

RHHI for Virtualization is deployed across three physical machines to create a discrete cluster using Red Hat Enterprise Linux 7.5, Red Hat Gluster Storage 3.4 and Red Hat Virtualization 4.2.

The dominant use case for this deployment is in remote office branch office (ROBO) environments, where a remote office synchronizes data to a central data center on a regular basis, but does not require connectivity to the central data center to function.

The following diagram shows the basic architecture of a single cluster. Each node has Red Hat Gluster Storage 3.4 and Red Hat Virtualization 4.2 packages installed on Red Hat Enterprise Linux 7.5.
CHAPTER 2. SUPPORT REQUIREMENTS

Review this section to ensure that your planned deployment meets the requirements for support by Red Hat.

2.1. OPERATING SYSTEM

Red Hat Hyperconverged Infrastructure for Virtualization (RHHI for Virtualization) is supported in two configurations.

- **Red Hat Virtualization based RHHI for Virtualization** uses Red Hat Virtualization Host 4.2 as a base for all other configuration.

- **Red Hat Enterprise Linux based RHHI for Virtualization** uses Red Hat Enterprise Linux 7.5 as a base for all other configuration. Support for this configuration is limited.

Table 2.1. Version compatibility

<table>
<thead>
<tr>
<th>RHHI version</th>
<th>RHGS version</th>
<th>RHV version</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>3.2</td>
<td>4.1.0 to 4.1.7</td>
</tr>
<tr>
<td>1.1</td>
<td>3.3.1</td>
<td>4.1.8 to 4.2.0</td>
</tr>
<tr>
<td>1.5</td>
<td>3.4 Batch 1 Update</td>
<td>4.2.7 to current</td>
</tr>
<tr>
<td>1.5.1</td>
<td>3.4 Batch 2 Update</td>
<td>4.2.8 to current</td>
</tr>
</tbody>
</table>

See [Requirements](#) in the Red Hat Virtualization *Planning and Prerequisites Guide* for details on requirements of Red Hat Virtualization.

2.2. PHYSICAL MACHINES

Red Hat Hyperconverged Infrastructure for Virtualization (RHHI for Virtualization) requires at least 3 physical machines. Scaling to 6, 9, or 12 physical machines is also supported; see [Scaling](#) for more detailed requirements.

Each physical machine must have the following capabilities.

- at least 2 NICs (Network Interface Controllers) per physical machine, for separation of data and management traffic (see Section 2.4, “Networking” for details)

- for small deployments:
 - at least 12 cores
 - at least 64GB RAM
 - at most 48TB storage
for medium deployments:
 - at least 12 cores
 - at least 128GB RAM
 - at most 64TB storage

for large deployments:
 - at least 16 cores
 - at least 256GB RAM
 - at most 80TB storage

2.3. HOSTED ENGINE VIRTUAL MACHINE

The Hosted Engine virtual machine requires at least the following:

- 1 dual core CPU (1 quad core or multiple dual core CPUs recommended)
- 4GB RAM that is not shared with other processes (16GB recommended)
- 25GB of local, writable disk space (50GB recommended)
- 1 NIC with at least 1Gbps bandwidth

For more information, see Requirements in the Red Hat Virtualization 4.2 Planning and Prerequisites Guide.

2.4. NETWORKING

Each node requires 3 x 1 Gigabit Ethernet ports. To enable high availability, these must be split across two network switches. Ensuring that switches have separate power supplies further improves fault tolerance.

Fully-qualified domain names that are forward and reverse resolvable by DNS are required for all hosts and for the Hosted Engine virtual machine.

Client and management traffic in the cluster must be separated. This means that Red Hat Hyperconverged Infrastructure for Virtualization requires two separate networks:

A front-end management network
This network is used by Red Hat Virtualization and virtual machines.

- This network should be capable of transmitting at Gigabit Ethernet speeds.
- IP addresses assigned to this network can be selected by the administrator, but must be on the same subnet as each other.
- IP addresses assigned to this network must not be in the same subnet as the back-end storage and migration network.

A back-end storage network
This network is used for storage and migration traffic between storage peers.
- Red Hat recommends a 10Gbps network for the back-end storage network.
- Red Hat Gluster Storage requires a maximum latency of 5 milliseconds between peers.

Network fencing devices that use Intelligent Platform Management Interfaces (IPMI) require a separate network.

If you want to use DHCP network configuration for the Hosted Engine virtual machine, then you must have a DHCP server configured prior to configuring Red Hat Hyperconverged Infrastructure for Virtualization.

If you want to use geo-replication to store copies of data for disaster recovery purposes, a reliable time source is required.

Determine or decide on the following details before you begin the deployment process:

- IP address for a pingable gateway to the virtualization host
- IP address of the front-end management network
- Fully-qualified domain name (FQDN) for the Hosted Engine virtual machine
- MAC address that resolves to the static FQDN and IP address of the Hosted Engine

2.5. STORAGE

A hyperconverged host stores configuration, logs and kernel dumps, and uses its storage as swap space. This section lists the minimum directory sizes for hyperconverged hosts. Red Hat recommends using the default allocations, which use more storage space than these minimums.

- `/ (root) - 6GB`
- `/home - 1GB`
- `/tmp - 1GB`
- `/boot - 1GB`
- `/var - 22GB`
- `/var/log - 15GB`
- `/var/log/audit - 2GB`
- `swap - 1GB (for the recommended swap size, see https://access.redhat.com/solutions/15244)`

Anaconda reserves 20% of the thin pool size within the volume group for future metadata expansion. This is to prevent an out-of-the-box configuration from running out of space under normal usage conditions. Overprovisioning of thin pools during installation is also not supported.

- **Minimum Total - 52GB**

2.5.1. Disks
Red Hat recommends Solid State Disks (SSDs) for best performance. If you use Hard Drive Disks (HDDs), you should also configure a smaller, faster SSD as an LVM cache volume.

4K native devices are not supported with Red Hat Hyperconverged Infrastructure for Virtualization, as Red Hat Virtualization requires 512b emulation support.

2.5.2. RAID

RAID configuration limits depend on the technology in use.

- SAS/SATA 7k disks are supported with RAID6 (at most 10+2)
- SAS 10k and 15k disks are supported with the following:
 - RAID5 (at most 7+1)
 - RAID6 (at most 10+2)

RAID cards must use flash backed write cache.

Red Hat further recommends providing at least one hot spare drive local to each server.

2.5.3. JBOD

As of Red Hat Hyperconverged Infrastructure for Virtualization 1.5, JBOD configurations are fully supported and no longer require architecture review.

2.5.4. Logical volumes

The logical volumes that comprise the engine gluster volume must be thick provisioned. This protects the Hosted Engine from out of space conditions, disruptive volume configuration changes, I/O overhead, and migration activity.

When VDO is not in use, the logical volumes that comprise the vmstore and optional data gluster volumes must be thin provisioned. This allows greater flexibility in underlying volume configuration. If your thin provisioned volumes are on Hard Drive Disks (HDDs), configure a smaller, faster Solid State Disk (SSD) as an lvmcache for improved performance.

Thin provisioning is not required for the vmstore and data volumes if VDO is being used on these volumes.

2.5.5. Red Hat Gluster Storage volumes

Red Hat Hyperconverged Infrastructure for Virtualization is expected to have 3–4 Red Hat Gluster Storage volumes.

- 1 engine volume for the Hosted Engine
- 1 vmstore volume for virtual machine boot disk images
- 1 optional data volume for other virtual machine disk images
- 1 shared_storage volume for geo-replication metadata

A Red Hat Hyperconverged Infrastructure for Virtualization deployment can contain at most 1 geo-replicated volume.
2.5.6. Volume types

Red Hat Hyperconverged Infrastructure for Virtualization (RHHI for Virtualization) supports only the following volume types:

- **Replicated volumes** (3 copies of the same data on 3 bricks, across 3 nodes).
- **Arbitrated replicated volumes** (2 full copies of the same data on 2 bricks and 1 arbiter brick that contains metadata, across three nodes).
- **Distributed volumes** (1 copy of the data, no replication to other bricks).

All replicated and arbitrated-replicated volumes must span exactly three nodes.

Note that arbiter bricks store only file names, structure, and metadata. This means that a three-way arbitrated replicated volume requires about 75% of the storage space that a three-way replicated volume would require to achieve the same level of consistency. However, because the arbiter brick stores only metadata, a three-way arbitrated replicated volume only provides the availability of a two-way replicated volume.

For more information on laying out arbitrated replicated volumes, see Creating multiple arbitrated replicated volumes across fewer total nodes in the Red Hat Gluster Storage Administration Guide.

2.6. VIRTUAL DATA OPTIMIZER (VDO)

A Virtual Data Optimizer (VDO) layer is supported as of Red Hat Hyperconverged Infrastructure for Virtualization 1.5.

The following limitations apply to this support:

- VDO is supported only on new deployments.
- VDO and thin provisioning are not currently compatible. These two technologies are not supported on the same device.

2.7. SCALING

Red Hat Hyperconverged Infrastructure for Virtualization is supported for one node, and for clusters of 3, 6, 9, and 12 nodes.

The initial deployment is either 1 or 3 nodes.

There are two supported methods of horizontally scaling Red Hat Hyperconverged Infrastructure for Virtualization:

1. Add new hyperconverged nodes to the cluster, in sets of three, up to the maximum of 12 hyperconverged nodes.

2. Create new Gluster volumes using new disks on existing hyperconverged nodes.

You cannot create a volume that spans more than 3 nodes, or expand an existing volume so that it spans across more than 3 nodes at a time.

2.8. EXISTING RED HAT GLUSTER STORAGE CONFIGURATIONS

Red Hat Hyperconverged Infrastructure for Virtualization is supported only when deployed as specified
in this document. Existing Red Hat Gluster Storage configurations cannot be used in a hyperconverged configuration. If you want to use an existing Red Hat Gluster Storage configuration, refer to the traditional configuration documented in Configuring Red Hat Virtualization with Red Hat Gluster Storage.

2.9. DISASTER RECOVERY

Red Hat strongly recommends configuring a disaster recovery solution. For details on configuring geo-replication as a disaster recovery solution, see Maintaining Red Hat Hyperconverged Infrastructure for Virtualization: https://access.redhat.com/documentation/en-us/red_hat_hyperconverged_infrastructure_for_virtualization/1.5/html/maintaining_red_hat_hyperconverged_infrastructure_for_virtualization/config-backup-recovery.

2.9.1. Prerequisites for geo-replication

Be aware of the following requirements and limitations when configuring geo-replication:

One geo-replicated volume only

Red Hat Hyperconverged Infrastructure for Virtualization (RHHI for Virtualization) supports only one geo-replicated volume. Red Hat recommends backing up the volume that stores the data of your virtual machines, as this is usually contains the most valuable data.

Two different managers required

The source and destination volumes for geo-replication must be managed by different instances of Red Hat Virtualization Manager.

2.9.2. Prerequisites for failover and failback configuration

Versions must match between environments

Ensure that the primary and secondary environments have the same version of Red Hat Virtualization Manager, with identical data center compatibility versions, cluster compatibility versions, and PostgreSQL versions.

No virtual machine disks in the hosted engine storage domain

The storage domain used by the hosted engine virtual machine is not failed over, so any virtual machine disks in this storage domain will be lost.

Execute Ansible playbooks manually from a separate master node

Generate and execute Ansible playbooks manually from a separate machine that acts as an Ansible master node.

2.10. ADDITIONAL REQUIREMENTS FOR SINGLE NODE DEPLOYMENTS

Red Hat Hyperconverged Infrastructure for Virtualization is supported for deployment on a single node provided that all Support Requirements are met, with the following additions and exceptions.

A single node deployment requires a physical machine with:

- 1 Network Interface Controller
- at least 12 cores
- at least 64GB RAM
- at most 48TB storage

CHAPTER 2. SUPPORT REQUIREMENTS

11
Single node deployments cannot be scaled, and are not highly available.
PART II. DEPLOY
CHAPTER 3. DEPLOYMENT WORKFLOW

The workflow for deploying Red Hat Hyperconverged Infrastructure for Virtualization (RHHI for Virtualization) is as follows:

1. Verify that your planned deployment meets support requirements: Chapter 2, Support requirements.

2. Install the physical machines that will act as virtualization hosts: Chapter 4, Install Host Physical Machines.

3. Configure key-based SSH authentication without a password to enable automated configuration of the hosts: Chapter 5, Configure Public Key based SSH Authentication without a password.

4. Configure Red Hat Gluster Storage on the physical hosts using the Cockpit UI: Chapter 7, Configure Red Hat Gluster Storage for Hosted Engine using the Cockpit UI.

5. Deploy the Hosted Engine using the Cockpit UI: Chapter 8, Deploy the Hosted Engine using the Cockpit UI.

6. Configure the Red Hat Gluster Storage nodes using the Red Hat Virtualization management UI: Log in to Red Hat Virtualization Manager to complete configuration.
CHAPTER 4. INSTALL HOST PHYSICAL MACHINES

Install Red Hat Enterprise Linux 7.5 on all three physical host machines.

See the following section for details about installing Red Hat Enterprise Linux:

Ensure that you customize your installation to provide the following when you install each host:

- Increase the size of `/var/log` to 15GB to provide sufficient space for the additional logging requirements of Red Hat Gluster Storage.
CHAPTER 5. CONFIGURE PUBLIC KEY BASED SSH AUTHENTICATION WITHOUT A PASSWORD

From the first virtualization host, configure Public Key based SSH authentication for the root user without a password to all virtualization hosts using the FQDN associated with the management network. This includes authentication from the first host to itself.

IMPORTANT

RHHI for Virtualization expects key-based SSH authentication without a password between these nodes for both IP addresses and FQDNs. Ensure that you configure key-based SSH authentication without a password between these machines for the IP address and FQDN of all storage and management network interfaces.

See the Red Hat Enterprise Linux 7 Installation Guide for more details:
CHAPTER 6. SETTING UP THE COCKPIT UI

If you are configuring Red Hat Hyperconverged Infrastructure for Virtualization from a Red Hat Enterprise Linux base, follow this section to obtain and configure the Cockpit UI. Cockpit is a web application that simplifies and automates some parts of the installation and configuration process.

6.1. INSTALLING THE COCKPIT UI

Run the following commands on each physical machine to register your physical machines to Red Hat Network and install the required packages.

IMPORTANT
Ensure that you have your Red Hat Network username and password before beginning this process.

1. Register your machine to Red Hat Network.

```
# subscription-manager register --username=<username> --password=<password>
```

2. Enable the channels required for the Cockpit UI.

```
# subscription-manager repos --enable=rhel-7-server-rpms --enable=rh-gluster-3-for-rhel-7-server-rpms --enable=rhel-7-server-rhv-4-mgmt-agent-rpms --enable=rhel-7-server-ansible-2-rpms
```

3. Install the packages required for the Cockpit UI.

```
# yum install glusterfs-server vdsm-gluster ovirt-hosted-engine-setup gdeploy cockpit-ovirt-dashboard
```

6.2. STARTING THE COCKPIT UI

Run the following command to start the **cockpit** service.

```
# systemctl start cockpit
```

6.3. CONFIGURING THE FIREWALL FOR COCKPIT TRAFFIC

1. Open ports for the **cockpit** service.

```
# firewall-cmd --add-service=cockpit
# firewall-cmd --add-service=cockpit --permanent
```

2. Verify that the **cockpit** service is allowed by the firewall.
 Ensure that **cockpit** appears in the output of the following command.

```
# firewall-cmd --list-services | grep cockpit
```
CHAPTER 7. CONFIGURE RED HAT GLUSTER STORAGE FOR HOSTED ENGINE USING THE COCKPIT UI

IMPORTANT

Ensure that disks specified as part of this deployment process do not have any partitions or labels.

1. Log into the Cockpit UI
 Browse to the Cockpit management interface of the first virtualization host, for example, https://node1.example.com:9090/, and log in with the credentials you created in Chapter 4, Install Host Physical Machines.

2. Start the deployment wizard
 a. Click Virtualization → Hosted Engine and click Start underneath Hyperconverged.

 ![Virtualization Wizard](image1)

 The Gluster Configuration window opens.

 b. Click the Run Gluster Wizard button.

 ![Gluster Configuration](image2)

 The Gluster Deployment window opens in 3 node mode.

3. Specify storage hosts
Specify the back-end FQDNs on the storage network (not the management network) of the three virtualization hosts. The virtualization host that can SSH using key pairs should be listed first, as it is the host that will run gdeploy and the hosted engine.

NOTE

If you plan to create an arbitrated replicated volume, ensure that you specify the host with the arbiter brick as **Host3** on this screen.

<table>
<thead>
<tr>
<th>Hosts</th>
<th>FQDNs</th>
<th>Volumes</th>
<th>Bricks</th>
<th>Review</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Host1</td>
<td>host1.example.com</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Host2</td>
<td>host2.example.com</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Host3</td>
<td>host3.example.com</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Click Next.

4. **Specify additional hosts**

For multi-node deployments, add the fully qualified domain names or IP addresses of the other two virtualization hosts to have them automatically added to Red Hat Virtualization Manager when deployment is complete.

<table>
<thead>
<tr>
<th>Hosts</th>
<th>FQDNs</th>
<th>Volumes</th>
<th>Bricks</th>
<th>Review</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Host2</td>
<td>host2.example.com</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Host3</td>
<td>host3.example.com</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If you want to add the additional hosts automatically to Hosted Engine, then please provide FQDN or IP address to use.
NOTE

If you do not add additional hosts now, you can also add them after deployment using Red Hat Virtualization Administration Portal, as described in Add additional virtualization hosts to the hosted engine.

5. Specify volumes
Specify the volumes to create.

Name
Specify the name of the volume to be created.

Volume Type
Specify a Replicate volume type. Only replicated volumes are supported for this release.

Arbiter
Specify whether to create the volume with an arbiter brick. If this box is checked, the third disk stores only metadata.

Brick Dirs
The directory that contains this volume’s bricks.

The default values are correct for most installations.

6. Specify bricks
Enter details of the bricks to be created. Use the Select host drop-down menu to change the host being configured.
RAID

Specify the RAID configuration to use. This should match the RAID configuration of your host. Supported values are `raid5`, `raid6`, and `jbod`. Setting this option ensures that your storage is correctly tuned for your RAID configuration.

Stripe Size

Specify the RAID stripe size in KB. Do not enter units, only the number. This can be ignored for `jbod` configurations.

Disk Count

Specify the number of data disks in a RAID volume. This can be ignored for `jbod` configurations.

LV Name

Specify the name of the logical volume to be created.

Device

Specify the raw device you want to use. Red Hat recommends an unpartitioned device.

Size

Specify the size of the logical volume to create in GB. Do not enter units, only the number. This number should be the same for all bricks in a replicated set. Arbiter bricks can be smaller than other bricks in their replication set.
Mount Point
Specify the mount point for the logical volume. This should be inside the brick directory that you specified on the previous page of the wizard.

Thinp
Specify whether to provision the volume thinly or not. Note that thick provisioning is recommended for the engine volume. Do not use Enable Dedupe & Compression at the same time as this option.

Enable Dedupe & Compression
Specify whether to provision the volume using VDO for compression and deduplication at deployment time. Do not use Thinp at the same time as this option.

Logical Size (GB)
Specify the logical size of the VDO volume. This can be up to 10 times the size of the physical volume, with an absolute maximum logical size of 4 PB.

7. Review and edit configuration

a. Click Edit to begin editing the generated deployment configuration file.

b. (Optional) Configure Transport Layer Security (TLS/SSL)
 This can be configured during or after deployment. If you want to configure TLS/SSL encryption as part of deployment, see one of the following sections:

 - Section A.1, “Configuring TLS/SSL during deployment using a Certificate Authority signed certificate”

 - Section A.2, “Configuring TLS/SSL encryption during deployment using a self signed certificate”

 c. Review the configuration file
 If the configuration details are correct, click Save and then click Deploy.
8. **Wait for deployment to complete**
 You can watch the deployment process in the text field as the gdeploy process runs using the generated configuration file.

 The window displays **Successfully deployed gluster** when complete.

 ![Successfully deployed Gluster](image)

 IMPORTANT
 If deployment fails, click the **Redeploy** button. This returns you to the **Review and edit configuration** tab so that you can correct any issues in the generated configuration file before reattempting deployment.

 It may be necessary to clean up previous deployment attempts before you try again. Follow the steps in Chapter 14, *Cleaning up automated Red Hat Gluster Storage deployment errors* to clean up previous deployment attempts.

 Click **Continue to Hosted Engine Deployment** and continue the deployment process with the instructions in Chapter 8, *Deploy the Hosted Engine using the Cockpit UI*.
CHAPTER 8. DEPLOY THE HOSTED ENGINE USING THE COCKPIT UI

This section shows you how to deploy the Hosted Engine using the Cockpit UI. Following this process results in Red Hat Virtualization Manager running as a virtual machine on the first physical machine in your deployment. It also configures a Default cluster comprised of the three physical machines, and enables Red Hat Gluster Storage functionality and the `virtual-host tuned` performance profile for each machine in the cluster.

Prerequisites

- This procedure assumes that you have continued directly from the end of Configure Red Hat Gluster Storage for Hosted Engine using the Cockpit UI.

- Gather the information you need for Hosted Engine deployment
 Have the following information ready before you start the deployment process.
 - IP address for a pingable gateway to the virtualization host
 - IP address of the front-end management network
 - Fully-qualified domain name (FQDN) for the Hosted Engine virtual machine
 - MAC address that resolves to the static FQDN and IP address of the Hosted Engine

Procedure

1. Specify virtual machine details
a. Enter the following details:

Engine VM FQDN

The fully qualified domain name to be used for the Hosted Engine virtual machine.

MAC Address

The MAC address associated with the FQDN to be used for the Hosted Engine virtual machine.

Root password

The root password to be used for the Hosted Engine virtual machine.

b. Click Next.

2. **Specify virtualization management details**

 a. Enter the password to be used by the admin account in Red Hat Virtualization Manager. You can also specify notification behaviour here.
b. Click **Next**.

3. **Review virtual machine configuration**

 a. Ensure that the details listed on this tab are correct. Click **Back** to correct any incorrect information.
Please review the configuration. Once you click the 'Prepare VM' button, a local virtual machine will be started and used to prepare the management services and their data. This operation may take some time depending on your hardware.

VM
- **Engine FQDN**: engine.example.com
- **MAC Address**: 00:10:00:00:00:00
- **Network Configuration**: Static
- **VM IP Address**: 192.168.9.104
- **Gateway Address**: 192.168.0.104
- **DNS Servers**: 192.168.0.254
- **Root User SSH Access**: Yes
- **Number of Virtual CPUs**: 4
- **Memory Size (MB)**: 16384
- **Root User SSH Public Key**: (None)
- **Add Lines to /etc/hosts**: Yes
- **Bridge Name**: ovirtbr0

Engine
- **SMTP Server Name**: localhost
- **SMTP Server Port Number**: 25
- **Sender E-Mail Address**: root@localhost

b. Click **Prepare VM**.
c. Wait for virtual machine preparation to complete.
If preparation does not occur successfully, see Viewing Hosted Engine deployment errors.

d. Click Next.

4. **Specify storage for the Hosted Engine virtual machine**

 a. Specify the primary host and the location of the `engine` volume, and ensure that the `backup-volfile-servers` values listed in `Mount Options` are the IP addresses of the additional virtualization hosts.
5. **Finalize Hosted Engine deployment**

 a. Review your deployment details and verify that they are correct.

 NOTE

 The responses you provided during configuration are saved to an answer file to help you reinstall the hosted engine if necessary. The answer file is created at `/etc/ovirt-hosted-engine/answers.conf` by default. This file should not be modified manually without assistance from Red Hat Support.
b. Click **Finish Deployment**.

6. **Wait for deployment to complete**
 This takes up to 30 minutes.
The window displays the following when complete.
IMPORTANT

If deployment does not complete successfully, see Viewing Hosted Engine deployment errors.

Click Close.

7. **Verify hosted engine deployment**

 Browse to the engine user interface (for example, http://engine.example.com/ovirt-engine) and verify that you can log in using the administrative credentials you configured earlier. Click **Dashboard** and look for your hosts, storage domains, and virtual machines.
Next steps

- Log in to Red Hat Virtualization Manager to complete configuration.
CHAPTER 9. CONFIGURE RED HAT GLUSTER STORAGE AS A RED HAT VIRTUALIZATION STORAGE DOMAIN

9.1. CREATE THE LOGICAL NETWORK FOR GLUSTER TRAFFIC

1. Log in to the engine
 Browse to the engine user interface (for example, http://engine.example.com/ovirt-engine) and log in using the administrative credentials you configured in Chapter 8, Deploy the Hosted Engine using the Cockpit UI.

2. Create a logical network for gluster traffic
 a. Click Network → Networks and then click New. The New Logical Network wizard appears.
 b. On the General tab of the wizard, provide a Name for the new logical network, and uncheck the VM Network checkbox.
 c. On the Cluster tab of the wizard, uncheck the Required checkbox.
 d. Click OK to create the new logical network.

3. Enable the new logical network for gluster
 a. Click the Network → Networks and select the new logical network.
 b. Click the Clusters subtab and then click Manage Network. The Manage Network dialogue appears.
 c. In the Manage Network dialogue, check the Migration Network and Gluster Network checkboxes.
 d. Click OK to save.

4. Attach the gluster network to the host
 a. Click Compute → Hosts and select the host.
 b. Click the Network Interfaces subtab and then click Setup Host Networks. The Setup Host Networks window opens.
 c. Drag and drop the newly created network to the correct interface.
 d. Ensure that the Verify connectivity between Host and Engine checkbox is checked.
 e. Ensure that the Save network configuration checkbox is checked.
 f. Click OK to save.

5. Verify the health of the network
 Check the state of the host’s network. If the network interface enters an "Out of sync" state or does not have an IPv4 Address, click Management → Refresh Capabilities.

9.2. CREATE STORAGE DOMAINS
The hosted engine storage domain is imported automatically, but other storage domains must be added to be used.

1. Click Storage → Domains and then click New Domain.
2. Set the Storage Type to GlusterFS and provide a Name for the domain.
3. Check the Use managed gluster volume option and select the volume to use.
4. Click OK to save.

9.3. ADD ADDITIONAL VIRTUALIZATION HOSTS TO THE HOSTED ENGINE

If you did not specify additional virtualization hosts as part of Configure Red Hat Gluster Storage for Hosted Engine using the Cockpit UI, follow these steps in Red Hat Virtualization Manager for each of the other virtualization hosts.

1. Add virtualization hosts to the host inventory
 a. Click Compute → Hosts and then click New to open the New Host window.
 b. Provide the Name, Hostname, and Password for the host that you want to manage.
 c. Under Advanced Parameters, uncheck the Automatically configure host firewall checkbox, as firewall rules are already configured by gdeploy.
 d. In the Hosted Engine tab of the New Host dialog, set the value of Choose hosted engine deployment action to Deploy. This ensures that the hosted engine can run on the new host.
 e. Click OK.

2. Attach the gluster network to the new host
 a. Click the name of the newly added host to go to the host page.
 b. Click the Network Interfaces subtab and then click Setup Host Networks.
 c. Drag and drop the newly created network to the correct interface.
 d. Ensure that the Verify connectivity checkbox is checked.
 e. Ensure that the Save network configuration checkbox is checked.
 f. Click OK to save.

3. In the General subtab for this host, verify that the value of Hosted Engine HA is Active, with a positive integer as a score.

 IMPORTANT

 If Score is listed as N/A, you may have forgotten to select the deploy action for Choose hosted engine deployment action. Follow the steps in Reinstalling a virtualization host in Maintaining Red Hat Enterprise Linux based RHHI to reinstall the host with the deploy action.
4. **Verify the health of the network**
 Check the state of the host’s network. If the network interface enters an "Out of sync" state or does not have an IPv4 Address, click **Management → Refresh Capabilities**.

See the Red Hat Virtualization 4.2 *Self-Hosted Engine Guide* for further details:
PART III. VERIFY
CHAPTER 10. VERIFY YOUR DEPLOYMENT

After deployment is complete, verify that your deployment has completed successfully.

1. Browse to the engine user interface, for example, http://engine.example.com/ovirt-engine.

 Administration Console Login

 ![Login Screen]

 RED HAT VIRTUALIZATION

 Username
 Password
 Profile: internal

 Log In

2. Log in using the administrative credentials added during hosted engine deployment. When login is successful, the Dashboard appears.

 Administration Console Dashboard
3. Verify that your cluster is available.

Administration Console Dashboard - Clusters

![Clusters](image)

4. Verify that at least one host is available.

If you provided additional host details during Hosted Engine deployment, 3 hosts are visible here, as shown.

Administration Console Dashboard - Hosts

![Hosts](image)

a. Click **Compute → Hosts**.

b. Verify that all hosts are listed with a **Status** of **Up**.

Administration Console - Hosts

![Hosts Status](image)
5. Verify that all storage domains are available.

a. Click **Storage → Domains**.

b. Verify that the **Active** icon is shown in the first column.

Administration Console - Storage Domains
PART IV. NEXT STEPS
CHAPTER 11. POST-DEPLOYMENT CONFIGURATION SUGGESTIONS

Depending on your requirements, you may want to perform some additional configuration on your newly deployed Red Hat Hyperconverged Infrastructure for Virtualization. This section contains suggested next steps for additional configuration.

Details on these processes are available in *Maintaining Red Hat Hyperconverged Infrastructure for Virtualization*.

11.1. CONFIGURE A LOGICAL VOLUME CACHE FOR IMPROVED PERFORMANCE

If your main storage devices are not Solid State Disks (SSDs), Red Hat recommends configuring a logical volume cache (lvmcache) to achieve the required performance for Red Hat Hyperconverged Infrastructure for Virtualization deployments.

See *Configuring a logical volume cache for improved performance* for details.

11.2. CONFIGURE FENCING FOR HIGH AVAILABILITY

Fencing allows a cluster to enforce performance and availability policies and react to unexpected host failures by automatically rebooting virtualization hosts.

See *Configure High Availability using fencing policies* for further information.

11.3. CONFIGURE BACKUP AND RECOVERY OPTIONS

Red Hat recommends configuring at least basic disaster recovery capabilities on all production deployments.

See *Configuring backup and recovery options* in *Maintaining Red Hat Hyperconverged Infrastructure for Virtualization* for more information.
PART V. TROUBLESHOOT
CHAPTER 12. LOG FILE LOCATIONS

During the deployment process, progress information is displayed in the web browser. This information is also stored on the local file system so that the information logged can be archived or reviewed at a later date, for example, if the web browser stops responding or is closed before the information has been reviewed.

The log file for the Cockpit based deployment process (documented in Chapter 7, Configure Red Hat Gluster Storage for Hosted Engine using the Cockpit UI) is stored in the

~/.gdeploy/logs/gdeploy.log file, where ~ is the home directory of the administrative user logged in to the Cockpit UI. If you log in to the Cockpit UI as root, the log file is stored as

The log files for the Hosted Engine setup portion of the deployment process (documented in Chapter 8, Deploy the Hosted Engine using the Cockpit UI) are stored in the /var/log/ovirt-hosted-engine-setup directory, with file names of the form ovirt-hosted-engine-setup-<date>.log.
CHAPTER 13. VIEWING HOSTED ENGINE DEPLOYMENT ERRORS

13.1. FAILED TO PREPARE VIRTUAL MACHINE

If an error occurs while preparing the virtual machine, deployment pauses, and you see a screen similar to the following:

Preparing virtual machine failed

Review the output, and click **Back** to correct any entered values and try again.

Contact Red Hat Support with details of errors for assistance in correcting them.

13.2. FAILED TO DEPLOY HOSTED ENGINE

If an error occurs during hosted engine deployment, deployment pauses, and you see a screen similar to the following:

Hosted engine deployment failed
Review the output for error information.

Click Back to correct any entered values and try again.

If deployment failed after the physical volume or volume group were created, you must also follow the steps in Chapter 14, Cleaning up automated Red Hat Gluster Storage deployment errors to return your system to a fresh state for the deployment process.

If you need help resolving errors, contact Red Hat Support with details.
CHAPTER 14. CLEANING UP AUTOMATED RED HAT GLUSTER STORAGE DEPLOYMENT ERRORS

If the deployment process fails after the physical volumes and volume groups are created, you need to undo that work to start the deployment from scratch. Follow this process to clean up a failed deployment so that you can try again.

Procedure

1. Create a volume_cleanup.conf file based on the volume_cleanup.conf file in Appendix B, Example cleanup configuration files for gdeploy.
2. Run gdeploy using the volume_cleanup.conf file.

   ```
   # gdeploy -c volume_cleanup.conf
   ```
3. Create a lv_cleanup.conf file based on the lv_cleanup.conf file in Appendix B, Example cleanup configuration files for gdeploy.
4. Run gdeploy using the lv_cleanup.conf file.

   ```
   # gdeploy -c lv_cleanup.conf
   ```
5. Check mount configurations on all hosts
 Check the /etc/fstab file on all hosts, and remove any lines that correspond to XFS mounts of automatically created bricks.
APPENDIX A. CONFIGURING ENCRYPTION DURING DEPLOYMENT

A.1. CONFIGURING TLS/SSL DURING DEPLOYMENT USING A CERTIFICATE AUTHORITY SIGNED CERTIFICATE

A.1.1. Prerequisites

Ensure that you have appropriate certificates signed by a Certificate Authority before proceeding. Obtaining certificates is outside the scope of this document.

A.1.2. Configuring TLS/SSL encryption using a CA-signed certificate

1. Ensure that the following files exist in the following locations on all nodes.

 /etc/ssl/glusterfs.key
 The node's private key.

 /etc/ssl/glusterfs.pem
 The certificate signed by the Certificate Authority, which becomes the node's certificate.

 /etc/ssl/glusterfs.ca
 The Certificate Authority's certificate. For self-signed configurations, this file contains the concatenated certificates of all nodes.

2. Enable management encryption.

 Create the /var/lib/glusterd/secure-access file on each node.

   ```
   # touch /var/lib/glusterd/secure-access
   ```

3. Configure encryption.

 Add the following lines to each volume listed in the configuration file generated as part of Chapter 7, Configure Red Hat Gluster Storage for Hosted Engine using the Cockpit UI. This creates and configures TLS/SSL based encryption between gluster volumes using CA-signed certificates as part of the deployment process.

   ```
   key=client.ssl,server.ssl,auth.ssl-allow
   value=on,on,"host1;host2;host3"
   ```

 Ensure that you save the generated file after editing.

A.2. CONFIGURING TLS/SSL ENCRYPTION DURING DEPLOYMENT USING A SELF SIGNED CERTIFICATE

Add the following lines to the configuration file generated in Chapter 7, Configure Red Hat Gluster Storage for Hosted Engine using the Cockpit UI to create and configure TLS/SSL based encryption between gluster volumes using self signed certificates as part of the deployment process. Certificates generated by gdeploy are valid for one year.

In the configuration for the first volume, add lines for the enable_ssl and ssl_clients parameters and their values:
In the configuration for subsequent volumes, add the following lines to define values for the **client.ssl**, **server.ssl**, and **auth.ssl-allow** parameters:

```bash
[volumeX]
key=client.ssl, server.ssl, auth.ssl-allow
value=on, on, "<Gluster_Network_IP1>; <Gluster_Network_IP2>; <Gluster_Network_IP3>"
```
APPENDIX B. EXAMPLE CLEANUP CONFIGURATION FILES FOR GDEPLOY

In the event that deployment fails, it is necessary to clean up the previous deployment attempts before retrying the deployment. The following two example files can be run with gdeploy to clean up previously failed deployment attempts so that deployment can be reattempted.

volume_cleanup.conf

```
[hosts]
<Gluster_Network_NodeA>
<Gluster_Network_NodeB>
<Gluster_Network_NodeC>

[volume1]
action=delete
volname=engine

[volume2]
action=delete
volname=vmstore

[volume3]
action=delete
volname=data

[peer]
action=detach
```

lv_cleanup.conf

```
[hosts]
<Gluster_Network_NodeA>
<Gluster_Network_NodeB>
<Gluster_Network_NodeC>

[backend-reset]
pvs=sdb,sdc
unmount=yes
```
Gdeploy automatically provisions one or more machines with Red Hat Gluster Storage based on a configuration file.

The Cockpit UI provides a wizard that allows users to generate a gdeploy configuration file that is suitable for performing the base-level deployment of Red Hat Hyperconverged Infrastructure for Virtualization.

This section explains the gdeploy configuration file that would be generated if the following configuration details were specified in the Cockpit UI:

- 3 hosts with IP addresses 192.168.0.101, 192.168.0.102, and 192.168.0.103
- Arbiter configuration for non-engine volumes.
- Three-way replication for the engine volume.
- 12 bricks that are configured with RAID 6 with a stripe size of 256 KB.

This results in a gdeploy configuration file with the following sections.

[hosts] section

```ini
[hosts]
192.168.0.101
192.168.0.102
192.168.0.103
```

The **[hosts]** section defines the IP addresses of the three physical machines to be configured according to this configuration file.

[script1] section

```ini
[script1]
action=execute
ignore_script_errors=no
file=/usr/share/ansible/gdeploy/scripts/grafton-sanity-check.sh -d sdb -h 192.168.0.101,192.168.0.102,192.168.0.103
```

The **[script1]** section specifies a script to run to verify that all hosts are configured correctly in order to allow gdeploy to run without error.

Underlying storage configuration

```ini
[disktype]
raid6
```
The [diskcount] section specifies the number of disks in RAID storage. This can be omitted for JBOD configurations.

The [stripesize] section specifies the RAID storage stripe size in kilobytes. This can be omitted for JBOD configurations.

Enable and restart chronyd

These service sections enable and restart the network time service, chronyd, on all servers.

Create physical volume on all hosts

The [pv1] section creates a physical volume on the sdb device of all hosts.

NOTE

If you enable deduplication and compression during deployment time, devices in [pv1] and pvname in [vg1] will be /dev/mapper/vndo_sdb. For more information on VDO configuration, see Appendix D, Example gdeploy configuration file for configuring compression and deduplication.

Create volume group on all hosts

The [vg1] section creates a volume group in the previously created physical volume on all hosts.

Create the logical volume thin pool
The [lv1:*] section creates a 1000 GB thin pool on the first two hosts with a meta data pool size of 16 GB.

The [lv2:192.168.0.103] section creates a 20 GB thin pool on the third host with a meta data pool size of 16 GB. This is the logical volume used for the arbiter brick.

The chunksize variable is also available, but should be used with caution. chunksize defines the size of the chunks used for snapshots, cache pools, and thin pools. By default this is specified in kilobytes. For RAID 5 and 6 volumes, gdeploy calculates the default chunksize by multiplying the stripe size and the disk count.

WARNING

Red Hat recommends using at least the default chunksize. If the chunksize is too small and your volume runs out of space for metadata, the volume is unable to create data. Red Hat recommends monitoring your logical volumes to ensure that they are expanded or more storage created before metadata volumes become completely full.

Create underlying engine storage

The [lv3:{192.168.0.101,192.168.0.102}] action=create lvname=gluster_lv_engine ignore_lv_errors=no vgname=gluster_vg_sdb mount=/gluster_bricks/engine size=100GB lvtype=thick

[1v4:192.168.0.103] action=create
lvname=gluster_lv_engine
ignore_lv_errors=no
vgname=gluster_vg_sdb
mount=/gluster_bricks/engine
size=10GB
lvtype=thick

The [lv3:*] section creates a 100 GB thick provisioned logical volume called gluster_lv_engine on the first two hosts. This volume is configured to mount on /gluster_bricks/engine.

The [lv4:*] section creates a 10 GB thick provisioned logical volume for the engine on the third host. This volume is configured to mount on /gluster_bricks/engine.

Create underlying data and virtual machine boot disk storage

[lv5:{192.168.0.101,192.168.0.102}]
action=create
lvname=gluster_lv_data
ignore_lv_errors=no
vgname=gluster_vg_sdb
mount=/gluster_bricks/data
lvtype=thinline
poolname=gluster_thinpool_sdb
virtualsize=500GB

[lv6:192.168.0.103]
action=create
lvname=gluster_lv_data
ignore_lv_errors=no
vgname=gluster_vg_sdb
mount=/gluster_bricks/data
lvtype=thinline
poolname=gluster_thinpool_sdb
virtualsize=10GB

[lv7:{192.168.0.101,192.168.0.102}]
action=create
lvname=gluster_lv_vmstore
ignore_lv_errors=no
vgname=gluster_vg_sdb
mount=/gluster_bricks/vmstore
lvtype=thinline
poolname=gluster_thinpool_sdb
virtualsize=500GB

[lv8:192.168.0.103]
action=create
lvname=gluster_lv_vmstore
ignore_lv_errors=no
vgname=gluster_vg_sdb
mount=/gluster_bricks/vmstore
lvtype=thinline
poolname=gluster_thinpool_sdb
virtualsize=10GB
The \[lv5:*\] and \[lv7:*\] sections create 500 GB logical volumes as bricks for the data and vmstore volumes on the first two hosts.

The \[lv6:*\] and \[lv8:*\] sections create 10 GB logical volumes as arbiter bricks for the data and vmstore volumes on the third host.

The data bricks are configured to mount on /gluster_bricks/data, and the vmstore bricks are configured to mount on /gluster_bricks/vmstore.

Configure SELinux file system labels

\[[selinux]\]
yes

The \[selinux\] section specifies that the storage created should be configured with appropriate SELinux file system labels for Gluster storage.

Start glusterd

\[[service3]\]
action=start
service=glusterd
slice_setup=yes

Configure the firewall

\[[firewalld]\]
action=add
ports=111/tcp,2049/tcp,54321/tcp,5900/tcp,5900-6923/tcp,5666/tcp,16514/tcp,54322/tcp
services=glusterfs

The \[firewalld\] section opens the ports required to allow gluster traffic.

Disable gluster hooks

\[[script2]\]
action=execute
file=/usr/share/ansible/gdeploy/scripts/disable-gluster-hooks.sh

The \[script2\] section disables gluster hooks that can interfere with the Hyperconverged Infrastructure.

Create gluster volumes

\[[volume1]\]
action=create
volname=engine
The [volume*] sections configure Red Hat Gluster Storage volumes. The [volume1] section configures one three-way replicated volume, engine. The additional [volume*] sections configure two arbitrated replicated volumes: data and vmstore, which have one arbiter brick on the third host.

The key and value parameters are used to set the following options:

- **group=virt**
- **storage.owner-uid=36**
- **storage.owner-gid=36**
- **network.ping-timeout=30**
- **performance.strict-o-direct=on**

The transport=tcp, replica=yes, replica_count=3, key=group,storage.owner-uid,storage.owner-gid,network.ping-timeout,performance.strict-o-direct,network.remote-dio,cluster.granular-entry-heal,features.shard-block-size value=virt,36,36,30,on,off,enable,64MB brick_dirs=192.168.0.101:/gluster_bricks/engine/engine,192.168.0.102:/gluster_bricks/engine/engine,192.168.0.103:/gluster_bricks/engine/engine ignore_volume_errors=no

[volume2]
action=create
volname=data
transport=tcp
replica=yes
replica_count=3
key=group,storage.owner-uid,storage.owner-gid,network.ping-timeout,performance.strict-o-direct,network.remote-dio,cluster.granular-entry-heal,features.shard-block-size value=virt,36,36,30,on,off,enable,64MB brick_dirs=192.168.0.101:/gluster_bricks/data/data,192.168.0.102:/gluster_bricks/data/data,192.168.0.103:/gluster_bricks/data/data ignore_volume_errors=no
arbiter_count=1

[volume3]
action=create
volname=vmstore
transport=tcp
replica=yes
replica_count=3
key=group,storage.owner-uid,storage.owner-gid,network.ping-timeout,performance.strict-o-direct,network.remote-dio,cluster.granular-entry-heal,features.shard-block-size value=virt,36,36,30,on,off,enable,64MB brick_dirs=192.168.0.101:/gluster_bricks/vmstore/vmstore,192.168.0.102:/gluster_bricks/vmstore/vmstore,192.168.0.103:/gluster_bricks/vmstore/vmstore ignore_volume_errors=no
arbiter_count=1
• `network.remote-dio=off`

• `cluster.granular-entry-heal=enable`

• `features.shard-block-size=64MB`
APPENDIX D. EXAMPLE GDEPLOY CONFIGURATION FILE FOR CONFIGURING COMPRESSION AND DEDUPLICATION

Virtual Data Optimizer (VDO) volumes are supported as of Red Hat Hyperconverged Infrastructure for Virtualization 1.5 when enabled at deployment time. VDO cannot be enabled on existing deployments.

Deploying Red Hat Hyperconverged Infrastructure for Virtualization 1.5 with a Virtual Data Optimizer volume reduces the actual disk space required for a workload, as it enables data compression and deduplication capabilities. This reduces capital and operating expenses.

The `gdeployConfig.conf` file is located at `/var/lib/ovirt-hosted-engine-setup/gdeploy/gdeployConfig.conf`. This configuration file is applied when Enable Dedupe & Compression is checked during deployment.

```bash
# VDO Configuration
[vdo1:@HOSTNAME@]
action=create
devices=sdb,sdd
names=vdo_sdb,vdo_sdd
logicalsize=164840G,2000G

# Logical size(G) is ten times of actual brick size. If logicalsize >= 1000G, then slabsize=32G.
blockmapcachesize=128M
readcache=enabled
readcachesize=20M
emulate512=on
writepolicy=sync
ignore_vdo_errors=no
slabsize=32G,32G

# Create physical volume on all hosts
[pv1]
action=create
devices=/dev/mapper/vdo_sdb
ignore_pv_errors=no

# Create volume group on all hosts
[vg1]
action=create
vgname=gluster_vg_sdb
pvname=/dev/mapper/vdo_sdb
ignore_vg_errors=no
```