
Red Hat Fuse 7.7

Deploying into Spring Boot

Building and running Spring Boot applications in standalone mode

Last Updated: 2020-10-28

Red Hat Fuse 7.7 Deploying into Spring Boot

Building and running Spring Boot applications in standalone mode

Legal Notice

Copyright © 2020 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide explains how to build Spring Boot applications that are packaged as Jar files and run
directly in a JVM (standalone mode).

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. GETTING STARTED WITH SPRING BOOT STANDALONE
1.1. ABOUT SPRING BOOT STANDALONE DEPLOYMENT MODE
1.2. DEPLOYING INTO SPRING BOOT 2
1.3. NEW CAMEL COMPONENTS FOR SPRING BOOT 2

CHAPTER 2. USING FUSE BOOSTERS
2.1. GENERATING YOUR BOOSTER PROJECT
2.2. BUILD AND RUN THE CIRCUIT BREAKER BOOSTER
2.3. BUILD AND RUN THE EXTERNALIZED CONFIGURATION BOOSTER
2.4. BUILD AND RUN THE REST API BOOSTER

CHAPTER 3. BUILDING WITH MAVEN
3.1. GENERATING A MAVEN PROJECT

3.1.1. Project generator at developers.redhat.com/launch
3.1.2. Fuse tooling wizard in Developer Studio

3.2. USING SPRING BOOT BOM
3.2.1. BOM file for Spring Boot
3.2.2. Incorporate the BOM file
3.2.3. Spring Boot Maven plugin

CHAPTER 4. RUNNING APACHE CAMEL APPLICATION IN SPRING BOOT
4.1. INTRODUCTION TO THE CAMEL SPRING BOOT COMPONENT
4.2. INTRODUCTION TO THE CAMEL SPRING BOOT STARTER MODULE
4.3. LIST OF THE CAMEL COMPONENTS THAT DO NOT HAVE STARTER MODULES
4.4. USING CAMEL SPRING BOOT STARTER
4.5. ABOUT CAMEL CONTEXT AUTO-CONFIGURATION FOR SPRING BOOT
4.6. AUTO-DETECTING CAMEL ROUTES IN SPRING BOOT APPLICATIONS
4.7. CONFIGURING CAMEL PROPERTIES FOR CAMEL SPRING BOOT AUTO-CONFIGURATION
4.8. CONFIGURING CUSTOM CAMEL CONTEXT
4.9. DISABLING JMX IN THE AUTO-CONFIGURED CAMELCONTEXT
4.10. INJECTING AUTO-CONFIGURED CONSUMER AND PRODUCER TEMPLATES INTO SPRING-MANAGED
BEANS
4.11. ABOUT THE AUTO-CONFIGURED TYPECONVERTER IN THE SPRING CONTEXT
4.12. SPRING TYPE CONVERSION API BRIDGE
4.13. DISABLING TYPE CONVERSIONS FEATURES
4.14. ADDING XML ROUTES TO THE CLASSPATH FOR AUTO-CONFIGURATION
4.15. ADDING XML REST-DSL ROUTES FOR AUTO-CONFIGURATION
4.16. TESTING WITH CAMEL SPRING BOOT
4.17. USING SPRING BOOT, APACHE CAMEL AND EXTERNAL MESSAGING BROKERS

APPENDIX A. PREPARING TO USE MAVEN
A.1. PREPARING TO SET UP MAVEN
A.2. ADDING RED HAT REPOSITORIES TO MAVEN
A.3. USING LOCAL MAVEN REPOSITORIES
A.4. ABOUT MAVEN ARTIFACTS AND COORDINATES

APPENDIX B. SPRING BOOT MAVEN PLUGIN
B.1. SPRING BOOT MAVEN PLUGIN GOALS
B.2. USING SPRING BOOT MAVEN PLUGIN

B.2.1. Using Spring Boot Maven plugin for Spring Boot 2
B.2.2. Using Spring Boot Maven plugin for Spring Boot 1

3
3
3
3

5
5
6
9
11

14
14
14
14
14
14
15
16

18
18
18
19
19

20
21
22
22
23

23
23
24
24
25
25
26
27

28
28
28
30
30

32
32
32
32
34

Table of Contents

1

Red Hat Fuse 7.7 Deploying into Spring Boot

2

CHAPTER 1. GETTING STARTED WITH SPRING BOOT
STANDALONE

1.1. ABOUT SPRING BOOT STANDALONE DEPLOYMENT MODE

In standalone deployment mode, a Spring Boot application is packaged as a Jar file and run directly
inside the Java Virtual Machine (JVM). This approach to packaging and running the application is
consistent with the microservices philosophy, where a service is packaged with the minimum set of
requirements. The Spring Boot application can be run directly using the java command with the -jar
option. For example:

java -jar SpringBootApplication.jar

Where Spring Boot provides the main class for the executable Jar. The following elements are required
for building a Spring Boot standalone application in Fuse:

The Fuse Bill of Materials (BOM)  — defines a carefully curated set of dependencies from the Red
Hat Maven repository. The BOM exploits Maven’s dependency management mechanism to
define the appropriate versions of Maven dependencies.
Note: Only the dependencies defined in the Fuse BOM are supported by Red Hat.

The Spring Boot Maven Plugin  — implements the build process for a standalone Spring Boot
application in Maven. This plugin is responsible for packaging your Spring Boot application as an
executable Jar file.

1.2. DEPLOYING INTO SPRING BOOT 2

In addition to Spring Boot 1, you also have the option of deploying into Spring Boot 2.

NOTE

For details about the OpenShift mode of deployment, see the Fuse on OpenShift Guide.

NOTE

For more information on all of the differences between Spring Boot 1 and Spring Boot 2,
see Spring Boot’s Migration Guide and Spring Boot 2 Release Notes .

1.3. NEW CAMEL COMPONENTS FOR SPRING BOOT 2

Spring Boot 2 supports Camel version 2.23 and thus supports some new camel components that are not
available for Spring Boot 1:

New Camel Components for Spring Boot 2

as2-component

aws-iam-component

fhir-component

google-calendar-stream-component

CHAPTER 1. GETTING STARTED WITH SPRING BOOT STANDALONE

3

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.7/html-single/fuse_on_openshift_guide/index
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-2.0-Migration-Guide
https://github.com/spring-projects/spring-boot/wiki/spring-boot-2.0-release-notes

google-mail-stream-component

google-sheets-component

google-sheets-stream-component

ipfs-component

kubernetes-hpa-component

kubernetes-job-component

micrometer-component

mybatis-bean-component

nsq-component

rxjava2

service-component

spring-cloud-consul

spring-cloud-zookeeper

testcontainers-spring

testcontainers

web3j-component

Red Hat Fuse 7.7 Deploying into Spring Boot

4

CHAPTER 2. USING FUSE BOOSTERS
Red Hat Fuse provides the following boosters to help you get started with Fuse applications and
demonstrate useful components:

Section 2.2, “Build and run the Circuit Breaker booster” - An example of enabling a distributed
application to cope with interruptions to network connectivity and temporary unavailability of
backend services.

Section 2.3, “Build and run the Externalized Configuration booster” - An example of how to
externalize configuration for an Apache Camel route.

Section 2.4, “Build and run the REST API booster” - An example that introduces the mechanics
of interacting with a remote (exposed by Apache Camel) service using the HTTP protocol.

Prerequisites To build and run the booster demonstrations, install the following prerequisites:

A supported version of the Java Developer Kit (JDK). See the Supported Configurations page
for details.

Apache Maven 3.3.x or later. See the Maven Download page.

2.1. GENERATING YOUR BOOSTER PROJECT

Fuse booster projects exist to help developers get started with running standalone applications. The
instructions provided here guide you through generating one of those booster projects, the Circuit
Breaker booster. This exercise demonstrates useful components of the Fuse on Spring Boot.

The Netflix/Hystrix circuit breaker enables distributed applications to handle interruptions to network
connectivity and temporary unavailability of backend services. The basic idea of the circuit breaker
pattern is that the loss of a dependent service is detected automatically and an alternative behavior can
be programmed, in case the backend service is temporarily unavailable.

The Fuse circuit breaker booster consists of two related services:

A name service, the backend service that returns a name to greet.

A greetings service, the frontend service that invokes the name service to get a name and then
returns the string, Hello, NAME.

In this booster demonstration, the Hystrix circuit breaker is inserted between the greetings service and
the name service. If the backend name service becomes unavailable, the greetings service can fall back
to an alternative behavior and respond to the client immediately, instead of being blocked while it waits
for the name service to restart.

Prerequisites

You must have access to the Red Hat Developer Platform .

You must have a supported version of the Java Developer Kit (JDK). See the Supported
Configurations page for details.

You must have Apache Maven 3.3.x or later.

Procedure

CHAPTER 2. USING FUSE BOOSTERS

5

https://access.redhat.com/articles/310603
http://maven.apache.org/download.cgi
https://github.com/Netflix/Hystrix
https://developers.redhat.com/launch
https://access.redhat.com/articles/310603
http://maven.apache.org/download.cgi

1. Navigate to https://developers.redhat.com/launch.

2. Click START.
The launcher wizard prompts you to log in to your Red Hat account.

3. Click the Log in or register button and then log in.

4. On the Launcher page, click the Deploy an Example Application button.

5. On the Create Example Application page, type the name, fuse-circuit-breaker, in the Create
Example Application as field.

6. Click Select an Example.

7. In the Example dialog, select the Circuit Breaker option. A Select a Runtime dropdown menu
appears.

a. From the Select a Runtime dropdown, select Fuse.

b. From the version dropdown menu, select 7.7 (Red Hat Fuse) (do not select the 2.21.2
(Community) version).

c. Click Save.

8. On the Create Example Application page, click Download.

9. When you see the Your Application is Ready dialog, click Download.zip. Your browser
downloads the generated booster project (packaged as a ZIP file).

10. Use an archive utility to extract the generated project to a convenient location on your local file
system.

2.2. BUILD AND RUN THE CIRCUIT BREAKER BOOSTER

The Netflix/Hystrix circuit breaker component enables distributed applications to cope with
interruptions to network connectivity and temporary unavailability of backend services. The basic idea
of the circuit breaker pattern is that the loss of a dependent service is detected automatically and an
alternative behavior can be programmed, in case the backend service is temporarily unavailable.

The Fuse circuit breaker booster consists of two related services:

A name service , which returns a name to greet

A greetings service, which invokes the name service to get a name and then returns the string,
Hello, NAME.

In this demonstration, the Hystrix circuit breaker is inserted between the greetings service and the name
service. If the name service becomes unavailable, the greetings service can fall back to an alternative
behavior and respond to the client immediately, instead of blocking or timing out while it waits for the
name service to restart.

Prerequisites

you have completed the steps mentioned in the Section 2.1, “Generating your booster project”
section.

Procedure

Red Hat Fuse 7.7 Deploying into Spring Boot

6

https://developers.redhat.com/launch
https://github.com/Netflix/Hystrix

Follow these steps to build and run the Circuit breaker booster project:

1. Open a shell prompt and build the project from the command line, using Maven:

cd PROJECT_DIR
mvn clean package

2. Open a new shell prompt and start the name service, as follows:

cd name-service
mvn spring-boot:run -DskipTests -Dserver.port=8081

As Spring Boot starts up, you should see some output like the following:

...
2017-12-08 15:44:24.223 INFO 22758 --- [main]
o.a.camel.spring.SpringCamelContext : Total 1 routes, of which 1 are started
2017-12-08 15:44:24.227 INFO 22758 --- [main]
o.a.camel.spring.SpringCamelContext : Apache Camel 2.20.0 (CamelContext: camel-1)
started in 0.776 seconds
2017-12-08 15:44:24.234 INFO 22758 --- [main]
org.jboss.fuse.boosters.cb.Application : Started Application in 4.137 seconds (JVM running
for 4.744)

3. Open a new shell prompt and start the greetings service, as follows:

cd greetings-service
mvn spring-boot:run -DskipTests

As Spring Boot starts up, you should see some output like the following:

...
2017-12-08 15:46:58.521 INFO 22887 --- [main] o.a.c.c.s.CamelHttpTransportServlet
: Initialized CamelHttpTransportServlet[name=CamelServlet, contextPath=]
2017-12-08 15:46:58.524 INFO 22887 --- [main]
s.b.c.e.t.TomcatEmbeddedServletContainer : Tomcat started on port(s): 8080 (http)
2017-12-08 15:46:58.536 INFO 22887 --- [main]
org.jboss.fuse.boosters.cb.Application : Started Application in 6.263 seconds (JVM running
for 6.819)

The greetings service exposes a REST endpoint at the URL,
http://localhost:8080/camel/greetings.

4. Go to http://localhost:8080
When you open this page, it invokes the Greeting Service:

CHAPTER 2. USING FUSE BOOSTERS

7

http://localhost:8080/camel/greetings
http://localhost:8080

This page also provides a link to the Hystrix dashboard, which monitors the state of the circuit
breaker.

5. To demonstrate the circuit breaker functionality provided by Camel Hystrix, kill the backend
name service by pressing Ctrl+C while in the window of the shell prompt where the name service
is running.
Now that the name service is unavailable, the circuit breaker kicks in to prevent the greetings
service from hanging when it is invoked.

6. Observe the changes in the Hystrix Monitor dashboard and in the Greeting Service output:

Red Hat Fuse 7.7 Deploying into Spring Boot

8

2.3. BUILD AND RUN THE EXTERNALIZED CONFIGURATION BOOSTER

The Externalized Configuration booster provides an example of how to externalize configuration for an
Apache Camel route. For Spring Boot standalone deployments, the configuration data is stored in an
application.properties file.

NOTE

For Fuse on OpenShift deployments, the configuration data is stored in a ConfigMap
object.

Prerequisites

you have completed the steps mentioned in the Section 2.1, “Generating your booster project”
section.

Procedure

After you follow the Section 2.1, “Generating your booster project” steps for the Externalized
Configuration mission, follow these steps to build and run the Externalized Configuration booster as a
standalone project on your local machine:

1. Download the project and extract the archive on your local filesystem.

2. Build the project:

cd PROJECT_DIR
mvn clean package

CHAPTER 2. USING FUSE BOOSTERS

9

3. Run the service:

mvn spring-boot:run

4. Open a web browser to http://localhost:8080. This page invokes a Greeting Service every 5
seconds. The Greetings Service responds by using the booster.nameToGreetvalue from the
target/classes/application.properties file.
The Greeting Service prints a greeting to “default” every five seconds:

5. Modify the booster.nameToGreet value:

a. Open the target/classes/application.properties file in an editor.

b. Change the value of the booster.nameToGreetvalue from default to another value, for
example Thomas:

booster.nameToGreetvalue=Thomas

6. In the Terminal window, stop the service by pressing CTRL+C.

7. Run the service again:

mvn spring-boot:run

8. In the web browser, return to the http://localhost:8080 page to view the changed value in the
Greeting Service’s results window.

Red Hat Fuse 7.7 Deploying into Spring Boot

10

http://localhost:8080
http://localhost:8080

2.4. BUILD AND RUN THE REST API BOOSTER

The REST API Level 0 mission shows how to map business operations to a remote procedure call
endpoint over HTTP by using a REST framework. This mission corresponds to Level 0 in the Richardson
Maturity Model.

The REST API booster introduces the mechanics of interacting with a remote (exposed by Apache
Camel) service using the HTTP protocol. By using this Fuse booster, you can quickly prototype and
flexibly design a REST API.

Use this booster to:

Execute an HTTP GET request on the camel/greetings/{name} endpoint. This request
produces a response in JSON format with a payload of Hello, $name! (where $name is
replaced by the value of the URL parameter from the HTTP GET request).

Change the value of the URL {name} parameter to see the changed value reflected in the
response.

View the REST API’s Swagger page.

Prerequisites

you have completed the steps mentioned in the Section 2.1, “Generating your booster project”
section.

Procedure

Follow these steps to build and run the REST API booster as a standalone project on your local machine:

1. Download the project and extract the archive on your local filesystem.

2. Build the project:

cd PROJECT_DIR
mvn clean package

3. Run the service:

CHAPTER 2. USING FUSE BOOSTERS

11

mvn spring-boot:run

4. Open a web browser to: http://localhost:8080

5. To execute the example HTTP GET request, click the camel/greetings/{name} button.
A new web browser window opens with the localhost:8080/camel/greetings/Jacopo URL. The
default value of the URL {name} parameter is Jacopo.

The JSON response appears in the browser window:

6. To change the value of the {name} `parameter, change the URL. For example, to change
the name to Thomas, use this URL: `localhost:8080/camel/greetings/Thomas.
The updated JSON response appears in the browser window:

7. To view the REST API’s Swagger page, click the API Swagger page button.
The API swagger page opens in a browser window.

Red Hat Fuse 7.7 Deploying into Spring Boot

12

http://localhost:8080

CHAPTER 2. USING FUSE BOOSTERS

13

CHAPTER 3. BUILDING WITH MAVEN
The standard approach to developing applications for Spring Boot in Fuse is to use the Apache Maven
build tool and to structure your source code as a Maven project. Fuse provides Maven quickstarts to get
you started quickly and many of the Fuse build tools are provided as Maven plug-ins. For this reason, it is
highly recommended that you adopt Maven as the build tool for Spring Boot projects in Fuse.

3.1. GENERATING A MAVEN PROJECT

Fuse provides a selection of quickstarts, based on Maven archetypes, which you can use to generate an
initial Maven project for a Spring Boot application. To prevent you from having to remember the
location information and versions for various Maven archetypes, Fuse provides tooling to help you
generate Maven projects for standalone Spring Boot projects.

3.1.1. Project generator at developers.redhat.com/launch

The quickest way to get started with Spring Boot standalone in Fuse is to navigate to
developers.redhat.com/launch and follow the instructions for the Spring Boot standalone runtime, to
generate a new Maven project. After following the on-screen instructions, you will be prompted to
download an archive file, which contains a complete Maven project that you can build and run locally.

3.1.2. Fuse tooling wizard in Developer Studio

Alternatively, you can download and install Red Hat JBoss Developer Studio (which includes Fuse
Tooling). Using the Fuse New Integration Project wizard, you can generate a new Spring Boot
standalone project and continue to develop inside the Eclipse-based IDE.

3.2. USING SPRING BOOT BOM

After creating and building your first Spring Boot project, you will soon want to add more components.
But how do you know which versions of the Maven dependencies to add to your project? The simplest
(and recommended) approach is to use the relevant Bill of Materials (BOM) file, which automatically
defines all of the version dependencies for you.

3.2.1. BOM file for Spring Boot

The purpose of a Maven Bill of Materials (BOM) file is to provide a curated set of Maven dependency
versions that work well together, preventing you from having to define versions individually for every
Maven artifact.

IMPORTANT

Ensure you are using the correct Fuse BOM based on the version of Spring Boot you are
using (Spring Boot 1 or Spring Boot 2).

The Fuse BOM for Spring Boot offers the following advantages:

Defines versions for Maven dependencies, so that you do not need to specify the version when
you add a dependency to your POM.

Defines a set of curated dependencies that are fully tested and supported for a specific version
of Fuse.

Red Hat Fuse 7.7 Deploying into Spring Boot

14

https://developers.redhat.com/launch/
https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html

Simplifies upgrades of Fuse.

IMPORTANT

Only the set of dependencies defined by a Fuse BOM are supported by Red Hat.

3.2.2. Incorporate the BOM file

To incorporate a BOM file into your Maven project, specify a dependencyManagement element in your
project’s pom.xml file (or, possibly, in a parent POM file), as shown in the examples for both Spring Boot
2 and Spring Boot 1 below:

Spring Boot 2 BOM

Spring Boot 1 BOM

Spring Boot 2 BOM

Spring Boot 1 BOM

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<project ...>
 ...
 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>

 <!-- configure the versions you want to use here -->
 <fuse.version>7.7.0.fuse-sb2-770010-redhat-00001</fuse.version>
 </properties>

 <dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.jboss.redhat-fuse</groupId>
 <artifactId>fuse-springboot-bom</artifactId>
 <version>${fuse.version}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
 </dependencyManagement>
 ...
</project>

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<project ...>
 ...
 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>

 <!-- configure the versions you want to use here -->
 <fuse.version>7.7.0.fuse-770012-redhat-00003</fuse.version>
 </properties>

CHAPTER 3. BUILDING WITH MAVEN

15

After specifying the BOM using the dependency management mechanism, it is possible to add Maven
dependencies to your POM without specifying the version of the artifact. For example, to add a
dependency for the camel-hystrix component, you would add the following XML fragment to the
dependencies element in your POM:

Note how the Camel artifact ID is specified with the -starter suffix — that is, you specify the Camel
Hystrix component as camel-hystrix-starter, not as camel-hystrix. The Camel starter components are
packaged in a way that is optimized for the Spring Boot environment.

3.2.3. Spring Boot Maven plugin

The Spring Boot Maven plugin is provided by Spring Boot and it is a developer utility for building and
running a Spring Boot project:

Building — create an executable Jar package for your Spring Boot application by entering the
command mvn package in the project directory. The output of the build is placed in the target/
subdirectory of your Maven project.

Running — for convenience, you can run the newly-built application with the command, mvn
spring-boot:start.

To incorporate the Spring Boot Maven plugin into your project POM file, add the plugin configuration to
the project/build/plugins section of your pom.xml file, as shown in the following example.

Example

 <dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.jboss.redhat-fuse</groupId>
 <artifactId>fuse-springboot-bom</artifactId>
 <version>${fuse.version}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
 </dependencyManagement>
 ...
</project>

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-hystrix-starter</artifactId>
</dependency>

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<project ...>
 ...
 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>

 <!-- configure the versions you want to use here -->
 <fuse.version>7.7.0.fuse-770012-redhat-00003</fuse.version>

Red Hat Fuse 7.7 Deploying into Spring Boot

16

 </properties>
 ...
 <build>
 <plugins>
 <plugin>
 <groupId>org.jboss.redhat-fuse</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 <version>${fuse.version}</version>
 <executions>
 <execution>
 <goals>
 <goal>repackage</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
 ...
</project>

CHAPTER 3. BUILDING WITH MAVEN

17

CHAPTER 4. RUNNING APACHE CAMEL APPLICATION IN
SPRING BOOT

The Apache Camel Spring Boot component automatically configures Camel context for Spring Boot.
Auto-configuration of the Camel context automatically detects the Camel routes available in the Spring
context and registers the key Camel utilities such as producer template, consumer template, and the
type converter as beans. The Apache Camel component includes a Spring Boot starter module that
allows you to develop Spring Boot applications by using starters.

4.1. INTRODUCTION TO THE CAMEL SPRING BOOT COMPONENT

Every Camel Spring Boot application must use the dependencyManagement element in the project’s
pom.xml to specify the productized versions of the dependencies. These dependencies are defined in
the Red Hat Fuse BOM and are supported for the specific version of Red Hat Fuse. You can omit the
version number attribute for the additional starters so as not to override the versions from BOM. See
quickstart pom for more information.

Example

NOTE

The camel-spring-boot jar contains with the spring.factories file which allows you to add
that dependency to your classpath so Spring Boot will automatically configure Camel
context.

4.2. INTRODUCTION TO THE CAMEL SPRING BOOT STARTER
MODULE

Starters are the Apache Camel modules that are intended to be used in Spring Boot applications. There
is a camel-xxx-starter module for each Camel component (with a few exceptions listed in the
Section 4.3, “List of the Camel components that do not have starter modules” section).

Starters meet the following requirements:

Allow auto-configuration of the component by using the native Spring Boot configuration
system which is compatible with IDE tooling.

Allow auto-configuration of data formats and languages.

Manage transitive logging dependencies to integrate with the Spring Boot logging system.

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.jboss.redhat-fuse</groupId>
 <artifactId>fuse-springboot-bom</artifactId>
 <version>${fuse.version}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>

Red Hat Fuse 7.7 Deploying into Spring Boot

18

https://github.com/fabric8-quickstarts/spring-boot-camel-amq/blob/fuse-7.2.x.redhat/pom.xml#L26-L36

Include additional dependencies and align transitive dependencies to minimize the effort of
creating a working Spring Boot application.

Each starter has its own integration test in tests/camel-itest-spring-boot, that verifies the compatibility
with the current release of Spring Boot.

NOTE

For more details, see sample application in the source code.

4.3. LIST OF THE CAMEL COMPONENTS THAT DO NOT HAVE
STARTER MODULES

The following components do not have starter modules because of compatibility issues:

camel-blueprint (intended for OSGi only)

camel-cdi (intended for CDI only)

camel-core-osgi (intended for OSGi only)

camel-ejb (intended for JEE only)

camel-eventadmin (intended for OSGi only)

camel-ibatis (camel-mybatis-starter is included)

camel-jclouds

camel-mina (camel-mina2-starter is included)

camel-paxlogging (intended for OSGi only)

camel-quartz (camel-quartz2-starter is included)

camel-spark-rest

camel-openapi-java (camel-openapi-java-starter is included)

4.4. USING CAMEL SPRING BOOT STARTER

Apache Camel provides a starter module that allows you to quickly get started developing Spring Boot
applications.

Procedure

1. Add the following dependency to your Spring Boot pom.xml file:

2. Add the classes with your Camel routes as shown in the snippet below. Once these routes are
added to the class path the routes are started automatically.

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-spring-boot-starter</artifactId>
</dependency>

CHAPTER 4. RUNNING APACHE CAMEL APPLICATION IN SPRING BOOT

19

https://github.com/apache/camel/tree/master/examples/camel-example-spring-boot

3. Optional. To keep the main thread blocked so that Camel stays up, do one of the following.

a. Include the spring-boot-starter-web dependency,

b. Or add camel.springboot.main-run-controller=true to your application.properties or
application.yml file.
You can customize the Camel application in the application.properties or application.yml
file with camel.springboot.* properties.

4. Optional. To refer to a custom bean by using the bean’s ID name, configure the options in the
src/main/resources/application.properties (or the application.yml) file. The following
example shows how the xslt component refers to a custom bean by using the bean ID.

a. Refer to a custom bean by the id myExtensionFactory.

b. Then create the custom bean using Spring Boot @Bean annotation.

Or, for a Jackson ObjectMapper, in the camel-jackson data-format:

4.5. ABOUT CAMEL CONTEXT AUTO-CONFIGURATION FOR SPRING
BOOT

Camel Spring Boot auto-configuration provides a CamelContext instance and creates
a SpringCamelContext. It also initializes and performs shutdown of that context. This Camel context is
registered in the Spring application context under camelContext bean name and you can access it like
other Spring bean. You can access the camelContext as shown below.

Example

package com.example;

import org.apache.camel.builder.RouteBuilder;
import org.springframework.stereotype.Component;

@Component
public class MyRoute extends RouteBuilder {

 @Override
 public void configure() throws Exception {
 from("timer:foo")
 .to("log:bar");
 }
}

camel.component.xslt.saxon-extension-functions=myExtensionFactory

@Bean(name = "myExtensionFactory")
public ExtensionFunctionDefinition myExtensionFactory() {
 }

camel.dataformat.json-jackson.object-mapper=myJacksonMapper

@Configuration

Red Hat Fuse 7.7 Deploying into Spring Boot

20

4.6. AUTO-DETECTING CAMEL ROUTES IN SPRING BOOT
APPLICATIONS

Camel auto-configuration collects all the RouteBuilder instances from the Spring context and
automatically injects them into the CamelContext. This simplifies the process of creating a new Camel
route with the Spring Boot starter. You can create the routes as follows:

Example

Add the @Component annotated class to your classpath.

Or create a new route RouteBuilder bean in your @Configuration class.

4.7. CONFIGURING CAMEL PROPERTIES FOR CAMEL SPRING BOOT

public class MyAppConfig {

 @Autowired
 CamelContext camelContext;

 @Bean
 MyService myService() {
 return new DefaultMyService(camelContext);
 }

}

@Component
public class MyRouter extends RouteBuilder {

 @Override
 public void configure() throws Exception {
 from("jms:invoices").to("file:/invoices");
 }

}

@Configuration
public class MyRouterConfiguration {

 @Bean
 RoutesBuilder myRouter() {
 return new RouteBuilder() {

 @Override
 public void configure() throws Exception {
 from("jms:invoices").to("file:/invoices");
 }

 };
 }

}

CHAPTER 4. RUNNING APACHE CAMEL APPLICATION IN SPRING BOOT

21

4.7. CONFIGURING CAMEL PROPERTIES FOR CAMEL SPRING BOOT
AUTO-CONFIGURATION

Spring Boot auto-configuration connects to the Spring Boot external configuration such as properties
placeholders, OS environment variables, or system properties with Camel properties support.

Procedure

1. Define the properties either in the application.properties file:

Or set the Camel properies as the system properties, for example:

2. Use the configured properties as placeholders in Camel route as follows.

4.8. CONFIGURING CUSTOM CAMEL CONTEXT

To perform operations on the CamelContext bean created by Camel Spring Boot auto-configuration,
register a CamelContextConfiguration instance in your Spring context.

Procedure

Register an instance of CamelContextConfiguration in the Spring context as shown below.

route.from = jms:invoices

java -Droute.to=jms:processed.invoices -jar mySpringApp.jar

@Component
public class MyRouter extends RouteBuilder {

 @Override
 public void configure() throws Exception {
 from("{{route.from}}").to("{{route.to}}");
 }

}

@Configuration
public class MyAppConfig {

 ...

 @Bean
 CamelContextConfiguration contextConfiguration() {
 return new CamelContextConfiguration() {
 @Override
 void beforeApplicationStart(CamelContext context) {
 // your custom configuration goes here
 }
 };
 }

}

Red Hat Fuse 7.7 Deploying into Spring Boot

22

The CamelContextConfiguration and beforeApplicationStart(CamelContext) methods are called
before the Spring context is started, so the CamelContext instance that is passed to this callback is
fully auto-configured. You can add many instances of CamelContextConfiguration into your Spring
context and all of them will be executed.

4.9. DISABLING JMX IN THE AUTO-CONFIGURED CAMELCONTEXT

To disable JMX in the auto-configured CamelContext, you can use the camel.springboot.jmxEnabled
property as JMX is enabled by default.

Procedure

Add the following property to your application.properties file and set it to false:

4.10. INJECTING AUTO-CONFIGURED CONSUMER AND PRODUCER
TEMPLATES INTO SPRING-MANAGED BEANS

Camel auto configuration provides pre-configured ConsumerTemplate and ProducerTemplate
instances. You can inject them into your Spring-managed beans.

Example

By default consumer templates and producer templates come with the endpoint cache sizes set to
1000. You can change these values by setting the following Spring properties to the desired cache size,
for example:

4.11. ABOUT THE AUTO-CONFIGURED TYPECONVERTER IN THE
SPRING CONTEXT

Camel auto configuration registers a TypeConverter instance named typeConverter in the Spring
context.

camel.springboot.jmxEnabled = false

@Component
public class InvoiceProcessor {

 @Autowired
 private ProducerTemplate producerTemplate;

 @Autowired
 private ConsumerTemplate consumerTemplate;
 public void processNextInvoice() {
 Invoice invoice = consumerTemplate.receiveBody("jms:invoices", Invoice.class);
 ...
 producerTemplate.sendBody("netty-http:http://invoicing.com/received/" + invoice.id());
 }

}

camel.springboot.consumerTemplateCacheSize = 100
camel.springboot.producerTemplateCacheSize = 200

CHAPTER 4. RUNNING APACHE CAMEL APPLICATION IN SPRING BOOT

23

Example

4.12. SPRING TYPE CONVERSION API BRIDGE

Spring consist of a powerful type conversion API. Spring API is similar to the Camel type converter API.
Due to the similarities between the two APIs Camel Spring Boot automatically registers a bridge
converter (SpringTypeConverter) that delegates to the Spring conversion API. This means that out-
of-the-box Camel will treat Spring Converters similar to Camel.

This allows you to access both Camel and Spring converters using the Camel TypeConverter API, as
shown below:

Example

Here, Spring Boot delegates conversion to the Spring’s ConversionService instances available in the
application context. If no ConversionService instance is available, Camel Spring Boot auto
configuration creates an instance of ConversionService.

4.13. DISABLING TYPE CONVERSIONS FEATURES

To disable the Camel Spring Boot type conversion features, set the
camel.springboot.typeConversion property to false. When this property is set to false, the auto-
configuration does not register a type converter instance and does not enable the delegation of type
conversion to the Spring Boot type conversion API.

Procedure

To disable the type conversion features of Camel Spring Boot component, set the

@Component
public class InvoiceProcessor {

 @Autowired
 private TypeConverter typeConverter;

 public long parseInvoiceValue(Invoice invoice) {
 String invoiceValue = invoice.grossValue();
 return typeConverter.convertTo(Long.class, invoiceValue);
 }

}

@Component
public class InvoiceProcessor {

 @Autowired
 private TypeConverter typeConverter;

 public UUID parseInvoiceId(Invoice invoice) {
 // Using Spring's StringToUUIDConverter
 UUID id = invoice.typeConverter.convertTo(UUID.class, invoice.getId());
 }

}

Red Hat Fuse 7.7 Deploying into Spring Boot

24

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/validation.html#core-convert
http://camel.apache.org/type-converter.html

To disable the type conversion features of Camel Spring Boot component, set the
camel.springboot.typeConversion property to false as shown below:

4.14. ADDING XML ROUTES TO THE CLASSPATH FOR AUTO-
CONFIGURATION

By default, the Camel Spring Boot component auto-detects and includes the Camel XML routes that
are in the classpath in the camel directory. You can configure the directory name or disable this feature
using the configuration option.

Procedure

Configure the Camel Spring Boot XML routes in the classpath as follows.

NOTE

The XML files should define the Camel XML route elements and not
CamelContext elements, for example:

Using Spring XML files

To use Spring XML files with the <camelContext>, you can configure a Camel context in the Spring XML
file or in the application.properties file. To set the name of the Camel context and turn on the stream
caching, add the following in the application.properties file:

4.15. ADDING XML REST-DSL ROUTES FOR AUTO-CONFIGURATION

The Camel Spring Boot component auto-detects and embeds the Camel Rest-DSL XML routes that
are added in the classpath under the camel-rest directory. You can configure the directory name or
disable this feature using the configuration option.

camel.springboot.typeConversion = false

// turn off
camel.springboot.xmlRoutes = false
// scan in the com/foo/routes classpath
camel.springboot.xmlRoutes = classpath:com/foo/routes/*.xml

 <routes xmlns="http://camel.apache.org/schema/spring">
 <route id="test">
 <from uri="timer://trigger"/>
 <transform>
 <simple>ref:myBean</simple>
 </transform>
 <to uri="log:out"/>
 </route>
 </routes>

camel.springboot.name = MyCamel
camel.springboot.stream-caching-enabled=true

CHAPTER 4. RUNNING APACHE CAMEL APPLICATION IN SPRING BOOT

25

Procedure

Configure the Camel Spring Boot Rest-DSL XML routes in the classpath as follows.

NOTE

The Rest-DSL XML files should define the Camel XML REST elements and not
CamelContext elements, for example:

4.16. TESTING WITH CAMEL SPRING BOOT

When Camel runs on the Spring Boot, Spring Boot automatically embeds Camel and all its routes, which
are annotated with @Component. When testing with Spring Boot use @SpringBootTest instead of
@ContextConfiguration to specify which configuration class to use.

When you have multiple Camel routes in different RouteBuilder classes, the Camel Spring Boot
component automatically embeds all these routes when running the application. Hence, when you wish
to test routes from only one RouteBuilder class you can use the following patterns to include or exclude
which RouteBuilders to enable:

java-routes-include-pattern: Used for including RouteBuilder classes that match the pattern.

java-routes-exclude-pattern: Used for excluding RouteBuilder classes that match the pattern.
Exclude takes precedence over include.

Procedure

1. Specify the include or exclude patterns in your unit test classes as properties to
@SpringBootTest annotation, as shown below:

// turn off
camel.springboot.xmlRests = false
// scan in the com/foo/routes classpath
camel.springboot.xmlRests = classpath:com/foo/rests/*.xml

 <rests xmlns="http://camel.apache.org/schema/spring">
 <rest>
 <post uri="/persons">
 <to uri="direct:postPersons"/>
 </post>
 <get uri="/persons">
 <to uri="direct:getPersons"/>
 </get>
 <get uri="/persons/{personId}">
 <to uri="direct:getPersionId"/>
 </get>
 <put uri="/persons/{personId}">
 <to uri="direct:putPersionId"/>
 </put>
 <delete uri="/persons/{personId}">
 <to uri="direct:deletePersionId"/>
 </delete>
 </rest>
 </rests>

Red Hat Fuse 7.7 Deploying into Spring Boot

26

@RunWith(CamelSpringBootRunner.class)
@SpringBootTest(classes = {MyApplication.class);
 properties = {"camel.springboot.java-routes-include-pattern=**/Foo*"})
public class FooTest {

In the FooTest class, the include pattern is **/Foo*, which represents an Ant style pattern. Here,
the pattern starts with a double asterisk, which matches with any leading package name. /Foo*
means the class name must start with Foo, for example, FooRoute.

2. Run the test using the following maven command:

mvn test -Dtest=FooTest

Additional Resources

Configuring Camel

Component

Endpoint

Getting Started

4.17. USING SPRING BOOT, APACHE CAMEL AND EXTERNAL
MESSAGING BROKERS

Fuse uses external messaging brokers. See Supported Configurations for more information about the
supported broker, client and Camel component combinations.

The Camel component must be connected to the JMS connection-factory. The example below shows
how to connect the camel-amqp component to a JMS connection-factory.

import org.apache.activemq.jms.pool.PooledConnectionFactory;
import org.apache.camel.component.amqp.AMQPComponent;
import org.apache.qpid.jms.JmsConnectionFactory;
...

AMQPComponent amqpComponent(AMQPConfiguration config) {
 JmsConnectionFactory qpid = new JmsConnectionFactory(config.getUsername(),
config.getPassword(), "amqp://"+ config.getHost() + ":" + config.getPort());
 qpid.setTopicPrefix("topic://");

 PooledConnectionFactory factory = new PooledConnectionFactory();
 factory.setConnectionFactory(qpid);

AMQPComponent amqpcomp = new AMQPComponent(factory);

CHAPTER 4. RUNNING APACHE CAMEL APPLICATION IN SPRING BOOT

27

http://camel.apache.org/configuring-camel.html
https://camel.apache.org/components.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
https://access.redhat.com/articles/310603

APPENDIX A. PREPARING TO USE MAVEN
This section gives a brief overview of how to prepare Maven for building Red Hat Fuse projects and
introduces the concept of Maven coordinates, which are used to locate Maven artifacts.

A.1. PREPARING TO SET UP MAVEN

Maven is a free, open source, build tool from Apache. Typically, you use Maven to build Fuse
applications.

Procedure

1. Download the latest version of Maven from the Maven download page .

2. Ensure that your system is connected to the Internet.
While building a project, the default behavior is that Maven searches external repositories and
downloads the required artifacts. Maven looks for repositories that are accessible over the
Internet.

You can change this behavior so that Maven searches only repositories that are on a local
network. That is, Maven can run in an offline mode. In offline mode, Maven looks for artifacts in
its local repository. See Section A.3, “Using local Maven repositories” .

A.2. ADDING RED HAT REPOSITORIES TO MAVEN

To access artifacts that are in Red Hat Maven repositories, you need to add those repositories to
Maven’s settings.xml file. Maven looks for the settings.xml file in the .m2 directory of the user’s home
directory. If there is not a user specified settings.xml file, Maven uses the system-level settings.xml
file at M2_HOME/conf/settings.xml.

Prerequisite

You know the location of the settings.xml file in which you want to add the Red Hat repositories.

Procedure

In the settings.xml file, add repository elements for the Red Hat repositories as shown in this example:

<?xml version="1.0"?>
<settings>

 <profiles>
 <profile>
 <id>extra-repos</id>
 <activation>
 <activeByDefault>true</activeByDefault>
 </activation>
 <repositories>
 <repository>
 <id>redhat-ga-repository</id>
 <url>https://maven.repository.redhat.com/ga</url>
 <releases>
 <enabled>true</enabled>
 </releases>
 <snapshots>

Red Hat Fuse 7.7 Deploying into Spring Boot

28

http://maven.apache.org/download.html

 <enabled>false</enabled>
 </snapshots>
 </repository>
 <repository>
 <id>redhat-ea-repository</id>
 <url>https://maven.repository.redhat.com/earlyaccess/all</url>
 <releases>
 <enabled>true</enabled>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </repository>
 <repository>
 <id>jboss-public</id>
 <name>JBoss Public Repository Group</name>
 <url>https://repository.jboss.org/nexus/content/groups/public/</url>
 </repository>
 </repositories>
 <pluginRepositories>
 <pluginRepository>
 <id>redhat-ga-repository</id>
 <url>https://maven.repository.redhat.com/ga</url>
 <releases>
 <enabled>true</enabled>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </pluginRepository>
 <pluginRepository>
 <id>redhat-ea-repository</id>
 <url>https://maven.repository.redhat.com/earlyaccess/all</url>
 <releases>
 <enabled>true</enabled>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </pluginRepository>
 <pluginRepository>
 <id>jboss-public</id>
 <name>JBoss Public Repository Group</name>
 <url>https://repository.jboss.org/nexus/content/groups/public</url>
 </pluginRepository>
 </pluginRepositories>
 </profile>
 </profiles>

 <activeProfiles>
 <activeProfile>extra-repos</activeProfile>
 </activeProfiles>

</settings>

APPENDIX A. PREPARING TO USE MAVEN

29

A.3. USING LOCAL MAVEN REPOSITORIES

If you are running the Apache Karaf container without an Internet connection, and you need to deploy an
application that has dependencies that are not available offline, you can use the Maven dependency
plug-in to download the application’s dependencies into a Maven offline repository. You can then
distribute this customized Maven offline repository to machines that do not have an Internet
connection.

Procedure

1. In the project directory that contains the pom.xml file, download a repository for a Maven
project by running a command such as the following:

mvn org.apache.maven.plugins:maven-dependency-plugin:3.1.0:go-offline -
Dmaven.repo.local=/tmp/my-project

In this example, Maven dependencies and plug-ins that are required to build the project are
downloaded to the /tmp/my-project directory.

2. Edit the etc/org.ops4j.pax.url.mvn.cfg file to set org.ops4j.pax.url.mvn.offline to true. This
enables offline mode:

##
If set to true, no remote repository will be accessed when resolving artifacts
#
org.ops4j.pax.url.mvn.offline = true

3. Distribute this customized Maven offline repository internally to any machines that do not have
an Internet connection.

A.4. ABOUT MAVEN ARTIFACTS AND COORDINATES

In the Maven build system, the basic building block is an artifact. After a build, the output of an artifact is
typically an archive, such as a JAR or WAR file.

A key aspect of Maven is the ability to locate artifacts and manage the dependencies between them. A
Maven coordinate is a set of values that identifies the location of a particular artifact. A basic coordinate
has three values in the following form:

groupId:artifactId:version

Sometimes Maven augments a basic coordinate with a packaging value or with both a packaging value
and a classifier value. A Maven coordinate can have any one of the following forms:

groupId:artifactId:version
groupId:artifactId:packaging:version
groupId:artifactId:packaging:classifier:version

Here are descriptions of the values:

groupdId

Defines a scope for the name of the artifact. You would typically use all or part of a package name as
a group ID. For example, org.fusesource.example.

artifactId

Red Hat Fuse 7.7 Deploying into Spring Boot

30

Defines the artifact name relative to the group ID.

version

Specifies the artifact’s version. A version number can have up to four parts: n.n.n.n, where the last
part of the version number can contain non-numeric characters. For example, the last part of 1.0-
SNAPSHOT is the alphanumeric substring, 0-SNAPSHOT.

packaging

Defines the packaged entity that is produced when you build the project. For OSGi projects, the
packaging is bundle. The default value is jar.

classifier

Enables you to distinguish between artifacts that were built from the same POM, but have different
content.

Elements in an artifact’s POM file define the artifact’s group ID, artifact ID, packaging, and version, as
shown here:

To define a dependency on the preceding artifact, you would add the following dependency element to
a POM file:

NOTE

It is not necessary to specify the bundle package type in the preceding dependency,
because a bundle is just a particular kind of JAR file and jar is the default Maven package
type. If you do need to specify the packaging type explicitly in a dependency, however,
you can use the type element.

<project ... >
 ...
 <groupId>org.fusesource.example</groupId>
 <artifactId>bundle-demo</artifactId>
 <packaging>bundle</packaging>
 <version>1.0-SNAPSHOT</version>
 ...
</project>

<project ... >
 ...
 <dependencies>
 <dependency>
 <groupId>org.fusesource.example</groupId>
 <artifactId>bundle-demo</artifactId>
 <version>1.0-SNAPSHOT</version>
 </dependency>
 </dependencies>
 ...
</project>

APPENDIX A. PREPARING TO USE MAVEN

31

APPENDIX B. SPRING BOOT MAVEN PLUGIN
Spring Boot Maven plugin provides the Spring Boot support in Maven and allows you to package the
executable jar or war archives and run an application in-place.

B.1. SPRING BOOT MAVEN PLUGIN GOALS

The Spring Boot Maven plugin includes the following goals:

spring-boot:run runs your Spring Boot application.

spring-boot:repackage repackages your .jar and .war files to be executable.

spring-boot:start and spring-boot:stop both are used to manage the lifecycle of your Spring
Boot application.

spring-boot:build-info generates build information that can be used by the Actuator.

B.2. USING SPRING BOOT MAVEN PLUGIN

You can find general instructions on how to use the Spring Boot Plugin at:
http://docs.spring.io/spring-boot/docs/current/maven-plugin/usage.html. The following examples
illustrates the usage of the spring-boot-maven-plugin for Spring Boot.

Spring Boot 2 Example

Spring Boot 1 Example

NOTE

For more information on Spring Boot Maven Plugin, refer the
http://docs.spring.io/spring-boot/docs/current/maven-plugin link.

B.2.1. Using Spring Boot Maven plugin for Spring Boot 2

The following example illustrates the usage of the spring-boot-maven-plugin for Spring Boot 2.

Example

<project>
 <modelVersion>4.0.0</modelVersion>

 <groupId>com.redhat.fuse</groupId>
 <artifactId>spring-boot-camel</artifactId>
 <version>1.0-SNAPSHOT</version>

 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
 <project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>

 <!-- configure the Fuse version you want to use here -->
 <fuse.bom.version>7.7.0.fuse-sb2-770010-redhat-00001</fuse.bom.version>

 <!-- maven plugin versions -->

Red Hat Fuse 7.7 Deploying into Spring Boot

32

http://docs.spring.io/spring-boot/docs/current/maven-plugin/usage.html
http://docs.spring.io/spring-boot/docs/current/maven-plugin

 <maven-compiler-plugin.version>3.7.0</maven-compiler-plugin.version>
 <maven-surefire-plugin.version>2.19.1</maven-surefire-plugin.version>
 </properties>

 <build>
 <defaultGoal>spring-boot:run</defaultGoal>

 <plugins>
 <plugin>
 <groupId>org.jboss.redhat-fuse</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 <version>${fuse.bom.version}</version>
 <executions>
 <execution>
 <goals>
 <goal>repackage</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>

 <repositories>
 <repository>
 <id>redhat-ga-repository</id>
 <url>https://maven.repository.redhat.com/ga</url>
 <releases>
 <enabled>true</enabled>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </repository>
 <repository>
 <id>redhat-ea-repository</id>
 <url>https://maven.repository.redhat.com/earlyaccess/all</url>
 <releases>
 <enabled>true</enabled>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </repository>
 </repositories>

 <pluginRepositories>
 <pluginRepository>
 <id>redhat-ga-repository</id>
 <url>https://maven.repository.redhat.com/ga</url>
 <releases>
 <enabled>true</enabled>
 </releases>
 <snapshots>
 <enabled>false</enabled>

APPENDIX B. SPRING BOOT MAVEN PLUGIN

33

B.2.2. Using Spring Boot Maven plugin for Spring Boot 1

The following example illustrates the usage of the spring-boot-maven-plugin for Spring Boot 1.

Example

 </snapshots>
 </pluginRepository>
 <pluginRepository>
 <id>redhat-ea-repository</id>
 <url>https://maven.repository.redhat.com/earlyaccess/all</url>
 <releases>
 <enabled>true</enabled>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </pluginRepository>
 </pluginRepositories>
</project>

<project>
 <modelVersion>4.0.0</modelVersion>

 <groupId>com.redhat.fuse</groupId>
 <artifactId>spring-boot-camel</artifactId>
 <version>1.0-SNAPSHOT</version>

 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
 <project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>

 <!-- configure the Fuse version you want to use here -->
 <fuse.bom.version>7.7.0.fuse-770012-redhat-00003</fuse.bom.version>

 <!-- maven plugin versions -->
 <maven-compiler-plugin.version>3.7.0</maven-compiler-plugin.version>
 <maven-surefire-plugin.version>2.19.1</maven-surefire-plugin.version>
 </properties>

 <build>
 <defaultGoal>spring-boot:run</defaultGoal>

 <plugins>
 <plugin>
 <groupId>org.jboss.redhat-fuse</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 <version>${fuse.bom.version}</version>
 <executions>
 <execution>
 <goals>
 <goal>repackage</goal>
 </goals>
 </execution>

Red Hat Fuse 7.7 Deploying into Spring Boot

34

 </executions>
 </plugin>
 </plugins>
 </build>

 <repositories>
 <repository>
 <id>redhat-ga-repository</id>
 <url>https://maven.repository.redhat.com/ga</url>
 <releases>
 <enabled>true</enabled>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </repository>
 <repository>
 <id>redhat-ea-repository</id>
 <url>https://maven.repository.redhat.com/earlyaccess/all</url>
 <releases>
 <enabled>true</enabled>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </repository>
 </repositories>

 <pluginRepositories>
 <pluginRepository>
 <id>redhat-ga-repository</id>
 <url>https://maven.repository.redhat.com/ga</url>
 <releases>
 <enabled>true</enabled>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </pluginRepository>
 <pluginRepository>
 <id>redhat-ea-repository</id>
 <url>https://maven.repository.redhat.com/earlyaccess/all</url>
 <releases>
 <enabled>true</enabled>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </pluginRepository>
 </pluginRepositories>
</project>

APPENDIX B. SPRING BOOT MAVEN PLUGIN

35

	Table of Contents
	CHAPTER 1. GETTING STARTED WITH SPRING BOOT STANDALONE
	1.1. ABOUT SPRING BOOT STANDALONE DEPLOYMENT MODE
	1.2. DEPLOYING INTO SPRING BOOT 2
	1.3. NEW CAMEL COMPONENTS FOR SPRING BOOT 2

	CHAPTER 2. USING FUSE BOOSTERS
	2.1. GENERATING YOUR BOOSTER PROJECT
	2.2. BUILD AND RUN THE CIRCUIT BREAKER BOOSTER
	2.3. BUILD AND RUN THE EXTERNALIZED CONFIGURATION BOOSTER
	2.4. BUILD AND RUN THE REST API BOOSTER

	CHAPTER 3. BUILDING WITH MAVEN
	3.1. GENERATING A MAVEN PROJECT
	3.1.1. Project generator at developers.redhat.com/launch
	3.1.2. Fuse tooling wizard in Developer Studio

	3.2. USING SPRING BOOT BOM
	3.2.1. BOM file for Spring Boot
	3.2.2. Incorporate the BOM file
	3.2.3. Spring Boot Maven plugin

	CHAPTER 4. RUNNING APACHE CAMEL APPLICATION IN SPRING BOOT
	4.1. INTRODUCTION TO THE CAMEL SPRING BOOT COMPONENT
	4.2. INTRODUCTION TO THE CAMEL SPRING BOOT STARTER MODULE
	4.3. LIST OF THE CAMEL COMPONENTS THAT DO NOT HAVE STARTER MODULES
	4.4. USING CAMEL SPRING BOOT STARTER
	4.5. ABOUT CAMEL CONTEXT AUTO-CONFIGURATION FOR SPRING BOOT
	4.6. AUTO-DETECTING CAMEL ROUTES IN SPRING BOOT APPLICATIONS
	4.7. CONFIGURING CAMEL PROPERTIES FOR CAMEL SPRING BOOT AUTO-CONFIGURATION
	4.8. CONFIGURING CUSTOM CAMEL CONTEXT
	4.9. DISABLING JMX IN THE AUTO-CONFIGURED CAMELCONTEXT
	4.10. INJECTING AUTO-CONFIGURED CONSUMER AND PRODUCER TEMPLATES INTO SPRING-MANAGED BEANS
	4.11. ABOUT THE AUTO-CONFIGURED TYPECONVERTER IN THE SPRING CONTEXT
	4.12. SPRING TYPE CONVERSION API BRIDGE
	4.13. DISABLING TYPE CONVERSIONS FEATURES
	4.14. ADDING XML ROUTES TO THE CLASSPATH FOR AUTO-CONFIGURATION
	4.15. ADDING XML REST-DSL ROUTES FOR AUTO-CONFIGURATION
	4.16. TESTING WITH CAMEL SPRING BOOT
	4.17. USING SPRING BOOT, APACHE CAMEL AND EXTERNAL MESSAGING BROKERS

	APPENDIX A. PREPARING TO USE MAVEN
	A.1. PREPARING TO SET UP MAVEN
	A.2. ADDING RED HAT REPOSITORIES TO MAVEN
	A.3. USING LOCAL MAVEN REPOSITORIES
	A.4. ABOUT MAVEN ARTIFACTS AND COORDINATES

	APPENDIX B. SPRING BOOT MAVEN PLUGIN
	B.1. SPRING BOOT MAVEN PLUGIN GOALS
	B.2. USING SPRING BOOT MAVEN PLUGIN
	B.2.1. Using Spring Boot Maven plugin for Spring Boot 2
	B.2.2. Using Spring Boot Maven plugin for Spring Boot 1

