Red Hat Hyperconverged Infrastructure
1.0

Maintaining Red Hat Hyperconverged Infrastructure

Common maintenance tasks for Red Hat Hyperconverged Infrastructure
Common maintenance tasks for Red Hat Hyperconverged Infrastructure

Laura Bailey
lbailey@redhat.com
Abstract

Red Hat Hyperconverged Infrastructure (RHHI) combines compute, storage, networking, and management capabilities into a single solution, simplifying deployment and reducing the cost of acquisition and maintenance. This document explains how to perform maintenance tasks specific to Red Hat Hyperconverged Infrastructure.
Table of Contents

PART I. CONFIGURATION TASKS

CHAPTER 1. ADD COMPUTE AND STORAGE RESOURCES
1.1. SCALING RH HYPERCONVERGED INFRASTRUCTURE
1.1.1. Before you begin
1.1.2. Scaling RH by adding additional volumes on new nodes

CHAPTER 2. CONFIGURE HIGH AVAILABILITY USING FENCING POLICIES
2.1. CONFIGURING FENCING POLICIES FOR GLUSTER STORAGE

CHAPTER 3. CONFIGURE DISASTER RECOVERY USING GEO-REPLICATION
3.1. CONFIGURING GEO-REPLICATION FOR DISASTER RECOVERY
3.1.1. Before you begin
3.1.2. Configuring a geo-replication session
3.1.3. Configuring synchronization schedule
3.1.4. Deleting synchronization schedule

CHAPTER 4. CONFIGURE ENCRYPTION WITH TRANSPORT LAYER SECURITY (TLS/SSL)
4.1. CONFIGURING TLS/SSL USING SELF-SIGNED CERTIFICATES
4.2. CONFIGURING TLS/SSL USING CERTIFICATE AUTHORITY SIGNED CERTIFICATES

PART II. MAINTENANCE TASKS

CHAPTER 5. UPDATING RH HYPERCONVERGED INFRASTRUCTURE
5.1. UPDATE WORKFLOW
5.2. BEFORE YOU UPDATE
5.3. UPDATING THE HOSTED ENGINE VIRTUAL MACHINE
5.4. UPDATING THE PHYSICAL HOSTS

CHAPTER 6. REPLACING THE PRIMARY GLUSTER STORAGE NODE

CHAPTER 7. REPLACING A GLUSTER STORAGE NODE
7.1. REPLACING A GLUSTER STORAGE NODE (DIFFERENT FQDN)
7.2. REPLACING A GLUSTER STORAGE NODE (SAME FQDN)

CHAPTER 8. RESTORING A VOLUME FROM A GEO-REPLICATED BACKUP

PART III. REFERENCE MATERIAL

APPENDIX A. FENCING POLICIES FOR RH GLUSTER STORAGE

APPENDIX B. EXAMPLE GDEPLOY CONFIGURATION FILES
B.1. EXAMPLE GDEPLOY CONFIGURATION FILE FOR SETTING UP TLS/SSL
B.2. EXAMPLE GDEPLOY CONFIGURATION FILE FOR PREPARING TO REPLACE A NODE
B.3. EXAMPLE GDEPLOY CONFIGURATION FILE FOR SCALING TO ADDITIONAL NODES
PART I. CONFIGURATION TASKS
CHAPTER 1. ADD COMPUTE AND STORAGE RESOURCES

Red Hat Hyperconverged Infrastructure (RHFI) can be scaled in multiples of three nodes to a maximum of nine nodes.

1.1. SCALING RHHI DEPLOYMENTS

1.1.1. Before you begin

- Be aware that the only supported method of scaling Red Hat Hyperconverged Infrastructure (RHFI) is to create additional volumes that span the new nodes. Expanding the existing volumes to span across more nodes is not supported.

- Arbitrated replicated volumes are not supported for scaling.

- If your existing deployment uses certificates signed by a Certificate Authority for encryption, prepare the certificates that will be required for the new nodes.

1.1.2. Scaling RHHI by adding additional volumes on new nodes

1. Install the three physical machines
 Follow the instructions in Deploying Red Hat Hyperconverged Infrastructure: https://access.redhat.com/documentation/en-us/red_hat_hyperconverged_infrastructure/1.0/html/deploying_red_hat_hyperconverged_infrastructure/install-host-physical-machines.

 NOTE
 Only one arbitrated replicated volume is supported per deployment.

2. Configure key-based SSH authentication
 Follow the instructions in Deploying Red Hat Hyperconverged Infrastructure to configure key-based SSH authentication from one node to all nodes: https://access.redhat.com/documentation/en-us/red_hat_hyperconverged_infrastructure/1.0/html/deploying_red_hat_hyperconverged_infrastructure/configure-key-based-ssh-auth

3. Automatically configure new nodes
 a. Create an add_nodes.conf file based on the template provided in Section B.3, “Example gdeploy configuration file for scaling to additional nodes”.
 b. Run gdeploy using the add_nodes.conf file:

```
# gdeploy -c add_nodes.conf
```

4. (Optional) If encryption is enabled
 a. Ensure that the following files exist in the following locations on all nodes.

 `/etc/ssl/clusterfs.key`
 The node’s private key.
 `/etc/ssl/clusterfs.pem`
The certificate signed by the Certificate Authority, which becomes the node’s certificate.

/etc/ssl/glusterfs.ca

The Certificate Authority’s certificate. For self-signed configurations, this file contains the concatenated certificates of all nodes.

b. Enable management encryption.
Create the /var/lib/glusterd/secure-access file on each node.

```bash
# touch /var/lib/glusterd/secure-access
```

c. Restart the glusterd service

```bash
# systemctl restart glusterd
```

d. Update the auth.ssl-allow parameter for all volumes
Use the following command on any existing node to obtain the existing settings:

```bash
# gluster volume get engine auth.ssl-allow
```

Set auth.ssl-allow to the old value with the new IP addresses appended.

```bash
# gluster volume set <vol_name> auth.ssl-allow "<old_hosts>; <new_hosts>"
```

5. Disable multipath for each node’s storage devices

a. Add the following lines to the beginning of the /etc/multipath.conf file.

```bash
# VDSM REVISION 1.3
# VDSM PRIVATE
```

b. Add Red Hat Gluster Storage devices to the blacklist definition in the /etc/multipath.conf file.

```bash
blacklist {
    devnode "^sd[a-z]"
}
```

c. Restart multipathd

```bash
# systemctl restart multipathd
```

6. In Red Hat Virtualization Manager, add the new hosts to the existing cluster

Ensure that you uncheck Automatically configure firewall and that you enable Power management settings.

7. Add the new bricks to the volume
For details, see the Red Hat Virtualization Administration Guide:
8. Attach the gluster network to the new hosts
 a. Click the **Hosts** tab and select the host.
 b. Click the **Network Interfaces** subtab and then click **Setup Host Networks**.
 c. Drag and drop the newly created network to the correct interface.
 d. Ensure that the **Verify connectivity** checkbox is checked.
 e. Ensure that the **Save network configuration** checkbox is checked.
 f. Click **OK** to save.
 g. Verify the health of the network
 Click the **Hosts** tab and select the host.
 Click the **Networks** subtab and check the state of the host’s network
 If the network interface enters an "Out of sync" state or does not have an IPv4 Address, click the **Management** tab that corresponds to the host and click **Refresh Capabilities**.

9. Create a new volume
 a. Check the **Optimize for virt-store** checkbox.
 b. Set the following volume options:
 - Set `cluster.granular-entry-heal` to **on**.
 - Set `network.remote-dio` to **off**
 - Set `performance.strict-o-direct` to **on**
 c. Start the new volume.

10. Create a new storage domain
 a. Click the **Storage** tab and then click **New Domain**.
 b. Provide a **Name** for the domain.
 c. Set the **Domain function** to **Data**.
 d. Set the **Storage Type** to **GlusterFS**.
 e. Check the **Use managed gluster volume** option.
 A list of volumes available in the cluster appears.
 f. Click **OK**.
CHAPTER 2. CONFIGURE HIGH AVAILABILITY USING FENCING POLICIES

Fencing allows a cluster to enforce performance and availability policies and react to unexpected host failures by automatically rebooting virtualization hosts.

Several policies specific to Red Hat Gluster Storage must be enabled to ensure that fencing activities do not disrupt storage services in a Red Hat Hyperconverged (RHHI) Infrastructure deployment.

2.1. CONFIGURING FENCING POLICIES FOR GLUSTER STORAGE

1. In Red Hat Virtualization Manager, click the Clusters tab.

2. Click Edit. The Edit Cluster window opens.

3. Click the Fencing policy tab.

4. Check the Enable fencing checkbox.

5. Check the checkboxes for at least the following fencing policies:
 - Skip fencing if gluster bricks are up
 - Skip fencing if gluster quorum not met

 See Appendix A, Fencing Policies for Red Hat Gluster Storage for details on the effects of these policies.

6. Click OK to save settings.
CHAPTER 3. CONFIGURE DISASTER RECOVERY USING GEO-REPLICATION

Geo-replication is used to synchronize data from one Red Hat Gluster Storage cluster to another. Synchronizing your data volume from your discrete Red Hat Hyperconverged Infrastructure (RHHI) cluster to a central data center on a regular basis helps ensure you can restore your cluster to a working state after an outage.

3.1. CONFIGURING GEO-REPLICATION FOR DISASTER RECOVERY

3.1.1. Before you begin

- Prepare a remote backup volume to hold the geo-replicated copy of your local volume.
 - Ensure that the volume you want to back up has shared storage enabled.
    ```
    # gluster volume set all cluster.enable-shared-storage enable
    ```
 - Ensure that your remote backup volume has sharding enabled.
    ```
    # gluster volume set VOLNAME features.shard enable
    ```
- If encryption is enabled on the storage that you want to back up, encryption must also be enabled on your remote backup volume.

3.1.2. Configuring a geo-replication session

1. Create (but do not start) the geo-replication session

 Using the command line interface, create (but do not start) a geo-replication session from a local volume to the remote backup volume.

 See the Red Hat Gluster Storage 3.2 Administration Guide for details:

2. Configure a meta-volume for your remote backup
 See the Red Hat Gluster Storage 3.2 Administration Guide for details:

3.1.3. Configuring synchronization schedule

1. Verify that geo-replication is configured

 In Red Hat Virtualization Manager, click the Volumes tab.

 Check the Info column for the geo-replication icon. If present, a geo-replication session is configured for that volume.

2. In the Storage Domain tab, select the storage domain to back up.

3. Click the Remote Data Sync Setup sub-tab
The **Setup Remote Data Synchronization** window opens.

a. In the **Geo-replicated to** field, select the backup destination.

b. In the **Recurrence** field, select a recurrence interval type. Valid values are **WEEKLY** with at least one weekday checkbox selected, or **DAILY**.

c. In the **Hours** and **Minutes** field, specify the time to start synchronizing.

 NOTE

 This time is based on the Hosted Engine’s timezone.

d. Click **OK**.

4. Check the **Events** pane at the time you specified to verify that synchronization works correctly.

3.1.4. Deleting synchronization schedule

1. In the **Storage Domain** tab, select the storage domain to back up.

2. Click the **Remote Data Sync Setup** sub-tab
 The **Setup Remote Data Synchronization** window opens.

 a. In the **Recurrence** field, select a recurrence interval type of **NONE**.

 b. Click **OK**.

3. (Optional) Remove the geo-replication session
 Run the following command from the geo-replication master node:

   ```shell
   # gluster volume geo-replication MASTER_VOL SLAVE_HOST::SLAVE_VOL delete
   ```

 You can also run this command with the **reset-sync-time** parameter. For further information about this parameter and geo-replication in general, see the Red Hat Gluster Storage Administration Guide: https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.2/html/administration_guide/chap-managing_geo-replication.
CHAPTER 4. CONFIGURE ENCRYPTION WITH TRANSPORT LAYER SECURITY (TLS/SSL)

Transport Layer Security (TLS/SSL) can be used to encrypt management and storage layer communications between nodes. This helps ensure that your data remains private.

Encryption can be configured using either self-signed certificates or certificates signed by a Certificate Authority.

This document assumes that you want to enable encryption on an existing deployment. However, encryption can also be configured as part of the deployment process. See Deploying Red Hat Hyperconverged Infrastructure for details: https://access.redhat.com/documentation/en-us/red_hat_hyperconverged_infrastructure/1.0/html/deploying_red_hat_hyperconverged_infrastructure/.

4.1. CONFIGURING TLS/SSL USING SELF-SIGNED CERTIFICATES

IMPORTANT

Enabling or disabling encryption is a disruptive process that requires virtual machines and the Hosted Engine to be shut down.

1. Shut down all virtual machines

2. Move all storage domains except the hosted engine storage domain into Maintenance mode

3. Move the hosted engine into global maintenance mode

 Run the following command on the hypervisor that hosts the hosted engine:

   ```
   # hosted-engine --set-maintenance --mode=global
   ```

4. Shut down the hosted engine virtual machine

 Run the following command on the hypervisor that hosts the hosted engine:

   ```
   # hosted-engine --vm-shutdown
   ```

 Verify that the hosted engine has shut down by running the following command:

   ```
   # hosted-engine --vm-status
   ```

5. Stop all high availability services

 Run the following command on all hypervisors:

   ```
   # systemctl stop ovirt-ha-agent
   # systemctl stop ovirt-ha-broker
   ```
6. Unmount the hosted engine storage domain from all hypervisors
   ```bash
   # hosted-engine --disconnect-storage
   ```

7. Verify that all volumes are unmounted
 On each hypervisor, verify that all gluster volumes are no longer mounted.
   ```bash
   # mount
   ```

8. Create a gdeploy configuration file
 Use the template file in Section B.1, “Example gdeploy configuration file for setting up TLS/SSL” to create a new configuration file that will set up TLS/SSL on your deployment.

9. Run gdeploy using your new configuration file
 On the first physical machine, run gdeploy using the configuration file you created in the previous step:
   ```bash
   # gdeploy -c set_up_encryption.conf
   ```
 This may take some time to complete.

10. Verify that no TLS/SSL errors occurred
 Check the `/var/log/glusterfs/glusterd.log` file on each physical machine to ensure that no TLS/SSL related errors occurred, and setup completed successfully.

11. Start all high availability services
 Run the following commands on all hypervisors:
    ```bash
    # systemctl start ovirt-ha-agent
    # systemctl start ovirt-ha-broker
    ```

12. Move the hosted engine out of Global Maintenance mode
    ```bash
    # hosted-engine --set-maintenance --mode=none
    ```
 The hosted engine starts automatically after a short wait.

13. Wait for nodes to synchronize
 Run the following command on the first hypervisor to check synchronization status. If engine status is listed as `unknown stale-data`, synchronization requires several more minutes to complete.
    ```bash
    # hosted-engine --vm-status | grep 'Engine status'
    Engine status : {"health": "good", "vm": "up", "detail": "up"}
    Engine status : {"reason": "vm not running on this host",
                    "health": "bad", "vm": "down", "detail": "unknown"}
    Engine status : {"reason": "vm not running on this host",
                    "health": "bad", "vm": "down", "detail": "unknown"}
    ```
 The following output indicates completed synchronization.

14. Activate all storage domains
 Activate the master storage domain first, followed by all other storage domains.

15. Start all virtual machines

4.2. CONFIGURING TLS/SSL USING CERTIFICATE AUTHORITY SIGNED CERTIFICATES

IMPORTANT

Enabling or disabling encryption is a disruptive process that requires virtual machines and the Hosted Engine to be shut down.

IMPORTANT

Ensure that you have appropriate certificates signed by a Certificate Authority before proceeding. Obtaining certificates is outside the scope of this document, but further details are available in the Red Hat Gluster Storage *Administration Guide*: https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.2/html/administration_guide/chap-network_encryption#chap-Network_Encryption-Prereqs.

1. Shut down all virtual machines

2. Move all storage domains except the hosted engine storage domain into Maintenance mode

3. Move the hosted engine into global maintenance mode
 Run the following command on the hypervisor that hosts the hosted engine:

   ```bash
   # hosted-engine --set-maintenance --mode=global
   ```

4. Shut down the hosted engine virtual machine
 Run the following command on the hypervisor that hosts the hosted engine:

   ```bash
   # hosted-engine --vm-shutdown
   ```

 Verify that the hosted engine has shut down by running the following command:

   ```bash
   # hosted-engine --vm-status
   ```
5. Stop all high availability services
 Run the following command on all hypervisors:

   ```
   # systemctl stop ovirt-ha-agent
   # systemctl stop ovirt-ha-broker
   ```

6. Unmount the hosted engine storage domain from all hypervisors

   ```
   # hosted-engine --disconnect-storage
   ```

7. Verify that all volumes are unmounted
 On each hypervisor, verify that all gluster volumes are no longer mounted.

   ```
   # mount
   ```

8. Configure Certificate Authority signed encryption

 IMPORTANT

 Ensure that you have appropriate certificates signed by a Certificate Authority
 before proceeding. Obtaining certificates is outside the scope of this document.

 a. Place certificates in the following locations on all nodes.

 `/etc/ssl/glusterfs.key`
 The node’s private key.

 `/etc/ssl/glusterfs.pem`
 The certificate signed by the Certificate Authority, which becomes the node’s certificate.

 `/etc/ssl/glusterfs.ca`
 The Certificate Authority’s certificate.

 b. Stop all volumes

      ```
      # gluster volume stop all
      ```

 c. Restart glusterd on all nodes

      ```
      # systemctl restart glusterd
      ```

 d. Enable TLS/SSL encryption on all volumes

      ```
      # gluster volume set <volname> client.ssl on
      # gluster volume set <volname> server.ssl on
      ```

 e. Specify access permissions on all hosts

      ```
      # gluster volume set <volname> auth.ssl-allow "host1,host2,host3"
      ```

 f. Start all volumes
gluster volume start all

9. Verify that no TLS/SSL errors occurred
Check the `/var/log/glusters/glusterd.log` file on each physical machine to ensure that no TLS/SSL related errors occurred, and setup completed successfully.

10. Start all high availability services
Run the following commands on all hypervisors:

```
# systemctl start ovirt-ha-agent
# systemctl start ovirt-ha-broker
```

11. Move the hosted engine out of Global Maintenance mode

```
# hosted-engine --set-maintenance --mode=none
```

The hosted engine starts automatically after a short wait.

12. Wait for nodes to synchronize
Run the following command on the first hypervisor to check synchronization status. If engine status is listed as **unknown stale-data**, synchronization requires several more minutes to complete.

The following output indicates completed synchronization.

```
# hosted-engine --vm-status | grep 'Engine status'
Engine status : {"health": "good", "vm": "up", "detail": "up"}
Engine status : {"reason": "vm not running on this host", "health": "bad", "vm": "down", "detail": "unknown"}
Engine status : {"reason": "vm not running on this host", "health": "bad", "vm": "down", "detail": "unknown"}
```

13. Activate all storage domains
Activate the master storage domain first, followed by all other storage domains.

14. Start all virtual machines
CHAPTER 5. UPDATING RED HAT HYPERCONVERGED INFRASTRUCTURE

Updating involves moving from one version of a product to another minor release of the same product version, for example, from Red Hat Virtualization 4.1 to 4.1.3.

Red Hat recommends updating your systems regularly to apply security and bug fixes and take advantage of minor enhancements that are made available between major product releases.

5.1. UPDATE WORKFLOW

Red Hat Hyperconverged Infrastructure is a software solution comprised of several different components. Apply updates in the following order to minimize disruption.

1. Hosted Engine virtual machine
2. Physical hosts

5.2. BEFORE YOU UPDATE

- Ensure that your Hosted Engine virtual machine is subscribed to the `rhel-7-server-rhv-4-rpms` and `rhel-7-server-rhv-4-tools-rpms` repositories.

```bash
# subscription-manager repos --enable=rhel-7-server-rhv-4.1-rpms
# subscription-manager repos --enable=rhel-7-server-rhv-4-tools-rpms
```

- Ensure that all physical machines are subscribed to the `rhel-7-server-rhv-4-rpms` repository.

```bash
# subscription-manager repos --enable=rhel-7-server-rhv-4-rpms
```

- If geo-replication is configured, ensure that data is not being synchronized.

 a. Check the Tasks subtab and ensure that there are no ongoing tasks related to Data Synchronization. If data synchronization tasks are present, wait until they are complete before beginning the update.

 b. Stop all geo-replication sessions so that synchronization will not occur during the update. Click the Geo-replication subtab and select the session that you want to stop, then click Stop.

 Alternatively, run the following command to stop a geo-replication session.

```bash
# gluster volume geo-replication MASTER_VOL SLAVE_HOST::SLAVE_VOL stop
```

5.3. UPDATING THE HOSTED ENGINE VIRTUAL MACHINE

5.4. UPDATING THE PHYSICAL HOSTS

Follow the steps in the sections linked below to update the physical hosts one at a time.

Between updates, ensure that you wait for any heal operations to complete before updating the next host. You can view heal status in the Bricks subtab. Alternatively, run the following command for every volume, and ensure that Number of entries: 0 is displayed for each brick before updating the next host.

```
# gluster volume heal VOLNAME info
```

Most updates can be applied using Red Hat Virtualization Manager. Follow the steps in the following section of the Red Hat Virtualization Upgrade Guide to update the physical host machines one at a time: https://access.redhat.com/documentation/en-us/red_hat_virtualization/4.1/html/upgrade_guide/updating_virtualization_hosts.

If you need to apply a security fix, apply updates manually instead. Follow the steps in the following section of the Red Hat Virtualization Upgrade Guide: https://access.redhat.com/documentation/en-us/red_hat_virtualization/4.1/html/upgrade_guide/Manually_Updating_Virtualization_Hosts

IMPORTANT

Remember to move your hosts out of maintenance mode when their updates have been applied by running the following command:

```
# hosted-engine --set-maintenance --mode=none
```
CHAPTER 6. REPLACING THE PRIMARY GLUSTER STORAGE NODE

IMPORTANT

When self-signed encryption is enabled, replacing a node is a disruptive process that requires virtual machines and the Hosted Engine to be shut down.

1. (Optional) If encryption using a Certificate Authority is enabled, follow the steps at the following link before continuing: https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.2/html/administration_guide/ch22s04.

2. Move the node to be replaced into Maintenance mode
 a. In Red Hat Virtualization Manager, click the Hosts tab and select the Red Hat Gluster Storage node in the results list.
 b. Click Maintenance to open the Maintenance Host(s) confirmation window.
 c. Click OK to move the host to Maintenance mode.

3. Install the replacement node
 Follow the instructions in Deploying Red Hat Hyperconverged Infrastructure to install the physical machine and configure storage on the new node.
 a. Installing host physical machines
 b. Configuring Public Key based SSH Authentication
 c. Configuring RHGS for Hosted Engine using the Cockpit UI

4. Prepare the replacement node
 a. Create a file called replace_node_prep.conf based on the template provided in Section B.2, “Example gdeploy configuration file for preparing to replace a node”.
 b. From a node with gdeploy installed (usually the node that hosts the Hosted Engine), run gdeploy using the new configuration file:

 # gdeploy -c replace_node_prep.conf

5. (Optional) If encryption with self-signed certificates is enabled
 b. On a healthy node, make a backup copy of the /etc/ssl/glusterfs.ca file:

 # cp /etc/ssl/glusterfs.ca /etc/ssl/glusterfs.ca.bk
 c. Append the new node’s certificate to the content of the /etc/ssl/glusterfs.ca file.
d. Distribute the /etc/ssl/glusterfs.ca file to all nodes in the cluster, including the new node.

e. Run the following command on the replacement node to enable management encryption:

```
# touch /var/lib/glusterd/secure-access
```

f. Include the new server in the value of the `auth.ssl-allow` volume option by running the following command for each volume.

```
# gluster volume set <volname> auth.ssl-allow "<old_node1>, <old_node2>,<new_node>"
```

g. Restart the glusterd service on all nodes

```
# systemctl restart glusterd
```

h. Follow the steps in Section 4.1, “Configuring TLS/SSL using self-signed certificates” to remount all gluster processes.

6. Add the replacement node to the cluster

Run the following command from any node already in the cluster.

```
# peer probe <new_node>
```

7. Move the Hosted Engine into Maintenance mode:

```
# hosted-engine --set-maintenance --mode=global
```

8. Stop the ovirt-engine service

```
# systemctl stop ovirt-engine
```

9. Update the database

```
# sudo -u postgres psql
\c engine;
UPDATE storage_server_connections SET connection = '<replacement_node_IP>:/engine' WHERE connection = '<old_server_IP>:/engine';
UPDATE storage_server_connections SET connection = '<replacement_node_IP>:/vmstore' WHERE connection = '<old_server_IP>:/vmstore';
UPDATE storage_server_connections SET connection = '<replacement_node_IP>:/data' WHERE connection = '<old_server_IP>:/data';
```

10. Start the ovirt-engine service

```
# systemctl start ovirt-engine
```

11. Stop all virtual machines except the Hosted Engine.

12. Move all storage domains **except** the Hosted Engine domain into Maintenance mode
13. Stop the Hosted Engine virtual machine
 Run the following command on the existing node that hosts the Hosted Engine.

 # hosted-engine --vm-shutdown

14. Stop high availability services on all nodes

 # systemctl stop ovirt-ha-agent
 # systemctl stop ovirt-ha-broker

15. Disconnect Hosted Engine storage from the hypervisor
 Run the following command on the existing node that hosts the Hosted Engine.

 # hosted-engine --disconnect-storage

16. Update the Hosted Engine configuration file
 Edit the storage parameter in the /etc/ovirt-hosted-engine/hosted-engine.conf file to use the replacement server.

 storage=<replacement_server_IP>:/engine

17. Reboot the existing and replacement nodes
 Wait until both nodes are available before continuing.

18. Take the Hosted Engine out of Maintenance mode

 # hosted-engine --set-maintenance --mode=none

19. Verify replacement node is used
 On all virtualization hosts, verify that the engine volume is mounted from the replacement node by checking the IP address in the output of the mount command.

20. Activate storage domains
 Verify that storage domains mount using the IP address of the replacement node.

21. Remove the old node

 a. Using the RHV Management UI, remove the old node.

 b. Detach the old host from the cluster.

 # gluster peer detach <old_node_IP> force

22. Using the RHV Management UI, add the replacement node
 Specify that the replacement node be used to host the Hosted Engine.

23. Move the replacement node into Maintenance mode.

 # hosted-engine --set-maintenance --mode=global

24. Update the Hosted Engine configuration file
 Edit the storage parameter in the /etc/ovirt-hosted-engine/hosted-engine.conf file to use the replacement node.
storage=<replacement_node_IP>:/engine

25. Reboot the replacement node.
 Wait until the node is back online before continuing.

26. Activate the replacement node from the RHV Management UI.
 Ensure that all volumes are mounted using the IP address of the replacement node.

27. Replace engine volume brick
 Replace the brick on the old node that belongs to the engine volume with a new brick on the replacement node.
 a. Click the Volumes tab.
 b. Click the Bricks sub-tab.
 c. Select the brick to replace, and then click Replace brick.
 d. Select the node that hosts the brick being replaced.
 e. In the Replace brick window, provide the new brick’s path.

28. On the replacement node, run the following command to remove metadata from the previous host.

```bash
# hosted-engine --clean-metadata --host-id=<old_host_id> --force-clean
```
CHAPTER 7. REPLACING A GLUSTER STORAGE NODE

If a Red Hat Gluster Storage node needs to be replaced, there are two options for the replacement node:

1. Replace the node with a new node that has a different fully-qualified domain name by following the instructions in Section 7.1, “Replacing a Gluster Storage Node (Different FQDN).”

2. Replace the node with a new node that has the same fully-qualified domain name by following the instructions in Section 7.2, “Replacing a Gluster Storage Node (Same FQDN).”

Follow the instructions in whichever section is appropriate for your deployment.

7.1. REPLACING A GLUSTER STORAGE NODE (DIFFERENT FQDN)

IMPORTANT

When self-signed encryption is enabled, replacing a node is a disruptive process that requires virtual machines and the Hosted Engine to be shut down.

1. Prepare the replacement node
 Follow the instructions in Deploying Red Hat Hyperconverged Infrastructure to install the physical machine.
 a. Installing host physical machines
 b. Configuring Public Key based SSH Authentication

2. Stop any existing geo-replication sessions

 # gluster volume geo-replication MASTER_VOL SLAVE_HOST::SLAVE_VOL stop

3. Move the node to be replaced into Maintenance mode
 Perform the following steps in Red Hat Virtualization Manager:
 a. Click the Hosts tab and select the Red Hat Gluster Storage node in the results list.
 b. Click Maintenance to open the Maintenance Host(s) confirmation window.
 c. Click OK to move the host to Maintenance mode.

4. Prepare the replacement node
 a. Configure key-based SSH authentication
 Configure key-based SSH authentication from a physical machine still in the cluster to the replacement node. For details, see https://access.redhat.com/documentation/en-us/red_hat_hyperconverged_infrastructure/1.0/html/deploying_red_hat_hyperconverged_infras/configure-key-based-ssh-auth.
 b. Prepare the replacement node
Create a file called `replace_node_prep.conf` based on the template provided in Section B.2, “Example gdeploy configuration file for preparing to replace a node”.

From a node with `gdeploy` installed (usually the node that hosts the Hosted Engine), run gdeploy using the new configuration file:

```
# gdeploy -c replace_node_prep.conf
```

5. Create replacement brick directories

Ensure the new directories are owned by the `vdsm` user and the `kvm` group.

```
# mkdir /gluster_bricks/engine/engine
# chmod vdsm:kvm /gluster_bricks/engine/engine
# mkdir /gluster_bricks/data/data
# chmod vdsm:kvm /gluster_bricks/data/data
# mkdir /gluster_bricks/vmstore/vmstore
# chmod vdsm:kvm /gluster_bricks/vmstore/vmstore
```

6. (Optional) If encryption is enabled

 If encryption using a Certificate Authority is enabled, follow the steps at the following link before continuing: https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.2/html/administration_guide/ch22s04.

b. Add the new node’s certificate to existing certificates.

 i. On one of the healthy nodes, make a backup copy of the `/etc/ssl/glusterfs.ca` file.

 ii. Add the new node’s certificate to the `/etc/ssl/glusterfs.ca` file on the healthy node.

 iii. Distribute the updated `/etc/ssl/glusterfs.ca` file to all other nodes, including the new node.

c. Enable management encryption

 Run the following command on the new node to enable management encryption:

   ```
   # touch /var/lib/glusterd/secure-access
   ```

d. Include the new server in the value of the `auth.ssl-allow` volume option by running the following command for each volume.

   ```
   # gluster volume set <volname> auth.ssl-allow "<old_node1>,<old_node2>,<new_node>
   ```

e. Restart the `glusterd` service on all nodes

   ```
   # systemctl restart glusterd
   ```
f. If encryption uses self-signed certificates, follow the steps in Section 4.1, “Configuring TLS/SSL using self-signed certificates” to remount all gluster processes.

7. Add the new host to the existing cluster

 a. Run the following command from one of the healthy cluster members:

      ```
      # gluster peer probe <new_node>
      ```

 b. Add the new host to the existing cluster

 i. Click the Hosts tab and then click New to open the New Host dialog.

 ii. Provide a Name, Address, and Password for the new host.

 iii. Uncheck the Automatically configure host firewall checkbox, as firewall rules are already configured by gdeploy.

 iv. In the Hosted Engine tab of the New Host dialog, set the value of Choose hosted engine deployment action to deploy.

 v. Click Deploy.

 vi. When the host is available, click the Network Interfaces subtab and then click Setup Host Networks.

 vii. Drag and drop the network you created for gluster to the IP associated with this host, and click OK.

8. Configure and mount shared storage on the new host

   ```
   # cp /etc/fstab /etc/fstab.bk
   # echo "<new_host>:/gluster_shared_storage /var/run/gluster/shared_storage/ glusterfs defaults 0 0" >> /etc/fstab
   # mount /gluster_shared_storage
   ```

9. Replace the old brick with the brick on the new host

 a. In Red Hat Virtualization Manager, click the Hosts tab and select the volume.

 b. Click the Bricks sub-tab.

 c. Click Replace Brick beside the old brick and specify the replacement brick.

 d. Verify that brick heal completes successfully.

10. In the Hosts tab, right-click on the old host and click Remove.

 Use `gluster peer status` to verify that the old host no longer appears. If the old host is still present in the status output, run the following command to forcibly remove it:

    ```
    # gluster peer detach <old_node> force
    ```
11. Clean old host metadata

```
# hosted-engine --clean-metadata --host-id=<old_host_id> --force-clean
```

12. Set up new SSH keys for geo-replication of new brick

```
# gluster system:: execute gsec_create
```

13. Recreate geo-replication session and distribute new SSH keys.

```
# gluster volume geo-replication <MASTER_VOL> <SLAVE_HOST>:: <SLAVE_VOL> create push-pem force
```

14. Start the geo-replication session.

```
# gluster volume geo-replication <MASTER_VOL> <SLAVE_HOST>:: <SLAVE_VOL> start
```

7.2. REPLACING A GLUSTER STORAGE NODE (SAME FQDN)

IMPORTANT

When self-signed encryption is enabled, replacing a node is a disruptive process that requires virtual machines and the Hosted Engine to be shut down.

1. (Optional) If encryption using a Certificate Authority is enabled, follow the steps at the following link before continuing: https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.2/html/administration_guide/ch22s04.

2. Move the node to be replaced into Maintenance mode
 a. In Red Hat Virtualization Manager, click the **Hosts** tab and select the Red Hat Gluster Storage node in the results list.
 b. Click **Maintenance** to open the **Maintenance Host(s)** confirmation window.
 c. Click **OK** to move the host to Maintenance mode.

3. Prepare the replacement node
 Follow the instructions in *Deploying Red Hat Hyperconverged Infrastructure* to install the physical machine and configure storage on the new node.
 a. **Installing host physical machines**
 b. **Configuring Public Key based SSH Authentication**
 c. **Configuring RHGS for Hosted Engine using the Cockpit UI**

4. Prepare the replacement node
 a. Create a file called **replace_node_prep.conf** based on the template provided in Section B.2, “Example gdeploy configuration file for preparing to replace a node”.
b. From a node with `gdeploy` installed (usually the node that hosts the Hosted Engine), run `gdeploy` using the new configuration file:

   ```bash
   # gdeploy -c replace_node_prep.conf
   ```

5. (Optional) If encryption with self-signed certificates is enabled

 b. On a healthy node, make a backup copy of the `/etc/ssl/glusterfs.ca` file:

   ```bash
   # cp /etc/ssl/glusterfs.ca /etc/ssl/glusterfs.ca.bk
   ```

 c. Append the new node's certificate to the content of the `/etc/ssl/glusterfs.ca` file.

 d. Distribute the `/etc/ssl/glusterfs.ca` file to all nodes in the cluster, including the new node.

 e. Run the following command on the replacement node to enable management encryption:

   ```bash
   # touch /var/lib/glusterd/secure-access
   ```

6. Replace the host machine

 Follow the instructions in the Red Hat Gluster Storage Administration Guide to replace the host: https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.2/html/administration_guide/sect-replacing_hosts#Replacing_a_Host_Machine_with_the_Same_Hostname.

7. Restart the glusterd service on all nodes

   ```bash
   # systemctl restart glusterd
   ```

8. Verify that all nodes reconnect

   ```bash
   # gluster peer status
   ```

9. (Optional) If encryption uses self-signed certificates, follow the steps in Section 4.1, “Configuring TLS/SSL using self-signed certificates” to remount all gluster processes.

10. Verify that all nodes reconnect and that brick heal completes successfully

    ```bash
    # gluster peer status
    ```

11. Refresh fingerprint

 a. In Red Hat Virtualization Manager, click the Hosts tab and select the new host.

 b. Click Edit Host.

 c. Click Advanced on the details screen.
d. Click **Fetch fingerprint**.

12. Click **Reinstall** and provide the root password when prompted.

13. Click the **Hosted Engine** tab and click **Deploy**

14. Attach the gluster network to the host
 a. Click the **Hosts** tab and select the host.
 b. Click the **Network Interfaces** subtab and then click **Setup Host Networks**.
 c. Drag and drop the newly created network to the correct interface.
 d. Ensure that the **Verify connectivity** checkbox is checked.
 e. Ensure that the **Save network configuration** checkbox is checked.
 f. Click **OK** to save.

15. Verify the health of the network
 Click the Hosts tab and select the host. Click the Networks subtab and check the state of the host’s network.
 If the network interface enters an "Out of sync" state or does not have an IPv4 Address, click the Management tab that corresponds to the host and click **Refresh Capabilities**.
CHAPTER 8. RESTORING A VOLUME FROM A GEO-REPLICATED BACKUP

1. Install and configure a replacement Hyperconverged Infrastructure deployment
 For instructions, refer to Deploying Red Hat Hyperconverged Infrastructure:
 https://access.redhat.com/documentation/en-us/red_hat_hyperconverged_infrastructure/1.0/html/deploying_red_hat_hyperconverged_infrastructure/

2. Import the backup of the storage domain
 From the new Hyperconverged Infrastructure deployment, in Red Hat Virtualization Manager:
 a. Click the Storage tab.
 b. Click Import Domain. The Import Pre-Configured Domain window opens.
 c. In the Storage Type field, specify GlusterFS.
 d. In the Name field, specify a name for the new volume that will be created from the backup volume.
 e. In the Path field, specify the path to the backup volume.
 f. Click OK. The following warning appears, with any active data centers listed below:

 This operation might be un recover able and destructive!
 Storage Domain(s) are already attached to a Data Center. Approving this operation might cause data corruption if both Data Centers are active.
 g. Check the Approve operation checkbox and click OK.

3. Determine a list of virtual machines to import
 a. Determine the imported domain's identifier
 The following command returns the domain identifier.

 # curl -v -k -X GET -u "admin@internal:password" -H "Accept: application/xml" https://$ENGINE_FQDN/ovirt-engine/api/storagedomains/

 For example:

 # curl -v -k -X GET -u "admin@example.com:mybadpassword" -H "Accept: application/xml" https://10.70.37.140/ovirt-engine/api/storagedomains/

 b. Determine the list of unregistered disks by running the following command:

 # curl -v -k -X GET -u "admin@internal:password" -H "Accept: application/xml" "https://$ENGINE_FQDN/ovirt-engine/api/storagedomains/DOMAIN_ID/vms;unregistered"

 For example:
4. Perform a partial import of each virtual machine to the storage domain

 a. Determine cluster identifier

 The following command returns the cluster identifier.

      ```bash
      # curl -v -k -X GET -u "admin@internal:password" -H "Accept: application/xml" https://$ENGINE_FQDN/ovirt-engine/api/clusters/
      ``

      For example:

      ```bash
 # curl -v -k -X GET -u "admin@example:mybadpassword" -H "Accept: application/xml" https://10.70.37.140/ovirt-engine/api/clusters/
      ```

   b. Import the virtual machines

      The following command imports a virtual machine without requiring all disks to be available in the storage domain.

      ```bash
 # curl -v -k -u 'admin@internal:password' -H "Content-type: application/xml" -d '<action> <cluster id="CLUSTER_ID"></cluster> <allow_partial_import>true</allow_partial_import> </action>' "https://ENGINE_FQDN/ovirt-engine/api/storagedomains/DOMAIN_ID/vms/VM_ID/register"
 ``

 For example:

      ```bash
      # curl -v -k -u 'admin@example.com:mybadpassword' -H "Content-type: application/xml" -d '<action> <cluster id="bf5a9e9e-5b52-4b0d-aeba-4ee4493f1072"></cluster> <allow_partial_import>true</allow_partial_import> </action>' "https://10.70.37.140/ovirt-engine/api/storagedomains/8d21980a-a50b-45e9-9f32-cd8d2424882e/e164f8c6-769a-4cbd-ac2a-ef322c2c5f30/register"
      ```


5. Migrate the partially imported disks to the new storage domain

 On the Disks tab, click on the Move Disk option. Move the imported disks from the synced volume to the replacement cluster’s storage domain. For further information, see the Red Hat Virtualization Administration Guide.

6. Attach the restored disks to the new virtual machines

 Follow the instructions in the Red Hat Virtualization Virtual Machine Management Guide to attach the replacement disks to each virtual machine.
PART III. REFERENCE MATERIAL
APPENDIX A. FENCING POLICIES FOR RED HAT GLUSTER STORAGE

The following fencing policies are required for Red Hat Hyperconverged Infrastructure (RHHI) deployments. They ensure that hosts are not shut down in situations where brick processes are still running, or when shutting down the host would remove the cluster’s ability to reach a quorum.

These policies can be set in the New Cluster or Edit Cluster window in Red Hat Virtualization Manager when Red Hat Gluster Storage functionality is enabled.

Skip fencing if gluster bricks are up
Fencing is skipped if bricks are running and can be reached from other peers.

Skip fencing if gluster quorum not met
Fencing is skipped if bricks are running and shutting down the host will cause loss of quorum.

These policies are checked after all other fencing policies when determining whether a node is fenced.

APPENDIX B. EXAMPLE GDEPLOY CONFIGURATION FILES

B.1. EXAMPLE GDEPLOY CONFIGURATION FILE FOR SETTING UP TLS/SSL

`set_up_encryption.conf`

```bash
# IPs that corresponds to the Gluster Network
[hosts]
<Gluster_Network_NodeA>
<Gluster_Network_NodeB>
<Gluster_Network_NodeC>

# STEP-1: Generate Keys, Certificates & CA files
# The following section generates the keys, certificates, creates
# ca file and distributes it to all the hosts
[volume1]
action=enable-ssl
volname=engine
ssl_clients=<Gluster_Network_NodeA>,<Gluster_Network_NodeB>,
<Gluster_Network_NodeC>
ignore_volume_errors=no

# As the certificates are already generated, its enough to stop
# rest of the volumes, set TLS/SSL related volume options, and
# start the volume
# STEP-2: Stop all the volumes
[volume2]
action=stop
volname=vmstore

[volume3]
action=stop
volname=data

# STEP-3: Set volume options on all the volumes to enable TLS/SSL on the
# volumes
[volume4]
action=set
volname=vmstore
key=client.ssl,server.ssl,auth.ssl-allow
value=on,on,"<Gluster_Network_NodeA>;<Gluster_Network_NodeB>;
<Gluster_Network_NodeC>"
ignore_volume_errors=no

[volume5]
action=set
volname=data
key=client.ssl,server.ssl,auth.ssl-allow
value=on,on,"<Gluster_Network_NodeA>;<Gluster_Network_NodeB>;
<Gluster_Network_NodeC>"
ignore_volume_errors=no
```
STEP-4: Start all the volumes
[volume6]
action=start
volname=vmstore

[volume7]
action=start
volname=data

B.2. EXAMPLE GDEPLOY CONFIGURATION FILE FOR PREPARING TO REPLACE A NODE

IMPORTANT

If the disks must be replaced as well as the node, ensure that the [pv], [vg], and [lv] sections are not commented out of this file.

For details about how to safely replace a node, see Chapter 7, *Replacing a Gluster Storage Node*.

replace_node_prep.conf

EDITME: @1: Change to IP addresses of the network intended for gluster traffic
Values provided here are used to probe the gluster hosts.
[hosts]
10.70.X1.Y1

#EDITME : @2: Change to IP addresses of the network intended for gluster traffic
#of the node which is going to be replaced.
[script1]
action=execute
ignore_script_errors=no
file=/usr/share/ansible/gdeploy/scripts/grafton-sanity-check.sh -d sdc -h 10.70.X1.Y1

EDITME: @3: Specify the number of data disks in RAID configuration
[disktype]
raid6

[diskcount]
4

[stripesize]
256

EDITME : @4: UNCOMMENT SECTION (RHEL ONLY) :Provide the subscription details
Register to RHSM only on the node which needs to be replaced
#[RH-subscription1:10.70.X1.Y1]
#action=register
#username=<username>
#password=<passwd>
#pool=<pool-id>
RH-subscription2
action=disable-repos
repos=

RH-subscription3
action=enable-repos
repos=rhel-7-server-rpms,rh-gluster-3-for-rhel-7-server-rpms,rhel-7-server-rhv-4-mgmt-agent-rpms

yum1
action=install
packages=vdsm,vdsm-gluster,ovirt-hosted-engine-setup,screen,gluster-nagios-addons
update=yes

[service1]
action=enable
service=ntpd

[service2]
action=restart
service=ntpd

[shell1]
action=execute
command=gluster pool list

[shell2]
action=execute
command=vdsm-tool configure --force

Disable multipath
[script3]
action=execute
file=/usr/share/ansible/gdeploy/scripts/disable-multipath.sh

#EDIT ME: @5: UNCOMMENT SECTIONS ONLY: if original brick disks have to be replaced.
pv1
action=create
devices=sdc
ignore_pv_errors=no

vg1
action=create
vgname=gluster_vg_sdc
pvname=sdc
ignore_vg_errors=no

lv2:10.70.X1:Y1
action=create
poolname=gluster_thinpool_sdc
ignore_lv_errors=no
vgname=gluster_vg_sdc
#lvtype=thinpool
#poolmetadatasize=16GB
#size=14TB

#[lv3:10.70.X1:Y1]
#action=create
#lvname=gluster_lv_engine
#ignore_lv_errors=no
#vgname=gluster_vg_sdc
#mount=/gluster_bricks/engine
#size=100GB
#lvtype=thick

#[lv5:10.70.X1:Y1]
#action=create
#lvname=gluster_lv_data
#ignore_lv_errors=no
#vgname=gluster_vg_sdc
#mount=/gluster_bricks/data
#lvtype=thinline
#poolname=gluster_thinpool_sdc
#virtualsize=12TB

#[lv7:10.70.X1:Y1]
#action=create
#lvname=gluster_lv_vmstore
#ignore_lv_errors=no
#vgname=gluster_vg_sdc
#mount=/gluster_bricks/vmstore
#lvtype=thinline
#poolname=gluster_thinpool_sdc
#virtualsize=1TB

#[selinux]
#yes

#[lv9:10.70.X1:Y1]
#action=setup-cache
#ssd=sdb
#vgname=gluster_vg_sdc
#poolname=lvthinpool
#cache_lv=lvcache
#cache_lvsize=180GB

[service3]
action=start
service=glusterd
slice_setup=yes

[firewalld]
action=add
ports=111/tcp,2049/tcp,54321/tcp,5900/tcp,5900-6923/tcp,5666/tcp,16514/tcp,54322/tcp
services=glusterfs
B.3. EXAMPLE GDEPLOY CONFIGURATION FILE FOR SCALING TO ADDITIONAL NODES

add_nodes.conf

Add the hosts to be added
[hosts]
<Gluster_Network_NodeD>
<Gluster_Network_NodeE>
<Gluster_Network_NodeF>

If using RHEL 7 as platform, enable required repos
RHVH has all the packages available
[RH-subscription]
ignore_register_errors=no
ignore_attach_pool_errors=no
ignore_enable_errors=no
action=register
username=<username>
password=<mypassword>
pool=<pool-id>
repos=rhel-7-server-rpms,rh-gluster-3-for-rhel-7-server-rpms,rhel-7-server-rhv-4-mgmt-agent-rpms
disable-repos=yes

If using RHEL 7 as platform, have the following section to install packages
[yum1]
action=install
packages=vdsm-gluster,ovirt-hosted-engine-setup,screen
update=yes
gpgcheck=yes
ignore_yum_errors=no

enable NTP
[service1]
action=enable
service=ntpd

start NTP service
[service2]
action=restart
service=ntpd

Setup glusterfs slice
[service3]
action=restart
service=glusterd
slice_setup=yes
Open the required ports and firewalld services
[firewalld]
 action=add
 ports=111/tcp,2049/tcp,54321/tcp,5900/tcp,5900-6923/tcp,5666/tcp,16514/tcp,54322/tcp
 services=glusterfs

Disable gluster hook scripts
[script2]
 action=execute
 file=/usr/share/ansible/gdeploy/scripts/disable-gluster-hooks.sh