
Red Hat Fuse 7.6

Getting Started

Get started quickly with Red Hat Fuse!

Last Updated: 2020-06-16

Red Hat Fuse 7.6 Getting Started

Get started quickly with Red Hat Fuse!

Legal Notice

Copyright © 2020 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Get started with Fuse on Spring Boot, Fuse on Apache Karaf, and Fuse on JBoss Enterprise
Application Platform.

. .

. .

. .

. .

. .

Table of Contents

PREFACE

CHAPTER 1. GETTING STARTED WITH FUSE ON SPRING BOOT
1.1. ABOUT FUSE ON SPRING BOOT
1.2. GENERATING YOUR BOOSTER PROJECT
1.3. BUILDING YOUR BOOSTER PROJECT

CHAPTER 2. GETTING STARTED WITH FUSE ON KARAF
2.1. ABOUT FUSE ON KARAF
2.2. INSTALLING FUSE ON KARAF
2.3. BUILDING YOUR FIRST FUSE APPLICATION ON KARAF

CHAPTER 3. GETTING STARTED WITH FUSE ON JBOSS EAP
3.1. ABOUT FUSE ON JBOSS EAP
3.2. INSTALLING FUSE ON JBOSS EAP
3.3. BUILDING YOUR FIRST FUSE APPLICATION ON JBOSS EAP

CHAPTER 4. SETTING UP MAVEN LOCALLY
4.1. PREPARING TO SET UP MAVEN
4.2. ADDING RED HAT REPOSITORIES TO MAVEN
4.3. USING LOCAL MAVEN REPOSITORIES
4.4. SETTING MAVEN MIRROR USING ENVIRONMENTAL VARIABLES OR SYSTEM PROPERTIES

4.4.1. About Maven mirror
4.4.2. Adding Maven mirror to settings.xml
4.4.3. Setting Maven mirror using environmental variable or system property
4.4.4. Using Maven options to specify Maven mirror url

4.5. ABOUT MAVEN ARTIFACTS AND COORDINATES

3

4
4
4
5

8
8
8
9

12
12
12
13

16
16
16
18
18
19
19
19
19
19

Table of Contents

1

Red Hat Fuse 7.6 Getting Started

2

PREFACE
To get started with Fuse, you need to download and install the files for your desired container, whether
that is Spring Boot, JBoss EAP, or Apache Karaf. The information and instructions here guide you in
installing, developing, and building your first Fuse application for each of those containers.

Chapter 1, Getting started with Fuse on Spring Boot

Chapter 2, Getting started with Fuse on Karaf

Chapter 3, Getting started with Fuse on JBoss EAP

Chapter 4, Setting up Maven locally

PREFACE

3

CHAPTER 1. GETTING STARTED WITH FUSE ON SPRING
BOOT

To develop Fuse applications on Spring Boot, get started by generating and building a Fuse sample
booster project that runs on Spring Boot. The following topics provide details:

Section 1.1, “About Fuse on Spring Boot”

Section 1.2, “Generating your booster project”

Section 1.3, “Building your booster project”

1.1. ABOUT FUSE ON SPRING BOOT

Spring Boot is an evolution of the well-known Spring container. A distinctive quality of the Spring Boot
container is that container functionality is divided up into small chunks, which can be deployed
independently. This enables you to deploy a container with a small footprint, specialized for a particular
kind of service, and this happens to be exactly what you need to fit the paradigm of a microservices
architecture.

Distinctive features of this container technology are:

Particularly suited to running on a scalable cloud platform (Kubernetes and OpenShift).

Small footprint (ideal for microservices architecture).

Optimized for convention over configuration.

No application server required. You can run a Spring Boot application Jar directly in a JVM.

1.2. GENERATING YOUR BOOSTER PROJECT

Fuse booster projects exist to help developers get started with running standalone applications. The
instructions provided here guide you through generating one of those booster projects, the Circuit
Breaker booster. This exercise demonstrates useful components of the Fuse on Spring Boot.

The Netflix/Hystrix circuit breaker enables distributed applications to handle interruptions to network
connectivity and temporary unavailability of backend services. The basic idea of the circuit breaker
pattern is that the loss of a dependent service is detected automatically and an alternative behavior can
be programmed, in case the backend service is temporarily unavailable.

The Fuse circuit breaker booster consists of two related services:

A name service, the backend service that returns a name to greet.

A greetings service, the frontend service that invokes the name service to get a name and then
returns the string, Hello, NAME.

In this booster demonstration, the Hystrix circuit breaker is inserted between the greetings service and
the name service. If the backend name service becomes unavailable, the greetings service can fall back
to an alternative behavior and respond to the client immediately, instead of being blocked while it waits
for the name service to restart.

Prerequisites

Red Hat Fuse 7.6 Getting Started

4

https://spring.io/
https://github.com/Netflix/Hystrix

You must have access to the Red Hat Developer Platform .

You must have a supported version of the Java Developer Kit (JDK). See the Supported
Configurations page for details.

You must have Apache Maven 3.3.x or later.

Procedure

1. Navigate to https://developers.redhat.com/launch.

2. Click START.
The launcher wizard prompts you to log in to your Red Hat account.

3. Click the Log in or register button and then log in.

4. On the Launcher page, click the Deploy an Example Application button.

5. On the Create Example Application page, type the name, fuse-circuit-breaker, in the Create
Example Application as field.

6. Click Select an Example.

7. In the Example dialog, select the Circuit Breaker option. A Select a Runtime dropdown menu
appears.

a. From the Select a Runtime dropdown, select Fuse.

b. From the version dropdown menu, select 7.6 (Red Hat Fuse) (do not select the 2.21.2
(Community) version).

c. Click Save.

8. On the Create Example Application page, click Download.

9. When you see the Your Application is Ready dialog, click Download.zip. Your browser
downloads the generated booster project (packaged as a ZIP file).

10. Use an archive utility to extract the generated project to a convenient location on your local file
system.

1.3. BUILDING YOUR BOOSTER PROJECT

These instructions guide you through building the Circuir Breaker booster with Fuse on Spring Boot.

Prerequisites

You must have generated and downloaded your booster project via the Red Hat Developer
Portal.

You must have a supported version of the Java Developer Kit (JDK). See the Supported
Configurations page for details.

You must have Apache Maven 3.3.x or later.

Procedure

CHAPTER 1. GETTING STARTED WITH FUSE ON SPRING BOOT

5

https://developers.redhat.com/launch
https://access.redhat.com/articles/310603
http://maven.apache.org/download.cgi
https://developers.redhat.com/launch
https://developers.redhat.com/launch
https://access.redhat.com/articles/310603
http://maven.apache.org/download.cgi

1. Open a shell prompt and build the project from the command line, using Maven:

cd fuse-circuit-breaker

mvn clean package

After Maven builds the project, it displays a Build Success message.

2. Open a new shell prompt and start the name service, as follows:

cd name-service

mvn spring-boot:run -DskipTests -Dserver.port=8081

As Spring Boot starts up, you should see output similar to the following:

...
2019-05-06 20:19:59.401 INFO 9553 --- [main] o.a.camel.spring.SpringCamelContext
: Route: route1 started and consuming from: servlet:/name?httpMethodRestrict=GET
2019-05-06 20:19:59.402 INFO 9553 --- [main] o.a.camel.spring.SpringCamelContext
: Total 1 routes, of which 1 are started
2019-05-06 20:19:59.403 INFO 9553 --- [main] o.a.camel.spring.SpringCamelContext
: Apache Camel 2.21.0.fuse-730078-redhat-00001 (CamelContext: camel-1) started in 0.287
seconds
2019-05-06 20:19:59.406 INFO 9553 --- [main] o.a.c.c.s.CamelHttpTransportServlet
: Initialized CamelHttpTransportServlet[name=CamelServlet, contextPath=]
2019-05-06 20:19:59.473 INFO 9553 --- [main]
b.c.e.u.UndertowEmbeddedServletContainer : Undertow started on port(s) 8081 (http)
2019-05-06 20:19:59.479 INFO 9553 --- [main]
com.redhat.fuse.boosters.cb.Application : Started Application in 5.485 seconds (JVM
running for 9.841)

3. Open a new shell prompt and start the greetings service, as follows:

cd greetings-service

mvn spring-boot:run -DskipTests

As Spring Boot starts up, you should see output similar to the following:

...
2019-05-06 20:22:19.051 INFO 9729 --- [main] o.a.c.c.s.CamelHttpTransportServlet
: Initialized CamelHttpTransportServlet[name=CamelServlet, contextPath=]
2019-05-06 20:22:19.115 INFO 9729 --- [main]
b.c.e.u.UndertowEmbeddedServletContainer : Undertow started on port(s) 8080 (http)
2019-05-06 20:22:19.123 INFO 9729 --- [main]
com.redhat.fuse.boosters.cb.Application : Started Application in 7.68 seconds (JVM running
for 12.66)

The greetings service exposes a REST endpoint at the http://localhost:8080/camel/greetings
URL.

4. Invoke the REST endpoint by either opening the URL in a web browser or by opening another

Red Hat Fuse 7.6 Getting Started

6

http://localhost:8080/camel/greetings

4. Invoke the REST endpoint by either opening the URL in a web browser or by opening another
shell prompt and typing the following curl command:

curl http://localhost:8080/camel/greetings

Here is the response:

{"greetings":"Hello, Jacopo"}

5. To demonstrate the circuit breaker functionality provided by Camel Hystrix, kill the backend
name service by typing Ctrl-C in the shell prompt window where the name service is running.
Now that the name service is unavailable, the circuit breaker kicks in to prevent the greetings
service from hanging when it is invoked.

6. Invoke the greetings REST endpoint by either opening http://localhost:8080/camel/greetings
in a web browser or by typing the following curl command in another shell prompt window:

curl http://localhost:8080/camel/greetings

Here is the response:

{"greetings":"Hello, default fallback"}

In the window where the greetings service is running, the log shows the following sequence of
messages:

2019-05-06 20:24:16.952 INFO 9729 --- [-CamelHystrix-2] route2 : Try
to call name Service
2019-05-06 20:24:16.956 INFO 9729 --- [-CamelHystrix-2]
o.a.c.httpclient.HttpMethodDirector : I/O exception (java.net.ConnectException) caught
when processing request: Connection refused (Connection refused)
2019-05-06 20:24:16.956 INFO 9729 --- [-CamelHystrix-2]
o.a.c.httpclient.HttpMethodDirector : Retrying request
2019-05-06 20:24:16.957 INFO 9729 --- [-CamelHystrix-2]
o.a.c.httpclient.HttpMethodDirector : I/O exception (java.net.ConnectException) caught
when processing request: Connection refused (Connection refused)
2019-05-06 20:24:16.957 INFO 9729 --- [-CamelHystrix-2]
o.a.c.httpclient.HttpMethodDirector : Retrying request
2019-05-06 20:24:16.957 INFO 9729 --- [-CamelHystrix-2]
o.a.c.httpclient.HttpMethodDirector : I/O exception (java.net.ConnectException) caught
when processing request: Connection refused (Connection refused)
2019-05-06 20:24:16.957 INFO 9729 --- [-CamelHystrix-2]
o.a.c.httpclient.HttpMethodDirector : Retrying request
2019-05-06 20:24:16.964 INFO 9729 --- [-CamelHystrix-2] route2 : We
are falling back!!!!

7. For more information about this example, open the Circuit Breaker - Red Hat Fuse page at
http://localhost:8080/ (while the greetings-service is running). This page includes a link to the
Hystrix dashboard that monitors the state of the circuit breaker.

CHAPTER 1. GETTING STARTED WITH FUSE ON SPRING BOOT

7

http://localhost:8080/camel/greetings
http://localhost:8080/

CHAPTER 2. GETTING STARTED WITH FUSE ON KARAF
To learn about Fuse on Karaf as well as install, develop, and build your first Fuse application on a Karaf
container, the information and instructions here assist you with this. See the following topics for details:

Section 2.1, “About Fuse on Karaf”

Section 2.2, “Installing Fuse on Karaf”

Section 2.3, “Building your first Fuse application on Karaf”

2.1. ABOUT FUSE ON KARAF

Apache Karaf is based on the OSGi standard from the OSGi Alliance. OSGi originated in the
telecommunications industry, where it was used to develop gateway servers that could be upgraded on
the fly, without needing to shut down the server (a feature known as hot code swapping). Subsequently,
OSGi container technology has found a variety of other uses and is popular for modularised applications
(for example, the Eclipse IDE).

Distinctive features of this container technology are:

Particularly suited to running in standalone mode.

Strong support for modularisation (OSGi bundles), with sophisticated class-loading support.

Multiple versions of a dependency can be deployed side by side in a container (but this requires
some care in practice).

Hot code swapping, enabling you to upgrade or replace a module without shutting down the
container. This is a unique feature, but requires significant effort to make it work properly.

2.2. INSTALLING FUSE ON KARAF

The standard installation package for Fuse 7.6 on Karaf is available for download from the Red Hat
Customer Portal. It installs the standard assembly of the Karaf container, and provides the full Fuse
technology stack.

Prerequisites

You need a full-subscription account on the Red Hat Customer Portal .

You must be logged into the customer portal.

You must have downloaded the CodeReady Studio installer.

You must have downloaded the Fuse on Karaf installer.

Procedure

1. Unpack the downloaded .zip archive file for Fuse on Apache Karaf to a convenient location on
your file system, FUSE_INSTALL.

2. Add an administrator user to the Fuse runtime.

a. Open the FUSE_INSTALL/etc/users.properties file in a text editor.

Red Hat Fuse 7.6 Getting Started

8

https://www.osgi.org/
https://www.eclipse.org/downloads/
https://access.redhat.com/login
https://access.redhat.com/jbossnetwork/restricted/softwareDownload.html?softwareId=78951
https://access.redhat.com/jbossnetwork/restricted/softwareDownload.html?softwareId=80211

b. Delete the # character at the start of the line that starts with #admin = admin.

c. Delete the # character at the start of the line that starts with #_g_\:admingroup.

d. Customize the username, USERNAME, and password, PASSWORD, of the user entry, so
that you have a user entry and an admin group entry like the following (on consecutive
lines):

USERNAME = PASSWORD,_g_:admingroup
g\:admingroup = group,admin,manager,viewer,systembundles,ssh

e. Save the etc/users.properties file.

3. Run the CodeReady Studio installer as follows:

java -jar DOWNLOAD_LOCATION/codereadystudio-12.14.0.GA-installer-standalone.jar

4. During installation:

a. Accept the terms and conditions.

b. Choose your preferred installation path.

c. Select the Java 8 JVM.

d. At the Select Platforms and Servers step, configure the Fuse on Karaf runtime by clicking
Add and browsing to the location of the FUSE_INSTALL directory.

e. At the Select Additional Features to Install step, select Red Hat Fuse Tooling.

5. CodeReady Studio starts up. When the Searching for runtimes dialog appears, click OK to
create the Fuse on Karaf runtime.

6. (Optional) In order to use Apache Maven from the command line, you need to install and
configure Maven.

NOTE

If you are using CodeReady Studio exclusively, it is not strictly necessary to install
Maven, because CodeReady Studio has Maven pre-installed and configured for
you. However, if you plan to invoke Maven from the command line, it is necessary
to perform this step.

2.3. BUILDING YOUR FIRST FUSE APPLICATION ON KARAF

This set of instructions assists you in building your first Fuse application on Karaf.

Prerequisites

You need a full-subscription account on the Red Hat Customer Portal .

You must be logged into the customer portal.

You must have downloaded the CodeReady Studio installer.

CHAPTER 2. GETTING STARTED WITH FUSE ON KARAF

9

https://access.redhat.com/jbossnetwork/restricted/softwareDownload.html?softwareId=78951
https://access.redhat.com/login
https://access.redhat.com/jbossnetwork/restricted/softwareDownload.html?softwareId=78951

You must have downloaded and successfully installed Fuse on Karaf.

Procedure

1. In CodeReady Studio, create a new project, as follows:

a. Select File→New→Fuse Integration Project.

b. Enter fuse-camel-cbr in the Project Name field.

c. Click Next.

d. In the Select a Target Environment pane, choose the following settings:

Select Standalone as the deployment platform.

Select Karaf/Fuse on Karaf as the runtime environment and use the Runtime
(optional) dropdown menu to select the fuse-karaf-7.6.0.fuse-760025-redhat-00001
Runtime server as the target runtime.

e. After selecting the target runtime, the Camel Version is automatically selected for you and
the field is grayed out.

f. Click Next.

g. In the Advanced Project Setup pane, select the Beginner→Content Based Router -
Blueprint DSL template.

h. Click Finish.

i. If prompted to open the associated Fuse Integration perspective, click Yes.

j. Wait while CodeReady Studio downloads required artifacts and builds the project in the
background.

IMPORTANT

If this is the first time you are building a Fuse project in CodeReady Studio, it
will take several minutes for the wizard to finish generating the project, as it
downloads dependencies from remote Maven repositories. Do not attempt
to interrupt the wizard or close CodeReady Studio while the project is
building in the background.

2. Deploy the project to the server, as follows:

a. In the Servers view (bottom left corner of the Fuse Integration perspective), if the server is
not already started, select the fuse-karaf-7.6.0.fuse-760025-redhat-00001 Runtime
Server server and click the green arrow to start it.

NOTE

If you see the dialog, Warning: The authenticity of host 'localhost' can’t be
established., click Yes to connect to the server and access the Karaf
console.

b. Wait until you see a message like the following in the Console view:

Red Hat Fuse 7.6 Getting Started

10

https://access.redhat.com/jbossnetwork/restricted/softwareDownload.html?softwareId=80211

Karaf started in 1s. Bundle stats: 12 active, 12 total

c. After the server has started, switch back to the Servers view, right-click on the server and
select Add and Remove from the context menu.

d. In the Add and Remove dialog, select the fuse-camel-cbr project and click the Add >
button.

e. Click Finish.

f. You can check whether the project’s OSGi bundle has started up by going to the Terminal
view and entering bundle:list | tail. You should see some output like the following:

...
228 │ Active │ 80 │ 1.0.0.201505202023 │ org.osgi:org.osgi.service.j
232 │ Active │ 80 │ 1.0.0.SNAPSHOT │ Fuse CBR Quickstart

NOTE

As soon as the Camel route starts up, it will create a directory,
work/cbr/input, in your Fuse installation (not in the fuse-camel-cbr project).

3. Copy the files you find in the project’s src/main/data directory to the
FUSE_INSTALL/work/cbr/input directory. You can do this in your system file browser (outside
of Eclipse).

4. Wait a few moments and then look in the FUSE_INSTALL/work/cbr/output directory to see the
same files organized by country:

a. order1.xml in work/cbr/output/others

b. order2.xml and order4.xml in work/cbr/output/uk

c. order3.xml and order5.xml in work/cbr/output/us

5. Undeploy the project, as follows:

a. In the Servers view, select the Red Hat Fuse 7+ Runtime Server server.

b. Right-click on the server and select Add and Remove from the context menu.

c. In the Add and Remove dialog, select your fuse-camel-cbr project and click the < Remove
button.

d. Click Finish.

CHAPTER 2. GETTING STARTED WITH FUSE ON KARAF

11

CHAPTER 3. GETTING STARTED WITH FUSE ON JBOSS EAP
This chapter introduces Fuse on JBoss EAP, and explains how to install, develop, and build your first
Fuse application on a JBoss EAP container.

See the following topics for details:

Section 3.1, “About Fuse on JBoss EAP”

Section 3.2, “Installing Fuse on JBoss EAP”

Section 3.3, “Building your first Fuse application on JBoss EAP”

3.1. ABOUT FUSE ON JBOSS EAP

JBoss Enterprise Application Platform (EAP), based on Jakarta EE technology (previously, Java EE)
from the Eclipse Foundation, was originally created to address use cases for developing enterprise
applications. JBoss EAP is characterized by well-defined patterns for implementing services and
standardized Java APIs (for example, for persistence, messaging, security, and so on). In recent years,
this technology has evolved to be more lightweight, with the introduction of CDI for dependency
injection and simplified annotations for enterprise Java beans.

Distinctive features of this container technology are:

Particularly suited to running in standalone mode.

Many standard services (for example, persistence, messaging, security, and so on) pre-
configured and provided out-of the-box.

Application WARs typically small and lightweight (because many dependencies are pre-installed
in the container).

Standardized, backward-compatible Java APIs.

3.2. INSTALLING FUSE ON JBOSS EAP

The standard installation package for Fuse 7.6 on JBoss EAP is available for download from the Red Hat
Customer Portal. It installs the standard assembly of the JBoss EAP container, and provides the full
Fuse technology stack.

Prerequisites

You must have a full-subscription account on the Red Hat Customer Portal .

You must be logged into the customer portal.

You must have downloaded JBoss EAP and JBoss EAP 7.2 Update 05 .

You must have downloaded Fuse on JBoss EAP.

You must have downloaded the CodeReady Studio installer.

Procedure

1. Run the JBoss EAP installer from a shell prompt, as follows:

Red Hat Fuse 7.6 Getting Started

12

https://jakarta.ee/
https://www.eclipse.org/org/foundation/
https://access.redhat.com/login
https://access.redhat.com/jbossnetwork/restricted/softwareDownload.html?softwareId=64301&product=appplatform
https://access.redhat.com/jbossnetwork/restricted/softwareDetail.html?softwareId=75781&product=appplatform&version=7.2&downloadType=patches
https://access.redhat.com/jbossnetwork/restricted/softwareDownload.html?softwareId=80221
https://access.redhat.com/jbossnetwork/restricted/softwareDownload.html?softwareId=78951

java -jar DOWNLOAD_LOCATION/jboss-eap-7.2.0-installer.jar

2. During installation:

a. Accept the terms and conditions.

b. Choose your preferred installation path, EAP_INSTALL, for the JBoss EAP runtime.

c. Create an administrative user and make a careful note of these administrative user
credentials for later.

d. You can accept the default settings on the remaining screens.

3. Open a shell prompt and change directory to EAP_INSTALL.

4. From the EAP_INSTALL directory, apply JBoss EAP 7.2 Update 05. For example:

bin/jboss-cli.sh "patch apply jboss-eap-7.2.x-patch.zip"

5. From the EAP_INSTALL directory, run the Fuse on EAP installer, as follows:

java -jar DOWNLOAD_LOCATION/fuse-eap-installer-7.6.0.jar

6. Run the CodeReady Studio installer, as follows:

java -jar DOWNLOAD_LOCATION/codereadystudio-12.14.0.GA-installer-standalone.jar

7. During installation:

a. Accept the terms and conditions.

b. Choose your preferred installation path.

c. Select the Java 8 JVM.

d. At the Select Platforms and Servers step, configure the JBoss EAP runtime by clicking
Add and browsing to the location of the EAP_INSTALL directory.

e. At the Select Additional Features to Install step, select Red Hat Fuse Tooling.

8. CodeReady Studio starts up. When the Searching for runtimes dialog appears, click OK to
create the JBoss EAP runtime.

9. (Optional) In order to use Apache Maven from the command line, you need to install and
configure Maven.

NOTE

If you are using CodeReady Studio exclusively, it is not strictly necessary to install
Maven, because CodeReady Studio has Maven pre-installed and configured.
However, if you plan to invoke Maven from the command line, you must perform
this step.

3.3. BUILDING YOUR FIRST FUSE APPLICATION ON JBOSS EAP

CHAPTER 3. GETTING STARTED WITH FUSE ON JBOSS EAP

13

This set of instructions assists you in building your first Fuse application on JBoss EAP.

Prerequisites

You need a full-subscription account on the Red Hat Customer Portal .

You must be logged into the customer portal.

You must have downloaded and successfully installed Fuse on JBoss EAP.

You must have downloaded and successfully installed the CodeReady Studio installer.

Procedure

1. In CodeReady Studio, create a new project, as follows:

a. Select File→New→Fuse Integration Project.

b. In the Project Name field, enter eap-camel.

c. Click Next.

d. In the Select a Target Environment pane, choose the following settings:

Select Standalone as the deployment platform.

Select Wildfly/Fuse on EAP as the runtime environment and use the Runtime
(optional) dropdown menu to select the JBoss EAP 7.x Runtime server as the target
runtime.

e. After selecting the target runtime, the Camel Version is automatically selected for you and
the field is grayed out.

f. Click Next.

g. In the Advanced Project Setup pane, select the Spring Bean - Spring DSL template.

h. Click Finish.

IMPORTANT

If this is the first time you are building a Fuse project in CodeReady Studio, it
will take several minutes for the wizard to finish generating the project. This is
because it downloads dependencies from remote Maven repositories. Do not
interrupt the wizard or close CodeReady Studio while the project is building
in the background.

i. If prompted to open the associated Fuse Integration perspective, click Yes.

j. Wait while CodeReady Studio downloads required artifacts and builds the project in the
background.

2. Deploy the project to the server, as follows:

a. In the Servers view (bottom right corner of the Fuse Integration perspective), if the server

Red Hat Fuse 7.6 Getting Started

14

https://access.redhat.com/login
https://access.redhat.com/jbossnetwork/restricted/softwareDownload.html?softwareId=80221
https://access.redhat.com/jbossnetwork/restricted/softwareDownload.html?softwareId=78951

a. In the Servers view (bottom right corner of the Fuse Integration perspective), if the server
is not already started, select the Red Hat JBoss EAP 7.2 Runtime server and click the
green arrow to start it.

b. Wait until you see a message like the following in the Console view:

14:47:07,283 INFO [org.jboss.as] (Controller Boot Thread) WFLYSRV0025: JBoss EAP
7.2.0.GA (WildFly Core 6.0.11.Final-redhat-00001) started in 13948ms - Started 495 of
680 services (326 services are lazy, passive or on-demand)

c. After the server has started, switch back to the Servers view, right-click the server and
select Add and Remove from the context menu.

d. In the Add and Remove dialog, select the eap-camel project and click Add >.

e. Click Finish.

3. Verify that the project is working, as follows:

a. Browse to the following URL to access the service running in the eap-camel project:
http://localhost:8080/camel-test-spring?name=Kermit

b. The browser window should show the response Hello Kermit.

4. Undeploy the project, as follows:

a. In the Servers view, select the Red Hat JBoss EAP 7.2 Runtime server.

b. Right-click the server and select Add and Remove from the context menu.

c. In the Add and Remove dialog, select your eap-camel project and click < Remove.

d. Click Finish.

CHAPTER 3. GETTING STARTED WITH FUSE ON JBOSS EAP

15

http://localhost:8080/camel-test-spring?name=Kermit

CHAPTER 4. SETTING UP MAVEN LOCALLY
Typical Fuse application development uses Maven to build and manage projects.

The following topics describe how to set up Maven locally:

Section 4.1, “Preparing to set up Maven”

Section 4.2, “Adding Red Hat repositories to Maven”

Section 4.3, “Using local Maven repositories”

Section 4.4, “Setting Maven mirror using environmental variables or system properties”

Section 4.5, “About Maven artifacts and coordinates”

4.1. PREPARING TO SET UP MAVEN

Maven is a free, open source, build tool from Apache. Typically, you use Maven to build Fuse
applications.

Procedure

1. Download the latest version of Maven from the Maven download page .

2. Ensure that your system is connected to the Internet.
While building a project, the default behavior is that Maven searches external repositories and
downloads the required artifacts. Maven looks for repositories that are accessible over the
Internet.

You can change this behavior so that Maven searches only repositories that are on a local
network. That is, Maven can run in an offline mode. In offline mode, Maven looks for artifacts in
its local repository. See Section 4.3, “Using local Maven repositories” .

4.2. ADDING RED HAT REPOSITORIES TO MAVEN

To access artifacts that are in Red Hat Maven repositories, you need to add those repositories to
Maven’s settings.xml file. Maven looks for the settings.xml file in the .m2 directory of the user’s home
directory. If there is not a user specified settings.xml file, Maven uses the system-level settings.xml
file at M2_HOME/conf/settings.xml.

Prerequisite

You know the location of the settings.xml file in which you want to add the Red Hat repositories.

Procedure

In the settings.xml file, add repository elements for the Red Hat repositories as shown in this example:

<?xml version="1.0"?>
<settings>

 <profiles>
 <profile>
 <id>extra-repos</id>

Red Hat Fuse 7.6 Getting Started

16

http://maven.apache.org/download.html

 <activation>
 <activeByDefault>true</activeByDefault>
 </activation>
 <repositories>
 <repository>
 <id>redhat-ga-repository</id>
 <url>https://maven.repository.redhat.com/ga</url>
 <releases>
 <enabled>true</enabled>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </repository>
 <repository>
 <id>redhat-ea-repository</id>
 <url>https://maven.repository.redhat.com/earlyaccess/all</url>
 <releases>
 <enabled>true</enabled>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </repository>
 <repository>
 <id>jboss-public</id>
 <name>JBoss Public Repository Group</name>
 <url>https://repository.jboss.org/nexus/content/groups/public/</url>
 </repository>
 </repositories>
 <pluginRepositories>
 <pluginRepository>
 <id>redhat-ga-repository</id>
 <url>https://maven.repository.redhat.com/ga</url>
 <releases>
 <enabled>true</enabled>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </pluginRepository>
 <pluginRepository>
 <id>redhat-ea-repository</id>
 <url>https://maven.repository.redhat.com/earlyaccess/all</url>
 <releases>
 <enabled>true</enabled>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </pluginRepository>
 <pluginRepository>
 <id>jboss-public</id>
 <name>JBoss Public Repository Group</name>
 <url>https://repository.jboss.org/nexus/content/groups/public</url>
 </pluginRepository>

CHAPTER 4. SETTING UP MAVEN LOCALLY

17

4.3. USING LOCAL MAVEN REPOSITORIES

If you are running the Apache Karaf container without an Internet connection, and you need to deploy an
application that has dependencies that are not available offline, you can use the Maven dependency
plug-in to download the application’s dependencies into a Maven offline repository. You can then
distribute this customized Maven offline repository to machines that do not have an Internet
connection.

Procedure

1. In the project directory that contains the pom.xml file, download a repository for a Maven
project by running a command such as the following:

mvn org.apache.maven.plugins:maven-dependency-plugin:3.1.0:go-offline -
Dmaven.repo.local=/tmp/my-project

In this example, Maven dependencies and plug-ins that are required to build the project are
downloaded to the /tmp/my-project directory.

2. Edit the etc/org.ops4j.pax.url.mvn.cfg file to set org.ops4j.pax.url.mvn.offline to true. This
enables offline mode:

##
If set to true, no remote repository will be accessed when resolving artifacts
#
org.ops4j.pax.url.mvn.offline = true

3. Distribute this customized Maven offline repository internally to any machines that do not have
an Internet connection.

4.4. SETTING MAVEN MIRROR USING ENVIRONMENTAL VARIABLES
OR SYSTEM PROPERTIES

When running the applications you need access to the artifacts that are in the Red Hat Maven
repositories. These repositories are added to Maven’s settings.xml file. Maven checks the following
locations for settings.xml file:

looks for the specified url

if not found looks for ${user.home}/.m2/settings.xml

if not found looks for ${maven.home}/conf/settings.xml

if not found looks for ${M2_HOME}/conf/settings.xml

 </pluginRepositories>
 </profile>
 </profiles>

 <activeProfiles>
 <activeProfile>extra-repos</activeProfile>
 </activeProfiles>

</settings>

Red Hat Fuse 7.6 Getting Started

18

if no location is found, empty org.apache.maven.settings.Settings instance is created.

4.4.1. About Maven mirror

Maven uses a set of remote repositories to access the artifacts, which are currently not available in local
repository. The list of repositories almost always contains Maven Central repository, but for Red Hat
Fuse, it also contains Maven Red Hat repositories. In some cases where it is not possible or allowed to
access different remote repositories, you can use a mechanism of Maven mirrors. A mirror replaces a
particular repository URL with a different one, so all HTTP traffic when remote artifacts are being
searched for can be directed to a single URL.

4.4.2. Adding Maven mirror to settings.xml

To set the Maven mirror, add the following section to Maven’s settings.xml:

<mirror>
 <id>all</id>
 <mirrorOf>*</mirrorOf>
 <url>http://host:port/path</url>
</mirror>

No mirror is used if the above section is not found in the settings.xml file. To specify a global mirror
without providing the XML configuration, you can use either system property or environmental variables.

4.4.3. Setting Maven mirror using environmental variable or system property

To set the Maven mirror using either environmental variable or system property, you can add:

Environmental variable called MAVEN_MIRROR_URL to bin/setenv file

System property called mavenMirrorUrl to etc/system.properties file

4.4.4. Using Maven options to specify Maven mirror url

To use an alternate Maven mirror url, other than the one specified by environmental variables or system
property, use the following maven options when running the application:

-DmavenMirrorUrl=mirrorId::mirrorUrl
for example, -DmavenMirrorUrl=my-mirror::http://mirror.net/repository

-DmavenMirrorUrl=mirrorUrl
for example, -DmavenMirrorUrl=http://mirror.net/repository. In this example, the <id> of the
<mirror> is just a mirror.

4.5. ABOUT MAVEN ARTIFACTS AND COORDINATES

In the Maven build system, the basic building block is an artifact. After a build, the output of an artifact is
typically an archive, such as a JAR or WAR file.

A key aspect of Maven is the ability to locate artifacts and manage the dependencies between them. A
Maven coordinate is a set of values that identifies the location of a particular artifact. A basic coordinate
has three values in the following form:

groupId:artifactId:version

CHAPTER 4. SETTING UP MAVEN LOCALLY

19

Sometimes Maven augments a basic coordinate with a packaging value or with both a packaging value
and a classifier value. A Maven coordinate can have any one of the following forms:

groupId:artifactId:version
groupId:artifactId:packaging:version
groupId:artifactId:packaging:classifier:version

Here are descriptions of the values:

groupdId

Defines a scope for the name of the artifact. You would typically use all or part of a package name as
a group ID. For example, org.fusesource.example.

artifactId

Defines the artifact name relative to the group ID.

version

Specifies the artifact’s version. A version number can have up to four parts: n.n.n.n, where the last
part of the version number can contain non-numeric characters. For example, the last part of 1.0-
SNAPSHOT is the alphanumeric substring, 0-SNAPSHOT.

packaging

Defines the packaged entity that is produced when you build the project. For OSGi projects, the
packaging is bundle. The default value is jar.

classifier

Enables you to distinguish between artifacts that were built from the same POM, but have different
content.

Elements in an artifact’s POM file define the artifact’s group ID, artifact ID, packaging, and version, as
shown here:

To define a dependency on the preceding artifact, you would add the following dependency element to
a POM file:

<project ... >
 ...
 <groupId>org.fusesource.example</groupId>
 <artifactId>bundle-demo</artifactId>
 <packaging>bundle</packaging>
 <version>1.0-SNAPSHOT</version>
 ...
</project>

<project ... >
 ...
 <dependencies>
 <dependency>
 <groupId>org.fusesource.example</groupId>
 <artifactId>bundle-demo</artifactId>
 <version>1.0-SNAPSHOT</version>
 </dependency>
 </dependencies>
 ...
</project>

Red Hat Fuse 7.6 Getting Started

20

NOTE

It is not necessary to specify the bundle package type in the preceding dependency,
because a bundle is just a particular kind of JAR file and jar is the default Maven package
type. If you do need to specify the packaging type explicitly in a dependency, however,
you can use the type element.

CHAPTER 4. SETTING UP MAVEN LOCALLY

21

	Table of Contents
	PREFACE
	CHAPTER 1. GETTING STARTED WITH FUSE ON SPRING BOOT
	1.1. ABOUT FUSE ON SPRING BOOT
	1.2. GENERATING YOUR BOOSTER PROJECT
	1.3. BUILDING YOUR BOOSTER PROJECT

	CHAPTER 2. GETTING STARTED WITH FUSE ON KARAF
	2.1. ABOUT FUSE ON KARAF
	2.2. INSTALLING FUSE ON KARAF
	2.3. BUILDING YOUR FIRST FUSE APPLICATION ON KARAF

	CHAPTER 3. GETTING STARTED WITH FUSE ON JBOSS EAP
	3.1. ABOUT FUSE ON JBOSS EAP
	3.2. INSTALLING FUSE ON JBOSS EAP
	3.3. BUILDING YOUR FIRST FUSE APPLICATION ON JBOSS EAP

	CHAPTER 4. SETTING UP MAVEN LOCALLY
	4.1. PREPARING TO SET UP MAVEN
	4.2. ADDING RED HAT REPOSITORIES TO MAVEN
	4.3. USING LOCAL MAVEN REPOSITORIES
	4.4. SETTING MAVEN MIRROR USING ENVIRONMENTAL VARIABLES OR SYSTEM PROPERTIES
	4.4.1. About Maven mirror
	4.4.2. Adding Maven mirror to settings.xml
	4.4.3. Setting Maven mirror using environmental variable or system property
	4.4.4. Using Maven options to specify Maven mirror url

	4.5. ABOUT MAVEN ARTIFACTS AND COORDINATES

