Chapter 1. Components Overview
Chapter 1. Components Overview

			This chapter provides a summary of all the components available for Apache Camel.
		
Container types

				Red Hat Fuse provides a variety of container types, into which you can deploy your Camel applications:
			
	
						Spring Boot
					
	
						Apache Karaf
					
	
						JBoss Enterprise Application Platform (JBoss EAP)
					

				In addition, a Camel application can run as containerless: that is, where a Camel application runs directly in the JVM, without any special container.
			

				In some cases, Fuse might support a Camel component in one container, but not in the others. There are various reasons for this, but in some cases a component is not suitable for all container types. For example, the camel-ejb component is designed specifically for Java EE (that is, JBoss EAP), and cannot be supported in the other container types.
			

Supported components

				Note the following key:
			
	Symbol	Description
	
								✔
							

							 	
								Supported
							

							
	
								❌
							

							 	
								Unsupported or not yet supported
							

							
	
								Deprecated
							

							 	
								Likely to be removed in a future release
							

							

				Table 1.1, “Apache Camel Component Support Matrix” provides comprehensive details about which Camel components are supported in which containers.
			
Table 1.1. Apache Camel Component Support Matrix
	Component	Type	Containerless	Spring Boot 1.x	Spring Boot 2.x	Karaf	JBoss EAP
	
								activemq-camel
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-ahc
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-ahc-ws
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-ahc-wss
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-amqp
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-apns
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-asn1
							

							 	
								Data Format
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-as2
							

							 	
								Endpoint
							

							 	
								❌
							

							 	
								❌
							

							 	
								✔
							

							 	
								✔
							

							 	
								❌
							

							
	
								camel-asterisk
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-atmos
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								❌
							

							 	
								❌
							

							
	
								camel-atmosphere-websocket
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-atom
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-atomix
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-avro
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-avro
							

							 	
								Data Format
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-aws
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-azure
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-bam
							

							 	
								Endpoint
							

							 	
								Deprecated
							

							 	
								Deprecated
							

							 	
								Deprecated
							

							 	
								Deprecated
							

							 	
								❌
							

							
	
								camel-barcode
							

							 	
								Data Format
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-base64
							

							 	
								Data Format
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-bean
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-bean
							

							 	
								Language
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-bean-validator
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-beanio
							

							 	
								Data Format
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-beanstalk
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								❌
							

							
	
								camel-binding
							

							 	
								Endpoint
							

							 	
								Deprecated
							

							 	
								Deprecated
							

							 	
								Deprecated
							

							 	
								Deprecated
							

							 	
								✔
							

							
	
								camel-bindy
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-bindy
							

							 	
								Data Format
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-blueprint
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								❌
							

							 	
								❌
							

							 	
								✔
							

							 	
								❌
							

							
	
								camel-bonita
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								❌
							

							 	
								❌
							

							 	
								❌
							

							 	
								❌
							

							
	
								camel-boon
							

							 	
								Data Format
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-box
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-braintree
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-browse
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-cache
							

							 	
								Endpoint
							

							 	
								Deprecated
							

							 	
								Deprecated
							

							 	
								Deprecated
							

							 	
								Deprecated
							

							 	
								❌
							

							
	
								camel-caffeine
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-castor
							

							 	
								Data Format
							

							 	
								Deprecated
							

							 	
								Deprecated
							

							 	
								Deprecated
							

							 	
								Deprecated
							

							 	
								✔
							

							
	
								camel-cdi
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								❌
							

							 	
								❌
							

							 	
								Deprecated
							

							 	
								✔
							

							
	
								camel-chronicle-engine
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-chunk
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-class
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-cm-sms
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-cmis
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-coap
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-cometd
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-constant
							

							 	
								Language
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-context
							

							 	
								Endpoint
							

							 	
								Deprecated
							

							 	
								❌
							

							 	
								❌
							

							 	
								❌
							

							 	
								❌
							

							
	
								camel-consul
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-controlbus
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-couchbase
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-couchdb
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-cql
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-crypto
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-crypto
							

							 	
								Data Format
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-crypto-cms
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-csv
							

							 	
								Data Format
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-cxf
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-cxf-transport
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-dataformat
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-dataset
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-digitalocean
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-direct
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-direct-vm
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-disruptor
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-dns
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-docker
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-dozer
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-drill
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								❌
							

							
	
								camel-dropbox
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-eclipse
							

							 	 	
								Deprecated
							

							 	
								❌
							

							 	
								❌
							

							 	
								❌
							

							 	
								❌
							

							
	
								camel-ehcache
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-ejb
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								❌
							

							 	
								❌
							

							 	
								❌
							

							 	
								✔
							

							
	
								camel-el
							

							 	
								Language
							

							 	
								Deprecated
							

							 	
								❌
							

							 	
								❌
							

							 	
								❌
							

							 	
								❌
							

							
	
								camel-elasticsearch
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-elasticsearch5
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-elasticsearch-rest
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								❌
							

							
	
								camel-elsql
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-etcd
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-eventadmin
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								❌
							

							 	
								❌
							

							 	
								✔
							

							 	
								❌
							

							
	
								camel-exchangeProperty
							

							 	
								Language
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-exec
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-facebook
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-fhir
							

							 	
								Data Format
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-fhir
							

							 	
								Endpoint
							

							 	
								❌
							

							 	
								❌
							

							 	
								✔
							

							 	
								❌
							

							 	
								❌
							

							
	
								camel-file
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-file
							

							 	
								Language
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-flatpack
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-flatpack
							

							 	
								Data Format
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-flink
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								❌
							

							 	
								✔
							

							
	
								camel-fop
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-freemarker
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-ftp
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-gae
							

							 	
								Endpoint
							

							 	
								Deprecated
							

							 	
								❌
							

							 	
								❌
							

							 	
								❌
							

							 	
								❌
							

							
	
								camel-ganglia
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-geocoder
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-git
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-github
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-google-bigquery
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								❌
							

							 	
								✔
							

							
	
								camel-google-calendar
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-google-drive
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-google-mail
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-google-pubsub
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-google-sheets
							

							 	
								Endpoint
							

							 	
								❌
							

							 	
								❌
							

							 	
								✔
							

							 	
								❌
							

							 	
								❌
							

							
	
								camel-grape
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								❌
							

							
	
								camel-groovy
							

							 	
								Language
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-groovy-dsl
							

							 	 	
								Deprecated
							

							 	
								❌
							

							 	
								❌
							

							 	
								❌
							

							 	
								❌
							

							
	
								camel-grpc
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-guava-eventbus
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-guice
							

							 	
								Endpoint
							

							 	
								Deprecated
							

							 	
								Deprecated
							

							 	
								Deprecated
							

							 	
								❌
							

							 	
								❌
							

							
	
								camel-gzip
							

							 	
								Data Format
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-hawtdb
							

							 	
								Endpoint
							

							 	
								Deprecated
							

							 	
								Deprecated
							

							 	
								Deprecated
							

							 	
								Deprecated
							

							 	
								❌
							

							
	
								camel-hazelcast
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-hbase
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								❌
							

							 	
								❌
							

							
	
								camel-hdfs
							

							 	
								Endpoint
							

							 	
								Deprecated
							

							 	
								❌
							

							 	
								❌
							

							 	
								❌
							

							 	
								❌
							

							
	
								camel-hdfs2
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-header
							

							 	
								Language
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-headersmap
							

							 	 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-hessian
							

							 	
								Data Format
							

							 	
								Deprecated
							

							 	
								Deprecated
							

							 	
								Deprecated
							

							 	
								Deprecated
							

							 	
								Deprecated
							

							
	
								camel-hipchat
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-hl7
							

							 	
								Data Format
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-http
							

							 	
								Endpoint
							

							 	
								Deprecated
							

							 	
								Deprecated
							

							 	
								Deprecated
							

							 	
								✔
							

							 	
								❌
							

							
	
								camel-http4
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-hystrix
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-ibatis
							

							 	
								Endpoint
							

							 	
								Deprecated
							

							 	
								❌
							

							 	
								❌
							

							 	
								❌
							

							 	
								❌
							

							
	
								camel-ical
							

							 	
								Data Format
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-iec60870
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-ignite
							

							 	
								Endpoint
							

							 	
								❌
							

							 	
								❌
							

							 	
								❌
							

							 	
								❌
							

							 	
								❌
							

							
	
								camel-imap
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-infinispan
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								❌
							

							
	
								camel-influxdb
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-ipfs
							

							 	
								Endpoint
							

							 	
								❌
							

							 	
								❌
							

							 	
								✔
							

							 	
								❌
							

							 	
								❌
							

							
	
								camel-irc
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-ironmq
							

							 	
								Endpoint
							

							 	
								❌
							

							 	
								❌
							

							 	
								❌
							

							 	
								❌
							

							 	
								❌
							

							
	
								camel-jacksonxml
							

							 	
								Data Format
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-jasypt
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-javaspace
							

							 	
								Endpoint
							

							 	
								Deprecated
							

							 	
								❌
							

							 	
								❌
							

							 	
								❌
							

							 	
								❌
							

							
	
								camel-jaxb
							

							 	
								Data Format
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-jbpm
							

							 	
								Endpoint
							

							 	
								❌
							

							 	
								❌
							

							 	
								❌
							

							 	
								❌
							

							 	
								❌
							

							
	
								camel-jcache
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-jcifs
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								❌
							

							 	
								❌
							

							 	
								✔
							

							 	
								❌
							

							
	
								camel-jclouds
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								❌
							

							 	
								❌
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-jcr
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-jdbc
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-jetty
							

							 	
								Endpoint
							

							 	
								Deprecated
							

							 	
								Deprecated
							

							 	
								Deprecated
							

							 	
								Deprecated
							

							 	
								❌
							

							
	
								camel-jetty8
							

							 	
								Endpoint
							

							 	
								❌
							

							 	
								❌
							

							 	
								❌
							

							 	
								❌
							

							 	
								❌
							

							
	
								camel-jetty9
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								❌
							

							
	
								camel-jgroups
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-jibx
							

							 	
								Data Format
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-jing
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-jira
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								❌
							

							 	
								❌
							

							
	
								camel-jms
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-jmx
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-jolt
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-josql
							

							 	
								Endpoint
							

							 	
								Deprecated
							

							 	
								Deprecated
							

							 	
								Deprecated
							

							 	
								Deprecated
							

							 	
								❌
							

							
	
								camel-jpa
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-jsch
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-json-fastjson
							

							 	
								Data Format
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-json-gson
							

							 	
								Data Format
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-json-jackson
							

							 	
								Data Format
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-json-johnzon
							

							 	
								Data Format
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-json-validator
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								❌
							

							
	
								camel-json-xstream
							

							 	
								Data Format
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-jsonpath
							

							 	
								Language
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-jt400
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-juel
							

							 	
								Endpoint
							

							 	
								Deprecated
							

							 	
								Deprecated
							

							 	
								Deprecated
							

							 	
								Deprecated
							

							 	
								❌
							

							
	
								camel-jxpath
							

							 	
								Language
							

							 	
								Deprecated
							

							 	
								❌
							

							 	
								❌
							

							 	
								❌
							

							 	
								❌
							

							
	
								camel-kafka
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-kestrel
							

							 	
								Endpoint
							

							 	
								Deprecated
							

							 	
								Deprecated
							

							 	
								Deprecated
							

							 	
								Deprecated
							

							 	
								❌
							

							
	
								camel-krati
							

							 	
								Endpoint
							

							 	
								Deprecated
							

							 	
								Deprecated
							

							 	
								Deprecated
							

							 	
								Deprecated
							

							 	
								❌
							

							
	
								camel-kubernetes
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-kura
							

							 	 	
								✔
							

							 	
								❌
							

							 	
								❌
							

							 	
								✔
							

							 	
								❌
							

							
	
								camel-ldap
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-ldif
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								❌
							

							
	
								camel-leveldb
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-linkedin
							

							 	
								Endpoint
							

							 	
								❌
							

							 	
								❌
							

							 	
								❌
							

							 	
								❌
							

							 	
								❌
							

							
	
								camel-log
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-lpr
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-lra
							

							 	 	
								❌
							

							 	
								❌
							

							 	
								❌
							

							 	
								❌
							

							 	
								✔
							

							
	
								camel-lucene
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-lumberjack
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-lzf
							

							 	
								Data Format
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-master
							

							 	 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								❌
							

							
	
								camel-mail
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-metrics
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-micrometer
							

							 	
								Endpoint
							

							 	
								❌
							

							 	
								❌
							

							 	
								✔
							

							 	
								❌
							

							 	
								❌
							

							
	
								camel-milo
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-mime-multipart
							

							 	
								Data Format
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-mina
							

							 	
								Endpoint
							

							 	
								Deprecated
							

							 	
								❌
							

							 	
								❌
							

							 	
								✔
							

							 	
								❌
							

							
	
								camel-mina2
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-mllp
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-mock
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-mongodb
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-mongodb-gridfs
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-mongodb3
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-mqtt
							

							 	
								Endpoint
							

							 	
								Deprecated
							

							 	
								Deprecated
							

							 	
								Deprecated
							

							 	
								Deprecated
							

							 	
								Deprecated
							

							
	
								camel-msv
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-mustache
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-mvel
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-mvel
							

							 	
								Language
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-mybatis
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-nagios
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								❌
							

							
	
								camel-nats
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-netty
							

							 	
								Endpoint
							

							 	
								Deprecated
							

							 	
								Deprecated
							

							 	
								Deprecated
							

							 	
								✔
							

							 	
								❌
							

							
	
								camel-netty-http
							

							 	
								Endpoint
							

							 	
								Deprecated
							

							 	
								Deprecated
							

							 	
								Deprecated
							

							 	
								✔
							

							 	
								❌
							

							
	
								camel-netty4
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-netty4-http
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								❌
							

							
	
								camel-nsq
							

							 	
								Endpoint
							

							 	
								❌
							

							 	
								❌
							

							 	
								✔
							

							 	
								❌
							

							 	
								❌
							

							
	
								camel-ognl
							

							 	
								Language
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-olingo2
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-olingo4
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-openshift
							

							 	
								Endpoint
							

							 	
								Deprecated
							

							 	
								❌
							

							 	
								❌
							

							 	
								✔
							

							 	
								❌
							

							
	
								camel-openstack
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-opentracing
							

							 	 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-optaplanner
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-paho
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-paxlogging
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								❌
							

							 	
								❌
							

							 	
								✔
							

							 	
								❌
							

							
	
								camel-pdf
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-pgevent
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-pgp
							

							 	
								Data Format
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-php
							

							 	
								Language
							

							 	
								Deprecated
							

							 	
								Deprecated
							

							 	
								Deprecated
							

							 	
								❌
							

							 	
								Deprecated
							

							
	
								camel-pop3
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-printer
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-properties
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-protobuf
							

							 	
								Data Format
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-pubnub
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-pulsar
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								❌
							

							
	
								camel-python
							

							 	
								Language
							

							 	
								Deprecated
							

							 	
								Deprecated
							

							 	
								Deprecated
							

							 	
								❌
							

							 	
								Deprecated
							

							
	
								camel-quartz
							

							 	
								Endpoint
							

							 	
								Deprecated
							

							 	
								❌
							

							 	
								❌
							

							 	
								✔
							

							 	
								❌
							

							
	
								camel-quartz2
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-quickfix
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-rabbitmq
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-reactive-streams
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-reactor
							

							 	 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-ref
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-ref
							

							 	
								Language
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-rest
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-rest-api
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-rest-swagger
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-restlet
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								❌
							

							
	
								camel-ribbon
							

							 	 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								❌
							

							 	
								✔
							

							
	
								camel-rmi
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-routebox
							

							 	
								Endpoint
							

							 	
								Deprecated
							

							 	
								❌
							

							 	
								❌
							

							 	
								✔
							

							 	
								❌
							

							
	
								camel-rss
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-rss
							

							 	
								Data Format
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-ruby
							

							 	
								Language
							

							 	
								Deprecated
							

							 	
								Deprecated
							

							 	
								Deprecated
							

							 	
								❌
							

							 	
								Deprecated
							

							
	
								camel-rx
							

							 	
								Endpoint
							

							 	
								Deprecated
							

							 	
								Deprecated
							

							 	
								Deprecated
							

							 	
								Deprecated
							

							 	
								❌
							

							
	
								camel-rxjava2
							

							 	
								Endpoint
							

							 	
								❌
							

							 	
								❌
							

							 	
								✔
							

							 	
								❌
							

							 	
								❌
							

							
	
								camel-saga
							

							 	
								Endpoint
							

							 	
								❌
							

							 	
								❌
							

							 	
								❌
							

							 	
								❌
							

							 	
								❌
							

							
	
								camel-salesforce
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-sap
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-sap-netweaver
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-saxon
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-scala
							

							 	
								Endpoint
							

							 	
								Deprecated
							

							 	
								Deprecated
							

							 	
								Deprecated
							

							 	
								Deprecated
							

							 	
								❌
							

							
	
								camel-scheduler
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-schematron
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-scp
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-scr
							

							 	
								Endpoint
							

							 	
								Deprecated
							

							 	
								✔
							

							 	
								✔
							

							 	
								Deprecated
							

							 	
								❌
							

							
	
								camel-script
							

							 	
								Endpoint
							

							 	
								Deprecated
							

							 	
								Deprecated
							

							 	
								Deprecated
							

							 	
								Deprecated
							

							 	
								Deprecated
							

							
	
								camel-seda
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-serialization
							

							 	
								Data Format
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-service
							

							 	
								Endpoint
							

							 	
								❌
							

							 	
								❌
							

							 	
								✔
							

							 	
								❌
							

							 	
								❌
							

							
	
								camel-servicenow
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-servlet
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-servletlistener
							

							 	
								Endpoint
							

							 	
								Deprecated
							

							 	
								Deprecated
							

							 	
								Deprecated
							

							 	
								Deprecated
							

							 	
								❌
							

							
	
								camel-sftp
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-shiro
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-simple
							

							 	
								Language
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-sip
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-sjms
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-sjms2
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-slack
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-smpp
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-snakeyaml
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-snmp
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-soapjaxb
							

							 	
								Data Format
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-solr
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-spark
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								❌
							

							 	
								❌
							

							
	
								camel-spark-rest
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								❌
							

							 	
								❌
							

							
	
								camel-spel
							

							 	
								Language
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								❌
							

							 	
								✔
							

							
	
								camel-splunk
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-spring
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-spring-batch
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-spring-boot
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								❌
							

							 	
								❌
							

							
	
								camel-spring-cloud
							

							 	 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								❌
							

							 	
								❌
							

							
	
								camel-spring-cloud-consul
							

							 	
								Endpoint
							

							 	
								❌
							

							 	
								❌
							

							 	
								✔
							

							 	
								❌
							

							 	
								❌
							

							
	
								camel-spring-cloud-netflix
							

							 	 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								❌
							

							 	
								❌
							

							
	
								camel-spring-cloud-zookeeper
							

							 	
								Endpoint
							

							 	
								❌
							

							 	
								❌
							

							 	
								✔
							

							 	
								❌
							

							 	
								❌
							

							
	
								camel-spring-event
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								❌
							

							 	
								✔
							

							
	
								camel-spring-integration
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								❌
							

							 	
								❌
							

							 	
								❌
							

							 	
								✔
							

							
	
								camel-spring-javaconfig
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								❌
							

							 	
								✔
							

							
	
								camel-spring-ldap
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-spring-redis
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-spring-security
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								❌
							

							 	
								✔
							

							
	
								camel-spring-ws
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								❌
							

							
	
								camel-sql
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-sql-stored
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-ssh
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-stax
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-stomp
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-stream
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-string
							

							 	
								Data Format
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-string-template
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-stub
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-swagger
							

							 	
								Endpoint
							

							 	
								Deprecated
							

							 	
								❌
							

							 	
								❌
							

							 	
								Deprecated
							

							 	
								❌
							

							
	
								camel-swagger-java
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-syslog
							

							 	
								Data Format
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-tagsoup
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-tarfile
							

							 	
								Data Format
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-telegram
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-thrift
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-thrift
							

							 	
								Data Format
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-tika
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-timer
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-tokenize
							

							 	
								Language
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-twilio
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-twitter
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-undertow
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-univocity-csv
							

							 	
								Data Format
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-univocity-fixed
							

							 	
								Data Format
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-univocity-tsv
							

							 	
								Data Format
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-urlrewrite
							

							 	
								Endpoint
							

							 	
								Deprecated
							

							 	
								Deprecated
							

							 	
								Deprecated
							

							 	
								Deprecated
							

							 	
								❌
							

							
	
								camel-validator
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-velocity
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-vertx
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-vm
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-weather
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-web3j
							

							 	
								Endpoint
							

							 	
								❌
							

							 	
								❌
							

							 	
								✔
							

							 	
								❌
							

							 	
								❌
							

							
	
								camel-websocket
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								❌
							

							
	
								camel-wordpress
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-xchange
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								❌
							

							
	
								camel-xmlbeans
							

							 	
								Data Format
							

							 	
								Deprecated
							

							 	
								Deprecated
							

							 	
								Deprecated
							

							 	
								Deprecated
							

							 	
								✔
							

							
	
								camel-xmljson
							

							 	
								Data Format
							

							 	
								Deprecated
							

							 	
								Deprecated
							

							 	
								Deprecated
							

							 	
								Deprecated
							

							 	
								Deprecated
							

							
	
								camel-xmlrpc
							

							 	
								Endpoint
							

							 	
								❌
							

							 	
								❌
							

							 	
								❌
							

							 	
								❌
							

							 	
								❌
							

							
	
								camel-xmlrpc
							

							 	
								Data Format
							

							 	
								❌
							

							 	
								❌
							

							 	
								❌
							

							 	
								❌
							

							 	
								❌
							

							
	
								camel-xmlsecurity
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-xmpp
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-xpath
							

							 	
								Language
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-xquery
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-xquery
							

							 	
								Language
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-xslt
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-xstream
							

							 	
								Data Format
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-xtokenize
							

							 	
								Language
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-yaml-snakeyaml
							

							 	
								Data Format
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-yammer
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-yql
							

							 	
								Endpoint
							

							 	
								❌
							

							 	
								❌
							

							 	
								❌
							

							 	
								❌
							

							 	
								❌
							

							
	
								camel-zendesk
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								❌
							

							 	
								✔
							

							
	
								camel-zip
							

							 	
								Data Format
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-zipfile
							

							 	
								Data Format
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-zipkin
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-zookeeper
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							
	
								camel-zookeeper-master
							

							 	
								Endpoint
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							 	
								✔
							

							

Chapter 2. ActiveMQ

ActiveMQ Component

			The ActiveMQ component allows messages to be sent to a JMS Queue or Topic; or messages to be consumed from a JMS Queue or Topic using Apache ActiveMQ.
		

			This component is based on the Chapter 177, JMS Component and uses Spring’s JMS support for declarative transactions, using Spring’s JmsTemplate for sending and a MessageListenerContainer for consuming. All the options from the Chapter 177, JMS Component component also apply for this component.
		

			To use this component, make sure you have the activemq.jar or activemq-core.jar on your classpath along with any Apache Camel dependencies such as camel-core.jar, camel-spring.jar and camel-jms.jar.
		
Transacted and caching

				See section Transactions and Cache Levels below on JMS page if you are using transactions with JMS as it can impact performance.
			

URI format

activemq:[queue:|topic:]destinationName

			Where destinationName is an ActiveMQ queue or topic name. By default, the destinationName is interpreted as a queue name. For example, to connect to the queue, FOO.BAR, use:
		
activemq:FOO.BAR

			You can include the optional queue: prefix, if you prefer:
		
activemq:queue:FOO.BAR

			To connect to a topic, you must include the topic: prefix. For example, to connect to the topic, Stocks.Prices, use:
		
activemq:topic:Stocks.Prices

Options

			See Options on the Chapter 177, JMS Component component as all these options also apply for this component.
		

Camel on EAP deployment

			This component is supported by the Camel on EAP (Wildfly Camel) framework, which offers a simplified deployment model on the Red Hat JBoss Enterprise Application Platform (JBoss EAP) container.
		

			You can configure the ActiveMQ Camel component to work either with an embedded broker or an external broker. To embed a broker in the JBoss EAP container, configure the ActiveMQ Resource Adapter in the EAP container configuration file — for details, see ActiveMQ Resource Adapter Configuration.
		

Configuring the Connection Factory

			The following test case shows how to add an ActiveMQComponent to the CamelContext using the activeMQComponent() method while specifying the brokerURL used to connect to ActiveMQ.
		
camelContext.addComponent("activemq", activeMQComponent("vm://localhost?broker.persistent=false"));

Configuring the Connection Factory using Spring XML

			You can configure the ActiveMQ broker URL on the ActiveMQComponent as follows
		
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
 http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/camel-spring.xsd">

 <camelContext xmlns="http://camel.apache.org/schema/spring">
 </camelContext>

 <bean id="activemq" class="org.apache.activemq.camel.component.ActiveMQComponent">
 <property name="brokerURL" value="tcp://somehost:61616"/>
 </bean>

</beans>

Using connection pooling

			When sending to an ActiveMQ broker using Camel it’s recommended to use a pooled connection factory to handle efficient pooling of JMS connections, sessions and producers. This is documented in the page ActiveMQ Spring Support.
		

			You can grab Jencks AMQ pool with Maven:
		
 <dependency>
 <groupId>org.apache.activemq</groupId>
 <artifactId>activemq-pool</artifactId>
 <version>5.3.2</version>
 </dependency>

			And then setup the activemq component as follows:
		
 <bean id="jmsConnectionFactory" class="org.apache.activemq.ActiveMQConnectionFactory">
 <property name="brokerURL" value="tcp://localhost:61616" />
 </bean>

 <bean id="pooledConnectionFactory" class="org.apache.activemq.pool.PooledConnectionFactory" init-method="start" destroy-method="stop">
 <property name="maxConnections" value="8" />
 <property name="connectionFactory" ref="jmsConnectionFactory" />
 </bean>

 <bean id="jmsConfig" class="org.apache.camel.component.jms.JmsConfiguration">
 <property name="connectionFactory" ref="pooledConnectionFactory"/>
 <property name="concurrentConsumers" value="10"/>
 </bean>

 <bean id="activemq" class="org.apache.activemq.camel.component.ActiveMQComponent">
 <property name="configuration" ref="jmsConfig"/>
 </bean>
Note

				Notice the init and destroy methods on the pooled connection factory. This is important to ensure the connection pool is properly started and shutdown.
			

			The PooledConnectionFactory will then create a connection pool with up to 8 connections in use at the same time. Each connection can be shared by many sessions. There is an option named maxActive you can use to configure the maximum number of sessions per connection; the default value is 500. From ActiveMQ 5.7 onwards the option has been renamed to better reflect its purpose, being named as maxActiveSessionPerConnection. Notice the concurrentConsumers is set to a higher value than maxConnections is. This is okay, as each consumer is using a session, and as a session can share the same connection, we are in the safe. In this example we can have 8 * 500 = 4000 active sessions at the same time.
		

Invoking MessageListener POJOs in a route

			The ActiveMQ component also provides a helper Type Converter from a JMS MessageListener to a Processor. This means that the Chapter 43, Bean Component component is capable of invoking any JMS MessageListener bean directly inside any route.
		

			So for example you can create a MessageListener in JMS as follows:
		
public class MyListener implements MessageListener {
 public void onMessage(Message jmsMessage) {
 // ...
 }
}

			Then use it in your route as follows
		
from("file://foo/bar").
 bean(MyListener.class);

			That is, you can reuse any of the Apache Camel components and easily integrate them into your JMS MessageListener POJO\!
		

Using ActiveMQ Destination Options

			Available as of ActiveMQ 5.6
		

			You can configure the Destination Options in the endpoint uri, using the "destination." prefix. For example to mark a consumer as exclusive, and set its prefetch size to 50, you can do as follows:
		
<camelContext xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="file://src/test/data?noop=true"/>
 <to uri="activemq:queue:foo"/>
 </route>
 <route>
 <!-- use consumer.exclusive ActiveMQ destination option, notice we have to prefix with destination. -->
 <from uri="activemq:foo?destination.consumer.exclusive=true&destination.consumer.prefetchSize=50"/>
 <to uri="mock:results"/>
 </route>
</camelContext>

Consuming Advisory Messages

			ActiveMQ can generate Advisory messages which are put in topics that you can consume. Such messages can help you send alerts in case you detect slow consumers or to build statistics (number of messages/produced per day, etc.) The following Spring DSL example shows you how to read messages from a topic.
		
<route>
	<from uri="activemq:topic:ActiveMQ.Advisory.Connection?mapJmsMessage=false" />
	<convertBodyTo type="java.lang.String"/>
	<transform>
	 <simple>${in.body}</simple>
	</transform>
	<to uri="file://data/activemq/?fileExist=Append&ileName=advisoryConnection-${date:now:yyyyMMdd}.txt" />
</route>

			If you consume a message on a queue, you should see the following files under data/activemq folder :
		

			advisoryConnection-20100312.txt advisoryProducer-20100312.txt
		

			and containing string:
		
 ActiveMQMessage {commandId = 0, responseRequired = false, messageId = ID:dell-charles-3258-1268399815140
 -1:0:0:0:221, originalDestination = null, originalTransactionId = null, producerId = ID:dell-charles-
 3258-1268399815140-1:0:0:0, destination = topic://ActiveMQ.Advisory.Connection, transactionId = null,
 expiration = 0, timestamp = 0, arrival = 0, brokerInTime = 1268403383468, brokerOutTime = 1268403383468,
 correlationId = null, replyTo = null, persistent = false, type = Advisory, priority = 0, groupID = null,
 groupSequence = 0, targetConsumerId = null, compressed = false, userID = null, content = null,
 marshalledProperties = org.apache.activemq.util.ByteSequence@17e2705, dataStructure = ConnectionInfo
 {commandId = 1, responseRequired = true, connectionId = ID:dell-charles-3258-1268399815140-2:50,
 clientId = ID:dell-charles-3258-1268399815140-14:0, userName = , password = *****,
 brokerPath = null, brokerMasterConnector = false, manageable = true, clientMaster = true},
 redeliveryCounter = 0, size = 0, properties = {originBrokerName=master, originBrokerId=ID:dell-charles-
 3258-1268399815140-0:0, originBrokerURL=vm://master}, readOnlyProperties = true, readOnlyBody = true,
 droppable = false}

Getting Component JAR

			You need this dependency:
		
	
					activemq-camel
				

			ActiveMQ is an extension of the Chapter 177, JMS Component component released with the ActiveMQ project.
		
<dependency>
 <groupId>org.apache.activemq</groupId>
 <artifactId>activemq-camel</artifactId>
 <version>5.6.0</version>
</dependency>

Chapter 3. AHC Component

			Available as of Camel version 2.8
		

			The ahc: component provides HTTP based endpoints for consuming external HTTP resources (as a client to call external servers using HTTP).
 The component uses the Async Http Client library.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-ahc</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>
URI format

ahc:http://hostname[:port][/resourceUri][?options]
ahc:https://hostname[:port][/resourceUri][?options]

				Will by default use port 80 for HTTP and 443 for HTTPS.
			

				You can append query options to the URI in the following format, ?option=value&option=value&…​
			

AhcEndpoint Options

				The AHC endpoint is configured using URI syntax:
			
ahc:httpUri

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									httpUri
								

								 	
									Required The URI to use such as http://hostname:port/path
								

								 	 	
									URI
								

								

Query Parameters (13 parameters):

	Name	Description	Default	Type
	
									bridgeEndpoint (producer)
								

								 	
									If the option is true, then the Exchange.HTTP_URI header is ignored, and use the endpoint’s URI for request. You may also set the throwExceptionOnFailure to be false to let the AhcProducer send all the fault response back.
								

								 	
									false
								

								 	
									boolean
								

								
	
									bufferSize (producer)
								

								 	
									The initial in-memory buffer size used when transferring data between Camel and AHC Client.
								

								 	
									4096
								

								 	
									int
								

								
	
									connectionClose (producer)
								

								 	
									Define if the Connection Close header has to be added to HTTP Request. This parameter is false by default
								

								 	
									false
								

								 	
									boolean
								

								
	
									cookieHandler (producer)
								

								 	
									Configure a cookie handler to maintain a HTTP session
								

								 	 	
									CookieHandler
								

								
	
									headerFilterStrategy (producer)
								

								 	
									To use a custom HeaderFilterStrategy to filter header to and from Camel message.
								

								 	 	
									HeaderFilterStrategy
								

								
	
									throwExceptionOnFailure (producer)
								

								 	
									Option to disable throwing the AhcOperationFailedException in case of failed responses from the remote server. This allows you to get all responses regardless of the HTTP status code.
								

								 	
									true
								

								 	
									boolean
								

								
	
									transferException (producer)
								

								 	
									If enabled and an Exchange failed processing on the consumer side, and if the caused Exception was send back serialized in the response as a application/x-java-serialized-object content type (for example using Jetty or Servlet Camel components). On the producer side the exception will be deserialized and thrown as is, instead of the AhcOperationFailedException. The caused exception is required to be serialized. This is by default turned off. If you enable this then be aware that Java will deserialize the incoming data from the request to Java and that can be a potential security risk.
								

								 	
									false
								

								 	
									boolean
								

								
	
									binding (advanced)
								

								 	
									To use a custom AhcBinding which allows to control how to bind between AHC and Camel.
								

								 	 	
									AhcBinding
								

								
	
									clientConfig (advanced)
								

								 	
									To configure the AsyncHttpClient to use a custom com.ning.http.client.AsyncHttpClientConfig instance.
								

								 	 	
									AsyncHttpClientConfig
								

								
	
									clientConfigOptions (advanced)
								

								 	
									To configure the AsyncHttpClientConfig using the key/values from the Map.
								

								 	 	
									Map
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									clientConfigRealmOptions (security)
								

								 	
									To configure the AsyncHttpClientConfig Realm using the key/values from the Map.
								

								 	 	
									Map
								

								
	
									sslContextParameters (security)
								

								 	
									Reference to a org.apache.camel.util.jsse.SSLContextParameters in the Registry. This reference overrides any configured SSLContextParameters at the component level. See Using the JSSE Configuration Utility. Note that configuring this option will override any SSL/TLS configuration options provided through the clientConfig option at the endpoint or component level.
								

								 	 	
									SSLContextParameters
								

								

AhcComponent Options

				The AHC component supports 8 options which are listed below.
			
	Name	Description	Default	Type
	
								client (advanced)
							

							 	
								To use a custom AsyncHttpClient
							

							 	 	
								AsyncHttpClient
							

							
	
								binding (advanced)
							

							 	
								To use a custom AhcBinding which allows to control how to bind between AHC and Camel.
							

							 	 	
								AhcBinding
							

							
	
								clientConfig (advanced)
							

							 	
								To configure the AsyncHttpClient to use a custom com.ning.http.client.AsyncHttpClientConfig instance.
							

							 	 	
								AsyncHttpClientConfig
							

							
	
								sslContextParameters (security)
							

							 	
								Reference to a org.apache.camel.util.jsse.SSLContextParameters in the Registry. Note that configuring this option will override any SSL/TLS configuration options provided through the clientConfig option at the endpoint or component level.
							

							 	 	
								SSLContextParameters
							

							
	
								allowJavaSerialized Object (advanced)
							

							 	
								Whether to allow java serialization when a request uses context-type=application/x-java-serialized-object This is by default turned off. If you enable this then be aware that Java will deserialize the incoming data from the request to Java and that can be a potential security risk.
							

							 	
								false
							

							 	
								boolean
							

							
	
								useGlobalSslContext Parameters (security)
							

							 	
								Enable usage of global SSL context parameters.
							

							 	
								false
							

							 	
								boolean
							

							
	
								headerFilterStrategy (filter)
							

							 	
								To use a custom org.apache.camel.spi.HeaderFilterStrategy to filter header to and from Camel message.
							

							 	 	
								HeaderFilterStrategy
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				Notice that setting any of the options on the AhcComponent will propagate those options to AhcEndpoints being created. However the AhcEndpoint can also configure/override a custom option. Options set on endpoints will always take precedence over options from the AhcComponent.
			

Message Headers

	Name	Type	Description
	
								Exchange.HTTP_URI
							

							 	
								String
							

							 	
								URI to call. Will override existing URI set directly on the endpoint.
							

							
	
								Exchange.HTTP_PATH
							

							 	
								String
							

							 	
								Request URI’s path, the header will be used to build the request URI with the HTTP_URI. If the path is start with "/", http producer will try to find the relative path based on the Exchange.HTTP_BASE_URI header or the exchange.getFromEndpoint().getEndpointUri();
							

							
	
								Exchange.HTTP_QUERY
							

							 	
								String
							

							 	
								Camel 2.11 onwards: URI parameters. Will override existing URI parameters set directly on the endpoint.
							

							
	
								Exchange.HTTP_RESPONSE_CODE
							

							 	
								int
							

							 	
								The HTTP response code from the external server. Is 200 for OK.
							

							
	
								Exchange.HTTP_CHARACTER_ENCODING
							

							 	
								String
							

							 	
								Character encoding.
							

							
	
								Exchange.CONTENT_TYPE
							

							 	
								String
							

							 	
								The HTTP content type. Is set on both the IN and OUT message to provide a content type, such as text/html.
							

							
	
								Exchange.CONTENT_ENCODING
							

							 	
								String
							

							 	
								The HTTP content encoding. Is set on both the IN and OUT message to provide a content encoding, such as gzip.
							

							

Message Body

				Camel will store the HTTP response from the external server on the OUT body. All headers from the IN message will be copied to the OUT message, so headers are preserved during routing. Additionally Camel will add the HTTP response headers as well to the OUT message headers.
			

Response code

				Camel will handle according to the HTTP response code:
			
	
						Response code is in the range 100..299, Camel regards it as a success response.
					
	
						Response code is in the range 300..399, Camel regards it as a redirection response and will throw a AhcOperationFailedException with the information.
					
	
						Response code is 400+, Camel regards it as an external server failure and will throw a AhcOperationFailedException with the information.
					

						throwExceptionOnFailure
					

						The option, throwExceptionOnFailure, can be set to false to prevent the AhcOperationFailedException from being thrown for failed response codes. This allows you to get any response from the remote server.
					

AhcOperationFailedException

				This exception contains the following information:
			
	
						The HTTP status code
					
	
						The HTTP status line (text of the status code)
					
	
						Redirect location, if server returned a redirect
					
	
						Response body as a java.lang.String, if server provided a body as response
					

Calling using GET or POST

				The following algorithm is used to determine if either GET or POST HTTP method should be used:
 1. Use method provided in header.
 2. GET if query string is provided in header.
 3. GET if endpoint is configured with a query string.
 4. POST if there is data to send (body is not null).
 5. GET otherwise.
			

Configuring URI to call

				You can set the HTTP producer’s URI directly form the endpoint URI. In the route below, Camel will call out to the external server, oldhost, using HTTP.
			
from("direct:start")
 .to("ahc:http://oldhost");

				And the equivalent Spring sample:
			
<camelContext xmlns="http://activemq.apache.org/camel/schema/spring">
 <route>
 <from uri="direct:start"/>
 <to uri="ahc:http://oldhost"/>
 </route>
</camelContext>

				You can override the HTTP endpoint URI by adding a header with the key, Exchange.HTTP_URI, on the message.
			
from("direct:start")
 .setHeader(Exchange.HTTP_URI, constant("http://newhost"))
 .to("ahc:http://oldhost");

Configuring URI Parameters

				The ahc producer supports URI parameters to be sent to the HTTP server. The URI parameters can either be set directly on the endpoint URI or as a header with the key Exchange.HTTP_QUERY on the message.
			
from("direct:start")
 .to("ahc:http://oldhost?order=123&detail=short");

				Or options provided in a header:
			
from("direct:start")
 .setHeader(Exchange.HTTP_QUERY, constant("order=123&detail=short"))
 .to("ahc:http://oldhost");

How to set the http method to the HTTP producer

				The HTTP component provides a way to set the HTTP request method by setting the message header. Here is an example;
			
from("direct:start")
 .setHeader(Exchange.HTTP_METHOD, constant("POST"))
 .to("ahc:http://www.google.com")
 .to("mock:results");

				And the equivalent Spring sample:
			
<camelContext xmlns="http://activemq.apache.org/camel/schema/spring">
 <route>
 <from uri="direct:start"/>
 <setHeader headerName="CamelHttpMethod">
 <constant>POST</constant>
 </setHeader>
 <to uri="ahc:http://www.google.com"/>
 <to uri="mock:results"/>
 </route>
</camelContext>

Configuring charset

				If you are using POST to send data you can configure the charset using the Exchange property:
			
exchange.setProperty(Exchange.CHARSET_NAME, "iso-8859-1");
URI Parameters from the endpoint URI

					In this sample we have the complete URI endpoint that is just what you would have typed in a web browser. Multiple URI parameters can of course be set using the & character as separator, just as you would in the web browser. Camel does no tricks here.
				
// we query for Camel at the Google page
template.sendBody("ahc:http://www.google.com/search?q=Camel", null);

URI Parameters from the Message

Map headers = new HashMap();
headers.put(Exchange.HTTP_QUERY, "q=Camel&lr=lang_en");
// we query for Camel and English language at Google
template.sendBody("ahc:http://www.google.com/search", null, headers);

					In the header value above notice that it should not be prefixed with ? and you can separate parameters as usual with the & char.
				

Getting the Response Code

					You can get the HTTP response code from the AHC component by getting the value from the Out message header with Exchange.HTTP_RESPONSE_CODE.
				
Exchange exchange = template.send("ahc:http://www.google.com/search", new Processor() {
 public void process(Exchange exchange) throws Exception {
 exchange.getIn().setHeader(Exchange.HTTP_QUERY, constant("hl=en&q=activemq"));
 }
 });
 Message out = exchange.getOut();
 int responseCode = out.getHeader(Exchange.HTTP_RESPONSE_CODE, Integer.class);

Configuring AsyncHttpClient

				The AsyncHttpClient client uses a AsyncHttpClientConfig to configure the client. See the documentation at
 Async Http Client for more details.
			

				In Camel 2.8, configuration is limited to using the builder pattern provided by AsyncHttpClientConfig.Builder. In Camel 2.8, the AsyncHttpClientConfig doesn’t support getters/setters so its not easy to create/configure using a Spring bean style (eg the <bean> tag in the XML file).
			

				The example below shows how to use a builder to create the AsyncHttpClientConfig which we configure on the AhcComponent.
			

				In Camel 2.9, the AHC component uses Async HTTP library 1.6.4. This newer version provides added support for plain bean style configuration. The AsyncHttpClientConfigBean class provides getters and setters for the configuration options available in AsyncHttpClientConfig. An instance of AsyncHttpClientConfigBean may be passed directly to the AHC component or referenced in an endpoint URI using the clientConfig URI parameter.
			

				Also available in Camel 2.9 is the ability to set configuration options directly in the URI. URI parameters starting with "clientConfig." can be used to set the various configurable properties of AsyncHttpClientConfig. The properties specified in the endpoint URI are merged with those specified in the configuration referenced by the "clientConfig" URI parameter with those being set using the "clientConfig." parameter taking priority. The AsyncHttpClientConfig instance referenced is always copied for each endpoint such that settings on one endpoint will remain independent of settings on any previously created endpoints. The example below shows how to configure the AHC component using the "clientConfig." type URI parameters.
			
from("direct:start")
 .to("ahc:http://localhost:8080/foo?clientConfig.maxRequestRetry=3&clientConfig.followRedirects=true")

SSL Support (HTTPS)

				Using the JSSE Configuration Utility
			

				As of Camel 2.9, the AHC component supports SSL/TLS configuration through the Camel JSSE Configuration Utility. This utility greatly decreases the amount of component specific code you need to write and is configurable at the endpoint and component levels. The following examples demonstrate how to use the utility with the AHC component.
			

				Programmatic configuration of the component
			
KeyStoreParameters ksp = new KeyStoreParameters();
ksp.setResource("/users/home/server/keystore.jks");
ksp.setPassword("keystorePassword");

KeyManagersParameters kmp = new KeyManagersParameters();
kmp.setKeyStore(ksp);
kmp.setKeyPassword("keyPassword");

SSLContextParameters scp = new SSLContextParameters();
scp.setKeyManagers(kmp);

AhcComponent component = context.getComponent("ahc", AhcComponent.class);
component.setSslContextParameters(scp));

				Spring DSL based configuration of endpoint
			
...
 <camel:sslContextParameters
 id="sslContextParameters">
 <camel:keyManagers
 keyPassword="keyPassword">
 <camel:keyStore
 resource="/users/home/server/keystore.jks"
 password="keystorePassword"/>
 </camel:keyManagers>
 </camel:sslContextParameters>...
...
 <to uri="ahc:https://localhost/foo?sslContextParameters=#sslContextParameters"/>
...

See Also

	
						Configuring Camel
					
	
						Component
					
	
						Endpoint
					
	
						Getting Started
					
	
						Jetty
					
	
						HTTP
					
	
						HTTP4
					

Chapter 4. AHC Websocket Component

			Available as of Camel version 2.14
		

			The ahc-ws component provides Websocket based endpoints for a client communicating with external servers over Websocket (as a client opening a websocket connection to an external server).
 The component uses the AHC component that in turn uses the Async Http Client library.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-ahc-ws</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>
URI Format

ahc-ws://hostname[:port][/resourceUri][?options]
ahc-wss://hostname[:port][/resourceUri][?options]

				Will by default use port 80 for ahc-ws and 443 for ahc-wss.
			

AHC-WS Options

				As the AHC-WS component is based on the AHC component, you can use the various configuration options of the AHC component.
			

				The AHC Websocket component supports 8 options which are listed below.
			
	Name	Description	Default	Type
	
								client (advanced)
							

							 	
								To use a custom AsyncHttpClient
							

							 	 	
								AsyncHttpClient
							

							
	
								binding (advanced)
							

							 	
								To use a custom AhcBinding which allows to control how to bind between AHC and Camel.
							

							 	 	
								AhcBinding
							

							
	
								clientConfig (advanced)
							

							 	
								To configure the AsyncHttpClient to use a custom com.ning.http.client.AsyncHttpClientConfig instance.
							

							 	 	
								AsyncHttpClientConfig
							

							
	
								sslContextParameters (security)
							

							 	
								Reference to a org.apache.camel.util.jsse.SSLContextParameters in the Registry. Note that configuring this option will override any SSL/TLS configuration options provided through the clientConfig option at the endpoint or component level.
							

							 	 	
								SSLContextParameters
							

							
	
								allowJavaSerialized Object (advanced)
							

							 	
								Whether to allow java serialization when a request uses context-type=application/x-java-serialized-object This is by default turned off. If you enable this then be aware that Java will deserialize the incoming data from the request to Java and that can be a potential security risk.
							

							 	
								false
							

							 	
								boolean
							

							
	
								useGlobalSslContext Parameters (security)
							

							 	
								Enable usage of global SSL context parameters.
							

							 	
								false
							

							 	
								boolean
							

							
	
								headerFilterStrategy (filter)
							

							 	
								To use a custom org.apache.camel.spi.HeaderFilterStrategy to filter header to and from Camel message.
							

							 	 	
								HeaderFilterStrategy
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The AHC Websocket endpoint is configured using URI syntax:
			
ahc-ws:httpUri

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									httpUri
								

								 	
									Required The URI to use such as http://hostname:port/path
								

								 	 	
									URI
								

								

Query Parameters (18 parameters):

	Name	Description	Default	Type
	
									bridgeEndpoint (common)
								

								 	
									If the option is true, then the Exchange.HTTP_URI header is ignored, and use the endpoint’s URI for request. You may also set the throwExceptionOnFailure to be false to let the AhcProducer send all the fault response back.
								

								 	
									false
								

								 	
									boolean
								

								
	
									bufferSize (common)
								

								 	
									The initial in-memory buffer size used when transferring data between Camel and AHC Client.
								

								 	
									4096
								

								 	
									int
								

								
	
									headerFilterStrategy (common)
								

								 	
									To use a custom HeaderFilterStrategy to filter header to and from Camel message.
								

								 	 	
									HeaderFilterStrategy
								

								
	
									throwExceptionOnFailure (common)
								

								 	
									Option to disable throwing the AhcOperationFailedException in case of failed responses from the remote server. This allows you to get all responses regardless of the HTTP status code.
								

								 	
									true
								

								 	
									boolean
								

								
	
									transferException (common)
								

								 	
									If enabled and an Exchange failed processing on the consumer side, and if the caused Exception was send back serialized in the response as a application/x-java-serialized-object content type (for example using Jetty or Servlet Camel components). On the producer side the exception will be deserialized and thrown as is, instead of the AhcOperationFailedException. The caused exception is required to be serialized. This is by default turned off. If you enable this then be aware that Java will deserialize the incoming data from the request to Java and that can be a potential security risk.
								

								 	
									false
								

								 	
									boolean
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									sendMessageOnError (consumer)
								

								 	
									Whether to send an message if the web-socket listener received an error.
								

								 	
									false
								

								 	
									boolean
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									connectionClose (producer)
								

								 	
									Define if the Connection Close header has to be added to HTTP Request. This parameter is false by default
								

								 	
									false
								

								 	
									boolean
								

								
	
									cookieHandler (producer)
								

								 	
									Configure a cookie handler to maintain a HTTP session
								

								 	 	
									CookieHandler
								

								
	
									useStreaming (producer)
								

								 	
									To enable streaming to send data as multiple text fragments.
								

								 	
									false
								

								 	
									boolean
								

								
	
									binding (advanced)
								

								 	
									To use a custom AhcBinding which allows to control how to bind between AHC and Camel.
								

								 	 	
									AhcBinding
								

								
	
									clientConfig (advanced)
								

								 	
									To configure the AsyncHttpClient to use a custom com.ning.http.client.AsyncHttpClientConfig instance.
								

								 	 	
									AsyncHttpClientConfig
								

								
	
									clientConfigOptions (advanced)
								

								 	
									To configure the AsyncHttpClientConfig using the key/values from the Map.
								

								 	 	
									Map
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									clientConfigRealmOptions (security)
								

								 	
									To configure the AsyncHttpClientConfig Realm using the key/values from the Map.
								

								 	 	
									Map
								

								
	
									sslContextParameters (security)
								

								 	
									Reference to a org.apache.camel.util.jsse.SSLContextParameters in the Registry. This reference overrides any configured SSLContextParameters at the component level. See Using the JSSE Configuration Utility. Note that configuring this option will override any SSL/TLS configuration options provided through the clientConfig option at the endpoint or component level.
								

								 	 	
									SSLContextParameters
								

								

Writing and Reading Data over Websocket

				An ahc-ws endpoint can either write data to the socket or read from the socket, depending on whether the endpoint is configured as the producer or the consumer, respectively.
			

Configuring URI to Write or Read Data

				In the route below, Camel will write to the specified websocket connection.
			
from("direct:start")
 .to("ahc-ws://targethost");

				And the equivalent Spring sample:
			
<camelContext xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="direct:start"/>
 <to uri="ahc-ws://targethost"/>
 </route>
</camelContext>

				In the route below, Camel will read from the specified websocket connection.
			
from("ahc-ws://targethost")
 .to("direct:next");

				And the equivalent Spring sample:
			
<camelContext xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="ahc-ws://targethost"/>
 <to uri="direct:next"/>
 </route>
</camelContext>

				
			

See Also

	
						Configuring Camel
					
	
						Component
					
	
						Endpoint
					
	
						Getting Started
					
	
						AHC
					
	
						Atmosphere-Websocket
					

Chapter 5. AMQP Component

			Available as of Camel version 1.2
		

			The amqp: component supports the AMQP 1.0 protocol using the JMS Client API of the Qpid project. In case you want to use AMQP 0.9 (in particular RabbitMQ) you might also be interested in the Camel RabbitMQ component. Please keep in mind that prior to the Camel 2.17.0 AMQP component supported AMQP 0.9 and above, however since Camel 2.17.0 it supports only AMQP 1.0.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-amqp</artifactId>
 <version>${camel.version}</version> <!-- use the same version as your Camel core version -->
</dependency>
URI format

amqp:[queue:|topic:]destinationName[?options]

AMQP Options

				You can specify all of the various configuration options of the JMS component after the destination name.
			

				The AMQP component supports 80 options which are listed below.
			
	Name	Description	Default	Type
	
								configuration (advanced)
							

							 	
								To use a shared JMS configuration
							

							 	 	
								JmsConfiguration
							

							
	
								acceptMessagesWhile Stopping (consumer)
							

							 	
								Specifies whether the consumer accept messages while it is stopping. You may consider enabling this option, if you start and stop JMS routes at runtime, while there are still messages enqueued on the queue. If this option is false, and you stop the JMS route, then messages may be rejected, and the JMS broker would have to attempt redeliveries, which yet again may be rejected, and eventually the message may be moved at a dead letter queue on the JMS broker. To avoid this its recommended to enable this option.
							

							 	
								false
							

							 	
								boolean
							

							
	
								allowReplyManagerQuick Stop (consumer)
							

							 	
								Whether the DefaultMessageListenerContainer used in the reply managers for request-reply messaging allow the DefaultMessageListenerContainer.runningAllowed flag to quick stop in case JmsConfigurationisAcceptMessagesWhileStopping is enabled, and org.apache.camel.CamelContext is currently being stopped. This quick stop ability is enabled by default in the regular JMS consumers but to enable for reply managers you must enable this flag.
							

							 	
								false
							

							 	
								boolean
							

							
	
								acknowledgementMode (consumer)
							

							 	
								The JMS acknowledgement mode defined as an Integer. Allows you to set vendor-specific extensions to the acknowledgment mode.For the regular modes, it is preferable to use the acknowledgementModeName instead.
							

							 	 	
								int
							

							
	
								eagerLoadingOf Properties (consumer)
							

							 	
								Enables eager loading of JMS properties as soon as a message is loaded which generally is inefficient as the JMS properties may not be required but sometimes can catch early any issues with the underlying JMS provider and the use of JMS properties
							

							 	
								false
							

							 	
								boolean
							

							
	
								acknowledgementModeName (consumer)
							

							 	
								The JMS acknowledgement name, which is one of: SESSION_TRANSACTED, CLIENT_ACKNOWLEDGE, AUTO_ACKNOWLEDGE, DUPS_OK_ACKNOWLEDGE
							

							 	
								AUTO_ ACKNOWLEDGE
							

							 	
								String
							

							
	
								autoStartup (consumer)
							

							 	
								Specifies whether the consumer container should auto-startup.
							

							 	
								true
							

							 	
								boolean
							

							
	
								cacheLevel (consumer)
							

							 	
								Sets the cache level by ID for the underlying JMS resources. See cacheLevelName option for more details.
							

							 	 	
								int
							

							
	
								cacheLevelName (consumer)
							

							 	
								Sets the cache level by name for the underlying JMS resources. Possible values are: CACHE_AUTO, CACHE_CONNECTION, CACHE_CONSUMER, CACHE_NONE, and CACHE_SESSION. The default setting is CACHE_AUTO. See the Spring documentation and Transactions Cache Levels for more information.
							

							 	
								CACHE_AUTO
							

							 	
								String
							

							
	
								replyToCacheLevelName (producer)
							

							 	
								Sets the cache level by name for the reply consumer when doing request/reply over JMS. This option only applies when using fixed reply queues (not temporary). Camel will by default use: CACHE_CONSUMER for exclusive or shared w/ replyToSelectorName. And CACHE_SESSION for shared without replyToSelectorName. Some JMS brokers such as IBM WebSphere may require to set the replyToCacheLevelName=CACHE_NONE to work. Note: If using temporary queues then CACHE_NONE is not allowed, and you must use a higher value such as CACHE_CONSUMER or CACHE_SESSION.
							

							 	 	
								String
							

							
	
								clientId (common)
							

							 	
								Sets the JMS client ID to use. Note that this value, if specified, must be unique and can only be used by a single JMS connection instance. It is typically only required for durable topic subscriptions. If using Apache ActiveMQ you may prefer to use Virtual Topics instead.
							

							 	 	
								String
							

							
	
								concurrentConsumers (consumer)
							

							 	
								Specifies the default number of concurrent consumers when consuming from JMS (not for request/reply over JMS). See also the maxMessagesPerTask option to control dynamic scaling up/down of threads. When doing request/reply over JMS then the option replyToConcurrentConsumers is used to control number of concurrent consumers on the reply message listener.
							

							 	
								1
							

							 	
								int
							

							
	
								replyToConcurrent Consumers (producer)
							

							 	
								Specifies the default number of concurrent consumers when doing request/reply over JMS. See also the maxMessagesPerTask option to control dynamic scaling up/down of threads.
							

							 	
								1
							

							 	
								int
							

							
	
								connectionFactory (common)
							

							 	
								The connection factory to be use. A connection factory must be configured either on the component or endpoint.
							

							 	 	
								ConnectionFactory
							

							
	
								username (security)
							

							 	
								Username to use with the ConnectionFactory. You can also configure username/password directly on the ConnectionFactory.
							

							 	 	
								String
							

							
	
								password (security)
							

							 	
								Password to use with the ConnectionFactory. You can also configure username/password directly on the ConnectionFactory.
							

							 	 	
								String
							

							
	
								deliveryPersistent (producer)
							

							 	
								Specifies whether persistent delivery is used by default.
							

							 	
								true
							

							 	
								boolean
							

							
	
								deliveryMode (producer)
							

							 	
								Specifies the delivery mode to be used. Possibles values are those defined by javax.jms.DeliveryMode. NON_PERSISTENT = 1 and PERSISTENT = 2.
							

							 	 	
								Integer
							

							
	
								durableSubscriptionName (common)
							

							 	
								The durable subscriber name for specifying durable topic subscriptions. The clientId option must be configured as well.
							

							 	 	
								String
							

							
	
								exceptionListener (advanced)
							

							 	
								Specifies the JMS Exception Listener that is to be notified of any underlying JMS exceptions.
							

							 	 	
								ExceptionListener
							

							
	
								errorHandler (advanced)
							

							 	
								Specifies a org.springframework.util.ErrorHandler to be invoked in case of any uncaught exceptions thrown while processing a Message. By default these exceptions will be logged at the WARN level, if no errorHandler has been configured. You can configure logging level and whether stack traces should be logged using errorHandlerLoggingLevel and errorHandlerLogStackTrace options. This makes it much easier to configure, than having to code a custom errorHandler.
							

							 	 	
								ErrorHandler
							

							
	
								errorHandlerLogging Level (logging)
							

							 	
								Allows to configure the default errorHandler logging level for logging uncaught exceptions.
							

							 	
								WARN
							

							 	
								LoggingLevel
							

							
	
								errorHandlerLogStack Trace (logging)
							

							 	
								Allows to control whether stacktraces should be logged or not, by the default errorHandler.
							

							 	
								true
							

							 	
								boolean
							

							
	
								explicitQosEnabled (producer)
							

							 	
								Set if the deliveryMode, priority or timeToLive qualities of service should be used when sending messages. This option is based on Spring’s JmsTemplate. The deliveryMode, priority and timeToLive options are applied to the current endpoint. This contrasts with the preserveMessageQos option, which operates at message granularity, reading QoS properties exclusively from the Camel In message headers.
							

							 	
								false
							

							 	
								boolean
							

							
	
								exposeListenerSession (consumer)
							

							 	
								Specifies whether the listener session should be exposed when consuming messages.
							

							 	
								false
							

							 	
								boolean
							

							
	
								idleTaskExecutionLimit (advanced)
							

							 	
								Specifies the limit for idle executions of a receive task, not having received any message within its execution. If this limit is reached, the task will shut down and leave receiving to other executing tasks (in the case of dynamic scheduling; see the maxConcurrentConsumers setting). There is additional doc available from Spring.
							

							 	
								1
							

							 	
								int
							

							
	
								idleConsumerLimit (advanced)
							

							 	
								Specify the limit for the number of consumers that are allowed to be idle at any given time.
							

							 	
								1
							

							 	
								int
							

							
	
								includeAmqpAnnotations (consumer)
							

							 	
								Specifies whether to include AMQP annotations when mapping from AMQP to a Camel Message. Setting this option to true maps AMQP message annotations that contain a JMS_AMQP_MA_ prefix to JMS message headers. Due to limitations in the Apache Qpid JMS API, delivery annotations are ignored.
							

							
								NOTE: The includeAmqpAnnotations option is a Technology Preview feature only. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process. For more information about the support scope of Red Hat Technology Preview features, see https://access.redhat.com/support/offerings/techpreview/.
							

							 	
								false
							

							 	
								boolean
							

							
	
								maxConcurrentConsumers (consumer)
							

							 	
								Specifies the maximum number of concurrent consumers when consuming from JMS (not for request/reply over JMS). See also the maxMessagesPerTask option to control dynamic scaling up/down of threads. When doing request/reply over JMS then the option replyToMaxConcurrentConsumers is used to control number of concurrent consumers on the reply message listener.
							

							 	 	
								int
							

							
	
								replyToMaxConcurrent Consumers (producer)
							

							 	
								Specifies the maximum number of concurrent consumers when using request/reply over JMS. See also the maxMessagesPerTask option to control dynamic scaling up/down of threads.
							

							 	 	
								int
							

							
	
								replyOnTimeoutToMax ConcurrentConsumers (producer)
							

							 	
								Specifies the maximum number of concurrent consumers for continue routing when timeout occurred when using request/reply over JMS.
							

							 	
								1
							

							 	
								int
							

							
	
								maxMessagesPerTask (advanced)
							

							 	
								The number of messages per task. -1 is unlimited. If you use a range for concurrent consumers (eg min max), then this option can be used to set a value to eg 100 to control how fast the consumers will shrink when less work is required.
							

							 	
								-1
							

							 	
								int
							

							
	
								messageConverter (advanced)
							

							 	
								To use a custom Spring org.springframework.jms.support.converter.MessageConverter so you can be in control how to map to/from a javax.jms.Message.
							

							 	 	
								MessageConverter
							

							
	
								mapJmsMessage (advanced)
							

							 	
								Specifies whether Camel should auto map the received JMS message to a suited payload type, such as javax.jms.TextMessage to a String etc.
							

							 	
								true
							

							 	
								boolean
							

							
	
								messageIdEnabled (advanced)
							

							 	
								When sending, specifies whether message IDs should be added. This is just an hint to the JMS broker.If the JMS provider accepts this hint, these messages must have the message ID set to null; if the provider ignores the hint, the message ID must be set to its normal unique value
							

							 	
								true
							

							 	
								boolean
							

							
	
								messageTimestampEnabled (advanced)
							

							 	
								Specifies whether timestamps should be enabled by default on sending messages. This is just an hint to the JMS broker.If the JMS provider accepts this hint, these messages must have the timestamp set to zero; if the provider ignores the hint the timestamp must be set to its normal value
							

							 	
								true
							

							 	
								boolean
							

							
	
								alwaysCopyMessage (producer)
							

							 	
								If true, Camel will always make a JMS message copy of the message when it is passed to the producer for sending. Copying the message is needed in some situations, such as when a replyToDestinationSelectorName is set (incidentally, Camel will set the alwaysCopyMessage option to true, if a replyToDestinationSelectorName is set)
							

							 	
								false
							

							 	
								boolean
							

							
	
								useMessageIDAs CorrelationID (advanced)
							

							 	
								Specifies whether JMSMessageID should always be used as JMSCorrelationID for InOut messages.
							

							 	
								false
							

							 	
								boolean
							

							
	
								priority (producer)
							

							 	
								Values greater than 1 specify the message priority when sending (where 0 is the lowest priority and 9 is the highest). The explicitQosEnabled option must also be enabled in order for this option to have any effect.
							

							 	
								4
							

							 	
								int
							

							
	
								pubSubNoLocal (advanced)
							

							 	
								Specifies whether to inhibit the delivery of messages published by its own connection.
							

							 	
								false
							

							 	
								boolean
							

							
	
								receiveTimeout (advanced)
							

							 	
								The timeout for receiving messages (in milliseconds).
							

							 	
								1000
							

							 	
								long
							

							
	
								recoveryInterval (advanced)
							

							 	
								Specifies the interval between recovery attempts, i.e. when a connection is being refreshed, in milliseconds. The default is 5000 ms, that is, 5 seconds.
							

							 	
								5000
							

							 	
								long
							

							
	
								taskExecutor (consumer)
							

							 	
								Allows you to specify a custom task executor for consuming messages.
							

							 	 	
								TaskExecutor
							

							
	
								timeToLive (producer)
							

							 	
								When sending messages, specifies the time-to-live of the message (in milliseconds).
							

							 	
								-1
							

							 	
								long
							

							
	
								transacted (transaction)
							

							 	
								Specifies whether to use transacted mode
							

							 	
								false
							

							 	
								boolean
							

							
	
								lazyCreateTransaction Manager (transaction)
							

							 	
								If true, Camel will create a JmsTransactionManager, if there is no transactionManager injected when option transacted=true.
							

							 	
								true
							

							 	
								boolean
							

							
	
								transactionManager (transaction)
							

							 	
								The Spring transaction manager to use.
							

							 	 	
								PlatformTransaction Manager
							

							
	
								transactionName (transaction)
							

							 	
								The name of the transaction to use.
							

							 	 	
								String
							

							
	
								transactionTimeout (transaction)
							

							 	
								The timeout value of the transaction (in seconds), if using transacted mode.
							

							 	
								-1
							

							 	
								int
							

							
	
								testConnectionOn Startup (common)
							

							 	
								Specifies whether to test the connection on startup. This ensures that when Camel starts that all the JMS consumers have a valid connection to the JMS broker. If a connection cannot be granted then Camel throws an exception on startup. This ensures that Camel is not started with failed connections. The JMS producers is tested as well.
							

							 	
								false
							

							 	
								boolean
							

							
	
								asyncStartListener (advanced)
							

							 	
								Whether to startup the JmsConsumer message listener asynchronously, when starting a route. For example if a JmsConsumer cannot get a connection to a remote JMS broker, then it may block while retrying and/or failover. This will cause Camel to block while starting routes. By setting this option to true, you will let routes startup, while the JmsConsumer connects to the JMS broker using a dedicated thread in asynchronous mode. If this option is used, then beware that if the connection could not be established, then an exception is logged at WARN level, and the consumer will not be able to receive messages; You can then restart the route to retry.
							

							 	
								false
							

							 	
								boolean
							

							
	
								asyncStopListener (advanced)
							

							 	
								Whether to stop the JmsConsumer message listener asynchronously, when stopping a route.
							

							 	
								false
							

							 	
								boolean
							

							
	
								forceSendOriginal Message (producer)
							

							 	
								When using mapJmsMessage=false Camel will create a new JMS message to send to a new JMS destination if you touch the headers (get or set) during the route. Set this option to true to force Camel to send the original JMS message that was received.
							

							 	
								false
							

							 	
								boolean
							

							
	
								requestTimeout (producer)
							

							 	
								The timeout for waiting for a reply when using the InOut Exchange Pattern (in milliseconds). The default is 20 seconds. You can include the header CamelJmsRequestTimeout to override this endpoint configured timeout value, and thus have per message individual timeout values. See also the requestTimeoutCheckerInterval option.
							

							 	
								20000
							

							 	
								long
							

							
	
								requestTimeoutChecker Interval (advanced)
							

							 	
								Configures how often Camel should check for timed out Exchanges when doing request/reply over JMS. By default Camel checks once per second. But if you must react faster when a timeout occurs, then you can lower this interval, to check more frequently. The timeout is determined by the option requestTimeout.
							

							 	
								1000
							

							 	
								long
							

							
	
								transferExchange (advanced)
							

							 	
								You can transfer the exchange over the wire instead of just the body and headers. The following fields are transferred: In body, Out body, Fault body, In headers, Out headers, Fault headers, exchange properties, exchange exception. This requires that the objects are serializable. Camel will exclude any non-serializable objects and log it at WARN level. You must enable this option on both the producer and consumer side, so Camel knows the payloads is an Exchange and not a regular payload.
							

							 	
								false
							

							 	
								boolean
							

							
	
								transferException (advanced)
							

							 	
								If enabled and you are using Request Reply messaging (InOut) and an Exchange failed on the consumer side, then the caused Exception will be send back in response as a javax.jms.ObjectMessage. If the client is Camel, the returned Exception is rethrown. This allows you to use Camel JMS as a bridge in your routing - for example, using persistent queues to enable robust routing. Notice that if you also have transferExchange enabled, this option takes precedence. The caught exception is required to be serializable. The original Exception on the consumer side can be wrapped in an outer exception such as org.apache.camel.RuntimeCamelException when returned to the producer.
							

							 	
								false
							

							 	
								boolean
							

							
	
								transferFault (advanced)
							

							 	
								If enabled and you are using Request Reply messaging (InOut) and an Exchange failed with a SOAP fault (not exception) on the consumer side, then the fault flag on MessageisFault() will be send back in the response as a JMS header with the key org.apache.camel.component.jms.JmsConstantsJMS_TRANSFER_FAULTJMS_TRANSFER_FAULT. If the client is Camel, the returned fault flag will be set on the link org.apache.camel.MessagesetFault(boolean). You may want to enable this when using Camel components that support faults such as SOAP based such as cxf or spring-ws.
							

							 	
								false
							

							 	
								boolean
							

							
	
								jmsOperations (advanced)
							

							 	
								Allows you to use your own implementation of the org.springframework.jms.core.JmsOperations interface. Camel uses JmsTemplate as default. Can be used for testing purpose, but not used much as stated in the spring API docs.
							

							 	 	
								JmsOperations
							

							
	
								destinationResolver (advanced)
							

							 	
								A pluggable org.springframework.jms.support.destination.DestinationResolver that allows you to use your own resolver (for example, to lookup the real destination in a JNDI registry).
							

							 	 	
								DestinationResolver
							

							
	
								replyToType (producer)
							

							 	
								Allows for explicitly specifying which kind of strategy to use for replyTo queues when doing request/reply over JMS. Possible values are: Temporary, Shared, or Exclusive. By default Camel will use temporary queues. However if replyTo has been configured, then Shared is used by default. This option allows you to use exclusive queues instead of shared ones. See Camel JMS documentation for more details, and especially the notes about the implications if running in a clustered environment, and the fact that Shared reply queues has lower performance than its alternatives Temporary and Exclusive.
							

							 	 	
								ReplyToType
							

							
	
								preserveMessageQos (producer)
							

							 	
								Set to true, if you want to send message using the QoS settings specified on the message, instead of the QoS settings on the JMS endpoint. The following three headers are considered JMSPriority, JMSDeliveryMode, and JMSExpiration. You can provide all or only some of them. If not provided, Camel will fall back to use the values from the endpoint instead. So, when using this option, the headers override the values from the endpoint. The explicitQosEnabled option, by contrast, will only use options set on the endpoint, and not values from the message header.
							

							 	
								false
							

							 	
								boolean
							

							
	
								asyncConsumer (consumer)
							

							 	
								Whether the JmsConsumer processes the Exchange asynchronously. If enabled then the JmsConsumer may pickup the next message from the JMS queue, while the previous message is being processed asynchronously (by the Asynchronous Routing Engine). This means that messages may be processed not 100% strictly in order. If disabled (as default) then the Exchange is fully processed before the JmsConsumer will pickup the next message from the JMS queue. Note if transacted has been enabled, then asyncConsumer=true does not run asynchronously, as transaction must be executed synchronously (Camel 3.0 may support async transactions).
							

							 	
								false
							

							 	
								boolean
							

							
	
								allowNullBody (producer)
							

							 	
								Whether to allow sending messages with no body. If this option is false and the message body is null, then an JMSException is thrown.
							

							 	
								true
							

							 	
								boolean
							

							
	
								includeSentJMS MessageID (producer)
							

							 	
								Only applicable when sending to JMS destination using InOnly (eg fire and forget). Enabling this option will enrich the Camel Exchange with the actual JMSMessageID that was used by the JMS client when the message was sent to the JMS destination.
							

							 	
								false
							

							 	
								boolean
							

							
	
								includeAllJMSX Properties (advanced)
							

							 	
								Whether to include all JMSXxxx properties when mapping from JMS to Camel Message. Setting this to true will include properties such as JMSXAppID, and JMSXUserID etc. Note: If you are using a custom headerFilterStrategy then this option does not apply.
							

							 	
								false
							

							 	
								boolean
							

							
	
								defaultTaskExecutor Type (consumer)
							

							 	
								Specifies what default TaskExecutor type to use in the DefaultMessageListenerContainer, for both consumer endpoints and the ReplyTo consumer of producer endpoints. Possible values: SimpleAsync (uses Spring’s SimpleAsyncTaskExecutor) or ThreadPool (uses Spring’s ThreadPoolTaskExecutor with optimal values - cached threadpool-like). If not set, it defaults to the previous behaviour, which uses a cached thread pool for consumer endpoints and SimpleAsync for reply consumers. The use of ThreadPool is recommended to reduce thread trash in elastic configurations with dynamically increasing and decreasing concurrent consumers.
							

							 	 	
								DefaultTaskExecutor Type
							

							
	
								jmsKeyFormatStrategy (advanced)
							

							 	
								Pluggable strategy for encoding and decoding JMS keys so they can be compliant with the JMS specification. Camel provides two implementations out of the box: default and passthrough. The default strategy will safely marshal dots and hyphens (. and -). The passthrough strategy leaves the key as is. Can be used for JMS brokers which do not care whether JMS header keys contain illegal characters. You can provide your own implementation of the org.apache.camel.component.jms.JmsKeyFormatStrategy and refer to it using the notation.
							

							 	 	
								JmsKeyFormatStrategy
							

							
	
								allowAdditionalHeaders (producer)
							

							 	
								This option is used to allow additional headers which may have values that are invalid according to JMS specification. For example some message systems such as WMQ do this with header names using prefix JMS_IBM_MQMD_ containing values with byte array or other invalid types. You can specify multiple header names separated by comma, and use as suffix for wildcard matching.
							

							 	 	
								String
							

							
	
								queueBrowseStrategy (advanced)
							

							 	
								To use a custom QueueBrowseStrategy when browsing queues
							

							 	 	
								QueueBrowseStrategy
							

							
	
								messageCreatedStrategy (advanced)
							

							 	
								To use the given MessageCreatedStrategy which are invoked when Camel creates new instances of javax.jms.Message objects when Camel is sending a JMS message.
							

							 	 	
								MessageCreatedStrategy
							

							
	
								waitForProvision CorrelationToBeUpdated Counter (advanced)
							

							 	
								Number of times to wait for provisional correlation id to be updated to the actual correlation id when doing request/reply over JMS and when the option useMessageIDAsCorrelationID is enabled.
							

							 	
								50
							

							 	
								int
							

							
	
								waitForProvision CorrelationToBeUpdated ThreadSleepingTime (advanced)
							

							 	
								Interval in millis to sleep each time while waiting for provisional correlation id to be updated.
							

							 	
								100
							

							 	
								long
							

							
	
								correlationProperty (producer)
							

							 	
								Use this JMS property to correlate messages in InOut exchange pattern (request-reply) instead of JMSCorrelationID property. This allows you to exchange messages with systems that do not correlate messages using JMSCorrelationID JMS property. If used JMSCorrelationID will not be used or set by Camel. The value of here named property will be generated if not supplied in the header of the message under the same name.
							

							 	 	
								String
							

							
	
								subscriptionDurable (consumer)
							

							 	
								Set whether to make the subscription durable. The durable subscription name to be used can be specified through the subscriptionName property. Default is false. Set this to true to register a durable subscription, typically in combination with a subscriptionName value (unless your message listener class name is good enough as subscription name). Only makes sense when listening to a topic (pub-sub domain), therefore this method switches the pubSubDomain flag as well.
							

							 	
								false
							

							 	
								boolean
							

							
	
								subscriptionShared (consumer)
							

							 	
								Set whether to make the subscription shared. The shared subscription name to be used can be specified through the subscriptionName property. Default is false. Set this to true to register a shared subscription, typically in combination with a subscriptionName value (unless your message listener class name is good enough as subscription name). Note that shared subscriptions may also be durable, so this flag can (and often will) be combined with subscriptionDurable as well. Only makes sense when listening to a topic (pub-sub domain), therefore this method switches the pubSubDomain flag as well. Requires a JMS 2.0 compatible message broker.
							

							 	
								false
							

							 	
								boolean
							

							
	
								subscriptionName (consumer)
							

							 	
								Set the name of a subscription to create. To be applied in case of a topic (pub-sub domain) with a shared or durable subscription. The subscription name needs to be unique within this client’s JMS client id. Default is the class name of the specified message listener. Note: Only 1 concurrent consumer (which is the default of this message listener container) is allowed for each subscription, except for a shared subscription (which requires JMS 2.0).
							

							 	 	
								String
							

							
	
								streamMessageType Enabled (producer)
							

							 	
								Sets whether StreamMessage type is enabled or not. Message payloads of streaming kind such as files, InputStream, etc will either by sent as BytesMessage or StreamMessage. This option controls which kind will be used. By default BytesMessage is used which enforces the entire message payload to be read into memory. By enabling this option the message payload is read into memory in chunks and each chunk is then written to the StreamMessage until no more data.
							

							 	
								false
							

							 	
								boolean
							

							
	
								formatDateHeadersTo Iso8601 (producer)
							

							 	
								Sets whether date headers should be formatted according to the ISO 8601 standard.
							

							 	
								false
							

							 	
								boolean
							

							
	
								headerFilterStrategy (filter)
							

							 	
								To use a custom org.apache.camel.spi.HeaderFilterStrategy to filter header to and from Camel message.
							

							 	 	
								HeaderFilterStrategy
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The AMQP endpoint is configured using URI syntax:
			
amqp:destinationType:destinationName

				with the following path and query parameters:
			
Path Parameters (2 parameters):

	Name	Description	Default	Type
	
									destinationType
								

								 	
									The kind of destination to use
								

								 	
									queue
								

								 	
									String
								

								
	
									destinationName
								

								 	
									Required Name of the queue or topic to use as destination
								

								 	 	
									String
								

								

Query Parameters (91 parameters):

	Name	Description	Default	Type
	
									clientId (common)
								

								 	
									Sets the JMS client ID to use. Note that this value, if specified, must be unique and can only be used by a single JMS connection instance. It is typically only required for durable topic subscriptions. If using Apache ActiveMQ you may prefer to use Virtual Topics instead.
								

								 	 	
									String
								

								
	
									connectionFactory (common)
								

								 	
									The connection factory to be use. A connection factory must be configured either on the component or endpoint.
								

								 	 	
									ConnectionFactory
								

								
	
									disableReplyTo (common)
								

								 	
									Specifies whether Camel ignores the JMSReplyTo header in messages. If true, Camel does not send a reply back to the destination specified in the JMSReplyTo header. You can use this option if you want Camel to consume from a route and you do not want Camel to automatically send back a reply message because another component in your code handles the reply message. You can also use this option if you want to use Camel as a proxy between different message brokers and you want to route message from one system to another.
								

								 	
									false
								

								 	
									boolean
								

								
	
									durableSubscriptionName (common)
								

								 	
									The durable subscriber name for specifying durable topic subscriptions. The clientId option must be configured as well.
								

								 	 	
									String
								

								
	
									jmsMessageType (common)
								

								 	
									Allows you to force the use of a specific javax.jms.Message implementation for sending JMS messages. Possible values are: Bytes, Map, Object, Stream, Text. By default, Camel would determine which JMS message type to use from the In body type. This option allows you to specify it.
								

								 	 	
									JmsMessageType
								

								
	
									testConnectionOnStartup (common)
								

								 	
									Specifies whether to test the connection on startup. This ensures that when Camel starts that all the JMS consumers have a valid connection to the JMS broker. If a connection cannot be granted then Camel throws an exception on startup. This ensures that Camel is not started with failed connections. The JMS producers is tested as well.
								

								 	
									false
								

								 	
									boolean
								

								
	
									acknowledgementModeName (consumer)
								

								 	
									The JMS acknowledgement name, which is one of: SESSION_TRANSACTED, CLIENT_ACKNOWLEDGE, AUTO_ACKNOWLEDGE, DUPS_OK_ACKNOWLEDGE
								

								 	
									AUTO_ ACKNOWLEDGE
								

								 	
									String
								

								
	
									asyncConsumer (consumer)
								

								 	
									Whether the JmsConsumer processes the Exchange asynchronously. If enabled then the JmsConsumer may pickup the next message from the JMS queue, while the previous message is being processed asynchronously (by the Asynchronous Routing Engine). This means that messages may be processed not 100% strictly in order. If disabled (as default) then the Exchange is fully processed before the JmsConsumer will pickup the next message from the JMS queue. Note if transacted has been enabled, then asyncConsumer=true does not run asynchronously, as transaction must be executed synchronously (Camel 3.0 may support async transactions).
								

								 	
									false
								

								 	
									boolean
								

								
	
									autoStartup (consumer)
								

								 	
									Specifies whether the consumer container should auto-startup.
								

								 	
									true
								

								 	
									boolean
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									cacheLevel (consumer)
								

								 	
									Sets the cache level by ID for the underlying JMS resources. See cacheLevelName option for more details.
								

								 	 	
									int
								

								
	
									cacheLevelName (consumer)
								

								 	
									Sets the cache level by name for the underlying JMS resources. Possible values are: CACHE_AUTO, CACHE_CONNECTION, CACHE_CONSUMER, CACHE_NONE, and CACHE_SESSION. The default setting is CACHE_AUTO. See the Spring documentation and Transactions Cache Levels for more information.
								

								 	
									CACHE_AUTO
								

								 	
									String
								

								
	
									concurrentConsumers (consumer)
								

								 	
									Specifies the default number of concurrent consumers when consuming from JMS (not for request/reply over JMS). See also the maxMessagesPerTask option to control dynamic scaling up/down of threads. When doing request/reply over JMS then the option replyToConcurrentConsumers is used to control number of concurrent consumers on the reply message listener.
								

								 	
									1
								

								 	
									int
								

								
	
									maxConcurrentConsumers (consumer)
								

								 	
									Specifies the maximum number of concurrent consumers when consuming from JMS (not for request/reply over JMS). See also the maxMessagesPerTask option to control dynamic scaling up/down of threads. When doing request/reply over JMS then the option replyToMaxConcurrentConsumers is used to control number of concurrent consumers on the reply message listener.
								

								 	 	
									int
								

								
	
									replyTo (consumer)
								

								 	
									Provides an explicit ReplyTo destination, which overrides any incoming value of Message.getJMSReplyTo().
								

								 	 	
									String
								

								
	
									replyToDeliveryPersistent (consumer)
								

								 	
									Specifies whether to use persistent delivery by default for replies.
								

								 	
									true
								

								 	
									boolean
								

								
	
									selector (consumer)
								

								 	
									Sets the JMS selector to use
								

								 	 	
									String
								

								
	
									subscriptionDurable (consumer)
								

								 	
									Set whether to make the subscription durable. The durable subscription name to be used can be specified through the subscriptionName property. Default is false. Set this to true to register a durable subscription, typically in combination with a subscriptionName value (unless your message listener class name is good enough as subscription name). Only makes sense when listening to a topic (pub-sub domain), therefore this method switches the pubSubDomain flag as well.
								

								 	
									false
								

								 	
									boolean
								

								
	
									subscriptionName (consumer)
								

								 	
									Set the name of a subscription to create. To be applied in case of a topic (pub-sub domain) with a shared or durable subscription. The subscription name needs to be unique within this client’s JMS client id. Default is the class name of the specified message listener. Note: Only 1 concurrent consumer (which is the default of this message listener container) is allowed for each subscription, except for a shared subscription (which requires JMS 2.0).
								

								 	 	
									String
								

								
	
									subscriptionShared (consumer)
								

								 	
									Set whether to make the subscription shared. The shared subscription name to be used can be specified through the subscriptionName property. Default is false. Set this to true to register a shared subscription, typically in combination with a subscriptionName value (unless your message listener class name is good enough as subscription name). Note that shared subscriptions may also be durable, so this flag can (and often will) be combined with subscriptionDurable as well. Only makes sense when listening to a topic (pub-sub domain), therefore this method switches the pubSubDomain flag as well. Requires a JMS 2.0 compatible message broker.
								

								 	
									false
								

								 	
									boolean
								

								
	
									acceptMessagesWhileStopping (consumer)
								

								 	
									Specifies whether the consumer accept messages while it is stopping. You may consider enabling this option, if you start and stop JMS routes at runtime, while there are still messages enqueued on the queue. If this option is false, and you stop the JMS route, then messages may be rejected, and the JMS broker would have to attempt redeliveries, which yet again may be rejected, and eventually the message may be moved at a dead letter queue on the JMS broker. To avoid this its recommended to enable this option.
								

								 	
									false
								

								 	
									boolean
								

								
	
									allowReplyManagerQuickStop (consumer)
								

								 	
									Whether the DefaultMessageListenerContainer used in the reply managers for request-reply messaging allow the DefaultMessageListenerContainer.runningAllowed flag to quick stop in case JmsConfigurationisAcceptMessagesWhileStopping is enabled, and org.apache.camel.CamelContext is currently being stopped. This quick stop ability is enabled by default in the regular JMS consumers but to enable for reply managers you must enable this flag.
								

								 	
									false
								

								 	
									boolean
								

								
	
									consumerType (consumer)
								

								 	
									The consumer type to use, which can be one of: Simple, Default, or Custom. The consumer type determines which Spring JMS listener to use. Default will use org.springframework.jms.listener.DefaultMessageListenerContainer, Simple will use org.springframework.jms.listener.SimpleMessageListenerContainer. When Custom is specified, the MessageListenerContainerFactory defined by the messageListenerContainerFactory option will determine what org.springframework.jms.listener.AbstractMessageListenerContainer to use.
								

								 	
									Default
								

								 	
									ConsumerType
								

								
	
									defaultTaskExecutorType (consumer)
								

								 	
									Specifies what default TaskExecutor type to use in the DefaultMessageListenerContainer, for both consumer endpoints and the ReplyTo consumer of producer endpoints. Possible values: SimpleAsync (uses Spring’s SimpleAsyncTaskExecutor) or ThreadPool (uses Spring’s ThreadPoolTaskExecutor with optimal values - cached threadpool-like). If not set, it defaults to the previous behaviour, which uses a cached thread pool for consumer endpoints and SimpleAsync for reply consumers. The use of ThreadPool is recommended to reduce thread trash in elastic configurations with dynamically increasing and decreasing concurrent consumers.
								

								 	 	
									DefaultTaskExecutor Type
								

								
	
									eagerLoadingOfProperties (consumer)
								

								 	
									Enables eager loading of JMS properties and payload as soon as a message is loaded which generally is inefficient as the JMS properties may not be required but sometimes can catch early any issues with the underlying JMS provider and the use of JMS properties
								

								 	
									false
								

								 	
									boolean
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									exposeListenerSession (consumer)
								

								 	
									Specifies whether the listener session should be exposed when consuming messages.
								

								 	
									false
								

								 	
									boolean
								

								
	
									replyToSameDestination Allowed (consumer)
								

								 	
									Whether a JMS consumer is allowed to send a reply message to the same destination that the consumer is using to consume from. This prevents an endless loop by consuming and sending back the same message to itself.
								

								 	
									false
								

								 	
									boolean
								

								
	
									taskExecutor (consumer)
								

								 	
									Allows you to specify a custom task executor for consuming messages.
								

								 	 	
									TaskExecutor
								

								
	
									deliveryMode (producer)
								

								 	
									Specifies the delivery mode to be used. Possibles values are those defined by javax.jms.DeliveryMode. NON_PERSISTENT = 1 and PERSISTENT = 2.
								

								 	 	
									Integer
								

								
	
									deliveryPersistent (producer)
								

								 	
									Specifies whether persistent delivery is used by default.
								

								 	
									true
								

								 	
									boolean
								

								
	
									explicitQosEnabled (producer)
								

								 	
									Set if the deliveryMode, priority or timeToLive qualities of service should be used when sending messages. This option is based on Spring’s JmsTemplate. The deliveryMode, priority and timeToLive options are applied to the current endpoint. This contrasts with the preserveMessageQos option, which operates at message granularity, reading QoS properties exclusively from the Camel In message headers.
								

								 	
									false
								

								 	
									Boolean
								

								
	
									formatDateHeadersToIso8601 (producer)
								

								 	
									Sets whether JMS date properties should be formatted according to the ISO 8601 standard.
								

								 	
									false
								

								 	
									boolean
								

								
	
									preserveMessageQos (producer)
								

								 	
									Set to true, if you want to send message using the QoS settings specified on the message, instead of the QoS settings on the JMS endpoint. The following three headers are considered JMSPriority, JMSDeliveryMode, and JMSExpiration. You can provide all or only some of them. If not provided, Camel will fall back to use the values from the endpoint instead. So, when using this option, the headers override the values from the endpoint. The explicitQosEnabled option, by contrast, will only use options set on the endpoint, and not values from the message header.
								

								 	
									false
								

								 	
									boolean
								

								
	
									priority (producer)
								

								 	
									Values greater than 1 specify the message priority when sending (where 0 is the lowest priority and 9 is the highest). The explicitQosEnabled option must also be enabled in order for this option to have any effect.
								

								 	
									4
								

								 	
									int
								

								
	
									replyToConcurrentConsumers (producer)
								

								 	
									Specifies the default number of concurrent consumers when doing request/reply over JMS. See also the maxMessagesPerTask option to control dynamic scaling up/down of threads.
								

								 	
									1
								

								 	
									int
								

								
	
									replyToMaxConcurrent Consumers (producer)
								

								 	
									Specifies the maximum number of concurrent consumers when using request/reply over JMS. See also the maxMessagesPerTask option to control dynamic scaling up/down of threads.
								

								 	 	
									int
								

								
	
									replyToOnTimeoutMax ConcurrentConsumers (producer)
								

								 	
									Specifies the maximum number of concurrent consumers for continue routing when timeout occurred when using request/reply over JMS.
								

								 	
									1
								

								 	
									int
								

								
	
									replyToOverride (producer)
								

								 	
									Provides an explicit ReplyTo destination in the JMS message, which overrides the setting of replyTo. It is useful if you want to forward the message to a remote Queue and receive the reply message from the ReplyTo destination.
								

								 	 	
									String
								

								
	
									replyToType (producer)
								

								 	
									Allows for explicitly specifying which kind of strategy to use for replyTo queues when doing request/reply over JMS. Possible values are: Temporary, Shared, or Exclusive. By default Camel will use temporary queues. However if replyTo has been configured, then Shared is used by default. This option allows you to use exclusive queues instead of shared ones. See Camel JMS documentation for more details, and especially the notes about the implications if running in a clustered environment, and the fact that Shared reply queues has lower performance than its alternatives Temporary and Exclusive.
								

								 	 	
									ReplyToType
								

								
	
									requestTimeout (producer)
								

								 	
									The timeout for waiting for a reply when using the InOut Exchange Pattern (in milliseconds). The default is 20 seconds. You can include the header CamelJmsRequestTimeout to override this endpoint configured timeout value, and thus have per message individual timeout values. See also the requestTimeoutCheckerInterval option.
								

								 	
									20000
								

								 	
									long
								

								
	
									timeToLive (producer)
								

								 	
									When sending messages, specifies the time-to-live of the message (in milliseconds).
								

								 	
									-1
								

								 	
									long
								

								
	
									allowAdditionalHeaders (producer)
								

								 	
									This option is used to allow additional headers which may have values that are invalid according to JMS specification. For example some message systems such as WMQ do this with header names using prefix JMS_IBM_MQMD_ containing values with byte array or other invalid types. You can specify multiple header names separated by comma, and use as suffix for wildcard matching.
								

								 	 	
									String
								

								
	
									allowNullBody (producer)
								

								 	
									Whether to allow sending messages with no body. If this option is false and the message body is null, then an JMSException is thrown.
								

								 	
									true
								

								 	
									boolean
								

								
	
									alwaysCopyMessage (producer)
								

								 	
									If true, Camel will always make a JMS message copy of the message when it is passed to the producer for sending. Copying the message is needed in some situations, such as when a replyToDestinationSelectorName is set (incidentally, Camel will set the alwaysCopyMessage option to true, if a replyToDestinationSelectorName is set)
								

								 	
									false
								

								 	
									boolean
								

								
	
									correlationProperty (producer)
								

								 	
									When using InOut exchange pattern use this JMS property instead of JMSCorrelationID JMS property to correlate messages. If set messages will be correlated solely on the value of this property JMSCorrelationID property will be ignored and not set by Camel.
								

								 	 	
									String
								

								
	
									disableTimeToLive (producer)
								

								 	
									Use this option to force disabling time to live. For example when you do request/reply over JMS, then Camel will by default use the requestTimeout value as time to live on the message being sent. The problem is that the sender and receiver systems have to have their clocks synchronized, so they are in sync. This is not always so easy to archive. So you can use disableTimeToLive=true to not set a time to live value on the sent message. Then the message will not expire on the receiver system. See below in section About time to live for more details.
								

								 	
									false
								

								 	
									boolean
								

								
	
									forceSendOriginalMessage (producer)
								

								 	
									When using mapJmsMessage=false Camel will create a new JMS message to send to a new JMS destination if you touch the headers (get or set) during the route. Set this option to true to force Camel to send the original JMS message that was received.
								

								 	
									false
								

								 	
									boolean
								

								
	
									includeSentJMSMessageID (producer)
								

								 	
									Only applicable when sending to JMS destination using InOnly (eg fire and forget). Enabling this option will enrich the Camel Exchange with the actual JMSMessageID that was used by the JMS client when the message was sent to the JMS destination.
								

								 	
									false
								

								 	
									boolean
								

								
	
									replyToCacheLevelName (producer)
								

								 	
									Sets the cache level by name for the reply consumer when doing request/reply over JMS. This option only applies when using fixed reply queues (not temporary). Camel will by default use: CACHE_CONSUMER for exclusive or shared w/ replyToSelectorName. And CACHE_SESSION for shared without replyToSelectorName. Some JMS brokers such as IBM WebSphere may require to set the replyToCacheLevelName=CACHE_NONE to work. Note: If using temporary queues then CACHE_NONE is not allowed, and you must use a higher value such as CACHE_CONSUMER or CACHE_SESSION.
								

								 	 	
									String
								

								
	
									replyToDestinationSelector Name (producer)
								

								 	
									Sets the JMS Selector using the fixed name to be used so you can filter out your own replies from the others when using a shared queue (that is, if you are not using a temporary reply queue).
								

								 	 	
									String
								

								
	
									streamMessageTypeEnabled (producer)
								

								 	
									Sets whether StreamMessage type is enabled or not. Message payloads of streaming kind such as files, InputStream, etc will either by sent as BytesMessage or StreamMessage. This option controls which kind will be used. By default BytesMessage is used which enforces the entire message payload to be read into memory. By enabling this option the message payload is read into memory in chunks and each chunk is then written to the StreamMessage until no more data.
								

								 	
									false
								

								 	
									boolean
								

								
	
									allowSerializedHeaders (advanced)
								

								 	
									Controls whether or not to include serialized headers. Applies only when transferExchange is true. This requires that the objects are serializable. Camel will exclude any non-serializable objects and log it at WARN level.
								

								 	
									false
								

								 	
									boolean
								

								
	
									asyncStartListener (advanced)
								

								 	
									Whether to startup the JmsConsumer message listener asynchronously, when starting a route. For example if a JmsConsumer cannot get a connection to a remote JMS broker, then it may block while retrying and/or failover. This will cause Camel to block while starting routes. By setting this option to true, you will let routes startup, while the JmsConsumer connects to the JMS broker using a dedicated thread in asynchronous mode. If this option is used, then beware that if the connection could not be established, then an exception is logged at WARN level, and the consumer will not be able to receive messages; You can then restart the route to retry.
								

								 	
									false
								

								 	
									boolean
								

								
	
									asyncStopListener (advanced)
								

								 	
									Whether to stop the JmsConsumer message listener asynchronously, when stopping a route.
								

								 	
									false
								

								 	
									boolean
								

								
	
									destinationResolver (advanced)
								

								 	
									A pluggable org.springframework.jms.support.destination.DestinationResolver that allows you to use your own resolver (for example, to lookup the real destination in a JNDI registry).
								

								 	 	
									DestinationResolver
								

								
	
									errorHandler (advanced)
								

								 	
									Specifies a org.springframework.util.ErrorHandler to be invoked in case of any uncaught exceptions thrown while processing a Message. By default these exceptions will be logged at the WARN level, if no errorHandler has been configured. You can configure logging level and whether stack traces should be logged using errorHandlerLoggingLevel and errorHandlerLogStackTrace options. This makes it much easier to configure, than having to code a custom errorHandler.
								

								 	 	
									ErrorHandler
								

								
	
									exceptionListener (advanced)
								

								 	
									Specifies the JMS Exception Listener that is to be notified of any underlying JMS exceptions.
								

								 	 	
									ExceptionListener
								

								
	
									headerFilterStrategy (advanced)
								

								 	
									To use a custom HeaderFilterStrategy to filter header to and from Camel message.
								

								 	 	
									HeaderFilterStrategy
								

								
	
									idleConsumerLimit (advanced)
								

								 	
									Specify the limit for the number of consumers that are allowed to be idle at any given time.
								

								 	
									1
								

								 	
									int
								

								
	
									idleTaskExecutionLimit (advanced)
								

								 	
									Specifies the limit for idle executions of a receive task, not having received any message within its execution. If this limit is reached, the task will shut down and leave receiving to other executing tasks (in the case of dynamic scheduling; see the maxConcurrentConsumers setting). There is additional doc available from Spring.
								

								 	
									1
								

								 	
									int
								

								
	
									includeAllJMSXProperties (advanced)
								

								 	
									Whether to include all JMSXxxx properties when mapping from JMS to Camel Message. Setting this to true will include properties such as JMSXAppID, and JMSXUserID etc. Note: If you are using a custom headerFilterStrategy then this option does not apply.
								

								 	
									false
								

								 	
									boolean
								

								
	
									jmsKeyFormatStrategy (advanced)
								

								 	
									Pluggable strategy for encoding and decoding JMS keys so they can be compliant with the JMS specification. Camel provides two implementations out of the box: default and passthrough. The default strategy will safely marshal dots and hyphens (. and -). The passthrough strategy leaves the key as is. Can be used for JMS brokers which do not care whether JMS header keys contain illegal characters. You can provide your own implementation of the org.apache.camel.component.jms.JmsKeyFormatStrategy and refer to it using the notation.
								

								 	 	
									String
								

								
	
									mapJmsMessage (advanced)
								

								 	
									Specifies whether Camel should auto map the received JMS message to a suited payload type, such as javax.jms.TextMessage to a String etc.
								

								 	
									true
								

								 	
									boolean
								

								
	
									maxMessagesPerTask (advanced)
								

								 	
									The number of messages per task. -1 is unlimited. If you use a range for concurrent consumers (eg min max), then this option can be used to set a value to eg 100 to control how fast the consumers will shrink when less work is required.
								

								 	
									-1
								

								 	
									int
								

								
	
									messageConverter (advanced)
								

								 	
									To use a custom Spring org.springframework.jms.support.converter.MessageConverter so you can be in control how to map to/from a javax.jms.Message.
								

								 	 	
									MessageConverter
								

								
	
									messageCreatedStrategy (advanced)
								

								 	
									To use the given MessageCreatedStrategy which are invoked when Camel creates new instances of javax.jms.Message objects when Camel is sending a JMS message.
								

								 	 	
									MessageCreatedStrategy
								

								
	
									messageIdEnabled (advanced)
								

								 	
									When sending, specifies whether message IDs should be added. This is just an hint to the JMS broker.If the JMS provider accepts this hint, these messages must have the message ID set to null; if the provider ignores the hint, the message ID must be set to its normal unique value
								

								 	
									true
								

								 	
									boolean
								

								
	
									messageListenerContainer Factory (advanced)
								

								 	
									Registry ID of the MessageListenerContainerFactory used to determine what org.springframework.jms.listener.AbstractMessageListenerContainer to use to consume messages. Setting this will automatically set consumerType to Custom.
								

								 	 	
									MessageListener ContainerFactory
								

								
	
									messageTimestampEnabled (advanced)
								

								 	
									Specifies whether timestamps should be enabled by default on sending messages. This is just an hint to the JMS broker.If the JMS provider accepts this hint, these messages must have the timestamp set to zero; if the provider ignores the hint the timestamp must be set to its normal value
								

								 	
									true
								

								 	
									boolean
								

								
	
									pubSubNoLocal (advanced)
								

								 	
									Specifies whether to inhibit the delivery of messages published by its own connection.
								

								 	
									false
								

								 	
									boolean
								

								
	
									receiveTimeout (advanced)
								

								 	
									The timeout for receiving messages (in milliseconds).
								

								 	
									1000
								

								 	
									long
								

								
	
									recoveryInterval (advanced)
								

								 	
									Specifies the interval between recovery attempts, i.e. when a connection is being refreshed, in milliseconds. The default is 5000 ms, that is, 5 seconds.
								

								 	
									5000
								

								 	
									long
								

								
	
									requestTimeoutChecker Interval (advanced)
								

								 	
									Configures how often Camel should check for timed out Exchanges when doing request/reply over JMS. By default Camel checks once per second. But if you must react faster when a timeout occurs, then you can lower this interval, to check more frequently. The timeout is determined by the option requestTimeout.
								

								 	
									1000
								

								 	
									long
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									transferException (advanced)
								

								 	
									If enabled and you are using Request Reply messaging (InOut) and an Exchange failed on the consumer side, then the caused Exception will be send back in response as a javax.jms.ObjectMessage. If the client is Camel, the returned Exception is rethrown. This allows you to use Camel JMS as a bridge in your routing - for example, using persistent queues to enable robust routing. Notice that if you also have transferExchange enabled, this option takes precedence. The caught exception is required to be serializable. The original Exception on the consumer side can be wrapped in an outer exception such as org.apache.camel.RuntimeCamelException when returned to the producer.
								

								 	
									false
								

								 	
									boolean
								

								
	
									transferExchange (advanced)
								

								 	
									You can transfer the exchange over the wire instead of just the body and headers. The following fields are transferred: In body, Out body, Fault body, In headers, Out headers, Fault headers, exchange properties, exchange exception. This requires that the objects are serializable. Camel will exclude any non-serializable objects and log it at WARN level. You must enable this option on both the producer and consumer side, so Camel knows the payloads is an Exchange and not a regular payload.
								

								 	
									false
								

								 	
									boolean
								

								
	
									transferFault (advanced)
								

								 	
									If enabled and you are using Request Reply messaging (InOut) and an Exchange failed with a SOAP fault (not exception) on the consumer side, then the fault flag on MessageisFault() will be send back in the response as a JMS header with the key org.apache.camel.component.jms.JmsConstantsJMS_TRANSFER_FAULTJMS_TRANSFER_FAULT. If the client is Camel, the returned fault flag will be set on the link org.apache.camel.MessagesetFault(boolean). You may want to enable this when using Camel components that support faults such as SOAP based such as cxf or spring-ws.
								

								 	
									false
								

								 	
									boolean
								

								
	
									useMessageIDAsCorrelation ID (advanced)
								

								 	
									Specifies whether JMSMessageID should always be used as JMSCorrelationID for InOut messages.
								

								 	
									false
								

								 	
									boolean
								

								
	
									waitForProvisionCorrelation ToBeUpdatedCounter (advanced)
								

								 	
									Number of times to wait for provisional correlation id to be updated to the actual correlation id when doing request/reply over JMS and when the option useMessageIDAsCorrelationID is enabled.
								

								 	
									50
								

								 	
									int
								

								
	
									waitForProvisionCorrelation ToBeUpdatedThreadSleeping Time (advanced)
								

								 	
									Interval in millis to sleep each time while waiting for provisional correlation id to be updated.
								

								 	
									100
								

								 	
									long
								

								
	
									errorHandlerLoggingLevel (logging)
								

								 	
									Allows to configure the default errorHandler logging level for logging uncaught exceptions.
								

								 	
									WARN
								

								 	
									LoggingLevel
								

								
	
									errorHandlerLogStackTrace (logging)
								

								 	
									Allows to control whether stacktraces should be logged or not, by the default errorHandler.
								

								 	
									true
								

								 	
									boolean
								

								
	
									password (security)
								

								 	
									Password to use with the ConnectionFactory. You can also configure username/password directly on the ConnectionFactory.
								

								 	 	
									String
								

								
	
									username (security)
								

								 	
									Username to use with the ConnectionFactory. You can also configure username/password directly on the ConnectionFactory.
								

								 	 	
									String
								

								
	
									transacted (transaction)
								

								 	
									Specifies whether to use transacted mode
								

								 	
									false
								

								 	
									boolean
								

								
	
									lazyCreateTransaction Manager (transaction)
								

								 	
									If true, Camel will create a JmsTransactionManager, if there is no transactionManager injected when option transacted=true.
								

								 	
									true
								

								 	
									boolean
								

								
	
									transactionManager (transaction)
								

								 	
									The Spring transaction manager to use.
								

								 	 	
									PlatformTransaction Manager
								

								
	
									transactionName (transaction)
								

								 	
									The name of the transaction to use.
								

								 	 	
									String
								

								
	
									transactionTimeout (transaction)
								

								 	
									The timeout value of the transaction (in seconds), if using transacted mode.
								

								 	
									-1
								

								 	
									int
								

								

Usage

				As AMQP component is inherited from JMS component, the usage of the former is almost identical to the latter:
			

				Using AMQP component
			
// Consuming from AMQP queue
from("amqp:queue:incoming").
 to(...);

// Sending message to the AMQP topic
from(...).
 to("amqp:topic:notify");

Configuring AMQP component

				Starting from the Camel 2.16.1 you can also use the AMQPComponent#amqp10Component(String connectionURI) factory method to return the AMQP 1.0 component with the pre-configured topic prefix:
			

				Creating AMQP 1.0 component
			
 AMQPComponent amqp = AMQPComponent.amqp10Component("amqp://guest:guest@localhost:5672");

				Keep in mind that starting from the Camel 2.17 the AMQPComponent#amqp10Component(String connectionURI) factory method has been deprecated on the behalf of the AMQPComponent#amqpComponent(String connectionURI):
			

				Creating AMQP 1.0 component
			
AMQPComponent amqp = AMQPComponent.amqpComponent("amqp://localhost:5672");

AMQPComponent authorizedAmqp = AMQPComponent.amqpComponent("amqp://localhost:5672", "user", "password");

				Starting from Camel 2.17, in order to automatically configure the AMQP component, you can also add an instance of org.apache.camel.component.amqp.AMQPConnectionDetails to the registry. For example for Spring Boot you just have to define bean:
			

				AMQP connection details auto-configuration
			
@Bean
AMQPConnectionDetails amqpConnection() {
 return new AMQPConnectionDetails("amqp://localhost:5672");
}

@Bean
AMQPConnectionDetails securedAmqpConnection() {
 return new AMQPConnectionDetails("amqp://lcoalhost:5672", "username", "password");
}

				Likewise, you can also use CDI producer methods when using Camel-CDI
			

				AMQP connection details auto-configuration for CDI
			
@Produces
AMQPConnectionDetails amqpConnection() {
 return new AMQPConnectionDetails("amqp://localhost:5672");
}

				You can also rely on the Camel properties to read the AMQP connection details. Factory method AMQPConnectionDetails.discoverAMQP() attempts to read Camel properties in a Kubernetes-like convention, just as demonstrated on the snippet below:
			

				AMQP connection details auto-configuration
			
export AMQP_SERVICE_HOST = "mybroker.com"
export AMQP_SERVICE_PORT = "6666"
export AMQP_SERVICE_USERNAME = "username"
export AMQP_SERVICE_PASSWORD = "password"

...

@Bean
AMQPConnectionDetails amqpConnection() {
 return AMQPConnectionDetails.discoverAMQP();
}

				Enabling AMQP specific options
			

				If you, for example, need to enable amqp.traceFrames you can do that by appending the option to your URI, like the following example:
			
AMQPComponent amqp = AMQPComponent.amqpComponent("amqp://localhost:5672?amqp.traceFrames=true");

				For reference take a look at the QPID JMS client configuration
			

Using topics

				To have using topics working with camel-amqp you need to configure the component to use topic:// as topic prefix, as shown below:
			
 <bean id="amqp" class="org.apache.camel.component.amqp.AmqpComponent">
 <property name="connectionFactory">
 <bean class="org.apache.qpid.jms.JmsConnectionFactory" factory-method="createFromURL">
 <property name="remoteURI" value="amqp://localhost:5672" />
 <property name="topicPrefix" value="topic://" /> <!-- only necessary when connecting to ActiveMQ over AMQP 1.0 -->
 </bean>
 </property>
 </bean>

				Keep in mind that both AMQPComponent#amqpComponent() methods and AMQPConnectionDetails pre-configure the component with the topic prefix, so you don’t have to configure it explicitly.
			

See Also

	
						Configuring Camel
					
	
						Component
					
	
						Endpoint
					
	
						Getting Started
					

Chapter 6. APNS Component

			Available as of Camel version 2.8
		

			The apns component is used for sending notifications to iOS devices. The apns components use javapns library.
 The component supports sending notifications to Apple Push Notification Servers (APNS) and consuming feedback from the servers.
		

			The consumer is configured with 3600 seconds for polling by default because it is a best practice to consume feedback stream from Apple Push Notification Servers only from time to time. For example: every 1 hour to avoid flooding the servers.
		

			The feedback stream gives informations about inactive devices. You only need to get this informations every some hours if your mobile application is not a heavily used one.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-apns</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>
URI format

				To send notifications:
			
apns:notify[?options]

				To consume feedback:
			
apns:consumer[?options]

Options

				The APNS component supports 2 options which are listed below.
			
	Name	Description	Default	Type
	
								apnsService (common)
							

							 	
								Required The ApnsService to use. The org.apache.camel.component.apns.factory.ApnsServiceFactory can be used to build a ApnsService
							

							 	 	
								ApnsService
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The APNS endpoint is configured using URI syntax:
			
apns:name

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									name
								

								 	
									Name of the endpoint
								

								 	 	
									String
								

								

Query Parameters (20 parameters):

	Name	Description	Default	Type
	
									tokens (common)
								

								 	
									Configure this property in case you want to statically declare tokens related to devices you want to notify. Tokens are separated by comma.
								

								 	 	
									String
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									sendEmptyMessageWhenIdle (consumer)
								

								 	
									If the polling consumer did not poll any files, you can enable this option to send an empty message (no body) instead.
								

								 	
									false
								

								 	
									boolean
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									pollStrategy (consumer)
								

								 	
									A pluggable org.apache.camel.PollingConsumerPollingStrategy allowing you to provide your custom implementation to control error handling usually occurred during the poll operation before an Exchange have been created and being routed in Camel.
								

								 	 	
									PollingConsumerPoll Strategy
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									backoffErrorThreshold (scheduler)
								

								 	
									The number of subsequent error polls (failed due some error) that should happen before the backoffMultipler should kick-in.
								

								 	 	
									int
								

								
	
									backoffIdleThreshold (scheduler)
								

								 	
									The number of subsequent idle polls that should happen before the backoffMultipler should kick-in.
								

								 	 	
									int
								

								
	
									backoffMultiplier (scheduler)
								

								 	
									To let the scheduled polling consumer backoff if there has been a number of subsequent idles/errors in a row. The multiplier is then the number of polls that will be skipped before the next actual attempt is happening again. When this option is in use then backoffIdleThreshold and/or backoffErrorThreshold must also be configured.
								

								 	 	
									int
								

								
	
									delay (scheduler)
								

								 	
									Milliseconds before the next poll. You can also specify time values using units, such as 60s (60 seconds), 5m30s (5 minutes and 30 seconds), and 1h (1 hour).
								

								 	
									500
								

								 	
									long
								

								
	
									greedy (scheduler)
								

								 	
									If greedy is enabled, then the ScheduledPollConsumer will run immediately again, if the previous run polled 1 or more messages.
								

								 	
									false
								

								 	
									boolean
								

								
	
									initialDelay (scheduler)
								

								 	
									Milliseconds before the first poll starts. You can also specify time values using units, such as 60s (60 seconds), 5m30s (5 minutes and 30 seconds), and 1h (1 hour).
								

								 	
									1000
								

								 	
									long
								

								
	
									runLoggingLevel (scheduler)
								

								 	
									The consumer logs a start/complete log line when it polls. This option allows you to configure the logging level for that.
								

								 	
									TRACE
								

								 	
									LoggingLevel
								

								
	
									scheduledExecutorService (scheduler)
								

								 	
									Allows for configuring a custom/shared thread pool to use for the consumer. By default each consumer has its own single threaded thread pool.
								

								 	 	
									ScheduledExecutor Service
								

								
	
									scheduler (scheduler)
								

								 	
									To use a cron scheduler from either camel-spring or camel-quartz2 component
								

								 	
									none
								

								 	
									ScheduledPollConsumer Scheduler
								

								
	
									schedulerProperties (scheduler)
								

								 	
									To configure additional properties when using a custom scheduler or any of the Quartz2, Spring based scheduler.
								

								 	 	
									Map
								

								
	
									startScheduler (scheduler)
								

								 	
									Whether the scheduler should be auto started.
								

								 	
									true
								

								 	
									boolean
								

								
	
									timeUnit (scheduler)
								

								 	
									Time unit for initialDelay and delay options.
								

								 	
									MILLISECONDS
								

								 	
									TimeUnit
								

								
	
									useFixedDelay (scheduler)
								

								 	
									Controls if fixed delay or fixed rate is used. See ScheduledExecutorService in JDK for details.
								

								 	
									true
								

								 	
									boolean
								

								

					You can append query options to the URI in the following format, ?option=value&option=value&…​
				

Component

					The ApnsComponent must be configured with a com.notnoop.apns.ApnsService. The service can be created and configured using the org.apache.camel.component.apns.factory.ApnsServiceFactory. See further below for an example. And as well in the test source code.
				
SSL Setting

						In order to use secure connection, an instance of org.apache.camel.util.jsse.SSLContextParameters should be injected to org.apache.camel.component.apns.factory.ApnsServiceFactory which is used to configure the component. See the test resources for an example. ssl example
					

Exchange data format

				When Camel will fetch feedback data corresponding to inactive devices, it will retrieve a List of InactiveDevice objects. Each InactiveDevice object of the retrieved list will be setted as the In body, and then processed by the consumer endpoint.
			

Message Headers

				Camel Apns uses these headers.
			
	Property	Default	Description
	
								CamelApnsTokens
							

							 	 	
								Empty by default.
							

							
	
								CamelApnsMessageType
							

							 	
								STRING, PAYLOAD, APNS_NOTIFICATION
							

							 	
								In case you choose PAYLOAD for the message type, then the message will be considered as a APNS payload and sent as is. In case you choose STRING, message will be converted as a APNS payload. From Camel 2.16 onwards APNS_NOTIFICATION is used for sending message body as com.notnoop.apns.ApnsNotification types.
							

							

ApnsServiceFactory builder callback

				ApnsServiceFactory comes with the empty callback method that could be used to configure (or even replace) the default ApnsServiceBuilder instance. The signature of the method could look as follows:
			
protected ApnsServiceBuilder configureServiceBuilder(ApnsServiceBuilder serviceBuilder);

				And could be used like as follows:
			
ApnsServiceFactory proxiedApnsServiceFactory = new ApnsServiceFactory(){

 @Override
 protected ApnsServiceBuilder configureServiceBuilder(ApnsServiceBuilder serviceBuilder) {
 return serviceBuilder.withSocksProxy("my.proxy.com", 6666);
 }

};

Samples

Camel Xml route

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:camel="http://camel.apache.org/schema/spring"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
 http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/camel-spring.xsd">

 <!-- Replace by desired values -->
 <bean id="apnsServiceFactory" class="org.apache.camel.component.apns.factory.ApnsServiceFactory">

 <!-- Optional configuration of feedback host and port -->
 <!-- <property name="feedbackHost" value="localhost" /> -->
 <!-- <property name="feedbackPort" value="7843" /> -->

 <!-- Optional configuration of gateway host and port -->
 <!-- <property name="gatewayHost" value="localhost" /> -->
 <!-- <property name="gatewayPort" value="7654" /> -->

 <!-- Declaration of certificate used -->
 <!-- from Camel 2.11 onwards you can use prefix: classpath:, file: to refer to load the certificate from classpath or file. Default it classpath -->
 <property name="certificatePath" value="certificate.p12" />
 <property name="certificatePassword" value="MyCertPassword" />

 <!-- Optional connection strategy - By Default: No need to configure -->
 <!-- Possible options: NON_BLOCKING, QUEUE, POOL or Nothing -->
 <!-- <property name="connectionStrategy" value="POOL" /> -->
 <!-- Optional pool size -->
 <!-- <property name="poolSize" value="15" /> -->

 <!-- Optional connection strategy - By Default: No need to configure -->
 <!-- Possible options: EVERY_HALF_HOUR, EVERY_NOTIFICATION or Nothing (Corresponds to NEVER javapns option) -->
 <!-- <property name="reconnectionPolicy" value="EVERY_HALF_HOUR" /> -->
 </bean>

 <bean id="apnsService" factory-bean="apnsServiceFactory" factory-method="getApnsService" />

 <!-- Replace this declaration by wanted configuration -->
 <bean id="apns" class="org.apache.camel.component.apns.ApnsComponent">
 <property name="apnsService" ref="apnsService" />
 </bean>

 <camelContext id="camel-apns-test" xmlns="http://camel.apache.org/schema/spring">
 <route id="apns-test">
 <from uri="apns:consumer?initialDelay=10&delay=3600&timeUnit=SECONDS" />
 <to uri="log:org.apache.camel.component.apns?showAll=true&multiline=true" />
 <to uri="mock:result" />
 </route>
 </camelContext>

</beans>

Camel Java route

					Create camel context and declare apns component programmatically
				
 protected CamelContext createCamelContext() throws Exception {
 CamelContext camelContext = super.createCamelContext();

 ApnsServiceFactory apnsServiceFactory = new ApnsServiceFactory();
 apnsServiceFactory.setCertificatePath("classpath:/certificate.p12");
 apnsServiceFactory.setCertificatePassword("MyCertPassword");

 ApnsService apnsService = apnsServiceFactory.getApnsService(camelContext);

 ApnsComponent apnsComponent = new ApnsComponent(apnsService);
 camelContext.addComponent("apns", apnsComponent);

 return camelContext;
 }

					[[APNS-ApnsProducer-iOStargetdevicedynamicallyconfiguredviaheader:"CamelApnsTokens"]] ApnsProducer - iOS target device dynamically configured via header: "CamelApnsTokens"
				
 protected RouteBuilder createRouteBuilder() throws Exception {
 return new RouteBuilder() {
 public void configure() throws Exception {
 from("direct:test")
 .setHeader(ApnsConstants.HEADER_TOKENS, constant(IOS_DEVICE_TOKEN))
 .to("apns:notify");
 }
 }
 }

					ApnsProducer - iOS target device statically configured via uri
				
 protected RouteBuilder createRouteBuilder() throws Exception {
 return new RouteBuilder() {
 public void configure() throws Exception {
 from("direct:test").
 to("apns:notify?tokens=" + IOS_DEVICE_TOKEN);
 }
 };
 }

					ApnsConsumer
				
from("apns:consumer?initialDelay=10&delay=3600&timeUnit=SECONDS")
 .to("log:com.apache.camel.component.apns?showAll=true&multiline=true")
 .to("mock:result");

See Also

	
						Component
					
	
						Endpoint * Blog about using APNS (in french)
					

Chapter 7. ASN.1 File DataFormat

			Available as of Camel version 2.20
		

			The ASN.1 Data Format Data Format [Intoduction to ASN.1](https://www.itu.int/en/ITU-T/asn1/Pages/introduction.aspx) is a Camel Frameworks’s data format implementation based on Bouncy Castle’s bcprov-jdk15on library and jASN.1’s java compiler for the formal notation used for describing data transmitted by telecommunications protocols, regardless of language implementation and physical representation of these data, whatever the application, whether complex or very simple. Messages can be unmarshalled (conversion to simple Java POJO(s)) to plain Java objects. By the help of Camel’s routing engine and data transformations you can then play with POJO(s) and apply customised formatting and call other Camel Component’s to convert and send messages to upstream systems.
		
ASN.1 Data Format Options

				The ASN.1 File dataformat supports 3 options which are listed below.
			
	Name	Default	Java Type	Description
	
								usingIterator
							

							 	
								false
							

							 	
								Boolean
							

							 	
								If the asn1 file has more then one entry, the setting this option to true, allows to work with the splitter EIP, to split the data using an iterator in a streaming mode.
							

							
	
								clazzName
							

							 	 	
								String
							

							 	
								Name of class to use when unmarshalling
							

							
	
								contentTypeHeader
							

							 	
								false
							

							 	
								Boolean
							

							 	
								Whether the data format should set the Content-Type header with the type from the data format if the data format is capable of doing so. For example application/xml for data formats marshalling to XML, or application/json for data formats marshalling to JSon etc.
							

							

Unmarshal

				There are 3 different ways to unmarshal ASN.1 structured messages. (Usually binary files)
			

				In this first example we unmarshal BER file payload to OutputStream and send it to mock endpoint.
			
from("direct:unmarshal").unmarshal(asn1).to("mock:unmarshal");

				In the second example we unmarshal BER file payload to byte array using Split EIP. The reason for applying Split EIP is that usually each BER file or (ASN.1 structured file) contains multiple records to process and Split EIP helps us to get each record in a file as byte arrays which is actually ASN1Primitive’s instance (by the use of Bouncy Castle’s ASN.1 support in bcprov-jdk15on library) Byte arrays then may be converted to ASN1Primitive by the help of public static method in (ASN1Primitive.fromByteArray) In such example, note that you need to set usingIterator=true
			
from("direct:unmarshal").unmarshal(asn1).split(body(Iterator.class)).streaming().to("mock:unmarshal");

				In the last example we unmarshal BER file payload to plain old Java Objects using Split EIP. The reason for applying Split EIP is already mentioned in the previous example. Please note and keep in mind that reason. In such example we also need to set the fully qualified name of the class or <YourObject>.class reference through data format. The important thing to note here is that your object should have been generated by jasn1 compiler which is a nice tool to generate java object representations of your ASN.1 structure. For the reference usage of jasn1 compiler see [JASN.1 Project Page](https://www.openmuc.org/asn1/) and please also see how the compiler is invoked with the help of maven’s exec plugin. For example, in this data format’s unit tests an example ASN.1 structure(TestSMSBerCdr.asn1) is added in src/test/resources/asn1_structure. jasn1 compiler is invoked and java object’s representations are generated in ${basedir}/target/generated/src/test/java The nice thing about this example, you will get POJO instance at the mock endpoint or at whatever your endpoint is.
			
from("direct:unmarshaldsl")
 .unmarshal()
 .asn1("org.apache.camel.dataformat.asn1.model.testsmscbercdr.SmsCdr")
 .split(body(Iterator.class)).streaming()
.to("mock:unmarshaldsl");

Dependencies

				To use ASN.1 data format in your camel routes you need to add a dependency on camel-asn1 which implements this data format.
			

				If you use Maven you can just add the following to your pom.xml, substituting the version number for the latest & greatest release (see the download page for the latest versions).
			
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-asn1</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>

Chapter 8. AS2 Component

Important

				The camel-as2 component for Karaf is a Technology Preview feature only. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production.
			

				These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process. For more information about the support scope of Red Hat Technology Preview features, see https://access.redhat.com/support/offerings/techpreview.
			

			Available as of Camel version 2.22
		

			The AS2 component provides transport of EDI messages using the HTTP transfer protocol as specified in RFC4130.
		
Note

				This component is currently a work in progress. Expect URI options and path and query parameters to change in future versions of this component.
			

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-as2</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>
URI format

as2://apiName/methodName

				apiName can be one of:
			
	
						client
					
	
						server
					

AS2 Options

				The AS2 component supports 2 options, which are listed below.
			
	Name	Description	Default	Type
	
								configuration (common)
							

							 	
								To use the shared configuration
							

							 	 	
								AS2Configuration
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The AS2 endpoint is configured using URI syntax:
			
as2:apiName

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									apiName
								

								 	
									Required What kind of operation to perform
								

								 	 	
									AS2ApiName
								

								

Query Parameters (30 parameters):

	Name	Description	Default	Type
	
									as2From (common)
								

								 	
									The value of the AS2From header of AS2 message.
								

								 	 	
									String
								

								
	
									as2MessageStructure (common)
								

								 	
									The structure of AS2 Message. One of: PLAIN - No encryption, no signature, SIGNED - No encryption, signature, ENCRYPTED - Encryption, no signature, ENCRYPTED_SIGNED - Encryption, signature
								

								 	 	
									AS2MessageStructure
								

								
	
									as2To (common)
								

								 	
									The value of the AS2To header of AS2 message.
								

								 	 	
									String
								

								
	
									as2Version (common)
								

								 	
									The version of the AS2 protocol.
								

								 	
									1.1
								

								 	
									String
								

								
	
									clientFqdn (common)
								

								 	
									The Client Fully Qualified Domain Name (FQDN). Used in message ids sent by endpoint.
								

								 	
									camel.apache.org
								

								 	
									String
								

								
	
									dispositionNotificationTo (common)
								

								 	
									The value of the Disposition-Notification-To header. Assigning a value to this parameter requests a message disposition notification (MDN) for the AS2 message.
								

								 	 	
									String
								

								
	
									ediMessageTransferEncoding (common)
								

								 	
									The transfer encoding of EDI message.
								

								 	 	
									String
								

								
	
									ediMessageType (common)
								

								 	
									The content type of EDI message. One of application/edifact, application/edi-x12, application/edi-consent
								

								 	 	
									ContentType
								

								
	
									encryptingAlgorithm (common)
								

								 	
									The algorithm used to encrypt EDI message.
								

								 	 	
									AS2EncryptionAlgorithm
								

								
	
									encryptingCertificateChain (common)
								

								 	
									The chain of certificates used to encrypt EDI message.
								

								 	 	
									Certificate[]
								

								
	
									encryptingPrivateKey (common)
								

								 	
									The key used to encrypt the EDI message.
								

								 	 	
									PrivateKey
								

								
	
									from (common)
								

								 	
									The value of the From header of AS2 message.
								

								 	 	
									String
								

								
	
									inBody (common)
								

								 	
									Sets the name of a parameter to be passed in the exchange In Body
								

								 	 	
									String
								

								
	
									methodName (common)
								

								 	
									Required What sub operation to use for the selected operation
								

								 	 	
									String
								

								
	
									requestUri (common)
								

								 	
									The request URI of EDI message.
								

								 	
									/
								

								 	
									String
								

								
	
									server (common)
								

								 	
									The value included in the Server message header identifying the AS2 Server.
								

								 	
									Camel AS2 Server Endpoint
								

								 	
									String
								

								
	
									serverFqdn (common)
								

								 	
									The Server Fully Qualified Domain Name (FQDN). Used in message ids sent by endpoint.
								

								 	
									camel.apache.org
								

								 	
									String
								

								
	
									serverPortNumber (common)
								

								 	
									The port number of server.
								

								 	 	
									Integer
								

								
	
									signedReceiptMicAlgorithms (common)
								

								 	
									The list of algorithms, in order of preference, requested to generate a message integrity check (MIC) returned in message dispostion notification (MDN)
								

								 	 	
									String[]
								

								
	
									signingAlgorithm (common)
								

								 	
									The algorithm used to sign EDI message.
								

								 	 	
									AS2SignatureAlgorithm
								

								
	
									signingCertificateChain (common)
								

								 	
									The chain of certificates used to sign EDI message.
								

								 	 	
									Certificate[]
								

								
	
									signingPrivateKey (common)
								

								 	
									The key used to sign the EDI message.
								

								 	 	
									PrivateKey
								

								
	
									subject (common)
								

								 	
									The value of Subject header of AS2 message.
								

								 	 	
									String
								

								
	
									targetHostname (common)
								

								 	
									The host name (IP or DNS name) of target host.
								

								 	 	
									String
								

								
	
									targetPortNumber (common)
								

								 	
									The port number of target host. -1 indicates the scheme default port.
								

								 	 	
									Integer
								

								
	
									userAgent (common)
								

								 	
									The value included in the User-Agent message header identifying the AS2 user agent.
								

								 	
									Camel AS2 Client Endpoint
								

								 	
									String
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this option is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

Spring Boot Auto-Configuration

				The component supports 28 options, which are listed below.
			
	Name	Description	Default	Type
	
								camel.component.as2.configuration.api-name
							

							 	
								What kind of operation to perform
							

							 	 	
								AS2ApiName
							

							
	
								camel.component.as2.configuration.as2-from
							

							 	
								The value of the AS2From header of AS2 message.
							

							 	 	
								String
							

							
	
								camel.component.as2.configuration.as2-message-structure
							

							 	
								The structure of AS2 Message. One of: PLAIN - No encryption, no signature, SIGNED - No encryption, signature, ENCRYPTED - Encryption, no signature, ENCRYPTED_SIGNED - Encryption, signature
							

							 	 	
								AS2MessageStructure
							

							
	
								camel.component.as2.configuration.as2-to
							

							 	
								The value of the AS2To header of AS2 message.
							

							 	 	
								String
							

							
	
								camel.component.as2.configuration.as2-version
							

							 	
								The version of the AS2 protocol.
							

							 	
								1.1
							

							 	
								String
							

							
	
								camel.component.as2.configuration.client-fqdn
							

							 	
								The Client Fully Qualified Domain Name (FQDN). Used in message ids sent by endpoint.
							

							 	
								camel.apache.org
							

							 	
								String
							

							
	
								camel.component.as2.configuration.disposition-notification-to
							

							 	
								The value of the Disposition-Notification-To header. Assigning a value to this parameter requests a message disposition notification (MDN) for the AS2 message.
							

							 	 	
								String
							

							
	
								camel.component.as2.configuration.edi-message-transfer-encoding
							

							 	
								The transfer encoding of EDI message.
							

							 	 	
								String
							

							
	
								camel.component.as2.configuration.edi-message-type
							

							 	
								The content type of EDI message. One of application/edifact, application/edi-x12, application/edi-consent
							

							 	 	
								ContentType
							

							
	
								camel.component.as2.configuration.encrypting-algorithm
							

							 	
								The algorithm used to encrypt EDI message.
							

							 	 	
								AS2EncryptionAlgorithm
							

							
	
								camel.component.as2.configuration.encrypting-certificate-chain
							

							 	
								The chain of certificates used to encrypt EDI message.
							

							 	 	
								Certificate[]
							

							
	
								camel.component.as2.configuration.encrypting-private-key
							

							 	
								The key used to encrypt the EDI message.
							

							 	 	
								PrivateKey
							

							
	
								camel.component.as2.configuration.from
							

							 	
								The value of the From header of AS2 message.
							

							 	 	
								String
							

							
	
								camel.component.as2.configuration.method-name
							

							 	
								What sub operation to use for the selected operation
							

							 	 	
								String
							

							
	
								camel.component.as2.configuration.request-uri
							

							 	
								The request URI of EDI message.
							

							 	
								/
							

							 	
								String
							

							
	
								camel.component.as2.configuration.server
							

							 	
								The value included in the Server message header identifying the AS2 Server.
							

							 	
								Camel AS2 Server Endpoint
							

							 	
								String
							

							
	
								camel.component.as2.configuration.server-fqdn
							

							 	
								The Server Fully Qualified Domain Name (FQDN). Used in message ids sent by endpoint.
							

							 	
								camel.apache.org
							

							 	
								String
							

							
	
								camel.component.as2.configuration.server-port-number
							

							 	
								The port number of server.
							

							 	 	
								Integer
							

							
	
								camel.component.as2.configuration.signed-receipt-mic-algorithms
							

							 	
								The list of algorithms, in order of preference, requested to generate a message integrity check (MIC) returned in message dispostion notification (MDN)
							

							 	 	
								String[]
							

							
	
								camel.component.as2.configuration.signing-algorithm
							

							 	
								The algorithm used to sign EDI message.
							

							 	 	
								AS2SignatureAlgorithm
							

							
	
								camel.component.as2.configuration.signing-certificate-chain
							

							 	
								The chain of certificates used to sign EDI message.
							

							 	 	
								Certificate[]
							

							
	
								camel.component.as2.configuration.signing-private-key
							

							 	
								The key used to sign the EDI message.
							

							 	 	
								PrivateKey
							

							
	
								camel.component.as2.configuration.subject
							

							 	
								The value of Subject header of AS2 message.
							

							 	 	
								String
							

							
	
								camel.component.as2.configuration.target-hostname
							

							 	
								The host name (IP or DNS name) of target host.
							

							 	 	
								String
							

							
	
								camel.component.as2.configuration.target-port-number
							

							 	
								The port number of target host. -1 indicates the scheme default port.
							

							 	 	
								Integer
							

							
	
								camel.component.as2.configuration.user-agent
							

							 	
								The value included in the User-Agent message header identifying the AS2 user agent.
							

							 	
								Camel AS2 Client Endpoint
							

							 	
								String
							

							
	
								camel.component.as2.enabled
							

							 	
								Whether to enable auto configuration of the as2 component. This is enabled by default.
							

							 	 	
								Boolean
							

							
	
								camel.component.as2.resolve-property-placeholders
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								Boolean
							

							

Client Endpoints:

				Client endpoints use the endpoint prefix client followed by the name of a method and associated options described next. The endpoint URI MUST contain the prefix client.
			
as2://client/method?[options]

				Endpoint options that are not mandatory are denoted by []. When there are no mandatory options for an endpoint, one of the set of [] options MUST be provided. Producer endpoints can also use a special option inBody that in turn should contain the name of the endpoint option whose value will be contained in the Camel Exchange In message.
			

				Any of the endpoint options can be provided in either the endpoint URI, or dynamically in a message header. The message header name must be of the format CamelAS2.<option>. Note that the inBody option overrides message header, i.e. the endpoint option inBody=option would override a CamelAS2.option header.
			

				If a value is not provided for the option defaultRequest either in the endpoint URI or in a message header, it will be assumed to be null. Note that the null value will only be used if other options do not satisfy matching endpoints.
			

				In case of AS2 API errors the endpoint will throw a RuntimeCamelException with a org.apache.http.HttpException derived exception cause.
			
	Method	Options	Result Body Type
	
								send
							

							 	
								ediMessage, requestUri, subject, from, as2From, as2To, as2MessageStructure, ediMessageContentType, ediMessageTransferEncoding, dispositionNotificationTo, signedReceiptMicAlgorithms
							

							 	
								org.apache.http.protocol.HttpCoreContext
							

							

				URI Options for client
			
	Name	Type
	
								ediMessage
							

							 	
								String
							

							
	
								requestUri
							

							 	
								String
							

							
	
								subject
							

							 	
								String
							

							
	
								from
							

							 	
								String
							

							
	
								as2From
							

							 	
								String
							

							
	
								as2To
							

							 	
								String
							

							
	
								as2MessageStructure
							

							 	
								org.apache.camel.component.as2.api.AS2MessageStructure
							

							
	
								ediMessageContentType
							

							 	
								String
							

							
	
								ediMessageTransferEncoding
							

							 	
								String
							

							
	
								dispositionNotificationTo
							

							 	
								String
							

							
	
								signedReceiptMicAlgorithms
							

							 	
								String[]
							

							

Server Endpoints:

				Server endpoints use the endpoint prefix server followed by the name of a method and associated options described next. The endpoint URI MUST contain the prefix server.
			
as2://server/method?[options]

				Endpoint options that are not mandatory are denoted by []. When there are no mandatory options for an endpoint, one of the set of [] options MUST be provided. Producer endpoints can also use a special option inBody that in turn should contain the name of the endpoint option whose value will be contained in the Camel Exchange In message.
			

				Any of the endpoint options can be provided in either the endpoint URI, or dynamically in a message header. The message header name must be of the format CamelAS2.<option>. Note that the inBody option overrides message header, i.e. the endpoint option inBody=option would override a CamelAS2.option header.
			

				If a value is not provided for the option defaultRequest either in the endpoint URI or in a message header, it will be assumed to be null. Note that the null value will only be used if other options do not satisfy matching endpoints.
			

				In case of AS2 API errors the endpoint will throw a RuntimeCamelException with a org.apache.http.HttpException derived exception cause.
			
	Method	Options	Result Body Type
	
								listen
							

							 	
								requestUriPattern
							

							 	
								org.apache.http.protocol.HttpCoreContext
							

							

				URI Options for server
			
	Name	Type
	
								requestUriPattern
							

							 	
								String
							

							

Chapter 9. Asterisk Component

			Available as of Camel version 2.18
		

			The asterisk: component allows you to work easily with an Asterisk PBX Server http://www.asterisk.org/ using asterisk-java
		

			This component help to interface with Asterisk Manager Interface
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-asterisk</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>
URI format

asterisk:name[?options]

Options

				The Asterisk component has no options.
			

				The Asterisk endpoint is configured using URI syntax:
			
asterisk:name

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									name
								

								 	
									Required Logical name
								

								 	 	
									String
								

								

Query Parameters (8 parameters):

	Name	Description	Default	Type
	
									hostname (common)
								

								 	
									Required The hostname of the asterisk server
								

								 	 	
									String
								

								
	
									password (common)
								

								 	
									Required Login password
								

								 	 	
									String
								

								
	
									username (common)
								

								 	
									Required Login username
								

								 	 	
									String
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									action (producer)
								

								 	
									What action to perform such as getting queue status, sip peers or extension state.
								

								 	 	
									AsteriskAction
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

Action

				Supported actions are:
			
	
						QUEUE_STATUS, Queue Status
					
	
						SIP_PEERS, List SIP Peers
					
	
						EXTENSION_STATE, Check Extension Status
					

Chapter 10. Atmos Component

			Available as of Camel version 2.15
		

			Camel-Atmos is an Apache Camel component that allows you to work with ViPR object data services using the Atmos Client.
		
from("atmos:foo/get?remotePath=/path").to("mock:test");
Options

				The Atmos component supports 5 options which are listed below.
			
	Name	Description	Default	Type
	
								fullTokenId (security)
							

							 	
								The token id to pass to the Atmos client
							

							 	 	
								String
							

							
	
								secretKey (security)
							

							 	
								The secret key to pass to the Atmos client
							

							 	 	
								String
							

							
	
								uri (advanced)
							

							 	
								The URI of the server for the Atmos client to connect to
							

							 	 	
								String
							

							
	
								sslValidation (security)
							

							 	
								Whether the Atmos client should perform SSL validation
							

							 	
								false
							

							 	
								boolean
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The Atmos endpoint is configured using URI syntax:
			
atmos:name/operation

				with the following path and query parameters:
			
Path Parameters (2 parameters):

	Name	Description	Default	Type
	
									name
								

								 	
									Atmos name
								

								 	 	
									String
								

								
	
									operation
								

								 	
									Required Operation to perform
								

								 	 	
									AtmosOperation
								

								

Query Parameters (12 parameters):

	Name	Description	Default	Type
	
									enableSslValidation (common)
								

								 	
									Atmos SSL validation
								

								 	
									false
								

								 	
									boolean
								

								
	
									fullTokenId (common)
								

								 	
									Atmos client fullTokenId
								

								 	 	
									String
								

								
	
									localPath (common)
								

								 	
									Local path to put files
								

								 	 	
									String
								

								
	
									newRemotePath (common)
								

								 	
									New path on Atmos when moving files
								

								 	 	
									String
								

								
	
									query (common)
								

								 	
									Search query on Atmos
								

								 	 	
									String
								

								
	
									remotePath (common)
								

								 	
									Where to put files on Atmos
								

								 	 	
									String
								

								
	
									secretKey (common)
								

								 	
									Atmos shared secret
								

								 	 	
									String
								

								
	
									uri (common)
								

								 	
									Atomos server uri
								

								 	 	
									String
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

Dependencies

				To use Atmos in your camel routes you need to add the dependency on camel-atmos which implements this data format.
			

				If you use maven you could just add the following to your pom.xml, substituting the version number for the latest & greatest release (see the download page for the latest versions).
			
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-atmos</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>

Integrations

				When you look at atmos integrations, there is one type of consumer, GetConsumer, which is a type of ScheduledPollConsumer.
			
	
						Get
					

				Whereas there are 4 types of producers which are
			
	
						Get
					
	
						Del
					
	
						Move
					
	
						Put
					

Examples

				These example are taken from tests:
			
from("atmos:foo/get?remotePath=/path").to("mock:test");

				Here, this is a consumer example. remotePath represents the path from where the data will be read and passes the camel exchange to regarding producer Underneath, this component uses atmos client API for this and every other operations.
			
from("direct:start")
.to("atmos://get?remotePath=/dummy/dummy.txt")
.to("mock:result");

				Here, this a producer sample. remotePath represents the path where the operations occur on ViPR object data service. In producers, operations(Get,Del, Move,Put) run on ViPR object data services and results are set on headers of camel exchange.
			

				Regarding the operations, the following headers are set on camel exhange
			
DOWNLOADED_FILE, DOWNLOADED_FILES, UPLOADED_FILE, UPLOADED_FILES, FOUND_FILES, DELETED_PATH, MOVED_PATH;

See Also

	
						Configuring Camel
					
	
						Component
					
	
						Endpoint
					
	
						Getting Started
					

Chapter 11. Atmosphere Websocket Component

			Available as of Camel version 2.14
		

			The atmosphere-websocket: component provides Websocket based endpoints for a servlet communicating with external clients over Websocket (as a servlet accepting websocket connections from external clients).
 The component uses the SERVLET component and uses the Atmosphere library to support the Websocket transport in various Servlet containers (e..g., Jetty, Tomcat, …​).
		

			Unlike the Websocket component that starts the embedded Jetty server, this component uses the servlet provider of the container.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-atmosphere-websocket</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>
Atmosphere-Websocket Options

				The Atmosphere Websocket component supports 8 options which are listed below.
			
	Name	Description	Default	Type
	
								servletName (common)
							

							 	
								Default name of servlet to use. The default name is CamelServlet.
							

							 	 	
								String
							

							
	
								httpRegistry (common)
							

							 	
								To use a custom org.apache.camel.component.servlet.HttpRegistry.
							

							 	 	
								HttpRegistry
							

							
	
								attachmentMultipart Binding (common)
							

							 	
								Whether to automatic bind multipart/form-data as attachments on the Camel Exchange. The options attachmentMultipartBinding=true and disableStreamCache=false cannot work together. Remove disableStreamCache to use AttachmentMultipartBinding. This is turn off by default as this may require servlet specific configuration to enable this when using Servlet’s.
							

							 	
								false
							

							 	
								boolean
							

							
	
								httpBinding (advanced)
							

							 	
								To use a custom HttpBinding to control the mapping between Camel message and HttpClient.
							

							 	 	
								HttpBinding
							

							
	
								httpConfiguration (advanced)
							

							 	
								To use the shared HttpConfiguration as base configuration.
							

							 	 	
								HttpConfiguration
							

							
	
								allowJavaSerialized Object (advanced)
							

							 	
								Whether to allow java serialization when a request uses context-type=application/x-java-serialized-object. This is by default turned off. If you enable this then be aware that Java will deserialize the incoming data from the request to Java and that can be a potential security risk.
							

							 	
								false
							

							 	
								boolean
							

							
	
								headerFilterStrategy (filter)
							

							 	
								To use a custom org.apache.camel.spi.HeaderFilterStrategy to filter header to and from Camel message.
							

							 	 	
								HeaderFilterStrategy
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The Atmosphere Websocket endpoint is configured using URI syntax:
			
atmosphere-websocket:servicePath

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									servicePath
								

								 	
									Required Name of websocket endpoint
								

								 	 	
									String
								

								

Query Parameters (37 parameters):

	Name	Description	Default	Type
	
									chunked (common)
								

								 	
									If this option is false the Servlet will disable the HTTP streaming and set the content-length header on the response
								

								 	
									true
								

								 	
									boolean
								

								
	
									disableStreamCache (common)
								

								 	
									Determines whether or not the raw input stream from Servlet is cached or not (Camel will read the stream into a in memory/overflow to file, Stream caching) cache. By default Camel will cache the Servlet input stream to support reading it multiple times to ensure it Camel can retrieve all data from the stream. However you can set this option to true when you for example need to access the raw stream, such as streaming it directly to a file or other persistent store. DefaultHttpBinding will copy the request input stream into a stream cache and put it into message body if this option is false to support reading the stream multiple times. If you use Servlet to bridge/proxy an endpoint then consider enabling this option to improve performance, in case you do not need to read the message payload multiple times. The http/http4 producer will by default cache the response body stream. If setting this option to true, then the producers will not cache the response body stream but use the response stream as-is as the message body.
								

								 	
									false
								

								 	
									boolean
								

								
	
									headerFilterStrategy (common)
								

								 	
									To use a custom HeaderFilterStrategy to filter header to and from Camel message.
								

								 	 	
									HeaderFilterStrategy
								

								
	
									sendToAll (common)
								

								 	
									Whether to send to all (broadcast) or send to a single receiver.
								

								 	
									false
								

								 	
									boolean
								

								
	
									transferException (common)
								

								 	
									If enabled and an Exchange failed processing on the consumer side, and if the caused Exception was send back serialized in the response as a application/x-java-serialized-object content type. On the producer side the exception will be deserialized and thrown as is, instead of the HttpOperationFailedException. The caused exception is required to be serialized. This is by default turned off. If you enable this then be aware that Java will deserialize the incoming data from the request to Java and that can be a potential security risk.
								

								 	
									false
								

								 	
									boolean
								

								
	
									useStreaming (common)
								

								 	
									To enable streaming to send data as multiple text fragments.
								

								 	
									false
								

								 	
									boolean
								

								
	
									httpBinding (common)
								

								 	
									To use a custom HttpBinding to control the mapping between Camel message and HttpClient.
								

								 	 	
									HttpBinding
								

								
	
									async (consumer)
								

								 	
									Configure the consumer to work in async mode
								

								 	
									false
								

								 	
									boolean
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									httpMethodRestrict (consumer)
								

								 	
									Used to only allow consuming if the HttpMethod matches, such as GET/POST/PUT etc. Multiple methods can be specified separated by comma.
								

								 	 	
									String
								

								
	
									matchOnUriPrefix (consumer)
								

								 	
									Whether or not the consumer should try to find a target consumer by matching the URI prefix if no exact match is found.
								

								 	
									false
								

								 	
									boolean
								

								
	
									responseBufferSize (consumer)
								

								 	
									To use a custom buffer size on the javax.servlet.ServletResponse.
								

								 	 	
									Integer
								

								
	
									servletName (consumer)
								

								 	
									Name of the servlet to use
								

								 	
									CamelServlet
								

								 	
									String
								

								
	
									attachmentMultipartBinding (consumer)
								

								 	
									Whether to automatic bind multipart/form-data as attachments on the Camel Exchange. The options attachmentMultipartBinding=true and disableStreamCache=false cannot work together. Remove disableStreamCache to use AttachmentMultipartBinding. This is turn off by default as this may require servlet specific configuration to enable this when using Servlet’s.
								

								 	
									false
								

								 	
									boolean
								

								
	
									eagerCheckContentAvailable (consumer)
								

								 	
									Whether to eager check whether the HTTP requests has content if the content-length header is 0 or not present. This can be turned on in case HTTP clients do not send streamed data.
								

								 	
									false
								

								 	
									boolean
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									optionsEnabled (consumer)
								

								 	
									Specifies whether to enable HTTP OPTIONS for this Servlet consumer. By default OPTIONS is turned off.
								

								 	
									false
								

								 	
									boolean
								

								
	
									traceEnabled (consumer)
								

								 	
									Specifies whether to enable HTTP TRACE for this Servlet consumer. By default TRACE is turned off.
								

								 	
									false
								

								 	
									boolean
								

								
	
									bridgeEndpoint (producer)
								

								 	
									If the option is true, HttpProducer will ignore the Exchange.HTTP_URI header, and use the endpoint’s URI for request. You may also set the option throwExceptionOnFailure to be false to let the HttpProducer send all the fault response back.
								

								 	
									false
								

								 	
									boolean
								

								
	
									connectionClose (producer)
								

								 	
									Specifies whether a Connection Close header must be added to HTTP Request. By default connectionClose is false.
								

								 	
									false
								

								 	
									boolean
								

								
	
									copyHeaders (producer)
								

								 	
									If this option is true then IN exchange headers will be copied to OUT exchange headers according to copy strategy. Setting this to false, allows to only include the headers from the HTTP response (not propagating IN headers).
								

								 	
									true
								

								 	
									boolean
								

								
	
									httpMethod (producer)
								

								 	
									Configure the HTTP method to use. The HttpMethod header cannot override this option if set.
								

								 	 	
									HttpMethods
								

								
	
									ignoreResponseBody (producer)
								

								 	
									If this option is true, The http producer won’t read response body and cache the input stream
								

								 	
									false
								

								 	
									boolean
								

								
	
									preserveHostHeader (producer)
								

								 	
									If the option is true, HttpProducer will set the Host header to the value contained in the current exchange Host header, useful in reverse proxy applications where you want the Host header received by the downstream server to reflect the URL called by the upstream client, this allows applications which use the Host header to generate accurate URL’s for a proxied service
								

								 	
									false
								

								 	
									boolean
								

								
	
									throwExceptionOnFailure (producer)
								

								 	
									Option to disable throwing the HttpOperationFailedException in case of failed responses from the remote server. This allows you to get all responses regardless of the HTTP status code.
								

								 	
									true
								

								 	
									boolean
								

								
	
									cookieHandler (producer)
								

								 	
									Configure a cookie handler to maintain a HTTP session
								

								 	 	
									CookieHandler
								

								
	
									okStatusCodeRange (producer)
								

								 	
									The status codes which are considered a success response. The values are inclusive. Multiple ranges can be defined, separated by comma, e.g. 200-204,209,301-304. Each range must be a single number or from-to with the dash included.
								

								 	
									200-299
								

								 	
									String
								

								
	
									urlRewrite (producer)
								

								 	
									Deprecated Refers to a custom org.apache.camel.component.http.UrlRewrite which allows you to rewrite urls when you bridge/proxy endpoints. See more details at http://camel.apache.org/urlrewrite.html
								

								 	 	
									UrlRewrite
								

								
	
									mapHttpMessageBody (advanced)
								

								 	
									If this option is true then IN exchange Body of the exchange will be mapped to HTTP body. Setting this to false will avoid the HTTP mapping.
								

								 	
									true
								

								 	
									boolean
								

								
	
									mapHttpMessageFormUrl EncodedBody (advanced)
								

								 	
									If this option is true then IN exchange Form Encoded body of the exchange will be mapped to HTTP. Setting this to false will avoid the HTTP Form Encoded body mapping.
								

								 	
									true
								

								 	
									boolean
								

								
	
									mapHttpMessageHeaders (advanced)
								

								 	
									If this option is true then IN exchange Headers of the exchange will be mapped to HTTP headers. Setting this to false will avoid the HTTP Headers mapping.
								

								 	
									true
								

								 	
									boolean
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									proxyAuthScheme (proxy)
								

								 	
									Proxy authentication scheme to use
								

								 	 	
									String
								

								
	
									proxyHost (proxy)
								

								 	
									Proxy hostname to use
								

								 	 	
									String
								

								
	
									proxyPort (proxy)
								

								 	
									Proxy port to use
								

								 	 	
									int
								

								
	
									authHost (security)
								

								 	
									Authentication host to use with NTML
								

								 	 	
									String
								

								

URI Format

atmosphere-websocket:///relative path[?options]

Reading and Writing Data over Websocket

				An atmopshere-websocket endpoint can either write data to the socket or read from the socket, depending on whether the endpoint is configured as the producer or the consumer, respectively.
			

Configuring URI to Read or Write Data

				In the route below, Camel will read from the specified websocket connection.
			
from("atmosphere-websocket:///servicepath")
 .to("direct:next");

				And the equivalent Spring sample:
			
<camelContext xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="atmosphere-websocket:///servicepath"/>
 <to uri="direct:next"/>
 </route>
</camelContext>

				In the route below, Camel will read from the specified websocket connection.
			
from("direct:next")
 .to("atmosphere-websocket:///servicepath");

				And the equivalent Spring sample:
			
<camelContext xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="direct:next"/>
 <to uri="atmosphere-websocket:///servicepath"/>
 </route>
</camelContext>

				
			

See Also

	
						Configuring Camel
					
	
						Component
					
	
						Endpoint
					
	
						Getting Started
					
	
						SERVLET
					
	
						AHC-WS * Websocket
					

Chapter 12. Atom Component

			Available as of Camel version 1.2
		

			The atom: component is used for polling Atom feeds.
		

			Camel will poll the feed every 60 seconds by default.
 Note: The component currently only supports polling (consuming) feeds.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-atom</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>
URI format

atom://atomUri[?options]

				Where atomUri is the URI to the Atom feed to poll.
			

Options

				The Atom component has no options.
			

				The Atom endpoint is configured using URI syntax:
			
atom:feedUri

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									feedUri
								

								 	
									Required The URI to the feed to poll.
								

								 	 	
									String
								

								

Query Parameters (27 parameters):

	Name	Description	Default	Type
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									feedHeader (consumer)
								

								 	
									Sets whether to add the feed object as a header
								

								 	
									true
								

								 	
									boolean
								

								
	
									filter (consumer)
								

								 	
									Sets whether to use filtering or not of the entries.
								

								 	
									true
								

								 	
									boolean
								

								
	
									lastUpdate (consumer)
								

								 	
									Sets the timestamp to be used for filtering entries from the atom feeds. This options is only in conjunction with the splitEntries.
								

								 	 	
									Date
								

								
	
									password (consumer)
								

								 	
									Sets the password to be used for basic authentication when polling from a HTTP feed
								

								 	 	
									String
								

								
	
									sendEmptyMessageWhenIdle (consumer)
								

								 	
									If the polling consumer did not poll any files, you can enable this option to send an empty message (no body) instead.
								

								 	
									false
								

								 	
									boolean
								

								
	
									sortEntries (consumer)
								

								 	
									Sets whether to sort entries by published date. Only works when splitEntries = true.
								

								 	
									false
								

								 	
									boolean
								

								
	
									splitEntries (consumer)
								

								 	
									Sets whether or not entries should be sent individually or whether the entire feed should be sent as a single message
								

								 	
									true
								

								 	
									boolean
								

								
	
									throttleEntries (consumer)
								

								 	
									Sets whether all entries identified in a single feed poll should be delivered immediately. If true, only one entry is processed per consumer.delay. Only applicable when splitEntries = true.
								

								 	
									true
								

								 	
									boolean
								

								
	
									username (consumer)
								

								 	
									Sets the username to be used for basic authentication when polling from a HTTP feed
								

								 	 	
									String
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									pollStrategy (consumer)
								

								 	
									A pluggable org.apache.camel.PollingConsumerPollingStrategy allowing you to provide your custom implementation to control error handling usually occurred during the poll operation before an Exchange have been created and being routed in Camel.
								

								 	 	
									PollingConsumerPoll Strategy
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									backoffErrorThreshold (scheduler)
								

								 	
									The number of subsequent error polls (failed due some error) that should happen before the backoffMultipler should kick-in.
								

								 	 	
									int
								

								
	
									backoffIdleThreshold (scheduler)
								

								 	
									The number of subsequent idle polls that should happen before the backoffMultipler should kick-in.
								

								 	 	
									int
								

								
	
									backoffMultiplier (scheduler)
								

								 	
									To let the scheduled polling consumer backoff if there has been a number of subsequent idles/errors in a row. The multiplier is then the number of polls that will be skipped before the next actual attempt is happening again. When this option is in use then backoffIdleThreshold and/or backoffErrorThreshold must also be configured.
								

								 	 	
									int
								

								
	
									delay (scheduler)
								

								 	
									Milliseconds before the next poll. You can also specify time values using units, such as 60s (60 seconds), 5m30s (5 minutes and 30 seconds), and 1h (1 hour).
								

								 	
									500
								

								 	
									long
								

								
	
									greedy (scheduler)
								

								 	
									If greedy is enabled, then the ScheduledPollConsumer will run immediately again, if the previous run polled 1 or more messages.
								

								 	
									false
								

								 	
									boolean
								

								
	
									initialDelay (scheduler)
								

								 	
									Milliseconds before the first poll starts. You can also specify time values using units, such as 60s (60 seconds), 5m30s (5 minutes and 30 seconds), and 1h (1 hour).
								

								 	
									1000
								

								 	
									long
								

								
	
									runLoggingLevel (scheduler)
								

								 	
									The consumer logs a start/complete log line when it polls. This option allows you to configure the logging level for that.
								

								 	
									TRACE
								

								 	
									LoggingLevel
								

								
	
									scheduledExecutorService (scheduler)
								

								 	
									Allows for configuring a custom/shared thread pool to use for the consumer. By default each consumer has its own single threaded thread pool.
								

								 	 	
									ScheduledExecutor Service
								

								
	
									scheduler (scheduler)
								

								 	
									To use a cron scheduler from either camel-spring or camel-quartz2 component
								

								 	
									none
								

								 	
									ScheduledPollConsumer Scheduler
								

								
	
									schedulerProperties (scheduler)
								

								 	
									To configure additional properties when using a custom scheduler or any of the Quartz2, Spring based scheduler.
								

								 	 	
									Map
								

								
	
									startScheduler (scheduler)
								

								 	
									Whether the scheduler should be auto started.
								

								 	
									true
								

								 	
									boolean
								

								
	
									timeUnit (scheduler)
								

								 	
									Time unit for initialDelay and delay options.
								

								 	
									MILLISECONDS
								

								 	
									TimeUnit
								

								
	
									useFixedDelay (scheduler)
								

								 	
									Controls if fixed delay or fixed rate is used. See ScheduledExecutorService in JDK for details.
								

								 	
									true
								

								 	
									boolean
								

								

					You can append query options to the URI in the following format, ?option=value&option=value&…​
				

Exchange data format

				Camel will set the In body on the returned Exchange with the entries. Depending on the splitEntries flag Camel will either return one Entry or a List<Entry>.
			
	Option	Value	Behavior
	
								splitEntries
							

							 	
								true
							

							 	
								Only a single entry from the currently being processed feed is set: exchange.in.body(Entry)
							

							
	
								splitEntries
							

							 	
								false
							

							 	
								The entire list of entries from the feed is set: exchange.in.body(List<Entry>)
							

							

				Camel can set the Feed object on the In header (see feedHeader option to disable this):
			

Message Headers

				Camel atom uses these headers.
			
	Header	Description
	
								CamelAtomFeed
							

							 	
								When consuming the org.apache.abdera.model.Feed object is set to this header.
							

							

Samples

				In this sample we poll James Strachan’s blog.
			
from("atom://http://macstrac.blogspot.com/feeds/posts/default").to("seda:feeds");

				In this sample we want to filter only good blogs we like to a SEDA queue. The sample also shows how to setup Camel standalone, not running in any Container or using Spring.
			

See Also

	
						Configuring Camel
					
	
						Component
					
	
						Endpoint
					
	
						Getting Started
					
	
						RSS
					

Chapter 13. Atomix Map Component

			Available as of Camel version 2.20
		

			The camel atomix-map component allows you to work with Atomix’s Distributed Map collection.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
 <dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-atomix</artifactId>
 <version>${camel-version}</version>
 </dependency>
URI format

 atomix-map:mapName

Options

				The Atomix Map component supports 5 options which are listed below.
			
	Name	Description	Default	Type
	
								configuration (common)
							

							 	
								The shared component configuration
							

							 	 	
								AtomixMapConfiguration
							

							
	
								atomix (common)
							

							 	
								The shared AtomixClient instance
							

							 	 	
								AtomixClient
							

							
	
								nodes (common)
							

							 	
								The nodes the AtomixClient should connect to
							

							 	 	
								List
							

							
	
								configurationUri (common)
							

							 	
								The path to the AtomixClient configuration
							

							 	 	
								String
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The Atomix Map endpoint is configured using URI syntax:
			
atomix-map:resourceName

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									resourceName
								

								 	
									Required The distributed resource name
								

								 	 	
									String
								

								

Query Parameters (18 parameters):

	Name	Description	Default	Type
	
									atomix (common)
								

								 	
									The Atomix instance to use
								

								 	 	
									Atomix
								

								
	
									configurationUri (common)
								

								 	
									The Atomix configuration uri.
								

								 	 	
									String
								

								
	
									defaultAction (common)
								

								 	
									The default action.
								

								 	
									PUT
								

								 	
									Action
								

								
	
									key (common)
								

								 	
									The key to use if none is set in the header or to listen for events for a specific key.
								

								 	 	
									Object
								

								
	
									nodes (common)
								

								 	
									The address of the nodes composing the cluster.
								

								 	 	
									String
								

								
	
									resultHeader (common)
								

								 	
									The header that wil carry the result.
								

								 	 	
									String
								

								
	
									transport (common)
								

								 	
									Sets the Atomix transport.
								

								 	
									io.atomix.catalyst.transport.netty.NettyTransport
								

								 	
									Transport
								

								
	
									ttl (common)
								

								 	
									The resource ttl.
								

								 	 	
									long
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									defaultResourceConfig (advanced)
								

								 	
									The cluster wide default resource configuration.
								

								 	 	
									Properties
								

								
	
									defaultResourceOptions (advanced)
								

								 	
									The local default resource options.
								

								 	 	
									Properties
								

								
	
									ephemeral (advanced)
								

								 	
									Sets if the local member should join groups as PersistentMember or not. If set to ephemeral the local member will receive an auto generated ID thus the local one is ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									readConsistency (advanced)
								

								 	
									The read consistency level.
								

								 	 	
									ReadConsistency
								

								
	
									resourceConfigs (advanced)
								

								 	
									Cluster wide resources configuration.
								

								 	 	
									Map
								

								
	
									resourceOptions (advanced)
								

								 	
									Local resources configurations
								

								 	 	
									Map
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

Headers

	Name	Type	Values	Description
	
								CamelAtomixResourceAction
							

							 	
								AtomixMap.Action
							

							 	 	
										PUT
									
	
										PUT_IF_ABSENT
									
	
										GET
									
	
										CLEAR
									
	
										SIZE
									
	
										CONTAINS_KEY
									
	
										CONTAINS_VALUE
									
	
										IS_EMPTY
									
	
										ENTRY_SET
									
	
										REMOVE
									
	
										REPLACE
									
	
										VALUES
									

							 	
								The action to perform
							

							
	
								CamelAtomixResourceKey
							

							 	
								Object
							

							 	
								-
							

							 	
								The key to operate on
							

							
	
								CamelAtomixResourceValue
							

							 	
								Object
							

							 	
								-
							

							 	
								The value, if missing In Body is used
							

							
	
								CamelAtomixResourceOldValue
							

							 	
								Object
							

							 	
								-
							

							 	
								The old value
							

							
	
								CamelAtomixResourceTTL
							

							 	
								String / long
							

							 	
								-
							

							 	
								The entry TTL
							

							
	
								CamelAtomixResourceReadConsistency
							

							 	
								ReadConsistency
							

							 	 	
										ATOMIC
									
	
										ATOMIC_LEASE
									
	
										SEQUENTIAL
									
	
										LOCAL
									

							 	
								The read consistency level
							

							

Configuring the component to connect to an Atomix cluster

				The nodes of the Atomix cluster you want to join can be se at Endpoint or component level (recommended), below some examples:
			
	
						Endpoint:
					
<beans xmlns="...">
 <camelContext xmlns="http://camel.apache.org/schema/spring">
 <from uri="direct:start"/>
 <to uri="atomix-map:myMap?nodes=node-1.atomix.cluster:8700,node-2.atomix.cluster:8700"/>
 </route>
 </camelContext>
</beans>

	
						Component:
					
<beans xmlns="...">
 <bean id="atomix-map" class="org.apache.camel.component.atomix.client.map.AtomixMapComponent">
 <property name="nodes" value="nodes=node-1.atomix.cluster:8700,node-2.atomix.cluster:8700"/>
 </bean>

 <camelContext xmlns="http://camel.apache.org/schema/spring">
 <from uri="direct:start"/>
 <to uri="atomix-map:myMap"/>
 </route>
 </camelContext>
</beans>

Usage examples:

	
						PUT an element with TTL of 1 second:
					
FluentProducerTemplate.on(context)
 .withHeader(AtomixClientConstants.RESOURCE_ACTION, AtomixMap.Action.PUT)
 .withHeader(AtomixClientConstants.RESOURCE_KEY, key)
 .withHeader(AtomixClientConstants.RESOURCE_TTL, "1s")
 .withBody(val)
 .to("direct:start")
 .send();

Chapter 14. Atomix Messaging Component

			Available as of Camel version 2.20
		

			The camel atomix-messaging component allows you to work with Atomix’s Group Messaging.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
 <dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-atomix</artifactId>
 <version>${camel-version}</version>
 </dependency>
URI format

 atomix-messaging:group

				The Atomix Messaging component supports 5 options which are listed below.
			
	Name	Description	Default	Type
	
								configuration (common)
							

							 	
								The shared component configuration
							

							 	 	
								AtomixMessaging Configuration
							

							
	
								atomix (common)
							

							 	
								The shared AtomixClient instance
							

							 	 	
								AtomixClient
							

							
	
								nodes (common)
							

							 	
								The nodes the AtomixClient should connect to
							

							 	 	
								List
							

							
	
								configurationUri (common)
							

							 	
								The path to the AtomixClient configuration
							

							 	 	
								String
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The Atomix Messaging endpoint is configured using URI syntax:
			
atomix-messaging:resourceName

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									resourceName
								

								 	
									Required The distributed resource name
								

								 	 	
									String
								

								

Query Parameters (19 parameters):

	Name	Description	Default	Type
	
									atomix (common)
								

								 	
									The Atomix instance to use
								

								 	 	
									Atomix
								

								
	
									broadcastType (common)
								

								 	
									The broadcast type.
								

								 	
									ALL
								

								 	
									BroadcastType
								

								
	
									channelName (common)
								

								 	
									The messaging channel name
								

								 	 	
									String
								

								
	
									configurationUri (common)
								

								 	
									The Atomix configuration uri.
								

								 	 	
									String
								

								
	
									defaultAction (common)
								

								 	
									The default action.
								

								 	
									DIRECT
								

								 	
									Action
								

								
	
									memberName (common)
								

								 	
									The Atomix Group member name
								

								 	 	
									String
								

								
	
									nodes (common)
								

								 	
									The address of the nodes composing the cluster.
								

								 	 	
									String
								

								
	
									resultHeader (common)
								

								 	
									The header that wil carry the result.
								

								 	 	
									String
								

								
	
									transport (common)
								

								 	
									Sets the Atomix transport.
								

								 	
									io.atomix.catalyst.transport.netty.NettyTransport
								

								 	
									Transport
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									defaultResourceConfig (advanced)
								

								 	
									The cluster wide default resource configuration.
								

								 	 	
									Properties
								

								
	
									defaultResourceOptions (advanced)
								

								 	
									The local default resource options.
								

								 	 	
									Properties
								

								
	
									ephemeral (advanced)
								

								 	
									Sets if the local member should join groups as PersistentMember or not. If set to ephemeral the local member will receive an auto generated ID thus the local one is ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									readConsistency (advanced)
								

								 	
									The read consistency level.
								

								 	 	
									ReadConsistency
								

								
	
									resourceConfigs (advanced)
								

								 	
									Cluster wide resources configuration.
								

								 	 	
									Map
								

								
	
									resourceOptions (advanced)
								

								 	
									Local resources configurations
								

								 	 	
									Map
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

Chapter 15. Atomix MultiMap Component

			Available as of Camel version 2.20
		

			The camel atomix-multimap component allows you to work with Atomix’s Distributed MultiMap collection.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
 <dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-atomix</artifactId>
 <version>${camel-version}</version>
 </dependency>
URI format

 atomix-multimap:multiMapName

				The Atomix MultiMap component supports 5 options which are listed below.
			
	Name	Description	Default	Type
	
								configuration (consumer)
							

							 	
								The shared component configuration
							

							 	 	
								AtomixMultiMap Configuration
							

							
	
								atomix (consumer)
							

							 	
								The shared AtomixClient instance
							

							 	 	
								AtomixClient
							

							
	
								nodes (consumer)
							

							 	
								The nodes the AtomixClient should connect to
							

							 	 	
								List
							

							
	
								configurationUri (consumer)
							

							 	
								The path to the AtomixClient configuration
							

							 	 	
								String
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The Atomix MultiMap endpoint is configured using URI syntax:
			
atomix-multimap:resourceName

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									resourceName
								

								 	
									Required The distributed resource name
								

								 	 	
									String
								

								

Query Parameters (18 parameters):

	Name	Description	Default	Type
	
									atomix (consumer)
								

								 	
									The Atomix instance to use
								

								 	 	
									Atomix
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									configurationUri (consumer)
								

								 	
									The Atomix configuration uri.
								

								 	 	
									String
								

								
	
									defaultAction (consumer)
								

								 	
									The default action.
								

								 	
									PUT
								

								 	
									Action
								

								
	
									key (consumer)
								

								 	
									The key to use if none is set in the header or to listen for events for a specific key.
								

								 	 	
									Object
								

								
	
									nodes (consumer)
								

								 	
									The address of the nodes composing the cluster.
								

								 	 	
									String
								

								
	
									resultHeader (consumer)
								

								 	
									The header that wil carry the result.
								

								 	 	
									String
								

								
	
									transport (consumer)
								

								 	
									Sets the Atomix transport.
								

								 	
									io.atomix.catalyst.transport.netty.NettyTransport
								

								 	
									Transport
								

								
	
									ttl (consumer)
								

								 	
									The resource ttl.
								

								 	 	
									long
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									defaultResourceConfig (advanced)
								

								 	
									The cluster wide default resource configuration.
								

								 	 	
									Properties
								

								
	
									defaultResourceOptions (advanced)
								

								 	
									The local default resource options.
								

								 	 	
									Properties
								

								
	
									ephemeral (advanced)
								

								 	
									Sets if the local member should join groups as PersistentMember or not. If set to ephemeral the local member will receive an auto generated ID thus the local one is ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									readConsistency (advanced)
								

								 	
									The read consistency level.
								

								 	 	
									ReadConsistency
								

								
	
									resourceConfigs (advanced)
								

								 	
									Cluster wide resources configuration.
								

								 	 	
									Map
								

								
	
									resourceOptions (advanced)
								

								 	
									Local resources configurations
								

								 	 	
									Map
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

Chapter 16. Atomix Queue Component

			Available as of Camel version 2.20
		

			The camel atomix-queue component allows you to work with Atomix’s Distributed Queue collection.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
 <dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-atomix</artifactId>
 <version>${camel-version}</version>
 </dependency>
URI format

 atomix-queue:queueName

				The Atomix Queue component supports 5 options which are listed below.
			
	Name	Description	Default	Type
	
								configuration (common)
							

							 	
								The shared component configuration
							

							 	 	
								AtomixQueue Configuration
							

							
	
								atomix (common)
							

							 	
								The shared AtomixClient instance
							

							 	 	
								AtomixClient
							

							
	
								nodes (common)
							

							 	
								The nodes the AtomixClient should connect to
							

							 	 	
								List
							

							
	
								configurationUri (common)
							

							 	
								The path to the AtomixClient configuration
							

							 	 	
								String
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The Atomix Queue endpoint is configured using URI syntax:
			
atomix-queue:resourceName

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									resourceName
								

								 	
									Required The distributed resource name
								

								 	 	
									String
								

								

Query Parameters (16 parameters):

	Name	Description	Default	Type
	
									atomix (common)
								

								 	
									The Atomix instance to use
								

								 	 	
									Atomix
								

								
	
									configurationUri (common)
								

								 	
									The Atomix configuration uri.
								

								 	 	
									String
								

								
	
									defaultAction (common)
								

								 	
									The default action.
								

								 	
									ADD
								

								 	
									Action
								

								
	
									nodes (common)
								

								 	
									The address of the nodes composing the cluster.
								

								 	 	
									String
								

								
	
									resultHeader (common)
								

								 	
									The header that wil carry the result.
								

								 	 	
									String
								

								
	
									transport (common)
								

								 	
									Sets the Atomix transport.
								

								 	
									io.atomix.catalyst.transport.netty.NettyTransport
								

								 	
									Transport
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									defaultResourceConfig (advanced)
								

								 	
									The cluster wide default resource configuration.
								

								 	 	
									Properties
								

								
	
									defaultResourceOptions (advanced)
								

								 	
									The local default resource options.
								

								 	 	
									Properties
								

								
	
									ephemeral (advanced)
								

								 	
									Sets if the local member should join groups as PersistentMember or not. If set to ephemeral the local member will receive an auto generated ID thus the local one is ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									readConsistency (advanced)
								

								 	
									The read consistency level.
								

								 	 	
									ReadConsistency
								

								
	
									resourceConfigs (advanced)
								

								 	
									Cluster wide resources configuration.
								

								 	 	
									Map
								

								
	
									resourceOptions (advanced)
								

								 	
									Local resources configurations
								

								 	 	
									Map
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

Chapter 17. Atomix Set Component

			Available as of Camel version 2.20
		

			The camel atomix-set component allows you to work with Atomix’s Distributed Set collection.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
 <dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-atomix</artifactId>
 <version>${camel-version}</version>
 </dependency>
URI format

 atomix-set:setName

				The Atomix Set component supports 5 options which are listed below.
			
	Name	Description	Default	Type
	
								configuration (common)
							

							 	
								The shared component configuration
							

							 	 	
								AtomixSetConfiguration
							

							
	
								atomix (common)
							

							 	
								The shared AtomixClient instance
							

							 	 	
								AtomixClient
							

							
	
								nodes (common)
							

							 	
								The nodes the AtomixClient should connect to
							

							 	 	
								List
							

							
	
								configurationUri (common)
							

							 	
								The path to the AtomixClient configuration
							

							 	 	
								String
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The Atomix Set endpoint is configured using URI syntax:
			
atomix-set:resourceName

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									resourceName
								

								 	
									Required The distributed resource name
								

								 	 	
									String
								

								

Query Parameters (17 parameters):

	Name	Description	Default	Type
	
									atomix (common)
								

								 	
									The Atomix instance to use
								

								 	 	
									Atomix
								

								
	
									configurationUri (common)
								

								 	
									The Atomix configuration uri.
								

								 	 	
									String
								

								
	
									defaultAction (common)
								

								 	
									The default action.
								

								 	
									ADD
								

								 	
									Action
								

								
	
									nodes (common)
								

								 	
									The address of the nodes composing the cluster.
								

								 	 	
									String
								

								
	
									resultHeader (common)
								

								 	
									The header that wil carry the result.
								

								 	 	
									String
								

								
	
									transport (common)
								

								 	
									Sets the Atomix transport.
								

								 	
									io.atomix.catalyst.transport.netty.NettyTransport
								

								 	
									Transport
								

								
	
									ttl (common)
								

								 	
									The resource ttl.
								

								 	 	
									long
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									defaultResourceConfig (advanced)
								

								 	
									The cluster wide default resource configuration.
								

								 	 	
									Properties
								

								
	
									defaultResourceOptions (advanced)
								

								 	
									The local default resource options.
								

								 	 	
									Properties
								

								
	
									ephemeral (advanced)
								

								 	
									Sets if the local member should join groups as PersistentMember or not. If set to ephemeral the local member will receive an auto generated ID thus the local one is ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									readConsistency (advanced)
								

								 	
									The read consistency level.
								

								 	 	
									ReadConsistency
								

								
	
									resourceConfigs (advanced)
								

								 	
									Cluster wide resources configuration.
								

								 	 	
									Map
								

								
	
									resourceOptions (advanced)
								

								 	
									Local resources configurations
								

								 	 	
									Map
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

Chapter 18. Atomix Value Component

			Available as of Camel version 2.20
		

			The camel atomix-value component allows you to work with Atomix’s Distributed Value.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
 <dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-atomix</artifactId>
 <version>${camel-version}</version>
 </dependency>
URI format

 atomix-value:valueName

				The Atomix Value component supports 5 options which are listed below.
			
	Name	Description	Default	Type
	
								configuration (common)
							

							 	
								The shared component configuration
							

							 	 	
								AtomixValue Configuration
							

							
	
								atomix (common)
							

							 	
								The shared AtomixClient instance
							

							 	 	
								AtomixClient
							

							
	
								nodes (common)
							

							 	
								The nodes the AtomixClient should connect to
							

							 	 	
								List
							

							
	
								configurationUri (common)
							

							 	
								The path to the AtomixClient configuration
							

							 	 	
								String
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The Atomix Value endpoint is configured using URI syntax:
			
atomix-value:resourceName

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									resourceName
								

								 	
									Required The distributed resource name
								

								 	 	
									String
								

								

Query Parameters (17 parameters):

	Name	Description	Default	Type
	
									atomix (common)
								

								 	
									The Atomix instance to use
								

								 	 	
									Atomix
								

								
	
									configurationUri (common)
								

								 	
									The Atomix configuration uri.
								

								 	 	
									String
								

								
	
									defaultAction (common)
								

								 	
									The default action.
								

								 	
									SET
								

								 	
									Action
								

								
	
									nodes (common)
								

								 	
									The address of the nodes composing the cluster.
								

								 	 	
									String
								

								
	
									resultHeader (common)
								

								 	
									The header that wil carry the result.
								

								 	 	
									String
								

								
	
									transport (common)
								

								 	
									Sets the Atomix transport.
								

								 	
									io.atomix.catalyst.transport.netty.NettyTransport
								

								 	
									Transport
								

								
	
									ttl (common)
								

								 	
									The resource ttl.
								

								 	 	
									long
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									defaultResourceConfig (advanced)
								

								 	
									The cluster wide default resource configuration.
								

								 	 	
									Properties
								

								
	
									defaultResourceOptions (advanced)
								

								 	
									The local default resource options.
								

								 	 	
									Properties
								

								
	
									ephemeral (advanced)
								

								 	
									Sets if the local member should join groups as PersistentMember or not. If set to ephemeral the local member will receive an auto generated ID thus the local one is ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									readConsistency (advanced)
								

								 	
									The read consistency level.
								

								 	 	
									ReadConsistency
								

								
	
									resourceConfigs (advanced)
								

								 	
									Cluster wide resources configuration.
								

								 	 	
									Map
								

								
	
									resourceOptions (advanced)
								

								 	
									Local resources configurations
								

								 	 	
									Map
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

Chapter 19. Avro Component

			Available as of Camel version 2.10
		

			This component provides a dataformat for avro, which allows serialization and deserialization of messages using Apache Avro’s binary dataformat. Moreover, it provides support for Apache Avro’s rpc, by providing producers and consumers endpoint for using avro over netty or http.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-avro</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>
Apache Avro Overview

				Avro allows you to define message types and a protocol using a json like format and then generate java code for the specified types and messages. An example of how a schema looks like is below.
			
{"namespace": "org.apache.camel.avro.generated",
 "protocol": "KeyValueProtocol",

 "types": [
 {"name": "Key", "type": "record",
 "fields": [
 {"name": "key", "type": "string"}
]
 },
 {"name": "Value", "type": "record",
 "fields": [
 {"name": "value", "type": "string"}
]
 }
],

 "messages": {
 "put": {
 "request": [{"name": "key", "type": "Key"}, {"name": "value", "type": "Value"}],
 "response": "null"
 },
 "get": {
 "request": [{"name": "key", "type": "Key"}],
 "response": "Value"
 }
 }
}

				You can easily generate classes from a schema, using maven, ant etc. More details can be found at the Apache Avro documentation.
			

				However, it doesn’t enforce a schema first approach and you can create schema for your existing classes. Since 2.12 you can use existing protocol interfaces to make RCP calls. You should use interface for the protocol itself and POJO beans or primitive/String classes for parameter and result types. Here is an example of the class that corresponds to schema above:
			
package org.apache.camel.avro.reflection;

public interface KeyValueProtocol {
 void put(String key, Value value);
 Value get(String key);
}

class Value {
 private String value;
 public String getValue() { return value; }
 public void setValue(String value) { this.value = value; }
}

				Note: Existing classes can be used only for RPC (see below), not in data format.
			

Using the Avro data format

				Using the avro data format is as easy as specifying that the class that you want to marshal or unmarshal in your route.
			
 <camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="direct:in"/>
 <marshal>
 <avro instanceClass="org.apache.camel.dataformat.avro.Message"/>
 </marshal>
 <to uri="log:out"/>
 </route>
 </camelContext>

				An alternative can be to specify the dataformat inside the context and reference it from your route.
			
 <camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
 <dataFormats>
 <avro id="avro" instanceClass="org.apache.camel.dataformat.avro.Message"/>
 </dataFormats>
 <route>
 <from uri="direct:in"/>
 <marshal ref="avro"/>
 <to uri="log:out"/>
 </route>
 </camelContext>

				In the same manner you can umarshal using the avro data format.
			

Using Avro RPC in Camel

				As mentioned above Avro also provides RPC support over multiple transports such as http and netty. Camel provides consumers and producers for these two transports.
			
avro:[transport]:[host]:[port][?options]

				The supported transport values are currently http or netty.
			

				Since 2.12 you can specify message name right in the URI:
			
avro:[transport]:[host]:[port][/messageName][?options]

				For consumers this allows you to have multiple routes attached to the same socket. Dispatching to correct route will be done by the avro component automatically. Route with no messageName specified (if any) will be used as default.
			

				When using camel producers for avro ipc, the "in" message body needs to contain the parameters of the operation specified in the avro protocol. The response will be added in the body of the "out" message.
			

				In a similar manner when using camel avro consumers for avro ipc, the requests parameters will be placed inside the "in" message body of the created exchange and once the exchange is processed the body of the "out" message will be send as a response.
			

				Note: By default consumer parameters are wrapped into array. If you’ve got only one parameter, since 2.12 you can use singleParameter URI option to receive it direcly in the "in" message body without array wrapping.
			

Avro RPC URI Options

				The Avro component supports 2 options which are listed below.
			
	Name	Description	Default	Type
	
								configuration (advanced)
							

							 	
								To use a shared AvroConfiguration to configure options once
							

							 	 	
								AvroConfiguration
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The Avro endpoint is configured using URI syntax:
			
avro:transport:host:port/messageName

				with the following path and query parameters:
			
Path Parameters (4 parameters):

	Name	Description	Default	Type
	
									transport
								

								 	
									Required Transport to use
								

								 	 	
									AvroTransport
								

								
	
									port
								

								 	
									Required Port number to use
								

								 	 	
									int
								

								
	
									host
								

								 	
									Required Hostname to use
								

								 	 	
									String
								

								
	
									messageName
								

								 	
									The name of the message to send.
								

								 	 	
									String
								

								

Query Parameters (10 parameters):

	Name	Description	Default	Type
	
									protocol (common)
								

								 	
									Avro protocol to use
								

								 	 	
									Protocol
								

								
	
									protocolClassName (common)
								

								 	
									Avro protocol to use defined by the FQN class name
								

								 	 	
									String
								

								
	
									protocolLocation (common)
								

								 	
									Avro protocol location
								

								 	 	
									String
								

								
	
									reflectionProtocol (common)
								

								 	
									If protocol object provided is reflection protocol. Should be used only with protocol parameter because for protocolClassName protocol type will be auto detected
								

								 	
									false
								

								 	
									boolean
								

								
	
									singleParameter (common)
								

								 	
									If true, consumer parameter won’t be wrapped into array. Will fail if protocol specifies more then 1 parameter for the message
								

								 	
									false
								

								 	
									boolean
								

								
	
									uriAuthority (common)
								

								 	
									Authority to use (username and password)
								

								 	 	
									String
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

Avro RPC Headers

	Name	Description
	
								CamelAvroMessageName
							

							 	
								The name of the message to send. In consumer overrides message name from URI (if any)
							

							

Examples

				An example of using camel avro producers via http:
			
 <route>
 <from uri="direct:start"/>
 <to uri="avro:http:localhost:{{avroport}}?protocolClassName=org.apache.camel.avro.generated.KeyValueProtocol"/>
 <to uri="log:avro"/>
 </route>

				In the example above you need to fill CamelAvroMessageName header. Since 2.12 you can use following syntax to call constant messages:
			
 <route>
 <from uri="direct:start"/>
 <to uri="avro:http:localhost:{{avroport}}/put?protocolClassName=org.apache.camel.avro.generated.KeyValueProtocol"/>
 <to uri="log:avro"/>
 </route>

				An example of consuming messages using camel avro consumers via netty:
			
 <route>
 <from uri="avro:netty:localhost:{{avroport}}?protocolClassName=org.apache.camel.avro.generated.KeyValueProtocol"/>
 <choice>
 <when>
 <el>${in.headers.CamelAvroMessageName == 'put'}</el>
 <process ref="putProcessor"/>
 </when>
 <when>
 <el>${in.headers.CamelAvroMessageName == 'get'}</el>
 <process ref="getProcessor"/>
 </when>
 </choice>
 </route>

				Since 2.12 you can set up two distinct routes to perform the same task:
			
 <route>
 <from uri="avro:netty:localhost:{{avroport}}/put?protocolClassName=org.apache.camel.avro.generated.KeyValueProtocol">
 <process ref="putProcessor"/>
 </route>
 <route>
 <from uri="avro:netty:localhost:{{avroport}}/get?protocolClassName=org.apache.camel.avro.generated.KeyValueProtocol&singleParameter=true"/>
 <process ref="getProcessor"/>
 </route>

				In the example above, get takes only one parameter, so singleParameter is used and getProcessor will receive Value class directly in body, while putProcessor will receive an array of size 2 with String key and Value value filled as array contents.
			

Chapter 20. Avro DataFormat

			Available as of Camel version 2.14
		

			This component provides a dataformat for avro, which allows serialization and deserialization of messages using Apache Avro’s binary dataformat. Moreover, it provides support for Apache Avro’s rpc, by providing producers and consumers endpoint for using avro over netty or http.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-avro</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>
Apache Avro Overview

				Avro allows you to define message types and a protocol using a json like format and then generate java code for the specified types and messages. An example of how a schema looks like is below.
			
{"namespace": "org.apache.camel.avro.generated",
 "protocol": "KeyValueProtocol",

 "types": [
 {"name": "Key", "type": "record",
 "fields": [
 {"name": "key", "type": "string"}
]
 },
 {"name": "Value", "type": "record",
 "fields": [
 {"name": "value", "type": "string"}
]
 }
],

 "messages": {
 "put": {
 "request": [{"name": "key", "type": "Key"}, {"name": "value", "type": "Value"}],
 "response": "null"
 },
 "get": {
 "request": [{"name": "key", "type": "Key"}],
 "response": "Value"
 }
 }
}

				You can easily generate classes from a schema, using maven, ant etc. More details can be found at the Apache Avro documentation.
			

				However, it doesn’t enforce a schema first approach and you can create schema for your existing classes. Since 2.12 you can use existing protocol interfaces to make RCP calls. You should use interface for the protocol itself and POJO beans or primitive/String classes for parameter and result types. Here is an example of the class that corresponds to schema above:
			
package org.apache.camel.avro.reflection;

public interface KeyValueProtocol {
 void put(String key, Value value);
 Value get(String key);
}

class Value {
 private String value;
 public String getValue() { return value; }
 public void setValue(String value) { this.value = value; }
}

				Note: Existing classes can be used only for RPC (see below), not in data format.
			

Using the Avro data format

				Using the avro data format is as easy as specifying that the class that you want to marshal or unmarshal in your route.
			
 <camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="direct:in"/>
 <marshal>
 <avro instanceClass="org.apache.camel.dataformat.avro.Message"/>
 </marshal>
 <to uri="log:out"/>
 </route>
 </camelContext>

				An alternative can be to specify the dataformat inside the context and reference it from your route.
			
 <camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
 <dataFormats>
 <avro id="avro" instanceClass="org.apache.camel.dataformat.avro.Message"/>
 </dataFormats>
 <route>
 <from uri="direct:in"/>
 <marshal ref="avro"/>
 <to uri="log:out"/>
 </route>
 </camelContext>

				In the same manner you can umarshal using the avro data format.
			

Avro Dataformat Options

				The Avro dataformat supports 2 options which are listed below.
			
	Name	Default	Java Type	Description
	
								instanceClassName
							

							 	 	
								String
							

							 	
								Class name to use for marshal and unmarshalling
							

							
	
								contentTypeHeader
							

							 	
								false
							

							 	
								Boolean
							

							 	
								Whether the data format should set the Content-Type header with the type from the data format if the data format is capable of doing so. For example application/xml for data formats marshalling to XML, or application/json for data formats marshalling to JSon etc.
							

							

Chapter 21. AWS CloudWatch Component

			Available as of Camel version 2.11
		

			The CW component allows messages to be sent to an Amazon CloudWatch metrics. The implementation of the Amazon API is provided by the AWS SDK.
		

			Prerequisites
		

			You must have a valid Amazon Web Services developer account, and be signed up to use Amazon CloudWatch. More information are available at Amazon CloudWatch.
		
URI Format

aws-cw://namespace[?options]

				The metrics will be created if they don’t already exists.
 You can append query options to the URI in the following format, ?options=value&option2=value&…​
			

URI Options

				The AWS CloudWatch component supports 5 options which are listed below.
			
	Name	Description	Default	Type
	
								configuration (advanced)
							

							 	
								The AWS CW default configuration
							

							 	 	
								CwConfiguration
							

							
	
								accessKey (producer)
							

							 	
								Amazon AWS Access Key
							

							 	 	
								String
							

							
	
								secretKey (producer)
							

							 	
								Amazon AWS Secret Key
							

							 	 	
								String
							

							
	
								region (producer)
							

							 	
								The region in which CW client needs to work
							

							 	 	
								String
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The AWS CloudWatch endpoint is configured using URI syntax:
			
aws-cw:namespace

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									namespace
								

								 	
									Required The metric namespace
								

								 	 	
									String
								

								

Query Parameters (11 parameters):

	Name	Description	Default	Type
	
									amazonCwClient (producer)
								

								 	
									To use the AmazonCloudWatch as the client
								

								 	 	
									AmazonCloudWatch
								

								
	
									name (producer)
								

								 	
									The metric name
								

								 	 	
									String
								

								
	
									proxyHost (producer)
								

								 	
									To define a proxy host when instantiating the CW client
								

								 	 	
									String
								

								
	
									proxyPort (producer)
								

								 	
									To define a proxy port when instantiating the CW client
								

								 	 	
									Integer
								

								
	
									region (producer)
								

								 	
									The region in which CW client needs to work
								

								 	 	
									String
								

								
	
									timestamp (producer)
								

								 	
									The metric timestamp
								

								 	 	
									Date
								

								
	
									unit (producer)
								

								 	
									The metric unit
								

								 	 	
									String
								

								
	
									value (producer)
								

								 	
									The metric value
								

								 	 	
									Double
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									accessKey (security)
								

								 	
									Amazon AWS Access Key
								

								 	 	
									String
								

								
	
									secretKey (security)
								

								 	
									Amazon AWS Secret Key
								

								 	 	
									String
								

								

					Required CW component options
				

					You have to provide the amazonCwClient in the Registry or your accessKey and secretKey to access the Amazon’s CloudWatch.
				

Usage

Message headers evaluated by the CW producer

	Header	Type	Description
	
									CamelAwsCwMetricName
								

								 	
									String
								

								 	
									The Amazon CW metric name.
								

								
	
									CamelAwsCwMetricValue
								

								 	
									Double
								

								 	
									The Amazon CW metric value.
								

								
	
									CamelAwsCwMetricUnit
								

								 	
									String
								

								 	
									The Amazon CW metric unit.
								

								
	
									CamelAwsCwMetricNamespace
								

								 	
									String
								

								 	
									The Amazon CW metric namespace.
								

								
	
									CamelAwsCwMetricTimestamp
								

								 	
									Date
								

								 	
									The Amazon CW metric timestamp.
								

								
	
									CamelAwsCwMetricDimensionName
								

								 	
									String
								

								 	
									Camel 2.12: The Amazon CW metric dimension name.
								

								
	
									CamelAwsCwMetricDimensionValue
								

								 	
									String
								

								 	
									Camel 2.12: The Amazon CW metric dimension value.
								

								
	
									CamelAwsCwMetricDimensions
								

								 	
									Map<String, String>
								

								 	
									Camel 2.12: A map of dimension names and dimension values.
								

								

Advanced AmazonCloudWatch configuration

					If you need more control over the AmazonCloudWatch instance configuration you can create your own instance and refer to it from the URI:
				
from("direct:start")
.to("aws-cw://namepsace?amazonCwClient=#client");

					The #client refers to a AmazonCloudWatch in the Registry.
				

					For example if your Camel Application is running behind a firewall:
				
AWSCredentials awsCredentials = new BasicAWSCredentials("myAccessKey", "mySecretKey");
ClientConfiguration clientConfiguration = new ClientConfiguration();
clientConfiguration.setProxyHost("http://myProxyHost");
clientConfiguration.setProxyPort(8080);

AmazonCloudWatch client = new AmazonCloudWatchClient(awsCredentials, clientConfiguration);

registry.bind("client", client);

Dependencies

				Maven users will need to add the following dependency to their pom.xml.
			

				pom.xml
			
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-aws</artifactId>
 <version>${camel-version}</version>
</dependency>

				where ${camel-version} must be replaced by the actual version of Camel (2.10 or higher).
			

See Also

	
						Configuring Camel
					
	
						Component
					
	
						Endpoint
					
	
						Getting Started
					
	
						AWS Component
					

Chapter 22. AWS DynamoDB Component

			Available as of Camel version 2.10
		

			The DynamoDB component supports storing and retrieving data from/to Amazon’s DynamoDB service.
		

			Prerequisites
		

			You must have a valid Amazon Web Services developer account, and be signed up to use Amazon DynamoDB. More information are available at Amazon DynamoDB.
		
URI Format

aws-ddb://domainName[?options]

				You can append query options to the URI in the following format, ?options=value&option2=value&…​
			

URI Options

				The AWS DynamoDB component supports 5 options which are listed below.
			
	Name	Description	Default	Type
	
								configuration (advanced)
							

							 	
								The AWS DDB default configuration
							

							 	 	
								DdbConfiguration
							

							
	
								accessKey (producer)
							

							 	
								Amazon AWS Access Key
							

							 	 	
								String
							

							
	
								secretKey (producer)
							

							 	
								Amazon AWS Secret Key
							

							 	 	
								String
							

							
	
								region (producer)
							

							 	
								The region in which DDB client needs to work
							

							 	 	
								String
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The AWS DynamoDB endpoint is configured using URI syntax:
			
aws-ddb:tableName

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									tableName
								

								 	
									Required The name of the table currently worked with.
								

								 	 	
									String
								

								

Query Parameters (13 parameters):

	Name	Description	Default	Type
	
									amazonDDBClient (producer)
								

								 	
									To use the AmazonDynamoDB as the client
								

								 	 	
									AmazonDynamoDB
								

								
	
									consistentRead (producer)
								

								 	
									Determines whether or not strong consistency should be enforced when data is read.
								

								 	
									false
								

								 	
									boolean
								

								
	
									keyAttributeName (producer)
								

								 	
									Attribute name when creating table
								

								 	 	
									String
								

								
	
									keyAttributeType (producer)
								

								 	
									Attribute type when creating table
								

								 	 	
									String
								

								
	
									operation (producer)
								

								 	
									What operation to perform
								

								 	
									PutItem
								

								 	
									DdbOperations
								

								
	
									proxyHost (producer)
								

								 	
									To define a proxy host when instantiating the DDB client
								

								 	 	
									String
								

								
	
									proxyPort (producer)
								

								 	
									To define a proxy port when instantiating the DDB client
								

								 	 	
									Integer
								

								
	
									readCapacity (producer)
								

								 	
									The provisioned throughput to reserve for reading resources from your table
								

								 	 	
									Long
								

								
	
									region (producer)
								

								 	
									The region in which DDB client needs to work
								

								 	 	
									String
								

								
	
									writeCapacity (producer)
								

								 	
									The provisioned throughput to reserved for writing resources to your table
								

								 	 	
									Long
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									accessKey (security)
								

								 	
									Amazon AWS Access Key
								

								 	 	
									String
								

								
	
									secretKey (security)
								

								 	
									Amazon AWS Secret Key
								

								 	 	
									String
								

								

					Required DDB component options
				

					You have to provide the amazonDDBClient in the Registry or your accessKey and secretKey to access the Amazon’s DynamoDB.
				

Usage

Message headers evaluated by the DDB producer

	Header	Type	Description
	
									CamelAwsDdbBatchItems
								

								 	
									Map<String, KeysAndAttributes>
								

								 	
									A map of the table name and corresponding items to get by primary key.
								

								
	
									CamelAwsDdbTableName
								

								 	
									String
								

								 	
									Table Name for this operation.
								

								
	
									CamelAwsDdbKey
								

								 	
									Key
								

								 	
									The primary key that uniquely identifies each item in a table. From Camel 2.16.0 the type of this header is Map<String, AttributeValue> and not Key
								

								
	
									CamelAwsDdbReturnValues
								

								 	
									String
								

								 	
									Use this parameter if you want to get the attribute name-value pairs before or after they are modified(NONE, ALL_OLD, UPDATED_OLD, ALL_NEW, UPDATED_NEW).
								

								
	
									CamelAwsDdbUpdateCondition
								

								 	
									Map<String, ExpectedAttributeValue>
								

								 	
									Designates an attribute for a conditional modification.
								

								
	
									CamelAwsDdbAttributeNames
								

								 	
									Collection<String>
								

								 	
									If attribute names are not specified then all attributes will be returned.
								

								
	
									CamelAwsDdbConsistentRead
								

								 	
									Boolean
								

								 	
									If set to true, then a consistent read is issued, otherwise eventually consistent is used.
								

								
	
									CamelAwsDdbIndexName
								

								 	
									String
								

								 	
									If set will be used as Secondary Index for Query operation.
								

								
	
									CamelAwsDdbItem
								

								 	
									Map<String, AttributeValue>
								

								 	
									A map of the attributes for the item, and must include the primary key values that define the item.
								

								
	
									CamelAwsDdbExactCount
								

								 	
									Boolean
								

								 	
									If set to true, Amazon DynamoDB returns a total number of items that match the query parameters, instead of a list of the matching items and their attributes. From Camel 2.16.0 this header doesn’t exist anymore.
								

								
	
									CamelAwsDdbKeyConditions
								

								 	
									Map<String, Condition>
								

								 	
									From Camel 2.16.0. This header specify the selection criteria for the query, and merge together the two old headers CamelAwsDdbHashKeyValue and CamelAwsDdbScanRangeKeyCondition
								

								
	
									CamelAwsDdbStartKey
								

								 	
									Key
								

								 	
									Primary key of the item from which to continue an earlier query.
								

								
	
									CamelAwsDdbHashKeyValue
								

								 	
									AttributeValue
								

								 	
									Value of the hash component of the composite primary key. From Camel 2.16.0 this header doesn’t exist anymore.
								

								
	
									CamelAwsDdbLimit
								

								 	
									Integer
								

								 	
									The maximum number of items to return.
								

								
	
									CamelAwsDdbScanRangeKeyCondition
								

								 	
									Condition
								

								 	
									A container for the attribute values and comparison operators to use for the query.From Camel 2.16.0 this header doesn’t exist anymore.
								

								
	
									CamelAwsDdbScanIndexForward
								

								 	
									Boolean
								

								 	
									Specifies forward or backward traversal of the index.
								

								
	
									CamelAwsDdbScanFilter
								

								 	
									Map<String, Condition>
								

								 	
									Evaluates the scan results and returns only the desired values.
								

								
	
									CamelAwsDdbUpdateValues
								

								 	
									Map<String, AttributeValueUpdate>
								

								 	
									Map of attribute name to the new value and action for the update.
								

								

Message headers set during BatchGetItems operation

	Header	Type	Description
	
									CamelAwsDdbBatchResponse
								

								 	
									Map<String,BatchResponse>
								

								 	
									Table names and the respective item attributes from the tables.
								

								
	
									CamelAwsDdbUnprocessedKeys
								

								 	
									Map<String,KeysAndAttributes>
								

								 	
									Contains a map of tables and their respective keys that were not processed with the current response.
								

								

Message headers set during DeleteItem operation

	Header	Type	Description
	
									CamelAwsDdbAttributes
								

								 	
									Map<String, AttributeValue>
								

								 	
									The list of attributes returned by the operation.
								

								

Message headers set during DeleteTable operation

	Header	Type	Description
	
									CamelAwsDdbProvisionedThroughput
								

								 	 	
	
									ProvisionedThroughputDescription
								

								 	 	
									The value of the ProvisionedThroughput property for this table
								

								
	
									CamelAwsDdbCreationDate
								

								 	
									Date
								

								 	
									Creation DateTime of this table.
								

								
	
									CamelAwsDdbTableItemCount
								

								 	
									Long
								

								 	
									Item count for this table.
								

								
	
									CamelAwsDdbKeySchema
								

								 	
									KeySchema
								

								 	
									The KeySchema that identifies the primary key for this table. From Camel 2.16.0 the type of this header is List<KeySchemaElement> and not KeySchema
								

								
	
									CamelAwsDdbTableName
								

								 	
									String
								

								 	
									The table name.
								

								
	
									CamelAwsDdbTableSize
								

								 	
									Long
								

								 	
									The table size in bytes.
								

								
	
									CamelAwsDdbTableStatus
								

								 	
									String
								

								 	
									The status of the table: CREATING, UPDATING, DELETING, ACTIVE
								

								

Message headers set during DescribeTable operation

	Header	Type	Description
	
									CamelAwsDdbProvisionedThroughput
								

								 	
									{{ProvisionedThroughputDescription}}
								

								 	
									The value of the ProvisionedThroughput property for this table
								

								
	
									CamelAwsDdbCreationDate
								

								 	
									Date
								

								 	
									Creation DateTime of this table.
								

								
	
									CamelAwsDdbTableItemCount
								

								 	
									Long
								

								 	
									Item count for this table.
								

								
	
									CamelAwsDdbKeySchema
								

								 	
									{{KeySchema}}
								

								 	
									The KeySchema that identifies the primary key for this table. From Camel 2.16.0 the type of this header is List<KeySchemaElement> and not KeySchema
								

								
	
									CamelAwsDdbTableName
								

								 	
									String
								

								 	
									The table name.
								

								
	
									CamelAwsDdbTableSize
								

								 	
									Long
								

								 	
									The table size in bytes.
								

								
	
									CamelAwsDdbTableStatus
								

								 	
									String
								

								 	
									The status of the table: CREATING, UPDATING, DELETING, ACTIVE
								

								
	
									CamelAwsDdbReadCapacity
								

								 	
									Long
								

								 	
									ReadCapacityUnits property of this table.
								

								
	
									CamelAwsDdbWriteCapacity
								

								 	
									Long
								

								 	
									WriteCapacityUnits property of this table.
								

								

Message headers set during GetItem operation

	Header	Type	Description
	
									CamelAwsDdbAttributes
								

								 	
									Map<String, AttributeValue>
								

								 	
									The list of attributes returned by the operation.
								

								

Message headers set during PutItem operation

	Header	Type	Description
	
									CamelAwsDdbAttributes
								

								 	
									Map<String, AttributeValue>
								

								 	
									The list of attributes returned by the operation.
								

								

Message headers set during Query operation

	Header	Type	Description
	
									CamelAwsDdbItems
								

								 	
									List<java.util.Map<String,AttributeValue>>
								

								 	
									The list of attributes returned by the operation.
								

								
	
									CamelAwsDdbLastEvaluatedKey
								

								 	
									Key
								

								 	
									Primary key of the item where the query operation stopped, inclusive of the previous result set.
								

								
	
									CamelAwsDdbConsumedCapacity
								

								 	
									Double
								

								 	
									The number of Capacity Units of the provisioned throughput of the table consumed during the operation.
								

								
	
									CamelAwsDdbCount
								

								 	
									Integer
								

								 	
									Number of items in the response.
								

								

Message headers set during Scan operation

	Header	Type	Description
	
									CamelAwsDdbItems
								

								 	
									List<java.util.Map<String,AttributeValue>>
								

								 	
									The list of attributes returned by the operation.
								

								
	
									CamelAwsDdbLastEvaluatedKey
								

								 	
									Key
								

								 	
									Primary key of the item where the query operation stopped, inclusive of the previous result set.
								

								
	
									CamelAwsDdbConsumedCapacity
								

								 	
									Double
								

								 	
									The number of Capacity Units of the provisioned throughput of the table consumed during the operation.
								

								
	
									CamelAwsDdbCount
								

								 	
									Integer
								

								 	
									Number of items in the response.
								

								
	
									CamelAwsDdbScannedCount
								

								 	
									Integer
								

								 	
									Number of items in the complete scan before any filters are applied.
								

								

Message headers set during UpdateItem operation

	Header	Type	Description
	
									CamelAwsDdbAttributes
								

								 	
									Map<String, AttributeValue>
								

								 	
									The list of attributes returned by the operation.
								

								

Advanced AmazonDynamoDB configuration

					If you need more control over the AmazonDynamoDB instance configuration you can create your own instance and refer to it from the URI:
				
from("direct:start")
.to("aws-ddb://domainName?amazonDDBClient=#client");

					The #client refers to a AmazonDynamoDB in the Registry.
				

					For example if your Camel Application is running behind a firewall:
				
AWSCredentials awsCredentials = new BasicAWSCredentials("myAccessKey", "mySecretKey");
ClientConfiguration clientConfiguration = new ClientConfiguration();
clientConfiguration.setProxyHost("http://myProxyHost");
clientConfiguration.setProxyPort(8080);

AmazonDynamoDB client = new AmazonDynamoDBClient(awsCredentials, clientConfiguration);

registry.bind("client", client);

Dependencies

				Maven users will need to add the following dependency to their pom.xml.
			

				pom.xml
			
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-aws</artifactId>
 <version>${camel-version}</version>
</dependency>

				where ${camel-version} must be replaced by the actual version of Camel (2.10 or higher).
			

See Also

	
						Configuring Camel
					
	
						Component
					
	
						Endpoint
					
	
						Getting Started
					
	
						AWS Component
					

Chapter 23. AWS DynamoDB Streams Component

			Available as of Camel version 2.17
		

			The DynamoDB Stream component supports receiving messages from Amazon DynamoDB Stream service.
		

			Prerequisites
		

			You must have a valid Amazon Web Services developer account, and be signed up to use Amazon DynamoDB Streams. More information are available at AWS DynamoDB
		
URI Format

aws-ddbstream://table-name[?options]

				The stream needs to be created prior to it being used.
 You can append query options to the URI in the following format, ?options=value&option2=value&…​
			

URI Options

				The AWS DynamoDB Streams component supports 5 options which are listed below.
			
	Name	Description	Default	Type
	
								configuration (advanced)
							

							 	
								The AWS DDB stream default configuration
							

							 	 	
								DdbStreamConfiguration
							

							
	
								accessKey (consumer)
							

							 	
								Amazon AWS Access Key
							

							 	 	
								String
							

							
	
								secretKey (consumer)
							

							 	
								Amazon AWS Secret Key
							

							 	 	
								String
							

							
	
								region (consumer)
							

							 	
								Amazon AWS Region
							

							 	 	
								String
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The AWS DynamoDB Streams endpoint is configured using URI syntax:
			
aws-ddbstream:tableName

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									tableName
								

								 	
									Required Name of the dynamodb table
								

								 	 	
									String
								

								

Query Parameters (28 parameters):

	Name	Description	Default	Type
	
									amazonDynamoDbStreams Client (consumer)
								

								 	
									Amazon DynamoDB client to use for all requests for this endpoint
								

								 	 	
									AmazonDynamoDBStreams
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									iteratorType (consumer)
								

								 	
									Defines where in the DynaboDB stream to start getting records. Note that using TRIM_HORIZON can cause a significant delay before the stream has caught up to real-time. if AT,AFTER_SEQUENCE_NUMBER are used, then a sequenceNumberProvider MUST be supplied.
								

								 	
									LATEST
								

								 	
									ShardIteratorType
								

								
	
									maxResultsPerRequest (consumer)
								

								 	
									Maximum number of records that will be fetched in each poll
								

								 	 	
									int
								

								
	
									proxyHost (consumer)
								

								 	
									To define a proxy host when instantiating the DDBStreams client
								

								 	 	
									String
								

								
	
									proxyPort (consumer)
								

								 	
									To define a proxy port when instantiating the DDBStreams client
								

								 	 	
									Integer
								

								
	
									region (consumer)
								

								 	
									The region in which DDBStreams client needs to work
								

								 	 	
									String
								

								
	
									sendEmptyMessageWhenIdle (consumer)
								

								 	
									If the polling consumer did not poll any files, you can enable this option to send an empty message (no body) instead.
								

								 	
									false
								

								 	
									boolean
								

								
	
									sequenceNumberProvider (consumer)
								

								 	
									Provider for the sequence number when using one of the two ShardIteratorType.AT,AFTER_SEQUENCE_NUMBER iterator types. Can be a registry reference or a literal sequence number.
								

								 	 	
									SequenceNumberProvider
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									pollStrategy (consumer)
								

								 	
									A pluggable org.apache.camel.PollingConsumerPollingStrategy allowing you to provide your custom implementation to control error handling usually occurred during the poll operation before an Exchange have been created and being routed in Camel.
								

								 	 	
									PollingConsumerPoll Strategy
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									backoffErrorThreshold (scheduler)
								

								 	
									The number of subsequent error polls (failed due some error) that should happen before the backoffMultipler should kick-in.
								

								 	 	
									int
								

								
	
									backoffIdleThreshold (scheduler)
								

								 	
									The number of subsequent idle polls that should happen before the backoffMultipler should kick-in.
								

								 	 	
									int
								

								
	
									backoffMultiplier (scheduler)
								

								 	
									To let the scheduled polling consumer backoff if there has been a number of subsequent idles/errors in a row. The multiplier is then the number of polls that will be skipped before the next actual attempt is happening again. When this option is in use then backoffIdleThreshold and/or backoffErrorThreshold must also be configured.
								

								 	 	
									int
								

								
	
									delay (scheduler)
								

								 	
									Milliseconds before the next poll. You can also specify time values using units, such as 60s (60 seconds), 5m30s (5 minutes and 30 seconds), and 1h (1 hour).
								

								 	
									500
								

								 	
									long
								

								
	
									greedy (scheduler)
								

								 	
									If greedy is enabled, then the ScheduledPollConsumer will run immediately again, if the previous run polled 1 or more messages.
								

								 	
									false
								

								 	
									boolean
								

								
	
									initialDelay (scheduler)
								

								 	
									Milliseconds before the first poll starts. You can also specify time values using units, such as 60s (60 seconds), 5m30s (5 minutes and 30 seconds), and 1h (1 hour).
								

								 	
									1000
								

								 	
									long
								

								
	
									runLoggingLevel (scheduler)
								

								 	
									The consumer logs a start/complete log line when it polls. This option allows you to configure the logging level for that.
								

								 	
									TRACE
								

								 	
									LoggingLevel
								

								
	
									scheduledExecutorService (scheduler)
								

								 	
									Allows for configuring a custom/shared thread pool to use for the consumer. By default each consumer has its own single threaded thread pool.
								

								 	 	
									ScheduledExecutor Service
								

								
	
									scheduler (scheduler)
								

								 	
									To use a cron scheduler from either camel-spring or camel-quartz2 component
								

								 	
									none
								

								 	
									ScheduledPollConsumer Scheduler
								

								
	
									schedulerProperties (scheduler)
								

								 	
									To configure additional properties when using a custom scheduler or any of the Quartz2, Spring based scheduler.
								

								 	 	
									Map
								

								
	
									startScheduler (scheduler)
								

								 	
									Whether the scheduler should be auto started.
								

								 	
									true
								

								 	
									boolean
								

								
	
									timeUnit (scheduler)
								

								 	
									Time unit for initialDelay and delay options.
								

								 	
									MILLISECONDS
								

								 	
									TimeUnit
								

								
	
									useFixedDelay (scheduler)
								

								 	
									Controls if fixed delay or fixed rate is used. See ScheduledExecutorService in JDK for details.
								

								 	
									true
								

								 	
									boolean
								

								
	
									accessKey (security)
								

								 	
									Amazon AWS Access Key
								

								 	 	
									String
								

								
	
									secretKey (security)
								

								 	
									Amazon AWS Secret Key
								

								 	 	
									String
								

								

					Required DynampDBStream component options
				

					You have to provide the amazonDynamoDbStreamsClient in the Registry with proxies and relevant credentials configured.
				

Sequence Numbers

				You can provide a literal string as the sequence number or provide a bean in the registry. An example of using the bean would be to save your current position in the change feed and restore it on Camel startup.
			

				It is an error to provide a sequence number that is greater than the largest sequence number in the describe-streams result, as this will lead to the AWS call returning an HTTP 400.
			

Batch Consumer

				This component implements the Batch Consumer.
			

				This allows you for instance to know how many messages exists in this batch and for instance let the Aggregator aggregate this number of messages.
			

Usage

AmazonDynamoDBStreamsClient configuration

					You will need to create an instance of AmazonDynamoDBStreamsClient and bind it to the registry
				
ClientConfiguration clientConfiguration = new ClientConfiguration();
clientConfiguration.setProxyHost("http://myProxyHost");
clientConfiguration.setProxyPort(8080);

Region region = Region.getRegion(Regions.fromName(region));
region.createClient(AmazonDynamoDBStreamsClient.class, null, clientConfiguration);
// the 'null' here is the AWSCredentialsProvider which defaults to an instance of DefaultAWSCredentialsProviderChain

registry.bind("kinesisClient", client);

Providing AWS Credentials

					It is recommended that the credentials are obtained by using the DefaultAWSCredentialsProviderChain that is the default when creating a new ClientConfiguration instance, however, a different AWSCredentialsProvider can be specified when calling createClient(…​).
				

Coping with Downtime

AWS DynamoDB Streams outage of less than 24 hours

					The consumer will resume from the last seen sequence number (as implemented for CAMEL-9515), so you should receive a flood of events in quick succession, as long as the outage did not also include DynamoDB itself.
				

AWS DynamoDB Streams outage of more than 24 hours

					Given that AWS only retain 24 hours worth of changes, you will have missed change events no matter what mitigations are in place.
				

Dependencies

				Maven users will need to add the following dependency to their pom.xml.
			

				pom.xml
			
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-aws</artifactId>
 <version>${camel-version}</version>
</dependency>

				where ${camel-version} must be replaced by the actual version of Camel (2.7 or higher).
			

See Also

	
						Configuring Camel
					
	
						Component
					
	
						Endpoint
					
	
						Getting Started
					
	
						AWS Component
 +
					

Chapter 24. AWS EC2 Component

			Available as of Camel version 2.16
		

			The EC2 component supports create, run, start, stop and terminate AWS EC2 instances.
		

			Prerequisites
		

			You must have a valid Amazon Web Services developer account, and be signed up to use Amazon EC2. More information are available at Amazon EC2.
		
URI Format

aws-ec2://label[?options]

				You can append query options to the URI in the following format, ?options=value&option2=value&…​
			

URI Options

				The AWS EC2 component supports 5 options which are listed below.
			
	Name	Description	Default	Type
	
								configuration (advanced)
							

							 	
								The AWS EC2 default configuration
							

							 	 	
								EC2Configuration
							

							
	
								region (producer)
							

							 	
								The region in which EC2 client needs to work
							

							 	 	
								String
							

							
	
								accessKey (producer)
							

							 	
								Amazon AWS Access Key
							

							 	 	
								String
							

							
	
								secretKey (producer)
							

							 	
								Amazon AWS Secret Key
							

							 	 	
								String
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The AWS EC2 endpoint is configured using URI syntax:
			
aws-ec2:label

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									label
								

								 	
									Required Logical name
								

								 	 	
									String
								

								

Query Parameters (8 parameters):

	Name	Description	Default	Type
	
									accessKey (producer)
								

								 	
									Amazon AWS Access Key
								

								 	 	
									String
								

								
	
									amazonEc2Client (producer)
								

								 	
									To use a existing configured AmazonEC2Client as client
								

								 	 	
									AmazonEC2Client
								

								
	
									operation (producer)
								

								 	
									Required The operation to perform. It can be createAndRunInstances, startInstances, stopInstances, terminateInstances, describeInstances, describeInstancesStatus, rebootInstances, monitorInstances, unmonitorInstances, createTags or deleteTags
								

								 	 	
									EC2Operations
								

								
	
									proxyHost (producer)
								

								 	
									To define a proxy host when instantiating the EC2 client
								

								 	 	
									String
								

								
	
									proxyPort (producer)
								

								 	
									To define a proxy port when instantiating the EC2 client
								

								 	 	
									Integer
								

								
	
									region (producer)
								

								 	
									The region in which EC2 client needs to work
								

								 	 	
									String
								

								
	
									secretKey (producer)
								

								 	
									Amazon AWS Secret Key
								

								 	 	
									String
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

					Required EC2 component options
				

					You have to provide the amazonEc2Client in the Registry or your accessKey and secretKey to access the Amazon EC2 service.
				

Usage

Message headers evaluated by the EC2 producer

	Header	Type	Description
	
									CamelAwsEC2ImageId
								

								 	
									String
								

								 	
									An image ID of the AWS marketplace
								

								
	
									CamelAwsEC2InstanceType
								

								 	
									com.amazonaws.services.ec2.model.InstanceType
								

								 	
									The instance type we want to create and run
								

								
	
									CamelAwsEC2Operation
								

								 	
									String
								

								 	
									The operation we want to perform
								

								
	
									CamelAwsEC2InstanceMinCount
								

								 	
									Int
								

								 	
									The mininum number of instances we want to run.
								

								
	
									CamelAwsEC2InstanceMaxCount
								

								 	
									Int
								

								 	
									The maximum number of instances we want to run.
								

								
	
									CamelAwsEC2InstanceMonitoring
								

								 	
									Boolean
								

								 	
									Define if we want the running instances to be monitored
								

								
	
									CamelAwsEC2InstanceEbsOptimized
								

								 	
									Boolean
								

								 	
									Define if the creating instance is optimized for EBS I/O.
								

								
	
									CamelAwsEC2InstanceSecurityGroups
								

								 	
									Collection
								

								 	
									The security groups to associate to the instances
								

								
	
									CamelAwsEC2InstancesIds
								

								 	
									Collection
								

								 	
									A collection of instances IDS to execute start, stop, describe and terminate operations on.
								

								
	
									CamelAwsEC2InstancesTags
								

								 	
									Collection
								

								 	
									A collection of tags to add or remove from EC2 resources
								

								

					Dependencies
				

					Maven users will need to add the following dependency to their pom.xml.
				

					pom.xml
				
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-aws</artifactId>
 <version>${camel-version}</version>
</dependency>

					where ${camel-version} must be replaced by the actual version of Camel (2.16 or higher).
				

See Also

	
						Configuring Camel
					
	
						Component
					
	
						Endpoint
					
	
						Getting Started
					
	
						AWS Component
					

Chapter 25. AWS IAM Component

			Available as of Camel version 2.23
		

			The KMS component supports create, run, start, stop and terminate AWS IAM instances.
		

			Prerequisites
		

			You must have a valid Amazon Web Services developer account, and be signed up to use Amazon IAM. More information are available at Amazon IAM.
		
URI Format

aws-kms://label[?options]

				You can append query options to the URI in the following format, ?options=value&option2=value&…​
			

URI Options

				The AWS IAM component supports 5 options, which are listed below.
			
	Name	Description	Default	Type
	
								configuration (advanced)
							

							 	
								The AWS IAM default configuration
							

							 	 	
								IAMConfiguration
							

							
	
								accessKey (producer)
							

							 	
								Amazon AWS Access Key
							

							 	 	
								String
							

							
	
								secretKey (producer)
							

							 	
								Amazon AWS Secret Key
							

							 	 	
								String
							

							
	
								region (producer)
							

							 	
								The region in which IAM client needs to work
							

							 	 	
								String
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The AWS IAM endpoint is configured using URI syntax:
			
aws-iam:label

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									label
								

								 	
									Required Logical name
								

								 	 	
									String
								

								

Query Parameters (8 parameters):

	Name	Description	Default	Type
	
									accessKey (producer)
								

								 	
									Amazon AWS Access Key
								

								 	 	
									String
								

								
	
									iamClient (producer)
								

								 	
									To use a existing configured AWS IAM as client
								

								 	 	
									AmazonIdentity ManagementClient
								

								
	
									operation (producer)
								

								 	
									Required The operation to perform
								

								 	 	
									IAMOperations
								

								
	
									proxyHost (producer)
								

								 	
									To define a proxy host when instantiating the KMS client
								

								 	 	
									String
								

								
	
									proxyPort (producer)
								

								 	
									To define a proxy port when instantiating the KMS client
								

								 	 	
									Integer
								

								
	
									region (producer)
								

								 	
									The region in which KMS client needs to work
								

								 	 	
									String
								

								
	
									secretKey (producer)
								

								 	
									Amazon AWS Secret Key
								

								 	 	
									String
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

Spring Boot Auto-Configuration

				The component supports 12 options, which are listed below.
			
	Name	Description	Default	Type
	
								camel.component.aws-iam.access-key
							

							 	
								Amazon AWS Access Key
							

							 	 	
								String
							

							
	
								camel.component.aws-iam.configuration.access-key
							

							 	
								Amazon AWS Access Key
							

							 	 	
								String
							

							
	
								camel.component.aws-iam.configuration.iam-client
							

							 	
								To use a existing configured AWS IAM as client
							

							 	 	
								AmazonIdentity ManagementClient
							

							
	
								camel.component.aws-iam.configuration.operation
							

							 	
								The operation to perform
							

							 	 	
								IAMOperations
							

							
	
								camel.component.aws-iam.configuration.proxy-host
							

							 	
								To define a proxy host when instantiating the KMS client
							

							 	 	
								String
							

							
	
								camel.component.aws-iam.configuration.proxy-port
							

							 	
								To define a proxy port when instantiating the KMS client
							

							 	 	
								Integer
							

							
	
								camel.component.aws-iam.configuration.region
							

							 	
								The region in which KMS client needs to work
							

							 	 	
								String
							

							
	
								camel.component.aws-iam.configuration.secret-key
							

							 	
								Amazon AWS Secret Key
							

							 	 	
								String
							

							
	
								camel.component.aws-iam.enabled
							

							 	
								Whether to enable auto configuration of the aws-iam component. This is enabled by default.
							

							 	 	
								Boolean
							

							
	
								camel.component.aws-iam.region
							

							 	
								The region in which IAM client needs to work
							

							 	 	
								String
							

							
	
								camel.component.aws-iam.resolve-property-placeholders
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								Boolean
							

							
	
								camel.component.aws-iam.secret-key
							

							 	
								Amazon AWS Secret Key
							

							 	 	
								String
							

							

				Required IAM component options
			

				You have to provide the amazonKmsClient in the Registry or your accessKey and secretKey to access the Amazon IAM service.
			

Usage

Message headers evaluated by the IAM producer

	Header	Type	Description
	
									CamelAwsIAMOperation
								

								 	
									String
								

								 	
									The operation we want to perform
								

								
	
									CamelAwsIAMUsername
								

								 	
									String
								

								 	
									The username for the user you want to manage
								

								
	
									CamelAwsIAMAccessKeyID
								

								 	
									String
								

								 	
									The accessKey you want to manage
								

								
	
									CamelAwsIAMAccessKeyStatus
								

								 	
									String
								

								 	
									The Status of the AccessKey you want to set, possible value are active and inactive
								

								

IAM Producer operations

					Camel-AWS IAM component provides the following operation on the producer side:
				
	
							listAccessKeys
						
	
							createUser
						
	
							deleteUser
						
	
							listUsers
						
	
							getUser
						
	
							createAccessKey
						
	
							deleteAccessKey
						
	
							updateAccessKey
						

					Dependencies
				

					Maven users will need to add the following dependency to their pom.xml.
				

					pom.xml
				
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-aws</artifactId>
 <version>${camel-version}</version>
</dependency>

					where ${camel-version} must be replaced by the actual version of Camel (2.16 or higher).
				

See Also

	
						Configuring Camel
					
	
						Component
					
	
						Endpoint
					
	
						Getting Started
					
	
						AWS Component
					

Chapter 26. AWS Kinesis Component

			Available as of Camel version 2.17
		

			The Kinesis component supports receiving messages from and sending messages to Amazon Kinesis service.
		

			Prerequisites
		

			You must have a valid Amazon Web Services developer account, and be signed up to use Amazon Kinesis. More information are available at AWS Kinesis
		
URI Format

aws-kinesis://stream-name[?options]

				The stream needs to be created prior to it being used.
 You can append query options to the URI in the following format, ?options=value&option2=value&…​
			

URI Options

				The AWS Kinesis component supports 5 options which are listed below.
			
	Name	Description	Default	Type
	
								configuration (advanced)
							

							 	
								The AWS S3 default configuration
							

							 	 	
								KinesisConfiguration
							

							
	
								accessKey (common)
							

							 	
								Amazon AWS Access Key
							

							 	 	
								String
							

							
	
								secretKey (common)
							

							 	
								Amazon AWS Secret Key
							

							 	 	
								String
							

							
	
								region (common)
							

							 	
								Amazon AWS Region
							

							 	 	
								String
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The AWS Kinesis endpoint is configured using URI syntax:
			
aws-kinesis:streamName

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									streamName
								

								 	
									Required Name of the stream
								

								 	 	
									String
								

								

Query Parameters (30 parameters):

	Name	Description	Default	Type
	
									amazonKinesisClient (common)
								

								 	
									Amazon Kinesis client to use for all requests for this endpoint
								

								 	 	
									AmazonKinesis
								

								
	
									proxyHost (common)
								

								 	
									To define a proxy host when instantiating the DDBStreams client
								

								 	 	
									String
								

								
	
									proxyPort (common)
								

								 	
									To define a proxy port when instantiating the DDBStreams client
								

								 	 	
									Integer
								

								
	
									region (common)
								

								 	
									The region in which Kinesis client needs to work
								

								 	 	
									String
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									iteratorType (consumer)
								

								 	
									Defines where in the Kinesis stream to start getting records
								

								 	
									TRIM_HORIZON
								

								 	
									ShardIteratorType
								

								
	
									maxResultsPerRequest (consumer)
								

								 	
									Maximum number of records that will be fetched in each poll
								

								 	
									1
								

								 	
									int
								

								
	
									sendEmptyMessageWhenIdle (consumer)
								

								 	
									If the polling consumer did not poll any files, you can enable this option to send an empty message (no body) instead.
								

								 	
									false
								

								 	
									boolean
								

								
	
									sequenceNumber (consumer)
								

								 	
									The sequence number to start polling from. Required if iteratorType is set to AFTER_SEQUENCE_NUMBER or AT_SEQUENCE_NUMBER
								

								 	 	
									String
								

								
	
									shardClosed (consumer)
								

								 	
									Define what will be the behavior in case of shard closed. Possible value are ignore, silent and fail.In case of ignore a message will be logged and the consumer will restart from the beginning,in case of silent there will be no logging and the consumer will start from the beginning,in case of fail a ReachedClosedStateException will be raised
								

								 	
									ignore
								

								 	
									KinesisShardClosed StrategyEnum
								

								
	
									shardId (consumer)
								

								 	
									Defines which shardId in the Kinesis stream to get records from
								

								 	 	
									String
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									pollStrategy (consumer)
								

								 	
									A pluggable org.apache.camel.PollingConsumerPollingStrategy allowing you to provide your custom implementation to control error handling usually occurred during the poll operation before an Exchange have been created and being routed in Camel.
								

								 	 	
									PollingConsumerPoll Strategy
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									backoffErrorThreshold (scheduler)
								

								 	
									The number of subsequent error polls (failed due some error) that should happen before the backoffMultipler should kick-in.
								

								 	 	
									int
								

								
	
									backoffIdleThreshold (scheduler)
								

								 	
									The number of subsequent idle polls that should happen before the backoffMultipler should kick-in.
								

								 	 	
									int
								

								
	
									backoffMultiplier (scheduler)
								

								 	
									To let the scheduled polling consumer backoff if there has been a number of subsequent idles/errors in a row. The multiplier is then the number of polls that will be skipped before the next actual attempt is happening again. When this option is in use then backoffIdleThreshold and/or backoffErrorThreshold must also be configured.
								

								 	 	
									int
								

								
	
									delay (scheduler)
								

								 	
									Milliseconds before the next poll. You can also specify time values using units, such as 60s (60 seconds), 5m30s (5 minutes and 30 seconds), and 1h (1 hour).
								

								 	
									500
								

								 	
									long
								

								
	
									greedy (scheduler)
								

								 	
									If greedy is enabled, then the ScheduledPollConsumer will run immediately again, if the previous run polled 1 or more messages.
								

								 	
									false
								

								 	
									boolean
								

								
	
									initialDelay (scheduler)
								

								 	
									Milliseconds before the first poll starts. You can also specify time values using units, such as 60s (60 seconds), 5m30s (5 minutes and 30 seconds), and 1h (1 hour).
								

								 	
									1000
								

								 	
									long
								

								
	
									runLoggingLevel (scheduler)
								

								 	
									The consumer logs a start/complete log line when it polls. This option allows you to configure the logging level for that.
								

								 	
									TRACE
								

								 	
									LoggingLevel
								

								
	
									scheduledExecutorService (scheduler)
								

								 	
									Allows for configuring a custom/shared thread pool to use for the consumer. By default each consumer has its own single threaded thread pool.
								

								 	 	
									ScheduledExecutor Service
								

								
	
									scheduler (scheduler)
								

								 	
									To use a cron scheduler from either camel-spring or camel-quartz2 component
								

								 	
									none
								

								 	
									ScheduledPollConsumer Scheduler
								

								
	
									schedulerProperties (scheduler)
								

								 	
									To configure additional properties when using a custom scheduler or any of the Quartz2, Spring based scheduler.
								

								 	 	
									Map
								

								
	
									startScheduler (scheduler)
								

								 	
									Whether the scheduler should be auto started.
								

								 	
									true
								

								 	
									boolean
								

								
	
									timeUnit (scheduler)
								

								 	
									Time unit for initialDelay and delay options.
								

								 	
									MILLISECONDS
								

								 	
									TimeUnit
								

								
	
									useFixedDelay (scheduler)
								

								 	
									Controls if fixed delay or fixed rate is used. See ScheduledExecutorService in JDK for details.
								

								 	
									true
								

								 	
									boolean
								

								
	
									accessKey (security)
								

								 	
									Amazon AWS Access Key
								

								 	 	
									String
								

								
	
									secretKey (security)
								

								 	
									Amazon AWS Secret Key
								

								 	 	
									String
								

								

					Required Kinesis component options
				

					You have to provide the amazonKinesisClient in the Registry with proxies and relevant credentials configured.
				

Batch Consumer

				This component implements the Batch Consumer.
			

				This allows you for instance to know how many messages exists in this batch and for instance let the Aggregator aggregate this number of messages.
			

Usage

Message headers set by the Kinesis consumer

	Header	Type	Description
	
									CamelAwsKinesisSequenceNumber
								

								 	
									String
								

								 	
									The sequence number of the record. This is represented as a String as it size is not defined by the API. If it is to be used as a numerical type then use
								

								
	
									CamelAwsKinesisApproximateArrivalTimestamp
								

								 	
									String
								

								 	
									The time AWS assigned as the arrival time of the record.
								

								
	
									CamelAwsKinesisPartitionKey
								

								 	
									String
								

								 	
									Identifies which shard in the stream the data record is assigned to.
								

								

AmazonKinesis configuration

					You will need to create an instance of AmazonKinesisClient and bind it to the registry
				
ClientConfiguration clientConfiguration = new ClientConfiguration();
clientConfiguration.setProxyHost("http://myProxyHost");
clientConfiguration.setProxyPort(8080);

Region region = Region.getRegion(Regions.fromName(region));
region.createClient(AmazonKinesisClient.class, null, clientConfiguration);
// the 'null' here is the AWSCredentialsProvider which defaults to an instance of DefaultAWSCredentialsProviderChain

registry.bind("kinesisClient", client);

					You then have to reference the AmazonKinesisClient in the amazonKinesisClient URI option.
				
from("aws-kinesis://mykinesisstream?amazonKinesisClient=#kinesisClient")
 .to("log:out?showAll=true");

Providing AWS Credentials

					It is recommended that the credentials are obtained by using the DefaultAWSCredentialsProviderChain that is the default when creating a new ClientConfiguration instance, however, a different AWSCredentialsProvider can be specified when calling createClient(…​).
				

Message headers used by the Kinesis producer to write to Kinesis. The producer expects that the message body is a ByteBuffer.

	Header	Type	Description
	
									CamelAwsKinesisPartitionKey
								

								 	
									String
								

								 	
									The PartitionKey to pass to Kinesis to store this record.
								

								
	
									CamelAwsKinesisSequenceNumber
								

								 	
									String
								

								 	
									Optional paramter to indicate the sequence number of this record.
								

								

Message headers set by the Kinesis producer on successful storage of a Record

	Header	Type	Description
	
									CamelAwsKinesisSequenceNumber
								

								 	
									String
								

								 	
									The sequence number of the record, as defined in Response Syntax
								

								
	
									CamelAwsKinesisShardId
								

								 	
									String
								

								 	
									The shard ID of where the Record was stored
								

								

Dependencies

				Maven users will need to add the following dependency to their pom.xml.
			

				pom.xml
			
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-aws</artifactId>
 <version>${camel-version}</version>
</dependency>

				where ${camel-version} must be replaced by the actual version of Camel (2.17 or higher).
			

See Also

	
						Configuring Camel
					
	
						Component
					
	
						Endpoint
					
	
						Getting Started
					
	
						AWS Component
					

Chapter 27. AWS Kinesis Firehose Component

			Available as of Camel version 2.19
		

			The Kinesis Firehose component supports sending messages to Amazon Kinesis Firehose service.
		

			Prerequisites
		

			You must have a valid Amazon Web Services developer account, and be signed up to use Amazon Kinesis Firehose. More information are available at AWS Kinesis Firehose
		
URI Format

aws-kinesis-firehose://delivery-stream-name[?options]

				The stream needs to be created prior to it being used.
 You can append query options to the URI in the following format, ?options=value&option2=value&…​
			

URI Options

				The AWS Kinesis Firehose component supports 5 options which are listed below.
			
	Name	Description	Default	Type
	
								configuration (advanced)
							

							 	
								The AWS Kinesis Firehose default configuration
							

							 	 	
								KinesisFirehose Configuration
							

							
	
								accessKey (producer)
							

							 	
								Amazon AWS Access Key
							

							 	 	
								String
							

							
	
								secretKey (producer)
							

							 	
								Amazon AWS Secret Key
							

							 	 	
								String
							

							
	
								region (producer)
							

							 	
								Amazon AWS Region
							

							 	 	
								String
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The AWS Kinesis Firehose endpoint is configured using URI syntax:
			
aws-kinesis-firehose:streamName

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									streamName
								

								 	
									Required Name of the stream
								

								 	 	
									String
								

								

Query Parameters (7 parameters):

	Name	Description	Default	Type
	
									amazonKinesisFirehoseClient (producer)
								

								 	
									Amazon Kinesis Firehose client to use for all requests for this endpoint
								

								 	 	
									AmazonKinesisFirehose
								

								
	
									proxyHost (producer)
								

								 	
									To define a proxy host when instantiating the DDBStreams client
								

								 	 	
									String
								

								
	
									proxyPort (producer)
								

								 	
									To define a proxy port when instantiating the DDBStreams client
								

								 	 	
									Integer
								

								
	
									region (producer)
								

								 	
									The region in which Kinesis client needs to work
								

								 	 	
									String
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									accessKey (security)
								

								 	
									Amazon AWS Access Key
								

								 	 	
									String
								

								
	
									secretKey (security)
								

								 	
									Amazon AWS Secret Key
								

								 	 	
									String
								

								

					Required Kinesis Firehose component options
				

					You have to provide the amazonKinesisClient in the Registry with proxies and relevant credentials configured.
				

Usage

Amazon Kinesis Firehose configuration

					You will need to create an instance of AmazonKinesisClient and bind it to the registry
				
ClientConfiguration clientConfiguration = new ClientConfiguration();
clientConfiguration.setProxyHost("http://myProxyHost");
clientConfiguration.setProxyPort(8080);

Region region = Region.getRegion(Regions.fromName(region));
region.createClient(AmazonKinesisClient.class, null, clientConfiguration);
// the 'null' here is the AWSCredentialsProvider which defaults to an instance of DefaultAWSCredentialsProviderChain

registry.bind("kinesisFirehoseClient", client);

					You then have to reference the AmazonKinesisFirehoseClient in the amazonKinesisFirehoseClient URI option.
				
from("aws-kinesis-firehose://mykinesisdeliverystream?amazonKinesisFirehoseClient=#kinesisClient")
 .to("log:out?showAll=true");

Providing AWS Credentials

					It is recommended that the credentials are obtained by using the DefaultAWSCredentialsProviderChain that is the default when creating a new ClientConfiguration instance, however, a different AWSCredentialsProvider can be specified when calling createClient(…​).
				

Message headers set by the Kinesis producer on successful storage of a Record

	Header	Type	Description
	
									CamelAwsKinesisFirehoseRecordId
								

								 	
									String
								

								 	
									The record ID, as defined in Response Syntax
								

								

Dependencies

				Maven users will need to add the following dependency to their pom.xml.
			

				pom.xml
			
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-aws</artifactId>
 <version>${camel-version}</version>
</dependency>

				where ${camel-version} must be replaced by the actual version of Camel (2.19 or higher).
			

See Also

	
						Configuring Camel
					
	
						Component
					
	
						Endpoint
					
	
						Getting Started
					
	
						AWS Component
					

Chapter 28. AWS KMS Component

			Available as of Camel version 2.21
		

			The KMS component supports create, run, start, stop and terminate AWS KMS instances.
		

			Prerequisites
		

			You must have a valid Amazon Web Services developer account, and be signed up to use Amazon KMS. More information are available at Amazon KMS.
		
URI Format

aws-kms://label[?options]

				You can append query options to the URI in the following format, ?options=value&option2=value&…​
			

URI Options

				The AWS KMS component supports 5 options which are listed below.
			
	Name	Description	Default	Type
	
								configuration (advanced)
							

							 	
								The AWS MQ default configuration
							

							 	 	
								KMSConfiguration
							

							
	
								accessKey (producer)
							

							 	
								Amazon AWS Access Key
							

							 	 	
								String
							

							
	
								secretKey (producer)
							

							 	
								Amazon AWS Secret Key
							

							 	 	
								String
							

							
	
								region (producer)
							

							 	
								The region in which MQ client needs to work
							

							 	 	
								String
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The AWS KMS endpoint is configured using URI syntax:
			
aws-kms:label

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									label
								

								 	
									Required Logical name
								

								 	 	
									String
								

								

Query Parameters (8 parameters):

	Name	Description	Default	Type
	
									accessKey (producer)
								

								 	
									Amazon AWS Access Key
								

								 	 	
									String
								

								
	
									kmsClient (producer)
								

								 	
									To use a existing configured AWS KMS as client
								

								 	 	
									AWSKMS
								

								
	
									operation (producer)
								

								 	
									Required The operation to perform
								

								 	 	
									KMSOperations
								

								
	
									proxyHost (producer)
								

								 	
									To define a proxy host when instantiating the KMS client
								

								 	 	
									String
								

								
	
									proxyPort (producer)
								

								 	
									To define a proxy port when instantiating the KMS client
								

								 	 	
									Integer
								

								
	
									region (producer)
								

								 	
									The region in which KMS client needs to work
								

								 	 	
									String
								

								
	
									secretKey (producer)
								

								 	
									Amazon AWS Secret Key
								

								 	 	
									String
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

					Required KMS component options
				

					You have to provide the amazonKmsClient in the Registry or your accessKey and secretKey to access the Amazon KMS service.
				

Usage

Message headers evaluated by the MQ producer

	Header	Type	Description
	
									CamelAwsKMSLimit
								

								 	
									Integer
								

								 	
									The limit number of keys to return while performing a listKeys operation
								

								
	
									CamelAwsKMSOperation
								

								 	
									String
								

								 	
									The operation we want to perform
								

								
	
									CamelAwsKMSDescription
								

								 	
									String
								

								 	
									A key description to use while performing a createKey operation
								

								
	
									CamelAwsKMSKeyId
								

								 	
									String
								

								 	
									The key Id
								

								

					Dependencies
				

					Maven users will need to add the following dependency to their pom.xml.
				

					pom.xml
				
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-aws</artifactId>
 <version>${camel-version}</version>
</dependency>

					where ${camel-version} must be replaced by the actual version of Camel (2.16 or higher).
				

See Also

	
						Configuring Camel
					
	
						Component
					
	
						Endpoint
					
	
						Getting Started
					
	
						AWS Component
					

Chapter 29. AWS Lambda Component

			Available as of Camel version 2.20
		

			The Lambda component supports create, get, list, delete and invoke AWS Lambda functions.
		

			Prerequisites
		

			You must have a valid Amazon Web Services developer account, and be signed up to use Amazon Lambda. More information are available at Amazon Lambda.
		

			When creating a Lambda function, you need to specify a IAM role which has at least the AWSLambdaBasicExecuteRole policy attached.
		

			Warning
		

			Lambda is regional service. Unlike S3 bucket, Lambda function created in a given region is not available on other regions.
		
URI Format

aws-lambda://functionName[?options]

				You can append query options to the URI in the following format, ?options=value&option2=value&…​
			

URI Options

				The AWS Lambda component supports 5 options which are listed below.
			
	Name	Description	Default	Type
	
								configuration (advanced)
							

							 	
								The AWS Lambda default configuration
							

							 	 	
								LambdaConfiguration
							

							
	
								accessKey (producer)
							

							 	
								Amazon AWS Access Key
							

							 	 	
								String
							

							
	
								secretKey (producer)
							

							 	
								Amazon AWS Secret Key
							

							 	 	
								String
							

							
	
								region (producer)
							

							 	
								Amazon AWS Region
							

							 	 	
								String
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The AWS Lambda endpoint is configured using URI syntax:
			
aws-lambda:function

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									function
								

								 	
									Required Name of the Lambda function.
								

								 	 	
									String
								

								

Query Parameters (8 parameters):

	Name	Description	Default	Type
	
									operation (producer)
								

								 	
									Required The operation to perform. It can be listFunctions, getFunction, createFunction, deleteFunction or invokeFunction
								

								 	 	
									LambdaOperations
								

								
	
									region (producer)
								

								 	
									Amazon AWS Region
								

								 	 	
									String
								

								
	
									awsLambdaClient (advanced)
								

								 	
									To use a existing configured AwsLambdaClient as client
								

								 	 	
									AWSLambda
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									proxyHost (proxy)
								

								 	
									To define a proxy host when instantiating the Lambda client
								

								 	 	
									String
								

								
	
									proxyPort (proxy)
								

								 	
									To define a proxy port when instantiating the Lambda client
								

								 	 	
									Integer
								

								
	
									accessKey (security)
								

								 	
									Amazon AWS Access Key
								

								 	 	
									String
								

								
	
									secretKey (security)
								

								 	
									Amazon AWS Secret Key
								

								 	 	
									String
								

								

					Required Lambda component options
				

					You have to provide the awsLambdaClient in the Registry or your accessKey and secretKey to access the Amazon Lambda service.
				

Usage

Message headers evaluated by the Lambda producer

	Operation	Header	Type	Description	Required
	
									All
								

								 	
									CamelAwsLambdaOperation
								

								 	
									String
								

								 	
									The operation we want to perform. Override operation passed as query parameter
								

								 	
									Yes
								

								
	
									createFunction
								

								 	
									CamelAwsLambdaS3Bucket
								

								 	
									String
								

								 	
									Amazon S3 bucket name where the .zip file containing your deployment package is stored. This bucket must reside in the same AWS region where you are creating the Lambda function.
								

								 	
									No
								

								
	
									createFunction
								

								 	
									CamelAwsLambdaS3Key
								

								 	
									String
								

								 	
									The Amazon S3 object (the deployment package) key name you want to upload.
								

								 	
									No
								

								
	
									createFunction
								

								 	
									CamelAwsLambdaS3ObjectVersion
								

								 	
									String
								

								 	
									The Amazon S3 object (the deployment package) version you want to upload.
								

								 	
									No
								

								
	
									createFunction
								

								 	
									CamelAwsLambdaZipFile
								

								 	
									String
								

								 	
									The local path of the zip file (the deployment package). Content of zip file can also be put in Message body.
								

								 	
									No
								

								
	
									createFunction
								

								 	
									CamelAwsLambdaRole
								

								 	
									String
								

								 	
									The Amazon Resource Name (ARN) of the IAM role that Lambda assumes when it executes your function to access any other Amazon Web Services (AWS) resources.
								

								 	
									Yes
								

								
	
									createFunction
								

								 	
									CamelAwsLambdaRuntime
								

								 	
									String
								

								 	
									The runtime environment for the Lambda function you are uploading. (nodejs, nodejs4.3, nodejs6.10, java8, python2.7, python3.6, dotnetcore1.0, odejs4.3-edge)
								

								 	
									Yes
								

								
	
									createFunction
								

								 	
									CamelAwsLambdaHandler
								

								 	
									String
								

								 	
									The function within your code that Lambda calls to begin execution. For Node.js, it is the module-name.export value in your function. For Java, it can be package.class-name::handler or package.class-name.
								

								 	
									Yes
								

								
	
									createFunction
								

								 	
									CamelAwsLambdaDescription
								

								 	
									String
								

								 	
									The user-provided description.
								

								 	
									No
								

								
	
									createFunction
								

								 	
									CamelAwsLambdaTargetArn
								

								 	
									String
								

								 	
									The parent object that contains the target ARN (Amazon Resource Name) of an Amazon SQS queue or Amazon SNS topic.
								

								 	
									No
								

								
	
									createFunction
								

								 	
									CamelAwsLambdaMemorySize
								

								 	
									Integer
								

								 	
									The memory size, in MB, you configured for the function. Must be a multiple of 64 MB.
								

								 	
									No
								

								
	
									createFunction
								

								 	
									CamelAwsLambdaKMSKeyArn
								

								 	
									String
								

								 	
									The Amazon Resource Name (ARN) of the KMS key used to encrypt your function’s environment variables. If not provided, AWS Lambda will use a default service key.
								

								 	
									No
								

								
	
									createFunction
								

								 	
									CamelAwsLambdaPublish
								

								 	
									Boolean
								

								 	
									This boolean parameter can be used to request AWS Lambda to create the Lambda function and publish a version as an atomic operation.
								

								 	
									No
								

								
	
									createFunction
								

								 	
									CamelAwsLambdaTimeout
								

								 	
									Integer
								

								 	
									The function execution time at which Lambda should terminate the function. The default is 3 seconds.
								

								 	
									No
								

								
	
									createFunction
								

								 	
									CamelAwsLambdaTracingConfig
								

								 	
									String
								

								 	
									Your function’s tracing settings (Active or PassThrough).
								

								 	
									No
								

								
	
									createFunction
								

								 	
									CamelAwsLambdaEnvironmentVariables
								

								 	
									Map<String, String>
								

								 	
									The key-value pairs that represent your environment’s configuration settings.
								

								 	
									No
								

								
	
									createFunction
								

								 	
									CamelAwsLambdaEnvironmentTags
								

								 	
									Map<String, String>
								

								 	
									The list of tags (key-value pairs) assigned to the new function.
								

								 	
									No
								

								
	
									createFunction
								

								 	
									CamelAwsLambdaSecurityGroupIds
								

								 	
									List<String>
								

								 	
									If your Lambda function accesses resources in a VPC, a list of one or more security groups IDs in your VPC.
								

								 	
									No
								

								
	
									createFunction
								

								 	
									CamelAwsLambdaSubnetIds
								

								 	
									List<String>
								

								 	
									If your Lambda function accesses resources in a VPC, a list of one or more subnet IDs in your VPC.
								

								 	
									No
								

								

					Dependencies
				

					Maven users will need to add the following dependency to their pom.xml.
				

					pom.xml
				
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-aws</artifactId>
 <version>${camel-version}</version>
</dependency>

					where ${camel-version} must be replaced by the actual version of Camel (2.16 or higher).
				

See Also

	
						Configuring Camel
					
	
						Component
					
	
						Endpoint
					
	
						Getting Started
					
	
						AWS Component
					

Chapter 30. AWS MQ Component

			Available as of Camel version 2.21
		

			The MQ component supports create, run, start, stop and terminate AWS MQ instances.
		

			Prerequisites
		

			You must have a valid Amazon Web Services developer account, and be signed up to use Amazon MQ. More information are available at Amazon MQ.
		
URI Format

aws-mq://label[?options]

				You can append query options to the URI in the following format, ?options=value&option2=value&…​
			

URI Options

				The AWS MQ component supports 5 options which are listed below.
			
	Name	Description	Default	Type
	
								configuration (advanced)
							

							 	
								The AWS MQ default configuration
							

							 	 	
								MQConfiguration
							

							
	
								accessKey (producer)
							

							 	
								Amazon AWS Access Key
							

							 	 	
								String
							

							
	
								secretKey (producer)
							

							 	
								Amazon AWS Secret Key
							

							 	 	
								String
							

							
	
								region (producer)
							

							 	
								The region in which MQ client needs to work
							

							 	 	
								String
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The AWS MQ endpoint is configured using URI syntax:
			
aws-mq:label

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									label
								

								 	
									Required Logical name
								

								 	 	
									String
								

								

Query Parameters (8 parameters):

	Name	Description	Default	Type
	
									accessKey (producer)
								

								 	
									Amazon AWS Access Key
								

								 	 	
									String
								

								
	
									amazonMqClient (producer)
								

								 	
									To use a existing configured AmazonMQClient as client
								

								 	 	
									AmazonMQ
								

								
	
									operation (producer)
								

								 	
									Required The operation to perform. It can be listBrokers,createBroker,deleteBroker
								

								 	 	
									MQOperations
								

								
	
									proxyHost (producer)
								

								 	
									To define a proxy host when instantiating the MQ client
								

								 	 	
									String
								

								
	
									proxyPort (producer)
								

								 	
									To define a proxy port when instantiating the MQ client
								

								 	 	
									Integer
								

								
	
									region (producer)
								

								 	
									The region in which MQ client needs to work
								

								 	 	
									String
								

								
	
									secretKey (producer)
								

								 	
									Amazon AWS Secret Key
								

								 	 	
									String
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

					Required EC2 component options
				

					You have to provide the amazonEc2Client in the Registry or your accessKey and secretKey to access the Amazon EC2 service.
				

Usage

Message headers evaluated by the MQ producer

	Header	Type	Description
	
									CamelAwsMQMaxResults
								

								 	
									String
								

								 	
									The number of results that must be retrieved from listBrokers operation
								

								
	
									CamelAwsMQBrokerName
								

								 	
									String
								

								 	
									The broker name
								

								
	
									CamelAwsMQOperation
								

								 	
									String
								

								 	
									The operation we want to perform
								

								
	
									CamelAwsMQBrokerId
								

								 	
									String
								

								 	
									The broker id
								

								
	
									CamelAwsMQBrokerDeploymentMode
								

								 	
									String
								

								 	
									The deployment mode for the broker in the createBroker operation
								

								

					Dependencies
				

					Maven users will need to add the following dependency to their pom.xml.
				

					pom.xml
				
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-aws</artifactId>
 <version>${camel-version}</version>
</dependency>

					where ${camel-version} must be replaced by the actual version of Camel (2.16 or higher).
				

See Also

	
						Configuring Camel
					
	
						Component
					
	
						Endpoint
					
	
						Getting Started
					
	
						AWS Component
					

Chapter 31. AWS S3 Storage Service Component

			Available as of Camel version 2.8
		

			The S3 component supports storing and retrieving objetcs from/to Amazon’s S3 service.
		

			Prerequisites
		

			You must have a valid Amazon Web Services developer account, and be signed up to use Amazon S3. More information are available at Amazon S3.
		
URI Format

aws-s3://bucketNameOrArn[?options]

				The bucket will be created if it don’t already exists.
 You can append query options to the URI in the following format, ?options=value&option2=value&…​
			

				For example in order to read file hello.txt from bucket helloBucket, use the following snippet:
			
from("aws-s3:helloBucket?accessKey=yourAccessKey&secretKey=yourSecretKey&prefix=hello.txt")
 .to("file:/var/downloaded");

URI Options

				The AWS S3 Storage Service component supports 5 options which are listed below.
			
	Name	Description	Default	Type
	
								configuration (advanced)
							

							 	
								The AWS S3 default configuration
							

							 	 	
								S3Configuration
							

							
	
								accessKey (common)
							

							 	
								Amazon AWS Access Key
							

							 	 	
								String
							

							
	
								secretKey (common)
							

							 	
								Amazon AWS Secret Key
							

							 	 	
								String
							

							
	
								region (common)
							

							 	
								The region where the bucket is located. This option is used in the com.amazonaws.services.s3.model.CreateBucketRequest.
							

							 	 	
								String
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The AWS S3 Storage Service endpoint is configured using URI syntax:
			
aws-s3:bucketNameOrArn

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									bucketNameOrArn
								

								 	
									Required Bucket name or ARN
								

								 	 	
									String
								

								

Query Parameters (50 parameters):

	Name	Description	Default	Type
	
									amazonS3Client (common)
								

								 	
									Reference to a com.amazonaws.services.sqs.AmazonS3 in the link:https://camel.apache.org/registry.htmlRegistry.
								

								 	 	
									AmazonS3
								

								
	
									pathStyleAccess (common)
								

								 	
									Whether or not the S3 client should use path style access
								

								 	
									false
								

								 	
									boolean
								

								
	
									policy (common)
								

								 	
									The policy for this queue to set in the com.amazonaws.services.s3.AmazonS3setBucketPolicy() method.
								

								 	 	
									String
								

								
	
									proxyHost (common)
								

								 	
									To define a proxy host when instantiating the SQS client
								

								 	 	
									String
								

								
	
									proxyPort (common)
								

								 	
									Specify a proxy port to be used inside the client definition.
								

								 	 	
									Integer
								

								
	
									region (common)
								

								 	
									The region in which S3 client needs to work
								

								 	 	
									String
								

								
	
									useIAMCredentials (common)
								

								 	
									Set whether the S3 client should expect to load credentials on an EC2 instance or to expect static credentials to be passed in.
								

								 	
									false
								

								 	
									boolean
								

								
	
									encryptionMaterials (common)
								

								 	
									The encryption materials to use in case of Symmetric/Asymmetric client usage
								

								 	 	
									EncryptionMaterials
								

								
	
									useEncryption (common)
								

								 	
									Define if encryption must be used or not
								

								 	
									false
								

								 	
									boolean
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									deleteAfterRead (consumer)
								

								 	
									Delete objects from S3 after they have been retrieved. The delete is only performed if the Exchange is committed. If a rollback occurs, the object is not deleted. If this option is false, then the same objects will be retrieve over and over again on the polls. Therefore you need to use the Idempotent Consumer EIP in the route to filter out duplicates. You can filter using the link S3ConstantsBUCKET_NAME and link S3ConstantsKEY headers, or only the link S3ConstantsKEY header.
								

								 	
									true
								

								 	
									boolean
								

								
	
									fileName (consumer)
								

								 	
									To get the object from the bucket with the given file name
								

								 	 	
									String
								

								
	
									includeBody (consumer)
								

								 	
									If it is true, the exchange body will be set to a stream to the contents of the file. If false, the headers will be set with the S3 object metadata, but the body will be null. This option is strongly related to autocloseBody option. In case of setting includeBody to true and autocloseBody to false, it will be up to the caller to close the S3Object stream. Setting autocloseBody to true, will close the S3Object stream automatically.
								

								 	
									true
								

								 	
									boolean
								

								
	
									maxConnections (consumer)
								

								 	
									Set the maxConnections parameter in the S3 client configuration
								

								 	
									60
								

								 	
									int
								

								
	
									maxMessagesPerPoll (consumer)
								

								 	
									Gets the maximum number of messages as a limit to poll at each polling. Is default unlimited, but use 0 or negative number to disable it as unlimited.
								

								 	
									10
								

								 	
									int
								

								
	
									prefix (consumer)
								

								 	
									The prefix which is used in the com.amazonaws.services.s3.model.ListObjectsRequest to only consume objects we are interested in.
								

								 	 	
									String
								

								
	
									sendEmptyMessageWhenIdle (consumer)
								

								 	
									If the polling consumer did not poll any files, you can enable this option to send an empty message (no body) instead.
								

								 	
									false
								

								 	
									boolean
								

								
	
									autocloseBody (consumer)
								

								 	
									If this option is true and includeBody is true, then the S3Object.close() method will be called on exchange completion. This option is strongly related to includeBody option. In case of setting includeBody to true and autocloseBody to false, it will be up to the caller to close the S3Object stream. Setting autocloseBody to true, will close the S3Object stream automatically.
								

								 	
									true
								

								 	
									boolean
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									pollStrategy (consumer)
								

								 	
									A pluggable org.apache.camel.PollingConsumerPollingStrategy allowing you to provide your custom implementation to control error handling usually occurred during the poll operation before an Exchange have been created and being routed in Camel.
								

								 	 	
									PollingConsumerPoll Strategy
								

								
	
									deleteAfterWrite (producer)
								

								 	
									Delete file object after the S3 file has been uploaded
								

								 	
									false
								

								 	
									boolean
								

								
	
									multiPartUpload (producer)
								

								 	
									If it is true, camel will upload the file with multi part format, the part size is decided by the option of partSize
								

								 	
									false
								

								 	
									boolean
								

								
	
									operation (producer)
								

								 	
									The operation to do in case the user don’t want to do only an upload
								

								 	 	
									S3Operations
								

								
	
									partSize (producer)
								

								 	
									Setup the partSize which is used in multi part upload, the default size is 25M.
								

								 	
									26214400
								

								 	
									long
								

								
	
									serverSideEncryption (producer)
								

								 	
									Sets the server-side encryption algorithm when encrypting the object using AWS-managed keys. For example use AES256.
								

								 	 	
									String
								

								
	
									storageClass (producer)
								

								 	
									The storage class to set in the com.amazonaws.services.s3.model.PutObjectRequest request.
								

								 	 	
									String
								

								
	
									awsKMSKeyId (producer)
								

								 	
									Define the id of KMS key to use in case KMS is enabled
								

								 	 	
									String
								

								
	
									useAwsKMS (producer)
								

								 	
									Define if KMS must be used or not
								

								 	
									false
								

								 	
									boolean
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									accelerateModeEnabled (advanced)
								

								 	
									Define if Accelerate Mode enabled is true or false
								

								 	
									false
								

								 	
									boolean
								

								
	
									chunkedEncodingDisabled (advanced)
								

								 	
									Define if disabled Chunked Encoding is true or false
								

								 	
									false
								

								 	
									boolean
								

								
	
									dualstackEnabled (advanced)
								

								 	
									Define if Dualstack enabled is true or false
								

								 	
									false
								

								 	
									boolean
								

								
	
									forceGlobalBucketAccess Enabled (advanced)
								

								 	
									Define if Force Global Bucket Access enabled is true or false
								

								 	
									false
								

								 	
									boolean
								

								
	
									payloadSigningEnabled (advanced)
								

								 	
									Define if Payload Signing enabled is true or false
								

								 	
									false
								

								 	
									boolean
								

								
	
									backoffErrorThreshold (scheduler)
								

								 	
									The number of subsequent error polls (failed due some error) that should happen before the backoffMultipler should kick-in.
								

								 	 	
									int
								

								
	
									backoffIdleThreshold (scheduler)
								

								 	
									The number of subsequent idle polls that should happen before the backoffMultipler should kick-in.
								

								 	 	
									int
								

								
	
									backoffMultiplier (scheduler)
								

								 	
									To let the scheduled polling consumer backoff if there has been a number of subsequent idles/errors in a row. The multiplier is then the number of polls that will be skipped before the next actual attempt is happening again. When this option is in use then backoffIdleThreshold and/or backoffErrorThreshold must also be configured.
								

								 	 	
									int
								

								
	
									delay (scheduler)
								

								 	
									Milliseconds before the next poll. You can also specify time values using units, such as 60s (60 seconds), 5m30s (5 minutes and 30 seconds), and 1h (1 hour).
								

								 	
									500
								

								 	
									long
								

								
	
									greedy (scheduler)
								

								 	
									If greedy is enabled, then the ScheduledPollConsumer will run immediately again, if the previous run polled 1 or more messages.
								

								 	
									false
								

								 	
									boolean
								

								
	
									initialDelay (scheduler)
								

								 	
									Milliseconds before the first poll starts. You can also specify time values using units, such as 60s (60 seconds), 5m30s (5 minutes and 30 seconds), and 1h (1 hour).
								

								 	
									1000
								

								 	
									long
								

								
	
									runLoggingLevel (scheduler)
								

								 	
									The consumer logs a start/complete log line when it polls. This option allows you to configure the logging level for that.
								

								 	
									TRACE
								

								 	
									LoggingLevel
								

								
	
									scheduledExecutorService (scheduler)
								

								 	
									Allows for configuring a custom/shared thread pool to use for the consumer. By default each consumer has its own single threaded thread pool.
								

								 	 	
									ScheduledExecutor Service
								

								
	
									scheduler (scheduler)
								

								 	
									To use a cron scheduler from either camel-spring or camel-quartz2 component
								

								 	
									none
								

								 	
									ScheduledPollConsumer Scheduler
								

								
	
									schedulerProperties (scheduler)
								

								 	
									To configure additional properties when using a custom scheduler or any of the Quartz2, Spring based scheduler.
								

								 	 	
									Map
								

								
	
									startScheduler (scheduler)
								

								 	
									Whether the scheduler should be auto started.
								

								 	
									true
								

								 	
									boolean
								

								
	
									timeUnit (scheduler)
								

								 	
									Time unit for initialDelay and delay options.
								

								 	
									MILLISECONDS
								

								 	
									TimeUnit
								

								
	
									useFixedDelay (scheduler)
								

								 	
									Controls if fixed delay or fixed rate is used. See ScheduledExecutorService in JDK for details.
								

								 	
									true
								

								 	
									boolean
								

								
	
									accessKey (security)
								

								 	
									Amazon AWS Access Key
								

								 	 	
									String
								

								
	
									secretKey (security)
								

								 	
									Amazon AWS Secret Key
								

								 	 	
									String
								

								

					Required S3 component options
				

					You have to provide the amazonS3Client in the Registry or your accessKey and secretKey to access the Amazon’s S3.
				

Batch Consumer

				This component implements the Batch Consumer.
			

				This allows you for instance to know how many messages exists in this batch and for instance let the Aggregator aggregate this number of messages.
			

Usage

Message headers evaluated by the S3 producer

	Header	Type	Description
	
									CamelAwsS3BucketName
								

								 	
									String
								

								 	
									The bucket Name which this object will be stored or which will be used for the current operation
								

								
	
									CamelAwsS3BucketDestinationName
								

								 	
									String
								

								 	
									Camel 2.18: The bucket Destination Name which will be used for the current operation
								

								
	
									CamelAwsS3ContentLength
								

								 	
									Long
								

								 	
									The content length of this object.
								

								
	
									CamelAwsS3ContentType
								

								 	
									String
								

								 	
									The content type of this object.
								

								
	
									CamelAwsS3ContentControl
								

								 	
									String
								

								 	
									Camel 2.8.2: The content control of this object.
								

								
	
									CamelAwsS3ContentDisposition
								

								 	
									String
								

								 	
									Camel 2.8.2: The content disposition of this object.
								

								
	
									CamelAwsS3ContentEncoding
								

								 	
									String
								

								 	
									Camel 2.8.2: The content encoding of this object.
								

								
	
									CamelAwsS3ContentMD5
								

								 	
									String
								

								 	
									Camel 2.8.2: The md5 checksum of this object.
								

								
	
									CamelAwsS3DestinationKey
								

								 	
									String
								

								 	
									Camel 2.18:The Destination key which will be used for the current operation
								

								
	
									CamelAwsS3Key
								

								 	
									String
								

								 	
									The key under which this object will be stored or which will be used for the current operation
								

								
	
									CamelAwsS3LastModified
								

								 	
									java.util.Date
								

								 	
									Camel 2.8.2: The last modified timestamp of this object.
								

								
	
									CamelAwsS3Operation
								

								 	
									String
								

								 	
									Camel 2.18: The operation to perform. Permitted values are copyObject, listBuckets, deleteBucket, downloadLink
								

								
	
									CamelAwsS3StorageClass
								

								 	
									String
								

								 	
									Camel 2.8.4: The storage class of this object.
								

								
	
									CamelAwsS3CannedAcl
								

								 	
									String
								

								 	
									Camel 2.11.0: The canned acl that will be applied to the object. see com.amazonaws.services.s3.model.CannedAccessControlList for allowed values.
								

								
	
									CamelAwsS3Acl
								

								 	
									com.amazonaws.services.s3.model.AccessControlList
								

								 	
									Camel 2.11.0: a well constructed Amazon S3 Access Control List object. see com.amazonaws.services.s3.model.AccessControlList for more details
								

								
	
									CamelAwsS3Headers
								

								 	
									Map<String,String>
								

								 	
									Camel 2.15.0: support to get or set custom objectMetadata headers.
								

								
	
									CamelAwsS3ServerSideEncryption
								

								 	
									String
								

								 	
									Camel 2.16: Sets the server-side encryption algorithm when encrypting the object using AWS-managed keys. For example use AES256.
								

								
	
									CamelAwsS3VersionId
								

								 	
									String
								

								 	
									The version Id of the object to be stored or returned from the current operation
								

								

Message headers set by the S3 producer

	Header	Type	Description
	
									CamelAwsS3ETag
								

								 	
									String
								

								 	
									The ETag value for the newly uploaded object.
								

								
	
									CamelAwsS3VersionId
								

								 	
									String
								

								 	
									The optional version ID of the newly uploaded object.
								

								
	
									CamelAwsS3DownloadLinkExpiration
								

								 	
									String
								

								 	
									The expiration (millis) of URL download link. The link will be stored into CamelAwsS3DownloadLink response header.
								

								

Message headers set by the S3 consumer

	Header	Type	Description
	
									CamelAwsS3Key
								

								 	
									String
								

								 	
									The key under which this object is stored.
								

								
	
									CamelAwsS3BucketName
								

								 	
									String
								

								 	
									The name of the bucket in which this object is contained.
								

								
	
									CamelAwsS3ETag
								

								 	
									String
								

								 	
									The hex encoded 128-bit MD5 digest of the associated object according to RFC 1864. This data is used as an integrity check to verify that the data received by the caller is the same data that was sent by Amazon S3.
								

								
	
									CamelAwsS3LastModified
								

								 	
									Date
								

								 	
									The value of the Last-Modified header, indicating the date and time at which Amazon S3 last recorded a modification to the associated object.
								

								
	
									CamelAwsS3VersionId
								

								 	
									String
								

								 	
									The version ID of the associated Amazon S3 object if available. Version IDs are only assigned to objects when an object is uploaded to an Amazon S3 bucket that has object versioning enabled.
								

								
	
									CamelAwsS3ContentType
								

								 	
									String
								

								 	
									The Content-Type HTTP header, which indicates the type of content stored in the associated object. The value of this header is a standard MIME type.
								

								
	
									CamelAwsS3ContentMD5
								

								 	
									String
								

								 	
									The base64 encoded 128-bit MD5 digest of the associated object (content - not including headers) according to RFC 1864. This data is used as a message integrity check to verify that the data received by Amazon S3 is the same data that the caller sent.
								

								
	
									CamelAwsS3ContentLength
								

								 	
									Long
								

								 	
									The Content-Length HTTP header indicating the size of the associated object in bytes.
								

								
	
									CamelAwsS3ContentEncoding
								

								 	
									String
								

								 	
									The optional Content-Encoding HTTP header specifying what content encodings have been applied to the object and what decoding mechanisms must be applied in order to obtain the media-type referenced by the Content-Type field.
								

								
	
									CamelAwsS3ContentDisposition
								

								 	
									String
								

								 	
									The optional Content-Disposition HTTP header, which specifies presentational information such as the recommended filename for the object to be saved as.
								

								
	
									CamelAwsS3ContentControl
								

								 	
									String
								

								 	
									The optional Cache-Control HTTP header which allows the user to specify caching behavior along the HTTP request/reply chain.
								

								
	
									CamelAwsS3ServerSideEncryption
								

								 	
									String
								

								 	
									Camel 2.16: The server-side encryption algorithm when encrypting the object using AWS-managed keys.
								

								

Advanced AmazonS3 configuration

					If your Camel Application is running behind a firewall or if you need to have more control over the AmazonS3 instance configuration, you can create your own instance:
				
AWSCredentials awsCredentials = new BasicAWSCredentials("myAccessKey", "mySecretKey");

ClientConfiguration clientConfiguration = new ClientConfiguration();
clientConfiguration.setProxyHost("http://myProxyHost");
clientConfiguration.setProxyPort(8080);

AmazonS3 client = new AmazonS3Client(awsCredentials, clientConfiguration);

registry.bind("client", client);

					and refer to it in your Camel aws-s3 component configuration:
				
from("aws-s3://MyBucket?amazonS3Client=#client&delay=5000&maxMessagesPerPoll=5")
.to("mock:result");

Use KMS with the S3 component

					To use AWS KMS to encrypt/decrypt data by using AWS infrastructure you can use the options introduced in 2.21.x like in the following example
				
from("file:tmp/test?fileName=test.txt")
 .setHeader(S3Constants.KEY, constant("testFile"))
 .to("aws-s3://mybucket?amazonS3Client=#client&useAwsKMS=true&awsKMSKeyId=3f0637ad-296a-3dfe-a796-e60654fb128c");

					In this way you’ll ask to S3, to use the KMS key 3f0637ad-296a-3dfe-a796-e60654fb128c, to encrypt the file test.txt. When you’ll ask to download this file, the decryption will be done directly before the download.
				

Use "useIAMCredentials" with the s3 component

					To use AWS IAM credentials, you must first verify that the EC2 in which you are launching the Camel application on has an IAM role associated with it containing the appropriate policies attached to run effectively. Keep in mind that this feature should only be set to "true" on remote instances. To clarify even further, you must still use static credentials locally since IAM is an AWS specific component, but AWS environments should now be easier to manage. After this is implemented and understood, you can set the query parameter "useIAMCredentials" to "true" for AWS environments! To effectively toggle this on and off based on local and remote environments, you can consider enabling this query parameter with system environment variables. For example, your code could set the "useIAMCredentials" query parameter to "true", when the system environment variable called "isRemote" is set to true (there are many other ways to do this and this should act as a simple example). Although it doesn’t take away the need for static credentials completely, using IAM credentials on AWS environments takes away the need to refresh on remote environments and adds a major security boost (IAM credentials are refreshed automatically every 6 hours and update when their policies are updated). This is the AWS recommended way to manage credentials and therefore should be used as often as possible.
				

Dependencies

				Maven users will need to add the following dependency to their pom.xml.
			

				pom.xml
			
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-aws</artifactId>
 <version>${camel-version}</version>
</dependency>

				where ${camel-version} must be replaced by the actual version of Camel (2.8 or higher).
			

See Also

	
						Configuring Camel
					
	
						Component
					
	
						Endpoint
					
	
						Getting Started
					
	
						AWS Component
					

Chapter 32. AWS SimpleDB Component

			Available as of Camel version 2.9
		

			The sdb component supports storing and retrieving data from/to Amazon’s SDB service.
		

			Prerequisites
		

			You must have a valid Amazon Web Services developer account, and be signed up to use Amazon SDB. More information are available at Amazon SDB.
		
URI Format

aws-sdb://domainName[?options]

				You can append query options to the URI in the following format, ?options=value&option2=value&…​
			

URI Options

				The AWS SimpleDB component has no options.
			

				The AWS SimpleDB endpoint is configured using URI syntax:
			
aws-sdb:domainName

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									domainName
								

								 	
									Required The name of the domain currently worked with.
								

								 	 	
									String
								

								

Query Parameters (10 parameters):

	Name	Description	Default	Type
	
									accessKey (producer)
								

								 	
									Amazon AWS Access Key
								

								 	 	
									String
								

								
	
									amazonSDBClient (producer)
								

								 	
									To use the AmazonSimpleDB as the client
								

								 	 	
									AmazonSimpleDB
								

								
	
									consistentRead (producer)
								

								 	
									Determines whether or not strong consistency should be enforced when data is read.
								

								 	
									false
								

								 	
									boolean
								

								
	
									maxNumberOfDomains (producer)
								

								 	
									The maximum number of domain names you want returned. The range is 1 to 100.
								

								 	 	
									Integer
								

								
	
									operation (producer)
								

								 	
									Operation to perform
								

								 	
									PutAttributes
								

								 	
									SdbOperations
								

								
	
									proxyHost (producer)
								

								 	
									To define a proxy host when instantiating the SDB client
								

								 	 	
									String
								

								
	
									proxyPort (producer)
								

								 	
									To define a proxy port when instantiating the SDB client
								

								 	 	
									Integer
								

								
	
									region (producer)
								

								 	
									The region in which SDB client needs to work
								

								 	 	
									String
								

								
	
									secretKey (producer)
								

								 	
									Amazon AWS Secret Key
								

								 	 	
									String
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

					Required SDB component options
				

					You have to provide the amazonSDBClient in the Registry or your accessKey and secretKey to access the Amazon’s SDB.
				

Usage

Message headers evaluated by the SDB producer

	Header	Type	Description
	
									CamelAwsSdbAttributes
								

								 	
									Collection<Attribute>
								

								 	
									List of attributes to be acted upon.
								

								
	
									CamelAwsSdbAttributeNames
								

								 	
									Collection<String>
								

								 	
									The names of the attributes to be retrieved.
								

								
	
									CamelAwsSdbConsistentRead
								

								 	
									Boolean
								

								 	
									Determines whether or not strong consistency should be enforced when data is read.
								

								
	
									CamelAwsSdbDeletableItems
								

								 	
									Collection<DeletableItem>
								

								 	
									A list of items on which to perform the delete operation in a batch.
								

								
	
									CamelAwsSdbDomainName
								

								 	
									String
								

								 	
									The name of the domain currently worked with.
								

								
	
									CamelAwsSdbItemName
								

								 	
									String
								

								 	
									The unique key for this item
								

								
	
									CamelAwsSdbMaxNumberOfDomains
								

								 	
									Integer
								

								 	
									The maximum number of domain names you want returned. The range is 1 * to 100.
								

								
	
									CamelAwsSdbNextToken
								

								 	
									String
								

								 	
									A string specifying where to start the next list of domain/item names.
								

								
	
									CamelAwsSdbOperation
								

								 	
									String
								

								 	
									To override the operation from the URI options.
								

								
	
									CamelAwsSdbReplaceableAttributes
								

								 	
									Collection<ReplaceableAttribute>
								

								 	
									List of attributes to put in an Item.
								

								
	
									CamelAwsSdbReplaceableItems
								

								 	
									Collection<ReplaceableItem>
								

								 	
									A list of items to put in a Domain.
								

								
	
									CamelAwsSdbSelectExpression
								

								 	
									String
								

								 	
									The expression used to query the domain.
								

								
	
									CamelAwsSdbUpdateCondition
								

								 	
									UpdateCondition
								

								 	
									The update condition which, if specified, determines whether the specified attributes will be updated/deleted or not.
								

								

Message headers set during DomainMetadata operation

	Header	Type	Description
	
									CamelAwsSdbTimestamp
								

								 	
									Integer
								

								 	
									The data and time when metadata was calculated, in Epoch (UNIX) seconds.
								

								
	
									CamelAwsSdbItemCount
								

								 	
									Integer
								

								 	
									The number of all items in the domain.
								

								
	
									CamelAwsSdbAttributeNameCount
								

								 	
									Integer
								

								 	
									The number of unique attribute names in the domain.
								

								
	
									CamelAwsSdbAttributeValueCount
								

								 	
									Integer
								

								 	
									The number of all attribute name/value pairs in the domain.
								

								
	
									CamelAwsSdbAttributeNameSize
								

								 	
									Long
								

								 	
									The total size of all unique attribute names in the domain, in bytes.
								

								
	
									CamelAwsSdbAttributeValueSize
								

								 	
									Long
								

								 	
									The total size of all attribute values in the domain, in bytes.
								

								
	
									CamelAwsSdbItemNameSize
								

								 	
									Long
								

								 	
									The total size of all item names in the domain, in bytes.
								

								

Message headers set during GetAttributes operation

	Header	Type	Description
	
									CamelAwsSdbAttributes
								

								 	
									List<Attribute>
								

								 	
									The list of attributes returned by the operation.
								

								

Message headers set during ListDomains operation

	Header	Type	Description
	
									CamelAwsSdbDomainNames
								

								 	
									List<String>
								

								 	
									A list of domain names that match the expression.
								

								
	
									CamelAwsSdbNextToken
								

								 	
									String
								

								 	
									An opaque token indicating that there are more domains than the specified MaxNumberOfDomains still available.
								

								

Message headers set during Select operation

	Header	Type	Description
	
									CamelAwsSdbItems
								

								 	
									List<Item>
								

								 	
									A list of items that match the select expression.
								

								
	
									CamelAwsSdbNextToken
								

								 	
									String
								

								 	
									An opaque token indicating that more items than MaxNumberOfItems were matched, the response size exceeded 1 megabyte, or the execution time exceeded 5 seconds.
								

								

Advanced AmazonSimpleDB configuration

					If you need more control over the AmazonSimpleDB instance configuration you can create your own instance and refer to it from the URI:
				
from("direct:start")
.to("aws-sdb://domainName?amazonSDBClient=#client");

					The #client refers to a AmazonSimpleDB in the Registry.
				

					For example if your Camel Application is running behind a firewall:
				
AWSCredentials awsCredentials = new BasicAWSCredentials("myAccessKey", "mySecretKey");
ClientConfiguration clientConfiguration = new ClientConfiguration();
clientConfiguration.setProxyHost("http://myProxyHost");
clientConfiguration.setProxyPort(8080);

AmazonSimpleDB client = new AmazonSimpleDBClient(awsCredentials, clientConfiguration);

registry.bind("client", client);

Dependencies

				Maven users will need to add the following dependency to their pom.xml.
			

				pom.xml
			
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-aws</artifactId>
 <version>${camel-version}</version>
</dependency>

				where ${camel-version} must be replaced by the actual version of Camel (2.8.4 or higher).
			

See Also

	
						Configuring Camel
					
	
						Component
					
	
						Endpoint
					
	
						Getting Started
					
	
						AWS Component
					

Chapter 33. AWS Simple Email Service Component

			Available as of Camel version 2.9
		

			The ses component supports sending emails with Amazon’s SES service.
		

			Prerequisites
		

			You must have a valid Amazon Web Services developer account, and be signed up to use Amazon SES. More information are available at Amazon SES.
		
URI Format

aws-ses://from[?options]

				You can append query options to the URI in the following format, ?options=value&option2=value&…​
			

URI Options

				The AWS Simple Email Service component supports 5 options which are listed below.
			
	Name	Description	Default	Type
	
								configuration (advanced)
							

							 	
								The AWS SES default configuration
							

							 	 	
								SesConfiguration
							

							
	
								accessKey (producer)
							

							 	
								Amazon AWS Access Key
							

							 	 	
								String
							

							
	
								secretKey (producer)
							

							 	
								Amazon AWS Secret Key
							

							 	 	
								String
							

							
	
								region (producer)
							

							 	
								The region in which SES client needs to work
							

							 	 	
								String
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The AWS Simple Email Service endpoint is configured using URI syntax:
			
aws-ses:from

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									from
								

								 	
									Required The sender’s email address.
								

								 	 	
									String
								

								

Query Parameters (11 parameters):

	Name	Description	Default	Type
	
									amazonSESClient (producer)
								

								 	
									To use the AmazonSimpleEmailService as the client
								

								 	 	
									AmazonSimpleEmail Service
								

								
	
									proxyHost (producer)
								

								 	
									To define a proxy host when instantiating the SES client
								

								 	 	
									String
								

								
	
									proxyPort (producer)
								

								 	
									To define a proxy port when instantiating the SES client
								

								 	 	
									Integer
								

								
	
									region (producer)
								

								 	
									The region in which SES client needs to work
								

								 	 	
									String
								

								
	
									replyToAddresses (producer)
								

								 	
									List of reply-to email address(es) for the message, override it using 'CamelAwsSesReplyToAddresses' header.
								

								 	 	
									List
								

								
	
									returnPath (producer)
								

								 	
									The email address to which bounce notifications are to be forwarded, override it using 'CamelAwsSesReturnPath' header.
								

								 	 	
									String
								

								
	
									subject (producer)
								

								 	
									The subject which is used if the message header 'CamelAwsSesSubject' is not present.
								

								 	 	
									String
								

								
	
									to (producer)
								

								 	
									List of destination email address. Can be overriden with 'CamelAwsSesTo' header.
								

								 	 	
									List
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									accessKey (security)
								

								 	
									Amazon AWS Access Key
								

								 	 	
									String
								

								
	
									secretKey (security)
								

								 	
									Amazon AWS Secret Key
								

								 	 	
									String
								

								

					Required SES component options
				

					You have to provide the amazonSESClient in the Registry or your accessKey and secretKey to access the Amazon’s SES.
				

Usage

Message headers evaluated by the SES producer

	Header	Type	Description
	
									CamelAwsSesFrom
								

								 	
									String
								

								 	
									The sender’s email address.
								

								
	
									CamelAwsSesTo
								

								 	
									List<String>
								

								 	
									The destination(s) for this email.
								

								
	
									CamelAwsSesSubject
								

								 	
									String
								

								 	
									The subject of the message.
								

								
	
									CamelAwsSesReplyToAddresses
								

								 	
									List<String>
								

								 	
									The reply-to email address(es) for the message.
								

								
	
									CamelAwsSesReturnPath
								

								 	
									String
								

								 	
									The email address to which bounce notifications are to be forwarded.
								

								
	
									CamelAwsSesHtmlEmail
								

								 	
									Boolean
								

								 	
									Since Camel 2.12.3 The flag to show if email content is HTML.
								

								

Message headers set by the SES producer

	Header	Type	Description
	
									CamelAwsSesMessageId
								

								 	
									String
								

								 	
									The Amazon SES message ID.
								

								

Advanced AmazonSimpleEmailService configuration

					If you need more control over the AmazonSimpleEmailService instance configuration you can create your own instance and refer to it from the URI:
				
from("direct:start")
.to("aws-ses://example@example.com?amazonSESClient=#client");

					The #client refers to a AmazonSimpleEmailService in the Registry.
				

					For example if your Camel Application is running behind a firewall:
				
AWSCredentials awsCredentials = new BasicAWSCredentials("myAccessKey", "mySecretKey");
ClientConfiguration clientConfiguration = new ClientConfiguration();
clientConfiguration.setProxyHost("http://myProxyHost");
clientConfiguration.setProxyPort(8080);
AmazonSimpleEmailService client = new AmazonSimpleEmailServiceClient(awsCredentials, clientConfiguration);

registry.bind("client", client);

Dependencies

				Maven users will need to add the following dependency to their pom.xml.
			

				pom.xml
			
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-aws</artifactId>
 <version>${camel-version}</version>
</dependency>

				where ${camel-version} must be replaced by the actual version of Camel (2.8.4 or higher).
			

See Also

	
						Configuring Camel
					
	
						Component
					
	
						Endpoint
					
	
						Getting Started
					
	
						AWS Component
					

Chapter 34. AWS Simple Notification System Component

			Available as of Camel version 2.8
		

			The SNS component allows messages to be sent to an Amazon Simple Notification Topic. The implementation of the Amazon API is provided by the AWS SDK.
		

			Prerequisites
		

			You must have a valid Amazon Web Services developer account, and be signed up to use Amazon SNS. More information are available at Amazon SNS.
		
URI Format

aws-sns://topicNameOrArn[?options]

				The topic will be created if they don’t already exists.
 You can append query options to the URI in the following format, ?options=value&option2=value&…​
			

URI Options

				The AWS Simple Notification System component supports 5 options which are listed below.
			
	Name	Description	Default	Type
	
								configuration (advanced)
							

							 	
								The AWS SNS default configuration
							

							 	 	
								SnsConfiguration
							

							
	
								accessKey (producer)
							

							 	
								Amazon AWS Access Key
							

							 	 	
								String
							

							
	
								secretKey (producer)
							

							 	
								Amazon AWS Secret Key
							

							 	 	
								String
							

							
	
								region (producer)
							

							 	
								The region in which SNS client needs to work
							

							 	 	
								String
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The AWS Simple Notification System endpoint is configured using URI syntax:
			
aws-sns:topicNameOrArn

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									topicNameOrArn
								

								 	
									Required Topic name or ARN
								

								 	 	
									String
								

								

Query Parameters (11 parameters):

	Name	Description	Default	Type
	
									amazonSNSClient (producer)
								

								 	
									To use the AmazonSNS as the client
								

								 	 	
									AmazonSNS
								

								
	
									headerFilterStrategy (producer)
								

								 	
									To use a custom HeaderFilterStrategy to map headers to/from Camel.
								

								 	 	
									HeaderFilterStrategy
								

								
	
									messageStructure (producer)
								

								 	
									The message structure to use such as json
								

								 	 	
									String
								

								
	
									policy (producer)
								

								 	
									The policy for this queue
								

								 	 	
									String
								

								
	
									proxyHost (producer)
								

								 	
									To define a proxy host when instantiating the SNS client
								

								 	 	
									String
								

								
	
									proxyPort (producer)
								

								 	
									To define a proxy port when instantiating the SNS client
								

								 	 	
									Integer
								

								
	
									region (producer)
								

								 	
									The region in which SNS client needs to work
								

								 	 	
									String
								

								
	
									subject (producer)
								

								 	
									The subject which is used if the message header 'CamelAwsSnsSubject' is not present.
								

								 	 	
									String
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									accessKey (security)
								

								 	
									Amazon AWS Access Key
								

								 	 	
									String
								

								
	
									secretKey (security)
								

								 	
									Amazon AWS Secret Key
								

								 	 	
									String
								

								

					Required SNS component options
				

					You have to provide the amazonSNSClient in the Registry or your accessKey and secretKey to access the Amazon’s SNS.
				

Usage

Message headers evaluated by the SNS producer

	Header	Type	Description
	
									CamelAwsSnsSubject
								

								 	
									String
								

								 	
									The Amazon SNS message subject. If not set, the subject from the SnsConfiguration is used.
								

								

Message headers set by the SNS producer

	Header	Type	Description
	
									CamelAwsSnsMessageId
								

								 	
									String
								

								 	
									The Amazon SNS message ID.
								

								

Advanced AmazonSNS configuration

					If you need more control over the AmazonSNS instance configuration you can create your own instance and refer to it from the URI:
				
from("direct:start")
.to("aws-sns://MyTopic?amazonSNSClient=#client");

					The #client refers to a AmazonSNS in the Registry.
				

					For example if your Camel Application is running behind a firewall:
				
AWSCredentials awsCredentials = new BasicAWSCredentials("myAccessKey", "mySecretKey");
ClientConfiguration clientConfiguration = new ClientConfiguration();
clientConfiguration.setProxyHost("http://myProxyHost");
clientConfiguration.setProxyPort(8080);
AmazonSNS client = new AmazonSNSClient(awsCredentials, clientConfiguration);

registry.bind("client", client);

Dependencies

				Maven users will need to add the following dependency to their pom.xml.
			

				pom.xml
			
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-aws</artifactId>
 <version>${camel-version}</version>
</dependency>

				where ${camel-version} must be replaced by the actual version of Camel (2.8 or higher).
			

See Also

	
						Configuring Camel
					
	
						Component
					
	
						Endpoint
					
	
						Getting Started
					
	
						AWS Component
					

Chapter 35. AWS Simple Queue Service Component

			Available as of Camel version 2.6
		

			The sqs component supports sending and receiving messages to Amazon’s SQS service.
		

			Prerequisites
		

			You must have a valid Amazon Web Services developer account, and be signed up to use Amazon SQS. More information are available at Amazon SQS.
		
URI Format

aws-sqs://queueNameOrArn[?options]

				The queue will be created if they don’t already exists.
 You can append query options to the URI in the following format, ?options=value&option2=value&…​
			

URI Options

				The AWS Simple Queue Service component supports 5 options which are listed below.
			
	Name	Description	Default	Type
	
								configuration (advanced)
							

							 	
								The AWS SQS default configuration
							

							 	 	
								SqsConfiguration
							

							
	
								accessKey (common)
							

							 	
								Amazon AWS Access Key
							

							 	 	
								String
							

							
	
								secretKey (common)
							

							 	
								Amazon AWS Secret Key
							

							 	 	
								String
							

							
	
								region (common)
							

							 	
								Specify the queue region which could be used with queueOwnerAWSAccountId to build the service URL.
							

							 	 	
								String
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The AWS Simple Queue Service endpoint is configured using URI syntax:
			
aws-sqs:queueNameOrArn

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									queueNameOrArn
								

								 	
									Required Queue name or ARN
								

								 	 	
									String
								

								

Query Parameters (46 parameters):

	Name	Description	Default	Type
	
									amazonAWSHost (common)
								

								 	
									The hostname of the Amazon AWS cloud.
								

								 	
									amazonaws.com
								

								 	
									String
								

								
	
									amazonSQSClient (common)
								

								 	
									To use the AmazonSQS as client
								

								 	 	
									AmazonSQS
								

								
	
									headerFilterStrategy (common)
								

								 	
									To use a custom HeaderFilterStrategy to map headers to/from Camel.
								

								 	 	
									HeaderFilterStrategy
								

								
	
									queueOwnerAWSAccountId (common)
								

								 	
									Specify the queue owner aws account id when you need to connect the queue with different account owner.
								

								 	 	
									String
								

								
	
									region (common)
								

								 	
									Specify the queue region which could be used with queueOwnerAWSAccountId to build the service URL.
								

								 	 	
									String
								

								
	
									attributeNames (consumer)
								

								 	
									A list of attribute names to receive when consuming. Multiple names can be separated by comma.
								

								 	 	
									String
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									concurrentConsumers (consumer)
								

								 	
									Allows you to use multiple threads to poll the sqs queue to increase throughput
								

								 	
									1
								

								 	
									int
								

								
	
									defaultVisibilityTimeout (consumer)
								

								 	
									The default visibility timeout (in seconds)
								

								 	 	
									Integer
								

								
	
									deleteAfterRead (consumer)
								

								 	
									Delete message from SQS after it has been read
								

								 	
									true
								

								 	
									boolean
								

								
	
									deleteIfFiltered (consumer)
								

								 	
									Whether or not to send the DeleteMessage to the SQS queue if an exchange fails to get through a filter. If 'false' and exchange does not make it through a Camel filter upstream in the route, then don’t send DeleteMessage.
								

								 	
									true
								

								 	
									boolean
								

								
	
									extendMessageVisibility (consumer)
								

								 	
									If enabled then a scheduled background task will keep extending the message visibility on SQS. This is needed if it takes a long time to process the message. If set to true defaultVisibilityTimeout must be set. See details at Amazon docs.
								

								 	
									false
								

								 	
									boolean
								

								
	
									maxMessagesPerPoll (consumer)
								

								 	
									Gets the maximum number of messages as a limit to poll at each polling. Is default unlimited, but use 0 or negative number to disable it as unlimited.
								

								 	 	
									int
								

								
	
									messageAttributeNames (consumer)
								

								 	
									A list of message attribute names to receive when consuming. Multiple names can be separated by comma.
								

								 	 	
									String
								

								
	
									sendEmptyMessageWhenIdle (consumer)
								

								 	
									If the polling consumer did not poll any files, you can enable this option to send an empty message (no body) instead.
								

								 	
									false
								

								 	
									boolean
								

								
	
									visibilityTimeout (consumer)
								

								 	
									The duration (in seconds) that the received messages are hidden from subsequent retrieve requests after being retrieved by a ReceiveMessage request to set in the com.amazonaws.services.sqs.model.SetQueueAttributesRequest. This only make sense if its different from defaultVisibilityTimeout. It changes the queue visibility timeout attribute permanently.
								

								 	 	
									Integer
								

								
	
									waitTimeSeconds (consumer)
								

								 	
									Duration in seconds (0 to 20) that the ReceiveMessage action call will wait until a message is in the queue to include in the response.
								

								 	 	
									Integer
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									pollStrategy (consumer)
								

								 	
									A pluggable org.apache.camel.PollingConsumerPollingStrategy allowing you to provide your custom implementation to control error handling usually occurred during the poll operation before an Exchange have been created and being routed in Camel.
								

								 	 	
									PollingConsumerPoll Strategy
								

								
	
									delaySeconds (producer)
								

								 	
									Delay sending messages for a number of seconds.
								

								 	 	
									Integer
								

								
	
									messageDeduplicationId Strategy (producer)
								

								 	
									Only for FIFO queues. Strategy for setting the messageDeduplicationId on the message. Can be one of the following options: useExchangeId, useContentBasedDeduplication. For the useContentBasedDeduplication option, no messageDeduplicationId will be set on the message.
								

								 	
									useExchangeId
								

								 	
									MessageDeduplicationId Strategy
								

								
	
									messageGroupIdStrategy (producer)
								

								 	
									Only for FIFO queues. Strategy for setting the messageGroupId on the message. Can be one of the following options: useConstant, useExchangeId, usePropertyValue. For the usePropertyValue option, the value of property CamelAwsMessageGroupId will be used.
								

								 	 	
									MessageGroupIdStrategy
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									backoffErrorThreshold (scheduler)
								

								 	
									The number of subsequent error polls (failed due some error) that should happen before the backoffMultipler should kick-in.
								

								 	 	
									int
								

								
	
									backoffIdleThreshold (scheduler)
								

								 	
									The number of subsequent idle polls that should happen before the backoffMultipler should kick-in.
								

								 	 	
									int
								

								
	
									backoffMultiplier (scheduler)
								

								 	
									To let the scheduled polling consumer backoff if there has been a number of subsequent idles/errors in a row. The multiplier is then the number of polls that will be skipped before the next actual attempt is happening again. When this option is in use then backoffIdleThreshold and/or backoffErrorThreshold must also be configured.
								

								 	 	
									int
								

								
	
									delay (scheduler)
								

								 	
									Milliseconds before the next poll. You can also specify time values using units, such as 60s (60 seconds), 5m30s (5 minutes and 30 seconds), and 1h (1 hour).
								

								 	
									500
								

								 	
									long
								

								
	
									greedy (scheduler)
								

								 	
									If greedy is enabled, then the ScheduledPollConsumer will run immediately again, if the previous run polled 1 or more messages.
								

								 	
									false
								

								 	
									boolean
								

								
	
									initialDelay (scheduler)
								

								 	
									Milliseconds before the first poll starts. You can also specify time values using units, such as 60s (60 seconds), 5m30s (5 minutes and 30 seconds), and 1h (1 hour).
								

								 	
									1000
								

								 	
									long
								

								
	
									runLoggingLevel (scheduler)
								

								 	
									The consumer logs a start/complete log line when it polls. This option allows you to configure the logging level for that.
								

								 	
									TRACE
								

								 	
									LoggingLevel
								

								
	
									scheduledExecutorService (scheduler)
								

								 	
									Allows for configuring a custom/shared thread pool to use for the consumer. By default each consumer has its own single threaded thread pool.
								

								 	 	
									ScheduledExecutor Service
								

								
	
									scheduler (scheduler)
								

								 	
									To use a cron scheduler from either camel-spring or camel-quartz2 component
								

								 	
									none
								

								 	
									ScheduledPollConsumer Scheduler
								

								
	
									schedulerProperties (scheduler)
								

								 	
									To configure additional properties when using a custom scheduler or any of the Quartz2, Spring based scheduler.
								

								 	 	
									Map
								

								
	
									startScheduler (scheduler)
								

								 	
									Whether the scheduler should be auto started.
								

								 	
									true
								

								 	
									boolean
								

								
	
									timeUnit (scheduler)
								

								 	
									Time unit for initialDelay and delay options.
								

								 	
									MILLISECONDS
								

								 	
									TimeUnit
								

								
	
									useFixedDelay (scheduler)
								

								 	
									Controls if fixed delay or fixed rate is used. See ScheduledExecutorService in JDK for details.
								

								 	
									true
								

								 	
									boolean
								

								
	
									proxyHost (proxy)
								

								 	
									To define a proxy host when instantiating the SQS client
								

								 	 	
									String
								

								
	
									proxyPort (proxy)
								

								 	
									To define a proxy port when instantiating the SQS client
								

								 	 	
									Integer
								

								
	
									maximumMessageSize (queue)
								

								 	
									The maximumMessageSize (in bytes) an SQS message can contain for this queue.
								

								 	 	
									Integer
								

								
	
									messageRetentionPeriod (queue)
								

								 	
									The messageRetentionPeriod (in seconds) a message will be retained by SQS for this queue.
								

								 	 	
									Integer
								

								
	
									policy (queue)
								

								 	
									The policy for this queue
								

								 	 	
									String
								

								
	
									receiveMessageWaitTime Seconds (queue)
								

								 	
									If you do not specify WaitTimeSeconds in the request, the queue attribute ReceiveMessageWaitTimeSeconds is used to determine how long to wait.
								

								 	 	
									Integer
								

								
	
									redrivePolicy (queue)
								

								 	
									Specify the policy that send message to DeadLetter queue. See detail at Amazon docs.
								

								 	 	
									String
								

								
	
									accessKey (security)
								

								 	
									Amazon AWS Access Key
								

								 	 	
									String
								

								
	
									secretKey (security)
								

								 	
									Amazon AWS Secret Key
								

								 	 	
									String
								

								

					Required SQS component options
				

					You have to provide the amazonSQSClient in the Registry or your accessKey and secretKey to access the Amazon’s SQS.
				

Batch Consumer

				This component implements the Batch Consumer.
			

				This allows you for instance to know how many messages exists in this batch and for instance let the Aggregator aggregate this number of messages.
			

Usage

Message headers set by the SQS producer

	Header	Type	Description
	
									CamelAwsSqsMD5OfBody
								

								 	
									String
								

								 	
									The MD5 checksum of the Amazon SQS message.
								

								
	
									CamelAwsSqsMessageId
								

								 	
									String
								

								 	
									The Amazon SQS message ID.
								

								
	
									CamelAwsSqsDelaySeconds
								

								 	
									Integer
								

								 	
									Since Camel 2.11, the delay seconds that the Amazon SQS message can be see by others.
								

								

Message headers set by the SQS consumer

	Header	Type	Description
	
									CamelAwsSqsMD5OfBody
								

								 	
									String
								

								 	
									The MD5 checksum of the Amazon SQS message.
								

								
	
									CamelAwsSqsMessageId
								

								 	
									String
								

								 	
									The Amazon SQS message ID.
								

								
	
									CamelAwsSqsReceiptHandle
								

								 	
									String
								

								 	
									The Amazon SQS message receipt handle.
								

								
	
									CamelAwsSqsAttributes
								

								 	
									Map<String, String>
								

								 	
									The Amazon SQS message attributes.
								

								

Advanced AmazonSQS configuration

					If your Camel Application is running behind a firewall or if you need to have more control over the AmazonSQS instance configuration, you can create your own instance:
				
AWSCredentials awsCredentials = new BasicAWSCredentials("myAccessKey", "mySecretKey");

ClientConfiguration clientConfiguration = new ClientConfiguration();
clientConfiguration.setProxyHost("http://myProxyHost");
clientConfiguration.setProxyPort(8080);

AmazonSQS client = new AmazonSQSClient(awsCredentials, clientConfiguration);

registry.bind("client", client);

					and refer to it in your Camel aws-sqs component configuration:
				
from("aws-sqs://MyQueue?amazonSQSClient=#client&delay=5000&maxMessagesPerPoll=5")
.to("mock:result");

Dependencies

				Maven users will need to add the following dependency to their pom.xml.
			

				pom.xml
			
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-aws</artifactId>
 <version>${camel-version}</version>
</dependency>

				where ${camel-version} must be replaced by the actual version of Camel (2.6 or higher).
			

JMS-style Selectors

				SQS does not allow selectors, but you can effectively achieve this by using the Camel Filter EIP and setting an appropriate visibilityTimeout. When SQS dispatches a message, it will wait up to the visibility timeout before it will try to dispatch the message to a different consumer unless a DeleteMessage is received. By default, Camel will always send the DeleteMessage at the end of the route, unless the route ended in failure. To achieve appropriate filtering and not send the DeleteMessage even on successful completion of the route, use a Filter:
			
from("aws-sqs://MyQueue?amazonSQSClient=#client&defaultVisibilityTimeout=5000&deleteIfFiltered=false")
.filter("${header.login} == true")
.to("mock:result");

				In the above code, if an exchange doesn’t have an appropriate header, it will not make it through the filter AND also not be deleted from the SQS queue. After 5000 miliseconds, the message will become visible to other consumers.
			

See Also

	
						Configuring Camel
					
	
						Component
					
	
						Endpoint
					
	
						Getting Started
					
	
						AWS Component
					

Chapter 36. AWS Simple Workflow Component

			Available as of Camel version 2.13
		

			The Simple Workflow component supports managing workflows from Amazon’s Simple Workflow service.
		

			Prerequisites
		

			You must have a valid Amazon Web Services developer account, and be signed up to use Amazon Simple Workflow. More information are available at Amazon Simple Workflow.
		
URI Format

aws-swf://<workflow|activity>[?options]

				You can append query options to the URI in the following format, ?options=value&option2=value&…​
			

URI Options

				The AWS Simple Workflow component supports 5 options which are listed below.
			
	Name	Description	Default	Type
	
								configuration (advanced)
							

							 	
								The AWS SWF default configuration
							

							 	 	
								SWFConfiguration
							

							
	
								accessKey (common)
							

							 	
								Amazon AWS Access Key.
							

							 	 	
								String
							

							
	
								secretKey (common)
							

							 	
								Amazon AWS Secret Key.
							

							 	 	
								String
							

							
	
								region (common)
							

							 	
								Amazon AWS Region.
							

							 	 	
								String
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The AWS Simple Workflow endpoint is configured using URI syntax:
			
aws-swf:type

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									type
								

								 	
									Required Activity or workflow
								

								 	 	
									String
								

								

Query Parameters (30 parameters):

	Name	Description	Default	Type
	
									amazonSWClient (common)
								

								 	
									To use the given AmazonSimpleWorkflowClient as client
								

								 	 	
									AmazonSimpleWorkflow Client
								

								
	
									dataConverter (common)
								

								 	
									An instance of com.amazonaws.services.simpleworkflow.flow.DataConverter to use for serializing/deserializing the data.
								

								 	 	
									DataConverter
								

								
	
									domainName (common)
								

								 	
									The workflow domain to use.
								

								 	 	
									String
								

								
	
									eventName (common)
								

								 	
									The workflow or activity event name to use.
								

								 	 	
									String
								

								
	
									region (common)
								

								 	
									Amazon AWS Region.
								

								 	 	
									String
								

								
	
									version (common)
								

								 	
									The workflow or activity event version to use.
								

								 	 	
									String
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									clientConfiguration Parameters (advanced)
								

								 	
									To configure the ClientConfiguration using the key/values from the Map.
								

								 	 	
									Map
								

								
	
									startWorkflowOptions Parameters (advanced)
								

								 	
									To configure the StartWorkflowOptions using the key/values from the Map.
								

								 	 	
									Map
								

								
	
									sWClientParameters (advanced)
								

								 	
									To configure the AmazonSimpleWorkflowClient using the key/values from the Map.
								

								 	 	
									Map
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									activityList (activity)
								

								 	
									The list name to consume activities from.
								

								 	 	
									String
								

								
	
									activitySchedulingOptions (activity)
								

								 	
									Activity scheduling options
								

								 	 	
									ActivityScheduling Options
								

								
	
									activityThreadPoolSize (activity)
								

								 	
									Maximum number of threads in work pool for activity.
								

								 	
									100
								

								 	
									int
								

								
	
									activityTypeExecution Options (activity)
								

								 	
									Activity execution options
								

								 	 	
									ActivityTypeExecution Options
								

								
	
									activityTypeRegistration Options (activity)
								

								 	
									Activity registration options
								

								 	 	
									ActivityType RegistrationOptions
								

								
	
									childPolicy (workflow)
								

								 	
									The policy to use on child workflows when terminating a workflow.
								

								 	 	
									String
								

								
	
									executionStartToClose Timeout (workflow)
								

								 	
									Set the execution start to close timeout.
								

								 	
									3600
								

								 	
									String
								

								
	
									operation (workflow)
								

								 	
									Workflow operation
								

								 	
									START
								

								 	
									String
								

								
	
									signalName (workflow)
								

								 	
									The name of the signal to send to the workflow.
								

								 	 	
									String
								

								
	
									stateResultType (workflow)
								

								 	
									The type of the result when a workflow state is queried.
								

								 	 	
									String
								

								
	
									taskStartToCloseTimeout (workflow)
								

								 	
									Set the task start to close timeout.
								

								 	
									600
								

								 	
									String
								

								
	
									terminationDetails (workflow)
								

								 	
									Details for terminating a workflow.
								

								 	 	
									String
								

								
	
									terminationReason (workflow)
								

								 	
									The reason for terminating a workflow.
								

								 	 	
									String
								

								
	
									workflowList (workflow)
								

								 	
									The list name to consume workflows from.
								

								 	 	
									String
								

								
	
									workflowTypeRegistration Options (workflow)
								

								 	
									Workflow registration options
								

								 	 	
									WorkflowType RegistrationOptions
								

								
	
									accessKey (security)
								

								 	
									Amazon AWS Access Key.
								

								 	 	
									String
								

								
	
									secretKey (security)
								

								 	
									Amazon AWS Secret Key.
								

								 	 	
									String
								

								

					Required SWF component options
				

					You have to provide the amazonSWClient in the Registry or your accessKey and secretKey to access the Amazon’s Simple Workflow Service.
				

Usage

Message headers evaluated by the SWF Workflow Producer

					A workflow producer allows interacting with a workflow. It can start a new workflow execution, query its state, send signals to a running workflow, or terminate and cancel it.
				
	Header	Type	Description
	
									CamelSWFOperation
								

								 	
									String
								

								 	
									The operation to perform on the workflow. Supported operations are:
 SIGNAL, CANCEL, TERMINATE, GET_STATE, START, DESCRIBE, GET_HISTORY.
								

								
	
									CamelSWFWorkflowId
								

								 	
									String
								

								 	
									A workflow ID to use.
								

								
	
									CamelAwsDdbKeyCamelSWFRunId
								

								 	
									String
								

								 	
									A worfklow run ID to use.
								

								
	
									CamelSWFStateResultType
								

								 	
									String
								

								 	
									The type of the result when a workflow state is queried.
								

								
	
									CamelSWFEventName
								

								 	
									String
								

								 	
									The workflow or activity event name to use.
								

								
	
									CamelSWFVersion
								

								 	
									String
								

								 	
									The workflow or activity event version to use.
								

								
	
									CamelSWFReason
								

								 	
									String
								

								 	
									The reason for terminating a workflow.
								

								
	
									CamelSWFDetails
								

								 	
									String
								

								 	
									Details for terminating a workflow.
								

								
	
									CamelSWFChildPolicy
								

								 	
									String
								

								 	
									The policy to use on child workflows when terminating a workflow.
								

								

Message headers set by the SWF Workflow Producer

	Header	Type	Description
	
									CamelSWFWorkflowId
								

								 	
									String
								

								 	
									The worfklow ID used or newly generated.
								

								
	
									CamelAwsDdbKeyCamelSWFRunId
								

								 	
									String
								

								 	
									The worfklow run ID used or generated.
								

								

Message headers set by the SWF Workflow Consumer

					A workflow consumer represents the workflow logic. When it is started, it will start polling workflow decision tasks and process them. In addition to processing decision tasks, a workflow consumer route, will also receive signals (send from a workflow producer) or state queries. The primary purpose of a workflow consumer is to schedule activity tasks for execution using activity producers. Actually activity tasks can be scheduled only from a thread started by a workflow consumer.
				
	Header	Type	Description
	
									CamelSWFAction
								

								 	
									String
								

								 	
									Indicates what type is the current event: CamelSWFActionExecute, CamelSWFSignalReceivedAction or CamelSWFGetStateAction.
								

								
	
									CamelSWFWorkflowReplaying
								

								 	
									boolean
								

								 	
									Indicates whether the current decision task is a replay or not.
								

								
	
									CamelSWFWorkflowStartTime
								

								 	
									long
								

								 	
									The time of the start event for this decision task.
								

								

Message headers set by the SWF Activity Producer

					An activity producer allows scheduling activity tasks. An activity producer can be used only from a thread started by a workflow consumer ie, it can process synchronous exchanges started by a workflow consumer.
				
	Header	Type	Description
	
									CamelSWFEventName
								

								 	
									String
								

								 	
									The activity name to schedule.
								

								
	
									CamelSWFVersion
								

								 	
									String
								

								 	
									The activity version to schedule.
								

								

Message headers set by the SWF Activity Consumer

	Header	Type	Description
	
									CamelSWFTaskToken
								

								 	
									String
								

								 	
									The task token that is required to report task completion for manually completed tasks.
								

								

Advanced amazonSWClient configuration

					If you need more control over the AmazonSimpleWorkflowClient instance configuration you can create your own instance and refer to it from the URI:
				

					The #client refers to a AmazonSimpleWorkflowClient in the Registry.
				

					For example if your Camel Application is running behind a firewall:
				
AWSCredentials awsCredentials = new BasicAWSCredentials("myAccessKey", "mySecretKey");
ClientConfiguration clientConfiguration = new ClientConfiguration();
clientConfiguration.setProxyHost("http://myProxyHost");
clientConfiguration.setProxyPort(8080);

AmazonSimpleWorkflowClient client = new AmazonSimpleWorkflowClient(awsCredentials, clientConfiguration);

registry.bind("client", client);

Dependencies

				Maven users will need to add the following dependency to their pom.xml.
			

				pom.xml
			
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-aws</artifactId>
 <version>${camel-version}</version>
</dependency>

				where ${camel-version} must be replaced by the actual version of Camel (2.13 or higher).
			

See Also

	
						Configuring Camel
					
	
						Component
					
	
						Endpoint
					
	
						Getting Started
					

				AWS Component
			

Chapter 37. AWS XRay Component

			Available as of Camel 2.21
		

			The camel-aws-xray component is used for tracing and timing incoming and outgoing Camel messages using AWS XRay.
		

			Events (subsegments) are captured for incoming and outgoing messages being sent to/from Camel.
		
Dependency

				In order to include AWS XRay support into Camel, the archive containing the Camel related AWS XRay related classes need to be added to the project. In addition to that, AWS XRay libraries also need to be available.
			

				To include both, AWS XRay and Camel, dependencies use the following Maven imports:
			
 <dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-xray-recorder-sdk-bom</artifactId>
 <version>1.3.1</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
 </dependencyManagement>

 <dependencies>
 <dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-aws-xray</artifactId>
 </dependency>

 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-xray-recorder-sdk-core</artifactId>
 </dependency>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-xray-recorder-sdk-aws-sdk</artifactId>
 </dependency>
 <dependencies>

Configuration

				The configuration properties for the AWS XRay tracer are:
			
	Option	Default	Description
	
								addExcludePatterns
							

							 	
								
							

							 	
								Sets exclude pattern(s) that will disable tracing for Camel messages that matches the pattern. The content is a Set<String> where the key is a pattern matching routeId’s. The pattern uses the rules from Intercept.
							

							
	
								setTracingStrategy
							

							 	
								NoopTracingStrategy
							

							 	
								Allows a custom Camel InterceptStrategy to be provided in order to track invoked processor definitions like BeanDefinition or ProcessDefinition. TraceAnnotatedTracingStrategy will track any classes invoked via .bean(…​) or .process(…​) that contain a @XRayTrace annotation at class level.
							

							

				There is currently only one way an AWS XRay tracer can be configured to provide distributed tracing for a Camel application:
			
Explicit

					Include the camel-aws-xray component in your POM, along with any specific dependencies associated with the AWS XRay Tracer.
				

					To explicitly configure AWS XRay support, instantiate the XRayTracer and initialize the camel context. You can optionally specify a Tracer, or alternatively it can be implicitly discovered using the Registry or ServiceLoader.
				
XRayTracer xrayTracer = new XRayTracer();
// By default it uses a NoopTracingStrategy, but you can override it with a specific InterceptStrategy implementation.
xrayTracer.setTracingStrategy(...);
// And then initialize the context
xrayTracer.init(camelContext);

					To use XRayTracer in XML, all you need to do is to define the AWS XRay tracer bean. Camel will automatically discover and use it.
				
 <bean id="tracingStrategy" class="..."/>
 <bean id="aws-xray-tracer" class="org.apache.camel.component.aws.xray.XRayTracer" />
 <property name="tracer" ref="tracingStrategy"/>
 </bean>

					In case of the default NoopTracingStrategy only the creation and deletion of exchanges is tracked but not the invocation of certain beans or EIP patterns.
				

Tracking of comprehensive route execution

					In order to track the execution of an exchange among multiple routes, on exchange creation a unique trace ID is generated and stored in the headers if no corresponding value was yet available. This trace ID is copied over to new exchanges in order to keep a consistent view of the processed exchange.
				

					As AWS XRay traces work on a thread-local basis the current sub/segment should be copied over to the new thread and set as explained in in the AWS XRay documentation. The Camel AWS XRay component therefore provides an additional header field that the component will use in order to set the passed AWS XRay Entity to the new thread and thus keep the tracked data to the route rather than exposing a new segment which seems uncorrelated with any of the executed routes.
				

					The component will use the following constants found in the headers of the exchange:
				
	Header	Description
	
									Camel-AWS-XRay-Trace-ID
								

								 	
									Contains a reference to the AWS XRay TraceID object to provide a comprehensive view of the invoked routes
								

								
	
									Camel-AWS-XRay-Trace-Entity
								

								 	
									Contains a reference to the actual AWS XRay Segment or Subsegment which is copied over to the new thread. This header should be set in case a new thread is spawned and the performed tasks should be exposed as part of the executed route instead of creating a new unrelated segment.
								

								

					Note that the AWS XRay Entity (i.e., Segment and Subsegment) are not serializable and therefore should not get passed to other JVM processes.
				

Example

				You can find an example demonstrating the way to configure AWS XRay tracing within the tests accompanying this project.
			

Chapter 38. Camel Components for Windows Azure Services

			The Camel Components for Windows Azure Services provide connectivity to Azure services from Camel.
		

			
		
	Azure Service	Camel Component	Camel Version	Component Description
	
							Storage Blob Service
						

						 	
							Azure-Blob
						

						 	
							2.9.0
						

						 	
							Supports storing and retrieving of blobs
						

						
	
							Storage Queue Service
						

						 	
							Azure-Queue
						

						 	
							2.9.0
						

						 	
							Supports storing and retrieving of messages in the queues
						

						

Chapter 39. Azure Storage Blob Service Component

			Available as of Camel version 2.19
		

			The Azure Blob component supports storing and retrieving the blobs to/from Azure Storage Blob service.
		
Prerequisites

				You must have a valid Windows Azure Storage account. More information is available at Azure Documentation Portal.
			
URI Format

azure-blob://accountName/containerName[/blobName][?options]

				In most cases a blobName is required and the blob will be created if it does not already exist.
 You can append query options to the URI in the following format: ?options=value&option2=value&…​
			

				For example, to download a blob content from the public block blob blockBlob located on the container1 in the camelazure storage account, use the following snippet:
			
from("azure-blob:camelazure/container1/blockBlob").
to("file://blobdirectory");

URI Options

				The Azure Storage Blob Service component has no options.
			

				The Azure Storage Blob Service endpoint is configured using URI syntax:
			
azure-blob:containerOrBlobUri

				with the following path and query parameters:
			
Path Parameters (1 parameter)

	Name	Description	Default	Type
	
									containerOrBlobUri
								

								 	
									Required: Container or Blob compact URI.
								

								 	 	
									String
								

								

Query Parameters (19 parameters)

	Name	Description	Default	Type
	
									azureBlobClient (common)
								

								 	
									The blob service client.
								

								 	 	
									CloudBlob
								

								
	
									blobOffset (common)
								

								 	
									Set the blob offset for the upload or download operations, default is 0.
								

								 	
									0
								

								 	
									Long
								

								
	
									blobType (common)
								

								 	
									Set a blob type, blockblob is default.
								

								 	
									blockblob
								

								 	
									BlobType
								

								
	
									closeStreamAfterRead (common)
								

								 	
									Close the stream after read or keep it open, default is true.
								

								 	
									true
								

								 	
									boolean
								

								
	
									credentials (common)
								

								 	
									Set the storage credentials, required in most cases.
								

								 	 	
									StorageCredentials
								

								
	
									dataLength (common)
								

								 	
									Set the data length for the download or page blob upload operations.
								

								 	 	
									Long
								

								
	
									fileDir (common)
								

								 	
									Set the file directory where the downloaded blobs will be saved.
								

								 	 	
									String
								

								
	
									publicForRead (common)
								

								 	
									Storage resources can be public for reading their content. If this property is enabled, the credentials do not have to be set.
								

								 	
									false
								

								 	
									boolean
								

								
	
									streamReadSize (common)
								

								 	
									Set the minimum read size in bytes when reading the blob content.
								

								 	 	
									int
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler. This means any exceptions that occurred (for example, while the consumer was trying to pick up incoming messages), will now be processed as a message and handled by the routing Error Handler. By default, the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, which will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Note that if the option bridgeErrorHandler is enabled, this option is not in use. By default, the consumer will deal with exceptions, which will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									blobMetadata (producer)
								

								 	
									Set the blob metadata.
								

								 	 	
									Map
								

								
	
									blobPrefix (producer)
								

								 	
									Set a prefix that can be used for listing the blobs.
								

								 	 	
									String
								

								
	
									closeStreamAfterWrite (producer)
								

								 	
									Close the stream after write or keep it open, default is true.
								

								 	
									true
								

								 	
									boolean
								

								
	
									operation (producer)
								

								 	
									Blob service operation hint to the producer.
								

								 	
									listBlobs
								

								 	
									BlobServiceOperations
								

								
	
									streamWriteSize (producer)
								

								 	
									Set the size of the buffer for writing block and page blocks.
								

								 	 	
									int
								

								
	
									useFlatListing (producer)
								

								 	
									Specify if the flat or hierarchical blob listing should be used.
								

								 	
									true
								

								 	
									boolean
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

Required Azure Storage Blob Service component options

						You must provide the containerOrBlob name and the credentials if the private blob needs to be accessed.
					

Usage

Message headers set by the Azure Storage Blob Service producer

	Header	Type	Description
	
									CamelFileName
								

								 	
									String
								

								 	
									The file name for the downloaded blob content.
								

								

Message headers set by the Azure Storage Blob Service producer consumer

	Header	Type	Description
	
									CamelFileName
								

								 	
									String
								

								 	
									The file name for the downloaded blob content.
								

								

Azure Blob Service operations

					Operations common to all block types
				
	Operation	Description
	
									getBlob
								

								 	
									Get the content of the blob. You can restrict the output of this operation to a blob range.
								

								
	
									deleteBlob
								

								 	
									Delete the blob.
								

								
	
									listBlobs
								

								 	
									List the blobs.
								

								

					Block blob operations
				
	Operation	Description
	
									updateBlockBlob
								

								 	
									Put block blob content that either creates a new block blob or overwrites the existing block blob content.
								

								
	
									uploadBlobBlocks
								

								 	
									Upload block blob content, by first generating a sequence of blob blocks and then committing them to a blob. If you enable the message CommitBlockListLater property, you can execute the commit later with the commitBlobBlockList operation. You can later update individual block blobs.
								

								
	
									commitBlobBlockList
								

								 	
									Commit a sequence of blob blocks to the block list that you previously uploaded to the blob service (by using the updateBlockBlob operation with the message CommitBlockListLater property enabled).
								

								
	
									getBlobBlockList
								

								 	
									Get the block blob list.
								

								

					Append blob operations
				
	Operation	Description
	
									createAppendBlob
								

								 	
									Create an append block. By default, if the block already exists then it is not reset. Note that you can alternately create an append blob by enabling the message AppendBlobCreated property and using the updateAppendBlob operation.
								

								
	
									updateAppendBlob
								

								 	
									Append the new content to the blob. This operation also creates the blob if it does not already exist and if you enabled a message AppendBlobCreated property.
								

								

					Page Block operations
				
	Operation	Description
	
									createPageBlob
								

								 	
									Create a page block. By default, if the block already exists then it is not reset. Note that you can also create a page blob (and set its contents) by enabling a message PageBlobCreated property and by using the updatePageBlob operation.
								

								
	
									updatePageBlob
								

								 	
									Create a page block (unless you enable a message PageBlobCreated property and the identically named block already exists) and set the content of this blob.
								

								
	
									resizePageBlob
								

								 	
									Resize the page blob.
								

								
	
									clearPageBlob
								

								 	
									Clear the page blob.
								

								
	
									getPageBlobRanges
								

								 	
									Get the page blob page ranges.
								

								

Azure Blob Client configuration

					If your Camel application is running behind a firewall or if you need more control over the Azure Blob Client configuration, you can create your own instance:
				
StorageCredentials credentials = new StorageCredentialsAccountAndKey(accountName, accessKey);
CloudBlob client = new CloudBlockBlob(URI.create("https://"
 + accountName + ".blob.core.windows.net/" + containerName
 + "/" + fileName), credentials);
registry.bind("azureBlobClient", client);

					Refer to this instance in your Camel azure-blob component configuration:
				
from("azure-blob://" + accountName + "/" + containerName + "/" + fileName + "?azureBlobClient=#client")
.to("mock:result");

Dependencies

				Maven users must add the following dependency to their pom.xml:
			

				pom.xml
			
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-azure</artifactId>
 <version>${camel-version}</version>
</dependency>

				where ${camel-version} must be replaced by the actual version of Camel (2.19.0 or higher).
			

See Also

	
						Configuring Camel
					
	
						Component
					
	
						Endpoint
					
	
						Getting Started
					
	
						Azure Component
					

Chapter 40. Azure Storage Queue Service Component

			Available as of Camel version 2.19
		

			The Azure Queue component supports storing and retrieving the messages to/from Azure Storage Queue service.
		
Prerequisites

				You must have a valid Windows Azure Storage account. More information is available at Azure Documentation Portal.
			
URI Format

azure-queue://accountName/queueName[?options]

				The queue will be created if it does not already exist.
 You can append query options to the URI in the following format: ?options=value&option2=value&…​
			

				For example, to get a message content from the queue messageQueue in the camelazure storage account, use the following snippet:
			
from("azure-queue:camelazure/messageQueue").
to("file://queuedirectory");

URI Options

				The Azure Storage Queue Service component has no options.
			

				The Azure Storage Queue Service endpoint is configured using URI syntax:
			
azure-queue:containerAndQueueUri

				with the following path and query parameters:
			
Path Parameters (1 parameter)

	Name	Description	Default	Type
	
									containerAndQueueUri
								

								 	
									Required: Container Queue compact URI.
								

								 	 	
									String
								

								

Query Parameters (10 parameters)

	Name	Description	Default	Type
	
									azureQueueClient (common)
								

								 	
									The queue service client.
								

								 	 	
									CloudQueue
								

								
	
									credentials (common)
								

								 	
									Set the storage credentials, required in most cases
								

								 	 	
									StorageCredentials
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler. This means any exceptions that occurred (for example, while the consumer was trying to pick up incoming messages) will now be processed as a message and handled by the routing Error Handler. By default, the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Note that if the option bridgeErrorHandler is enabled, this option is not in use. By default, the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									messageTimeToLive (producer)
								

								 	
									Message Time To Live in seconds.
								

								 	 	
									int
								

								
	
									messageVisibilityDelay (producer)
								

								 	
									Message Visibility Delay in seconds.
								

								 	 	
									int
								

								
	
									operation (producer)
								

								 	
									Queue service operation hint to the producer.
								

								 	
									listQueues
								

								 	
									QueueServiceOperations
								

								
	
									queuePrefix (producer)
								

								 	
									Set a prefix which can be used for listing the queues.
								

								 	 	
									String
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

Required Azure Storage Queue Service component options

						You must provide the containerAndQueue URI and the credentials.
					

Usage

Azure Queue Service operations

	Operation	Description
	
									listQueues
								

								 	
									List the queues.
								

								
	
									createQueue
								

								 	
									Create the queue.
								

								
	
									deleteQueue
								

								 	
									Delete the queue.
								

								
	
									addMessage
								

								 	
									Add a message to the queue.
								

								
	
									retrieveMessage
								

								 	
									Retrieve a message from the queue.
								

								
	
									peekMessage
								

								 	
									View the message inside the queue, for example, to determine whether the message arrived at the correct queue.
								

								
	
									updateMessage
								

								 	
									Update the message in the queue.
								

								
	
									deleteMessage
								

								 	
									Delete the message in the queue.
								

								

Azure Queue Client configuration

					If your Camel Application is running behind a firewall or if you need to have more control over the Azure Queue Client configuration, you can create your own instance:
				
StorageCredentials credentials = new StorageCredentialsAccountAndKey("camelazure", "thekey");

CloudQueue client = new CloudQueue("camelazure", credentials);

registry.bind("azureQueueClient", client);

					and refer to it in your Camel azure-queue component configuration:
				
from("azure-queue:camelazure/messageQueue?azureQueueClient=#client")
.to("mock:result");

Dependencies

				Maven users must add the following dependency to their pom.xml.
			

				pom.xml
			
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-azure</artifactId>
 <version>${camel-version}</version>
</dependency>

				where ${camel-version} must be replaced by the actual version of Camel (2.19.0 or higher).
			

See Also

	
						Configuring Camel
					
	
						Component
					
	
						Endpoint
					
	
						Getting Started
					
	
						Azure Component
					

Chapter 41. Barcode DataFormat

			Available as of Camel version 2.14
		

			The barcode data format is based on the zxing library. The goal of this component is to create a barcode image from a String (marshal) and a String from a barcode image (unmarshal). You’re free to use all features that zxing offers.
		
Dependencies

				To use the barcode data format in your camel routes you need to add the a dependency on camel-barcode which implements this data format.
			

				If you use maven you could just add the following to your pom.xml, substituting the version number for the latest & greatest release (see the download page for the latest versions).
			
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-barcode</artifactId>
 <version>x.x.x</version>
</dependency>

Barcode Options

				The Barcode dataformat supports 5 options which are listed below.
			
	Name	Default	Java Type	Description
	
								width
							

							 	 	
								Integer
							

							 	
								Width of the barcode
							

							
	
								height
							

							 	 	
								Integer
							

							 	
								Height of the barcode
							

							
	
								imageType
							

							 	 	
								String
							

							 	
								Image type of the barcode such as png
							

							
	
								barcodeFormat
							

							 	 	
								String
							

							 	
								Barcode format such as QR-Code
							

							
	
								contentTypeHeader
							

							 	
								false
							

							 	
								Boolean
							

							 	
								Whether the data format should set the Content-Type header with the type from the data format if the data format is capable of doing so. For example application/xml for data formats marshalling to XML, or application/json for data formats marshalling to JSon etc.
							

							

Using the Java DSL

				First you have to initialize the barcode data fomat class. You can use the default constructor, or one of parameterized (see JavaDoc). The default values are:
			
	Parameter	Default Value
	
								image type (BarcodeImageType)
							

							 	
								PNG
							

							
	
								width
							

							 	
								100 px
							

							
	
								height
							

							 	
								100 px
							

							
	
								encoding
							

							 	
								UTF-8
							

							
	
								barcode format (BarcodeFormat)
							

							 	
								QR-Code
							

							

// QR-Code default
DataFormat code = new BarcodeDataFormat();

				If you want to use zxing hints, you can use the 'addToHintMap' method of your BarcodeDataFormat instance:
			
code.addToHintMap(DecodeHintType.TRY_HARDER, Boolean.true);

				For possible hints, please consult the xzing documentation.
			
Marshalling

from("direct://code")
 .marshal(code)
 .to("file://barcode_out");

					You can call the route from a test class with:
				
template.sendBody("direct://code", "This is a testmessage!");

					You should find inside the 'barcode_out' folder this image:
				

					[image: image]

				

Unmarshalling

					The unmarshaller is generic. For unmarshalling you can use any BarcodeDataFormat instance. If you’ve two instances, one for (generating) QR-Code and one for PDF417, it doesn’t matter which one will be used.
				
from("file://barcode_in?noop=true")
 .unmarshal(code) // for unmarshalling, the instance doesn't matter
 .to("mock:out");

					If you’ll paste the QR-Code image above into the 'barcode_in' folder, you should find ‘This is a testmessage!’ inside the mock. You can find the barcode data format as header variable:
				
	Name	Type	Description
	
									BarcodeFormat
								

								 	
									String
								

								 	
									Value of com.google.zxing.BarcodeFormat.
								

								

					
				

					
				

Chapter 42. Base64 DataFormat

			Available as of Camel version 2.11
		

			The Base64 data format is used for base64 encoding and decoding.
		
Options

				The Base64 dataformat supports 4 options which are listed below.
			
	Name	Default	Java Type	Description
	
								lineLength
							

							 	
								76
							

							 	
								Integer
							

							 	
								To specific a maximum line length for the encoded data. By default 76 is used.
							

							
	
								lineSeparator
							

							 	 	
								String
							

							 	
								The line separators to use. Uses new line characters (CRLF) by default.
							

							
	
								urlSafe
							

							 	
								false
							

							 	
								Boolean
							

							 	
								Instead of emitting '' and '/' we emit '-' and '_' respectively. urlSafe is only applied to encode operations. Decoding seamlessly handles both modes. Is by default false.
							

							
	
								contentTypeHeader
							

							 	
								false
							

							 	
								Boolean
							

							 	
								Whether the data format should set the Content-Type header with the type from the data format if the data format is capable of doing so. For example application/xml for data formats marshalling to XML, or application/json for data formats marshalling to JSon etc.
							

							

				In Spring DSL, you configure the data format using this tag:
			
<camelContext>
 <dataFormats>
 <!-- for a newline character (\n), use the HTML entity notation coupled with the ASCII code. -->
 <base64 lineSeparator="
" id="base64withNewLine" />
 <base64 lineLength="64" id="base64withLineLength64" />
 </dataFormats>
 ...
</camelContext>

				Then you can use it later by its reference:
			
<route>
 <from uri="direct:startEncode" />
 <marshal ref="base64withLineLength64" />
 <to uri="mock:result" />
</route>

				Most of the time, you won’t need to declare the data format if you use the default options. In that case, you can declare the data format inline as shown below.
			

Marshal

				In this example we marshal the file content to base64 object.
			
from("file://data.bin")
 .marshal().base64()
 .to("jms://myqueue");

				In Spring DSL:
			
 <from uri="file://data.bin">
 <marshal>
 <base64/>
 </marshal>
 <to uri="jms://myqueue"/>

Unmarshal

				In this example we unmarshal the payload from the JMS queue to a byte[] object, before its processed by the newOrder processor.
			
from("jms://queue/order")
 .unmarshal().base64()
 .process("newOrder");

				In Spring DSL:
			
 <from uri="jms://queue/order">
 <marshal>
 <base64/>
 </marshal>
 <to uri="bean:newOrder"/>

Dependencies

				To use Base64 in your Camel routes you need to add a dependency on camel-base64 which implements this data format.
			

				If you use Maven you can just add the following to your pom.xml:
			
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-base64</artifactId>
 <version>x.x.x</version> <!-- use the same version as your Camel core version -->
</dependency>

Chapter 43. Bean Component

			Available as of Camel version 1.0
		

			The bean: component binds beans to Camel message exchanges.
		
URI format

bean:beanName[?options]

				Where beanID can be any string which is used to look up the bean in the Registry
			

Options

				The Bean component has no options.
			

				The Bean endpoint is configured using URI syntax:
			
bean:beanName

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									beanName
								

								 	
									Required Sets the name of the bean to invoke
								

								 	 	
									String
								

								

Query Parameters (5 parameters):

	Name	Description	Default	Type
	
									method (producer)
								

								 	
									Sets the name of the method to invoke on the bean
								

								 	 	
									String
								

								
	
									cache (advanced)
								

								 	
									If enabled, Camel will cache the result of the first Registry look-up. Cache can be enabled if the bean in the Registry is defined as a singleton scope.
								

								 	
									false
								

								 	
									boolean
								

								
	
									multiParameterArray (advanced)
								

								 	
									Deprecated How to treat the parameters which are passed from the message body; if it is true, the message body should be an array of parameters. Note: This option is used internally by Camel, and is not intended for end users to use. Deprecation note: This option is used internally by Camel, and is not intended for end users to use.
								

								 	
									false
								

								 	
									boolean
								

								
	
									parameters (advanced)
								

								 	
									Used for configuring additional properties on the bean
								

								 	 	
									Map
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

					You can append query options to the URI in the following format, ?option=value&option=value&…​
				

Using

				The object instance that is used to consume messages must be explicitly registered with the Registry. For example, if you are using Spring you must define the bean in the Spring configuration, spring.xml; or if you don’t use Spring, by registering the bean in JNDI.
			

				Error formatting macro: snippet: java.lang.IndexOutOfBoundsException: Index: 20, Size: 20
			

				Once an endpoint has been registered, you can build Camel routes that use it to process exchanges.
			

				A bean: endpoint cannot be defined as the input to the route; i.e. you cannot consume from it, you can only route from some inbound message Endpoint to the bean endpoint as output. So consider using a direct: or queue: endpoint as the input.
			

				You can use the createProxy() methods on ProxyHelper to create a proxy that will generate BeanExchanges and send them to any endpoint:
			

				And the same route using Spring DSL:
			
<route>
 <from uri="direct:hello">
 <to uri="bean:bye"/>
</route>

Bean as endpoint

				Camel also supports invoking Bean as an Endpoint. In the route below:
			

				What happens is that when the exchange is routed to the myBean Camel will use the Bean Binding to invoke the bean.
 The source for the bean is just a plain POJO:
			

				Camel will use Bean Binding to invoke the sayHello method, by converting the Exchange’s In body to the String type and storing the output of the method on the Exchange Out body.
			

Java DSL bean syntax

				Java DSL comes with syntactic sugar for the Bean component. Instead of specifying the bean explicitly as the endpoint (i.e. to("bean:beanName")) you can use the following syntax:
			
// Send message to the bean endpoint
// and invoke method resolved using Bean Binding.
from("direct:start").beanRef("beanName");

// Send message to the bean endpoint
// and invoke given method.
from("direct:start").beanRef("beanName", "methodName");

				Instead of passing name of the reference to the bean (so that Camel will lookup for it in the registry), you can specify the bean itself:
			
// Send message to the given bean instance.
from("direct:start").bean(new ExampleBean());

// Explicit selection of bean method to be invoked.
from("direct:start").bean(new ExampleBean(), "methodName");

// Camel will create the instance of bean and cache it for you.
from("direct:start").bean(ExampleBean.class);

Bean Binding

				How bean methods to be invoked are chosen (if they are not specified explicitly through the method parameter) and how parameter values are constructed from the Message are all defined by the Bean Binding mechanism which is used throughout all of the various Bean Integration mechanisms in Camel.
			

See Also

	
						Configuring Camel
					
	
						Component
					
	
						Endpoint
					
	
						Getting Started
					
	
						Class component
					
	
						Bean Binding
					
	
						Bean Integration
					

Chapter 44. BeanIO DataFormat

			Available as of Camel version 2.10
		

			The BeanIO Data Format uses BeanIO to handle flat payloads (such as XML, CSV, delimited, or fixed length formats).
		

			BeanIO is configured using a mappings XML file where you define the mapping from the flat format to Objects (POJOs). This mapping file is mandatory to use.
		
Options

				The BeanIO dataformat supports 9 options which are listed below.
			
	Name	Default	Java Type	Description
	
								mapping
							

							 	 	
								String
							

							 	
								The BeanIO mapping file. Is by default loaded from the classpath. You can prefix with file:, http:, or classpath: to denote from where to load the mapping file.
							

							
	
								streamName
							

							 	 	
								String
							

							 	
								The name of the stream to use.
							

							
	
								ignoreUnidentifiedRecords
							

							 	
								false
							

							 	
								Boolean
							

							 	
								Whether to ignore unidentified records.
							

							
	
								ignoreUnexpectedRecords
							

							 	
								false
							

							 	
								Boolean
							

							 	
								Whether to ignore unexpected records.
							

							
	
								ignoreInvalidRecords
							

							 	
								false
							

							 	
								Boolean
							

							 	
								Whether to ignore invalid records.
							

							
	
								encoding
							

							 	 	
								String
							

							 	
								The charset to use. Is by default the JVM platform default charset.
							

							
	
								beanReaderErrorHandlerType
							

							 	 	
								String
							

							 	
								To use a custom org.apache.camel.dataformat.beanio.BeanIOErrorHandler as error handler while parsing. Configure the fully qualified class name of the error handler. Notice the options ignoreUnidentifiedRecords, ignoreUnexpectedRecords, and ignoreInvalidRecords may not be in use when you use a custom error handler.
							

							
	
								unmarshalSingleObject
							

							 	
								false
							

							 	
								Boolean
							

							 	
								This options controls whether to unmarshal as a list of objects or as a single object only. The former is the default mode, and the latter is only intended in special use-cases where beanio maps the Camel message to a single POJO bean.
							

							
	
								contentTypeHeader
							

							 	
								false
							

							 	
								Boolean
							

							 	
								Whether the data format should set the Content-Type header with the type from the data format if the data format is capable of doing so. For example application/xml for data formats marshalling to XML, or application/json for data formats marshalling to JSon etc.
							

							

Usage

				An example of a mapping file is here.
			
Using Java DSL

					To use the BeanIODataFormat you need to configure the data format with the mapping file, as well the name of the stream.
 In Java DSL this can be done as shown below. The streamName is "employeeFile".
				

					Then we have two routes. The first route is for transforming CSV data into a List<Employee> Java objects. Which we then split, so the mock endpoint
 receives a message for each row.
				

					The 2nd route is for the reverse operation, to transform a List<Employee> into a stream of CSV data.
				

					The CSV data could for example be as below:
				

Using XML DSL

					To use the BeanIO data format in XML, you need to configure it using the <beanio> XML tag as shown below. The routes is similar to the example above.
				

Dependencies

				To use BeanIO in your Camel routes you need to add a dependency on camel-beanio which implements this data format.
			

				If you use Maven you can just add the following to your pom.xml, substituting the version number for the latest & greatest release (see the download page for the latest versions).
			
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-beanio</artifactId>
 <version>2.10.0</version>
</dependency>

Chapter 45. Beanstalk Component

			Available as of Camel version 2.15
		

			camel-beanstalk project provides a Camel component for job retrieval and post-processing of Beanstalk jobs.
		

			You can find the detailed explanation of Beanstalk job lifecycle at Beanstalk protocol.
		
Dependencies

				Maven users need to add the following dependency to their pom.xml
			
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-beanstalk</artifactId>
 <version>${camel-version}</version>
</dependency>

				where ${camel-version} must be replaced by the actual version of Camel (2.15.0 or higher).
			

URI format

beanstalk://[host[:port]][/tube][?options]

				You may omit either port or both host and port: for the Beanstalk defaults to be used (“localhost” and 11300). If you omit tube, Beanstalk component will use the tube with name “default”.
			

				When listening, you may probably want to watch for jobs from several tubes. Just separate them with plus sign, e.g.
			
beanstalk://localhost:11300/tube1+tube2

				Tube name will be URL decoded, so if your tube names include special characters like + or ?, you need to URL-encode them appropriately, or use the RAW syntax, see more details here.
			

				By the way, you cannot specify several tubes when you are writing jobs into Beanstalk.
			

Beanstalk options

				The Beanstalk component supports 2 options which are listed below.
			
	Name	Description	Default	Type
	
								connectionSettings Factory (common)
							

							 	
								Custom ConnectionSettingsFactory. Specify which ConnectionSettingsFactory to use to make connections to Beanstalkd. Especially useful for unit testing without beanstalkd daemon (you can mock ConnectionSettings)
							

							 	 	
								ConnectionSettings Factory
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The Beanstalk endpoint is configured using URI syntax:
			
beanstalk:connectionSettings

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									connectionSettings
								

								 	
									Connection settings host:port/tube
								

								 	 	
									String
								

								

Query Parameters (26 parameters):

	Name	Description	Default	Type
	
									command (common)
								

								 	
									put means to put the job into Beanstalk. Job body is specified in the Camel message body. Job ID will be returned in beanstalk.jobId message header. delete, release, touch or bury expect Job ID in the message header beanstalk.jobId. Result of the operation is returned in beanstalk.result message header kick expects the number of jobs to kick in the message body and returns the number of jobs actually kicked out in the message header beanstalk.result.
								

								 	 	
									BeanstalkCommand
								

								
	
									jobDelay (common)
								

								 	
									Job delay in seconds.
								

								 	
									0
								

								 	
									int
								

								
	
									jobPriority (common)
								

								 	
									Job priority. (0 is the highest, see Beanstalk protocol)
								

								 	
									1000
								

								 	
									long
								

								
	
									jobTimeToRun (common)
								

								 	
									Job time to run in seconds. (when 0, the beanstalkd daemon raises it to 1 automatically, see Beanstalk protocol)
								

								 	
									60
								

								 	
									int
								

								
	
									awaitJob (consumer)
								

								 	
									Whether to wait for job to complete before ack the job from beanstalk
								

								 	
									true
								

								 	
									boolean
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									onFailure (consumer)
								

								 	
									Command to use when processing failed.
								

								 	 	
									BeanstalkCommand
								

								
	
									sendEmptyMessageWhenIdle (consumer)
								

								 	
									If the polling consumer did not poll any files, you can enable this option to send an empty message (no body) instead.
								

								 	
									false
								

								 	
									boolean
								

								
	
									useBlockIO (consumer)
								

								 	
									Whether to use blockIO.
								

								 	
									true
								

								 	
									boolean
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									pollStrategy (consumer)
								

								 	
									A pluggable org.apache.camel.PollingConsumerPollingStrategy allowing you to provide your custom implementation to control error handling usually occurred during the poll operation before an Exchange have been created and being routed in Camel.
								

								 	 	
									PollingConsumerPoll Strategy
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									backoffErrorThreshold (scheduler)
								

								 	
									The number of subsequent error polls (failed due some error) that should happen before the backoffMultipler should kick-in.
								

								 	 	
									int
								

								
	
									backoffIdleThreshold (scheduler)
								

								 	
									The number of subsequent idle polls that should happen before the backoffMultipler should kick-in.
								

								 	 	
									int
								

								
	
									backoffMultiplier (scheduler)
								

								 	
									To let the scheduled polling consumer backoff if there has been a number of subsequent idles/errors in a row. The multiplier is then the number of polls that will be skipped before the next actual attempt is happening again. When this option is in use then backoffIdleThreshold and/or backoffErrorThreshold must also be configured.
								

								 	 	
									int
								

								
	
									delay (scheduler)
								

								 	
									Milliseconds before the next poll. You can also specify time values using units, such as 60s (60 seconds), 5m30s (5 minutes and 30 seconds), and 1h (1 hour).
								

								 	
									500
								

								 	
									long
								

								
	
									greedy (scheduler)
								

								 	
									If greedy is enabled, then the ScheduledPollConsumer will run immediately again, if the previous run polled 1 or more messages.
								

								 	
									false
								

								 	
									boolean
								

								
	
									initialDelay (scheduler)
								

								 	
									Milliseconds before the first poll starts. You can also specify time values using units, such as 60s (60 seconds), 5m30s (5 minutes and 30 seconds), and 1h (1 hour).
								

								 	
									1000
								

								 	
									long
								

								
	
									runLoggingLevel (scheduler)
								

								 	
									The consumer logs a start/complete log line when it polls. This option allows you to configure the logging level for that.
								

								 	
									TRACE
								

								 	
									LoggingLevel
								

								
	
									scheduledExecutorService (scheduler)
								

								 	
									Allows for configuring a custom/shared thread pool to use for the consumer. By default each consumer has its own single threaded thread pool.
								

								 	 	
									ScheduledExecutor Service
								

								
	
									scheduler (scheduler)
								

								 	
									To use a cron scheduler from either camel-spring or camel-quartz2 component
								

								 	
									none
								

								 	
									ScheduledPollConsumer Scheduler
								

								
	
									schedulerProperties (scheduler)
								

								 	
									To configure additional properties when using a custom scheduler or any of the Quartz2, Spring based scheduler.
								

								 	 	
									Map
								

								
	
									startScheduler (scheduler)
								

								 	
									Whether the scheduler should be auto started.
								

								 	
									true
								

								 	
									boolean
								

								
	
									timeUnit (scheduler)
								

								 	
									Time unit for initialDelay and delay options.
								

								 	
									MILLISECONDS
								

								 	
									TimeUnit
								

								
	
									useFixedDelay (scheduler)
								

								 	
									Controls if fixed delay or fixed rate is used. See ScheduledExecutorService in JDK for details.
								

								 	
									true
								

								 	
									boolean
								

								

					Producer behavior is affected by the command parameter which tells what to do with the job, it can be
				

					The consumer may delete the job immediately after reserving it or wait until Camel routes process it. While the first scenario is more like a “message queue”, the second is similar to “job queue”. This behavior is controlled by consumer.awaitJob parameter, which equals true by default (following Beanstalkd nature).
				

					When synchronous, the consumer calls delete on successful job completion and calls bury on failure. You can choose which command to execute in the case of failure by specifying consumer.onFailure parameter in the URI. It can take values of bury, delete or release.
				

					There is a boolean parameter consumer.useBlockIO which corresponds to the same parameter in JavaBeanstalkClient library. By default it is true.
				

					Be careful when specifying release, as the failed job will immediately become available in the same tube and your consumer will try to acquire it again. You can release and specify jobDelay though.
				

					The beanstalk consumer is a Scheduled Polling Consumer which means there is more options you can configure, such as how frequent the consumer should poll. For more details see Polling Consumer.
				

Consumer Headers

				The consumer stores a number of job headers in the Exchange message:
			
	Property	Type	Description
	
								beanstalk.jobId
							

							 	
								long
							

							 	
								Job ID
							

							
	
								beanstalk.tube
							

							 	
								string
							

							 	
								the name of the tube that contains this job
							

							
	
								beanstalk.state
							

							 	
								string
							

							 	
								“ready” or “delayed” or “reserved” or “buried” (must be “reserved”)
							

							
	
								beanstalk.priority
							

							 	
								long
							

							 	
								the priority value set
							

							
	
								beanstalk.age
							

							 	
								int
							

							 	
								the time in seconds since the put command that created this job
							

							
	
								beanstalk.time-left
							

							 	
								int
							

							 	
								the number of seconds left until the server puts this job into the ready queue
							

							
	
								beanstalk.timeouts
							

							 	
								int
							

							 	
								the number of times this job has timed out during a reservation
							

							
	
								beanstalk.releases
							

							 	
								int
							

							 	
								the number of times a client has released this job from a reservation
							

							
	
								beanstalk.buries
							

							 	
								int
							

							 	
								the number of times this job has been buried
							

							
	
								beanstalk.kicks
							

							 	
								int
							

							 	
								the number of times this job has been kicked
							

							

Examples

				This Camel component lets you both request the jobs for processing and supply them to Beanstalkd daemon. Our simple demo routes may look like
			
from("beanstalk:testTube").
 log("Processing job #${property.beanstalk.jobId} with body ${in.body}").
 process(new Processor() {
 @Override
 public void process(Exchange exchange) {
 // try to make integer value out of body
 exchange.getIn().setBody(Integer.valueOf(exchange.getIn().getBody(classOf[String])));
 }
 }).
 log("Parsed job #${property.beanstalk.jobId} to body ${in.body}");
from("timer:dig?period=30seconds").
 setBody(constant(10)).log("Kick ${in.body} buried/delayed tasks").
 to("beanstalk:testTube?command=kick");

				In the first route we are listening for new jobs in tube “testTube”. When they are arriving, we are trying to parse integer value from the message body. If done successful, we log it and this successful exchange completion makes Camel component to delete this job from Beanstalk automatically. Contrary, when we cannot parse the job data, the exchange failed and the Camel component buries it by default, so that it can be processed later or probably we are going to inspect failed jobs manually.
			

				So the second route periodically requests Beanstalk to kick 10 jobs out of buried and/or delayed state to the normal queue.
			

				
			

See Also

	
						Configuring Camel
					
	
						Component
					
	
						Endpoint
					
	
						Getting Started
					

Chapter 46. Bean Validator Component

			Available as of Camel version 2.3
		

			The Validator component performs bean validation of the message body using the Java Bean Validation API (JSR 303). Camel uses the reference implementation, which is Hibernate Validator.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-bean-validator</artifactId>
 <version>x.y.z</version>
 <!-- use the same version as your Camel core version -->
</dependency>
URI format

bean-validator:label[?options]

				or
			
bean-validator://label[?options]

				Where label is an arbitrary text value describing the endpoint.
 You can append query options to the URI in the following format, ?option=value&option=value&…​
			

URI Options

				The Bean Validator component has no options.
			

				The Bean Validator endpoint is configured using URI syntax:
			
bean-validator:label

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									label
								

								 	
									Required Where label is an arbitrary text value describing the endpoint
								

								 	 	
									String
								

								

Query Parameters (6 parameters):

	Name	Description	Default	Type
	
									constraintValidatorFactory (producer)
								

								 	
									To use a custom ConstraintValidatorFactory
								

								 	 	
									ConstraintValidator Factory
								

								
	
									group (producer)
								

								 	
									To use a custom validation group
								

								 	
									javax.validation.groups.Default
								

								 	
									String
								

								
	
									messageInterpolator (producer)
								

								 	
									To use a custom MessageInterpolator
								

								 	 	
									MessageInterpolator
								

								
	
									traversableResolver (producer)
								

								 	
									To use a custom TraversableResolver
								

								 	 	
									TraversableResolver
								

								
	
									validationProviderResolver (producer)
								

								 	
									To use a a custom ValidationProviderResolver
								

								 	 	
									ValidationProvider Resolver
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

OSGi deployment

				To use Hibernate Validator in the OSGi environment use dedicated ValidationProviderResolver implementation, just as org.apache.camel.component.bean.validator.HibernateValidationProviderResolver. The snippet below demonstrates this approach. Keep in mind that you can use HibernateValidationProviderResolver starting from the Camel 2.13.0.
			

				Using HibernateValidationProviderResolver
			
from("direct:test").
 to("bean-validator://ValidationProviderResolverTest?validationProviderResolver=#myValidationProviderResolver");

...

<bean id="myValidationProviderResolver" class="org.apache.camel.component.bean.validator.HibernateValidationProviderResolver"/>

				If no custom ValidationProviderResolver is defined and the validator component has been deployed into the OSGi environment, the HibernateValidationProviderResolver will be automatically used.
			

Example

				Assumed we have a java bean with the following annotations
			

				Car.java
			
public class Car {

 @NotNull
 private String manufacturer;

 @NotNull
 @Size(min = 5, max = 14, groups = OptionalChecks.class)
 private String licensePlate;

 // getter and setter
}

				and an interface definition for our custom validation group
			

				OptionalChecks.java
			
public interface OptionalChecks {
}

				with the following Camel route, only the @NotNull constraints on the attributes manufacturer and licensePlate will be validated (Camel uses the default group javax.validation.groups.Default).
			
from("direct:start")
.to("bean-validator://x")
.to("mock:end")

				If you want to check the constraints from the group OptionalChecks, you have to define the route like this
			
from("direct:start")
.to("bean-validator://x?group=OptionalChecks")
.to("mock:end")

				If you want to check the constraints from both groups, you have to define a new interface first
			

				AllChecks.java
			
@GroupSequence({Default.class, OptionalChecks.class})
public interface AllChecks {
}

				and then your route definition should looks like this
			
from("direct:start")
.to("bean-validator://x?group=AllChecks")
.to("mock:end")

				And if you have to provide your own message interpolator, traversable resolver and constraint validator factory, you have to write a route like this
			
<bean id="myMessageInterpolator" class="my.ConstraintValidatorFactory" />
<bean id="myTraversableResolver" class="my.TraversableResolver" />
<bean id="myConstraintValidatorFactory" class="my.ConstraintValidatorFactory" />

from("direct:start")
.to("bean-validator://x?group=AllChecks&messageInterpolator=#myMessageInterpolator
&traversableResolver=#myTraversableResolver&constraintValidatorFactory=#myConstraintValidatorFactory")
.to("mock:end")

				It’s also possible to describe your constraints as XML and not as Java annotations. In this case, you have to provide the file META-INF/validation.xml which could looks like this
			

				validation.xml
			
<?xml version="1.0" encoding="UTF-8"?>
<validation-config
 xmlns="http://jboss.org/xml/ns/javax/validation/configuration"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://jboss.org/xml/ns/javax/validation/configuration">
 <default-provider>org.hibernate.validator.HibernateValidator</default-provider>
 <message-interpolator>org.hibernate.validator.engine.ResourceBundleMessageInterpolator</message-interpolator>
 <traversable-resolver>org.hibernate.validator.engine.resolver.DefaultTraversableResolver</traversable-resolver>
 <constraint-validator-factory>org.hibernate.validator.engine.ConstraintValidatorFactoryImpl</constraint-validator-factory>

 <constraint-mapping>/constraints-car.xml</constraint-mapping>
</validation-config>

				and the constraints-car.xml file
			

				constraints-car.xml
			
<?xml version="1.0" encoding="UTF-8"?>
<constraint-mappings xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://jboss.org/xml/ns/javax/validation/mapping validation-mapping-1.0.xsd"
 xmlns="http://jboss.org/xml/ns/javax/validation/mapping">
 <default-package>org.apache.camel.component.bean.validator</default-package>

 <bean class="CarWithoutAnnotations" ignore-annotations="true">
 <field name="manufacturer">
 <constraint annotation="javax.validation.constraints.NotNull" />
 </field>

 <field name="licensePlate">
 <constraint annotation="javax.validation.constraints.NotNull" />

 <constraint annotation="javax.validation.constraints.Size">
 <groups>
 <value>org.apache.camel.component.bean.validator.OptionalChecks</value>
 </groups>
 <element name="min">5</element>
 <element name="max">14</element>
 </constraint>
 </field>
 </bean>
</constraint-mappings>

				Here is the XML syntax for the example route definition where OrderedChecks can be https://github.com/apache/camel/blob/master/components/camel-bean-validator/src/test/java/org/apache/camel/component/bean/validator/OrderedChecks.java
			

				Note that the body should include an instance of a class to validate.
			
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd
 http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/camel-spring.xsd">

 <camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="direct:start"/>
 <to uri="bean-validator://x?group=org.apache.camel.component.bean.validator.OrderedChecks"/>
 </route>
 </camelContext>
</beans>

See Also

	
						Configuring Camel
					
	
						Component
					
	
						Endpoint
					
	
						Getting Started
					

Chapter 47. Binding Component (deprecated)

			Available as of Camel version 2.11
		

			In Camel terms a binding is a way of wrapping an Endpoint in a contract; such as a Data Format, a Content Enricher or validation step. Bindings are completely optional and you can choose to use them on any camel endpoint.
		

			Bindings are inspired by the work of SwitchYard project adding service contracts to various technologies like Camel and many others. But rather than the SwitchYard approach of wrapping Camel in SCA, Camel Bindings provide a way of wrapping Camel endpoints with contracts inside the Camel framework itself; so you can use them easily inside any Camel route.
		
Options

				The Binding component has no options.
			

				The Binding endpoint is configured using URI syntax:
			
binding:bindingName:delegateUri

				with the following path and query parameters:
			
Path Parameters (2 parameters):

	Name	Description	Default	Type
	
									bindingName
								

								 	
									Required Name of the binding to lookup in the Camel registry.
								

								 	 	
									String
								

								
	
									delegateUri
								

								 	
									Required Uri of the delegate endpoint.
								

								 	 	
									String
								

								

Query Parameters (4 parameters):

	Name	Description	Default	Type
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN/ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN/ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the default exchange pattern when creating an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

Using Bindings

				A Binding is currently a bean which defines the contract (though we’ll hopefully add bindings to the Camel DSL).
			

				There are a few approaches to defining a bound endpoint (i.e. an endpoint bound with a Binding).
			

Using the binding URI

				You can prefix any endpoint URI with binding:nameOfBinding: where nameOfBinding is the name of the Binding bean in your registry.
			
from("binding:jaxb:activemq:myQueue").to("binding:jaxb:activemq:anotherQueue")

				Here we are using the "jaxb" binding which may, for example, use the JAXB Data Format to marshal and unmarshal messages.
			

Using a BindingComponent

				There is a Component called BindingComponent which can be configured in your Registry by dependency injection which allows the creation of endpoints which are already bound to some binding.
			

				For example if you registered a new component called "jsonmq" in your registry using code like this
			
JacksonDataFormat format = new JacksonDataFormat(MyBean.class);
context.bind("jsonmq", new BindingComponent(new DataFormatBinding(format), "activemq:foo."));

				Then you could use the endpoint as if it were any other endpoint.
			
from("jsonmq:myQueue").to("jsonmq:anotherQueue")

				which would be using the queueus "foo.myQueue" and "foo.anotherQueue" and would use the given Jackson Data Format to marshal on and off the queue.
			

When to use Bindings

				If you only use an endpoint once in a single route; a binding may actually be more complex and more work than just using the 'raw' endpoint directly and using explicit marshalling and validation in the camel route as normal.
			

				However bindings can help when you are composing many routes together; or using a single route as a 'template' that is configured input and output endpoints; bindings then provide a nice way to wrap up a contract and endpoint together.
			

				Another good use case for bindings is when you are using many endpoints which use the same binding; rather than always having to mention a specific data format or validation rule, you can just use the BindingComponent to wrap the endpoints in the binding of your choice.
			

				So bindings are a composition tool really; only use them when they make sense - the extra complexity may not be worth it unless you have lots of routes or endpoints.
			

Chapter 48. Bindy DataFormat

			Available as of Camel version 2.0
		

			The goal of this component is to allow the parsing/binding of non-structured data (or to be more precise non-XML data)
 to/from Java Beans that have binding mappings defined with annotations. Using Bindy, you can bind data from sources such as :
		
	
					CSV records,
				
	
					Fixed-length records,
				
	
					FIX messages,
				
	
					or almost any other non-structured data
				

			to one or many Plain Old Java Object (POJO). Bindy converts the data according to the type of the java property. POJOs can be linked together with one-to-many relationships available in some cases. Moreover, for data type like Date, Double, Float, Integer, Short, Long and BigDecimal, you can provide the pattern to apply during the formatting of the property.
		

			For the BigDecimal numbers, you can also define the precision and the decimal or grouping separators.
		
	Type	Format Type	Pattern example	Link
	
							Date
						

						 	
							DateFormat
						

						 	
							dd-MM-yyyy
						

						 	
							http://java.sun.com/j2se/1.5.0/docs/api/java/text/SimpleDateFormat.html
						

						
	
							Decimal*
						

						 	
							Decimalformat
						

						 	
							..##
						

						 	
							http://java.sun.com/j2se/1.5.0/docs/api/java/text/DecimalFormat.html
						

						

			Decimal* = Double, Integer, Float, Short, Long
		
Format supported

			This first release only support comma separated values fields and key value pair fields (e.g. : FIX messages).
		

			To work with camel-bindy, you must first define your model in a package (e.g. com.acme.model) and for each model class (e.g. Order, Client, Instrument, …​) add the required annotations (described hereafter) to the Class or field.
		
Multiple models

			If you use multiple models, each model has to be placed in it’s own package to prevent unpredictable results.
		

			From Camel 2.16 onwards this is no longer the case, as you can safely have multiple models in the same package, as you configure bindy using class names instead of package names now.
		
Options

				The Bindy dataformat supports 5 options which are listed below.
			
	Name	Default	Java Type	Description
	
								type
							

							 	 	
								BindyType
							

							 	
								Whether to use csv, fixed or key value pairs mode. The default value is either Csv or KeyValue depending on chosen dataformat.
							

							
	
								classType
							

							 	 	
								String
							

							 	
								Name of model class to use.
							

							
	
								locale
							

							 	 	
								String
							

							 	
								To configure a default locale to use, such as us for united states. To use the JVM platform default locale then use the name default
							

							
	
								unwrapSingleInstance
							

							 	
								true
							

							 	
								Boolean
							

							 	
								When unmarshalling should a single instance be unwrapped and returned instead of wrapped in a java.util.List.
							

							
	
								contentTypeHeader
							

							 	
								false
							

							 	
								Boolean
							

							 	
								Whether the data format should set the Content-Type header with the type from the data format if the data format is capable of doing so. For example application/xml for data formats marshalling to XML, or application/json for data formats marshalling to JSon etc.
							

							

Annotations

				The annotations created allow to map different concept of your model to the POJO like :
			
	
						Type of record (csv, key value pair (e.g. FIX message), fixed length …​),
					
	
						Link (to link object in another object),
					
	
						DataField and their properties (int, type, …​),
					
	
						KeyValuePairField (for key = value format like we have in FIX financial messages),
					
	
						Section (to identify header, body and footer section),
					
	
						OneToMany,
					
	
						BindyConverter (since 2.18.0),
					
	
						FormatFactories (since 2.18.0)
					

				This section will describe them :
			

1. CsvRecord

				The CsvRecord annotation is used to identified the root class of the model. It represents a record = a line of a CSV file and can be linked to several children model classes.
			
	Annotation name	Record type	Level
	
								CsvRecord
							

							 	
								csv
							

							 	
								Class
							

							

	Parameter name	type	Info
	
								separator
							

							 	
								string
							

							 	
								mandatory - can be ',' or ';' or 'anything'. This value is interpreted as a regular expression. If you want to use a sign which has a special meaning in regular expressions, e.g. the '|' sign, than you have to mask it, like '|'
							

							
	
								skipFirstLine
							

							 	
								boolean
							

							 	
								optional - default value = false - allow to skip the first line of the CSV file
							

							
	
								crlf
							

							 	
								string
							

							 	
								optional - possible values = WINDOWS,UNIX,MAC, or custom; default value. WINDOWS - allow to define the carriage return character to use. If you specify a value other than the three listed before, the value you enter (custom) will be used as the CRLF character(s)
							

							
	
								generateHeaderColumns
							

							 	
								boolean
							

							 	
								optional - default value = false - uses to generate the header columns of the CSV generates
							

							
	
								autospanLine
							

							 	
								boolean
							

							 	
								Camel 2.13/2.12.2: optional - default value = false - if enabled then the last column is auto spanned to end of line, for example if its a comment, etc this allows the line to contain all characters, also the delimiter char.
							

							
	
								isOrdered
							

							 	
								boolean
							

							 	
								optional - default value = false - allow to change the order of the fields when CSV is generated
							

							
	
								quote
							

							 	
								String
							

							 	
								Camel 2.8.3/2.9: option - allow to specify a quote character of the fields when CSV is generated. This annotation is associated to the root class of the model and must be declared one time.
							

							
	
								quoting
							

							 	
								boolean
							

							 	
								*Camel 2.11:*optional - default value = false - Indicate if the values (and headers) must be quoted when marshaling when CSV is generated.
							

							
	
								endWithLineBreak
							

							 	
								boolean
							

							 	
								Camel 2.21: optional - default value = true - Indicate if the CSV generated file should end with a line break.
							

							

				case 1 : separator = ','
			

				The separator used to segregate the fields in the CSV record is ',' :
			
10, J, Pauline, M, XD12345678, Fortis Dynamic 15/15, 2500,
USD,08-01-2009
@CsvRecord(separator = ",")
public Class Order {

}

				case 2 : separator = ';'
			

				Compare to the previous case, the separator here is ';' instead of ',' :
			

				10; J; Pauline; M; XD12345678; Fortis Dynamic 15/15; 2500; USD; 08-01-2009
			
@CsvRecord(separator = ";")
public Class Order {

}

				case 3 : separator = '|'
			

				Compare to the previous case, the separator here is '|' instead of ';' :
			
10| J| Pauline| M| XD12345678| Fortis Dynamic 15/15| 2500| USD|
08-01-2009
@CsvRecord(separator = "\\|")
public Class Order {

}

				case 4 : separator = '\",\"'
			

				Applies for Camel 2.8.2 or older
			

				When the field to be parsed of the CSV record contains ',' or ';' which is also used as separator, we whould find another strategy
 to tell camel bindy how to handle this case. To define the field containing the data with a comma, you will use simple or double quotes
 as delimiter (e.g : '10', 'Street 10, NY', 'USA' or "10", "Street 10, NY", "USA").
 Remark : In this case, the first and last character of the line which are a simple or double quotes will removed by bindy
			
"10","J","Pauline"," M","XD12345678","Fortis Dynamic 15,15"
2500","USD","08-01-2009"
@CsvRecord(separator = "\",\"")
public Class Order {

}

				From Camel 2.8.3/2.9 or never bindy will automatic detect if the record is enclosed with either single or double quotes and automatic remove those quotes when unmarshalling from CSV to Object. Therefore do not include the quotes in the separator, but simple do as below:
			
"10","J","Pauline"," M","XD12345678","Fortis Dynamic 15,15"
2500","USD","08-01-2009"
@CsvRecord(separator = ",")
public Class Order {

}

				Notice that if you want to marshal from Object to CSV and use quotes, then you need to specify which quote character to use, using the quote attribute on the @CsvRecord as shown below:
			
@CsvRecord(separator = ",", quote = "\"")
public Class Order {

}

				case 5 : separator & skipfirstline
			

				The feature is interesting when the client wants to have in the first line of the file, the name of the data fields :
			

				order id, client id, first name, last name, isin code, instrument name, quantity, currency, date
			

				To inform bindy that this first line must be skipped during the parsing process, then we use the attribute :
			
@CsvRecord(separator = ",", skipFirstLine = true)
public Class Order {

}

				case 6 : generateHeaderColumns
			

				To add at the first line of the CSV generated, the attribute generateHeaderColumns must be set to true in the annotation like this :
			
@CsvRecord(generateHeaderColumns = true)
public Class Order {

}

				As a result, Bindy during the unmarshaling process will generate CSV like this :
			

				order id, client id, first name, last name, isin code, instrument name, quantity, currency, date

			
10, J, Pauline, M, XD12345678, Fortis Dynamic 15/15, 2500, USD,08-01-2009

				case 7 : carriage return
			

				If the platform where camel-bindy will run is not Windows but Macintosh or Unix, than you can change the crlf property like this. Three values are available : WINDOWS, UNIX or MAC
			
@CsvRecord(separator = ",", crlf="MAC")
public Class Order {

}

				Additionally, if for some reason you need to add a different line ending character, you can opt to specify it using the crlf parameter. In the following example, we can end the line with a comma followed by the newline character:
			
@CsvRecord(separator = ",", crlf=",\n")
public Class Order {

}

				case 8 : isOrdered
			

				Sometimes, the order to follow during the creation of the CSV record from the model is different from the order used during the parsing. Then, in this case, we can use the attribute isOrdered = true to indicate this in combination with attribute 'position' of the DataField annotation.
			
@CsvRecord(isOrdered = true)
public Class Order {

 @DataField(pos = 1, position = 11)
 private int orderNr;

 @DataField(pos = 2, position = 10)
 private String clientNr;

}

				Remark : pos is used to parse the file, stream while positions is used to generate the CSV
			

2. Link

				The link annotation will allow to link objects together.
			
	Annotation name	Record type	Level
	
								Link
							

							 	
								all
							

							 	
								Class & Property
							

							

	Parameter name	type	Info
	
								linkType
							

							 	
								LinkType
							

							 	
								optional - by default the value is LinkType.oneToOne - so you are not obliged to mention it
							

							

				Only one-to-one relation is allowed.
			

				e.g : If the model Class Client is linked to the Order class, then use annotation Link in the Order class like this :
			

				Property Link
			
@CsvRecord(separator = ",")
public class Order {

 @DataField(pos = 1)
 private int orderNr;

 @Link
 private Client client;
}

				AND for the class Client :
			

				Class Link
			
@Link
public class Client {

}

3. DataField

				The DataField annotation defines the property of the field. Each datafield is identified by its position in the record, a type (string, int, date, …​) and optionally of a pattern
			
	Annotation name	Record type	Level
	
								DataField
							

							 	
								all
							

							 	
								Property
							

							

	Parameter name	type	Info
	
								pos
							

							 	
								int
							

							 	
								mandatory - The input position of the field. digit number starting from 1 to …​ - See the position parameter.
							

							
	
								pattern
							

							 	
								string
							

							 	
								optional - default value = "" - will be used to format Decimal, Date,
							

							
	
								length
							

							 	
								int
							

							 	
								optional - represents the length of the field for fixed length format
							

							
	
								precision
							

							 	
								int
							

							 	
								optional - represents the precision to be used when the Decimal number will be formatted/parsed
							

							
	
								pattern
							

							 	
								string
							

							 	
								optional - default value = "" - is used by the Java formatter (SimpleDateFormat by example) to format/validate data. If using pattern, then setting locale on bindy data format is recommended. Either set to a known locale such as "us" or use "default" to use platform default locale. Notice that "default" requires Camel 2.14/2.13.3/2.12.5.
							

							
	
								position
							

							 	
								int
							

							 	
								optional - must be used when the position of the field in the CSV generated (output message) must be different compare to input position (pos). See the pos parameter.
							

							
	
								required
							

							 	
								boolean
							

							 	
								optional - default value = "false"
							

							
	
								trim
							

							 	
								boolean
							

							 	
								optional - default value = "false"
							

							
	
								defaultValue
							

							 	
								string
							

							 	
								Camel 2.10: optional - default value = "" - defines the field’s default value when the respective CSV field is empty/not available
							

							
	
								impliedDecimalSeparator
							

							 	
								boolean
							

							 	
								Camel 2.11: optional - default value = "false" - Indicates if there is a decimal point implied at a specified location
							

							
	
								lengthPos
							

							 	
								int
							

							 	
								Camel 2.11: optional - can be used to identify a data field in a fixed-length record that defines the fixed length for this field
							

							
	
								align
							

							 	
								string
							

							 	
								optional - default value = "R" - Align the text to the right or left within a fixed-length field. Use values 'R' or 'L'
							

							
	
								delimiter
							

							 	
								string
							

							 	
								Camel 2.11: optional - can be used to demarcate the end of a variable-length field within a fixed-length record
							

							

				case 1 : pos
			

				This parameter/attribute represents the position of the field in the csv record
			

				Position
			
@CsvRecord(separator = ",")
public class Order {

 @DataField(pos = 1)
 private int orderNr;

 @DataField(pos = 5)
 private String isinCode;

}

				As you can see in this example the position starts at '1' but continues at '5' in the class Order. The numbers from '2' to '4' are defined in the class Client (see here after).
			

				Position continues in another model class
			
public class Client {

 @DataField(pos = 2)
 private String clientNr;

 @DataField(pos = 3)
 private String firstName;

 @DataField(pos = 4)
 private String lastName;
}

				case 2 : pattern
			

				The pattern allows to enrich or validates the format of your data
			

				Pattern
			
@CsvRecord(separator = ",")
public class Order {

 @DataField(pos = 1)
 private int orderNr;

 @DataField(pos = 5)
 private String isinCode;

 @DataField(name = "Name", pos = 6)
 private String instrumentName;

 @DataField(pos = 7, precision = 2)
 private BigDecimal amount;

 @DataField(pos = 8)
 private String currency;

 // pattern used during parsing or when the date is created
 @DataField(pos = 9, pattern = "dd-MM-yyyy")
 private Date orderDate;
}

				case 3 : precision
			

				The precision is helpful when you want to define the decimal part of your number
			

				Precision
			
@CsvRecord(separator = ",")
public class Order {

 @DataField(pos = 1)
 private int orderNr;

 @Link
 private Client client;

 @DataField(pos = 5)
 private String isinCode;

 @DataField(name = "Name", pos = 6)
 private String instrumentName;

 @DataField(pos = 7, precision = 2)
 private BigDecimal amount;

 @DataField(pos = 8)
 private String currency;

 @DataField(pos = 9, pattern = "dd-MM-yyyy")
 private Date orderDate;
}

				case 4 : Position is different in output
			

				The position attribute will inform bindy how to place the field in the CSV record generated. By default, the position used corresponds to the position defined with the attribute 'pos'. If the position is different (that means that we have an asymetric processus comparing marshaling from unmarshaling) than we can use 'position' to indicate this.
			

				Here is an example
			

				Position is different in output
			
@CsvRecord(separator = ",", isOrdered = true)
public class Order {

 // Positions of the fields start from 1 and not from 0

 @DataField(pos = 1, position = 11)
 private int orderNr;

 @DataField(pos = 2, position = 10)
 private String clientNr;

 @DataField(pos = 3, position = 9)
 private String firstName;

 @DataField(pos = 4, position = 8)
 private String lastName;

 @DataField(pos = 5, position = 7)
 private String instrumentCode;

 @DataField(pos = 6, position = 6)
 private String instrumentNumber;
}

				This attribute of the annotation @DataField must be used in combination with attribute isOrdered = true of the annotation @CsvRecord
			

				case 5 : required
			

				If a field is mandatory, simply use the attribute 'required' setted to true
			

				Required
			
@CsvRecord(separator = ",")
public class Order {

 @DataField(pos = 1)
 private int orderNr;

 @DataField(pos = 2, required = true)
 private String clientNr;

 @DataField(pos = 3, required = true)
 private String firstName;

 @DataField(pos = 4, required = true)
 private String lastName;
}

				If this field is not present in the record, than an error will be raised by the parser with the following information :
			

				Some fields are missing (optional or mandatory), line :
			

				case 6 : trim
			

				If a field has leading and/or trailing spaces which should be removed before they are processed, simply use the attribute 'trim' setted to true
			

				Trim
			
@CsvRecord(separator = ",")
public class Order {

 @DataField(pos = 1, trim = true)
 private int orderNr;

 @DataField(pos = 2, trim = true)
 private Integer clientNr;

 @DataField(pos = 3, required = true)
 private String firstName;

 @DataField(pos = 4)
 private String lastName;
}

				case 7 : defaultValue
			

				If a field is not defined then uses the value indicated by the defaultValue attribute
			

				Default value
			
@CsvRecord(separator = ",")
public class Order {

 @DataField(pos = 1)
 private int orderNr;

 @DataField(pos = 2)
 private Integer clientNr;

 @DataField(pos = 3, required = true)
 private String firstName;

 @DataField(pos = 4, defaultValue = "Barin")
 private String lastName;
}

				This attribute is only applicable to optional fields.
			

4. FixedLengthRecord

				The FixedLengthRecord annotation is used to identified the root class of the model. It represents a record = a line of a file/message containing data fixed length formatted and can be linked to several children model classes. This format is a bit particular beause data of a field can be aligned to the right or to the left.
 When the size of the data does not fill completely the length of the field, we can then add 'padd' characters.
			
	Annotation name	Record type	Level
	
								FixedLengthRecord
							

							 	
								fixed
							

							 	
								Class
							

							

	Parameter name	type	Info
	
								crlf
							

							 	
								string
							

							 	
								optional - possible values = WINDOWS,UNIX,MAC, or custom; default value. WINDOWS - allow to define the carriage return character to use. If you specify a value other than the three listed before, the value you enter (custom) will be used as the CRLF character(s). This option is used only during marshalling, whereas unmarshalling uses system default JDK provided line delimiter unless eol is customized
							

							
	
								eol
							

							 	
								string
							

							 	
								optional - default="" which is empty string. Character to be used to process considering end of line after each record while unmarshalling (optional - default = "" which help default JDK provided line delimiter to be used unless any other line delimiter provided). This option is used only during unmarshalling, where marshalling uses system default provided line delimiter as "WINDOWS" unless any other value is provided
							

							
	
								paddingChar
							

							 	
								char
							

							 	
								mandatory - default value = ' '
							

							
	
								length
							

							 	
								int
							

							 	
								mandatory = size of the fixed length record
							

							
	
								hasHeader
							

							 	
								boolean
							

							 	
								Camel 2.11 - optional - Indicates that the record(s) of this type may be preceded by a single header record at the beginning of the file / stream
							

							
	
								hasFooter
							

							 	
								boolean
							

							 	
								Camel 2.11 - optional - Indicates that the record(s) of this type may be followed by a single footer record at the end of the file / stream
							

							
	
								skipHeader
							

							 	
								boolean
							

							 	
								Camel 2.11 - optional - Configures the data format to skip marshalling / unmarshalling of the header record. Configure this parameter on the primary record (e.g., not the header or footer).
							

							
	
								skipFooter
							

							 	
								boolean
							

							 	
								Camel 2.11 - optional - Configures the data format to skip marshalling / unmarshalling of the footer record Configure this parameter on the primary record (e.g., not the header or footer)..
							

							
	
								isHeader
							

							 	
								boolean
							

							 	
								Camel 2.11 - optional - Identifies this FixedLengthRecord as a header record
							

							
	
								isFooter
							

							 	
								boolean
							

							 	
								Camel 2.11 - optional - Identifies this FixedLengthRecords as a footer record
							

							
	
								ignoreTrailingChars
							

							 	
								boolean
							

							 	
								Camel 2.11.1 - optional - Indicates that characters beyond the last mapped filed can be ignored when unmarshalling / parsing. This annotation is associated to the root class of the model and must be declared one time.
							

							

				The hasHeader/hasFooter parameters are mutually exclusive with isHeader/isFooter. A record may not be both a header/footer and a primary fixed-length record.
			

				case 1 : Simple fixed length record
			

				This simple example shows how to design the model to parse/format a fixed message
			
10A9PaulineMISINXD12345678BUYShare2500.45USD01-08-2009

				Fixed-simple
			
@FixedLengthRecord(length=54, paddingChar=' ')
public static class Order {

 @DataField(pos = 1, length=2)
 private int orderNr;

 @DataField(pos = 3, length=2)
 private String clientNr;

 @DataField(pos = 5, length=7)
 private String firstName;

 @DataField(pos = 12, length=1, align="L")
 private String lastName;

 @DataField(pos = 13, length=4)
 private String instrumentCode;

 @DataField(pos = 17, length=10)
 private String instrumentNumber;

 @DataField(pos = 27, length=3)
 private String orderType;

 @DataField(pos = 30, length=5)
 private String instrumentType;

 @DataField(pos = 35, precision = 2, length=7)
 private BigDecimal amount;

 @DataField(pos = 42, length=3)
 private String currency;

 @DataField(pos = 45, length=10, pattern = "dd-MM-yyyy")
 private Date orderDate;
}

				case 2 : Fixed length record with alignment and padding
			

				This more elaborated example show how to define the alignment for a field and how to assign a padding character which is ' ' here''
			
10A9 PaulineM ISINXD12345678BUYShare2500.45USD01-08-2009

				Fixed-padding-align
			
@FixedLengthRecord(length=60, paddingChar=' ')
public static class Order {

 @DataField(pos = 1, length=2)
 private int orderNr;

 @DataField(pos = 3, length=2)
 private String clientNr;

 @DataField(pos = 5, length=9)
 private String firstName;

 @DataField(pos = 14, length=5, align="L") // align text to the LEFT zone of the block
 private String lastName;

 @DataField(pos = 19, length=4)
 private String instrumentCode;

 @DataField(pos = 23, length=10)
 private String instrumentNumber;

 @DataField(pos = 33, length=3)
 private String orderType;

 @DataField(pos = 36, length=5)
 private String instrumentType;

 @DataField(pos = 41, precision = 2, length=7)
 private BigDecimal amount;

 @DataField(pos = 48, length=3)
 private String currency;

 @DataField(pos = 51, length=10, pattern = "dd-MM-yyyy")
 private Date orderDate;
}

				case 3 : Field padding
			

				Sometimes, the default padding defined for record cannnot be applied to the field as we have a number format where we would like to padd with '0' instead of ' '. In this case, you can use in the model the attribute paddingField to set this value.
			
10A9 PaulineM ISINXD12345678BUYShare000002500.45USD01-08-2009

				Fixed-padding-field
			
@FixedLengthRecord(length = 65, paddingChar = ' ')
public static class Order {

 @DataField(pos = 1, length = 2)
 private int orderNr;

 @DataField(pos = 3, length = 2)
 private String clientNr;

 @DataField(pos = 5, length = 9)
 private String firstName;

 @DataField(pos = 14, length = 5, align = "L")
 private String lastName;

 @DataField(pos = 19, length = 4)
 private String instrumentCode;

 @DataField(pos = 23, length = 10)
 private String instrumentNumber;

 @DataField(pos = 33, length = 3)
 private String orderType;

 @DataField(pos = 36, length = 5)
 private String instrumentType;

 @DataField(pos = 41, precision = 2, length = 12, paddingChar = '0')
 private BigDecimal amount;

 @DataField(pos = 53, length = 3)
 private String currency;

 @DataField(pos = 56, length = 10, pattern = "dd-MM-yyyy")
 private Date orderDate;
}

				case 4: Fixed length record with delimiter
			

				Fixed-length records sometimes have delimited content within the record. The firstName and lastName fields are delimited with the '^' character in the following example:
			
10A9Pauline^M^ISINXD12345678BUYShare000002500.45USD01-08-2009

				Fixed-delimited
			
@FixedLengthRecord()
public static class Order {

 @DataField(pos = 1, length = 2)
 private int orderNr;

 @DataField(pos = 2, length = 2)
 private String clientNr;

 @DataField(pos = 3, delimiter = "^")
 private String firstName;

 @DataField(pos = 4, delimiter = "^")
 private String lastName;

 @DataField(pos = 5, length = 4)
 private String instrumentCode;

 @DataField(pos = 6, length = 10)
 private String instrumentNumber;

 @DataField(pos = 7, length = 3)
 private String orderType;

 @DataField(pos = 8, length = 5)
 private String instrumentType;

 @DataField(pos = 9, precision = 2, length = 12, paddingChar = '0')
 private BigDecimal amount;

 @DataField(pos = 10, length = 3)
 private String currency;

 @DataField(pos = 11, length = 10, pattern = "dd-MM-yyyy")
 private Date orderDate;
}

				As of Camel 2.11 the 'pos' value(s) in a fixed-length record may optionally be defined using ordinal, sequential values instead of precise column numbers.
			

				case 5 : Fixed length record with record-defined field length
			

				Occasionally a fixed-length record may contain a field that define the expected length of another field within the same record. In the following example the length of the instrumentNumber field value is defined by the value of instrumentNumberLen field in the record.
			
10A9Pauline^M^ISIN10XD12345678BUYShare000002500.45USD01-08-2009

				Fixed-delimited
			
@FixedLengthRecord()
public static class Order {

 @DataField(pos = 1, length = 2)
 private int orderNr;

 @DataField(pos = 2, length = 2)
 private String clientNr;

 @DataField(pos = 3, delimiter = "^")
 private String firstName;

 @DataField(pos = 4, delimiter = "^")
 private String lastName;

 @DataField(pos = 5, length = 4)
 private String instrumentCode;

 @DataField(pos = 6, length = 2, align = "R", paddingChar = '0')
 private int instrumentNumberLen;

 @DataField(pos = 7, lengthPos=6)
 private String instrumentNumber;

 @DataField(pos = 8, length = 3)
 private String orderType;

 @DataField(pos = 9, length = 5)
 private String instrumentType;

 @DataField(pos = 10, precision = 2, length = 12, paddingChar = '0')
 private BigDecimal amount;

 @DataField(pos = 11, length = 3)
 private String currency;

 @DataField(pos = 12, length = 10, pattern = "dd-MM-yyyy")
 private Date orderDate;
}

				case 6 : Fixed length record with header and footer
			

				Bindy will discover fixed-length header and footer records that are configured as part of the model – provided that the annotated classes exist either in the same package as the primary @FixedLengthRecord class, or within one of the configured scan packages. The following text illustrates two fixed-length records that are bracketed by a header record and footer record.
			
101-08-2009
10A9 PaulineM ISINXD12345678BUYShare000002500.45USD01-08-2009
10A9 RichN ISINXD12345678BUYShare000002700.45USD01-08-2009
9000000002

				Fixed-header-and-footer-main-class
			
@FixedLengthRecord(hasHeader = true, hasFooter = true)
public class Order {

 @DataField(pos = 1, length = 2)
 private int orderNr;

 @DataField(pos = 2, length = 2)
 private String clientNr;

 @DataField(pos = 3, length = 9)
 private String firstName;

 @DataField(pos = 4, length = 5, align = "L")
 private String lastName;

 @DataField(pos = 5, length = 4)
 private String instrumentCode;

 @DataField(pos = 6, length = 10)
 private String instrumentNumber;

 @DataField(pos = 7, length = 3)
 private String orderType;

 @DataField(pos = 8, length = 5)
 private String instrumentType;

 @DataField(pos = 9, precision = 2, length = 12, paddingChar = '0')
 private BigDecimal amount;

 @DataField(pos = 10, length = 3)
 private String currency;

 @DataField(pos = 11, length = 10, pattern = "dd-MM-yyyy")
 private Date orderDate;
}

@FixedLengthRecord(isHeader = true)
public class OrderHeader {
 @DataField(pos = 1, length = 1)
 private int recordType = 1;

 @DataField(pos = 2, length = 10, pattern = "dd-MM-yyyy")
 private Date recordDate;
}

@FixedLengthRecord(isFooter = true)
public class OrderFooter {

 @DataField(pos = 1, length = 1)
 private int recordType = 9;

 @DataField(pos = 2, length = 9, align = "R", paddingChar = '0')
 private int numberOfRecordsInTheFile;
}

				case 7 : Skipping content when parsing a fixed length record. (Camel 2.11.1)
			

				It is common to integrate with systems that provide fixed-length records containing more information than needed for the target use case. It is useful in this situation to skip the declaration and parsing of those fields that we do not need. To accomodate this, Bindy will skip forward to the next mapped field within a record if the 'pos' value of the next declared field is beyond the cursor position of the last parsed field. Using absolute 'pos' locations for the fields of interest (instead of ordinal values) causes Bindy to skip content between two fields.
			

				Similarly, it is possible that none of the content beyond some field is of interest. In this case, you can tell Bindy to skip parsing of everything beyond the last mapped field by setting the ignoreTrailingChars property on the @FixedLengthRecord declaration.
			
@FixedLengthRecord(ignoreTrailingChars = true)
public static class Order {

 @DataField(pos = 1, length = 2)
 private int orderNr;

 @DataField(pos = 3, length = 2)
 private String clientNr;

 // any characters that appear beyond the last mapped field will be ignored

}

5. Message

				The Message annotation is used to identified the class of your model who will contain key value pairs fields. This kind of format is used mainly in Financial Exchange Protocol Messages (FIX). Nevertheless, this annotation can be used for any other format where data are identified by keys. The key pair values are separated each other by a separator which can be a special character like a tab delimitor (unicode representation : \u0009) or a start of heading (unicode representation : \u0001)
			
"FIX information"

				More information about FIX can be found on this web site : http://www.fixprotocol.org/. To work with FIX messages, the model must contain a Header and Trailer classes linked to the root message class which could be a Order class. This is not mandatory but will be very helpful when you will use camel-bindy in combination with camel-fix which is a Fix gateway based on quickFix project http://www.quickfixj.org/.
			
	Annotation name	Record type	Level
	
								Message
							

							 	
								key value pair
							

							 	
								Class
							

							

	Parameter name	type	Info
	
								pairSeparator
							

							 	
								string
							

							 	
								mandatory - can be '=' or ';' or 'anything'
							

							
	
								keyValuePairSeparair
							

							 	
								string
							

							 	
								mandatory - can be '\u0001', '\u0009', '#' or 'anything'
							

							
	
								crlf
							

							 	
								string
							

							 	
								optional - possible values = WINDOWS,UNIX,MAC, or custom; default value = WINDOWS - allow to define the carriage return character to use. If you specify a value other than the three listed before, the value you enter (custom) will be used as the CRLF character(s)
							

							
	
								type
							

							 	
								string
							

							 	
								optional - define the type of message (e.g. FIX, EMX, …​)
							

							
	
								version
							

							 	
								string
							

							 	
								optional - version of the message (e.g. 4.1)
							

							
	
								isOrdered
							

							 	
								boolean
							

							 	
								optional - default value = false - allow to change the order of the fields when FIX message is generated. This annotation is associated to the message class of the model and must be declared one time.
							

							

				case 1 : separator = 'u0001'
			

				The separator used to segregate the key value pair fields in a FIX message is the ASCII '01' character or in unicode format '\u0001'. This character must be escaped a second time to avoid a java runtime error. Here is an example :
			
8=FIX.4.1 9=20 34=1 35=0 49=INVMGR 56=BRKR 1=BE.CHM.001 11=CHM0001-01
22=4 ...

				and how to use the annotation
			

				FIX - message
			
@Message(keyValuePairSeparator = "=", pairSeparator = "\u0001", type="FIX", version="4.1")
public class Order {

}
Look at test cases

				The ASCII character like tab, …​ cannot be displayed in WIKI page. So, have a look to the test case of camel-bindy to see exactly how the FIX message looks like (src\test\data\fix\fix.txt) and the Order, Trailer, Header classes (src\test\java\org\apache\camel\dataformat\bindy\model\fix\simple\Order.java)
			

6. KeyValuePairField

				The KeyValuePairField annotation defines the property of a key value pair field. Each KeyValuePairField is identified by a tag (= key) and its value associated, a type (string, int, date, …​), optionaly a pattern and if the field is required
			
	Annotation name	Record type	Level
	
								KeyValuePairField
							

							 	
								Key Value Pair - FIX
							

							 	
								Property
							

							

	Parameter name	type	Info
	
								tag
							

							 	
								int
							

							 	
								mandatory - digit number identifying the field in the message - must be unique
							

							
	
								pattern
							

							 	
								string
							

							 	
								optional - default value = "" - will be used to format Decimal, Date, …​
							

							
	
								precision
							

							 	
								int
							

							 	
								optional - digit number - represents the precision to be used when the Decimal number will be formatted/parsed
							

							
	
								position
							

							 	
								int
							

							 	
								optional - must be used when the position of the key/tag in the FIX message must be different
							

							
	
								required
							

							 	
								boolean
							

							 	
								optional - default value = "false"
							

							
	
								impliedDecimalSeparator
							

							 	
								boolean
							

							 	
								Camel 2.11: optional - default value = "false" - Indicates if there is a decimal point implied at a specified location
							

							

				case 1 : tag
			

				This parameter represents the key of the field in the message
			

				FIX message - Tag
			
@Message(keyValuePairSeparator = "=", pairSeparator = "\u0001", type="FIX", version="4.1")
public class Order {

 @Link Header header;

 @Link Trailer trailer;

 @KeyValuePairField(tag = 1) // Client reference
 private String Account;

 @KeyValuePairField(tag = 11) // Order reference
 private String ClOrdId;

 @KeyValuePairField(tag = 22) // Fund ID type (Sedol, ISIN, ...)
 private String IDSource;

 @KeyValuePairField(tag = 48) // Fund code
 private String SecurityId;

 @KeyValuePairField(tag = 54) // Movement type (1 = Buy, 2 = sell)
 private String Side;

 @KeyValuePairField(tag = 58) // Free text
 private String Text;
}

				case 2 : Different position in output
			

				If the tags/keys that we will put in the FIX message must be sorted according to a predefine order, then use the attribute 'position' of the annotation @KeyValuePairField
			

				FIX message - Tag - sort
			
@Message(keyValuePairSeparator = "=", pairSeparator = "\\u0001", type = "FIX", version = "4.1", isOrdered = true)
public class Order {

 @Link Header header;

 @Link Trailer trailer;

 @KeyValuePairField(tag = 1, position = 1) // Client reference
 private String account;

 @KeyValuePairField(tag = 11, position = 3) // Order reference
 private String clOrdId;
}

7. Section

				In FIX message of fixed length records, it is common to have different sections in the representation of the information : header, body and section. The purpose of the annotation @Section is to inform bindy about which class of the model represents the header (= section 1), body (= section 2) and footer (= section 3)
			

				Only one attribute/parameter exists for this annotation.
			
	Annotation name	Record type	Level
	
								Section
							

							 	
								FIX
							

							 	
								Class
							

							

	Parameter name	type	Info
	
								number
							

							 	
								int
							

							 	
								digit number identifying the section position
							

							

				case 1 : Section
			

				Definition of the header section
			

				FIX message - Section - Header
			
@Section(number = 1)
public class Header {

 @KeyValuePairField(tag = 8, position = 1) // Message Header
 private String beginString;

 @KeyValuePairField(tag = 9, position = 2) // Checksum
 private int bodyLength;
}

				Definition of the body section
			

				FIX message - Section - Body
			
@Section(number = 2)
@Message(keyValuePairSeparator = "=", pairSeparator = "\\u0001", type = "FIX", version = "4.1", isOrdered = true)
public class Order {

 @Link Header header;

 @Link Trailer trailer;

 @KeyValuePairField(tag = 1, position = 1) // Client reference
 private String account;

 @KeyValuePairField(tag = 11, position = 3) // Order reference
 private String clOrdId;

				Definition of the footer section
			

				FIX message - Section - Footer
			
@Section(number = 3)
public class Trailer {

 @KeyValuePairField(tag = 10, position = 1)
 // CheckSum
 private int checkSum;

 public int getCheckSum() {
 return checkSum;
 }

8. OneToMany

				The purpose of the annotation @OneToMany is to allow to work with a List<?> field defined a POJO class or from a record containing repetitive groups.
			
Restrictions OneToMany

				Be careful, the one to many of bindy does not allow to handle repetitions defined on several levels of the hierarchy
			

				The relation OneToMany ONLY WORKS in the following cases :
			
	
						Reading a FIX message containing repetitive groups (= group of tags/keys)
					
	
						Generating a CSV with repetitive data
					

	Annotation name	Record type	Level
	
								OneToMany
							

							 	
								all
							

							 	
								property
							

							

	Parameter name	type	Info
	
								mappedTo
							

							 	
								string
							

							 	
								optional - string - class name associated to the type of the List<Type of the Class>
							

							

				case 1 : Generating CSV with repetitive data
			

				Here is the CSV output that we want :
			
Claus,Ibsen,Camel in Action 1,2010,35
Claus,Ibsen,Camel in Action 2,2012,35
Claus,Ibsen,Camel in Action 3,2013,35
Claus,Ibsen,Camel in Action 4,2014,35

				Remark : the repetitive data concern the title of the book and its publication date while first, last name and age are common
			

				and the classes used to modeling this. The Author class contains a List of Book.
			

				Generate CSV with repetitive data
			
@CsvRecord(separator=",")
public class Author {

 @DataField(pos = 1)
 private String firstName;

 @DataField(pos = 2)
 private String lastName;

 @OneToMany
 private List<Book> books;

 @DataField(pos = 5)
 private String Age;
}

public class Book {

 @DataField(pos = 3)
 private String title;

 @DataField(pos = 4)
 private String year;
}

				Very simple isn’t it !!!
			

				case 2 : Reading FIX message containing group of tags/keys
			

				Here is the message that we would like to process in our model :
			
8=FIX 4.19=2034=135=049=INVMGR56=BRKR
1=BE.CHM.00111=CHM0001-0158=this is a camel - bindy test
22=448=BE000124567854=1
22=548=BE000987654354=2
22=648=BE000999999954=3
10=220

				tags 22, 48 and 54 are repeated
			

				and the code
			

				Reading FIX message containing group of tags/keys
			
public class Order {

 @Link Header header;

 @Link Trailer trailer;

 @KeyValuePairField(tag = 1) // Client reference
 private String account;

 @KeyValuePairField(tag = 11) // Order reference
 private String clOrdId;

 @KeyValuePairField(tag = 58) // Free text
 private String text;

 @OneToMany(mappedTo = "org.apache.camel.dataformat.bindy.model.fix.complex.onetomany.Security")
 List<Security> securities;
}

public class Security {

 @KeyValuePairField(tag = 22) // Fund ID type (Sedol, ISIN, ...)
 private String idSource;

 @KeyValuePairField(tag = 48) // Fund code
 private String securityCode;

 @KeyValuePairField(tag = 54) // Movement type (1 = Buy, 2 = sell)
 private String side;
}

9. BindyConverter

				The purpose of the annotation @BindyConverter is define a converter to be used on field level. The provided class must implement the Format interface.
			
@FixedLengthRecord(length = 10, paddingChar = ' ')
public static class DataModel {
 @DataField(pos = 1, length = 10, trim = true)
 @BindyConverter(CustomConverter.class)
 public String field1;
}

public static class CustomConverter implements Format<String> {
 @Override
 public String format(String object) throws Exception {
 return (new StringBuilder(object)).reverse().toString();
 }

 @Override
 public String parse(String string) throws Exception {
 return (new StringBuilder(string)).reverse().toString();
 }
}

10. FormatFactories

				The purpose of the annotation @FormatFactories is to define a set of converters at record-level. The provided classes must implement the FormatFactoryInterface interface.
			
@CsvRecord(separator = ",")
@FormatFactories({OrderNumberFormatFactory.class})
public static class Order {

 @DataField(pos = 1)
 private OrderNumber orderNr;

 @DataField(pos = 2)
 private String firstName;
}

public static class OrderNumber {
 private int orderNr;

 public static OrderNumber ofString(String orderNumber) {
 OrderNumber result = new OrderNumber();
 result.orderNr = Integer.valueOf(orderNumber);
 return result;
 }
}

public static class OrderNumberFormatFactory extends AbstractFormatFactory {

 {
 supportedClasses.add(OrderNumber.class);
 }

 @Override
 public Format<?> build(FormattingOptions formattingOptions) {
 return new Format<OrderNumber>() {
 @Override
 public String format(OrderNumber object) throws Exception {
 return String.valueOf(object.orderNr);
 }

 @Override
 public OrderNumber parse(String string) throws Exception {
 return OrderNumber.ofString(string);
 }
 };
 }
}

Supported Datatypes

				The DefaultFormatFactory makes formatting of the following datatype available by returning an instance of the interface FormatFactoryInterface based on the provided FormattingOptions:
			
	
						BigDecimal
					
	
						BigInteger
					
	
						Boolean
					
	
						Byte
					
	
						Character
					
	
						Date
					
	
						Double
					
	
						Enums
					
	
						Float
					
	
						Integer
					
	
						LocalDate (java 8, since 2.18.0)
					
	
						LocalDateTime (java 8, since 2.18.0)
					
	
						LocalTime (java 8, since 2.18.0)
					
	
						Long
					
	
						Short
					
	
						String
					

				The DefaultFormatFactory can be overridden by providing an instance of FactoryRegistry in the registry in use (e.g. spring or JNDI).
			

Using the Java DSL

				The next step consists in instantiating the DataFormat bindy class associated with this record type and providing Java package name(s) as parameter.
			

				For example the following uses the class BindyCsvDataFormat (who correspond to the class associated with the CSV record type) which is configured with com.acme.model package name to initialize the model objects configured in this package.
			
// Camel 2.15 or older (configure by package name)
DataFormat bindy = new BindyCsvDataFormat("com.acme.model");

// Camel 2.16 onwards (configure by class name)
DataFormat bindy = new BindyCsvDataFormat(com.acme.model.MyModel.class);
Setting locale

					Bindy supports configuring the locale on the dataformat, such as
				
// Camel 2.15 or older (configure by package name)
BindyCsvDataFormat bindy = new BindyCsvDataFormat("com.acme.model");
// Camel 2.16 onwards (configure by class name)
BindyCsvDataFormat bindy = new BindyCsvDataFormat(com.acme.model.MyModel.class);

bindy.setLocale("us");

					Or to use the platform default locale then use "default" as the locale name. Notice this requires Camel 2.14/2.13.3/2.12.5.
				
// Camel 2.15 or older (configure by package name)
BindyCsvDataFormat bindy = new BindyCsvDataFormat("com.acme.model");
// Camel 2.16 onwards (configure by class name)
BindyCsvDataFormat bindy = new BindyCsvDataFormat(com.acme.model.MyModel.class);

bindy.setLocale("default");

					for older releases you can set it using Java code as shown
				
// Camel 2.15 or older (configure by package name)
BindyCsvDataFormat bindy = new BindyCsvDataFormat("com.acme.model");
// Camel 2.16 onwards (configure by class name)
BindyCsvDataFormat bindy = new BindyCsvDataFormat(com.acme.model.MyModel.class);

bindy.setLocale(Locale.getDefault().getISO3Country());

Unmarshaling

from("file://inbox")
 .unmarshal(bindy)
 .to("direct:handleOrders");

					Alternatively, you can use a named reference to a data format which can then be defined in your Registry e.g. your Spring XML file:
				
from("file://inbox")
 .unmarshal("myBindyDataFormat")
 .to("direct:handleOrders");

					The Camel route will pick-up files in the inbox directory, unmarshall CSV records into a collection of model objects and send the collection
 to the route referenced by 'handleOrders'.
				

					The collection returned is a List of Map objects. Each Map within the list contains the model objects that were marshalled out of each line of the CSV. The reason behind this is that each line can correspond to more than one object. This can be confusing when you simply expect one object to be returned per line.
				

					Each object can be retrieve using its class name.
				
List<Map<String, Object>> unmarshaledModels = (List<Map<String, Object>>) exchange.getIn().getBody();

int modelCount = 0;
for (Map<String, Object> model : unmarshaledModels) {
 for (String className : model.keySet()) {
 Object obj = model.get(className);
 LOG.info("Count : " + modelCount + ", " + obj.toString());
 }
 modelCount++;
}

LOG.info("Total CSV records received by the csv bean : " + modelCount);

					Assuming that you want to extract a single Order object from this map for processing in a route, you could use a combination of a Splitter and a Processor as per the following:
				
from("file://inbox")
 .unmarshal(bindy)
 .split(body())
 .process(new Processor() {
 public void process(Exchange exchange) throws Exception {
 Message in = exchange.getIn();
 Map<String, Object> modelMap = (Map<String, Object>) in.getBody();
 in.setBody(modelMap.get(Order.class.getCanonicalName()));
 }
 })
 .to("direct:handleSingleOrder")
 .end();

					Take care of the fact that Bindy uses CHARSET_NAME property or the CHARSET_NAME header as define in the Exchange interface to do a characterset conversion of the inputstream received for unmarshalling. In some producers (e.g. file-endpoint) you can define a characterset. The characterset conversion can already been done by this producer. Sometimes you need to remove this property or header from the exchange before sending it to the unmarshal. If you don’t remove it the conversion might be done twice which might lead to unwanted results.
				
from("file://inbox?charset=Cp922")
 .removeProperty(Exchange.CHARSET_NAME)
 .unmarshal("myBindyDataFormat")
 .to("direct:handleOrders");

Marshaling

					To generate CSV records from a collection of model objects, you create the following route :
				
from("direct:handleOrders")
 .marshal(bindy)
 .to("file://outbox")

Using Spring XML

				This is really easy to use Spring as your favorite DSL language to declare the routes to be used for camel-bindy. The following example shows two routes where the first will pick-up records from files, unmarshal the content and bind it to their model. The result is then send to a pojo (doing nothing special) and place them into a queue.
			

				The second route will extract the pojos from the queue and marshal the content to generate a file containing the csv record. The example above is for using Camel 2.16 onwards.
			

				spring dsl
			
<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://camel.apache.org/schema/spring
 http://camel.apache.org/schema/spring/camel-spring.xsd">

 <!-- Queuing engine - ActiveMq - work locally in mode virtual memory -->
 <bean id="activemq" class="org.apache.activemq.camel.component.ActiveMQComponent">
 <property name="brokerURL" value="vm://localhost:61616"/>
 </bean>

 <camelContext xmlns="http://camel.apache.org/schema/spring">
 <dataFormats>
 <bindy id="bindyDataformat" type="Csv" classType="org.apache.camel.bindy.model.Order"/>
 </dataFormats>

 <route>
 <from uri="file://src/data/csv/?noop=true" />
 <unmarshal ref="bindyDataformat" />
 <to uri="bean:csv" />
 <to uri="activemq:queue:in" />
 </route>

 <route>
 <from uri="activemq:queue:in" />
 <marshal ref="bindyDataformat" />
 <to uri="file://src/data/csv/out/" />
 </route>
 </camelContext>
</beans>
Note

					Please verify that your model classes implements serializable otherwise the queue manager will raise an error
				

Dependencies

				To use Bindy in your camel routes you need to add the a dependency on camel-bindy which implements this data format.
			

				If you use maven you could just add the following to your pom.xml, substituting the version number for the latest & greatest release (see the download page for the latest versions).
			
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-bindy</artifactId>
 <version>x.x.x</version>
</dependency>

Chapter 49. Using OSGi blueprint with Camel

			A custom XML namespace for Blueprint has been created to let you leverage the nice XML dialect. Given Blueprint custom namespaces are not standardized yet, this namespace can only be used on the Apache Aries Blueprint implementation, which is the one used by Apache Karaf.
		
Overview

				The XML schema is mostly the same as the one for Spring, so all the xml snippets throughout the documentation referring to Spring XML also apply to Blueprint routes.
			

				Here is a very simple route definition using blueprint:
			
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0">

 <camelContext xmlns="http://camel.apache.org/schema/blueprint">
 <route>
 <from uri="timer:test" />
 <to uri="log:test" />
 </route>
 </camelContext>

</blueprint>

				There are a few limitations at this point about the supported xml elements (compared to the Spring xml syntax):
			
	
						beanPostProcessor are specific to Spring and aren’t allowed
					

				However, using blueprint when you deploy your applications in an OSGi enviroment has several advantages:
			
	
						when upgrading to a new camel version, you don’t have to change the namespace, as the correct version will be selected based on the camel packages that are imported by your bundle
					
	
						no startup ordering issue with respect to the custom namespaces and your bundles
					
	
						you can use Blueprint property placeholders
					

Using camel-blueprint

				To leverage camel-blueprint in OSGi, you only need the Aries Blueprint bundle and the camel-blueprint bundle, in addition to camel-core and its dependencies.
			

				If you use Karaf, you can use the feature named camel-blueprint which will install all the required bundles.
			

Chapter 50. Bonita Component

			Available as of Camel version 2.19
		

			Used for communicating with a remote Bonita BPM process engine.
		
URI format

bonita://[operation]?[options]

				Where operation is the specific action to perform on Bonita.
			

General Options

				The Bonita component has no options.
			

				The Bonita endpoint is configured using URI syntax:
			
bonita:operation

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									operation
								

								 	
									Required Operation to use
								

								 	 	
									BonitaOperation
								

								

Query Parameters (9 parameters):

	Name	Description	Default	Type
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									hostname (consumer)
								

								 	
									Hostname where Bonita engine runs
								

								 	
									localhost
								

								 	
									String
								

								
	
									port (consumer)
								

								 	
									Port of the server hosting Bonita engine
								

								 	
									8080
								

								 	
									String
								

								
	
									processName (consumer)
								

								 	
									Name of the process involved in the operation
								

								 	 	
									String
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									password (security)
								

								 	
									Password to authenticate to Bonita engine.
								

								 	 	
									String
								

								
	
									username (security)
								

								 	
									Username to authenticate to Bonita engine.
								

								 	 	
									String
								

								

Body content

				For the startCase operation, the input variables are retrieved from the body message. This one has to contains a Map<String,Serializable>.
			

Examples

				The following example start a new case in Bonita:
			
from("direct:start").to("bonita:startCase?hostname=localhost&port=8080&processName=TestProcess&username=install&password=install")

Dependencies

				To use Bonita in your Camel routes you need to add a dependency on camel-bonita, which implements the component.
			

				If you use Maven you can just add the following to your pom.xml, substituting the version number for the latest and greatest release (see the download page for the latest versions).
			
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-bonita</artifactId>
 <version>x.x.x</version>
</dependency>

Chapter 51. Boon DataFormat

			Available as of Camel version 2.16
		

			Boon is a Data Format which uses the Boon JSON marshalling library to unmarshal an JSON payload into Java objects or to marshal Java objects into an JSON payload. Boon aims to be a simple and fast parser than other common parsers currently used.
		
Options

				The Boon dataformat supports 3 options which are listed below.
			
	Name	Default	Java Type	Description
	
								unmarshalTypeName
							

							 	 	
								String
							

							 	
								Class name of the java type to use when unarmshalling
							

							
	
								useList
							

							 	
								false
							

							 	
								Boolean
							

							 	
								To unarmshal to a List of Map or a List of Pojo.
							

							
	
								contentTypeHeader
							

							 	
								false
							

							 	
								Boolean
							

							 	
								Whether the data format should set the Content-Type header with the type from the data format if the data format is capable of doing so. For example application/xml for data formats marshalling to XML, or application/json for data formats marshalling to JSon etc.
							

							

Using the Java DSL

DataFormat boonDataFormat = new BoonDataFormat("com.acme.model.Person");

from("activemq:My.Queue")
 .unmarshal(boonDataFormat)
 .to("mqseries:Another.Queue");

Using Blueprint XML

<bean id="boonDataFormat" class="org.apache.camel.component.boon.BoonDataFormat">
 <argument value="com.acme.model.Person"/>
</bean>

<camelContext id="camel" xmlns="http://camel.apache.org/schema/blueprint">
 <route>
 <from uri="activemq:My.Queue"/>
 <unmarshal ref="boonDataFormat"/>
 <to uri="mqseries:Another.Queue"/>
 </route>
</camelContext>

Dependencies

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-boon</artifactId>
 <version>x.x.x</version>
</dependency>

Chapter 52. Box Component

			Available as of Camel version 2.14
		

			The Box component provides access to all of the Box.com APIs accessible using https://github.com/box/box-java-sdk. It allows producing messages to upload and download files, create, edit, and manage folders, etc. It also supports APIs that allow polling for updates to user accounts and even changes to enterprise accounts, etc.
		

			Box.com requires the use of OAuth2.0 for all client application authentication. In order to use camel-box with your account, you’ll need to create a new application within Box.com at https://developer.box.com. The Box application’s client id and secret will allow access to Box APIs which require a current user. A user access token is generated and managed by the API for an end user.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-box</artifactId>
 <version>${camel-version}</version>
</dependency>
Connection Authentication Types

				The Box component supports three different types of authenticated connections.
			
Standard Authentication

					Standard Authentication uses the OAuth 2.0 three-legged authentication process to authenticate its connections with Box.com. This type of authentication enables Box managed users and external users to access, edit, and save their Box content through the Box component.
				

App Enterprise Authentication

					App Enterprise Authentication uses the OAuth 2.0 with JSON Web Tokens (JWT) to authenticate its connections as a Service Account for a Box Application. This type of authentication enables a service account to access, edit, and save the Box content of its Box Application through the Box component.
				

App User Authentication

					App User Authentication uses the OAuth 2.0 with JSON Web Tokens (JWT) to authenticate its connections as an App User for a Box Application. This type of authentication enables app users to access, edit, and save their Box content in its Box Application through the Box component.
				

Box Options

				The Box component supports 2 options which are listed below.
			
	Name	Description	Default	Type
	
								configuration (common)
							

							 	
								To use the shared configuration
							

							 	 	
								BoxConfiguration
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The Box endpoint is configured using URI syntax:
			
box:apiName/methodName

				with the following path and query parameters:
			
Path Parameters (2 parameters):

	Name	Description	Default	Type
	
									apiName
								

								 	
									Required What kind of operation to perform
								

								 	 	
									BoxApiName
								

								
	
									methodName
								

								 	
									Required What sub operation to use for the selected operation
								

								 	 	
									String
								

								

Query Parameters (20 parameters):

	Name	Description	Default	Type
	
									clientId (common)
								

								 	
									Box application client ID
								

								 	 	
									String
								

								
	
									enterpriseId (common)
								

								 	
									The enterprise ID to use for an App Enterprise.
								

								 	 	
									String
								

								
	
									inBody (common)
								

								 	
									Sets the name of a parameter to be passed in the exchange In Body
								

								 	 	
									String
								

								
	
									userId (common)
								

								 	
									The user ID to use for an App User.
								

								 	 	
									String
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									httpParams (advanced)
								

								 	
									Custom HTTP params for settings like proxy host
								

								 	 	
									Map
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									accessTokenCache (security)
								

								 	
									Custom Access Token Cache for storing and retrieving access tokens.
								

								 	 	
									IAccessTokenCache
								

								
	
									clientSecret (security)
								

								 	
									Box application client secret
								

								 	 	
									String
								

								
	
									encryptionAlgorithm (security)
								

								 	
									The type of encryption algorithm for JWT. Supported Algorithms: RSA_SHA_256 RSA_SHA_384 RSA_SHA_512
								

								 	
									RSA_SHA_256
								

								 	
									EncryptionAlgorithm
								

								
	
									maxCacheEntries (security)
								

								 	
									The maximum number of access tokens in cache.
								

								 	
									100
								

								 	
									int
								

								
	
									authenticationType (authentication)
								

								 	
									The type of authentication for connection. Types of Authentication: STANDARD_AUTHENTICATION - OAuth 2.0 (3-legged) SERVER_AUTHENTICATION - OAuth 2.0 with JSON Web Tokens
								

								 	
									APP_USER_AUTHENTICATION
								

								 	
									String
								

								
	
									privateKeyFile (security)
								

								 	
									The private key for generating the JWT signature.
								

								 	 	
									String
								

								
	
									privateKeyPassword (security)
								

								 	
									The password for the private key.
								

								 	 	
									String
								

								
	
									publicKeyId (security)
								

								 	
									The ID for public key for validating the JWT signature.
								

								 	 	
									String
								

								
	
									sslContextParameters (security)
								

								 	
									To configure security using SSLContextParameters.
								

								 	 	
									SSLContextParameters
								

								
	
									userName (security)
								

								 	
									Box user name, MUST be provided
								

								 	 	
									String
								

								
	
									userPassword (security)
								

								 	
									Box user password, MUST be provided if authSecureStorage is not set, or returns null on first call
								

								 	 	
									String
								

								

URI format

box:apiName/methodName

				apiName can be one of:
			
	
						collaborations
					
	
						comments
					
	
						event-logs
					
	
						files
					
	
						folders
					
	
						groups
					
	
						events
					
	
						search
					
	
						tasks
					
	
						users
					

Producer Endpoints:

				Producer endpoints can use endpoint prefixes followed by endpoint names and associated options described next. A shorthand alias can be used for some endpoints. The endpoint URI MUST contain a prefix.
			

				Endpoint options that are not mandatory are denoted by []. When there are no mandatory options for an endpoint, one of the set of [] options MUST be provided. Producer endpoints can also use a special option inBody that in turn should contain the name of the endpoint option whose value will be contained in the Camel Exchange In message.
			

				Any of the endpoint options can be provided in either the endpoint URI, or dynamically in a message header. The message header name must be of the format CamelBox.<option>. Note that the inBody option overrides message header, i.e. the endpoint option inBody=option would override a CamelBox.option header.
			

				If a value is not provided for the option defaultRequest either in the endpoint URI or in a message header, it will be assumed to be null. Note that the null value will only be used if other options do not satisfy matching endpoints.
			

				In case of Box API errors the endpoint will throw a RuntimeCamelException with a com.box.sdk.BoxAPIException derived exception cause.
			
Endpoint Prefix collaborations

					For more information on Box collaborations see https://developer.box.com/reference#collaboration-object. The following endpoints can be invoked with the prefix collaborations as follows:
				
box:collaborations/endpoint?[options]
	Endpoint	Shorthand Alias	Options	Result Body Type
	
									addFolderCollaboration
								

								 	
									add
								

								 	
									folderId, collaborator, role
								

								 	
									com.box.sdk.BoxCollaboration
								

								
	
									addFolderCollaborationByEmail
								

								 	
									addByEmail
								

								 	
									folderId, email, role
								

								 	
									com.box.sdk.BoxCollaboration
								

								
	
									deleteCollaboration
								

								 	
									delete
								

								 	
									collaborationId
								

								 	
	
									getFolderCollaborations
								

								 	
									collaborations
								

								 	
									folderId
								

								 	
									java.util.Collection
								

								
	
									getPendingCollaborations
								

								 	
									pendingCollaborations
								

								 	 	
									java.util.Collection
								

								
	
									getCollaborationInfo
								

								 	
									info
								

								 	
									collaborationId
								

								 	
									com.box.sdk.BoxCollaboration.Info
								

								
	
									updateCollaborationInfo
								

								 	
									updateInfo
								

								 	
									collaborationId, info
								

								 	
									com.box.sdk.BoxCollaboration
								

								

					URI Options for collaborations
				
	Name	Type
	
									collaborationId
								

								 	
									String
								

								
	
									collaborator
								

								 	
									com.box.sdk.BoxCollaborator
								

								
	
									role
								

								 	
									com.box.sdk.BoxCollaboration.Role
								

								
	
									folderId
								

								 	
									String
								

								
	
									email
								

								 	
									String
								

								
	
									info
								

								 	
									com.box.sdk.BoxCollaboration.Info
								

								

Endpoint Prefix comments

					For more information on Box comments see https://developer.box.com/reference#comment-object. The following endpoints can be invoked with the prefix comments as follows:
				
box:comments/endpoint?[options]
	Endpoint	Shorthand Alias	Options	Result Body Type
	
									addFileComment
								

								 	
									add
								

								 	
									fileId, message
								

								 	
									com.box.sdk.BoxFile
								

								
	
									changeCommentMessage
								

								 	
									updateMessage
								

								 	
									commentId, message
								

								 	
									com.box.sdk.BoxComment
								

								
	
									deleteComment
								

								 	
									delete
								

								 	
									commentId
								

								 	
	
									getCommentInfo
								

								 	
									info
								

								 	
									commentId
								

								 	
									com.box.sdk.BoxComment.Info
								

								
	
									getFileComments
								

								 	
									comments
								

								 	
									fileId
								

								 	
									java.util.List
								

								
	
									replyToComment
								

								 	
									reply
								

								 	
									commentId, message
								

								 	
									com.box.sdk.BoxComment
								

								

					URI Options for collaborations
				
	Name	Type
	
									commentId
								

								 	
									String
								

								
	
									fileId
								

								 	
									String
								

								
	
									message
								

								 	
									String
								

								

Endpoint Prefix events-logs

					For more information on Box event logs see https://developer.box.com/reference#events. The following endpoints can be invoked with the prefix events as follows:
				
box:event-logs/endpoint?[options]
	Endpoint	Shorthand Alias	Options	Result Body Type
	
									getEnterpriseEvents
								

								 	
									events
								

								 	
									position, after, before, [types]
								

								 	
									java.util.List
								

								

					URI Options for event-logs
				
	Name	Type
	
									position
								

								 	
									String
								

								
	
									after
								

								 	
									Date
								

								
	
									before
								

								 	
									Date
								

								
	
									types
								

								 	
									com.box.sdk.BoxEvent.Types[]
								

								

Endpoint Prefix files

					For more information on Box files see https://developer.box.com/reference#file-object. The following endpoints can be invoked with the prefix files as follows.
				
box:files/endpoint?[options]
	Endpoint	Shorthand Alias	Options	Result Body Type
	
									uploadFile
								

								 	
									upload
								

								 	
									parentFolderId, content, fileName, [created], [modified], [size], [listener]
								

								 	
									com.box.sdk.BoxFile
								

								
	
									downloadFile
								

								 	
									download
								

								 	
									fileId, output, [rangeStart], [rangeEnd], [listener]
								

								 	
									java.io.OutputStream
								

								
	
									copyFile
								

								 	
									copy
								

								 	
									fileId, destinationFolderId, [newName]
								

								 	
									com.box.sdk.BoxFile
								

								
	
									moveFile
								

								 	
									move
								

								 	
									fileId, destinationFolderId, [newName]
								

								 	
									com.box.sdk.BoxFile
								

								
	
									renameFile
								

								 	
									rename
								

								 	
									fileId, newFileName
								

								 	
									com.box.sdk.BoxFile
								

								
	
									createFileSharedLink
								

								 	
									link
								

								 	
									fileId, access, [unshareDate], [permissions]
								

								 	
									com.box.sdk.BoxSharedLink
								

								
	
									deleteFile
								

								 	
									delete
								

								 	
									fileId
								

								 	
	
									uploadNewFileVersion
								

								 	
									uploadVersion
								

								 	
									fileId, fileContent, [modified], [fileSize], [listener]
								

								 	
									com.box.boxsdk.BoxFile
								

								
	
									promoteFileVersion
								

								 	
									promoteVersion
								

								 	
									fileId, version
								

								 	
									com.box.sdk.BoxFileVersion
								

								
	
									getFileVersions
								

								 	
									versions
								

								 	
									fileId
								

								 	
									java.util.Collection
								

								
	
									downloadPreviousFileVersions
								

								 	
									downloadVersion
								

								 	
									fileId, version, output, [listener]
								

								 	
									java.io.OutputStream
								

								
	
									deleteFileVersion
								

								 	
									deleteVersion
								

								 	
									fileId, version
								

								 	
	
									getFileInfo
								

								 	
									info
								

								 	
									fileId, fields
								

								 	
									com.box.sdk.BoxFile.Info
								

								
	
									updateFileInfo
								

								 	
									updateInfo
								

								 	
									fileId, info
								

								 	
									com.box.sdk.BoxFile
								

								
	
									createFileMetadata
								

								 	
									createMetadata
								

								 	
									fileId, metadata, [typeName]
								

								 	
									com.box.sdk.Metadata
								

								
	
									getFileMetadata
								

								 	
									metadata
								

								 	
									fileId, [typeName]
								

								 	
									com.box.sdk.Metadata
								

								
	
									updateFileMetadata
								

								 	
									updateMetadata
								

								 	
									fileId, metadata
								

								 	
									com.box.sdk.Metadata
								

								
	
									deleteFileMetadata
								

								 	
									deleteMetadata
								

								 	
									fileId
								

								 	
	
									getDownloadUrl
								

								 	
									url
								

								 	
									fileId
								

								 	
									java.net.URL
								

								
	
									getPreviewLink
								

								 	
									preview
								

								 	
									fileId
								

								 	
									java.net.URL
								

								
	
									getFileThumbnail
								

								 	
									thumbnail
								

								 	
									fileId, fileType, minWidth, minHeight, maxWidth, maxHeight
								

								 	
									byte[]
								

								

					URI Options for files
				
	Name	Type
	
									parentFolderId
								

								 	
									String
								

								
	
									content
								

								 	
									java.io.InputStream
								

								
	
									fileName
								

								 	
									String
								

								
	
									created
								

								 	
									Date
								

								
	
									modified
								

								 	
									Date
								

								
	
									size
								

								 	
									Long
								

								
	
									listener
								

								 	
									com.box.sdk.ProgressListener
								

								
	
									output
								

								 	
									java.io.OutputStream
								

								
	
									rangeStart
								

								 	
									Long
								

								
	
									rangeEnd
								

								 	
									Long
								

								
	
									outputStreams
								

								 	
									java.io.OutputStream[]
								

								
	
									destinationFolderId
								

								 	
									String
								

								
	
									newName
								

								 	
									String
								

								
	
									fields
								

								 	
									String[]
								

								
	
									info
								

								 	
									com.box.sdk.BoxFile.Info
								

								
	
									fileSize
								

								 	
									Long
								

								
	
									version
								

								 	
									Integer
								

								
	
									access
								

								 	
									com.box.sdk.BoxSharedLink.Access
								

								
	
									unshareDate
								

								 	
									Date
								

								
	
									permissions
								

								 	
									com.box.sdk.BoxSharedLink.Permissions
								

								
	
									fileType
								

								 	
									com.box.sdk.BoxFile.ThumbnailFileType
								

								
	
									minWidth
								

								 	
									Integer
								

								
	
									minHeight
								

								 	
									Integer
								

								
	
									maxWidth
								

								 	
									Integer
								

								
	
									maxHeight
								

								 	
									Integer
								

								
	
									metadata
								

								 	
									com.box.sdk.Metadata
								

								
	
									typeName
								

								 	
									String
								

								

Endpoint Prefix folders

					For more information on Box folders see https://developer.box.com/reference#folder-object. The following endpoints can be invoked with the prefix folders as follows.
				
box:folders/endpoint?[options]
	Endpoint	Shorthand Alias	Options	Result Body Type
	
									getRootFolder
								

								 	
									root
								

								 	 	
									com.box.sdk.BoxFolder
								

								
	
									createFolder
								

								 	
									create
								

								 	
									parentFolderId, folderName
								

								 	
									com.box.sdk.BoxFolder
								

								
	
									createFolder
								

								 	
									create
								

								 	
									parentFolderId, path
								

								 	
									com.box.sdk.BoxFolder
								

								
	
									copyFolder
								

								 	
									copy
								

								 	
									folderId, destinationfolderId, [newName]
								

								 	
									com.box.sdk.BoxFolder
								

								
	
									moveFolder
								

								 	
									move
								

								 	
									folderId, destinationFolderId, newName
								

								 	
									com.box.sdk.BoxFolder
								

								
	
									renameFolder
								

								 	
									rename
								

								 	
									folderId, newFolderName
								

								 	
									com.box.sdk.BoxFolder
								

								
	
									createFolderSharedLink
								

								 	
									link
								

								 	
									folderId, access, [unsharedDate], [permissions]
								

								 	
									java.util.List
								

								
	
									deleteFolder
								

								 	
									delete
								

								 	
									folderId
								

								 	
	
									getFolder
								

								 	
									folder
								

								 	
									path
								

								 	
									com.box.sdk.BoxFolder
								

								
	
									getFolderInfo
								

								 	
									info
								

								 	
									folderId, fields
								

								 	
									com.box.sdk.BoxFolder.Info
								

								
	
									getFolderItems
								

								 	
									items
								

								 	
									folderId, offset, limit, fields
								

								 	
									com.box.sdk.BoxFolder
								

								
	
									updateFolderInfo
								

								 	
									updateInfo
								

								 	
									folderId, info
								

								 	
									com.box.sdk.BoxFolder
								

								

					URI Options for folders
				
	Name	Type
	
									path
								

								 	
									String[]
								

								
	
									folderId
								

								 	
									String
								

								
	
									offset
								

								 	
									Long
								

								
	
									limit
								

								 	
									Long
								

								
	
									fields
								

								 	
									String[]
								

								
	
									parentFolderId
								

								 	
									String
								

								
	
									folderName
								

								 	
									String
								

								
	
									destinationFolderId
								

								 	
									String
								

								
	
									newName
								

								 	
									String
								

								
	
									newFolderName
								

								 	
									String
								

								
	
									info
								

								 	
									String
								

								
	
									access
								

								 	
									com.box.sdk.BoxSharedLink.Access
								

								
	
									unshareDate
								

								 	
									Date
								

								
	
									permissions
								

								 	
									com.box.sdk.BoxSharedLink.Permissions
								

								

Endpoint Prefix groups

					For more information on Box groups see https://developer.box.com/reference#group-object. The following endpoints can be invoked with the prefix groups as follows:
				
box:groups/endpoint?[options]
	Endpoint	Shorthand Alias	Options	Result Body Type
	
									createGroup
								

								 	
									create
								

								 	
									name, [provenance, externalSyncIdentifier, description, invitabilityLevel, memberViewabilityLevel]
								

								 	
									com.box.sdk.BoxGroup
								

								
	
									addGroupMembership
								

								 	
									createMembership
								

								 	
									groupId, userId, role
								

								 	
									com.box.sdk.BoxGroupMembership
								

								
	
									deleteGroup
								

								 	
									delete
								

								 	
									groupId
								

								 	
	
									getAllGroups
								

								 	
									groups
								

								 	 	
									java.util.Collection
								

								
	
									getGroupInfo
								

								 	
									info
								

								 	
									groupId
								

								 	
									com.box.sdk.BoxGroup.Info
								

								
	
									updateGroupInfo
								

								 	
									updateInfo
								

								 	
									groupId, groupInfo
								

								 	
									com.box.sdk.BoxGroup
								

								
	
									addGroupMembership
								

								 	
									addMembership
								

								 	
									groupId, userId, role
								

								 	
									com.box.sdk.BoxGroupMembership
								

								
	
									deleteGroupMembership
								

								 	
									deleteMembership
								

								 	
									groupMembershipId
								

								 	
	
									getGroupMemberships
								

								 	
									memberships
								

								 	
									groupId
								

								 	
									java.uti.Collection
								

								
	
									getGroupMembershipInfo
								

								 	
									membershipInfo
								

								 	
									groupMembershipId
								

								 	
									com.box.sdk.BoxGroup.Info
								

								
	
									updateGroupMembershipInfo
								

								 	
									updateMembershipInfo
								

								 	
									groupMembershipId, info
								

								 	
									com.box.sdk.BoxGroupMembership
								

								

					URI Options for groups
				
	Name	Type
	
									name
								

								 	
									String
								

								
	
									groupId
								

								 	
									String
								

								
	
									userId
								

								 	
									String
								

								
	
									role
								

								 	
									com.box.sdk.BoxGroupMembership.Role
								

								
	
									groupMembershipId
								

								 	
									String
								

								
	
									info
								

								 	
									com.box.sdk.BoxGroupMembership.Info
								

								

Endpoint Prefix search

					For more information on Box search API see https://developer.box.com/reference#searching-for-content. The following endpoints can be invoked with the prefix search as follows:
				
box:search/endpoint?[options]
	Endpoint	Shorthand Alias	Options	Result Body Type
	
									searchFolder
								

								 	
									search
								

								 	
									folderId, query
								

								 	
									java.util.Collection
								

								

					URI Options for search
				
	Name	Type
	
									folderId
								

								 	
									String
								

								
	
									query
								

								 	
									String
								

								

Endpoint Prefix tasks

					For information on Box tasks see https://developer.box.com/reference#task-object-1. The following endpoints can be invoked with the prefix tasks as follows:
				
box:tasks/endpoint?[options]
	Endpoint	Shorthand Alias	Options	Result Body Type
	
									addFileTask
								

								 	
									add
								

								 	
									fileId, action, dueAt, [message]
								

								 	
									com.box.sdk.BoxUser
								

								
	
									deleteTask
								

								 	
									delete
								

								 	
									taskId
								

								 	
	
									getFileTasks
								

								 	
									tasks
								

								 	
									fileId
								

								 	
									java.util.List
								

								
	
									getTaskInfo
								

								 	
									info
								

								 	
									taskId
								

								 	
									com.box.sdk.BoxTask.Info
								

								
	
									updateTaskInfo
								

								 	
									updateInfo
								

								 	
									taskId, info
								

								 	
									com.box.sdk.BoxTask
								

								
	
									addAssignmentToTask
								

								 	
									addAssignment
								

								 	
									taskId, assignTo
								

								 	
									com.box.sdk.BoxTask
								

								
	
									deleteTaskAssignment
								

								 	
									deleteAssignment
								

								 	
									taskAssignmentId
								

								 	
	
									getTaskAssignments
								

								 	
									assignments
								

								 	
									taskId
								

								 	
									java.util.List
								

								
	
									getTaskAssignmentInfo
								

								 	
									assignmentInfo
								

								 	
									taskAssignmentId
								

								 	
									com.box.sdk.BoxTaskAssignment.Info
								

								

					URI Options for tasks
				
	Name	Type
	
									fileId
								

								 	
									String
								

								
	
									action
								

								 	
									com.box.sdk.BoxTask.Action
								

								
	
									dueAt
								

								 	
									Date
								

								
	
									message
								

								 	
									String
								

								
	
									taskId
								

								 	
									String
								

								
	
									info
								

								 	
									com.box.sdk.BoxTask.Info
								

								
	
									assignTo
								

								 	
									com.box.sdk.BoxUser
								

								
	
									taskAssignmentId
								

								 	
									String
								

								

Endpoint Prefix users

					For information on Box users see https://developer.box.com/reference#user-object. The following endpoints can be invoked with the prefix users as follows:
				
box:users/endpoint?[options]
	Endpoint	Shorthand Alias	Options	Result Body Type
	
									getCurrentUser
								

								 	
									currentUser
								

								 	 	
									com.box.sdk.BoxUser
								

								
	
									getAllEnterpriseOrExternalUsers
								

								 	
									users
								

								 	
									filterTerm, [fields]
								

								 	
									com.box.sdk.BoxUser
								

								
	
									createAppUser
								

								 	
									create
								

								 	
									name, [params]
								

								 	
									com.box.sdk.BoxUser
								

								
	
									createEnterpriseUser
								

								 	
									create
								

								 	
									login, name, [params]
								

								 	
									com.box.sdk.BoxUser
								

								
	
									deleteUser
								

								 	
									delete
								

								 	
									userId, notifyUser, force
								

								 	
	
									getUserEmailAlias
								

								 	
									emailAlias
								

								 	
									userId
								

								 	
									com.box.sdk.BoxUser
								

								
	
									deleteUserEmailAlias
								

								 	
									deleteEmailAlias
								

								 	
									userId, emailAliasId
								

								 	
									java.util.List
								

								
	
									getUserInfo
								

								 	
									info
								

								 	
									userId
								

								 	
									com.box.sdk.BoxUser.Info
								

								
	
									updateUserInfo
								

								 	
									updateInfo
								

								 	
									userId, info
								

								 	
									com.box.sdk.BoxUser
								

								
	
									moveFolderToUser
								

								 	
									-
								

								 	
									userId, sourceUserId
								

								 	
									com.box.sdk.BoxFolder.Info
								

								

					URI Options for users
				
	Name	Type
	
									defaultRequest
								

								 	
									com.box.restclientv2.requestsbase.BoxDefaultRequestObject
								

								
	
									emailAliasRequest
								

								 	
									com.box.boxjavalibv2.requests.requestobjects.BoxEmailAliasRequestObject
								

								
	
									emailId
								

								 	
									String
								

								
	
									filterTerm
								

								 	
									String
								

								
	
									folderId
								

								 	
									String
								

								
	
									simpleUserRequest
								

								 	
									com.box.boxjavalibv2.requests.requestobjects.BoxSimpleUserRequestObject
								

								
	
									userDeleteRequest
								

								 	
									com.box.boxjavalibv2.requests.requestobjects.BoxUserDeleteRequestObject
								

								
	
									userId
								

								 	
									String
								

								
	
									userRequest
								

								 	
									com.box.boxjavalibv2.requests.requestobjects.BoxUserRequestObject
								

								
	
									userUpdateLoginRequest
								

								 	
									com.box.boxjavalibv2.requests.requestobjects.BoxUserUpdateLoginRequestObject
								

								

Consumer Endpoints:

				For more information on Box events see https://developer.box.com/reference#events. Consumer endpoints can only use the endpoint prefix events as shown in the example next.
			
box:events/endpoint?[options]
	Endpoint	Shorthand Alias	Options	Result Body Type
	
								events
							

							 	 	
								[startingPosition]
							

							 	
								com.box.sdk.BoxEvent
							

							

				URI Options for events
			
	Name	Type
	
								startingPosition
							

							 	
								Long
							

							

Message header

				Any of the options can be provided in a message header for producer endpoints with CamelBox. prefix.
			

Message body

				All result message bodies utilize objects provided by the Box Java SDK. Producer endpoints can specify the option name for incoming message body in the inBody endpoint parameter.
			

Samples

				The following route uploads new files to the user’s root folder:
			
from("file:...")
 .to("box://files/upload/inBody=fileUploadRequest");

				The following route polls user’s account for updates:
			
from("box://events/listen?startingPosition=-1")
 .to("bean:blah");

				The following route uses a producer with dynamic header options. The fileId property has the Box file id and the output property has the output stream of the file contents, so they are assigned to the CamelBox.fileId header and CamelBox.output header respectively as follows:
			
from("direct:foo")
 .setHeader("CamelBox.fileId", header("fileId"))
 .setHeader("CamelBox.output", header("output"))
 .to("box://files/download")
 .to("file://...");

Chapter 53. Braintree Component

			Available as of Camel version 2.17
		

			The Braintree component provides access to Braintree Payments trough through theirs Java SDK.
		

			All client applications need API credential in order to process payments. In order to use camel-braintree with your account, you’ll need to create a new Sandbox or Production account.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-braintree</artifactId>
 <version>${camel-version}</version>
</dependency>

			
		
Braintree Options

				The Braintree component supports 2 options which are listed below.
			
	Name	Description	Default	Type
	
								configuration (common)
							

							 	
								To use the shared configuration
							

							 	 	
								BraintreeConfiguration
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The Braintree endpoint is configured using URI syntax:
			
braintree:apiName/methodName

				with the following path and query parameters:
			
Path Parameters (2 parameters):

	Name	Description	Default	Type
	
									apiName
								

								 	
									Required What kind of operation to perform
								

								 	 	
									BraintreeApiName
								

								
	
									methodName
								

								 	
									What sub operation to use for the selected operation
								

								 	 	
									String
								

								

Query Parameters (14 parameters):

	Name	Description	Default	Type
	
									environment (common)
								

								 	
									The environment Either SANDBOX or PRODUCTION
								

								 	 	
									String
								

								
	
									inBody (common)
								

								 	
									Sets the name of a parameter to be passed in the exchange In Body
								

								 	 	
									String
								

								
	
									merchantId (common)
								

								 	
									The merchant id provided by Braintree.
								

								 	 	
									String
								

								
	
									privateKey (common)
								

								 	
									The private key provided by Braintree.
								

								 	 	
									String
								

								
	
									publicKey (common)
								

								 	
									The public key provided by Braintree.
								

								 	 	
									String
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									accessToken (advanced)
								

								 	
									The access token granted by a merchant to another in order to process transactions on their behalf. Used in place of environment, merchant id, public key and private key fields.
								

								 	 	
									String
								

								
	
									httpReadTimeout (advanced)
								

								 	
									Set read timeout for http calls.
								

								 	 	
									Integer
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									httpLogLevel (logging)
								

								 	
									Set logging level for http calls, see java.util.logging.Level
								

								 	 	
									String
								

								
	
									proxyHost (proxy)
								

								 	
									The proxy host
								

								 	 	
									String
								

								
	
									proxyPort (proxy)
								

								 	
									The proxy port
								

								 	 	
									Integer
								

								

URI format

				
			
braintree://endpoint-prefix/endpoint?[options]

				
			

				Endpoint prefix can be one of:
			
	
						addOn
					
	
						address
					
	
						clientToken
					
	
						creditCardverification
					
	
						customer
					
	
						discount
					
	
						merchantAccount
					
	
						paymentmethod
					
	
						paymentmethodNonce
					
	
						plan
					
	
						settlementBatchSummary
					
	
						subscription
					
	
						transaction
					
	
						webhookNotification
					

				
			

BraintreeComponent

				The Braintree Component can be configured with the options below. These options can be provided using the component’s bean property configuration of type org.apache.camel.component.braintree.BraintreeConfiguration.
			
	Option	Type	Description
	
								environment
							

							 	
								String
							

							 	
								Value that specifies where requests should be directed – sandbox or production
							

							
	
								merchantId
							

							 	
								String
							

							 	
								A unique identifier for your gateway account, which is different than your merchant account ID
							

							
	
								publicKey
							

							 	
								String
							

							 	
								User-specific public identifier
							

							
	
								privateKey
							

							 	
								String
							

							 	
								User-specific secure identifier that should not be shared – even with us!
							

							
	
								accessToken
							

							 	
								String
							

							 	
								Token granted to a merchant using Braintree Auth allowing them to process transactions on another’s behalf. Used in place of the environment, merchantId, publicKey and privateKey options.
							

							

				All the options above are provided by Braintree Payments
			

Producer Endpoints:

				Producer endpoints can use endpoint prefixes followed by endpoint names and associated options described next. A shorthand alias can be used for some endpoints. The endpoint URI MUST contain a prefix.
			

				Endpoint options that are not mandatory are denoted by []. When there are no mandatory options for an endpoint, one of the set of [] options MUST be provided. Producer endpoints can also use a special option inBody that in turn should contain the name of the endpoint option whose value will be contained in the Camel Exchange In message.
			

				Any of the endpoint options can be provided in either the endpoint URI, or dynamically in a message header. The message header name must be of the format CamelBraintree.<option>. Note that the inBody option overrides message header, i.e. the endpoint option inBody=option would override a CamelBraintree.option header.
			

				For more information on the endpoints and options see Braintree references at https://developers.braintreepayments.com/reference/overview
			

				
			
Endpoint prefix addOn

					The following endpoints can be invoked with the prefix addOn as follows:
				

					
				
braintree://addOn/endpoint
	Endpoint	Shorthand Alias	Options	Result Body Type
	
									all
								

								 	
									
								

								 	
									
								

								 	
									List<com.braintreegateway.Addon>
								

								

Endpoint prefix address

					The following endpoints can be invoked with the prefix address as follows:
				

					
				
braintree://address/endpoint?[options]
	Endpoint	Shorthand Alias	Options	Result Body Type
	
									create
								

								 	
									
								

								 	
									customerId, request
								

								 	
									com.braintreegateway.Result<com.braintreegateway.Address>
								

								
	
									delete
								

								 	
									
								

								 	
									customerId, id
								

								 	
									com.braintreegateway.Result<com.braintreegateway.Address>
								

								
	
									find
								

								 	
									
								

								 	
									customerId, id
								

								 	
									com.braintreegateway.Address
								

								
	
									update
								

								 	
									
								

								 	
									customerId, id, request
								

								 	
									com.braintreegateway.Result<com.braintreegateway.Address>
								

								

					URI Options for address
				
	Name	Type
	
									customerId
								

								 	
									String
								

								
	
									request
								

								 	
									com.braintreegateway.AddressRequest
								

								
	
									id
								

								 	
									String
								

								

Endpoint prefix clientToken

					The following endpoints can be invoked with the prefix clientToken as follows:
				

					
				
braintree://clientToken/endpoint?[options]
	Endpoint	Shorthand Alias	Options	Result Body Type
	
									generate
								

								 	
									
								

								 	
									 request
								

								 	
									String
								

								

					URI Options for clientToken
				
	Name	Type
	
									request
								

								 	
									com.braintreegateway.ClientTokenrequest
								

								

Endpoint prefix creditCardVerification

					The following endpoints can be invoked with the prefix creditCardverification as follows:
				

					
				
braintree://creditCardVerification/endpoint?[options]
	Endpoint	Shorthand Alias	Options	Result Body Type
	
									find
								

								 	
									
								

								 	
									 id
								

								 	
									com.braintreegateway.CreditCardVerification
								

								
	
									search
								

								 	
									
								

								 	
									query
								

								 	
									com.braintreegateway.ResourceCollection<com.braintreegateway.CreditCardVerification>
								

								

					URI Options for creditCardVerification
				
	Name	Type
	
									id
								

								 	
									String
								

								
	
									query
								

								 	
									com.braintreegateway.CreditCardVerificationSearchRequest
								

								

Endpoint prefix customer

					The following endpoints can be invoked with the prefix customer as follows:
				

					
				
braintree://customer/endpoint?[options]
	Endpoint	Shorthand Alias	Options	Result Body Type
	
									all
								

								 	
									
								

								 	
									
								

								 	
									
								

								
	
									create
								

								 	
									
								

								 	
									request
								

								 	
									com.braintreegateway.Result<com.braintreegateway.Customer>
								

								
	
									delete
								

								 	
									
								

								 	
									id
								

								 	
									com.braintreegateway.Result<com.braintreegateway.Customer>
								

								
	
									find
								

								 	
									
								

								 	
									id
								

								 	
									com.braintreegateway.Customer
								

								
	
									search
								

								 	
									
								

								 	
									query
								

								 	
									com.braintreegateway.ResourceCollection<com.braintreegateway.Customer>
								

								
	
									update
								

								 	
									
								

								 	
									id, request
								

								 	
									com.braintreegateway.Result<com.braintreegateway.Customer>
								

								

					URI Options for customer
				
	Name	Type
	
									id
								

								 	
									String
								

								
	
									request
								

								 	
									com.braintreegateway.CustomerRequest
								

								
	
									query
								

								 	
									com.braintreegateway.CustomerSearchRequest
								

								

Endpoint prefix discount

					The following endpoints can be invoked with the prefix discount as follows:
				

					
				
braintree://discount/endpoint
	Endpoint	Shorthand Alias	Options	Result Body Type
	
									all
								

								 	
									
								

								 	
									
								

								 	
									List<com.braintreegateway.Discount>
								

								

+
+

Endpoint prefix merchantAccount

					The following endpoints can be invoked with the prefix merchantAccount as follows:
				

					
				
braintree://merchantAccount/endpoint?[options]
	Endpoint	Shorthand Alias	Options	Result Body Type
	
									create
								

								 	
									
								

								 	
									request
								

								 	
									com.braintreegateway.Result<com.braintreegateway.MerchantAccount>
								

								
	
									createForCurrency
								

								 	 	
									currencyRequest
								

								 	
									com.braintreegateway.Result<com.braintreegateway.MerchantAccount>
								

								
	
									find
								

								 	
									
								

								 	
									id
								

								 	
									com.braintreegateway.MerchantAccount
								

								
	
									update
								

								 	
									
								

								 	
									id, request
								

								 	
									com.braintreegateway.Result<com.braintreegateway.MerchantAccount>
								

								

					URI Options for merchantAccount
				
	Name	Type
	
									id
								

								 	
									String
								

								
	
									request
								

								 	
									com.braintreegateway.MerchantAccountRequest
								

								
	
									currencyRequest
								

								 	
									com.braintreegateway.MerchantAccountCreateForCurrencyRequest
								

								

Endpoint prefix paymentMethod

					The following endpoints can be invoked with the prefix paymentMethod as follows:
				

					
				
braintree://paymentMethod/endpoint?[options]
	Endpoint	Shorthand Alias	Options	Result Body Type
	
									create
								

								 	
									
								

								 	
									request
								

								 	
									com.braintreegateway.Result<com.braintreegateway.PaymentMethod>
								

								
	
									delete
								

								 	
									
								

								 	
									token, deleteRequest
								

								 	
									com.braintreegateway.Result<com.braintreegateway.PaymentMethod>
								

								
	
									find
								

								 	
									
								

								 	
									token
								

								 	
									com.braintreegateway.PaymentMethod
								

								
	
									update
								

								 	
									
								

								 	
									token, request
								

								 	
									com.braintreegateway.Result<com.braintreegateway.PaymentMethod>
								

								

					URI Options for paymentMethod
				
	Name	Type
	
									token
								

								 	
									String
								

								
	
									request
								

								 	
									com.braintreegateway.PaymentMethodRequest
								

								
	
									deleteRequest
								

								 	
									com.braintreegateway.PaymentMethodDeleteRequest
								

								

Endpoint prefix paymentMethodNonce

					The following endpoints can be invoked with the prefix paymentMethodNonce as follows:
				

					
				
braintree://paymentMethodNonce/endpoint?[options]
	Endpoint	Shorthand Alias	Options	Result Body Type
	
									create
								

								 	
									
								

								 	
									paymentMethodToken
								

								 	
									com.braintreegateway.Result<com.braintreegateway.PaymentMethodNonce>
								

								
	
									find
								

								 	
									
								

								 	
									paymentMethodNonce
								

								 	
									com.braintreegateway.PaymentMethodNonce
								

								

					URI Options for paymentMethodNonce
				
	Name	Type
	
									paymentMethodToken
								

								 	
									String
								

								
	
									paymentMethodNonce
								

								 	
									String
								

								

Endpoint prefix plan

					The following endpoints can be invoked with the prefix plan as follows:
				

					
				
braintree://plan/endpoint
	Endpoint	Shorthand Alias	Options	Result Body Type
	
									all
								

								 	
									
								

								 	
									
								

								 	
									List<com.braintreegateway.Plan>
								

								

					
				

Endpoint prefix settlementBatchSummary

					The following endpoints can be invoked with the prefix settlementBatchSummary as follows:
				

					
				
braintree://settlementBatchSummary/endpoint?[options]
	Endpoint	Shorthand Alias	Options	Result Body Type
	
									generate
								

								 	
									
								

								 	
									 request
								

								 	
									com.braintreegateway.Result<com.braintreegateway.SettlementBatchSummary>
								

								

					URI Options for settlementBatchSummary
				
	Name	Type
	
									settlementDate
								

								 	
									Calendar
								

								
	
									groupByCustomField
								

								 	
									String
								

								

Endpoint prefix subscription

					The following endpoints can be invoked with the prefix subscription as follows:
				

					
				
braintree://subscription/endpoint?[options]
	Endpoint	Shorthand Alias	Options	Result Body Type
	
									cancel
								

								 	
									
								

								 	
									 id
								

								 	
									 com.braintreegateway.Result<com.braintreegateway.Subscription>
								

								
	
									create
								

								 	
									
								

								 	
									request
								

								 	
									com.braintreegateway.Result<com.braintreegateway.Subscription>
								

								
	
									delete
								

								 	
									
								

								 	
									customerId, id
								

								 	
									com.braintreegateway.Result<com.braintreegateway.Subscription>
								

								
	
									find
								

								 	
									
								

								 	
									id
								

								 	
									com.braintreegateway.Subscription
								

								
	
									retryCharge
								

								 	
									
								

								 	
									subscriptionId, amount
								

								 	
									com.braintreegateway.Result<com.braintreegateway.Transaction>
								

								
	
									search
								

								 	
									
								

								 	
									searchRequest
								

								 	
									com.braintreegateway.ResourceCollection<com.braintreegateway.Subscription>
								

								
	
									update
								

								 	
									
								

								 	
									id, request
								

								 	
									com.braintreegateway.Result<com.braintreegateway.Subscription>
								

								

					URI Options for subscription
				
	Name	Type
	
									id
								

								 	
									String
								

								
	
									request
								

								 	
									com.braintreegateway.SubscriptionRequest
								

								
	
									customerId
								

								 	
									String
								

								
	
									subscriptionId
								

								 	
									String
								

								
	
									amount
								

								 	
									BigDecimal
								

								
	
									searchRequest
								

								 	
									com.braintreegateway.SubscriptionSearchRequest.
								

								

					
				

Endpoint prefix transaction

					The following endpoints can be invoked with the prefix transaction as follows:
				

					
				
braintree://transaction/endpoint?[options]
	Endpoint	Shorthand Alias	Options	Result Body Type
	
									cancelRelease
								

								 	
									
								

								 	
									id
								

								 	
									com.braintreegateway.Result<com.braintreegateway.Transaction>
								

								
	
									cloneTransaction
								

								 	
									
								

								 	
									id, cloneRequest
								

								 	
									com.braintreegateway.Result<com.braintreegateway.Transaction>
								

								
	
									credit
								

								 	
									
								

								 	
									request
								

								 	
									com.braintreegateway.Result<com.braintreegateway.Transaction>
								

								
	
									find
								

								 	
									
								

								 	
									id
								

								 	
									com.braintreegateway.Transaction
								

								
	
									holdInEscrow
								

								 	
									
								

								 	
									id
								

								 	
									com.braintreegateway.Result<com.braintreegateway.Transaction>
								

								
	
									releaseFromEscrow
								

								 	
									
								

								 	
									id
								

								 	
									com.braintreegateway.Result<com.braintreegateway.Transaction>
								

								
	
									refund
								

								 	
									
								

								 	
									id, amount, refundRequest
								

								 	
									com.braintreegateway.Result<com.braintreegateway.Transaction>
								

								
	
									sale
								

								 	
									
								

								 	
									request
								

								 	
									com.braintreegateway.Result<com.braintreegateway.Transaction>
								

								
	
									search
								

								 	
									
								

								 	
									query
								

								 	
									com.braintreegateway.ResourceCollection<com.braintreegateway.Transaction>
								

								
	
									submitForPartialSettlement
								

								 	
									
								

								 	
									id, amount
								

								 	
									com.braintreegateway.Result<com.braintreegateway.Transaction>
								

								
	
									submitForSettlement
								

								 	
									
								

								 	
									id, amount, request
								

								 	
									com.braintreegateway.Result<com.braintreegateway.Transaction>
								

								
	
									voidTransaction
								

								 	
									
								

								 	
									id
								

								 	
									com.braintreegateway.Result<com.braintreegateway.Transaction>
								

								

					URI Options for transaction
				
	Name	Type
	
									id
								

								 	
									String
								

								
	
									request
								

								 	
									com.braintreegateway.TransactionCloneRequest
								

								
	
									cloneRequest
								

								 	
									com.braintreegateway.TransactionCloneRequest
								

								
	
									refundRequest
								

								 	
									com.braintreegateway.TransactionRefundRequest
								

								
	
									amount
								

								 	
									BigDecimal
								

								
	
									query
								

								 	
									com.braintreegateway.TransactionSearchRequest
								

								

Endpoint prefix webhookNotification

					The following endpoints can be invoked with the prefix webhookNotification as follows:
				

					
				
braintree://webhookNotification/endpoint?[options]
	Endpoint	Shorthand Alias	Options	Result Body Type
	
									parse
								

								 	
									
								

								 	
									 signature, payload
								

								 	
									com.braintreegateway.WebhookNotification
								

								
	
									verify
								

								 	
									
								

								 	
									challenge
								

								 	
									String
								

								

					URI Options for webhookNotification
				
	Name	Type
	
									signature
								

								 	
									String
								

								
	
									payload
								

								 	
									String
								

								
	
									challenge
								

								 	
									String
								

								

					
				

Consumer Endpoints

				Any of the producer endpoints can be used as a consumer endpoint. Consumer endpoints can use Scheduled Poll Consumer Options with a consumer. prefix to schedule endpoint invocation. By default Consumer endpoints that return an array or collection will generate one exchange per element, and their routes will be executed once for each exchange. To change this behavior use the property consumer.splitResults=true to return a single exchange for the entire list or array.
			

Message Headers

				Any URI option can be provided in a message header for producer endpoints with a CamelBraintree. prefix.
			

Message body

				All result message bodies utilize objects provided by the Braintree Java SDK. Producer endpoints can specify the option name for incoming message body in the inBody endpoint parameter.
			

				
			

				
			

Examples

				Blueprint
			
<?xml version="1.0"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:cm="http://aries.apache.org/blueprint/xmlns/blueprint-cm/v1.0.0"
 xsi:schemaLocation="
 http://aries.apache.org/blueprint/xmlns/blueprint-cm/v1.0.0 http://aries.apache.org/schemas/blueprint-cm/blueprint-cm-1.0.0.xsd
 http://www.osgi.org/xmlns/blueprint/v1.0.0 https://www.osgi.org/xmlns/blueprint/v1.0.0/blueprint.xsd
 http://camel.apache.org/schema/blueprint http://camel.apache.org/schema/blueprint/camel-blueprint.xsd">

 <cm:property-placeholder id="placeholder" persistent-id="camel.braintree">
 </cm:property-placeholder>

 <bean id="braintree" class="org.apache.camel.component.braintree.BraintreeComponent">
 <property name="configuration">
 <bean class="org.apache.camel.component.braintree.BraintreeConfiguration">
 <property name="environment" value="${environment}"/>
 <property name="merchantId" value="${merchantId}"/>
 <property name="publicKey" value="${publicKey}"/>
 <property name="privateKey" value="${privateKey}"/>
 </bean>
 </property>
 </bean>

 <camelContext trace="true" xmlns="http://camel.apache.org/schema/blueprint" id="braintree-example-context">
 <route id="braintree-example-route">
 <from uri="direct:generateClientToken"/>
 <to uri="braintree://clientToken/generate"/>
 <to uri="stream:out"/>
 </route>
 </camelContext>

</blueprint>

See Also

				* Configuring Camel * Component * Endpoint * Getting Started
			

				
			

				
			

Chapter 54. Browse Component

			Available as of Camel version 1.3
		

			The Browse component provides a simple BrowsableEndpoint which can be useful for testing, visualisation tools or debugging. The exchanges sent to the endpoint are all available to be browsed.
		
URI format

browse:someName[?options]

				Where someName can be any string to uniquely identify the endpoint.
			

Options

				The Browse component has no options.
			

				The Browse endpoint is configured using URI syntax:
			
browse:name

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									name
								

								 	
									Required A name which can be any string to uniquely identify the endpoint
								

								 	 	
									String
								

								

Query Parameters (4 parameters):

	Name	Description	Default	Type
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN/ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN/ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the default exchange pattern when creating an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

Sample

				In the route below, we insert a browse: component to be able to browse the Exchanges that are passing through:
			
from("activemq:order.in").to("browse:orderReceived").to("bean:processOrder");

				We can now inspect the received exchanges from within the Java code:
			
private CamelContext context;

public void inspectRecievedOrders() {
 BrowsableEndpoint browse = context.getEndpoint("browse:orderReceived", BrowsableEndpoint.class);
 List<Exchange> exchanges = browse.getExchanges();

 // then we can inspect the list of received exchanges from Java
 for (Exchange exchange : exchanges) {
 String payload = exchange.getIn().getBody();
 // do something with payload
 }
}

See Also

	
						Configuring Camel
					
	
						Component
					
	
						Endpoint
					
	
						Getting Started
					

Chapter 55. EHCache Component (deprecated)

			Available as of Camel version 2.1
		

			The cache component enables you to perform caching operations using EHCache as the Cache Implementation. The cache itself is created on demand or if a cache of that name already exists then it is simply utilized with its original settings.
		

			This component supports producer and event based consumer endpoints.
		

			The Cache consumer is an event based consumer and can be used to listen and respond to specific cache activities. If you need to perform selections from a pre-existing cache, use the processors defined for the cache component.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-cache</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>
URI format

cache://cacheName[?options]

				You can append query options to the URI in the following format, ?option=value&option=#beanRef&…​
			

Options

				The EHCache component supports 4 options which are listed below.
			
	Name	Description	Default	Type
	
								cacheManagerFactory (advanced)
							

							 	
								To use the given CacheManagerFactory for creating the CacheManager. By default the DefaultCacheManagerFactory is used.
							

							 	 	
								CacheManagerFactory
							

							
	
								configuration (common)
							

							 	
								Sets the Cache configuration
							

							 	 	
								CacheConfiguration
							

							
	
								configurationFile (common)
							

							 	
								Sets the location of the ehcache.xml file to load from classpath or file system. By default the file is loaded from classpath:ehcache.xml
							

							 	
								classpath:ehcache.xml
							

							 	
								String
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The EHCache endpoint is configured using URI syntax:
			
cache:cacheName

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									cacheName
								

								 	
									Required Name of the cache
								

								 	 	
									String
								

								

Query Parameters (19 parameters):

	Name	Description	Default	Type
	
									diskExpiryThreadInterval Seconds (common)
								

								 	
									The number of seconds between runs of the disk expiry thread.
								

								 	 	
									long
								

								
	
									diskPersistent (common)
								

								 	
									Whether the disk store persists between restarts of the application.
								

								 	
									false
								

								 	
									boolean
								

								
	
									diskStorePath (common)
								

								 	
									Deprecated This parameter is ignored. CacheManager sets it using setter injection.
								

								 	 	
									String
								

								
	
									eternal (common)
								

								 	
									Sets whether elements are eternal. If eternal, timeouts are ignored and the element never expires.
								

								 	
									false
								

								 	
									boolean
								

								
	
									key (common)
								

								 	
									The default key to use. If a key is provided in the message header, then the key from the header takes precedence.
								

								 	 	
									String
								

								
	
									maxElementsInMemory (common)
								

								 	
									The number of elements that may be stored in the defined cache in memory.
								

								 	
									1000
								

								 	
									int
								

								
	
									memoryStoreEvictionPolicy (common)
								

								 	
									Which eviction strategy to use when maximum number of elements in memory is reached. The strategy defines which elements to be removed. LRU - Lest Recently Used LFU - Lest Frequently Used FIFO - First In First Out
								

								 	
									LFU
								

								 	
									MemoryStoreEviction Policy
								

								
	
									objectCache (common)
								

								 	
									Whether to turn on allowing to store non serializable objects in the cache. If this option is enabled then overflow to disk cannot be enabled as well.
								

								 	
									false
								

								 	
									boolean
								

								
	
									operation (common)
								

								 	
									The default cache operation to use. If an operation in the message header, then the operation from the header takes precedence.
								

								 	 	
									String
								

								
	
									overflowToDisk (common)
								

								 	
									Specifies whether cache may overflow to disk
								

								 	
									true
								

								 	
									boolean
								

								
	
									timeToIdleSeconds (common)
								

								 	
									The maximum amount of time between accesses before an element expires
								

								 	
									300
								

								 	
									long
								

								
	
									timeToLiveSeconds (common)
								

								 	
									The maximum time between creation time and when an element expires. Is used only if the element is not eternal
								

								 	
									300
								

								 	
									long
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									cacheLoaderRegistry (advanced)
								

								 	
									To configure cache loader using the CacheLoaderRegistry
								

								 	 	
									CacheLoaderRegistry
								

								
	
									cacheManagerFactory (advanced)
								

								 	
									To use a custom CacheManagerFactory for creating the CacheManager to be used by this endpoint. By default the CacheManagerFactory configured on the component is used.
								

								 	 	
									CacheManagerFactory
								

								
	
									eventListenerRegistry (advanced)
								

								 	
									To configure event listeners using the CacheEventListenerRegistry
								

								 	 	
									CacheEventListener Registry
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

Sending/Receiving Messages to/from the cache

Message Headers up to Camel 2.7

	Header	Description
	
									CACHE_OPERATION
								

								 	
									The operation to be performed on the cache. Valid options are
								

								
									* GET * CHECK * ADD * UPDATE * DELETE * DELETEALL
 GET and CHECK requires Camel 2.3 onwards.
								

								
	
									CACHE_KEY
								

								 	
									The cache key used to store the Message in the cache. The cache key is optional if the CACHE_OPERATION is DELETEALL
								

								

Message Headers Camel 2.8+

					Header changes in Camel 2.8
				

					The header names and supported values have changed to be prefixed with 'CamelCache' and use mixed case. This makes them easier to identify and keep separate from other headers. The CacheConstants variable names remain unchanged, just their values have been changed. Also, these headers are now removed from the exchange after the cache operation is performed.
				
	Header	Description
	
									CamelCacheOperation
								

								 	
									The operation to be performed on the cache. The valid options are
								

								
									* CamelCacheGet * CamelCacheCheck * CamelCacheAdd * CamelCacheUpdate * CamelCacheDelete * CamelCacheDeleteAll
								

								
	
									CamelCacheKey
								

								 	
									The cache key used to store the Message in the cache. The cache key is optional if the CamelCacheOperation is CamelCacheDeleteAll
								

								

					The CamelCacheAdd and CamelCacheUpdate operations support additional headers:
				
	Header	Type	Description
	
									CamelCacheTimeToLive
								

								 	
									Integer
								

								 	
									Camel 2.11: Time to live in seconds.
								

								
	
									CamelCacheTimeToIdle
								

								 	
									Integer
								

								 	
									Camel 2.11: Time to idle in seconds.
								

								
	
									CamelCacheEternal
								

								 	
									Boolean
								

								 	
									Camel 2.11: Whether the content is eternal.
								

								

Cache Producer

					Sending data to the cache involves the ability to direct payloads in exchanges to be stored in a pre-existing or created-on-demand cache. The mechanics of doing this involve
				
	
							setting the Message Exchange Headers shown above.
						
	
							ensuring that the Message Exchange Body contains the message directed to the cache
						

Cache Consumer

					Receiving data from the cache involves the ability of the CacheConsumer to listen on a pre-existing or created-on-demand Cache using an event Listener and receive automatic notifications when any cache activity take place (i.e CamelCacheGet/CamelCacheUpdate/CamelCacheDelete/CamelCacheDeleteAll). Upon such an activity taking place
				
	
							an exchange containing Message Exchange Headers and a Message Exchange Body containing the just added/updated payload is placed and sent.
						
	
							in case of a CamelCacheDeleteAll operation, the Message Exchange Header CamelCacheKey and the Message Exchange Body are not populated.
						

Cache Processors

					There are a set of nice processors with the ability to perform cache lookups and selectively replace payload content at the
				
	
							body
						
	
							token
						
	
							xpath level
						

Cache Usage Samples

Example 1: Configuring the cache

from("cache://MyApplicationCache" +
 "?maxElementsInMemory=1000" +
 "&memoryStoreEvictionPolicy=" +
 "MemoryStoreEvictionPolicy.LFU" +
 "&overflowToDisk=true" +
 "&eternal=true" +
 "&timeToLiveSeconds=300" +
 "&timeToIdleSeconds=true" +
 "&diskPersistent=true" +
 "&diskExpiryThreadIntervalSeconds=300")

Example 2: Adding keys to the cache

RouteBuilder builder = new RouteBuilder() {
 public void configure() {
 from("direct:start")
 .setHeader(CacheConstants.CACHE_OPERATION, constant(CacheConstants.CACHE_OPERATION_ADD))
 .setHeader(CacheConstants.CACHE_KEY, constant("Ralph_Waldo_Emerson"))
 .to("cache://TestCache1")
 }
};

Example 2: Updating existing keys in a cache

RouteBuilder builder = new RouteBuilder() {
 public void configure() {
 from("direct:start")
 .setHeader(CacheConstants.CACHE_OPERATION, constant(CacheConstants.CACHE_OPERATION_UPDATE))
 .setHeader(CacheConstants.CACHE_KEY, constant("Ralph_Waldo_Emerson"))
 .to("cache://TestCache1")
 }
};

Example 3: Deleting existing keys in a cache

RouteBuilder builder = new RouteBuilder() {
 public void configure() {
 from("direct:start")
 .setHeader(CacheConstants.CACHE_OPERATION, constant(CacheConstants.CACHE_DELETE))
 .setHeader(CacheConstants.CACHE_KEY", constant("Ralph_Waldo_Emerson"))
 .to("cache://TestCache1")
 }
};

Example 4: Deleting all existing keys in a cache

RouteBuilder builder = new RouteBuilder() {
 public void configure() {
 from("direct:start")
 .setHeader(CacheConstants.CACHE_OPERATION, constant(CacheConstants.CACHE_DELETEALL))
 .to("cache://TestCache1");
 }
};

Example 5: Notifying any changes registering in a Cache to Processors and other Producers

RouteBuilder builder = new RouteBuilder() {
 public void configure() {
 from("cache://TestCache1")
 .process(new Processor() {
 public void process(Exchange exchange)
 throws Exception {
 String operation = (String) exchange.getIn().getHeader(CacheConstants.CACHE_OPERATION);
 String key = (String) exchange.getIn().getHeader(CacheConstants.CACHE_KEY);
 Object body = exchange.getIn().getBody();
 // Do something
 }
 })
 }
};

Example 6: Using Processors to selectively replace payload with cache values

RouteBuilder builder = new RouteBuilder() {
 public void configure() {
 //Message Body Replacer
 from("cache://TestCache1")
 .filter(header(CacheConstants.CACHE_KEY).isEqualTo("greeting"))
 .process(new CacheBasedMessageBodyReplacer("cache://TestCache1","farewell"))
 .to("direct:next");

 //Message Token replacer
 from("cache://TestCache1")
 .filter(header(CacheConstants.CACHE_KEY).isEqualTo("quote"))
 .process(new CacheBasedTokenReplacer("cache://TestCache1","novel","#novel#"))
 .process(new CacheBasedTokenReplacer("cache://TestCache1","author","#author#"))
 .process(new CacheBasedTokenReplacer("cache://TestCache1","number","#number#"))
 .to("direct:next");

 //Message XPath replacer
 from("cache://TestCache1").
 .filter(header(CacheConstants.CACHE_KEY).isEqualTo("XML_FRAGMENT"))
 .process(new CacheBasedXPathReplacer("cache://TestCache1","book1","/books/book1"))
 .process (new CacheBasedXPathReplacer("cache://TestCache1","book2","/books/book2"))
 .to("direct:next");
 }
};

Example 7: Getting an entry from the Cache

from("direct:start")
 // Prepare headers
 .setHeader(CacheConstants.CACHE_OPERATION, constant(CacheConstants.CACHE_OPERATION_GET))
 .setHeader(CacheConstants.CACHE_KEY, constant("Ralph_Waldo_Emerson")).
 .to("cache://TestCache1").
 // Check if entry was not found
 .choice().when(header(CacheConstants.CACHE_ELEMENT_WAS_FOUND).isNull()).
 // If not found, get the payload and put it to cache
 .to("cxf:bean:someHeavyweightOperation").
 .setHeader(CacheConstants.CACHE_OPERATION, constant(CacheConstants.CACHE_OPERATION_ADD))
 .setHeader(CacheConstants.CACHE_KEY, constant("Ralph_Waldo_Emerson"))
 .to("cache://TestCache1")
 .end()
 .to("direct:nextPhase");

Example 8: Checking for an entry in the Cache

					Note: The CHECK command tests existence of an entry in the cache but doesn’t place a message in the body.
				
from("direct:start")
 // Prepare headers
 .setHeader(CacheConstants.CACHE_OPERATION, constant(CacheConstants.CACHE_OPERATION_CHECK))
 .setHeader(CacheConstants.CACHE_KEY, constant("Ralph_Waldo_Emerson")).
 .to("cache://TestCache1").
 // Check if entry was not found
 .choice().when(header(CacheConstants.CACHE_ELEMENT_WAS_FOUND).isNull()).
 // If not found, get the payload and put it to cache
 .to("cxf:bean:someHeavyweightOperation").
 .setHeader(CacheConstants.CACHE_OPERATION, constant(CacheConstants.CACHE_OPERATION_ADD))
 .setHeader(CacheConstants.CACHE_KEY, constant("Ralph_Waldo_Emerson"))
 .to("cache://TestCache1")
 .end();

Management of EHCache

				EHCache has its own statistics and management from JMX.
			

				Here’s a snippet on how to expose them via JMX in a Spring application context:
			
<bean id="ehCacheManagementService" class="net.sf.ehcache.management.ManagementService" init-method="init" lazy-init="false">
 <constructor-arg>
 <bean class="net.sf.ehcache.CacheManager" factory-method="getInstance"/>
 </constructor-arg>
 <constructor-arg>
 <bean class="org.springframework.jmx.support.JmxUtils" factory-method="locateMBeanServer"/>
 </constructor-arg>
 <constructor-arg value="true"/>
 <constructor-arg value="true"/>
 <constructor-arg value="true"/>
 <constructor-arg value="true"/>
</bean>

				Of course you can do the same thing in straight Java:
			
ManagementService.registerMBeans(CacheManager.getInstance(), mbeanServer, true, true, true, true);

				You can get cache hits, misses, in-memory hits, disk hits, size stats this way. You can also change CacheConfiguration parameters on the fly.
			

Cache replication Camel 2.8

				The Camel Cache component is able to distribute a cache across server nodes using several different replication mechanisms including: RMI, JGroups, JMS and Cache Server.
			

				There are two different ways to make it work:
			

				1. You can configure ehcache.xml manually
			

				OR
			

				2. You can configure these three options:
			
	
						cacheManagerFactory
					
	
						eventListenerRegistry
					
	
						cacheLoaderRegistry
					

				Configuring Camel Cache replication using the first option is a bit of hard work as you have to configure all caches separately. So in a situation when the all names of caches are not known, using ehcache.xml is not a good idea.
			

				The second option is much better when you want to use many different caches as you do not need to define options per cache. This is because replication options are set per CacheManager and per CacheEndpoint. Also it is the only way when cache names are not know at the development phase.
			

				Note: It might be useful to read the EHCache manual to get a better understanding of the Camel Cache replication mechanism.
			
Example: JMS cache replication

					JMS replication is the most powerful and secured replication method. Used together with Camel Cache replication makes it also rather simple. An example is available on a separate page.
				

Chapter 56. Caffeine Cache Component

			Available as of Camel version 2.20
		

			The caffeine-cache component enables you to perform caching operations using The simple cache from Caffeine.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-caffeine</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>
URI format

caffeine-cache://cacheName[?options]

				You can append query options to the URI in the following format, ?option=value&option=#beanRef&…​
			

Options

				The Caffeine Cache component supports 2 options which are listed below.
			
	Name	Description	Default	Type
	
								configuration (advanced)
							

							 	
								Sets the global component configuration
							

							 	 	
								CaffeineConfiguration
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The Caffeine Cache endpoint is configured using URI syntax:
			
caffeine-cache:cacheName

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									cacheName
								

								 	
									Required the cache name
								

								 	 	
									String
								

								

Query Parameters (19 parameters):

	Name	Description	Default	Type
	
									createCacheIfNotExist (common)
								

								 	
									Configure if a cache need to be created if it does exist or can’t be pre-configured.
								

								 	
									true
								

								 	
									boolean
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									action (producer)
								

								 	
									To configure the default cache action. If an action is set in the message header, then the operation from the header takes precedence.
								

								 	 	
									String
								

								
	
									cache (producer)
								

								 	
									To configure the default an already instantianted cache to be used
								

								 	 	
									Cache
								

								
	
									cacheLoader (producer)
								

								 	
									To configure a CacheLoader in case of a LoadCache use
								

								 	 	
									CacheLoader
								

								
	
									evictionType (producer)
								

								 	
									Set the eviction Type for this cache
								

								 	
									SIZE_BASED
								

								 	
									EvictionType
								

								
	
									expireAfterAccessTime (producer)
								

								 	
									Set the expire After Access Time in case of time based Eviction (in seconds)
								

								 	
									300
								

								 	
									int
								

								
	
									expireAfterWriteTime (producer)
								

								 	
									Set the expire After Access Write in case of time based Eviction (in seconds)
								

								 	
									300
								

								 	
									int
								

								
	
									initialCapacity (producer)
								

								 	
									Set the initial Capacity for the cache
								

								 	
									10000
								

								 	
									int
								

								
	
									key (producer)
								

								 	
									To configure the default action key. If a key is set in the message header, then the key from the header takes precedence.
								

								 	 	
									Object
								

								
	
									maximumSize (producer)
								

								 	
									Set the maximum size for the cache
								

								 	
									10000
								

								 	
									int
								

								
	
									removalListener (producer)
								

								 	
									Set a specific removal Listener for the cache
								

								 	 	
									RemovalListener
								

								
	
									statsCounter (producer)
								

								 	
									Set a specific Stats Counter for the cache stats
								

								 	 	
									StatsCounter
								

								
	
									statsEnabled (producer)
								

								 	
									To enable stats on the cache
								

								 	
									false
								

								 	
									boolean
								

								
	
									keyType (advanced)
								

								 	
									The cache key type, default java.lang.Object
								

								 	
									java.lang.Object
								

								 	
									String
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									valueType (advanced)
								

								 	
									The cache value type, default java.lang.Object
								

								 	
									java.lang.Object
								

								 	
									String
								

								

Chapter 57. Caffeine LoadCache Component

			Available as of Camel version 2.20
		

			The caffeine-loadcache component enables you to perform caching operations using The Load cache from Caffeine.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-caffeine</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>
URI format

caffeine-loadcache://cacheName[?options]

				You can append query options to the URI in the following format, ?option=value&option=#beanRef&…​
			

Options

				The Caffeine LoadCache component supports 2 options which are listed below.
			
	Name	Description	Default	Type
	
								configuration (advanced)
							

							 	
								Sets the global component configuration
							

							 	 	
								CaffeineConfiguration
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The Caffeine LoadCache endpoint is configured using URI syntax:
			
caffeine-loadcache:cacheName

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									cacheName
								

								 	
									Required the cache name
								

								 	 	
									String
								

								

Query Parameters (19 parameters):

	Name	Description	Default	Type
	
									createCacheIfNotExist (common)
								

								 	
									Configure if a cache need to be created if it does exist or can’t be pre-configured.
								

								 	
									true
								

								 	
									boolean
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									action (producer)
								

								 	
									To configure the default cache action. If an action is set in the message header, then the operation from the header takes precedence.
								

								 	 	
									String
								

								
	
									cache (producer)
								

								 	
									To configure the default an already instantianted cache to be used
								

								 	 	
									Cache
								

								
	
									cacheLoader (producer)
								

								 	
									To configure a CacheLoader in case of a LoadCache use
								

								 	 	
									CacheLoader
								

								
	
									evictionType (producer)
								

								 	
									Set the eviction Type for this cache
								

								 	
									SIZE_BASED
								

								 	
									EvictionType
								

								
	
									expireAfterAccessTime (producer)
								

								 	
									Set the expire After Access Time in case of time based Eviction (in seconds)
								

								 	
									300
								

								 	
									int
								

								
	
									expireAfterWriteTime (producer)
								

								 	
									Set the expire After Access Write in case of time based Eviction (in seconds)
								

								 	
									300
								

								 	
									int
								

								
	
									initialCapacity (producer)
								

								 	
									Set the initial Capacity for the cache
								

								 	
									10000
								

								 	
									int
								

								
	
									key (producer)
								

								 	
									To configure the default action key. If a key is set in the message header, then the key from the header takes precedence.
								

								 	 	
									Object
								

								
	
									maximumSize (producer)
								

								 	
									Set the maximum size for the cache
								

								 	
									10000
								

								 	
									int
								

								
	
									removalListener (producer)
								

								 	
									Set a specific removal Listener for the cache
								

								 	 	
									RemovalListener
								

								
	
									statsCounter (producer)
								

								 	
									Set a specific Stats Counter for the cache stats
								

								 	 	
									StatsCounter
								

								
	
									statsEnabled (producer)
								

								 	
									To enable stats on the cache
								

								 	
									false
								

								 	
									boolean
								

								
	
									keyType (advanced)
								

								 	
									The cache key type, default java.lang.Object
								

								 	
									java.lang.Object
								

								 	
									String
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									valueType (advanced)
								

								 	
									The cache value type, default java.lang.Object
								

								 	
									java.lang.Object
								

								 	
									String
								

								

Chapter 58. Castor DataFormat (deprecated)

			Available as of Camel version 2.1
		

			Castor is a Data Format which uses the Castor XML library to unmarshal an XML payload into Java objects or to marshal Java objects into an XML payload.
		

			As usually you can use either Java DSL or Spring XML to work with Castor Data Format.
		
Using the Java DSL

from("direct:order").
 marshal().castor().
 to("activemq:queue:order");

				For example the following uses a named DataFormat of Castor which uses default Castor data binding features.
			
CastorDataFormat castor = new CastorDataFormat ();

from("activemq:My.Queue").
 unmarshal(castor).
 to("mqseries:Another.Queue");

				If you prefer to use a named reference to a data format which can then be defined in your Registry such as via your Spring XML file. e.g.
			
from("activemq:My.Queue").
 unmarshal("mycastorType").
 to("mqseries:Another.Queue");

				If you want to override default mapping schema by providing a mapping file you can set it as follows.
			
CastorDataFormat castor = new CastorDataFormat ();
castor.setMappingFile("mapping.xml");

				Also if you want to have more control on Castor Marshaller and Unmarshaller you can access them as below.
			
castor.getMarshaller();
castor.getUnmarshaller();

Using Spring XML

				The following example shows how to use Castor to unmarshal using Spring configuring the castor data type
			
<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="direct:start"/>
 <unmarshal>
 <castor validation="true" />
 </unmarshal>
 <to uri="mock:result"/>
 </route>
</camelContext>

				This example shows how to configure the data type just once and reuse it on multiple routes. You have to set the <castor> element directly in <camelContext>.
			
<camelContext>
<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
 <dataFormats>
 <castor id="myCastor"/>
 </dataFormats>

 <route>
 <from uri="direct:start"/>
 <marshal ref="myCastor"/>
 <to uri="direct:marshalled"/>
 </route>
 <route>
 <from uri="direct:marshalled"/>
 <unmarshal ref="myCastor"/>
 <to uri="mock:result"/>
 </route>

</camelContext>

Options

				The Castor dataformat supports 9 options which are listed below.
			
	Name	Default	Java Type	Description
	
								mappingFile
							

							 	 	
								String
							

							 	
								Path to a Castor mapping file to load from the classpath.
							

							
	
								whitelistEnabled
							

							 	
								true
							

							 	
								Boolean
							

							 	
								Define if Whitelist feature is enabled or not
							

							
	
								allowedUnmarshallObjects
							

							 	 	
								String
							

							 	
								Define the allowed objects to be unmarshalled. You can specify the FQN class name of allowed objects, and you can use comma to separate multiple entries. It is also possible to use wildcards and regular expression which is based on the pattern defined by link org.apache.camel.util.EndpointHelpermatchPattern(String, String). Denied objects takes precedence over allowed objects.
							

							
	
								deniedUnmarshallObjects
							

							 	 	
								String
							

							 	
								Define the denied objects to be unmarshalled. You can specify the FQN class name of deined objects, and you can use comma to separate multiple entries. It is also possible to use wildcards and regular expression which is based on the pattern defined by link org.apache.camel.util.EndpointHelpermatchPattern(String, String). Denied objects takes precedence over allowed objects.
							

							
	
								validation
							

							 	
								true
							

							 	
								Boolean
							

							 	
								Whether validation is turned on or off. Is by default true.
							

							
	
								encoding
							

							 	
								UTF-8
							

							 	
								String
							

							 	
								Encoding to use when marshalling an Object to XML. Is by default UTF-8
							

							
	
								packages
							

							 	 	
								String[]
							

							 	
								Add additional packages to Castor XmlContext
							

							
	
								classes
							

							 	 	
								String[]
							

							 	
								Add additional class names to Castor XmlContext
							

							
	
								contentTypeHeader
							

							 	
								false
							

							 	
								Boolean
							

							 	
								Whether the data format should set the Content-Type header with the type from the data format if the data format is capable of doing so. For example application/xml for data formats marshalling to XML, or application/json for data formats marshalling to JSon etc.
							

							

Dependencies

				To use Castor in your camel routes you need to add the a dependency on camel-castor which implements this data format.
			

				If you use maven you could just add the following to your pom.xml, substituting the version number for the latest & greatest release (see the download page for the latest versions).
			
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-castor</artifactId>
 <version>x.x.x</version>
</dependency>

Chapter 59. Camel CDI

			The Camel CDI component provides auto-configuration for Apache Camel using CDI as dependency injection framework based on convention-over-configuration. It auto-detects Camel routes available in the application and provides beans for common Camel primitives like Endpoint, FluentProducerTemplate, ProducerTemplate or TypeConverter. It implements standard Camel bean integration so that Camel annotations like @Consume, @Produce and @PropertyInject can be used seamlessly in CDI beans. Besides, it bridges Camel events (e.g. RouteAddedEvent, CamelContextStartedEvent, ExchangeCompletedEvent, …​) as CDI events and provides a CDI events endpoint that can be used to consume / produce CDI events from / to Camel routes.
		

			While the Camel CDI component is available as of Camel 2.10, it’s been rewritten in Camel 2.17 to better fit into the CDI programming model. Hence some of the features like the Camel events to CDI events bridge and the CDI events endpoint only apply starting Camel 2.17.
		

			More details on how to test Camel CDI applications are available in Camel CDI testing.
		
Caution

			camel-cdi is deprecated in OSGi and not supported. Use OSGi Blueprint if using Camel with OSGi.
		

Auto-configured Camel context

				Camel CDI automatically deploys and configures a CamelContext bean. That CamelContext bean is automatically instantiated, configured and started (resp. stopped) when the CDI container initializes (resp. shuts down). It can be injected in the application, e.g.:
			
@Inject
CamelContext context;

				That default CamelContext bean is qualified with the built-in @Default qualifier, is scoped @ApplicationScoped and is of type DefaultCamelContext.
			

				Note that this bean can be customized programmatically and other Camel context beans can be deployed in the application as well.
			

Auto-detecting Camel routes

				Camel CDI automatically collects all the RoutesBuilder beans in the application, instantiates and add them to the CamelContext bean instance when the CDI container initializes. For example, adding a Camel route is as simple as declaring a class, e.g.:
			
class MyRouteBean extends RouteBuilder {

 @Override
 public void configure() {
 from("jms:invoices").to("file:/invoices");
 }
}

				Note that you can declare as many RoutesBuilder beans as you want. Besides, RouteContainer beans are also automatically collected, instantiated and added to the CamelContext bean instance managed by Camel CDI when the container initializes.
			

				Available as of Camel 2.19
			

				In some situations, it may be necessary to disable the auto-configuration of the RouteBuilder and RouteContainer beans. That can be achieved by observing for the CdiCamelConfiguration event, e.g.:
			
static void configuration(@Observes CdiCamelConfiguration configuration) {
 configuration.autoConfigureRoutes(false);
}

				Similarly, it is possible to deactivate the automatic starting of the configured CamelContext beans, e.g.:
			
static void configuration(@Observes CdiCamelConfiguration configuration) {
 configuration.autoStartContexts(false);
}

Auto-configured Camel primitives

				Camel CDI provides beans for common Camel primitives that can be injected in any CDI beans, e.g.:
			
@Inject
@Uri("direct:inbound")
ProducerTemplate producerTemplate;

@Inject
@Uri("direct:inbound")
FluentProducerTemplate fluentProducerTemplate;

@Inject
MockEndpoint outbound; // URI defaults to the member name, i.e. mock:outbound

@Inject
@Uri("direct:inbound")
Endpoint endpoint;

@Inject
TypeConverter converter;

Camel context configuration

				If you just want to change the name of the default CamelContext bean, you can used the @ContextName qualifier provided by Camel CDI, e.g.:
			
@ContextName("camel-context")
class MyRouteBean extends RouteBuilder {

 @Override
 public void configure() {
 from("jms:invoices").to("file:/invoices");
 }
}

				Else, if more customization is needed, any CamelContext class can be used to declare a custom Camel context bean. Then, the @PostConstruct and @PreDestroy lifecycle callbacks can be done to do the customization, e.g.:
			
@ApplicationScoped
class CustomCamelContext extends DefaultCamelContext {

 @PostConstruct
 void customize() {
 // Set the Camel context name
 setName("custom");
 // Disable JMX
 disableJMX();
 }

 @PreDestroy
 void cleanUp() {
 // ...
 }
}

				Producer and disposer methods can also be used as well to customize the Camel context bean, e.g.:
			
class CamelContextFactory {

 @Produces
 @ApplicationScoped
 CamelContext customize() {
 DefaultCamelContext context = new DefaultCamelContext();
 context.setName("custom");
 return context;
 }

 void cleanUp(@Disposes CamelContext context) {
 // ...
 }
}

				Similarly, producer fields can be used, e.g.:
			
@Produces
@ApplicationScoped
CamelContext context = new CustomCamelContext();

class CustomCamelContext extends DefaultCamelContext {

 CustomCamelContext() {
 setName("custom");
 }
}

				This pattern can be used for example to avoid having the Camel context routes started automatically when the container initializes by calling the setAutoStartup method, e.g.:
			
@ApplicationScoped
class ManualStartupCamelContext extends DefaultCamelContext {

 @PostConstruct
 void manual() {
 setAutoStartup(false);
 }
}

Multiple Camel contexts

				Any number of CamelContext beans can actually be declared in the application as documented above. In that case, the CDI qualifiers declared on these CamelContext beans are used to bind the Camel routes and other Camel primitives to the corresponding Camel contexts. From example, if the following beans get declared:
			
@ApplicationScoped
@ContextName("foo")
class FooCamelContext extends DefaultCamelContext {
}

@ApplicationScoped
@BarContextQualifier
class BarCamelContext extends DefaultCamelContext {
}

@ContextName("foo")
class RouteAddedToFooCamelContext extends RouteBuilder {

 @Override
 public void configure() {
 // ...
 }
}

@BarContextQualifier
class RouteAddedToBarCamelContext extends RouteBuilder {

 @Override
 public void configure() {
 // ...
 }
}

@ContextName("baz")
class RouteAddedToBazCamelContext extends RouteBuilder {

 @Override
 public void configure() {
 // ...
 }
}

@MyOtherQualifier
class RouteNotAddedToAnyCamelContext extends RouteBuilder {

 @Override
 public void configure() {
 // ...
 }
}

				The RoutesBuilder beans qualified with @ContextName are automatically added to the corresponding CamelContext beans by Camel CDI. If no such CamelContext bean exists, it gets automatically created, as for the RouteAddedToBazCamelContext bean. Note this only happens for the @ContextName qualifier provided by Camel CDI. Hence the RouteNotAddedToAnyCamelContext bean qualified with the user-defined @MyOtherQualifier qualifier does not get added to any Camel contexts. That may be useful, for example, for Camel routes that may be required to be added later during the application execution.
			
Note

					Since Camel version 2.17.0, Camel CDI is capable of managing any kind of CamelContext beans (e.g. DefaultCamelContext). In previous versions, it is only capable of managing beans of type CdiCamelContext so it is required to extend it.
				

				The CDI qualifiers declared on the CamelContext beans are also used to bind the corresponding Camel primitives, e.g.:
			
@Inject
@ContextName("foo")
@Uri("direct:inbound")
ProducerTemplate producerTemplate;

@Inject
@ContextName("foo")
@Uri("direct:inbound")
FluentProducerTemplate fluentProducerTemplate;

@Inject
@BarContextQualifier
MockEndpoint outbound; // URI defaults to the member name, i.e. mock:outbound

@Inject
@ContextName("baz")
@Uri("direct:inbound")
Endpoint endpoint;

Configuration properties

				To configure the sourcing of the configuration properties used by Camel to resolve properties placeholders, you can declare a PropertiesComponent bean qualified with @Named("properties"), e.g.:
			
@Produces
@ApplicationScoped
@Named("properties")
PropertiesComponent propertiesComponent() {
 Properties properties = new Properties();
 properties.put("property", "value");
 PropertiesComponent component = new PropertiesComponent();
 component.setInitialProperties(properties);
 component.setLocation("classpath:placeholder.properties");
 return component;
}

				If you want to use DeltaSpike configuration mechanism you can declare the following PropertiesComponent bean:
			
@Produces
@ApplicationScoped
@Named("properties")
PropertiesComponent properties(PropertiesParser parser) {
 PropertiesComponent component = new PropertiesComponent();
 component.setPropertiesParser(parser);
 return component;
}

// PropertiesParser bean that uses DeltaSpike to resolve properties
static class DeltaSpikeParser extends DefaultPropertiesParser {
 @Override
 public String parseProperty(String key, String value, Properties properties) {
 return ConfigResolver.getPropertyValue(key);
 }
}

				You can see the camel-example-cdi-properties example for a working example of a Camel CDI application using DeltaSpike configuration mechanism.
			

Auto-configured type converters

				CDI beans annotated with the @Converter annotation are automatically registered into the deployed Camel contexts, e.g.:
			
@Converter
public class MyTypeConverter {

 @Converter
 public Output convert(Input input) {
 //...
 }
}

				Note that CDI injection is supported within the type converters.
			

Camel bean integration

Camel annotations

					As part of the Camel bean integration, Camel comes with a set of annotations that are seamlessly supported by Camel CDI. So you can use any of these annotations in your CDI beans, e.g.:
				
	 	Camel annotation	CDI equivalent
	
									Configuration property
								

								 	
@PropertyInject("key")
String value;

								 	
									If using DeltaSpike configuration mechanism:
								

								
@Inject
@ConfigProperty(name = "key")
String value;

								
									See configuration properties for more details.
								

								
	
									Producer template injection (default Camel context)
								

								 	
@Produce(uri = "mock:outbound")
ProducerTemplate producer;

@Produce(uri = "mock:outbound")
FluentProducerTemplate producer;

								 	
@Inject
@Uri("direct:outbound")
ProducerTemplate producer;

@Produce(uri = "direct:outbound")
FluentProducerTemplate producer;

								
	
									Endpoint injection (default Camel context)
								

								 	
@EndpointInject(uri = "direct:inbound")
Endpoint endpoint;

								 	
@Inject
@Uri("direct:inbound")
Endpoint endpoint;

								
	
									Endpoint injection (Camel context by name)
								

								 	
@EndpointInject(uri = "direct:inbound",
 context = "foo")
Endpoint contextEndpoint;

								 	
@Inject
@ContextName("foo")
@Uri("direct:inbound")
Endpoint contextEndpoint;

								
	
									Bean injection (by type)
								

								 	
@BeanInject
MyBean bean;

								 	
@Inject
MyBean bean;

								
	
									Bean injection (by name)
								

								 	
@BeanInject("foo")
MyBean bean;

								 	
@Inject
@Named("foo")
MyBean bean;

								
	
									POJO consuming
								

								 	
@Consume(uri = "seda:inbound")
void consume(@Body String body) {
 //...
}

								 	
									
								

								

Bean component

					You can refer to CDI beans, either by type or name, From the Camel DSL, e.g. with the Java Camel DSL:
				
class MyBean {
 //...
}

from("direct:inbound").bean(MyBean.class);

					Or to lookup a CDI bean by name from the Java DSL:
				
@Named("foo")
class MyNamedBean {
 //...
}

from("direct:inbound").bean("foo");

Referring beans from Endpoint URIs

					When configuring endpoints using the URI syntax you can refer to beans in the Registry using the # notation. If the URI parameter value starts with a # sign then Camel CDI will lookup for a bean of the given type by name, e.g.:
				
from("jms:queue:{{destination}}?transacted=true&transactionManager=#jtaTransactionManager").to("...");

					Having the following CDI bean qualified with @Named("jtaTransactionManager"):
				
@Produces
@Named("jtaTransactionManager")
PlatformTransactionManager createTransactionManager(TransactionManager transactionManager, UserTransaction userTransaction) {
 JtaTransactionManager jtaTransactionManager = new JtaTransactionManager();
 jtaTransactionManager.setUserTransaction(userTransaction);
 jtaTransactionManager.setTransactionManager(transactionManager);
 jtaTransactionManager.afterPropertiesSet();
 return jtaTransactionManager;
}

Camel events to CDI events

				Available as of Camel 2.17
			

				Camel provides a set of management events that can be subscribed to for listening to Camel context, service, route and exchange events. Camel CDI seamlessly translates these Camel events into CDI events that can be observed using CDI observer methods, e.g.:
			
void onContextStarting(@Observes CamelContextStartingEvent event) {
 // Called before the default Camel context is about to start
}

				As of Camel 2.18, it is possible to observe events for a particular route (RouteAddedEvent, RouteStartedEvent, RouteStoppedEvent and RouteRemovedEvent) should it have an explicit defined, e.g.:
			
from("...").routeId("foo").to("...");

void onRouteStarted(@Observes @Named("foo") RouteStartedEvent event) {
 // Called after the route "foo" has started
}

				When multiple Camel contexts exist in the CDI container, the Camel context bean qualifiers, like @ContextName, can be used to refine the observer method resolution to a particular Camel context as specified in observer resolution, e.g.:
			
void onRouteStarted(@Observes @ContextName("foo") RouteStartedEvent event) {
 // Called after the route 'event.getRoute()' for the Camel context 'foo' has started
}

void onContextStarted(@Observes @Manual CamelContextStartedEvent event) {
 // Called after the the Camel context qualified with '@Manual' has started
}

				Similarly, the @Default qualifier can be used to observe Camel events for the default Camel context if multiples contexts exist, e.g.:
			
void onExchangeCompleted(@Observes @Default ExchangeCompletedEvent event) {
 // Called after the exchange 'event.getExchange()' processing has completed
}

				In that example, if no qualifier is specified, the @Any qualifier is implicitly assumed, so that corresponding events for all the Camel contexts get received.
			

				Note that the support for Camel events translation into CDI events is only activated if observer methods listening for Camel events are detected in the deployment, and that per Camel context.
			

CDI events endpoint

				Available as of Camel 2.17
			

				The CDI event endpoint bridges the CDI events with the Camel routes so that CDI events can be seamlessly observed / consumed (resp. produced / fired) from Camel consumers (resp. by Camel producers).
			

				The CdiEventEndpoint<T> bean provided by Camel CDI can be used to observe / consume CDI events whose event type is T, for example:
			
@Inject
CdiEventEndpoint<String> cdiEventEndpoint;

from(cdiEventEndpoint).log("CDI event received: ${body}");

				This is equivalent to writing:
			
@Inject
@Uri("direct:event")
ProducerTemplate producer;

void observeCdiEvents(@Observes String event) {
 producer.sendBody(event);
}

from("direct:event").log("CDI event received: ${body}");

				Conversely, the CdiEventEndpoint<T> bean can be used to produce / fire CDI events whose event type is T, for example:
			
@Inject
CdiEventEndpoint<String> cdiEventEndpoint;

from("direct:event").to(cdiEventEndpoint).log("CDI event sent: ${body}");

				This is equivalent to writing:
			
@Inject
Event<String> event;

from("direct:event").process(new Processor() {
 @Override
 public void process(Exchange exchange) {
 event.fire(exchange.getBody(String.class));
 }
}).log("CDI event sent: ${body}");

				Or using a Java 8 lambda expression:
			
@Inject
Event<String> event;

from("direct:event")
 .process(exchange -> event.fire(exchange.getIn().getBody(String.class)))
 .log("CDI event sent: ${body}");

				The type variable T (resp. the qualifiers) of a particular CdiEventEndpoint<T> injection point are automatically translated into the parameterized event type (resp. into the event qualifiers) e.g.:
			
@Inject
@FooQualifier
CdiEventEndpoint<List<String>> cdiEventEndpoint;

from("direct:event").to(cdiEventEndpoint);

void observeCdiEvents(@Observes @FooQualifier List<String> event) {
 logger.info("CDI event: {}", event);
}

				When multiple Camel contexts exist in the CDI container, the Camel context bean qualifiers, like @ContextName, can be used to qualify the CdiEventEndpoint<T> injection points, e.g.:
			
@Inject
@ContextName("foo")
CdiEventEndpoint<List<String>> cdiEventEndpoint;
// Only observes / consumes events having the @ContextName("foo") qualifier
from(cdiEventEndpoint).log("Camel context (foo) > CDI event received: ${body}");
// Produces / fires events with the @ContextName("foo") qualifier
from("...").to(cdiEventEndpoint);

void observeCdiEvents(@Observes @ContextName("foo") List<String> event) {
 logger.info("Camel context (foo) > CDI event: {}", event);
}

				Note that the CDI event Camel endpoint dynamically adds an observer method for each unique combination of event type and event qualifiers and solely relies on the container typesafe observer resolution, which leads to an implementation as efficient as possible.
			

				Besides, as the impedance between the typesafe nature of CDI and the dynamic nature of the Camel component model is quite high, it is not possible to create an instance of the CDI event Camel endpoint via URIs. Indeed, the URI format for the CDI event component is:
			
cdi-event://PayloadType<T1,...,Tn>[?qualifiers=QualifierType1[,...[,QualifierTypeN]...]]

				With the authority PayloadType (resp. the QualifierType) being the URI escaped fully qualified name of the payload (resp. qualifier) raw type followed by the type parameters section delimited by angle brackets for payload parameterized type. Which leads to unfriendly URIs, e.g.:
			
cdi-event://org.apache.camel.cdi.example.EventPayload%3Cjava.lang.Integer%3E?qualifiers=org.apache.camel.cdi.example.FooQualifier%2Corg.apache.camel.cdi.example.BarQualifier

				But more fundamentally, that would prevent efficient binding between the endpoint instances and the observer methods as the CDI container doesn’t have any ways of discovering the Camel context model during the deployment phase.
			

Camel XML configuration import

				Available as of Camel 2.18
			

				While CDI favors a typesafe dependency injection mechanism, it may be useful to reuse existing Camel XML configuration files into a Camel CDI application. In other use cases, it might be handy to rely on the Camel XML DSL to configure its Camel context(s).
			

				You can use the @ImportResource annotation that’s provided by Camel CDI on any CDI beans and Camel CDI will automatically load the Camel XML configuration at the specified locations, e.g.:
			
@ImportResource("camel-context.xml")
class MyBean {
}

				Camel CDI will load the resources at the specified locations from the classpath (other protocols may be added in the future).
			

				Every CamelContext elements and other Camel primitives from the imported resources are automatically deployed as CDI beans during the container bootstrap so that they benefit from the auto-configuration provided by Camel CDI and become available for injection at runtime. If such an element has an explicit id attribute set, the corresponding CDI bean is qualified with the @Named qualifier, e.g., given the following Camel XML configuration:
			
<camelContext id="foo">
 <endpoint id="bar" uri="seda:inbound">
 <property key="queue" value="#queue"/>
 <property key="concurrentConsumers" value="10"/>
 </endpoint>
<camelContext/>

				The corresponding CDI beans are automatically deployed and can be injected, e.g.:
			
@Inject
@ContextName("foo")
CamelContext context;

@Inject
@Named("bar")
Endpoint endpoint;

				Note that the CamelContext beans are automatically qualified with both the @Named and @ContextName qualifiers. If the imported CamelContext element doesn’t have an id attribute, the corresponding bean is deployed with the built-in @Default qualifier.
			

				Conversely, CDI beans deployed in the application can be referred to from the Camel XML configuration, usually using the ref attribute, e.g., given the following bean declared:
			
@Produces
@Named("baz")
Processor processor = exchange -> exchange.getIn().setHeader("qux", "quux");

				A reference to that bean can be declared in the imported Camel XML configuration, e.g.:
			
<camelContext id="foo">
 <route>
 <from uri="..."/>
 <process ref="baz"/>
 </route>
<camelContext/>

Transaction support

				Available as of Camel 2.19
			

				Camel CDI provides support for Camel transactional client using JTA.
			

				That support is optional hence you need to have JTA in your application classpath, e.g., by explicitly add JTA as a dependency when using Maven:
			
<dependency>
 <groupId>javax.transaction</groupId>
 <artifactId>javax.transaction-api</artifactId>
 <scope>runtime</scope>
</dependency>

				You’ll have to have your application deployed in a JTA capable container or provide a standalone JTA implementation.
			
Caution

				Note that, for the time being, the transaction manager is looked up as JNDI resource with the java:/TransactionManager key.
			

				More flexible strategies will be added in the future to support a wider range of deployment scenarios.
			

Transaction policies

					Camel CDI provides implementation for the typically supported Camel TransactedPolicy as CDI beans. It is possible to have these policies looked up by name using the transacted EIP, e.g.:
				
class MyRouteBean extends RouteBuilder {

 @Override
 public void configure() {
 from("activemq:queue:foo")
 .transacted("PROPAGATION_REQUIRED")
 .bean("transformer")
 .to("jpa:my.application.entity.Bar")
 .log("${body.id} inserted");
 }
}

					This would be equivalent to:
				
class MyRouteBean extends RouteBuilder {

 @Inject
 @Named("PROPAGATION_REQUIRED")
 Policy required;

 @Override
 public void configure() {
 from("activemq:queue:foo")
 .policy(required)
 .bean("transformer")
 .to("jpa:my.application.entity.Bar")
 .log("${body.id} inserted");
 }
}

					The list of supported transaction policy names is:
				
	
							PROPAGATION_NEVER,
						
	
							PROPAGATION_NOT_SUPPORTED,
						
	
							PROPAGATION_SUPPORTS,
						
	
							PROPAGATION_REQUIRED,
						
	
							PROPAGATION_REQUIRES_NEW,
						
	
							PROPAGATION_NESTED,
						
	
							PROPAGATION_MANDATORY.
						

Transactional error handler

					Camel CDI provides a transactional error handler that extends the redelivery error handler, forces a rollback whenever an exception occurs and creates a new transaction for each redelivery.
				

					Camel CDI provides the CdiRouteBuilder class that exposes the transactionErrorHandler helper method to enable quick access to the configuration, e.g.:
				
class MyRouteBean extends CdiRouteBuilder {

 @Override
 public void configure() {
 errorHandler(transactionErrorHandler()
 .setTransactionPolicy("PROPAGATION_SUPPORTS")
 .maximumRedeliveries(5)
 .maximumRedeliveryDelay(5000)
 .collisionAvoidancePercent(10)
 .backOffMultiplier(1.5));
 }
}

Auto-configured OSGi integration

				Available as of Camel 2.17
			

				The Camel context beans are automatically adapted by Camel CDI so that they are registered as OSGi services and the various resolvers (like ComponentResolver and DataFormatResolver) integrate with the OSGi registry. That means that the Karaf Camel commands can be used to operate the Camel contexts auto-configured by Camel CDI, e.g.:
			
karaf@root()> camel:context-list
 Context Status Total # Failed # Inflight # Uptime
 ------- ------ ------- -------- ---------- ------
 camel-cdi Started 1 0 0 1 minute

				See the camel-example-cdi-osgi example for a working example of the Camel CDI OSGi integration.
			

Lazy Injection / Programmatic Lookup

				While the CDI programmatic model favors a typesafe resolution mechanism that occurs at application initialization time, it is possible to perform dynamic / lazy injection later during the application execution using the programmatic lookup mechanism.
			

				Camel CDI provides for convenience the annotation literals corresponding to the CDI qualifiers that you can use for standard injection of Camel primitives. These annotation literals can be used in conjunction with the javax.enterprise.inject.Instance interface which is the CDI entry point to perform lazy injection / programmatic lookup.
			

				For example, you can use the provided annotation literal for the @Uri qualifier to lazily lookup for Camel primitives, e.g. for ProducerTemplate beans:
			
@Any
@Inject
Instance<ProducerTemplate> producers;

ProducerTemplate inbound = producers
 .select(Uri.Literal.of("direct:inbound"))
 .get();

				Or for Endpoint beans, e.g.:
			
@Any
@Inject
Instance<Endpoint> endpoints;

MockEndpoint outbound = endpoints
 .select(MockEndpoint.class, Uri.Literal.of("mock:outbound"))
 .get();

				Similarly, you can use the provided annotation literal for the @ContextName qualifier to lazily lookup for CamelContext beans, e.g.:
			
@Any
@Inject
Instance<CamelContext> contexts;

CamelContext context = contexts
 .select(ContextName.Literal.of("foo"))
 .get();

				You can also refined the selection based on the Camel context type, e.g.:
			
@Any
@Inject
Instance<CamelContext> contexts;

// Refine the selection by type
Instance<DefaultCamelContext> context = contexts.select(DefaultCamelContext.class);

// Check if such a bean exists then retrieve a reference
if (!context.isUnsatisfied())
 context.get();

				Or even iterate over a selection of Camel contexts, e.g.:
			
@Any
@Inject
Instance<CamelContext> contexts;

for (CamelContext context : contexts)
 context.setUseBreadcrumb(true);

Maven Archetype

				Among the available Camel Maven archetypes, you can use the provided camel-archetype-cdi to generate a Camel CDI Maven project, e.g.:
			
mvn archetype:generate -DarchetypeGroupId=org.apache.camel.archetypes -DarchetypeArtifactId=camel-archetype-cdi

Supported containers

				The Camel CDI component is compatible with any CDI 1.0, CDI 1.1 and CDI 1.2 compliant runtime. It’s been successfully tested against the following runtimes:
			
	Container	Version	Runtime
	
								Weld SE
							

							 	
								1.1.28.Final
							

							 	
								CDI 1.0 / Java SE 7
							

							
	
								OpenWebBeans
							

							 	
								1.2.7
							

							 	
								CDI 1.0 / Java SE 7
							

							
	
								Weld SE
							

							 	
								2.4.2.Final
							

							 	
								CDI 1.2 / Java SE 7
							

							
	
								OpenWebBeans
							

							 	
								1.7.2
							

							 	
								CDI 1.2 / Java SE 7
							

							
	
								WildFly
							

							 	
								8.2.1.Final
							

							 	
								CDI 1.2 / Java EE 7
							

							
	
								WildFly
							

							 	
								9.0.1.Final
							

							 	
								CDI 1.2 / Java EE 7
							

							
	
								WildFly
							

							 	
								10.1.0.Final
							

							 	
								CDI 1.2 / Java EE 7
							

							

Examples

				The following examples are available in the examples directory of the Camel project:
			
	Example	Description
	
								camel-example-cdi
							

							 	
								Illustrates how to work with Camel using CDI to configure components, endpoints and beans
							

							
	
								camel-example-cdi-kubernetes
							

							 	
								Illustrates the integration between Camel, CDI and Kubernetes
							

							
	
								camel-example-cdi-metrics
							

							 	
								Illustrates the integration between Camel, Dropwizard Metrics and CDI
							

							
	
								camel-example-cdi-properties
							

							 	
								Illustrates the integration between Camel, DeltaSpike and CDI for configuration properties
							

							
	
								camel-example-cdi-osgi
							

							 	
								A CDI application using the SJMS component that can be executed inside an OSGi container using PAX CDI
							

							
	
								camel-example-cdi-rest-servlet
							

							 	
								Illustrates the Camel REST DSL being used in a Web application that uses CDI as dependency injection framework
							

							
	
								camel-example-cdi-test
							

							 	
								Demonstrates the testing features that are provided as part of the integration between Camel and CDI
							

							
	
								camel-example-cdi-xml
							

							 	
								Illustrates the use of Camel XML configuration files into a Camel CDI application
							

							
	
								camel-example-swagger-cdi
							

							 	
								An example using REST DSL and Swagger Java with CDI
							

							
	
								camel-example-widget-gadget-cdi
							

							 	
								The Widget and Gadget use-case from the EIP book implemented in Java with CDI dependency Injection
							

							

See Also

	
						Camel CDI testing
					
	
						CDI specification Web site
					
	
						CDI ecosystem
					
	
						Weld home page
					
	
						OpenWebBeans home page
					
	
						Going further with CDI and Camel (See Camel CDI section)
					

Camel CDI for EAR deployments on {wildfly-camel}

				Camel CDI EAR deployments on {wildfly-camel} have some differences in class and resource loading behaviour, compared to standard WAR or JAR deployments.
			

				{wildfly} bootstraps Weld using the EAR deployment ClassLoader. {wildfly} also mandates that only a single CDI extension is created and shared by all EAR sub-deployments.
			

				This results in the 'Auto-configured' CDI Camel Context using the EAR deployment ClassLoader to dynamically load classes and resources. By default, this ClassLoader does not have access to resources within EAR sub-deployments.
			

				For EAR deployments, it is recommended that usage of the 'Auto-configured' CDI Camel Context is avoided and that RouteBuilder classes are annotated with @ContextName, or that a CamelContext is created via the @ImportResource annotation or through CDI producer methods and fields. This helps {wildfly-camel} to determine the correct ClassLoader to use with Camel.
			

Chapter 60. Chronicle Engine Component

			Available as of Camel version 2.18
		

			The camel chronicle-engine component let you leverage the power of OpenHFT’s Chronicle-Engine
		
URI Format

chronicle-engine:addresses/path[?options]

URI Options

				The Chronicle Engine component has no options.
			

				The Chronicle Engine endpoint is configured using URI syntax:
			
chronicle-engine:addresses/path

				with the following path and query parameters:
			
Path Parameters (2 parameters):

	Name	Description	Default	Type
	
									addresses
								

								 	
									Required Engine addresses. Multiple addresses can be separated by comma.
								

								 	 	
									String
								

								
	
									path
								

								 	
									Required Engine path
								

								 	 	
									String
								

								

Query Parameters (12 parameters):

	Name	Description	Default	Type
	
									action (common)
								

								 	
									The default action to perform, valid values are: - PUBLISH - PPUBLISH_AND_INDEX - PPUT - PGET_AND_PUT - PPUT_ALL - PPUT_IF_ABSENT - PGET - PGET_AND_REMOVE - PREMOVE - PIS_EMPTY - PSIZE
								

								 	 	
									String
								

								
	
									clusterName (common)
								

								 	
									Cluster name for queue
								

								 	 	
									String
								

								
	
									filteredMapEvents (common)
								

								 	
									A comma separated list of Map event type to filer, valid values are: INSERT, UPDATE, REMOVE.
								

								 	 	
									String
								

								
	
									persistent (common)
								

								 	
									Enable/disable data persistence
								

								 	
									true
								

								 	
									boolean
								

								
	
									subscribeMapEvents (common)
								

								 	
									Set if consumer should subscribe to Map events, default true.
								

								 	
									true
								

								 	
									boolean
								

								
	
									subscribeTopicEvents (common)
								

								 	
									Set if consumer should subscribe to TopicEvents,d efault false.
								

								 	
									false
								

								 	
									boolean
								

								
	
									subscribeTopologicalEvents (common)
								

								 	
									Set if consumer should subscribe to TopologicalEvents,d efault false.
								

								 	
									false
								

								 	
									boolean
								

								
	
									wireType (common)
								

								 	
									The Wire type to use, default to binary wire.
								

								 	
									BINARY
								

								 	
									String
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

Chapter 61. Chunk Component

			Available as of Camel version 2.15
		

			The chunk: component allows for processing a message using a Chunk template. This can be ideal when using Templating to generate responses for requests.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-chunk</artifactId>
<version>x.x.x</version> <!-- use the same version as your Camel core version -->
</dependency>
URI format

chunk:templateName[?options]

				Where templateName is the classpath-local URI of the template to invoke.
			

				You can append query options to the URI in the following format, ?option=value&option=value&…​
			

Options

				The Chunk component has no options.
			

				The Chunk endpoint is configured using URI syntax:
			
chunk:resourceUri

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									resourceUri
								

								 	
									Required Path to the resource. You can prefix with: classpath, file, http, ref, or bean. classpath, file and http loads the resource using these protocols (classpath is default). ref will lookup the resource in the registry. bean will call a method on a bean to be used as the resource. For bean you can specify the method name after dot, eg bean:myBean.myMethod.
								

								 	 	
									String
								

								

Query Parameters (7 parameters):

	Name	Description	Default	Type
	
									contentCache (producer)
								

								 	
									Sets whether to use resource content cache or not
								

								 	
									false
								

								 	
									boolean
								

								
	
									encoding (producer)
								

								 	
									Define the encoding of the body
								

								 	 	
									String
								

								
	
									extension (producer)
								

								 	
									Define the file extension of the template
								

								 	 	
									String
								

								
	
									themeFolder (producer)
								

								 	
									Define the themes folder to scan
								

								 	 	
									String
								

								
	
									themeLayer (producer)
								

								 	
									Define the theme layer to elaborate
								

								 	 	
									String
								

								
	
									themeSubfolder (producer)
								

								 	
									Define the themes subfolder to scan
								

								 	 	
									String
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

					Chunk component will look for a specific template in themes folder with extensions .chtml or _.cxml. _If you need to specify a different folder or extensions, you will need to use the specific options listed above.
				

Chunk Context

				Camel will provide exchange information in the Chunk context (just a Map). The Exchange is transferred as:
			

				
			
	key	value
	
								exchange
							

							 	
								The Exchange itself.
							

							
	
								exchange.properties
							

							 	
								The Exchange properties.
							

							
	
								headers
							

							 	
								The headers of the In message.
							

							
	
								camelContext
							

							 	
								The Camel Context.
							

							
	
								request
							

							 	
								The In message.
							

							
	
								body
							

							 	
								The In message body.
							

							
	
								response
							

							 	
								The Out message (only for InOut message exchange pattern).
							

							

Dynamic templates

				Camel provides two headers by which you can define a different resource location for a template or the template content itself. If any of these headers is set then Camel uses this over the endpoint configured resource. This allows you to provide a dynamic template at runtime.
			
	Header	Type	Description	Support Version
	
								ChunkConstants.CHUNK_RESOURCE_URI
							

							 	
								String
							

							 	
								A URI for the template resource to use instead of the endpoint configured.
							

							 	
	
								ChunkConstants.CHUNK_TEMPLATE
							

							 	
								String
							

							 	
								The template to use instead of the endpoint configured.
							

							 	

Samples

				For example you could use something like:
			
from("activemq:My.Queue").
to("chunk:template");

				To use a Chunk template to formulate a response for a message for InOut message exchanges (where there is a JMSReplyTo header).
			

				If you want to use InOnly and consume the message and send it to another destination you could use:
			
from("activemq:My.Queue").
to("chunk:template").
to("activemq:Another.Queue");

				It’s possible to specify what template the component should use dynamically via a header, so for example:
			
from("direct:in").
setHeader(ChunkConstants.CHUNK_RESOURCE_URI).constant("template").
to("chunk:dummy");

				An example of Chunk component options use:
			
from("direct:in").
to("chunk:file_example?themeFolder=template&themeSubfolder=subfolder&extension=chunk");

				In this example Chunk component will look for the file file_example.chunk in the folder template/subfolder.
			

The Email Sample

				In this sample we want to use Chunk templating for an order confirmation email. The email template is laid out in Chunk as:
			

Dear {$headers.lastName}, {$headers.firstName}

Thanks for the order of {$headers.item}.

Regards Camel Riders Bookstore
{$body}

See Also

	
						Configuring Camel
					
	
						Component
					
	
						Endpoint
					
	
						Getting Started
					

Chapter 62. Class Component

			Available as of Camel version 2.4
		

			The class: component binds beans to Camel message exchanges. It works in the same way as the Bean component but instead of looking up beans from a Registry it creates the bean based on the class name.
		
URI format

class:className[?options]

				Where className is the fully qualified class name to create and use as bean.
			

Options

				The Class component has no options.
			

				The Class endpoint is configured using URI syntax:
			
class:beanName

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									beanName
								

								 	
									Required Sets the name of the bean to invoke
								

								 	 	
									String
								

								

Query Parameters (5 parameters):

	Name	Description	Default	Type
	
									method (producer)
								

								 	
									Sets the name of the method to invoke on the bean
								

								 	 	
									String
								

								
	
									cache (advanced)
								

								 	
									If enabled, Camel will cache the result of the first Registry look-up. Cache can be enabled if the bean in the Registry is defined as a singleton scope.
								

								 	
									false
								

								 	
									boolean
								

								
	
									multiParameterArray (advanced)
								

								 	
									Deprecated How to treat the parameters which are passed from the message body; if it is true, the message body should be an array of parameters. Note: This option is used internally by Camel, and is not intended for end users to use. Deprecation note: This option is used internally by Camel, and is not intended for end users to use.
								

								 	
									false
								

								 	
									boolean
								

								
	
									parameters (advanced)
								

								 	
									Used for configuring additional properties on the bean
								

								 	 	
									Map
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

Using

				You simply use the class component just as the Bean component but by specifying the fully qualified classname instead.
 For example to use the MyFooBean you have to do as follows:
			
 from("direct:start").to("class:org.apache.camel.component.bean.MyFooBean").to("mock:result");

				You can also specify which method to invoke on the MyFooBean, for example hello:
			
 from("direct:start").to("class:org.apache.camel.component.bean.MyFooBean?method=hello").to("mock:result");

Setting properties on the created instance

				In the endpoint uri you can specify properties to set on the created instance, for example if it has a setPrefix method:
			
 // Camel 2.17 onwards
 from("direct:start")
 .to("class:org.apache.camel.component.bean.MyPrefixBean?bean.prefix=Bye")
 .to("mock:result");

 // Camel 2.16 and older
 from("direct:start")
 .to("class:org.apache.camel.component.bean.MyPrefixBean?prefix=Bye")
 .to("mock:result");

				And you can also use the # syntax to refer to properties to be looked up in the Registry.
			
 // Camel 2.17 onwards
 from("direct:start")
 .to("class:org.apache.camel.component.bean.MyPrefixBean?bean.cool=#foo")
 .to("mock:result");

 // Camel 2.16 and older
 from("direct:start")
 .to("class:org.apache.camel.component.bean.MyPrefixBean?cool=#foo")
 .to("mock:result");

				Which will lookup a bean from the Registry with the id foo and invoke the setCool method on the created instance of the MyPrefixBean class.
			

				TIP:See more details at the Bean component as the class component works in much the same way.
			

See Also

	
						Configuring Camel
					
	
						Component
					
	
						Endpoint
					
	
						Getting Started
					
	
						Bean
					
	
						Bean Binding
					
	
						Bean Integration
					

Chapter 63. CMIS Component

			Available as of Camel version 2.11
		

			The cmis component uses the Apache Chemistry client API and allows you to add/read nodes to/from a CMIS compliant content repositories.
		
URI Format

cmis://cmisServerUrl[?options]

				You can append query options to the URI in the following format, ?options=value&option2=value&…​
			

CMIS Options

				The CMIS component supports 2 options which are listed below.
			
	Name	Description	Default	Type
	
								sessionFacadeFactory (common)
							

							 	
								To use a custom CMISSessionFacadeFactory to create the CMISSessionFacade instances
							

							 	 	
								CMISSessionFacade Factory
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The CMIS endpoint is configured using URI syntax:
			
cmis:cmsUrl

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									cmsUrl
								

								 	
									Required URL to the cmis repository
								

								 	 	
									String
								

								

Query Parameters (13 parameters):

	Name	Description	Default	Type
	
									pageSize (common)
								

								 	
									Number of nodes to retrieve per page
								

								 	
									100
								

								 	
									int
								

								
	
									readContent (common)
								

								 	
									If set to true, the content of document node will be retrieved in addition to the properties
								

								 	
									false
								

								 	
									boolean
								

								
	
									readCount (common)
								

								 	
									Max number of nodes to read
								

								 	 	
									int
								

								
	
									repositoryId (common)
								

								 	
									The Id of the repository to use. If not specified the first available repository is used
								

								 	 	
									String
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									query (consumer)
								

								 	
									The cmis query to execute against the repository. If not specified, the consumer will retrieve every node from the content repository by iterating the content tree recursively
								

								 	 	
									String
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									queryMode (producer)
								

								 	
									If true, will execute the cmis query from the message body and return result, otherwise will create a node in the cmis repository
								

								 	
									false
								

								 	
									boolean
								

								
	
									sessionFacadeFactory (advanced)
								

								 	
									To use a custom CMISSessionFacadeFactory to create the CMISSessionFacade instances
								

								 	 	
									CMISSessionFacade Factory
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									password (security)
								

								 	
									Password for the cmis repository
								

								 	 	
									String
								

								
	
									username (security)
								

								 	
									Username for the cmis repository
								

								 	 	
									String
								

								

Usage

Message headers evaluated by the producer

	Header	Default Value	Description
	
									CamelCMISFolderPath
								

								 	
									/
								

								 	
									The current folder to use during the execution. If not specified will use the root folder
								

								
	
									CamelCMISRetrieveContent
								

								 	
									false
								

								 	
									In queryMode this header will force the producer to retrieve the content of document nodes.
								

								
	
									CamelCMISReadSize
								

								 	
									0
								

								 	
									Max number of nodes to read.
								

								
	
									cmis:path
								

								 	
									null
								

								 	
									If CamelCMISFolderPath is not set, will try to find out the path of the node from this cmis property and it is name
								

								
	
									cmis:name
								

								 	
									null
								

								 	
									If CamelCMISFolderPath is not set, will try to find out the path of the node from this cmis property and it is path
								

								
	
									cmis:objectTypeId
								

								 	
									null
								

								 	
									The type of the node
								

								
	
									cmis:contentStreamMimeType
								

								 	
									null
								

								 	
									The mimetype to set for a document
								

								

Message headers set during querying Producer operation

	Header	Type	Description
	
									CamelCMISResultCount
								

								 	
									Integer
								

								 	
									Number of nodes returned from the query.
								

								

					The message body will contain a list of maps, where each entry in the map is cmis property and its value. If CamelCMISRetrieveContent header is set to true, one additional entry in the map with key CamelCMISContent will contain InputStream of the document type of nodes.
				

Dependencies

				Maven users will need to add the following dependency to their pom.xml.
			

				pom.xml
			
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-cmis</artifactId>
 <version>${camel-version}</version>
</dependency>

				where ${camel-version} must be replaced by the actual version of Camel (2.11 or higher).
			

See Also

	
						Configuring Camel
					
	
						Component
					
	
						Endpoint
					
	
						Getting Started
					

Chapter 64. CM SMS Gateway Component

			Available as of Camel version 2.18
		

			Camel-Cm-Sms is an Apache Camel component for the [CM SMS Gateway](https://www.cmtelecom.com).
		

			It allows to integrate CM SMS APIin an application as a camel component.
		

			You must have a valid account. More information are available at CM Telecom.
		
cm-sms://sgw01.cm.nl/gateway.ashx?defaultFrom=DefaultSender&defaultMaxNumberOfParts=8&productToken=xxxxx

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-cm-sms</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>
Options

				The CM SMS Gateway component has no options.
			

				The CM SMS Gateway endpoint is configured using URI syntax:
			
cm-sms:host

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									host
								

								 	
									Required SMS Provider HOST with scheme
								

								 	 	
									String
								

								

Query Parameters (5 parameters):

	Name	Description	Default	Type
	
									defaultFrom (producer)
								

								 	
									This is the sender name. The maximum length is 11 characters.
								

								 	 	
									String
								

								
	
									defaultMaxNumberOfParts (producer)
								

								 	
									If it is a multipart message forces the max number. Message can be truncated. Technically the gateway will first check if a message is larger than 160 characters, if so, the message will be cut into multiple 153 characters parts limited by these parameters.
								

								 	
									8
								

								 	
									int
								

								
	
									productToken (producer)
								

								 	
									Required The unique token to use
								

								 	 	
									String
								

								
	
									testConnectionOnStartup (producer)
								

								 	
									Whether to test the connection to the SMS Gateway on startup
								

								 	
									false
								

								 	
									boolean
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

Sample

				You can try this project to see how camel-cm-sms can be integrated in a camel route.
			

Chapter 65. CoAP Component

			Available as of Camel version 2.16
		

			Camel-CoAP is an Apache Camel component that allows you to work with CoAP, a lightweight REST-type protocol for machine-to-machine operation. CoAP, Constrained Application Protocol is a specialized web transfer protocol for use with constrained nodes and constrained networks and it is based on RFC 7252.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-coap</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>
Options

				The CoAP component has no options.
			

				The CoAP endpoint is configured using URI syntax:
			
coap:uri

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									uri
								

								 	
									The URI for the CoAP endpoint
								

								 	 	
									URI
								

								

Query Parameters (5 parameters):

	Name	Description	Default	Type
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									coapMethodRestrict (consumer)
								

								 	
									Comma separated list of methods that the CoAP consumer will bind to. The default is to bind to all methods (DELETE, GET, POST, PUT).
								

								 	 	
									String
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

Message Headers

	Name	Type	Description
	
								CamelCoapMethod
							

							 	
								String
							

							 	
								The request method that the CoAP producer should use when calling the target CoAP server URI. Valid options are DELETE, GET, PING, POST & PUT.
							

							
	
								CamelCoapResponseCode
							

							 	
								String
							

							 	
								The CoAP response code sent by the external server. See RFC 7252 for details of what each code means.
							

							
	
								CamelCoapUri
							

							 	
								String
							

							 	
								The URI of a CoAP server to call. Will override any existing URI configured directly on the endpoint.
							

							

Configuring the CoAP producer request method

					The following rules determine which request method the CoAP producer will use to invoke the target URI:
				
	
							The value of the CamelCoapMethod header
						
	
							GET if a query string is provided on the target CoAP server URI.
						
	
							POST if the message exchange body is not null.
						
	
							GET otherwise.
						

Chapter 66. Constant Language

			Available as of Camel version 1.5
		

			The Constant Expression Language is really just a way to specify constant strings as a type of expression.
		
Note

				This is a fixed constant value that is only set once during starting up the route, do not use this if you want dynamic values during routing.
			

Constant Options

				The Constant language supports 1 options which are listed below.
			
	Name	Default	Java Type	Description
	
								trim
							

							 	
								true
							

							 	
								Boolean
							

							 	
								Whether to trim the value to remove leading and trailing whitespaces and line breaks
							

							

Example usage

				The setHeader element of the Spring DSL can utilize a constant expression like:
			
<route>
 <from uri="seda:a"/>
 <setHeader headerName="theHeader">
 <constant>the value</constant>
 </setHeader>
 <to uri="mock:b"/>
</route>

				in this case, the Message coming from the seda:a Endpoint will have 'theHeader' header set to the constant value 'the value'.
			

				And the same example using Java DSL:
			
from("seda:a")
 .setHeader("theHeader", constant("the value"))
 .to("mock:b");

Dependencies

				The Constant language is part of camel-core.
			

Chapter 67. CometD Component

			Available as of Camel version 2.0
		

			The cometd: component is a transport for working with the jetty implementation of the cometd/bayeux protocol.
 Using this component in combination with the dojo toolkit library it’s possible to push Camel messages directly into the browser using an AJAX based mechanism.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-cometd</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>
URI format

cometd://host:port/channelName[?options]

				The channelName represents a topic that can be subscribed to by the Camel endpoints.
			

Examples

cometd://localhost:8080/service/mychannel
cometds://localhost:8443/service/mychannel

				where cometds: represents an SSL configured endpoint.
			

Options

				The CometD component supports 8 options which are listed below.
			
	Name	Description	Default	Type
	
								sslKeyPassword (security)
							

							 	
								The password for the keystore when using SSL.
							

							 	 	
								String
							

							
	
								sslPassword (security)
							

							 	
								The password when using SSL.
							

							 	 	
								String
							

							
	
								sslKeystore (security)
							

							 	
								The path to the keystore.
							

							 	 	
								String
							

							
	
								securityPolicy (security)
							

							 	
								To use a custom configured SecurityPolicy to control authorization
							

							 	 	
								SecurityPolicy
							

							
	
								extensions (common)
							

							 	
								To use a list of custom BayeuxServer.Extension that allows modifying incoming and outgoing requests.
							

							 	 	
								List
							

							
	
								sslContextParameters (security)
							

							 	
								To configure security using SSLContextParameters
							

							 	 	
								SSLContextParameters
							

							
	
								useGlobalSslContext Parameters (security)
							

							 	
								Enable usage of global SSL context parameters.
							

							 	
								false
							

							 	
								boolean
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The CometD endpoint is configured using URI syntax:
			
cometd:host:port/channelName

				with the following path and query parameters:
			
Path Parameters (3 parameters):

	Name	Description	Default	Type
	
									host
								

								 	
									Required Hostname
								

								 	 	
									String
								

								
	
									port
								

								 	
									Required Host port number
								

								 	 	
									int
								

								
	
									channelName
								

								 	
									Required The channelName represents a topic that can be subscribed to by the Camel endpoints.
								

								 	 	
									String
								

								

Query Parameters (16 parameters):

	Name	Description	Default	Type
	
									allowedOrigins (common)
								

								 	
									The origins domain that support to cross, if the crosssOriginFilterOn is true
								

								 	
									*
								

								 	
									String
								

								
	
									baseResource (common)
								

								 	
									The root directory for the web resources or classpath. Use the protocol file: or classpath: depending if you want that the component loads the resource from file system or classpath. Classpath is required for OSGI deployment where the resources are packaged in the jar
								

								 	 	
									String
								

								
	
									crossOriginFilterOn (common)
								

								 	
									If true, the server will support for cross-domain filtering
								

								 	
									false
								

								 	
									boolean
								

								
	
									filterPath (common)
								

								 	
									The filterPath will be used by the CrossOriginFilter, if the crosssOriginFilterOn is true
								

								 	 	
									String
								

								
	
									interval (common)
								

								 	
									The client side poll timeout in milliseconds. How long a client will wait between reconnects
								

								 	 	
									int
								

								
	
									jsonCommented (common)
								

								 	
									If true, the server will accept JSON wrapped in a comment and will generate JSON wrapped in a comment. This is a defence against Ajax Hijacking.
								

								 	
									true
								

								 	
									boolean
								

								
	
									logLevel (common)
								

								 	
									Logging level. 0=none, 1=info, 2=debug.
								

								 	
									1
								

								 	
									int
								

								
	
									maxInterval (common)
								

								 	
									The max client side poll timeout in milliseconds. A client will be removed if a connection is not received in this time.
								

								 	
									30000
								

								 	
									int
								

								
	
									multiFrameInterval (common)
								

								 	
									The client side poll timeout, if multiple connections are detected from the same browser.
								

								 	
									1500
								

								 	
									int
								

								
	
									timeout (common)
								

								 	
									The server side poll timeout in milliseconds. This is how long the server will hold a reconnect request before responding.
								

								 	
									240000
								

								 	
									int
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									sessionHeadersEnabled (consumer)
								

								 	
									Whether to include the server session headers in the Camel message when creating a Camel Message for incoming requests.
								

								 	
									false
								

								 	
									boolean
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									disconnectLocalSession (producer)
								

								 	
									Whether to disconnect local sessions after publishing a message to its channel. Disconnecting local session is needed as they are not swept by default by CometD, and therefore you can run out of memory.
								

								 	
									false
								

								 	
									boolean
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

					You can append query options to the URI in the following format, ?option=value&option=value&…​
				

					Here is some examples on How to pass the parameters
				

					For file (for webapp resources located in the Web Application directory -→ cometd://localhost:8080?resourceBase=file./webapp
 For classpath (when by example the web resources are packaged inside the webapp folder -→ cometd://localhost:8080?resourceBase=classpath:webapp
				

Authentication

				Available as of Camel 2.8
			

				You can configure custom SecurityPolicy and Extension’s to the `CometdComponent which allows you to use authentication as documented here
			

Setting up SSL for Cometd Component

Using the JSSE Configuration Utility

					As of Camel 2.9, the Cometd component supports SSL/TLS configuration through the Camel JSSE Configuration Utility. This utility greatly decreases the amount of component specific code you need to write and is configurable at the endpoint and component levels. The following examples demonstrate how to use the utility with the Cometd component. You need to configure SSL on the CometdComponent.
				

					Programmatic configuration of the component
				
KeyStoreParameters ksp = new KeyStoreParameters();
ksp.setResource("/users/home/server/keystore.jks");
ksp.setPassword("keystorePassword");

KeyManagersParameters kmp = new KeyManagersParameters();
kmp.setKeyStore(ksp);
kmp.setKeyPassword("keyPassword");

TrustManagersParameters tmp = new TrustManagersParameters();
tmp.setKeyStore(ksp);

SSLContextParameters scp = new SSLContextParameters();
scp.setKeyManagers(kmp);
scp.setTrustManagers(tmp);

CometdComponent commetdComponent = getContext().getComponent("cometds", CometdComponent.class);
commetdComponent.setSslContextParameters(scp);

					Spring DSL based configuration of endpoint
				
...
 <camel:sslContextParameters
 id="sslContextParameters">
 <camel:keyManagers
 keyPassword="keyPassword">
 <camel:keyStore
 resource="/users/home/server/keystore.jks"
 password="keystorePassword"/>
 </camel:keyManagers>
 <camel:trustManagers>
 <camel:keyStore
 resource="/users/home/server/keystore.jks"
 password="keystorePassword"/>
 </camel:keyManagers>
 </camel:sslContextParameters>...

 <bean id="cometd" class="org.apache.camel.component.cometd.CometdComponent">
 <property name="sslContextParameters" ref="sslContextParameters"/>
 </bean>
...
 <to uri="cometds://127.0.0.1:443/service/test?baseResource=file:./target/test-classes/webapp&timeout=240000&interval=0&maxInterval=30000&multiFrameInterval=1500&jsonCommented=true&logLevel=2"/>...

See Also

	
						Configuring Camel
					
	
						Component
					
	
						Endpoint
					
	
						Getting Started
					

Chapter 68. Consul Component

			Available as of Camel version 2.18
		

			The Consul component is a component for integrating your application with Consul.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
 <dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-consul</artifactId>
 <version>${camel-version}</version>
 </dependency>
URI format

 consul://domain?[options]

				You can append query options to the URI in the following format:
			
 ?option=value&option=value&...

Options

				The Consul component supports 9 options which are listed below.
			
	Name	Description	Default	Type
	
								url (common)
							

							 	
								The Consul agent URL
							

							 	 	
								String
							

							
	
								datacenter (common)
							

							 	
								The data center
							

							 	 	
								String
							

							
	
								sslContextParameters (common)
							

							 	
								SSL configuration using an org.apache.camel.util.jsse.SSLContextParameters instance.
							

							 	 	
								SSLContextParameters
							

							
	
								useGlobalSslContext Parameters (security)
							

							 	
								Enable usage of global SSL context parameters.
							

							 	
								false
							

							 	
								boolean
							

							
	
								aclToken (common)
							

							 	
								Sets the ACL token to be used with Consul
							

							 	 	
								String
							

							
	
								userName (common)
							

							 	
								Sets the username to be used for basic authentication
							

							 	 	
								String
							

							
	
								password (common)
							

							 	
								Sets the password to be used for basic authentication
							

							 	 	
								String
							

							
	
								configuration (advanced)
							

							 	
								Sets the common configuration shared among endpoints
							

							 	 	
								ConsulConfiguration
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The Consul endpoint is configured using URI syntax:
			
consul:apiEndpoint

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									apiEndpoint
								

								 	
									Required The API endpoint
								

								 	 	
									String
								

								

Query Parameters (4 parameters):

	Name	Description	Default	Type
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

Headers

	Name	Type	Description
	
								CamelConsulAction
							

							 	
								String
							

							 	
								The Producer action
							

							
	
								CamelConsulKey
							

							 	
								String
							

							 	
								The Key on which the action should applied
							

							
	
								CamelConsulEventId
							

							 	
								String
							

							 	
								The event id (consumer only)
							

							
	
								CamelConsulEventName
							

							 	
								String
							

							 	
								The event name (consumer only)
							

							
	
								CamelConsulEventLTime
							

							 	
								Long
							

							 	
								The event LTime
							

							
	
								CamelConsulNodeFilter
							

							 	
								String
							

							 	
								The Node filter
							

							
	
								CamelConsulTagFilter
							

							 	
								String
							

							 	
								The tag filter
							

							
	
								CamelConsulSessionFilter
							

							 	
								String
							

							 	
								The session filter
							

							
	
								CamelConsulVersion
							

							 	
								int
							

							 	
								The data version
							

							
	
								CamelConsulFlags
							

							 	
								Long
							

							 	
								Flags associated with a value
							

							
	
								CamelConsulCreateIndex
							

							 	
								Long
							

							 	
								The internal index value that represents when the entry was created
							

							
	
								CamelConsulLockIndex
							

							 	
								Long
							

							 	
								The number of times this key has successfully been acquired in a lock
							

							
	
								CamelConsulModifyIndex
							

							 	
								Long
							

							 	
								The last index that modified this key
							

							
	
								CamelConsulOptions
							

							 	
								Object
							

							 	
								Options associated to the request
							

							
	
								CamelConsulResult
							

							 	
								boolean
							

							 	
								true if the response has a result
							

							
	
								CamelConsulSession
							

							 	
								String
							

							 	
								The session id
							

							
	
								CamelConsulValueAsString
							

							 	
								boolean
							

							 	
								To transform values retrieved from Consul i.e. on KV endpoint to string.
							

							

Chapter 69. Control Bus Component

			Available as of Camel version 2.11
		

			The Control Bus from the EIP patterns allows for the integration system to be monitored and managed from within the framework.
		

			[image: image]

		

			Use a Control Bus to manage an enterprise integration system. The Control Bus uses the same messaging mechanism used by the application data, but uses separate channels to transmit data that is relevant to the management of components involved in the message flow.
		

			In Camel you can manage and monitor using JMX, or by using a Java API from the CamelContext, or from the org.apache.camel.api.management package,
 or use the event notifier which has an example here.
		

			From Camel 2.11 onwards we have introduced a new ControlBus Component that allows you to send messages to a control bus Endpoint that reacts accordingly.
		
ControlBus Component

				Available as of Camel 2.11
			

				The controlbus: component provides easy management of Camel applications based on the Control Bus EIP pattern. For example, by sending a message to an Endpoint you can control the lifecycle of routes, or gather performance statistics.
			
controlbus:command[?options]

				Where command can be any string to identify which type of command to use.
			

Commands

	Command	Description
	
								route
							

							 	
								To control routes using the routeId and action parameter.
							

							
	
								language
							

							 	
								Allows you to specify a Language to use for evaluating the message body. If there is any result from the evaluation, then the result is put in the message body.
							

							

Options

				The Control Bus component has no options.
			

				The Control Bus endpoint is configured using URI syntax:
			
controlbus:command:language

				with the following path and query parameters:
			
Path Parameters (2 parameters):

	Name	Description	Default	Type
	
									command
								

								 	
									Required Command can be either route or language
								

								 	 	
									String
								

								
	
									language
								

								 	
									Allows you to specify the name of a Language to use for evaluating the message body. If there is any result from the evaluation, then the result is put in the message body.
								

								 	 	
									Language
								

								

Query Parameters (6 parameters):

	Name	Description	Default	Type
	
									action (producer)
								

								 	
									To denote an action that can be either: start, stop, or status. To either start or stop a route, or to get the status of the route as output in the message body. You can use suspend and resume from Camel 2.11.1 onwards to either suspend or resume a route. And from Camel 2.11.1 onwards you can use stats to get performance statics returned in XML format; the routeId option can be used to define which route to get the performance stats for, if routeId is not defined, then you get statistics for the entire CamelContext. The restart action will restart the route.
								

								 	 	
									String
								

								
	
									async (producer)
								

								 	
									Whether to execute the control bus task asynchronously. Important: If this option is enabled, then any result from the task is not set on the Exchange. This is only possible if executing tasks synchronously.
								

								 	
									false
								

								 	
									boolean
								

								
	
									loggingLevel (producer)
								

								 	
									Logging level used for logging when task is done, or if any exceptions occurred during processing the task.
								

								 	
									INFO
								

								 	
									LoggingLevel
								

								
	
									restartDelay (producer)
								

								 	
									The delay in millis to use when restarting a route.
								

								 	
									1000
								

								 	
									int
								

								
	
									routeId (producer)
								

								 	
									To specify a route by its id. The special keyword current indicates the current route.
								

								 	 	
									String
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

					You can append query options to the URI in the following format, ?option=value&option=value&…​
				

Using route command

				The route command allows you to do common tasks on a given route very easily, for example to start a route, you can send an empty message to this endpoint:
			
template.sendBody("controlbus:route?routeId=foo&action=start", null);

				To get the status of the route, you can do:
			
String status = template.requestBody("controlbus:route?routeId=foo&action=status", null, String.class);

Getting performance statistics

				Available as of Camel 2.11.1
			

				This requires JMX to be enabled (is by default) then you can get the performance statics per route, or for the CamelContext. For example to get the statics for a route named foo, we can do:
			
String xml = template.requestBody("controlbus:route?routeId=foo&action=stats", null, String.class);

				The returned statics is in XML format. Its the same data you can get from JMX with the dumpRouteStatsAsXml operation on the ManagedRouteMBean.
			

				To get statics for the entire CamelContext you just omit the routeId parameter as shown below:
			
String xml = template.requestBody("controlbus:route?action=stats", null, String.class);

Using Simple language

				You can use the Simple language with the control bus, for example to stop a specific route, you can send a message to the "controlbus:language:simple" endpoint containing the following message:
			
template.sendBody("controlbus:language:simple", "${camelContext.stopRoute('myRoute')}");

				As this is a void operation, no result is returned. However, if you want the route status you can do:
			
String status = template.requestBody("controlbus:language:simple", "${camelContext.getRouteStatus('myRoute')}", String.class);

				It’s easier to use the route command to control lifecycle of routes. The language command allows you to execute a language script that has stronger powers such as Groovy or to some extend the Simple language.
			

				For example to shutdown Camel itself you can do:
			
template.sendBody("controlbus:language:simple?async=true", "${camelContext.stop()}");

				We use async=true to stop Camel asynchronously as otherwise we would be trying to stop Camel while it was in-flight processing the message we sent to the control bus component.
			
Tip

				You can also use other languages such as Groovy, etc.
			

Chapter 70. Couchbase Component

			Available as of Camel version 2.19
		

			The couchbase: component allows you to treat CouchBase instances as a producer or consumer of messages.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-couchbase</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>
URI format

couchbase:url

Options

				The Couchbase component has no options.
			

				The Couchbase endpoint is configured using URI syntax:
			
couchbase:protocol:hostname:port

				with the following path and query parameters:
			
Path Parameters (3 parameters):

	Name	Description	Default	Type
	
									protocol
								

								 	
									Required The protocol to use
								

								 	 	
									String
								

								
	
									hostname
								

								 	
									Required The hostname to use
								

								 	 	
									String
								

								
	
									port
								

								 	
									The port number to use
								

								 	
									8091
								

								 	
									int
								

								

Query Parameters (47 parameters):

	Name	Description	Default	Type
	
									bucket (common)
								

								 	
									The bucket to use
								

								 	 	
									String
								

								
	
									key (common)
								

								 	
									The key to use
								

								 	 	
									String
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									consumerProcessedStrategy (consumer)
								

								 	
									Define the consumer Processed strategy to use
								

								 	
									none
								

								 	
									String
								

								
	
									descending (consumer)
								

								 	
									Define if this operation is descending or not
								

								 	
									false
								

								 	
									boolean
								

								
	
									designDocumentName (consumer)
								

								 	
									The design document name to use
								

								 	
									beer
								

								 	
									String
								

								
	
									limit (consumer)
								

								 	
									The output limit to use
								

								 	
									-1
								

								 	
									int
								

								
	
									rangeEndKey (consumer)
								

								 	
									Define a range for the end key
								

								 	 	
									String
								

								
	
									rangeStartKey (consumer)
								

								 	
									Define a range for the start key
								

								 	 	
									String
								

								
	
									sendEmptyMessageWhenIdle (consumer)
								

								 	
									If the polling consumer did not poll any files, you can enable this option to send an empty message (no body) instead.
								

								 	
									false
								

								 	
									boolean
								

								
	
									skip (consumer)
								

								 	
									Define the skip to use
								

								 	
									-1
								

								 	
									int
								

								
	
									viewName (consumer)
								

								 	
									The view name to use
								

								 	
									brewery_beers
								

								 	
									String
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									pollStrategy (consumer)
								

								 	
									A pluggable org.apache.camel.PollingConsumerPollingStrategy allowing you to provide your custom implementation to control error handling usually occurred during the poll operation before an Exchange have been created and being routed in Camel.
								

								 	 	
									PollingConsumerPoll Strategy
								

								
	
									autoStartIdForInserts (producer)
								

								 	
									Define if we want an autostart Id when we are doing an insert operation
								

								 	
									false
								

								 	
									boolean
								

								
	
									operation (producer)
								

								 	
									The operation to do
								

								 	
									CCB_PUT
								

								 	
									String
								

								
	
									persistTo (producer)
								

								 	
									Where to persist the data
								

								 	
									0
								

								 	
									int
								

								
	
									producerRetryAttempts (producer)
								

								 	
									Define the number of retry attempts
								

								 	
									2
								

								 	
									int
								

								
	
									producerRetryPause (producer)
								

								 	
									Define the retry pause between different attempts
								

								 	
									5000
								

								 	
									int
								

								
	
									replicateTo (producer)
								

								 	
									Where to replicate the data
								

								 	
									0
								

								 	
									int
								

								
	
									startingIdForInsertsFrom (producer)
								

								 	
									Define the starting Id where we are doing an insert operation
								

								 	 	
									long
								

								
	
									additionalHosts (advanced)
								

								 	
									The additional hosts
								

								 	 	
									String
								

								
	
									maxReconnectDelay (advanced)
								

								 	
									Define the max delay during a reconnection
								

								 	
									30000
								

								 	
									long
								

								
	
									obsPollInterval (advanced)
								

								 	
									Define the observation polling interval
								

								 	
									400
								

								 	
									long
								

								
	
									obsTimeout (advanced)
								

								 	
									Define the observation timeout
								

								 	
									-1
								

								 	
									long
								

								
	
									opQueueMaxBlockTime (advanced)
								

								 	
									Define the max time an operation can be in queue blocked
								

								 	
									10000
								

								 	
									long
								

								
	
									opTimeOut (advanced)
								

								 	
									Define the operation timeout
								

								 	
									2500
								

								 	
									long
								

								
	
									readBufferSize (advanced)
								

								 	
									Define the buffer size
								

								 	
									16384
								

								 	
									int
								

								
	
									shouldOptimize (advanced)
								

								 	
									Define if we want to use optimization or not where possible
								

								 	
									false
								

								 	
									boolean
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									timeoutExceptionThreshold (advanced)
								

								 	
									Define the threshold for throwing a timeout Exception
								

								 	
									998
								

								 	
									int
								

								
	
									backoffErrorThreshold (scheduler)
								

								 	
									The number of subsequent error polls (failed due some error) that should happen before the backoffMultipler should kick-in.
								

								 	 	
									int
								

								
	
									backoffIdleThreshold (scheduler)
								

								 	
									The number of subsequent idle polls that should happen before the backoffMultipler should kick-in.
								

								 	 	
									int
								

								
	
									backoffMultiplier (scheduler)
								

								 	
									To let the scheduled polling consumer backoff if there has been a number of subsequent idles/errors in a row. The multiplier is then the number of polls that will be skipped before the next actual attempt is happening again. When this option is in use then backoffIdleThreshold and/or backoffErrorThreshold must also be configured.
								

								 	 	
									int
								

								
	
									delay (scheduler)
								

								 	
									Milliseconds before the next poll. You can also specify time values using units, such as 60s (60 seconds), 5m30s (5 minutes and 30 seconds), and 1h (1 hour).
								

								 	
									500
								

								 	
									long
								

								
	
									greedy (scheduler)
								

								 	
									If greedy is enabled, then the ScheduledPollConsumer will run immediately again, if the previous run polled 1 or more messages.
								

								 	
									false
								

								 	
									boolean
								

								
	
									initialDelay (scheduler)
								

								 	
									Milliseconds before the first poll starts. You can also specify time values using units, such as 60s (60 seconds), 5m30s (5 minutes and 30 seconds), and 1h (1 hour).
								

								 	
									1000
								

								 	
									long
								

								
	
									runLoggingLevel (scheduler)
								

								 	
									The consumer logs a start/complete log line when it polls. This option allows you to configure the logging level for that.
								

								 	
									TRACE
								

								 	
									LoggingLevel
								

								
	
									scheduledExecutorService (scheduler)
								

								 	
									Allows for configuring a custom/shared thread pool to use for the consumer. By default each consumer has its own single threaded thread pool.
								

								 	 	
									ScheduledExecutor Service
								

								
	
									scheduler (scheduler)
								

								 	
									To use a cron scheduler from either camel-spring or camel-quartz2 component
								

								 	
									none
								

								 	
									ScheduledPollConsumer Scheduler
								

								
	
									schedulerProperties (scheduler)
								

								 	
									To configure additional properties when using a custom scheduler or any of the Quartz2, Spring based scheduler.
								

								 	 	
									Map
								

								
	
									startScheduler (scheduler)
								

								 	
									Whether the scheduler should be auto started.
								

								 	
									true
								

								 	
									boolean
								

								
	
									timeUnit (scheduler)
								

								 	
									Time unit for initialDelay and delay options.
								

								 	
									MILLISECONDS
								

								 	
									TimeUnit
								

								
	
									useFixedDelay (scheduler)
								

								 	
									Controls if fixed delay or fixed rate is used. See ScheduledExecutorService in JDK for details.
								

								 	
									true
								

								 	
									boolean
								

								
	
									password (security)
								

								 	
									The password to use
								

								 	 	
									String
								

								
	
									username (security)
								

								 	
									The username to use
								

								 	 	
									String
								

								

Chapter 71. CouchDB Component

			Available as of Camel version 2.11
		

			The couchdb: component allows you to treat CouchDB instances as a producer or consumer of messages. Using the lightweight LightCouch API, this camel component has the following features:
		
	
					As a consumer, monitors couch changesets for inserts, updates and deletes and publishes these as messages into camel routes.
				
	
					As a producer, can save, update and from Camel 2.18 delete (by using CouchDbMethod with DELETE value) documents into couch.
				
	
					Can support as many endpoints as required, eg for multiple databases across multiple instances.
				
	
					Ability to have events trigger for only deletes, only inserts/updates or all (default).
				
	
					Headers set for sequenceId, document revision, document id, and HTTP method type.
				

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-couchdb</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>
URI format

couchdb:http://hostname[:port]/database?[options]

				Where hostname is the hostname of the running couchdb instance. Port is optional and if not specified then defaults to 5984.
			

Options

				The CouchDB component has no options.
			

				The CouchDB endpoint is configured using URI syntax:
			
couchdb:protocol:hostname:port/database

				with the following path and query parameters:
			
Path Parameters (4 parameters):

	Name	Description	Default	Type
	
									protocol
								

								 	
									Required The protocol to use for communicating with the database.
								

								 	 	
									String
								

								
	
									hostname
								

								 	
									Required Hostname of the running couchdb instance
								

								 	 	
									String
								

								
	
									port
								

								 	
									Port number for the running couchdb instance
								

								 	
									5984
								

								 	
									int
								

								
	
									database
								

								 	
									Required Name of the database to use
								

								 	 	
									String
								

								

Query Parameters (12 parameters):

	Name	Description	Default	Type
	
									createDatabase (common)
								

								 	
									Creates the database if it does not already exist
								

								 	
									false
								

								 	
									boolean
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									deletes (consumer)
								

								 	
									Document deletes are published as events
								

								 	
									true
								

								 	
									boolean
								

								
	
									heartbeat (consumer)
								

								 	
									How often to send an empty message to keep socket alive in millis
								

								 	
									30000
								

								 	
									long
								

								
	
									since (consumer)
								

								 	
									Start tracking changes immediately after the given update sequence. The default, null, will start monitoring from the latest sequence.
								

								 	 	
									String
								

								
	
									style (consumer)
								

								 	
									Specifies how many revisions are returned in the changes array. The default, main_only, will only return the current winning revision; all_docs will return all leaf revisions (including conflicts and deleted former conflicts.)
								

								 	
									main_only
								

								 	
									String
								

								
	
									updates (consumer)
								

								 	
									Document inserts/updates are published as events
								

								 	
									true
								

								 	
									boolean
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									password (security)
								

								 	
									Password for authenticated databases
								

								 	 	
									String
								

								
	
									username (security)
								

								 	
									Username in case of authenticated databases
								

								 	 	
									String
								

								

Headers

				The following headers are set on exchanges during message transport.
			
	Property	Value
	
								CouchDbDatabase
							

							 	
								the database the message came from
							

							
	
								CouchDbSeq
							

							 	
								the couchdb changeset sequence number of the update / delete message
							

							
	
								CouchDbId
							

							 	
								the couchdb document id
							

							
	
								CouchDbRev
							

							 	
								the couchdb document revision
							

							
	
								CouchDbMethod
							

							 	
								the method (delete / update)
							

							

				Headers are set by the consumer once the message is received. The producer will also set the headers for downstream processors once the insert/update has taken place. Any headers set prior to the producer are ignored. That means for example, if you set CouchDbId as a header, it will not be used as the id for insertion, the id of the document will still be used.
			

Message Body

				The component will use the message body as the document to be inserted. If the body is an instance of String, then it will be marshalled into a GSON object before insert. This means that the string must be valid JSON or the insert / update will fail. If the body is an instance of a com.google.gson.JsonElement then it will be inserted as is. Otherwise the producer will throw an exception of unsupported body type.
			

Samples

				For example if you wish to consume all inserts, updates and deletes from a CouchDB instance running locally, on port 9999 then you could use the following:
			
from("couchdb:http://localhost:9999").process(someProcessor);

				If you were only interested in deletes, then you could use the following
			
from("couchdb:http://localhost:9999?updates=false").process(someProcessor);

				If you wanted to insert a message as a document, then the body of the exchange is used
			
from("someProducingEndpoint").process(someProcessor).to("couchdb:http://localhost:9999")

Chapter 72. Cassandra CQL Component

			Available as of Camel version 2.15
		

			Apache Cassandra is an open source NoSQL database designed to handle large amounts on commodity hardware. Like Amazon’s DynamoDB, Cassandra has a peer-to-peer and master-less architecture to avoid single point of failure and garanty high availability. Like Google’s BigTable, Cassandra data is structured using column families which can be accessed through the Thrift RPC API or a SQL-like API called CQL.
		

			This component aims at integrating Cassandra 2.0+ using the CQL3 API (not the Thrift API). It’s based on Cassandra Java Driver provided by DataStax.
		

			Maven users will need to add the following dependency to their pom.xml:
		

			pom.xml
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-cassandraql</artifactId>
 <version>x.y.z</version>
 <!-- use the same version as your Camel core version -->
</dependency>
URI format

				The endpoint can initiate the Cassandra connection or use an existing one.
			
	URI	Description
	
								cql:localhost/keyspace
							

							 	
								Single host, default port, usual for testing
							

							
	
								cql:host1,host2/keyspace
							

							 	
								Multi host, default port
							

							
	
								cql:host1,host2:9042/keyspace
							

							 	
								Multi host, custom port
							

							
	
								cql:host1,host2
							

							 	
								Default port and keyspace
							

							
	
								cql:bean:sessionRef
							

							 	
								Provided Session reference
							

							
	
								cql:bean:clusterRef/keyspace
							

							 	
								Provided Cluster reference
							

							

				To fine tune the Cassandra connection (SSL options, pooling options, load balancing policy, retry policy, reconnection policy…​), create your own Cluster instance and give it to the Camel endpoint.
			

Cassandra Options

				The Cassandra CQL component has no options.
			

				The Cassandra CQL endpoint is configured using URI syntax:
			
cql:beanRef:hosts:port/keyspace

				with the following path and query parameters:
			
Path Parameters (4 parameters):

	Name	Description	Default	Type
	
									beanRef
								

								 	
									beanRef is defined using bean:id
								

								 	 	
									String
								

								
	
									hosts
								

								 	
									Hostname(s) cassansdra server(s). Multiple hosts can be separated by comma.
								

								 	 	
									String
								

								
	
									port
								

								 	
									Port number of cassansdra server(s)
								

								 	 	
									Integer
								

								
	
									keyspace
								

								 	
									Keyspace to use
								

								 	 	
									String
								

								

Query Parameters (29 parameters):

	Name	Description	Default	Type
	
									cluster (common)
								

								 	
									To use the Cluster instance (you would normally not use this option)
								

								 	 	
									Cluster
								

								
	
									clusterName (common)
								

								 	
									Cluster name
								

								 	 	
									String
								

								
	
									consistencyLevel (common)
								

								 	
									Consistency level to use
								

								 	 	
									ConsistencyLevel
								

								
	
									cql (common)
								

								 	
									CQL query to perform. Can be overridden with the message header with key CamelCqlQuery.
								

								 	 	
									String
								

								
	
									loadBalancingPolicy (common)
								

								 	
									To use a specific LoadBalancingPolicy
								

								 	 	
									String
								

								
	
									password (common)
								

								 	
									Password for session authentication
								

								 	 	
									String
								

								
	
									prepareStatements (common)
								

								 	
									Whether to use PreparedStatements or regular Statements
								

								 	
									true
								

								 	
									boolean
								

								
	
									resultSetConversionStrategy (common)
								

								 	
									To use a custom class that implements logic for converting ResultSet into message body ALL, ONE, LIMIT_10, LIMIT_100…​
								

								 	 	
									String
								

								
	
									session (common)
								

								 	
									To use the Session instance (you would normally not use this option)
								

								 	 	
									Session
								

								
	
									username (common)
								

								 	
									Username for session authentication
								

								 	 	
									String
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									sendEmptyMessageWhenIdle (consumer)
								

								 	
									If the polling consumer did not poll any files, you can enable this option to send an empty message (no body) instead.
								

								 	
									false
								

								 	
									boolean
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									pollStrategy (consumer)
								

								 	
									A pluggable org.apache.camel.PollingConsumerPollingStrategy allowing you to provide your custom implementation to control error handling usually occurred during the poll operation before an Exchange have been created and being routed in Camel.
								

								 	 	
									PollingConsumerPoll Strategy
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									backoffErrorThreshold (scheduler)
								

								 	
									The number of subsequent error polls (failed due some error) that should happen before the backoffMultipler should kick-in.
								

								 	 	
									int
								

								
	
									backoffIdleThreshold (scheduler)
								

								 	
									The number of subsequent idle polls that should happen before the backoffMultipler should kick-in.
								

								 	 	
									int
								

								
	
									backoffMultiplier (scheduler)
								

								 	
									To let the scheduled polling consumer backoff if there has been a number of subsequent idles/errors in a row. The multiplier is then the number of polls that will be skipped before the next actual attempt is happening again. When this option is in use then backoffIdleThreshold and/or backoffErrorThreshold must also be configured.
								

								 	 	
									int
								

								
	
									delay (scheduler)
								

								 	
									Milliseconds before the next poll. You can also specify time values using units, such as 60s (60 seconds), 5m30s (5 minutes and 30 seconds), and 1h (1 hour).
								

								 	
									500
								

								 	
									long
								

								
	
									greedy (scheduler)
								

								 	
									If greedy is enabled, then the ScheduledPollConsumer will run immediately again, if the previous run polled 1 or more messages.
								

								 	
									false
								

								 	
									boolean
								

								
	
									initialDelay (scheduler)
								

								 	
									Milliseconds before the first poll starts. You can also specify time values using units, such as 60s (60 seconds), 5m30s (5 minutes and 30 seconds), and 1h (1 hour).
								

								 	
									1000
								

								 	
									long
								

								
	
									runLoggingLevel (scheduler)
								

								 	
									The consumer logs a start/complete log line when it polls. This option allows you to configure the logging level for that.
								

								 	
									TRACE
								

								 	
									LoggingLevel
								

								
	
									scheduledExecutorService (scheduler)
								

								 	
									Allows for configuring a custom/shared thread pool to use for the consumer. By default each consumer has its own single threaded thread pool.
								

								 	 	
									ScheduledExecutor Service
								

								
	
									scheduler (scheduler)
								

								 	
									To use a cron scheduler from either camel-spring or camel-quartz2 component
								

								 	
									none
								

								 	
									ScheduledPollConsumer Scheduler
								

								
	
									schedulerProperties (scheduler)
								

								 	
									To configure additional properties when using a custom scheduler or any of the Quartz2, Spring based scheduler.
								

								 	 	
									Map
								

								
	
									startScheduler (scheduler)
								

								 	
									Whether the scheduler should be auto started.
								

								 	
									true
								

								 	
									boolean
								

								
	
									timeUnit (scheduler)
								

								 	
									Time unit for initialDelay and delay options.
								

								 	
									MILLISECONDS
								

								 	
									TimeUnit
								

								
	
									useFixedDelay (scheduler)
								

								 	
									Controls if fixed delay or fixed rate is used. See ScheduledExecutorService in JDK for details.
								

								 	
									true
								

								 	
									boolean
								

								

Messages

Incoming Message

					The Camel Cassandra endpoint expects a bunch of simple objects (Object or Object[] or Collection<Object>) which will be bound to the CQL statement as query parameters. If message body is null or empty, then CQL query will be executed without binding parameters.
				

					Headers:
				
	
							CamelCqlQuery (optional, String or RegularStatement): CQL query either as a plain String or built using the QueryBuilder.
						

Outgoing Message

					The Camel Cassandra endpoint produces one or many a Cassandra Row objects depending on the resultSetConversionStrategy:
				

					
				
	
							List<Row> if resultSetConversionStrategy is ALL or LIMIT_[0-9]+
						
	
							Single` Row` if resultSetConversionStrategy is ONE
						
	
							Anything else, if resultSetConversionStrategy is a custom implementation of the ResultSetConversionStrategy
						

Repositories

				Cassandra can be used to store message keys or messages for the idempotent and aggregation EIP.
			

				Cassandra might not be the best tool for queuing use cases yet, read Cassandra anti-patterns queues and queue like datasets. It’s advised to use LeveledCompaction and a small GC grace setting for these tables to allow tombstoned rows to be removed quickly.
			

Idempotent repository

				The NamedCassandraIdempotentRepository stores messages keys in a Cassandra table like this:
			

				CAMEL_IDEMPOTENT.cql
			
CREATE TABLE CAMEL_IDEMPOTENT (
 NAME varchar, -- Repository name
 KEY varchar, -- Message key
 PRIMARY KEY (NAME, KEY)
) WITH compaction = {'class':'LeveledCompactionStrategy'}
 AND gc_grace_seconds = 86400;

				This repository implementation uses lightweight transactions (also known as Compare and Set) and requires Cassandra 2.0.7+.
			

				Alternatively, the CassandraIdempotentRepository does not have a NAME column and can be extended to use a different data model.
			
	Option	Default	Description
	
								table
							

							 	
								CAMEL_IDEMPOTENT
							

							 	
								Table name
							

							
	
								pkColumns
							

							 	
								NAME,` KEY`
							

							 	
								Primary key columns
							

							
	
								name
							

							 	 	
								Repository name, value used for NAME column
							

							
	
								ttl
							

							 	 	
								Key time to live
							

							
	
								writeConsistencyLevel
							

							 	 	
								Consistency level used to insert/delete key: ANY, ONE, TWO, QUORUM, LOCAL_QUORUM…
							

							
	
								readConsistencyLevel
							

							 	 	
								Consistency level used to read/check key: ONE, TWO, QUORUM, LOCAL_QUORUM…
							

							

Aggregation repository

				The NamedCassandraAggregationRepository stores exchanges by correlation key in a Cassandra table like this:
			

				CAMEL_AGGREGATION.cql
			
CREATE TABLE CAMEL_AGGREGATION (
 NAME varchar, -- Repository name
 KEY varchar, -- Correlation id
 EXCHANGE_ID varchar, -- Exchange id
 EXCHANGE blob, -- Serialized exchange
 PRIMARY KEY (NAME, KEY)
) WITH compaction = {'class':'LeveledCompactionStrategy'}
 AND gc_grace_seconds = 86400;

				Alternatively, the CassandraAggregationRepository does not have a NAME column and can be extended to use a different data model.
			
	Option	Default	Description
	
								table
							

							 	
								CAMEL_AGGREGATION
							

							 	
								Table name
							

							
	
								pkColumns
							

							 	
								NAME,KEY
							

							 	
								Primary key columns
							

							
	
								exchangeIdColumn
							

							 	
								EXCHANGE_ID
							

							 	
								Exchange Id column
							

							
	
								exchangeColumn
							

							 	
								EXCHANGE
							

							 	
								Exchange content column
							

							
	
								name
							

							 	 	
								Repository name, value used for NAME column
							

							
	
								ttl
							

							 	 	
								Exchange time to live
							

							
	
								writeConsistencyLevel
							

							 	 	
								Consistency level used to insert/delete exchange: ANY, ONE, TWO, QUORUM, LOCAL_QUORUM…
							

							
	
								readConsistencyLevel
							

							 	 	
								Consistency level used to read/check exchange: ONE, TWO, QUORUM, LOCAL_QUORUM…
							

							

Chapter 73. Crypto (JCE) Component

			Available as of Camel version 2.3
		

			With Camel cryptographic endpoints and Java’s Cryptographic extension it is easy to create Digital Signatures for Exchanges. Camel provides a pair of flexible endpoints which get used in concert to create a signature for an exchange in one part of the exchange’s workflow and then verify the signature in a later part of the workflow.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-crypto</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>
Introduction

				Digital signatures make use of Asymmetric Cryptographic techniques to sign messages. From a (very) high level, the algorithms use pairs of complimentary keys with the special property that data encrypted with one key can only be decrypted with the other. One, the private key, is closely guarded and used to 'sign' the message while the other, public key, is shared around to anyone interested in verifying the signed messages. Messages are signed by using the private key to encrypting a digest of the message. This encrypted digest is transmitted along with the message. On the other side the verifier recalculates the message digest and uses the public key to decrypt the the digest in the signature. If both digests match the verifier knows only the holder of the private key could have created the signature.
			

				Camel uses the Signature service from the Java Cryptographic Extension to do all the heavy cryptographic lifting required to create exchange signatures. The following are some excellent resources for explaining the mechanics of Cryptography, Message digests and Digital Signatures and how to leverage them with the JCE.
			
	
						Bruce Schneier’s Applied Cryptography
					
	
						Beginning Cryptography with Java by David Hook
					
	
						The ever insightful Wikipedia Digital_signatures
					

URI format

				As mentioned Camel provides a pair of crypto endpoints to create and verify signatures
			
crypto:sign:name[?options]
crypto:verify:name[?options]
	
						crypto:sign creates the signature and stores it in the Header keyed by the constant org.apache.camel.component.crypto.DigitalSignatureConstants.SIGNATURE, i.e. "CamelDigitalSignature".
					
	
						crypto:verify will read in the contents of this header and do the verification calculation.
					

				In order to correctly function, the sign and verify process needs a pair of keys to be shared, signing requiring a PrivateKey and verifying a PublicKey (or a Certificate containing one). Using the JCE it is very simple to generate these key pairs but it is usually most secure to use a KeyStore to house and share your keys. The DSL is very flexible about how keys are supplied and provides a number of mechanisms.
			

				Note a crypto:sign endpoint is typically defined in one route and the complimentary crypto:verify in another, though for simplicity in the examples they appear one after the other. It goes without saying that both signing and verifying should be configured identically.
			

Options

				The Crypto (JCE) component supports 2 options which are listed below.
			
	Name	Description	Default	Type
	
								configuration (advanced)
							

							 	
								To use the shared DigitalSignatureConfiguration as configuration
							

							 	 	
								DigitalSignature Configuration
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The Crypto (JCE) endpoint is configured using URI syntax:
			
crypto:cryptoOperation:name

				with the following path and query parameters:
			
Path Parameters (2 parameters):

	Name	Description	Default	Type
	
									cryptoOperation
								

								 	
									Required Set the Crypto operation from that supplied after the crypto scheme in the endpoint uri e.g. crypto:sign sets sign as the operation.
								

								 	 	
									CryptoOperation
								

								
	
									name
								

								 	
									Required The logical name of this operation.
								

								 	 	
									String
								

								

Query Parameters (19 parameters):

	Name	Description	Default	Type
	
									algorithm (producer)
								

								 	
									Sets the JCE name of the Algorithm that should be used for the signer.
								

								 	
									SHA1WithDSA
								

								 	
									String
								

								
	
									alias (producer)
								

								 	
									Sets the alias used to query the KeyStore for keys and link java.security.cert.Certificate Certificates to be used in signing and verifying exchanges. This value can be provided at runtime via the message header link org.apache.camel.component.crypto.DigitalSignatureConstantsKEYSTORE_ALIAS
								

								 	 	
									String
								

								
	
									certificateName (producer)
								

								 	
									Sets the reference name for a PrivateKey that can be fond in the registry.
								

								 	 	
									String
								

								
	
									keystore (producer)
								

								 	
									Sets the KeyStore that can contain keys and Certficates for use in signing and verifying exchanges. A KeyStore is typically used with an alias, either one supplied in the Route definition or dynamically via the message header CamelSignatureKeyStoreAlias. If no alias is supplied and there is only a single entry in the Keystore, then this single entry will be used.
								

								 	 	
									KeyStore
								

								
	
									keystoreName (producer)
								

								 	
									Sets the reference name for a Keystore that can be fond in the registry.
								

								 	 	
									String
								

								
	
									privateKey (producer)
								

								 	
									Set the PrivateKey that should be used to sign the exchange
								

								 	 	
									PrivateKey
								

								
	
									privateKeyName (producer)
								

								 	
									Sets the reference name for a PrivateKey that can be fond in the registry.
								

								 	 	
									String
								

								
	
									provider (producer)
								

								 	
									Set the id of the security provider that provides the configured Signature algorithm.
								

								 	 	
									String
								

								
	
									publicKeyName (producer)
								

								 	
									references that should be resolved when the context changes
								

								 	 	
									String
								

								
	
									secureRandomName (producer)
								

								 	
									Sets the reference name for a SecureRandom that can be fond in the registry.
								

								 	 	
									String
								

								
	
									signatureHeaderName (producer)
								

								 	
									Set the name of the message header that should be used to store the base64 encoded signature. This defaults to 'CamelDigitalSignature'
								

								 	 	
									String
								

								
	
									bufferSize (advanced)
								

								 	
									Set the size of the buffer used to read in the Exchange payload data.
								

								 	
									2048
								

								 	
									Integer
								

								
	
									certificate (advanced)
								

								 	
									Set the Certificate that should be used to verify the signature in the exchange based on its payload.
								

								 	 	
									Certificate
								

								
	
									clearHeaders (advanced)
								

								 	
									Determines if the Signature specific headers be cleared after signing and verification. Defaults to true, and should only be made otherwise at your extreme peril as vital private information such as Keys and passwords may escape if unset.
								

								 	
									true
								

								 	
									boolean
								

								
	
									keyStoreParameters (advanced)
								

								 	
									Sets the KeyStore that can contain keys and Certficates for use in signing and verifying exchanges based on the given KeyStoreParameters. A KeyStore is typically used with an alias, either one supplied in the Route definition or dynamically via the message header CamelSignatureKeyStoreAlias. If no alias is supplied and there is only a single entry in the Keystore, then this single entry will be used.
								

								 	 	
									KeyStoreParameters
								

								
	
									publicKey (advanced)
								

								 	
									Set the PublicKey that should be used to verify the signature in the exchange.
								

								 	 	
									PublicKey
								

								
	
									secureRandom (advanced)
								

								 	
									Set the SecureRandom used to initialize the Signature service
								

								 	 	
									SecureRandom
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									password (security)
								

								 	
									Sets the password used to access an aliased PrivateKey in the KeyStore.
								

								 	 	
									String
								

								

Using

Raw keys

					The most basic way to way to sign and verify an exchange is with a KeyPair as follows.
				

					The same can be achieved with the Spring XML Extensions using references to keys
				

KeyStores and Aliases.

					The JCE provides a very versatile keystore concept for housing pairs of private keys and certificates, keeping them encrypted and password protected. They can be retrieved by applying an alias to the retrieval APIs. There are a number of ways to get keys and Certificates into a keystore, most often this is done with the external 'keytool' application. This is a good example of using keytool to create a KeyStore with a self signed Cert and Private key.
				

					The examples use a Keystore with a key and cert aliased by 'bob'. The password for the keystore and the key is 'letmein'
				

					The following shows how to use a Keystore via the Fluent builders, it also shows how to load and initialize the keystore.
				

					Again in Spring a ref is used to lookup an actual keystore instance.
				

Changing JCE Provider and Algorithm

					Changing the Signature algorithm or the Security provider is a simple matter of specifying their names. You will need to also use Keys that are compatible with the algorithm you choose.
				

					or
				

Changing the Signature Message Header

					It may be desirable to change the message header used to store the signature. A different header name can be specified in the route definition as follows
				

					or
				

Changing the buffersize

					In case you need to update the size of the buffer…​
				

					or
				

Supplying Keys dynamically.

					When using a Recipient list or similar EIP the recipient of an exchange can vary dynamically. Using the same key across all recipients may be neither feasible nor desirable. It would be useful to be able to specify signature keys dynamically on a per-exchange basis. The exchange could then be dynamically enriched with the key of its target recipient prior to signing. To facilitate this the signature mechanisms allow for keys to be supplied dynamically via the message headers below
				
	
							Exchange.SIGNATURE_PRIVATE_KEY, "CamelSignaturePrivateKey"
						
	
							Exchange.SIGNATURE_PUBLIC_KEY_OR_CERT, "CamelSignaturePublicKeyOrCert"
						

					or
				

					Even better would be to dynamically supply a keystore alias. Again the alias can be supplied in a message header
				
	
							Exchange.KEYSTORE_ALIAS, "CamelSignatureKeyStoreAlias"
						

					or
				

					The header would be set as follows
				
Exchange unsigned = getMandatoryEndpoint("direct:alias-sign").createExchange();
unsigned.getIn().setBody(payload);
unsigned.getIn().setHeader(DigitalSignatureConstants.KEYSTORE_ALIAS, "bob");
unsigned.getIn().setHeader(DigitalSignatureConstants.KEYSTORE_PASSWORD, "letmein".toCharArray());
template.send("direct:alias-sign", unsigned);
Exchange signed = getMandatoryEndpoint("direct:alias-sign").createExchange();
signed.getIn().copyFrom(unsigned.getOut());
signed.getIn().setHeader(KEYSTORE_ALIAS, "bob");
template.send("direct:alias-verify", signed);

See Also

	
						Configuring Camel
					
	
						Component
					
	
						Endpoint
					
	
						Getting Started
					

Chapter 74. Crypto CMS Component

			Available as of Camel version 2.20
		

			Cryptographic Message Syntax (CMS) is a well established standard for signing and encrypting messages. The Apache Crypto CMS component supports the following parts of this standard: * Content Type "Enveloped Data" with Key Transport (asymmetric key), * Content Type "Signed Data". You can create CMS Enveloped Data instances, decrypt CMS Enveloped Data instances, create CMS Signed Data instances, and validate CMS Signed Data instances.
		

			The component uses the Bouncy Castle libraries bcprov-jdk15on and bcpkix-jdk15on.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-crypto-cms</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>

			We recommend to register the Bouncy Castle security provider in your application before you call an endpoint of this component:
		
Security.addProvider(new BouncyCastleProvider());

			If the Bouncy Castle security provider is not registered then the Crypto CMS component will register the provider.
		
Options

				The Crypto CMS component supports 3 options which are listed below.
			
	Name	Description	Default	Type
	
								signedDataVerifier Configuration (advanced)
							

							 	
								To configure the shared SignedDataVerifierConfiguration, which determines the uri parameters for the verify operation.
							

							 	 	
								SignedDataVerifier Configuration
							

							
	
								envelopedDataDecryptor Configuration (advanced)
							

							 	
								To configure the shared EnvelopedDataDecryptorConfiguration, which determines the uri parameters for the decrypt operation.
							

							 	 	
								EnvelopedDataDecryptor Configuration
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The Crypto CMS endpoint is configured using URI syntax:
			
crypto-cms:cryptoOperation:name

				with the following path and query parameters:
			
Path Parameters (2 parameters):

	Name	Description	Default	Type
	
									cryptoOperation
								

								 	
									Required Set the Crypto operation from that supplied after the crypto scheme in the endpoint uri e.g. crypto-cms:sign sets sign as the operation. Possible values: sign, verify, encrypt, or decrypt.
								

								 	 	
									CryptoOperation
								

								
	
									name
								

								 	
									Required The name part in the URI can be chosen by the user to distinguish between different signer/verifier/encryptor/decryptor endpoints within the camel context.
								

								 	 	
									String
								

								

Query Parameters (15 parameters):

	Name	Description	Default	Type
	
									keyStore (common)
								

								 	
									Keystore which contains signer private keys, verifier public keys, encryptor public keys, decryptor private keys depending on the operation. Use either this parameter or the parameter 'keyStoreParameters'.
								

								 	 	
									KeyStore
								

								
	
									keyStoreParameters (common)
								

								 	
									Keystore containing signer private keys, verifier public keys, encryptor public keys, decryptor private keys depending on the operation. Use either this parameter or the parameter 'keystore'.
								

								 	 	
									KeyStoreParameters
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									password (decrypt)
								

								 	
									Sets the password of the private keys. It is assumed that all private keys in the keystore have the same password. If not set then it is assumed that the password of the private keys is given by the keystore password given in the KeyStoreParameters.
								

								 	 	
									Char[]
								

								
	
									fromBase64 (decrypt_verify)
								

								 	
									If true then the CMS message is base 64 encoded and must be decoded during the processing. Default value is false.
								

								 	
									false
								

								 	
									Boolean
								

								
	
									contentEncryptionAlgorithm (encrypt)
								

								 	
									Encryption algorithm, for example DESede/CBC/PKCS5Padding. Further possible values: DESede/CBC/PKCS5Padding, AES/CBC/PKCS5Padding, Camellia/CBC/PKCS5Padding, CAST5/CBC/PKCS5Padding.
								

								 	 	
									String
								

								
	
									originatorInformation Provider (encrypt)
								

								 	
									Provider for the originator info. See https://tools.ietf.org/html/rfc5652section-6.1. The default value is null.
								

								 	 	
									OriginatorInformation Provider
								

								
	
									recipient (encrypt)
								

								 	
									Recipient Info: reference to a bean which implements the interface org.apache.camel.component.crypto.cms.api.TransRecipientInfo
								

								 	 	
									List
								

								
	
									secretKeyLength (encrypt)
								

								 	
									Key length for the secret symmetric key used for the content encryption. Only used if the specified content-encryption algorithm allows keys of different sizes. If contentEncryptionAlgorithm=AES/CBC/PKCS5Padding or Camellia/CBC/PKCS5Padding then 128; if contentEncryptionAlgorithm=DESede/CBC/PKCS5Padding then 192, 128; if strong encryption is enabled then for AES/CBC/PKCS5Padding and Camellia/CBC/PKCS5Padding also the key lengths 192 and 256 are possible.
								

								 	 	
									int
								

								
	
									unprotectedAttributes GeneratorProvider (encrypt)
								

								 	
									Provider of the generator for the unprotected attributes. The default value is null which means no unprotected attribute is added to the Enveloped Data object. See https://tools.ietf.org/html/rfc5652section-6.1.
								

								 	 	
									AttributesGenerator Provider
								

								
	
									toBase64 (encrypt_sign)
								

								 	
									Indicates whether the Signed Data or Enveloped Data instance shall be base 64 encoded. Default value is false.
								

								 	
									false
								

								 	
									Boolean
								

								
	
									includeContent (sign)
								

								 	
									Indicates whether the signed content should be included into the Signed Data instance. If false then a detached Signed Data instance is created in the header CamelCryptoCmsSignedData.
								

								 	
									true
								

								 	
									Boolean
								

								
	
									signer (sign)
								

								 	
									Signer information: reference to a bean which implements org.apache.camel.component.crypto.cms.api.SignerInfo
								

								 	 	
									List
								

								
	
									signedDataHeaderBase64 (verify)
								

								 	
									Indicates whether the value in the header CamelCryptoCmsSignedData is base64 encoded. Default value is false. Only relevant for detached signatures. In the detached signature case, the header contains the Signed Data object.
								

								 	
									false
								

								 	
									Boolean
								

								
	
									verifySignaturesOfAll Signers (verify)
								

								 	
									If true then the signatures of all signers contained in the Signed Data object are verified. If false then only one signature whose signer info matches with one of the specified certificates is verified. Default value is true.
								

								 	
									true
								

								 	
									Boolean
								

								

Enveloped Data

				Note, that a crypto-cms:encypt endpoint is typically defined in one route and the complimentary crypto-cms:decrypt in another, though for simplicity in the examples they appear one after the other.
			

				The following example shows how you can create an Enveloped Data message and how you can decrypt an Enveloped Data message.
			

				Basic Example in Java DSL
			
import org.apache.camel.util.jsse.KeyStoreParameters;
import org.apache.camel.component.crypto.cms.crypt.DefaultKeyTransRecipientInfo;
...
KeyStoreParameters keystore = new KeyStoreParameters();
keystore.setType("JCEKS");
keystore.setResource("keystore/keystore.jceks);
keystore.setPassword("some_password"); // this password will also be used for accessing the private key if not specified in the crypto-cms:decrypt endpoint

DefaultKeyTransRecipientInfo recipient1 = new DefaultKeyTransRecipientInfo();
recipient1.setCertificateAlias("rsa"); // alias of the public key used for the encryption
recipient1.setKeyStoreParameters(keystore);

simpleReg.put("keyStoreParameters", keystore); // register keystore in the registry
simpleReg.put("recipient1", recipient1); // register recipient info in the registry

from("direct:start")
 .to("crypto-cms:encrypt://testencrpyt?toBase64=true&recipient=#recipient1&contentEncryptionAlgorithm=DESede/CBC/PKCS5Padding&secretKeyLength=128")
 .to("crypto-cms:decrypt://testdecrypt?fromBase64=true&keyStoreParameters=#keyStoreParameters")
 .to("mock:result");

				Basic Example in Spring XML
			
 <keyStoreParameters xmlns="http://camel.apache.org/schema/spring"
 id="keyStoreParameters1" resource="./keystore/keystore.jceks"
 password="some_password" type="JCEKS" />
 <bean id="recipient1"
 class="org.apache.camel.component.crypto.cms.crypt.DefaultKeyTransRecipientInfo">
 <property name="keyStoreParameters" ref="keyStoreParameters1" />
 <property name="certificateAlias" value="rsa" />
 </bean>
...
 <route>
 <from uri="direct:start" />
 <to uri="crypto-cms:encrypt://testencrpyt?toBase64=true&recipient=#recipient1&contentEncryptionAlgorithm=DESede/CBC/PKCS5Padding&secretKeyLength=128" />
 <to uri="crypto-cms:decrypt://testdecrypt?fromBase64=true&keyStoreParameters=#keyStoreParameters1" />
 <to uri="mock:result" />
 </route>

				Two Recipients in Java DSL
			
import org.apache.camel.util.jsse.KeyStoreParameters;
import org.apache.camel.component.crypto.cms.crypt.DefaultKeyTransRecipientInfo;
...
KeyStoreParameters keystore = new KeyStoreParameters();
keystore.setType("JCEKS");
keystore.setResource("keystore/keystore.jceks);
keystore.setPassword("some_password"); // this password will also be used for accessing the private key if not specified in the crypto-cms:decrypt endpoint

DefaultKeyTransRecipientInfo recipient1 = new DefaultKeyTransRecipientInfo();
recipient1.setCertificateAlias("rsa"); // alias of the public key used for the encryption
recipient1.setKeyStoreParameters(keystore);

DefaultKeyTransRecipientInfo recipient2 = new DefaultKeyTransRecipientInfo();
recipient2.setCertificateAlias("dsa");
recipient2.setKeyStoreParameters(keystore);

simpleReg.put("keyStoreParameters", keystore); // register keystore in the registry
simpleReg.put("recipient1", recipient1); // register recipient info in the registry

from("direct:start")
 .to("crypto-cms:encrypt://testencrpyt?toBase64=true&recipient=#recipient1&recipient=#recipient2&contentEncryptionAlgorithm=DESede/CBC/PKCS5Padding&secretKeyLength=128")
 //the decryptor will automatically choose one of the two private keys depending which one is in the decryptor keystore
 .to("crypto-cms:decrypt://testdecrypt?fromBase64=true&keyStoreParameters=#keyStoreParameters")
 .to("mock:result");

				Two Recipients in Spring XML
			
 <keyStoreParameters xmlns="http://camel.apache.org/schema/spring"
 id="keyStoreParameters1" resource="./keystore/keystore.jceks"
 password="some_password" type="JCEKS" />
 <bean id="recipient1"
 class="org.apache.camel.component.crypto.cms.crypt.DefaultKeyTransRecipientInfo">
 <property name="keyStoreParameters" ref="keyStoreParameters1" />
 <property name="certificateAlias" value="rsa" />
 </bean>
 <bean id="recipient2"
 class="org.apache.camel.component.crypto.cms.crypt.DefaultKeyTransRecipientInfo">
 <property name="keyStoreParameters" ref="keyStoreParameters1" />
 <property name="certificateAlias" value="dsa" />
 </bean>
...
 <route>
 <from uri="direct:start" />
 <to uri="crypto-cms:encrypt://testencrpyt?toBase64=true&recipient=#recipient1&recipient=#recipient2&contentEncryptionAlgorithm=DESede/CBC/PKCS5Padding&secretKeyLength=128" />
 <!-- the decryptor will automatically choose one of the two private keys depending which one is in the decryptor keystore -->
 <to uri="crypto-cms:decrypt://testdecrypt?fromBase64=true&keyStoreParameters=#keyStoreParameters1" />
 <to uri="mock:result" />
 </route>

Signed Data

				Note, that a crypto-cms:sign endpoint is typically defined in one route and the complimentary crypto-cms:verify in another, though for simplicity in the examples they appear one after the other.
			

				The following example shows how you can create a Signed Data message and how you can validate a Signed Data message.
			

				Basic Example in Java DSL
			
import org.apache.camel.util.jsse.KeyStoreParameters;
import org.apache.camel.component.crypto.cms.sig.DefaultSignerInfo;
...
KeyStoreParameters keystore = new KeyStoreParameters();
keystore.setType("JCEKS");
keystore.setResource("keystore/keystore.jceks);
keystore.setPassword("some_password"); // this password will also be used for accessing the private key if not specified in the signerInfo1 bean

//Signer Information, by default the following signed attributes are included: contentType, signingTime, messageDigest, and cmsAlgorithmProtect; by default no unsigned attribute is included.
// If you want to add your own signed attributes or unsigned attributes, see methods DefaultSignerInfo.setSignedAttributeGenerator and DefaultSignerInfo.setUnsignedAttributeGenerator.
DefaultSignerInfo signerInfo1 = new DefaultSignerInfo();
signerInfo1.setIncludeCertificates(true); // if set to true then the certificate chain of the private key will be added to the Signed Data object
signerInfo1.setSignatureAlgorithm("SHA256withRSA"); // signature algorithm; attention, the signature algorithm must fit to the signer private key.
signerInfo1.setPrivateKeyAlias("rsa"); // alias of the private key used for the signing
signerInfo1.setPassword("private_key_pw".toCharArray()); // optional parameter, if not set then the password of the KeyStoreParameters will be used for accessing the private key
signerInfo1.setKeyStoreParameters(keystore);

simpleReg.put("keyStoreParameters", keystore); //register keystore in the registry
simpleReg.put("signer1", signerInfo1); //register signer info in the registry

from("direct:start")
 .to("crypto-cms:sign://testsign?signer=#signer1&includeContent=true&toBase64=true")
 .to("crypto-cms:verify://testverify?keyStoreParameters=#keyStoreParameters&fromBase64=true"")
 .to("mock:result");

				Basic Example in Spring XML
			
 <keyStoreParameters xmlns="http://camel.apache.org/schema/spring"
 id="keyStoreParameters1" resource="./keystore/keystore.jceks"
 password="some_password" type="JCEKS" />
 <bean id="signer1"
 class="org.apache.camel.component.crypto.cms.sig.DefaultSignerInfo">
 <property name="keyStoreParameters" ref="keyStoreParameters1" />
 <property name="privateKeyAlias" value="rsa" />
 <property name="signatureAlgorithm" value="SHA256withRSA" />
 <property name="includeCertificates" value="true" />
 <!-- optional parameter 'password', if not set then the password of the KeyStoreParameters will be used for accessing the private key -->
 <property name="password" value="private_key_pw" />
 </bean>
...
 <route>
 <from uri="direct:start" />
 <to uri="crypto-cms:sign://testsign?signer=#signer1&includeContent=true&toBase64=true" />
 <to uri="crypto-cms:verify://testverify?keyStoreParameters=#keyStoreParameters1&fromBase64=true" />
 <to uri="mock:result" />
 </route>

				Example with two Signers in Java DSL
			
import org.apache.camel.util.jsse.KeyStoreParameters;
import org.apache.camel.component.crypto.cms.sig.DefaultSignerInfo;
...
KeyStoreParameters keystore = new KeyStoreParameters();
keystore.setType("JCEKS");
keystore.setResource("keystore/keystore.jceks);
keystore.setPassword("some_password"); // this password will also be used for accessing the private key if not specified in the signerInfo1 bean

//Signer Information, by default the following signed attributes are included: contentType, signingTime, messageDigest, and cmsAlgorithmProtect; by default no unsigned attribute is included.
// If you want to add your own signed attributes or unsigned attributes, see methods DefaultSignerInfo.setSignedAttributeGenerator and DefaultSignerInfo.setUnsignedAttributeGenerator.
DefaultSignerInfo signerInfo1 = new DefaultSignerInfo();
signerInfo1.setIncludeCertificates(true); // if set to true then the certificate chain of the private key will be added to the Signed Data object
signerInfo1.setSignatureAlgorithm("SHA256withRSA"); // signature algorithm; attention, the signature algorithm must fit to the signer private key.
signerInfo1.setPrivateKeyAlias("rsa"); // alias of the private key used for the signing
signerInfo1.setPassword("private_key_pw".toCharArray()); // optional parameter, if not set then the password of the KeyStoreParameters will be used for accessing the private key
signerInfo1.setKeyStoreParameters(keystore);

DefaultSignerInfo signerInfo2 = new DefaultSignerInfo();
signerInfo2.setIncludeCertificates(true);
signerInfo2.setSignatureAlgorithm("SHA256withDSA");
signerInfo2.setPrivateKeyAlias("dsa");
signerInfo2.setKeyStoreParameters(keystore);

simpleReg.put("keyStoreParameters", keystore); //register keystore in the registry
simpleReg.put("signer1", signerInfo1); //register signer info in the registry
simpleReg.put("signer2", signerInfo2); //register signer info in the registry

from("direct:start")
 .to("crypto-cms:sign://testsign?signer=#signer1&signer=#signer2&includeContent=true")
 .to("crypto-cms:verify://testverify?keyStoreParameters=#keyStoreParameters")
 .to("mock:result");

				Example with two Signers in Spring XML
			
 <keyStoreParameters xmlns="http://camel.apache.org/schema/spring"
 id="keyStoreParameters1" resource="./keystore/keystore.jceks"
 password="some_password" type="JCEKS" />
 <bean id="signer1"
 class="org.apache.camel.component.crypto.cms.sig.DefaultSignerInfo">
 <property name="keyStoreParameters" ref="keyStoreParameters1" />
 <property name="privateKeyAlias" value="rsa" />
 <property name="signatureAlgorithm" value="SHA256withRSA" />
 <property name="includeCertificates" value="true" />
 <!-- optional parameter 'password', if not set then the password of the KeyStoreParameters will be used for accessing the private key -->
 <property name="password" value="private_key_pw" />
 </bean>
 <bean id="signer2"
 class="org.apache.camel.component.crypto.cms.sig.DefaultSignerInfo">
 <property name="keyStoreParameters" ref="keyStoreParameters1" />
 <property name="privateKeyAlias" value="dsa" />
 <property name="signatureAlgorithm" value="SHA256withDSA" />
 <!-- optional parameter 'password', if not set then the password of the KeyStoreParameters will be used for accessing the private key -->
 <property name="password" value="private_key_pw2" />
 </bean>
...
 <route>
 <from uri="direct:start" />
 <to uri="crypto-cms:sign://testsign?signer=#signer1&signer=#signer2&includeContent=true" />
 <to uri="crypto-cms:verify://testverify?keyStoreParameters=#keyStoreParameters1" />
 <to uri="mock:result" />
 </route>

				Detached Signature Example in Java DSL
			
import org.apache.camel.util.jsse.KeyStoreParameters;
import org.apache.camel.component.crypto.cms.sig.DefaultSignerInfo;
...
KeyStoreParameters keystore = new KeyStoreParameters();
keystore.setType("JCEKS");
keystore.setResource("keystore/keystore.jceks);
keystore.setPassword("some_password"); // this password will also be used for accessing the private key if not specified in the signerInfo1 bean

//Signer Information, by default the following signed attributes are included: contentType, signingTime, messageDigest, and cmsAlgorithmProtect; by default no unsigned attribute is included.
// If you want to add your own signed attributes or unsigned attributes, see methods DefaultSignerInfo.setSignedAttributeGenerator and DefaultSignerInfo.setUnsignedAttributeGenerator.
DefaultSignerInfo signerInfo1 = new DefaultSignerInfo();
signerInfo1.setIncludeCertificates(true); // if set to true then the certificate chain of the private key will be added to the Signed Data object
signerInfo1.setSignatureAlgorithm("SHA256withRSA"); // signature algorithm; attention, the signature algorithm must fit to the signer private key.
signerInfo1.setPrivateKeyAlias("rsa"); // alias of the private key used for the signing
signerInfo1.setPassword("private_key_pw".toCharArray()); // optional parameter, if not set then the password of the KeyStoreParameters will be used for accessing the private key
signerInfo1.setKeyStoreParameters(keystore);

simpleReg.put("keyStoreParameters", keystore); //register keystore in the registry
simpleReg.put("signer1", signerInfo1); //register signer info in the registry

from("direct:start")
 //with the option includeContent=false the SignedData object without the signed text will be written into the header "CamelCryptoCmsSignedData"
 .to("crypto-cms:sign://testsign?signer=#signer1&includeContent=false&toBase64=true")
 //the verifier reads the Signed Data object form the header CamelCryptoCmsSignedData and assumes that the signed content is in the message body
 .to("crypto-cms:verify://testverify?keyStoreParameters=#keyStoreParameters&signedDataHeaderBase64=true")
 .to("mock:result");

				Detached Signature Example in Spring XML
			
 <keyStoreParameters xmlns="http://camel.apache.org/schema/spring"
 id="keyStoreParameters1" resource="./keystore/keystore.jceks"
 password="some_password" type="JCEKS" />
 <bean id="signer1"
 class="org.apache.camel.component.crypto.cms.sig.DefaultSignerInfo">
 <property name="keyStoreParameters" ref="keyStoreParameters1" />
 <property name="privateKeyAlias" value="rsa" />
 <property name="signatureAlgorithm" value="SHA256withRSA" />
 <property name="includeCertificates" value="true" />
 <!-- optional parameter 'password', if not set then the password of the KeyStoreParameters will be used for accessing the private key -->
 <property name="password" value="private_key_pw" />
 </bean>
...
 <route>
 <from uri="direct:start" />
 <!-- with the option includeContent=false the SignedData object without the signed text will be written into the header "CamelCryptoCmsSignedData" -->
 <to uri="crypto-cms:sign://testsign?signer=#signer1&includeContent=false&toBase64=true" />
 <!-- the verifier reads the Signed Data object form the header CamelCryptoCmsSignedData and assumes that the signed content is in the message body -->
 <to uri="crypto-cms:verify://testverify?keyStoreParameters=#keyStoreParameters1&signedDataHeaderBase64=true" />
 <to uri="mock:result" />
 </route>

Chapter 75. Crypto (Java Cryptographic Extension) DataFormat

			Available as of Camel version 2.3
		

			The Crypto Data Format integrates the Java Cryptographic Extension into Camel, allowing simple and flexible encryption and decryption of messages using Camel’s familiar marshall and unmarshal formatting mechanism. It assumes marshalling to mean encryption to cyphertext and unmarshalling to mean decryption back to the original plaintext. This data format implements only symmetric (shared-key) encryption and decyption.
		
CryptoDataFormat Options

				The Crypto (Java Cryptographic Extension) dataformat supports 10 options which are listed below.
			
	Name	Default	Java Type	Description
	
								algorithm
							

							 	
								DES/CBC/PKCS5Padding
							

							 	
								String
							

							 	
								The JCE algorithm name indicating the cryptographic algorithm that will be used. Is by default DES/CBC/PKCS5Padding.
							

							
	
								cryptoProvider
							

							 	 	
								String
							

							 	
								The name of the JCE Security Provider that should be used.
							

							
	
								keyRef
							

							 	 	
								String
							

							 	
								Refers to the secret key to lookup from the register to use.
							

							
	
								initVectorRef
							

							 	 	
								String
							

							 	
								Refers to a byte array containing the Initialization Vector that will be used to initialize the Cipher.
							

							
	
								algorithmParameterRef
							

							 	 	
								String
							

							 	
								A JCE AlgorithmParameterSpec used to initialize the Cipher. Will lookup the type using the given name as a java.security.spec.AlgorithmParameterSpec type.
							

							
	
								buffersize
							

							 	 	
								Integer
							

							 	
								The size of the buffer used in the signature process.
							

							
	
								macAlgorithm
							

							 	
								HmacSHA1
							

							 	
								String
							

							 	
								The JCE algorithm name indicating the Message Authentication algorithm.
							

							
	
								shouldAppendHMAC
							

							 	
								false
							

							 	
								Boolean
							

							 	
								Flag indicating that a Message Authentication Code should be calculated and appended to the encrypted data.
							

							
	
								inline
							

							 	
								false
							

							 	
								Boolean
							

							 	
								Flag indicating that the configured IV should be inlined into the encrypted data stream. Is by default false.
							

							
	
								contentTypeHeader
							

							 	
								false
							

							 	
								Boolean
							

							 	
								Whether the data format should set the Content-Type header with the type from the data format if the data format is capable of doing so. For example application/xml for data formats marshalling to XML, or application/json for data formats marshalling to JSon etc.
							

							

Basic Usage

				At its most basic all that is required to encrypt/decrypt an exchange is a shared secret key. If one or more instances of the Crypto data format are configured with this key the format can be used to encrypt the payload in one route (or part of one) and decrypted in another. For example, using the Java DSL as follows:
			
KeyGenerator generator = KeyGenerator.getInstance("DES");

CryptoDataFormat cryptoFormat = new CryptoDataFormat("DES", generator.generateKey());

from("direct:basic-encryption")
 .marshal(cryptoFormat)
 .to("mock:encrypted")
 .unmarshal(cryptoFormat)
 .to("mock:unencrypted");

				In Spring the dataformat is configured first and then used in routes
			
<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
 <dataFormats>
 <crypto id="basic" algorithm="DES" keyRef="desKey" />
 </dataFormats>
 ...
 <route>
 <from uri="direct:basic-encryption" />
 <marshal ref="basic" />
 <to uri="mock:encrypted" />
 <unmarshal ref="basic" />
 <to uri="mock:unencrypted" />
 </route>
</camelContext>

Specifying the Encryption Algorithm

				Changing the algorithm is a matter of supplying the JCE algorithm name. If you change the algorithm you will need to use a compatible key.
			
KeyGenerator generator = KeyGenerator.getInstance("DES");

CryptoDataFormat cryptoFormat = new CryptoDataFormat("DES", generator.generateKey());
cryptoFormat.setShouldAppendHMAC(true);
cryptoFormat.setMacAlgorithm("HmacMD5");

from("direct:hmac-algorithm")
 .marshal(cryptoFormat)
 .to("mock:encrypted")
 .unmarshal(cryptoFormat)
 .to("mock:unencrypted");

				A list of the available algorithms in Java 7 is available via the Java Cryptography Architecture Standard Algorithm Name Documentation.
			

Specifying an Initialization Vector

				Some crypto algorithms, particularly block algorithms, require configuration with an initial block of data known as an Initialization Vector. In the JCE this is passed as an AlgorithmParameterSpec when the Cipher is initialized. To use such a vector with the CryptoDataFormat you can configure it with a byte[] containing the required data e.g.
			
KeyGenerator generator = KeyGenerator.getInstance("DES");
byte[] initializationVector = new byte[] {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07};

CryptoDataFormat cryptoFormat = new CryptoDataFormat("DES/CBC/PKCS5Padding", generator.generateKey());
cryptoFormat.setInitializationVector(initializationVector);

from("direct:init-vector")
 .marshal(cryptoFormat)
 .to("mock:encrypted")
 .unmarshal(cryptoFormat)
 .to("mock:unencrypted");

				or with spring, suppling a reference to a byte[]
			
<crypto id="initvector" algorithm="DES/CBC/PKCS5Padding" keyRef="desKey" initVectorRef="initializationVector" />

				The same vector is required in both the encryption and decryption phases. As it is not necessary to keep the IV a secret, the DataFormat allows for it to be inlined into the encrypted data and subsequently read out in the decryption phase to initialize the Cipher. To inline the IV set the /oinline flag.
			
KeyGenerator generator = KeyGenerator.getInstance("DES");
byte[] initializationVector = new byte[] {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07};
SecretKey key = generator.generateKey();

CryptoDataFormat cryptoFormat = new CryptoDataFormat("DES/CBC/PKCS5Padding", key);
cryptoFormat.setInitializationVector(initializationVector);
cryptoFormat.setShouldInlineInitializationVector(true);
CryptoDataFormat decryptFormat = new CryptoDataFormat("DES/CBC/PKCS5Padding", key);
decryptFormat.setShouldInlineInitializationVector(true);

from("direct:inline")
 .marshal(cryptoFormat)
 .to("mock:encrypted")
 .unmarshal(decryptFormat)
 .to("mock:unencrypted");

				or with spring.
			
<crypto id="inline" algorithm="DES/CBC/PKCS5Padding" keyRef="desKey" initVectorRef="initializationVector"
 inline="true" />
<crypto id="inline-decrypt" algorithm="DES/CBC/PKCS5Padding" keyRef="desKey" inline="true" />

				For more information of the use of Initialization Vectors, consult
			
	
						http://en.wikipedia.org/wiki/Initialization_vector
					
	
						http://www.herongyang.com/Cryptography/
					
	
						http://en.wikipedia.org/wiki/Block_cipher_modes_of_operation
					

Hashed Message Authentication Codes (HMAC)

				To avoid attacks against the encrypted data while it is in transit the CryptoDataFormat can also calculate a Message Authentication Code for the encrypted exchange contents based on a configurable MAC algorithm. The calculated HMAC is appended to the stream after encryption. It is separated from the stream in the decryption phase. The MAC is recalculated and verified against the transmitted version to insure nothing was tampered with in transit.For more information on Message Authentication Codes see http://en.wikipedia.org/wiki/HMAC
			
KeyGenerator generator = KeyGenerator.getInstance("DES");

CryptoDataFormat cryptoFormat = new CryptoDataFormat("DES", generator.generateKey());
cryptoFormat.setShouldAppendHMAC(true);

from("direct:hmac")
 .marshal(cryptoFormat)
 .to("mock:encrypted")
 .unmarshal(cryptoFormat)
 .to("mock:unencrypted");

				or with spring.
			
<crypto id="hmac" algorithm="DES" keyRef="desKey" shouldAppendHMAC="true" />

				By default the HMAC is calculated using the HmacSHA1 mac algorithm though this can be easily changed by supplying a different algorithm name. See here for how to check what algorithms are available through the configured security providers
			
KeyGenerator generator = KeyGenerator.getInstance("DES");

CryptoDataFormat cryptoFormat = new CryptoDataFormat("DES", generator.generateKey());
cryptoFormat.setShouldAppendHMAC(true);
cryptoFormat.setMacAlgorithm("HmacMD5");

from("direct:hmac-algorithm")
 .marshal(cryptoFormat)
 .to("mock:encrypted")
 .unmarshal(cryptoFormat)
 .to("mock:unencrypted");

				or with spring.
			
<crypto id="hmac-algorithm" algorithm="DES" keyRef="desKey" macAlgorithm="HmacMD5" shouldAppendHMAC="true" />

Supplying Keys Dynamically

				When using a Recipient list or similar EIP the recipient of an exchange can vary dynamically. Using the same key across all recipients may neither be feasible or desirable. It would be useful to be able to specify keys dynamically on a per exchange basis. The exchange could then be dynamically enriched with the key of its target recipient before being processed by the data format. To facilitate this the DataFormat allow for keys to be supplied dynamically via the message headers below
			
	
						CryptoDataFormat.KEY "CamelCryptoKey"
					

CryptoDataFormat cryptoFormat = new CryptoDataFormat("DES", null);
/**
 * Note: the header containing the key should be cleared after
 * marshalling to stop it from leaking by accident and
 * potentially being compromised. The processor version below is
 * arguably better as the key is left in the header when you use
 * the DSL leaks the fact that camel encryption was used.
 */
from("direct:key-in-header-encrypt")
 .marshal(cryptoFormat)
 .removeHeader(CryptoDataFormat.KEY)
 .to("mock:encrypted");

from("direct:key-in-header-decrypt").unmarshal(cryptoFormat).process(new Processor() {
 public void process(Exchange exchange) throws Exception {
 exchange.getIn().getHeaders().remove(CryptoDataFormat.KEY);
 exchange.getOut().copyFrom(exchange.getIn());
 }
}).to("mock:unencrypted");

				or with spring.
			
<crypto id="nokey" algorithm="DES" />

Dependencies

				To use the Crypto dataformat in your camel routes you need to add the following dependency to your pom.
			
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-crypto</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>

See Also

	
						Data Format
					
	
						Crypto (Digital Signatures)
					
	
						http://www.bouncycastle.org/java.html
					

Chapter 76. CSV DataFormat

			Available as of Camel version 1.3
		

			The CSV Data Format uses Apache Commons CSV to handle CSV payloads (Comma Separated Values) such as those exported/imported by Excel.
		
Options

				The CSV dataformat supports 28 options which are listed below.
			
	Name	Default	Java Type	Description
	
								formatRef
							

							 	 	
								String
							

							 	
								The reference format to use, it will be updated with the other format options, the default value is CSVFormat.DEFAULT
							

							
	
								formatName
							

							 	 	
								String
							

							 	
								The name of the format to use, the default value is CSVFormat.DEFAULT
							

							
	
								commentMarkerDisabled
							

							 	
								false
							

							 	
								Boolean
							

							 	
								Disables the comment marker of the reference format.
							

							
	
								commentMarker
							

							 	 	
								String
							

							 	
								Sets the comment marker of the reference format.
							

							
	
								delimiter
							

							 	 	
								String
							

							 	
								Sets the delimiter to use. The default value is , (comma)
							

							
	
								escapeDisabled
							

							 	
								false
							

							 	
								Boolean
							

							 	
								Use for disabling using escape character
							

							
	
								escape
							

							 	 	
								String
							

							 	
								Sets the escape character to use
							

							
	
								headerDisabled
							

							 	
								false
							

							 	
								Boolean
							

							 	
								Use for disabling headers
							

							
	
								header
							

							 	 	
								List
							

							 	
								To configure the CSV headers
							

							
	
								allowMissingColumnNames
							

							 	
								false
							

							 	
								Boolean
							

							 	
								Whether to allow missing column names.
							

							
	
								ignoreEmptyLines
							

							 	
								false
							

							 	
								Boolean
							

							 	
								Whether to ignore empty lines.
							

							
	
								ignoreSurroundingSpaces
							

							 	
								false
							

							 	
								Boolean
							

							 	
								Whether to ignore surrounding spaces
							

							
	
								nullStringDisabled
							

							 	
								false
							

							 	
								Boolean
							

							 	
								Used to disable null strings
							

							
	
								nullString
							

							 	 	
								String
							

							 	
								Sets the null string
							

							
	
								quoteDisabled
							

							 	
								false
							

							 	
								Boolean
							

							 	
								Used to disable quotes
							

							
	
								quote
							

							 	 	
								String
							

							 	
								Sets the quote which by default is
							

							
	
								recordSeparatorDisabled
							

							 	 	
								String
							

							 	
								Used for disabling record separator
							

							
	
								recordSeparator
							

							 	 	
								String
							

							 	
								Sets the record separator (aka new line) which by default is new line characters (CRLF)
							

							
	
								skipHeaderRecord
							

							 	
								false
							

							 	
								Boolean
							

							 	
								Whether to skip the header record in the output
							

							
	
								quoteMode
							

							 	 	
								String
							

							 	
								Sets the quote mode
							

							
	
								ignoreHeaderCase
							

							 	
								false
							

							 	
								Boolean
							

							 	
								Sets whether or not to ignore case when accessing header names.
							

							
	
								trim
							

							 	
								false
							

							 	
								Boolean
							

							 	
								Sets whether or not to trim leading and trailing blanks.
							

							
	
								trailingDelimiter
							

							 	
								false
							

							 	
								Boolean
							

							 	
								Sets whether or not to add a trailing delimiter.
							

							
	
								lazyLoad
							

							 	
								false
							

							 	
								Boolean
							

							 	
								Whether the unmarshalling should produce an iterator that reads the lines on the fly or if all the lines must be read at one.
							

							
	
								useMaps
							

							 	
								false
							

							 	
								Boolean
							

							 	
								Whether the unmarshalling should produce maps (HashMap)for the lines values instead of lists. It requires to have header (either defined or collected).
							

							
	
								useOrderedMaps
							

							 	
								false
							

							 	
								Boolean
							

							 	
								Whether the unmarshalling should produce ordered maps (LinkedHashMap) for the lines values instead of lists. It requires to have header (either defined or collected).
							

							
	
								recordConverterRef
							

							 	 	
								String
							

							 	
								Refers to a custom CsvRecordConverter to lookup from the registry to use.
							

							
	
								contentTypeHeader
							

							 	
								false
							

							 	
								Boolean
							

							 	
								Whether the data format should set the Content-Type header with the type from the data format if the data format is capable of doing so. For example application/xml for data formats marshalling to XML, or application/json for data formats marshalling to JSon etc.
							

							

Marshalling a Map to CSV

				The component allows you to marshal a Java Map (or any other message type that can be converted in a Map) into a CSV payload.
			

				Considering the following body
			
Map<String, Object> body = new LinkedHashMap<>();
body.put("foo", "abc");
body.put("bar", 123);

				and this Java route definition
			
from("direct:start")
 .marshal().csv()
 .to("mock:result");

				or this XML route definition
			
<route>
 <from uri="direct:start" />
 <marshal>
 <csv />
 </marshal>
 <to uri="mock:result" />
</route>

				then it will produce
			
abc,123

Unmarshalling a CSV message into a Java List

				Unmarshalling will transform a CSV messsage into a Java List with CSV file lines (containing another List with all the field values).
			

				An example: we have a CSV file with names of persons, their IQ and their current activity.
			
Jack Dalton, 115, mad at Averell
Joe Dalton, 105, calming Joe
William Dalton, 105, keeping Joe from killing Averell
Averell Dalton, 80, playing with Rantanplan
Lucky Luke, 120, capturing the Daltons

				We can now use the CSV component to unmarshal this file:
			
from("file:src/test/resources/?fileName=daltons.csv&noop=true")
 .unmarshal().csv()
 .to("mock:daltons");

				The resulting message will contain a List<List<String>> like…​
			
List<List<String>> data = (List<List<String>>) exchange.getIn().getBody();
for (List<String> line : data) {
 LOG.debug(String.format("%s has an IQ of %s and is currently %s", line.get(0), line.get(1), line.get(2)));
}

Marshalling a List<Map> to CSV

				Available as of Camel 2.1
			

				If you have multiple rows of data you want to be marshalled into CSV format you can now store the message payload as a List<Map<String, Object>> object where the list contains a Map for each row.
			

File Poller of CSV, then unmarshaling

				Given a bean which can handle the incoming data…​
			

				MyCsvHandler.java
			
// Some comments here
public void doHandleCsvData(List<List<String>> csvData)
{
 // do magic here
}
	
						your route then looks as follows
					

<route>
 <!-- poll every 10 seconds -->
 <from uri="file:///some/path/to/pickup/csvfiles?delete=true&consumer.delay=10000" />
 <unmarshal><csv /></unmarshal>
 <to uri="bean:myCsvHandler?method=doHandleCsvData" />
</route>

Marshaling with a pipe as delimiter

				Considering the following body
			
Map<String, Object> body = new LinkedHashMap<>();
body.put("foo", "abc");
body.put("bar", 123);

				and this Java route definition
			
// Camel version < 2.15
CsvDataFormat oldCSV = new CsvDataFormat();
oldCSV.setDelimiter("|");
from("direct:start")
 .marshal(oldCSV)
 .to("mock:result")

// Camel version >= 2.15
from("direct:start")
 .marshal(new CsvDataFormat().setDelimiter('|'))
 .to("mock:result")

				or this XML route definition
			
<route>
 <from uri="direct:start" />
 <marshal>
 <csv delimiter="|" />
 </marshal>
 <to uri="mock:result" />
</route>

				then it will produce
			
abc|123

				Using autogenColumns, configRef and strategyRef attributes inside XML # DSL
			

				Available as of Camel 2.9.2 / 2.10 and deleted for Camel 2.15
			

				You can customize the CSV Data Format to make use of your own CSVConfig and/or CSVStrategy. Also note that the default value of the autogenColumns option is true. The following example should illustrate this customization.
			
<route>
 <from uri="direct:start" />
 <marshal>
 <!-- make use of a strategy other than the default one which is 'org.apache.commons.csv.CSVStrategy.DEFAULT_STRATEGY' -->
 <csv autogenColumns="false" delimiter="|" configRef="csvConfig" strategyRef="excelStrategy" />
 </marshal>
 <convertBodyTo type="java.lang.String" />
 <to uri="mock:result" />
</route>

<bean id="csvConfig" class="org.apache.commons.csv.writer.CSVConfig">
 <property name="fields">
 <list>
 <bean class="org.apache.commons.csv.writer.CSVField">
 <property name="name" value="orderId" />
 </bean>
 <bean class="org.apache.commons.csv.writer.CSVField">
 <property name="name" value="amount" />
 </bean>
 </list>
 </property>
</bean>

<bean id="excelStrategy" class="org.springframework.beans.factory.config.FieldRetrievingFactoryBean">
 <property name="staticField" value="org.apache.commons.csv.CSVStrategy.EXCEL_STRATEGY" />
</bean>

Using skipFirstLine option while unmarshaling

				Available as of Camel 2.10 and deleted for Camel 2.15
			

				You can instruct the CSV Data Format to skip the first line which contains the CSV headers. Using the Spring/XML DSL:
			
<route>
 <from uri="direct:start" />
 <unmarshal>
 <csv skipFirstLine="true" />
 </unmarshal>
 <to uri="bean:myCsvHandler?method=doHandleCsv" />
</route>

				Or the Java DSL:
			
CsvDataFormat csv = new CsvDataFormat();
csv.setSkipFirstLine(true);

from("direct:start")
 .unmarshal(csv)
.to("bean:myCsvHandler?method=doHandleCsv");

Unmarshaling with a pipe as delimiter

				Using the Spring/XML DSL:
			
<route>
 <from uri="direct:start" />
 <unmarshal>
 <csv delimiter="|" />
 </unmarshal>
 <to uri="bean:myCsvHandler?method=doHandleCsv" />
</route>

				Or the Java DSL:
			
CsvDataFormat csv = new CsvDataFormat();
CSVStrategy strategy = CSVStrategy.DEFAULT_STRATEGY;
strategy.setDelimiter('|');
csv.setStrategy(strategy);

from("direct:start")
 .unmarshal(csv)
 .to("bean:myCsvHandler?method=doHandleCsv");
CsvDataFormat csv = new CsvDataFormat();
csv.setDelimiter("|");

from("direct:start")
 .unmarshal(csv)
 .to("bean:myCsvHandler?method=doHandleCsv");
CsvDataFormat csv = new CsvDataFormat();
CSVConfig csvConfig = new CSVConfig();
csvConfig.setDelimiter(";");
csv.setConfig(csvConfig);

from("direct:start")
 .unmarshal(csv)
 .to("bean:myCsvHandler?method=doHandleCsv");

				Issue in CSVConfig
			

				It looks like that
			
CSVConfig csvConfig = new CSVConfig();
csvConfig.setDelimiter(';');

				doesn’t work. You have to set the delimiter as a String!
			

Dependencies

				To use CSV in your Camel routes you need to add a dependency on camel-csv, which implements this data format.
			

				If you use Maven you can just add the following to your pom.xml, substituting the version number for the latest and greatest release (see the download page for the latest versions).
			
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-csv</artifactId>
 <version>x.x.x</version>
</dependency>

Chapter 77. CXF

CXF Component

			The cxf: component provides integration with Apache CXF for connecting to JAX-WS services hosted in CXF.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-cxf</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>
Note

				If you want to learn about CXF dependencies, see the WHICH-JARS text file.
			

Note

				When using CXF in streaming modes (see DataFormat option), then also read about Stream caching.
			

Camel on EAP deployment

			This component is supported by the Camel on EAP (Wildfly Camel) framework, which offers a simplified deployment model on the Red Hat JBoss Enterprise Application Platform (JBoss EAP) container.
		

			The CXF component integrates with the JBoss EAP webservices susbsystem that also uses Apache CXF. For more information, see JAX-WS.
		
Note

				At present, the Camel on EAP subsystem does not support CXF or Restlet consumers. However, it is possible to mimic CXF consumer behaviour, using the CamelProxy.
			

URI format

cxf:bean:cxfEndpoint[?options]

			Where cxfEndpoint represents a bean ID that references a bean in the Spring bean registry. With this URI format, most of the endpoint details are specified in the bean definition.
		
cxf://someAddress[?options]

			Where someAddress specifies the CXF endpoint’s address. With this URI format, most of the endpoint details are specified using options.
		

			For either style above, you can append options to the URI as follows:
		
cxf:bean:cxfEndpoint?wsdlURL=wsdl/hello_world.wsdl&dataFormat=PAYLOAD

Options

	
							Name
						

						 	
							Required
						

						 	
							Description
						

						
	
							wsdlURL
						

						 	
							No
						

						 	
							The location of the WSDL. WSDL is obtained from endpoint address by default. For example:
						

						
							file://local/wsdl/hello.wsdl or wsdl/hello.wsdl
						

						
	
							serviceClass
						

						 	
							Yes
						

						 	
							The name of the SEI (Service Endpoint Interface) class. This class can have, but does not require, JSR181 annotations. Since 2.0, this option is only required by POJO mode. If the wsdlURL option is provided, serviceClass is not required for PAYLOAD and MESSAGE mode. When wsdlURL option is used without serviceClass, the serviceName and portName (endpointName for Spring configuration) options MUST be provided.
						

						
							Since 2.0, it is possible to use \# notation to reference a serviceClass object instance from the registry..
						

						
							Please be advised that the referenced object cannot be a Proxy (Spring AOP Proxy is OK) as it relies on Object.getClass().getName() method for non Spring AOP Proxy.
						

						
							Since 2.8, it is possible to omit both wsdlURL and serviceClass options for PAYLOAD and MESSAGE mode. When they are omitted, arbitrary XML elements can be put in CxfPayload’s body in PAYLOAD mode to facilitate CXF Dispatch Mode.
						

						
							For example: org.apache.camel.Hello
						

						
	
							serviceName
						

						 	
							Only if more than one serviceName present in WSDL
						

						 	
							The service name this service is implementing, it maps to the wsdl:service@name. For example:
						

						
							{http://org.apache.camel}ServiceName
						

						
	
							endpointName
						

						 	
							Only if more than one portName under the serviceName is present, and it is required for camel-cxf consumer since camel 2.2
						

						 	
							The port name this service is implementing, it maps to the wsdl:port@name. For example:
						

						
							{http://org.apache.camel}PortName
						

						
	
							dataFormat
						

						 	
							No
						

						 	
							Which message data format the CXF endpoint supports. Possible values are: POJO (default), PAYLOAD, MESSAGE.
						

						
	
							relayHeaders
						

						 	
							No
						

						 	
							Please see the Description ofrelayHeadersoption section for this option. Should a CXF endpoint relay headers along the route. Currently only available when dataFormat=POJODefault: trueExample: true, false
						

						
	
							wrapped
						

						 	
							No
						

						 	
							Which kind of operation the CXF endpoint producer will invoke. Possible values are: true, false (default).
						

						
	
							wrappedStyle
						

						 	
							No
						

						 	
							Since 2.5.0 The WSDL style that describes how parameters are represented in the SOAP body. If the value is false, CXF will chose the document-literal unwrapped style, If the value is true, CXF will chose the document-literal wrapped style
						

						
	
							setDefaultBus
						

						 	
							No
						

						 	
							Deprecated: Specifies whether or not to use the default CXF bus for this endpoint. Possible values are: true, false (default). This option is deprecated and you should use defaultBus from Camel 2.16 onwards.
						

						
	
							defaultBus
						

						 	
							No
						

						 	
							Deprecated: Specifies whether or not to use the default CXF bus for this endpoint. Possible values are: true, false (default). This option is deprecated and you should use defaultBus from Camel 2.16 onwards.
						

						
	
							bus
						

						 	
							No
						

						 	
							Use \# notation to reference a bus object from the registry — for example, bus=\#busName. The referenced object must be an instance of org.apache.cxf.Bus.
						

						
							By default, uses the default bus created by CXF Bus Factory.
						

						
	
							cxfBinding
						

						 	
							No
						

						 	
							Use \# notation to reference a CXF binding object from the registry — for example, cxfBinding=\#bindingName. The referenced object must be an instance of org.apache.camel.component.cxf.CxfBinding.
						

						
	
							headerFilterStrategy
						

						 	
							No
						

						 	
							Use \# notation to reference a header filter strategy object from the registry — for example, headerFilterStrategy=\#strategyName. The referenced object must be an instance of org.apache.camel.spi.HeaderFilterStrategy.
						

						
	
							loggingFeatureEnabled
						

						 	
							No
						

						 	
							New in 2.3, this option enables CXF Logging Feature which writes inbound and outbound SOAP messages to log. Possible values are: true, false (default).
						

						
	
							defaultOperationName
						

						 	
							No
						

						 	
							New in 2.4, this option will set the default operationName that will be used by the CxfProducer that invokes the remote service. For example:
						

						
							defaultOperationName=greetMe
						

						
	
							defaultOperationNamespace
						

						 	
							No
						

						 	
							New in 2.4, this option will set the default operationNamespace that will be used by the CxfProducer which invokes the remote service. For example:
						

						
							defaultOperationNamespace=http://apache.org/hello_world_soap_http
						

						
	
							synchronous
						

						 	
							No
						

						 	
							New in 2.5, this option will let CXF endpoint decide to use sync or async API to do the underlying work. The default value is false, which means camel-cxf endpoint will try to use async API by default.
						

						
	
							publishedEndpointUrl
						

						 	
							No
						

						 	
							New in 2.5, this option overrides the endpoint URL that appears in the published WSDL that is accessed using the service address URL plus ?wsdl. For example:
						

						
							publshedEndpointUrl=http://example.com/service
						

						
	
							properties.propName
						

						 	
							No
						

						 	
							Camel 2.8: Allows you to set custom CXF properties in the endpoint URI. For example, setting properties.mtom-enabled=true to enable MTOM. To make sure that CXF does not switch the thread when starting the invocation, you can set properties.org.apache.cxf.interceptor.OneWayProcessorInterceptor.USE_ORIGINAL_THREAD=true.
						

						
	
							allowStreaming
						

						 	
							No
						

						 	
							New in 2.8.2. This option controls whether the CXF component, when running in PAYLOAD mode (see below), will DOM parse the incoming messages into DOM Elements or keep the payload as a javax.xml.transform.Source object that would allow streaming in some cases.
						

						
	
							skipFaultLogging
						

						 	
							No
						

						 	
							New in 2.11. This option controls whether the PhaseInterceptorChain skips logging the Fault that it catches.
						

						
	
							cxfEndpointConfigurer
						

						 	
							No
						

						 	
							New in Camel 2.11. This option could apply the implementation of org.apache.camel.component.cxf.CxfEndpointConfigurer which supports to configure the CXF endpoint in programmatic way. Since Camel 2.15.0, user can configure the CXF server and client by implementing configure{Server/Client} method of CxfEndpointConfigurer.
						

						
	
							username
						

						 	
							No
						

						 	
							New in Camel 2.12.3 This option is used to set the basic authentication information of username for the CXF client.
						

						
	
							password
						

						 	
							No
						

						 	
							New in Camel 2.12.3 This option is used to set the basic authentication information of password for the CXF client.
						

						
	
							continuationTimeout
						

						 	
							No
						

						 	
							New in Camel 2.14.0 This option is used to set the CXF continuation timeout which could be used in CxfConsumer by default when the CXF server is using Jetty or Servlet transport. (Before Camel 2.14.0, CxfConsumer just set the continuation timeout to be 0, which means the continuation suspend operation never timeout.)
						

						
							Default: 30000 Example: continuation=80000
						

						

			The serviceName and portName are QNames, so if you provide them be sure to prefix them with their {namespace} as shown in the examples above.
		

The descriptions of the dataformats

	
							DataFormat
						

						 	
							Description
						

						
	
							POJO
						

						 	
							POJOs (plain old Java objects) are the Java parameters to the method being invoked on the target server. Both Protocol and Logical JAX-WS handlers are supported.
						

						
	
							PAYLOAD
						

						 	
							PAYLOAD is the message payload (the contents of the soap:body) after message configuration in the CXF endpoint is applied. Only Protocol JAX-WS handler is supported. Logical JAX-WS handler is not supported.
						

						
	
							MESSAGE
						

						 	
							MESSAGE is the raw message that is received from the transport layer. It is not suppose to touch or change Stream, some of the CXF interceptors will be removed if you are using this kind of DataFormat so you can’t see any soap headers after the camel-cxf consumer and JAX-WS handler is not supported.
						

						
	
							CXF_MESSAGE
						

						 	
							New in Camel 2.8.2, CXF_MESSAGE allows for invoking the full capabilities of CXF interceptors by converting the message from the transport layer into a raw SOAP message
						

						

			You can determine the data format mode of an exchange by retrieving the exchange property, CamelCXFDataFormat. The exchange key constant is defined in org.apache.camel.component.cxf.CxfConstants.DATA_FORMAT_PROPERTY.
		

Configuring the CXF Endpoints with Apache Aries Blueprint.

			Since Camel 2.8, there is support for using Aries blueprint dependency injection for your CXF endpoints. The schema is very similar to the Spring schema, so the transition is fairly transparent.
		

			For example:
		
 <blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:cm="http://aries.apache.org/blueprint/xmlns/blueprint-cm/v1.0.0"
 xmlns:camel-cxf="http://camel.apache.org/schema/blueprint/cxf"
 	 xmlns:cxfcore="http://cxf.apache.org/blueprint/core"
 xsi:schemaLocation="http://www.osgi.org/xmlns/blueprint/v1.0.0 https://www.osgi.org/xmlns/blueprint/v1.0.0/blueprint.xsd">

 <camel-cxf:cxfEndpoint id="routerEndpoint"
 address="http://localhost:9001/router"
 serviceClass="org.apache.servicemix.examples.cxf.HelloWorld">
 <camel-cxf:properties>
 <entry key="dataFormat" value="MESSAGE"/>
 </camel-cxf:properties>
 </camel-cxf:cxfEndpoint>

 <camel-cxf:cxfEndpoint id="serviceEndpoint"
			address="http://localhost:9000/SoapContext/SoapPort"
 serviceClass="org.apache.servicemix.examples.cxf.HelloWorld">
 </camel-cxf:cxfEndpoint>

 <camelContext xmlns="http://camel.apache.org/schema/blueprint">
 <route>
 <from uri="routerEndpoint"/>
 <to uri="log:request"/>
 </route>
 </camelContext>

</blueprint>

			Currently the endpoint element is the first supported CXF namespacehandler.
		

			You can also use the bean references just as in spring
		
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:cm="http://aries.apache.org/blueprint/xmlns/blueprint-cm/v1.0.0"
 xmlns:jaxws="http://cxf.apache.org/blueprint/jaxws"
 xmlns:cxf="http://cxf.apache.org/blueprint/core"
 xmlns:camel="http://camel.apache.org/schema/blueprint"
 xmlns:camelcxf="http://camel.apache.org/schema/blueprint/cxf"
 xsi:schemaLocation="
 http://www.osgi.org/xmlns/blueprint/v1.0.0 https://www.osgi.org/xmlns/blueprint/v1.0.0/blueprint.xsd
 http://cxf.apache.org/blueprint/jaxws http://cxf.apache.org/schemas/blueprint/jaxws.xsd
 http://cxf.apache.org/blueprint/core http://cxf.apache.org/schemas/blueprint/core.xsd
 ">

 <camelcxf:cxfEndpoint id="reportIncident"
 address="/camel-example-cxf-blueprint/webservices/incident"
 wsdlURL="META-INF/wsdl/report_incident.wsdl"
 serviceClass="org.apache.camel.example.reportincident.ReportIncidentEndpoint">
 </camelcxf:cxfEndpoint>

 <bean id="reportIncidentRoutes" class="org.apache.camel.example.reportincident.ReportIncidentRoutes" />

 <camelContext xmlns="http://camel.apache.org/schema/blueprint">
 <routeBuilder ref="reportIncidentRoutes"/>
 </camelContext>

</blueprint>

How to enable CXF’s LoggingOutInterceptor in MESSAGE mode

			CXF’s LoggingOutInterceptor outputs outbound message that goes on the wire to logging system (java.util.logging). Since the LoggingOutInterceptor is in PRE_STREAM phase (but PRE_STREAM phase is removed in MESSAGE mode), you have to configure LoggingOutInterceptor to be run during the WRITE phase. The following is an example.
		
 <bean id="loggingOutInterceptor" class="org.apache.cxf.interceptor.LoggingOutInterceptor">
 <!-- it really should have been user-prestream but CXF does have such phase! -->
 <constructor-arg value="target/write"/>
 </bean>

<cxf:cxfEndpoint id="serviceEndpoint" address="http://localhost:9002/helloworld"
	serviceClass="org.apache.camel.component.cxf.HelloService">
	<cxf:outInterceptors>
	 <ref bean="loggingOutInterceptor"/>
	</cxf:outInterceptors>
	<cxf:properties>
		<entry key="dataFormat" value="MESSAGE"/>
	</cxf:properties>
</cxf:cxfEndpoint>

Description of relayHeaders option

			There are in-band and out-of-band on-the-wire headers from the perspective of a JAXWS WSDL-first developer.
		

			The in-band headers are headers that are explicitly defined as part of the WSDL binding contract for an endpoint such as SOAP headers.
		

			The out-of-band headers are headers that are serialized over the wire, but are not explicitly part of the WSDL binding contract.
		

			Headers relaying/filtering is bi-directional.
		

			When a route has a CXF endpoint and the developer needs to have on-the-wire headers, such as SOAP headers, be relayed along the route to be consumed say by another JAXWS endpoint, then relayHeaders should be set to true, which is the default value.
		

Available only in POJO mode

			The relayHeaders=true setting expresses an intent to relay the headers. The actual decision on whether a given header is relayed is delegated to a pluggable instance that implements the MessageHeadersRelay interface. A concrete implementation of MessageHeadersRelay will be consulted to decide if a header needs to be relayed or not. There is already an implementation of SoapMessageHeadersRelay which binds itself to well-known SOAP name spaces. Currently only out-of-band headers are filtered, and in-band headers will always be relayed when relayHeaders=true. If there is a header on the wire, whose name space is unknown to the runtime, then a fall back DefaultMessageHeadersRelay will be used, which simply allows all headers to be relayed.
		

			The relayHeaders=false setting asserts that all headers, in-band and out-of-band, will be dropped.
		

			You can plugin your own MessageHeadersRelay implementations overriding or adding additional ones to the list of relays. In order to override a preloaded relay instance just make sure that your MessageHeadersRelay implementation services the same name spaces as the one you looking to override. Also note, that the overriding relay has to service all of the name spaces as the one you looking to override, or else a runtime exception on route start up will be thrown as this would introduce an ambiguity in name spaces to relay instance mappings.
		
<cxf:cxfEndpoint ...>
 <cxf:properties>
 <entry key="org.apache.camel.cxf.message.headers.relays">
 <list>
 <ref bean="customHeadersRelay"/>
 </list>
 </entry>
 </cxf:properties>
 </cxf:cxfEndpoint>
 <bean id="customHeadersRelay" class="org.apache.camel.component.cxf.soap.headers.CustomHeadersRelay"/>

			Take a look at the tests that show how you’d be able to relay/drop headers here:
		

			 link:https://svn.apache.org/repos/asf/camel/branches/camel-1.x/components/camel-cxf/src/test/java/org/apache/camel/component/cxf/soap/headers/CxfMessageHeadersRelayTest.java[https://svn.apache.org/repos/asf/camel/branches/camel-1.x/components/camel-cxf/src/test/java/org/apache/camel/component/cxf/soap/headers/CxfMessageHeadersRelayTest.java]
		

Changes since Release 2.0

	
					POJO and PAYLOAD modes are supported. In POJO mode, only out-of-band message headers are available for filtering as the in-band headers have been processed and removed from the header list by CXF. The in-band headers are incorporated into the MessageContentList in POJO mode. The camel-cxf component does make any attempt to remove the in-band headers from the MessageContentList If filtering of in-band headers is required, please use PAYLOAD mode or plug in a (pretty straightforward) CXF interceptor/JAXWS Handler to the CXF endpoint.
				
	
					The Message Header Relay mechanism has been merged into CxfHeaderFilterStrategy. The relayHeaders option, its semantics, and default value remain the same, but it is a property of CxfHeaderFilterStrategy. Here is an example of configuring it.
				
<bean id="dropAllMessageHeadersStrategy" class="org.apache.camel.component.cxf.common.header.CxfHeaderFilterStrategy">

 <!-- Set relayHeaders to false to drop all SOAP headers -->
 <property name="relayHeaders" value="false"/>

</bean>

					Then, your endpoint can reference the CxfHeaderFilterStrategy.
				
<route>
 <from uri="cxf:bean:routerNoRelayEndpoint?headerFilterStrategy=#dropAllMessageHeadersStrategy"/>
 <to uri="cxf:bean:serviceNoRelayEndpoint?headerFilterStrategy=#dropAllMessageHeadersStrategy"/>
</route>

	
					The MessageHeadersRelay interface has changed slightly and has been renamed to MessageHeaderFilter. It is a property of CxfHeaderFilterStrategy. Here is an example of configuring user defined Message Header Filters:
				
<bean id="customMessageFilterStrategy" class="org.apache.camel.component.cxf.common.header.CxfHeaderFilterStrategy">
 <property name="messageHeaderFilters">
 <list>
 <!-- SoapMessageHeaderFilter is the built in filter. It can be removed by omitting it. -->
 <bean class="org.apache.camel.component.cxf.common.header.SoapMessageHeaderFilter"/>

 <!-- Add custom filter here -->
 <bean class="org.apache.camel.component.cxf.soap.headers.CustomHeaderFilter"/>
 </list>
 </property>
</bean>

	
					Other than relayHeaders, there are new properties that can be configured in CxfHeaderFilterStrategy.
				

	
							Name
						

						 	
							Description
						

						 	
							type
						

						 	
							Required?
						

						 	
							Default value
						

						
	
							relayHeaders
						

						 	
							All message headers will be processed by Message Header Filters
						

						 	
							boolean
						

						 	
							No
						

						 	
							true (1.6.1 behavior)
						

						
	
							relayAllMessageHeaders
						

						 	
							All message headers will be propagated (without processing by Message Header Filters)
						

						 	
							boolean
						

						 	
							No
						

						 	
							false (1.6.1 behavior)
						

						
	
							allowFilterNamespaceClash
						

						 	
							If two filters overlap in activation namespace, the property control how it should be handled. If the value is true, last one wins. If the value is false, it will throw an exception
						

						 	
							boolean
						

						 	
							No
						

						 	
							false (1.6.1 behavior)
						

						

Configure the CXF endpoints with Spring

			You can configure the CXF endpoint with the Spring configuration file shown below, and you can also embed the endpoint into the camelContext tags. When you are invoking the service endpoint, you can set the operationName and operationNamespace headers to explicitly state which operation you are calling.
		

			NOTE In Camel 2.x we change to use http://camel.apache.org/schema/cxf as the CXF endpoint’s target namespace.
		
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:cxf="http://camel.apache.org/schema/cxf"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
 http://camel.apache.org/schema/cxf http://camel.apache.org/schema/cxf/camel-cxf.xsd
 http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/camel-spring.xsd ">
 ...
Note

				In Apache Camel 2.x, the http://activemq.apache.org/camel/schema/cxfEndpoint namespace was changed to http://camel.apache.org/schema/cxf.
			

			Be sure to include the JAX-WS schemaLocation attribute specified on the root beans element. This allows CXF to validate the file and is required. Also note the namespace declarations at the end of the <cxf:cxfEndpoint/> tag—​these are required because the combined {namespace}localName syntax is presently not supported for this tag’s attribute values.
		

			The cxf:cxfEndpoint element supports many additional attributes:
		
	
							Name
						

						 	
							Value
						

						
	
							PortName
						

						 	
							The endpoint name this service is implementing, it maps to the wsdl:port@name. In the format of ns:PORT_NAME where ns is a namespace prefix valid at this scope.
						

						
	
							serviceName
						

						 	
							The service name this service is implementing, it maps to the wsdl:service@name. In the format of ns:SERVICE_NAME where ns is a namespace prefix valid at this scope.
						

						
	
							wsdlURL
						

						 	
							The location of the WSDL. Can be on the classpath, file system, or be hosted remotely.
						

						
	
							bindingId
						

						 	
							The bindingId for the service model to use.
						

						
	
							address
						

						 	
							The service publish address.
						

						
	
							bus
						

						 	
							The bus name that will be used in the JAX-WS endpoint.
						

						
	
							serviceClass
						

						 	
							The class name of the SEI (Service Endpoint Interface) class which could have JSR181 annotation or not.
						

						

			It also supports many child elements:
		
	
							Name
						

						 	
							Value
						

						
	
							cxf:inInterceptors
						

						 	
							The incoming interceptors for this endpoint. A list of <bean> or <ref>.
						

						
	
							cxf:inFaultInterceptors
						

						 	
							The incoming fault interceptors for this endpoint. A list of <bean> or <ref>.
						

						
	
							cxf:outInterceptors
						

						 	
							The outgoing interceptors for this endpoint. A list of <bean> or <ref>.
						

						
	
							cxf:outFaultInterceptors
						

						 	
							The outgoing fault interceptors for this endpoint. A list of <bean> or <ref>.
						

						
	
							cxf:properties
						

						 	
							A properties map which should be supplied to the JAX-WS endpoint. See below.
						

						
	
							cxf:handlers
						

						 	
							A JAX-WS handler list which should be supplied to the JAX-WS endpoint. See below.
						

						
	
							cxf:dataBinding
						

						 	
							You can specify the which DataBinding will be use in the endpoint. This can be supplied using the Spring <bean class="MyDataBinding"/> syntax.
						

						
	
							cxf:binding
						

						 	
							You can specify the BindingFactory for this endpoint to use. This can be supplied using the Spring <bean class="MyBindingFactory"/> syntax.
						

						
	
							cxf:features
						

						 	
							The features that hold the interceptors for this endpoint. A list of <bean>s or <ref>s
						

						
	
							cxf:schemaLocations
						

						 	
							The schema locations for endpoint to use. A list of <schemaLocation>s
						

						
	
							cxf:serviceFactory
						

						 	
							The service factory for this endpoint to use. This can be supplied using the Spring <bean class="MyServiceFactory"/> syntax
						

						

			You can find more advanced examples which show how to provide interceptors, properties and handlers here: http://cwiki.apache.org/CXF20DOC/jax-ws-configuration.html
		
Note

				You can use CXF:properties to set the CXF endpoint’s dataFormat and setDefaultBus properties from a Spring configuration file, as follows:
			
<cxf:cxfEndpoint id="testEndpoint" address="http://localhost:9000/router"
 serviceClass="org.apache.camel.component.cxf.HelloService"
 endpointName="s:PortName"
 serviceName="s:ServiceName"
 xmlns:s="http://www.example.com/test">
 <cxf:properties>
 <entry key="dataFormat" value="MESSAGE"/>
 <entry key="setDefaultBus" value="true"/>
 </cxf:properties>
 </cxf:cxfEndpoint>

How to make the camel-cxf component use log4j instead of java.util.logging

			CXF’s default logger is java.util.logging. If you want to change it to log4j, proceed as follows. Create a file, in the classpath, named META-INF/cxf/org.apache.cxf.logger. This file should contain the fully-qualified name of the class, org.apache.cxf.common.logging.Log4jLogger, with no comments, on a single line.
		

How to let camel-cxf response message with xml start document

			If you are using some SOAP client such as PHP, you will get this kind of error, because CXF doesn’t add the XML start document <?xml version="1.0" encoding="utf-8"?>.
		
Error:sendSms: SoapFault exception: [Client] looks like we got no XML document in [...]

			To resolved this issue, you just need to tell StaxOutInterceptor to write the XML start document for you.
		
public class WriteXmlDeclarationInterceptor extends AbstractPhaseInterceptor<SoapMessage> {
 public WriteXmlDeclarationInterceptor() {
 super(Phase.PRE_STREAM);
 addBefore(StaxOutInterceptor.class.getName());
 }

 public void handleMessage(SoapMessage message) throws Fault {
 message.put("org.apache.cxf.stax.force-start-document", Boolean.TRUE);
 }

}

			You can add a customer interceptor like this and configure it into you camel-cxf endpont
		
<cxf:cxfEndpoint id="routerEndpoint" address="http://localhost:${CXFTestSupport.port2}/CXFGreeterRouterTest/CamelContext/RouterPort"
 		serviceClass="org.apache.hello_world_soap_http.GreeterImpl"
 		skipFaultLogging="true">
 <cxf:outInterceptors>
 <!-- This interceptor will force the CXF server send the XML start document to client -->
 <bean class="org.apache.camel.component.cxf.WriteXmlDeclarationInterceptor"/>
 </cxf:outInterceptors>
 <cxf:properties>
 <!-- Set the publishedEndpointUrl which could override the service address from generated WSDL as you want -->
 <entry key="publishedEndpointUrl" value="http://www.simple.com/services/test" />
 </cxf:properties>
 </cxf:cxfEndpoint>

			Or adding a message header for it like this if you are using Camel 2.4.
		
 // set up the response context which force start document
 Map<String, Object> map = new HashMap<String, Object>();
 map.put("org.apache.cxf.stax.force-start-document", Boolean.TRUE);
 exchange.getOut().setHeader(Client.RESPONSE_CONTEXT, map);

How to consume a message from a camel-cxf endpoint in POJO data format

			The camel-cxf endpoint consumer POJO data format is based on the cxf invoker, so the message header has a property with the name of CxfConstants.OPERATION_NAME and the message body is a list of the SEI method parameters.
		
public class PersonProcessor implements Processor {

 private static final transient Logger LOG = LoggerFactory.getLogger(PersonProcessor.class);

 @SuppressWarnings("unchecked")
 public void process(Exchange exchange) throws Exception {
 LOG.info("processing exchange in camel");

 BindingOperationInfo boi = (BindingOperationInfo)exchange.getProperty(BindingOperationInfo.class.toString());
 if (boi != null) {
 LOG.info("boi.isUnwrapped" + boi.isUnwrapped());
 }
 // Get the parameters list which element is the holder.
 MessageContentsList msgList = (MessageContentsList)exchange.getIn().getBody();
 Holder<String> personId = (Holder<String>)msgList.get(0);
 Holder<String> ssn = (Holder<String>)msgList.get(1);
 Holder<String> name = (Holder<String>)msgList.get(2);

 if (personId.value == null || personId.value.length() == 0) {
 LOG.info("person id 123, so throwing exception");
 // Try to throw out the soap fault message
 org.apache.camel.wsdl_first.types.UnknownPersonFault personFault =
 new org.apache.camel.wsdl_first.types.UnknownPersonFault();
 personFault.setPersonId("");
 org.apache.camel.wsdl_first.UnknownPersonFault fault =
 new org.apache.camel.wsdl_first.UnknownPersonFault("Get the null value of person name", personFault);
 // Since camel has its own exception handler framework, we can't throw the exception to trigger it
 // We just set the fault message in the exchange for camel-cxf component handling and return
 exchange.getOut().setFault(true);
 exchange.getOut().setBody(fault);
 return;
 }

 name.value = "Bonjour";
 ssn.value = "123";
 LOG.info("setting Bonjour as the response");
 // Set the response message, first element is the return value of the operation,
 // the others are the holders of method parameters
 exchange.getOut().setBody(new Object[] {null, personId, ssn, name});
 }

}

How to prepare the message for the camel-cxf endpoint in POJO data format

			The camel-cxf endpoint producer is based on the cxf client API. First you need to specify the operation name in the message header, then add the method parameters to a list, and initialize the message with this parameter list. The response message’s body is a messageContentsList, you can get the result from that list.
		

			If you don’t specify the operation name in the message header, CxfProducer will try to use the defaultOperationName from CxfEndpoint. If there is no defaultOperationName set on CxfEndpoint, it will pick up the first operation name from the operation list.
		

			If you want to get the object array from the message body, you can get the body using message.getbody(Object[].class), as follows:
		
Exchange senderExchange = new DefaultExchange(context, ExchangePattern.InOut);
final List<String> params = new ArrayList<String>();
// Prepare the request message for the camel-cxf procedure
params.add(TEST_MESSAGE);
senderExchange.getIn().setBody(params);
senderExchange.getIn().setHeader(CxfConstants.OPERATION_NAME, ECHO_OPERATION);

Exchange exchange = template.send("direct:EndpointA", senderExchange);

org.apache.camel.Message out = exchange.getOut();
// The response message's body is an MessageContentsList which first element is the return value of the operation,
// If there are some holder parameters, the holder parameter will be filled in the reset of List.
// The result will be extract from the MessageContentsList with the String class type
MessageContentsList result = (MessageContentsList)out.getBody();
LOG.info("Received output text: " + result.get(0));
Map<String, Object> responseContext = CastUtils.cast((Map<?, ?>)out.getHeader(Client.RESPONSE_CONTEXT));
assertNotNull(responseContext);
assertEquals("We should get the response context here", "UTF-8", responseContext.get(org.apache.cxf.message.Message.ENCODING));
assertEquals("Reply body on Camel is wrong", "echo " + TEST_MESSAGE, result.get(0));

How to deal with the message for a camel-cxf endpoint in PAYLOAD data format

			In Apache Camel 2.0: CxfMessage.getBody() will return an org.apache.camel.component.cxf.CxfPayload object, which has getters for SOAP message headers and Body elements. This change enables decoupling the native CXF message from the Apache Camel message.
		
protected RouteBuilder createRouteBuilder() {
 return new RouteBuilder() {
 public void configure() {
 from(SIMPLE_ENDPOINT_URI + "&dataFormat=PAYLOAD").to("log:info").process(new Processor() {
 @SuppressWarnings("unchecked")
 public void process(final Exchange exchange) throws Exception {
 CxfPayload<SoapHeader> requestPayload = exchange.getIn().getBody(CxfPayload.class);
 List<Source> inElements = requestPayload.getBodySources();
 List<Source> outElements = new ArrayList<Source>();
 // You can use a customer toStringConverter to turn a CxfPayLoad message into String as you want
 String request = exchange.getIn().getBody(String.class);
 XmlConverter converter = new XmlConverter();
 String documentString = ECHO_RESPONSE;

 Element in = new XmlConverter().toDOMElement(inElements.get(0));
 // Just check the element namespace
 if (!in.getNamespaceURI().equals(ELEMENT_NAMESPACE)) {
 throw new IllegalArgumentException("Wrong element namespace");
 }
 if (in.getLocalName().equals("echoBoolean")) {
 documentString = ECHO_BOOLEAN_RESPONSE;
 checkRequest("ECHO_BOOLEAN_REQUEST", request);
 } else {
 documentString = ECHO_RESPONSE;
 checkRequest("ECHO_REQUEST", request);
 }
 Document outDocument = converter.toDOMDocument(documentString);
 outElements.add(new DOMSource(outDocument.getDocumentElement()));
 // set the payload header with null
 CxfPayload<SoapHeader> responsePayload = new CxfPayload<SoapHeader>(null, outElements, null);
 exchange.getOut().setBody(responsePayload);
 }
 });
 }
 };
}

How to get and set SOAP headers in POJO mode

			POJO means that the data format is a list of Java objects when the CXF endpoint produces or consumes Camel exchanges. Even though Apache Camel exposes the message body as POJOs in this mode, the CXF component still provides access to read and write SOAP headers. However, since CXF interceptors remove in-band SOAP headers from the header list after they have been processed, only out-of-band SOAP headers are available in POJO mode.
		

			The following example illustrates how to get/set SOAP headers. Suppose we have a route that forwards from one CXF endpoint to another. That is, SOAP Client → Apache Camel → CXF service. We can attach two processors to obtain/insert SOAP headers at (1) before request goes out to the CXF service and (2) before response comes back to the SOAP Client. Processor (1) and (2) in this example are InsertRequestOutHeaderProcessor and InsertResponseOutHeaderProcessor. Our route looks like this:
		
<route>
 <from uri="cxf:bean:routerRelayEndpointWithInsertion"/>
 <process ref="InsertRequestOutHeaderProcessor" />
 <to uri="cxf:bean:serviceRelayEndpointWithInsertion"/>
 <process ref="InsertResponseOutHeaderProcessor" />
</route>

			In 2.x SOAP headers are propagated to and from Apache Camel Message headers. The Apache Camel message header name is org.apache.cxf.headers.Header.list, which is a constant defined in CXF (org.apache.cxf.headers.Header.HEADER_LIST). The header value is a List<> of CXF SoapHeader objects (org.apache.cxf.binding.soap.SoapHeader). The following snippet is the InsertResponseOutHeaderProcessor (that inserts a new SOAP header in the response message). The way to access SOAP headers in both InsertResponseOutHeaderProcessor and InsertRequestOutHeaderProcessor are actually the same. The only difference between the two processors is setting the direction of the inserted SOAP header.
		
public static class InsertResponseOutHeaderProcessor implements Processor {

 @SuppressWarnings("unchecked")
 public void process(Exchange exchange) throws Exception {
 // You should be able to get the header if exchange is routed from camel-cxf endpoint
 List<SoapHeader> soapHeaders = CastUtils.cast((List<?>)exchange.getIn().getHeader(Header.HEADER_LIST));
 if (soapHeaders == null) {
 // we just create a new soap headers in case the header is null
 soapHeaders = new ArrayList<SoapHeader>();
 }

 // Insert a new header
 String xml = "<?xml version=\"1.0\" encoding=\"utf-8\"?><outofbandHeader "
 + "xmlns=\"http://cxf.apache.org/outofband/Header\" hdrAttribute=\"testHdrAttribute\" "
 + "xmlns:soap=\"http://schemas.xmlsoap.org/soap/envelope/\" soap:mustUnderstand=\"1\">"
 + "<name>New_testOobHeader</name><value>New_testOobHeaderValue</value></outofbandHeader>";
 SoapHeader newHeader = new SoapHeader(soapHeaders.get(0).getName(),
 DOMUtils.readXml(new StringReader(xml)).getDocumentElement());
 // make sure direction is OUT since it is a response message.
 newHeader.setDirection(Direction.DIRECTION_OUT);
 //newHeader.setMustUnderstand(false);
 soapHeaders.add(newHeader);

 }

}

How to get and set SOAP headers in PAYLOAD mode

			We have already shown how to access SOAP message (CxfPayload object) in PAYLOAD mode (see the section called “How to deal with the message for a camel-cxf endpoint in PAYLOAD data format”).
		

			Once you obtain a CxfPayload object, you can invoke the CxfPayload.getHeaders() method that returns a List of DOM Elements (SOAP headers).
		
from(getRouterEndpointURI()).process(new Processor() {
 @SuppressWarnings("unchecked")
 public void process(Exchange exchange) throws Exception {
 CxfPayload<SoapHeader> payload = exchange.getIn().getBody(CxfPayload.class);
 List<Source> elements = payload.getBodySources();
 assertNotNull("We should get the elements here", elements);
 assertEquals("Get the wrong elements size", 1, elements.size());

 Element el = new XmlConverter().toDOMElement(elements.get(0));
 elements.set(0, new DOMSource(el));
 assertEquals("Get the wrong namespace URI", "http://camel.apache.org/pizza/types",
 el.getNamespaceURI());

 List<SoapHeader> headers = payload.getHeaders();
 assertNotNull("We should get the headers here", headers);
 assertEquals("Get the wrong headers size", headers.size(), 1);
 assertEquals("Get the wrong namespace URI",
 ((Element)(headers.get(0).getObject())).getNamespaceURI(),
 "http://camel.apache.org/pizza/types");
 }

})
.to(getServiceEndpointURI());

			Since Camel 2.16.0, you can use the same approach as described in the section called “How to get and set SOAP headers in POJO mode” to set or get the SOAP headers. You can now use the org.apache.cxf.headers.Header.list header to get and set a list of SOAP headers. This means that if you have a route that forwards from one Camel CXF endpoint to another (SOAP Client → Camel → CXF service), the SOAP headers sent by the SOAP client are now also forwarded to the CXF service. If you do not want the headers to be forwarded, remove them from the org.apache.cxf.headers.Header.list Camel header.
		

SOAP headers are not available in MESSAGE mode

			SOAP headers are not available in MESSAGE mode as SOAP processing is skipped.
		

How to throw a SOAP Fault from Apache Camel

			If you are using a CXF endpoint to consume the SOAP request, you may need to throw the SOAP Fault from the camel context. Basically, you can use the throwFault DSL to do that; it works for POJO, PAYLOAD and MESSAGE data format. You can define the soap fault like this:
		
SOAP_FAULT = new SoapFault(EXCEPTION_MESSAGE, SoapFault.FAULT_CODE_CLIENT);
Element detail = SOAP_FAULT.getOrCreateDetail();
Document doc = detail.getOwnerDocument();
Text tn = doc.createTextNode(DETAIL_TEXT);
detail.appendChild(tn);

			Then throw it as you like:
		
from(routerEndpointURI).setFaultBody(constant(SOAP_FAULT));

			If your CXF endpoint is working in the MESSAGE data format, you could set the the SOAP Fault message in the message body and set the response code in the message header.
		
from(routerEndpointURI).process(new Processor() {

 public void process(Exchange exchange) throws Exception {
 Message out = exchange.getOut();
 // Set the message body with the
 out.setBody(this.getClass().getResourceAsStream("SoapFaultMessage.xml"));
 // Set the response code here
 out.setHeader(org.apache.cxf.message.Message.RESPONSE_CODE, new Integer(500));
 }

});

			The same is true for the POJO data format. You can set the SOAP Fault on the Out body and also indicate it’s a fault by calling Message.setFault(true), as follows:
		
from("direct:start").onException(SoapFault.class).maximumRedeliveries(0).handled(true)
 .process(new Processor() {
 public void process(Exchange exchange) throws Exception {
 SoapFault fault = exchange
 .getProperty(Exchange.EXCEPTION_CAUGHT, SoapFault.class);
 exchange.getOut().setFault(true);
 exchange.getOut().setBody(fault);
 }

 }).end().to(serviceURI);

How to propagate a CXF endpoint’s request and response context

			cxf client API provides a way to invoke the operation with request and response context. If you are using a CXF endpoint producer to invoke the external Web service, you can set the request context and get the response context with the following code:
		
 CxfExchange exchange = (CxfExchange)template.send(getJaxwsEndpointUri(), new Processor() {
 public void process(final Exchange exchange) {
 final List<String> params = new ArrayList<String>();
 params.add(TEST_MESSAGE);
 // Set the request context to the inMessage
 Map<String, Object> requestContext = new HashMap<String, Object>();
 requestContext.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, JAXWS_SERVER_ADDRESS);
 exchange.getIn().setBody(params);
 exchange.getIn().setHeader(Client.REQUEST_CONTEXT , requestContext);
 exchange.getIn().setHeader(CxfConstants.OPERATION_NAME, GREET_ME_OPERATION);
 }
 });
 org.apache.camel.Message out = exchange.getOut();
 // The output is an object array, the first element of the array is the return value
 Object\[\] output = out.getBody(Object\[\].class);
 LOG.info("Received output text: " + output\[0\]);
 // Get the response context form outMessage
 Map<String, Object> responseContext = CastUtils.cast((Map)out.getHeader(Client.RESPONSE_CONTEXT));
 assertNotNull(responseContext);
 assertEquals("Get the wrong wsdl opertion name", "{http://apache.org/hello_world_soap_http}greetMe",
 responseContext.get("javax.xml.ws.wsdl.operation").toString());

Attachment Support

			POJO Mode: Both SOAP with Attachment and MTOM are supported (see example in Payload Mode for enabling MTOM). However, SOAP with Attachment is not tested. Since attachments are marshalled and unmarshalled into POJOs, users typically do not need to deal with the attachment themself. Attachments are propagated to Camel message’s attachments since 2.1. So, it is possible to retreive attachments by Camel Message API
		
DataHandler Message.getAttachment(String id)

			.
		

			Payload Mode: MTOM is supported since 2.1. Attachments can be retrieved by Camel Message APIs mentioned above. SOAP with Attachment is not supported as there is no SOAP processing in this mode.
		

			To enable MTOM, set the CXF endpoint property "mtom_enabled" to true. (I believe you can only do it with Spring.)
		
<cxf:cxfEndpoint id="routerEndpoint" address="http://localhost:${CXFTestSupport.port1}/CxfMtomRouterPayloadModeTest/jaxws-mtom/hello"
 wsdlURL="mtom.wsdl"
 serviceName="ns:HelloService"
 endpointName="ns:HelloPort"
 xmlns:ns="http://apache.org/camel/cxf/mtom_feature">

 <cxf:properties>
 <!-- enable mtom by setting this property to true -->
 <entry key="mtom-enabled" value="true"/>

 <!-- set the camel-cxf endpoint data fromat to PAYLOAD mode -->
 <entry key="dataFormat" value="PAYLOAD"/>
 </cxf:properties>

			You can produce a Camel message with attachment to send to a CXF endpoint in Payload mode.
		
Exchange exchange = context.createProducerTemplate().send("direct:testEndpoint", new Processor() {

 public void process(Exchange exchange) throws Exception {
 exchange.setPattern(ExchangePattern.InOut);
 List<Source> elements = new ArrayList<Source>();
 elements.add(new DOMSource(DOMUtils.readXml(new StringReader(MtomTestHelper.REQ_MESSAGE)).getDocumentElement()));
 CxfPayload<SoapHeader> body = new CxfPayload<SoapHeader>(new ArrayList<SoapHeader>(),
 elements, null);
 exchange.getIn().setBody(body);
 exchange.getIn().addAttachment(MtomTestHelper.REQ_PHOTO_CID,
 new DataHandler(new ByteArrayDataSource(MtomTestHelper.REQ_PHOTO_DATA, "application/octet-stream")));

 exchange.getIn().addAttachment(MtomTestHelper.REQ_IMAGE_CID,
 new DataHandler(new ByteArrayDataSource(MtomTestHelper.requestJpeg, "image/jpeg")));

 }

});

// process response

CxfPayload<SoapHeader> out = exchange.getOut().getBody(CxfPayload.class);
Assert.assertEquals(1, out.getBody().size());

Map<String, String> ns = new HashMap<String, String>();
ns.put("ns", MtomTestHelper.SERVICE_TYPES_NS);
ns.put("xop", MtomTestHelper.XOP_NS);

XPathUtils xu = new XPathUtils(ns);
Element oute = new XmlConverter().toDOMElement(out.getBody().get(0));
Element ele = (Element)xu.getValue("//ns:DetailResponse/ns:photo/xop:Include", oute,
 XPathConstants.NODE);
String photoId = ele.getAttribute("href").substring(4); // skip "cid:"

ele = (Element)xu.getValue("//ns:DetailResponse/ns:image/xop:Include", oute,
 XPathConstants.NODE);
String imageId = ele.getAttribute("href").substring(4); // skip "cid:"

DataHandler dr = exchange.getOut().getAttachment(photoId);
Assert.assertEquals("application/octet-stream", dr.getContentType());
MtomTestHelper.assertEquals(MtomTestHelper.RESP_PHOTO_DATA, IOUtils.readBytesFromStream(dr.getInputStream()));

dr = exchange.getOut().getAttachment(imageId);
Assert.assertEquals("image/jpeg", dr.getContentType());

BufferedImage image = ImageIO.read(dr.getInputStream());
Assert.assertEquals(560, image.getWidth());
Assert.assertEquals(300, image.getHeight());

			You can also consume a Camel message received from a CXF endpoint in Payload mode.
		
public static class MyProcessor implements Processor {

 @SuppressWarnings("unchecked")
 public void process(Exchange exchange) throws Exception {
 CxfPayload<SoapHeader> in = exchange.getIn().getBody(CxfPayload.class);

 // verify request
 assertEquals(1, in.getBody().size());

 Map<String, String> ns = new HashMap<String, String>();
 ns.put("ns", MtomTestHelper.SERVICE_TYPES_NS);
 ns.put("xop", MtomTestHelper.XOP_NS);

 XPathUtils xu = new XPathUtils(ns);
 Element body = new XmlConverter().toDOMElement(in.getBody().get(0));
 Element ele = (Element)xu.getValue("//ns:Detail/ns:photo/xop:Include", body,
 XPathConstants.NODE);
 String photoId = ele.getAttribute("href").substring(4); // skip "cid:"
 assertEquals(MtomTestHelper.REQ_PHOTO_CID, photoId);

 ele = (Element)xu.getValue("//ns:Detail/ns:image/xop:Include", body,
 XPathConstants.NODE);
 String imageId = ele.getAttribute("href").substring(4); // skip "cid:"
 assertEquals(MtomTestHelper.REQ_IMAGE_CID, imageId);

 DataHandler dr = exchange.getIn().getAttachment(photoId);
 assertEquals("application/octet-stream", dr.getContentType());
 MtomTestHelper.assertEquals(MtomTestHelper.REQ_PHOTO_DATA, IOUtils.readBytesFromStream(dr.getInputStream()));

 dr = exchange.getIn().getAttachment(imageId);
 assertEquals("image/jpeg", dr.getContentType());
 MtomTestHelper.assertEquals(MtomTestHelper.requestJpeg, IOUtils.readBytesFromStream(dr.getInputStream()));

 // create response
 List<Source> elements = new ArrayList<Source>();
 elements.add(new DOMSource(DOMUtils.readXml(new StringReader(MtomTestHelper.RESP_MESSAGE)).getDocumentElement()));
 CxfPayload<SoapHeader> sbody = new CxfPayload<SoapHeader>(new ArrayList<SoapHeader>(),
 elements, null);
 exchange.getOut().setBody(sbody);
 exchange.getOut().addAttachment(MtomTestHelper.RESP_PHOTO_CID,
 new DataHandler(new ByteArrayDataSource(MtomTestHelper.RESP_PHOTO_DATA, "application/octet-stream")));

 exchange.getOut().addAttachment(MtomTestHelper.RESP_IMAGE_CID,
 new DataHandler(new ByteArrayDataSource(MtomTestHelper.responseJpeg, "image/jpeg")));

 }
}

			Message Mode: Attachments are not supported as it does not process the message at all.
		

			CXF_MESSAGE Mode: MTOM is supported, and Attachments can be retrieved by Camel Message APIs mentioned above. Note that when receiving a multipart (that is, MTOM) message the default SOAPMessage to String converter will provide the complete multi-part payload on the body. If you require just the SOAP XML as a String, you can set the message body with message.getSOAPPart(), and Camel convert can do the rest of work for you.
		

How to propagate stack trace information

			It is possible to configure a CXF endpoint so that, when a Java exception is thrown on the server side, the stack trace for the exception is marshalled into a fault message and returned to the client. To enable this feaure, set the dataFormat to PAYLOAD and set the faultStackTraceEnabled property to true in the cxfEndpoint element, as follows:
		
<cxf:cxfEndpoint id="router" address="http://localhost:9002/TestMessage"
 wsdlURL="ship.wsdl"
 endpointName="s:TestSoapEndpoint"
 serviceName="s:TestService"
 xmlns:s="http://test">
 <cxf:properties>
 <!-- enable sending the stack trace back to client; the default value is false-->
 <entry key="faultStackTraceEnabled" value="true" /> <entry key="dataFormat" value="PAYLOAD" />
 </cxf:properties>
</cxf:cxfEndpoint>

			For security reasons, the stack trace does not include the causing exception (that is, the part of a stack trace that follows Caused by). If you want to include the causing exception in the stack trace, set the exceptionMessageCauseEnabled property to true in the cxfEndpoint element, as follows:
		
<cxf:cxfEndpoint id="router" address="http://localhost:9002/TestMessage"
 wsdlURL="ship.wsdl"
 endpointName="s:TestSoapEndpoint"
 serviceName="s:TestService"
 xmlns:s="http://test">
 <cxf:properties>
 <!-- enable to show the cause exception message and the default value is false -->
 <entry key="exceptionMessageCauseEnabled" value="true" />
 <!-- enable to send the stack trace back to client, the default value is false-->
 <entry key="faultStackTraceEnabled" value="true" />
 <entry key="dataFormat" value="PAYLOAD" />
 </cxf:properties>
</cxf:cxfEndpoint>
Warning

				You should only enable the exceptionMessageCauseEnabled flag for testing and diagnostic purposes. It is normal practice for servers to conceal the original cause of an exception to make it harder for hostile users to probe the server.
			

Streaming Support in PAYLOAD mode

			In 2.8.2, the camel-cxf component now supports streaming of incoming messages when using PAYLOAD mode. Previously, the incoming messages would have been completely DOM parsed. For large messages, this is time consuming and uses a significant amount of memory. Starting in 2.8.2, the incoming messages can remain as a javax.xml.transform.Source while being routed and, if nothing modifies the payload, can then be directly streamed out to the target destination. For common "simple proxy" use cases (example: from("cxf:…​").to("cxf:…​")), this can provide very significant performance increases as well as significantly lowered memory requirements.
		

			However, there are cases where streaming may not be appropriate or desired. Due to the streaming nature, invalid incoming XML may not be caught until later in the processing chain. Also, certain actions may require the message to be DOM parsed anyway (like WS-Security or message tracing and such) in which case the advantages of the streaming is limited. At this point, there are two ways to control the streaming:
		
	
					Endpoint property: you can add "allowStreaming=false" as an endpoint property to turn the streaming on/off.
				
	
					Component property: the CxfComponent object also has an allowStreaming property that can set the default for endpoints created from that component.
				
	
					Global system property: you can add a system property of "org.apache.camel.component.cxf.streaming" to "false" to turn if off. That sets the global default, but setting the endpoint property above will override this value for that endpoint.
				

Using the generic CXF Dispatch mode

			From 2.8.0, the camel-cxf component supports the generic CXF dispatch mode that can transport messages of arbitrary structures (i.e., not bound to a specific XML schema). To use this mode, you simply omit specifying the wsdlURL and serviceClass attributes of the CXF endpoint.
		
<cxf:cxfEndpoint id="testEndpoint" address="http://localhost:9000/SoapContext/SoapAnyPort">
 <cxf:properties>
 <entry key="dataFormat" value="PAYLOAD"/>
 </cxf:properties>
</cxf:cxfEndpoint>

			It is noted that the default CXF dispatch client does not send a specific SOAPAction header. Therefore, when the target service requires a specific SOAPAction value, it is supplied in the Camel header using the key SOAPAction (case-insensitive).
		

CXF consumers on {wildfly}

				The configuration of camel-cxf consumers on {wildfly} is different to that of standalone Camel. Producer endpoints work as per normal.
			

				On {wildfly}, camel-cxf consumers leverage the default Undertow HTTP server provided by the container. The server is defined within the undertow subsystem configuration. Here’s an excerpt of the default configuration from standalone.xml:
			
<subsystem xmlns="urn:jboss:domain:undertow:4.0">
 <buffer-cache name="default" />
 <server name="default-server">
 <http-listener name="default" socket-binding="http" redirect-socket="https" enable-http2="true" />
 <https-listener name="https" socket-binding="https" security-realm="ApplicationRealm" enable-http2="true" />
 <host name="default-host" alias="localhost">
 <location name="/" handler="welcome-content" />
 <filter-ref name="server-header" />
 <filter-ref name="x-powered-by-header" />
 <http-invoker security-realm="ApplicationRealm" />
 </host>
 </server>
</subsystem>

				In this instance, Undertow is configured to listen on interfaces / ports specified by the http and https socket-binding. By default this is port 8080 for http and 8443 for https.
			

				For example, if you configure an endpoint consumer using different host or port combinations, a warning will appear within the server log file. For example the following host & port configurations would be ignored:
			
<cxf:rsServer id="cxfRsConsumer"
 address="http://somehost:1234/path/to/resource"
 serviceClass="org.example.ServiceClass" />
<cxf:cxfEndpoint id="cxfWsConsumer"
 address="http://somehost:1234/path/to/resource"
 serviceClass="org.example.ServiceClass" />
[org.wildfly.extension.camel] (pool-2-thread-1) Ignoring configured host: http://somehost:1234/path/to/resource

				However, the consumer is still available on the default host & port localhost:8080 or localhost:8443.
			
Note

					Applications which use camel-cxf consumers must be packaged as a WAR. In previous {wildfly-camel} releases, other types of archive such as JAR were permitted, but this is no longer supported.
				

Configuring alternative ports

					If alternative ports are to be accepted, then these must be configured via the {wildfly} subsystem configuration. This is explained in the server documentation:
				

					https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.1/html/configuration_guide/configuring_the_web_server_undertow
				

Configuring SSL

					To configure SSL, refer to the {wildfly} SSL configuration guide:
				

					https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.1/html-single/how_to_configure_server_security/#configure_one_way_and_two_way_ssl_tls_for_application
				

Configuring security with Elytron

					{wildfly-camel} supports securing camel-cxf consumer endpoints with the Elytron security framework.
				
Configuring a security domain

						To secure a {wildfly-camel} application with Elytron, an application security domain needs to be referenced within WEB-INF/jboss-web.xml of your WAR deployment:
					
<jboss-web>
 <security-domain>my-application-security-domain</security-domain>
</jboss-web>

						The <security-domain> configuration references the name of an <application-security-domain> defined by the Undertow subsystem. For example, the Undertow subsystem <application-security-domain> is configured within the {wildfly} server standalone.xml configuration file as follows:
					
<subsystem xmlns="urn:jboss:domain:undertow:6.0">
 ...
 <application-security-domains>
 <application-security-domain name="my-application-security-domain" http-authentication-factory="application-http-authentication"/>
 </application-security-domains>
</subsystem>

						The <http-authentication-factory> application-http-authentication is defined within the Elytron subsystem. application-http-authentication is available by default in both the standalone.xml and standalone-full.xml server configuration files. For example:
					
<subsystem xmlns="urn:wildfly:elytron:1.2">
 ...
 <http>
 ...
 <http-authentication-factory name="application-http-authentication" http-server-mechanism-factory="global" security-domain="ApplicationDomain">
 <mechanism-configuration>
 <mechanism mechanism-name="BASIC">
 <mechanism-realm realm-name="Application Realm" />
 </mechanism>
 <mechanism mechanism-name="FORM" />
 </mechanism-configuration>
 </http-authentication-factory>
 <provider-http-server-mechanism-factory name="global" />
 </http>
 ...
</subsystem>

						The <http-authentication-factory> named application-http-authentication, holds a reference to a Elytron security domain called ApplicationDomain.
					

						For more information on how to configure the Elytron subsystem, refer to the Elytron documentation.
					

Configuring security constraints, authentication methods and security roles

						Security constraints, authentication methods and security roles for camel-cxf consumer endpoints can be configured within your WAR deployment WEB-INF/web.xml. For example, to configure BASIC Authentication:
					
<web-app>
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>secure</web-resource-name>
 <url-pattern>/webservices/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>my-role</role-name>
 </auth-constraint>
 </security-constraint>
 <security-role>
 <description>The role that is required to log in to /webservices/*</description>
 <role-name>my-role</role-name>
 </security-role>
 <login-config>
 <auth-method>BASIC</auth-method>
 <realm-name>my-realm</realm-name>
 </login-config>
</web-app>

						Note that the <url-pattern> defined by the Servlet Specification is relative to the context path of the web application. If your application is packaged as my-app.war, {wildfly} will make it accessible under the context path /my-app and the <url-patternpattern> /webservices/* will be applied to paths relative to /my-app.
					

						For example, requests against http://my-server/my-app/webservices/my-endpoint will match the /webservices/* pattern, while http://my-server/webservices/my-endpoint will not match.
					

						This is important because {wildfly-camel} allows the creation of camel-cxf endpoint consumers whose base path is outside of the host web application context path. For example, it is possible to create a camel-cxf consumer for http://my-server/webservices/my-endpoint inside my-app.war.
					

						In order to define security constraints for such out-of-context endpoints, {wildfly-camel} supports a custom, non-standard <url-pattern> convention where prefixing the pattern with three forward slashes /// will be interpreted as absolute to server host name. For example, to secure http://my-server/webservices/my-endpoint inside my-app.war, you would add the following configuration to web.xml:
					
<web-app>
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>secure</web-resource-name>
 <url-pattern>///webservices/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>my-role</role-name>
 </auth-constraint>
 </security-constraint>
 <security-role>
 <description>The role that is required to log in to /webservices/*</description>
 <role-name>my-role</role-name>
 </security-role>
 <login-config>
 <auth-method>BASIC</auth-method>
 <realm-name>my-realm</realm-name>
 </login-config>
</web-app>

Chapter 78. CXF-RS Component

			Available as of Camel version 2.0
		

			The cxfrs: component provides integration with Apache CXF for connecting to JAX-RS 1.1 and 2.0 services hosted in CXF.
		

			When using CXF as a consumer, the CXF Bean Component allows you to factor out how message payloads are received from their processing as a RESTful or SOAP web service. This has the potential of using a multitude of transports to consume web services. The bean component’s configuration is also simpler and provides the fastest method to implement web services using Camel and CXF.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-cxf</artifactId>
 <version>x.x.x</version> <!-- use the same version as your Camel core version -->
</dependency>
URI format

cxfrs://address?options

				Where address represents the CXF endpoint’s address
			
cxfrs:bean:rsEndpoint

				Where rsEndpoint represents the spring bean’s name which presents the CXFRS client or server
			

				For either style above, you can append options to the URI as follows:
			
cxfrs:bean:cxfEndpoint?resourceClasses=org.apache.camel.rs.Example

Options

				The CXF-RS component supports 3 options which are listed below.
			
	Name	Description	Default	Type
	
								useGlobalSslContext Parameters (security)
							

							 	
								Enable usage of global SSL context parameters.
							

							 	
								false
							

							 	
								boolean
							

							
	
								headerFilterStrategy (filter)
							

							 	
								To use a custom org.apache.camel.spi.HeaderFilterStrategy to filter header to and from Camel message.
							

							 	 	
								HeaderFilterStrategy
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The CXF-RS endpoint is configured using URI syntax:
			
cxfrs:beanId:address

				with the following path and query parameters:
			
Path Parameters (2 parameters):

	Name	Description	Default	Type
	
									beanId
								

								 	
									To lookup an existing configured CxfRsEndpoint. Must used bean: as prefix.
								

								 	 	
									String
								

								
	
									address
								

								 	
									The service publish address.
								

								 	 	
									String
								

								

Query Parameters (29 parameters):

	Name	Description	Default	Type
	
									features (common)
								

								 	
									Set the feature list to the CxfRs endpoint.
								

								 	 	
									List
								

								
	
									loggingFeatureEnabled (common)
								

								 	
									This option enables CXF Logging Feature which writes inbound and outbound REST messages to log.
								

								 	
									false
								

								 	
									boolean
								

								
	
									loggingSizeLimit (common)
								

								 	
									To limit the total size of number of bytes the logger will output when logging feature has been enabled.
								

								 	 	
									int
								

								
	
									modelRef (common)
								

								 	
									This option is used to specify the model file which is useful for the resource class without annotation. When using this option, then the service class can be omitted, to emulate document-only endpoints
								

								 	 	
									String
								

								
	
									providers (common)
								

								 	
									Set custom JAX-RS provider(s) list to the CxfRs endpoint. You can specify a string with a list of providers to lookup in the registy separated by comma.
								

								 	 	
									String
								

								
	
									resourceClasses (common)
								

								 	
									The resource classes which you want to export as REST service. Multiple classes can be separated by comma.
								

								 	 	
									List
								

								
	
									schemaLocations (common)
								

								 	
									Sets the locations of the schema(s) which can be used to validate the incoming XML or JAXB-driven JSON.
								

								 	 	
									List
								

								
	
									skipFaultLogging (common)
								

								 	
									This option controls whether the PhaseInterceptorChain skips logging the Fault that it catches.
								

								 	
									false
								

								 	
									boolean
								

								
	
									bindingStyle (consumer)
								

								 	
									Sets how requests and responses will be mapped to/from Camel. Two values are possible: SimpleConsumer: This binding style processes request parameters, multiparts, etc. and maps them to IN headers, IN attachments and to the message body. It aims to eliminate low-level processing of org.apache.cxf.message.MessageContentsList. It also also adds more flexibility and simplicity to the response mapping. Only available for consumers. Default: The default style. For consumers this passes on a MessageContentsList to the route, requiring low-level processing in the route. This is the traditional binding style, which simply dumps the org.apache.cxf.message.MessageContentsList coming in from the CXF stack onto the IN message body. The user is then responsible for processing it according to the contract defined by the JAX-RS method signature. Custom: allows you to specify a custom binding through the binding option.
								

								 	
									Default
								

								 	
									BindingStyle
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									publishedEndpointUrl (consumer)
								

								 	
									This option can override the endpointUrl that published from the WADL which can be accessed with resource address url plus _wadl
								

								 	 	
									String
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									cookieHandler (producer)
								

								 	
									Configure a cookie handler to maintain a HTTP session
								

								 	 	
									CookieHandler
								

								
	
									hostnameVerifier (producer)
								

								 	
									The hostname verifier to be used. Use the notation to reference a HostnameVerifier from the registry.
								

								 	 	
									HostnameVerifier
								

								
	
									sslContextParameters (producer)
								

								 	
									The Camel SSL setting reference. Use the notation to reference the SSL Context.
								

								 	 	
									SSLContextParameters
								

								
	
									throwExceptionOnFailure (producer)
								

								 	
									This option tells the CxfRsProducer to inspect return codes and will generate an Exception if the return code is larger than 207.
								

								 	
									true
								

								 	
									boolean
								

								
	
									httpClientAPI (producer)
								

								 	
									If it is true, the CxfRsProducer will use the HttpClientAPI to invoke the service. If it is false, the CxfRsProducer will use the ProxyClientAPI to invoke the service
								

								 	
									true
								

								 	
									boolean
								

								
	
									ignoreDeleteMethodMessage Body (producer)
								

								 	
									This option is used to tell CxfRsProducer to ignore the message body of the DELETE method when using HTTP API.
								

								 	
									false
								

								 	
									boolean
								

								
	
									maxClientCacheSize (producer)
								

								 	
									This option allows you to configure the maximum size of the cache. The implementation caches CXF clients or ClientFactoryBean in CxfProvider and CxfRsProvider.
								

								 	
									10
								

								 	
									int
								

								
	
									binding (advanced)
								

								 	
									To use a custom CxfBinding to control the binding between Camel Message and CXF Message.
								

								 	 	
									CxfRsBinding
								

								
	
									bus (advanced)
								

								 	
									To use a custom configured CXF Bus.
								

								 	 	
									Bus
								

								
	
									continuationTimeout (advanced)
								

								 	
									This option is used to set the CXF continuation timeout which could be used in CxfConsumer by default when the CXF server is using Jetty or Servlet transport.
								

								 	
									30000
								

								 	
									long
								

								
	
									cxfRsEndpointConfigurer (advanced)
								

								 	
									This option could apply the implementation of org.apache.camel.component.cxf.jaxrs.CxfRsEndpointConfigurer which supports to configure the CXF endpoint in programmatic way. User can configure the CXF server and client by implementing configureServer/Client method of CxfEndpointConfigurer.
								

								 	 	
									CxfRsEndpoint Configurer
								

								
	
									defaultBus (advanced)
								

								 	
									Will set the default bus when CXF endpoint create a bus by itself
								

								 	
									false
								

								 	
									boolean
								

								
	
									headerFilterStrategy (advanced)
								

								 	
									To use a custom HeaderFilterStrategy to filter header to and from Camel message.
								

								 	 	
									HeaderFilterStrategy
								

								
	
									performInvocation (advanced)
								

								 	
									When the option is true, Camel will perform the invocation of the resource class instance and put the response object into the exchange for further processing.
								

								 	
									false
								

								 	
									boolean
								

								
	
									propagateContexts (advanced)
								

								 	
									When the option is true, JAXRS UriInfo, HttpHeaders, Request and SecurityContext contexts will be available to custom CXFRS processors as typed Camel exchange properties. These contexts can be used to analyze the current requests using JAX-RS API.
								

								 	
									false
								

								 	
									boolean
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

					You can also configure the CXF REST endpoint through the spring configuration. Since there are lots of difference between the CXF REST client and CXF REST Server, we provide different configuration for them. Please check out the schema file and CXF JAX-RS documentation for more information.
				

How to configure the REST endpoint in Camel

				In camel-cxf schema file, there are two elements for the REST endpoint definition. cxf:rsServer for REST consumer, cxf:rsClient for REST producer.
 You can find a Camel REST service route configuration example here.
			

How to override the CXF producer address from message header

				The camel-cxfrs producer supports to override the services address by setting the message with the key of "CamelDestinationOverrideUrl".
			
 // set up the service address from the message header to override the setting of CXF endpoint
 exchange.getIn().setHeader(Exchange.DESTINATION_OVERRIDE_URL, constant(getServiceAddress()));

Consuming a REST Request - Simple Binding Style

				Available as of Camel 2.11
			

				The Default binding style is rather low-level, requiring the user to manually process the MessageContentsList object coming into the route. Thus, it tightly couples the route logic with the method signature and parameter indices of the JAX-RS operation. Somewhat inelegant, difficult and error-prone.
			

				In contrast, the SimpleConsumer binding style performs the following mappings, in order to make the request data more accessible to you within the Camel Message:
			
	
						JAX-RS Parameters (@HeaderParam, @QueryParam, etc.) are injected as IN message headers. The header name matches the value of the annotation.
					
	
						The request entity (POJO or other type) becomes the IN message body. If a single entity cannot be identified in the JAX-RS method signature, it falls back to the original MessageContentsList.
					
	
						Binary @Multipart body parts become IN message attachments, supporting DataHandler, InputStream, DataSource and CXF’s Attachment class.
					
	
						Non-binary @Multipart body parts are mapped as IN message headers. The header name matches the Body Part name.
					

				Additionally, the following rules apply to the Response mapping:
			
	
						If the message body type is different to javax.ws.rs.core.Response (user-built response), a new Response is created and the message body is set as the entity (so long it’s not null). The response status code is taken from the Exchange.HTTP_RESPONSE_CODE header, or defaults to 200 OK if not present.
					
	
						If the message body type is equal to javax.ws.rs.core.Response, it means that the user has built a custom response, and therefore it is respected and it becomes the final response.
					
	
						In all cases, Camel headers permitted by custom or default HeaderFilterStrategy are added to the HTTP response.
					

Enabling the Simple Binding Style

					This binding style can be activated by setting the bindingStyle parameter in the consumer endpoint to value SimpleConsumer:
				
 from("cxfrs:bean:rsServer?bindingStyle=SimpleConsumer")
 .to("log:TEST?showAll=true");

Examples of request binding with different method signatures

					Below is a list of method signatures along with the expected result from the Simple binding.
				

					public Response doAction(BusinessObject request);
 Request payload is placed in IN message body, replacing the original MessageContentsList.
				

					public Response doAction(BusinessObject request, @HeaderParam("abcd") String abcd, @QueryParam("defg") String defg); Request payload placed in IN message body, replacing the original MessageContentsList. Both request params mapped as IN message headers with names abcd and defg.
				

					public Response doAction(@HeaderParam("abcd") String abcd, @QueryParam("defg") String defg); Both request params mapped as IN message headers with names abcd and defg. The original MessageContentsList is preserved, even though it only contains the 2 parameters.
				

					public Response doAction(@Multipart(value="body1") BusinessObject request, @Multipart(value="body2") BusinessObject request2); The first parameter is transferred as a header with name body1, and the second one is mapped as header body2. The original MessageContentsList is preserved as the IN message body.
				

					public Response doAction(InputStream abcd); The InputStream is unwrapped from the MessageContentsList and preserved as the IN message body.
				

					public Response doAction(DataHandler abcd); The DataHandler is unwrapped from the MessageContentsList and preserved as the IN message body.
				

More examples of the Simple Binding Style

					Given a JAX-RS resource class with this method:
				
 @POST @Path("/customers/{type}")
 public Response newCustomer(Customer customer, @PathParam("type") String type, @QueryParam("active") @DefaultValue("true") boolean active) {
 return null;
 }

					Serviced by the following route:
				
 from("cxfrs:bean:rsServer?bindingStyle=SimpleConsumer")
 .recipientList(simple("direct:${header.operationName}"));

 from("direct:newCustomer")
 .log("Request: type=${header.type}, active=${header.active}, customerData=${body}");

					The following HTTP request with XML payload (given that the Customer DTO is JAXB-annotated):
				
POST /customers/gold?active=true

Payload:
<Customer>
 <fullName>Raul Kripalani</fullName>
 <country>Spain</country>
 <project>Apache Camel</project>
</Customer>

					Will print the message:
				
Request: type=gold, active=true, customerData=<Customer.toString() representation>

					For more examples on how to process requests and write responses can be found here.
				

Consuming a REST Request - Default Binding Style

				The CXF JAXRS front end implements the JAX-RS (JSR-311) API, so we can export the resources classes as a REST service. And we leverage the CXF Invoker API to turn a REST request into a normal Java object method invocation.
 Unlike the Camel Restlet component, you don’t need to specify the URI template within your endpoint, CXF takes care of the REST request URI to resource class method mapping according to the JSR-311 specification. All you need to do in Camel is delegate this method request to a right processor or endpoint.
			

				Here is an example of a CXFRS route…​
			

				And the corresponding resource class used to configure the endpoint…​
			

				INFO:*Note about resource classes*
			

				By default, JAX-RS resource classes are only*used to configure JAX-RS properties. Methods will *not be executed during routing of messages to the endpoint. Instead, it is the responsibility of the route to do all processing.
			

				Note that starting from Camel 2.15 it is also sufficient to provide an interface only as opposed to a no-op service implementation class for the default mode.
			

				Starting from Camel 2.15, if a performInvocation option is enabled, the service implementation will be invoked first, the response will be set on the Camel exchange and the route execution will continue as usual. This can be useful for integrating the existing JAX-RS implementations into Camel routes and for post-processing JAX-RS Responses in custom processors.
			

How to invoke the REST service through camel-cxfrs producer

				The CXF JAXRS front end implements a proxy-based client API, with this API you can invoke the remote REST service through a proxy. The camel-cxfrs producer is based on this proxy API.
 You just need to specify the operation name in the message header and prepare the parameter in the message body, the camel-cxfrs producer will generate right REST request for you.
			

				Here is an example:
			

				The CXF JAXRS front end also provides a http centric client API. You can also invoke this API from camel-cxfrs producer. You need to specify the HTTP_PATH and the HTTP_METHOD and let the producer use the http centric client API by using the URI option httpClientAPI or by setting the message header CxfConstants.CAMEL_CXF_RS_USING_HTTP_API. You can turn the response object to the type class specified with the message header CxfConstants.CAMEL_CXF_RS_RESPONSE_CLASS.
			

				From Camel 2.1, we also support to specify the query parameters from cxfrs URI for the CXFRS http centric client.
			

				Error formatting macro: snippet: java.lang.IndexOutOfBoundsException: Index: 20, Size: 20
			

				To support the Dynamical routing, you can override the URI’s query parameters by using the CxfConstants.CAMEL_CXF_RS_QUERY_MAP header to set the parameter map for it.
			

What’s the Camel Transport for CXF

				In CXF you offer or consume a webservice by defining its address. The first part of the address specifies the protocol to use. For example address="http://localhost:9000" in an endpoint configuration means your service will be offered using the http protocol on port 9000 of localhost. When you integrate Camel Tranport into CXF you get a new transport "camel". So you can specify address="camel://direct:MyEndpointName" to bind the CXF service address to a camel direct endpoint.
			

				Technically speaking Camel transport for CXF is a component which implements the CXF transport API with the Camel core library. This allows you to easily use Camel’s routing engine and integration patterns support together with your CXF services.
			

Integrate Camel into CXF transport layer

				To include the Camel Tranport into your CXF bus you use the CamelTransportFactory. You can do this in Java as well as in Spring.
			
Setting up the Camel Transport in Spring

					You can use the following snippet in your applicationcontext if you want to configure anything special. If you only want to activate the camel transport you do not have to do anything in your application context. As soon as you include the camel-cxf-transport jar (or camel-cxf.jar if your camel version is less than 2.7.x) in your app, cxf will scan the jar and load a CamelTransportFactory for you.
				
<!-- you don't need to specify the CamelTransportFactory configuration as it is auto load by CXF bus -->
<bean class="org.apache.camel.component.cxf.transport.CamelTransportFactory">
 <property name="bus" ref="cxf" />
 <property name="camelContext" ref="camelContext" />
 <!-- checkException new added in Camel 2.1 and Camel 1.6.2 -->
 <!-- If checkException is true , CamelDestination will check the outMessage's
 exception and set it into camel exchange. You can also override this value
 in CamelDestination's configuration. The default value is false.
 This option should be set true when you want to leverage the camel's error
 handler to deal with fault message -->
 <property name="checkException" value="true" />
 <property name="transportIds">
 <list>
 <value>http://cxf.apache.org/transports/camel</value>
 </list>
 </property>
</bean>

Integrating the Camel Transport in a programmatic way

					Camel transport provides a setContext method that you could use to set the Camel context into the transport factory. If you want this factory take effect, you need to register the factory into the CXF bus. Here is a full example for you.
				
import org.apache.cxf.Bus;
import org.apache.cxf.BusFactory;
import org.apache.cxf.transport.ConduitInitiatorManager;
import org.apache.cxf.transport.DestinationFactoryManager;
...

BusFactory bf = BusFactory.newInstance();
Bus bus = bf.createBus();
CamelTransportFactory camelTransportFactory = new CamelTransportFactory();
// set up the CamelContext which will be use by the CamelTransportFactory
camelTransportFactory.setCamelContext(context)
// if you are using CXF higher then 2.4.x the
camelTransportFactory.setBus(bus);

// if you are lower CXF, you need to register the ConduitInitiatorManager and DestinationFactoryManager like below
// register the conduit initiator
ConduitInitiatorManager cim = bus.getExtension(ConduitInitiatorManager.class);
cim.registerConduitInitiator(CamelTransportFactory.TRANSPORT_ID, camelTransportFactory);
// register the destination factory
DestinationFactoryManager dfm = bus.getExtension(DestinationFactoryManager.class);
dfm.registerDestinationFactory(CamelTransportFactory.TRANSPORT_ID, camelTransportFactory);
// set or bus as the default bus for cxf
BusFactory.setDefaultBus(bus);

Configure the destination and conduit with Spring

Namespace

					The elements used to configure an Camel transport endpoint are defined in the namespace http://cxf.apache.org/transports/camel. It is commonly referred to using the prefix camel. In order to use the Camel transport configuration elements, you will need to add the lines shown below to the beans element of your endpoint’s configuration file. In addition, you will need to add the configuration elements' namespace to the xsi:schemaLocation attribute.
				

					Adding the Configuration Namespace
				
<beans ...
 xmlns:camel="http://cxf.apache.org/transports/camel
 ...
 xsi:schemaLocation="...
 http://cxf.apache.org/transports/camel
 http://cxf.apache.org/transports/camel.xsd
 ...>

The destination element

					You configure an Camel transport server endpoint using the camel:destination element and its children. The camel:destination element takes a single attribute, name, that specifies the WSDL port element that corresponds to the endpoint. The value for the name attribute takes the form portQName`.camel-destination`. The example below shows the camel:destination element that would be used to add configuration for an endpoint that was specified by the WSDL fragment <port binding="widgetSOAPBinding" name="widgetSOAPPort"> if the endpoint’s target namespace was http://widgets.widgetvendor.net.
				

					camel:destination Element
				
...
 <camel:destination name="{http://widgets/widgetvendor.net}widgetSOAPPort.http-destination>
 <camelContext id="context" xmlns="http://activemq.apache.org/camel/schema/spring">
 <route>
 <from uri="direct:EndpointC" />
 <to uri="direct:EndpointD" />
 </route>
 </camelContext>
 </camel:destination>

 <!-- new added feature since Camel 2.11.x
 <camel:destination name="{http://widgets/widgetvendor.net}widgetSOAPPort.camel-destination" camelContextId="context" />

...

					The camel:destination element for Spring has a number of child elements that specify configuration information. They are described below.
				

					Element
				

					Description
				

					camel-spring:camelContext
				

					You can specify the camel context in the camel destination
				

					camel:camelContextRef
				

					The camel context id which you want inject into the camel destination
				

The conduit element

					You configure a Camel transport client using the camel:conduit element and its children. The camel:conduit element takes a single attribute, name, that specifies the WSDL port element that corresponds to the endpoint. The value for the name attribute takes the form portQName`.camel-conduit`. For example, the code below shows the camel:conduit element that would be used to add configuration for an endpoint that was specified by the WSDL fragment <port binding="widgetSOAPBinding" name="widgetSOAPPort"> if the endpoint’s target namespace was http://widgets.widgetvendor.net.
				

					http-conf:conduit Element
				
...
 <camelContext id="conduit_context" xmlns="http://activemq.apache.org/camel/schema/spring">
 <route>
 <from uri="direct:EndpointA" />
 <to uri="direct:EndpointB" />
 </route>
 </camelContext>

 <camel:conduit name="{http://widgets/widgetvendor.net}widgetSOAPPort.camel-conduit">
 <camel:camelContextRef>conduit_context</camel:camelContextRef>
 </camel:conduit>

 <!-- new added feature since Camel 2.11.x
 <camel:conduit name="{http://widgets/widgetvendor.net}widgetSOAPPort.camel-conduit" camelContextId="conduit_context" />

 <camel:conduit name="*.camel-conduit">
 <!-- you can also using the wild card to specify the camel-conduit that you want to configure -->
 ...
 </camel:conduit>
...

					The camel:conduit element has a number of child elements that specify configuration information. They are described below.
				

					Element
				

					Description
				

					camel-spring:camelContext
				

					You can specify the camel context in the camel conduit
				

					camel:camelContextRef
				

					The camel context id which you want inject into the camel conduit
				

Configure the destination and conduit with Blueprint

				From Camel 2.11.x, Camel Transport supports to be configured with Blueprint.
			

				If you are using blueprint, you should use the the namespace http://cxf.apache.org/transports/camel/blueprint and import the schema like the blow.
			

				Adding the Configuration Namespace for blueprint
			
<beans ...
 xmlns:camel="http://cxf.apache.org/transports/camel/blueprint"
 ...
 xsi:schemaLocation="...
 http://cxf.apache.org/transports/camel/blueprint
 http://cxf.apache.org/schmemas/blueprint/camel.xsd
 ...>

				In blueprint camel:conduit camel:destination only has one camelContextId attribute, they doesn’t support to specify the camel context in the camel destination.
			
 <camel:conduit id="*.camel-conduit" camelContextId="camel1" />
 <camel:destination id="*.camel-destination" camelContextId="camel1" />

Example Using Camel as a load balancer for CXF

				This example shows how to use the camel load balancing feature in CXF. You need to load the configuration file in CXF and publish the endpoints on the address "camel://direct:EndpointA" and "camel://direct:EndpointB"
			

Complete Howto and Example for attaching Camel to CXF

				Better JMS Transport for CXF Webservice using Apache Camel
			

Chapter 79. Data Format Component

			Available as of Camel version 2.12
		

			The dataformat: component allows to use Data Format as a Camel Component.
		
URI format

dataformat:name:(marshal|unmarshal)[?options]

				Where name is the name of the Data Format. And then followed by the operation which must either be marshal or unmarshal. The options is used for configuring the Data Format in use. See the Data Format documentation for which options it support.
			

DataFormat Options

				The Data Format component has no options.
			

				The Data Format endpoint is configured using URI syntax:
			
dataformat:name:operation

				with the following path and query parameters:
			
Path Parameters (2 parameters):

	Name	Description	Default	Type
	
									name
								

								 	
									Required Name of data format
								

								 	 	
									String
								

								
	
									operation
								

								 	
									Required Operation to use either marshal or unmarshal
								

								 	 	
									String
								

								

Query Parameters (1 parameters):

	Name	Description	Default	Type
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

Samples

				For example to use the JAXB Data Format we can do as follows:
			
from("activemq:My.Queue").
 to("dataformat:jaxb:unmarshal?contextPath=com.acme.model").
 to("mqseries:Another.Queue");

				And in XML DSL you do:
			
<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="activemq:My.Queue"/>
 <to uri="dataformat:jaxb:unmarshal?contextPath=com.acme.model"/>
 <to uri="mqseries:Another.Queue"/>
 </route>
</camelContext>

Chapter 80. Dataset Component

			Available as of Camel version 1.3
		

			Testing of distributed and asynchronous processing is notoriously difficult. The Mock, Test and DataSet endpoints work great with the Camel Testing Framework to simplify your unit and integration testing using Enterprise Integration Patterns and Camel’s large range of Components together with the powerful Bean Integration.
		

			The DataSet component provides a mechanism to easily perform load & soak testing of your system. It works by allowing you to create DataSet instances both as a source of messages and as a way to assert that the data set is received.
		

			Camel will use the throughput logger when sending dataset’s.
		
URI format

dataset:name[?options]

				Where name is used to find the DataSet instance in the Registry
			

				Camel ships with a support implementation of org.apache.camel.component.dataset.DataSet, the org.apache.camel.component.dataset.DataSetSupport class, that can be used as a base for implementing your own DataSet. Camel also ships with some implementations that can be used for testing: org.apache.camel.component.dataset.SimpleDataSet, org.apache.camel.component.dataset.ListDataSet and org.apache.camel.component.dataset.FileDataSet, all of which extend DataSetSupport.
			

Options

				The Dataset component has no options.
			

				The Dataset endpoint is configured using URI syntax:
			
dataset:name

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									name
								

								 	
									Required Name of DataSet to lookup in the registry
								

								 	 	
									DataSet
								

								

Query Parameters (19 parameters):

	Name	Description	Default	Type
	
									dataSetIndex (common)
								

								 	
									Controls the behaviour of the CamelDataSetIndex header. For Consumers: - off = the header will not be set - strict/lenient = the header will be set For Producers: - off = the header value will not be verified, and will not be set if it is not present = strict = the header value must be present and will be verified = lenient = the header value will be verified if it is present, and will be set if it is not present
								

								 	
									lenient
								

								 	
									String
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN/ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									initialDelay (consumer)
								

								 	
									Time period in millis to wait before starting sending messages.
								

								 	
									1000
								

								 	
									long
								

								
	
									minRate (consumer)
								

								 	
									Wait until the DataSet contains at least this number of messages
								

								 	
									0
								

								 	
									int
								

								
	
									preloadSize (consumer)
								

								 	
									Sets how many messages should be preloaded (sent) before the route completes its initialization
								

								 	
									0
								

								 	
									long
								

								
	
									produceDelay (consumer)
								

								 	
									Allows a delay to be specified which causes a delay when a message is sent by the consumer (to simulate slow processing)
								

								 	
									3
								

								 	
									long
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN/ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the default exchange pattern when creating an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									assertPeriod (producer)
								

								 	
									Sets a grace period after which the mock endpoint will re-assert to ensure the preliminary assertion is still valid. This is used for example to assert that exactly a number of messages arrives. For example if link expectedMessageCount(int) was set to 5, then the assertion is satisfied when 5 or more message arrives. To ensure that exactly 5 messages arrives, then you would need to wait a little period to ensure no further message arrives. This is what you can use this link setAssertPeriod(long) method for. By default this period is disabled.
								

								 	
									0
								

								 	
									long
								

								
	
									consumeDelay (producer)
								

								 	
									Allows a delay to be specified which causes a delay when a message is consumed by the producer (to simulate slow processing)
								

								 	
									0
								

								 	
									long
								

								
	
									expectedCount (producer)
								

								 	
									Specifies the expected number of message exchanges that should be received by this endpoint. Beware: If you want to expect that 0 messages, then take extra care, as 0 matches when the tests starts, so you need to set a assert period time to let the test run for a while to make sure there are still no messages arrived; for that use link setAssertPeriod(long). An alternative is to use NotifyBuilder, and use the notifier to know when Camel is done routing some messages, before you call the link assertIsSatisfied() method on the mocks. This allows you to not use a fixed assert period, to speedup testing times. If you want to assert that exactly n’th message arrives to this mock endpoint, then see also the link setAssertPeriod(long) method for further details.
								

								 	
									-1
								

								 	
									int
								

								
	
									reportGroup (producer)
								

								 	
									A number that is used to turn on throughput logging based on groups of the size.
								

								 	 	
									int
								

								
	
									resultMinimumWaitTime (producer)
								

								 	
									Sets the minimum expected amount of time (in millis) the link assertIsSatisfied() will wait on a latch until it is satisfied
								

								 	
									0
								

								 	
									long
								

								
	
									resultWaitTime (producer)
								

								 	
									Sets the maximum amount of time (in millis) the link assertIsSatisfied() will wait on a latch until it is satisfied
								

								 	
									0
								

								 	
									long
								

								
	
									retainFirst (producer)
								

								 	
									Specifies to only retain the first n’th number of received Exchanges. This is used when testing with big data, to reduce memory consumption by not storing copies of every Exchange this mock endpoint receives. Important: When using this limitation, then the link getReceivedCounter() will still return the actual number of received Exchanges. For example if we have received 5000 Exchanges, and have configured to only retain the first 10 Exchanges, then the link getReceivedCounter() will still return 5000 but there is only the first 10 Exchanges in the link getExchanges() and link getReceivedExchanges() methods. When using this method, then some of the other expectation methods is not supported, for example the link expectedBodiesReceived(Object…​) sets a expectation on the first number of bodies received. You can configure both link setRetainFirst(int) and link setRetainLast(int) methods, to limit both the first and last received.
								

								 	
									-1
								

								 	
									int
								

								
	
									retainLast (producer)
								

								 	
									Specifies to only retain the last n’th number of received Exchanges. This is used when testing with big data, to reduce memory consumption by not storing copies of every Exchange this mock endpoint receives. Important: When using this limitation, then the link getReceivedCounter() will still return the actual number of received Exchanges. For example if we have received 5000 Exchanges, and have configured to only retain the last 20 Exchanges, then the link getReceivedCounter() will still return 5000 but there is only the last 20 Exchanges in the link getExchanges() and link getReceivedExchanges() methods. When using this method, then some of the other expectation methods is not supported, for example the link expectedBodiesReceived(Object…​) sets a expectation on the first number of bodies received. You can configure both link setRetainFirst(int) and link setRetainLast(int) methods, to limit both the first and last received.
								

								 	
									-1
								

								 	
									int
								

								
	
									sleepForEmptyTest (producer)
								

								 	
									Allows a sleep to be specified to wait to check that this endpoint really is empty when link expectedMessageCount(int) is called with zero
								

								 	
									0
								

								 	
									long
								

								
	
									copyOnExchange (producer)
								

								 	
									Sets whether to make a deep copy of the incoming Exchange when received at this mock endpoint. Is by default true.
								

								 	
									true
								

								 	
									boolean
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

					You can append query options to the URI in the following format, ?option=value&option=value&…​
				

Configuring DataSet

				Camel will lookup in the Registry for a bean implementing the DataSet interface. So you can register your own DataSet as:
			
<bean id="myDataSet" class="com.mycompany.MyDataSet">
 <property name="size" value="100"/>
</bean>

Example

				For example, to test that a set of messages are sent to a queue and then consumed from the queue without losing any messages:
			
// send the dataset to a queue
from("dataset:foo").to("activemq:SomeQueue");

// now lets test that the messages are consumed correctly
from("activemq:SomeQueue").to("dataset:foo");

				The above would look in the Registry to find the foo DataSet instance which is used to create the messages.
			

				Then you create a DataSet implementation, such as using the SimpleDataSet as described below, configuring things like how big the data set is and what the messages look like etc.
			

DataSetSupport (abstract class)

				The DataSetSupport abstract class is a nice starting point for new DataSets, and provides some useful features to derived classes.
			
Properties on DataSetSupport

	Property	Type	Default	Description
	
									defaultHeaders
								

								 	
									Map<String,Object>
								

								 	
									null
								

								 	
									Specifies the default message body. For SimpleDataSet it is a constant payload; though if you want to create custom payloads per message, create your own derivation of DataSetSupport.
								

								
	
									outputTransformer
								

								 	
									org.apache.camel.Processor
								

								 	
									null
								

								 	
	
									size
								

								 	
									long
								

								 	
									10
								

								 	
									Specifies how many messages to send/consume.
								

								
	
									reportCount
								

								 	
									long
								

								 	
									-1
								

								 	
									Specifies the number of messages to be received before reporting progress. Useful for showing progress of a large load test. If < 0, then size / 5, if is 0 then size, else set to reportCount value.
								

								

SimpleDataSet

				The SimpleDataSet extends DataSetSupport, and adds a default body.
			
Additional Properties on SimpleDataSet

	Property	Type	Default	Description
	
									defaultBody
								

								 	
									Object
								

								 	
									<hello>world!</hello>
								

								 	
									Specifies the default message body. By default, the SimpleDataSet produces the same constant payload for each exchange. If you want to customize the payload for each exchange, create a Camel Processor and configure the SimpleDataSet to use it by setting the outputTransformer property.
								

								

ListDataSet

				Available since Camel 2.17
			

				The List`DataSet` extends DataSetSupport, and adds a list of default bodies.
			
Additional Properties on ListDataSet

	Property	Type	Default	Description
	
									defaultBodies
								

								 	
									List<Object>
								

								 	
									empty LinkedList<Object>
								

								 	
									Specifies the default message body. By default, the ListDataSet selects a constant payload from the list of defaultBodies using the CamelDataSetIndex. If you want to customize the payload, create a Camel Processor and configure the ListDataSet to use it by setting the outputTransformer property.
								

								
	
									size
								

								 	
									long
								

								 	
									the size of the defaultBodies list
								

								 	
									Specifies how many messages to send/consume. This value can be different from the size of the defaultBodies list. If the value is less than the size of the defaultBodies list, some of the list elements will not be used. If the value is greater than the size of the defaultBodies list, the payload for the exchange will be selected using the modulus of the CamelDataSetIndex and the size of the defaultBodies list (i.e. CamelDataSetIndex % defaultBodies.size())
								

								

FileDataSet

				Available since Camel 2.17
			

				The FileDataSet extends ListDataSet, and adds support for loading the bodies from a file.
			
Additional Properties on FileDataSet

	Property	Type	Default	Description
	
									sourceFile
								

								 	
									File
								

								 	
									null
								

								 	
									Specifies the source file for payloads
								

								
	
									delimiter
								

								 	
									String
								

								 	
									\z
								

								 	
									Specifies the delimiter pattern used by a java.util.Scanner to split the file into multiple payloads.
								

								

Chapter 81. DigitalOcean Component

			Available as of Camel version 2.19
		

			The DigitalOcean component allows you to manage Droplets and resources within the DigitalOcean cloud with Camel by encapsulating [digitalocean-api-java](https://www.digitalocean.com/community/projects/api-client-in-java). All of the functionality that you are familiar with in the DigitalOcean control panel is also available through this Camel component.
		
Prerequisites

				You must have a valid DigitalOcean account and a valid OAuth token. You can generate an OAuth token by visiting the [Apps & API](https://cloud.digitalocean.com/settings/applications) section of the DigitalOcean control panel for your account.
			

URI format

				The DigitalOcean Component uses the following URI format:
			
digitalocean://endpoint?[options]

				where endpoint is a DigitalOcean resource type.
			

				Example : to list your droplets:
			
digitalocean://droplets?operation=list&oAuthToken=XXXXXX&page=1&perPage=10

				The DigitalOcean component only supports producer endpoints so you cannot use this component at the beginning of a route to listen to messages in a channel.
			

Options

				The DigitalOcean component has no options.
			

				The DigitalOcean endpoint is configured using URI syntax:
			
digitalocean:operation

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									operation
								

								 	
									The operation to perform to the given resource.
								

								 	 	
									DigitalOceanOperations
								

								

Query Parameters (10 parameters):

	Name	Description	Default	Type
	
									page (producer)
								

								 	
									Use for pagination. Force the page number.
								

								 	
									1
								

								 	
									Integer
								

								
	
									perPage (producer)
								

								 	
									Use for pagination. Set the number of item per request. The maximum number of results per page is 200.
								

								 	
									25
								

								 	
									Integer
								

								
	
									resource (producer)
								

								 	
									Required The DigitalOcean resource type on which perform the operation.
								

								 	 	
									DigitalOceanResources
								

								
	
									digitalOceanClient (advanced)
								

								 	
									To use a existing configured DigitalOceanClient as client
								

								 	 	
									DigitalOceanClient
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									httpProxyHost (proxy)
								

								 	
									Set a proxy host if needed
								

								 	 	
									String
								

								
	
									httpProxyPassword (proxy)
								

								 	
									Set a proxy password if needed
								

								 	 	
									String
								

								
	
									httpProxyPort (proxy)
								

								 	
									Set a proxy port if needed
								

								 	 	
									Integer
								

								
	
									httpProxyUser (proxy)
								

								 	
									Set a proxy host if needed
								

								 	 	
									String
								

								
	
									oAuthToken (security)
								

								 	
									DigitalOcean OAuth Token
								

								 	 	
									String
								

								

					You have to provide an operation value for each endpoint, with the operation URI option or the CamelDigitalOceanOperation message header.
				

					All operation values are defined in DigitalOceanOperations enumeration.
				

					All header names used by the component are defined in DigitalOceanHeaders enumeration.
				

Message body result

				All message bodies returned are using objects provided by the digitalocean-api-java library.
			

API Rate Limits

				DigitalOcean REST API encapsulated by camel-digitalocean component is subjected to API Rate Limiting. You can find the per method limits in the [API Rate Limits documentation](https://developers.digitalocean.com/documentation/v2/#rate-limit).
			

Account endpoint

				| operation | Description | Headers | Result | | ------ | ---- | ------- | ----------- | | get | get account info | | com.myjeeva.digitalocean.pojo.Account |
			

BlockStorages endpoint

				| operation | Description | Headers | Result | | ------ | ---- | ------- | ----------- | | list | list all of the Block Storage volumes available on your account | | List<com.myjeeva.digitalocean.pojo.Volume> | | get | show information about a Block Storage volume| CamelDigitalOceanId Integer| com.myjeeva.digitalocean.pojo.Volume | | get | show information about a Block Storage volume by name| CamelDigitalOceanName String
`CamelDigitalOceanRegion` String| com.myjeeva.digitalocean.pojo.Volume | | listSnapshots | retrieve the snapshots that have been created from a volume | CamelDigitalOceanId Integer| List<com.myjeeva.digitalocean.pojo.Snapshot> | | create | create a new volume | CamelDigitalOceanVolumeSizeGigabytes Integer
`CamelDigitalOceanName` String
`CamelDigitalOceanDescription`* String
`CamelDigitalOceanRegion`* String| com.myjeeva.digitalocean.pojo.Volume | | delete | delete a Block Storage volume, destroying all data and removing it from your account| CamelDigitalOceanId Integer| com.myjeeva.digitalocean.pojo.Delete| | delete | delete a Block Storage volume by name| CamelDigitalOceanName String
`CamelDigitalOceanRegion` String| com.myjeeva.digitalocean.pojo.Delete | attach | attach a Block Storage volume to a Droplet| CamelDigitalOceanId Integer
`CamelDigitalOceanDropletId` Integer
`CamelDigitalOceanDropletRegion` String| com.myjeeva.digitalocean.pojo.Action | attach | attach a Block Storage volume to a Droplet by name| CamelDigitalOceanName String
`CamelDigitalOceanDropletId` Integer
`CamelDigitalOceanDropletRegion` String| com.myjeeva.digitalocean.pojo.Action | detach | detach a Block Storage volume from a Droplet| CamelDigitalOceanId Integer
`CamelDigitalOceanDropletId` Integer
`CamelDigitalOceanDropletRegion` String| com.myjeeva.digitalocean.pojo.Action | attach | detach a Block Storage volume from a Droplet by name| CamelDigitalOceanName String
`CamelDigitalOceanDropletId` Integer
`CamelDigitalOceanDropletRegion` String| com.myjeeva.digitalocean.pojo.Action | resize | resize a Block Storage volume | CamelDigitalOceanVolumeSizeGigabytes Integer
`CamelDigitalOceanRegion` String| com.myjeeva.digitalocean.pojo.Action | | listActions | retrieve all actions that have been executed on a volume | CamelDigitalOceanId Integer| List<com.myjeeva.digitalocean.pojo.Action> |
			

Droplets endpoint

				| operation | Description | Headers | Result | | ------ | ---- | ------- | ----------- | | list | list all Droplets in your account | | List<com.myjeeva.digitalocean.pojo.Droplet> | | get | show an individual droplet | CamelDigitalOceanId Integer| com.myjeeva.digitalocean.pojo.Droplet | | create | create a new Droplet | CamelDigitalOceanName String
`CamelDigitalOceanDropletImage` String
`CamelDigitalOceanRegion` String
`CamelDigitalOceanDropletSize` String
`CamelDigitalOceanDropletSSHKeys`* List\<String\>
`CamelDigitalOceanDropletEnableBackups`* Boolean
`CamelDigitalOceanDropletEnableIpv6`* Boolean
`CamelDigitalOceanDropletEnablePrivateNetworking`* Boolean
`CamelDigitalOceanDropletUserData`* String
`CamelDigitalOceanDropletVolumes`* List\<String\>
`CamelDigitalOceanDropletTags` List\<String\>| com.myjeeva.digitalocean.pojo.Droplet | | create | create multiple Droplets | CamelDigitalOceanNames List\<String\>
`CamelDigitalOceanDropletImage` String
`CamelDigitalOceanRegion` String
`CamelDigitalOceanDropletSize` String
`CamelDigitalOceanDropletSSHKeys`* List\<String\>
`CamelDigitalOceanDropletEnableBackups`* Boolean
`CamelDigitalOceanDropletEnableIpv6`* Boolean
`CamelDigitalOceanDropletEnablePrivateNetworking`* Boolean
`CamelDigitalOceanDropletUserData`* String
`CamelDigitalOceanDropletVolumes`* List\<String\>
`CamelDigitalOceanDropletTags` List\<String\>| com.myjeeva.digitalocean.pojo.Droplet | | delete | delete a Droplet, | CamelDigitalOceanId Integer| com.myjeeva.digitalocean.pojo.Delete | | enableBackups | enable backups on an existing Droplet | CamelDigitalOceanId Integer| com.myjeeva.digitalocean.pojo.Action | | disableBackups | disable backups on an existing Droplet | CamelDigitalOceanId Integer| com.myjeeva.digitalocean.pojo.Action | | enableIpv6 | enable IPv6 networking on an existing Droplet | CamelDigitalOceanId Integer| com.myjeeva.digitalocean.pojo.Action | | enablePrivateNetworking | enable private networking on an existing Droplet | CamelDigitalOceanId Integer| com.myjeeva.digitalocean.pojo.Action | | reboot | reboot a Droplet | CamelDigitalOceanId Integer| com.myjeeva.digitalocean.pojo.Action | | powerCycle | power cycle a Droplet | CamelDigitalOceanId Integer| com.myjeeva.digitalocean.pojo.Action | | shutdown | shutdown a Droplet | CamelDigitalOceanId Integer| com.myjeeva.digitalocean.pojo.Action | | powerOff | power off a Droplet | CamelDigitalOceanId Integer| com.myjeeva.digitalocean.pojo.Action | | powerOn | power on a Droplet | CamelDigitalOceanId Integer| com.myjeeva.digitalocean.pojo.Action | | restore | shutdown a Droplet | CamelDigitalOceanId Integer
`CamelDigitalOceanImageId` Integer| com.myjeeva.digitalocean.pojo.Action | | passwordReset | reset the password for a Droplet | CamelDigitalOceanId Integer| com.myjeeva.digitalocean.pojo.Action | | resize | resize a Droplet | CamelDigitalOceanId Integer
`CamelDigitalOceanDropletSize` String| com.myjeeva.digitalocean.pojo.Action | | rebuild | rebuild a Droplet | CamelDigitalOceanId Integer
`CamelDigitalOceanImageId` Integer| com.myjeeva.digitalocean.pojo.Action | | rename | rename a Droplet | CamelDigitalOceanId Integer
`CamelDigitalOceanName` String| com.myjeeva.digitalocean.pojo.Action | | changeKernel | change the kernel of a Droplet | CamelDigitalOceanId Integer
`CamelDigitalOceanKernelId` Integer| com.myjeeva.digitalocean.pojo.Action | | takeSnapshot | snapshot a Droplet | CamelDigitalOceanId Integer
`CamelDigitalOceanName`* String| com.myjeeva.digitalocean.pojo.Action | | tag | tag a Droplet | CamelDigitalOceanId Integer
`CamelDigitalOceanName` String| com.myjeeva.digitalocean.pojo.Response | | untag | untag a Droplet | CamelDigitalOceanId Integer
`CamelDigitalOceanName` String| com.myjeeva.digitalocean.pojo.Response | | listKernels | retrieve a list of all kernels available to a Droplet | CamelDigitalOceanId Integer | List<com.myjeeva.digitalocean.pojo.Kernel> | | listSnapshots | retrieve the snapshots that have been created from a Droplet | CamelDigitalOceanId Integer | List<com.myjeeva.digitalocean.pojo.Snapshot> | | listBackups | retrieve any backups associated with a Droplet | CamelDigitalOceanId Integer | List<com.myjeeva.digitalocean.pojo.Backup> | | listActions | retrieve all actions that have been executed on a Droplet | CamelDigitalOceanId Integer | List<com.myjeeva.digitalocean.pojo.Action> | | listNeighbors | retrieve a list of droplets that are running on the same physical server | CamelDigitalOceanId Integer | List<com.myjeeva.digitalocean.pojo.Droplet> | | listAllNeighbors | retrieve a list of any droplets that are running on the same physical hardware | | List<com.myjeeva.digitalocean.pojo.Droplet> |
			

Images endpoint

				| operation | Description | Headers | Result | | ------ | ---- | ------- | ----------- | | list | list images available on your account | CamelDigitalOceanType* DigitalOceanImageTypes | List<com.myjeeva.digitalocean.pojo.Image> | | ownList | retrieve only the private images of a user | | List<com.myjeeva.digitalocean.pojo.Image> | | listActions | retrieve all actions that have been executed on a Image | CamelDigitalOceanId Integer | List<com.myjeeva.digitalocean.pojo.Action> | | get | retrieve information about an image (public or private) by id| CamelDigitalOceanId Integer| com.myjeeva.digitalocean.pojo.Image | | get | retrieve information about an public image by slug| CamelDigitalOceanDropletImage String| com.myjeeva.digitalocean.pojo.Image | | update | update an image| CamelDigitalOceanId Integer
`CamelDigitalOceanName` String| com.myjeeva.digitalocean.pojo.Image | | delete | delete an image| CamelDigitalOceanId Integer | com.myjeeva.digitalocean.pojo.Delete | | transfer | transfer an image to another region| CamelDigitalOceanId Integer
`CamelDigitalOceanRegion` String| com.myjeeva.digitalocean.pojo.Action | | convert | convert an image, for example, a backup to a snapshot| CamelDigitalOceanId Integer | com.myjeeva.digitalocean.pojo.Action |
			

Snapshots endpoint

				| operation | Description | Headers | Result | | ------ | ---- | ------- | ----------- | | list | list all of the snapshots available on your account | CamelDigitalOceanType* DigitalOceanSnapshotTypes | List<com.myjeeva.digitalocean.pojo.Snapshot> | | get | retrieve information about a snapshot| CamelDigitalOceanId Integer| com.myjeeva.digitalocean.pojo.Snapshot | | delete | delete an snapshot| CamelDigitalOceanId Integer | com.myjeeva.digitalocean.pojo.Delete |
			

Keys endpoint

				| operation | Description | Headers | Result | | ------ | ---- | ------- | ----------- | | list | list all of the keys in your account | | List<com.myjeeva.digitalocean.pojo.Key> | | get | retrieve information about a key by id| CamelDigitalOceanId Integer| com.myjeeva.digitalocean.pojo.Key | | get | retrieve information about a key by fingerprint| CamelDigitalOceanKeyFingerprint String| com.myjeeva.digitalocean.pojo.Key | | update | update a key by id| CamelDigitalOceanId Integer
`CamelDigitalOceanName` String| com.myjeeva.digitalocean.pojo.Key | | update | update a key by fingerprint| CamelDigitalOceanKeyFingerprint String
`CamelDigitalOceanName` String| com.myjeeva.digitalocean.pojo.Key | | delete | delete a key by id| CamelDigitalOceanId Integer | com.myjeeva.digitalocean.pojo.Delete | | delete | delete a key by fingerprint| CamelDigitalOceanKeyFingerprint String | com.myjeeva.digitalocean.pojo.Delete |
			

Regions endpoint

				| operation | Description | Headers | Result | | ------ | ---- | ------- | ----------- | | list | list all of the regions that are available | | List<com.myjeeva.digitalocean.pojo.Region> |
			

Sizes endpoint

				| operation | Description | Headers | Result | | ------ | ---- | ------- | ----------- | | list | list all of the sizes that are available | | List<com.myjeeva.digitalocean.pojo.Size> |
			

Floating IPs endpoint

				| operation | Description | Headers | Result | | ------ | ---- | ------- | ----------- | | list | list all of the Floating IPs available on your account | | List<com.myjeeva.digitalocean.pojo.FloatingIP> | | create | create a new Floating IP assigned to a Droplet | CamelDigitalOceanId Integer | List<com.myjeeva.digitalocean.pojo.FloatingIP> | | create | create a new Floating IP assigned to a Region | CamelDigitalOceanRegion String | List<com.myjeeva.digitalocean.pojo.FloatingIP> | | get | retrieve information about a Floating IP| CamelDigitalOceanFloatingIPAddress String| com.myjeeva.digitalocean.pojo.Key | | delete | delete a Floating IP and remove it from your account| CamelDigitalOceanFloatingIPAddress String| com.myjeeva.digitalocean.pojo.Delete | | assign | assign a Floating IP to a Droplet| CamelDigitalOceanFloatingIPAddress String
`CamelDigitalOceanDropletId` Integer| com.myjeeva.digitalocean.pojo.Action | | unassign | unassign a Floating IP | CamelDigitalOceanFloatingIPAddress String | com.myjeeva.digitalocean.pojo.Action | | listActions | retrieve all actions that have been executed on a Floating IP | CamelDigitalOceanFloatingIPAddress String | List<com.myjeeva.digitalocean.pojo.Action> |
			

Tags endpoint

				| operation | Description | Headers | Result | | ------ | ---- | ------- | ----------- | | list | list all of your tags | | List<com.myjeeva.digitalocean.pojo.Tag> | | create | create a Tag | CamelDigitalOceanName String | com.myjeeva.digitalocean.pojo.Tag | | get | retrieve an individual tag | CamelDigitalOceanName String | com.myjeeva.digitalocean.pojo.Tag | | delete | delete a tag | CamelDigitalOceanName String | com.myjeeva.digitalocean.pojo.Delete | | update | update a tag | CamelDigitalOceanName String
`CamelDigitalOceanNewName` String| com.myjeeva.digitalocean.pojo.Tag |
			

Examples

				Get your account info
			
from("direct:getAccountInfo")
 .setHeader(DigitalOceanConstants.OPERATION, constant(DigitalOceanOperations.get))
 .to("digitalocean:account?oAuthToken=XXXXXX")

				Create a droplet
			
from("direct:createDroplet")
 .setHeader(DigitalOceanConstants.OPERATION, constant("create"))
 .setHeader(DigitalOceanHeaders.NAME, constant("myDroplet"))
 .setHeader(DigitalOceanHeaders.REGION, constant("fra1"))
 .setHeader(DigitalOceanHeaders.DROPLET_IMAGE, constant("ubuntu-14-04-x64"))
 .setHeader(DigitalOceanHeaders.DROPLET_SIZE, constant("512mb"))
 .to("digitalocean:droplet?oAuthToken=XXXXXX")

				List all your droplets
			
from("direct:getDroplets")
 .setHeader(DigitalOceanConstants.OPERATION, constant("list"))
 .to("digitalocean:droplets?oAuthToken=XXXXXX")

				Retrieve information for the Droplet (dropletId = 34772987)
			
from("direct:getDroplet")
 .setHeader(DigitalOceanConstants.OPERATION, constant("get"))
 .setHeader(DigitalOceanConstants.ID, 34772987)
 .to("digitalocean:droplet?oAuthToken=XXXXXX")

				Shutdown information for the Droplet (dropletId = 34772987)
			
from("direct:shutdown")
 .setHeader(DigitalOceanConstants.ID, 34772987)
 .to("digitalocean:droplet?operation=shutdown&oAuthToken=XXXXXX")

Chapter 82. Direct Component

			Available as of Camel version 1.0
		

			The direct: component provides direct, synchronous invocation of any consumers when a producer sends a message exchange.
 This endpoint can be used to connect existing routes in the same camel context.
		
Tip

			Asynchronous The SEDA component provides asynchronous invocation of any consumers when a producer sends a message exchange.
		

Tip

			Connection to other camel contexts The VM component provides connections between Camel contexts as long they run in the same JVM.
		

URI format

direct:someName[?options]

				Where someName can be any string to uniquely identify the endpoint
			

Options

				The Direct component supports 3 options which are listed below.
			
	Name	Description	Default	Type
	
								block (producer)
							

							 	
								If sending a message to a direct endpoint which has no active consumer, then we can tell the producer to block and wait for the consumer to become active.
							

							 	
								true
							

							 	
								boolean
							

							
	
								timeout (producer)
							

							 	
								The timeout value to use if block is enabled.
							

							 	
								30000
							

							 	
								long
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The Direct endpoint is configured using URI syntax:
			
direct:name

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									name
								

								 	
									Required Name of direct endpoint
								

								 	 	
									String
								

								

Query Parameters (7 parameters):

	Name	Description	Default	Type
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN/ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN/ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the default exchange pattern when creating an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									block (producer)
								

								 	
									If sending a message to a direct endpoint which has no active consumer, then we can tell the producer to block and wait for the consumer to become active.
								

								 	
									true
								

								 	
									boolean
								

								
	
									failIfNoConsumers (producer)
								

								 	
									Whether the producer should fail by throwing an exception, when sending to a DIRECT endpoint with no active consumers.
								

								 	
									false
								

								 	
									boolean
								

								
	
									timeout (producer)
								

								 	
									The timeout value to use if block is enabled.
								

								 	
									30000
								

								 	
									long
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

Samples

				In the route below we use the direct component to link the two routes together:
			
from("activemq:queue:order.in")
 .to("bean:orderServer?method=validate")
 .to("direct:processOrder");

from("direct:processOrder")
 .to("bean:orderService?method=process")
 .to("activemq:queue:order.out");

				And the sample using spring DSL:
			
<route>
 <from uri="activemq:queue:order.in"/>
 <to uri="bean:orderService?method=validate"/>
 <to uri="direct:processOrder"/>
</route>

<route>
 <from uri="direct:processOrder"/>
 <to uri="bean:orderService?method=process"/>
 <to uri="activemq:queue:order.out"/>
</route>

				See also samples from the SEDA component, how they can be used together.
			

See Also

	
						SEDA
					
	
						VM
					

Chapter 83. Direct VM Component

			Available as of Camel version 2.10
		

			The direct-vm: component provides direct, synchronous invocation of any consumers in the JVM when a producer sends a message exchange.
 This endpoint can be used to connect existing routes in the same camel context, as well from other camel contexts in the same JVM.
		

			This component differs from the Direct component in that Direct-VM supports communication across CamelContext instances - so you can use this mechanism to communicate across web applications (provided that camel-core.jar is on the system/boot classpath).
		

			At runtime you can swap in new consumers, by stopping the existing consumer(s) and start new consumers.
 But at any given time there can be at most only one active consumer for a given endpoint.
		

			This component allows also to connect routes deployed in different OSGI Bundles as you can see here after. Even if they are running in different bundles, the camel routes will use
 the same thread. That autorises to develop applications using Transactions - Tx.
		

			[image: image]

		
URI format

direct-vm:someName

				Where someName can be any string to uniquely identify the endpoint
			

Options

				The Direct VM component supports 5 options which are listed below.
			
	Name	Description	Default	Type
	
								block (producer)
							

							 	
								If sending a message to a direct endpoint which has no active consumer, then we can tell the producer to block and wait for the consumer to become active.
							

							 	
								true
							

							 	
								boolean
							

							
	
								timeout (producer)
							

							 	
								The timeout value to use if block is enabled.
							

							 	
								30000
							

							 	
								long
							

							
	
								headerFilterStrategy (advanced)
							

							 	
								Sets a HeaderFilterStrategy that will only be applied on producer endpoints (on both directions: request and response). Default value: none.
							

							 	 	
								HeaderFilterStrategy
							

							
	
								propagateProperties (advanced)
							

							 	
								Whether to propagate or not properties from the producer side to the consumer side, and vice versa. Default value: true.
							

							 	
								true
							

							 	
								boolean
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The Direct VM endpoint is configured using URI syntax:
			
direct-vm:name

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									name
								

								 	
									Required Name of direct-vm endpoint
								

								 	 	
									String
								

								

Query Parameters (9 parameters):

	Name	Description	Default	Type
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN/ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN/ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the default exchange pattern when creating an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									block (producer)
								

								 	
									If sending a message to a direct endpoint which has no active consumer, then we can tell the producer to block and wait for the consumer to become active.
								

								 	
									true
								

								 	
									boolean
								

								
	
									failIfNoConsumers (producer)
								

								 	
									Whether the producer should fail by throwing an exception, when sending to a Direct-VM endpoint with no active consumers.
								

								 	
									false
								

								 	
									boolean
								

								
	
									timeout (producer)
								

								 	
									The timeout value to use if block is enabled.
								

								 	
									30000
								

								 	
									long
								

								
	
									headerFilterStrategy (producer)
								

								 	
									Sets a HeaderFilterStrategy that will only be applied on producer endpoints (on both directions: request and response). Default value: none.
								

								 	 	
									HeaderFilterStrategy
								

								
	
									propagateProperties (advanced)
								

								 	
									Whether to propagate or not properties from the producer side to the consumer side, and vice versa. Default value: true.
								

								 	
									true
								

								 	
									boolean
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

Samples

				In the route below we use the direct component to link the two routes together:
			
from("activemq:queue:order.in")
 .to("bean:orderServer?method=validate")
 .to("direct-vm:processOrder");

				And now in another CamelContext, such as another OSGi bundle
			
from("direct-vm:processOrder")
 .to("bean:orderService?method=process")
 .to("activemq:queue:order.out");

				And the sample using spring DSL:
			
<route>
 <from uri="activemq:queue:order.in"/>
 <to uri="bean:orderService?method=validate"/>
 <to uri="direct-vm:processOrder"/>
</route>

<route>
 <from uri="direct-vm:processOrder"/>
 <to uri="bean:orderService?method=process"/>
 <to uri="activemq:queue:order.out"/>
</route>

See Also

	
						Direct
					
	
						SEDA
					
	
						VM
					

Chapter 84. Disruptor Component

			Available as of Camel version 2.12
		

			The disruptor: component provides asynchronous SEDA behavior much as the standard SEDA Component, but utilizes a Disruptor instead of a BlockingQueue utilized by the standard SEDA. Alternatively, a
		

			disruptor-vm: endpoint is supported by this component, providing an alternative to the standard VM. As with the SEDA component, buffers of the disruptor: endpoints are only visible within a single CamelContext and no support is provided for persistence or recovery. The buffers of the disruptor-vm: endpoints also provides support for communication across CamelContexts instances so you can use this mechanism to communicate across web applications (provided that camel-disruptor.jar is on the system/boot classpath).
		

			The main advantage of choosing to use the Disruptor Component over the SEDA or the VM Component is performance in use cases where there is high contention between producer(s) and/or multicasted or concurrent Consumers. In those cases, significant increases of throughput and reduction of latency has been observed. Performance in scenarios without contention is comparable to the SEDA and VM Components.
		

			The Disruptor is implemented with the intention of mimicing the behaviour and options of the SEDA and VM Components as much as possible. The main differences with the them are the following:
		
	
					The buffer used is always bounded in size (default 1024 exchanges).
				
	
					As a the buffer is always bouded, the default behaviour for the Disruptor is to block while the buffer is full instead of throwing an exception. This default behaviour may be configured on the component (see options).
				
	
					The Disruptor enpoints don’t implement the BrowsableEndpoint interface. As such, the exchanges currently in the Disruptor can’t be retrieved, only the amount of exchanges.
				
	
					The Disruptor requires its consumers (multicasted or otherwise) to be statically configured. Adding or removing consumers on the fly requires complete flushing of all pending exchanges in the Disruptor.
				
	
					As a result of the reconfiguration: Data sent over a Disruptor is directly processed and 'gone' if there is at least one consumer, late joiners only get new exchanges published after they’ve joined.
				
	
					The pollTimeout option is not supported by the Disruptor Component.
				
	
					When a producer blocks on a full Disruptor, it does not respond to thread interrupts.
				

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-disruptor</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>
URI format

 disruptor:someName[?options]

				or
			
 disruptor-vm:someName[?options]

				Where someName can be any string that uniquely identifies the endpoint within the current CamelContext (or across contexts in case of
 disruptor-vm:).
 You can append query options to the URI in the following format:
			
 ?option=value&option=value&…

Options

				All the following options are valid for both the disruptor: and disruptor-vm: components.
			

				The Disruptor component supports 8 options which are listed below.
			
	Name	Description	Default	Type
	
								defaultConcurrent Consumers (consumer)
							

							 	
								To configure the default number of concurrent consumers
							

							 	
								1
							

							 	
								int
							

							
	
								defaultMultiple Consumers (consumer)
							

							 	
								To configure the default value for multiple consumers
							

							 	
								false
							

							 	
								boolean
							

							
	
								defaultProducerType (producer)
							

							 	
								To configure the default value for DisruptorProducerType The default value is Multi.
							

							 	
								Multi
							

							 	
								DisruptorProducerType
							

							
	
								defaultWaitStrategy (consumer)
							

							 	
								To configure the default value for DisruptorWaitStrategy The default value is Blocking.
							

							 	
								Blocking
							

							 	
								DisruptorWaitStrategy
							

							
	
								defaultBlockWhenFull (producer)
							

							 	
								To configure the default value for block when full The default value is true.
							

							 	
								true
							

							 	
								boolean
							

							
	
								queueSize (common)
							

							 	
								Deprecated To configure the ring buffer size
							

							 	 	
								int
							

							
	
								bufferSize (common)
							

							 	
								To configure the ring buffer size
							

							 	
								1024
							

							 	
								int
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The Disruptor endpoint is configured using URI syntax:
			
disruptor:name

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									name
								

								 	
									Required Name of queue
								

								 	 	
									String
								

								

Query Parameters (12 parameters):

	Name	Description	Default	Type
	
									size (common)
								

								 	
									The maximum capacity of the Disruptors ringbuffer Will be effectively increased to the nearest power of two. Notice: Mind if you use this option, then its the first endpoint being created with the queue name, that determines the size. To make sure all endpoints use same size, then configure the size option on all of them, or the first endpoint being created.
								

								 	
									1024
								

								 	
									int
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									concurrentConsumers (consumer)
								

								 	
									Number of concurrent threads processing exchanges.
								

								 	
									1
								

								 	
									int
								

								
	
									multipleConsumers (consumer)
								

								 	
									Specifies whether multiple consumers are allowed. If enabled, you can use Disruptor for Publish-Subscribe messaging. That is, you can send a message to the queue and have each consumer receive a copy of the message. When enabled, this option should be specified on every consumer endpoint.
								

								 	
									false
								

								 	
									boolean
								

								
	
									waitStrategy (consumer)
								

								 	
									Defines the strategy used by consumer threads to wait on new exchanges to be published. The options allowed are:Blocking, Sleeping, BusySpin and Yielding.
								

								 	
									Blocking
								

								 	
									DisruptorWaitStrategy
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									blockWhenFull (producer)
								

								 	
									Whether a thread that sends messages to a full Disruptor will block until the ringbuffer’s capacity is no longer exhausted. By default, the calling thread will block and wait until the message can be accepted. By disabling this option, an exception will be thrown stating that the queue is full.
								

								 	
									false
								

								 	
									boolean
								

								
	
									producerType (producer)
								

								 	
									Defines the producers allowed on the Disruptor. The options allowed are: Multi to allow multiple producers and Single to enable certain optimizations only allowed when one concurrent producer (on one thread or otherwise synchronized) is active.
								

								 	
									Multi
								

								 	
									DisruptorProducerType
								

								
	
									timeout (producer)
								

								 	
									Timeout (in milliseconds) before a producer will stop waiting for an asynchronous task to complete. You can disable timeout by using 0 or a negative value.
								

								 	
									30000
								

								 	
									long
								

								
	
									waitForTaskToComplete (producer)
								

								 	
									Option to specify whether the caller should wait for the async task to complete or not before continuing. The following three options are supported: Always, Never or IfReplyExpected. The first two values are self-explanatory. The last value, IfReplyExpected, will only wait if the message is Request Reply based.
								

								 	
									IfReplyExpected
								

								 	
									WaitForTaskToComplete
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

Wait strategies

				The wait strategy effects the type of waiting performed by the consumer threads that are currently waiting for the next exchange to be published. The following strategies can be chosen:
			
	Name	Description	Advice
	
								Blocking
							

							 	
								Blocking strategy that uses a lock and condition variable for Consumers waiting on a barrier.
							

							 	
								This strategy can be used when throughput and low-latency are not as important as CPU resource.
							

							
	
								Sleeping
							

							 	
								Sleeping strategy that initially spins, then uses a Thread.yield(), and eventually for the minimum number of nanos the OS and JVM will allow while the Consumers are waiting on a barrier.
							

							 	
								This strategy is a good compromise between performance and CPU resource. Latency spikes can occur after quiet periods.
							

							
	
								BusySpin
							

							 	
								Busy Spin strategy that uses a busy spin loop for Consumers waiting on a barrier.
							

							 	
								This strategy will use CPU resource to avoid syscalls which can introduce latency jitter. It is best used when threads can be bound to specific CPU cores.
							

							
	
								Yielding
							

							 	
								Yielding strategy that uses a Thread.yield() for Consumers waiting on a barrier after an initially spinning.
							

							 	
								This strategy is a good compromise between performance and CPU resource without incurring significant latency spikes.
							

							

Use of Request Reply

				The Disruptor component supports using Request Reply, where the caller will wait for the Async route to complete. For instance:
			
from("mina:tcp://0.0.0.0:9876?textline=true&sync=true").to("disruptor:input");
from("disruptor:input").to("bean:processInput").to("bean:createResponse");

				In the route above, we have a TCP listener on port 9876 that accepts incoming requests. The request is routed to the disruptor:input buffer. As it is a Request Reply message, we wait for the response. When the consumer on the disruptor:input buffer is complete, it copies the response to the original message response.
			

Concurrent consumers

				By default, the Disruptor endpoint uses a single consumer thread, but you can configure it to use concurrent consumer threads. So instead of thread pools you can use:
			
from("disruptor:stageName?concurrentConsumers=5").process(...)

				As for the difference between the two, note a thread pool can increase/shrink dynamically at runtime depending on load, whereas the number of concurrent consumers is always fixed and supported by the Disruptor internally so performance will be higher.
			

Thread pools

				Be aware that adding a thread pool to a Disruptor endpoint by doing something like:
			
from("disruptor:stageName").thread(5).process(...)

				Can wind up with adding a normal BlockingQueue to be used in conjunction with the Disruptor, effectively negating part of the performance gains achieved by using the Disruptor. Instead, it is advices to directly configure number of threads that process messages on a Disruptor endpoint using the concurrentConsumers option.
			

Sample

				In the route below we use the Disruptor to send the request to this async queue to be able to send a fire-and-forget message for further processing in another thread, and return a constant reply in this thread to the original caller.
			
public void configure() throws Exception {
 from("direct:start")
 // send it to the disruptor that is async
 .to("disruptor:next")
 // return a constant response
 .transform(constant("OK"));

 from("disruptor:next").to("mock:result");
}

				Here we send a Hello World message and expects the reply to be OK.
			
Object out = template.requestBody("direct:start", "Hello World");
assertEquals("OK", out);

				The "Hello World" message will be consumed from the Disruptor from another thread for further processing. Since this is from a unit test, it will be sent to a mock endpoint where we can do assertions in the unit test.
			

Using multipleConsumers

				In this example we have defined two consumers and registered them as spring beans.
			
<!-- define the consumers as spring beans -->
<bean id="consumer1" class="org.apache.camel.spring.example.FooEventConsumer"/>

<bean id="consumer2" class="org.apache.camel.spring.example.AnotherFooEventConsumer"/>

<camelContext xmlns="http://camel.apache.org/schema/spring">
 <!-- define a shared endpoint which the consumers can refer to instead of using url -->
 <endpoint id="foo" uri="disruptor:foo?multipleConsumers=true"/>
</camelContext>

				Since we have specified multipleConsumers=true on the Disruptor foo endpoint we can have those two or more consumers receive their own copy of the message as a kind of pub-sub style messaging. As the beans are part of an unit test they simply send the message to a mock endpoint, but notice how we can use @Consume to consume from the Disruptor.
			
public class FooEventConsumer {

 @EndpointInject(uri = "mock:result")
 private ProducerTemplate destination;

 @Consume(ref = "foo")
 public void doSomething(String body) {
 destination.sendBody("foo" + body);
 }

}

Extracting disruptor information

				If needed, information such as buffer size, etc. can be obtained without using JMX in this fashion:
			
DisruptorEndpoint disruptor = context.getEndpoint("disruptor:xxxx");
int size = disruptor.getBufferSize();

Chapter 85. DNS Component

			Available as of Camel version 2.7
		

			This is an additional component for Camel to run DNS queries, using DNSJava. The component is a thin layer on top of DNSJava.
 The component offers the following operations:
		
	
					ip, to resolve a domain by its ip
				
	
					lookup, to lookup information about the domain
				
	
					dig, to run DNS queries
				

			INFO:*Requires SUN JVM* The DNSJava library requires running on the SUN JVM.
 If you use Apache ServiceMix or Apache Karaf, you’ll need to adjust the etc/jre.properties file, to add sun.net.spi.nameservice to the list of Java platform packages exported. The server will need restarting before this change takes effect.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-dns</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>
URI format

				The URI scheme for a DNS component is as follows
			
dns://operation[?options]

				This component only supports producers.
			

Options

				The DNS component has no options.
			

				The DNS endpoint is configured using URI syntax:
			
dns:dnsType

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									dnsType
								

								 	
									Required The type of the lookup.
								

								 	 	
									DnsType
								

								

Query Parameters (1 parameters):

	Name	Description	Default	Type
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

Headers

	Header	Type	Operations	Description
	
								dns.domain
							

							 	
								String
							

							 	
								ip
							

							 	
								The domain name. Mandatory.
							

							
	
								dns.name
							

							 	
								String
							

							 	
								lookup
							

							 	
								The name to lookup. Mandatory.
							

							
	
								dns.type
							

							 	 	
								lookup, dig
							

							 	
								The type of the lookup. Should match the values of org.xbill.dns.Type. Optional.
							

							
	
								dns.class
							

							 	 	
								lookup, dig
							

							 	
								The DNS class of the lookup. Should match the values of org.xbill.dns.DClass. Optional.
							

							
	
								dns.query
							

							 	
								String
							

							 	
								dig
							

							 	
								The query itself. Mandatory.
							

							
	
								dns.server
							

							 	
								String
							

							 	
								dig
							

							 	
								The server in particular for the query. If none is given, the default one specified by the OS will be used. Optional.
							

							

Examples

IP lookup

 <route id="IPCheck">
 <from uri="direct:start"/>
 <to uri="dns:ip"/>
 </route>

					This looks up a domain’s IP. For example, www.example.com resolves to 192.0.32.10.
 The IP address to lookup must be provided in the header with key "dns.domain".
				

DNS lookup

 <route id="IPCheck">
 <from uri="direct:start"/>
 <to uri="dns:lookup"/>
 </route>

					This returns a set of DNS records associated with a domain.
 The name to lookup must be provided in the header with key "dns.name".
				

DNS Dig

					Dig is a Unix command-line utility to run DNS queries.
				
 <route id="IPCheck">
 <from uri="direct:start"/>
 <to uri="dns:dig"/>
 </route>

					The query must be provided in the header with key "dns.query".
				

Dns Activation Policy

				DnsActivationPolicy can be used to dynamically start and stop routes based on dns state.
			

				If you have instances of the same component running in different regions you can configure a route in each region to activate only if dns is pointing to its region.
			

				i.e. You may have an instance in NYC and an instance in SFO. You would configure a service CNAME service.example.com to point to nyc-service.example.com to bring NYC instance up and SFO instance down. When you change the CNAME service.example.com to point to sfo-service.example.com — nyc instance would stop its routes and sfo will bring its routes up. This allows you to switch regions without restarting actual components.
			
	<bean id="dnsActivationPolicy" class="org.apache.camel.component.dns.policy.DnsActivationPolicy">
		<property name="hostname" value="service.example.com" />
		<property name="resolvesTo" value="nyc-service.example.com" />
		<property name="ttl" value="60000" />
	</bean>

	<route id="routeId" autoStartup="false" routePolicyRef="dnsActivationPolicy">
	</route>

Chapter 86. Docker Component

			Available as of Camel version 2.15
		

			Camel component for communicating with Docker.
		

			The Docker Camel component leverages the docker-java via the Docker Remote API.
		
URI format

docker://[operation]?[options]

				Where operation is the specific action to perform on Docker.
			

General Options

				The Docker component supports 2 options which are listed below.
			
	Name	Description	Default	Type
	
								configuration (advanced)
							

							 	
								To use the shared docker configuration
							

							 	 	
								DockerConfiguration
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The Docker endpoint is configured using URI syntax:
			
docker:operation

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									operation
								

								 	
									Required Which operation to use
								

								 	 	
									DockerOperation
								

								

Query Parameters (20 parameters):

	Name	Description	Default	Type
	
									email (common)
								

								 	
									Email address associated with the user
								

								 	 	
									String
								

								
	
									host (common)
								

								 	
									Required Docker host
								

								 	
									localhost
								

								 	
									String
								

								
	
									port (common)
								

								 	
									Required Docker port
								

								 	
									2375
								

								 	
									Integer
								

								
	
									requestTimeout (common)
								

								 	
									Request timeout for response (in seconds)
								

								 	 	
									Integer
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									cmdExecFactory (advanced)
								

								 	
									The fully qualified class name of the DockerCmdExecFactory implementation to use
								

								 	
									com.github.dockerjava.netty.NettyDockerCmdExecFactory
								

								 	
									String
								

								
	
									followRedirectFilter (advanced)
								

								 	
									Whether to follow redirect filter
								

								 	
									false
								

								 	
									boolean
								

								
	
									loggingFilter (advanced)
								

								 	
									Whether to use logging filter
								

								 	
									false
								

								 	
									boolean
								

								
	
									maxPerRouteConnections (advanced)
								

								 	
									Maximum route connections
								

								 	
									100
								

								 	
									Integer
								

								
	
									maxTotalConnections (advanced)
								

								 	
									Maximum total connections
								

								 	
									100
								

								 	
									Integer
								

								
	
									serverAddress (advanced)
								

								 	
									Server address for docker registry.
								

								 	
									https://index.docker.io/v1/
								

								 	
									String
								

								
	
									socket (advanced)
								

								 	
									Socket connection mode
								

								 	
									true
								

								 	
									boolean
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									certPath (security)
								

								 	
									Location containing the SSL certificate chain
								

								 	 	
									String
								

								
	
									password (security)
								

								 	
									Password to authenticate with
								

								 	 	
									String
								

								
	
									secure (security)
								

								 	
									Use HTTPS communication
								

								 	
									false
								

								 	
									boolean
								

								
	
									tlsVerify (security)
								

								 	
									Check TLS
								

								 	
									false
								

								 	
									boolean
								

								
	
									username (security)
								

								 	
									User name to authenticate with
								

								 	 	
									String
								

								

Header Strategy

				All URI option can be passed as Header properties. Values found in a message header take precedence over URI parameters. A header property takes the form of a URI option prefixed with CamelDocker as shown below
			
	URI Option	Header Property
	
								containerId
							

							 	
								CamelDockerContainerId
							

							

Examples

				The following example consumes events from Docker:
			
from("docker://events?host=192.168.59.103&port=2375").to("log:event");

				The following example queries Docker for system wide information
			
from("docker://info?host=192.168.59.103&port=2375").to("log:info");

Dependencies

				To use Docker in your Camel routes you need to add a dependency on camel-docker, which implements the component.
			

				If you use Maven you can just add the following to your pom.xml, substituting the version number for the latest and greatest release (see the download page for the latest versions).
			
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-docker</artifactId>
 <version>x.x.x</version>
</dependency>

Chapter 87. Dozer Component

			Available as of Camel version 2.15
		

			The dozer: component provides the ability to map between Java beans using the Dozer mapping framework since Camel 2.15.0. Camel also supports the ability to trigger Dozer mappings as a type converter. The primary differences between using a Dozer endpoint and a Dozer converter are:
		
	
					The ability to manage Dozer mapping configuration on a per-endpoint basis vs. global configuration via the converter registry.
				
	
					A Dozer endpoint can be configured to marshal/unmarshal input and output data using Camel data formats to support a single, any-to-any transformation endpoint
				
	
					The Dozer component allows for fine-grained integration and extension of Dozer to support additional functionality (e.g. mapping literal values, using expressions for mappings, etc.).
				

			In order to use the Dozer component, Maven users will need to add the following dependency to their pom.xml:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-dozer</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>
URI format

				The Dozer component only supports producer endpoints.
			
dozer:endpointId[?options]

				Where endpointId is a name used to uniquely identify the Dozer endpoint configuration.
			

				An example Dozer endpoint URI:
			
from("direct:orderInput").
 to("dozer:transformOrder?mappingFile=orderMapping.xml&targetModel=example.XYZOrder").
 to("direct:orderOutput");

Options

				The Dozer component has no options.
			

				The Dozer endpoint is configured using URI syntax:
			
dozer:name

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									name
								

								 	
									Required A human readable name of the mapping.
								

								 	 	
									String
								

								

Query Parameters (7 parameters):

	Name	Description	Default	Type
	
									mappingConfiguration (producer)
								

								 	
									The name of a DozerBeanMapperConfiguration bean in the Camel registry which should be used for configuring the Dozer mapping. This is an alternative to the mappingFile option that can be used for fine-grained control over how Dozer is configured. Remember to use a prefix in the value to indicate that the bean is in the Camel registry (e.g. myDozerConfig).
								

								 	 	
									DozerBeanMapper Configuration
								

								
	
									mappingFile (producer)
								

								 	
									The location of a Dozer configuration file. The file is loaded from the classpath by default, but you can use file:, classpath:, or http: to load the configuration from a specific location.
								

								 	
									dozerBeanMapping.xml
								

								 	
									String
								

								
	
									marshalId (producer)
								

								 	
									The id of a dataFormat defined within the Camel Context to use for marshalling the mapping output to a non-Java type.
								

								 	 	
									String
								

								
	
									sourceModel (producer)
								

								 	
									Fully-qualified class name for the source type used in the mapping. If specified, the input to the mapping is converted to the specified type before being mapped with Dozer.
								

								 	 	
									String
								

								
	
									targetModel (producer)
								

								 	
									Required Fully-qualified class name for the target type used in the mapping.
								

								 	 	
									String
								

								
	
									unmarshalId (producer)
								

								 	
									The id of a dataFormat defined within the Camel Context to use for unmarshalling the mapping input from a non-Java type.
								

								 	 	
									String
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

Using Data Formats with Dozer

				Dozer does not support non-Java sources and targets for mappings, so it cannot, for example, map an XML document to a Java object on its own. Luckily, Camel has extensive support for marshalling between Java and a wide variety of formats using data formats. The Dozer component takes advantage of this support by allowing you to specify that input and output data should be passed through a data format prior to processing via Dozer. You can always do this on your own outside the call to Dozer, but supporting it directly in the Dozer component allows you to use a single endpoints to configure any-to-any transformation within Camel.
			

				As an example, let’s say you wanted to map between an XML data structure and a JSON data structure using the Dozer component. If you had the following data formats defined in a Camel Context:
			
<dataFormats>
 <json library="Jackson" id="myjson"/>
 <jaxb contextPath="org.example" id="myjaxb"/>
</dataFormats>

				You could then configure a Dozer endpoint to unmarshal the input XML using a JAXB data format and marshal the mapping output using Jackson.
			
<endpoint uri="dozer:xml2json?marshalId=myjson&unmarshalId=myjaxb&targetModel=org.example.Order"/>

Configuring Dozer

				All Dozer endpoints require a Dozer mapping configuration file which defines mappings between source and target objects. The component will default to a location of META-INF/dozerBeanMapping.xml if the mappingFile or mappingConfiguration options are not specified on an endpoint. If you need to supply multiple mapping configuration files for a single endpoint or specify additional configuration options (e.g. event listeners, custom converters, etc.), then you can use an instance of org.apache.camel.converter.dozer.DozerBeanMapperConfiguration.
			
<bean id="mapper" class="org.apache.camel.converter.dozer.DozerBeanMapperConfiguration">
 <property name="mappingFiles">
 <list>
 <value>mapping1.xml</value>
 <value>mapping2.xml</value>
 </list>
 </property>
</bean>

Mapping Extensions

				The Dozer component implements a number of extensions to the Dozer mapping framework as custom converters. These converters implement mapping functions that are not supported directly by Dozer itself.
			
Variable Mappings

					Variable mappings allow you to map the value of a variable definition within a Dozer configuration into a target field instead of using the value of a source field. This is equivalent to constant mapping in other mapping frameworks, where can you assign a literal value to a target field. To use a variable mapping, simply define a variable within your mapping configuration and then map from the VariableMapper class into your target field of choice:
				
<mappings xmlns="http://dozermapper.github.io/schema/bean-mapping"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://dozermapper.github.io/schema/bean-mapping http://dozermapper.github.io/schema/bean-mapping.xsd">
 <configuration>
 <variables>
 <variable name="CUST_ID">ACME-SALES</variable>
 </variables>
 </configuration>
 <mapping>
 <class-a>org.apache.camel.component.dozer.VariableMapper</class-a>
 <class-b>org.example.Order</class-b>
 <field custom-converter-id="_variableMapping" custom-converter-param="${CUST_ID}">
 <a>literal
 custId
 </field>
 </mapping>
</mappings>

Custom Mappings

					Custom mappings allow you to define your own logic for how a source field is mapped to a target field. They are similar in function to Dozer customer converters, with two notable differences:
				
	
							You can have multiple converter methods in a single class with custom mappings.
						
	
							There is no requirement to implement a Dozer-specific interface with custom mappings.
						

					A custom mapping is declared by using the built-in '_customMapping' converter in your mapping configuration. The parameter to this converter has the following syntax:
				
[class-name][,method-name]

					Method name is optional - the Dozer component will search for a method that matches the input and output types required for a mapping. An example custom mapping and configuration are provided below.
				
public class CustomMapper {
 // All customer ids must be wrapped in "[]"
 public Object mapCustomer(String customerId) {
 return "[" + customerId + "]";
 }
}
<mappings xmlns="http://dozermapper.github.io/schema/bean-mapping"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://dozermapper.github.io/schema/bean-mapping http://dozermapper.github.io/schema/bean-mapping.xsd">
 <mapping>
 <class-a>org.example.A</class-a>
 <class-b>org.example.B</class-b>
 <field custom-converter-id="_customMapping"
 custom-converter-param="org.example.CustomMapper,mapCustomer">
 <a>header.customerNum
 custId
 </field>
 </mapping>
</mappings>

Expression Mappings

					Expression mappings allow you to use the powerful language capabilities of Camel to evaluate an expression and assign the result to a target field in a mapping. Any language that Camel supports can be used in an expression mapping. Basic examples of expressions include the ability to map a Camel message header or exchange property to a target field or to concatenate multiple source fields into a target field. The syntax of a mapping expression is:
				
[language]:[expression]

					An example of mapping a message header into a target field:
				
<mappings xmlns="http://dozermapper.github.io/schema/bean-mapping"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://dozermapper.github.io/schema/bean-mapping http://dozermapper.github.io/schema/bean-mapping.xsd">
 <mapping>
 <class-a>org.apache.camel.component.dozer.ExpressionMapper</class-a>
 <class-b>org.example.B</class-b>
 <field custom-converter-id="_expressionMapping" custom-converter-param="simple:\${header.customerNumber}">
 <a>expression
 custId
 </field>
 </mapping>
</mappings>

					Note that any properties within your expression must be escaped with "\" to prevent an error when Dozer attempts to resolve variable values defined using the EL.
				

Chapter 88. Drill Component

			Available as of Camel version 2.19
		

			The drill: component gives you the ability to querying to Apache Drill Cluster
		

			Drill is an Apache open-source SQL query engine for Big Data exploration. Drill is designed from the ground up to support high-performance analysis on the semi-structured and rapidly evolving data coming from modern Big Data applications, while still providing the familiarity and ecosystem of ANSI SQL, the industry-standard query language
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-drill</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>
URI format

drill://host[?options]

				You can append query options to the URI in the following format, ?option=value&option=value&…​
			

Drill Producer

				The producer execute query using CamelDrillQuery header and put results into body.
			

Options

				The Drill component has no options.
			

				The Drill endpoint is configured using URI syntax:
			
drill:host

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									host
								

								 	
									Required ZooKeeper host name or IP address. Use local instead of a host name or IP address to connect to the local Drillbit
								

								 	 	
									String
								

								

Query Parameters (5 parameters):

	Name	Description	Default	Type
	
									clusterId (producer)
								

								 	
									Cluster ID https://drill.apache.org/docs/using-the-jdbc-driver/determining-the-cluster-id
								

								 	 	
									String
								

								
	
									directory (producer)
								

								 	
									Drill directory in ZooKeeper
								

								 	 	
									String
								

								
	
									mode (producer)
								

								 	
									Connection mode: zk: Zookeeper drillbit: Drillbit direct connection https://drill.apache.org/docs/using-the-jdbc-driver/
								

								 	
									ZK
								

								 	
									DrillConnectionMode
								

								
	
									port (producer)
								

								 	
									ZooKeeper port number
								

								 	 	
									Integer
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

See Also

	
						Configuring Camel
					
	
						Component
					
	
						Endpoint
					
	
						Getting Started
					

Chapter 89. Dropbox Component

			Available as of Camel version 2.14
		

			The dropbox: component allows you to treat Dropbox remote folders as a producer or consumer of messages. Using the Dropbox Java Core API (reference version for this component is 1.7.x), this camel component has the following features:
		
	
					As a consumer, download files and search files by queries
				
	
					As a producer, download files, move files between remote directories, delete files/dir, upload files and search files by queries
				

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-dropbox</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>
URI format

dropbox://[operation]?[options]

				Where operation is the specific action (typically is a CRUD action) to perform on Dropbox remote folder.
			

Operations

	Operation	Description
	
								del
							

							 	
								deletes files or directories on Dropbox
							

							
	
								get
							

							 	
								download files from Dropbox
							

							
	
								move
							

							 	
								move files from folders on Dropbox
							

							
	
								put
							

							 	
								upload files on Dropbox
							

							
	
								search
							

							 	
								search files on Dropbox based on string queries
							

							

				Operations require additional options to work, some are mandatory for the specific operation.
			

Options

				In order to work with Dropbox API you need to obtain an accessToken and a clientIdentifier.
 You can refer to the Dropbox documentation that explains how to get them.
			

				The Dropbox component has no options.
			

				The Dropbox endpoint is configured using URI syntax:
			
dropbox:operation

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									operation
								

								 	
									Required The specific action (typically is a CRUD action) to perform on Dropbox remote folder.
								

								 	 	
									DropboxOperation
								

								

Query Parameters (12 parameters):

	Name	Description	Default	Type
	
									accessToken (common)
								

								 	
									Required The access token to make API requests for a specific Dropbox user
								

								 	 	
									String
								

								
	
									client (common)
								

								 	
									To use an existing DbxClient instance as DropBox client.
								

								 	 	
									DbxClientV2
								

								
	
									clientIdentifier (common)
								

								 	
									Name of the app registered to make API requests
								

								 	 	
									String
								

								
	
									localPath (common)
								

								 	
									Optional folder or file to upload on Dropbox from the local filesystem. If this option has not been configured then the message body is used as the content to upload.
								

								 	 	
									String
								

								
	
									newRemotePath (common)
								

								 	
									Destination file or folder
								

								 	 	
									String
								

								
	
									query (common)
								

								 	
									A space-separated list of sub-strings to search for. A file matches only if it contains all the sub-strings. If this option is not set, all files will be matched.
								

								 	 	
									String
								

								
	
									remotePath (common)
								

								 	
									Original file or folder to move
								

								 	 	
									String
								

								
	
									uploadMode (common)
								

								 	
									Which mode to upload. in case of add the new file will be renamed if a file with the same name already exists on dropbox. in case of force if a file with the same name already exists on dropbox, this will be overwritten.
								

								 	 	
									DropboxUploadMode
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

Del operation

				Delete files on Dropbox.
			

				Works only as Camel producer.
			

				Below are listed the options for this operation:
			
	Property	Mandatory	Description
	
								remotePath
							

							 	
								true
							

							 	
								Folder or file to delete on Dropbox
							

							

Samples

from("direct:start")
 .to("dropbox://del?accessToken=XXX&clientIdentifier=XXX&remotePath=/root/folder1")
 .to("mock:result");

from("direct:start")
 .to("dropbox://del?accessToken=XXX&clientIdentifier=XXX&remotePath=/root/folder1/file1.tar.gz")
 .to("mock:result");

Result Message Headers

					The following headers are set on message result:
				
	Property	Value
	
									DELETED_PATH
								

								 	
									name of the path deleted on dropbox
								

								

Result Message Body

					The following objects are set on message body result:
				
	Object type	Description
	
									String
								

								 	
									name of the path deleted on dropbox
								

								

Get (download) operation

				Download files from Dropbox.
			

				Works as Camel producer or Camel consumer.
			

				Below are listed the options for this operation:
			
	Property	Mandatory	Description
	
								remotePath
							

							 	
								true
							

							 	
								Folder or file to download from Dropbox
							

							

Samples

from("direct:start")
 .to("dropbox://get?accessToken=XXX&clientIdentifier=XXX&remotePath=/root/folder1/file1.tar.gz")
 .to("file:///home/kermit/?fileName=file1.tar.gz");

from("direct:start")
 .to("dropbox://get?accessToken=XXX&clientIdentifier=XXX&remotePath=/root/folder1")
 .to("mock:result");

from("dropbox://get?accessToken=XXX&clientIdentifier=XXX&remotePath=/root/folder1")
 .to("file:///home/kermit/");

Result Message Headers

					The following headers are set on message result:
				
	Property	Value
	
									DOWNLOADED_FILE
								

								 	
									in case of single file download, path of the remote file downloaded
								

								
	
									DOWNLOADED_FILES
								

								 	
									in case of multiple files download, path of the remote files downloaded
								

								

Result Message Body

					The following objects are set on message body result:
				
	Object type	Description
	
									ByteArrayOutputStream
								

								 	
									in case of single file download, stream representing the file downloaded
								

								
	
									Map<String, ByteArrayOutputStream>
								

								 	
									in case of multiple files download, a map with as key the path of the remote file downloaded and as value the stream representing the file downloaded
								

								

Move operation

				Move files on Dropbox between one folder to another.
			

				Works only as Camel producer.
			

				Below are listed the options for this operation:
			
	Property	Mandatory	Description
	
								remotePath
							

							 	
								true
							

							 	
								Original file or folder to move
							

							
	
								newRemotePath
							

							 	
								true
							

							 	
								Destination file or folder
							

							

Samples

from("direct:start")
 .to("dropbox://move?accessToken=XXX&clientIdentifier=XXX&remotePath=/root/folder1&newRemotePath=/root/folder2")
 .to("mock:result");

Result Message Headers

					The following headers are set on message result:
				
	Property	Value
	
									MOVED_PATH
								

								 	
									name of the path moved on dropbox
								

								

Result Message Body

					The following objects are set on message body result:
				
	Object type	Description
	
									String
								

								 	
									name of the path moved on dropbox
								

								

Put (upload) operation

				Upload files on Dropbox.
			

				Works as Camel producer.
			

				Below are listed the options for this operation:
			
	Property	Mandatory	Description
	
								uploadMode
							

							 	
								true
							

							 	
								add or force this option specifies how a file should be saved on dropbox: in case of "add" the new file will be renamed if a file with the same name already exists on dropbox. In case of "force" if a file with the same name already exists on dropbox, this will be overwritten.
							

							
	
								localPath
							

							 	
								false
							

							 	
								Folder or file to upload on Dropbox from the local filesystem. If this option has been configured then it takes precedence over uploading as a single file with content from the Camel message body (message body is converted into a byte array).
							

							
	
								remotePath
							

							 	
								false
							

							 	
								Folder destination on Dropbox. If the property is not set, the component will upload the file on a remote path equal to the local path. With Windows or without an absolute localPath you may run into an exception like the following:
							

							
								Caused by: java.lang.IllegalArgumentException: 'path': bad path: must start with "/": "C:/My/File"
 OR
 Caused by: java.lang.IllegalArgumentException: 'path': bad path: must start with "/": "MyFile"

							

							

Samples

from("direct:start").to("dropbox://put?accessToken=XXX&clientIdentifier=XXX&uploadMode=add&localPath=/root/folder1")
 .to("mock:result");

from("direct:start").to("dropbox://put?accessToken=XXX&clientIdentifier=XXX&uploadMode=add&localPath=/root/folder1&remotePath=/root/folder2")
 .to("mock:result");

					And to upload a single file with content from the message body
				
from("direct:start")
 .setHeader(DropboxConstants.HEADER_PUT_FILE_NAME, constant("myfile.txt"))
 .to("dropbox://put?accessToken=XXX&clientIdentifier=XXX&uploadMode=add&remotePath=/root/folder2")
 .to("mock:result");

					The name of the file can be provided in the header DropboxConstants.HEADER_PUT_FILE_NAME or Exchange.FILE_NAME in that order of precedence. If no header has been provided then the message id (uuid) is used as the file name.
				

Result Message Headers

					The following headers are set on message result:
				
	Property	Value
	
									UPLOADED_FILE
								

								 	
									in case of single file upload, path of the remote path uploaded
								

								
	
									UPLOADED_FILES
								

								 	
									in case of multiple files upload, string with the remote paths uploaded
								

								

Result Message Body

					The following objects are set on message body result:
				
	Object type	Description
	
									String
								

								 	
									in case of single file upload, result of the upload operation, OK or KO
								

								
	
									Map<String, DropboxResultCode>
								

								 	
									in case of multiple files upload, a map with as key the path of the remote file uploaded and as value the result of the upload operation, OK or KO
								

								

Search operation

				Search inside a remote Dropbox folder including its sub directories.
			

				Works as Camel producer and as Camel consumer.
			

				Below are listed the options for this operation:
			
	Property	Mandatory	Description
	
								remotePath
							

							 	
								true
							

							 	
								Folder on Dropbox where to search in.
							

							
	
								query
							

							 	
								true
							

							 	
								A space-separated list of sub-strings to search for. A file matches only if it contains all the sub-strings. If this option is not set, all files will be matched. The query is required to be provided in either the endpoint configuration or as a header CamelDropboxQuery on the Camel message.
							

							

Samples

from("dropbox://search?accessToken=XXX&clientIdentifier=XXX&remotePath=/XXX&query=XXX")
 .to("mock:result");

from("direct:start")
 .setHeader("CamelDropboxQuery", constant("XXX"))
 .to("dropbox://search?accessToken=XXX&clientIdentifier=XXX&remotePath=/XXX")
 .to("mock:result");

Result Message Headers

					The following headers are set on message result:
				
	Property	Value
	
									FOUNDED_FILES
								

								 	
									list of file path founded
								

								

Result Message Body

					The following objects are set on message body result:
				
	Object type	Description
	
									List<DbxEntry>
								

								 	
									list of file path founded. For more information on this object refer to Dropbox documentation,
								

								

					
				

Chapter 90. Ehcache Component

			Available as of Camel version 2.18
		

			The ehcache component enables you to perform caching operations using Ehcache 3 as the Cache Implementation.
		

			This component supports producer and event based consumer endpoints.
		

			The Cache consumer is an event based consumer and can be used to listen and respond to specific cache activities.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-ehcache</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>
URI format

ehcache://cacheName[?options]

				You can append query options to the URI in the following format, ?option=value&option=#beanRef&…​
			

Options

				The Ehcache component supports 7 options which are listed below.
			
	Name	Description	Default	Type
	
								configuration (advanced)
							

							 	
								Sets the global component configuration
							

							 	 	
								EhcacheConfiguration
							

							
	
								cacheManager (common)
							

							 	
								The cache manager
							

							 	 	
								CacheManager
							

							
	
								cacheManager Configuration (common)
							

							 	
								The cache manager configuration
							

							 	 	
								Configuration
							

							
	
								cacheConfiguration (common)
							

							 	
								The default cache configuration to be used to create caches.
							

							 	 	
								CacheConfiguration<?,?>
							

							
	
								cachesConfigurations (common)
							

							 	
								A map of caches configurations to be used to create caches.
							

							 	 	
								Map
							

							
	
								cacheConfigurationUri (common)
							

							 	
								URI pointing to the Ehcache XML configuration file’s location
							

							 	 	
								String
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The Ehcache endpoint is configured using URI syntax:
			
ehcache:cacheName

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									cacheName
								

								 	
									Required the cache name
								

								 	 	
									String
								

								

Query Parameters (17 parameters):

	Name	Description	Default	Type
	
									cacheManager (common)
								

								 	
									The cache manager
								

								 	 	
									CacheManager
								

								
	
									cacheManagerConfiguration (common)
								

								 	
									The cache manager configuration
								

								 	 	
									Configuration
								

								
	
									configurationUri (common)
								

								 	
									URI pointing to the Ehcache XML configuration file’s location
								

								 	 	
									String
								

								
	
									createCacheIfNotExist (common)
								

								 	
									Configure if a cache need to be created if it does exist or can’t be pre-configured.
								

								 	
									true
								

								 	
									boolean
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									eventFiring (consumer)
								

								 	
									Set the the delivery mode (synchronous, asynchronous)
								

								 	
									ASYNCHRONOUS
								

								 	
									EventFiring
								

								
	
									eventOrdering (consumer)
								

								 	
									Set the the delivery mode (ordered, unordered)
								

								 	
									ORDERED
								

								 	
									EventOrdering
								

								
	
									eventTypes (consumer)
								

								 	
									Set the type of events to listen for
								

								 	
									EVICTED,EXPIRED,REMOVED,CREATED,UPDATED
								

								 	
									Set
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									action (producer)
								

								 	
									To configure the default cache action. If an action is set in the message header, then the operation from the header takes precedence.
								

								 	 	
									String
								

								
	
									key (producer)
								

								 	
									To configure the default action key. If a key is set in the message header, then the key from the header takes precedence.
								

								 	 	
									Object
								

								
	
									configuration (advanced)
								

								 	
									The default cache configuration to be used to create caches.
								

								 	 	
									CacheConfiguration<?,?>
								

								
	
									configurations (advanced)
								

								 	
									A map of cache configuration to be used to create caches.
								

								 	 	
									Map
								

								
	
									keyType (advanced)
								

								 	
									The cache key type, default java.lang.Object
								

								 	
									java.lang.Object
								

								 	
									String
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									valueType (advanced)
								

								 	
									The cache value type, default java.lang.Object
								

								 	
									java.lang.Object
								

								 	
									String
								

								

Message Headers Camel

					
				
	Header	Type	Description
	
									CamelEhcacheAction
								

								 	
									String
								

								 	
									The operation to be perfomed on the cache, valid options are:
								

								
									* CLEAR * PUT * PUT_ALL * PUT_IF_ABSENT * GET * GET_ALL * REMOVE * REMOVE_ALL * REPLACE
								

								
	
									CamelEhcacheActionHasResult
								

								 	
									Boolean
								

								 	
									Set to true if the action has a result
								

								
	
									CamelEhcacheActionSucceeded
								

								 	
									Boolean
								

								 	
									Set to true if the actionsuccedded
								

								
	
									CamelEhcacheKey
								

								 	
									Object
								

								 	
									The cache key used for an action
								

								
	
									CamelEhcacheKeys
								

								 	
									Set<Object>
								

								 	
									A list of keys, used in
								

								
									* PUT_ALL * GET_ALL * REMOVE_ALL
								

								
	
									CamelEhcacheValue
								

								 	
									Object
								

								 	
									The value to put in the cache or the result of an operation
								

								
	
									CamelEhcacheOldValue
								

								 	
									Object
								

								 	
									The old value associated to a key for actions like PUT_IF_ABSENT or the Object used for comparison for actions like REPLACE
								

								
	
									CamelEhcacheEventType
								

								 	
									EventType
								

								 	
									The type of event received
								

								

Ehcache based idempotent repository example:

CacheManager manager = CacheManagerBuilder.newCacheManager(new XmlConfiguration("ehcache.xml"));
EhcacheIdempotentRepository repo = new EhcacheIdempotentRepository(manager, "idempotent-cache");

from("direct:in")
 .idempotentConsumer(header("messageId"), idempotentRepo)
 .to("mock:out");

				
			

Ehcache based aggregation repository example:

public class EhcacheAggregationRepositoryRoutesTest extends CamelTestSupport {
 private static final String ENDPOINT_MOCK = "mock:result";
 private static final String ENDPOINT_DIRECT = "direct:one";
 private static final int[] VALUES = generateRandomArrayOfInt(10, 0, 30);
 private static final int SUM = IntStream.of(VALUES).reduce(0, (a, b) -> a + b);
 private static final String CORRELATOR = "CORRELATOR";

 @EndpointInject(uri = ENDPOINT_MOCK)
 private MockEndpoint mock;

 @Produce(uri = ENDPOINT_DIRECT)
 private ProducerTemplate producer;

 @Test
 public void checkAggregationFromOneRoute() throws Exception {
 mock.expectedMessageCount(VALUES.length);
 mock.expectedBodiesReceived(SUM);

 IntStream.of(VALUES).forEach(
 i -> producer.sendBodyAndHeader(i, CORRELATOR, CORRELATOR)
);

 mock.assertIsSatisfied();
 }

 private Exchange aggregate(Exchange oldExchange, Exchange newExchange) {
 if (oldExchange == null) {
 return newExchange;
 } else {
 Integer n = newExchange.getIn().getBody(Integer.class);
 Integer o = oldExchange.getIn().getBody(Integer.class);
 Integer v = (o == null ? 0 : o) + (n == null ? 0 : n);

 oldExchange.getIn().setBody(v, Integer.class);

 return oldExchange;
 }
 }

 @Override
 protected RoutesBuilder createRouteBuilder() throws Exception {
 return new RouteBuilder() {
 @Override
 public void configure() throws Exception {
 from(ENDPOINT_DIRECT)
 .routeId("AggregatingRouteOne")
 .aggregate(header(CORRELATOR))
 .aggregationRepository(createAggregateRepository())
 .aggregationStrategy(EhcacheAggregationRepositoryRoutesTest.this::aggregate)
 .completionSize(VALUES.length)
 .to("log:org.apache.camel.component.ehcache.processor.aggregate.level=INFO&showAll=true&mulltiline=true")
 .to(ENDPOINT_MOCK);
 }
 };
 }

 protected EhcacheAggregationRepository createAggregateRepository() throws Exception {
 CacheManager cacheManager = CacheManagerBuilder.newCacheManager(new XmlConfiguration("ehcache.xml"));
 cacheManager.init();

 EhcacheAggregationRepository repository = new EhcacheAggregationRepository();
 repository.setCacheManager(cacheManager);
 repository.setCacheName("aggregate");

 return repository;
 }
}

Chapter 91. EJB Component

			Available as of Camel version 2.4
		

			The ejb: component binds EJBs to Camel message exchanges.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-ejb</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>
URI format

ejb:ejbName[?options]

				Where ejbName can be any string which is used to look up the EJB in the Application Server JNDI Registry
			

Options

				The EJB component supports 3 options which are listed below.
			
	Name	Description	Default	Type
	
								context (producer)
							

							 	
								The Context to use for looking up the EJBs
							

							 	 	
								Context
							

							
	
								properties (producer)
							

							 	
								Properties for creating javax.naming.Context if a context has not been configured.
							

							 	 	
								Properties
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The EJB endpoint is configured using URI syntax:
			
ejb:beanName

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									beanName
								

								 	
									Required Sets the name of the bean to invoke
								

								 	 	
									String
								

								

Query Parameters (5 parameters):

	Name	Description	Default	Type
	
									method (producer)
								

								 	
									Sets the name of the method to invoke on the bean
								

								 	 	
									String
								

								
	
									cache (advanced)
								

								 	
									If enabled, Camel will cache the result of the first Registry look-up. Cache can be enabled if the bean in the Registry is defined as a singleton scope.
								

								 	
									false
								

								 	
									boolean
								

								
	
									multiParameterArray (advanced)
								

								 	
									Deprecated How to treat the parameters which are passed from the message body.true means the message body should be an array of parameters.. Deprecation note: This option is used internally by Camel, and is not intended for end users to use. Deprecation note: This option is used internally by Camel, and is not intended for end users to use.
								

								 	
									false
								

								 	
									boolean
								

								
	
									parameters (advanced)
								

								 	
									Used for configuring additional properties on the bean
								

								 	 	
									Map
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

Bean Binding

				How bean methods to be invoked are chosen (if they are not specified explicitly through the method parameter) and how parameter values are constructed from the Message are all defined by the Bean Binding mechanism which is used throughout all of the various Bean Integration mechanisms in Camel.
			

Examples

				In the following examples we use the Greater EJB which is defined as follows:
			

				GreaterLocal.java
			
public interface GreaterLocal {

 String hello(String name);

 String bye(String name);

}

				And the implementation
			

				GreaterImpl.java
			
@Stateless
public class GreaterImpl implements GreaterLocal {

 public String hello(String name) {
 return "Hello " + name;
 }

 public String bye(String name) {
 return "Bye " + name;
 }

}
Using Java DSL

					In this example we want to invoke the hello method on the EJB. Since this example is based on an unit test using Apache OpenEJB we have to set a JndiContext on the EJB component with the OpenEJB settings.
				
@Override
protected CamelContext createCamelContext() throws Exception {
 CamelContext answer = new DefaultCamelContext();

 // enlist EJB component using the JndiContext
 EjbComponent ejb = answer.getComponent("ejb", EjbComponent.class);
 ejb.setContext(createEjbContext());

 return answer;
}

private static Context createEjbContext() throws NamingException {
 // here we need to define our context factory to use OpenEJB for our testing
 Properties properties = new Properties();
 properties.setProperty(Context.INITIAL_CONTEXT_FACTORY, "org.apache.openejb.client.LocalInitialContextFactory");

 return new InitialContext(properties);
}

					Then we are ready to use the EJB in the Camel route:
				
from("direct:start")
 // invoke the greeter EJB using the local interface and invoke the hello method
 .to("ejb:GreaterImplLocal?method=hello")
 .to("mock:result");

					In a real application server
				

					In a real application server you most likely do not have to setup a JndiContext on the EJB component as it will create a default JndiContext on the same JVM as the application server, which usually allows it to access the JNDI registry and lookup the EJBs. However if you need to access a application server on a remote JVM or the likes, you have to prepare the properties beforehand.
				

Using Spring XML

					And this is the same example using Spring XML instead:
				

					Again since this is based on an unit test we need to setup the EJB component:
				
<!-- setup Camel EJB component -->
<bean id="ejb" class="org.apache.camel.component.ejb.EjbComponent">
 <property name="properties" ref="jndiProperties"/>
</bean>

<!-- use OpenEJB context factory -->
<p:properties id="jndiProperties">
 <prop key="java.naming.factory.initial">org.apache.openejb.client.LocalInitialContextFactory</prop>
</p:properties>

					Before we are ready to use EJB in the Camel routes:
				
<camelContext xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="direct:start"/>
 <to uri="ejb:GreaterImplLocal?method=hello"/>
 <to uri="mock:result"/>
 </route>
</camelContext>

See Also

	
						Configuring Camel
					
	
						Component
					
	
						Endpoint
					
	
						Getting Started
					
	
						Bean
					
	
						Bean Binding
					
	
						Bean Integration
					

Chapter 92. Elasticsearch Component (deprecated)

			Available as of Camel version 2.11
		

			The ElasticSearch component allows you to interface with an ElasticSearch server.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-elasticsearch</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>
URI format

elasticsearch://clusterName[?options]

Endpoint Options

				The Elasticsearch component supports 2 options which are listed below.
			
	Name	Description	Default	Type
	
								client (advanced)
							

							 	
								To use an existing configured Elasticsearch client, instead of creating a client per endpoint.
							

							 	 	
								Client
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The Elasticsearch endpoint is configured using URI syntax:
			
elasticsearch:clusterName

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									clusterName
								

								 	
									Required Name of cluster or use local for local mode
								

								 	 	
									String
								

								

Query Parameters (11 parameters):

	Name	Description	Default	Type
	
									clientTransportSniff (producer)
								

								 	
									Is the client allowed to sniff the rest of the cluster or not (default true). This setting map to the client.transport.sniff setting.
								

								 	
									true
								

								 	
									Boolean
								

								
	
									consistencyLevel (producer)
								

								 	
									The write consistency level to use with INDEX and BULK operations (can be any of ONE, QUORUM, ALL or DEFAULT)
								

								 	
									DEFAULT
								

								 	
									WriteConsistencyLevel
								

								
	
									data (producer)
								

								 	
									Is the node going to be allowed to allocate data (shards) to it or not. This setting map to the node.data setting.
								

								 	 	
									Boolean
								

								
	
									indexName (producer)
								

								 	
									The name of the index to act against
								

								 	 	
									String
								

								
	
									indexType (producer)
								

								 	
									The type of the index to act against
								

								 	 	
									String
								

								
	
									ip (producer)
								

								 	
									The TransportClient remote host ip to use
								

								 	 	
									String
								

								
	
									operation (producer)
								

								 	
									What operation to perform
								

								 	 	
									String
								

								
	
									pathHome (producer)
								

								 	
									The path.home property of ElasticSearch configuration. You need to provide a valid path, otherwise the default, $user.home/.elasticsearch, will be used.
								

								 	
									${user.home}/.elasticsearch
								

								 	
									String
								

								
	
									port (producer)
								

								 	
									The TransportClient remote port to use (defaults to 9300)
								

								 	
									9300
								

								 	
									int
								

								
	
									transportAddresses (producer)
								

								 	
									Comma separated list with ip:port formatted remote transport addresses to use. The ip and port options must be left blank for transportAddresses to be considered instead.
								

								 	 	
									String
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

Local testing

				If you want to run against a local (in JVM/classloader) ElasticSearch server, just set the clusterName value in the URI to "local". See the client guide for more details.
			

Message Operations

				The following ElasticSearch operations are currently supported. Simply set an endpoint URI option or exchange header with a key of "operation" and a value set to one of the following. Some operations also require other parameters or the message body to be set.
			
	operation	message body	description
	
								INDEX
							

							 	
								Map, String, byte[] or XContentBuilder content to index
							

							 	
								adds content to an index and returns the content’s indexId in the body. Camel 2.15, you can set the indexId by setting the message header with the key "indexId".
							

							
	
								GET_BY_ID
							

							 	
								index id of content to retrieve
							

							 	
								retrieves the specified index and returns a GetResult object in the body
							

							
	
								DELETE
							

							 	
								index id of content to delete
							

							 	
								deletes the specified indexId and returns a DeleteResult object in the body
							

							
	
								BULK_INDEX
							

							 	
								a List or Collection of any type that is already accepted (XContentBuilder, Map, byte[], String)
							

							 	
								*Camel 2.14,*adds content to an index and return a List of the id of the successfully indexed documents in the body
							

							
	
								BULK
							

							 	
								a List or Collection of any type that is already accepted (XContentBuilder, Map, byte[], String)
							

							 	
								Camel 2.15: Adds content to an index and returns the BulkResponse object in the body
							

							
	
								SEARCH
							

							 	
								Map or SearchRequest Object
							

							 	
								Camel 2.15: search the content with the map of query string
							

							
	
								MULTIGET
							

							 	
								List of MultigetRequest.Item object
							

							 	
								Camel 2.17: retrieves the specified indexes, types etc. in MultigetRequest and returns a MultigetResponse object in the body
							

							
	
								MULTISEARCH
							

							 	
								List of SearchRequest object
							

							 	
								Camel 2.17: search for parameters specified in MultiSearchRequest and returns a MultiSearchResponse object in the body
							

							
	
								EXISTS
							

							 	
								Index name as header
							

							 	
								Camel 2.17: Returns a Boolean object in the body
							

							
	
								UPDATE
							

							 	
								Map, String, byte[] or XContentBuilder content to update
							

							 	
								Camel 2.17: Updates content to an index and returns the content’s indexId in the body.
							

							

Index Example

				Below is a simple INDEX example
			
from("direct:index")
.to("elasticsearch://local?operation=INDEX&indexName=twitter&indexType=tweet");
<route>
 <from uri="direct:index" />
 <to uri="elasticsearch://local?operation=INDEX&indexName=twitter&indexType=tweet"/>
</route>

				A client would simply need to pass a body message containing a Map to the route. The result body contains the indexId created.
			
Map<String, String> map = new HashMap<String, String>();
map.put("content", "test");
String indexId = template.requestBody("direct:index", map, String.class);

For more information, see these resources

				ElasticSearch Main Site
			

				ElasticSearch Java API
			

See Also

	
						Configuring Camel
					
	
						Component
					
	
						Endpoint
					
	
						Getting Started
					

Chapter 93. Elasticsearch5 Component (deprecated)

			Available as of Camel version 2.19
		

			The ElasticSearch component allows you to interface with an ElasticSearch 5.x API.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-elasticsearch5</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>
URI format

elasticsearch5://clusterName[?options]

Endpoint Options

				The Elasticsearch5 component supports 2 options which are listed below.
			
	Name	Description	Default	Type
	
								client (advanced)
							

							 	
								To use an existing configured Elasticsearch client, instead of creating a client per endpoint. This allow to customize the client with specific settings.
							

							 	 	
								TransportClient
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The Elasticsearch5 endpoint is configured using URI syntax:
			
elasticsearch5:clusterName

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									clusterName
								

								 	
									Required Name of the cluster
								

								 	 	
									String
								

								

Query Parameters (16 parameters):

	Name	Description	Default	Type
	
									clientTransportSniff (producer)
								

								 	
									Is the client allowed to sniff the rest of the cluster or not. This setting map to the client.transport.sniff setting.
								

								 	
									false
								

								 	
									boolean
								

								
	
									indexName (producer)
								

								 	
									The name of the index to act against
								

								 	 	
									String
								

								
	
									indexType (producer)
								

								 	
									The type of the index to act against
								

								 	 	
									String
								

								
	
									ip (producer)
								

								 	
									The TransportClient remote host ip to use
								

								 	 	
									String
								

								
	
									operation (producer)
								

								 	
									What operation to perform
								

								 	 	
									ElasticsearchOperation
								

								
	
									pingSchedule (producer)
								

								 	
									The time(in unit) the client ping the cluster.
								

								 	
									5s
								

								 	
									String
								

								
	
									pingTimeout (producer)
								

								 	
									The time(in unit) to wait for a ping response from a node too return.
								

								 	
									5s
								

								 	
									String
								

								
	
									port (producer)
								

								 	
									The TransportClient remote port to use (defaults to 9300)
								

								 	
									9300
								

								 	
									int
								

								
	
									tcpCompress (producer)
								

								 	
									true if compression (LZF) enable between all nodes.
								

								 	
									false
								

								 	
									boolean
								

								
	
									tcpConnectTimeout (producer)
								

								 	
									The time(in unit) to wait for connection timeout.
								

								 	
									30s
								

								 	
									String
								

								
	
									transportAddresses (producer)
								

								 	
									Comma separated list with ip:port formatted remote transport addresses to use. The ip and port options must be left blank for transportAddresses to be considered instead.
								

								 	 	
									String
								

								
	
									waitForActiveShards (producer)
								

								 	
									Index creation waits for the write consistency number of shards to be available
								

								 	
									1
								

								 	
									int
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									enableSSL (security)
								

								 	
									Enable SSL. Require XPack client jar on the classpath
								

								 	
									false
								

								 	
									boolean
								

								
	
									password (authentication)
								

								 	
									Password for authenticate against the cluster. Require XPack client jar on the classpath
								

								 	 	
									String
								

								
	
									user (authentication)
								

								 	
									User for authenticate against the cluster. Requires transport_client role for accessing the cluster. Require XPack client jar on the classpath
								

								 	 	
									String
								

								

Message Operations

				The following ElasticSearch operations are currently supported. Simply set an endpoint URI option or exchange header with a key of "operation" and a value set to one of the following. Some operations also require other parameters or the message body to be set.
			
	operation	message body	description
	
								INDEX
							

							 	
								Map, String, byte[] or XContentBuilder content to index
							

							 	
								Adds content to an index and returns the content’s indexId in the body. You can set the indexId by setting the message header with the key "indexId".
							

							
	
								GET_BY_ID
							

							 	
								index id of content to retrieve
							

							 	
								Retrieves the specified index and returns a GetResult object in the body
							

							
	
								DELETE
							

							 	
								index name and type of content to delete
							

							 	
								Deletes the specified indexName and indexType and returns a DeleteResponse object in the body
							

							
	
								DELETE_INDEX
							

							 	
								index name of content to delete
							

							 	
								Deletes the specified indexName and returns a DeleteIndexResponse object in the body
							

							
	
								BULK_INDEX
							

							 	
								a List or Collection of any type that is already accepted (XContentBuilder, Map, byte[], String)
							

							 	
								Adds content to an index and return a List of the id of the successfully indexed documents in the body
							

							
	
								BULK
							

							 	
								a List or Collection of any type that is already accepted (XContentBuilder, Map, byte[], String)
							

							 	
								Adds content to an index and returns the BulkResponse object in the body
							

							
	
								SEARCH
							

							 	
								Map, String or SearchRequest Object
							

							 	
								Search the content with the map of query string
							

							
	
								MULTIGET
							

							 	
								List of MultigetRequest.Item object
							

							 	
								Retrieves the specified indexes, types etc. in MultigetRequest and returns a MultigetResponse object in the body
							

							
	
								MULTISEARCH
							

							 	
								List of SearchRequest object
							

							 	
								Search for parameters specified in MultiSearchRequest and returns a MultiSearchResponse object in the body
							

							
	
								EXISTS
							

							 	
								Index name as header
							

							 	
								Checks the index exists or not and returns a Boolean flag in the body
							

							
	
								UPDATE
							

							 	
								Map, String, byte[] or XContentBuilder content to update
							

							 	
								Updates content to an index and returns the content’s indexId in the body.
							

							

Index Example

				Below is a simple INDEX example
			
from("direct:index")
.to("elasticsearch5://elasticsearch?operation=INDEX&indexName=twitter&indexType=tweet");
<route>
 <from uri="direct:index" />
 <to uri="elasticsearch5://elasticsearch?operation=INDEX&indexName=twitter&indexType=tweet"/>
</route>

				A client would simply need to pass a body message containing a Map to the route. The result body contains the indexId created.
			
Map<String, String> map = new HashMap<String, String>();
map.put("content", "test");
String indexId = template.requestBody("direct:index", map, String.class);

For more information, see these resources

				Elastic Main Site
			

				ElasticSearch Java API
			

See Also

	
						Configuring Camel
					
	
						Component
					
	
						Endpoint
					
	
						Getting Started
					

Chapter 94. Elastichsearch Rest Component

			Available as of Camel version 2.21
		

			The ElasticSearch component allows you to interface with an ElasticSearch 6.x API using the REST Client library.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-elasticsearch-rest</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>
URI format

elasticsearch-rest://clusterName[?options]

Endpoint Options

				The Elastichsearch Rest component supports 12 options which are listed below.
			
	Name	Description	Default	Type
	
								client (advanced)
							

							 	
								To use an existing configured Elasticsearch client, instead of creating a client per endpoint. This allow to customize the client with specific settings.
							

							 	 	
								RestClient
							

							
	
								hostAddresses (advanced)
							

							 	
								Comma separated list with ip:port formatted remote transport addresses to use. The ip and port options must be left blank for hostAddresses to be considered instead.
							

							 	 	
								String
							

							
	
								socketTimeout (advanced)
							

							 	
								The timeout in ms to wait before the socket will timeout.
							

							 	
								30000
							

							 	
								int
							

							
	
								connectionTimeout (advanced)
							

							 	
								The time in ms to wait before connection will timeout.
							

							 	
								30000
							

							 	
								int
							

							
	
								user (advance)
							

							 	
								Basic authenticate user
							

							 	 	
								String
							

							
	
								password (producer)
							

							 	
								Password for authenticate
							

							 	 	
								String
							

							
	
								enableSSL (advanced)
							

							 	
								Enable SSL
							

							 	
								false
							

							 	
								Boolean
							

							
	
								maxRetryTimeout (advanced)
							

							 	
								The time in ms before retry
							

							 	
								30000
							

							 	
								int
							

							
	
								enableSniffer (advanced)
							

							 	
								Enable automatically discover nodes from a running Elasticsearch cluster
							

							 	
								false
							

							 	
								Boolean
							

							
	
								snifferInterval (advanced)
							

							 	
								The interval between consecutive ordinary sniff executions in milliseconds. Will be honoured when sniffOnFailure is disabled or when there are no failures between consecutive sniff executions
							

							 	
								300000
							

							 	
								int
							

							
	
								sniffAfterFailureDelay (advanced)
							

							 	
								The delay of a sniff execution scheduled after a failure (in milliseconds)
							

							 	
								60000
							

							 	
								int
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The Elastichsearch Rest endpoint is configured using URI syntax:
			
elasticsearch-rest:clusterName

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									clusterName
								

								 	
									Required Name of the cluster
								

								 	 	
									String
								

								

Query Parameters (11 parameters):

	Name	Description	Default	Type
	
									connectionTimeout (producer)
								

								 	
									The time in ms to wait before connection will timeout.
								

								 	
									30000
								

								 	
									int
								

								
	
									disconnect (producer)
								

								 	
									Disconnect after it finish calling the producer
								

								 	
									false
								

								 	
									boolean
								

								
	
									enableSSL (producer)
								

								 	
									Enable SSL
								

								 	
									false
								

								 	
									boolean
								

								
	
									hostAddresses (producer)
								

								 	
									Required Comma separated list with ip:port formatted remote transport addresses to use. The ip and port options must be left blank for hostAddresses to be considered instead.
								

								 	 	
									String
								

								
	
									indexName (producer)
								

								 	
									The name of the index to act against
								

								 	 	
									String
								

								
	
									indexType (producer)
								

								 	
									The type of the index to act against
								

								 	 	
									String
								

								
	
									maxRetryTimeout (producer)
								

								 	
									The time in ms before retry
								

								 	
									30000
								

								 	
									int
								

								
	
									operation (producer)
								

								 	
									What operation to perform
								

								 	 	
									ElasticsearchOperation
								

								
	
									socketTimeout (producer)
								

								 	
									The timeout in ms to wait before the socket will timeout.
								

								 	
									30000
								

								 	
									int
								

								
	
									waitForActiveShards (producer)
								

								 	
									Index creation waits for the write consistency number of shards to be available
								

								 	
									1
								

								 	
									int
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

Message Operations

				The following ElasticSearch operations are currently supported. Simply set an endpoint URI option or exchange header with a key of "operation" and a value set to one of the following. Some operations also require other parameters or the message body to be set.
			
	operation	message body	description
	
								Index
							

							 	
								Map, String, byte[], XContentBuilder or IndexRequest content to index
							

							 	
								Adds content to an index and returns the content’s indexId in the body. You can set the indexId by setting the message header with the key "indexId".
							

							
	
								GetById
							

							 	
								String or GetRequest index id of content to retrieve
							

							 	
								Retrieves the specified index and returns a GetResult object in the body
							

							
	
								Delete
							

							 	
								String or DeleteRequest index name and type of content to delete
							

							 	
								Deletes the specified indexName and indexType and returns a DeleteResponse object in the body
							

							
	
								DeleteIndex
							

							 	
								String or DeleteRequest index name of the index to delete
							

							 	
								Deletes the specified indexName and returns a status code the body
							

							
	
								BulkIndex
							

							 	
								a List, BulkRequest, or Collection of any type that is already accepted (XContentBuilder, Map, byte[], String)
							

							 	
								Adds content to an index and return a List of the id of the successfully indexed documents in the body
							

							
	
								Bulk
							

							 	
								a List, BulkRequest, or Collection of any type that is already accepted (XContentBuilder, Map, byte[], String)
							

							 	
								Adds content to an index and returns the BulkItemResponse[] object in the body
							

							
	
								Search
							

							 	
								Map, String or SearchRequest
							

							 	
								Search the content with the map of query string
							

							
	
								Exists
							

							 	
								Index name(indexName) as header
							

							 	
								Checks the index exists or not and returns a Boolean flag in the body
							

							
	
								Update
							

							 	
								Map, UpdateRequest, String, byte[] or XContentBuilder content to update
							

							 	
								Updates content to an index and returns the content’s indexId in the body.
							

							
	
								Ping
							

							 	
								None
							

							 	
								Pings the remote Elasticsearch cluster and returns true if the ping succeeded, false otherwise
							

							

Configure the component and enable basic authentication

				To use the Elasticsearch component is has to be configured with a minimum configuration.
			
ElasticsearchComponent elasticsearchComponent = new ElasticsearchComponent();
elasticsearchComponent.setHostAddresses("myelkhost:9200");
camelContext.addComponent("elasticsearch-rest", elasticsearchComponent);

				For basic authentication with elasticsearch or using reverse http proxy in front of the elasticsearch cluster, simply setup basic authentication and SSL on the component like the example below
			
ElasticsearchComponent elasticsearchComponent = new ElasticsearchComponent();
elasticsearchComponent.setHostAddresses("myelkhost:9200");
elasticsearchComponent.setUser("elkuser");
elasticsearchComponent.setPassword("secure!!");
elasticsearchComponent.setEnableSSL(true);

camelContext.addComponent("elasticsearch-rest", elasticsearchComponent);

Index Example

				Below is a simple INDEX example
			
from("direct:index")
 .to("elasticsearch-rest://elasticsearch?operation=Index&indexName=twitter&indexType=tweet");
<route>
 <from uri="direct:index" />
 <to uri="elasticsearch-rest://elasticsearch?operation=Index&indexName=twitter&indexType=tweet"/>
</route>

				A client would simply need to pass a body message containing a Map to the route. The result body contains the indexId created.
			
Map<String, String> map = new HashMap<String, String>();
map.put("content", "test");
String indexId = template.requestBody("direct:index", map, String.class);

Search Example

				Searching on specific field(s) and value use the Operation ´Search´. Pass in the query JSON String or the Map
			
from("direct:search")
 .to("elasticsearch-rest://elasticsearch?operation=Search&indexName=twitter&indexType=tweet");
<route>
 <from uri="direct:search" />
 <to uri="eelasticsearch-rest://elasticsearch?operation=Search&indexName=twitter&indexType=tweet"/>
</route>
String query = "{\"query\":{\"match\":{\"content\":\"new release of ApacheCamel\"}}}";
SearchHits response = template.requestBody("direct:search", query, SearchHits.class);

				Search on specific field(s) using Map.
			
Map<String, Object> actualQuery = new HashMap<>();
actualQuery.put("content", "new release of ApacheCamel");

Map<String, Object> match = new HashMap<>();
match.put("match", actualQuery);

Map<String, Object> query = new HashMap<>();
query.put("query", match);
SearchHits response = template.requestBody("direct:search", query, SearchHits.class);

Chapter 95. ElSQL Component

			Available as of Camel version 2.16
		

			The elsql: component is an extension to the existing SQL Component that uses ElSql to define the SQL queries.
		

			This component uses spring-jdbc behind the scenes for the actual SQL handling.
		

			This component can be used as a Transactional Client.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-elsql</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>

			The SQL component uses the following endpoint URI notation:
		
sql:elSqlName:resourceUri[?options]

			You can append query options to the URI in the following format, ?option=value&option=value&…​
		

			The parameters to the SQL queries are named parameters in the elsql mapping files, and maps to corresponding keys from the Camel message, in the given precedence:
		
	
					Camel 2.16.1: from message body if Simple expression.
				
	
					from message body if its a `java.util.Map`3. from message headers
				

			If a named parameter cannot be resolved, then an exception is thrown.
		
Options

				The ElSQL component supports 5 options which are listed below.
			
	Name	Description	Default	Type
	
								databaseVendor (common)
							

							 	
								To use a vendor specific com.opengamma.elsql.ElSqlConfig
							

							 	 	
								ElSqlDatabaseVendor
							

							
	
								dataSource (common)
							

							 	
								Sets the DataSource to use to communicate with the database.
							

							 	 	
								DataSource
							

							
	
								elSqlConfig (advanced)
							

							 	
								To use a specific configured ElSqlConfig. It may be better to use the databaseVendor option instead.
							

							 	 	
								ElSqlConfig
							

							
	
								resourceUri (common)
							

							 	
								The resource file which contains the elsql SQL statements to use. You can specify multiple resources separated by comma. The resources are loaded on the classpath by default, you can prefix with file: to load from file system. Notice you can set this option on the component and then you do not have to configure this on the endpoint.
							

							 	 	
								String
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The ElSQL endpoint is configured using URI syntax:
			
elsql:elsqlName:resourceUri

				with the following path and query parameters:
			
Path Parameters (2 parameters):

	Name	Description	Default	Type
	
									elsqlName
								

								 	
									Required The name of the elsql to use (is NAMED in the elsql file)
								

								 	 	
									String
								

								
	
									resourceUri
								

								 	
									The resource file which contains the elsql SQL statements to use. You can specify multiple resources separated by comma. The resources are loaded on the classpath by default, you can prefix with file: to load from file system. Notice you can set this option on the component and then you do not have to configure this on the endpoint.
								

								 	 	
									String
								

								

Query Parameters (47 parameters):

	Name	Description	Default	Type
	
									allowNamedParameters (common)
								

								 	
									Whether to allow using named parameters in the queries.
								

								 	
									true
								

								 	
									boolean
								

								
	
									databaseVendor (common)
								

								 	
									To use a vendor specific com.opengamma.elsql.ElSqlConfig
								

								 	 	
									ElSqlDatabaseVendor
								

								
	
									dataSource (common)
								

								 	
									Sets the DataSource to use to communicate with the database.
								

								 	 	
									DataSource
								

								
	
									dataSourceRef (common)
								

								 	
									Deprecated Sets the reference to a DataSource to lookup from the registry, to use for communicating with the database.
								

								 	 	
									String
								

								
	
									outputClass (common)
								

								 	
									Specify the full package and class name to use as conversion when outputType=SelectOne.
								

								 	 	
									String
								

								
	
									outputHeader (common)
								

								 	
									Store the query result in a header instead of the message body. By default, outputHeader == null and the query result is stored in the message body, any existing content in the message body is discarded. If outputHeader is set, the value is used as the name of the header to store the query result and the original message body is preserved.
								

								 	 	
									String
								

								
	
									outputType (common)
								

								 	
									Make the output of consumer or producer to SelectList as List of Map, or SelectOne as single Java object in the following way:a) If the query has only single column, then that JDBC Column object is returned. (such as SELECT COUNT() FROM PROJECT will return a Long object.b) If the query has more than one column, then it will return a Map of that result.c) If the outputClass is set, then it will convert the query result into an Java bean object by calling all the setters that match the column names.It will assume your class has a default constructor to create instance with.d) If the query resulted in more than one rows, it throws an non-unique result exception.StreamList streams the result of the query using an Iterator. This can be used with the Splitter EIP in streaming mode to process the ResultSet in streaming fashion.
								

								 	
									SelectList
								

								 	
									SqlOutputType
								

								
	
									separator (common)
								

								 	
									The separator to use when parameter values is taken from message body (if the body is a String type), to be inserted at placeholders.Notice if you use named parameters, then a Map type is used instead. The default value is comma
								

								 	
									,
								

								 	
									char
								

								
	
									breakBatchOnConsumeFail (consumer)
								

								 	
									Sets whether to break batch if onConsume failed.
								

								 	
									false
								

								 	
									boolean
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									expectedUpdateCount (consumer)
								

								 	
									Sets an expected update count to validate when using onConsume.
								

								 	
									-1
								

								 	
									int
								

								
	
									maxMessagesPerPoll (consumer)
								

								 	
									Sets the maximum number of messages to poll
								

								 	 	
									int
								

								
	
									onConsume (consumer)
								

								 	
									After processing each row then this query can be executed, if the Exchange was processed successfully, for example to mark the row as processed. The query can have parameter.
								

								 	 	
									String
								

								
	
									onConsumeBatchComplete (consumer)
								

								 	
									After processing the entire batch, this query can be executed to bulk update rows etc. The query cannot have parameters.
								

								 	 	
									String
								

								
	
									onConsumeFailed (consumer)
								

								 	
									After processing each row then this query can be executed, if the Exchange failed, for example to mark the row as failed. The query can have parameter.
								

								 	 	
									String
								

								
	
									routeEmptyResultSet (consumer)
								

								 	
									Sets whether empty resultset should be allowed to be sent to the next hop. Defaults to false. So the empty resultset will be filtered out.
								

								 	
									false
								

								 	
									boolean
								

								
	
									sendEmptyMessageWhenIdle (consumer)
								

								 	
									If the polling consumer did not poll any files, you can enable this option to send an empty message (no body) instead.
								

								 	
									false
								

								 	
									boolean
								

								
	
									transacted (consumer)
								

								 	
									Enables or disables transaction. If enabled then if processing an exchange failed then the consumerbreak out processing any further exchanges to cause a rollback eager.
								

								 	
									false
								

								 	
									boolean
								

								
	
									useIterator (consumer)
								

								 	
									Sets how resultset should be delivered to route. Indicates delivery as either a list or individual object. defaults to true.
								

								 	
									true
								

								 	
									boolean
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									pollStrategy (consumer)
								

								 	
									A pluggable org.apache.camel.PollingConsumerPollingStrategy allowing you to provide your custom implementation to control error handling usually occurred during the poll operation before an Exchange have been created and being routed in Camel.
								

								 	 	
									PollingConsumerPoll Strategy
								

								
	
									processingStrategy (consumer)
								

								 	
									Allows to plugin to use a custom org.apache.camel.component.sql.SqlProcessingStrategy to execute queries when the consumer has processed the rows/batch.
								

								 	 	
									SqlProcessingStrategy
								

								
	
									batch (producer)
								

								 	
									Enables or disables batch mode
								

								 	
									false
								

								 	
									boolean
								

								
	
									noop (producer)
								

								 	
									If set, will ignore the results of the SQL query and use the existing IN message as the OUT message for the continuation of processing
								

								 	
									false
								

								 	
									boolean
								

								
	
									useMessageBodyForSql (producer)
								

								 	
									Whether to use the message body as the SQL and then headers for parameters. If this option is enabled then the SQL in the uri is not used.
								

								 	
									false
								

								 	
									boolean
								

								
	
									alwaysPopulateStatement (producer)
								

								 	
									If enabled then the populateStatement method from org.apache.camel.component.sql.SqlPrepareStatementStrategy is always invoked, also if there is no expected parameters to be prepared. When this is false then the populateStatement is only invoked if there is 1 or more expected parameters to be set; for example this avoids reading the message body/headers for SQL queries with no parameters.
								

								 	
									false
								

								 	
									boolean
								

								
	
									parametersCount (producer)
								

								 	
									If set greater than zero, then Camel will use this count value of parameters to replace instead of querying via JDBC metadata API. This is useful if the JDBC vendor could not return correct parameters count, then user may override instead.
								

								 	 	
									int
								

								
	
									elSqlConfig (advanced)
								

								 	
									To use a specific configured ElSqlConfig. It may be better to use the databaseVendor option instead.
								

								 	 	
									ElSqlConfig
								

								
	
									placeholder (advanced)
								

								 	
									Specifies a character that will be replaced to in SQL query. Notice, that it is simple String.replaceAll() operation and no SQL parsing is involved (quoted strings will also change).
								

								 	
									#
								

								 	
									String
								

								
	
									prepareStatementStrategy (advanced)
								

								 	
									Allows to plugin to use a custom org.apache.camel.component.sql.SqlPrepareStatementStrategy to control preparation of the query and prepared statement.
								

								 	 	
									SqlPrepareStatement Strategy
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									templateOptions (advanced)
								

								 	
									Configures the Spring JdbcTemplate with the key/values from the Map
								

								 	 	
									Map
								

								
	
									usePlaceholder (advanced)
								

								 	
									Sets whether to use placeholder and replace all placeholder characters with sign in the SQL queries.
								

								 	
									true
								

								 	
									boolean
								

								
	
									backoffErrorThreshold (scheduler)
								

								 	
									The number of subsequent error polls (failed due some error) that should happen before the backoffMultipler should kick-in.
								

								 	 	
									int
								

								
	
									backoffIdleThreshold (scheduler)
								

								 	
									The number of subsequent idle polls that should happen before the backoffMultipler should kick-in.
								

								 	 	
									int
								

								
	
									backoffMultiplier (scheduler)
								

								 	
									To let the scheduled polling consumer backoff if there has been a number of subsequent idles/errors in a row. The multiplier is then the number of polls that will be skipped before the next actual attempt is happening again. When this option is in use then backoffIdleThreshold and/or backoffErrorThreshold must also be configured.
								

								 	 	
									int
								

								
	
									delay (scheduler)
								

								 	
									Milliseconds before the next poll. You can also specify time values using units, such as 60s (60 seconds), 5m30s (5 minutes and 30 seconds), and 1h (1 hour).
								

								 	
									500
								

								 	
									long
								

								
	
									greedy (scheduler)
								

								 	
									If greedy is enabled, then the ScheduledPollConsumer will run immediately again, if the previous run polled 1 or more messages.
								

								 	
									false
								

								 	
									boolean
								

								
	
									initialDelay (scheduler)
								

								 	
									Milliseconds before the first poll starts. You can also specify time values using units, such as 60s (60 seconds), 5m30s (5 minutes and 30 seconds), and 1h (1 hour).
								

								 	
									1000
								

								 	
									long
								

								
	
									runLoggingLevel (scheduler)
								

								 	
									The consumer logs a start/complete log line when it polls. This option allows you to configure the logging level for that.
								

								 	
									TRACE
								

								 	
									LoggingLevel
								

								
	
									scheduledExecutorService (scheduler)
								

								 	
									Allows for configuring a custom/shared thread pool to use for the consumer. By default each consumer has its own single threaded thread pool.
								

								 	 	
									ScheduledExecutor Service
								

								
	
									scheduler (scheduler)
								

								 	
									To use a cron scheduler from either camel-spring or camel-quartz2 component
								

								 	
									none
								

								 	
									ScheduledPollConsumer Scheduler
								

								
	
									schedulerProperties (scheduler)
								

								 	
									To configure additional properties when using a custom scheduler or any of the Quartz2, Spring based scheduler.
								

								 	 	
									Map
								

								
	
									startScheduler (scheduler)
								

								 	
									Whether the scheduler should be auto started.
								

								 	
									true
								

								 	
									boolean
								

								
	
									timeUnit (scheduler)
								

								 	
									Time unit for initialDelay and delay options.
								

								 	
									MILLISECONDS
								

								 	
									TimeUnit
								

								
	
									useFixedDelay (scheduler)
								

								 	
									Controls if fixed delay or fixed rate is used. See ScheduledExecutorService in JDK for details.
								

								 	
									true
								

								 	
									boolean
								

								

Result of the query

				For select operations, the result is an instance of List<Map<String, Object>> type, as returned by the JdbcTemplate.queryForList() method. For update operations, the result is the number of updated rows, returned as an Integer.
			

				By default, the result is placed in the message body. If the outputHeader parameter is set, the result is placed in the header. This is an alternative to using a full message enrichment pattern to add headers, it provides a concise syntax for querying a sequence or some other small value into a header. It is convenient to use outputHeader and outputType together:
			

Header values

				When performing update operations, the SQL Component stores the update count in the following message headers:
			
	Header	Description
	
								CamelSqlUpdateCount
							

							 	
								The number of rows updated for update operations, returned as an Integer object.
							

							
	
								CamelSqlRowCount
							

							 	
								The number of rows returned for select operations, returned as an Integer object.
							

							

Sample

					In the given route below, we want to get all the projects from the projects table. Notice the SQL query has 2 named parameters, :#lic and :#min.
				

					Camel will then lookup for these parameters from the message body or message headers. Notice in the example above we set two headers with constant value
 for the named parameters:
				
 from("direct:projects")
 .setHeader("lic", constant("ASF"))
 .setHeader("min", constant(123))
 .to("elsql:projects:com/foo/orders.elsql")

					And the elsql mapping file
				
@NAME(projects)
 SELECT *
 FROM projects
 WHERE license = :lic AND id > :min
 ORDER BY id

					Though if the message body is a java.util.Map then the named parameters will be taken from the body.
				
 from("direct:projects")
 .to("elsql:projects:com/foo/orders.elsql")

					In from Camel 2.16.1 onwards you can use Simple expressions as well, which allows to use an OGNL like notation on the message body, where it assumes to have getLicense and getMinimum methods:
				
@NAME(projects)
 SELECT *
 FROM projects
 WHERE license = :${body.license} AND id > :${body.minimum}
 ORDER BY id

See Also

	
						Configuring Camel
					
	
						Component
					
	
						Endpoint
					
	
						Getting Started
					
	
						SQL Component
					
	
						MyBatis
					
	
						JDBC
					

Chapter 96. etcd Component

			Available as of Camel version 2.18
		

			The camel etcd component allows you to work with Etcd, a distributed reliable key-value store.
		
URI Format

etcd:namespace/path[?options]

URI Options

				The etcd component supports 7 options which are listed below.
			
	Name	Description	Default	Type
	
								uris (common)
							

							 	
								To set the URIs the client connects.
							

							 	 	
								String
							

							
	
								sslContextParameters (common)
							

							 	
								To configure security using SSLContextParameters.
							

							 	 	
								SSLContextParameters
							

							
	
								userName (common)
							

							 	
								The user name to use for basic authentication.
							

							 	 	
								String
							

							
	
								password (common)
							

							 	
								The password to use for basic authentication.
							

							 	 	
								String
							

							
	
								configuration (advanced)
							

							 	
								Sets the common configuration shared among endpoints
							

							 	 	
								EtcdConfiguration
							

							
	
								useGlobalSslContext Parameters (security)
							

							 	
								Enable usage of global SSL context parameters.
							

							 	
								false
							

							 	
								boolean
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The etcd endpoint is configured using URI syntax:
			
etcd:namespace/path

				with the following path and query parameters:
			
Path Parameters (2 parameters):

	Name	Description	Default	Type
	
									namespace
								

								 	
									Required The API namespace to use
								

								 	 	
									EtcdNamespace
								

								
	
									path
								

								 	
									The path the endpoint refers to
								

								 	 	
									String
								

								

Query Parameters (29 parameters):

	Name	Description	Default	Type
	
									recursive (common)
								

								 	
									To apply an action recursively.
								

								 	
									false
								

								 	
									boolean
								

								
	
									servicePath (common)
								

								 	
									The path to look for for service discovery
								

								 	
									/services/
								

								 	
									String
								

								
	
									timeout (common)
								

								 	
									To set the maximum time an action could take to complete.
								

								 	 	
									Long
								

								
	
									uris (common)
								

								 	
									To set the URIs the client connects.
								

								 	
									http://localhost:2379,http://localhost:4001
								

								 	
									String
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									sendEmptyExchangeOnTimeout (consumer)
								

								 	
									To send an empty message in case of timeout watching for a key.
								

								 	
									false
								

								 	
									boolean
								

								
	
									sendEmptyMessageWhenIdle (consumer)
								

								 	
									If the polling consumer did not poll any files, you can enable this option to send an empty message (no body) instead.
								

								 	
									false
								

								 	
									boolean
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									fromIndex (consumer)
								

								 	
									The index to watch from
								

								 	
									0
								

								 	
									Long
								

								
	
									pollStrategy (consumer)
								

								 	
									A pluggable org.apache.camel.PollingConsumerPollingStrategy allowing you to provide your custom implementation to control error handling usually occurred during the poll operation before an Exchange have been created and being routed in Camel.
								

								 	 	
									PollingConsumerPoll Strategy
								

								
	
									timeToLive (producer)
								

								 	
									To set the lifespan of a key in milliseconds.
								

								 	 	
									Integer
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									backoffErrorThreshold (scheduler)
								

								 	
									The number of subsequent error polls (failed due some error) that should happen before the backoffMultipler should kick-in.
								

								 	 	
									int
								

								
	
									backoffIdleThreshold (scheduler)
								

								 	
									The number of subsequent idle polls that should happen before the backoffMultipler should kick-in.
								

								 	 	
									int
								

								
	
									backoffMultiplier (scheduler)
								

								 	
									To let the scheduled polling consumer backoff if there has been a number of subsequent idles/errors in a row. The multiplier is then the number of polls that will be skipped before the next actual attempt is happening again. When this option is in use then backoffIdleThreshold and/or backoffErrorThreshold must also be configured.
								

								 	 	
									int
								

								
	
									delay (scheduler)
								

								 	
									Milliseconds before the next poll. You can also specify time values using units, such as 60s (60 seconds), 5m30s (5 minutes and 30 seconds), and 1h (1 hour).
								

								 	
									500
								

								 	
									long
								

								
	
									greedy (scheduler)
								

								 	
									If greedy is enabled, then the ScheduledPollConsumer will run immediately again, if the previous run polled 1 or more messages.
								

								 	
									false
								

								 	
									boolean
								

								
	
									initialDelay (scheduler)
								

								 	
									Milliseconds before the first poll starts. You can also specify time values using units, such as 60s (60 seconds), 5m30s (5 minutes and 30 seconds), and 1h (1 hour).
								

								 	
									1000
								

								 	
									long
								

								
	
									runLoggingLevel (scheduler)
								

								 	
									The consumer logs a start/complete log line when it polls. This option allows you to configure the logging level for that.
								

								 	
									TRACE
								

								 	
									LoggingLevel
								

								
	
									scheduledExecutorService (scheduler)
								

								 	
									Allows for configuring a custom/shared thread pool to use for the consumer. By default each consumer has its own single threaded thread pool.
								

								 	 	
									ScheduledExecutor Service
								

								
	
									scheduler (scheduler)
								

								 	
									To use a cron scheduler from either camel-spring or camel-quartz2 component
								

								 	
									none
								

								 	
									ScheduledPollConsumer Scheduler
								

								
	
									schedulerProperties (scheduler)
								

								 	
									To configure additional properties when using a custom scheduler or any of the Quartz2, Spring based scheduler.
								

								 	 	
									Map
								

								
	
									startScheduler (scheduler)
								

								 	
									Whether the scheduler should be auto started.
								

								 	
									true
								

								 	
									boolean
								

								
	
									timeUnit (scheduler)
								

								 	
									Time unit for initialDelay and delay options.
								

								 	
									MILLISECONDS
								

								 	
									TimeUnit
								

								
	
									useFixedDelay (scheduler)
								

								 	
									Controls if fixed delay or fixed rate is used. See ScheduledExecutorService in JDK for details.
								

								 	
									true
								

								 	
									boolean
								

								
	
									password (security)
								

								 	
									The password to use for basic authentication.
								

								 	 	
									String
								

								
	
									sslContextParameters (security)
								

								 	
									To configure security using SSLContextParameters.
								

								 	 	
									SSLContextParameters
								

								
	
									userName (security)
								

								 	
									The user name to use for basic authentication.
								

								 	 	
									String
								

								

Chapter 97. OSGi EventAdmin Component

			Available as of Camel version 2.6
		

			The eventadmin component can be used in an OSGi environment to receive OSGi EventAdmin events and process them.
		
Dependencies

				Maven users need to add the following dependency to their pom.xml
			
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-eventadmin</artifactId>
 <version>${camel-version}</version>
</dependency>

				where ${camel-version} must be replaced by the actual version of Camel (2.6.0 or higher).
			

URI format

eventadmin:topic[?options]

				where topic is the name of the topic to listen too.
			

URI options

				The OSGi EventAdmin component supports 2 options which are listed below.
			
	Name	Description	Default	Type
	
								bundleContext (common)
							

							 	
								The OSGi BundleContext is automatic injected by Camel
							

							 	 	
								BundleContext
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The OSGi EventAdmin endpoint is configured using URI syntax:
			
eventadmin:topic

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									topic
								

								 	
									Name of topic to listen or send to
								

								 	 	
									String
								

								

Query Parameters (5 parameters):

	Name	Description	Default	Type
	
									send (common)
								

								 	
									Whether to use 'send' or 'synchronous' deliver. Default false (async delivery)
								

								 	
									false
								

								 	
									boolean
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

Message headers

	Name	Type	Message
	
								Description
							

							 	 	

Message body

				The in message body will be set to the received Event.
			

Example usage

<route>
 <from uri="eventadmin:*"/>
 <to uri="stream:out"/>
</route>

Chapter 98. Exec Component

			Available as of Camel version 2.3
		

			The exec component can be used to execute system commands.
		
Dependencies

				Maven users need to add the following dependency to their pom.xml
			
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-exec</artifactId>
 <version>${camel-version}</version>
</dependency>

				where ${camel-version} must be replaced by the actual version of Camel (2.3.0 or higher).
			

URI format

exec://executable[?options]

				where executable is the name, or file path, of the system command that will be executed. If executable name is used (e.g. exec:java), the executable must in the system path.
			

URI options

				The Exec component has no options.
			

				The Exec endpoint is configured using URI syntax:
			
exec:executable

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									executable
								

								 	
									Required Sets the executable to be executed. The executable must not be empty or null.
								

								 	 	
									String
								

								

Query Parameters (8 parameters):

	Name	Description	Default	Type
	
									args (producer)
								

								 	
									The arguments may be one or many whitespace-separated tokens.
								

								 	 	
									String
								

								
	
									binding (producer)
								

								 	
									A reference to a org.apache.commons.exec.ExecBinding in the Registry.
								

								 	 	
									ExecBinding
								

								
	
									commandExecutor (producer)
								

								 	
									A reference to a org.apache.commons.exec.ExecCommandExecutor in the Registry that customizes the command execution. The default command executor utilizes the commons-exec library, which adds a shutdown hook for every executed command.
								

								 	 	
									ExecCommandExecutor
								

								
	
									outFile (producer)
								

								 	
									The name of a file, created by the executable, that should be considered as its output. If no outFile is set, the standard output (stdout) of the executable will be used instead.
								

								 	 	
									String
								

								
	
									timeout (producer)
								

								 	
									The timeout, in milliseconds, after which the executable should be terminated. If execution has not completed within the timeout, the component will send a termination request.
								

								 	 	
									long
								

								
	
									useStderrOnEmptyStdout (producer)
								

								 	
									A boolean indicating that when stdout is empty, this component will populate the Camel Message Body with stderr. This behavior is disabled (false) by default.
								

								 	
									false
								

								 	
									boolean
								

								
	
									workingDir (producer)
								

								 	
									The directory in which the command should be executed. If null, the working directory of the current process will be used.
								

								 	 	
									String
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

Message headers

				The supported headers are defined in org.apache.camel.component.exec.ExecBinding.
			
	Name	Type	Message	Description
	
								ExecBinding.EXEC_COMMAND_EXECUTABLE
							

							 	
								String
							

							 	
								in
							

							 	
								The name of the system command that will be executed. Overrides executable in the URI.
							

							
	
								ExecBinding.EXEC_COMMAND_ARGS
							

							 	
								java.util.List<String>
							

							 	
								in
							

							 	
								Command-line arguments to pass to the executed process. The arguments are used literally - no quoting is applied. Overrides any existing args in the URI.
							

							
	
								ExecBinding.EXEC_COMMAND_ARGS
							

							 	
								String
							

							 	
								in
							

							 	
								Camel 2.5: The arguments of the executable as a Single string where each argument is whitespace separated (see args in URI option). The arguments are used literally, no quoting is applied. Overrides any existing args in the URI.
							

							
	
								ExecBinding.EXEC_COMMAND_OUT_FILE
							

							 	
								String
							

							 	
								in
							

							 	
								The name of a file, created by the executable, that should be considered as its output. Overrides any existing outFile in the URI.
							

							
	
								ExecBinding.EXEC_COMMAND_TIMEOUT
							

							 	
								long
							

							 	
								in
							

							 	
								The timeout, in milliseconds, after which the executable should be terminated. Overrides any existing timeout in the URI.
							

							
	
								ExecBinding.EXEC_COMMAND_WORKING_DIR
							

							 	
								String
							

							 	
								in
							

							 	
								The directory in which the command should be executed. Overrides any existing workingDir in the URI.
							

							
	
								ExecBinding.EXEC_EXIT_VALUE
							

							 	
								int
							

							 	
								out
							

							 	
								The value of this header is the exit value of the executable. Non-zero exit values typically indicate abnormal termination. Note that the exit value is OS-dependent.
							

							
	
								ExecBinding.EXEC_STDERR
							

							 	
								java.io.InputStream
							

							 	
								out
							

							 	
								The value of this header points to the standard error stream (stderr) of the executable. If no stderr is written, the value is null.
							

							
	
								ExecBinding.EXEC_USE_STDERR_ON_EMPTY_STDOUT
							

							 	
								boolean
							

							 	
								in
							

							 	
								Indicates that when stdout is empty, this component will populate the Camel Message Body with stderr. This behavior is disabled (false) by default.
							

							

Message body

				If the Exec component receives an in message body that is convertible to java.io.InputStream, it is used to feed input to the executable via its stdin. After execution, the message body is the result of the execution,- that is, an org.apache.camel.components.exec.ExecResult instance containing the stdout, stderr, exit value, and out file. This component supports the following ExecResult type converters for convenience:
			
	From	To
	
								ExecResult
							

							 	
								java.io.InputStream
							

							
	
								ExecResult
							

							 	
								String
							

							
	
								ExecResult
							

							 	
								byte []
							

							
	
								ExecResult
							

							 	
								org.w3c.dom.Document
							

							

				If an out file is specified (in the endpoint via outFile or the message headers via ExecBinding.EXEC_COMMAND_OUT_FILE), converters will return the content of the out file. If no out file is used, then this component will convert the stdout of the process to the target type. For more details, please refer to the usage examples below.
			

Usage examples

Executing word count (Linux)

					The example below executes wc (word count, Linux) to count the words in file /usr/share/dict/words. The word count (output) is written to the standard output stream of wc.
				
from("direct:exec")
.to("exec:wc?args=--words /usr/share/dict/words")
.process(new Processor() {
 public void process(Exchange exchange) throws Exception {
 // By default, the body is ExecResult instance
 assertIsInstanceOf(ExecResult.class, exchange.getIn().getBody());
 // Use the Camel Exec String type converter to convert the ExecResult to String
 // In this case, the stdout is considered as output
 String wordCountOutput = exchange.getIn().getBody(String.class);
 // do something with the word count
 }
});

Executing java

					The example below executes java with 2 arguments: -server and -version, provided that java is in the system path.
				
from("direct:exec")
.to("exec:java?args=-server -version")

					The example below executes java in c:\temp with 3 arguments: -server, -version and the sytem property user.name.
				
from("direct:exec")
.to("exec:c:/program files/jdk/bin/java?args=-server -version -Duser.name=Camel&workingDir=c:/temp")

Executing Ant scripts

					The following example executes Apache Ant (Windows only) with the build file CamelExecBuildFile.xml, provided that ant.bat is in the system path, and that CamelExecBuildFile.xml is in the current directory.
				
from("direct:exec")
.to("exec:ant.bat?args=-f CamelExecBuildFile.xml")

					In the next example, the ant.bat command redirects its output to CamelExecOutFile.txt with -l. The file CamelExecOutFile.txt is used as the out file with outFile=CamelExecOutFile.txt. The example assumes that ant.bat is in the system path, and that CamelExecBuildFile.xml is in the current directory.
				
from("direct:exec")
.to("exec:ant.bat?args=-f CamelExecBuildFile.xml -l CamelExecOutFile.txt&outFile=CamelExecOutFile.txt")
.process(new Processor() {
 public void process(Exchange exchange) throws Exception {
 InputStream outFile = exchange.getIn().getBody(InputStream.class);
 assertIsInstanceOf(InputStream.class, outFile);
 // do something with the out file here
 }
 });

Executing echo (Windows)

					Commands such as echo and dir can be executed only with the command interpreter of the operating system. This example shows how to execute such a command - echo - in Windows.
				
from("direct:exec").to("exec:cmd?args=/C echo echoString")

See Also

	
						Configuring Camel
					
	
						Component
					
	
						Endpoint
					
	
						Getting Started
					

Chapter 99. Facebook Component

			Available as of Camel version 2.14
		

			The Facebook component provides access to all of the Facebook APIs accessible using Facebook4J. It allows producing messages to retrieve, add, and delete posts, likes, comments, photos, albums, videos, photos, checkins, locations, links, etc. It also supports APIs that allow polling for posts, users, checkins, groups, locations, etc.
		

			Facebook requires the use of OAuth for all client application authentication. In order to use camel-facebook with your account, you’ll need to create a new application within Facebook at https://developers.facebook.com/apps and grant the application access to your account. The Facebook application’s id and secret will allow access to Facebook APIs which do not require a current user. A user access token is required for APIs that require a logged in user. More information on obtaining a user access token can be found at https://developers.facebook.com/docs/facebook-login/access-tokens/.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
 <dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-facebook</artifactId>
 <version>${camel-version}</version>
 </dependency>
URI format

 facebook://[endpoint]?[options]

FacebookComponent

				The facebook component can be configured with the Facebook account settings below, which are mandatory. The values can be provided to the component using the bean property configuration of type org.apache.camel.component.facebook.config.FacebookConfiguration. The oAuthAccessToken option may be ommited but that will only allow access to application APIs.
			

				The Facebook component supports 2 options which are listed below.
			
	Name	Description	Default	Type
	
								configuration (advanced)
							

							 	
								To use the shared configuration
							

							 	 	
								FacebookConfiguration
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The Facebook endpoint is configured using URI syntax:
			
facebook:methodName

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									methodName
								

								 	
									Required What operation to perform
								

								 	 	
									String
								

								

Query Parameters (102 parameters):

	Name	Description	Default	Type
	
									achievementURL (common)
								

								 	
									The unique URL of the achievement
								

								 	 	
									URL
								

								
	
									albumId (common)
								

								 	
									The album ID
								

								 	 	
									String
								

								
	
									albumUpdate (common)
								

								 	
									The facebook Album to be created or updated
								

								 	 	
									AlbumUpdate
								

								
	
									appId (common)
								

								 	
									The ID of the Facebook Application
								

								 	 	
									String
								

								
	
									center (common)
								

								 	
									Location latitude and longitude
								

								 	 	
									GeoLocation
								

								
	
									checkinId (common)
								

								 	
									The checkin ID
								

								 	 	
									String
								

								
	
									checkinUpdate (common)
								

								 	
									Deprecated The checkin to be created. Deprecated, instead create a Post with an attached location
								

								 	 	
									CheckinUpdate
								

								
	
									clientURL (common)
								

								 	
									Facebook4J API client URL
								

								 	 	
									String
								

								
	
									clientVersion (common)
								

								 	
									Facebook4J client API version
								

								 	 	
									String
								

								
	
									commentId (common)
								

								 	
									The comment ID
								

								 	 	
									String
								

								
	
									commentUpdate (common)
								

								 	
									The facebook Comment to be created or updated
								

								 	 	
									CommentUpdate
								

								
	
									debugEnabled (common)
								

								 	
									Enables deubg output. Effective only with the embedded logger
								

								 	
									false
								

								 	
									Boolean
								

								
	
									description (common)
								

								 	
									The description text
								

								 	 	
									String
								

								
	
									distance (common)
								

								 	
									Distance in meters
								

								 	 	
									Integer
								

								
	
									domainId (common)
								

								 	
									The domain ID
								

								 	 	
									String
								

								
	
									domainName (common)
								

								 	
									The domain name
								

								 	 	
									String
								

								
	
									domainNames (common)
								

								 	
									The domain names
								

								 	 	
									List
								

								
	
									eventId (common)
								

								 	
									The event ID
								

								 	 	
									String
								

								
	
									eventUpdate (common)
								

								 	
									The event to be created or updated
								

								 	 	
									EventUpdate
								

								
	
									friendId (common)
								

								 	
									The friend ID
								

								 	 	
									String
								

								
	
									friendlistId (common)
								

								 	
									The friend list ID
								

								 	 	
									String
								

								
	
									friendlistName (common)
								

								 	
									The friend list Name
								

								 	 	
									String
								

								
	
									friendUserId (common)
								

								 	
									The friend user ID
								

								 	 	
									String
								

								
	
									groupId (common)
								

								 	
									The group ID
								

								 	 	
									String
								

								
	
									gzipEnabled (common)
								

								 	
									Use Facebook GZIP encoding
								

								 	
									true
								

								 	
									Boolean
								

								
	
									httpConnectionTimeout (common)
								

								 	
									Http connection timeout in milliseconds
								

								 	
									20000
								

								 	
									Integer
								

								
	
									httpDefaultMaxPerRoute (common)
								

								 	
									HTTP maximum connections per route
								

								 	
									2
								

								 	
									Integer
								

								
	
									httpMaxTotalConnections (common)
								

								 	
									HTTP maximum total connections
								

								 	
									20
								

								 	
									Integer
								

								
	
									httpReadTimeout (common)
								

								 	
									Http read timeout in milliseconds
								

								 	
									120000
								

								 	
									Integer
								

								
	
									httpRetryCount (common)
								

								 	
									Number of HTTP retries
								

								 	
									0
								

								 	
									Integer
								

								
	
									httpRetryIntervalSeconds (common)
								

								 	
									HTTP retry interval in seconds
								

								 	
									5
								

								 	
									Integer
								

								
	
									httpStreamingReadTimeout (common)
								

								 	
									HTTP streaming read timeout in milliseconds
								

								 	
									40000
								

								 	
									Integer
								

								
	
									ids (common)
								

								 	
									The ids of users
								

								 	 	
									List
								

								
	
									inBody (common)
								

								 	
									Sets the name of a parameter to be passed in the exchange In Body
								

								 	 	
									String
								

								
	
									includeRead (common)
								

								 	
									Enables notifications that the user has already read in addition to unread ones
								

								 	 	
									Boolean
								

								
	
									isHidden (common)
								

								 	
									Whether hidden
								

								 	 	
									Boolean
								

								
	
									jsonStoreEnabled (common)
								

								 	
									If set to true, raw JSON forms will be stored in DataObjectFactory
								

								 	
									false
								

								 	
									Boolean
								

								
	
									link (common)
								

								 	
									Link URL
								

								 	 	
									URL
								

								
	
									linkId (common)
								

								 	
									Link ID
								

								 	 	
									String
								

								
	
									locale (common)
								

								 	
									Desired FQL locale
								

								 	 	
									Locale
								

								
	
									mbeanEnabled (common)
								

								 	
									If set to true, Facebook4J mbean will be registerd
								

								 	
									false
								

								 	
									Boolean
								

								
	
									message (common)
								

								 	
									The message text
								

								 	 	
									String
								

								
	
									messageId (common)
								

								 	
									The message ID
								

								 	 	
									String
								

								
	
									metric (common)
								

								 	
									The metric name
								

								 	 	
									String
								

								
	
									milestoneId (common)
								

								 	
									The milestone id
								

								 	 	
									String
								

								
	
									name (common)
								

								 	
									Test user name, must be of the form 'first last'
								

								 	 	
									String
								

								
	
									noteId (common)
								

								 	
									The note ID
								

								 	 	
									String
								

								
	
									notificationId (common)
								

								 	
									The notification ID
								

								 	 	
									String
								

								
	
									objectId (common)
								

								 	
									The insight object ID
								

								 	 	
									String
								

								
	
									offerId (common)
								

								 	
									The offer id
								

								 	 	
									String
								

								
	
									optionDescription (common)
								

								 	
									The question’s answer option description
								

								 	 	
									String
								

								
	
									pageId (common)
								

								 	
									The page id
								

								 	 	
									String
								

								
	
									permissionName (common)
								

								 	
									The permission name
								

								 	 	
									String
								

								
	
									permissions (common)
								

								 	
									Test user permissions in the format perm1,perm2,…​
								

								 	 	
									String
								

								
	
									photoId (common)
								

								 	
									The photo ID
								

								 	 	
									String
								

								
	
									pictureId (common)
								

								 	
									The picture id
								

								 	 	
									Integer
								

								
	
									pictureId2 (common)
								

								 	
									The picture2 id
								

								 	 	
									Integer
								

								
	
									pictureSize (common)
								

								 	
									The picture size
								

								 	 	
									PictureSize
								

								
	
									placeId (common)
								

								 	
									The place ID
								

								 	 	
									String
								

								
	
									postId (common)
								

								 	
									The post ID
								

								 	 	
									String
								

								
	
									postUpdate (common)
								

								 	
									The post to create or update
								

								 	 	
									PostUpdate
								

								
	
									prettyDebugEnabled (common)
								

								 	
									Prettify JSON debug output if set to true
								

								 	
									false
								

								 	
									Boolean
								

								
	
									queries (common)
								

								 	
									FQL queries
								

								 	 	
									Map
								

								
	
									query (common)
								

								 	
									FQL query or search terms for search endpoints
								

								 	 	
									String
								

								
	
									questionId (common)
								

								 	
									The question id
								

								 	 	
									String
								

								
	
									reading (common)
								

								 	
									Optional reading parameters. See Reading Options(reading)
								

								 	 	
									Reading
								

								
	
									readingOptions (common)
								

								 	
									To configure Reading using key/value pairs from the Map.
								

								 	 	
									Map
								

								
	
									restBaseURL (common)
								

								 	
									API base URL
								

								 	
									https://graph.facebook.com/
								

								 	
									String
								

								
	
									scoreValue (common)
								

								 	
									The numeric score with value
								

								 	 	
									Integer
								

								
	
									size (common)
								

								 	
									The picture size, one of large, normal, small or square
								

								 	 	
									PictureSize
								

								
	
									source (common)
								

								 	
									The media content from either a java.io.File or java.io.Inputstream
								

								 	 	
									Media
								

								
	
									subject (common)
								

								 	
									The note of the subject
								

								 	 	
									String
								

								
	
									tabId (common)
								

								 	
									The tab id
								

								 	 	
									String
								

								
	
									tagUpdate (common)
								

								 	
									Photo tag information
								

								 	 	
									TagUpdate
								

								
	
									testUser1 (common)
								

								 	
									Test user 1
								

								 	 	
									TestUser
								

								
	
									testUser2 (common)
								

								 	
									Test user 2
								

								 	 	
									TestUser
								

								
	
									testUserId (common)
								

								 	
									The ID of the test user
								

								 	 	
									String
								

								
	
									title (common)
								

								 	
									The title text
								

								 	 	
									String
								

								
	
									toUserId (common)
								

								 	
									The ID of the user to tag
								

								 	 	
									String
								

								
	
									toUserIds (common)
								

								 	
									The IDs of the users to tag
								

								 	 	
									List
								

								
	
									userId (common)
								

								 	
									The Facebook user ID
								

								 	 	
									String
								

								
	
									userId1 (common)
								

								 	
									The ID of a user 1
								

								 	 	
									String
								

								
	
									userId2 (common)
								

								 	
									The ID of a user 2
								

								 	 	
									String
								

								
	
									userIds (common)
								

								 	
									The IDs of users to invite to event
								

								 	 	
									List
								

								
	
									userLocale (common)
								

								 	
									The test user locale
								

								 	 	
									String
								

								
	
									useSSL (common)
								

								 	
									Use SSL
								

								 	
									true
								

								 	
									Boolean
								

								
	
									videoBaseURL (common)
								

								 	
									Video API base URL
								

								 	
									https://graph-video.facebook.com/
								

								 	
									String
								

								
	
									videoId (common)
								

								 	
									The video ID
								

								 	 	
									String
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									httpProxyHost (proxy)
								

								 	
									HTTP proxy server host name
								

								 	 	
									String
								

								
	
									httpProxyPassword (proxy)
								

								 	
									HTTP proxy server password
								

								 	 	
									String
								

								
	
									httpProxyPort (proxy)
								

								 	
									HTTP proxy server port
								

								 	 	
									Integer
								

								
	
									httpProxyUser (proxy)
								

								 	
									HTTP proxy server user name
								

								 	 	
									String
								

								
	
									oAuthAccessToken (security)
								

								 	
									The user access token
								

								 	 	
									String
								

								
	
									oAuthAccessTokenURL (security)
								

								 	
									OAuth access token URL
								

								 	
									https://graph.facebook.com/oauth/access_token
								

								 	
									String
								

								
	
									oAuthAppId (security)
								

								 	
									The application Id
								

								 	 	
									String
								

								
	
									oAuthAppSecret (security)
								

								 	
									The application Secret
								

								 	 	
									String
								

								
	
									oAuthAuthorizationURL (security)
								

								 	
									OAuth authorization URL
								

								 	
									https://www.facebook.com/dialog/oauth
								

								 	
									String
								

								
	
									oAuthPermissions (security)
								

								 	
									Default OAuth permissions. Comma separated permission names. See https://developers.facebook.com/docs/reference/login/permissions for the detail
								

								 	 	
									String
								

								

Producer Endpoints:

				Producer endpoints can use endpoint names and options from the table below. Endpoints can also use the short name without the get or search prefix, except checkin due to ambiguity between getCheckin and searchCheckin. Endpoint options that are not mandatory are denoted by [].
			

				Producer endpoints can also use a special option inBody that in turn should contain the name of the endpoint option whose value will be contained in the Camel Exchange In message. For example, the facebook endpoint in the following route retrieves activities for the user id value in the incoming message body.
			
 from("direct:test").to("facebook://activities?inBody=userId")...

				Any of the endpoint options can be provided in either the endpoint URI, or dynamically in a message header. The message header name must be of the format CamelFacebook.https://cwiki.apache.org/confluence/pages/createpage.action?spaceKey=CAMEL&title=option&linkCreation=true&fromPageId=34020899[option]. For example, the userId option value in the previous route could alternately be provided in the message header CamelFacebook.userId. Note that the inBody option overrides message header, e.g. the endpoint option inBody=user would override a CamelFacebook.userId header.
			

				Endpoints that return a String return an Id for the created or modified entity, e.g. addAlbumPhoto returns the new album Id. Endpoints that return a boolean, return true for success and false otherwise. In case of Facebook API errors the endpoint will throw a RuntimeCamelException with a facebook4j.FacebookException cause.
			

Consumer Endpoints:

				Any of the producer endpoints that take a reading#reading parameter can be used as a consumer endpoint. The polling consumer uses the since and until fields to get responses within the polling interval. In addition to other reading fields, an initial since value can be provided in the endpoint for the first poll.
			

				Rather than the endpoints returning a List (or facebook4j.ResponseList) through a single route exchange, camel-facebook creates one route exchange per returned object. As an example, if "facebook://home" results in five posts, the route will be executed five times (once for each Post).
			

Reading Options

				The reading option of type facebook4j.Reading adds support for reading parameters, which allow selecting specific fields, limits the number of results, etc. For more information see Graph API#reading - Facebook Developers.
			

				It is also used by consumer endpoints to poll Facebook data to avoid sending duplicate messages across polls.
			

				The reading option can be a reference or value of type facebook4j.Reading, or can be specified using the following reading options in either the endpoint URI or exchange header with CamelFacebook. prefix.
			

Message header

				Any of the URI options#urioptions can be provided in a message header for producer endpoints with CamelFacebook. prefix.
			

Message body

				All result message bodies utilize objects provided by the Facebook4J API. Producer endpoints can specify the option name for incoming message body in the inBody endpoint parameter.
			

				For endpoints that return an array, or facebook4j.ResponseList, or java.util.List, a consumer endpoint will map every elements in the list to distinct messages.
			

Use cases

				To create a post within your Facebook profile, send this producer a facebook4j.PostUpdate body.
			
 from("direct:foo")
 .to("facebook://postFeed/inBody=postUpdate);

				To poll, every 5 sec (You can set the polling consumer options by adding a prefix of "consumer"), all statuses on your home feed:
			
 from("facebook://home?consumer.delay=5000")
 .to("bean:blah");

				Searching using a producer with dynamic options from header.
			

				In the bar header we have the Facebook search string we want to execute in public posts, so we need to assign this value to the CamelFacebook.query header.
			
 from("direct:foo")
 .setHeader("CamelFacebook.query", header("bar"))
 .to("facebook://posts");

Chapter 100. FHIR Component

			Available as of Camel version 2.23
		

			The FHIR component integrates with the HAPI-FHIR library which is an open-source implementation of the FHIR (Fast Healthcare Interoperability Resources) specification in Java.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-fhir</artifactId>
 <version>${camel-version}</version>
</dependency>
URI Format

				The FHIR Component uses the following URI format:
			
fhir://endpoint-prefix/endpoint?[options]

				Endpoint prefix can be one of:
			
	
						capabilities
					
	
						create
					
	
						delete
					
	
						history
					
	
						load-page
					
	
						meta
					
	
						operation
					
	
						patch
					
	
						read
					
	
						search
					
	
						transaction
					
	
						update
					
	
						validate
					

				The FHIR component supports 2 options, which are listed below.
			
	Name	Description	Default	Type
	
								configuration (common)
							

							 	
								To use the shared configuration
							

							 	 	
								FhirConfiguration
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The FHIR endpoint is configured using URI syntax:
			
fhir:apiName/methodName

				with the following path and query parameters:
			
Path Parameters (2 parameters):

	Name	Description	Default	Type
	
									apiName
								

								 	
									Required What kind of operation to perform
								

								 	 	
									FhirApiName
								

								
	
									methodName
								

								 	
									Required What sub operation to use for the selected operation
								

								 	 	
									String
								

								

Query Parameters (26 parameters):

	Name	Description	Default	Type
	
									encoding (common)
								

								 	
									Encoding to use for all request
								

								 	 	
									String
								

								
	
									fhirVersion (common)
								

								 	
									The FHIR Version to use
								

								 	
									DSTU3
								

								 	
									String
								

								
	
									inBody (common)
								

								 	
									Sets the name of a parameter to be passed in the exchange In Body
								

								 	 	
									String
								

								
	
									log (common)
								

								 	
									Will log every requests and responses
								

								 	
									false
								

								 	
									boolean
								

								
	
									prettyPrint (common)
								

								 	
									Pretty print all request
								

								 	
									false
								

								 	
									boolean
								

								
	
									serverUrl (common)
								

								 	
									The FHIR server base URL
								

								 	 	
									String
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this option is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									compress (advanced)
								

								 	
									Compresses outgoing (POST/PUT) contents to the GZIP format
								

								 	
									false
								

								 	
									boolean
								

								
	
									connectionTimeout (advanced)
								

								 	
									How long to try and establish the initial TCP connection (in ms)
								

								 	
									10000
								

								 	
									Integer
								

								
	
									deferModelScanning (advanced)
								

								 	
									When this option is set, model classes will not be scanned for children until the child list for the given type is actually accessed.
								

								 	
									false
								

								 	
									boolean
								

								
	
									fhirContext (advanced)
								

								 	
									FhirContext is an expensive object to create. To avoid creating multiple instances, it can be set directly.
								

								 	 	
									FhirContext
								

								
	
									forceConformanceCheck (advanced)
								

								 	
									Force conformance check
								

								 	
									false
								

								 	
									boolean
								

								
	
									sessionCookie (advanced)
								

								 	
									HTTP session cookie to add to every request
								

								 	 	
									String
								

								
	
									socketTimeout (advanced)
								

								 	
									How long to block for individual read/write operations (in ms)
								

								 	
									10000
								

								 	
									Integer
								

								
	
									summary (advanced)
								

								 	
									Request that the server modify the response using the _summary param
								

								 	 	
									String
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									validationMode (advanced)
								

								 	
									When should Camel validate the FHIR Server’s conformance statement
								

								 	
									ONCE
								

								 	
									String
								

								
	
									proxyHost (proxy)
								

								 	
									The proxy host
								

								 	 	
									String
								

								
	
									proxyPassword (proxy)
								

								 	
									The proxy password
								

								 	 	
									String
								

								
	
									proxyPort (proxy)
								

								 	
									The proxy port
								

								 	 	
									Integer
								

								
	
									proxyUser (proxy)
								

								 	
									The proxy username
								

								 	 	
									String
								

								
	
									accessToken (security)
								

								 	
									OAuth access token
								

								 	 	
									String
								

								
	
									password (security)
								

								 	
									Username to use for basic authentication
								

								 	 	
									String
								

								
	
									username (security)
								

								 	
									Username to use for basic authentication
								

								 	 	
									String
								

								

Spring Boot Auto-Configuration

				The component supports 23 options, which are listed below.
			
	Name	Description	Default	Type
	
								camel.component.fhir.configuration.access-token
							

							 	
								OAuth access token
							

							 	 	
								String
							

							
	
								camel.component.fhir.configuration.api-name
							

							 	
								What kind of operation to perform
							

							 	 	
								FhirApiName
							

							
	
								camel.component.fhir.configuration.client
							

							 	
								To use the custom client
							

							 	 	
								IGenericClient
							

							
	
								camel.component.fhir.configuration.client-factory
							

							 	
								To use the custom client factory
							

							 	 	
								IRestfulClientFactory
							

							
	
								camel.component.fhir.configuration.compress
							

							 	
								Compresses outgoing (POST/PUT) contents to the GZIP format
							

							 	
								false
							

							 	
								Boolean
							

							
	
								camel.component.fhir.configuration.connection-timeout
							

							 	
								How long to try and establish the initial TCP connection (in ms)
							

							 	
								10000
							

							 	
								Integer
							

							
	
								camel.component.fhir.configuration.defer-model-scanning
							

							 	
								When this option is set, model classes will not be scanned for children until the child list for the given type is actually accessed.
							

							 	
								false
							

							 	
								Boolean
							

							
	
								camel.component.fhir.configuration.fhir-context
							

							 	
								FhirContext is an expensive object to create. To avoid creating multiple instances, it can be set directly.
							

							 	 	
								FhirContext
							

							
	
								camel.component.fhir.configuration.force-conformance-check
							

							 	
								Force conformance check
							

							 	
								false
							

							 	
								Boolean
							

							
	
								camel.component.fhir.configuration.log
							

							 	
								Will log every requests and responses
							

							 	
								false
							

							 	
								Boolean
							

							
	
								camel.component.fhir.configuration.method-name
							

							 	
								What sub operation to use for the selected operation
							

							 	 	
								String
							

							
	
								camel.component.fhir.configuration.password
							

							 	
								Username to use for basic authentication
							

							 	 	
								String
							

							
	
								camel.component.fhir.configuration.pretty-print
							

							 	
								Pretty print all request
							

							 	
								false
							

							 	
								Boolean
							

							
	
								camel.component.fhir.configuration.proxy-host
							

							 	
								The proxy host
							

							 	 	
								String
							

							
	
								camel.component.fhir.configuration.proxy-password
							

							 	
								The proxy password
							

							 	 	
								String
							

							
	
								camel.component.fhir.configuration.proxy-port
							

							 	
								The proxy port
							

							 	 	
								Integer
							

							
	
								camel.component.fhir.configuration.proxy-user
							

							 	
								The proxy username
							

							 	 	
								String
							

							
	
								camel.component.fhir.configuration.server-url
							

							 	
								The FHIR server base URL
							

							 	 	
								String
							

							
	
								camel.component.fhir.configuration.session-cookie
							

							 	
								HTTP session cookie to add to every request
							

							 	 	
								String
							

							
	
								camel.component.fhir.configuration.socket-timeout
							

							 	
								How long to block for individual read/write operations (in ms)
							

							 	
								10000
							

							 	
								Integer
							

							
	
								camel.component.fhir.configuration.username
							

							 	
								Username to use for basic authentication
							

							 	 	
								String
							

							
	
								camel.component.fhir.enabled
							

							 	
								Whether to enable auto configuration of the fhir component. This is enabled by default.
							

							 	 	
								Boolean
							

							
	
								camel.component.fhir.resolve-property-placeholders
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								Boolean
							

							

Chapter 101. FHIR JSon DataFormat

			Available as of Camel version 2.21Available as of Camel version 2.21Available as of Camel version 2.21
		

			The FHIR-JSON Data Format leverages HAPI-FHIR’s JSON parser to parse to/from JSON format to/from a HAPI-FHIR’s IBaseResource.
		
FHIR JSON Format Options

				The FHIR JSon dataformat supports 2 options which are listed below.
			
	Name	Default	Java Type	Description
	
								fhirVersion
							

							 	
								DSTU3
							

							 	
								String
							

							 	
								The version of FHIR to use. Possible values are: DSTU2,DSTU2_HL7ORG,DSTU2_1,DSTU3,R4
							

							
	
								contentTypeHeader
							

							 	
								false
							

							 	
								Boolean
							

							 	
								Whether the data format should set the Content-Type header with the type from the data format if the data format is capable of doing so. For example application/xml for data formats marshalling to XML, or application/json for data formats marshalling to JSon etc.
							

							

Chapter 102. FHIR XML DataFormat

			Available as of Camel version 2.21Available as of Camel version 2.21
		

			The FHIR-XML Data Format leverages HAPI-FHIR’s XML parser to parse to/from XML format to/from a HAPI-FHIR’s IBaseResource.
		
FHIR XML Format Options

				The FHIR XML dataformat supports 2 options which are listed below.
			
	Name	Default	Java Type	Description
	
								fhirVersion
							

							 	
								DSTU3
							

							 	
								String
							

							 	
								The version of FHIR to use. Possible values are: DSTU2,DSTU2_HL7ORG,DSTU2_1,DSTU3,R4
							

							
	
								contentTypeHeader
							

							 	
								false
							

							 	
								Boolean
							

							 	
								Whether the data format should set the Content-Type header with the type from the data format if the data format is capable of doing so. For example application/xml for data formats marshalling to XML, or application/json for data formats marshalling to JSon etc.
							

							

Chapter 103. File Component

			Available as of Camel version 1.0
		

			The File component provides access to file systems, allowing files to be processed by any other Camel Components or messages from other components to be saved to disk.
		
URI format

file:directoryName[?options]

				or
			
file://directoryName[?options]

				Where directoryName represents the underlying file directory.
			

				You can append query options to the URI in the following format, ?option=value&option=value&…​
			

				Only directories
			

				Camel supports only endpoints configured with a starting directory. So the directoryName must be a directory.
 If you want to consume a single file only, you can use the fileName option, e.g. by setting fileName=thefilename.
 Also, the starting directory must not contain dynamic expressions with $\{ } placeholders. Again use the fileName option to specify the dynamic part of the filename.
			
Warning

					Avoid reading files currently being written by another application Beware the JDK File IO API is a bit limited in detecting whether another application is currently writing/copying a file. And the implementation can be different depending on OS platform as well. This could lead to that Camel thinks the file is not locked by another process and start consuming it. Therefore you have to do you own investigation what suites your environment. To help with this Camel provides different readLock options and doneFileName option that you can use. See also the section Consuming files from folders where others drop files directly.
				

URI Options

				The File component has no options.
			

				The File endpoint is configured using URI syntax:
			
file:directoryName

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									directoryName
								

								 	
									Required The starting directory
								

								 	 	
									File
								

								

Query Parameters (81 parameters):

	Name	Description	Default	Type
	
									charset (common)
								

								 	
									This option is used to specify the encoding of the file. You can use this on the consumer, to specify the encodings of the files, which allow Camel to know the charset it should load the file content in case the file content is being accessed. Likewise when writing a file, you can use this option to specify which charset to write the file as well. Do mind that when writing the file Camel may have to read the message content into memory to be able to convert the data into the configured charset, so do not use this if you have big messages.
								

								 	 	
									String
								

								
	
									doneFileName (common)
								

								 	
									Producer: If provided, then Camel will write a 2nd done file when the original file has been written. The done file will be empty. This option configures what file name to use. Either you can specify a fixed name. Or you can use dynamic placeholders. The done file will always be written in the same folder as the original file. Consumer: If provided, Camel will only consume files if a done file exists. This option configures what file name to use. Either you can specify a fixed name. Or you can use dynamic placeholders.The done file is always expected in the same folder as the original file. Only $file.name and $file.name.noext is supported as dynamic placeholders.
								

								 	 	
									String
								

								
	
									fileName (common)
								

								 	
									Use Expression such as File Language to dynamically set the filename. For consumers, it’s used as a filename filter. For producers, it’s used to evaluate the filename to write. If an expression is set, it take precedence over the CamelFileName header. (Note: The header itself can also be an Expression). The expression options support both String and Expression types. If the expression is a String type, it is always evaluated using the File Language. If the expression is an Expression type, the specified Expression type is used - this allows you, for instance, to use OGNL expressions. For the consumer, you can use it to filter filenames, so you can for instance consume today’s file using the File Language syntax: mydata-$date:now:yyyyMMdd.txt. The producers support the CamelOverruleFileName header which takes precedence over any existing CamelFileName header; the CamelOverruleFileName is a header that is used only once, and makes it easier as this avoids to temporary store CamelFileName and have to restore it afterwards.
								

								 	 	
									String
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN/ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									delete (consumer)
								

								 	
									If true, the file will be deleted after it is processed successfully.
								

								 	
									false
								

								 	
									boolean
								

								
	
									moveFailed (consumer)
								

								 	
									Sets the move failure expression based on Simple language. For example, to move files into a .error subdirectory use: .error. Note: When moving the files to the fail location Camel will handle the error and will not pick up the file again.
								

								 	 	
									String
								

								
	
									noop (consumer)
								

								 	
									If true, the file is not moved or deleted in any way. This option is good for readonly data, or for ETL type requirements. If noop=true, Camel will set idempotent=true as well, to avoid consuming the same files over and over again.
								

								 	
									false
								

								 	
									boolean
								

								
	
									preMove (consumer)
								

								 	
									Expression (such as File Language) used to dynamically set the filename when moving it before processing. For example to move in-progress files into the order directory set this value to order.
								

								 	 	
									String
								

								
	
									preSort (consumer)
								

								 	
									When pre-sort is enabled then the consumer will sort the file and directory names during polling, that was retrieved from the file system. You may want to do this in case you need to operate on the files in a sorted order. The pre-sort is executed before the consumer starts to filter, and accept files to process by Camel. This option is default=false meaning disabled.
								

								 	
									false
								

								 	
									boolean
								

								
	
									recursive (consumer)
								

								 	
									If a directory, will look for files in all the sub-directories as well.
								

								 	
									false
								

								 	
									boolean
								

								
	
									sendEmptyMessageWhenIdle (consumer)
								

								 	
									If the polling consumer did not poll any files, you can enable this option to send an empty message (no body) instead.
								

								 	
									false
								

								 	
									boolean
								

								
	
									directoryMustExist (consumer)
								

								 	
									Similar to startingDirectoryMustExist but this applies during polling recursive sub directories.
								

								 	
									false
								

								 	
									boolean
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN/ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the default exchange pattern when creating an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									extendedAttributes (consumer)
								

								 	
									To define which file attributes of interest. Like posix:permissions,posix:owner,basic:lastAccessTime, it supports basic wildcard like posix:, basic:lastAccessTime
								

								 	 	
									String
								

								
	
									inProgressRepository (consumer)
								

								 	
									A pluggable in-progress repository org.apache.camel.spi.IdempotentRepository. The in-progress repository is used to account the current in progress files being consumed. By default a memory based repository is used.
								

								 	 	
									String>
								

								
	
									localWorkDirectory (consumer)
								

								 	
									When consuming, a local work directory can be used to store the remote file content directly in local files, to avoid loading the content into memory. This is beneficial, if you consume a very big remote file and thus can conserve memory.
								

								 	 	
									String
								

								
	
									onCompletionException Handler (consumer)
								

								 	
									To use a custom org.apache.camel.spi.ExceptionHandler to handle any thrown exceptions that happens during the file on completion process where the consumer does either a commit or rollback. The default implementation will log any exception at WARN level and ignore.
								

								 	 	
									ExceptionHandler
								

								
	
									pollStrategy (consumer)
								

								 	
									A pluggable org.apache.camel.PollingConsumerPollingStrategy allowing you to provide your custom implementation to control error handling usually occurred during the poll operation before an Exchange have been created and being routed in Camel. In other words the error occurred while the polling was gathering information, for instance access to a file network failed so Camel cannot access it to scan for files. The default implementation will log the caused exception at WARN level and ignore it.
								

								 	 	
									PollingConsumerPoll Strategy
								

								
	
									probeContentType (consumer)
								

								 	
									Whether to enable probing of the content type. If enable then the consumer uses link FilesprobeContentType(java.nio.file.Path) to determine the content-type of the file, and store that as a header with key link ExchangeFILE_CONTENT_TYPE on the Message.
								

								 	
									false
								

								 	
									boolean
								

								
	
									processStrategy (consumer)
								

								 	
									A pluggable org.apache.camel.component.file.GenericFileProcessStrategy allowing you to implement your own readLock option or similar. Can also be used when special conditions must be met before a file can be consumed, such as a special ready file exists. If this option is set then the readLock option does not apply.
								

								 	 	
									GenericFileProcess Strategy<T>
								

								
	
									startingDirectoryMustExist (consumer)
								

								 	
									Whether the starting directory must exist. Mind that the autoCreate option is default enabled, which means the starting directory is normally auto created if it doesn’t exist. You can disable autoCreate and enable this to ensure the starting directory must exist. Will thrown an exception if the directory doesn’t exist.
								

								 	
									false
								

								 	
									boolean
								

								
	
									fileExist (producer)
								

								 	
									What to do if a file already exists with the same name. Override, which is the default, replaces the existing file. Append - adds content to the existing file. Fail - throws a GenericFileOperationException, indicating that there is already an existing file. Ignore - silently ignores the problem and does not override the existing file, but assumes everything is okay. Move - option requires to use the moveExisting option to be configured as well. The option eagerDeleteTargetFile can be used to control what to do if an moving the file, and there exists already an existing file, otherwise causing the move operation to fail. The Move option will move any existing files, before writing the target file. TryRename is only applicable if tempFileName option is in use. This allows to try renaming the file from the temporary name to the actual name, without doing any exists check. This check may be faster on some file systems and especially FTP servers.
								

								 	
									Override
								

								 	
									GenericFileExist
								

								
	
									flatten (producer)
								

								 	
									Flatten is used to flatten the file name path to strip any leading paths, so it’s just the file name. This allows you to consume recursively into sub-directories, but when you eg write the files to another directory they will be written in a single directory. Setting this to true on the producer enforces that any file name in CamelFileName header will be stripped for any leading paths.
								

								 	
									false
								

								 	
									boolean
								

								
	
									moveExisting (producer)
								

								 	
									Expression (such as File Language) used to compute file name to use when fileExist=Move is configured. To move files into a backup subdirectory just enter backup. This option only supports the following File Language tokens: file:name, file:name.ext, file:name.noext, file:onlyname, file:onlyname.noext, file:ext, and file:parent. Notice the file:parent is not supported by the FTP component, as the FTP component can only move any existing files to a relative directory based on current dir as base.
								

								 	 	
									String
								

								
	
									tempFileName (producer)
								

								 	
									The same as tempPrefix option but offering a more fine grained control on the naming of the temporary filename as it uses the File Language.
								

								 	 	
									String
								

								
	
									tempPrefix (producer)
								

								 	
									This option is used to write the file using a temporary name and then, after the write is complete, rename it to the real name. Can be used to identify files being written and also avoid consumers (not using exclusive read locks) reading in progress files. Is often used by FTP when uploading big files.
								

								 	 	
									String
								

								
	
									allowNullBody (producer)
								

								 	
									Used to specify if a null body is allowed during file writing. If set to true then an empty file will be created, when set to false, and attempting to send a null body to the file component, a GenericFileWriteException of 'Cannot write null body to file.' will be thrown. If the fileExist option is set to 'Override', then the file will be truncated, and if set to append the file will remain unchanged.
								

								 	
									false
								

								 	
									boolean
								

								
	
									chmod (producer)
								

								 	
									Specify the file permissions which is sent by the producer, the chmod value must be between 000 and 777; If there is a leading digit like in 0755 we will ignore it.
								

								 	 	
									String
								

								
	
									chmodDirectory (producer)
								

								 	
									Specify the directory permissions used when the producer creates missing directories, the chmod value must be between 000 and 777; If there is a leading digit like in 0755 we will ignore it.
								

								 	 	
									String
								

								
	
									eagerDeleteTargetFile (producer)
								

								 	
									Whether or not to eagerly delete any existing target file. This option only applies when you use fileExists=Override and the tempFileName option as well. You can use this to disable (set it to false) deleting the target file before the temp file is written. For example you may write big files and want the target file to exists during the temp file is being written. This ensure the target file is only deleted until the very last moment, just before the temp file is being renamed to the target filename. This option is also used to control whether to delete any existing files when fileExist=Move is enabled, and an existing file exists. If this option copyAndDeleteOnRenameFails false, then an exception will be thrown if an existing file existed, if its true, then the existing file is deleted before the move operation.
								

								 	
									true
								

								 	
									boolean
								

								
	
									forceWrites (producer)
								

								 	
									Whether to force syncing writes to the file system. You can turn this off if you do not want this level of guarantee, for example if writing to logs / audit logs etc; this would yield better performance.
								

								 	
									true
								

								 	
									boolean
								

								
	
									keepLastModified (producer)
								

								 	
									Will keep the last modified timestamp from the source file (if any). Will use the Exchange.FILE_LAST_MODIFIED header to located the timestamp. This header can contain either a java.util.Date or long with the timestamp. If the timestamp exists and the option is enabled it will set this timestamp on the written file. Note: This option only applies to the file producer. You cannot use this option with any of the ftp producers.
								

								 	
									false
								

								 	
									boolean
								

								
	
									autoCreate (advanced)
								

								 	
									Automatically create missing directories in the file’s pathname. For the file consumer, that means creating the starting directory. For the file producer, it means the directory the files should be written to.
								

								 	
									true
								

								 	
									boolean
								

								
	
									bufferSize (advanced)
								

								 	
									Write buffer sized in bytes.
								

								 	
									131072
								

								 	
									int
								

								
	
									copyAndDeleteOnRenameFail (advanced)
								

								 	
									Whether to fallback and do a copy and delete file, in case the file could not be renamed directly. This option is not available for the FTP component.
								

								 	
									true
								

								 	
									boolean
								

								
	
									renameUsingCopy (advanced)
								

								 	
									Perform rename operations using a copy and delete strategy. This is primarily used in environments where the regular rename operation is unreliable (e.g. across different file systems or networks). This option takes precedence over the copyAndDeleteOnRenameFail parameter that will automatically fall back to the copy and delete strategy, but only after additional delays.
								

								 	
									false
								

								 	
									boolean
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									antExclude (filter)
								

								 	
									Ant style filter exclusion. If both antInclude and antExclude are used, antExclude takes precedence over antInclude. Multiple exclusions may be specified in comma-delimited format.
								

								 	 	
									String
								

								
	
									antFilterCaseSensitive (filter)
								

								 	
									Sets case sensitive flag on ant filter
								

								 	
									true
								

								 	
									boolean
								

								
	
									antInclude (filter)
								

								 	
									Ant style filter inclusion. Multiple inclusions may be specified in comma-delimited format.
								

								 	 	
									String
								

								
	
									eagerMaxMessagesPerPoll (filter)
								

								 	
									Allows for controlling whether the limit from maxMessagesPerPoll is eager or not. If eager then the limit is during the scanning of files. Where as false would scan all files, and then perform sorting. Setting this option to false allows for sorting all files first, and then limit the poll. Mind that this requires a higher memory usage as all file details are in memory to perform the sorting.
								

								 	
									true
								

								 	
									boolean
								

								
	
									exclude (filter)
								

								 	
									Is used to exclude files, if filename matches the regex pattern (matching is case in-senstive). Notice if you use symbols such as plus sign and others you would need to configure this using the RAW() syntax if configuring this as an endpoint uri. See more details at configuring endpoint uris
								

								 	 	
									String
								

								
	
									filter (filter)
								

								 	
									Pluggable filter as a org.apache.camel.component.file.GenericFileFilter class. Will skip files if filter returns false in its accept() method.
								

								 	 	
									GenericFileFilter<T>
								

								
	
									filterDirectory (filter)
								

								 	
									Filters the directory based on Simple language. For example to filter on current date, you can use a simple date pattern such as $date:now:yyyMMdd
								

								 	 	
									String
								

								
	
									filterFile (filter)
								

								 	
									Filters the file based on Simple language. For example to filter on file size, you can use $file:size 5000
								

								 	 	
									String
								

								
	
									idempotent (filter)
								

								 	
									Option to use the Idempotent Consumer EIP pattern to let Camel skip already processed files. Will by default use a memory based LRUCache that holds 1000 entries. If noop=true then idempotent will be enabled as well to avoid consuming the same files over and over again.
								

								 	
									false
								

								 	
									Boolean
								

								
	
									idempotentKey (filter)
								

								 	
									To use a custom idempotent key. By default the absolute path of the file is used. You can use the File Language, for example to use the file name and file size, you can do: idempotentKey=$file:name-$file:size
								

								 	 	
									String
								

								
	
									idempotentRepository (filter)
								

								 	
									A pluggable repository org.apache.camel.spi.IdempotentRepository which by default use MemoryMessageIdRepository if none is specified and idempotent is true.
								

								 	 	
									String>
								

								
	
									include (filter)
								

								 	
									Is used to include files, if filename matches the regex pattern (matching is case in-sensitive). Notice if you use symbols such as plus sign and others you would need to configure this using the RAW() syntax if configuring this as an endpoint uri. See more details at configuring endpoint uris
								

								 	 	
									String
								

								
	
									maxDepth (filter)
								

								 	
									The maximum depth to traverse when recursively processing a directory.
								

								 	
									2147483647
								

								 	
									int
								

								
	
									maxMessagesPerPoll (filter)
								

								 	
									To define a maximum messages to gather per poll. By default no maximum is set. Can be used to set a limit of e.g. 1000 to avoid when starting up the server that there are thousands of files. Set a value of 0 or negative to disabled it. Notice: If this option is in use then the File and FTP components will limit before any sorting. For example if you have 100000 files and use maxMessagesPerPoll=500, then only the first 500 files will be picked up, and then sorted. You can use the eagerMaxMessagesPerPoll option and set this to false to allow to scan all files first and then sort afterwards.
								

								 	 	
									int
								

								
	
									minDepth (filter)
								

								 	
									The minimum depth to start processing when recursively processing a directory. Using minDepth=1 means the base directory. Using minDepth=2 means the first sub directory.
								

								 	 	
									int
								

								
	
									move (filter)
								

								 	
									Expression (such as Simple Language) used to dynamically set the filename when moving it after processing. To move files into a .done subdirectory just enter .done.
								

								 	 	
									String
								

								
	
									exclusiveReadLockStrategy (lock)
								

								 	
									Pluggable read-lock as a org.apache.camel.component.file.GenericFileExclusiveReadLockStrategy implementation.
								

								 	 	
									GenericFileExclusive ReadLockStrategy<T>
								

								
	
									readLock (lock)
								

								 	
									Used by consumer, to only poll the files if it has exclusive read-lock on the file (i.e. the file is not in-progress or being written). Camel will wait until the file lock is granted. This option provides the build in strategies: none - No read lock is in use markerFile - Camel creates a marker file (fileName.camelLock) and then holds a lock on it. This option is not available for the FTP component changed - Changed is using file length/modification timestamp to detect whether the file is currently being copied or not. Will at least use 1 sec to determine this, so this option cannot consume files as fast as the others, but can be more reliable as the JDK IO API cannot always determine whether a file is currently being used by another process. The option readLockCheckInterval can be used to set the check frequency. fileLock - is for using java.nio.channels.FileLock. This option is not avail for the FTP component. This approach should be avoided when accessing a remote file system via a mount/share unless that file system supports distributed file locks. rename - rename is for using a try to rename the file as a test if we can get exclusive read-lock. idempotent - (only for file component) idempotent is for using a idempotentRepository as the read-lock. This allows to use read locks that supports clustering if the idempotent repository implementation supports that. idempotent-changed - (only for file component) idempotent-changed is for using a idempotentRepository and changed as the combined read-lock. This allows to use read locks that supports clustering if the idempotent repository implementation supports that. idempotent-rename - (only for file component) idempotent-rename is for using a idempotentRepository and rename as the combined read-lock. This allows to use read locks that supports clustering if the idempotent repository implementation supports that. Notice: The various read locks is not all suited to work in clustered mode, where concurrent consumers on different nodes is competing for the same files on a shared file system. The markerFile using a close to atomic operation to create the empty marker file, but its not guaranteed to work in a cluster. The fileLock may work better but then the file system need to support distributed file locks, and so on. Using the idempotent read lock can support clustering if the idempotent repository supports clustering, such as Hazelcast Component or Infinispan.
								

								 	
									none
								

								 	
									String
								

								
	
									readLockCheckInterval (lock)
								

								 	
									Interval in millis for the read-lock, if supported by the read lock. This interval is used for sleeping between attempts to acquire the read lock. For example when using the changed read lock, you can set a higher interval period to cater for slow writes. The default of 1 sec. may be too fast if the producer is very slow writing the file. Notice: For FTP the default readLockCheckInterval is 5000. The readLockTimeout value must be higher than readLockCheckInterval, but a rule of thumb is to have a timeout that is at least 2 or more times higher than the readLockCheckInterval. This is needed to ensure that amble time is allowed for the read lock process to try to grab the lock before the timeout was hit.
								

								 	
									1000
								

								 	
									long
								

								
	
									readLockDeleteOrphanLock Files (lock)
								

								 	
									Whether or not read lock with marker files should upon startup delete any orphan read lock files, which may have been left on the file system, if Camel was not properly shutdown (such as a JVM crash). If turning this option to false then any orphaned lock file will cause Camel to not attempt to pickup that file, this could also be due another node is concurrently reading files from the same shared directory.
								

								 	
									true
								

								 	
									boolean
								

								
	
									readLockLoggingLevel (lock)
								

								 	
									Logging level used when a read lock could not be acquired. By default a WARN is logged. You can change this level, for example to OFF to not have any logging. This option is only applicable for readLock of types: changed, fileLock, idempotent, idempotent-changed, idempotent-rename, rename.
								

								 	
									DEBUG
								

								 	
									LoggingLevel
								

								
	
									readLockMarkerFile (lock)
								

								 	
									Whether to use marker file with the changed, rename, or exclusive read lock types. By default a marker file is used as well to guard against other processes picking up the same files. This behavior can be turned off by setting this option to false. For example if you do not want to write marker files to the file systems by the Camel application.
								

								 	
									true
								

								 	
									boolean
								

								
	
									readLockMinAge (lock)
								

								 	
									This option applied only for readLock=change. This option allows to specify a minimum age the file must be before attempting to acquire the read lock. For example use readLockMinAge=300s to require the file is at last 5 minutes old. This can speedup the changed read lock as it will only attempt to acquire files which are at least that given age.
								

								 	
									0
								

								 	
									long
								

								
	
									readLockMinLength (lock)
								

								 	
									This option applied only for readLock=changed. This option allows you to configure a minimum file length. By default Camel expects the file to contain data, and thus the default value is 1. You can set this option to zero, to allow consuming zero-length files.
								

								 	
									1
								

								 	
									long
								

								
	
									readLockRemoveOnCommit (lock)
								

								 	
									This option applied only for readLock=idempotent. This option allows to specify whether to remove the file name entry from the idempotent repository when processing the file is succeeded and a commit happens. By default the file is not removed which ensures that any race-condition do not occur so another active node may attempt to grab the file. Instead the idempotent repository may support eviction strategies that you can configure to evict the file name entry after X minutes - this ensures no problems with race conditions.
								

								 	
									false
								

								 	
									boolean
								

								
	
									readLockRemoveOnRollback (lock)
								

								 	
									This option applied only for readLock=idempotent. This option allows to specify whether to remove the file name entry from the idempotent repository when processing the file failed and a rollback happens. If this option is false, then the file name entry is confirmed (as if the file did a commit).
								

								 	
									true
								

								 	
									boolean
								

								
	
									readLockTimeout (lock)
								

								 	
									Optional timeout in millis for the read-lock, if supported by the read-lock. If the read-lock could not be granted and the timeout triggered, then Camel will skip the file. At next poll Camel, will try the file again, and this time maybe the read-lock could be granted. Use a value of 0 or lower to indicate forever. Currently fileLock, changed and rename support the timeout. Notice: For FTP the default readLockTimeout value is 20000 instead of 10000. The readLockTimeout value must be higher than readLockCheckInterval, but a rule of thumb is to have a timeout that is at least 2 or more times higher than the readLockCheckInterval. This is needed to ensure that amble time is allowed for the read lock process to try to grab the lock before the timeout was hit.
								

								 	
									10000
								

								 	
									long
								

								
	
									backoffErrorThreshold (scheduler)
								

								 	
									The number of subsequent error polls (failed due some error) that should happen before the backoffMultipler should kick-in.
								

								 	 	
									int
								

								
	
									backoffIdleThreshold (scheduler)
								

								 	
									The number of subsequent idle polls that should happen before the backoffMultipler should kick-in.
								

								 	 	
									int
								

								
	
									backoffMultiplier (scheduler)
								

								 	
									To let the scheduled polling consumer backoff if there has been a number of subsequent idles/errors in a row. The multiplier is then the number of polls that will be skipped before the next actual attempt is happening again. When this option is in use then backoffIdleThreshold and/or backoffErrorThreshold must also be configured.
								

								 	 	
									int
								

								
	
									delay (scheduler)
								

								 	
									Milliseconds before the next poll. The default value is 500. You can also specify time values using units, such as 60s (60 seconds), 5m30s (5 minutes and 30 seconds), and 1h (1 hour).
								

								 	
									500
								

								 	
									long
								

								
	
									greedy (scheduler)
								

								 	
									If greedy is enabled, then the ScheduledPollConsumer will run immediately again, if the previous run polled 1 or more messages.
								

								 	
									false
								

								 	
									boolean
								

								
	
									initialDelay (scheduler)
								

								 	
									Milliseconds before the first poll starts. The default value is 1000. You can also specify time values using units, such as 60s (60 seconds), 5m30s (5 minutes and 30 seconds), and 1h (1 hour).
								

								 	
									1000
								

								 	
									long
								

								
	
									runLoggingLevel (scheduler)
								

								 	
									The consumer logs a start/complete log line when it polls. This option allows you to configure the logging level for that.
								

								 	
									TRACE
								

								 	
									LoggingLevel
								

								
	
									scheduledExecutorService (scheduler)
								

								 	
									Allows for configuring a custom/shared thread pool to use for the consumer. By default each consumer has its own single threaded thread pool. This option allows you to share a thread pool among multiple consumers.
								

								 	 	
									ScheduledExecutor Service
								

								
	
									scheduler (scheduler)
								

								 	
									Allow to plugin a custom org.apache.camel.spi.ScheduledPollConsumerScheduler to use as the scheduler for firing when the polling consumer runs. The default implementation uses the ScheduledExecutorService and there is a Quartz2, and Spring based which supports CRON expressions. Notice: If using a custom scheduler then the options for initialDelay, useFixedDelay, timeUnit, and scheduledExecutorService may not be in use. Use the text quartz2 to refer to use the Quartz2 scheduler; and use the text spring to use the Spring based; and use the text myScheduler to refer to a custom scheduler by its id in the Registry. See Quartz2 page for an example.
								

								 	
									none
								

								 	
									ScheduledPollConsumer Scheduler
								

								
	
									schedulerProperties (scheduler)
								

								 	
									To configure additional properties when using a custom scheduler or any of the Quartz2, Spring based scheduler.
								

								 	 	
									Map
								

								
	
									startScheduler (scheduler)
								

								 	
									Whether the scheduler should be auto started.
								

								 	
									true
								

								 	
									boolean
								

								
	
									timeUnit (scheduler)
								

								 	
									Time unit for initialDelay and delay options.
								

								 	
									MILLISECONDS
								

								 	
									TimeUnit
								

								
	
									useFixedDelay (scheduler)
								

								 	
									Controls if fixed delay or fixed rate is used. See ScheduledExecutorService in JDK for details.
								

								 	
									true
								

								 	
									boolean
								

								
	
									shuffle (sort)
								

								 	
									To shuffle the list of files (sort in random order)
								

								 	
									false
								

								 	
									boolean
								

								
	
									sortBy (sort)
								

								 	
									Built-in sort by using the File Language. Supports nested sorts, so you can have a sort by file name and as a 2nd group sort by modified date.
								

								 	 	
									String
								

								
	
									sorter (sort)
								

								 	
									Pluggable sorter as a java.util.Comparator class.
								

								 	 	
									GenericFile<T>>
								

								

Tip

					Default behavior for file producer By default it will override any existing file, if one exist with the same name.
				

Move and Delete operations

				Any move or delete operations is executed after (post command) the routing has completed; so during processing of the Exchange the file is still located in the inbox folder.
			

				Lets illustrate this with an example:
			
from("file://inbox?move=.done").to("bean:handleOrder");

				When a file is dropped in the inbox folder, the file consumer notices this and creates a new FileExchange that is routed to the handleOrder bean. The bean then processes the File object. At this point in time the file is still located in the inbox folder. After the bean completes, and thus the route is completed, the file consumer will perform the move operation and move the file to the .done sub-folder.
			

				The move and the preMove options are considered as a directory name (though if you use an expression such as File Language, or Simple then the result of the expression evaluation is the file name to be used - eg if you set
			
move=../backup/copy-of-${file:name}

				then that’s using the File Language which we use return the file name to be used), which can be either relative or absolute. If relative, the directory is created as a sub-folder from within the folder where the file was consumed.
			

				By default, Camel will move consumed files to the .camel sub-folder relative to the directory where the file was consumed.
			

				If you want to delete the file after processing, the route should be:
			
from("file://inobox?delete=true").to("bean:handleOrder");

				We have introduced a pre move operation to move files before they are processed. This allows you to mark which files have been scanned as they are moved to this sub folder before being processed.
			
from("file://inbox?preMove=inprogress").to("bean:handleOrder");

				You can combine the pre move and the regular move:
			
from("file://inbox?preMove=inprogress&move=.done").to("bean:handleOrder");

				So in this situation, the file is in the inprogress folder when being processed and after it’s processed, it’s moved to the .done folder.
			

Fine grained control over Move and PreMove option

				The move and preMove options are Expression-based, so we have the full power of the File Language to do advanced configuration of the directory and name pattern.
 Camel will, in fact, internally convert the directory name you enter into a File Language expression. So when we enter move=.done Camel will convert this into: ${file:parent}/.done/${``file:onlyname}. This is only done if Camel detects that you have not provided a $\{ } in the option value yourself. So when you enter a $\{ } Camel will not convert it and thus you have the full power.
			

				So if we want to move the file into a backup folder with today’s date as the pattern, we can do:
			
move=backup/${date:now:yyyyMMdd}/${file:name}

About moveFailed

				The moveFailed option allows you to move files that could not be processed succesfully to another location such as a error folder of your choice. For example to move the files in an error folder with a timestamp you can use moveFailed=/error/${file:name.noext}-${date:now:yyyyMMddHHmmssSSS}.${``file:ext}.
			

				See more examples at File Language
			

Message Headers

				The following headers are supported by this component:
			
File producer only

	Header	Description
	
									CamelFileName
								

								 	
									Specifies the name of the file to write (relative to the endpoint directory). This name can be a String; a String with a File Language or Simple expression; or an Expression object. If it’s null then Camel will auto-generate a filename based on the message unique ID.
								

								
	
									CamelFileNameProduced
								

								 	
									The actual absolute filepath (path + name) for the output file that was written. This header is set by Camel and its purpose is providing end-users with the name of the file that was written.
								

								
	
									CamelOverruleFileName
								

								 	
									Camel 2.11: Is used for overruling CamelFileName header and use the value instead (but only once, as the producer will remove this header after writing the file). The value can be only be a String. Notice that if the option fileName has been configured, then this is still being evaluated.
								

								

File consumer only

	Header	Description
	
									CamelFileName
								

								 	
									Name of the consumed file as a relative file path with offset from the starting directory configured on the endpoint.
								

								
	
									CamelFileNameOnly
								

								 	
									Only the file name (the name with no leading paths).
								

								
	
									CamelFileAbsolute
								

								 	
									A boolean option specifying whether the consumed file denotes an absolute path or not. Should normally be false for relative paths. Absolute paths should normally not be used but we added to the move option to allow moving files to absolute paths. But can be used elsewhere as well.
								

								
	
									CamelFileAbsolutePath
								

								 	
									The absolute path to the file. For relative files this path holds the relative path instead.
								

								
	
									CamelFilePath
								

								 	
									The file path. For relative files this is the starting directory + the relative filename. For absolute files this is the absolute path.
								

								
	
									CamelFileRelativePath
								

								 	
									The relative path.
								

								
	
									CamelFileParent
								

								 	
									The parent path.
								

								
	
									CamelFileLength
								

								 	
									A long value containing the file size.
								

								
	
									CamelFileLastModified
								

								 	
									A Long value containing the last modified timestamp of the file. In Camel 2.10.3 and older the type is Date.
								

								

Batch Consumer

				This component implements the Batch Consumer.
			

Exchange Properties, file consumer only

				As the file consumer implements the BatchConsumer it supports batching the files it polls. By batching we mean that Camel will add the following additional properties to the Exchange, so you know the number of files polled, the current index, and whether the batch is already completed.
			
	Property	Description
	
								CamelBatchSize
							

							 	
								The total number of files that was polled in this batch.
							

							
	
								CamelBatchIndex
							

							 	
								The current index of the batch. Starts from 0.
							

							
	
								CamelBatchComplete
							

							 	
								A boolean value indicating the last Exchange in the batch. Is only true for the last entry.
							

							

				This allows you for instance to know how many files exist in this batch and for instance let the Aggregator2 aggregate this number of files.
			

Using charset

				Available as of Camel 2.9.3
 The charset option allows for configuring an encoding of the files on both the consumer and producer endpoints. For example if you read utf-8 files, and want to convert the files to iso-8859-1, you can do:
			
from("file:inbox?charset=utf-8")
 .to("file:outbox?charset=iso-8859-1")

				You can also use the convertBodyTo in the route. In the example below we have still input files in utf-8 format, but we want to convert the file content to a byte array in iso-8859-1 format. And then let a bean process the data. Before writing the content to the outbox folder using the current charset.
			
from("file:inbox?charset=utf-8")
 .convertBodyTo(byte[].class, "iso-8859-1")
 .to("bean:myBean")
 .to("file:outbox");

				If you omit the charset on the consumer endpoint, then Camel does not know the charset of the file, and would by default use "UTF-8". However you can configure a JVM system property to override and use a different default encoding with the key org.apache.camel.default.charset.
			

				In the example below this could be a problem if the files is not in UTF-8 encoding, which would be the default encoding for read the files.
 In this example when writing the files, the content has already been converted to a byte array, and thus would write the content directly as is (without any further encodings).
			
from("file:inbox")
 .convertBodyTo(byte[].class, "iso-8859-1")
 .to("bean:myBean")
 .to("file:outbox");

				You can also override and control the encoding dynamic when writing files, by setting a property on the exchange with the key Exchange.CHARSET_NAME. For example in the route below we set the property with a value from a message header.
			
from("file:inbox")
 .convertBodyTo(byte[].class, "iso-8859-1")
 .to("bean:myBean")
 .setProperty(Exchange.CHARSET_NAME, header("someCharsetHeader"))
 .to("file:outbox");

				We suggest to keep things simpler, so if you pickup files with the same encoding, and want to write the files in a specific encoding, then favor to use the charset option on the endpoints.
			

				Notice that if you have explicit configured a charset option on the endpoint, then that configuration is used, regardless of the Exchange.CHARSET_NAME property.
			

				If you have some issues then you can enable DEBUG logging on org.apache.camel.component.file, and Camel logs when it reads/write a file using a specific charset.
 For example the route below will log the following:
			
from("file:inbox?charset=utf-8")
 .to("file:outbox?charset=iso-8859-1")

				And the logs:
			
DEBUG GenericFileConverter - Read file /Users/davsclaus/workspace/camel/camel-core/target/charset/input/input.txt with charset utf-8
DEBUG FileOperations - Using Reader to write file: target/charset/output.txt with charset: iso-8859-1

Common gotchas with folder and filenames

				When Camel is producing files (writing files) there are a few gotchas affecting how to set a filename of your choice. By default, Camel will use the message ID as the filename, and since the message ID is normally a unique generated ID, you will end up with filenames such as: ID-MACHINENAME-2443-1211718892437-1-0. If such a filename is not desired, then you must provide a filename in the CamelFileName message header. The constant, Exchange.FILE_NAME, can also be used.
			

				The sample code below produces files using the message ID as the filename:
			
from("direct:report").to("file:target/reports");

				To use report.txt as the filename you have to do:
			
from("direct:report").setHeader(Exchange.FILE_NAME, constant("report.txt")).to("file:target/reports");
	
						the same as above, but with CamelFileName:
					

from("direct:report").setHeader("CamelFileName", constant("report.txt")).to("file:target/reports");

				And a syntax where we set the filename on the endpoint with the fileName URI option.
			
from("direct:report").to("file:target/reports/?fileName=report.txt");

Filename Expression

				Filename can be set either using the expression option or as a string-based File Language expression in the CamelFileName header. See the File Language for syntax and samples.
			

Consuming files from folders where others drop files directly

				Beware if you consume files from a folder where other applications write files to directly. Take a look at the different readLock options to see what suits your use cases. The best approach is however to write to another folder and after the write move the file in the drop folder. However if you write files directly to the drop folder then the option changed could better detect whether a file is currently being written/copied as it uses a file changed algorithm to see whether the file size / modification changes over a period of time. The other readLock options rely on Java File API that sadly is not always very good at detecting this. You may also want to look at the doneFileName option, which uses a marker file (done file) to signal when a file is done and ready to be consumed.
			

Using done files

				Available as of Camel 2.6
			

				See also section writing done files below.
			

				If you want only to consume files when a done file exists, then you can use the doneFileName option on the endpoint.
			
from("file:bar?doneFileName=done");

				Will only consume files from the bar folder, if a done file exists in the same directory as the target files. Camel will automatically delete the done file when it’s done consuming the files. From Camel 2.9.3 onwards Camel will not automatically delete the done file if noop=true is configured.
			

				However it is more common to have one done file per target file. This means there is a 1:1 correlation. To do this you must use dynamic placeholders in the doneFileName option. Currently Camel supports the following two dynamic tokens: file:name and file:name.noext which must be enclosed in $\{ }. The consumer only supports the static part of the done file name as either prefix or suffix (not both).
			
from("file:bar?doneFileName=${file:name}.done");

				In this example only files will be polled if there exists a done file with the name file name.done. For example
			
	
						hello.txt - is the file to be consumed
					
	
						hello.txt.done - is the associated done file
					

				You can also use a prefix for the done file, such as:
			
from("file:bar?doneFileName=ready-${file:name}");
	
						hello.txt - is the file to be consumed
					
	
						ready-hello.txt - is the associated done file
					

Writing done files

				Available as of Camel 2.6
			

				After you have written a file you may want to write an additional donefile as a kind of marker, to indicate to others that the file is finished and has been written. To do that you can use the doneFileName option on the file producer endpoint.
			
.to("file:bar?doneFileName=done");

				Will simply create a file named done in the same directory as the target file.
			

				However it is more common to have one done file per target file. This means there is a 1:1 correlation. To do this you must use dynamic placeholders in the doneFileName option. Currently Camel supports the following two dynamic tokens: file:name and file:name.noext which must be enclosed in $\{ }.
			
.to("file:bar?doneFileName=done-${file:name}");

				Will for example create a file named done-foo.txt if the target file was foo.txt in the same directory as the target file.
			
.to("file:bar?doneFileName=${file:name}.done");

				Will for example create a file named foo.txt.done if the target file was foo.txt in the same directory as the target file.
			
.to("file:bar?doneFileName=${file:name.noext}.done");

				Will for example create a file named foo.done if the target file was foo.txt in the same directory as the target file.
			

Samples

				#=== Read from a directory and write to another directory
			
from("file://inputdir/?delete=true").to("file://outputdir")
Read from a directory and write to another directory using a overrule dynamic name

from("file://inputdir/?delete=true").to("file://outputdir?overruleFile=copy-of-${file:name}")

					Listen on a directory and create a message for each file dropped there. Copy the contents to the outputdir and delete the file in the inputdir.
				

Reading recursively from a directory and writing to another

from("file://inputdir/?recursive=true&delete=true").to("file://outputdir")

					Listen on a directory and create a message for each file dropped there. Copy the contents to the outputdir and delete the file in the inputdir. Will scan recursively into sub-directories. Will lay out the files in the same directory structure in the outputdir as the inputdir, including any sub-directories.
				
inputdir/foo.txt
inputdir/sub/bar.txt

					Will result in the following output layout:
				
outputdir/foo.txt
outputdir/sub/bar.txt

Using flatten

				If you want to store the files in the outputdir directory in the same directory, disregarding the source directory layout (e.g. to flatten out the path), you just add the flatten=true option on the file producer side:
			
from("file://inputdir/?recursive=true&delete=true").to("file://outputdir?flatten=true")

				Will result in the following output layout:
			
outputdir/foo.txt
outputdir/bar.txt

Reading from a directory and the default move operation

				Camel will by default move any processed file into a .camel subdirectory in the directory the file was consumed from.
			
from("file://inputdir/?recursive=true&delete=true").to("file://outputdir")

				Affects the layout as follows:
 before
			
inputdir/foo.txt
inputdir/sub/bar.txt

				after
			
inputdir/.camel/foo.txt
inputdir/sub/.camel/bar.txt
outputdir/foo.txt
outputdir/sub/bar.txt

Read from a directory and process the message in java

from("file://inputdir/").process(new Processor() {
 public void process(Exchange exchange) throws Exception {
 Object body = exchange.getIn().getBody();
 // do some business logic with the input body
 }
});

				The body will be a File object that points to the file that was just dropped into the inputdir directory.
			

Writing to files

				Camel is of course also able to write files, i.e. produce files. In the sample below we receive some reports on the SEDA queue that we process before they are being written to a directory.
			
Write to subdirectory using Exchange.FILE_NAME

					Using a single route, it is possible to write a file to any number of subdirectories. If you have a route setup as such:
				
<route>
 <from uri="bean:myBean"/>
 <to uri="file:/rootDirectory"/>
</route>

					You can have myBean set the header Exchange.FILE_NAME to values such as:
				
Exchange.FILE_NAME = hello.txt => /rootDirectory/hello.txt
Exchange.FILE_NAME = foo/bye.txt => /rootDirectory/foo/bye.txt

					This allows you to have a single route to write files to multiple destinations.
				

Writing file through the temporary directory relative to the final destination

					Sometime you need to temporarily write the files to some directory relative to the destination directory. Such situation usually happens when some external process with limited filtering capabilities is reading from the directory you are writing to. In the example below files will be written to the /var/myapp/filesInProgress directory and after data transfer is done, they will be atomically moved to the` /var/myapp/finalDirectory `directory.
				
from("direct:start").
 to("file:///var/myapp/finalDirectory?tempPrefix=/../filesInProgress/");

Using expression for filenames

				In this sample we want to move consumed files to a backup folder using today’s date as a sub-folder name:
			
from("file://inbox?move=backup/${date:now:yyyyMMdd}/${file:name}").to("...");

				See File Language for more samples.
			

Avoiding reading the same file more than once (idempotent consumer)

				Camel supports Idempotent Consumer directly within the component so it will skip already processed files. This feature can be enabled by setting the idempotent=true option.
			
from("file://inbox?idempotent=true").to("...");

				Camel uses the absolute file name as the idempotent key, to detect duplicate files. From Camel 2.11 onwards you can customize this key by using an expression in the idempotentKey option. For example to use both the name and the file size as the key
			
<route>
 <from uri="file://inbox?idempotent=true&idempotentKey=${file:name}-${file:size}"/>
 <to uri="bean:processInbox"/>
</route>

				By default Camel uses a in memory based store for keeping track of consumed files, it uses a least recently used cache holding up to 1000 entries. You can plugin your own implementation of this store by using the idempotentRepository option using the # sign in the value to indicate it’s a referring to a bean in the Registry with the specified id.
			
 <!-- define our store as a plain spring bean -->
 <bean id="myStore" class="com.mycompany.MyIdempotentStore"/>

<route>
 <from uri="file://inbox?idempotent=true&idempotentRepository=#myStore"/>
 <to uri="bean:processInbox"/>
</route>

				Camel will log at DEBUG level if it skips a file because it has been consumed before:
			
DEBUG FileConsumer is idempotent and the file has been consumed before. Will skip this file: target\idempotent\report.txt

Using a file based idempotent repository

				In this section we will use the file based idempotent repository org.apache.camel.processor.idempotent.FileIdempotentRepository instead of the in-memory based that is used as default.
 This repository uses a 1st level cache to avoid reading the file repository. It will only use the file repository to store the content of the 1st level cache. Thereby the repository can survive server restarts. It will load the content of the file into the 1st level cache upon startup. The file structure is very simple as it stores the key in separate lines in the file. By default, the file store has a size limit of 1mb. When the file grows larger Camel will truncate the file store, rebuilding the content by flushing the 1st level cache into a fresh empty file.
			

				We configure our repository using Spring XML creating our file idempotent repository and define our file consumer to use our repository with the idempotentRepository using # sign to indicate Registry lookup:
			

Using a JPA based idempotent repository

				In this section we will use the JPA based idempotent repository instead of the in-memory based that is used as default.
			

				First we need a persistence-unit in META-INF/persistence.xml where we need to use the class org.apache.camel.processor.idempotent.jpa.MessageProcessed as model.
			
<persistence-unit name="idempotentDb" transaction-type="RESOURCE_LOCAL">
 <class>org.apache.camel.processor.idempotent.jpa.MessageProcessed</class>

 <properties>
 <property name="openjpa.ConnectionURL" value="jdbc:derby:target/idempotentTest;create=true"/>
 <property name="openjpa.ConnectionDriverName" value="org.apache.derby.jdbc.EmbeddedDriver"/>
 <property name="openjpa.jdbc.SynchronizeMappings" value="buildSchema"/>
 <property name="openjpa.Log" value="DefaultLevel=WARN, Tool=INFO"/>
 <property name="openjpa.Multithreaded" value="true"/>
 </properties>
</persistence-unit>

				Next, we can create our JPA idempotent repository in the spring XML file as well:
			
<!-- we define our jpa based idempotent repository we want to use in the file consumer -->
<bean id="jpaStore" class="org.apache.camel.processor.idempotent.jpa.JpaMessageIdRepository">
 <!-- Here we refer to the entityManagerFactory -->
 <constructor-arg index="0" ref="entityManagerFactory"/>
 <!-- This 2nd parameter is the name (= a category name).
 You can have different repositories with different names -->
 <constructor-arg index="1" value="FileConsumer"/>
</bean>

				And yes then we just need to refer to the jpaStore bean in the file consumer endpoint using the idempotentRepository using the # syntax option:
			
<route>
 <from uri="file://inbox?idempotent=true&idempotentRepository=#jpaStore"/>
 <to uri="bean:processInbox"/>
</route>

Filter using org.apache.camel.component.file.GenericFileFilter

				Camel supports pluggable filtering strategies. You can then configure the endpoint with such a filter to skip certain files being processed.
			

				In the sample we have built our own filter that skips files starting with skip in the filename:
			

				And then we can configure our route using the filter attribute to reference our filter (using # notation) that we have defined in the spring XML file:
			
<!-- define our filter as a plain spring bean -->
<bean id="myFilter" class="com.mycompany.MyFileFilter"/>

<route>
 <from uri="file://inbox?filter=#myFilter"/>
 <to uri="bean:processInbox"/>
</route>

Filtering using ANT path matcher

				The ANT path matcher is shipped out-of-the-box in the camel-spring jar. So you need to depend on camel-spring if you are using Maven.
 The reasons is that we leverage Spring’s AntPathMatcher to do the actual matching.
			

				The file paths is matched with the following rules:
			
	
						? matches one character
					
	
						* matches zero or more characters
					
	
						** matches zero or more directories in a path
					

Tip

				New options from Camel 2.10 onwards There are now antInclude and antExclude options to make it easy to specify ANT style include/exclude without having to define the filter. See the URI options above for more information.
			

				The sample below demonstrates how to use it:
			
Sorting using Comparator

					Camel supports pluggable sorting strategies. This strategy it to use the build in java.util.Comparator in Java. You can then configure the endpoint with such a comparator and have Camel sort the files before being processed.
				

					In the sample we have built our own comparator that just sorts by file name:
				

					And then we can configure our route using the sorter option to reference to our sorter (mySorter) we have defined in the spring XML file:
				
 <!-- define our sorter as a plain spring bean -->
 <bean id="mySorter" class="com.mycompany.MyFileSorter"/>

<route>
 <from uri="file://inbox?sorter=#mySorter"/>
 <to uri="bean:processInbox"/>
</route>
Tip

					URI options can reference beans using the # syntax In the Spring DSL route above notice that we can refer to beans in the Registry by prefixing the id with #. So writing sorter=#mySorter, will instruct Camel to go look in the Registry for a bean with the ID, mySorter.
				

Sorting using sortBy

					Camel supports pluggable sorting strategies. This strategy it to use the File Language to configure the sorting. The sortBy option is configured as follows:
				
sortBy=group 1;group 2;group 3;...

					Where each group is separated with semi colon. In the simple situations you just use one group, so a simple example could be:
				
sortBy=file:name

					This will sort by file name, you can reverse the order by prefixing reverse: to the group, so the sorting is now Z..A:
				
sortBy=reverse:file:name

					As we have the full power of File Language we can use some of the other parameters, so if we want to sort by file size we do:
				
sortBy=file:length

					You can configure to ignore the case, using ignoreCase: for string comparison, so if you want to use file name sorting but to ignore the case then we do:
				
sortBy=ignoreCase:file:name

					You can combine ignore case and reverse, however reverse must be specified first:
				
sortBy=reverse:ignoreCase:file:name

					In the sample below we want to sort by last modified file, so we do:
				
sortBy=file:modified

					And then we want to group by name as a 2nd option so files with same modifcation is sorted by name:
				
sortBy=file:modified;file:name

					Now there is an issue here, can you spot it? Well the modified timestamp of the file is too fine as it will be in milliseconds, but what if we want to sort by date only and then subgroup by name?
 Well as we have the true power of File Language we can use its date command that supports patterns. So this can be solved as:
				
sortBy=date:file:yyyyMMdd;file:name

					Yeah, that is pretty powerful, oh by the way you can also use reverse per group, so we could reverse the file names:
				
sortBy=date:file:yyyyMMdd;reverse:file:name

Using GenericFileProcessStrategy

				The option processStrategy can be used to use a custom GenericFileProcessStrategy that allows you to implement your own begin, commit and rollback logic.
 For instance lets assume a system writes a file in a folder you should consume. But you should not start consuming the file before another ready file has been written as well.
			

				So by implementing our own GenericFileProcessStrategy we can implement this as:
			
	
						In the begin() method we can test whether the special ready file exists. The begin method returns a boolean to indicate if we can consume the file or not.
					
	
						In the abort() method (Camel 2.10) special logic can be executed in case the begin operation returned false, for example to cleanup resources etc.
					
	
						in the commit() method we can move the actual file and also delete the ready file.
					

Using filter

				The filter option allows you to implement a custom filter in Java code by implementing the org.apache.camel.component.file.GenericFileFilter interface. This interface has an accept method that returns a boolean. Return true to include the file, and false to skip the file. From Camel 2.10 onwards, there is a isDirectory method on GenericFile whether the file is a directory. This allows you to filter unwanted directories, to avoid traversing down unwanted directories.
			

				For example to skip any directories which starts with "skip" in the name, can be implemented as follows:
			

Using consumer.bridgeErrorHandler

				Available as of Camel 2.10
			

				If you want to use the Camel Error Handler to deal with any exception occurring in the file consumer, then you can enable the consumer.bridgeErrorHandler option as shown below:
			
// to handle any IOException being thrown
onException(IOException.class)
 .handled(true)
 .log("IOException occurred due: ${exception.message}")
 .transform().simple("Error ${exception.message}")
 .to("mock:error");

// this is the file route that pickup files, notice how we bridge the consumer to use the Camel routing error handler
// the exclusiveReadLockStrategy is only configured because this is from an unit test, so we use that to simulate exceptions
from("file:target/nospace?consumer.bridgeErrorHandler=true")
 .convertBodyTo(String.class)
 .to("mock:result");

				So all you have to do is to enable this option, and the error handler in the route will take it from there.
			
Important

					Important when using consumer.bridgeErrorHandler When using consumer.bridgeErrorHandler, then interceptors, OnCompletions does not apply. The Exchange is processed directly by the Camel Error Handler, and does not allow prior actions such as interceptors, onCompletion to take action.
				

Debug logging

				This component has log level TRACE that can be helpful if you have problems.
			

See Also

	
						File Language
					
	
						FTP
					
	
						Polling Consumer
					

Chapter 104. File Language

			Available as of Camel version 1.1
		

			INFO:*File language is now merged with Simple language* From Camel 2.2 onwards, the file language is now merged with Simple language which means you can use all the file syntax directly within the simple language.
		

			The File Expression Language is an extension to the Simple language, adding file related capabilities. These capabilities are related to common use cases working with file path and names. The goal is to allow expressions to be used with the File and FTP components for setting dynamic file patterns for both consumer and producer.
		
File Language options

				The File language supports 2 options which are listed below.
			
	Name	Default	Java Type	Description
	
								resultType
							

							 	 	
								String
							

							 	
								Sets the class name of the result type (type from output)
							

							
	
								trim
							

							 	
								true
							

							 	
								Boolean
							

							 	
								Whether to trim the value to remove leading and trailing whitespaces and line breaks
							

							

Syntax

				This language is an extension to the Simple language so the Simple syntax applies also. So the table below only lists the additional.
 As opposed to Simple language File Language also supports Constant expressions so you can enter a fixed filename.
			

				All the file tokens use the same expression name as the method on the java.io.File object, for instance file:absolute refers to the java.io.File.getAbsolute() method. Notice that not all expressions are supported by the current Exchange. For instance the FTP component supports some of the options, where as the File component supports all of them.
			
	Expression	Type	File Consumer	File Producer	FTP Consumer	FTP Producer	Description
	
								file:name
							

							 	
								String
							

							 	
								yes
							

							 	
								no
							

							 	
								yes
							

							 	
								no
							

							 	
								refers to the file name (is relative to the starting directory, see note below)
							

							
	
								file:name.ext
							

							 	
								String
							

							 	
								yes
							

							 	
								no
							

							 	
								yes
							

							 	
								no
							

							 	
								Camel 2.3: refers to the file extension only
							

							
	
								file:name.ext.single
							

							 	
								String
							

							 	
								yes
							

							 	
								no
							

							 	
								yes
							

							 	
								no
							

							 	
								Camel 2.14.4/2.15.3: refers to the file extension. If the file extension has mutiple dots, then this expression strips and only returns the last part.
							

							
	
								file:name.noext
							

							 	
								String
							

							 	
								yes
							

							 	
								no
							

							 	
								yes
							

							 	
								no
							

							 	
								refers to the file name with no extension (is relative to the starting directory, see note below)
							

							
	
								file:name.noext.single
							

							 	
								String
							

							 	
								yes
							

							 	
								no
							

							 	
								yes
							

							 	
								no
							

							 	
								Camel 2.14.4/2.15.3: refers to the file name with no extension (is relative to the starting directory, see note below). If the file extension has multiple dots, then this expression strips only the last part, and keep the others.
							

							
	
								file:onlyname
							

							 	
								String
							

							 	
								yes
							

							 	
								no
							

							 	
								yes
							

							 	
								no
							

							 	
								refers to the file name only with no leading paths.
							

							
	
								file:onlyname.noext
							

							 	
								String
							

							 	
								yes
							

							 	
								no
							

							 	
								yes
							

							 	
								no
							

							 	
								refers to the file name only with no extension and with no leading paths.
							

							
	
								file:onlyname.noext.single
							

							 	
								String
							

							 	
								yes
							

							 	
								no
							

							 	
								yes
							

							 	
								no
							

							 	
								*Camel 2.14.4/2.15.3:*refers to the file name only with no extension and with no leading paths. If the file extension has multiple dots, then this expression strips only the last part, and keep the others.
							

							
	
								file:ext
							

							 	
								String
							

							 	
								yes
							

							 	
								no
							

							 	
								yes
							

							 	
								no
							

							 	
								refers to the file extension only
							

							
	
								file:parent
							

							 	
								String
							

							 	
								yes
							

							 	
								no
							

							 	
								yes
							

							 	
								no
							

							 	
								refers to the file parent
							

							
	
								file:path
							

							 	
								String
							

							 	
								yes
							

							 	
								no
							

							 	
								yes
							

							 	
								no
							

							 	
								refers to the file path
							

							
	
								file:absolute
							

							 	
								Boolean
							

							 	
								yes
							

							 	
								no
							

							 	
								no
							

							 	
								no
							

							 	
								refers to whether the file is regarded as absolute or relative
							

							
	
								file:absolute.path
							

							 	
								String
							

							 	
								yes
							

							 	
								no
							

							 	
								no
							

							 	
								no
							

							 	
								refers to the absolute file path
							

							
	
								file:length
							

							 	
								Long
							

							 	
								yes
							

							 	
								no
							

							 	
								yes
							

							 	
								no
							

							 	
								refers to the file length returned as a Long type
							

							
	
								file:size
							

							 	
								Long
							

							 	
								yes
							

							 	
								no
							

							 	
								yes
							

							 	
								no
							

							 	
								Camel 2.5: refers to the file length returned as a Long type
							

							
	
								file:modified
							

							 	
								Date
							

							 	
								yes
							

							 	
								no
							

							 	
								yes
							

							 	
								no
							

							 	
								Refers to the file last modified returned as a Date type
							

							
	
								date:_command:pattern_
							

							 	
								String
							

							 	
								yes
							

							 	
								yes
							

							 	
								yes
							

							 	
								yes
							

							 	
								for date formatting using the java.text.SimpleDateFormat patterns. Is an extension to the Simple language. Additional command is: file (consumers only) for the last modified timestamp of the file. Notice: all the commands from the Simple language can also be used.
							

							

File token example

Relative paths

					We have a java.io.File handle for the file hello.txt in the following relative directory: .\filelanguage\test. And we configure our endpoint to use this starting directory .\filelanguage. The file tokens will return as:
				
	Expression	Returns
	
									file:name
								

								 	
									test\hello.txt
								

								
	
									file:name.ext
								

								 	
									txt
								

								
	
									file:name.noext
								

								 	
									test\hello
								

								
	
									file:onlyname
								

								 	
									hello.txt
								

								
	
									file:onlyname.noext
								

								 	
									hello
								

								
	
									file:ext
								

								 	
									txt
								

								
	
									file:parent
								

								 	
									filelanguage\test
								

								
	
									file:path
								

								 	
									filelanguage\test\hello.txt
								

								
	
									file:absolute
								

								 	
									false
								

								
	
									file:absolute.path
								

								 	
									\workspace\camel\camel-core\target\filelanguage\test\hello.txt
								

								

Absolute paths

					We have a java.io.File handle for the file hello.txt in the following absolute directory: \workspace\camel\camel-core\target\filelanguage\test. And we configure out endpoint to use the absolute starting directory \workspace\camel\camel-core\target\filelanguage. The file tokens will return as:
				
	Expression	Returns
	
									file:name
								

								 	
									test\hello.txt
								

								
	
									file:name.ext
								

								 	
									txt
								

								
	
									file:name.noext
								

								 	
									test\hello
								

								
	
									file:onlyname
								

								 	
									hello.txt
								

								
	
									file:onlyname.noext
								

								 	
									hello
								

								
	
									file:ext
								

								 	
									txt
								

								
	
									file:parent
								

								 	
									\workspace\camel\camel-core\target\filelanguage\test
								

								
	
									file:path
								

								 	
									\workspace\camel\camel-core\target\filelanguage\test\hello.txt
								

								
	
									file:absolute
								

								 	
									true
								

								
	
									file:absolute.path
								

								 	
									\workspace\camel\camel-core\target\filelanguage\test\hello.txt
								

								

Samples

				You can enter a fixed Constant expression such as myfile.txt:
			
fileName="myfile.txt"

				Lets assume we use the file consumer to read files and want to move the read files to backup folder with the current date as a sub folder. This can be archieved using an expression like:
			
fileName="backup/${date:now:yyyyMMdd}/${file:name.noext}.bak"

				relative folder names are also supported so suppose the backup folder should be a sibling folder then you can append .. as:
			
fileName="../backup/${date:now:yyyyMMdd}/${file:name.noext}.bak"

				As this is an extension to the Simple language we have access to all the goodies from this language also, so in this use case we want to use the in.header.type as a parameter in the dynamic expression:
			
fileName="../backup/${date:now:yyyyMMdd}/type-${in.header.type}/backup-of-${file:name.noext}.bak"

				If you have a custom Date you want to use in the expression then Camel supports retrieving dates from the message header.
			
fileName="orders/order-${in.header.customerId}-${date:in.header.orderDate:yyyyMMdd}.xml"

				And finally we can also use a bean expression to invoke a POJO class that generates some String output (or convertible to String) to be used:
			
fileName="uniquefile-${bean:myguidgenerator.generateid}.txt"

				And of course all this can be combined in one expression where you can use the File Language, Simple and the Bean language in one combined expression. This is pretty powerful for those common file path patterns.
			

Using Spring PropertyPlaceholderConfigurer together with the File component

				In Camel you can use the File Language directly from the Simple language which makes a Content Based Router easier to do in Spring XML, where we can route based on file extensions as shown below:
			
<from uri="file://input/orders"/>
 <choice>
 <when>
 <simple>${file:ext} == 'txt'</simple>
 <to uri="bean:orderService?method=handleTextFiles"/>
 </when>
 <when>
 <simple>${file:ext} == 'xml'</simple>
 <to uri="bean:orderService?method=handleXmlFiles"/>
 </when>
 <otherwise>
 <to uri="bean:orderService?method=handleOtherFiles"/>
 </otherwise>
 </choice>

				If you use the fileName option on the File endpoint to set a dynamic filename using the File Language then make sure you
 use the alternative syntax (available from Camel 2.5 onwards) to avoid clashing with Springs PropertyPlaceholderConfigurer.
			

				bundle-context.xml
			
<bean id="propertyPlaceholder" class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer">
 <property name="location" value="classpath:bundle-context.cfg" />
</bean>

<bean id="sampleRoute" class="SampleRoute">
 <property name="fromEndpoint" value="${fromEndpoint}" />
 <property name="toEndpoint" value="${toEndpoint}" />
</bean>

				bundle-context.cfg
			
fromEndpoint=activemq:queue:test
toEndpoint=file://fileRoute/out?fileName=test-$simple{date:now:yyyyMMdd}.txt

				Notice how we use the $simple\{ } syntax in the toEndpoint above.
 If you don’t do this, there is a clash and Spring will throw an exception like
			
org.springframework.beans.factory.BeanDefinitionStoreException:
Invalid bean definition with name 'sampleRoute' defined in class path resource [bundle-context.xml]:
Could not resolve placeholder 'date:now:yyyyMMdd'

Dependencies

				The File language is part of camel-core.
			

Chapter 105. Flatpack Component

			Available as of Camel version 1.4
		

			The Flatpack component supports fixed width and delimited file parsing via the FlatPack library.
 Notice: This component only supports consuming from flatpack files to Object model. You can not (yet) write from Object model to flatpack format.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-flatpack</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>
URI format

flatpack:[delim|fixed]:flatPackConfig.pzmap.xml[?options]

				Or for a delimited file handler with no configuration file just use
			
flatpack:someName[?options]

				You can append query options to the URI in the following format, ?option=value&option=value&…​
			

URI Options

				The Flatpack component has no options.
			

				The Flatpack endpoint is configured using URI syntax:
			
flatpack:type:resourceUri

				with the following path and query parameters:
			
Path Parameters (2 parameters):

	Name	Description	Default	Type
	
									type
								

								 	
									Whether to use fixed or delimiter
								

								 	
									delim
								

								 	
									FlatpackType
								

								
	
									resourceUri
								

								 	
									Required URL for loading the flatpack mapping file from classpath or file system
								

								 	 	
									String
								

								

Query Parameters (25 parameters):

	Name	Description	Default	Type
	
									allowShortLines (common)
								

								 	
									Allows for lines to be shorter than expected and ignores the extra characters
								

								 	
									false
								

								 	
									boolean
								

								
	
									delimiter (common)
								

								 	
									The default character delimiter for delimited files.
								

								 	
									,
								

								 	
									char
								

								
	
									ignoreExtraColumns (common)
								

								 	
									Allows for lines to be longer than expected and ignores the extra characters
								

								 	
									false
								

								 	
									boolean
								

								
	
									ignoreFirstRecord (common)
								

								 	
									Whether the first line is ignored for delimited files (for the column headers).
								

								 	
									true
								

								 	
									boolean
								

								
	
									splitRows (common)
								

								 	
									Sets the Component to send each row as a separate exchange once parsed
								

								 	
									true
								

								 	
									boolean
								

								
	
									textQualifier (common)
								

								 	
									The text qualifier for delimited files.
								

								 	 	
									char
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									sendEmptyMessageWhenIdle (consumer)
								

								 	
									If the polling consumer did not poll any files, you can enable this option to send an empty message (no body) instead.
								

								 	
									false
								

								 	
									boolean
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									pollStrategy (consumer)
								

								 	
									A pluggable org.apache.camel.PollingConsumerPollingStrategy allowing you to provide your custom implementation to control error handling usually occurred during the poll operation before an Exchange have been created and being routed in Camel.
								

								 	 	
									PollingConsumerPoll Strategy
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									backoffErrorThreshold (scheduler)
								

								 	
									The number of subsequent error polls (failed due some error) that should happen before the backoffMultipler should kick-in.
								

								 	 	
									int
								

								
	
									backoffIdleThreshold (scheduler)
								

								 	
									The number of subsequent idle polls that should happen before the backoffMultipler should kick-in.
								

								 	 	
									int
								

								
	
									backoffMultiplier (scheduler)
								

								 	
									To let the scheduled polling consumer backoff if there has been a number of subsequent idles/errors in a row. The multiplier is then the number of polls that will be skipped before the next actual attempt is happening again. When this option is in use then backoffIdleThreshold and/or backoffErrorThreshold must also be configured.
								

								 	 	
									int
								

								
	
									delay (scheduler)
								

								 	
									Milliseconds before the next poll. You can also specify time values using units, such as 60s (60 seconds), 5m30s (5 minutes and 30 seconds), and 1h (1 hour).
								

								 	
									500
								

								 	
									long
								

								
	
									greedy (scheduler)
								

								 	
									If greedy is enabled, then the ScheduledPollConsumer will run immediately again, if the previous run polled 1 or more messages.
								

								 	
									false
								

								 	
									boolean
								

								
	
									initialDelay (scheduler)
								

								 	
									Milliseconds before the first poll starts. You can also specify time values using units, such as 60s (60 seconds), 5m30s (5 minutes and 30 seconds), and 1h (1 hour).
								

								 	
									1000
								

								 	
									long
								

								
	
									runLoggingLevel (scheduler)
								

								 	
									The consumer logs a start/complete log line when it polls. This option allows you to configure the logging level for that.
								

								 	
									TRACE
								

								 	
									LoggingLevel
								

								
	
									scheduledExecutorService (scheduler)
								

								 	
									Allows for configuring a custom/shared thread pool to use for the consumer. By default each consumer has its own single threaded thread pool.
								

								 	 	
									ScheduledExecutor Service
								

								
	
									scheduler (scheduler)
								

								 	
									To use a cron scheduler from either camel-spring or camel-quartz2 component
								

								 	
									none
								

								 	
									ScheduledPollConsumer Scheduler
								

								
	
									schedulerProperties (scheduler)
								

								 	
									To configure additional properties when using a custom scheduler or any of the Quartz2, Spring based scheduler.
								

								 	 	
									Map
								

								
	
									startScheduler (scheduler)
								

								 	
									Whether the scheduler should be auto started.
								

								 	
									true
								

								 	
									boolean
								

								
	
									timeUnit (scheduler)
								

								 	
									Time unit for initialDelay and delay options.
								

								 	
									MILLISECONDS
								

								 	
									TimeUnit
								

								
	
									useFixedDelay (scheduler)
								

								 	
									Controls if fixed delay or fixed rate is used. See ScheduledExecutorService in JDK for details.
								

								 	
									true
								

								 	
									boolean
								

								

Examples

	
						flatpack:fixed:foo.pzmap.xml creates a fixed-width endpoint using the foo.pzmap.xml file configuration.
					
	
						flatpack:delim:bar.pzmap.xml creates a delimited endpoint using the bar.pzmap.xml file configuration.
					
	
						flatpack:foo creates a delimited endpoint called foo with no file configuration.
					

Message Headers

				Camel will store the following headers on the IN message:
			
	Header	Description
	
								camelFlatpackCounter
							

							 	
								The current row index. For splitRows=false the counter is the total number of rows.
							

							

Message Body

				The component delivers the data in the IN message as a org.apache.camel.component.flatpack.DataSetList object that has converters for java.util.Map or java.util.List.
 Usually you want the Map if you process one row at a time (splitRows=true). Use List for the entire content (splitRows=false), where each element in the list is a Map.
 Each Map contains the key for the column name and its corresponding value.
			

				For example to get the firstname from the sample below:
			
 Map row = exchange.getIn().getBody(Map.class);
 String firstName = row.get("FIRSTNAME");

				However, you can also always get it as a List (even for splitRows=true). The same example:
			
 List data = exchange.getIn().getBody(List.class);
 Map row = (Map)data.get(0);
 String firstName = row.get("FIRSTNAME");

Header and Trailer records

				The header and trailer notions in Flatpack are supported. However, you must use fixed record IDs:
			
	
						header for the header record (must be lowercase)
					
	
						trailer for the trailer record (must be lowercase)
					

				The example below illustrates this fact that we have a header and a trailer. You can omit one or both of them if not needed.
			
 <RECORD id="header" startPosition="1" endPosition="3" indicator="HBT">
 <COLUMN name="INDICATOR" length="3"/>
 <COLUMN name="DATE" length="8"/>
 </RECORD>

 <COLUMN name="FIRSTNAME" length="35" />
 <COLUMN name="LASTNAME" length="35" />
 <COLUMN name="ADDRESS" length="100" />
 <COLUMN name="CITY" length="100" />
 <COLUMN name="STATE" length="2" />
 <COLUMN name="ZIP" length="5" />

 <RECORD id="trailer" startPosition="1" endPosition="3" indicator="FBT">
 <COLUMN name="INDICATOR" length="3"/>
 <COLUMN name="STATUS" length="7"/>
 </RECORD>

Using the endpoint

				A common use case is sending a file to this endpoint for further processing in a separate route. For example:
			
 <camelContext xmlns="http://activemq.apache.org/camel/schema/spring">
 <route>
 <from uri="file://someDirectory"/>
 <to uri="flatpack:foo"/>
 </route>

 <route>
 <from uri="flatpack:foo"/>
 ...
 </route>
 </camelContext>

				You can also convert the payload of each message created to a Map for easy Bean Integration
			

Flatpack DataFormat

				The Flatpack component ships with the Flatpack data format that can be used to format between fixed width or delimited text messages to a List of rows as Map.
			
	
						marshal = from List<Map<String, Object>> to OutputStream (can be converted to String)
					
	
						unmarshal = from java.io.InputStream (such as a File or String) to a java.util.List as an org.apache.camel.component.flatpack.DataSetList instance.
 The result of the operation will contain all the data. If you need to process each row one by one you can split the exchange, using Splitter.
					

				Notice: The Flatpack library does currently not support header and trailers for the marshal operation.
			

Options

				The data format has the following options:
			
	Option	Default	Description
	
								definition
							

							 	
								null
							

							 	
								The flatpack pzmap configuration file. Can be omitted in simpler situations, but its preferred to use the pzmap.
							

							
	
								fixed
							

							 	
								false
							

							 	
								Delimited or fixed.
							

							
	
								ignoreFirstRecord
							

							 	
								true
							

							 	
								Whether the first line is ignored for delimited files (for the column headers).
							

							
	
								textQualifier
							

							 	
								"
							

							 	
								If the text is qualified with a char such as ".
							

							
	
								delimiter
							

							 	
								,
							

							 	
								The delimiter char (could be ; , or similar)
							

							
	
								parserFactory
							

							 	
								null
							

							 	
								Uses the default Flatpack parser factory.
							

							
	
								allowShortLines
							

							 	
								false
							

							 	
								Camel 2.9.7 and 2.10.5 onwards: Allows for lines to be shorter than expected and ignores the extra characters.
							

							
	
								ignoreExtraColumns
							

							 	
								false
							

							 	
								Camel 2.9.7 and 2.10.5 onwards: Allows for lines to be longer than expected and ignores the extra characters.
							

							

Usage

				To use the data format, simply instantiate an instance and invoke the marshal or unmarshal operation in the route builder:
			
 FlatpackDataFormat fp = new FlatpackDataFormat();
 fp.setDefinition(new ClassPathResource("INVENTORY-Delimited.pzmap.xml"));
 ...
 from("file:order/in").unmarshal(df).to("seda:queue:neworder");

				The sample above will read files from the order/in folder and unmarshal the input using the Flatpack configuration file INVENTORY-Delimited.pzmap.xml that configures the structure of the files. The result is a DataSetList object we store on the SEDA queue.
			
FlatpackDataFormat df = new FlatpackDataFormat();
df.setDefinition(new ClassPathResource("PEOPLE-FixedLength.pzmap.xml"));
df.setFixed(true);
df.setIgnoreFirstRecord(false);

from("seda:people").marshal(df).convertBodyTo(String.class).to("jms:queue:people");

				In the code above we marshal the data from a Object representation as a List of rows as Maps. The rows as Map contains the column name as the key, and the the corresponding value. This structure can be created in Java code from e.g. a processor. We marshal the data according to the Flatpack format and convert the result as a String object and store it on a JMS queue.
			

Dependencies

				To use Flatpack in your camel routes you need to add the a dependency on camel-flatpack which implements this data format.
			

				If you use maven you could just add the following to your pom.xml, substituting the version number for the latest & greatest release (see the download page for the latest versions).
			
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-flatpack</artifactId>
 <version>x.x.x</version>
</dependency>

See Also

	
						Configuring Camel
					
	
						Component
					
	
						Endpoint
					
	
						Getting Started
					

Chapter 106. Flatpack DataFormat

			Available as of Camel version 2.1
		

			The Flatpack component ships with the Flatpack data format that can be used to format between fixed width or delimited text messages to a List of rows as Map.
		
	
					marshal = from List<Map<String, Object>> to OutputStream (can be converted to String)
				
	
					unmarshal = from java.io.InputStream (such as a File or String) to a java.util.List as an org.apache.camel.component.flatpack.DataSetList instance.
 The result of the operation will contain all the data. If you need to process each row one by one you can split the exchange, using Splitter.
				

			Notice: The Flatpack library does currently not support header and trailers for the marshal operation.
		
Options

				The Flatpack dataformat supports 9 options which are listed below.
			
	Name	Default	Java Type	Description
	
								definition
							

							 	 	
								String
							

							 	
								The flatpack pzmap configuration file. Can be omitted in simpler situations, but its preferred to use the pzmap.
							

							
	
								fixed
							

							 	
								false
							

							 	
								Boolean
							

							 	
								Delimited or fixed. Is by default false = delimited
							

							
	
								ignoreFirstRecord
							

							 	
								true
							

							 	
								Boolean
							

							 	
								Whether the first line is ignored for delimited files (for the column headers). Is by default true.
							

							
	
								textQualifier
							

							 	 	
								String
							

							 	
								If the text is qualified with a character. Uses quote character by default.
							

							
	
								delimiter
							

							 	
								,
							

							 	
								String
							

							 	
								The delimiter char (could be ; , or similar)
							

							
	
								allowShortLines
							

							 	
								false
							

							 	
								Boolean
							

							 	
								Allows for lines to be shorter than expected and ignores the extra characters
							

							
	
								ignoreExtraColumns
							

							 	
								false
							

							 	
								Boolean
							

							 	
								Allows for lines to be longer than expected and ignores the extra characters.
							

							
	
								parserFactoryRef
							

							 	 	
								String
							

							 	
								References to a custom parser factory to lookup in the registry
							

							
	
								contentTypeHeader
							

							 	
								false
							

							 	
								Boolean
							

							 	
								Whether the data format should set the Content-Type header with the type from the data format if the data format is capable of doing so. For example application/xml for data formats marshalling to XML, or application/json for data formats marshalling to JSon etc.
							

							

Usage

				To use the data format, simply instantiate an instance and invoke the marshal or unmarshal operation in the route builder:
			
 FlatpackDataFormat fp = new FlatpackDataFormat();
 fp.setDefinition(new ClassPathResource("INVENTORY-Delimited.pzmap.xml"));
 ...
 from("file:order/in").unmarshal(df).to("seda:queue:neworder");

				The sample above will read files from the order/in folder and unmarshal the input using the Flatpack configuration file INVENTORY-Delimited.pzmap.xml that configures the structure of the files. The result is a DataSetList object we store on the SEDA queue.
			
FlatpackDataFormat df = new FlatpackDataFormat();
df.setDefinition(new ClassPathResource("PEOPLE-FixedLength.pzmap.xml"));
df.setFixed(true);
df.setIgnoreFirstRecord(false);

from("seda:people").marshal(df).convertBodyTo(String.class).to("jms:queue:people");

				In the code above we marshal the data from a Object representation as a List of rows as Maps. The rows as Map contains the column name as the key, and the the corresponding value. This structure can be created in Java code from e.g. a processor. We marshal the data according to the Flatpack format and convert the result as a String object and store it on a JMS queue.
			

Dependencies

				To use Flatpack in your camel routes you need to add the a dependency on camel-flatpack which implements this data format.
			

				If you use maven you could just add the following to your pom.xml, substituting the version number for the latest & greatest release (see the download page for the latest versions).
			
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-flatpack</artifactId>
 <version>x.x.x</version>
</dependency>

Chapter 107. Apache Flink Component

			Available as of Camel version 2.18
		

			This documentation page covers the Apache Flink component for the Apache Camel. The camel-flink component provides a bridge between Camel connectors and Flink tasks.
 This Camel Flink connector provides a way to route message from various transports, dynamically choosing a flink task to execute, use incoming message as input data for the task and finally deliver the results back to the Camel pipeline.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-flink</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>
URI Format

				Currently, the Flink Component supports only Producers. One can create DataSet, DataStream jobs.
			
flink:dataset?dataset=#myDataSet&dataSetCallback=#dataSetCallback
flink:datastream?datastream=#myDataStream&dataStreamCallback=#dataStreamCallback

				FlinkEndpoint Options
			

				The Apache Flink endpoint is configured using URI syntax:
			
flink:endpointType

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									endpointType
								

								 	
									Required Type of the endpoint (dataset, datastream).
								

								 	 	
									EndpointType
								

								

Query Parameters (6 parameters):

	Name	Description	Default	Type
	
									collect (producer)
								

								 	
									Indicates if results should be collected or counted.
								

								 	
									true
								

								 	
									boolean
								

								
	
									dataSet (producer)
								

								 	
									DataSet to compute against.
								

								 	 	
									DataSet
								

								
	
									dataSetCallback (producer)
								

								 	
									Function performing action against a DataSet.
								

								 	 	
									DataSetCallback
								

								
	
									dataStream (producer)
								

								 	
									DataStream to compute against.
								

								 	 	
									DataStream
								

								
	
									dataStreamCallback (producer)
								

								 	
									Function performing action against a DataStream.
								

								 	 	
									DataStreamCallback
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

FlinkComponent Options

				The Apache Flink component supports 5 options which are listed below.
			
	Name	Description	Default	Type
	
								dataSet (producer)
							

							 	
								DataSet to compute against.
							

							 	 	
								DataSet
							

							
	
								dataStream (producer)
							

							 	
								DataStream to compute against.
							

							 	 	
								DataStream
							

							
	
								dataSetCallback (producer)
							

							 	
								Function performing action against a DataSet.
							

							 	 	
								DataSetCallback
							

							
	
								dataStreamCallback (producer)
							

							 	
								Function performing action against a DataStream.
							

							 	 	
								DataStreamCallback
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

Flink DataSet Callback

@Bean
public DataSetCallback<Long> dataSetCallback() {
 return new DataSetCallback<Long>() {
 public Long onDataSet(DataSet dataSet, Object... objects) {
 try {
 dataSet.print();
 return new Long(0);
 } catch (Exception e) {
 return new Long(-1);
 }
 }
 };
}

Flink DataStream Callback

@Bean
public VoidDataStreamCallback dataStreamCallback() {
 return new VoidDataStreamCallback() {
 @Override
 public void doOnDataStream(DataStream dataStream, Object... objects) throws Exception {
 dataStream.flatMap(new Splitter()).print();

 environment.execute("data stream test");
 }
 };
}

Camel-Flink Producer call

CamelContext camelContext = new SpringCamelContext(context);

String pattern = "foo";

try {
 ProducerTemplate template = camelContext.createProducerTemplate();
 camelContext.start();
 Long count = template.requestBody("flink:dataSet?dataSet=#myDataSet&dataSetCallback=#countLinesContaining", pattern, Long.class);
 } finally {
 camelContext.stop();
 }

See Also

	
						Configuring Camel
					
	
						Component
					
	
						Endpoint
					
	
						Getting Started
					

Chapter 108. FOP Component

			Available as of Camel version 2.10
		

			The FOP component allows you to render a message into different output formats using Apache FOP.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-fop</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>
URI format

fop://outputFormat?[options]

Output Formats

				The primary output format is PDF but other output formats are also supported:
			
	name	outputFormat	description
	
								PDF
							

							 	
								application/pdf
							

							 	
								Portable Document Format
							

							
	
								PS
							

							 	
								application/postscript
							

							 	
								Adobe Postscript
							

							
	
								PCL
							

							 	
								application/x-pcl
							

							 	
								Printer Control Language
							

							
	
								PNG
							

							 	
								image/png
							

							 	
								PNG images
							

							
	
								JPEG
							

							 	
								image/jpeg
							

							 	
								JPEG images
							

							
	
								SVG
							

							 	
								image/svg+xml
							

							 	
								Scalable Vector Graphics
							

							
	
								XML
							

							 	
								application/X-fop-areatree
							

							 	
								Area tree representation
							

							
	
								MIF
							

							 	
								application/mif
							

							 	
								FrameMaker’s MIF
							

							
	
								RTF
							

							 	
								application/rtf
							

							 	
								Rich Text Format
							

							
	
								TXT
							

							 	
								text/plain
							

							 	
								Text
							

							

				The complete list of valid output formats can be found here
			

Endpoint Options

				The FOP component has no options.
			

				The FOP endpoint is configured using URI syntax:
			
fop:outputType

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									outputType
								

								 	
									Required The primary output format is PDF but other output formats are also supported.
								

								 	 	
									FopOutputType
								

								

Query Parameters (3 parameters):

	Name	Description	Default	Type
	
									fopFactory (producer)
								

								 	
									Allows to use a custom configured or implementation of org.apache.fop.apps.FopFactory.
								

								 	 	
									FopFactory
								

								
	
									userConfigURL (producer)
								

								 	
									The location of a configuration file which can be loaded from classpath or file system.
								

								 	 	
									String
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

					The location of a configuration file with the following structure. From Camel 2.12 onwards the file is loaded from the classpath by default. You can use file:, or classpath: as prefix to load the resource from file or classpath. In previous releases the file is always loaded from file system.
				

					fopFactory
				

					
				

					Allows to use a custom configured or implementation of org.apache.fop.apps.FopFactory.
				

Message Operations

	name	default value	description
	
								CamelFop.Output.Format
							

							 	 	
								Overrides the output format for that message
							

							
	
								CamelFop.Encrypt.userPassword
							

							 	 	
								PDF user password
							

							
	
								CamelFop.Encrypt.ownerPassword
							

							 	 	
								PDF owner passoword
							

							
	
								CamelFop.Encrypt.allowPrint
							

							 	
								true
							

							 	
								Allows printing the PDF
							

							
	
								CamelFop.Encrypt.allowCopyContent
							

							 	
								true
							

							 	
								Allows copying content of the PDF
							

							
	
								CamelFop.Encrypt.allowEditContent
							

							 	
								true
							

							 	
								Allows editing content of the PDF
							

							
	
								CamelFop.Encrypt.allowEditAnnotations
							

							 	
								true
							

							 	
								Allows editing annotation of the PDF
							

							
	
								CamelFop.Render.producer
							

							 	
								Apache FOP
							

							 	
								Metadata element for the system/software that produces the document
							

							
	
								CamelFop.Render.creator
							

							 	 	
								Metadata element for the user that created the document
							

							
	
								CamelFop.Render.creationDate
							

							 	 	
								Creation Date
							

							
	
								CamelFop.Render.author
							

							 	 	
								Author of the content of the document
							

							
	
								CamelFop.Render.title
							

							 	 	
								Title of the document
							

							
	
								CamelFop.Render.subject
							

							 	 	
								Subject of the document
							

							
	
								CamelFop.Render.keywords
							

							 	 	
								Set of keywords applicable to this document
							

							

Example

				Below is an example route that renders PDFs from xml data and xslt template and saves the PDF files in target folder:
			
from("file:source/data/xml")
 .to("xslt:xslt/template.xsl")
 .to("fop:application/pdf")
 .to("file:target/data");

				For more information, see these resources…​
			

See Also

	
						Configuring Camel
					
	
						Component
					
	
						Endpoint
					
	
						Getting Started
					

Chapter 109. Freemarker Component

			Available as of Camel version 2.10
		

			The freemarker: component allows for processing a message using a FreeMarker template. This can be ideal when using Templating to generate responses for requests.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-freemarker</artifactId>
 <version>x.x.x</version> <!-- use the same version as your Camel core version -->
</dependency>
URI format

freemarker:templateName[?options]

				Where templateName is the classpath-local URI of the template to invoke; or the complete URL of the remote template (eg: file://folder/myfile.ftl).
			

				You can append query options to the URI in the following format, ?option=value&option=value&…​
			

Options

				The Freemarker component supports 2 options which are listed below.
			
	Name	Description	Default	Type
	
								configuration (advanced)
							

							 	
								To use an existing freemarker.template.Configuration instance as the configuration.
							

							 	 	
								Configuration
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The Freemarker endpoint is configured using URI syntax:
			
freemarker:resourceUri

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									resourceUri
								

								 	
									Required Path to the resource. You can prefix with: classpath, file, http, ref, or bean. classpath, file and http loads the resource using these protocols (classpath is default). ref will lookup the resource in the registry. bean will call a method on a bean to be used as the resource. For bean you can specify the method name after dot, eg bean:myBean.myMethod.
								

								 	 	
									String
								

								

Query Parameters (5 parameters):

	Name	Description	Default	Type
	
									configuration (producer)
								

								 	
									Sets the Freemarker configuration to use
								

								 	 	
									Configuration
								

								
	
									contentCache (producer)
								

								 	
									Sets whether to use resource content cache or not
								

								 	
									false
								

								 	
									boolean
								

								
	
									encoding (producer)
								

								 	
									Sets the encoding to be used for loading the template file.
								

								 	 	
									String
								

								
	
									templateUpdateDelay (producer)
								

								 	
									Number of seconds the loaded template resource will remain in the cache.
								

								 	 	
									int
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

Headers

				Headers set during the FreeMarker evaluation are returned to the message and added as headers. This provides a mechanism for the FreeMarker component to return values to the Message.
			

				An example: Set the header value of fruit in the FreeMarker template:
			
${request.setHeader('fruit', 'Apple')}

				The header, fruit, is now accessible from the message.out.headers.
			

FreeMarker Context

				Camel will provide exchange information in the FreeMarker context (just a Map). The Exchange is transferred as:
			
	key	value
	
								exchange
							

							 	
								The Exchange itself.
							

							
	
								exchange.properties
							

							 	
								The Exchange properties.
							

							
	
								headers
							

							 	
								The headers of the In message.
							

							
	
								camelContext
							

							 	
								The Camel Context.
							

							
	
								request
							

							 	
								The In message.
							

							
	
								body
							

							 	
								The In message body.
							

							
	
								response
							

							 	
								The Out message (only for InOut message exchange pattern).
							

							

				From Camel 2.14, you can setup your custom FreeMarker context in the message header with the key "CamelFreemarkerDataModel" just like this
			
Map<String, Object> variableMap = new HashMap<String, Object>();
variableMap.put("headers", headersMap);
variableMap.put("body", "Monday");
variableMap.put("exchange", exchange);
exchange.getIn().setHeader("CamelFreemarkerDataModel", variableMap);

Hot reloading

				The FreeMarker template resource is by default not hot reloadable for both file and classpath resources (expanded jar). If you set contentCache=false, then Camel will not cache the resource and hot reloading is thus enabled. This scenario can be used in development.
			

Dynamic templates

				Camel provides two headers by which you can define a different resource location for a template or the template content itself. If any of these headers is set then Camel uses this over the endpoint configured resource. This allows you to provide a dynamic template at runtime.
			
	Header	Type	Description	Support Version
	
								FreemarkerConstants.FREEMARKER_RESOURCE
							

							 	
								org.springframework.core.io.Resource
							

							 	
								The template resource
							

							 	
								⇐ 2.1
							

							
	
								FreemarkerConstants.FREEMARKER_RESOURCE_URI
							

							 	
								String
							

							 	
								A URI for the template resource to use instead of the endpoint configured.
							

							 	
								>= 2.1
							

							
	
								FreemarkerConstants.FREEMARKER_TEMPLATE
							

							 	
								String
							

							 	
								The template to use instead of the endpoint configured.
							

							 	
								>= 2.1
							

							

Samples

				For example you could use something like:
			
from("activemq:My.Queue").
 to("freemarker:com/acme/MyResponse.ftl");

				To use a FreeMarker template to formulate a response for a message for InOut message exchanges (where there is a JMSReplyTo header).
			

				If you want to use InOnly and consume the message and send it to another destination you could use:
			
from("activemq:My.Queue").
 to("freemarker:com/acme/MyResponse.ftl").
 to("activemq:Another.Queue");

				And to disable the content cache, e.g. for development usage where the .ftl template should be hot reloaded:
			
from("activemq:My.Queue").
 to("freemarker:com/acme/MyResponse.ftl?contentCache=false").
 to("activemq:Another.Queue");

				And a file-based resource:
			
from("activemq:My.Queue").
 to("freemarker:file://myfolder/MyResponse.ftl?contentCache=false").
 to("activemq:Another.Queue");

				In Camel 2.1 it’s possible to specify what template the component should use dynamically via a header, so for example:
			
from("direct:in").
 setHeader(FreemarkerConstants.FREEMARKER_RESOURCE_URI).constant("path/to/my/template.ftl").
 to("freemarker:dummy");

The Email Sample

				In this sample we want to use FreeMarker templating for an order confirmation email. The email template is laid out in FreeMarker as:
			
Dear ${headers.lastName}, ${headers.firstName}

Thanks for the order of ${headers.item}.

Regards Camel Riders Bookstore
${body}

				And the java code:
			

See Also

	
						Configuring Camel
					
	
						Component
					
	
						Endpoint
					
	
						Getting Started
					

Chapter 110. FTP Component

			Available as of Camel version 1.1
		

			This component provides access to remote file systems over the FTP and SFTP protocols.
		

			When consuming from remote FTP server make sure you read the section titled Default when consuming files further below for details related to consuming files.
		

			Absolute path is not supported. Camel 2.16 will translate absolute path to relative by trimming all leading slashes from directoryname. There’ll be WARN message printed in the logs.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-ftp</artifactId>
 <version>x.x.x</version>See the documentation of the Apache Commons
 <!-- use the same version as your Camel core version -->
</dependency>
URI format

ftp://[username@]hostname[:port]/directoryname[?options]
sftp://[username@]hostname[:port]/directoryname[?options]
ftps://[username@]hostname[:port]/directoryname[?options]

				Where directoryname represents the underlying directory. The directory name is a relative path. Absolute path’s is not supported. The relative path can contain nested folders, such as /inbox/us.
			

				For Camel versions before Camel 2.16, the directoryName must exist already as this component does not support the autoCreate option (which the file component does). The reason is that its the FTP administrator (FTP server) task to properly setup user accounts, and home directories with the right file permissions etc.
			

				For Camel 2.16, autoCreate option is supported. When consumer starts, before polling is scheduled, there’s additional FTP operation performed to create the directory configured for endpoint. The default value for autoCreate is true.
			

				If no username is provided, then anonymous login is attempted using no password.
 If no port number is provided, Camel will provide default values according to the protocol (ftp = 21, sftp = 22, ftps = 2222).
			

				You can append query options to the URI in the following format, ?option=value&option=value&…​
			

				This component uses two different libraries for the actual FTP work. FTP and FTPS uses Apache Commons Net while SFTP uses JCraft JSCH.
			

				The FTPS component is only available in Camel 2.2 or newer.
 FTPS (also known as FTP Secure) is an extension to FTP that adds support for the Transport Layer Security (TLS) and the Secure Sockets Layer (SSL) cryptographic protocols.
			

URI Options

				The options below are exclusive for the FTP component.
			

				The FTP component has no options.
			

				The FTP endpoint is configured using URI syntax:
			
ftp:host:port/directoryName

				with the following path and query parameters:
			
Path Parameters (3 parameters):

	Name	Description	Default	Type
	
									host
								

								 	
									Required Hostname of the FTP server
								

								 	 	
									String
								

								
	
									port
								

								 	
									Port of the FTP server
								

								 	 	
									int
								

								
	
									directoryName
								

								 	
									The starting directory
								

								 	 	
									String
								

								

Query Parameters (108 parameters):

	Name	Description	Default	Type
	
									binary (common)
								

								 	
									Specifies the file transfer mode, BINARY or ASCII. Default is ASCII (false).
								

								 	
									false
								

								 	
									boolean
								

								
	
									charset (common)
								

								 	
									This option is used to specify the encoding of the file. You can use this on the consumer, to specify the encodings of the files, which allow Camel to know the charset it should load the file content in case the file content is being accessed. Likewise when writing a file, you can use this option to specify which charset to write the file as well. Do mind that when writing the file Camel may have to read the message content into memory to be able to convert the data into the configured charset, so do not use this if you have big messages.
								

								 	 	
									String
								

								
	
									disconnect (common)
								

								 	
									Whether or not to disconnect from remote FTP server right after use. Disconnect will only disconnect the current connection to the FTP server. If you have a consumer which you want to stop, then you need to stop the consumer/route instead.
								

								 	
									false
								

								 	
									boolean
								

								
	
									doneFileName (common)
								

								 	
									Producer: If provided, then Camel will write a 2nd done file when the original file has been written. The done file will be empty. This option configures what file name to use. Either you can specify a fixed name. Or you can use dynamic placeholders. The done file will always be written in the same folder as the original file. Consumer: If provided, Camel will only consume files if a done file exists. This option configures what file name to use. Either you can specify a fixed name. Or you can use dynamic placeholders.The done file is always expected in the same folder as the original file. Only $file.name and $file.name.noext is supported as dynamic placeholders.
								

								 	 	
									String
								

								
	
									fileName (common)
								

								 	
									Use Expression such as File Language to dynamically set the filename. For consumers, it’s used as a filename filter. For producers, it’s used to evaluate the filename to write. If an expression is set, it take precedence over the CamelFileName header. (Note: The header itself can also be an Expression). The expression options support both String and Expression types. If the expression is a String type, it is always evaluated using the File Language. If the expression is an Expression type, the specified Expression type is used - this allows you, for instance, to use OGNL expressions. For the consumer, you can use it to filter filenames, so you can for instance consume today’s file using the File Language syntax: mydata-$date:now:yyyyMMdd.txt. The producers support the CamelOverruleFileName header which takes precedence over any existing CamelFileName header; the CamelOverruleFileName is a header that is used only once, and makes it easier as this avoids to temporary store CamelFileName and have to restore it afterwards.
								

								 	 	
									String
								

								
	
									passiveMode (common)
								

								 	
									Sets passive mode connections. Default is active mode connections.
								

								 	
									false
								

								 	
									boolean
								

								
	
									separator (common)
								

								 	
									Sets the path separator to be used. UNIX = Uses unix style path separator Windows = Uses windows style path separator Auto = (is default) Use existing path separator in file name
								

								 	
									UNIX
								

								 	
									PathSeparator
								

								
	
									transferLoggingInterval Seconds (common)
								

								 	
									Configures the interval in seconds to use when logging the progress of upload and download operations that are in-flight. This is used for logging progress when operations takes longer time.
								

								 	
									5
								

								 	
									int
								

								
	
									transferLoggingLevel (common)
								

								 	
									Configure the logging level to use when logging the progress of upload and download operations.
								

								 	
									DEBUG
								

								 	
									LoggingLevel
								

								
	
									transferLoggingVerbose (common)
								

								 	
									Configures whether the perform verbose (fine grained) logging of the progress of upload and download operations.
								

								 	
									false
								

								 	
									boolean
								

								
	
									fastExistsCheck (common)
								

								 	
									If set this option to be true, camel-ftp will use the list file directly to check if the file exists. Since some FTP server may not support to list the file directly, if the option is false, camel-ftp will use the old way to list the directory and check if the file exists. This option also influences readLock=changed to control whether it performs a fast check to update file information or not. This can be used to speed up the process if the FTP server has a lot of files.
								

								 	
									false
								

								 	
									boolean
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									delete (consumer)
								

								 	
									If true, the file will be deleted after it is processed successfully.
								

								 	
									false
								

								 	
									boolean
								

								
	
									moveFailed (consumer)
								

								 	
									Sets the move failure expression based on Simple language. For example, to move files into a .error subdirectory use: .error. Note: When moving the files to the fail location Camel will handle the error and will not pick up the file again.
								

								 	 	
									String
								

								
	
									noop (consumer)
								

								 	
									If true, the file is not moved or deleted in any way. This option is good for readonly data, or for ETL type requirements. If noop=true, Camel will set idempotent=true as well, to avoid consuming the same files over and over again.
								

								 	
									false
								

								 	
									boolean
								

								
	
									preMove (consumer)
								

								 	
									Expression (such as File Language) used to dynamically set the filename when moving it before processing. For example to move in-progress files into the order directory set this value to order.
								

								 	 	
									String
								

								
	
									preSort (consumer)
								

								 	
									When pre-sort is enabled then the consumer will sort the file and directory names during polling, that was retrieved from the file system. You may want to do this in case you need to operate on the files in a sorted order. The pre-sort is executed before the consumer starts to filter, and accept files to process by Camel. This option is default=false meaning disabled.
								

								 	
									false
								

								 	
									boolean
								

								
	
									recursive (consumer)
								

								 	
									If a directory, will look for files in all the sub-directories as well.
								

								 	
									false
								

								 	
									boolean
								

								
	
									resumeDownload (consumer)
								

								 	
									Configures whether resume download is enabled. This must be supported by the FTP server (almost all FTP servers support it). In addition the options localWorkDirectory must be configured so downloaded files are stored in a local directory, and the option binary must be enabled, which is required to support resuming of downloads.
								

								 	
									false
								

								 	
									boolean
								

								
	
									sendEmptyMessageWhenIdle (consumer)
								

								 	
									If the polling consumer did not poll any files, you can enable this option to send an empty message (no body) instead.
								

								 	
									false
								

								 	
									boolean
								

								
	
									streamDownload (consumer)
								

								 	
									Sets the download method to use when not using a local working directory. If set to true, the remote files are streamed to the route as they are read. When set to false, the remote files are loaded into memory before being sent into the route.
								

								 	
									false
								

								 	
									boolean
								

								
	
									directoryMustExist (consumer)
								

								 	
									Similar to startingDirectoryMustExist but this applies during polling recursive sub directories.
								

								 	
									false
								

								 	
									boolean
								

								
	
									download (consumer)
								

								 	
									Whether the FTP consumer should download the file. If this option is set to false, then the message body will be null, but the consumer will still trigger a Camel Exchange that has details about the file such as file name, file size, etc. It’s just that the file will not be downloaded.
								

								 	
									false
								

								 	
									boolean
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									handleDirectoryParser AbsoluteResult (consumer)
								

								 	
									Allows you to set how the consumer will handle subfolders and files in the path if the directory parser results in with absolute paths The reason for this is that some FTP servers may return file names with absolute paths, and if so then the FTP component needs to handle this by converting the returned path into a relative path.
								

								 	
									false
								

								 	
									boolean
								

								
	
									ignoreFileNotFoundOr PermissionError (consumer)
								

								 	
									Whether to ignore when (trying to list files in directories or when downloading a file), which does not exist or due to permission error. By default when a directory or file does not exists or insufficient permission, then an exception is thrown. Setting this option to true allows to ignore that instead.
								

								 	
									false
								

								 	
									boolean
								

								
	
									inProgressRepository (consumer)
								

								 	
									A pluggable in-progress repository org.apache.camel.spi.IdempotentRepository. The in-progress repository is used to account the current in progress files being consumed. By default a memory based repository is used.
								

								 	 	
									String>
								

								
	
									localWorkDirectory (consumer)
								

								 	
									When consuming, a local work directory can be used to store the remote file content directly in local files, to avoid loading the content into memory. This is beneficial, if you consume a very big remote file and thus can conserve memory.
								

								 	 	
									String
								

								
	
									onCompletionException Handler (consumer)
								

								 	
									To use a custom org.apache.camel.spi.ExceptionHandler to handle any thrown exceptions that happens during the file on completion process where the consumer does either a commit or rollback. The default implementation will log any exception at WARN level and ignore.
								

								 	 	
									ExceptionHandler
								

								
	
									pollStrategy (consumer)
								

								 	
									A pluggable org.apache.camel.PollingConsumerPollingStrategy allowing you to provide your custom implementation to control error handling usually occurred during the poll operation before an Exchange have been created and being routed in Camel.
								

								 	 	
									PollingConsumerPoll Strategy
								

								
	
									processStrategy (consumer)
								

								 	
									A pluggable org.apache.camel.component.file.GenericFileProcessStrategy allowing you to implement your own readLock option or similar. Can also be used when special conditions must be met before a file can be consumed, such as a special ready file exists. If this option is set then the readLock option does not apply.
								

								 	 	
									GenericFileProcess Strategy<T>
								

								
	
									receiveBufferSize (producer, consumer)
								

								 	
									The receiveBufferSize parameter is used for both upload and download; Used only by FTPClient
								

								 	
									32768
								

								 	
									int
								

								
	
									startingDirectoryMustExist (consumer)
								

								 	
									Whether the starting directory must exist. Mind that the autoCreate option is default enabled, which means the starting directory is normally auto created if it doesn’t exist. You can disable autoCreate and enable this to ensure the starting directory must exist. Will thrown an exception if the directory doesn’t exist.
								

								 	
									false
								

								 	
									boolean
								

								
	
									useList (consumer)
								

								 	
									Whether to allow using LIST command when downloading a file. Default is true. In some use cases you may want to download a specific file and are not allowed to use the LIST command, and therefore you can set this option to false. Notice when using this option, then the specific file to download does not include meta-data information such as file size, timestamp, permissions etc, because those information is only possible to retrieve when LIST command is in use.
								

								 	
									true
								

								 	
									boolean
								

								
	
									fileExist (producer)
								

								 	
									What to do if a file already exists with the same name. Override, which is the default, replaces the existing file. Append - adds content to the existing file. Fail - throws a GenericFileOperationException, indicating that there is already an existing file. Ignore - silently ignores the problem and does not override the existing file, but assumes everything is okay. Move - option requires to use the moveExisting option to be configured as well. The option eagerDeleteTargetFile can be used to control what to do if an moving the file, and there exists already an existing file, otherwise causing the move operation to fail. The Move option will move any existing files, before writing the target file. TryRename is only applicable if tempFileName option is in use. This allows to try renaming the file from the temporary name to the actual name, without doing any exists check. This check may be faster on some file systems and especially FTP servers.
								

								 	
									Override
								

								 	
									GenericFileExist
								

								
	
									flatten (producer)
								

								 	
									Flatten is used to flatten the file name path to strip any leading paths, so it’s just the file name. This allows you to consume recursively into sub-directories, but when you eg write the files to another directory they will be written in a single directory. Setting this to true on the producer enforces that any file name in CamelFileName header will be stripped for any leading paths.
								

								 	
									false
								

								 	
									boolean
								

								
	
									moveExisting (producer)
								

								 	
									Expression (such as File Language) used to compute file name to use when fileExist=Move is configured. To move files into a backup subdirectory just enter backup. This option only supports the following File Language tokens: file:name, file:name.ext, file:name.noext, file:onlyname, file:onlyname.noext, file:ext, and file:parent. Notice the file:parent is not supported by the FTP component, as the FTP component can only move any existing files to a relative directory based on current dir as base.
								

								 	 	
									String
								

								
	
									tempFileName (producer)
								

								 	
									The same as tempPrefix option but offering a more fine grained control on the naming of the temporary filename as it uses the File Language.
								

								 	 	
									String
								

								
	
									tempPrefix (producer)
								

								 	
									This option is used to write the file using a temporary name and then, after the write is complete, rename it to the real name. Can be used to identify files being written and also avoid consumers (not using exclusive read locks) reading in progress files. Is often used by FTP when uploading big files.
								

								 	 	
									String
								

								
	
									allowNullBody (producer)
								

								 	
									Used to specify if a null body is allowed during file writing. If set to true then an empty file will be created, when set to false, and attempting to send a null body to the file component, a GenericFileWriteException of 'Cannot write null body to file.' will be thrown. If the fileExist option is set to 'Override', then the file will be truncated, and if set to append the file will remain unchanged.
								

								 	
									false
								

								 	
									boolean
								

								
	
									chmod (producer)
								

								 	
									Allows you to set chmod on the stored file. For example chmod=640.
								

								 	 	
									String
								

								
	
									disconnectOnBatchComplete (producer)
								

								 	
									Whether or not to disconnect from remote FTP server right after a Batch upload is complete. disconnectOnBatchComplete will only disconnect the current connection to the FTP server.
								

								 	
									false
								

								 	
									boolean
								

								
	
									eagerDeleteTargetFile (producer)
								

								 	
									Whether or not to eagerly delete any existing target file. This option only applies when you use fileExists=Override and the tempFileName option as well. You can use this to disable (set it to false) deleting the target file before the temp file is written. For example you may write big files and want the target file to exists during the temp file is being written. This ensure the target file is only deleted until the very last moment, just before the temp file is being renamed to the target filename. This option is also used to control whether to delete any existing files when fileExist=Move is enabled, and an existing file exists. If this option copyAndDeleteOnRenameFails false, then an exception will be thrown if an existing file existed, if its true, then the existing file is deleted before the move operation.
								

								 	
									true
								

								 	
									boolean
								

								
	
									keepLastModified (producer)
								

								 	
									Will keep the last modified timestamp from the source file (if any). Will use the Exchange.FILE_LAST_MODIFIED header to located the timestamp. This header can contain either a java.util.Date or long with the timestamp. If the timestamp exists and the option is enabled it will set this timestamp on the written file. Note: This option only applies to the file producer. You cannot use this option with any of the ftp producers.
								

								 	
									false
								

								 	
									boolean
								

								
	
									sendNoop (producer)
								

								 	
									Whether to send a noop command as a pre-write check before uploading files to the FTP server. This is enabled by default as a validation of the connection is still valid, which allows to silently re-connect to be able to upload the file. However if this causes problems, you can turn this option off.
								

								 	
									true
								

								 	
									boolean
								

								
	
									activePortRange (advanced)
								

								 	
									Set the client side port range in active mode. The syntax is: minPort-maxPort Both port numbers are inclusive, eg 10000-19999 to include all 1xxxx ports.
								

								 	 	
									String
								

								
	
									autoCreate (advanced)
								

								 	
									Automatically create missing directories in the file’s pathname. For the file consumer, that means creating the starting directory. For the file producer, it means the directory the files should be written to.
								

								 	
									true
								

								 	
									boolean
								

								
	
									bufferSize (advanced)
								

								 	
									Write buffer sized in bytes.
								

								 	
									131072
								

								 	
									int
								

								
	
									connectTimeout (advanced)
								

								 	
									Sets the connect timeout for waiting for a connection to be established Used by both FTPClient and JSCH
								

								 	
									10000
								

								 	
									int
								

								
	
									ftpClient (advanced)
								

								 	
									To use a custom instance of FTPClient
								

								 	 	
									FTPClient
								

								
	
									ftpClientConfig (advanced)
								

								 	
									To use a custom instance of FTPClientConfig to configure the FTP client the endpoint should use.
								

								 	 	
									FTPClientConfig
								

								
	
									ftpClientConfigParameters (advanced)
								

								 	
									Used by FtpComponent to provide additional parameters for the FTPClientConfig
								

								 	 	
									Map
								

								
	
									ftpClientParameters (advanced)
								

								 	
									Used by FtpComponent to provide additional parameters for the FTPClient
								

								 	 	
									Map
								

								
	
									maximumReconnectAttempts (advanced)
								

								 	
									Specifies the maximum reconnect attempts Camel performs when it tries to connect to the remote FTP server. Use 0 to disable this behavior.
								

								 	 	
									int
								

								
	
									reconnectDelay (advanced)
								

								 	
									Delay in millis Camel will wait before performing a reconnect attempt.
								

								 	 	
									long
								

								
	
									siteCommand (advanced)
								

								 	
									Sets optional site command(s) to be executed after successful login. Multiple site commands can be separated using a new line character.
								

								 	 	
									String
								

								
	
									soTimeout (advanced)
								

								 	
									This refers to SocketOptions.SO_TIMEOUT value in millisecond. Recommended option is to set this to 300000 so as not have a hanged connection. On SFTP this option is set as timeout on the JSCH Session instance. For Camel 2.4, this parameter sets the soTimeout for FTP and FTPS only. For Camel 2.14.3, 2.15.3, 2.16 and onwards, this parameter refers to SFTP.
								

								 	
									300000
								

								 	
									int
								

								
	
									stepwise (advanced)
								

								 	
									Sets whether we should stepwise change directories while traversing file structures when downloading files, or as well when uploading a file to a directory. You can disable this if you for example are in a situation where you cannot change directory on the FTP server due security reasons.
								

								 	
									true
								

								 	
									boolean
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									throwExceptionOnConnect Failed (advanced)
								

								 	
									Should an exception be thrown if connection failed (exhausted) By default exception is not thrown and a WARN is logged. You can use this to enable exception being thrown and handle the thrown exception from the org.apache.camel.spi.PollingConsumerPollStrategy rollback method.
								

								 	
									false
								

								 	
									boolean
								

								
	
									timeout (advanced)
								

								 	
									Sets the data timeout for waiting for reply Used only by FTPClient
								

								 	
									30000
								

								 	
									int
								

								
	
									antExclude (filter)
								

								 	
									Ant style filter exclusion. If both antInclude and antExclude are used, antExclude takes precedence over antInclude. Multiple exclusions may be specified in comma-delimited format.
								

								 	 	
									String
								

								
	
									antFilterCaseSensitive (filter)
								

								 	
									Sets case sensitive flag on ant filter
								

								 	
									true
								

								 	
									boolean
								

								
	
									antInclude (filter)
								

								 	
									Ant style filter inclusion. Multiple inclusions may be specified in comma-delimited format.
								

								 	 	
									String
								

								
	
									eagerMaxMessagesPerPoll (filter)
								

								 	
									Allows for controlling whether the limit from maxMessagesPerPoll is eager or not. If eager then the limit is during the scanning of files. Where as false would scan all files, and then perform sorting. Setting this option to false allows for sorting all files first, and then limit the poll. Mind that this requires a higher memory usage as all file details are in memory to perform the sorting.
								

								 	
									true
								

								 	
									boolean
								

								
	
									exclude (filter)
								

								 	
									Is used to exclude files, if filename matches the regex pattern (matching is case in-senstive). Notice if you use symbols such as plus sign and others you would need to configure this using the RAW() syntax if configuring this as an endpoint uri. See more details at configuring endpoint uris
								

								 	 	
									String
								

								
	
									filter (filter)
								

								 	
									Pluggable filter as a org.apache.camel.component.file.GenericFileFilter class. Will skip files if filter returns false in its accept() method.
								

								 	 	
									GenericFileFilter<T>
								

								
	
									filterDirectory (filter)
								

								 	
									Filters the directory based on Simple language. For example to filter on current date, you can use a simple date pattern such as $date:now:yyyMMdd
								

								 	 	
									String
								

								
	
									filterFile (filter)
								

								 	
									Filters the file based on Simple language. For example to filter on file size, you can use $file:size 5000
								

								 	 	
									String
								

								
	
									idempotent (filter)
								

								 	
									Option to use the Idempotent Consumer EIP pattern to let Camel skip already processed files. Will by default use a memory based LRUCache that holds 1000 entries. If noop=true then idempotent will be enabled as well to avoid consuming the same files over and over again.
								

								 	
									false
								

								 	
									Boolean
								

								
	
									idempotentKey (filter)
								

								 	
									To use a custom idempotent key. By default the absolute path of the file is used. You can use the File Language, for example to use the file name and file size, you can do: idempotentKey=$file:name-$file:size
								

								 	 	
									String
								

								
	
									idempotentRepository (filter)
								

								 	
									A pluggable repository org.apache.camel.spi.IdempotentRepository which by default use MemoryMessageIdRepository if none is specified and idempotent is true.
								

								 	 	
									String>
								

								
	
									include (filter)
								

								 	
									Is used to include files, if filename matches the regex pattern (matching is case in-sensitive). Notice if you use symbols such as plus sign and others you would need to configure this using the RAW() syntax if configuring this as an endpoint uri. See more details at configuring endpoint uris
								

								 	 	
									String
								

								
	
									maxDepth (filter)
								

								 	
									The maximum depth to traverse when recursively processing a directory.
								

								 	
									2147483647
								

								 	
									int
								

								
	
									maxMessagesPerPoll (filter)
								

								 	
									To define a maximum messages to gather per poll. By default no maximum is set. Can be used to set a limit of e.g. 1000 to avoid when starting up the server that there are thousands of files. Set a value of 0 or negative to disabled it. Notice: If this option is in use then the File and FTP components will limit before any sorting. For example if you have 100000 files and use maxMessagesPerPoll=500, then only the first 500 files will be picked up, and then sorted. You can use the eagerMaxMessagesPerPoll option and set this to false to allow to scan all files first and then sort afterwards.
								

								 	 	
									int
								

								
	
									minDepth (filter)
								

								 	
									The minimum depth to start processing when recursively processing a directory. Using minDepth=1 means the base directory. Using minDepth=2 means the first sub directory.
								

								 	 	
									int
								

								
	
									move (filter)
								

								 	
									Expression (such as Simple Language) used to dynamically set the filename when moving it after processing. To move files into a .done subdirectory just enter .done.
								

								 	 	
									String
								

								
	
									exclusiveReadLockStrategy (lock)
								

								 	
									Pluggable read-lock as a org.apache.camel.component.file.GenericFileExclusiveReadLockStrategy implementation.
								

								 	 	
									GenericFileExclusive ReadLockStrategy<T>
								

								
	
									readLock (lock)
								

								 	
									Used by consumer, to only poll the files if it has exclusive read-lock on the file (i.e. the file is not in-progress or being written). Camel will wait until the file lock is granted. This option provides the build in strategies: none - No read lock is in use markerFile - Camel creates a marker file (fileName.camelLock) and then holds a lock on it. This option is not available for the FTP component changed - Changed is using file length/modification timestamp to detect whether the file is currently being copied or not. Will at least use 1 sec to determine this, so this option cannot consume files as fast as the others, but can be more reliable as the JDK IO API cannot always determine whether a file is currently being used by another process. The option readLockCheckInterval can be used to set the check frequency. fileLock - is for using java.nio.channels.FileLock. This option is not avail for the FTP component. This approach should be avoided when accessing a remote file system via a mount/share unless that file system supports distributed file locks. rename - rename is for using a try to rename the file as a test if we can get exclusive read-lock. idempotent - (only for file component) idempotent is for using a idempotentRepository as the read-lock. This allows to use read locks that supports clustering if the idempotent repository implementation supports that. idempotent-changed - (only for file component) idempotent-changed is for using a idempotentRepository and changed as the combined read-lock. This allows to use read locks that supports clustering if the idempotent repository implementation supports that. idempotent-rename - (only for file component) idempotent-rename is for using a idempotentRepository and rename as the combined read-lock. This allows to use read locks that supports clustering if the idempotent repository implementation supports that. Notice: The various read locks is not all suited to work in clustered mode, where concurrent consumers on different nodes is competing for the same files on a shared file system. The markerFile using a close to atomic operation to create the empty marker file, but its not guaranteed to work in a cluster. The fileLock may work better but then the file system need to support distributed file locks, and so on. Using the idempotent read lock can support clustering if the idempotent repository supports clustering, such as Hazelcast Component or Infinispan.
								

								 	
									none
								

								 	
									String
								

								
	
									readLockCheckInterval (lock)
								

								 	
									Interval in millis for the read-lock, if supported by the read lock. This interval is used for sleeping between attempts to acquire the read lock. For example when using the changed read lock, you can set a higher interval period to cater for slow writes. The default of 1 sec. may be too fast if the producer is very slow writing the file. Notice: For FTP the default readLockCheckInterval is 5000. The readLockTimeout value must be higher than readLockCheckInterval, but a rule of thumb is to have a timeout that is at least 2 or more times higher than the readLockCheckInterval. This is needed to ensure that amble time is allowed for the read lock process to try to grab the lock before the timeout was hit.
								

								 	
									1000
								

								 	
									long
								

								
	
									readLockDeleteOrphanLock Files (lock)
								

								 	
									Whether or not read lock with marker files should upon startup delete any orphan read lock files, which may have been left on the file system, if Camel was not properly shutdown (such as a JVM crash). If turning this option to false then any orphaned lock file will cause Camel to not attempt to pickup that file, this could also be due another node is concurrently reading files from the same shared directory.
								

								 	
									true
								

								 	
									boolean
								

								
	
									readLockLoggingLevel (lock)
								

								 	
									Logging level used when a read lock could not be acquired. By default a WARN is logged. You can change this level, for example to OFF to not have any logging. This option is only applicable for readLock of types: changed, fileLock, idempotent, idempotent-changed, idempotent-rename, rename.
								

								 	
									DEBUG
								

								 	
									LoggingLevel
								

								
	
									readLockMarkerFile (lock)
								

								 	
									Whether to use marker file with the changed, rename, or exclusive read lock types. By default a marker file is used as well to guard against other processes picking up the same files. This behavior can be turned off by setting this option to false. For example if you do not want to write marker files to the file systems by the Camel application.
								

								 	
									true
								

								 	
									boolean
								

								
	
									readLockMinAge (lock)
								

								 	
									This option applied only for readLock=change. This option allows to specify a minimum age the file must be before attempting to acquire the read lock. For example use readLockMinAge=300s to require the file is at last 5 minutes old. This can speedup the changed read lock as it will only attempt to acquire files which are at least that given age.
								

								 	
									0
								

								 	
									long
								

								
	
									readLockMinLength (lock)
								

								 	
									This option applied only for readLock=changed. This option allows you to configure a minimum file length. By default Camel expects the file to contain data, and thus the default value is 1. You can set this option to zero, to allow consuming zero-length files.
								

								 	
									1
								

								 	
									long
								

								
	
									readLockRemoveOnCommit (lock)
								

								 	
									This option applied only for readLock=idempotent. This option allows to specify whether to remove the file name entry from the idempotent repository when processing the file is succeeded and a commit happens. By default the file is not removed which ensures that any race-condition do not occur so another active node may attempt to grab the file. Instead the idempotent repository may support eviction strategies that you can configure to evict the file name entry after X minutes - this ensures no problems with race conditions.
								

								 	
									false
								

								 	
									boolean
								

								
	
									readLockRemoveOnRollback (lock)
								

								 	
									This option applied only for readLock=idempotent. This option allows to specify whether to remove the file name entry from the idempotent repository when processing the file failed and a rollback happens. If this option is false, then the file name entry is confirmed (as if the file did a commit).
								

								 	
									true
								

								 	
									boolean
								

								
	
									readLockTimeout (lock)
								

								 	
									Optional timeout in millis for the read-lock, if supported by the read-lock. If the read-lock could not be granted and the timeout triggered, then Camel will skip the file. At next poll Camel, will try the file again, and this time maybe the read-lock could be granted. Use a value of 0 or lower to indicate forever. Currently fileLock, changed and rename support the timeout. Notice: For FTP the default readLockTimeout value is 20000 instead of 10000. The readLockTimeout value must be higher than readLockCheckInterval, but a rule of thumb is to have a timeout that is at least 2 or more times higher than the readLockCheckInterval. This is needed to ensure that amble time is allowed for the read lock process to try to grab the lock before the timeout was hit.
								

								 	
									10000
								

								 	
									long
								

								
	
									backoffErrorThreshold (scheduler)
								

								 	
									The number of subsequent error polls (failed due some error) that should happen before the backoffMultipler should kick-in.
								

								 	 	
									int
								

								
	
									backoffIdleThreshold (scheduler)
								

								 	
									The number of subsequent idle polls that should happen before the backoffMultipler should kick-in.
								

								 	 	
									int
								

								
	
									backoffMultiplier (scheduler)
								

								 	
									To let the scheduled polling consumer backoff if there has been a number of subsequent idles/errors in a row. The multiplier is then the number of polls that will be skipped before the next actual attempt is happening again. When this option is in use then backoffIdleThreshold and/or backoffErrorThreshold must also be configured.
								

								 	 	
									int
								

								
	
									delay (scheduler)
								

								 	
									Milliseconds before the next poll. You can also specify time values using units, such as 60s (60 seconds), 5m30s (5 minutes and 30 seconds), and 1h (1 hour).
								

								 	
									500
								

								 	
									long
								

								
	
									greedy (scheduler)
								

								 	
									If greedy is enabled, then the ScheduledPollConsumer will run immediately again, if the previous run polled 1 or more messages.
								

								 	
									false
								

								 	
									boolean
								

								
	
									initialDelay (scheduler)
								

								 	
									Milliseconds before the first poll starts. You can also specify time values using units, such as 60s (60 seconds), 5m30s (5 minutes and 30 seconds), and 1h (1 hour).
								

								 	
									1000
								

								 	
									long
								

								
	
									runLoggingLevel (scheduler)
								

								 	
									The consumer logs a start/complete log line when it polls. This option allows you to configure the logging level for that.
								

								 	
									TRACE
								

								 	
									LoggingLevel
								

								
	
									scheduledExecutorService (scheduler)
								

								 	
									Allows for configuring a custom/shared thread pool to use for the consumer. By default each consumer has its own single threaded thread pool.
								

								 	 	
									ScheduledExecutor Service
								

								
	
									scheduler (scheduler)
								

								 	
									To use a cron scheduler from either camel-spring or camel-quartz2 component
								

								 	
									none
								

								 	
									ScheduledPollConsumer Scheduler
								

								
	
									schedulerProperties (scheduler)
								

								 	
									To configure additional properties when using a custom scheduler or any of the Quartz2, Spring based scheduler.
								

								 	 	
									Map
								

								
	
									startScheduler (scheduler)
								

								 	
									Whether the scheduler should be auto started.
								

								 	
									true
								

								 	
									boolean
								

								
	
									timeUnit (scheduler)
								

								 	
									Time unit for initialDelay and delay options.
								

								 	
									MILLISECONDS
								

								 	
									TimeUnit
								

								
	
									useFixedDelay (scheduler)
								

								 	
									Controls if fixed delay or fixed rate is used. See ScheduledExecutorService in JDK for details.
								

								 	
									true
								

								 	
									boolean
								

								
	
									shuffle (sort)
								

								 	
									To shuffle the list of files (sort in random order)
								

								 	
									false
								

								 	
									boolean
								

								
	
									sortBy (sort)
								

								 	
									Built-in sort by using the File Language. Supports nested sorts, so you can have a sort by file name and as a 2nd group sort by modified date.
								

								 	 	
									String
								

								
	
									sorter (sort)
								

								 	
									Pluggable sorter as a java.util.Comparator class.
								

								 	 	
									GenericFile<T>>
								

								
	
									account (security)
								

								 	
									Account to use for login
								

								 	 	
									String
								

								
	
									password (security)
								

								 	
									Password to use for login
								

								 	 	
									String
								

								
	
									username (security)
								

								 	
									Username to use for login
								

								 	 	
									String
								

								

FTPS component default trust store

				When using the ftpClient. properties related to SSL with the FTPS component, the trust store accept all certificates. If you only want trust selective certificates, you have to configure the trust store with the ftpClient.trustStore.xxx options or by configuring a custom ftpClient.
			

				When using sslContextParameters, the trust store is managed by the configuration of the provided SSLContextParameters instance.
			

				You can configure additional options on the ftpClient and ftpClientConfig from the URI directly by using the ftpClient. or ftpClientConfig. prefix.
			

				For example to set the setDataTimeout on the FTPClient to 30 seconds you can do:
			
from("ftp://foo@myserver?password=secret&ftpClient.dataTimeout=30000").to("bean:foo");

				You can mix and match and have use both prefixes, for example to configure date format or timezones.
			
from("ftp://foo@myserver?password=secret&ftpClient.dataTimeout=30000&ftpClientConfig.serverLanguageCode=fr").to("bean:foo");

				You can have as many of these options as you like.
			

				See the documentation of the Apache Commons FTP FTPClientConfig for possible options and more details. And as well for Apache Commons FTP FTPClient.
			

				If you do not like having many and long configuration in the url you can refer to the ftpClient or ftpClientConfig to use by letting Camel lookup in the Registry for it.
			

				For example:
			
 <bean id="myConfig" class="org.apache.commons.net.ftp.FTPClientConfig">
 <property name="lenientFutureDates" value="true"/>
 <property name="serverLanguageCode" value="fr"/>
 </bean>

				And then let Camel lookup this bean when you use the # notation in the url.
			
from("ftp://foo@myserver?password=secret&ftpClientConfig=#myConfig").to("bean:foo");

Examples

				ftp://someone@someftpserver.com/public/upload/images/holiday2008?password=secret&binary=true

			

				ftp://someoneelse@someotherftpserver.co.uk:12049/reports/2008/password=secret&binary=false
 ftp://publicftpserver.com/download
			

Concurrency

				FTP Consumer does not support concurrency
			

				The FTP consumer (with the same endpoint) does not support concurrency (the backing FTP client is not thread safe).
 You can use multiple FTP consumers to poll from different endpoints. It is only a single endpoint that does not support concurrent consumers.
			

				The FTP producer does not have this issue, it supports concurrency.
			

More information

				This component is an extension of the File component. So there are more samples and details on the File component page.
			

Default when consuming files

				The FTP consumer will by default leave the consumed files untouched on the remote FTP server. You have to configure it explicitly if you want it to delete the files or move them to another location. For example you can use delete=true to delete the files, or use move=.done to move the files into a hidden done sub directory.
			

				The regular File consumer is different as it will by default move files to a .camel sub directory. The reason Camel does not do this by default for the FTP consumer is that it may lack permissions by default to be able to move or delete files.
			
limitations

					The option readLock can be used to force Camel not to consume files that is currently in the progress of being written. However, this option is turned off by default, as it requires that the user has write access. See the options table at File2 for more details about read locks.
 There are other solutions to avoid consuming files that are currently being written over FTP; for instance, you can write to a temporary destination and move the file after it has been written.
				

					When moving files using move or preMove option the files are restricted to the FTP_ROOT folder. That prevents you from moving files outside the FTP area. If you want to move files to another area you can use soft links and move files into a soft linked folder.
				

Message Headers

				The following message headers can be used to affect the behavior of the component
			
	Header	Description
	
								CamelFileName
							

							 	
								Specifies the output file name (relative to the endpoint directory) to be used for the output message when sending to the endpoint. If this is not present and no expression either, then a generated message ID is used as the filename instead.
							

							
	
								CamelFileNameProduced
							

							 	
								The actual filepath (path + name) for the output file that was written. This header is set by Camel and its purpose is providing end-users the name of the file that was written.
							

							
	
								CamelFileIndex
							

							 	
								Current index out of total number of files being consumed in this batch.
							

							
	
								CamelFileSize
							

							 	
								Total number of files being consumed in this batch.
							

							
	
								CamelFileHost
							

							 	
								The remote hostname.
							

							
	
								CamelFileLocalWorkPath
							

							 	
								Path to the local work file, if local work directory is used.
							

							

				In addition the FTP/FTPS consumer and producer will enrich the Camel Message with the following headers
			
	Header	Description
	
								CamelFtpReplyCode
							

							 	
								Camel 2.11.1: The FTP client reply code (the type is a integer)
							

							
	
								CamelFtpReplyString
							

							 	
								Camel 2.11.1: The FTP client reply string
							

							

About timeouts

				The two set of libraries (see top) has different API for setting timeout. You can use the connectTimeout option for both of them to set a timeout in millis to establish a network connection. An individual soTimeout can also be set on the FTP/FTPS, which corresponds to using ftpClient.soTimeout. Notice SFTP will automatically use connectTimeout as its soTimeout. The timeout option only applies for FTP/FTSP as the data timeout, which corresponds to the ftpClient.dataTimeout value. All timeout values are in millis.
			

Using Local Work Directory

				Camel supports consuming from remote FTP servers and downloading the files directly into a local work directory. This avoids reading the entire remote file content into memory as it is streamed directly into the local file using FileOutputStream.
			

				Camel will store to a local file with the same name as the remote file, though with .inprogress as extension while the file is being downloaded. Afterwards, the file is renamed to remove the .inprogress suffix. And finally, when the Exchange is complete the local file is deleted.
			

				So if you want to download files from a remote FTP server and store it as files then you need to route to a file endpoint such as:
			
from("ftp://someone@someserver.com?password=secret&localWorkDirectory=/tmp").to("file://inbox");
Tip

				The route above is ultra efficient as it avoids reading the entire file content into memory. It will download the remote file directly to a local file stream. The java.io.File handle is then used as the Exchange body. The file producer leverages this fact and can work directly on the work file java.io.File handle and perform a java.io.File.rename to the target filename. As Camel knows it’s a local work file, it can optimize and use a rename instead of a file copy, as the work file is meant to be deleted anyway.
			

Stepwise changing directories

				Camel FTP can operate in two modes in terms of traversing directories when consuming files (eg downloading) or producing files (eg uploading)
			
	
						stepwise
					
	
						not stepwise
					

				You may want to pick either one depending on your situation and security issues. Some Camel end users can only download files if they use stepwise, while others can only download if they do not. At least you have the choice to pick (from Camel 2.6 onwards).
			

				In Camel 2.0 - 2.5 there is only one mode and it is:
			
	
						before 2.5 not stepwise
					
	
						2.5 stepwise
					

				From Camel 2.6 onwards there is now an option stepwise you can use to control the behavior.
			

				Note that stepwise changing of directory will in most cases only work when the user is confined to it’s home directory and when the home directory is reported as "/".
			

				The difference between the two of them is best illustrated with an example. Suppose we have the following directory structure on the remote FTP server we need to traverse and download files:
			
/
/one
/one/two
/one/two/sub-a
/one/two/sub-b

				And that we have a file in each of sub-a (a.txt) and sub-b (b.txt) folder.
			
Using stepwise=true (default mode)

TYPE A
200 Type set to A
PWD
257 "/" is current directory.
CWD one
250 CWD successful. "/one" is current directory.
CWD two
250 CWD successful. "/one/two" is current directory.
SYST
215 UNIX emulated by FileZilla
PORT 127,0,0,1,17,94
200 Port command successful
LIST
150 Opening data channel for directory list.
226 Transfer OK
CWD sub-a
250 CWD successful. "/one/two/sub-a" is current directory.
PORT 127,0,0,1,17,95
200 Port command successful
LIST
150 Opening data channel for directory list.
226 Transfer OK
CDUP
200 CDUP successful. "/one/two" is current directory.
CWD sub-b
250 CWD successful. "/one/two/sub-b" is current directory.
PORT 127,0,0,1,17,96
200 Port command successful
LIST
150 Opening data channel for directory list.
226 Transfer OK
CDUP
200 CDUP successful. "/one/two" is current directory.
CWD /
250 CWD successful. "/" is current directory.
PWD
257 "/" is current directory.
CWD one
250 CWD successful. "/one" is current directory.
CWD two
250 CWD successful. "/one/two" is current directory.
PORT 127,0,0,1,17,97
200 Port command successful
RETR foo.txt
150 Opening data channel for file transfer.
226 Transfer OK
CWD /
250 CWD successful. "/" is current directory.
PWD
257 "/" is current directory.
CWD one
250 CWD successful. "/one" is current directory.
CWD two
250 CWD successful. "/one/two" is current directory.
CWD sub-a
250 CWD successful. "/one/two/sub-a" is current directory.
PORT 127,0,0,1,17,98
200 Port command successful
RETR a.txt
150 Opening data channel for file transfer.
226 Transfer OK
CWD /
250 CWD successful. "/" is current directory.
PWD
257 "/" is current directory.
CWD one
250 CWD successful. "/one" is current directory.
CWD two
250 CWD successful. "/one/two" is current directory.
CWD sub-b
250 CWD successful. "/one/two/sub-b" is current directory.
PORT 127,0,0,1,17,99
200 Port command successful
RETR b.txt
150 Opening data channel for file transfer.
226 Transfer OK
CWD /
250 CWD successful. "/" is current directory.
QUIT
221 Goodbye
disconnected.

					As you can see when stepwise is enabled, it will traverse the directory structure using CD xxx.
				

Using stepwise=false

230 Logged on
TYPE A
200 Type set to A
SYST
215 UNIX emulated by FileZilla
PORT 127,0,0,1,4,122
200 Port command successful
LIST one/two
150 Opening data channel for directory list
226 Transfer OK
PORT 127,0,0,1,4,123
200 Port command successful
LIST one/two/sub-a
150 Opening data channel for directory list
226 Transfer OK
PORT 127,0,0,1,4,124
200 Port command successful
LIST one/two/sub-b
150 Opening data channel for directory list
226 Transfer OK
PORT 127,0,0,1,4,125
200 Port command successful
RETR one/two/foo.txt
150 Opening data channel for file transfer.
226 Transfer OK
PORT 127,0,0,1,4,126
200 Port command successful
RETR one/two/sub-a/a.txt
150 Opening data channel for file transfer.
226 Transfer OK
PORT 127,0,0,1,4,127
200 Port command successful
RETR one/two/sub-b/b.txt
150 Opening data channel for file transfer.
226 Transfer OK
QUIT
221 Goodbye
disconnected.

					As you can see when not using stepwise, there are no CD operation invoked at all.
				

Samples

				In the sample below we set up Camel to download all the reports from the FTP server once every hour (60 min) as BINARY content and store it as files on the local file system.
			

				And the route using Spring DSL:
			
 <route>
 <from uri="ftp://scott@localhost/public/reports?password=tiger&binary=true&delay=60000"/>
 <to uri="file://target/test-reports"/>
 </route>
Consuming a remote FTPS server (implicit SSL) and client authentication

from("ftps://admin@localhost:2222/public/camel?password=admin&securityProtocol=SSL&isImplicit=true
 &ftpClient.keyStore.file=./src/test/resources/server.jks
 &ftpClient.keyStore.password=password&ftpClient.keyStore.keyPassword=password")
 .to("bean:foo");

Consuming a remote FTPS server (explicit TLS) and a custom trust store configuration

from("ftps://admin@localhost:2222/public/camel?password=admin&ftpClient.trustStore.file=./src/test/resources/server.jks&ftpClient.trustStore.password=password")
 .to("bean:foo");

Filter using org.apache.camel.component.file.GenericFileFilter

				Camel supports pluggable filtering strategies. This strategy it to use the build in org.apache.camel.component.file.GenericFileFilter in Java. You can then configure the endpoint with such a filter to skip certain filters before being processed.
			

				In the sample we have built our own filter that only accepts files starting with report in the filename.
			

				And then we can configure our route using the filter attribute to reference our filter (using # notation) that we have defined in the spring XML file:
			
 <!-- define our sorter as a plain spring bean -->
 <bean id="myFilter" class="com.mycompany.MyFileFilter"/>

 <route>
 <from uri="ftp://someuser@someftpserver.com?password=secret&filter=#myFilter"/>
 <to uri="bean:processInbox"/>
 </route>

Filtering using ANT path matcher

				The ANT path matcher is a filter that is shipped out-of-the-box in the camel-spring jar. So you need to depend on camel-spring if you are using Maven.
 The reason is that we leverage Spring’s AntPathMatcher to do the actual matching.
			

				The file paths are matched with the following rules:
			
	
						? matches one character
					
	
						* matches zero or more characters
					
	
						** matches zero or more directories in a path
					

				The sample below demonstrates how to use it:
			

Using a proxy with SFTP

				To use an HTTP proxy to connect to your remote host, you can configure your route in the following way:
			
<!-- define our sorter as a plain spring bean -->
<bean id="proxy" class="com.jcraft.jsch.ProxyHTTP">
 <constructor-arg value="localhost"/>
 <constructor-arg value="7777"/>
</bean>

<route>
 <from uri="sftp://localhost:9999/root?username=admin&password=admin&proxy=#proxy"/>
 <to uri="bean:processFile"/>
</route>

				You can also assign a user name and password to the proxy, if necessary. Please consult the documentation for com.jcraft.jsch.Proxy to discover all options.
			

Setting preferred SFTP authentication method

				If you want to explicitly specify the list of authentication methods that should be used by sftp component, use preferredAuthentications option. If for example you would like Camel to attempt to authenticate with private/public SSH key and fallback to user/password authentication in the case when no public key is available, use the following route configuration:
			
from("sftp://localhost:9999/root?username=admin&password=admin&preferredAuthentications=publickey,password").
 to("bean:processFile");

Consuming a single file using a fixed name

				When you want to download a single file and knows the file name, you can use fileName=myFileName.txt to tell Camel the name of the file to download. By default the consumer will still do a FTP LIST command to do a directory listing and then filter these files based on the fileName option. Though in this use-case it may be desirable to turn off the directory listing by setting useList=false. For example the user account used to login to the FTP server may not have permission to do a FTP LIST command. So you can turn off this with useList=false, and then provide the fixed name of the file to download with fileName=myFileName.txt, then the FTP consumer can still download the file. If the file for some reason does not exist, then Camel will by default throw an exception, you can turn this off and ignore this by setting ignoreFileNotFoundOrPermissionError=true.
			

				For example to have a Camel route that pickup a single file, and delete it after use you can do
			
from("ftp://admin@localhost:21/nolist/?password=admin&stepwise=false&useList=false&ignoreFileNotFoundOrPermissionError=true&fileName=report.txt&delete=true")
 .to("activemq:queue:report");

				Notice that we have use all the options we talked above above.
			

				You can also use this with ConsumerTemplate. For example to download a single file (if it exists) and grab the file content as a String type:
			
String data = template.retrieveBodyNoWait("ftp://admin@localhost:21/nolist/?password=admin&stepwise=false&useList=false&ignoreFileNotFoundOrPermissionError=true&fileName=report.txt&delete=true", String.class);

Debug logging

				This component has log level TRACE that can be helpful if you have problems.
			

See Also

	
						Configuring Camel
					
	
						Component
					
	
						Endpoint
					
	
						Getting Started
					
	
						File2
					

Chapter 111. FTPS Component

			Available as of Camel version 2.2
		

			This component provides access to remote file systems over the FTP and SFTP protocols.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-ftp</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>

			For more information you can look at FTP component
		
URI Options

				The options below are exclusive for the FTPS component.
			

				The FTPS component supports 2 options which are listed below.
			
	Name	Description	Default	Type
	
								useGlobalSslContext Parameters (security)
							

							 	
								Enable usage of global SSL context parameters.
							

							 	
								false
							

							 	
								boolean
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The FTPS endpoint is configured using URI syntax:
			
ftps:host:port/directoryName

				with the following path and query parameters:
			
Path Parameters (3 parameters):

	Name	Description	Default	Type
	
									host
								

								 	
									Required Hostname of the FTP server
								

								 	 	
									String
								

								
	
									port
								

								 	
									Port of the FTP server
								

								 	 	
									int
								

								
	
									directoryName
								

								 	
									The starting directory
								

								 	 	
									String
								

								

Query Parameters (116 parameters):

	Name	Description	Default	Type
	
									binary (common)
								

								 	
									Specifies the file transfer mode, BINARY or ASCII. Default is ASCII (false).
								

								 	
									false
								

								 	
									boolean
								

								
	
									charset (common)
								

								 	
									This option is used to specify the encoding of the file. You can use this on the consumer, to specify the encodings of the files, which allow Camel to know the charset it should load the file content in case the file content is being accessed. Likewise when writing a file, you can use this option to specify which charset to write the file as well. Do mind that when writing the file Camel may have to read the message content into memory to be able to convert the data into the configured charset, so do not use this if you have big messages.
								

								 	 	
									String
								

								
	
									disconnect (common)
								

								 	
									Whether or not to disconnect from remote FTP server right after use. Disconnect will only disconnect the current connection to the FTP server. If you have a consumer which you want to stop, then you need to stop the consumer/route instead.
								

								 	
									false
								

								 	
									boolean
								

								
	
									doneFileName (common)
								

								 	
									Producer: If provided, then Camel will write a 2nd done file when the original file has been written. The done file will be empty. This option configures what file name to use. Either you can specify a fixed name. Or you can use dynamic placeholders. The done file will always be written in the same folder as the original file. Consumer: If provided, Camel will only consume files if a done file exists. This option configures what file name to use. Either you can specify a fixed name. Or you can use dynamic placeholders.The done file is always expected in the same folder as the original file. Only $file.name and $file.name.noext is supported as dynamic placeholders.
								

								 	 	
									String
								

								
	
									fileName (common)
								

								 	
									Use Expression such as File Language to dynamically set the filename. For consumers, it’s used as a filename filter. For producers, it’s used to evaluate the filename to write. If an expression is set, it take precedence over the CamelFileName header. (Note: The header itself can also be an Expression). The expression options support both String and Expression types. If the expression is a String type, it is always evaluated using the File Language. If the expression is an Expression type, the specified Expression type is used - this allows you, for instance, to use OGNL expressions. For the consumer, you can use it to filter filenames, so you can for instance consume today’s file using the File Language syntax: mydata-$date:now:yyyyMMdd.txt. The producers support the CamelOverruleFileName header which takes precedence over any existing CamelFileName header; the CamelOverruleFileName is a header that is used only once, and makes it easier as this avoids to temporary store CamelFileName and have to restore it afterwards.
								

								 	 	
									String
								

								
	
									passiveMode (common)
								

								 	
									Sets passive mode connections. Default is active mode connections.
								

								 	
									false
								

								 	
									boolean
								

								
	
									separator (common)
								

								 	
									Sets the path separator to be used. UNIX = Uses unix style path separator Windows = Uses windows style path separator Auto = (is default) Use existing path separator in file name
								

								 	
									UNIX
								

								 	
									PathSeparator
								

								
	
									transferLoggingInterval Seconds (common)
								

								 	
									Configures the interval in seconds to use when logging the progress of upload and download operations that are in-flight. This is used for logging progress when operations takes longer time.
								

								 	
									5
								

								 	
									int
								

								
	
									transferLoggingLevel (common)
								

								 	
									Configure the logging level to use when logging the progress of upload and download operations.
								

								 	
									DEBUG
								

								 	
									LoggingLevel
								

								
	
									transferLoggingVerbose (common)
								

								 	
									Configures whether the perform verbose (fine grained) logging of the progress of upload and download operations.
								

								 	
									false
								

								 	
									boolean
								

								
	
									fastExistsCheck (common)
								

								 	
									If set this option to be true, camel-ftp will use the list file directly to check if the file exists. Since some FTP server may not support to list the file directly, if the option is false, camel-ftp will use the old way to list the directory and check if the file exists. This option also influences readLock=changed to control whether it performs a fast check to update file information or not. This can be used to speed up the process if the FTP server has a lot of files.
								

								 	
									false
								

								 	
									boolean
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									delete (consumer)
								

								 	
									If true, the file will be deleted after it is processed successfully.
								

								 	
									false
								

								 	
									boolean
								

								
	
									moveFailed (consumer)
								

								 	
									Sets the move failure expression based on Simple language. For example, to move files into a .error subdirectory use: .error. Note: When moving the files to the fail location Camel will handle the error and will not pick up the file again.
								

								 	 	
									String
								

								
	
									noop (consumer)
								

								 	
									If true, the file is not moved or deleted in any way. This option is good for readonly data, or for ETL type requirements. If noop=true, Camel will set idempotent=true as well, to avoid consuming the same files over and over again.
								

								 	
									false
								

								 	
									boolean
								

								
	
									preMove (consumer)
								

								 	
									Expression (such as File Language) used to dynamically set the filename when moving it before processing. For example to move in-progress files into the order directory set this value to order.
								

								 	 	
									String
								

								
	
									preSort (consumer)
								

								 	
									When pre-sort is enabled then the consumer will sort the file and directory names during polling, that was retrieved from the file system. You may want to do this in case you need to operate on the files in a sorted order. The pre-sort is executed before the consumer starts to filter, and accept files to process by Camel. This option is default=false meaning disabled.
								

								 	
									false
								

								 	
									boolean
								

								
	
									recursive (consumer)
								

								 	
									If a directory, will look for files in all the sub-directories as well.
								

								 	
									false
								

								 	
									boolean
								

								
	
									resumeDownload (consumer)
								

								 	
									Configures whether resume download is enabled. This must be supported by the FTP server (almost all FTP servers support it). In addition the options localWorkDirectory must be configured so downloaded files are stored in a local directory, and the option binary must be enabled, which is required to support resuming of downloads.
								

								 	
									false
								

								 	
									boolean
								

								
	
									sendEmptyMessageWhenIdle (consumer)
								

								 	
									If the polling consumer did not poll any files, you can enable this option to send an empty message (no body) instead.
								

								 	
									false
								

								 	
									boolean
								

								
	
									streamDownload (consumer)
								

								 	
									Sets the download method to use when not using a local working directory. If set to true, the remote files are streamed to the route as they are read. When set to false, the remote files are loaded into memory before being sent into the route.
								

								 	
									false
								

								 	
									boolean
								

								
	
									directoryMustExist (consumer)
								

								 	
									Similar to startingDirectoryMustExist but this applies during polling recursive sub directories.
								

								 	
									false
								

								 	
									boolean
								

								
	
									download (consumer)
								

								 	
									Whether the FTP consumer should download the file. If this option is set to false, then the message body will be null, but the consumer will still trigger a Camel Exchange that has details about the file such as file name, file size, etc. It’s just that the file will not be downloaded.
								

								 	
									false
								

								 	
									boolean
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									handleDirectoryParser AbsoluteResult (consumer)
								

								 	
									Allows you to set how the consumer will handle subfolders and files in the path if the directory parser results in with absolute paths The reason for this is that some FTP servers may return file names with absolute paths, and if so then the FTP component needs to handle this by converting the returned path into a relative path.
								

								 	
									false
								

								 	
									boolean
								

								
	
									ignoreFileNotFoundOr PermissionError (consumer)
								

								 	
									Whether to ignore when (trying to list files in directories or when downloading a file), which does not exist or due to permission error. By default when a directory or file does not exists or insufficient permission, then an exception is thrown. Setting this option to true allows to ignore that instead.
								

								 	
									false
								

								 	
									boolean
								

								
	
									inProgressRepository (consumer)
								

								 	
									A pluggable in-progress repository org.apache.camel.spi.IdempotentRepository. The in-progress repository is used to account the current in progress files being consumed. By default a memory based repository is used.
								

								 	 	
									String>
								

								
	
									localWorkDirectory (consumer)
								

								 	
									When consuming, a local work directory can be used to store the remote file content directly in local files, to avoid loading the content into memory. This is beneficial, if you consume a very big remote file and thus can conserve memory.
								

								 	 	
									String
								

								
	
									onCompletionException Handler (consumer)
								

								 	
									To use a custom org.apache.camel.spi.ExceptionHandler to handle any thrown exceptions that happens during the file on completion process where the consumer does either a commit or rollback. The default implementation will log any exception at WARN level and ignore.
								

								 	 	
									ExceptionHandler
								

								
	
									pollStrategy (consumer)
								

								 	
									A pluggable org.apache.camel.PollingConsumerPollingStrategy allowing you to provide your custom implementation to control error handling usually occurred during the poll operation before an Exchange have been created and being routed in Camel.
								

								 	 	
									PollingConsumerPoll Strategy
								

								
	
									processStrategy (consumer)
								

								 	
									A pluggable org.apache.camel.component.file.GenericFileProcessStrategy allowing you to implement your own readLock option or similar. Can also be used when special conditions must be met before a file can be consumed, such as a special ready file exists. If this option is set then the readLock option does not apply.
								

								 	 	
									GenericFileProcess Strategy<T>
								

								
	
									receiveBufferSize (consumer)
								

								 	
									The receive (download) buffer size Used only by FTPClient
								

								 	
									32768
								

								 	
									int
								

								
	
									startingDirectoryMustExist (consumer)
								

								 	
									Whether the starting directory must exist. Mind that the autoCreate option is default enabled, which means the starting directory is normally auto created if it doesn’t exist. You can disable autoCreate and enable this to ensure the starting directory must exist. Will thrown an exception if the directory doesn’t exist.
								

								 	
									false
								

								 	
									boolean
								

								
	
									useList (consumer)
								

								 	
									Whether to allow using LIST command when downloading a file. Default is true. In some use cases you may want to download a specific file and are not allowed to use the LIST command, and therefore you can set this option to false. Notice when using this option, then the specific file to download does not include meta-data information such as file size, timestamp, permissions etc, because those information is only possible to retrieve when LIST command is in use.
								

								 	
									true
								

								 	
									boolean
								

								
	
									fileExist (producer)
								

								 	
									What to do if a file already exists with the same name. Override, which is the default, replaces the existing file. Append - adds content to the existing file. Fail - throws a GenericFileOperationException, indicating that there is already an existing file. Ignore - silently ignores the problem and does not override the existing file, but assumes everything is okay. Move - option requires to use the moveExisting option to be configured as well. The option eagerDeleteTargetFile can be used to control what to do if an moving the file, and there exists already an existing file, otherwise causing the move operation to fail. The Move option will move any existing files, before writing the target file. TryRename is only applicable if tempFileName option is in use. This allows to try renaming the file from the temporary name to the actual name, without doing any exists check. This check may be faster on some file systems and especially FTP servers.
								

								 	
									Override
								

								 	
									GenericFileExist
								

								
	
									flatten (producer)
								

								 	
									Flatten is used to flatten the file name path to strip any leading paths, so it’s just the file name. This allows you to consume recursively into sub-directories, but when you eg write the files to another directory they will be written in a single directory. Setting this to true on the producer enforces that any file name in CamelFileName header will be stripped for any leading paths.
								

								 	
									false
								

								 	
									boolean
								

								
	
									moveExisting (producer)
								

								 	
									Expression (such as File Language) used to compute file name to use when fileExist=Move is configured. To move files into a backup subdirectory just enter backup. This option only supports the following File Language tokens: file:name, file:name.ext, file:name.noext, file:onlyname, file:onlyname.noext, file:ext, and file:parent. Notice the file:parent is not supported by the FTP component, as the FTP component can only move any existing files to a relative directory based on current dir as base.
								

								 	 	
									String
								

								
	
									tempFileName (producer)
								

								 	
									The same as tempPrefix option but offering a more fine grained control on the naming of the temporary filename as it uses the File Language.
								

								 	 	
									String
								

								
	
									tempPrefix (producer)
								

								 	
									This option is used to write the file using a temporary name and then, after the write is complete, rename it to the real name. Can be used to identify files being written and also avoid consumers (not using exclusive read locks) reading in progress files. Is often used by FTP when uploading big files.
								

								 	 	
									String
								

								
	
									allowNullBody (producer)
								

								 	
									Used to specify if a null body is allowed during file writing. If set to true then an empty file will be created, when set to false, and attempting to send a null body to the file component, a GenericFileWriteException of 'Cannot write null body to file.' will be thrown. If the fileExist option is set to 'Override', then the file will be truncated, and if set to append the file will remain unchanged.
								

								 	
									false
								

								 	
									boolean
								

								
	
									chmod (producer)
								

								 	
									Allows you to set chmod on the stored file. For example chmod=640.
								

								 	 	
									String
								

								
	
									disconnectOnBatchComplete (producer)
								

								 	
									Whether or not to disconnect from remote FTP server right after a Batch upload is complete. disconnectOnBatchComplete will only disconnect the current connection to the FTP server.
								

								 	
									false
								

								 	
									boolean
								

								
	
									eagerDeleteTargetFile (producer)
								

								 	
									Whether or not to eagerly delete any existing target file. This option only applies when you use fileExists=Override and the tempFileName option as well. You can use this to disable (set it to false) deleting the target file before the temp file is written. For example you may write big files and want the target file to exists during the temp file is being written. This ensure the target file is only deleted until the very last moment, just before the temp file is being renamed to the target filename. This option is also used to control whether to delete any existing files when fileExist=Move is enabled, and an existing file exists. If this option copyAndDeleteOnRenameFails false, then an exception will be thrown if an existing file existed, if its true, then the existing file is deleted before the move operation.
								

								 	
									true
								

								 	
									boolean
								

								
	
									keepLastModified (producer)
								

								 	
									Will keep the last modified timestamp from the source file (if any). Will use the Exchange.FILE_LAST_MODIFIED header to located the timestamp. This header can contain either a java.util.Date or long with the timestamp. If the timestamp exists and the option is enabled it will set this timestamp on the written file. Note: This option only applies to the file producer. You cannot use this option with any of the ftp producers.
								

								 	
									false
								

								 	
									boolean
								

								
	
									sendNoop (producer)
								

								 	
									Whether to send a noop command as a pre-write check before uploading files to the FTP server. This is enabled by default as a validation of the connection is still valid, which allows to silently re-connect to be able to upload the file. However if this causes problems, you can turn this option off.
								

								 	
									true
								

								 	
									boolean
								

								
	
									activePortRange (advanced)
								

								 	
									Set the client side port range in active mode. The syntax is: minPort-maxPort Both port numbers are inclusive, eg 10000-19999 to include all 1xxxx ports.
								

								 	 	
									String
								

								
	
									autoCreate (advanced)
								

								 	
									Automatically create missing directories in the file’s pathname. For the file consumer, that means creating the starting directory. For the file producer, it means the directory the files should be written to.
								

								 	
									true
								

								 	
									boolean
								

								
	
									bufferSize (advanced)
								

								 	
									Write buffer sized in bytes.
								

								 	
									131072
								

								 	
									int
								

								
	
									connectTimeout (advanced)
								

								 	
									Sets the connect timeout for waiting for a connection to be established Used by both FTPClient and JSCH
								

								 	
									10000
								

								 	
									int
								

								
	
									ftpClient (advanced)
								

								 	
									To use a custom instance of FTPClient
								

								 	 	
									FTPClient
								

								
	
									ftpClientConfig (advanced)
								

								 	
									To use a custom instance of FTPClientConfig to configure the FTP client the endpoint should use.
								

								 	 	
									FTPClientConfig
								

								
	
									ftpClientConfigParameters (advanced)
								

								 	
									Used by FtpComponent to provide additional parameters for the FTPClientConfig
								

								 	 	
									Map
								

								
	
									ftpClientParameters (advanced)
								

								 	
									Used by FtpComponent to provide additional parameters for the FTPClient
								

								 	 	
									Map
								

								
	
									maximumReconnectAttempts (advanced)
								

								 	
									Specifies the maximum reconnect attempts Camel performs when it tries to connect to the remote FTP server. Use 0 to disable this behavior.
								

								 	 	
									int
								

								
	
									reconnectDelay (advanced)
								

								 	
									Delay in millis Camel will wait before performing a reconnect attempt.
								

								 	 	
									long
								

								
	
									siteCommand (advanced)
								

								 	
									Sets optional site command(s) to be executed after successful login. Multiple site commands can be separated using a new line character.
								

								 	 	
									String
								

								
	
									soTimeout (advanced)
								

								 	
									This refers to SocketOptions.SO_TIMEOUT value in millisecond. Recommended option is to set this to 300000 so as not have a hanged connection. On SFTP this option is set as timeout on the JSCH Session instance. For Camel 2.4, this parameter sets the soTimeout for FTP and FTPS only. For Camel 2.14.3, 2.15.3, 2.16 and onwards, this parameter refers to SFTP.
								

								 	
									300000
								

								 	
									int
								

								
	
									stepwise (advanced)
								

								 	
									Sets whether we should stepwise change directories while traversing file structures when downloading files, or as well when uploading a file to a directory. You can disable this if you for example are in a situation where you cannot change directory on the FTP server due security reasons.
								

								 	
									true
								

								 	
									boolean
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									throwExceptionOnConnect Failed (advanced)
								

								 	
									Should an exception be thrown if connection failed (exhausted) By default exception is not thrown and a WARN is logged. You can use this to enable exception being thrown and handle the thrown exception from the org.apache.camel.spi.PollingConsumerPollStrategy rollback method.
								

								 	
									false
								

								 	
									boolean
								

								
	
									timeout (advanced)
								

								 	
									Sets the data timeout for waiting for reply Used only by FTPClient
								

								 	
									30000
								

								 	
									int
								

								
	
									antExclude (filter)
								

								 	
									Ant style filter exclusion. If both antInclude and antExclude are used, antExclude takes precedence over antInclude. Multiple exclusions may be specified in comma-delimited format.
								

								 	 	
									String
								

								
	
									antFilterCaseSensitive (filter)
								

								 	
									Sets case sensitive flag on ant filter
								

								 	
									true
								

								 	
									boolean
								

								
	
									antInclude (filter)
								

								 	
									Ant style filter inclusion. Multiple inclusions may be specified in comma-delimited format.
								

								 	 	
									String
								

								
	
									eagerMaxMessagesPerPoll (filter)
								

								 	
									Allows for controlling whether the limit from maxMessagesPerPoll is eager or not. If eager then the limit is during the scanning of files. Where as false would scan all files, and then perform sorting. Setting this option to false allows for sorting all files first, and then limit the poll. Mind that this requires a higher memory usage as all file details are in memory to perform the sorting.
								

								 	
									true
								

								 	
									boolean
								

								
	
									exclude (filter)
								

								 	
									Is used to exclude files, if filename matches the regex pattern (matching is case in-senstive). Notice if you use symbols such as plus sign and others you would need to configure this using the RAW() syntax if configuring this as an endpoint uri. See more details at configuring endpoint uris
								

								 	 	
									String
								

								
	
									filter (filter)
								

								 	
									Pluggable filter as a org.apache.camel.component.file.GenericFileFilter class. Will skip files if filter returns false in its accept() method.
								

								 	 	
									GenericFileFilter<T>
								

								
	
									filterDirectory (filter)
								

								 	
									Filters the directory based on Simple language. For example to filter on current date, you can use a simple date pattern such as $date:now:yyyMMdd
								

								 	 	
									String
								

								
	
									filterFile (filter)
								

								 	
									Filters the file based on Simple language. For example to filter on file size, you can use $file:size 5000
								

								 	 	
									String
								

								
	
									idempotent (filter)
								

								 	
									Option to use the Idempotent Consumer EIP pattern to let Camel skip already processed files. Will by default use a memory based LRUCache that holds 1000 entries. If noop=true then idempotent will be enabled as well to avoid consuming the same files over and over again.
								

								 	
									false
								

								 	
									Boolean
								

								
	
									idempotentKey (filter)
								

								 	
									To use a custom idempotent key. By default the absolute path of the file is used. You can use the File Language, for example to use the file name and file size, you can do: idempotentKey=$file:name-$file:size
								

								 	 	
									String
								

								
	
									idempotentRepository (filter)
								

								 	
									A pluggable repository org.apache.camel.spi.IdempotentRepository which by default use MemoryMessageIdRepository if none is specified and idempotent is true.
								

								 	 	
									String>
								

								
	
									include (filter)
								

								 	
									Is used to include files, if filename matches the regex pattern (matching is case in-sensitive). Notice if you use symbols such as plus sign and others you would need to configure this using the RAW() syntax if configuring this as an endpoint uri. See more details at configuring endpoint uris
								

								 	 	
									String
								

								
	
									maxDepth (filter)
								

								 	
									The maximum depth to traverse when recursively processing a directory.
								

								 	
									2147483647
								

								 	
									int
								

								
	
									maxMessagesPerPoll (filter)
								

								 	
									To define a maximum messages to gather per poll. By default no maximum is set. Can be used to set a limit of e.g. 1000 to avoid when starting up the server that there are thousands of files. Set a value of 0 or negative to disabled it. Notice: If this option is in use then the File and FTP components will limit before any sorting. For example if you have 100000 files and use maxMessagesPerPoll=500, then only the first 500 files will be picked up, and then sorted. You can use the eagerMaxMessagesPerPoll option and set this to false to allow to scan all files first and then sort afterwards.
								

								 	 	
									int
								

								
	
									minDepth (filter)
								

								 	
									The minimum depth to start processing when recursively processing a directory. Using minDepth=1 means the base directory. Using minDepth=2 means the first sub directory.
								

								 	 	
									int
								

								
	
									move (filter)
								

								 	
									Expression (such as Simple Language) used to dynamically set the filename when moving it after processing. To move files into a .done subdirectory just enter .done.
								

								 	 	
									String
								

								
	
									exclusiveReadLockStrategy (lock)
								

								 	
									Pluggable read-lock as a org.apache.camel.component.file.GenericFileExclusiveReadLockStrategy implementation.
								

								 	 	
									GenericFileExclusive ReadLockStrategy<T>
								

								
	
									readLock (lock)
								

								 	
									Used by consumer, to only poll the files if it has exclusive read-lock on the file (i.e. the file is not in-progress or being written). Camel will wait until the file lock is granted. This option provides the build in strategies: none - No read lock is in use markerFile - Camel creates a marker file (fileName.camelLock) and then holds a lock on it. This option is not available for the FTP component changed - Changed is using file length/modification timestamp to detect whether the file is currently being copied or not. Will at least use 1 sec to determine this, so this option cannot consume files as fast as the others, but can be more reliable as the JDK IO API cannot always determine whether a file is currently being used by another process. The option readLockCheckInterval can be used to set the check frequency. fileLock - is for using java.nio.channels.FileLock. This option is not avail for the FTP component. This approach should be avoided when accessing a remote file system via a mount/share unless that file system supports distributed file locks. rename - rename is for using a try to rename the file as a test if we can get exclusive read-lock. idempotent - (only for file component) idempotent is for using a idempotentRepository as the read-lock. This allows to use read locks that supports clustering if the idempotent repository implementation supports that. idempotent-changed - (only for file component) idempotent-changed is for using a idempotentRepository and changed as the combined read-lock. This allows to use read locks that supports clustering if the idempotent repository implementation supports that. idempotent-rename - (only for file component) idempotent-rename is for using a idempotentRepository and rename as the combined read-lock. This allows to use read locks that supports clustering if the idempotent repository implementation supports that. Notice: The various read locks is not all suited to work in clustered mode, where concurrent consumers on different nodes is competing for the same files on a shared file system. The markerFile using a close to atomic operation to create the empty marker file, but its not guaranteed to work in a cluster. The fileLock may work better but then the file system need to support distributed file locks, and so on. Using the idempotent read lock can support clustering if the idempotent repository supports clustering, such as Hazelcast Component or Infinispan.
								

								 	
									none
								

								 	
									String
								

								
	
									readLockCheckInterval (lock)
								

								 	
									Interval in millis for the read-lock, if supported by the read lock. This interval is used for sleeping between attempts to acquire the read lock. For example when using the changed read lock, you can set a higher interval period to cater for slow writes. The default of 1 sec. may be too fast if the producer is very slow writing the file. Notice: For FTP the default readLockCheckInterval is 5000. The readLockTimeout value must be higher than readLockCheckInterval, but a rule of thumb is to have a timeout that is at least 2 or more times higher than the readLockCheckInterval. This is needed to ensure that amble time is allowed for the read lock process to try to grab the lock before the timeout was hit.
								

								 	
									1000
								

								 	
									long
								

								
	
									readLockDeleteOrphanLock Files (lock)
								

								 	
									Whether or not read lock with marker files should upon startup delete any orphan read lock files, which may have been left on the file system, if Camel was not properly shutdown (such as a JVM crash). If turning this option to false then any orphaned lock file will cause Camel to not attempt to pickup that file, this could also be due another node is concurrently reading files from the same shared directory.
								

								 	
									true
								

								 	
									boolean
								

								
	
									readLockLoggingLevel (lock)
								

								 	
									Logging level used when a read lock could not be acquired. By default a WARN is logged. You can change this level, for example to OFF to not have any logging. This option is only applicable for readLock of types: changed, fileLock, idempotent, idempotent-changed, idempotent-rename, rename.
								

								 	
									DEBUG
								

								 	
									LoggingLevel
								

								
	
									readLockMarkerFile (lock)
								

								 	
									Whether to use marker file with the changed, rename, or exclusive read lock types. By default a marker file is used as well to guard against other processes picking up the same files. This behavior can be turned off by setting this option to false. For example if you do not want to write marker files to the file systems by the Camel application.
								

								 	
									true
								

								 	
									boolean
								

								
	
									readLockMinAge (lock)
								

								 	
									This option applied only for readLock=change. This option allows to specify a minimum age the file must be before attempting to acquire the read lock. For example use readLockMinAge=300s to require the file is at last 5 minutes old. This can speedup the changed read lock as it will only attempt to acquire files which are at least that given age.
								

								 	
									0
								

								 	
									long
								

								
	
									readLockMinLength (lock)
								

								 	
									This option applied only for readLock=changed. This option allows you to configure a minimum file length. By default Camel expects the file to contain data, and thus the default value is 1. You can set this option to zero, to allow consuming zero-length files.
								

								 	
									1
								

								 	
									long
								

								
	
									readLockRemoveOnCommit (lock)
								

								 	
									This option applied only for readLock=idempotent. This option allows to specify whether to remove the file name entry from the idempotent repository when processing the file is succeeded and a commit happens. By default the file is not removed which ensures that any race-condition do not occur so another active node may attempt to grab the file. Instead the idempotent repository may support eviction strategies that you can configure to evict the file name entry after X minutes - this ensures no problems with race conditions.
								

								 	
									false
								

								 	
									boolean
								

								
	
									readLockRemoveOnRollback (lock)
								

								 	
									This option applied only for readLock=idempotent. This option allows to specify whether to remove the file name entry from the idempotent repository when processing the file failed and a rollback happens. If this option is false, then the file name entry is confirmed (as if the file did a commit).
								

								 	
									true
								

								 	
									boolean
								

								
	
									readLockTimeout (lock)
								

								 	
									Optional timeout in millis for the read-lock, if supported by the read-lock. If the read-lock could not be granted and the timeout triggered, then Camel will skip the file. At next poll Camel, will try the file again, and this time maybe the read-lock could be granted. Use a value of 0 or lower to indicate forever. Currently fileLock, changed and rename support the timeout. Notice: For FTP the default readLockTimeout value is 20000 instead of 10000. The readLockTimeout value must be higher than readLockCheckInterval, but a rule of thumb is to have a timeout that is at least 2 or more times higher than the readLockCheckInterval. This is needed to ensure that amble time is allowed for the read lock process to try to grab the lock before the timeout was hit.
								

								 	
									10000
								

								 	
									long
								

								
	
									backoffErrorThreshold (scheduler)
								

								 	
									The number of subsequent error polls (failed due some error) that should happen before the backoffMultipler should kick-in.
								

								 	 	
									int
								

								
	
									backoffIdleThreshold (scheduler)
								

								 	
									The number of subsequent idle polls that should happen before the backoffMultipler should kick-in.
								

								 	 	
									int
								

								
	
									backoffMultiplier (scheduler)
								

								 	
									To let the scheduled polling consumer backoff if there has been a number of subsequent idles/errors in a row. The multiplier is then the number of polls that will be skipped before the next actual attempt is happening again. When this option is in use then backoffIdleThreshold and/or backoffErrorThreshold must also be configured.
								

								 	 	
									int
								

								
	
									delay (scheduler)
								

								 	
									Milliseconds before the next poll. You can also specify time values using units, such as 60s (60 seconds), 5m30s (5 minutes and 30 seconds), and 1h (1 hour).
								

								 	
									500
								

								 	
									long
								

								
	
									greedy (scheduler)
								

								 	
									If greedy is enabled, then the ScheduledPollConsumer will run immediately again, if the previous run polled 1 or more messages.
								

								 	
									false
								

								 	
									boolean
								

								
	
									initialDelay (scheduler)
								

								 	
									Milliseconds before the first poll starts. You can also specify time values using units, such as 60s (60 seconds), 5m30s (5 minutes and 30 seconds), and 1h (1 hour).
								

								 	
									1000
								

								 	
									long
								

								
	
									runLoggingLevel (scheduler)
								

								 	
									The consumer logs a start/complete log line when it polls. This option allows you to configure the logging level for that.
								

								 	
									TRACE
								

								 	
									LoggingLevel
								

								
	
									scheduledExecutorService (scheduler)
								

								 	
									Allows for configuring a custom/shared thread pool to use for the consumer. By default each consumer has its own single threaded thread pool.
								

								 	 	
									ScheduledExecutor Service
								

								
	
									scheduler (scheduler)
								

								 	
									To use a cron scheduler from either camel-spring or camel-quartz2 component
								

								 	
									none
								

								 	
									ScheduledPollConsumer Scheduler
								

								
	
									schedulerProperties (scheduler)
								

								 	
									To configure additional properties when using a custom scheduler or any of the Quartz2, Spring based scheduler.
								

								 	 	
									Map
								

								
	
									startScheduler (scheduler)
								

								 	
									Whether the scheduler should be auto started.
								

								 	
									true
								

								 	
									boolean
								

								
	
									timeUnit (scheduler)
								

								 	
									Time unit for initialDelay and delay options.
								

								 	
									MILLISECONDS
								

								 	
									TimeUnit
								

								
	
									useFixedDelay (scheduler)
								

								 	
									Controls if fixed delay or fixed rate is used. See ScheduledExecutorService in JDK for details.
								

								 	
									true
								

								 	
									boolean
								

								
	
									shuffle (sort)
								

								 	
									To shuffle the list of files (sort in random order)
								

								 	
									false
								

								 	
									boolean
								

								
	
									sortBy (sort)
								

								 	
									Built-in sort by using the File Language. Supports nested sorts, so you can have a sort by file name and as a 2nd group sort by modified date.
								

								 	 	
									String
								

								
	
									sorter (sort)
								

								 	
									Pluggable sorter as a java.util.Comparator class.
								

								 	 	
									GenericFile<T>>
								

								
	
									account (security)
								

								 	
									Account to use for login
								

								 	 	
									String
								

								
	
									disableSecureDataChannel Defaults (security)
								

								 	
									Use this option to disable default options when using secure data channel. This allows you to be in full control what the execPbsz and execProt setting should be used. Default is false
								

								 	
									false
								

								 	
									boolean
								

								
	
									execPbsz (security)
								

								 	
									When using secure data channel you can set the exec protection buffer size
								

								 	 	
									Long
								

								
	
									execProt (security)
								

								 	
									The exec protection level PROT command. C - Clear S - Safe(SSL protocol only) E - Confidential(SSL protocol only) P - Private
								

								 	 	
									String
								

								
	
									ftpClientKeyStore Parameters (security)
								

								 	
									Set the key store parameters
								

								 	 	
									Map
								

								
	
									ftpClientTrustStore Parameters (security)
								

								 	
									Set the trust store parameters
								

								 	 	
									Map
								

								
	
									isImplicit (security)
								

								 	
									Set the security mode(Implicit/Explicit). true - Implicit Mode / False - Explicit Mode
								

								 	
									false
								

								 	
									boolean
								

								
	
									password (security)
								

								 	
									Password to use for login
								

								 	 	
									String
								

								
	
									securityProtocol (security)
								

								 	
									Set the underlying security protocol.
								

								 	
									TLS
								

								 	
									String
								

								
	
									sslContextParameters (security)
								

								 	
									Gets the JSSE configuration that overrides any settings in link FtpsEndpointftpClientKeyStoreParameters, link ftpClientTrustStoreParameters, and link FtpsConfigurationgetSecurityProtocol().
								

								 	 	
									SSLContextParameters
								

								
	
									username (security)
								

								 	
									Username to use for login
								

								 	 	
									String
								

								

Chapter 112. Ganglia Component

			Available as of Camel version 2.15
		

			Provides a mechanism to send a value (the message body) as a metric to the Ganglia monitoring system. Uses the gmetric4j library. Can be used in conjunction with standard Ganglia and JMXetric for monitoring metrics from the OS, JVM and business processes through a single platform.
		

			You should have a Ganglia gmond agent running on the machine where your JVM runs. The gmond sends a heartbeat to the Ganglia infrastructure, camel-ganglia can’t send the heartbeat itself currently.
		

			On most Linux systems (Debian, Ubuntu, Fedora and RHEL/CentOS with EPEL) you can just install the Ganglia agent package and it runs automatically using multicast configuration. You can configure it to use regular UDP unicast if you prefer.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		

			
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-ganglia</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>
URI format

ganglia:address:port[?options]

				You can append query options to the URI in the following format, ?option=value&option=value&…​
			

Ganglia component and endpoint URI options

				The Ganglia component supports 2 options which are listed below.
			
	Name	Description	Default	Type
	
								configuration (advanced)
							

							 	
								To use the shared configuration
							

							 	 	
								GangliaConfiguration
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The Ganglia endpoint is configured using URI syntax:
			
ganglia:host:port

				with the following path and query parameters:
			
Path Parameters (2 parameters):

	Name	Description	Default	Type
	
									host
								

								 	
									Host name for Ganglia server
								

								 	
									239.2.11.71
								

								 	
									String
								

								
	
									port
								

								 	
									Port for Ganglia server
								

								 	
									8649
								

								 	
									int
								

								

Query Parameters (13 parameters):

	Name	Description	Default	Type
	
									dmax (producer)
								

								 	
									Minumum time in seconds before Ganglia will purge the metric value if it expires. Set to 0 and the value will remain in Ganglia indefinitely until a gmond agent restart.
								

								 	
									0
								

								 	
									int
								

								
	
									groupName (producer)
								

								 	
									The group that the metric belongs to.
								

								 	
									java
								

								 	
									String
								

								
	
									metricName (producer)
								

								 	
									The name to use for the metric.
								

								 	
									metric
								

								 	
									String
								

								
	
									mode (producer)
								

								 	
									Send the UDP metric packets using MULTICAST or UNICAST
								

								 	
									MULTICAST
								

								 	
									UDPAddressingMode
								

								
	
									prefix (producer)
								

								 	
									Prefix the metric name with this string and an underscore.
								

								 	 	
									String
								

								
	
									slope (producer)
								

								 	
									The slope
								

								 	
									BOTH
								

								 	
									GMetricSlope
								

								
	
									spoofHostname (producer)
								

								 	
									Spoofing information IP:hostname
								

								 	 	
									String
								

								
	
									tmax (producer)
								

								 	
									Maximum time in seconds that the value can be considered current. After this, Ganglia considers the value to have expired.
								

								 	
									60
								

								 	
									int
								

								
	
									ttl (producer)
								

								 	
									If using multicast, set the TTL of the packets
								

								 	
									5
								

								 	
									int
								

								
	
									type (producer)
								

								 	
									The type of value
								

								 	
									STRING
								

								 	
									GMetricType
								

								
	
									units (producer)
								

								 	
									Any unit of measurement that qualifies the metric, e.g. widgets, litres, bytes. Do not include a prefix such as k (kilo) or m (milli), other tools may scale the units later. The value should be unscaled.
								

								 	 	
									String
								

								
	
									wireFormat31x (producer)
								

								 	
									Use the wire format of Ganglia 3.1.0 and later versions. Set this to false to use Ganglia 3.0.x or earlier.
								

								 	
									true
								

								 	
									boolean
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

Message body

				Any value (such as a string or numeric type) in the body is sent to the Ganglia system.
			

Return value / response

				Ganglia sends metrics using unidirectional UDP or multicast. There is no response or change to the message body.
			

Examples

Sending a String metric

					The message body will be converted to a String and sent as a metric value. Unlike numeric metrics, String values can’t be charted but Ganglia makes them available for reporting. The os_version string at the top of every Ganglia host page is an example of a String metric.
				
from("direct:string.for.ganglia")
 .setHeader(GangliaConstants.METRIC_NAME, simple("my_string_metric"))
 .setHeader(GangliaConstants.METRIC_TYPE, GMetricType.STRING)
 .to("direct:ganglia.tx");

from("direct:ganglia.tx")
 .to("ganglia:239.2.11.71:8649?mode=MULTICAST&prefix=test");

Sending a numeric metric

from("direct:value.for.ganglia")
 .setHeader(GangliaConstants.METRIC_NAME, simple("widgets_in_stock"))
 .setHeader(GangliaConstants.METRIC_TYPE, GMetricType.UINT32)
 .setHeader(GangliaConstants.METRIC_UNITS, simple("widgets"))
 .to("direct:ganglia.tx");

from("direct:ganglia.tx")
 .to("ganglia:239.2.11.71:8649?mode=MULTICAST&prefix=test");

Chapter 113. Geocoder Component

			Available as of Camel version 2.12
		

			The geocoder: component is used for looking up geocodes (latitude and longitude) for a given address, or reverse lookup. The component uses the Java API for Google Geocoder library.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-geocoder</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>
URI format

geocoder:address:name[?options]
geocoder:latlng:latitude,longitude[?options]

Options

				The Geocoder component has no options.
			

				The Geocoder endpoint is configured using URI syntax:
			
geocoder:address:latlng

				with the following path and query parameters:
			
Path Parameters (2 parameters):

	Name	Description	Default	Type
	
									address
								

								 	
									The geo address which should be prefixed with address:
								

								 	 	
									String
								

								
	
									latlng
								

								 	
									The geo latitude and longitude which should be prefixed with latlng:
								

								 	 	
									String
								

								

Query Parameters (14 parameters):

	Name	Description	Default	Type
	
									clientId (producer)
								

								 	
									To use google premium with this client id
								

								 	 	
									String
								

								
	
									clientKey (producer)
								

								 	
									To use google premium with this client key
								

								 	 	
									String
								

								
	
									headersOnly (producer)
								

								 	
									Whether to only enrich the Exchange with headers, and leave the body as-is.
								

								 	
									false
								

								 	
									boolean
								

								
	
									language (producer)
								

								 	
									The language to use.
								

								 	
									en
								

								 	
									String
								

								
	
									httpClientConfigurer (advanced)
								

								 	
									Register a custom configuration strategy for new HttpClient instances created by producers or consumers such as to configure authentication mechanisms etc
								

								 	 	
									HttpClientConfigurer
								

								
	
									httpConnectionManager (advanced)
								

								 	
									To use a custom HttpConnectionManager to manage connections
								

								 	 	
									HttpConnectionManager
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									proxyAuthDomain (proxy)
								

								 	
									Domain for proxy NTML authentication
								

								 	 	
									String
								

								
	
									proxyAuthHost (proxy)
								

								 	
									Optional host for proxy NTML authentication
								

								 	 	
									String
								

								
	
									proxyAuthMethod (proxy)
								

								 	
									Authentication method for proxy, either as Basic, Digest or NTLM.
								

								 	 	
									String
								

								
	
									proxyAuthPassword (proxy)
								

								 	
									Password for proxy authentication
								

								 	 	
									String
								

								
	
									proxyAuthUsername (proxy)
								

								 	
									Username for proxy authentication
								

								 	 	
									String
								

								
	
									proxyHost (proxy)
								

								 	
									The proxy host name
								

								 	 	
									String
								

								
	
									proxyPort (proxy)
								

								 	
									The proxy port number
								

								 	 	
									Integer
								

								

Exchange data format

				Camel will deliver the body as a com.google.code.geocoder.model.GeocodeResponse type.
 And if the address is "current" then the response is a String type with a JSON representation of the current location.
			

				If the option headersOnly is set to true then the message body is left as-is, and only headers will be added to the Exchange.
			

Message Headers

	Header	Description
	
								CamelGeoCoderStatus
							

							 	
								Mandatory. Status code from the geocoder library. If status is GeocoderStatus.OK then additional headers is enriched
							

							
	
								CamelGeoCoderAddress
							

							 	
								The formatted address
							

							
	
								CamelGeoCoderLat
							

							 	
								The latitude of the location.
							

							
	
								CamelGeoCoderLng
							

							 	
								The longitude of the location.
							

							
	
								CamelGeoCoderLatlng
							

							 	
								The latitude and longitude of the location. Separated by comma.
							

							
	
								CamelGeoCoderCity
							

							 	
								The city long name.
							

							
	
								CamelGeoCoderRegionCode
							

							 	
								The region code.
							

							
	
								CamelGeoCoderRegionName
							

							 	
								The region name.
							

							
	
								CamelGeoCoderCountryLong
							

							 	
								The country long name.
							

							
	
								CamelGeoCoderCountryShort
							

							 	
								The country short name.
							

							

				Notice not all headers may be provided depending on available data and mode in use (address vs latlng).
			

Samples

				In the example below we get the latitude and longitude for Paris, France
			
 from("direct:start")
 .to("geocoder:address:Paris, France")

				If you provide a header with the CamelGeoCoderAddress then that overrides the endpoint configuration, so to get the location of Copenhagen, Denmark we can send a message with a headers as shown:
			
template.sendBodyAndHeader("direct:start", "Hello", GeoCoderConstants.ADDRESS, "Copenhagen, Denmark");

				To get the address for a latitude and longitude we can do:
			
 from("direct:start")
 .to("geocoder:latlng:40.714224,-73.961452")
 .log("Location ${header.CamelGeocoderAddress} is at lat/lng: ${header.CamelGeocoderLatlng} and in country ${header.CamelGeoCoderCountryShort}")

				Which will log
			
Location 285 Bedford Avenue, Brooklyn, NY 11211, USA is at lat/lng: 40.71412890,-73.96140740 and in country US

				To get the current location you can use "current" as the address as shown:
			
 from("direct:start")
 .to("geocoder:address:current")

Chapter 114. Git Component

			Available as of Camel version 2.16
		

			The git: component allows you to work with a generic Git repository.
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-git</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>

			URI Format
		
git://localRepositoryPath[?options]
URI Options

				The producer allows to do operations on a specific repository.
 The consumer allows consuming commits, tags and branches on a specific repository.
			

				The Git component has no options.
			

				The Git endpoint is configured using URI syntax:
			
git:localPath

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									localPath
								

								 	
									Required Local repository path
								

								 	 	
									String
								

								

Query Parameters (13 parameters):

	Name	Description	Default	Type
	
									branchName (common)
								

								 	
									The branch name to work on
								

								 	 	
									String
								

								
	
									password (common)
								

								 	
									Remote repository password
								

								 	 	
									String
								

								
	
									remoteName (common)
								

								 	
									The remote repository name to use in particular operation like pull
								

								 	 	
									String
								

								
	
									remotePath (common)
								

								 	
									The remote repository path
								

								 	 	
									String
								

								
	
									tagName (common)
								

								 	
									The tag name to work on
								

								 	 	
									String
								

								
	
									username (common)
								

								 	
									Remote repository username
								

								 	 	
									String
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									type (consumer)
								

								 	
									The consumer type
								

								 	 	
									GitType
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									allowEmpty (producer)
								

								 	
									The flag to manage empty git commits
								

								 	
									true
								

								 	
									boolean
								

								
	
									operation (producer)
								

								 	
									The operation to do on the repository
								

								 	 	
									String
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

Message Headers

	Name	Default Value	Type	Context	Description
	
								CamelGitOperation
							

							 	
								null
							

							 	
								String
							

							 	
								Producer
							

							 	
								The operation to do on a repository, if not specified as endpoint option
							

							
	
								CamelGitFilename
							

							 	
								null
							

							 	
								String
							

							 	
								Producer
							

							 	
								The file name in an add operation
							

							
	
								CamelGitCommitMessage
							

							 	
								null
							

							 	
								String
							

							 	
								Producer
							

							 	
								The commit message related in a commit operation
							

							
	
								CamelGitCommitUsername
							

							 	
								null
							

							 	
								String
							

							 	
								Producer
							

							 	
								The commit username in a commit operation
							

							
	
								CamelGitCommitEmail
							

							 	
								null
							

							 	
								String
							

							 	
								Producer
							

							 	
								The commit email in a commit operation
							

							
	
								CamelGitCommitId
							

							 	
								null
							

							 	
								String
							

							 	
								Producer
							

							 	
								The commit id
							

							
	
								CamelGitAllowEmpty
							

							 	
								null
							

							 	
								Boolean
							

							 	
								Producer
							

							 	
								The flag to manage empty git commits
							

							

Producer Example

				Below is an example route of a producer that add a file test.java to a local repository, commit it with a specific message on master branch and then push it to remote repository.
			
from("direct:start")
 .setHeader(GitConstants.GIT_FILE_NAME, constant("test.java"))
 .to("git:///tmp/testRepo?operation=add")
 .setHeader(GitConstants.GIT_COMMIT_MESSAGE, constant("first commit"))
 .to("git:///tmp/testRepo?operation=commit")
 .to("git:///tmp/testRepo?operation=push&remotePath=https://foo.com/test/test.git&username=xxx&password=xxx")

Consumer Example

				Below is an example route of a consumer that consumes commit:
			
from("git:///tmp/testRepo?type=commit")
 .to(....)

Chapter 115. GitHub Component

			Available as of Camel version 2.15
		

			The GitHub component interacts with the GitHub API by encapsulating egit-github. It currently provides polling for new pull requests, pull request comments, tags, and commits. It is also able to produce comments on pull requests, as well as close the pull request entirely.
		

			Rather than webhooks, this endpoint relies on simple polling. Reasons include:
		
	
					Concern for reliability/stability
				
	
					The types of payloads we’re polling aren’t typically large (plus, paging is available in the API)
				
	
					The need to support apps running somewhere not publicly accessible where a webhook would fail
				

			Note that the GitHub API is fairly expansive. Therefore, this component could be easily expanded to provide additional interactions.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-github</artifactId>
 <version>${camel-version}</version>
</dependency>
URI format

github://endpoint[?options]

Mandatory Options:

				Note that these can be configured directly through the endpoint.
			

				The GitHub component has no options.
			

				The GitHub endpoint is configured using URI syntax:
			
github:type/branchName

				with the following path and query parameters:
			
Path Parameters (2 parameters):

	Name	Description	Default	Type
	
									type
								

								 	
									Required What git operation to execute
								

								 	 	
									GitHubType
								

								
	
									branchName
								

								 	
									Name of branch
								

								 	 	
									String
								

								

Query Parameters (12 parameters):

	Name	Description	Default	Type
	
									oauthToken (common)
								

								 	
									GitHub OAuth token, required unless username & password are provided
								

								 	 	
									String
								

								
	
									password (common)
								

								 	
									GitHub password, required unless oauthToken is provided
								

								 	 	
									String
								

								
	
									repoName (common)
								

								 	
									Required GitHub repository name
								

								 	 	
									String
								

								
	
									repoOwner (common)
								

								 	
									Required GitHub repository owner (organization)
								

								 	 	
									String
								

								
	
									username (common)
								

								 	
									GitHub username, required unless oauthToken is provided
								

								 	 	
									String
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									encoding (producer)
								

								 	
									To use the given encoding when getting a git commit file
								

								 	 	
									String
								

								
	
									state (producer)
								

								 	
									To set git commit status state
								

								 	 	
									String
								

								
	
									targetUrl (producer)
								

								 	
									To set git commit status target url
								

								 	 	
									String
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

Consumer Endpoints:

	Endpoint	Context	Body Type
	
								pullRequest
							

							 	
								polling
							

							 	
								org.eclipse.egit.github.core.PullRequest
							

							
	
								pullRequestComment
							

							 	
								polling
							

							 	
								org.eclipse.egit.github.core.Comment (comment on the general pull request discussion) or org.eclipse.egit.github.core.CommitComment (inline comment on a pull request diff)
							

							
	
								tag
							

							 	
								polling
							

							 	
								org.eclipse.egit.github.core.RepositoryTag
							

							
	
								commit
							

							 	
								polling
							

							 	
								org.eclipse.egit.github.core.RepositoryCommit
							

							

Producer Endpoints:

	Endpoint	Body	Message Headers
	
								pullRequestComment
							

							 	
								String (comment text)
							

							 	
								- GitHubPullRequest (integer) (REQUIRED): Pull request number.
							

							
								- GitHubInResponseTo (integer): Required if responding to another inline comment on the pull request diff. If left off, a general comment on the pull request discussion is assumed.
							

							
	
								closePullRequest
							

							 	
								none
							

							 	
								- GitHubPullRequest (integer) (REQUIRED): Pull request number.
							

							
	
								createIssue (From Camel 2.18)
							

							 	
								String (issue body text)
							

							 	
								- GitHubIssueTitle (String) (REQUIRED): Issue Title.
							

							

Chapter 116. GZip DataFormat

			Available as of Camel version 2.0
		

			The GZip Data Format is a message compression and de-compression format. It uses the same deflate algorithm that is used in Zip DataFormat, although some additional headers are provided. This format is produced by popular gzip/gunzip tool. Messages marshalled using GZip compression can be unmarshalled using GZip decompression just prior to being consumed at the endpoint. The compression capability is quite useful when you deal with large XML and Text based payloads or when you read messages previously comressed using gzip tool.
		
Options

				The GZip dataformat supports 1 options which are listed below.
			
	Name	Default	Java Type	Description
	
								contentTypeHeader
							

							 	
								false
							

							 	
								Boolean
							

							 	
								Whether the data format should set the Content-Type header with the type from the data format if the data format is capable of doing so. For example application/xml for data formats marshalling to XML, or application/json for data formats marshalling to JSon etc.
							

							

Marshal

				In this example we marshal a regular text/XML payload to a compressed payload employing gzip compression format and send it an ActiveMQ queue called MY_QUEUE.
			
from("direct:start").marshal().gzip().to("activemq:queue:MY_QUEUE");

Unmarshal

				In this example we unmarshal a gzipped payload from an ActiveMQ queue called MY_QUEUE to its original format, and forward it for processing to the UnGZippedMessageProcessor.
			
from("activemq:queue:MY_QUEUE").unmarshal().gzip().process(new UnGZippedMessageProcessor());

Dependencies

				This data format is provided in camel-core so no additional dependencies is needed.
			

Chapter 117. Google BigQuery Component

			Available as of Camel version 2.20
		
Component Description

				The Google Bigquery component provides access to Cloud BigQuery Infrastructure via the Google Client Services API.
			

				The current implementation does not use gRPC.
			

				The current implementation does not support querying BigQuery i.e. is a producer only.
			

				Maven users will need to add the following dependency to their pom.xml for this component:
			
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-google-bigquery</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>

Authentication Configuration

				Google BigQuery component authentication is targeted for use with the GCP Service Accounts. For more information please refer to Google Cloud Platform Auth Guide
			

				Google security credentials can be set explicitly via one of the two options:
			
	
						Service Account Email and Service Account Key (PEM format)
					
	
						GCP credentials file location
					

				If both are set, the Service Account Email/Key will take precedence.
			

				Or implicitly, where the connection factory falls back on Application Default Credentials.
			

				OBS! The location of the default credentials file is configurable - via GOOGLE_APPLICATION_CREDENTIALS environment variable.
			

				Service Account Email and Service Account Key can be found in the GCP JSON credentials file as client_email and private_key respectively.
			

URI Format

 google-bigquery://project-id:datasetId[:tableId]?[options]

Options

				The Google BigQuery component supports 4 options which are listed below.
			
	Name	Description	Default	Type
	
								projectId (producer)
							

							 	
								Google Cloud Project Id
							

							 	 	
								String
							

							
	
								datasetId (producer)
							

							 	
								BigQuery Dataset Id
							

							 	 	
								String
							

							
	
								connectionFactory (producer)
							

							 	
								ConnectionFactory to obtain connection to Bigquery Service. If non provided the default one will be used
							

							 	 	
								GoogleBigQuery ConnectionFactory
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The Google BigQuery endpoint is configured using URI syntax:
			
google-bigquery:projectId:datasetId:tableName

				with the following path and query parameters:
			
Path Parameters (3 parameters):

	Name	Description	Default	Type
	
									projectId
								

								 	
									Required Google Cloud Project Id
								

								 	 	
									String
								

								
	
									datasetId
								

								 	
									Required BigQuery Dataset Id
								

								 	 	
									String
								

								
	
									tableId
								

								 	
									BigQuery table id
								

								 	 	
									String
								

								

Query Parameters (3 parameters):

	Name	Description	Default	Type
	
									connectionFactory (producer)
								

								 	
									ConnectionFactory to obtain connection to Bigquery Service. If non provided the default will be used.
								

								 	 	
									GoogleBigQuery ConnectionFactory
								

								
	
									useAsInsertId (producer)
								

								 	
									Field name to use as insert id
								

								 	 	
									String
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

Message Headers

	Name	Type	Description
	
								CamelGoogleBigQuery.TableSuffix
							

							 	
								String
							

							 	
								Table suffix to use when inserting data
							

							
	
								CamelGoogleBigQuery.InsertId
							

							 	
								String
							

							 	
								InsertId to use when inserting data
							

							
	
								CamelGoogleBigQuery.PartitionDecorator
							

							 	
								String
							

							 	
								Partition decorator to indicate partition to use when inserting data
							

							
	
								CamelGoogleBigQuery.TableId
							

							 	
								String
							

							 	
								Table id where data will be submitted. If specified will override endpoint configuration
							

							

Producer Endpoints

				Producer endpoints can accept and deliver to BigQuery individual and grouped exchanges alike. Grouped exchanges have Exchange.GROUPED_EXCHANGE property set.
			

				Goole BigQuery producer will send a grouped exchange in a single api call unless different table suffix or partition decorators are specified in which case it will break it down to ensure data is written with the correct suffix or partition decorator.
			

				Google BigQuery endpoint expects the payload to be either a map or list of maps. A payload containing a map will insert a single row and a payload containing a list of map’s will insert a row for each entry in the list.
			

Template tables

				Reference: https://cloud.google.com/bigquery/streaming-data-into-bigquery#template-tables
			

				Templated tables can be specified using the GoogleBigQueryConstants.TABLE_SUFFIX header.
			

				I.e. the following route will create tables and insert records sharded on a per day basis:
			
from("direct:start")
.header(GoogleBigQueryConstants.TABLE_SUFFIX, "_${date:now:yyyyMMdd}")
.to("google-bigquery:sampleDataset:sampleTable")

				Note it is recommended to use partitioning for this use case.
			

Partitioning

				Reference: https://cloud.google.com/bigquery/docs/creating-partitioned-tables
			

				Partitioning is specified when creating a table and if set data will be automatically partitioned into separate tables. When inserting data a specific partition can be specified by setting the GoogleBigQueryConstants.PARTITION_DECORATOR header on the exchange.
			

Ensuring data consistency

				Reference: https://cloud.google.com/bigquery/streaming-data-into-bigquery#dataconsistency
			

				A insert id can be set on the exchange with the header GoogleBigQueryConstants.INSERT_ID or by specifying query parameter useAsInsertId. As an insert id need to be specified per row inserted the exchange header can’t be used when the payload is a list - if the payload is a list the GoogleBigQueryConstants.INSERT_ID will be ignored. In that case use the query parameter useAsInsertId.
			

Chapter 118. Google Calendar Component

			Available as of Camel version 2.15
		

			The Google Calendar component provides access to Google Calendar via the Google Calendar Web APIs.
		

			Google Calendar uses the OAuth 2.0 protocol for authenticating a Google account and authorizing access to user data. Before you can use this component, you will need to create an account and generate OAuth credentials. Credentials comprise of a clientId, clientSecret, and a refreshToken. A handy resource for generating a long-lived refreshToken is the OAuth playground.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
 <dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-google-calendar</artifactId>
 <version>2.15.0</version>
 </dependency>
1. Google Calendar Options

				The Google Calendar component supports 3 options which are listed below.
			
	Name	Description	Default	Type
	
								configuration (common)
							

							 	
								To use the shared configuration
							

							 	 	
								GoogleCalendar Configuration
							

							
	
								clientFactory (advanced)
							

							 	
								To use the GoogleCalendarClientFactory as factory for creating the client. Will by default use BatchGoogleCalendarClientFactory
							

							 	 	
								GoogleCalendarClient Factory
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The Google Calendar endpoint is configured using URI syntax:
			
google-calendar:apiName/methodName

				with the following path and query parameters:
			
Path Parameters (2 parameters):

	Name	Description	Default	Type
	
									apiName
								

								 	
									Required What kind of operation to perform
								

								 	 	
									GoogleCalendarApiName
								

								
	
									methodName
								

								 	
									Required What sub operation to use for the selected operation
								

								 	 	
									String
								

								

Query Parameters (14 parameters):

	Name	Description	Default	Type
	
									accessToken (common)
								

								 	
									OAuth 2 access token. This typically expires after an hour so refreshToken is recommended for long term usage.
								

								 	 	
									String
								

								
	
									applicationName (common)
								

								 	
									Google calendar application name. Example would be camel-google-calendar/1.0
								

								 	 	
									String
								

								
	
									clientId (common)
								

								 	
									Client ID of the calendar application
								

								 	 	
									String
								

								
	
									clientSecret (common)
								

								 	
									Client secret of the calendar application
								

								 	 	
									String
								

								
	
									emailAddress (common)
								

								 	
									The emailAddress of the Google Service Account.
								

								 	 	
									String
								

								
	
									inBody (common)
								

								 	
									Sets the name of a parameter to be passed in the exchange In Body
								

								 	 	
									String
								

								
	
									p12FileName (common)
								

								 	
									The name of the p12 file which has the private key to use with the Google Service Account.
								

								 	 	
									String
								

								
	
									refreshToken (common)
								

								 	
									OAuth 2 refresh token. Using this, the Google Calendar component can obtain a new accessToken whenever the current one expires - a necessity if the application is long-lived.
								

								 	 	
									String
								

								
	
									scopes (common)
								

								 	
									Specifies the level of permissions you want a calendar application to have to a user account. You can separate multiple scopes by comma. See https://developers.google.com/google-apps/calendar/auth for more info.
								

								 	
									https://www.googleapis.com/auth/calendar
								

								 	
									String
								

								
	
									user (common)
								

								 	
									The email address of the user the application is trying to impersonate in the service account flow
								

								 	 	
									String
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

URI Format

				The GoogleCalendar Component uses the following URI format:
			
 google-calendar://endpoint-prefix/endpoint?[options]

				Endpoint prefix can be one of:
			
	
						acl
					
	
						calendars
					
	
						channels
					
	
						colors
					
	
						events
					
	
						freebusy
					
	
						list
					
	
						settings
					

Producer Endpoints

				Producer endpoints can use endpoint prefixes followed by endpoint names and associated options described next. A shorthand alias can be used for some endpoints. The endpoint URI MUST contain a prefix.
			

				Endpoint options that are not mandatory are denoted by []. When there are no mandatory options for an endpoint, one of the set of [] options MUST be provided. Producer endpoints can also use a special option inBody that in turn should contain the name of the endpoint option whose value will be contained in the Camel Exchange In message.
			

				Any of the endpoint options can be provided in either the endpoint URI, or dynamically in a message header. The message header name must be of the format CamelGoogleCalendar.<option>. Note that the inBody option overrides message header, i.e. the endpoint option inBody=option would override a CamelGoogleCalendar.option header.
			

Consumer Endpoints

				Any of the producer endpoints can be used as a consumer endpoint. Consumer endpoints can use Scheduled Poll Consumer Options with a consumer. prefix to schedule endpoint invocation. Consumer endpoints that return an array or collection will generate one exchange per element, and their routes will be executed once for each exchange.
			

Message Headers

				Any URI option can be provided in a message header for producer endpoints with a CamelGoogleCalendar. prefix.
			

Message Body

				All result message bodies utilize objects provided by the underlying APIs used by the GoogleCalendarComponent. Producer endpoints can specify the option name for incoming message body in the inBody endpoint URI parameter. For endpoints that return an array or collection, a consumer endpoint will map every element to distinct messages.
			

Chapter 119. Google Calendar Stream Component

			Available as of Camel version 2.23
		

			The Google Calendar component provides access to Calendar via the Google Calendar Web APIs.
		

			Google Calendar uses the OAuth 2.0 protocol for authenticating a Google account and authorizing access to user data. Before you can use this component, you will need to create an account and generate OAuth credentials. Credentials comprise of a clientId, clientSecret, and a refreshToken. A handy resource for generating a long-lived refreshToken is the OAuth playground.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
 <dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-google-calendar</artifactId>
 <version>2.23.0</version>
 </dependency>
URI Format

				The Google Calendar Component uses the following URI format:
			
 google-calendar-stream://index?[options]

GoogleCalendarStreamComponent

				The Google Calendar Stream component supports 3 options, which are listed below.
			
	Name	Description	Default	Type
	
								configuration (advanced)
							

							 	
								The configuration
							

							 	 	
								GoogleCalendarStream Configuration
							

							
	
								clientFactory (advanced)
							

							 	
								The client Factory
							

							 	 	
								GoogleCalendarClient Factory
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The Google Calendar Stream endpoint is configured using URI syntax:
			
google-calendar-stream:index

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									index
								

								 	
									Specifies an index for the endpoint
								

								 	 	
									String
								

								

Query Parameters (30 parameters):

	Name	Description	Default	Type
	
									accessToken (consumer)
								

								 	
									OAuth 2 access token. This typically expires after an hour so refreshToken is recommended for long term usage.
								

								 	 	
									String
								

								
	
									applicationName (consumer)
								

								 	
									Google Calendar application name. Example would be camel-google-calendar/1.0
								

								 	 	
									String
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									calendarId (consumer)
								

								 	
									The calendarId to be used
								

								 	
									primary
								

								 	
									String
								

								
	
									clientId (consumer)
								

								 	
									Client ID of the calendar application
								

								 	 	
									String
								

								
	
									clientSecret (consumer)
								

								 	
									Client secret of the calendar application
								

								 	 	
									String
								

								
	
									considerLastUpdate (consumer)
								

								 	
									Take into account the lastUpdate of the last event polled as start date for the next poll
								

								 	
									false
								

								 	
									boolean
								

								
	
									consumeFromNow (consumer)
								

								 	
									Consume events in the selected calendar from now on
								

								 	
									true
								

								 	
									boolean
								

								
	
									maxResults (consumer)
								

								 	
									Max results to be returned
								

								 	
									10
								

								 	
									int
								

								
	
									query (consumer)
								

								 	
									The query to execute on calendar
								

								 	 	
									String
								

								
	
									refreshToken (consumer)
								

								 	
									OAuth 2 refresh token. Using this, the Google Calendar component can obtain a new accessToken whenever the current one expires - a necessity if the application is long-lived.
								

								 	 	
									String
								

								
	
									scopes (consumer)
								

								 	
									Specifies the level of permissions you want a calendar application to have to a user account. See https://developers.google.com/calendar/auth for more info.
								

								 	 	
									List
								

								
	
									sendEmptyMessageWhenIdle (consumer)
								

								 	
									If the polling consumer did not poll any files, you can enable this option to send an empty message (no body) instead.
								

								 	
									false
								

								 	
									boolean
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this option is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									pollStrategy (consumer)
								

								 	
									A pluggable org.apache.camel.PollingConsumerPollingStrategy allowing you to provide your custom implementation to control error handling usually occurred during the poll operation before an Exchange have been created and being routed in Camel.
								

								 	 	
									PollingConsumerPoll Strategy
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									backoffErrorThreshold (scheduler)
								

								 	
									The number of subsequent error polls (failed due some error) that should happen before the backoffMultipler should kick-in.
								

								 	 	
									int
								

								
	
									backoffIdleThreshold (scheduler)
								

								 	
									The number of subsequent idle polls that should happen before the backoffMultipler should kick-in.
								

								 	 	
									int
								

								
	
									backoffMultiplier (scheduler)
								

								 	
									To let the scheduled polling consumer backoff if there has been a number of subsequent idles/errors in a row. The multiplier is then the number of polls that will be skipped before the next actual attempt is happening again. When this option is in use then backoffIdleThreshold and/or backoffErrorThreshold must also be configured.
								

								 	 	
									int
								

								
	
									delay (scheduler)
								

								 	
									Milliseconds before the next poll. You can also specify time values using units, such as 60s (60 seconds), 5m30s (5 minutes and 30 seconds), and 1h (1 hour).
								

								 	
									500
								

								 	
									long
								

								
	
									greedy (scheduler)
								

								 	
									If greedy is enabled, then the ScheduledPollConsumer will run immediately again, if the previous run polled 1 or more messages.
								

								 	
									false
								

								 	
									boolean
								

								
	
									initialDelay (scheduler)
								

								 	
									Milliseconds before the first poll starts. You can also specify time values using units, such as 60s (60 seconds), 5m30s (5 minutes and 30 seconds), and 1h (1 hour).
								

								 	
									1000
								

								 	
									long
								

								
	
									runLoggingLevel (scheduler)
								

								 	
									The consumer logs a start/complete log line when it polls. This option allows you to configure the logging level for that.
								

								 	
									TRACE
								

								 	
									LoggingLevel
								

								
	
									scheduledExecutorService (scheduler)
								

								 	
									Allows for configuring a custom/shared thread pool to use for the consumer. By default each consumer has its own single threaded thread pool.
								

								 	 	
									ScheduledExecutor Service
								

								
	
									scheduler (scheduler)
								

								 	
									To use a cron scheduler from either camel-spring or camel-quartz2 component
								

								 	
									none
								

								 	
									ScheduledPollConsumer Scheduler
								

								
	
									schedulerProperties (scheduler)
								

								 	
									To configure additional properties when using a custom scheduler or any of the Quartz2, Spring based scheduler.
								

								 	 	
									Map
								

								
	
									startScheduler (scheduler)
								

								 	
									Whether the scheduler should be auto started.
								

								 	
									true
								

								 	
									boolean
								

								
	
									timeUnit (scheduler)
								

								 	
									Time unit for initialDelay and delay options.
								

								 	
									MILLISECONDS
								

								 	
									TimeUnit
								

								
	
									useFixedDelay (scheduler)
								

								 	
									Controls if fixed delay or fixed rate is used. See ScheduledExecutorService in JDK for details.
								

								 	
									true
								

								 	
									boolean
								

								

Spring Boot Auto-Configuration

				The component supports 15 options, which are listed below.
			
	Name	Description	Default	Type
	
								camel.component.google-calendar-stream.client-factory
							

							 	
								The client Factory. The option is a org.apache.camel.component.google.calendar.GoogleCalendarClientFactory type.
							

							 	 	
								String
							

							
	
								camel.component.google-calendar-stream.configuration.access-token
							

							 	
								OAuth 2 access token. This typically expires after an hour so refreshToken is recommended for long term usage.
							

							 	 	
								String
							

							
	
								camel.component.google-calendar-stream.configuration.application-name
							

							 	
								Google Calendar application name. Example would be camel-google-calendar/1.0
							

							 	 	
								String
							

							
	
								camel.component.google-calendar-stream.configuration.calendar-id
							

							 	
								The calendarId to be used
							

							 	
								primary
							

							 	
								String
							

							
	
								camel.component.google-calendar-stream.configuration.client-id
							

							 	
								Client ID of the calendar application
							

							 	 	
								String
							

							
	
								camel.component.google-calendar-stream.configuration.client-secret
							

							 	
								Client secret of the calendar application
							

							 	 	
								String
							

							
	
								camel.component.google-calendar-stream.configuration.consider-last-update
							

							 	
								Take into account the lastUpdate of the last event polled as start date for the next poll
							

							 	
								false
							

							 	
								Boolean
							

							
	
								camel.component.google-calendar-stream.configuration.consume-from-now
							

							 	
								Consume events in the selected calendar from now on
							

							 	
								true
							

							 	
								Boolean
							

							
	
								camel.component.google-calendar-stream.configuration.index
							

							 	
								Specifies an index for the endpoint
							

							 	 	
								String
							

							
	
								camel.component.google-calendar-stream.configuration.max-results
							

							 	
								Max results to be returned
							

							 	
								10
							

							 	
								Integer
							

							
	
								camel.component.google-calendar-stream.configuration.query
							

							 	
								The query to execute on calendar
							

							 	 	
								String
							

							
	
								camel.component.google-calendar-stream.configuration.refresh-token
							

							 	
								OAuth 2 refresh token. Using this, the Google Calendar component can obtain a new accessToken whenever the current one expires - a necessity if the application is long-lived.
							

							 	 	
								String
							

							
	
								camel.component.google-calendar-stream.configuration.scopes
							

							 	
								Specifies the level of permissions you want a calendar application to have to a user account. See https://developers.google.com/calendar/auth for more info.
							

							 	 	
								List
							

							
	
								camel.component.google-calendar-stream.enabled
							

							 	
								Whether to enable auto configuration of the google-calendar-stream component. This is enabled by default.
							

							 	 	
								Boolean
							

							
	
								camel.component.google-calendar-stream.resolve-property-placeholders
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								Boolean
							

							

Consumer

				The consumer will poll by default with maxResults equals to 5.
			

				For example
			
from("google-calendar-stream://test?markAsRead=true&delay=5000&maxResults=5").to("mock:result");

				This route will consume the next five events starting from the date of polling.
			

Chapter 120. Google Drive Component

			Available as of Camel version 2.14
		

			The Google Drive component provides access to the Google Drive file storage service via the Google Drive Web APIs.
		

			Google Drive uses the OAuth 2.0 protocol for authenticating a Google account and authorizing access to user data. Before you can use this component, you will need to create an account and generate OAuth credentials. Credentials comprise of a clientId, clientSecret, and a refreshToken. A handy resource for generating a long-lived refreshToken is the OAuth playground.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
 <dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-google-drive</artifactId>
 <version>2.14-SNAPSHOT</version>
 </dependency>
URI Format

				
			

				The GoogleDrive Component uses the following URI format:
			
 google-drive://endpoint-prefix/endpoint?[options]

				Endpoint prefix can be one of:
			
	
						drive-about
					
	
						drive-apps
					
	
						drive-changes
					
	
						drive-channels
					
	
						drive-children
					
	
						drive-comments
					
	
						drive-files
					
	
						drive-parents
					
	
						drive-permissions
					
	
						drive-properties
					
	
						drive-realtime
					
	
						drive-replies
					
	
						drive-revisions
					

GoogleDriveComponent

				The Google Drive component supports 3 options which are listed below.
			
	Name	Description	Default	Type
	
								configuration (common)
							

							 	
								To use the shared configuration
							

							 	 	
								GoogleDrive Configuration
							

							
	
								clientFactory (advanced)
							

							 	
								To use the GoogleCalendarClientFactory as factory for creating the client. Will by default use BatchGoogleDriveClientFactory
							

							 	 	
								GoogleDriveClient Factory
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The Google Drive endpoint is configured using URI syntax:
			
google-drive:apiName/methodName

				with the following path and query parameters:
			
Path Parameters (2 parameters):

	Name	Description	Default	Type
	
									apiName
								

								 	
									Required What kind of operation to perform
								

								 	 	
									GoogleDriveApiName
								

								
	
									methodName
								

								 	
									Required What sub operation to use for the selected operation
								

								 	 	
									String
								

								

Query Parameters (12 parameters):

	Name	Description	Default	Type
	
									accessToken (common)
								

								 	
									OAuth 2 access token. This typically expires after an hour so refreshToken is recommended for long term usage.
								

								 	 	
									String
								

								
	
									applicationName (common)
								

								 	
									Google drive application name. Example would be camel-google-drive/1.0
								

								 	 	
									String
								

								
	
									clientFactory (common)
								

								 	
									To use the GoogleCalendarClientFactory as factory for creating the client. Will by default use BatchGoogleDriveClientFactory
								

								 	 	
									GoogleDriveClient Factory
								

								
	
									clientId (common)
								

								 	
									Client ID of the drive application
								

								 	 	
									String
								

								
	
									clientSecret (common)
								

								 	
									Client secret of the drive application
								

								 	 	
									String
								

								
	
									inBody (common)
								

								 	
									Sets the name of a parameter to be passed in the exchange In Body
								

								 	 	
									String
								

								
	
									refreshToken (common)
								

								 	
									OAuth 2 refresh token. Using this, the Google Calendar component can obtain a new accessToken whenever the current one expires - a necessity if the application is long-lived.
								

								 	 	
									String
								

								
	
									scopes (common)
								

								 	
									Specifies the level of permissions you want a drive application to have to a user account. See https://developers.google.com/drive/web/scopes for more info.
								

								 	 	
									List
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

Producer Endpoints

				Producer endpoints can use endpoint prefixes followed by endpoint names and associated options described next. A shorthand alias can be used for some endpoints. The endpoint URI MUST contain a prefix.
			

				Endpoint options that are not mandatory are denoted by []. When there are no mandatory options for an endpoint, one of the set of [] options MUST be provided. Producer endpoints can also use a special option inBody that in turn should contain the name of the endpoint option whose value will be contained in the Camel Exchange In message.
			

				Any of the endpoint options can be provided in either the endpoint URI, or dynamically in a message header. The message header name must be of the format CamelGoogleDrive.<option>. Note that the inBody option overrides message header, i.e. the endpoint option inBody=option would override a CamelGoogleDrive.option header.
			

				For more information on the endpoints and options see API documentation at: https://developers.google.com/drive/v2/reference/
			

Consumer Endpoints

				Any of the producer endpoints can be used as a consumer endpoint. Consumer endpoints can use Scheduled Poll Consumer Options with a consumer. prefix to schedule endpoint invocation. Consumer endpoints that return an array or collection will generate one exchange per element, and their routes will be executed once for each exchange.
			

Message Headers

				Any URI option can be provided in a message header for producer endpoints with a CamelGoogleDrive. prefix.
			

Message Body

				All result message bodies utilize objects provided by the underlying APIs used by the GoogleDriveComponent. Producer endpoints can specify the option name for incoming message body in the inBody endpoint URI parameter. For endpoints that return an array or collection, a consumer endpoint will map every element to distinct messages.
			

Chapter 121. Google Mail Component

			Available as of Camel version 2.15
		

			The Google Mail component provides access to Gmail via the Google Mail Web APIs.
		

			Google Mail uses the OAuth 2.0 protocol for authenticating a Google account and authorizing access to user data. Before you can use this component, you will need to create an account and generate OAuth credentials. Credentials comprise of a clientId, clientSecret, and a refreshToken. A handy resource for generating a long-lived refreshToken is the OAuth playground.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
 <dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-google-mail</artifactId>
 <version>2.15-SNAPSHOT</version>
 </dependency>
URI Format

				The GoogleMail Component uses the following URI format:
			
 google-mail://endpoint-prefix/endpoint?[options]

				Endpoint prefix can be one of:
			
	
						attachments
					
	
						drafts
					
	
						history
					
	
						labels
					
	
						messages
					
	
						threads
					
	
						users
					

GoogleMailComponent

				The Google Mail component supports 3 options which are listed below.
			
	Name	Description	Default	Type
	
								configuration (common)
							

							 	
								To use the shared configuration
							

							 	 	
								GoogleMailConfiguration
							

							
	
								clientFactory (advanced)
							

							 	
								To use the GoogleCalendarClientFactory as factory for creating the client. Will by default use BatchGoogleMailClientFactory
							

							 	 	
								GoogleMailClient Factory
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The Google Mail endpoint is configured using URI syntax:
			
google-mail:apiName/methodName

				with the following path and query parameters:
			
Path Parameters (2 parameters):

	Name	Description	Default	Type
	
									apiName
								

								 	
									Required What kind of operation to perform
								

								 	 	
									GoogleMailApiName
								

								
	
									methodName
								

								 	
									Required What sub operation to use for the selected operation
								

								 	 	
									String
								

								

Query Parameters (11 parameters):

	Name	Description	Default	Type
	
									accessToken (common)
								

								 	
									OAuth 2 access token. This typically expires after an hour so refreshToken is recommended for long term usage.
								

								 	 	
									String
								

								
	
									applicationName (common)
								

								 	
									Google mail application name. Example would be camel-google-mail/1.0
								

								 	 	
									String
								

								
	
									clientId (common)
								

								 	
									Client ID of the mail application
								

								 	 	
									String
								

								
	
									clientSecret (common)
								

								 	
									Client secret of the mail application
								

								 	 	
									String
								

								
	
									inBody (common)
								

								 	
									Sets the name of a parameter to be passed in the exchange In Body
								

								 	 	
									String
								

								
	
									refreshToken (common)
								

								 	
									OAuth 2 refresh token. Using this, the Google Calendar component can obtain a new accessToken whenever the current one expires - a necessity if the application is long-lived.
								

								 	 	
									String
								

								
	
									scopes (common)
								

								 	
									Specifies the level of permissions you want a mail application to have to a user account. See https://developers.google.com/gmail/api/auth/scopes for more info.
								

								 	 	
									List
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

Producer Endpoints

				Producer endpoints can use endpoint prefixes followed by endpoint names and associated options described next. A shorthand alias can be used for some endpoints. The endpoint URI MUST contain a prefix.
			

				Endpoint options that are not mandatory are denoted by []. When there are no mandatory options for an endpoint, one of the set of [] options MUST be provided. Producer endpoints can also use a special option inBody that in turn should contain the name of the endpoint option whose value will be contained in the Camel Exchange In message.
			

				Any of the endpoint options can be provided in either the endpoint URI, or dynamically in a message header. The message header name must be of the format CamelGoogleMail.<option>. Note that the inBody option overrides message header, i.e. the endpoint option inBody=option would override a CamelGoogleMail.option header.
			

				For more information on the endpoints and options see API documentation at: https://developers.google.com/gmail/api/v1/reference/
			

Consumer Endpoints

				Any of the producer endpoints can be used as a consumer endpoint. Consumer endpoints can use Scheduled Poll Consumer Options with a consumer. prefix to schedule endpoint invocation. Consumer endpoints that return an array or collection will generate one exchange per element, and their routes will be executed once for each exchange.
			

Message Headers

				Any URI option can be provided in a message header for producer endpoints with a CamelGoogleMail. prefix.
			

Message Body

				All result message bodies utilize objects provided by the underlying APIs used by the GoogleMailComponent. Producer endpoints can specify the option name for incoming message body in the inBody endpoint URI parameter. For endpoints that return an array or collection, a consumer endpoint will map every element to distinct messages.
			

Chapter 122. Google Mail Stream Component

			Available as of Camel version 2.22
		

			The Google Mail component provides access to Gmail via the Google Mail Web APIs.
		

			Google Mail uses the OAuth 2.0 protocol for authenticating a Google account and authorizing access to user data. Before you can use this component, you will need to create an account and generate OAuth credentials. Credentials comprise of a clientId, clientSecret, and a refreshToken. A handy resource for generating a long-lived refreshToken is the OAuth playground.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
 <dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-google-mail</artifactId>
 <version>2.22-SNAPSHOT</version>
 </dependency>
URI Format

				The GoogleMail Component uses the following URI format:
			
 google-mail-stream://index?[options]

GoogleMailStreamComponent

				The Google Mail Stream component supports 3 options, which are listed below.
			
	Name	Description	Default	Type
	
								configuration (advanced)
							

							 	
								The configuration
							

							 	 	
								GoogleMailStream Configuration
							

							
	
								clientFactory (advanced)
							

							 	
								The client Factory
							

							 	 	
								GoogleMailClient Factory
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The Google Mail Stream endpoint is configured using URI syntax:
			
google-mail-stream:index

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									index
								

								 	
									Specifies an index for the endpoint
								

								 	 	
									String
								

								

Query Parameters (28 parameters):

	Name	Description	Default	Type
	
									accessToken (consumer)
								

								 	
									OAuth 2 access token. This typically expires after an hour so refreshToken is recommended for long term usage.
								

								 	 	
									String
								

								
	
									applicationName (consumer)
								

								 	
									Google mail application name. Example would be camel-google-mail/1.0
								

								 	 	
									String
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									clientId (consumer)
								

								 	
									Client ID of the mail application
								

								 	 	
									String
								

								
	
									clientSecret (consumer)
								

								 	
									Client secret of the mail application
								

								 	 	
									String
								

								
	
									labels (consumer)
								

								 	
									Comma separated list of labels to take into account
								

								 	 	
									String
								

								
	
									markAsRead (consumer)
								

								 	
									Mark the message as read once it has been consumed
								

								 	
									false
								

								 	
									boolean
								

								
	
									maxResults (consumer)
								

								 	
									Max results to be returned
								

								 	
									10
								

								 	
									long
								

								
	
									query (consumer)
								

								 	
									The query to execute on gmail box
								

								 	
									is:unread
								

								 	
									String
								

								
	
									refreshToken (consumer)
								

								 	
									OAuth 2 refresh token. Using this, the Google Calendar component can obtain a new accessToken whenever the current one expires - a necessity if the application is long-lived.
								

								 	 	
									String
								

								
	
									sendEmptyMessageWhenIdle (consumer)
								

								 	
									If the polling consumer did not poll any files, you can enable this option to send an empty message (no body) instead.
								

								 	
									false
								

								 	
									boolean
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this option is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									pollStrategy (consumer)
								

								 	
									A pluggable org.apache.camel.PollingConsumerPollingStrategy allowing you to provide your custom implementation to control error handling usually occurred during the poll operation before an Exchange have been created and being routed in Camel.
								

								 	 	
									PollingConsumerPoll Strategy
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									backoffErrorThreshold (scheduler)
								

								 	
									The number of subsequent error polls (failed due some error) that should happen before the backoffMultipler should kick-in.
								

								 	 	
									int
								

								
	
									backoffIdleThreshold (scheduler)
								

								 	
									The number of subsequent idle polls that should happen before the backoffMultipler should kick-in.
								

								 	 	
									int
								

								
	
									backoffMultiplier (scheduler)
								

								 	
									To let the scheduled polling consumer backoff if there has been a number of subsequent idles/errors in a row. The multiplier is then the number of polls that will be skipped before the next actual attempt is happening again. When this option is in use then backoffIdleThreshold and/or backoffErrorThreshold must also be configured.
								

								 	 	
									int
								

								
	
									delay (scheduler)
								

								 	
									Milliseconds before the next poll. You can also specify time values using units, such as 60s (60 seconds), 5m30s (5 minutes and 30 seconds), and 1h (1 hour).
								

								 	
									500
								

								 	
									long
								

								
	
									greedy (scheduler)
								

								 	
									If greedy is enabled, then the ScheduledPollConsumer will run immediately again, if the previous run polled 1 or more messages.
								

								 	
									false
								

								 	
									boolean
								

								
	
									initialDelay (scheduler)
								

								 	
									Milliseconds before the first poll starts. You can also specify time values using units, such as 60s (60 seconds), 5m30s (5 minutes and 30 seconds), and 1h (1 hour).
								

								 	
									1000
								

								 	
									long
								

								
	
									runLoggingLevel (scheduler)
								

								 	
									The consumer logs a start/complete log line when it polls. This option allows you to configure the logging level for that.
								

								 	
									TRACE
								

								 	
									LoggingLevel
								

								
	
									scheduledExecutorService (scheduler)
								

								 	
									Allows for configuring a custom/shared thread pool to use for the consumer. By default each consumer has its own single threaded thread pool.
								

								 	 	
									ScheduledExecutor Service
								

								
	
									scheduler (scheduler)
								

								 	
									To use a cron scheduler from either camel-spring or camel-quartz2 component
								

								 	
									none
								

								 	
									ScheduledPollConsumer Scheduler
								

								
	
									schedulerProperties (scheduler)
								

								 	
									To configure additional properties when using a custom scheduler or any of the Quartz2, Spring based scheduler.
								

								 	 	
									Map
								

								
	
									startScheduler (scheduler)
								

								 	
									Whether the scheduler should be auto started.
								

								 	
									true
								

								 	
									boolean
								

								
	
									timeUnit (scheduler)
								

								 	
									Time unit for initialDelay and delay options.
								

								 	
									MILLISECONDS
								

								 	
									TimeUnit
								

								
	
									useFixedDelay (scheduler)
								

								 	
									Controls if fixed delay or fixed rate is used. See ScheduledExecutorService in JDK for details.
								

								 	
									true
								

								 	
									boolean
								

								

Spring Boot Auto-Configuration

				The component supports 13 options, which are listed below.
			
	Name	Description	Default	Type
	
								camel.component.google-mail-stream.client-factory
							

							 	
								The client Factory. The option is a org.apache.camel.component.google.mail.GoogleMailClientFactory type.
							

							 	 	
								String
							

							
	
								camel.component.google-mail-stream.configuration.access-token
							

							 	
								OAuth 2 access token. This typically expires after an hour so refreshToken is recommended for long term usage.
							

							 	 	
								String
							

							
	
								camel.component.google-mail-stream.configuration.application-name
							

							 	
								Google mail application name. Example would be camel-google-mail/1.0
							

							 	 	
								String
							

							
	
								camel.component.google-mail-stream.configuration.client-id
							

							 	
								Client ID of the mail application
							

							 	 	
								String
							

							
	
								camel.component.google-mail-stream.configuration.client-secret
							

							 	
								Client secret of the mail application
							

							 	 	
								String
							

							
	
								camel.component.google-mail-stream.configuration.index
							

							 	
								Specifies an index for the endpoint
							

							 	 	
								String
							

							
	
								camel.component.google-mail-stream.configuration.labels
							

							 	
								Comma separated list of labels to take into account
							

							 	 	
								String
							

							
	
								camel.component.google-mail-stream.configuration.mark-as-read
							

							 	
								Mark the message as read once it has been consumed
							

							 	
								false
							

							 	
								Boolean
							

							
	
								camel.component.google-mail-stream.configuration.max-results
							

							 	
								Max results to be returned
							

							 	
								10
							

							 	
								Long
							

							
	
								camel.component.google-mail-stream.configuration.query
							

							 	
								The query to execute on gmail box
							

							 	
								is:unread
							

							 	
								String
							

							
	
								camel.component.google-mail-stream.configuration.refresh-token
							

							 	
								OAuth 2 refresh token. Using this, the Google Calendar component can obtain a new accessToken whenever the current one expires - a necessity if the application is long-lived.
							

							 	 	
								String
							

							
	
								camel.component.google-mail-stream.enabled
							

							 	
								Whether to enable auto configuration of the google-mail-stream component. This is enabled by default.
							

							 	 	
								Boolean
							

							
	
								camel.component.google-mail-stream.resolve-property-placeholders
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								Boolean
							

							

Consumer

				The consumer will poll by default with the query "is:unread" and maxResults equals to 10.
			

				For example
			
from("google-mail-stream://test?markAsRead=true&delay=5000&maxResults=5&labels=GitHub,Apache").to("mock:result");

				This route will consume unread messages with labels Github and Apache and it will mark the messages as read.
			

Chapter 123. Google Pubsub Component

			Available as of Camel version 2.19
		

			The Google Pubsub component provides access to Cloud Pub/Sub Infrastructure via the Google Client Services API.
		

			The current implementation does not use gRPC.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-google-pubsub</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>
URI Format

				The GoogleMail Component uses the following URI format:
			
google-pubsub://project-id:destinationName?[options]

				Destination Name can be either a topic or a subscription name.
			

Options

				The Google Pubsub component supports 2 options which are listed below.
			
	Name	Description	Default	Type
	
								connectionFactory (common)
							

							 	
								Sets the connection factory to use: provides the ability to explicitly manage connection credentials: - the path to the key file - the Service Account Key / Email pair
							

							 	 	
								GooglePubsubConnection Factory
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The Google Pubsub endpoint is configured using URI syntax:
			
google-pubsub:projectId:destinationName

				with the following path and query parameters:
			
Path Parameters (2 parameters):

	Name	Description	Default	Type
	
									projectId
								

								 	
									Required Project Id
								

								 	 	
									String
								

								
	
									destinationName
								

								 	
									Required Destination Name
								

								 	 	
									String
								

								

Query Parameters (9 parameters):

	Name	Description	Default	Type
	
									ackMode (common)
								

								 	
									AUTO = exchange gets ack’ed/nack’ed on completion. NONE = downstream process has to ack/nack explicitly
								

								 	
									AUTO
								

								 	
									AckMode
								

								
	
									concurrentConsumers (common)
								

								 	
									The number of parallel streams consuming from the subscription
								

								 	
									1
								

								 	
									Integer
								

								
	
									connectionFactory (common)
								

								 	
									ConnectionFactory to obtain connection to PubSub Service. If non provided the default will be used.
								

								 	 	
									GooglePubsubConnection Factory
								

								
	
									loggerId (common)
								

								 	
									Logger ID to use when a match to the parent route required
								

								 	 	
									String
								

								
	
									maxMessagesPerPoll (common)
								

								 	
									The max number of messages to receive from the server in a single API call
								

								 	
									1
								

								 	
									Integer
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

Producer Endpoints

				Producer endpoints can accept and deliver to PubSub individual and grouped exchanges alike. Grouped exchanges have Exchange.GROUPED_EXCHANGE property set.
			

				Google PubSub expects the payload to be byte[] array, Producer endpoints will send:
			
	
						String body as byte[] encoded as UTF-8
					
	
						byte[] body as is
					
	
						Everything else will be serialised into byte[] array
					

				A Map set as message header GooglePubsubConstants.ATTRIBUTES will be sent as PubSub attributes. Once exchange has been delivered to PubSub the PubSub Message ID will be assigned to the header GooglePubsubConstants.MESSAGE_ID.
			

Consumer Endpoints

				Google PubSub will redeliver the message if it has not been acknowledged within the time period set as a configuration option on the subscription.
			

				The component will acknowledge the message once exchange processing has been completed.
			

				If the route throws an exception, the exchange is marked as failed and the component will NACK the message - it will be redelivered immediately.
			

				To ack/nack the message the component uses Acknowledgement ID stored as header GooglePubsubConstants.ACK_ID. If the header is removed or tampered with, the ack will fail and the message will be redelivered again after the ack deadline.
			

Message Headers

				Headers set by the consumer endpoints:
			
	
						GooglePubsubConstants.MESSAGE_ID
					
	
						GooglePubsubConstants.ATTRIBUTES
					
	
						GooglePubsubConstants.PUBLISH_TIME
					
	
						GooglePubsubConstants.ACK_ID
					

Message Body

				The consumer endpoint returns the content of the message as byte[] - exactly as the underlying system sends it. It is up for the route to convert/unmarshall the contents.
			

Authentication Configuration

				Google Pubsub component authentication is targeted for use with the GCP Service Accounts. For more information please refer to Google Cloud Platform Auth Guide
			

				Google security credentials can be set explicitly via one of the two options:
			
	
						Service Account Email and Service Account Key (PEM format)
					
	
						GCP credentials file location
					

				If both are set, the Service Account Email/Key will take precedence.
			

				Or implicitly, where the connection factory falls back on Application Default Credentials.
			

				OBS! The location of the default credentials file is configurable - via GOOGLE_APPLICATION_CREDENTIALS environment variable.
			

				Service Account Email and Service Account Key can be found in the GCP JSON credentials file as client_email and private_key respectively.
			

Rollback and Redelivery

				The rollback for Google PubSub relies on the idea of the Acknowledgement Deadline - the time period where Google PubSub expects to receive the acknowledgement. If the acknowledgement has not been received, the message is redelivered.
			

				Google provides an API to extend the deadline for a message.
			

				More information in Google PubSub Documentation
			

				So, rollback is effectively a deadline extension API call with zero value - i.e. deadline is reached now and message can be redelivered to the next consumer.
			

				It is possible to delay the message redelivery by setting the acknowledgement deadline explicitly for the rollback by setting the message header GooglePubsubConstants.ACK_DEADLINE to the value in seconds.
			

Chapter 124. Google Sheets Component

			Available as of Camel version 2.23
		

			The Google Sheets component provides access to Google Sheets via the Google Sheets Web APIs.
		

			Google Sheets uses the OAuth 2.0 protocol for authenticating a Google account and authorizing access to user data. Before you can use this component, you will need to create an account and generate OAuth credentials. Credentials comprise of a clientId, clientSecret, and a refreshToken. A handy resource for generating a long-lived refreshToken is the OAuth playground.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
 <dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-google-sheets</artifactId>
 <version>2.23.0</version>
 </dependency>
URI Format

				The GoogleSheets Component uses the following URI format:
			
 google-sheets://endpoint-prefix/endpoint?[options]

				Endpoint prefix can be one of:
			
	
						spreadsheets
					
	
						data
					

GoogleSheetsComponent

				The Google Sheets component supports 3 options, which are listed below.
			
	Name	Description	Default	Type
	
								configuration (common)
							

							 	
								To use the shared configuration
							

							 	 	
								GoogleSheets Configuration
							

							
	
								clientFactory (advanced)
							

							 	
								To use the GoogleSheetsClientFactory as factory for creating the client. Will by default use BatchGoogleSheetsClientFactory
							

							 	 	
								GoogleSheetsClient Factory
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The Google Sheets endpoint is configured using URI syntax:
			
google-sheets:apiName/methodName

				with the following path and query parameters:
			
Path Parameters (2 parameters):

	Name	Description	Default	Type
	
									apiName
								

								 	
									Required What kind of operation to perform
								

								 	 	
									GoogleSheetsApiName
								

								
	
									methodName
								

								 	
									Required What sub operation to use for the selected operation
								

								 	 	
									String
								

								

Query Parameters (10 parameters):

	Name	Description	Default	Type
	
									accessToken (common)
								

								 	
									OAuth 2 access token. This typically expires after an hour so refreshToken is recommended for long term usage.
								

								 	 	
									String
								

								
	
									applicationName (common)
								

								 	
									Google Sheets application name. Example would be camel-google-sheets/1.0
								

								 	 	
									String
								

								
	
									clientId (common)
								

								 	
									Client ID of the sheets application
								

								 	 	
									String
								

								
	
									clientSecret (common)
								

								 	
									Client secret of the sheets application
								

								 	 	
									String
								

								
	
									inBody (common)
								

								 	
									Sets the name of a parameter to be passed in the exchange In Body
								

								 	 	
									String
								

								
	
									refreshToken (common)
								

								 	
									OAuth 2 refresh token. Using this, the Google Sheets component can obtain a new accessToken whenever the current one expires - a necessity if the application is long-lived.
								

								 	 	
									String
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this option is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

Spring Boot Auto-Configuration

				The component supports 10 options, which are listed below.
			
	Name	Description	Default	Type
	
								camel.component.google-sheets.client-factory
							

							 	
								To use the GoogleSheetsClientFactory as factory for creating the client. Will by default use BatchGoogleSheetsClientFactory. The option is a org.apache.camel.component.google.sheets.GoogleSheetsClientFactory type.
							

							 	 	
								String
							

							
	
								camel.component.google-sheets.configuration.access-token
							

							 	
								OAuth 2 access token. This typically expires after an hour so refreshToken is recommended for long term usage.
							

							 	 	
								String
							

							
	
								camel.component.google-sheets.configuration.api-name
							

							 	
								What kind of operation to perform
							

							 	 	
								GoogleSheetsApiName
							

							
	
								camel.component.google-sheets.configuration.application-name
							

							 	
								Google Sheets application name. Example would be camel-google-sheets/1.0
							

							 	 	
								String
							

							
	
								camel.component.google-sheets.configuration.client-id
							

							 	
								Client ID of the sheets application
							

							 	 	
								String
							

							
	
								camel.component.google-sheets.configuration.client-secret
							

							 	
								Client secret of the sheets application
							

							 	 	
								String
							

							
	
								camel.component.google-sheets.configuration.method-name
							

							 	
								What sub operation to use for the selected operation
							

							 	 	
								String
							

							
	
								camel.component.google-sheets.configuration.refresh-token
							

							 	
								OAuth 2 refresh token. Using this, the Google Sheets component can obtain a new accessToken whenever the current one expires - a necessity if the application is long-lived.
							

							 	 	
								String
							

							
	
								camel.component.google-sheets.enabled
							

							 	
								Whether to enable auto configuration of the google-sheets component. This is enabled by default.
							

							 	 	
								Boolean
							

							
	
								camel.component.google-sheets.resolve-property-placeholders
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								Boolean
							

							

Producer Endpoints

				Producer endpoints can use endpoint prefixes followed by endpoint names and associated options described next. A shorthand alias can be used for some endpoints. The endpoint URI MUST contain a prefix.
			

				Endpoint options that are not mandatory are denoted by []. When there are no mandatory options for an endpoint, one of the set of [] options MUST be provided. Producer endpoints can also use a special option inBody that in turn should contain the name of the endpoint option whose value will be contained in the Camel Exchange In message.
			

				Any of the endpoint options can be provided in either the endpoint URI, or dynamically in a message header. The message header name must be of the format CamelGoogleSheets.<option>. Note that the inBody option overrides message header, i.e. the endpoint option inBody=option would override a CamelGoogleSheets.option header.
			

				For more information on the endpoints and options see API documentation at: https://developers.google.com/sheets/api/reference/rest/
			

Consumer Endpoints

				Any of the producer endpoints can be used as a consumer endpoint. Consumer endpoints can use Scheduled Poll Consumer Options with a consumer. prefix to schedule endpoint invocation. Consumer endpoints that return an array or collection will generate one exchange per element, and their routes will be executed once for each exchange.
			

Message Headers

				Any URI option can be provided in a message header for producer endpoints with a CamelGoogleSheets. prefix.
			

Message Body

				All result message bodies utilize objects provided by the underlying APIs used by the GoogleSheetsComponent. Producer endpoints can specify the option name for incoming message body in the inBody endpoint URI parameter. For endpoints that return an array or collection, a consumer endpoint will map every element to distinct messages.
			

Chapter 125. Google Sheets Stream Component

			Available as of Camel version 2.23
		

			The Google Sheets component provides access to Sheets via the Google Sheets Web APIs.
		

			Google Sheets uses the OAuth 2.0 protocol for authenticating a Google account and authorizing access to user data. Before you can use this component, you will need to create an account and generate OAuth credentials. Credentials comprise of a clientId, clientSecret, and a refreshToken. A handy resource for generating a long-lived refreshToken is the OAuth playground.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
 <dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-google-sheets</artifactId>
 <version>2.23.0</version>
 </dependency>
URI Format

				The Google Sheets Component uses the following URI format:
			
 google-sheets-stream://apiName?[options]

GoogleSheetsStreamComponent

				The Google Sheets Stream component supports 3 options, which are listed below.
			
	Name	Description	Default	Type
	
								configuration (consumer)
							

							 	
								To use the shared configuration
							

							 	 	
								GoogleSheetsStream Configuration
							

							
	
								clientFactory (advanced)
							

							 	
								To use the GoogleSheetsClientFactory as factory for creating the client. Will by default use BatchGoogleSheetsClientFactory
							

							 	 	
								GoogleSheetsClient Factory
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The Google Sheets Stream endpoint is configured using URI syntax:
			
google-sheets-stream:apiName

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									apiName
								

								 	
									Sets the apiName.
								

								 	 	
									String
								

								

Query Parameters (31 parameters):

	Name	Description	Default	Type
	
									accessToken (consumer)
								

								 	
									OAuth 2 access token. This typically expires after an hour so refreshToken is recommended for long term usage.
								

								 	 	
									String
								

								
	
									applicationName (consumer)
								

								 	
									Google sheets application name. Example would be camel-google-sheets/1.0
								

								 	 	
									String
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									clientId (consumer)
								

								 	
									Client ID of the sheets application
								

								 	 	
									String
								

								
	
									clientSecret (consumer)
								

								 	
									Client secret of the sheets application
								

								 	 	
									String
								

								
	
									includeGridData (consumer)
								

								 	
									True if grid data should be returned.
								

								 	
									false
								

								 	
									boolean
								

								
	
									majorDimension (consumer)
								

								 	
									Specifies the major dimension that results should use..
								

								 	
									ROWS
								

								 	
									String
								

								
	
									maxResults (consumer)
								

								 	
									Specify the maximum number of returned results. This will limit the number of rows in a returned value range data set or the number of returned value ranges in a batch request.
								

								 	
									10
								

								 	
									int
								

								
	
									range (consumer)
								

								 	
									Specifies the range of rows and columns in a sheet to get data from.
								

								 	 	
									String
								

								
	
									refreshToken (consumer)
								

								 	
									OAuth 2 refresh token. Using this, the Google Calendar component can obtain a new accessToken whenever the current one expires - a necessity if the application is long-lived.
								

								 	 	
									String
								

								
	
									scopes (consumer)
								

								 	
									Specifies the level of permissions you want a sheets application to have to a user account. See https://developers.google.com/identity/protocols/googlescopes for more info.
								

								 	 	
									List
								

								
	
									sendEmptyMessageWhenIdle (consumer)
								

								 	
									If the polling consumer did not poll any files, you can enable this option to send an empty message (no body) instead.
								

								 	
									false
								

								 	
									boolean
								

								
	
									spreadsheetId (consumer)
								

								 	
									Specifies the spreadsheet identifier that is used to identify the target to obtain.
								

								 	 	
									String
								

								
	
									valueRenderOption (consumer)
								

								 	
									Determines how values should be rendered in the output.
								

								 	
									FORMATTED_VALUE
								

								 	
									String
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this option is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									pollStrategy (consumer)
								

								 	
									A pluggable org.apache.camel.PollingConsumerPollingStrategy allowing you to provide your custom implementation to control error handling usually occurred during the poll operation before an Exchange have been created and being routed in Camel.
								

								 	 	
									PollingConsumerPoll Strategy
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									backoffErrorThreshold (scheduler)
								

								 	
									The number of subsequent error polls (failed due some error) that should happen before the backoffMultipler should kick-in.
								

								 	 	
									int
								

								
	
									backoffIdleThreshold (scheduler)
								

								 	
									The number of subsequent idle polls that should happen before the backoffMultipler should kick-in.
								

								 	 	
									int
								

								
	
									backoffMultiplier (scheduler)
								

								 	
									To let the scheduled polling consumer backoff if there has been a number of subsequent idles/errors in a row. The multiplier is then the number of polls that will be skipped before the next actual attempt is happening again. When this option is in use then backoffIdleThreshold and/or backoffErrorThreshold must also be configured.
								

								 	 	
									int
								

								
	
									delay (scheduler)
								

								 	
									Milliseconds before the next poll. You can also specify time values using units, such as 60s (60 seconds), 5m30s (5 minutes and 30 seconds), and 1h (1 hour).
								

								 	
									500
								

								 	
									long
								

								
	
									greedy (scheduler)
								

								 	
									If greedy is enabled, then the ScheduledPollConsumer will run immediately again, if the previous run polled 1 or more messages.
								

								 	
									false
								

								 	
									boolean
								

								
	
									initialDelay (scheduler)
								

								 	
									Milliseconds before the first poll starts. You can also specify time values using units, such as 60s (60 seconds), 5m30s (5 minutes and 30 seconds), and 1h (1 hour).
								

								 	
									1000
								

								 	
									long
								

								
	
									runLoggingLevel (scheduler)
								

								 	
									The consumer logs a start/complete log line when it polls. This option allows you to configure the logging level for that.
								

								 	
									TRACE
								

								 	
									LoggingLevel
								

								
	
									scheduledExecutorService (scheduler)
								

								 	
									Allows for configuring a custom/shared thread pool to use for the consumer. By default each consumer has its own single threaded thread pool.
								

								 	 	
									ScheduledExecutor Service
								

								
	
									scheduler (scheduler)
								

								 	
									To use a cron scheduler from either camel-spring or camel-quartz2 component
								

								 	
									none
								

								 	
									ScheduledPollConsumer Scheduler
								

								
	
									schedulerProperties (scheduler)
								

								 	
									To configure additional properties when using a custom scheduler or any of the Quartz2, Spring based scheduler.
								

								 	 	
									Map
								

								
	
									startScheduler (scheduler)
								

								 	
									Whether the scheduler should be auto started.
								

								 	
									true
								

								 	
									boolean
								

								
	
									timeUnit (scheduler)
								

								 	
									Time unit for initialDelay and delay options.
								

								 	
									MILLISECONDS
								

								 	
									TimeUnit
								

								
	
									useFixedDelay (scheduler)
								

								 	
									Controls if fixed delay or fixed rate is used. See ScheduledExecutorService in JDK for details.
								

								 	
									true
								

								 	
									boolean
								

								

Spring Boot Auto-Configuration

				The component supports 16 options, which are listed below.
			
	Name	Description	Default	Type
	
								camel.component.google-sheets-stream.client-factory
							

							 	
								To use the GoogleSheetsClientFactory as factory for creating the client. Will by default use BatchGoogleSheetsClientFactory. The option is a org.apache.camel.component.google.sheets.GoogleSheetsClientFactory type.
							

							 	 	
								String
							

							
	
								camel.component.google-sheets-stream.configuration.access-token
							

							 	
								OAuth 2 access token. This typically expires after an hour so refreshToken is recommended for long term usage.
							

							 	 	
								String
							

							
	
								camel.component.google-sheets-stream.configuration.api-name
							

							 	
								Sets the apiName.
							

							 	 	
								String
							

							
	
								camel.component.google-sheets-stream.configuration.application-name
							

							 	
								Google sheets application name. Example would be camel-google-sheets/1.0
							

							 	 	
								String
							

							
	
								camel.component.google-sheets-stream.configuration.client-id
							

							 	
								Client ID of the sheets application
							

							 	 	
								String
							

							
	
								camel.component.google-sheets-stream.configuration.client-secret
							

							 	
								Client secret of the sheets application
							

							 	 	
								String
							

							
	
								camel.component.google-sheets-stream.configuration.include-grid-data
							

							 	
								True if grid data should be returned.
							

							 	
								false
							

							 	
								Boolean
							

							
	
								camel.component.google-sheets-stream.configuration.major-dimension
							

							 	
								Specifies the major dimension that results should use..
							

							 	
								ROWS
							

							 	
								String
							

							
	
								camel.component.google-sheets-stream.configuration.max-results
							

							 	
								Specify the maximum number of returned results. This will limit the number of rows in a returned value range data set or the number of returned value ranges in a batch request.
							

							 	
								10
							

							 	
								Integer
							

							
	
								camel.component.google-sheets-stream.configuration.range
							

							 	
								Specifies the range of rows and columns in a sheet to get data from.
							

							 	 	
								String
							

							
	
								camel.component.google-sheets-stream.configuration.refresh-token
							

							 	
								OAuth 2 refresh token. Using this, the Google Calendar component can obtain a new accessToken whenever the current one expires - a necessity if the application is long-lived.
							

							 	 	
								String
							

							
	
								camel.component.google-sheets-stream.configuration.scopes
							

							 	
								Specifies the level of permissions you want a sheets application to have to a user account. See https://developers.google.com/identity/protocols/googlescopes for more info.
							

							 	 	
								List
							

							
	
								camel.component.google-sheets-stream.configuration.spreadsheet-id
							

							 	
								Specifies the spreadsheet identifier that is used to identify the target to obtain.
							

							 	 	
								String
							

							
	
								camel.component.google-sheets-stream.configuration.value-render-option
							

							 	
								Determines how values should be rendered in the output.
							

							 	
								FORMATTED_VALUE
							

							 	
								String
							

							
	
								camel.component.google-sheets-stream.enabled
							

							 	
								Whether to enable auto configuration of the google-sheets-stream component. This is enabled by default.
							

							 	 	
								Boolean
							

							
	
								camel.component.google-sheets-stream.resolve-property-placeholders
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								Boolean
							

							

Consumer

				The consumer will poll by default with maxResults equals to 5.
			

				For example
			
from("google-sheets-stream://data?range=A:B&delay=5000&maxResults=5").to("mock:result");

				This route will consume the next ten events starting from the date of polling.
			

Chapter 126. Groovy Language

			Available as of Camel version 1.3
		

			Camel supports Groovy among other Scripting Languages to allow an Expression or Predicate to be used in the DSL or Xml Configuration.
		

			To use a Groovy expression use the following Java code
		
... groovy("someGroovyExpression") ...

			For example you could use the groovy function to create an Predicate in a Message Filter or as an Expression for a Recipient List
		
Groovy Options

				The Groovy language supports 1 options which are listed below.
			
	Name	Default	Java Type	Description
	
								trim
							

							 	
								true
							

							 	
								Boolean
							

							 	
								Whether to trim the value to remove leading and trailing whitespaces and line breaks
							

							

Customizing Groovy Shell

				Sometimes you may need to use custom GroovyShell instance in your Groovy expressions. To provide custom GroovyShell, add implementation of the org.apache.camel.language.groovy.GroovyShellFactory SPI interface to your Camel registry. For example after adding the following bean to your Spring context…​
			
public class CustomGroovyShellFactory implements GroovyShellFactory {

 public GroovyShell createGroovyShell(Exchange exchange) {
 ImportCustomizer importCustomizer = new ImportCustomizer();
 importCustomizer.addStaticStars("com.example.Utils");
 CompilerConfiguration configuration = new CompilerConfiguration();
 configuration.addCompilationCustomizers(importCustomizer);
 return new GroovyShell(configuration);
 }

}

				…​Camel will use your custom GroovyShell instance (containing your custom static imports), instead of the default one.
			

Example

// lets route if a line item is over $100
from("queue:foo").filter(groovy("request.lineItems.any { i -> i.value > 100 }")).to("queue:bar")

				And the Spring DSL:
			
 <route>
 <from uri="queue:foo"/>
 <filter>
 <groovy>request.lineItems.any { i -> i.value > 100 }</groovy>
 <to uri="queue:bar"/>
 </filter>
 </route>

ScriptContext

				The JSR-223 scripting languages ScriptContext is pre configured with the following attributes all set at ENGINE_SCOPE:
			
	Attribute	Type	Value
	
								context
							

							 	
								org.apache.camel.CamelContext
							

							 	
								The Camel Context (It cannot be used in groovy)
							

							
	
								camelContext
							

							 	
								org.apache.camel.CamelContext
							

							 	
								The Camel Context
							

							
	
								exchange
							

							 	
								org.apache.camel.Exchange
							

							 	
								The current Exchange
							

							
	
								request
							

							 	
								org.apache.camel.Message
							

							 	
								The message (IN message)
							

							
	
								response
							

							 	
								org.apache.camel.Message
							

							 	
								Deprecated: The OUT message. The OUT message if null by default. Use IN message instead.
							

							
	
								properties
							

							 	
								org.apache.camel.builder.script.PropertiesFunction
							

							 	
								Camel 2.9: Function with a resolve method to make it easier to use Camels Properties component from scripts. See further below for example.
							

							

				See Scripting Languages for the list of languages with explicit DSL support.
			

Additional arguments to ScriptingEngine

				Available as of Camel 2.8
			

				You can provide additional arguments to the ScriptingEngine using a header on the Camel message with the key CamelScriptArguments.
 See this example:
			

Using properties function

				Available as of Camel 2.9
			

				If you need to use the Properties component from a script to lookup property placeholders, then its a bit cumbersome to do so. For example to set a header name myHeader with a value from a property placeholder, which key is provided in a header named "foo".
			
.setHeader("myHeader").groovy(""context.resolvePropertyPlaceholders(+ '{{' + request.headers.get('foo') + '}}' + ")")

				From Camel 2.9 onwards you can now use the properties function and the same example is simpler:
			
.setHeader("myHeader").groovy("properties.resolve(request.headers.get('foo'))")

Loading script from external resource

				Available as of Camel 2.11
			

				You can externalize the script and have Camel load it from a resource such as "classpath:", "file:", or "http:".
 This is done using the following syntax: "resource:scheme:location", eg to refer to a file on the classpath you can do:
			
.setHeader("myHeader").groovy("resource:classpath:mygroovy.groovy")

How to get the result from multiple statements script

				Available as of Camel 2.14
			

				As the scripteengine evale method just return a Null if it runs a multiple statments script. Camel now look up the value of script result by using the key of "result" from the value set. If you have multiple statements script, you need to make sure you set the value of result variable as the script return value.
			
bar = "baz";
some other statements ...
camel take the result value as the script evaluation result
result = body * 2 + 1

Dependencies

				To use scripting languages in your camel routes you need to add a dependency on camel-groovy.
			

				If you use Maven you could just add the following to your pom.xml, substituting the version number for the latest & greatest release (see the download page for the latest versions).
			
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-groovy</artifactId>
 <version>x.x.x</version>
</dependency>

Chapter 127. gRPC Component

			Available as of Camel version 2.19
		

			The gRPC component allows you to call or expose Remote Procedure Call (RPC) services using Protocol Buffers (protobuf) exchange format over HTTP/2 transport.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-grpc</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>
URI format

grpc://service[?options]

Endpoint Options

				The gRPC component has no options.
			

				The gRPC endpoint is configured using URI syntax:
			
grpc:host:port/service

				with the following path and query parameters:
			
Path Parameters (3 parameters):

	Name	Description	Default	Type
	
									host
								

								 	
									Required The gRPC server host name. This is localhost or 0.0.0.0 when being a consumer or remote server host name when using producer.
								

								 	 	
									String
								

								
	
									port
								

								 	
									Required The gRPC local or remote server port
								

								 	 	
									int
								

								
	
									service
								

								 	
									Required Fully qualified service name from the protocol buffer descriptor file (package dot service definition name)
								

								 	 	
									String
								

								

Query Parameters (25 parameters):

	Name	Description	Default	Type
	
									flowControlWindow (common)
								

								 	
									The HTTP/2 flow control window size (MiB)
								

								 	
									1048576
								

								 	
									int
								

								
	
									maxMessageSize (common)
								

								 	
									The maximum message size allowed to be received/sent (MiB)
								

								 	
									4194304
								

								 	
									int
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									consumerStrategy (consumer)
								

								 	
									This option specifies the top-level strategy for processing service requests and responses in streaming mode. If an aggregation strategy is selected, all requests will be accumulated in the list, then transferred to the flow, and the accumulated responses will be sent to the sender. If a propagation strategy is selected, request is sent to the stream, and the response will be immediately sent back to the sender.
								

								 	
									PROPAGATION
								

								 	
									GrpcConsumerStrategy
								

								
	
									forwardOnCompleted (consumer)
								

								 	
									Determines if onCompleted events should be pushed to the Camel route.
								

								 	
									false
								

								 	
									boolean
								

								
	
									forwardOnError (consumer)
								

								 	
									Determines if onError events should be pushed to the Camel route. Exceptions will be set as message body.
								

								 	
									false
								

								 	
									boolean
								

								
	
									maxConcurrentCallsPer Connection (consumer)
								

								 	
									The maximum number of concurrent calls permitted for each incoming server connection
								

								 	
									2147483647
								

								 	
									int
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									method (producer)
								

								 	
									gRPC method name
								

								 	 	
									String
								

								
	
									producerStrategy (producer)
								

								 	
									The mode used to communicate with a remote gRPC server. In SIMPLE mode a single exchange is translated into a remote procedure call. In STREAMING mode all exchanges will be sent within the same request (input and output of the recipient gRPC service must be of type 'stream').
								

								 	
									SIMPLE
								

								 	
									GrpcProducerStrategy
								

								
	
									streamRepliesTo (producer)
								

								 	
									When using STREAMING client mode, it indicates the endpoint where responses should be forwarded.
								

								 	 	
									String
								

								
	
									userAgent (producer)
								

								 	
									The user agent header passed to the server
								

								 	 	
									String
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									authenticationType (security)
								

								 	
									Authentication method type in advance to the SSL/TLS negotiation
								

								 	
									NONE
								

								 	
									GrpcAuthType
								

								
	
									jwtAlgorithm (security)
								

								 	
									JSON Web Token sign algorithm
								

								 	
									HMAC256
								

								 	
									JwtAlgorithm
								

								
	
									jwtIssuer (security)
								

								 	
									JSON Web Token issuer
								

								 	 	
									String
								

								
	
									jwtSecret (security)
								

								 	
									JSON Web Token secret
								

								 	 	
									String
								

								
	
									jwtSubject (security)
								

								 	
									JSON Web Token subject
								

								 	 	
									String
								

								
	
									keyCertChainResource (security)
								

								 	
									The X.509 certificate chain file resource in PEM format link
								

								 	 	
									String
								

								
	
									keyPassword (security)
								

								 	
									The PKCS8 private key file password
								

								 	 	
									String
								

								
	
									keyResource (security)
								

								 	
									The PKCS8 private key file resource in PEM format link
								

								 	 	
									String
								

								
	
									negotiationType (security)
								

								 	
									Identifies the security negotiation type used for HTTP/2 communication
								

								 	
									PLAINTEXT
								

								 	
									NegotiationType
								

								
	
									serviceAccountResource (security)
								

								 	
									Service Account key file in JSON format resource link supported by the Google Cloud SDK
								

								 	 	
									String
								

								
	
									trustCertCollectionResource (security)
								

								 	
									The trusted certificates collection file resource in PEM format for verifying the remote endpoint’s certificate
								

								 	 	
									String
								

								

Transport security and authentication support (available from Camel 2.20)

				The following authentication mechanisms are built-in to gRPC and available in this component:
			
	
						SSL/TLS: gRPC has SSL/TLS integration and promotes the use of SSL/TLS to authenticate the server, and to encrypt all the data exchanged between the client and the server. Optional mechanisms are available for clients to provide certificates for mutual authentication.
					
	
						Token-based authentication with Google: gRPC provides a generic mechanism to attach metadata based credentials to requests and responses. Additional support for acquiring access tokens while accessing Google APIs through gRPC is provided. In general this mechanism must be used as well as SSL/TLS on the channel.
					

				To enable these features the following component properties combinations must be configured:
			
	Num.	Option	Parameter	Value	Required/Optional
	
								1
							

							 	
								SSL/TLS
							

							 	
								negotiationType
							

							 	
								TLS
							

							 	
								Required
							

							
	 	 	
								keyCertChainResource
							

							 	 	
								Required
							

							
	 	 	
								keyResource
							

							 	 	
								Required
							

							
	 	 	
								keyPassword
							

							 	 	
								Optional
							

							
	 	 	
								trustCertCollectionResource
							

							 	 	
								Optional
							

							
	
								2
							

							 	
								Token-based authentication with Google API
							

							 	
								authenticationType
							

							 	
								GOOGLE
							

							 	
								Required
							

							
	 	 	
								negotiationType
							

							 	
								TLS
							

							 	
								Required
							

							
	 	 	
								serviceAccountResource
							

							 	 	
								Required
							

							
	
								3
							

							 	
								Custom JSON Web Token implementation authentication
							

							 	
								authenticationType
							

							 	
								JWT
							

							 	
								Required
							

							
	 	 	
								negotiationType
							

							 	
								NONE or TLS
							

							 	
								Optional. The TLS/SSL not checking for this type, but strongly recommended.
							

							
	 	 	
								jwtAlgorithm
							

							 	
								HMAC256(default) or (HMAC384,HMAC512)
							

							 	
								Optional
							

							
	 	 	
								jwtSecret
							

							 	 	
								Required
							

							
	 	 	
								jwtIssuer
							

							 	 	
								Optional
							

							
	 	 	
								jwtSubject
							

							 	 	
								Optional
							

							

				TLS with OpenSSL is currently the recommended approach for using gRPC over TLS component. Using the JDK for ALPN is generally much slower and may not support the necessary ciphers for HTTP2. This function is not implemented in the component.
			

gRPC producer resource type mapping

				The table below shows the types of objects in the message body, depending on the types (simple or stream) of incoming and outgoing parameters, as well as the invocation style (synchronous or asynchronous). Please note, that invocation of the procedures with incoming stream parameter in asynchronous style are not allowed.
			
	Invocation style	Request type	Response type	Request Body Type	Result Body Type
	
								synchronous
							

							 	
								simple
							

							 	
								simple
							

							 	
								Object
							

							 	
								Object
							

							
	
								synchronous
							

							 	
								simple
							

							 	
								stream
							

							 	
								Object
							

							 	
								List<Object>
							

							
	
								synchronous
							

							 	
								stream
							

							 	
								simple
							

							 	
								not allowed
							

							 	
								not allowed
							

							
	
								synchronous
							

							 	
								stream
							

							 	
								stream
							

							 	
								not allowed
							

							 	
								not allowed
							

							
	
								asynchronous
							

							 	
								simple
							

							 	
								simple
							

							 	
								Object
							

							 	
								List<Object>
							

							
	
								asynchronous
							

							 	
								simple
							

							 	
								stream
							

							 	
								Object
							

							 	
								List<Object>
							

							
	
								asynchronous
							

							 	
								stream
							

							 	
								simple
							

							 	
								Object or List<Object>
							

							 	
								List<Object>
							

							
	
								asynchronous
							

							 	
								stream
							

							 	
								stream
							

							 	
								Object or List<Object>
							

							 	
								List<Object>
							

							

gRPC consumer headers (will be installed after the consumer invocation)

	Header name	Description	Possible values
	
								CamelGrpcMethodName
							

							 	
								Method name handled by the consumer service
							

							 	
	
								CamelGrpcEventType
							

							 	
								Received event type from the sent request
							

							 	
								onNext, onCompleted or onError
							

							
	
								CamelGrpcUserAgent
							

							 	
								If provided, the given agent will prepend the gRPC library’s user agent information
							

							 	

Examples

				Below is a simple synchronous method invoke with host and port parameters
			
from("direct:grpc-sync")
.to("grpc://remotehost:1101/org.apache.camel.component.grpc.PingPong?method=sendPing&synchronous=true");
<route>
 <from uri="direct:grpc-sync" />
 <to uri="grpc://remotehost:1101/org.apache.camel.component.grpc.PingPong?method=sendPing&synchronous=true"/>
</route>

				An asynchronous method invoke
			
from("direct:grpc-async")
.to("grpc://remotehost:1101/org.apache.camel.component.grpc.PingPong?method=pingAsyncResponse");

				gRPC service consumer with propagation consumer strategy
			
from("grpc://localhost:1101/org.apache.camel.component.grpc.PingPong?consumerStrategy=PROPAGATION")
.to("direct:grpc-service");

				gRPC service producer with streaming producer strategy (requires a service that uses "stream" mode as input and output)
			
from("direct:grpc-request-stream")
.to("grpc://remotehost:1101/org.apache.camel.component.grpc.PingPong?method=PingAsyncAsync&producerStrategy=STREAMING&streamRepliesTo=direct:grpc-response-stream");

from("direct:grpc-response-stream")
.log("Response received: ${body}");

				gRPC service consumer TLS/SLL security negotiation enable
			
from("grpc://localhost:1101/org.apache.camel.component.grpc.PingPong?consumerStrategy=PROPAGATION&negotiationType=TLS&keyCertChainResource=file:src/test/resources/certs/server.pem&keyResource=file:src/test/resources/certs/server.key&trustCertCollectionResource=file:src/test/resources/certs/ca.pem")
.to("direct:tls-enable")

				gRPC service producer with custom JSON Web Token implementation authentication
			
from("direct:grpc-jwt")
.to("grpc://localhost:1101/org.apache.camel.component.grpc.PingPong?method=pingSyncSync&synchronous=true&authenticationType=JWT&jwtSecret=supersecuredsecret");

Configuration

				It’s it is recommended to use Maven Protocol Buffers Plugin which calls Protocol Buffer Compiler (protoc) tool to generate Java source files from .proto (protocol buffer definition) files for the custom project. This plugin will generate procedures request and response classes, their builders and gRPC procedures stubs classes as well.
			

				Following steps are required:
			

				Insert operating system and CPU architecture detection extension inside <build> tag of the project pom.xml or set ${os.detected.classifier} parameter manually
			
<extensions>
 <extension>
 <groupId>kr.motd.maven</groupId>
 <artifactId>os-maven-plugin</artifactId>
 <version>1.4.1.Final</version>
 </extension>
</extensions>

				Insert gRPC and protobuf Java code generator plugin <plugins> tag of the project pom.xml
			
<plugin>
 <groupId>org.xolstice.maven.plugins</groupId>
 <artifactId>protobuf-maven-plugin</artifactId>
 <version>0.5.0</version>
 <configuration>
 <protocArtifact>com.google.protobuf:protoc:${protobuf-version}:exe:${os.detected.classifier}</protocArtifact>
 <pluginId>grpc-java</pluginId>
 <pluginArtifact>io.grpc:protoc-gen-grpc-java:${grpc-version}:exe:${os.detected.classifier}</pluginArtifact>
 </configuration>
 <executions>
 <execution>
 <goals>
 <goal>compile</goal>
 <goal>compile-custom</goal>
 <goal>test-compile</goal>
 <goal>test-compile-custom</goal>
 </goals>
 </execution>
 </executions>
</plugin>

For more information, see these resources

				gRPC project site
			

				Maven Protocol Buffers Plugin
			

See Also

	
						Getting Started
					
	
						Configuring Camel
					
	
						Component
					
	
						Endpoint
					
	
						Protocol Buffers Data Format
					

Chapter 128. Guava EventBus Component

			Available as of Camel version 2.10
		

			The Google Guava EventBus allows publish-subscribe-style communication between components without requiring the components to explicitly register with one another (and thus be aware of each other). The guava-eventbus: component provides integration bridge between Camel and Google Guava EventBus infrastructure. With the latter component, messages exchanged with the Guava EventBus can be transparently forwarded to the Camel routes. EventBus component allows also to route body of Camel exchanges to the Guava EventBus.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-guava-eventbus</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>
URI format

guava-eventbus:busName[?options]

				Where busName represents the name of the com.google.common.eventbus.EventBus instance located in the Camel registry.
			

Options

				The Guava EventBus component supports 3 options which are listed below.
			
	Name	Description	Default	Type
	
								eventBus (common)
							

							 	
								To use the given Guava EventBus instance
							

							 	 	
								EventBus
							

							
	
								listenerInterface (common)
							

							 	
								The interface with method(s) marked with the Subscribe annotation. Dynamic proxy will be created over the interface so it could be registered as the EventBus listener. Particularly useful when creating multi-event listeners and for handling DeadEvent properly. This option cannot be used together with eventClass option.
							

							 	 	
								Class<?>
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The Guava EventBus endpoint is configured using URI syntax:
			
guava-eventbus:eventBusRef

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									eventBusRef
								

								 	
									To lookup the Guava EventBus from the registry with the given name
								

								 	 	
									String
								

								

Query Parameters (6 parameters):

	Name	Description	Default	Type
	
									eventClass (common)
								

								 	
									If used on the consumer side of the route, will filter events received from the EventBus to the instances of the class and superclasses of eventClass. Null value of this option is equal to setting it to the java.lang.Object i.e. the consumer will capture all messages incoming to the event bus. This option cannot be used together with listenerInterface option.
								

								 	 	
									Class<?>
								

								
	
									listenerInterface (common)
								

								 	
									The interface with method(s) marked with the Subscribe annotation. Dynamic proxy will be created over the interface so it could be registered as the EventBus listener. Particularly useful when creating multi-event listeners and for handling DeadEvent properly. This option cannot be used together with eventClass option.
								

								 	 	
									Class<?>
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

Usage

				Using guava-eventbus component on the consumer side of the route will capture messages sent to the Guava EventBus and forward them to the Camel route. Guava EventBus consumer processes incoming messages asynchronously.
			
SimpleRegistry registry = new SimpleRegistry();
EventBus eventBus = new EventBus();
registry.put("busName", eventBus);
CamelContext camel = new DefaultCamelContext(registry);

from("guava-eventbus:busName").to("seda:queue");

eventBus.post("Send me to the SEDA queue.");

				Using guava-eventbus component on the producer side of the route will forward body of the Camel exchanges to the Guava EventBus instance.
			
SimpleRegistry registry = new SimpleRegistry();
EventBus eventBus = new EventBus();
registry.put("busName", eventBus);
CamelContext camel = new DefaultCamelContext(registry);

from("direct:start").to("guava-eventbus:busName");

ProducerTemplate producerTemplate = camel.createProducerTemplate();
producer.sendBody("direct:start", "Send me to the Guava EventBus.");

eventBus.register(new Object(){
 @Subscribe
 public void messageHander(String message) {
 System.out.println("Message received from the Camel: " + message);
 }
});

DeadEvent considerations

				Keep in mind that due to the limitations caused by the design of the Guava EventBus, you cannot specify event class to be received by the listener without creating class annotated with @Subscribe method. This limitation implies that endpoint with eventClass option specified actually listens to all possible events (java.lang.Object) and filter appropriate messages programmatically at runtime. The snipped below demonstrates an appropriate excerpt from the Camel code base.
			
@Subscribe
public void eventReceived(Object event) {
 if (eventClass == null || eventClass.isAssignableFrom(event.getClass())) {
 doEventReceived(event);
...

				This drawback of this approach is that EventBus instance used by Camel will never generate com.google.common.eventbus.DeadEvent notifications. If you want Camel to listen only to the precisely specified event (and therefore enable DeadEvent support), use listenerInterface endpoint option. Camel will create dynamic proxy over the interface you specify with the latter option and listen only to messages specified by the interface handler methods. The example of the listener interface with single method handling only SpecificEvent instances is demonstrated below.
			
package com.example;

public interface CustomListener {

 @Subscribe
 void eventReceived(SpecificEvent event);

}

				The listener presented above could be used in the endpoint definition as follows.
			
from("guava-eventbus:busName?listenerInterface=com.example.CustomListener").to("seda:queue");

Consuming multiple type of events

				In order to define multiple type of events to be consumed by Guava EventBus consumer use listenerInterface endpoint option, as listener interface could provide multiple methods marked with the @Subscribe annotation.
			
package com.example;

public interface MultipleEventsListener {

 @Subscribe
 void someEventReceived(SomeEvent event);

 @Subscribe
 void anotherEventReceived(AnotherEvent event);

}

				The listener presented above could be used in the endpoint definition as follows.
			
from("guava-eventbus:busName?listenerInterface=com.example.MultipleEventsListener").to("seda:queue");

HawtDB

				Available as of Camel 2.3
			

				HawtDB is a very lightweight and embedable key value database. It allows together with Camel to provide persistent support for various Camel features such as Aggregator.
			

				Deprecated
			

				The HawtDB project is being deprecated and replaced by leveldb as the lightweight and embedable key value database. To make using leveldb easy there is a leveldbjni project for that. The Apache ActiveMQ project is planning on using leveldb as their primary file based message store in the future, to replace kahadb.
			

				There is a camel-leveldb component we recommend to use instead of this.
			

				Issue with HawtDB 1.4 or older
			

				There is a bug in HawtDB 1.4 or older which means the filestore will not free unused space. That means the file keeps growing. This has been fixed in HawtDB 1.5 which is shipped with Camel 2.5 onwards.
			

				Current features it provides:
			
	
						HawtDBAggregationRepository
					

Using HawtDBAggregationRepository

					HawtDBAggregationRepository is an AggregationRepository which on the fly persists the aggregated messages. This ensures that you will not loose messages, as the default aggregator will use an in memory only AggregationRepository.
				

					It has the following options:
				
	Option	Type	Description
	
									repositoryName
								

								 	
									String
								

								 	
									A mandatory repository name. Allows you to use a shared HawtDBFile for multiple repositories.
								

								
	
									persistentFileName
								

								 	
									String
								

								 	
									Filename for the persistent storage. If no file exists on startup a new file is created.
								

								
	
									bufferSize
								

								 	
									int
								

								 	
									The size of the memory segment buffer which is mapped to the file store. By default its 8mb. The value is in bytes.
								

								
	
									sync
								

								 	
									boolean
								

								 	
									Whether or not the HawtDBFile should sync on write or not. Default is true. By sync on write ensures that its always waiting for all writes to be spooled to disk and thus will not loose updates. If you disable this option, then HawtDB will auto sync when it has batched up a number of writes.
								

								
	
									pageSize
								

								 	
									short
								

								 	
									The size of memory pages. By default its 512 bytes. The value is in bytes.
								

								
	
									hawtDBFile
								

								 	
									HawtDBFile
								

								 	
									Use an existing configured org.apache.camel.component.hawtdb.HawtDBFile instance.
								

								
	
									returnOldExchange
								

								 	
									boolean
								

								 	
									Whether the get operation should return the old existing Exchange if any existed. By default this option is false to optimize as we do not need the old exchange when aggregating.
								

								
	
									useRecovery
								

								 	
									boolean
								

								 	
									Whether or not recovery is enabled. This option is by default true. When enabled the Camel Aggregator automatic recover failed aggregated exchange and have them resubmitted.
								

								
	
									recoveryInterval
								

								 	
									long
								

								 	
									If recovery is enabled then a background task is run every x’th time to scan for failed exchanges to recover and resubmit. By default this interval is 5000 millis.
								

								
	
									maximumRedeliveries
								

								 	
									int
								

								 	
									Allows you to limit the maximum number of redelivery attempts for a recovered exchange. If enabled then the Exchange will be moved to the dead letter channel if all redelivery attempts failed. By default this option is disabled. If this option is used then the deadLetterUri option must also be provided.
								

								
	
									deadLetterUri
								

								 	
									String
								

								 	
									An endpoint uri for a Dead Letter Channel where exhausted recovered Exchanges will be moved. If this option is used then the maximumRedeliveries option must also be provided.
								

								
	
									optimisticLocking
								

								 	
									false
								

								 	
									Camel 2.12: To turn on optimistic locking, which often would be needed in clustered environments where multiple Camel applications shared the same HawtDB based aggregation repository.
								

								

					The repositoryName option must be provided. Then either the persistentFileName or the hawtDBFile must be provided.
				

What is preserved when persisting

					HawtDBAggregationRepository will only preserve any Serializable compatible data types. If a data type is not such a type its dropped and a WARN is logged. And it only persists the Message body and the Message headers. The Exchange properties are not persisted.
				

Recovery

					The HawtDBAggregationRepository will by default recover any failed Exchange. It does this by having a background tasks that scans for failed Exchanges in the persistent store. You can use the checkInterval option to set how often this task runs. The recovery works as transactional which ensures that Camel will try to recover and redeliver the failed Exchange. Any Exchange which was found to be recovered will be restored from the persistent store and resubmitted and send out again.
				

					The following headers is set when an Exchange is being recovered/redelivered:
				
	Header	Type	Description
	
									Exchange.REDELIVERED
								

								 	
									Boolean
								

								 	
									Is set to true to indicate the Exchange is being redelivered.
								

								
	
									Exchange.REDELIVERY_COUNTER
								

								 	
									Integer
								

								 	
									The redelivery attempt, starting from 1.
								

								

					Only when an Exchange has been successfully processed it will be marked as complete which happens when the confirm method is invoked on the AggregationRepository. This means if the same Exchange fails again it will be kept retried until it success.
				

					You can use option maximumRedeliveries to limit the maximum number of redelivery attempts for a given recovered Exchange. You must also set the deadLetterUri option so Camel knows where to send the Exchange when the maximumRedeliveries was hit.
				

					You can see some examples in the unit tests of camel-hawtdb, for example this test.
				
Using HawtDBAggregationRepository in Java DSL

						In this example we want to persist aggregated messages in the target/data/hawtdb.dat file.
					

Using HawtDBAggregationRepository in Spring XML

						The same example but using Spring XML instead:
					

Dependencies

					To use HawtDB in your camel routes you need to add the a dependency on camel-hawtdb.
				

					If you use maven you could just add the following to your pom.xml, substituting the version number for the latest & greatest release (see the download page for the latest versions).
				
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-hawtdb</artifactId>
 <version>2.3.0</version>
</dependency>

See Also

	
							Configuring Camel
						
	
							Component
						
	
							Endpoint
						
	
							Getting Started
						
	
							Aggregator
						
	
							Components
						

Chapter 129. Hazelcast Component

			Available as of Camel version 2.7
		

			The hazelcast- component allows you to work with the Hazelcast distributed data grid / cache. Hazelcast is a in memory data grid, entirely written in Java (single jar). It offers a great palette of different data stores like map, multi map (same key, n values), queue, list and atomic number. The main reason to use Hazelcast is its simple cluster support. If you have enabled multicast on your network you can run a cluster with hundred nodes with no extra configuration. Hazelcast can simply configured to add additional features like n copies between nodes (default is 1), cache persistence, network configuration (if needed), near cache, enviction and so on. For more information consult the Hazelcast documentation on http://www.hazelcast.com/docs.jsp.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-hazelcast</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>
Hazelcast components

				See followings for each component usage: * map * multimap * queue * topic * list * seda * set * atomic number * cluster support (instance) * replicatedmap * ringbuffer
			

Using hazelcast reference

By its name

<bean id="hazelcastLifecycle" class="com.hazelcast.core.LifecycleService"
 factory-bean="hazelcastInstance" factory-method="getLifecycleService"
 destroy-method="shutdown" />

<bean id="config" class="com.hazelcast.config.Config">
 <constructor-arg type="java.lang.String" value="HZ.INSTANCE" />
</bean>

<bean id="hazelcastInstance" class="com.hazelcast.core.Hazelcast" factory-method="newHazelcastInstance">
 <constructor-arg type="com.hazelcast.config.Config" ref="config"/>
</bean>
<camelContext xmlns="http://camel.apache.org/schema/spring">
 <route id="testHazelcastInstanceBeanRefPut">
 <from uri="direct:testHazelcastInstanceBeanRefPut"/>
 <setHeader headerName="CamelHazelcastOperationType">
 <constant>put</constant>
 </setHeader>
 <to uri="hazelcast-map:testmap?hazelcastInstanceName=HZ.INSTANCE"/>
 </route>

 <route id="testHazelcastInstanceBeanRefGet">
 <from uri="direct:testHazelcastInstanceBeanRefGet" />
 <setHeader headerName="CamelHazelcastOperationType">
 <constant>get</constant>
 </setHeader>
 <to uri="hazelcast-map:testmap?hazelcastInstanceName=HZ.INSTANCE"/>
 <to uri="seda:out" />
 </route>
</camelContext>

By instance

<bean id="hazelcastInstance" class="com.hazelcast.core.Hazelcast"
 factory-method="newHazelcastInstance" />
<bean id="hazelcastLifecycle" class="com.hazelcast.core.LifecycleService"
 factory-bean="hazelcastInstance" factory-method="getLifecycleService"
 destroy-method="shutdown" />

<camelContext xmlns="http://camel.apache.org/schema/spring">
 <route id="testHazelcastInstanceBeanRefPut">
 <from uri="direct:testHazelcastInstanceBeanRefPut"/>
 <setHeader headerName="CamelHazelcastOperationType">
 <constant>put</constant>
 </setHeader>
 <to uri="hazelcast-map:testmap?hazelcastInstance=#hazelcastInstance"/>
 </route>

 <route id="testHazelcastInstanceBeanRefGet">
 <from uri="direct:testHazelcastInstanceBeanRefGet" />
 <setHeader headerName="CamelHazelcastOperationType">
 <constant>get</constant>
 </setHeader>
 <to uri="hazelcast-map:testmap?hazelcastInstance=#hazelcastInstance"/>
 <to uri="seda:out" />
 </route>
</camelContext>

Publishing hazelcast instance as an OSGI service

				If operating in an OSGI container and you would want to use one instance of hazelcast across all bundles in the same container. You can publish the instance as an OSGI service and bundles using the cache al need is to reference the service in the hazelcast endpoint.
			
Bundle A create an instance and publishes it as an OSGI service

					
				
<bean id="config" class="com.hazelcast.config.FileSystemXmlConfig">
 <argument type="java.lang.String" value="${hazelcast.config}"/>
</bean>

<bean id="hazelcastInstance" class="com.hazelcast.core.Hazelcast" factory-method="newHazelcastInstance">
 <argument type="com.hazelcast.config.Config" ref="config"/>
</bean>

<!-- publishing the hazelcastInstance as a service -->
<service ref="hazelcastInstance" interface="com.hazelcast.core.HazelcastInstance" />

Bundle B uses the instance

<!-- referencing the hazelcastInstance as a service -->
<reference ref="hazelcastInstance" interface="com.hazelcast.core.HazelcastInstance" />

<camelContext xmlns="http://camel.apache.org/schema/blueprint">
 <route id="testHazelcastInstanceBeanRefPut">
 <from uri="direct:testHazelcastInstanceBeanRefPut"/>
 <setHeader headerName="CamelHazelcastOperationType">
 <constant>put</constant>
 </setHeader>
 <to uri="hazelcast-map:testmap?hazelcastInstance=#hazelcastInstance"/>
 </route>

 <route id="testHazelcastInstanceBeanRefGet">
 <from uri="direct:testHazelcastInstanceBeanRefGet" />
 <setHeader headerName="CamelHazelcastOperationType">
 <constant>get</constant>
 </setHeader>
 <to uri="hazelcast-map:testmap?hazelcastInstance=#hazelcastInstance"/>
 <to uri="seda:out" />
 </route>
</camelContext>

Chapter 130. Hazelcast Atomic Number Component

			Available as of Camel version 2.7
		

			The Hazelcast atomic number component is one of Camel Hazelcast Components which allows you to access Hazelcast atomic number. An atomic number is an object that simply provides a grid wide number (long).
		

			There is no consumer for this endpoint!
		
Options

				The Hazelcast Atomic Number component supports 3 options which are listed below.
			
	Name	Description	Default	Type
	
								hazelcastInstance (advanced)
							

							 	
								The hazelcast instance reference which can be used for hazelcast endpoint. If you don’t specify the instance reference, camel use the default hazelcast instance from the camel-hazelcast instance.
							

							 	 	
								HazelcastInstance
							

							
	
								hazelcastMode (advanced)
							

							 	
								The hazelcast mode reference which kind of instance should be used. If you don’t specify the mode, then the node mode will be the default.
							

							 	
								node
							

							 	
								String
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The Hazelcast Atomic Number endpoint is configured using URI syntax:
			
hazelcast-atomicvalue:cacheName

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									cacheName
								

								 	
									Required The name of the cache
								

								 	 	
									String
								

								

Query Parameters (10 parameters):

	Name	Description	Default	Type
	
									reliable (common)
								

								 	
									Define if the endpoint will use a reliable Topic struct or not.
								

								 	
									false
								

								 	
									boolean
								

								
	
									defaultOperation (producer)
								

								 	
									To specify a default operation to use, if no operation header has been provided.
								

								 	 	
									HazelcastOperation
								

								
	
									hazelcastInstance (producer)
								

								 	
									The hazelcast instance reference which can be used for hazelcast endpoint.
								

								 	 	
									HazelcastInstance
								

								
	
									hazelcastInstanceName (producer)
								

								 	
									The hazelcast instance reference name which can be used for hazelcast endpoint. If you don’t specify the instance reference, camel use the default hazelcast instance from the camel-hazelcast instance.
								

								 	 	
									String
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									concurrentConsumers (seda)
								

								 	
									To use concurrent consumers polling from the SEDA queue.
								

								 	
									1
								

								 	
									int
								

								
	
									onErrorDelay (seda)
								

								 	
									Milliseconds before consumer continues polling after an error has occurred.
								

								 	
									1000
								

								 	
									int
								

								
	
									pollTimeout (seda)
								

								 	
									The timeout used when consuming from the SEDA queue. When a timeout occurs, the consumer can check whether it is allowed to continue running. Setting a lower value allows the consumer to react more quickly upon shutdown.
								

								 	
									1000
								

								 	
									int
								

								
	
									transacted (seda)
								

								 	
									If set to true then the consumer runs in transaction mode, where the messages in the seda queue will only be removed if the transaction commits, which happens when the processing is complete.
								

								 	
									false
								

								 	
									boolean
								

								
	
									transferExchange (seda)
								

								 	
									If set to true the whole Exchange will be transfered. If header or body contains not serializable objects, they will be skipped.
								

								 	
									false
								

								 	
									boolean
								

								

atomic number producer - to("hazelcast-atomicvalue:foo")

				The operations for this producer are: * setvalue (set the number with a given value) * get * increase (+1) * decrease (-1) * destroy
			

				Header Variables for the request message:
			
	Name	Type	Description
	
								CamelHazelcastOperationType
							

							 	
								String
							

							 	
								valid values are: setvalue, get, increase, decrease, destroy
							

							

Sample for set:

					Java DSL:
				
from("direct:set")
.setHeader(HazelcastConstants.OPERATION, constant(HazelcastOperation.SET_VALUE))
.toF("hazelcast-%sfoo", HazelcastConstants.ATOMICNUMBER_PREFIX);

					Spring DSL:
				
<route>
 <from uri="direct:set" />
 <!-- If using version 2.8 and above set headerName to "CamelHazelcastOperationType" -->
 <setHeader headerName="hazelcast.operation.type">
 <constant>setvalue</constant>
 </setHeader>
 <to uri="hazelcast-atomicvalue:foo" />
</route>

					Provide the value to set inside the message body (here the value is 10): template.sendBody("direct:set", 10);
				

Sample for get:

					Java DSL:
				
from("direct:get")
.setHeader(HazelcastConstants.OPERATION, constant(HazelcastOperation.GET))
.toF("hazelcast-%sfoo", HazelcastConstants.ATOMICNUMBER_PREFIX);

					Spring DSL:
				
<route>
 <from uri="direct:get" />
 <!-- If using version 2.8 and above set headerName to "CamelHazelcastOperationType" -->
 <setHeader headerName="hazelcast.operation.type">
 <constant>get</constant>
 </setHeader>
 <to uri="hazelcast-atomicvalue:foo" />
</route>

					You can get the number with long body = template.requestBody("direct:get", null, Long.class);.
				

Sample for increment:

					Java DSL:
				
from("direct:increment")
.setHeader(HazelcastConstants.OPERATION, constant(HazelcastOperation.INCREMENT))
.toF("hazelcast-%sfoo", HazelcastConstants.ATOMICNUMBER_PREFIX);

					Spring DSL:
				
<route>
 <from uri="direct:increment" />
 <!-- If using version 2.8 and above set headerName to "CamelHazelcastOperationType" -->
 <setHeader headerName="hazelcast.operation.type">
 <constant>increment</constant>
 </setHeader>
 <to uri="hazelcast-atomicvalue:foo" />
</route>

					The actual value (after increment) will be provided inside the message body.
				

Sample for decrement:

					Java DSL:
				
from("direct:decrement")
.setHeader(HazelcastConstants.OPERATION, constant(HazelcastOperation.DECREMENT))
.toF("hazelcast-%sfoo", HazelcastConstants.ATOMICNUMBER_PREFIX);

					Spring DSL:
				
<route>
 <from uri="direct:decrement" />
 <!-- If using version 2.8 and above set headerName to "CamelHazelcastOperationType" -->
 <setHeader headerName="hazelcast.operation.type">
 <constant>decrement</constant>
 </setHeader>
 <to uri="hazelcast-atomicvalue:foo" />
</route>

					The actual value (after decrement) will be provided inside the message body.
				

Sample for destroy

					Java DSL:
				
from("direct:destroy")
.setHeader(HazelcastConstants.OPERATION, constant(HazelcastOperation.DESTROY))
.toF("hazelcast-%sfoo", HazelcastConstants.ATOMICNUMBER_PREFIX);

					Spring DSL:
				
<route>
 <from uri="direct:destroy" />
 <!-- If using version 2.8 and above set headerName to "CamelHazelcastOperationType" -->
 <setHeader headerName="hazelcast.operation.type">
 <constant>destroy</constant>
 </setHeader>
 <to uri="hazelcast-atomicvalue:foo" />
</route>

Chapter 131. Hazelcast Instance Component

			Available as of Camel version 2.7
		

			The Hazelcast instance component is one of Camel Hazelcast Components which allows you to consume join/leave events of the cache instance in the cluster. Hazelcast makes sense in one single "server node", but it’s extremly powerful in a clustered environment.
		

			This endpoint provides no producer!
		
Options

				The Hazelcast Instance component supports 3 options which are listed below.
			
	Name	Description	Default	Type
	
								hazelcastInstance (advanced)
							

							 	
								The hazelcast instance reference which can be used for hazelcast endpoint. If you don’t specify the instance reference, camel use the default hazelcast instance from the camel-hazelcast instance.
							

							 	 	
								HazelcastInstance
							

							
	
								hazelcastMode (advanced)
							

							 	
								The hazelcast mode reference which kind of instance should be used. If you don’t specify the mode, then the node mode will be the default.
							

							 	
								node
							

							 	
								String
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The Hazelcast Instance endpoint is configured using URI syntax:
			
hazelcast-instance:cacheName

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									cacheName
								

								 	
									Required The name of the cache
								

								 	 	
									String
								

								

Query Parameters (16 parameters):

	Name	Description	Default	Type
	
									reliable (common)
								

								 	
									Define if the endpoint will use a reliable Topic struct or not.
								

								 	
									false
								

								 	
									boolean
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									defaultOperation (consumer)
								

								 	
									To specify a default operation to use, if no operation header has been provided.
								

								 	 	
									HazelcastOperation
								

								
	
									hazelcastInstance (consumer)
								

								 	
									The hazelcast instance reference which can be used for hazelcast endpoint.
								

								 	 	
									HazelcastInstance
								

								
	
									hazelcastInstanceName (consumer)
								

								 	
									The hazelcast instance reference name which can be used for hazelcast endpoint. If you don’t specify the instance reference, camel use the default hazelcast instance from the camel-hazelcast instance.
								

								 	 	
									String
								

								
	
									pollingTimeout (consumer)
								

								 	
									Define the polling timeout of the Queue consumer in Poll mode
								

								 	
									10000
								

								 	
									long
								

								
	
									poolSize (consumer)
								

								 	
									Define the Pool size for Queue Consumer Executor
								

								 	
									1
								

								 	
									int
								

								
	
									queueConsumerMode (consumer)
								

								 	
									Define the Queue Consumer mode: Listen or Poll
								

								 	
									Listen
								

								 	
									HazelcastQueueConsumer Mode
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									concurrentConsumers (seda)
								

								 	
									To use concurrent consumers polling from the SEDA queue.
								

								 	
									1
								

								 	
									int
								

								
	
									onErrorDelay (seda)
								

								 	
									Milliseconds before consumer continues polling after an error has occurred.
								

								 	
									1000
								

								 	
									int
								

								
	
									pollTimeout (seda)
								

								 	
									The timeout used when consuming from the SEDA queue. When a timeout occurs, the consumer can check whether it is allowed to continue running. Setting a lower value allows the consumer to react more quickly upon shutdown.
								

								 	
									1000
								

								 	
									int
								

								
	
									transacted (seda)
								

								 	
									If set to true then the consumer runs in transaction mode, where the messages in the seda queue will only be removed if the transaction commits, which happens when the processing is complete.
								

								 	
									false
								

								 	
									boolean
								

								
	
									transferExchange (seda)
								

								 	
									If set to true the whole Exchange will be transfered. If header or body contains not serializable objects, they will be skipped.
								

								 	
									false
								

								 	
									boolean
								

								

instance consumer - from("hazelcast-instance:foo")

The instance consumer fires if a new cache instance will join or leave the cluster.

				Here’s a sample:
			
fromF("hazelcast-%sfoo", HazelcastConstants.INSTANCE_PREFIX)
.log("instance...")
.choice()
 .when(header(HazelcastConstants.LISTENER_ACTION).isEqualTo(HazelcastConstants.ADDED))
 .log("...added")
 .to("mock:added")
 .otherwise()
 .log("...removed")
 .to("mock:removed");

				Each event provides the following information inside the message header:
			

				Header Variables inside the response message:
			
	Name	Type	Description
	
								CamelHazelcastListenerTime
							

							 	
								Long
							

							 	
								time of the event in millis
							

							
	
								CamelHazelcastListenerType
							

							 	
								String
							

							 	
								the map consumer sets here "instancelistener"
							

							
	
								CamelHazelcastListenerAction
							

							 	
								String
							

							 	
								type of event - here added or removed.
							

							
	
								CamelHazelcastInstanceHost
							

							 	
								String
							

							 	
								host name of the instance
							

							
	
								CamelHazelcastInstancePort
							

							 	
								Integer
							

							 	
								port number of the instance
							

							

Chapter 132. Hazelcast List Component

			Available as of Camel version 2.7
		

			The Hazelcast List component is one of Camel Hazelcast Components which allows you to access Hazelcast distributed list.
		
Options

				The Hazelcast List component supports 3 options which are listed below.
			
	Name	Description	Default	Type
	
								hazelcastInstance (advanced)
							

							 	
								The hazelcast instance reference which can be used for hazelcast endpoint. If you don’t specify the instance reference, camel use the default hazelcast instance from the camel-hazelcast instance.
							

							 	 	
								HazelcastInstance
							

							
	
								hazelcastMode (advanced)
							

							 	
								The hazelcast mode reference which kind of instance should be used. If you don’t specify the mode, then the node mode will be the default.
							

							 	
								node
							

							 	
								String
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The Hazelcast List endpoint is configured using URI syntax:
			
hazelcast-list:cacheName

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									cacheName
								

								 	
									Required The name of the cache
								

								 	 	
									String
								

								

Query Parameters (16 parameters):

	Name	Description	Default	Type
	
									defaultOperation (common)
								

								 	
									To specify a default operation to use, if no operation header has been provided.
								

								 	 	
									HazelcastOperation
								

								
	
									hazelcastInstance (common)
								

								 	
									The hazelcast instance reference which can be used for hazelcast endpoint.
								

								 	 	
									HazelcastInstance
								

								
	
									hazelcastInstanceName (common)
								

								 	
									The hazelcast instance reference name which can be used for hazelcast endpoint. If you don’t specify the instance reference, camel use the default hazelcast instance from the camel-hazelcast instance.
								

								 	 	
									String
								

								
	
									reliable (common)
								

								 	
									Define if the endpoint will use a reliable Topic struct or not.
								

								 	
									false
								

								 	
									boolean
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									pollingTimeout (consumer)
								

								 	
									Define the polling timeout of the Queue consumer in Poll mode
								

								 	
									10000
								

								 	
									long
								

								
	
									poolSize (consumer)
								

								 	
									Define the Pool size for Queue Consumer Executor
								

								 	
									1
								

								 	
									int
								

								
	
									queueConsumerMode (consumer)
								

								 	
									Define the Queue Consumer mode: Listen or Poll
								

								 	
									Listen
								

								 	
									HazelcastQueueConsumer Mode
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									concurrentConsumers (seda)
								

								 	
									To use concurrent consumers polling from the SEDA queue.
								

								 	
									1
								

								 	
									int
								

								
	
									onErrorDelay (seda)
								

								 	
									Milliseconds before consumer continues polling after an error has occurred.
								

								 	
									1000
								

								 	
									int
								

								
	
									pollTimeout (seda)
								

								 	
									The timeout used when consuming from the SEDA queue. When a timeout occurs, the consumer can check whether it is allowed to continue running. Setting a lower value allows the consumer to react more quickly upon shutdown.
								

								 	
									1000
								

								 	
									int
								

								
	
									transacted (seda)
								

								 	
									If set to true then the consumer runs in transaction mode, where the messages in the seda queue will only be removed if the transaction commits, which happens when the processing is complete.
								

								 	
									false
								

								 	
									boolean
								

								
	
									transferExchange (seda)
								

								 	
									If set to true the whole Exchange will be transfered. If header or body contains not serializable objects, they will be skipped.
								

								 	
									false
								

								 	
									boolean
								

								

List producer – to(“hazelcast-list:foo”)

				The list producer provides 7 operations: * add * addAll * set * get * removevalue * removeAll * clear
			
Sample for add:

from("direct:add")
.setHeader(HazelcastConstants.OPERATION, constant(HazelcastOperation.ADD))
.toF("hazelcast-%sbar", HazelcastConstants.LIST_PREFIX);

Sample for get:

from("direct:get")
.setHeader(HazelcastConstants.OPERATION, constant(HazelcastOperation.GET))
.toF("hazelcast-%sbar", HazelcastConstants.LIST_PREFIX)
.to("seda:out");

Sample for setvalue:

from("direct:set")
.setHeader(HazelcastConstants.OPERATION, constant(HazelcastOperation.SET_VALUE))
.toF("hazelcast-%sbar", HazelcastConstants.LIST_PREFIX);

Sample for removevalue:

from("direct:removevalue")
.setHeader(HazelcastConstants.OPERATION, constant(HazelcastOperation.REMOVE_VALUE))
.toF("hazelcast-%sbar", HazelcastConstants.LIST_PREFIX);

					Note that CamelHazelcastObjectIndex header is used for indexing purpose.
				

List consumer – from(“hazelcast-list:foo”)

				The list consumer provides 2 operations: * add * remove
			
fromF("hazelcast-%smm", HazelcastConstants.LIST_PREFIX)
 .log("object...")
 .choice()
 .when(header(HazelcastConstants.LISTENER_ACTION).isEqualTo(HazelcastConstants.ADDED))
 .log("...added")
 .to("mock:added")
 .when(header(HazelcastConstants.LISTENER_ACTION).isEqualTo(HazelcastConstants.REMOVED))
 .log("...removed")
 .to("mock:removed")
 .otherwise()
 .log("fail!");

Chapter 133. Hazelcast Map Component

			Available as of Camel version 2.7
		

			The Hazelcast Map component is one of Camel Hazelcast Components which allows you to access Hazelcast distributed map.
		
Options

				The Hazelcast Map component supports 3 options which are listed below.
			
	Name	Description	Default	Type
	
								hazelcastInstance (advanced)
							

							 	
								The hazelcast instance reference which can be used for hazelcast endpoint. If you don’t specify the instance reference, camel use the default hazelcast instance from the camel-hazelcast instance.
							

							 	 	
								HazelcastInstance
							

							
	
								hazelcastMode (advanced)
							

							 	
								The hazelcast mode reference which kind of instance should be used. If you don’t specify the mode, then the node mode will be the default.
							

							 	
								node
							

							 	
								String
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The Hazelcast Map endpoint is configured using URI syntax:
			
hazelcast-map:cacheName

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									cacheName
								

								 	
									Required The name of the cache
								

								 	 	
									String
								

								

Query Parameters (16 parameters):

	Name	Description	Default	Type
	
									defaultOperation (common)
								

								 	
									To specify a default operation to use, if no operation header has been provided.
								

								 	 	
									HazelcastOperation
								

								
	
									hazelcastInstance (common)
								

								 	
									The hazelcast instance reference which can be used for hazelcast endpoint.
								

								 	 	
									HazelcastInstance
								

								
	
									hazelcastInstanceName (common)
								

								 	
									The hazelcast instance reference name which can be used for hazelcast endpoint. If you don’t specify the instance reference, camel use the default hazelcast instance from the camel-hazelcast instance.
								

								 	 	
									String
								

								
	
									reliable (common)
								

								 	
									Define if the endpoint will use a reliable Topic struct or not.
								

								 	
									false
								

								 	
									boolean
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									pollingTimeout (consumer)
								

								 	
									Define the polling timeout of the Queue consumer in Poll mode
								

								 	
									10000
								

								 	
									long
								

								
	
									poolSize (consumer)
								

								 	
									Define the Pool size for Queue Consumer Executor
								

								 	
									1
								

								 	
									int
								

								
	
									queueConsumerMode (consumer)
								

								 	
									Define the Queue Consumer mode: Listen or Poll
								

								 	
									Listen
								

								 	
									HazelcastQueueConsumer Mode
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									concurrentConsumers (seda)
								

								 	
									To use concurrent consumers polling from the SEDA queue.
								

								 	
									1
								

								 	
									int
								

								
	
									onErrorDelay (seda)
								

								 	
									Milliseconds before consumer continues polling after an error has occurred.
								

								 	
									1000
								

								 	
									int
								

								
	
									pollTimeout (seda)
								

								 	
									The timeout used when consuming from the SEDA queue. When a timeout occurs, the consumer can check whether it is allowed to continue running. Setting a lower value allows the consumer to react more quickly upon shutdown.
								

								 	
									1000
								

								 	
									int
								

								
	
									transacted (seda)
								

								 	
									If set to true then the consumer runs in transaction mode, where the messages in the seda queue will only be removed if the transaction commits, which happens when the processing is complete.
								

								 	
									false
								

								 	
									boolean
								

								
	
									transferExchange (seda)
								

								 	
									If set to true the whole Exchange will be transfered. If header or body contains not serializable objects, they will be skipped.
								

								 	
									false
								

								 	
									boolean
								

								

Map cache producer - to("hazelcast-map:foo")

				If you want to store a value in a map you can use the map cache producer.
			

				The map cache producer provides follow operations specified by CamelHazelcastOperationType header:
			
	
						put
					
	
						putIfAbsent
					
	
						get
					
	
						getAll
					
	
						keySet
					
	
						containsKey
					
	
						containsValue
					
	
						delete
					
	
						update
					
	
						query
					
	
						clear
					
	
						evict
					
	
						evictAll
					

				All operations are provide the inside the "hazelcast.operation.type" header variable. In Java DSL you can use the constants from org.apache.camel.component.hazelcast.HazelcastOperation.
			

				Header Variables for the request message:
			
	Name	Type	Description
	
								CamelHazelcastOperationType
							

							 	
								String
							

							 	
								as already described.
							

							
	
								CamelHazelcastObjectId
							

							 	
								String
							

							 	
								the object id to store / find your object inside the cache (not needed for the query operation)
							

							

				put and putIfAbsent operations provide an eviction mechanism:
			
	Name	Type	Description
	
								CamelHazelcastObjectTtlValue
							

							 	
								Integer
							

							 	
								value of TTL.
							

							
	
								CamelHazelcastObjectTtlUnit
							

							 	
								java.util.concurrent.TimeUnit
							

							 	
								value of time unit (DAYS / HOURS / MINUTES / …​.
							

							

				You can call the samples with:
			
template.sendBodyAndHeader("direct:[put|get|update|delete|query|evict]", "my-foo", HazelcastConstants.OBJECT_ID, "4711");
Sample for put:

					Java DSL:
				
from("direct:put")
.setHeader(HazelcastConstants.OPERATION, constant(HazelcastOperation.PUT))
.toF("hazelcast-%sfoo", HazelcastConstants.MAP_PREFIX);

					Spring DSL:
				
<route>
 <from uri="direct:put" />
 <!-- If using version 2.8 and above set headerName to "CamelHazelcastOperationType" -->
 <setHeader headerName="hazelcast.operation.type">
 <constant>put</constant>
 </setHeader>
 <to uri="hazelcast-map:foo" />
</route>

					Sample for put with eviction:
				

					Java DSL:
				
from("direct:put")
.setHeader(HazelcastConstants.OPERATION, constant(HazelcastOperation.PUT))
.setHeader(HazelcastConstants.TTL_VALUE, constant(Long.valueOf(1)))
.setHeader(HazelcastConstants.TTL_UNIT, constant(TimeUnit.MINUTES))
.toF("hazelcast-%sfoo", HazelcastConstants.MAP_PREFIX);

					Spring DSL:
				
<route>
 <from uri="direct:put" />
 <!-- If using version 2.8 and above set headerName to "CamelHazelcastOperationType" -->
 <setHeader headerName="hazelcast.operation.type">
 <constant>put</constant>
 </setHeader>
 <setHeader headerName="HazelcastConstants.TTL_VALUE">
 <simple resultType="java.lang.Long">1</simple>
 </setHeader>
 <setHeader headerName="HazelcastConstants.TTL_UNIT">
 <simple resultType="java.util.concurrent.TimeUnit">TimeUnit.MINUTES</simple>
 </setHeader>
 <to uri="hazelcast-map:foo" />
</route>

Sample for get:

					Java DSL:
				
from("direct:get")
.setHeader(HazelcastConstants.OPERATION, constant(HazelcastOperation.GET))
.toF("hazelcast-%sfoo", HazelcastConstants.MAP_PREFIX)
.to("seda:out");

					Spring DSL:
				
<route>
 <from uri="direct:get" />
 <!-- If using version 2.8 and above set headerName to "CamelHazelcastOperationType" -->
 <setHeader headerName="hazelcast.operation.type">
 <constant>get</constant>
 </setHeader>
 <to uri="hazelcast-map:foo" />
 <to uri="seda:out" />
</route>

Sample for update:

					Java DSL:
				
from("direct:update")
.setHeader(HazelcastConstants.OPERATION, constant(HazelcastOperation.UPDATE))
.toF("hazelcast-%sfoo", HazelcastConstants.MAP_PREFIX);

					Spring DSL:
				
<route>
 <from uri="direct:update" />
 <!-- If using version 2.8 and above set headerName to "CamelHazelcastOperationType" -->
 <setHeader headerName="hazelcast.operation.type">
 <constant>update</constant>
 </setHeader>
 <to uri="hazelcast-map:foo" />
</route>

Sample for delete:

					Java DSL:
				
from("direct:delete")
.setHeader(HazelcastConstants.OPERATION, constant(HazelcastOperation.DELETE))
.toF("hazelcast-%sfoo", HazelcastConstants.MAP_PREFIX);

					Spring DSL:
				
<route>
 <from uri="direct:delete" />
 <!-- If using version 2.8 and above set headerName to "CamelHazelcastOperationType" -->
 <setHeader headerName="hazelcast.operation.type">
 <constant>delete</constant>
 </setHeader>
 <to uri="hazelcast-map:foo" />
</route>

Sample for query

					Java DSL:
				
from("direct:query")
.setHeader(HazelcastConstants.OPERATION, constant(HazelcastOperation.QUERY))
.toF("hazelcast-%sfoo", HazelcastConstants.MAP_PREFIX)
.to("seda:out");

					Spring DSL:
				
<route>
 <from uri="direct:query" />
 <!-- If using version 2.8 and above set headerName to "CamelHazelcastOperationType" -->
 <setHeader headerName="hazelcast.operation.type">
 <constant>query</constant>
 </setHeader>
 <to uri="hazelcast-map:foo" />
 <to uri="seda:out" />
</route>

					For the query operation Hazelcast offers a SQL like syntax to query your distributed map.
				
String q1 = "bar > 1000";
template.sendBodyAndHeader("direct:query", null, HazelcastConstants.QUERY, q1);

Map cache consumer - from("hazelcast-map:foo")

				Hazelcast provides event listeners on their data grid. If you want to be notified if a cache will be manipulated, you can use the map consumer. There’re 4 events: put, update, delete and envict. The event type will be stored in the "hazelcast.listener.action" header variable. The map consumer provides some additional information inside these variables:
			

				Header Variables inside the response message:
			
	Name	Type	Description
	
								CamelHazelcastListenerTime
							

							 	
								Long
							

							 	
								time of the event in millis
							

							
	
								CamelHazelcastListenerType
							

							 	
								String
							

							 	
								the map consumer sets here "cachelistener"
							

							
	
								CamelHazelcastListenerAction
							

							 	
								String
							

							 	
								type of event - here added, updated, envicted and removed.
							

							
	
								CamelHazelcastObjectId
							

							 	
								String
							

							 	
								the oid of the object
							

							
	
								CamelHazelcastCacheName
							

							 	
								String
							

							 	
								the name of the cache - e.g. "foo"
							

							
	
								CamelHazelcastCacheType
							

							 	
								String
							

							 	
								the type of the cache - here map
							

							

				The object value will be stored within put and update actions inside the message body.
			

				Here’s a sample:
			
fromF("hazelcast-%sfoo", HazelcastConstants.MAP_PREFIX)
.log("object...")
.choice()
 .when(header(HazelcastConstants.LISTENER_ACTION).isEqualTo(HazelcastConstants.ADDED))
 .log("...added")
 .to("mock:added")
 .when(header(HazelcastConstants.LISTENER_ACTION).isEqualTo(HazelcastConstants.ENVICTED))
 .log("...envicted")
 .to("mock:envicted")
 .when(header(HazelcastConstants.LISTENER_ACTION).isEqualTo(HazelcastConstants.UPDATED))
 .log("...updated")
 .to("mock:updated")
 .when(header(HazelcastConstants.LISTENER_ACTION).isEqualTo(HazelcastConstants.REMOVED))
 .log("...removed")
 .to("mock:removed")
 .otherwise()
 .log("fail!");

Chapter 134. Hazelcast Multimap Component

			Available as of Camel version 2.7
		

			The Hazelcast Multimap component is one of Camel Hazelcast Components which allows you to access Hazelcast distributed multimap.
		
Options

				The Hazelcast Multimap component supports 3 options which are listed below.
			
	Name	Description	Default	Type
	
								hazelcastInstance (advanced)
							

							 	
								The hazelcast instance reference which can be used for hazelcast endpoint. If you don’t specify the instance reference, camel use the default hazelcast instance from the camel-hazelcast instance.
							

							 	 	
								HazelcastInstance
							

							
	
								hazelcastMode (advanced)
							

							 	
								The hazelcast mode reference which kind of instance should be used. If you don’t specify the mode, then the node mode will be the default.
							

							 	
								node
							

							 	
								String
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The Hazelcast Multimap endpoint is configured using URI syntax:
			
hazelcast-multimap:cacheName

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									cacheName
								

								 	
									Required The name of the cache
								

								 	 	
									String
								

								

Query Parameters (16 parameters):

	Name	Description	Default	Type
	
									defaultOperation (common)
								

								 	
									To specify a default operation to use, if no operation header has been provided.
								

								 	 	
									HazelcastOperation
								

								
	
									hazelcastInstance (common)
								

								 	
									The hazelcast instance reference which can be used for hazelcast endpoint.
								

								 	 	
									HazelcastInstance
								

								
	
									hazelcastInstanceName (common)
								

								 	
									The hazelcast instance reference name which can be used for hazelcast endpoint. If you don’t specify the instance reference, camel use the default hazelcast instance from the camel-hazelcast instance.
								

								 	 	
									String
								

								
	
									reliable (common)
								

								 	
									Define if the endpoint will use a reliable Topic struct or not.
								

								 	
									false
								

								 	
									boolean
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									pollingTimeout (consumer)
								

								 	
									Define the polling timeout of the Queue consumer in Poll mode
								

								 	
									10000
								

								 	
									long
								

								
	
									poolSize (consumer)
								

								 	
									Define the Pool size for Queue Consumer Executor
								

								 	
									1
								

								 	
									int
								

								
	
									queueConsumerMode (consumer)
								

								 	
									Define the Queue Consumer mode: Listen or Poll
								

								 	
									Listen
								

								 	
									HazelcastQueueConsumer Mode
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									concurrentConsumers (seda)
								

								 	
									To use concurrent consumers polling from the SEDA queue.
								

								 	
									1
								

								 	
									int
								

								
	
									onErrorDelay (seda)
								

								 	
									Milliseconds before consumer continues polling after an error has occurred.
								

								 	
									1000
								

								 	
									int
								

								
	
									pollTimeout (seda)
								

								 	
									The timeout used when consuming from the SEDA queue. When a timeout occurs, the consumer can check whether it is allowed to continue running. Setting a lower value allows the consumer to react more quickly upon shutdown.
								

								 	
									1000
								

								 	
									int
								

								
	
									transacted (seda)
								

								 	
									If set to true then the consumer runs in transaction mode, where the messages in the seda queue will only be removed if the transaction commits, which happens when the processing is complete.
								

								 	
									false
								

								 	
									boolean
								

								
	
									transferExchange (seda)
								

								 	
									If set to true the whole Exchange will be transfered. If header or body contains not serializable objects, they will be skipped.
								

								 	
									false
								

								 	
									boolean
								

								

multimap cache producer - to("hazelcast-multimap:foo")

				A multimap is a cache where you can store n values to one key. The multimap producer provides 4 operations (put, get, removevalue, delete).
			

				Header Variables for the request message:
			
	Name	Type	Description
	
								CamelHazelcastOperationType
							

							 	
								String
							

							 	
								valid values are: put, get, removevalue, delete From Camel 2.16: clear.
							

							
	
								CamelHazelcastObjectId
							

							 	
								String
							

							 	
								the object id to store / find your object inside the cache
							

							

Sample for put:

					Java DSL:
				
from("direct:put")
.setHeader(HazelcastConstants.OPERATION, constant(HazelcastOperation.PUT))
.to(String.format("hazelcast-%sbar", HazelcastConstants.MULTIMAP_PREFIX));

					Spring DSL:
				
<route>
 <from uri="direct:put" />
 <log message="put.."/>
 <!-- If using version 2.8 and above set headerName to "CamelHazelcastOperationType" -->
 <setHeader headerName="hazelcast.operation.type">
 <constant>put</constant>
 </setHeader>
 <to uri="hazelcast-multimap:foo" />
</route>

Sample for removevalue:

					Java DSL:
				
from("direct:removevalue")
.setHeader(HazelcastConstants.OPERATION, constant(HazelcastOperation.REMOVE_VALUE))
.toF("hazelcast-%sbar", HazelcastConstants.MULTIMAP_PREFIX);

					Spring DSL:
				
<route>
 <from uri="direct:removevalue" />
 <log message="removevalue..."/>
 <!-- If using version 2.8 and above set headerName to "CamelHazelcastOperationType" -->
 <setHeader headerName="hazelcast.operation.type">
 <constant>removevalue</constant>
 </setHeader>
 <to uri="hazelcast-multimap:foo" />
</route>

					To remove a value you have to provide the value you want to remove inside the message body. If you have a multimap object \{key: "4711" values: { "my-foo", "my-bar"}} you have to put "my-foo" inside the message body to remove the "my-foo" value.
				

Sample for get:

					Java DSL:
				
from("direct:get")
.setHeader(HazelcastConstants.OPERATION, constant(HazelcastOperation.GET))
.toF("hazelcast-%sbar", HazelcastConstants.MULTIMAP_PREFIX)
.to("seda:out");

					Spring DSL:
				
<route>
 <from uri="direct:get" />
 <log message="get.."/>
 <!-- If using version 2.8 and above set headerName to "CamelHazelcastOperationType" -->
 <setHeader headerName="hazelcast.operation.type">
 <constant>get</constant>
 </setHeader>
 <to uri="hazelcast-multimap:foo" />
 <to uri="seda:out" />
</route>

Sample for delete:

					Java DSL:
				
from("direct:delete")
.setHeader(HazelcastConstants.OPERATION, constant(HazelcastOperation.DELETE))
.toF("hazelcast-%sbar", HazelcastConstants.MULTIMAP_PREFIX);

					Spring DSL:
				
<route>
 <from uri="direct:delete" />
 <log message="delete.."/>
 <!-- If using version 2.8 and above set headerName to "CamelHazelcastOperationType" -->
 <setHeader headerName="hazelcast.operation.type">
 <constant>delete</constant>
 </setHeader>
 <to uri="hazelcast-multimap:foo" />
</route>

					you can call them in your test class with:
				
template.sendBodyAndHeader("direct:[put|get|removevalue|delete]", "my-foo", HazelcastConstants.OBJECT_ID, "4711");

multimap cache consumer - from("hazelcast-multimap:foo")

				For the multimap cache this component provides the same listeners / variables as for the map cache consumer (except the update and enviction listener). The only difference is the multimap prefix inside the URI. Here is a sample:
			
fromF("hazelcast-%sbar", HazelcastConstants.MULTIMAP_PREFIX)
.log("object...")
.choice()
 .when(header(HazelcastConstants.LISTENER_ACTION).isEqualTo(HazelcastConstants.ADDED))
 .log("...added")
 .to("mock:added")
 //.when(header(HazelcastConstants.LISTENER_ACTION).isEqualTo(HazelcastConstants.ENVICTED))
 // .log("...envicted")
 // .to("mock:envicted")
 .when(header(HazelcastConstants.LISTENER_ACTION).isEqualTo(HazelcastConstants.REMOVED))
 .log("...removed")
 .to("mock:removed")
 .otherwise()
 .log("fail!");

				Header Variables inside the response message:
			
	Name	Type	Description
	
								CamelHazelcastListenerTime
							

							 	
								Long
							

							 	
								time of the event in millis
							

							
	
								CamelHazelcastListenerType
							

							 	
								String
							

							 	
								the map consumer sets here "cachelistener"
							

							
	
								CamelHazelcastListenerAction
							

							 	
								String
							

							 	
								type of event - here added and removed (and soon envicted)
							

							
	
								CamelHazelcastObjectId
							

							 	
								String
							

							 	
								the oid of the object
							

							
	
								CamelHazelcastCacheName
							

							 	
								String
							

							 	
								the name of the cache - e.g. "foo"
							

							
	
								CamelHazelcastCacheType
							

							 	
								String
							

							 	
								the type of the cache - here multimap
							

							

Chapter 135. Hazelcast Queue Component

			Available as of Camel version 2.7
		

			The Hazelcast Queue component is one of Camel Hazelcast Components which allows you to access Hazelcast distributed queue.
		
Options

				The Hazelcast Queue component supports 3 options which are listed below.
			
	Name	Description	Default	Type
	
								hazelcastInstance (advanced)
							

							 	
								The hazelcast instance reference which can be used for hazelcast endpoint. If you don’t specify the instance reference, camel use the default hazelcast instance from the camel-hazelcast instance.
							

							 	 	
								HazelcastInstance
							

							
	
								hazelcastMode (advanced)
							

							 	
								The hazelcast mode reference which kind of instance should be used. If you don’t specify the mode, then the node mode will be the default.
							

							 	
								node
							

							 	
								String
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The Hazelcast Queue endpoint is configured using URI syntax:
			
hazelcast-queue:cacheName

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									cacheName
								

								 	
									Required The name of the cache
								

								 	 	
									String
								

								

Query Parameters (16 parameters):

	Name	Description	Default	Type
	
									defaultOperation (common)
								

								 	
									To specify a default operation to use, if no operation header has been provided.
								

								 	 	
									HazelcastOperation
								

								
	
									hazelcastInstance (common)
								

								 	
									The hazelcast instance reference which can be used for hazelcast endpoint.
								

								 	 	
									HazelcastInstance
								

								
	
									hazelcastInstanceName (common)
								

								 	
									The hazelcast instance reference name which can be used for hazelcast endpoint. If you don’t specify the instance reference, camel use the default hazelcast instance from the camel-hazelcast instance.
								

								 	 	
									String
								

								
	
									reliable (common)
								

								 	
									Define if the endpoint will use a reliable Topic struct or not.
								

								 	
									false
								

								 	
									boolean
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									pollingTimeout (consumer)
								

								 	
									Define the polling timeout of the Queue consumer in Poll mode
								

								 	
									10000
								

								 	
									long
								

								
	
									poolSize (consumer)
								

								 	
									Define the Pool size for Queue Consumer Executor
								

								 	
									1
								

								 	
									int
								

								
	
									queueConsumerMode (consumer)
								

								 	
									Define the Queue Consumer mode: Listen or Poll
								

								 	
									Listen
								

								 	
									HazelcastQueueConsumer Mode
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									concurrentConsumers (seda)
								

								 	
									To use concurrent consumers polling from the SEDA queue.
								

								 	
									1
								

								 	
									int
								

								
	
									onErrorDelay (seda)
								

								 	
									Milliseconds before consumer continues polling after an error has occurred.
								

								 	
									1000
								

								 	
									int
								

								
	
									pollTimeout (seda)
								

								 	
									The timeout used when consuming from the SEDA queue. When a timeout occurs, the consumer can check whether it is allowed to continue running. Setting a lower value allows the consumer to react more quickly upon shutdown.
								

								 	
									1000
								

								 	
									int
								

								
	
									transacted (seda)
								

								 	
									If set to true then the consumer runs in transaction mode, where the messages in the seda queue will only be removed if the transaction commits, which happens when the processing is complete.
								

								 	
									false
								

								 	
									boolean
								

								
	
									transferExchange (seda)
								

								 	
									If set to true the whole Exchange will be transfered. If header or body contains not serializable objects, they will be skipped.
								

								 	
									false
								

								 	
									boolean
								

								

Queue producer – to(“hazelcast-queue:foo”)

				The queue producer provides 10 operations: * add * put * poll * peek * offer * remove value * remaining capacity * remove all * remove if * drain to * take * retain all
			
Sample for add:

from("direct:add")
.setHeader(HazelcastConstants.OPERATION, constant(HazelcastOperation.ADD))
.toF("hazelcast-%sbar", HazelcastConstants.QUEUE_PREFIX);

Sample for put:

from("direct:put")
.setHeader(HazelcastConstants.OPERATION, constant(HazelcastOperation.PUT))
.toF("hazelcast-%sbar", HazelcastConstants.QUEUE_PREFIX);

Sample for poll:

from("direct:poll")
.setHeader(HazelcastConstants.OPERATION, constant(HazelcastOperation.POLL))
.toF("hazelcast:%sbar", HazelcastConstants.QUEUE_PREFIX);

Sample for peek:

from("direct:peek")
.setHeader(HazelcastConstants.OPERATION, constant(HazelcastOperation.PEEK))
.toF("hazelcast:%sbar", HazelcastConstants.QUEUE_PREFIX);

Sample for offer:

from("direct:offer")
.setHeader(HazelcastConstants.OPERATION, constant(HazelcastOperation.OFFER))
.toF("hazelcast:%sbar", HazelcastConstants.QUEUE_PREFIX);

Sample for removevalue:

from("direct:removevalue")
.setHeader(HazelcastConstants.OPERATION, constant(HazelcastOperation.REMOVE_VALUE))
.toF("hazelcast-%sbar", HazelcastConstants.QUEUE_PREFIX);

Sample for remaining capacity:

from("direct:remaining-capacity").setHeader(HazelcastConstants.OPERATION, constant(HazelcastOperation.REMAINING_CAPACITY)).to(
String.format("hazelcast-%sbar", HazelcastConstants.QUEUE_PREFIX));

Sample for remove all:

from("direct:removeAll").setHeader(HazelcastConstants.OPERATION, constant(HazelcastOperation.REMOVE_ALL)).to(
String.format("hazelcast-%sbar", HazelcastConstants.QUEUE_PREFIX));

Sample for remove if:

from("direct:removeIf").setHeader(HazelcastConstants.OPERATION, constant(HazelcastOperation.REMOVE_IF)).to(
String.format("hazelcast-%sbar", HazelcastConstants.QUEUE_PREFIX));

Sample for drain to:

from("direct:drainTo").setHeader(HazelcastConstants.OPERATION, constant(HazelcastOperation.DRAIN_TO)).to(
String.format("hazelcast-%sbar", HazelcastConstants.QUEUE_PREFIX));

Sample for take:

from("direct:take").setHeader(HazelcastConstants.OPERATION, constant(HazelcastOperation.TAKE)).to(
String.format("hazelcast-%sbar", HazelcastConstants.QUEUE_PREFIX));

Sample for retain all:

from("direct:retainAll").setHeader(HazelcastConstants.OPERATION, constant(HazelcastOperation.RETAIN_ALL)).to(
String.format("hazelcast-%sbar", HazelcastConstants.QUEUE_PREFIX));

Queue consumer – from(“hazelcast-queue:foo”)

				The queue consumer provides two different modes:
			
	
						Poll
					
	
						Listen
					

				Sample for Poll mode
			
fromF("hazelcast-%sfoo?queueConsumerMode=Poll", HazelcastConstants.QUEUE_PREFIX)).to("mock:result");

				In this way the consumer will poll the queue and return the head of the queue or null after a timeout.
			

				In Listen mode instead the consumer will listen for events on queue.
			

				The queue consumer in Listen mode provides 2 operations: * add * remove
			

				Sample for Listen mode
			
fromF("hazelcast-%smm", HazelcastConstants.QUEUE_PREFIX)
 .log("object...")
 .choice()
 .when(header(HazelcastConstants.LISTENER_ACTION).isEqualTo(HazelcastConstants.ADDED))
 .log("...added")
 .to("mock:added")
 .when(header(HazelcastConstants.LISTENER_ACTION).isEqualTo(HazelcastConstants.REMOVED))
 .log("...removed")
 .to("mock:removed")
 .otherwise()
 .log("fail!");

Chapter 136. Hazelcast Replicated Map Component

			Available as of Camel version 2.16
		

			The Hazelcast instance component is one of Camel Hazelcast Components which allows you to consume join/leave events of the cache instance in the cluster. A replicated map is a weakly consistent, distributed key-value data structure with no data partition.
		
Options

				The Hazelcast Replicated Map component supports 3 options which are listed below.
			
	Name	Description	Default	Type
	
								hazelcastInstance (advanced)
							

							 	
								The hazelcast instance reference which can be used for hazelcast endpoint. If you don’t specify the instance reference, camel use the default hazelcast instance from the camel-hazelcast instance.
							

							 	 	
								HazelcastInstance
							

							
	
								hazelcastMode (advanced)
							

							 	
								The hazelcast mode reference which kind of instance should be used. If you don’t specify the mode, then the node mode will be the default.
							

							 	
								node
							

							 	
								String
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The Hazelcast Replicated Map endpoint is configured using URI syntax:
			
hazelcast-replicatedmap:cacheName

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									cacheName
								

								 	
									Required The name of the cache
								

								 	 	
									String
								

								

Query Parameters (16 parameters):

	Name	Description	Default	Type
	
									defaultOperation (common)
								

								 	
									To specify a default operation to use, if no operation header has been provided.
								

								 	 	
									HazelcastOperation
								

								
	
									hazelcastInstance (common)
								

								 	
									The hazelcast instance reference which can be used for hazelcast endpoint.
								

								 	 	
									HazelcastInstance
								

								
	
									hazelcastInstanceName (common)
								

								 	
									The hazelcast instance reference name which can be used for hazelcast endpoint. If you don’t specify the instance reference, camel use the default hazelcast instance from the camel-hazelcast instance.
								

								 	 	
									String
								

								
	
									reliable (common)
								

								 	
									Define if the endpoint will use a reliable Topic struct or not.
								

								 	
									false
								

								 	
									boolean
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									pollingTimeout (consumer)
								

								 	
									Define the polling timeout of the Queue consumer in Poll mode
								

								 	
									10000
								

								 	
									long
								

								
	
									poolSize (consumer)
								

								 	
									Define the Pool size for Queue Consumer Executor
								

								 	
									1
								

								 	
									int
								

								
	
									queueConsumerMode (consumer)
								

								 	
									Define the Queue Consumer mode: Listen or Poll
								

								 	
									Listen
								

								 	
									HazelcastQueueConsumer Mode
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									concurrentConsumers (seda)
								

								 	
									To use concurrent consumers polling from the SEDA queue.
								

								 	
									1
								

								 	
									int
								

								
	
									onErrorDelay (seda)
								

								 	
									Milliseconds before consumer continues polling after an error has occurred.
								

								 	
									1000
								

								 	
									int
								

								
	
									pollTimeout (seda)
								

								 	
									The timeout used when consuming from the SEDA queue. When a timeout occurs, the consumer can check whether it is allowed to continue running. Setting a lower value allows the consumer to react more quickly upon shutdown.
								

								 	
									1000
								

								 	
									int
								

								
	
									transacted (seda)
								

								 	
									If set to true then the consumer runs in transaction mode, where the messages in the seda queue will only be removed if the transaction commits, which happens when the processing is complete.
								

								 	
									false
								

								 	
									boolean
								

								
	
									transferExchange (seda)
								

								 	
									If set to true the whole Exchange will be transfered. If header or body contains not serializable objects, they will be skipped.
								

								 	
									false
								

								 	
									boolean
								

								

replicatedmap cache producer

				The replicatedmap producer provides 4 operations: * put * get * delete * clear
			

				Header Variables for the request message:
			
	Name	Type	Description
	
								CamelHazelcastOperationType
							

							 	
								String
							

							 	
								valid values are: put, get, removevalue, delete
							

							
	
								CamelHazelcastObjectId
							

							 	
								String
							

							 	
								the object id to store / find your object inside the cache
							

							

Sample for put:

					Java DSL:
				
from("direct:put")
.setHeader(HazelcastConstants.OPERATION, constant(HazelcastOperation.PUT))
.to(String.format("hazelcast-%sbar", HazelcastConstants.REPLICATEDMAP_PREFIX));

					Spring DSL:
				
<route>
 <from uri="direct:put" />
 <log message="put.."/>
 <!-- If using version 2.8 and above set headerName to "CamelHazelcastOperationType" -->
 <setHeader headerName="hazelcast.operation.type">
 <constant>put</constant>
 </setHeader>
 <to uri="hazelcast-replicatedmap:foo" />
</route>

Sample for get:

					Java DSL:
				
from("direct:get")
.setHeader(HazelcastConstants.OPERATION, constant(HazelcastOperation.GET))
.toF("hazelcast-%sbar", HazelcastConstants.REPLICATEDMAP_PREFIX)
.to("seda:out");

					Spring DSL:
				
<route>
 <from uri="direct:get" />
 <log message="get.."/>
 <!-- If using version 2.8 and above set headerName to "CamelHazelcastOperationType" -->
 <setHeader headerName="hazelcast.operation.type">
 <constant>get</constant>
 </setHeader>
 <to uri="hazelcast-replicatedmap:foo" />
 <to uri="seda:out" />
</route>

Sample for delete:

					Java DSL:
				
from("direct:delete")
.setHeader(HazelcastConstants.OPERATION, constant(HazelcastOperation.DELETE))
.toF("hazelcast-%sbar", HazelcastConstants.REPLICATEDMAP_PREFIX);

					Spring DSL:
				
<route>
 <from uri="direct:delete" />
 <log message="delete.."/>
 <!-- If using version 2.8 and above set headerName to "CamelHazelcastOperationType" -->
 <setHeader headerName="hazelcast.operation.type">
 <constant>delete</constant>
 </setHeader>
 <to uri="hazelcast-replicatedmap:foo" />
</route>

					you can call them in your test class with:
				
template.sendBodyAndHeader("direct:[put|get|delete|clear]", "my-foo", HazelcastConstants.OBJECT_ID, "4711");

replicatedmap cache consumer

				For the multimap cache this component provides the same listeners / variables as for the map cache consumer (except the update and enviction listener). The only difference is the multimap prefix inside the URI. Here is a sample:
			
fromF("hazelcast-%sbar", HazelcastConstants.MULTIMAP_PREFIX)
.log("object...")
.choice()
 .when(header(HazelcastConstants.LISTENER_ACTION).isEqualTo(HazelcastConstants.ADDED))
 .log("...added")
 .to("mock:added")
 //.when(header(HazelcastConstants.LISTENER_ACTION).isEqualTo(HazelcastConstants.ENVICTED))
 // .log("...envicted")
 // .to("mock:envicted")
 .when(header(HazelcastConstants.LISTENER_ACTION).isEqualTo(HazelcastConstants.REMOVED))
 .log("...removed")
 .to("mock:removed")
 .otherwise()
 .log("fail!");

				Header Variables inside the response message:
			
	Name	Type	Description
	
								CamelHazelcastListenerTime
							

							 	
								Long
							

							 	
								time of the event in millis
							

							
	
								CamelHazelcastListenerType
							

							 	
								String
							

							 	
								the map consumer sets here "cachelistener"
							

							
	
								CamelHazelcastListenerAction
							

							 	
								String
							

							 	
								type of event - here added and removed (and soon envicted)
							

							
	
								CamelHazelcastObjectId
							

							 	
								String
							

							 	
								the oid of the object
							

							
	
								CamelHazelcastCacheName
							

							 	
								String
							

							 	
								the name of the cache - e.g. "foo"
							

							
	
								CamelHazelcastCacheType
							

							 	
								String
							

							 	
								the type of the cache - here replicatedmap
							

							

Chapter 137. Hazelcast Ringbuffer Component

			Available as of Camel version 2.16
		

			Avalaible from Camel 2.16
		

			The Hazelcast ringbuffer component is one of Camel Hazelcast Components which allows you to access Hazelcast ringbuffer. Ringbuffer is a distributed data structure where the data is stored in a ring-like structure. You can think of it as a circular array with a certain capacity.
		
Options

				The Hazelcast Ringbuffer component supports 3 options which are listed below.
			
	Name	Description	Default	Type
	
								hazelcastInstance (advanced)
							

							 	
								The hazelcast instance reference which can be used for hazelcast endpoint. If you don’t specify the instance reference, camel use the default hazelcast instance from the camel-hazelcast instance.
							

							 	 	
								HazelcastInstance
							

							
	
								hazelcastMode (advanced)
							

							 	
								The hazelcast mode reference which kind of instance should be used. If you don’t specify the mode, then the node mode will be the default.
							

							 	
								node
							

							 	
								String
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The Hazelcast Ringbuffer endpoint is configured using URI syntax:
			
hazelcast-ringbuffer:cacheName

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									cacheName
								

								 	
									Required The name of the cache
								

								 	 	
									String
								

								

Query Parameters (10 parameters):

	Name	Description	Default	Type
	
									reliable (common)
								

								 	
									Define if the endpoint will use a reliable Topic struct or not.
								

								 	
									false
								

								 	
									boolean
								

								
	
									defaultOperation (producer)
								

								 	
									To specify a default operation to use, if no operation header has been provided.
								

								 	 	
									HazelcastOperation
								

								
	
									hazelcastInstance (producer)
								

								 	
									The hazelcast instance reference which can be used for hazelcast endpoint.
								

								 	 	
									HazelcastInstance
								

								
	
									hazelcastInstanceName (producer)
								

								 	
									The hazelcast instance reference name which can be used for hazelcast endpoint. If you don’t specify the instance reference, camel use the default hazelcast instance from the camel-hazelcast instance.
								

								 	 	
									String
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									concurrentConsumers (seda)
								

								 	
									To use concurrent consumers polling from the SEDA queue.
								

								 	
									1
								

								 	
									int
								

								
	
									onErrorDelay (seda)
								

								 	
									Milliseconds before consumer continues polling after an error has occurred.
								

								 	
									1000
								

								 	
									int
								

								
	
									pollTimeout (seda)
								

								 	
									The timeout used when consuming from the SEDA queue. When a timeout occurs, the consumer can check whether it is allowed to continue running. Setting a lower value allows the consumer to react more quickly upon shutdown.
								

								 	
									1000
								

								 	
									int
								

								
	
									transacted (seda)
								

								 	
									If set to true then the consumer runs in transaction mode, where the messages in the seda queue will only be removed if the transaction commits, which happens when the processing is complete.
								

								 	
									false
								

								 	
									boolean
								

								
	
									transferExchange (seda)
								

								 	
									If set to true the whole Exchange will be transfered. If header or body contains not serializable objects, they will be skipped.
								

								 	
									false
								

								 	
									boolean
								

								

ringbuffer cache producer

				The ringbuffer producer provides 5 operations: * add * readonceHead * readonceTail * remainingCapacity * capacity
			

				Header Variables for the request message:
			
	Name	Type	Description
	
								CamelHazelcastOperationType
							

							 	
								String
							

							 	
								valid values are: put, get, removevalue, delete
							

							
	
								CamelHazelcastObjectId
							

							 	
								String
							

							 	
								the object id to store / find your object inside the cache
							

							

Sample for put:

					Java DSL:
				
from("direct:put")
.setHeader(HazelcastConstants.OPERATION, constant(HazelcastOperation.ADD))
.to(String.format("hazelcast-%sbar", HazelcastConstants.RINGBUFFER_PREFIX));

					Spring DSL:
				
<route>
 <from uri="direct:put" />
 <log message="put.."/>
 <!-- If using version 2.8 and above set headerName to "CamelHazelcastOperationType" -->
 <setHeader headerName="hazelcast.operation.type">
 <constant>add</constant>
 </setHeader>
 <to uri="hazelcast-ringbuffer:foo" />
</route>

Sample for readonce from head:

					Java DSL:
				
from("direct:get")
.setHeader(HazelcastConstants.OPERATION, constant(HazelcastOperation.READ_ONCE_HEAD))
.toF("hazelcast-%sbar", HazelcastConstants.RINGBUFFER_PREFIX)
.to("seda:out");

Chapter 138. Hazelcast SEDA Component

			Available as of Camel version 2.7
		

			The Hazelcast SEDA component is one of Camel Hazelcast Components which allows you to access Hazelcast BlockingQueue. SEDA component differs from the rest components provided. It implements a work-queue in order to support asynchronous SEDA architectures, similar to the core "SEDA" component.
		
Options

				The Hazelcast SEDA component supports 3 options which are listed below.
			
	Name	Description	Default	Type
	
								hazelcastInstance (advanced)
							

							 	
								The hazelcast instance reference which can be used for hazelcast endpoint. If you don’t specify the instance reference, camel use the default hazelcast instance from the camel-hazelcast instance.
							

							 	 	
								HazelcastInstance
							

							
	
								hazelcastMode (advanced)
							

							 	
								The hazelcast mode reference which kind of instance should be used. If you don’t specify the mode, then the node mode will be the default.
							

							 	
								node
							

							 	
								String
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The Hazelcast SEDA endpoint is configured using URI syntax:
			
hazelcast-seda:cacheName

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									cacheName
								

								 	
									Required The name of the cache
								

								 	 	
									String
								

								

Query Parameters (16 parameters):

	Name	Description	Default	Type
	
									defaultOperation (common)
								

								 	
									To specify a default operation to use, if no operation header has been provided.
								

								 	 	
									HazelcastOperation
								

								
	
									hazelcastInstance (common)
								

								 	
									The hazelcast instance reference which can be used for hazelcast endpoint.
								

								 	 	
									HazelcastInstance
								

								
	
									hazelcastInstanceName (common)
								

								 	
									The hazelcast instance reference name which can be used for hazelcast endpoint. If you don’t specify the instance reference, camel use the default hazelcast instance from the camel-hazelcast instance.
								

								 	 	
									String
								

								
	
									reliable (common)
								

								 	
									Define if the endpoint will use a reliable Topic struct or not.
								

								 	
									false
								

								 	
									boolean
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									pollingTimeout (consumer)
								

								 	
									Define the polling timeout of the Queue consumer in Poll mode
								

								 	
									10000
								

								 	
									long
								

								
	
									poolSize (consumer)
								

								 	
									Define the Pool size for Queue Consumer Executor
								

								 	
									1
								

								 	
									int
								

								
	
									queueConsumerMode (consumer)
								

								 	
									Define the Queue Consumer mode: Listen or Poll
								

								 	
									Listen
								

								 	
									HazelcastQueueConsumer Mode
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									concurrentConsumers (seda)
								

								 	
									To use concurrent consumers polling from the SEDA queue.
								

								 	
									1
								

								 	
									int
								

								
	
									onErrorDelay (seda)
								

								 	
									Milliseconds before consumer continues polling after an error has occurred.
								

								 	
									1000
								

								 	
									int
								

								
	
									pollTimeout (seda)
								

								 	
									The timeout used when consuming from the SEDA queue. When a timeout occurs, the consumer can check whether it is allowed to continue running. Setting a lower value allows the consumer to react more quickly upon shutdown.
								

								 	
									1000
								

								 	
									int
								

								
	
									transacted (seda)
								

								 	
									If set to true then the consumer runs in transaction mode, where the messages in the seda queue will only be removed if the transaction commits, which happens when the processing is complete.
								

								 	
									false
								

								 	
									boolean
								

								
	
									transferExchange (seda)
								

								 	
									If set to true the whole Exchange will be transfered. If header or body contains not serializable objects, they will be skipped.
								

								 	
									false
								

								 	
									boolean
								

								

SEDA producer – to(“hazelcast-seda:foo”)

				The SEDA producer provides no operations. You only send data to the specified queue.
			

				Java DSL :
			
from("direct:foo")
.to("hazelcast-seda:foo");

				Spring DSL :
			
<route>
 <from uri="direct:start" />
 <to uri="hazelcast-seda:foo" />
</route>

SEDA consumer – from(“hazelcast-seda:foo”)

				The SEDA consumer provides no operations. You only retrieve data from the specified queue.
			

				Java DSL :
			
from("hazelcast-seda:foo")
.to("mock:result");

				Spring DSL:
			
<route>
 <from uri="hazelcast-seda:foo" />
 <to uri="mock:result" />
</route>

Chapter 139. Hazelcast Set Component

			Available as of Camel version 2.7
		

			The Hazelcast Set component is one of Camel Hazelcast Components which allows you to access Hazelcast distributed set.
		
Options

				The Hazelcast Set component supports 3 options which are listed below.
			
	Name	Description	Default	Type
	
								hazelcastInstance (advanced)
							

							 	
								The hazelcast instance reference which can be used for hazelcast endpoint. If you don’t specify the instance reference, camel use the default hazelcast instance from the camel-hazelcast instance.
							

							 	 	
								HazelcastInstance
							

							
	
								hazelcastMode (advanced)
							

							 	
								The hazelcast mode reference which kind of instance should be used. If you don’t specify the mode, then the node mode will be the default.
							

							 	
								node
							

							 	
								String
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The Hazelcast Set endpoint is configured using URI syntax:
			
hazelcast-set:cacheName

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									cacheName
								

								 	
									Required The name of the cache
								

								 	 	
									String
								

								

Query Parameters (16 parameters):

	Name	Description	Default	Type
	
									defaultOperation (common)
								

								 	
									To specify a default operation to use, if no operation header has been provided.
								

								 	 	
									HazelcastOperation
								

								
	
									hazelcastInstance (common)
								

								 	
									The hazelcast instance reference which can be used for hazelcast endpoint.
								

								 	 	
									HazelcastInstance
								

								
	
									hazelcastInstanceName (common)
								

								 	
									The hazelcast instance reference name which can be used for hazelcast endpoint. If you don’t specify the instance reference, camel use the default hazelcast instance from the camel-hazelcast instance.
								

								 	 	
									String
								

								
	
									reliable (common)
								

								 	
									Define if the endpoint will use a reliable Topic struct or not.
								

								 	
									false
								

								 	
									boolean
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									pollingTimeout (consumer)
								

								 	
									Define the polling timeout of the Queue consumer in Poll mode
								

								 	
									10000
								

								 	
									long
								

								
	
									poolSize (consumer)
								

								 	
									Define the Pool size for Queue Consumer Executor
								

								 	
									1
								

								 	
									int
								

								
	
									queueConsumerMode (consumer)
								

								 	
									Define the Queue Consumer mode: Listen or Poll
								

								 	
									Listen
								

								 	
									HazelcastQueueConsumer Mode
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									concurrentConsumers (seda)
								

								 	
									To use concurrent consumers polling from the SEDA queue.
								

								 	
									1
								

								 	
									int
								

								
	
									onErrorDelay (seda)
								

								 	
									Milliseconds before consumer continues polling after an error has occurred.
								

								 	
									1000
								

								 	
									int
								

								
	
									pollTimeout (seda)
								

								 	
									The timeout used when consuming from the SEDA queue. When a timeout occurs, the consumer can check whether it is allowed to continue running. Setting a lower value allows the consumer to react more quickly upon shutdown.
								

								 	
									1000
								

								 	
									int
								

								
	
									transacted (seda)
								

								 	
									If set to true then the consumer runs in transaction mode, where the messages in the seda queue will only be removed if the transaction commits, which happens when the processing is complete.
								

								 	
									false
								

								 	
									boolean
								

								
	
									transferExchange (seda)
								

								 	
									If set to true the whole Exchange will be transfered. If header or body contains not serializable objects, they will be skipped.
								

								 	
									false
								

								 	
									boolean
								

								

Chapter 140. Hazelcast Topic Component

			Available as of Camel version 2.15
		

			The Hazelcast Topic component is one of Camel Hazelcast Components which allows you to access Hazelcast distributed topic.
		
Options

				The Hazelcast Topic component supports 3 options which are listed below.
			
	Name	Description	Default	Type
	
								hazelcastInstance (advanced)
							

							 	
								The hazelcast instance reference which can be used for hazelcast endpoint. If you don’t specify the instance reference, camel use the default hazelcast instance from the camel-hazelcast instance.
							

							 	 	
								HazelcastInstance
							

							
	
								hazelcastMode (advanced)
							

							 	
								The hazelcast mode reference which kind of instance should be used. If you don’t specify the mode, then the node mode will be the default.
							

							 	
								node
							

							 	
								String
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The Hazelcast Topic endpoint is configured using URI syntax:
			
hazelcast-topic:cacheName

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									cacheName
								

								 	
									Required The name of the cache
								

								 	 	
									String
								

								

Query Parameters (16 parameters):

	Name	Description	Default	Type
	
									defaultOperation (common)
								

								 	
									To specify a default operation to use, if no operation header has been provided.
								

								 	 	
									HazelcastOperation
								

								
	
									hazelcastInstance (common)
								

								 	
									The hazelcast instance reference which can be used for hazelcast endpoint.
								

								 	 	
									HazelcastInstance
								

								
	
									hazelcastInstanceName (common)
								

								 	
									The hazelcast instance reference name which can be used for hazelcast endpoint. If you don’t specify the instance reference, camel use the default hazelcast instance from the camel-hazelcast instance.
								

								 	 	
									String
								

								
	
									reliable (common)
								

								 	
									Define if the endpoint will use a reliable Topic struct or not.
								

								 	
									false
								

								 	
									boolean
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									pollingTimeout (consumer)
								

								 	
									Define the polling timeout of the Queue consumer in Poll mode
								

								 	
									10000
								

								 	
									long
								

								
	
									poolSize (consumer)
								

								 	
									Define the Pool size for Queue Consumer Executor
								

								 	
									1
								

								 	
									int
								

								
	
									queueConsumerMode (consumer)
								

								 	
									Define the Queue Consumer mode: Listen or Poll
								

								 	
									Listen
								

								 	
									HazelcastQueueConsumer Mode
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									concurrentConsumers (seda)
								

								 	
									To use concurrent consumers polling from the SEDA queue.
								

								 	
									1
								

								 	
									int
								

								
	
									onErrorDelay (seda)
								

								 	
									Milliseconds before consumer continues polling after an error has occurred.
								

								 	
									1000
								

								 	
									int
								

								
	
									pollTimeout (seda)
								

								 	
									The timeout used when consuming from the SEDA queue. When a timeout occurs, the consumer can check whether it is allowed to continue running. Setting a lower value allows the consumer to react more quickly upon shutdown.
								

								 	
									1000
								

								 	
									int
								

								
	
									transacted (seda)
								

								 	
									If set to true then the consumer runs in transaction mode, where the messages in the seda queue will only be removed if the transaction commits, which happens when the processing is complete.
								

								 	
									false
								

								 	
									boolean
								

								
	
									transferExchange (seda)
								

								 	
									If set to true the whole Exchange will be transfered. If header or body contains not serializable objects, they will be skipped.
								

								 	
									false
								

								 	
									boolean
								

								

Topic producer – to(“hazelcast-topic:foo”)

				The topic producer provides only one operation (publish).
			
Sample for publish:

from("direct:add")
.setHeader(HazelcastConstants.OPERATION, constant(HazelcastOperation.PUBLISH))
.toF("hazelcast-%sbar", HazelcastConstants.PUBLISH_OPERATION);

Topic consumer – from(“hazelcast-topic:foo”)

				The topic consumer provides only one operation (received). This component is supposed to support multiple consumption as it’s expected when it comes to topics so you are free to have as much consumers as you need on the same hazelcast topic.
			
fromF("hazelcast-%sfoo", HazelcastConstants.TOPIC_PREFIX)
 .choice()
 .when(header(HazelcastConstants.LISTENER_ACTION).isEqualTo(HazelcastConstants.RECEIVED))
 .log("...message received")
 .otherwise()
 .log("...this should never have happened")

Chapter 141. HBase Component

			Available as of Camel version 2.10
		

			This component provides an idemptotent repository, producers and consumers for Apache HBase.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-hbase</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>
Apache HBase Overview

				HBase is an open-source, distributed, versioned, column-oriented store modeled after Google’s Bigtable: A Distributed Storage System for Structured Data. You can use HBase when you need random, realtime read/write access to your Big Data. More information at Apache HBase.
			

Camel and HBase

				When using a datasotre inside a camel route, there is always the chalenge of specifying how the camel message will stored to the datastore. In document based stores things are more easy as the message body can be directly mapped to a document. In relational databases an ORM solution can be used to map properties to columns etc. In column based stores things are more challenging as there is no standard way to perform that kind of mapping.
			

				HBase adds two additional challenges:
			
	
						HBase groups columns into families, so just mapping a property to a column using a name convention is just not enough.
					
	
						HBase doesn’t have the notion of type, which means that it stores everything as byte[] and doesn’t know if the byte[] represents a String, a Number, a serialized Java object or just binary data.
					

				To overcome these challenges, camel-hbase makes use of the message headers to specify the mapping of the message to HBase columns. It also provides the ability to use some camel-hbase provided classes that model HBase data and can be easily convert to and from xml/json etc.
 Finally it provides the ability to the user to implement and use his own mapping strategy.
			

				Regardless of the mapping strategy camel-hbase will convert a message into an org.apache.camel.component.hbase.model.HBaseData object and use that object for its internal operations.
			

Configuring the component

				The HBase component can be provided a custom HBaseConfiguration object as a property or it can create an HBase configuration object on its own based on the HBase related resources that are found on classpath.
			
 <bean id="hbase" class="org.apache.camel.component.hbase.HBaseComponent">
 <property name="configuration" ref="config"/>
 </bean>

				If no configuration object is provided to the component, the component will create one. The created configuration will search the class path for an hbase-site.xml file, from which it will draw the configuration. You can find more information about how to configure HBase clients at: HBase client configuration and dependencies
			

HBase Producer

				As mentioned above camel provides produers endpoints for HBase. This allows you to store, delete, retrieve or query data from HBase using your camel routes.
			
hbase://table[?options]

				where table is the table name.
			

				The supported operations are:
			
	
						Put
					
	
						Get
					
	
						Delete
					
	
						Scan
					

Supported URI options

					The HBase component supports 3 options which are listed below.
				
	Name	Description	Default	Type
	
									configuration (advanced)
								

								 	
									To use the shared configuration
								

								 	 	
									Configuration
								

								
	
									poolMaxSize (common)
								

								 	
									Maximum number of references to keep for each table in the HTable pool. The default value is 10.
								

								 	
									10
								

								 	
									int
								

								
	
									resolveProperty Placeholders (advanced)
								

								 	
									Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
								

								 	
									true
								

								 	
									boolean
								

								

					The HBase endpoint is configured using URI syntax:
				
hbase:tableName

					with the following path and query parameters:
				

Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									tableName
								

								 	
									Required The name of the table
								

								 	 	
									String
								

								

Query Parameters (16 parameters):

	Name	Description	Default	Type
	
									cellMappingStrategyFactory (common)
								

								 	
									To use a custom CellMappingStrategyFactory that is responsible for mapping cells.
								

								 	 	
									CellMappingStrategy Factory
								

								
	
									filters (common)
								

								 	
									A list of filters to use.
								

								 	 	
									List
								

								
	
									mappingStrategyClassName (common)
								

								 	
									The class name of a custom mapping strategy implementation.
								

								 	 	
									String
								

								
	
									mappingStrategyName (common)
								

								 	
									The strategy to use for mapping Camel messages to HBase columns. Supported values: header, or body.
								

								 	 	
									String
								

								
	
									rowMapping (common)
								

								 	
									To map the key/values from the Map to a HBaseRow. The following keys is supported: rowId - The id of the row. This has limited use as the row usually changes per Exchange. rowType - The type to covert row id to. Supported operations: CamelHBaseScan. family - The column family. Supports a number suffix for referring to more than one columns. qualifier - The column qualifier. Supports a number suffix for referring to more than one columns. value - The value. Supports a number suffix for referring to more than one columns valueType - The value type. Supports a number suffix for referring to more than one columns. Supported operations: CamelHBaseGet, and CamelHBaseScan.
								

								 	 	
									Map
								

								
	
									rowModel (common)
								

								 	
									An instance of org.apache.camel.component.hbase.model.HBaseRow which describes how each row should be modeled
								

								 	 	
									HBaseRow
								

								
	
									userGroupInformation (common)
								

								 	
									Defines privileges to communicate with HBase such as using kerberos.
								

								 	 	
									UserGroupInformation
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									maxMessagesPerPoll (consumer)
								

								 	
									Gets the maximum number of messages as a limit to poll at each polling. Is default unlimited, but use 0 or negative number to disable it as unlimited.
								

								 	 	
									int
								

								
	
									operation (consumer)
								

								 	
									The HBase operation to perform
								

								 	 	
									String
								

								
	
									remove (consumer)
								

								 	
									If the option is true, Camel HBase Consumer will remove the rows which it processes.
								

								 	
									true
								

								 	
									boolean
								

								
	
									removeHandler (consumer)
								

								 	
									To use a custom HBaseRemoveHandler that is executed when a row is to be removed.
								

								 	 	
									HBaseRemoveHandler
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									maxResults (producer)
								

								 	
									The maximum number of rows to scan.
								

								 	
									100
								

								 	
									int
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

Put Operations.

					HBase is a column based store, which allows you to store data into a specific column of a specific row. Columns are grouped into families, so in order to specify a column you need to specify the column family and the qualifier of that column. To store data into a specific column you need to specify both the column and the row.
				

					The simplest scenario for storing data into HBase from a camel route, would be to store part of the message body to specified HBase column.
				
 <route>
 <from uri="direct:in"/>
 <!-- Set the HBase Row -->
 <setHeader headerName="CamelHBaseRowId">
 <el>${in.body.id}</el>
 </setHeader>
 <!-- Set the HBase Value -->
 <setHeader headerName="CamelHBaseValue">
 <el>${in.body.value}</el>
 </setHeader>
 <to uri="hbase:mytable?operation=CamelHBasePut&family=myfamily&qualifier=myqualifier"/>
 </route>

					The route above assumes that the message body contains an object that has an id and value property and will store the content of value in the HBase column myfamily:myqualifier in the row specified by id. If we needed to specify more than one column/value pairs we could just specify additional column mappings. Notice that you must use numbers from the 2nd header onwards, eg RowId2, RowId3, RowId4, etc. Only the 1st header does not have the number 1.
				
 <route>
 <from uri="direct:in"/>
 <!-- Set the HBase Row 1st column -->
 <setHeader headerName="CamelHBaseRowId">
 <el>${in.body.id}</el>
 </setHeader>
 <!-- Set the HBase Row 2nd column -->
 <setHeader headerName="CamelHBaseRowId2">
 <el>${in.body.id}</el>
 </setHeader>
 <!-- Set the HBase Value for 1st column -->
 <setHeader headerName="CamelHBaseValue">
 <el>${in.body.value}</el>
 </setHeader>
 <!-- Set the HBase Value for 2nd column -->
 <setHeader headerName="CamelHBaseValue2">
 <el>${in.body.othervalue}</el>
 </setHeader>
 <to uri="hbase:mytable?operation=CamelHBasePut&family=myfamily&qualifier=myqualifier&family2=myfamily&qualifier2=myqualifier2"/>
 </route>

					It is important to remember that you can use uri options, message headers or a combination of both. It is recommended to specify constants as part of the uri and dynamic values as headers. If something is defined both as header and as part of the uri, the header will be used.
				

Get Operations.

					A Get Operation is an operation that is used to retrieve one or more values from a specified HBase row. To specify what are the values that you want to retrieve you can just specify them as part of the uri or as message headers.
				
 <route>
 <from uri="direct:in"/>
 <!-- Set the HBase Row of the Get -->
 <setHeader headerName="CamelHBaseRowId">
 <el>${in.body.id}</el>
 </setHeader>
 <to uri="hbase:mytable?operation=CamelHBaseGet&family=myfamily&qualifier=myqualifier&valueType=java.lang.Long"/>
 <to uri="log:out"/>
 </route>

					In the example above the result of the get operation will be stored as a header with name CamelHBaseValue.
				

Delete Operations.

					You can also you camel-hbase to perform HBase delete operation. The delete operation will remove an entire row. All that needs to be specified is one or more rows as part of the message headers.
				
 <route>
 <from uri="direct:in"/>
 <!-- Set the HBase Row of the Get -->
 <setHeader headerName="CamelHBaseRowId">
 <el>${in.body.id}</el>
 </setHeader>
 <to uri="hbase:mytable?operation=CamelHBaseDelete"/>
 </route>

Scan Operations.

					A scan operation is the equivalent of a query in HBase. You can use the scan operation to retrieve multiple rows. To specify what columns should be part of the result and also specify how the values will be converted to objects you can use either uri options or headers.
				
 <route>
 <from uri="direct:in"/>
 <to uri="hbase:mytable?operation=CamelHBaseScan&family=myfamily&qualifier=myqualifier&valueType=java.lang.Long&rowType=java.lang.String"/>
 <to uri="log:out"/>
 </route>

					In this case its probable that you also also need to specify a list of filters for limiting the results. You can specify a list of filters as part of the uri and camel will return only the rows that satisfy ALL the filters.
 To have a filter that will be aware of the information that is part of the message, camel defines the ModelAwareFilter. This will allow your filter to take into consideration the model that is defined by the message and the mapping strategy.
 When using a ModelAwareFilter camel-hbase will apply the selected mapping strategy to the in message, will create an object that models the mapping and will pass that object to the Filter.
				

					For example to perform scan using as criteria the message headers, you can make use of the ModelAwareColumnMatchingFilter as shown below.
				
 <route>
 <from uri="direct:scan"/>
 <!-- Set the Criteria -->
 <setHeader headerName="CamelHBaseFamily">
 <constant>name</constant>
 </setHeader>
 <setHeader headerName="CamelHBaseQualifier">
 <constant>first</constant>
 </setHeader>
 <setHeader headerName="CamelHBaseValue">
 <el>in.body.firstName</el>
 </setHeader>
 <setHeader headerName="CamelHBaseFamily2">
 <constant>name</constant>
 </setHeader>
 <setHeader headerName="CamelHBaseQualifier2">
 <constant>last</constant>
 </setHeader>
 <setHeader headerName="CamelHBaseValue2">
 <el>in.body.lastName</el>
 </setHeader>
 <!-- Set additional fields that you want to be return by skipping value -->
 <setHeader headerName="CamelHBaseFamily3">
 <constant>address</constant>
 </setHeader>
 <setHeader headerName="CamelHBaseQualifier3">
 <constant>country</constant>
 </setHeader>
 <to uri="hbase:mytable?operation=CamelHBaseScan&filters=#myFilterList"/>
 </route>

 <bean id="myFilters" class="java.util.ArrayList">
 <constructor-arg>
 <list>
 <bean class="org.apache.camel.component.hbase.filters.ModelAwareColumnMatchingFilter"/>
 </list>
 </constructor-arg>
 </bean>

					The route above assumes that a pojo is with properties firstName and lastName is passed as the message body, it takes those properties and adds them as part of the message headers. The default mapping strategy will create a model object that will map the headers to HBase columns and will pass that model the the ModelAwareColumnMatchingFilter. The filter will filter out any rows, that do not contain columns that match the model. It is like query by example.
				

HBase Consumer

				The Camel HBase Consumer, will perform repeated scan on the specified HBase table and will return the scan results as part of the message. You can either specify header mapping (default) or body mapping. The later will just add the org.apache.camel.component.hbase.model.HBaseData as part of the message body.
			
hbase://table[?options]

				You can specify the columns that you want to be return and their types as part of the uri options:
			
hbase:mutable?family=name&qualifer=first&valueType=java.lang.String&family=address&qualifer=number&valueType2=java.lang.Integer&rowType=java.lang.Long

				The example above will create a model object that is consisted of the specified fields and the scan results will populate the model object with values. Finally the mapping strategy will be used to map this model to the camel message.
			

HBase Idempotent repository

				The camel-hbase component also provides an idempotent repository which can be used when you want to make sure that each message is processed only once. The HBase idempotent repository is configured with a table, a column family and a column qualifier and will create to that table a row per message.
			
HBaseConfiguration configuration = HBaseConfiguration.create();
HBaseIdempotentRepository repository = new HBaseIdempotentRepository(configuration, tableName, family, qualifier);

from("direct:in")
 .idempotentConsumer(header("messageId"), repository)
 .to("log:out);

HBase Mapping

				It was mentioned above that you the default mapping strategies are header and body mapping.
 Below you can find some detailed examples of how each mapping strategy works.
			
HBase Header mapping Examples

					The header mapping is the default mapping. To put the value "myvalue" into HBase row "myrow" and column "myfamily:mycolum" the message should contain the following headers:
				
	Header	Value
	
									CamelHBaseRowId
								

								 	
									myrow
								

								
	
									CamelHBaseFamily
								

								 	
									myfamily
								

								
	
									CamelHBaseQualifier
								

								 	
									myqualifier
								

								
	
									CamelHBaseValue
								

								 	
									myvalue
								

								

					To put more values for different columns and / or different rows you can specify additional headers suffixed with the index of the headers, e.g:
				
	Header	Value
	
									CamelHBaseRowId
								

								 	
									myrow
								

								
	
									CamelHBaseFamily
								

								 	
									myfamily
								

								
	
									CamelHBaseQualifier
								

								 	
									myqualifier
								

								
	
									CamelHBaseValue
								

								 	
									myvalue
								

								
	
									CamelHBaseRowId2
								

								 	
									myrow2
								

								
	
									CamelHBaseFamily2
								

								 	
									myfamily
								

								
	
									CamelHBaseQualifier2
								

								 	
									myqualifier
								

								
	
									CamelHBaseValue2
								

								 	
									myvalue2
								

								

					In the case of retrieval operations such as get or scan you can also specify for each column the type that you want the data to be converted to. For exampe:
				
	Header	Value
	
									CamelHBaseFamily
								

								 	
									myfamily
								

								
	
									CamelHBaseQualifier
								

								 	
									myqualifier
								

								
	
									CamelHBaseValueType
								

								 	
									Long
								

								

					Please note that in order to avoid boilerplate headers that are considered constant for all messages, you can also specify them as part of the endpoint uri, as you will see below.
				

Body mapping Examples

					In order to use the body mapping strategy you will have to specify the option mappingStrategy as part of the uri, for example:
				
hbase:mytable?mappingStrategyName=body

					To use the body mapping strategy the body needs to contain an instance of org.apache.camel.component.hbase.model.HBaseData. You can construct t
				
HBaseData data = new HBaseData();
HBaseRow row = new HBaseRow();
row.setId("myRowId");
HBaseCell cell = new HBaseCell();
cell.setFamily("myfamily");
cell.setQualifier("myqualifier");
cell.setValue("myValue");
row.getCells().add(cell);
data.addRows().add(row);

					The object above can be used for example in a put operation and will result in creating or updating the row with id myRowId and add the value myvalue to the column myfamily:myqualifier.
 The body mapping strategy might not seem very appealing at first. The advantage it has over the header mapping strategy is that the HBaseData object can be easily converted to or from xml/json.
				

See also

	
						Polling Consumer
					
	
						Apache HBase
					

Chapter 142. HDFS Component (deprecated)

			Available as of Camel version 2.8
		

			The hdfs component enables you to read and write messages from/to an HDFS file system. HDFS is the distributed file system at the heart of Hadoop.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-hdfs</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>
URI format

hdfs://hostname[:port][/path][?options]

				You can append query options to the URI in the following format, ?option=value&option=value&…​
 The path is treated in the following way:
			
	
						as a consumer, if it’s a file, it just reads the file, otherwise if it represents a directory it scans all the file under the path satisfying the configured pattern. All the files under that directory must be of the same type.
					
	
						as a producer, if at least one split strategy is defined, the path is considered a directory and under that directory the producer creates a different file per split named using the configured UuidGenerator.
					

				Note
			

				When consuming from hdfs then in normal mode, a file is split into chunks, producing a message per chunk. You can configure the size of the chunk using the chunkSize option. If you want to read from hdfs and write to a regular file using the file component, then you can use the fileMode=Append to append each of the chunks together.
			

				
			

Options

				The HDFS component supports 2 options which are listed below.
			
	Name	Description	Default	Type
	
								jAASConfiguration (common)
							

							 	
								To use the given configuration for security with JAAS.
							

							 	 	
								Configuration
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The HDFS endpoint is configured using URI syntax:
			
hdfs:hostName:port/path

				with the following path and query parameters:
			
Path Parameters (3 parameters):

	Name	Description	Default	Type
	
									hostName
								

								 	
									Required HDFS host to use
								

								 	 	
									String
								

								
	
									port
								

								 	
									HDFS port to use
								

								 	
									8020
								

								 	
									int
								

								
	
									path
								

								 	
									Required The directory path to use
								

								 	 	
									String
								

								

Query Parameters (38 parameters):

	Name	Description	Default	Type
	
									connectOnStartup (common)
								

								 	
									Whether to connect to the HDFS file system on starting the producer/consumer. If false then the connection is created on-demand. Notice that HDFS may take up till 15 minutes to establish a connection, as it has hardcoded 45 x 20 sec redelivery. By setting this option to false allows your application to startup, and not block for up till 15 minutes.
								

								 	
									true
								

								 	
									boolean
								

								
	
									fileSystemType (common)
								

								 	
									Set to LOCAL to not use HDFS but local java.io.File instead.
								

								 	
									HDFS
								

								 	
									HdfsFileSystemType
								

								
	
									fileType (common)
								

								 	
									The file type to use. For more details see Hadoop HDFS documentation about the various files types.
								

								 	
									NORMAL_FILE
								

								 	
									HdfsFileType
								

								
	
									keyType (common)
								

								 	
									The type for the key in case of sequence or map files.
								

								 	
									NULL
								

								 	
									WritableType
								

								
	
									owner (common)
								

								 	
									The file owner must match this owner for the consumer to pickup the file. Otherwise the file is skipped.
								

								 	 	
									String
								

								
	
									valueType (common)
								

								 	
									The type for the key in case of sequence or map files
								

								 	
									BYTES
								

								 	
									WritableType
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									delay (consumer)
								

								 	
									The interval (milliseconds) between the directory scans.
								

								 	
									1000
								

								 	
									long
								

								
	
									initialDelay (consumer)
								

								 	
									For the consumer, how much to wait (milliseconds) before to start scanning the directory.
								

								 	 	
									long
								

								
	
									pattern (consumer)
								

								 	
									The pattern used for scanning the directory
								

								 	
									*
								

								 	
									String
								

								
	
									sendEmptyMessageWhenIdle (consumer)
								

								 	
									If the polling consumer did not poll any files, you can enable this option to send an empty message (no body) instead.
								

								 	
									false
								

								 	
									boolean
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									pollStrategy (consumer)
								

								 	
									A pluggable org.apache.camel.PollingConsumerPollingStrategy allowing you to provide your custom implementation to control error handling usually occurred during the poll operation before an Exchange have been created and being routed in Camel.
								

								 	 	
									PollingConsumerPoll Strategy
								

								
	
									append (producer)
								

								 	
									Append to existing file. Notice that not all HDFS file systems support the append option.
								

								 	
									false
								

								 	
									boolean
								

								
	
									overwrite (producer)
								

								 	
									Whether to overwrite existing files with the same name
								

								 	
									true
								

								 	
									boolean
								

								
	
									blockSize (advanced)
								

								 	
									The size of the HDFS blocks
								

								 	
									67108864
								

								 	
									long
								

								
	
									bufferSize (advanced)
								

								 	
									The buffer size used by HDFS
								

								 	
									4096
								

								 	
									int
								

								
	
									checkIdleInterval (advanced)
								

								 	
									How often (time in millis) in to run the idle checker background task. This option is only in use if the splitter strategy is IDLE.
								

								 	
									500
								

								 	
									int
								

								
	
									chunkSize (advanced)
								

								 	
									When reading a normal file, this is split into chunks producing a message per chunk.
								

								 	
									4096
								

								 	
									int
								

								
	
									compressionCodec (advanced)
								

								 	
									The compression codec to use
								

								 	
									DEFAULT
								

								 	
									HdfsCompressionCodec
								

								
	
									compressionType (advanced)
								

								 	
									The compression type to use (is default not in use)
								

								 	
									NONE
								

								 	
									CompressionType
								

								
	
									openedSuffix (advanced)
								

								 	
									When a file is opened for reading/writing the file is renamed with this suffix to avoid to read it during the writing phase.
								

								 	
									opened
								

								 	
									String
								

								
	
									readSuffix (advanced)
								

								 	
									Once the file has been read is renamed with this suffix to avoid to read it again.
								

								 	
									read
								

								 	
									String
								

								
	
									replication (advanced)
								

								 	
									The HDFS replication factor
								

								 	
									3
								

								 	
									short
								

								
	
									splitStrategy (advanced)
								

								 	
									In the current version of Hadoop opening a file in append mode is disabled since it’s not very reliable. So, for the moment, it’s only possible to create new files. The Camel HDFS endpoint tries to solve this problem in this way: If the split strategy option has been defined, the hdfs path will be used as a directory and files will be created using the configured UuidGenerator. Every time a splitting condition is met, a new file is created. The splitStrategy option is defined as a string with the following syntax: splitStrategy=ST:value,ST:value,…​ where ST can be: BYTES a new file is created, and the old is closed when the number of written bytes is more than value MESSAGES a new file is created, and the old is closed when the number of written messages is more than value IDLE a new file is created, and the old is closed when no writing happened in the last value milliseconds
								

								 	 	
									String
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									backoffErrorThreshold (scheduler)
								

								 	
									The number of subsequent error polls (failed due some error) that should happen before the backoffMultipler should kick-in.
								

								 	 	
									int
								

								
	
									backoffIdleThreshold (scheduler)
								

								 	
									The number of subsequent idle polls that should happen before the backoffMultipler should kick-in.
								

								 	 	
									int
								

								
	
									backoffMultiplier (scheduler)
								

								 	
									To let the scheduled polling consumer backoff if there has been a number of subsequent idles/errors in a row. The multiplier is then the number of polls that will be skipped before the next actual attempt is happening again. When this option is in use then backoffIdleThreshold and/or backoffErrorThreshold must also be configured.
								

								 	 	
									int
								

								
	
									greedy (scheduler)
								

								 	
									If greedy is enabled, then the ScheduledPollConsumer will run immediately again, if the previous run polled 1 or more messages.
								

								 	
									false
								

								 	
									boolean
								

								
	
									runLoggingLevel (scheduler)
								

								 	
									The consumer logs a start/complete log line when it polls. This option allows you to configure the logging level for that.
								

								 	
									TRACE
								

								 	
									LoggingLevel
								

								
	
									scheduledExecutorService (scheduler)
								

								 	
									Allows for configuring a custom/shared thread pool to use for the consumer. By default each consumer has its own single threaded thread pool.
								

								 	 	
									ScheduledExecutor Service
								

								
	
									scheduler (scheduler)
								

								 	
									To use a cron scheduler from either camel-spring or camel-quartz2 component
								

								 	
									none
								

								 	
									ScheduledPollConsumer Scheduler
								

								
	
									schedulerProperties (scheduler)
								

								 	
									To configure additional properties when using a custom scheduler or any of the Quartz2, Spring based scheduler.
								

								 	 	
									Map
								

								
	
									startScheduler (scheduler)
								

								 	
									Whether the scheduler should be auto started.
								

								 	
									true
								

								 	
									boolean
								

								
	
									timeUnit (scheduler)
								

								 	
									Time unit for initialDelay and delay options.
								

								 	
									MILLISECONDS
								

								 	
									TimeUnit
								

								
	
									useFixedDelay (scheduler)
								

								 	
									Controls if fixed delay or fixed rate is used. See ScheduledExecutorService in JDK for details.
								

								 	
									true
								

								 	
									boolean
								

								

KeyType and ValueType

	
							NULL it means that the key or the value is absent
						
	
							BYTE for writing a byte, the java Byte class is mapped into a BYTE
						
	
							BYTES for writing a sequence of bytes. It maps the java ByteBuffer class
						
	
							INT for writing java integer
						
	
							FLOAT for writing java float
						
	
							LONG for writing java long
						
	
							DOUBLE for writing java double
						
	
							TEXT for writing java strings
						

					BYTES is also used with everything else, for example, in Camel a file is sent around as an InputStream, int this case is written in a sequence file or a map file as a sequence of bytes.
				

Splitting Strategy

				In the current version of Hadoop opening a file in append mode is disabled since it’s not very reliable. So, for the moment, it’s only possible to create new files. The Camel HDFS endpoint tries to solve this problem in this way:
			
	
						If the split strategy option has been defined, the hdfs path will be used as a directory and files will be created using the configured UuidGenerator
					
	
						Every time a splitting condition is met, a new file is created.
 The splitStrategy option is defined as a string with the following syntax:
 splitStrategy=<ST>:<value>,<ST>:<value>,*
					

				where <ST> can be:
			
	
						BYTES a new file is created, and the old is closed when the number of written bytes is more than <value>
					
	
						MESSAGES a new file is created, and the old is closed when the number of written messages is more than <value>
					
	
						IDLE a new file is created, and the old is closed when no writing happened in the last <value> milliseconds
					

				Note
			

				note that this strategy currently requires either setting an IDLE value or setting the HdfsConstants.HDFS_CLOSE header to false to use the BYTES/MESSAGES configuration…​otherwise, the file will be closed with each message
			

				for example:
			
hdfs://localhost/tmp/simple-file?splitStrategy=IDLE:1000,BYTES:5

				it means: a new file is created either when it has been idle for more than 1 second or if more than 5 bytes have been written. So, running hadoop fs -ls /tmp/simple-file you’ll see that multiple files have been created.
			

Message Headers

				The following headers are supported by this component:
			
Producer only

	Header	Description
	
									CamelFileName
								

								 	
									Camel 2.13: Specifies the name of the file to write (relative to the endpoint path). The name can be a String or an Expression object. Only relevant when not using a split strategy.
								

								

Controlling to close file stream

				Available as of Camel 2.10.4
			

				When using the HDFS producer without a split strategy, then the file output stream is by default closed after the write. However you may want to keep the stream open, and only explicitly close the stream later. For that you can use the header HdfsConstants.HDFS_CLOSE (value = "CamelHdfsClose") to control this. Setting this value to a boolean allows you to explicit control whether the stream should be closed or not.
			

				Notice this does not apply if you use a split strategy, as there are various strategies that can control when the stream is closed.
			

Using this component in OSGi

				This component is fully functional in an OSGi environment, however, it requires some actions from the user. Hadoop uses the thread context class loader in order to load resources. Usually, the thread context classloader will be the bundle class loader of the bundle that contains the routes. So, the default configuration files need to be visible from the bundle class loader. A typical way to deal with it is to keep a copy of core-default.xml in your bundle root. That file can be found in the hadoop-common.jar.
			

Chapter 143. HDFS2 Component

			Available as of Camel version 2.14
		

			The hdfs2 component enables you to read and write messages from/to an HDFS file system using Hadoop 2.x. HDFS is the distributed file system at the heart of Hadoop.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-hdfs2</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>
URI format

hdfs2://hostname[:port][/path][?options]

				You can append query options to the URI in the following format, ?option=value&option=value&…​
 The path is treated in the following way:
			
	
						as a consumer, if it’s a file, it just reads the file, otherwise if it represents a directory it scans all the file under the path satisfying the configured pattern. All the files under that directory must be of the same type.
					
	
						as a producer, if at least one split strategy is defined, the path is considered a directory and under that directory the producer creates a different file per split named using the configured UuidGenerator.
					

				When consuming from hdfs2 then in normal mode, a file is split into chunks, producing a message per chunk. You can configure the size of the chunk using the chunkSize option. If you want to read from hdfs and write to a regular file using the file component, then you can use the fileMode=Append to append each of the chunks together.
			

Options

				The HDFS2 component supports 2 options which are listed below.
			
	Name	Description	Default	Type
	
								jAASConfiguration (common)
							

							 	
								To use the given configuration for security with JAAS.
							

							 	 	
								Configuration
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The HDFS2 endpoint is configured using URI syntax:
			
hdfs2:hostName:port/path

				with the following path and query parameters:
			
Path Parameters (3 parameters):

	Name	Description	Default	Type
	
									hostName
								

								 	
									Required HDFS host to use
								

								 	 	
									String
								

								
	
									port
								

								 	
									HDFS port to use
								

								 	
									8020
								

								 	
									int
								

								
	
									path
								

								 	
									Required The directory path to use
								

								 	 	
									String
								

								

Query Parameters (38 parameters):

	Name	Description	Default	Type
	
									connectOnStartup (common)
								

								 	
									Whether to connect to the HDFS file system on starting the producer/consumer. If false then the connection is created on-demand. Notice that HDFS may take up till 15 minutes to establish a connection, as it has hardcoded 45 x 20 sec redelivery. By setting this option to false allows your application to startup, and not block for up till 15 minutes.
								

								 	
									true
								

								 	
									boolean
								

								
	
									fileSystemType (common)
								

								 	
									Set to LOCAL to not use HDFS but local java.io.File instead.
								

								 	
									HDFS
								

								 	
									HdfsFileSystemType
								

								
	
									fileType (common)
								

								 	
									The file type to use. For more details see Hadoop HDFS documentation about the various files types.
								

								 	
									NORMAL_FILE
								

								 	
									HdfsFileType
								

								
	
									keyType (common)
								

								 	
									The type for the key in case of sequence or map files.
								

								 	
									NULL
								

								 	
									WritableType
								

								
	
									owner (common)
								

								 	
									The file owner must match this owner for the consumer to pickup the file. Otherwise the file is skipped.
								

								 	 	
									String
								

								
	
									valueType (common)
								

								 	
									The type for the key in case of sequence or map files
								

								 	
									BYTES
								

								 	
									WritableType
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									pattern (consumer)
								

								 	
									The pattern used for scanning the directory
								

								 	
									*
								

								 	
									String
								

								
	
									sendEmptyMessageWhenIdle (consumer)
								

								 	
									If the polling consumer did not poll any files, you can enable this option to send an empty message (no body) instead.
								

								 	
									false
								

								 	
									boolean
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									pollStrategy (consumer)
								

								 	
									A pluggable org.apache.camel.PollingConsumerPollingStrategy allowing you to provide your custom implementation to control error handling usually occurred during the poll operation before an Exchange have been created and being routed in Camel.
								

								 	 	
									PollingConsumerPoll Strategy
								

								
	
									append (producer)
								

								 	
									Append to existing file. Notice that not all HDFS file systems support the append option.
								

								 	
									false
								

								 	
									boolean
								

								
	
									overwrite (producer)
								

								 	
									Whether to overwrite existing files with the same name
								

								 	
									true
								

								 	
									boolean
								

								
	
									blockSize (advanced)
								

								 	
									The size of the HDFS blocks
								

								 	
									67108864
								

								 	
									long
								

								
	
									bufferSize (advanced)
								

								 	
									The buffer size used by HDFS
								

								 	
									4096
								

								 	
									int
								

								
	
									checkIdleInterval (advanced)
								

								 	
									How often (time in millis) in to run the idle checker background task. This option is only in use if the splitter strategy is IDLE.
								

								 	
									500
								

								 	
									int
								

								
	
									chunkSize (advanced)
								

								 	
									When reading a normal file, this is split into chunks producing a message per chunk.
								

								 	
									4096
								

								 	
									int
								

								
	
									compressionCodec (advanced)
								

								 	
									The compression codec to use
								

								 	
									DEFAULT
								

								 	
									HdfsCompressionCodec
								

								
	
									compressionType (advanced)
								

								 	
									The compression type to use (is default not in use)
								

								 	
									NONE
								

								 	
									CompressionType
								

								
	
									openedSuffix (advanced)
								

								 	
									When a file is opened for reading/writing the file is renamed with this suffix to avoid to read it during the writing phase.
								

								 	
									opened
								

								 	
									String
								

								
	
									readSuffix (advanced)
								

								 	
									Once the file has been read is renamed with this suffix to avoid to read it again.
								

								 	
									read
								

								 	
									String
								

								
	
									replication (advanced)
								

								 	
									The HDFS replication factor
								

								 	
									3
								

								 	
									short
								

								
	
									splitStrategy (advanced)
								

								 	
									In the current version of Hadoop opening a file in append mode is disabled since it’s not very reliable. So, for the moment, it’s only possible to create new files. The Camel HDFS endpoint tries to solve this problem in this way: If the split strategy option has been defined, the hdfs path will be used as a directory and files will be created using the configured UuidGenerator. Every time a splitting condition is met, a new file is created. The splitStrategy option is defined as a string with the following syntax: splitStrategy=ST:value,ST:value,…​ where ST can be: BYTES a new file is created, and the old is closed when the number of written bytes is more than value MESSAGES a new file is created, and the old is closed when the number of written messages is more than value IDLE a new file is created, and the old is closed when no writing happened in the last value milliseconds
								

								 	 	
									String
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									backoffErrorThreshold (scheduler)
								

								 	
									The number of subsequent error polls (failed due some error) that should happen before the backoffMultipler should kick-in.
								

								 	 	
									int
								

								
	
									backoffIdleThreshold (scheduler)
								

								 	
									The number of subsequent idle polls that should happen before the backoffMultipler should kick-in.
								

								 	 	
									int
								

								
	
									backoffMultiplier (scheduler)
								

								 	
									To let the scheduled polling consumer backoff if there has been a number of subsequent idles/errors in a row. The multiplier is then the number of polls that will be skipped before the next actual attempt is happening again. When this option is in use then backoffIdleThreshold and/or backoffErrorThreshold must also be configured.
								

								 	 	
									int
								

								
	
									delay (scheduler)
								

								 	
									Milliseconds before the next poll. You can also specify time values using units, such as 60s (60 seconds), 5m30s (5 minutes and 30 seconds), and 1h (1 hour).
								

								 	
									500
								

								 	
									long
								

								
	
									greedy (scheduler)
								

								 	
									If greedy is enabled, then the ScheduledPollConsumer will run immediately again, if the previous run polled 1 or more messages.
								

								 	
									false
								

								 	
									boolean
								

								
	
									initialDelay (scheduler)
								

								 	
									Milliseconds before the first poll starts. You can also specify time values using units, such as 60s (60 seconds), 5m30s (5 minutes and 30 seconds), and 1h (1 hour).
								

								 	
									1000
								

								 	
									long
								

								
	
									runLoggingLevel (scheduler)
								

								 	
									The consumer logs a start/complete log line when it polls. This option allows you to configure the logging level for that.
								

								 	
									TRACE
								

								 	
									LoggingLevel
								

								
	
									scheduledExecutorService (scheduler)
								

								 	
									Allows for configuring a custom/shared thread pool to use for the consumer. By default each consumer has its own single threaded thread pool.
								

								 	 	
									ScheduledExecutor Service
								

								
	
									scheduler (scheduler)
								

								 	
									To use a cron scheduler from either camel-spring or camel-quartz2 component
								

								 	
									none
								

								 	
									ScheduledPollConsumer Scheduler
								

								
	
									schedulerProperties (scheduler)
								

								 	
									To configure additional properties when using a custom scheduler or any of the Quartz2, Spring based scheduler.
								

								 	 	
									Map
								

								
	
									startScheduler (scheduler)
								

								 	
									Whether the scheduler should be auto started.
								

								 	
									true
								

								 	
									boolean
								

								
	
									timeUnit (scheduler)
								

								 	
									Time unit for initialDelay and delay options.
								

								 	
									MILLISECONDS
								

								 	
									TimeUnit
								

								
	
									useFixedDelay (scheduler)
								

								 	
									Controls if fixed delay or fixed rate is used. See ScheduledExecutorService in JDK for details.
								

								 	
									true
								

								 	
									boolean
								

								

KeyType and ValueType

	
							NULL it means that the key or the value is absent
						
	
							BYTE for writing a byte, the java Byte class is mapped into a BYTE
						
	
							BYTES for writing a sequence of bytes. It maps the java ByteBuffer class
						
	
							INT for writing java integer
						
	
							FLOAT for writing java float
						
	
							LONG for writing java long
						
	
							DOUBLE for writing java double
						
	
							TEXT for writing java strings
						

					BYTES is also used with everything else, for example, in Camel a file is sent around as an InputStream, int this case is written in a sequence file or a map file as a sequence of bytes.
				

Splitting Strategy

				In the current version of Hadoop opening a file in append mode is disabled since it’s not very reliable. So, for the moment, it’s only possible to create new files. The Camel HDFS endpoint tries to solve this problem in this way:
			
	
						If the split strategy option has been defined, the hdfs path will be used as a directory and files will be created using the configured UuidGenerator
					
	
						Every time a splitting condition is met, a new file is created.
 The splitStrategy option is defined as a string with the following syntax: splitStrategy=<ST>:<value>,<ST>:<value>,*
					

				where <ST> can be:
			
	
						BYTES a new file is created, and the old is closed when the number of written bytes is more than <value>
					
	
						MESSAGES a new file is created, and the old is closed when the number of written messages is more than <value>
					
	
						IDLE a new file is created, and the old is closed when no writing happened in the last <value> milliseconds
					

				note that this strategy currently requires either setting an IDLE value or setting the HdfsConstants.HDFS_CLOSE header to false to use the BYTES/MESSAGES configuration…​otherwise, the file will be closed with each message
			

				for example:
			
hdfs2://localhost/tmp/simple-file?splitStrategy=IDLE:1000,BYTES:5

				it means: a new file is created either when it has been idle for more than 1 second or if more than 5 bytes have been written. So, running hadoop fs -ls /tmp/simple-file you’ll see that multiple files have been created.
			

Message Headers

				The following headers are supported by this component:
			
Producer only

	Header	Description
	
									CamelFileName
								

								 	
									Camel 2.13: Specifies the name of the file to write (relative to the endpoint path). The name can be a String or an Expression object. Only relevant when not using a split strategy.
								

								

Controlling to close file stream

				When using the HDFS2 producer without a split strategy, then the file output stream is by default closed after the write. However you may want to keep the stream open, and only explicitly close the stream later. For that you can use the header HdfsConstants.HDFS_CLOSE (value = "CamelHdfsClose") to control this. Setting this value to a boolean allows you to explicit control whether the stream should be closed or not.
			

				Notice this does not apply if you use a split strategy, as there are various strategies that can control when the stream is closed.
			

Using this component in OSGi

				There are some quirks when running this component in an OSGi environment related to the mechanism Hadoop 2.x uses to discover different org.apache.hadoop.fs.FileSystem implementations. Hadoop 2.x uses java.util.ServiceLoader which looks for /META-INF/services/org.apache.hadoop.fs.FileSystem files defining available filesystem types and implementations. These resources are not available when running inside OSGi.
			

				As with camel-hdfs component, the default configuration files need to be visible from the bundle class loader. A typical way to deal with it is to keep a copy of core-default.xml (and e.g., hdfs-default.xml) in your bundle root.
			
Using this component with manually defined routes

					There are two options:
				
	
							Package /META-INF/services/org.apache.hadoop.fs.FileSystem resource with bundle that defines the routes. This resource should list all the required Hadoop 2.x filesystem implementations.
						
	
							Provide boilerplate initialization code which populates internal, static cache inside org.apache.hadoop.fs.FileSystem class:
						

org.apache.hadoop.conf.Configuration conf = new org.apache.hadoop.conf.Configuration();
conf.setClass("fs.file.impl", org.apache.hadoop.fs.LocalFileSystem.class, FileSystem.class);
conf.setClass("fs.hdfs.impl", org.apache.hadoop.hdfs.DistributedFileSystem.class, FileSystem.class);
...
FileSystem.get("file:///", conf);
FileSystem.get("hdfs://localhost:9000/", conf);
...

Using this component with Blueprint container

					Two options:
				
	
							Package /META-INF/services/org.apache.hadoop.fs.FileSystem resource with bundle that contains blueprint definition.
						
	
							Add the following to the blueprint definition file:
						

<bean id="hdfsOsgiHelper" class="org.apache.camel.component.hdfs2.HdfsOsgiHelper">
 <argument>
 <map>
 <entry key="file:///" value="org.apache.hadoop.fs.LocalFileSystem" />
 <entry key="hdfs://localhost:9000/" value="org.apache.hadoop.hdfs.DistributedFileSystem" />
 ...
 </map>
 </argument>
</bean>

<bean id="hdfs2" class="org.apache.camel.component.hdfs2.HdfsComponent" depends-on="hdfsOsgiHelper" />

					This way Hadoop 2.x will have correct mapping of URI schemes to filesystem implementations.
				

Chapter 144. HeadersMap

			Available as of Camel 2.20
		

			The camel-headersmap is a faster implementation of a case-insenstive map which can be plugged in and used by Camel at runtime to have slight faster performance in the Camel Message headers.
		
Auto detection from classpath

				To use this implementation all you need to do is to add the camel-headersmap dependency to the classpath, and Camel should auto-detect this on startup and log as follows:
			
Detected and using custom HeadersMapFactory: org.apache.camel.component.headersmap.FastHeadersMapFactory@71e9ebae

				For spring-boot there is a camel-headersmap-starter dependency you should use.
			

Manual enabling

				If you use OSGi or the implementation is not added to the classpath, you need to enable this explict such .Title
			
CamelContext camel = ...

camel.setHeadersMapFactory(new FastHeadersMapFactory());

				Or in XML DSL (spring or blueprint XML file) you can declare the factory as a <bean>
			
<bean id="fastMapFactory" class="org.apache.camel.component.headersmap.FastHeadersMapFactory"/>

				and then Camel should detect the bean and use the factory, which is logged:
			

Chapter 145. Hessian DataFormat (deprecated)

			Available as of Camel version 2.17
		

			Hessian is Data Format for marshalling and unmarshalling messages using Caucho’s Hessian format.
		

			If you want to use Hessian Data Format from Maven, add the following dependency to your pom.xml:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-hessian</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>
Options

				The Hessian dataformat supports 4 options which are listed below.
			
	Name	Default	Java Type	Description
	
								whitelistEnabled
							

							 	
								true
							

							 	
								Boolean
							

							 	
								Define if Whitelist feature is enabled or not
							

							
	
								allowedUnmarshallObjects
							

							 	 	
								String
							

							 	
								Define the allowed objects to be unmarshalled
							

							
	
								deniedUnmarshallObjects
							

							 	 	
								String
							

							 	
								Define the denied objects to be unmarshalled
							

							
	
								contentTypeHeader
							

							 	
								false
							

							 	
								Boolean
							

							 	
								Whether the data format should set the Content-Type header with the type from the data format if the data format is capable of doing so. For example application/xml for data formats marshalling to XML, or application/json for data formats marshalling to JSon etc.
							

							

Using the Hessian data format in Java DSL

 from("direct:in")
 .marshal().hessian();

Using the Hessian data format in Spring DSL

 <camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="direct:in"/>
 <marshal ref="hessian"/>
 </route>
 </camelContext>

Chapter 146. Hipchat Component

			Available as of Camel version 2.15
		

			The Hipchat component supports producing and consuming messages from/to Hipchat service.
		

			Prerequisites
		

			You must have a valid Hipchat user account and get a personal access token that you can use to produce/consume messages.
		
URI Format

hipchat://[host][:port]?options

				You can append query options to the URI in the following format, ?options=value&option2=value&…​
			

URI Options

				The Hipchat component has no options.
			

				The Hipchat endpoint is configured using URI syntax:
			
hipchat:protocol:host:port

				with the following path and query parameters:
			
Path Parameters (3 parameters):

	Name	Description	Default	Type
	
									protocol
								

								 	
									Required The protocol for the hipchat server, such as http.
								

								 	 	
									String
								

								
	
									host
								

								 	
									Required The host for the hipchat server, such as api.hipchat.com
								

								 	 	
									String
								

								
	
									port
								

								 	
									The port for the hipchat server. Is by default 80.
								

								 	
									80
								

								 	
									Integer
								

								

Query Parameters (22 parameters):

	Name	Description	Default	Type
	
									authToken (common)
								

								 	
									OAuth 2 auth token
								

								 	 	
									String
								

								
	
									consumeUsers (common)
								

								 	
									Username(s) when consuming messages from the hiptchat server. Multiple user names can be separated by comma.
								

								 	 	
									String
								

								
	
									httpClient (common)
								

								 	
									The CloseableHttpClient reference from registry to be used during API HTTP requests.
								

								 	
									CloseableHttpClient default from HttpClient library
								

								 	
									CloseableHttpClient
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									sendEmptyMessageWhenIdle (consumer)
								

								 	
									If the polling consumer did not poll any files, you can enable this option to send an empty message (no body) instead.
								

								 	
									false
								

								 	
									boolean
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									pollStrategy (consumer)
								

								 	
									A pluggable org.apache.camel.PollingConsumerPollingStrategy allowing you to provide your custom implementation to control error handling usually occurred during the poll operation before an Exchange have been created and being routed in Camel.
								

								 	 	
									PollingConsumerPoll Strategy
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									backoffErrorThreshold (scheduler)
								

								 	
									The number of subsequent error polls (failed due some error) that should happen before the backoffMultipler should kick-in.
								

								 	 	
									int
								

								
	
									backoffIdleThreshold (scheduler)
								

								 	
									The number of subsequent idle polls that should happen before the backoffMultipler should kick-in.
								

								 	 	
									int
								

								
	
									backoffMultiplier (scheduler)
								

								 	
									To let the scheduled polling consumer backoff if there has been a number of subsequent idles/errors in a row. The multiplier is then the number of polls that will be skipped before the next actual attempt is happening again. When this option is in use then backoffIdleThreshold and/or backoffErrorThreshold must also be configured.
								

								 	 	
									int
								

								
	
									delay (scheduler)
								

								 	
									Milliseconds before the next poll. You can also specify time values using units, such as 60s (60 seconds), 5m30s (5 minutes and 30 seconds), and 1h (1 hour).
								

								 	
									500
								

								 	
									long
								

								
	
									greedy (scheduler)
								

								 	
									If greedy is enabled, then the ScheduledPollConsumer will run immediately again, if the previous run polled 1 or more messages.
								

								 	
									false
								

								 	
									boolean
								

								
	
									initialDelay (scheduler)
								

								 	
									Milliseconds before the first poll starts. You can also specify time values using units, such as 60s (60 seconds), 5m30s (5 minutes and 30 seconds), and 1h (1 hour).
								

								 	
									1000
								

								 	
									long
								

								
	
									runLoggingLevel (scheduler)
								

								 	
									The consumer logs a start/complete log line when it polls. This option allows you to configure the logging level for that.
								

								 	
									TRACE
								

								 	
									LoggingLevel
								

								
	
									scheduledExecutorService (scheduler)
								

								 	
									Allows for configuring a custom/shared thread pool to use for the consumer. By default each consumer has its own single threaded thread pool.
								

								 	 	
									ScheduledExecutor Service
								

								
	
									scheduler (scheduler)
								

								 	
									To use a cron scheduler from either camel-spring or camel-quartz2 component
								

								 	
									none
								

								 	
									ScheduledPollConsumer Scheduler
								

								
	
									schedulerProperties (scheduler)
								

								 	
									To configure additional properties when using a custom scheduler or any of the Quartz2, Spring based scheduler.
								

								 	 	
									Map
								

								
	
									startScheduler (scheduler)
								

								 	
									Whether the scheduler should be auto started.
								

								 	
									true
								

								 	
									boolean
								

								
	
									timeUnit (scheduler)
								

								 	
									Time unit for initialDelay and delay options.
								

								 	
									MILLISECONDS
								

								 	
									TimeUnit
								

								
	
									useFixedDelay (scheduler)
								

								 	
									Controls if fixed delay or fixed rate is used. See ScheduledExecutorService in JDK for details.
								

								 	
									true
								

								 	
									boolean
								

								

Scheduled Poll Consumer

				This component implements the ScheduledPollConsumer. Only the last message from the provided 'consumeUsers' are retrieved and sent as Exchange body. If you do not want the same message to be retrieved again when there are no new messages on next poll then you can add the idempotent consumer as shown below. All the options on the ScheduledPollConsumer can also be used for more control on the consumer.
			
@Override
public void configure() throws Exception {
 String hipchatEndpointUri = "hipchat://?authToken=XXXX&consumeUsers=@Joe,@John";
 from(hipchatEndpointUri)
 .idempotentConsumer(
 simple("${in.header.HipchatMessageDate} ${in.header.HipchatFromUser}"),
 MemoryIdempotentRepository.memoryIdempotentRepository(200)
)
 .to("mock:result");
}
Message headers set by the Hipchat consumer

	Header	Constant	Type	Description
	
									HipchatFromUser
								

								 	
									HipchatConstants.FROM_USER
								

								 	
									String
								

								 	
									The body has the message that was sent from this user to the owner of authToken
								

								
	
									HipchatMessageDate
								

								 	
									HipchatConstants.MESSAGE_DATE
								

								 	
									String
								

								 	
									The date message was sent. The format is ISO-8601 as present in the Hipchat response.
								

								

Hipchat Producer

				Producer can send messages to both Room’s and User’s simultaneously. The body of the exchange is sent as message. Sample usage is shown below. Appropriate headers needs to be set.
			
@Override
 public void configure() throws Exception {
 String hipchatEndpointUri = "hipchat://?authToken=XXXX";
 from("direct:start")
 .to(hipchatEndpointUri)
 .to("mock:result");
 }
Message headers evaluated by the Hipchat producer

	Header	Constant	Type	Description
	
									HipchatToUser
								

								 	
									HipchatConstants.TO_USER
								

								 	
									String
								

								 	
									The Hipchat user to which the message needs to be sent.
								

								
	
									HipchatToRoom
								

								 	
									HipchatConstants.TO_ROOM
								

								 	
									String
								

								 	
									The Hipchat room to which the message needs to be sent.
								

								
	
									HipchatMessageFormat
								

								 	
									HipchatConstants.MESSAGE_FORMAT
								

								 	
									String
								

								 	
									Valid formats are 'text' or 'html'. Default: 'text'
								

								
	
									HipchatMessageBackgroundColor
								

								 	
									HipchatConstants.MESSAGE_BACKGROUND_COLOR
								

								 	
									String
								

								 	
									Valid color values are 'yellow', 'green', 'red', 'purple', 'gray', 'random'. Default: 'yellow' (Room Only)
								

								
	
									HipchatTriggerNotification
								

								 	
									HipchatConstants.TRIGGER_NOTIFY
								

								 	
									String
								

								 	
									Valid values are 'true' or 'false'. Whether this message should trigger a user notification (change the tab color, play a sound, notify mobile phones, etc). Default: 'false' (Room Only)
								

								

Message headers set by the Hipchat producer

	Header	Constant	Type	Description
	
									HipchatToUserResponseStatus
								

								 	
									HipchatConstants.TO_USER_RESPONSE_STATUS
								

								 	
									StatusLine The status of the API response received when message sent to the user.
								

								 	
									HipchatFromUserResponseStatus
								

								

Configuring Http Client

					The HipChat component allow your own HttpClient configuration. This can be done by defining a reference for CloseableHttpClient in the registry (e.g. Spring Context) and then, set the parameter during the Endpoint definition, for example: hipchat:http://api.hipchat.com?httpClient=#myHttpClient.
				
CloseableHttpClient httpclient = HttpClients.custom()
 .setConnectionManager(connManager)
 .setDefaultCookieStore(cookieStore)
 .setDefaultCredentialsProvider(credentialsProvider)
 .setProxy(new HttpHost("myproxy", 8080))
 .setDefaultRequestConfig(defaultRequestConfig)
 .build();

					To see more information about Http Client configuration, please check the official documentation.
				

Dependencies

					Maven users will need to add the following dependency to their pom.xml.
				

					pom.xml
				
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-hipchat</artifactId>
 <version>${camel-version}</version>
</dependency>

					where ${camel-version} must be replaced by the actual version of Camel (2.15.0 or higher)
				

Chapter 147. HL7 DataFormat

			Available as of Camel version 2.0
		

			The HL7 component is used for working with the HL7 MLLP protocol and HL7 v2 messages using the HAPI library.
		

			This component supports the following:
		
	
					HL7 MLLP codec for Mina
				
	
					HL7 MLLP codec for Netty4 from Camel 2.15 onwards
				
	
					Type Converter from/to HAPI and String
				
	
					HL7 DataFormat using the HAPI library
				
	
					Even more ease-of-use as it’s integrated well with the camel-mina2 component.
				

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-hl7</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>
HL7 MLLP protocol

				HL7 is often used with the HL7 MLLP protocol, which is a text based TCP socket based protocol. This component ships with a Mina and Netty4 Codec that conforms to the MLLP protocol so you can easily expose an HL7 listener accepting HL7 requests over the TCP transport layer. To expose a HL7 listener service, the camel-mina2 or camel-netty4 component is used with the HL7MLLPCodec (mina2) or HL7MLLPNettyDecoder/HL7MLLPNettyEncoder (Netty4).
			

				HL7 MLLP codec can be configured as follows:
			
	Name	Default Value	Description
	
								startByte
							

							 	
								0x0b
							

							 	
								The start byte spanning the HL7 payload.
							

							
	
								endByte1
							

							 	
								0x1c
							

							 	
								The first end byte spanning the HL7 payload.
							

							
	
								endByte2
							

							 	
								0x0d
							

							 	
								The 2nd end byte spanning the HL7 payload.
							

							
	
								charset
							

							 	
								JVM Default
							

							 	
								The encoding (a charset name) to use for the codec. If not provided, Camel will use the JVM default Charset.
							

							
	
								produceString
							

							 	
								true
							

							 	
								(as of Camel 2.14.1) If true, the codec creates a string using the defined charset. If false, the codec sends a plain byte array into the route, so that the HL7 Data Format can determine the actual charset from the HL7 message content.
							

							
	
								convertLFtoCR
							

							 	
								false
							

							 	
								Will convert \n to \r (0x0d, 13 decimal) as HL7 stipulates \r as segment terminators. The HAPI library requires the use of \r.
							

							

Exposing an HL7 listener using Mina

					In the Spring XML file, we configure a mina2 endpoint to listen for HL7 requests using TCP on port 8888:
				
<endpoint id="hl7MinaListener" uri="mina2:tcp://localhost:8888?sync=true&codec=#hl7codec"/>

					sync=true indicates that this listener is synchronous and therefore will return a HL7 response to the caller. The HL7 codec is setup with codec=#hl7codec. Note that hl7codec is just a Spring bean ID, so it could be named mygreatcodecforhl7 or whatever. The codec is also set up in the Spring XML file:
				
<bean id="hl7codec" class="org.apache.camel.component.hl7.HL7MLLPCodec">
 <property name="charset" value="iso-8859-1"/>
</bean>

					The endpoint hl7MinaLlistener can then be used in a route as a consumer, as this Java DSL example illustrates:
				
from("hl7MinaListener")
 .bean("patientLookupService");

					This is a very simple route that will listen for HL7 and route it to a service named patientLookupService. This is also Spring bean ID, configured in the Spring XML as:
				
<bean id="patientLookupService" class="com.mycompany.healthcare.service.PatientLookupService"/>

					The business logic can be implemented in POJO classes that do not depend on Camel, as shown here:
				
import ca.uhn.hl7v2.HL7Exception;
import ca.uhn.hl7v2.model.Message;
import ca.uhn.hl7v2.model.v24.segment.QRD;

public class PatientLookupService {
 public Message lookupPatient(Message input) throws HL7Exception {
 QRD qrd = (QRD)input.get("QRD");
 String patientId = qrd.getWhoSubjectFilter(0).getIDNumber().getValue();

 // find patient data based on the patient id and create a HL7 model object with the response
 Message response = ... create and set response data
 return response
 }

Exposing an HL7 listener using Netty (available from Camel 2.15 onwards)

					In the Spring XML file, we configure a netty4 endpoint to listen for HL7 requests using TCP on port 8888:
				
<endpoint id="hl7NettyListener" uri="netty4:tcp://localhost:8888?sync=true&encoder=#hl7encoder&decoder=#hl7decoder"/>

					sync=true indicates that this listener is synchronous and therefore will return a HL7 response to the caller. The HL7 codec is setup with encoder=#hl7encoder*and*decoder=#hl7decoder. Note that hl7encoder and hl7decoder are just bean IDs, so they could be named differently. The beans can be set in the Spring XML file:
				
<bean id="hl7decoder" class="org.apache.camel.component.hl7.HL7MLLPNettyDecoderFactory"/>
<bean id="hl7encoder" class="org.apache.camel.component.hl7.HL7MLLPNettyEncoderFactory"/>

					The endpoint hl7NettyListener can then be used in a route as a consumer, as this Java DSL example illustrates:
				
from("hl7NettyListener")
 .bean("patientLookupService");

HL7 Model using java.lang.String or byte[]

				The HL7 MLLP codec uses plain String as its data format. Camel uses its Type Converter to convert to/from strings to the HAPI HL7 model objects, but you can use the plain String objects if you prefer, for instance if you wish to parse the data yourself.
			

				As of Camel 2.14.1 you can also let both the Mina and Netty codecs use a plain byte[] as its data format by setting the produceString property to false. The Type Converter is also capable of converting the byte[] to/from HAPI HL7 model objects.
			

HL7v2 Model using HAPI

				The HL7v2 model uses Java objects from the HAPI library. Using this library, you can encode and decode from the EDI format (ER7) that is mostly used with HL7v2.
			

				The sample below is a request to lookup a patient with the patient ID 0101701234.
			
MSH|^~\\&|MYSENDER|MYRECEIVER|MYAPPLICATION||200612211200||QRY^A19|1234|P|2.4
QRD|200612211200|R|I|GetPatient|||1^RD|0101701234|DEM||

				Using the HL7 model you can work with a ca.uhn.hl7v2.model.Message object, e.g. to retrieve a patient ID:
			
Message msg = exchange.getIn().getBody(Message.class);
QRD qrd = (QRD)msg.get("QRD");
String patientId = qrd.getWhoSubjectFilter(0).getIDNumber().getValue(); // 0101701234

				This is powerful when combined with the HL7 listener, because you don’t have to work with byte[], String or any other simple object formats. You can just use the HAPI HL7v2 model objects. If you know the message type in advance, you can be more type-safe:
			
QRY_A19 msg = exchange.getIn().getBody(QRY_A19.class);
String patientId = msg.getQRD().getWhoSubjectFilter(0).getIDNumber().getValue();

HL7 DataFormat

				The HL7 component ships with a HL7 data format that can be used to marshal or unmarshal HL7 model objects.
			

				The HL7 dataformat supports 2 options which are listed below.
			
	Name	Default	Java Type	Description
	
								validate
							

							 	
								true
							

							 	
								Boolean
							

							 	
								Whether to validate the HL7 message Is by default true.
							

							
	
								contentTypeHeader
							

							 	
								false
							

							 	
								Boolean
							

							 	
								Whether the data format should set the Content-Type header with the type from the data format if the data format is capable of doing so. For example application/xml for data formats marshalling to XML, or application/json for data formats marshalling to JSon etc.
							

							

	
						marshal = from Message to byte stream (can be used when responding using the HL7 MLLP codec)
					
	
						unmarshal = from byte stream to Message (can be used when receiving streamed data from the HL7 MLLP
					

				To use the data format, simply instantiate an instance and invoke the marshal or unmarshal operation in the route builder:
			
 DataFormat hl7 = new HL7DataFormat();

 from("direct:hl7in")
 .marshal(hl7)
 .to("jms:queue:hl7out");

				In the sample above, the HL7 is marshalled from a HAPI Message object to a byte stream and put on a JMS queue.
 The next example is the opposite:
			
 DataFormat hl7 = new HL7DataFormat();

 from("jms:queue:hl7out")
 .unmarshal(hl7)
 .to("patientLookupService");

				Here we unmarshal the byte stream into a HAPI Message object that is passed to our patient lookup service.
			
Serializable messages

					As of HAPI 2.0 (used by Camel 2.11), the HL7v2 model classes are fully serializable. So you can put HL7v2 messages directly into a JMS queue (i.e. without calling marshal() and read them again directly from the queue (i.e. without calling unmarshal().
				

Segment separators

					As of Camel 2.11, unmarshal does not automatically fix segment separators anymore by converting \n to \r. If you
 need this conversion, org.apache.camel.component.hl7.HL7#convertLFToCR provides a handy Expression for this purpose.
				

Charset

					As of Camel 2.14.1, both marshal and unmarshal evaluate the charset provided in the field MSH-18. If this field is empty, by default the charset contained in the corresponding Camel charset property/header is assumed. You can even change this default behavior by overriding the guessCharsetName method when inheriting from the HL7DataFormat class.
				

					
				

					There is a shorthand syntax in Camel for well-known data formats that are commonly used. Then you don’t need to create an instance of the HL7DataFormat object:
				
 from("direct:hl7in")
 .marshal().hl7()
 .to("jms:queue:hl7out");

 from("jms:queue:hl7out")
 .unmarshal().hl7()
 .to("patientLookupService");

Message Headers

				The unmarshal operation adds these fields from the MSH segment as headers on the Camel message:
			
	Key	MSH field	Example
	
								CamelHL7SendingApplication
							

							 	
								MSH-3
							

							 	
								MYSERVER
							

							
	
								CamelHL7SendingFacility
							

							 	
								MSH-4
							

							 	
								MYSERVERAPP
							

							
	
								CamelHL7ReceivingApplication
							

							 	
								MSH-5
							

							 	
								MYCLIENT
							

							
	
								CamelHL7ReceivingFacility
							

							 	
								MSH-6
							

							 	
								MYCLIENTAPP
							

							
	
								CamelHL7Timestamp
							

							 	
								MSH-7
							

							 	
								20071231235900
							

							
	
								CamelHL7Security
							

							 	
								MSH-8
							

							 	
								null
							

							
	
								CamelHL7MessageType
							

							 	
								MSH-9-1
							

							 	
								ADT
							

							
	
								CamelHL7TriggerEvent
							

							 	
								MSH-9-2
							

							 	
								A01
							

							
	
								CamelHL7MessageControl
							

							 	
								MSH-10
							

							 	
								1234
							

							
	
								CamelHL7ProcessingId
							

							 	
								MSH-11
							

							 	
								P
							

							
	
								CamelHL7VersionId
							

							 	
								MSH-12
							

							 	
								2.4
							

							
	
								`CamelHL7Context
							

							 	
								``
							

							 	
								` (Camel 2.14) contains the HapiContext that was used to parse the message
							

							
	
								CamelHL7Charset
							

							 	
								MSH-18
							

							 	
								(Camel 2.14.1) UNICODE UTF-8
							

							

				All headers except CamelHL7Context `are `String types. If a header value is missing, its value is null.
			

Options

				The HL7 Data Format supports the following options:
			
	Option	Default	Description
	
								validate
							

							 	
								true
							

							 	
								Whether the HAPI Parser should validate the message using the default validation rules. It is recommended to use the parser or hapiContext option and initialize it with the desired HAPI ValidationContext
							

							
	
								parser
							

							 	
								ca.uhn.hl7v2.parser.GenericParser
							

							 	
								Custom parser to be used. Must be of type ca.uhn.hl7v2.parser.Parser. Note that GenericParser also allows to parse XML-encoded HL7v2 messages
							

							
	
								hapiContext
							

							 	
								ca.uhn.hl7v2.DefaultHapiContext
							

							 	
								Camel 2.14: Custom HAPI context that can define a custom parser, custom ValidationContext etc. This gives you full control over the HL7 parsing and rendering process.
							

							

Dependencies

				To use HL7 in your Camel routes you’ll need to add a dependency on camel-hl7 listed above, which implements this data format.
			

				The HAPI library is split into a base library and several structure libraries, one for each HL7v2 message version:
			
	
						v2.1 structures library
					
	
						v2.2 structures library
					
	
						v2.3 structures library
					
	
						v2.3.1 structures library
					
	
						v2.4 structures library
					
	
						v2.5 structures library
					
	
						v2.5.1 structures library
					
	
						v2.6 structures library
					

				By default camel-hl7 only references the HAPI base library. Applications are responsible for including structure libraries themselves. For example, if an application works with HL7v2 message versions 2.4 and 2.5 then the following dependencies must be added:
			
<dependency>
 <groupId>ca.uhn.hapi</groupId>
 <artifactId>hapi-structures-v24</artifactId>
 <version>2.2</version>
 <!-- use the same version as your hapi-base version -->
</dependency>
<dependency>
 <groupId>ca.uhn.hapi</groupId>
 <artifactId>hapi-structures-v25</artifactId>
 <version>2.2</version>
 <!-- use the same version as your hapi-base version -->
</dependency>

				Alternatively, an OSGi bundle containing the base library, all structures libraries and required dependencies (on the bundle classpath) can be downloaded from the central Maven repository.
			
<dependency>
 <groupId>ca.uhn.hapi</groupId>
 <artifactId>hapi-osgi-base</artifactId>
 <version>2.2</version>
</dependency>

Terser language

				HAPI provides a Terser class that provides access to fields using a commonly used terse location specification syntax. The Terser language allows to use this syntax to extract values from messages and to use them as expressions and predicates for filtering, content-based routing etc.
			

				Sample:
			
import static org.apache.camel.component.hl7.HL7.terser;

 // extract patient ID from field QRD-8 in the QRY_A19 message above and put into message header
 from("direct:test1")
 .setHeader("PATIENT_ID",terser("QRD-8(0)-1"))
 .to("mock:test1");

 // continue processing if extracted field equals a message header
 from("direct:test2")
 .filter(terser("QRD-8(0)-1").isEqualTo(header("PATIENT_ID"))
 .to("mock:test2");

HL7 Validation predicate

				Often it is preferable to first parse a HL7v2 message and in a separate step validate it against a HAPI ValidationContext.
			

				Sample:
			
import static org.apache.camel.component.hl7.HL7.messageConformsTo;
import ca.uhn.hl7v2.validation.impl.DefaultValidation;

 // Use standard or define your own validation rules
 ValidationContext defaultContext = new DefaultValidation();

 // Throws PredicateValidationException if message does not validate
 from("direct:test1")
 .validate(messageConformsTo(defaultContext))
 .to("mock:test1");

HL7 Validation predicate using the HapiContext (Camel 2.14)

				The HAPI Context is always configured with a ValidationContext (or a ValidationRuleBuilder), so you can access the validation rules indirectly. Furthermore, when unmarshalling the HL7DataFormat forwards the configured HAPI context in the CamelHL7Context header, and the validation rules of this context can be easily reused:
			
import static org.apache.camel.component.hl7.HL7.messageConformsTo;
import static org.apache.camel.component.hl7.HL7.messageConforms

 HapiContext hapiContext = new DefaultHapiContext();
 hapiContext.getParserConfiguration().setValidating(false); // don't validate during parsing

 // customize HapiContext some more ... e.g. enforce that PID-8 in ADT_A01 messages of version 2.4 is not empty
 ValidationRuleBuilder builder = new ValidationRuleBuilder() {
 @Override
 protected void configure() {
 forVersion(Version.V24)
 .message("ADT", "A01")
 .terser("PID-8", not(empty()));
 }
 };
 hapiContext.setValidationRuleBuilder(builder);

 HL7DataFormat hl7 = new HL7DataFormat();
 hl7.setHapiContext(hapiContext);

 from("direct:test1")
 .unmarshal(hl7) // uses the GenericParser returned from the HapiContext
 .validate(messageConforms()) // uses the validation rules returned from the HapiContext
 // equivalent with .validate(messageConformsTo(hapiContext))
 // route continues from here

HL7 Acknowledgement expression

				A common task in HL7v2 processing is to generate an acknowledgement message as response to an incoming HL7v2 message, e.g. based on a validation result. The ack expression lets us accomplish this very elegantly:
			
import static org.apache.camel.component.hl7.HL7.messageConformsTo;
import static org.apache.camel.component.hl7.HL7.ack;
import ca.uhn.hl7v2.validation.impl.DefaultValidation;

 // Use standard or define your own validation rules
 ValidationContext defaultContext = new DefaultValidation();

 from("direct:test1")
 .onException(Exception.class)
 .handled(true)
 .transform(ack()) // auto-generates negative ack because of exception in Exchange
 .end()
 .validate(messageConformsTo(defaultContext))
 // do something meaningful here

 // acknowledgement
 .transform(ack())

More Samples

				In the following example, a plain String HL7 request is sent to an HL7 listener that sends back a response:
			

				In the next sample, HL7 requests from the HL7 listener are routed to the business logic, which is implemented as plain POJO registered in the registry as hl7service.
			

				Then the Camel routes using the RouteBuilder may look as follows:
			

				Note that by using the HL7 DataFormat the Camel message headers are populated with the fields from the MSH segment. The headers are particularly useful for filtering or content-based routing as shown in the example above.
			

Chapter 148. HTTP Component (deprecated)

			Available as of Camel version 1.0
		

			The http: component provides HTTP based endpoints for consuming external HTTP resources (as a client to call external servers using HTTP).
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-http</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>
URI format

http:hostname[:port][/resourceUri][?param1=value1][¶m2=value2]

				Will by default use port 80 for HTTP and 443 for HTTPS.
			

				camel-http vs camel-jetty
			

				You can only produce to endpoints generated by the HTTP component. Therefore it should never be used as input into your camel Routes. To bind/expose an HTTP endpoint via a HTTP server as input to a camel route, you can use the Jetty Component or the Servlet Component
			

Examples

				Call the url with the body using POST and return response as out message. If body is null call URL using GET and return response as out message
			

				Java DSL
			

				Spring DSL
			
from("direct:start")
 .to("http://myhost/mypath");
<from uri="direct:start"/>
<to uri="http://oldhost"/>

				You can override the HTTP endpoint URI by adding a header. Camel will call the http://newhost. This is very handy for e.g. REST urls.
			

				Java DSL
			
from("direct:start")
 .setHeader(Exchange.HTTP_URI, simple("http://myserver/orders/${header.orderId}"))
 .to("http://dummyhost");

				URI parameters can either be set directly on the endpoint URI or as a header
			

				Java DSL
			
from("direct:start")
 .to("http://oldhost?order=123&detail=short");
from("direct:start")
 .setHeader(Exchange.HTTP_QUERY, constant("order=123&detail=short"))
 .to("http://oldhost");

				Set the HTTP request method to POST
			

				Java DSL
			

				Spring DSL
			
from("direct:start")
 .setHeader(Exchange.HTTP_METHOD, constant("POST"))
 .to("http://www.google.com");
<from uri="direct:start"/>
<setHeader headerName="CamelHttpMethod">
 <constant>POST</constant>
</setHeader>
<to uri="http://www.google.com"/>
<to uri="mock:results"/>

Http Options

				The HTTP component supports 8 options which are listed below.
			
	Name	Description	Default	Type
	
								httpClientConfigurer (advanced)
							

							 	
								To use the custom HttpClientConfigurer to perform configuration of the HttpClient that will be used.
							

							 	 	
								HttpClientConfigurer
							

							
	
								httpConnectionManager (advanced)
							

							 	
								To use a custom HttpConnectionManager to manage connections
							

							 	 	
								HttpConnectionManager
							

							
	
								httpBinding (producer)
							

							 	
								To use a custom HttpBinding to control the mapping between Camel message and HttpClient.
							

							 	 	
								HttpBinding
							

							
	
								httpConfiguration (producer)
							

							 	
								To use the shared HttpConfiguration as base configuration.
							

							 	 	
								HttpConfiguration
							

							
	
								allowJavaSerialized Object (producer)
							

							 	
								Whether to allow java serialization when a request uses context-type=application/x-java-serialized-object This is by default turned off. If you enable this then be aware that Java will deserialize the incoming data from the request to Java and that can be a potential security risk.
							

							 	
								false
							

							 	
								boolean
							

							
	
								useGlobalSslContext Parameters (security)
							

							 	
								Enable usage of global SSL context parameters.
							

							 	
								false
							

							 	
								boolean
							

							
	
								headerFilterStrategy (filter)
							

							 	
								To use a custom org.apache.camel.spi.HeaderFilterStrategy to filter header to and from Camel message.
							

							 	 	
								HeaderFilterStrategy
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The HTTP endpoint is configured using URI syntax:
			
http:httpUri

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									httpUri
								

								 	
									Required The url of the HTTP endpoint to call.
								

								 	 	
									URI
								

								

Query Parameters (38 parameters):

	Name	Description	Default	Type
	
									disableStreamCache (common)
								

								 	
									Determines whether or not the raw input stream from Servlet is cached or not (Camel will read the stream into a in memory/overflow to file, Stream caching) cache. By default Camel will cache the Servlet input stream to support reading it multiple times to ensure it Camel can retrieve all data from the stream. However you can set this option to true when you for example need to access the raw stream, such as streaming it directly to a file or other persistent store. DefaultHttpBinding will copy the request input stream into a stream cache and put it into message body if this option is false to support reading the stream multiple times. If you use Servlet to bridge/proxy an endpoint then consider enabling this option to improve performance, in case you do not need to read the message payload multiple times. The http/http4 producer will by default cache the response body stream. If setting this option to true, then the producers will not cache the response body stream but use the response stream as-is as the message body.
								

								 	
									false
								

								 	
									boolean
								

								
	
									headerFilterStrategy (common)
								

								 	
									To use a custom HeaderFilterStrategy to filter header to and from Camel message.
								

								 	 	
									HeaderFilterStrategy
								

								
	
									httpBinding (common)
								

								 	
									To use a custom HttpBinding to control the mapping between Camel message and HttpClient.
								

								 	 	
									HttpBinding
								

								
	
									bridgeEndpoint (producer)
								

								 	
									If the option is true, HttpProducer will ignore the Exchange.HTTP_URI header, and use the endpoint’s URI for request. You may also set the option throwExceptionOnFailure to be false to let the HttpProducer send all the fault response back.
								

								 	
									false
								

								 	
									boolean
								

								
	
									chunked (producer)
								

								 	
									If this option is false the Servlet will disable the HTTP streaming and set the content-length header on the response
								

								 	
									true
								

								 	
									boolean
								

								
	
									connectionClose (producer)
								

								 	
									Specifies whether a Connection Close header must be added to HTTP Request. By default connectionClose is false.
								

								 	
									false
								

								 	
									boolean
								

								
	
									copyHeaders (producer)
								

								 	
									If this option is true then IN exchange headers will be copied to OUT exchange headers according to copy strategy. Setting this to false, allows to only include the headers from the HTTP response (not propagating IN headers).
								

								 	
									true
								

								 	
									boolean
								

								
	
									httpMethod (producer)
								

								 	
									Configure the HTTP method to use. The HttpMethod header cannot override this option if set.
								

								 	 	
									HttpMethods
								

								
	
									ignoreResponseBody (producer)
								

								 	
									If this option is true, The http producer won’t read response body and cache the input stream
								

								 	
									false
								

								 	
									boolean
								

								
	
									preserveHostHeader (producer)
								

								 	
									If the option is true, HttpProducer will set the Host header to the value contained in the current exchange Host header, useful in reverse proxy applications where you want the Host header received by the downstream server to reflect the URL called by the upstream client, this allows applications which use the Host header to generate accurate URL’s for a proxied service
								

								 	
									false
								

								 	
									boolean
								

								
	
									throwExceptionOnFailure (producer)
								

								 	
									Option to disable throwing the HttpOperationFailedException in case of failed responses from the remote server. This allows you to get all responses regardless of the HTTP status code.
								

								 	
									true
								

								 	
									boolean
								

								
	
									transferException (producer)
								

								 	
									If enabled and an Exchange failed processing on the consumer side, and if the caused Exception was send back serialized in the response as a application/x-java-serialized-object content type. On the producer side the exception will be deserialized and thrown as is, instead of the HttpOperationFailedException. The caused exception is required to be serialized. This is by default turned off. If you enable this then be aware that Java will deserialize the incoming data from the request to Java and that can be a potential security risk.
								

								 	
									false
								

								 	
									boolean
								

								
	
									cookieHandler (producer)
								

								 	
									Configure a cookie handler to maintain a HTTP session
								

								 	 	
									CookieHandler
								

								
	
									okStatusCodeRange (producer)
								

								 	
									The status codes which are considered a success response. The values are inclusive. Multiple ranges can be defined, separated by comma, e.g. 200-204,209,301-304. Each range must be a single number or from-to with the dash included.
								

								 	
									200-299
								

								 	
									String
								

								
	
									urlRewrite (producer)
								

								 	
									Deprecated Refers to a custom org.apache.camel.component.http.UrlRewrite which allows you to rewrite urls when you bridge/proxy endpoints. See more details at http://camel.apache.org/urlrewrite.html
								

								 	 	
									UrlRewrite
								

								
	
									httpClientConfigurer (advanced)
								

								 	
									Register a custom configuration strategy for new HttpClient instances created by producers or consumers such as to configure authentication mechanisms etc
								

								 	 	
									HttpClientConfigurer
								

								
	
									httpClientOptions (advanced)
								

								 	
									To configure the HttpClient using the key/values from the Map.
								

								 	 	
									Map
								

								
	
									httpConnectionManager (advanced)
								

								 	
									To use a custom HttpConnectionManager to manage connections
								

								 	 	
									HttpConnectionManager
								

								
	
									httpConnectionManager Options (advanced)
								

								 	
									To configure the HttpConnectionManager using the key/values from the Map.
								

								 	 	
									Map
								

								
	
									mapHttpMessageBody (advanced)
								

								 	
									If this option is true then IN exchange Body of the exchange will be mapped to HTTP body. Setting this to false will avoid the HTTP mapping.
								

								 	
									true
								

								 	
									boolean
								

								
	
									mapHttpMessageFormUrl EncodedBody (advanced)
								

								 	
									If this option is true then IN exchange Form Encoded body of the exchange will be mapped to HTTP. Setting this to false will avoid the HTTP Form Encoded body mapping.
								

								 	
									true
								

								 	
									boolean
								

								
	
									mapHttpMessageHeaders (advanced)
								

								 	
									If this option is true then IN exchange Headers of the exchange will be mapped to HTTP headers. Setting this to false will avoid the HTTP Headers mapping.
								

								 	
									true
								

								 	
									boolean
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									proxyAuthDomain (proxy)
								

								 	
									Proxy authentication domain to use with NTML
								

								 	 	
									String
								

								
	
									proxyAuthHost (proxy)
								

								 	
									Proxy authentication host
								

								 	 	
									String
								

								
	
									proxyAuthMethod (proxy)
								

								 	
									Proxy authentication method to use
								

								 	 	
									String
								

								
	
									proxyAuthPassword (proxy)
								

								 	
									Proxy authentication password
								

								 	 	
									String
								

								
	
									proxyAuthPort (proxy)
								

								 	
									Proxy authentication port
								

								 	 	
									int
								

								
	
									proxyAuthScheme (proxy)
								

								 	
									Proxy authentication scheme to use
								

								 	 	
									String
								

								
	
									proxyAuthUsername (proxy)
								

								 	
									Proxy authentication username
								

								 	 	
									String
								

								
	
									proxyHost (proxy)
								

								 	
									Proxy hostname to use
								

								 	 	
									String
								

								
	
									proxyPort (proxy)
								

								 	
									Proxy port to use
								

								 	 	
									int
								

								
	
									authDomain (security)
								

								 	
									Authentication domain to use with NTML
								

								 	 	
									String
								

								
	
									authHost (security)
								

								 	
									Authentication host to use with NTML
								

								 	 	
									String
								

								
	
									authMethod (security)
								

								 	
									Authentication methods allowed to use as a comma separated list of values Basic, Digest or NTLM.
								

								 	 	
									String
								

								
	
									authMethodPriority (security)
								

								 	
									Which authentication method to prioritize to use, either as Basic, Digest or NTLM.
								

								 	 	
									String
								

								
	
									authPassword (security)
								

								 	
									Authentication password
								

								 	 	
									String
								

								
	
									authUsername (security)
								

								 	
									Authentication username
								

								 	 	
									String
								

								

Message Headers

	Name	Type	Description
	
								Exchange.HTTP_URI
							

							 	
								String
							

							 	
								URI to call. Will override existing URI set directly on the endpoint. This uri is the uri of the http server to call. Its not the same as the Camel endpoint uri, where you can configure endpoint options such as security etc. This header does not support that, its only the uri of the http server.
							

							
	
								Exchange.HTTP_METHOD
							

							 	
								String
							

							 	
								HTTP Method / Verb to use (GET/POST/PUT/DELETE/HEAD/OPTIONS/TRACE)
							

							
	
								Exchange.HTTP_PATH
							

							 	
								String
							

							 	
								Request URI’s path, the header will be used to build the request URI with the HTTP_URI. Camel 2.3.0: If the path is start with "/", http producer will try to find the relative path based on the Exchange.HTTP_BASE_URI header or the exchange.getFromEndpoint().getEndpointUri();
							

							
	
								Exchange.HTTP_QUERY
							

							 	
								String
							

							 	
								URI parameters. Will override existing URI parameters set directly on the endpoint.
							

							
	
								Exchange.HTTP_RESPONSE_CODE
							

							 	
								int
							

							 	
								The HTTP response code from the external server. Is 200 for OK.
							

							
	
								Exchange.HTTP_CHARACTER_ENCODING
							

							 	
								String
							

							 	
								Character encoding.
							

							
	
								Exchange.CONTENT_TYPE
							

							 	
								String
							

							 	
								The HTTP content type. Is set on both the IN and OUT message to provide a content type, such as text/html.
							

							
	
								Exchange.CONTENT_ENCODING
							

							 	
								String
							

							 	
								The HTTP content encoding. Is set on both the IN and OUT message to provide a content encoding, such as gzip.
							

							
	
								Exchange.HTTP_SERVLET_REQUEST
							

							 	
								HttpServletRequest
							

							 	
								The HttpServletRequest object.
							

							
	
								Exchange.HTTP_SERVLET_RESPONSE
							

							 	
								HttpServletResponse
							

							 	
								The HttpServletResponse object.
							

							
	
								Exchange.HTTP_PROTOCOL_VERSION
							

							 	
								String
							

							 	
								Camel 2.5: You can set the http protocol version with this header, eg. "HTTP/1.0". If you didn’t specify the header, HttpProducer will use the default value "HTTP/1.1"
							

							

				The header name above are constants. For the spring DSL you have to use the value of the constant instead of the name.
			

Message Body

				Camel will store the HTTP response from the external server on the OUT body. All headers from the IN message will be copied to the OUT message, so headers are preserved during routing. Additionally Camel will add the HTTP response headers as well to the OUT message headers.
			

Response code

				Camel will handle according to the HTTP response code:
			
	
						Response code is in the range 100..299, Camel regards it as a success response.
					
	
						Response code is in the range 300..399, Camel regards it as a redirection response and will throw a HttpOperationFailedException with the information.
					
	
						Response code is 400+, Camel regards it as an external server failure and will throw a HttpOperationFailedException with the information.
					

				throwExceptionOnFailure
			

				The option, throwExceptionOnFailure, can be set to false to prevent the HttpOperationFailedException from being thrown for failed response codes. This allows you to get any response from the remote server.
 There is a sample below demonstrating this.
			

HttpOperationFailedException

				This exception contains the following information:
			
	
						The HTTP status code
					
	
						The HTTP status line (text of the status code)
					
	
						Redirect location, if server returned a redirect
					
	
						Response body as a java.lang.String, if server provided a body as response
					

Which HTTP method will be used

				The following algorithm is used to determine what HTTP method should be used:
 1. Use method provided as endpoint configuration (httpMethod).
 2. Use method provided in header (Exchange.HTTP_METHOD).
 3. GET if query string is provided in header.
 4. GET if endpoint is configured with a query string.
 5. POST if there is data to send (body is not null).
 6. GET otherwise.
			

How to get access to HttpServletRequest and HttpServletResponse

				You can get access to these two using the Camel type converter system using
			
HttpServletRequest request = exchange.getIn().getBody(HttpServletRequest.class);
HttpServletRequest response = exchange.getIn().getBody(HttpServletResponse.class);

Using client timeout - SO_TIMEOUT

				See the unit test in this link
			

More Examples

Configuring a Proxy

					Java DSL
				
from("direct:start")
 .to("http://oldhost?proxyHost=www.myproxy.com&proxyPort=80");

					There is also support for proxy authentication via the proxyUsername and proxyPassword options.
				

Using proxy settings outside of URI

					Java DSL
				

					Spring DSL
				
 context.getProperties().put("http.proxyHost", "172.168.18.9");
 context.getProperties().put("http.proxyPort" "8080");
 <camelContext>
 <properties>
 <property key="http.proxyHost" value="172.168.18.9"/>
 <property key="http.proxyPort" value="8080"/>
 </properties>
 </camelContext>

					Options on Endpoint will override options on the context.
				

Configuring charset

				If you are using POST to send data you can configure the charset
			
setProperty(Exchange.CHARSET_NAME, "iso-8859-1");

Sample with scheduled poll

				The sample polls the Google homepage every 10 seconds and write the page to the file message.html:
			
from("timer://foo?fixedRate=true&delay=0&period=10000")
 .to("http://www.google.com")
 .setHeader(FileComponent.HEADER_FILE_NAME, "message.html").to("file:target/google");

Getting the Response Code

				You can get the HTTP response code from the HTTP component by getting the value from the Out message header with Exchange.HTTP_RESPONSE_CODE.
			
 Exchange exchange = template.send("http://www.google.com/search", new Processor() {
 public void process(Exchange exchange) throws Exception {
 exchange.getIn().setHeader(Exchange.HTTP_QUERY, constant("hl=en&q=activemq"));
 }
 });
 Message out = exchange.getOut();
 int responseCode = out.getHeader(Exchange.HTTP_RESPONSE_CODE, Integer.class);

Using throwExceptionOnFailure=false to get any response back

				In the route below we want to route a message that we enrich with data returned from a remote HTTP call. As we want any response from the remote server, we set the throwExceptionOnFailure option to false so we get any response in the AggregationStrategy. As the code is based on a unit test that simulates a HTTP status code 404, there is some assertion code etc.
			

Disabling Cookies

				To disable cookies you can set the HTTP Client to ignore cookies by adding this URI option:
 httpClient.cookiePolicy=ignoreCookies
			

Advanced Usage

				If you need more control over the HTTP producer you should use the HttpComponent where you can set various classes to give you custom behavior.
			
Setting MaxConnectionsPerHost

					The HTTP Component has a org.apache.commons.httpclient.HttpConnectionManager where you can configure various global configuration for the given component.
 By global, we mean that any endpoint the component creates has the same shared HttpConnectionManager. So, if we want to set a different value for the max connection per host, we need to define it on the HTTP component and not on the endpoint URI that we usually use. So here comes:
				

					First, we define the http component in Spring XML. Yes, we use the same scheme name, http, because otherwise Camel will auto-discover and create the component with default settings. What we need is to overrule this so we can set our options. In the sample below we set the max connection to 5 instead of the default of 2.
				

					And then we can just use it as we normally do in our routes:
				

Using preemptive authentication

					An end user reported that he had problem with authenticating with HTTPS. The problem was eventually resolved when he discovered the HTTPS server did not return a HTTP code 401 Authorization Required. The solution was to set the following URI option: httpClient.authenticationPreemptive=true
				

Accepting self signed certificates from remote server

					See this link from a mailing list discussion with some code to outline how to do this with the Apache Commons HTTP API.
				

Setting up SSL for HTTP Client

					Using the JSSE Configuration Utility
				

					As of Camel 2.8, the HTTP4 component supports SSL/TLS configuration through the Camel JSSE Configuration Utility. This utility greatly decreases the amount of component specific code you need to write and is configurable at the endpoint and component levels. The following examples demonstrate how to use the utility with the HTTP4 component.
				

					The version of the Apache HTTP client used in this component resolves SSL/TLS information from a global "protocol" registry. This component provides an implementation, org.apache.camel.component.http.SSLContextParametersSecureProtocolSocketFactory, of the HTTP client’s protocol socket factory in order to support the use of the Camel JSSE Configuration utility. The following example demonstrates how to configure the protocol registry and use the registered protocol information in a route.
				
KeyStoreParameters ksp = new KeyStoreParameters();
ksp.setResource("/users/home/server/keystore.jks");
ksp.setPassword("keystorePassword");

KeyManagersParameters kmp = new KeyManagersParameters();
kmp.setKeyStore(ksp);
kmp.setKeyPassword("keyPassword");

SSLContextParameters scp = new SSLContextParameters();
scp.setKeyManagers(kmp);

ProtocolSocketFactory factory =
 new SSLContextParametersSecureProtocolSocketFactory(scp);

Protocol.registerProtocol("https",
 new Protocol(
 "https",
 factory,
 443));

from("direct:start")
 .to("https://mail.google.com/mail/").to("mock:results");

					Configuring Apache HTTP Client Directly
				

					Basically camel-http component is built on the top of Apache HTTP client, and you can implement a custom org.apache.camel.component.http.HttpClientConfigurer to do some configuration on the http client if you need full control of it.
				

					However if you just want to specify the keystore and truststore you can do this with Apache HTTP HttpClientConfigurer, for example:
				
Protocol authhttps = new Protocol("https", new AuthSSLProtocolSocketFactory(
 new URL("file:my.keystore"), "mypassword",
 new URL("file:my.truststore"), "mypassword"), 443);

Protocol.registerProtocol("https", authhttps);

					And then you need to create a class that implements HttpClientConfigurer, and registers https protocol providing a keystore or truststore per example above. Then, from your camel route builder class you can hook it up like so:
				
HttpComponent httpComponent = getContext().getComponent("http", HttpComponent.class);
httpComponent.setHttpClientConfigurer(new MyHttpClientConfigurer());

					If you are doing this using the Spring DSL, you can specify your HttpClientConfigurer using the URI. For example:
				
<bean id="myHttpClientConfigurer"
 class="my.https.HttpClientConfigurer">
</bean>

<to uri="https://myhostname.com:443/myURL?httpClientConfigurerRef=myHttpClientConfigurer"/>

					As long as you implement the HttpClientConfigurer and configure your keystore and truststore as described above, it will work fine.
				

See Also

	
						Configuring Camel
					
	
						Component
					
	
						Endpoint
					
	
						Getting Started
					
	
						Jetty
					

Chapter 149. HTTP4 Component

			Available as of Camel version 2.3
		

			The http4: component provides HTTP based endpoints for calling external HTTP resources (as a client to call external servers using HTTP).
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-http4</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>

			camel-http4 vs camel-http
		

			Camel-http4 uses Apache HttpClient 4.x while camel-http uses Apache HttpClient 3.x.
		
URI format

				For HTTP
			
http4:hostname[:port][/resourceUri][?options]

				For HTTPS
			
https4:hostname[:port][/resourceUri][?options]

				Will by default use port 80 for HTTP and 443 for HTTPS.
			

				You can append query options to the URI in the following format, ?option=value&option=value&…​
			

				camel-http4 vs camel-jetty
			

				You can only produce to endpoints generated by the HTTP4 component. Therefore it should never be used as input into your Camel Routes. To bind/expose an HTTP endpoint via a HTTP server as input to a Camel route, use the Jetty Component instead.
			

Http4 Component Options

				The HTTP4 component supports 18 options which are listed below.
			
	Name	Description	Default	Type
	
								httpClientConfigurer (advanced)
							

							 	
								To use the custom HttpClientConfigurer to perform configuration of the HttpClient that will be used.
							

							 	 	
								HttpClientConfigurer
							

							
	
								clientConnectionManager (advanced)
							

							 	
								To use a custom and shared HttpClientConnectionManager to manage connections. If this has been configured then this is always used for all endpoints created by this component.
							

							 	 	
								HttpClientConnection Manager
							

							
	
								httpContext (advanced)
							

							 	
								To use a custom org.apache.http.protocol.HttpContext when executing requests.
							

							 	 	
								HttpContext
							

							
	
								sslContextParameters (security)
							

							 	
								To configure security using SSLContextParameters. Important: Only one instance of org.apache.camel.util.jsse.SSLContextParameters is supported per HttpComponent. If you need to use 2 or more different instances, you need to define a new HttpComponent per instance you need.
							

							 	 	
								SSLContextParameters
							

							
	
								useGlobalSslContext Parameters (security)
							

							 	
								Enable usage of global SSL context parameters.
							

							 	
								false
							

							 	
								boolean
							

							
	
								x509HostnameVerifier (security)
							

							 	
								To use a custom X509HostnameVerifier such as DefaultHostnameVerifier or org.apache.http.conn.ssl.NoopHostnameVerifier.
							

							 	 	
								HostnameVerifier
							

							
	
								maxTotalConnections (advanced)
							

							 	
								The maximum number of connections.
							

							 	
								200
							

							 	
								int
							

							
	
								connectionsPerRoute (advanced)
							

							 	
								The maximum number of connections per route.
							

							 	
								20
							

							 	
								int
							

							
	
								connectionTimeToLive (advanced)
							

							 	
								The time for connection to live, the time unit is millisecond, the default value is always keep alive.
							

							 	 	
								long
							

							
	
								cookieStore (producer)
							

							 	
								To use a custom org.apache.http.client.CookieStore. By default the org.apache.http.impl.client.BasicCookieStore is used which is an in-memory only cookie store. Notice if bridgeEndpoint=true then the cookie store is forced to be a noop cookie store as cookie shouldn’t be stored as we are just bridging (eg acting as a proxy).
							

							 	 	
								CookieStore
							

							
	
								connectionRequest Timeout (timeout)
							

							 	
								The timeout in milliseconds used when requesting a connection from the connection manager. A timeout value of zero is interpreted as an infinite timeout. A timeout value of zero is interpreted as an infinite timeout. A negative value is interpreted as undefined (system default). Default: code -1
							

							 	
								-1
							

							 	
								int
							

							
	
								connectTimeout (timeout)
							

							 	
								Determines the timeout in milliseconds until a connection is established. A timeout value of zero is interpreted as an infinite timeout. A timeout value of zero is interpreted as an infinite timeout. A negative value is interpreted as undefined (system default). Default: code -1
							

							 	
								-1
							

							 	
								int
							

							
	
								socketTimeout (timeout)
							

							 	
								Defines the socket timeout (SO_TIMEOUT) in milliseconds, which is the timeout for waiting for data or, put differently, a maximum period inactivity between two consecutive data packets). A timeout value of zero is interpreted as an infinite timeout. A negative value is interpreted as undefined (system default). Default: code -1
							

							 	
								-1
							

							 	
								int
							

							
	
								httpBinding (advanced)
							

							 	
								To use a custom HttpBinding to control the mapping between Camel message and HttpClient.
							

							 	 	
								HttpBinding
							

							
	
								httpConfiguration (advanced)
							

							 	
								To use the shared HttpConfiguration as base configuration.
							

							 	 	
								HttpConfiguration
							

							
	
								allowJavaSerialized Object (advanced)
							

							 	
								Whether to allow java serialization when a request uses context-type=application/x-java-serialized-object. This is by default turned off. If you enable this then be aware that Java will deserialize the incoming data from the request to Java and that can be a potential security risk.
							

							 	
								false
							

							 	
								boolean
							

							
	
								headerFilterStrategy (filter)
							

							 	
								To use a custom org.apache.camel.spi.HeaderFilterStrategy to filter header to and from Camel message.
							

							 	 	
								HeaderFilterStrategy
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The HTTP4 endpoint is configured using URI syntax:
			
http4:httpUri

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									httpUri
								

								 	
									Required The url of the HTTP endpoint to call.
								

								 	 	
									URI
								

								

Query Parameters (48 parameters):

	Name	Description	Default	Type
	
									disableStreamCache (common)
								

								 	
									Determines whether or not the raw input stream from Servlet is cached or not (Camel will read the stream into a in memory/overflow to file, Stream caching) cache. By default Camel will cache the Servlet input stream to support reading it multiple times to ensure it Camel can retrieve all data from the stream. However you can set this option to true when you for example need to access the raw stream, such as streaming it directly to a file or other persistent store. DefaultHttpBinding will copy the request input stream into a stream cache and put it into message body if this option is false to support reading the stream multiple times. If you use Servlet to bridge/proxy an endpoint then consider enabling this option to improve performance, in case you do not need to read the message payload multiple times. The http/http4 producer will by default cache the response body stream. If setting this option to true, then the producers will not cache the response body stream but use the response stream as-is as the message body.
								

								 	
									false
								

								 	
									boolean
								

								
	
									headerFilterStrategy (common)
								

								 	
									To use a custom HeaderFilterStrategy to filter header to and from Camel message.
								

								 	 	
									HeaderFilterStrategy
								

								
	
									httpBinding (common)
								

								 	
									To use a custom HttpBinding to control the mapping between Camel message and HttpClient.
								

								 	 	
									HttpBinding
								

								
	
									authenticationPreemptive (producer)
								

								 	
									If this option is true, camel-http4 sends preemptive basic authentication to the server.
								

								 	
									false
								

								 	
									boolean
								

								
	
									bridgeEndpoint (producer)
								

								 	
									If the option is true, HttpProducer will ignore the Exchange.HTTP_URI header, and use the endpoint’s URI for request. You may also set the option throwExceptionOnFailure to be false to let the HttpProducer send all the fault response back.
								

								 	
									false
								

								 	
									boolean
								

								
	
									chunked (producer)
								

								 	
									If this option is false the Servlet will disable the HTTP streaming and set the content-length header on the response
								

								 	
									true
								

								 	
									boolean
								

								
	
									clearExpiredCookies (producer)
								

								 	
									Whether to clear expired cookies before sending the HTTP request. This ensures the cookies store does not keep growing by adding new cookies which is newer removed when they are expired.
								

								 	
									true
								

								 	
									boolean
								

								
	
									connectionClose (producer)
								

								 	
									Specifies whether a Connection Close header must be added to HTTP Request. By default connectionClose is false.
								

								 	
									false
								

								 	
									boolean
								

								
	
									cookieStore (producer)
								

								 	
									To use a custom CookieStore. By default the BasicCookieStore is used which is an in-memory only cookie store. Notice if bridgeEndpoint=true then the cookie store is forced to be a noop cookie store as cookie shouldn’t be stored as we are just bridging (eg acting as a proxy). If a cookieHandler is set then the cookie store is also forced to be a noop cookie store as cookie handling is then performed by the cookieHandler.
								

								 	 	
									CookieStore
								

								
	
									copyHeaders (producer)
								

								 	
									If this option is true then IN exchange headers will be copied to OUT exchange headers according to copy strategy. Setting this to false, allows to only include the headers from the HTTP response (not propagating IN headers).
								

								 	
									true
								

								 	
									boolean
								

								
	
									deleteWithBody (producer)
								

								 	
									Whether the HTTP DELETE should include the message body or not. By default HTTP DELETE do not include any HTTP message. However in some rare cases users may need to be able to include the message body.
								

								 	
									false
								

								 	
									boolean
								

								
	
									httpMethod (producer)
								

								 	
									Configure the HTTP method to use. The HttpMethod header cannot override this option if set.
								

								 	 	
									HttpMethods
								

								
	
									ignoreResponseBody (producer)
								

								 	
									If this option is true, The http producer won’t read response body and cache the input stream
								

								 	
									false
								

								 	
									boolean
								

								
	
									preserveHostHeader (producer)
								

								 	
									If the option is true, HttpProducer will set the Host header to the value contained in the current exchange Host header, useful in reverse proxy applications where you want the Host header received by the downstream server to reflect the URL called by the upstream client, this allows applications which use the Host header to generate accurate URL’s for a proxied service
								

								 	
									false
								

								 	
									boolean
								

								
	
									throwExceptionOnFailure (producer)
								

								 	
									Option to disable throwing the HttpOperationFailedException in case of failed responses from the remote server. This allows you to get all responses regardless of the HTTP status code.
								

								 	
									true
								

								 	
									boolean
								

								
	
									transferException (producer)
								

								 	
									If enabled and an Exchange failed processing on the consumer side, and if the caused Exception was send back serialized in the response as a application/x-java-serialized-object content type. On the producer side the exception will be deserialized and thrown as is, instead of the HttpOperationFailedException. The caused exception is required to be serialized. This is by default turned off. If you enable this then be aware that Java will deserialize the incoming data from the request to Java and that can be a potential security risk.
								

								 	
									false
								

								 	
									boolean
								

								
	
									cookieHandler (producer)
								

								 	
									Configure a cookie handler to maintain a HTTP session
								

								 	 	
									CookieHandler
								

								
	
									okStatusCodeRange (producer)
								

								 	
									The status codes which are considered a success response. The values are inclusive. Multiple ranges can be defined, separated by comma, e.g. 200-204,209,301-304. Each range must be a single number or from-to with the dash included.
								

								 	
									200-299
								

								 	
									String
								

								
	
									urlRewrite (producer)
								

								 	
									Deprecated Refers to a custom org.apache.camel.component.http.UrlRewrite which allows you to rewrite urls when you bridge/proxy endpoints. See more details at http://camel.apache.org/urlrewrite.html
								

								 	 	
									UrlRewrite
								

								
	
									clientBuilder (advanced)
								

								 	
									Provide access to the http client request parameters used on new RequestConfig instances used by producers or consumers of this endpoint.
								

								 	 	
									HttpClientBuilder
								

								
	
									clientConnectionManager (advanced)
								

								 	
									To use a custom HttpClientConnectionManager to manage connections
								

								 	 	
									HttpClientConnection Manager
								

								
	
									connectionsPerRoute (advanced)
								

								 	
									The maximum number of connections per route.
								

								 	
									20
								

								 	
									int
								

								
	
									httpClient (advanced)
								

								 	
									Sets a custom HttpClient to be used by the producer
								

								 	 	
									HttpClient
								

								
	
									httpClientConfigurer (advanced)
								

								 	
									Register a custom configuration strategy for new HttpClient instances created by producers or consumers such as to configure authentication mechanisms etc
								

								 	 	
									HttpClientConfigurer
								

								
	
									httpClientOptions (advanced)
								

								 	
									To configure the HttpClient using the key/values from the Map.
								

								 	 	
									Map
								

								
	
									httpContext (advanced)
								

								 	
									To use a custom HttpContext instance
								

								 	 	
									HttpContext
								

								
	
									mapHttpMessageBody (advanced)
								

								 	
									If this option is true then IN exchange Body of the exchange will be mapped to HTTP body. Setting this to false will avoid the HTTP mapping.
								

								 	
									true
								

								 	
									boolean
								

								
	
									mapHttpMessageFormUrl EncodedBody (advanced)
								

								 	
									If this option is true then IN exchange Form Encoded body of the exchange will be mapped to HTTP. Setting this to false will avoid the HTTP Form Encoded body mapping.
								

								 	
									true
								

								 	
									boolean
								

								
	
									mapHttpMessageHeaders (advanced)
								

								 	
									If this option is true then IN exchange Headers of the exchange will be mapped to HTTP headers. Setting this to false will avoid the HTTP Headers mapping.
								

								 	
									true
								

								 	
									boolean
								

								
	
									maxTotalConnections (advanced)
								

								 	
									The maximum number of connections.
								

								 	
									200
								

								 	
									int
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									useSystemProperties (advanced)
								

								 	
									To use System Properties as fallback for configuration
								

								 	
									false
								

								 	
									boolean
								

								
	
									proxyAuthDomain (proxy)
								

								 	
									Proxy authentication domain to use with NTML
								

								 	 	
									String
								

								
	
									proxyAuthHost (proxy)
								

								 	
									Proxy authentication host
								

								 	 	
									String
								

								
	
									proxyAuthMethod (proxy)
								

								 	
									Proxy authentication method to use
								

								 	 	
									String
								

								
	
									proxyAuthPassword (proxy)
								

								 	
									Proxy authentication password
								

								 	 	
									String
								

								
	
									proxyAuthPort (proxy)
								

								 	
									Proxy authentication port
								

								 	 	
									int
								

								
	
									proxyAuthScheme (proxy)
								

								 	
									Proxy authentication scheme to use
								

								 	 	
									String
								

								
	
									proxyAuthUsername (proxy)
								

								 	
									Proxy authentication username
								

								 	 	
									String
								

								
	
									proxyHost (proxy)
								

								 	
									Proxy hostname to use
								

								 	 	
									String
								

								
	
									proxyPort (proxy)
								

								 	
									Proxy port to use
								

								 	 	
									int
								

								
	
									authDomain (security)
								

								 	
									Authentication domain to use with NTML
								

								 	 	
									String
								

								
	
									authHost (security)
								

								 	
									Authentication host to use with NTML
								

								 	 	
									String
								

								
	
									authMethod (security)
								

								 	
									Authentication methods allowed to use as a comma separated list of values Basic, Digest or NTLM.
								

								 	 	
									String
								

								
	
									authMethodPriority (security)
								

								 	
									Which authentication method to prioritize to use, either as Basic, Digest or NTLM.
								

								 	 	
									String
								

								
	
									authPassword (security)
								

								 	
									Authentication password
								

								 	 	
									String
								

								
	
									authUsername (security)
								

								 	
									Authentication username
								

								 	 	
									String
								

								
	
									x509HostnameVerifier (security)
								

								 	
									To use a custom X509HostnameVerifier such as DefaultHostnameVerifier or org.apache.http.conn.ssl.NoopHostnameVerifier.
								

								 	 	
									HostnameVerifier
								

								

Message Headers

	Name	Type	Description
	
								Exchange.HTTP_URI
							

							 	
								String
							

							 	
								URI to call. Will override existing URI set directly on the endpoint. This uri is the uri of the http server to call. Its not the same as the Camel endpoint uri, where you can configure endpoint options such as security etc. This header does not support that, its only the uri of the http server.
							

							
	
								Exchange.HTTP_PATH
							

							 	
								String
							

							 	
								Request URI’s path, the header will be used to build the request URI with the HTTP_URI.
							

							
	
								Exchange.HTTP_QUERY
							

							 	
								String
							

							 	
								URI parameters. Will override existing URI parameters set directly on the endpoint.
							

							
	
								Exchange.HTTP_RESPONSE_CODE
							

							 	
								int
							

							 	
								The HTTP response code from the external server. Is 200 for OK.
							

							
	
								Exchange.HTTP_RESPONSE_TEXT
							

							 	
								String
							

							 	
								The HTTP response text from the external server.
							

							
	
								Exchange.HTTP_CHARACTER_ENCODING
							

							 	
								String
							

							 	
								Character encoding.
							

							
	
								Exchange.CONTENT_TYPE
							

							 	
								String
							

							 	
								The HTTP content type. Is set on both the IN and OUT message to provide a content type, such as text/html.
							

							
	
								Exchange.CONTENT_ENCODING
							

							 	
								String
							

							 	
								The HTTP content encoding. Is set on both the IN and OUT message to provide a content encoding, such as gzip.
							

							

Message Body

				Camel will store the HTTP response from the external server on the OUT body. All headers from the IN message will be copied to the OUT message, so headers are preserved during routing. Additionally Camel will add the HTTP response headers as well to the OUT message headers.
			

				
			

Using System Properties

				When setting useSystemProperties to true, the HTTP Client will look for the following System Properties and it will use it:
			
	
						ssl.TrustManagerFactory.algorithm
					
	
						javax.net.ssl.trustStoreType
					
	
						javax.net.ssl.trustStore
					
	
						javax.net.ssl.trustStoreProvider
					
	
						javax.net.ssl.trustStorePassword
					
	
						java.home
					
	
						ssl.KeyManagerFactory.algorithm
					
	
						javax.net.ssl.keyStoreType
					
	
						javax.net.ssl.keyStore
					
	
						javax.net.ssl.keyStoreProvider
					
	
						javax.net.ssl.keyStorePassword
					
	
						http.proxyHost
					
	
						http.proxyPort
					
	
						http.nonProxyHosts
					
	
						http.keepAlive
					
	
						http.maxConnections
					

Response code

				Camel will handle according to the HTTP response code:
			
	
						Response code is in the range 100..299, Camel regards it as a success response.
					
	
						Response code is in the range 300..399, Camel regards it as a redirection response and will throw a HttpOperationFailedException with the information.
					
	
						Response code is 400+, Camel regards it as an external server failure and will throw a HttpOperationFailedException with the information.
					

				throwExceptionOnFailure The option, throwExceptionOnFailure, can be set to false to prevent the HttpOperationFailedException from being thrown for failed response codes. This allows you to get any response from the remote server.
 There is a sample below demonstrating this.
			

HttpOperationFailedException

				This exception contains the following information:
			
	
						The HTTP status code
					
	
						The HTTP status line (text of the status code)
					
	
						Redirect location, if server returned a redirect
					
	
						Response body as a java.lang.String, if server provided a body as response
					

Which HTTP method will be used

				The following algorithm is used to determine what HTTP method should be used:
 1. Use method provided as endpoint configuration (httpMethod).
 2. Use method provided in header (Exchange.HTTP_METHOD).
 3. GET if query string is provided in header.
 4. GET if endpoint is configured with a query string.
 5. POST if there is data to send (body is not null).
 6. GET otherwise.
			

How to get access to HttpServletRequest and HttpServletResponse

				You can get access to these two using the Camel type converter system using
 NOTE You can get the request and response not just from the processor after the camel-jetty or camel-cxf endpoint.
			
HttpServletRequest request = exchange.getIn().getBody(HttpServletRequest.class);
HttpServletRequest response = exchange.getIn().getBody(HttpServletResponse.class);

Configuring URI to call

				You can set the HTTP producer’s URI directly form the endpoint URI. In the route below, Camel will call out to the external server, oldhost, using HTTP.
			
from("direct:start")
 .to("http4://oldhost");

				And the equivalent Spring sample:
			
<camelContext xmlns="http://activemq.apache.org/camel/schema/spring">
 <route>
 <from uri="direct:start"/>
 <to uri="http4://oldhost"/>
 </route>
</camelContext>

				You can override the HTTP endpoint URI by adding a header with the key, Exchange.HTTP_URI, on the message.
			
from("direct:start")
 .setHeader(Exchange.HTTP_URI, constant("http://newhost"))
 .to("http4://oldhost");

				In the sample above Camel will call the http://newhost despite the endpoint is configured with http4://oldhost.
 If the http4 endpoint is working in bridge mode, it will ignore the message header of Exchange.HTTP_URI.
			

Configuring URI Parameters

				The http producer supports URI parameters to be sent to the HTTP server. The URI parameters can either be set directly on the endpoint URI or as a header with the key Exchange.HTTP_QUERY on the message.
			
from("direct:start")
 .to("http4://oldhost?order=123&detail=short");

				Or options provided in a header:
			
from("direct:start")
 .setHeader(Exchange.HTTP_QUERY, constant("order=123&detail=short"))
 .to("http4://oldhost");

How to set the http method (GET/PATCH/POST/PUT/DELETE/HEAD/OPTIONS/TRACE) to the HTTP producer

				Using the http PATCH method
			

				The http PATCH method is supported starting with Camel 2.11.3 / 2.12.1.
			

				The HTTP4 component provides a way to set the HTTP request method by setting the message header. Here is an example:
			
from("direct:start")
 .setHeader(Exchange.HTTP_METHOD, constant(org.apache.camel.component.http4.HttpMethods.POST))
 .to("http4://www.google.com")
 .to("mock:results");

				The method can be written a bit shorter using the string constants:
			
.setHeader("CamelHttpMethod", constant("POST"))

				And the equivalent Spring sample:
			
<camelContext xmlns="http://activemq.apache.org/camel/schema/spring">
 <route>
 <from uri="direct:start"/>
 <setHeader headerName="CamelHttpMethod">
 <constant>POST</constant>
 </setHeader>
 <to uri="http4://www.google.com"/>
 <to uri="mock:results"/>
 </route>
</camelContext>

Using client timeout - SO_TIMEOUT

				See the HttpSOTimeoutTest unit test.
			

				Since Camel 2.13.0: See the updated HttpSOTimeoutTest unit test.
			

Configuring a Proxy

				The HTTP4 component provides a way to configure a proxy.
			
from("direct:start")
 .to("http4://oldhost?proxyAuthHost=www.myproxy.com&proxyAuthPort=80");

				There is also support for proxy authentication via the proxyAuthUsername and proxyAuthPassword options.
			
Using proxy settings outside of URI

					To avoid System properties conflicts, you can set proxy configuration only from the CamelContext or URI.
 Java DSL :
				
 context.getProperties().put("http.proxyHost", "172.168.18.9");
 context.getProperties().put("http.proxyPort" "8080");

					Spring XML
				
 <camelContext>
 <properties>
 <property key="http.proxyHost" value="172.168.18.9"/>
 <property key="http.proxyPort" value="8080"/>
 </properties>
 </camelContext>

					Camel will first set the settings from Java System or CamelContext Properties and then the endpoint proxy options if provided.
 So you can override the system properties with the endpoint options.
				

					Notice in Camel 2.8 there is also a http.proxyScheme property you can set to explicit configure the scheme to use.
				

Configuring charset

				If you are using POST to send data you can configure the charset using the Exchange property:
			
exchange.setProperty(Exchange.CHARSET_NAME, "ISO-8859-1");
Sample with scheduled poll

					This sample polls the Google homepage every 10 seconds and write the page to the file message.html:
				
from("timer://foo?fixedRate=true&delay=0&period=10000")
 .to("http4://www.google.com")
 .setHeader(FileComponent.HEADER_FILE_NAME, "message.html")
 .to("file:target/google");

URI Parameters from the endpoint URI

					In this sample we have the complete URI endpoint that is just what you would have typed in a web browser. Multiple URI parameters can of course be set using the & character as separator, just as you would in the web browser. Camel does no tricks here.
				
// we query for Camel at the Google page
template.sendBody("http4://www.google.com/search?q=Camel", null);

URI Parameters from the Message

Map headers = new HashMap();
headers.put(Exchange.HTTP_QUERY, "q=Camel&lr=lang_en");
// we query for Camel and English language at Google
template.sendBody("http4://www.google.com/search", null, headers);

					In the header value above notice that it should not be prefixed with ? and you can separate parameters as usual with the & char.
				

Getting the Response Code

					You can get the HTTP response code from the HTTP4 component by getting the value from the Out message header with Exchange.HTTP_RESPONSE_CODE.
				
Exchange exchange = template.send("http4://www.google.com/search", new Processor() {
 public void process(Exchange exchange) throws Exception {
 exchange.getIn().setHeader(Exchange.HTTP_QUERY, constant("hl=en&q=activemq"));
 }
});
Message out = exchange.getOut();
int responseCode = out.getHeader(Exchange.HTTP_RESPONSE_CODE, Integer.class);

Disabling Cookies

				To disable cookies you can set the HTTP Client to ignore cookies by adding this URI option:
 httpClient.cookieSpec=ignoreCookies
			

Advanced Usage

				If you need more control over the HTTP producer you should use the HttpComponent where you can set various classes to give you custom behavior.
			
Setting up SSL for HTTP Client

					Using the JSSE Configuration Utility
				

					As of Camel 2.8, the HTTP4 component supports SSL/TLS configuration through the Camel JSSE Configuration Utility. This utility greatly decreases the amount of component specific code you need to write and is configurable at the endpoint and component levels. The following examples demonstrate how to use the utility with the HTTP4 component.
				

					Programmatic configuration of the component
				
KeyStoreParameters ksp = new KeyStoreParameters();
ksp.setResource("/users/home/server/keystore.jks");
ksp.setPassword("keystorePassword");

KeyManagersParameters kmp = new KeyManagersParameters();
kmp.setKeyStore(ksp);
kmp.setKeyPassword("keyPassword");

SSLContextParameters scp = new SSLContextParameters();
scp.setKeyManagers(kmp);

HttpComponent httpComponent = getContext().getComponent("https4", HttpComponent.class);
httpComponent.setSslContextParameters(scp);

					Spring DSL based configuration of endpoint
				
...
 <camel:sslContextParameters
 id="sslContextParameters">
 <camel:keyManagers
 keyPassword="keyPassword">
 <camel:keyStore
 resource="/users/home/server/keystore.jks"
 password="keystorePassword"/>
 </camel:keyManagers>
 </camel:sslContextParameters>...
...
 <to uri="https4://127.0.0.1/mail/?sslContextParameters=#sslContextParameters"/>...

					Configuring Apache HTTP Client Directly
				

					Basically camel-http4 component is built on the top of Apache HttpClient. Please refer to SSL/TLS customization for details or have a look into the org.apache.camel.component.http4.HttpsServerTestSupport unit test base class.
 You can also implement a custom org.apache.camel.component.http4.HttpClientConfigurer to do some configuration on the http client if you need full control of it.
				

					However if you just want to specify the keystore and truststore you can do this with Apache HTTP HttpClientConfigurer, for example:
				
KeyStore keystore = ...;
KeyStore truststore = ...;

SchemeRegistry registry = new SchemeRegistry();
registry.register(new Scheme("https", 443, new SSLSocketFactory(keystore, "mypassword", truststore)));

					And then you need to create a class that implements HttpClientConfigurer, and registers https protocol providing a keystore or truststore per example above. Then, from your camel route builder class you can hook it up like so:
				
HttpComponent httpComponent = getContext().getComponent("http4", HttpComponent.class);
httpComponent.setHttpClientConfigurer(new MyHttpClientConfigurer());

					If you are doing this using the Spring DSL, you can specify your HttpClientConfigurer using the URI. For example:
				
<bean id="myHttpClientConfigurer"
 class="my.https.HttpClientConfigurer">
</bean>

<to uri="https4://myhostname.com:443/myURL?httpClientConfigurer=myHttpClientConfigurer"/>

					As long as you implement the HttpClientConfigurer and configure your keystore and truststore as described above, it will work fine.
				

					Using HTTPS to authenticate gotchas
				

					An end user reported that he had problem with authenticating with HTTPS. The problem was eventually resolved by providing a custom configured org.apache.http.protocol.HttpContext:
				
	
							1. Create a (Spring) factory for HttpContexts:
						

public class HttpContextFactory {

 private String httpHost = "localhost";
 private String httpPort = 9001;

 private BasicHttpContext httpContext = new BasicHttpContext();
 private BasicAuthCache authCache = new BasicAuthCache();
 private BasicScheme basicAuth = new BasicScheme();

 public HttpContext getObject() {
 authCache.put(new HttpHost(httpHost, httpPort), basicAuth);

 httpContext.setAttribute(ClientContext.AUTH_CACHE, authCache);

 return httpContext;
 }

 // getter and setter
}
	
							2. Declare an HttpContext in the Spring application context file:
						

<bean id="myHttpContext" factory-bean="httpContextFactory" factory-method="getObject"/>
	
							3. Reference the context in the http4 URL:
						

<to uri="https4://myhostname.com:443/myURL?httpContext=myHttpContext"/>

					Using different SSLContextParameters
				

					The HTTP4 component only support one instance of org.apache.camel.util.jsse.SSLContextParameters per component. If you need to use 2 or more different instances, then you need to setup multiple HTTP4 components as shown below. Where we have 2 components, each using their own instance of sslContextParameters property.
				
<bean id="http4-foo" class="org.apache.camel.component.http4.HttpComponent">
 <property name="sslContextParameters" ref="sslContextParams1"/>
 <property name="x509HostnameVerifier" ref="hostnameVerifier"/>
</bean>

<bean id="http4-bar" class="org.apache.camel.component.http4.HttpComponent">
 <property name="sslContextParameters" ref="sslContextParams2"/>
 <property name="x509HostnameVerifier" ref="hostnameVerifier"/>
</bean>

Chapter 150. Hystrix Component

			Available as of Camel version 2.18
		

			The hystrix component integrates Netflix Hystrix circuit breaker in Camel routes.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-hystrix</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>

			For more information see the Hystrix EIP
		

Chapter 151. iCal DataFormat

			Available as of Camel version 2.12
		

			The ICal dataformat is used for working with iCalendar messages.
		

			A typical iCalendar message looks like:
		
BEGIN:VCALENDAR
VERSION:2.0
PRODID:-//Events Calendar//iCal4j 1.0//EN
CALSCALE:GREGORIAN
BEGIN:VEVENT
DTSTAMP:20130324T180000Z
DTSTART:20130401T170000
DTEND:20130401T210000
SUMMARY:Progress Meeting
TZID:America/New_York
UID:00000000
ATTENDEE;ROLE=REQ-PARTICIPANT;CN=Developer 1:mailto:dev1@mycompany.com
ATTENDEE;ROLE=OPT-PARTICIPANT;CN=Developer 2:mailto:dev2@mycompany.com
END:VEVENT
END:VCALENDAR
Options

				The iCal dataformat supports 2 options which are listed below.
			
	Name	Default	Java Type	Description
	
								validating
							

							 	
								false
							

							 	
								Boolean
							

							 	
								Whether to validate.
							

							
	
								contentTypeHeader
							

							 	
								false
							

							 	
								Boolean
							

							 	
								Whether the data format should set the Content-Type header with the type from the data format if the data format is capable of doing so. For example application/xml for data formats marshalling to XML, or application/json for data formats marshalling to JSon etc.
							

							

Basic Usage

				To unmarshal and marshal the message shown above, your route will look like the following:
			
from("direct:ical-unmarshal")
 .unmarshal("ical")
 .to("mock:unmarshaled")
 .marshal("ical")
 .to("mock:marshaled");

				Maven users will need to add the following dependency to their pom.xml for this component:
			
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-ical</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>

See Also

	
						Configuring Camel
					
	
						Component
					
	
						Endpoint
					
	
						Getting Started
					

Chapter 152. IEC 60870 Client Component

			Available as of Camel version 2.20
		

			The IEC 60870-5-104 Client component provides access to IEC 60870 servers using the Eclipse NeoSCADA™ implementation.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-iec60870</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>

			The IEC 60870 Client component supports 2 options which are listed below.
		
	Name	Description	Default	Type
	
							defaultConnection Options (common)
						

						 	
							Default connection options
						

						 	 	
							ClientOptions
						

						
	
							resolveProperty Placeholders (advanced)
						

						 	
							Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
						

						 	
							true
						

						 	
							boolean
						

						

URI format

				The URI syntax of the endpoint is:
			
iec60870-client:host:port/00-01-02-03-04

				The information object address is encoded in the path in the syntax shows above. Please note that always the full, 5 octet address format is being used. Unused octets have to be filled with zero.
			

URI options

				The IEC 60870 Client endpoint is configured using URI syntax:
			
iec60870-client:uriPath

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									uriPath
								

								 	
									Required The object information address
								

								 	 	
									ObjectAddress
								

								

Query Parameters (18 parameters):

	Name	Description	Default	Type
	
									dataModuleOptions (common)
								

								 	
									Data module options
								

								 	 	
									DataModuleOptions
								

								
	
									protocolOptions (common)
								

								 	
									Protocol options
								

								 	 	
									ProtocolOptions
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									acknowledgeWindow (connection)
								

								 	
									Parameter W - Acknowledgment window.
								

								 	
									10
								

								 	
									short
								

								
	
									adsuAddressType (connection)
								

								 	
									The common ASDU address size. May be either SIZE_1 or SIZE_2.
								

								 	 	
									ASDUAddressType
								

								
	
									causeOfTransmissionType (connection)
								

								 	
									The cause of transmission type. May be either SIZE_1 or SIZE_2.
								

								 	 	
									CauseOfTransmission Type
								

								
	
									informationObjectAddress Type (connection)
								

								 	
									The information address size. May be either SIZE_1, SIZE_2 or SIZE_3.
								

								 	 	
									InformationObject AddressType
								

								
	
									maxUnacknowledged (connection)
								

								 	
									Parameter K - Maximum number of un-acknowledged messages.
								

								 	
									15
								

								 	
									short
								

								
	
									timeout1 (connection)
								

								 	
									Timeout T1 in milliseconds.
								

								 	
									15000
								

								 	
									int
								

								
	
									timeout2 (connection)
								

								 	
									Timeout T2 in milliseconds.
								

								 	
									10000
								

								 	
									int
								

								
	
									timeout3 (connection)
								

								 	
									Timeout T3 in milliseconds.
								

								 	
									20000
								

								 	
									int
								

								
	
									ignoreBackgroundScan (data)
								

								 	
									Whether background scan transmissions should be ignored.
								

								 	
									true
								

								 	
									boolean
								

								
	
									ignoreDaylightSavingTime (data)
								

								 	
									Whether to ignore or respect DST
								

								 	
									false
								

								 	
									boolean
								

								
	
									timeZone (data)
								

								 	
									The timezone to use. May be any Java time zone string
								

								 	
									UTC
								

								 	
									TimeZone
								

								
	
									connectionId (id)
								

								 	
									An identifier grouping connection instances
								

								 	 	
									String
								

								

					A connection instance if identified by the host and port part of the URI, plus all parameters in the "id" group. If a new connection id is encountered the connection options will be evaluated and the connection instance is created with those options.
				
Note

						If two URIs specify the same connection (host, port, …) but different connection options, then it is undefined which of those connection options will be used.
					

					The final connection options will be evaluated in the following order:
				
	
							If present, the connectionOptions parameter will be used
						
	
							Otherwise the defaultConnectionOptions instance is copied and customized in the following steps
						
	
							Apply protocolOptions if present
						
	
							Apply dataModuleOptions if present
						
	
							Apply all explicit connection parameters (e.g. timeZone)
						

Chapter 153. IEC 60870 Server Component

			Available as of Camel version 2.20
		

			The IEC 60870-5-104 Server component provides access to IEC 60870 servers using the Eclipse NeoSCADA™ implementation.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-iec60870</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>

			The IEC 60870 Server component supports 2 options which are listed below.
		
	Name	Description	Default	Type
	
							defaultConnection Options (common)
						

						 	
							Default connection options
						

						 	 	
							ServerOptions
						

						
	
							resolveProperty Placeholders (advanced)
						

						 	
							Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
						

						 	
							true
						

						 	
							boolean
						

						

URI format

				The URI syntax of the endpoint is:
			
iec60870-server:host:port/00-01-02-03-04

				The information object address is encoded in the path in the syntax shows above. Please note that always the full, 5 octet address format is being used. Unused octets have to be filled with zero.
			

URI options

				The IEC 60870 Server endpoint is configured using URI syntax:
			
iec60870-server:uriPath

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									uriPath
								

								 	
									Required The object information address
								

								 	 	
									ObjectAddress
								

								

Query Parameters (19 parameters):

	Name	Description	Default	Type
	
									dataModuleOptions (common)
								

								 	
									Data module options
								

								 	 	
									DataModuleOptions
								

								
	
									filterNonExecute (common)
								

								 	
									Filter out all requests which don’t have the execute bit set
								

								 	
									true
								

								 	
									boolean
								

								
	
									protocolOptions (common)
								

								 	
									Protocol options
								

								 	 	
									ProtocolOptions
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									acknowledgeWindow (connection)
								

								 	
									Parameter W - Acknowledgment window.
								

								 	
									10
								

								 	
									short
								

								
	
									adsuAddressType (connection)
								

								 	
									The common ASDU address size. May be either SIZE_1 or SIZE_2.
								

								 	 	
									ASDUAddressType
								

								
	
									causeOfTransmissionType (connection)
								

								 	
									The cause of transmission type. May be either SIZE_1 or SIZE_2.
								

								 	 	
									CauseOfTransmission Type
								

								
	
									informationObjectAddress Type (connection)
								

								 	
									The information address size. May be either SIZE_1, SIZE_2 or SIZE_3.
								

								 	 	
									InformationObject AddressType
								

								
	
									maxUnacknowledged (connection)
								

								 	
									Parameter K - Maximum number of un-acknowledged messages.
								

								 	
									15
								

								 	
									short
								

								
	
									timeout1 (connection)
								

								 	
									Timeout T1 in milliseconds.
								

								 	
									15000
								

								 	
									int
								

								
	
									timeout2 (connection)
								

								 	
									Timeout T2 in milliseconds.
								

								 	
									10000
								

								 	
									int
								

								
	
									timeout3 (connection)
								

								 	
									Timeout T3 in milliseconds.
								

								 	
									20000
								

								 	
									int
								

								
	
									ignoreBackgroundScan (data)
								

								 	
									Whether background scan transmissions should be ignored.
								

								 	
									true
								

								 	
									boolean
								

								
	
									ignoreDaylightSavingTime (data)
								

								 	
									Whether to ignore or respect DST
								

								 	
									false
								

								 	
									boolean
								

								
	
									timeZone (data)
								

								 	
									The timezone to use. May be any Java time zone string
								

								 	
									UTC
								

								 	
									TimeZone
								

								
	
									connectionId (id)
								

								 	
									An identifier grouping connection instances
								

								 	 	
									String
								

								

Chapter 154. Ignite Cache Component

			Available as of Camel version 2.17
		

			The Ignite Cache endpoint is one of camel-ignite endpoints which allows you to interact with an Ignite Cache. This offers both a Producer (to invoke cache operations on an Ignite cache) and a Consumer (to consume changes from a continuous query).
		

			The cache value is always the body of the message, whereas the cache key is always stored in the IgniteConstants.IGNITE_CACHE_KEY message header.
		

			Even if you configure a fixed operation in the endpoint URI, you can vary it per-exchange by setting the IgniteConstants.IGNITE_CACHE_OPERATION message header.
		
Options

				The Ignite Cache component supports 4 options which are listed below.
			
	Name	Description	Default	Type
	
								ignite (common)
							

							 	
								Sets the Ignite instance.
							

							 	 	
								Ignite
							

							
	
								configurationResource (common)
							

							 	
								Sets the resource from where to load the configuration. It can be a: URI, String (URI) or an InputStream.
							

							 	 	
								Object
							

							
	
								igniteConfiguration (common)
							

							 	
								Allows the user to set a programmatic IgniteConfiguration.
							

							 	 	
								IgniteConfiguration
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The Ignite Cache endpoint is configured using URI syntax:
			
ignite-cache:cacheName

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									cacheName
								

								 	
									Required The cache name.
								

								 	 	
									String
								

								

Query Parameters (16 parameters):

	Name	Description	Default	Type
	
									propagateIncomingBodyIfNo ReturnValue (common)
								

								 	
									Sets whether to propagate the incoming body if the return type of the underlying Ignite operation is void.
								

								 	
									true
								

								 	
									boolean
								

								
	
									treatCollectionsAsCache Objects (common)
								

								 	
									Sets whether to treat Collections as cache objects or as Collections of items to insert/update/compute, etc.
								

								 	
									false
								

								 	
									boolean
								

								
	
									autoUnsubscribe (consumer)
								

								 	
									Whether auto unsubscribe is enabled in the Continuous Query Consumer.
								

								 	
									true
								

								 	
									boolean
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									fireExistingQueryResults (consumer)
								

								 	
									Whether to process existing results that match the query. Used on initialization of the Continuous Query Consumer.
								

								 	
									false
								

								 	
									boolean
								

								
	
									oneExchangePerUpdate (consumer)
								

								 	
									Whether to pack each update in an individual Exchange, even if multiple updates are received in one batch. Only used by the Continuous Query Consumer.
								

								 	
									true
								

								 	
									boolean
								

								
	
									pageSize (consumer)
								

								 	
									The page size. Only used by the Continuous Query Consumer.
								

								 	
									1
								

								 	
									int
								

								
	
									query (consumer)
								

								 	
									The Query to execute, only needed for operations that require it, and for the Continuous Query Consumer.
								

								 	 	
									Object>>
								

								
	
									remoteFilter (consumer)
								

								 	
									The remote filter, only used by the Continuous Query Consumer.
								

								 	 	
									Object>
								

								
	
									timeInterval (consumer)
								

								 	
									The time interval for the Continuous Query Consumer.
								

								 	
									0
								

								 	
									long
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									cachePeekMode (producer)
								

								 	
									The CachePeekMode, only needed for operations that require it (link IgniteCacheOperationSIZE).
								

								 	
									ALL
								

								 	
									CachePeekMode
								

								
	
									failIfInexistentCache (producer)
								

								 	
									Whether to fail the initialization if the cache doesn’t exist.
								

								 	
									false
								

								 	
									boolean
								

								
	
									operation (producer)
								

								 	
									The cache operation to invoke. Possible values: GET, PUT, REMOVE, SIZE, REBALANCE, QUERY, CLEAR.
								

								 	 	
									IgniteCacheOperation
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

Headers used

					This endpoint uses the following headers:
				
	Header name	Constant	Expected type	Description
	
									CamelIgniteCacheKey
								

								 	
									IgniteConstants.IGNITE_CACHE_KEY
								

								 	
									String
								

								 	
									The cache key for the entry value in the message body.
								

								
	
									CamelIgniteCacheQuery
								

								 	
									IgniteConstants.IGNITE_CACHE_QUERY
								

								 	
									Query
								

								 	
									The query to run (producer) when invoking the QUERY operation.
								

								
	
									CamelIgniteCacheOperation
								

								 	
									IgniteConstants.IGNITE_CACHE_OPERATION
								

								 	
									IgniteCacheOperation enum
								

								 	
									Allows you to dynamically change the cache operation to execute (producer).
								

								
	
									CamelIgniteCachePeekMode
								

								 	
									IgniteConstants.IGNITE_CACHE_PEEK_MODE
								

								 	
									CachePeekMode enum
								

								 	
									Allows you to dynamically change the cache peek mode when running the SIZE operation.
								

								
	
									CamelIgniteCacheEventType
								

								 	
									IgniteConstants.IGNITE_CACHE_EVENT_TYPE
								

								 	
									int (EventType constants)
								

								 	
									This header carries the received event type when using the continuous query consumer.
								

								
	
									CamelIgniteCacheName
								

								 	
									IgniteConstants.IGNITE_CACHE_NAME
								

								 	
									String
								

								 	
									This header carries the cache name for which a continuous query event was received (consumer). It does not allow you to dynamically change the cache against which a producer operation is performed. Use EIPs for that (e.g. recipient list, dynamic router).
								

								
	
									CamelIgniteCacheOldValue
								

								 	
									IgniteConstants.IGNITE_CACHE_OLD_VALUE
								

								 	
									Object
								

								 	
									This header carries the old cache value when passed in the incoming cache event (consumer).
								

								

Chapter 155. Ignite Compute Component

			Available as of Camel version 2.17
		

			The Ignite Compute endpoint is one of camel-ignite endpoints which allows you to run compute operations on the cluster by passing in an IgniteCallable, an IgniteRunnable, an IgniteClosure, or collections of them, along with their parameters if necessary.
		

			This endpoint only supports producers.
		

			The host part of the endpoint URI is a symbolic endpoint ID, it is not used for any purposes.
		

			The endpoint tries to run the object passed in the body of the IN message as the compute job. It expects different payload types depending on the execution type.
		
Options

				The Ignite Compute component supports 4 options which are listed below.
			
	Name	Description	Default	Type
	
								ignite (producer)
							

							 	
								Sets the Ignite instance.
							

							 	 	
								Ignite
							

							
	
								configurationResource (producer)
							

							 	
								Sets the resource from where to load the configuration. It can be a: URI, String (URI) or an InputStream.
							

							 	 	
								Object
							

							
	
								igniteConfiguration (producer)
							

							 	
								Allows the user to set a programmatic IgniteConfiguration.
							

							 	 	
								IgniteConfiguration
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The Ignite Compute endpoint is configured using URI syntax:
			
ignite-compute:endpointId

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									endpointId
								

								 	
									Required The endpoint ID (not used).
								

								 	 	
									String
								

								

Query Parameters (8 parameters):

	Name	Description	Default	Type
	
									clusterGroupExpression (producer)
								

								 	
									An expression that returns the Cluster Group for the IgniteCompute instance.
								

								 	 	
									ClusterGroupExpression
								

								
	
									computeName (producer)
								

								 	
									The name of the compute job, which will be set via link IgniteComputewithName(String).
								

								 	 	
									String
								

								
	
									executionType (producer)
								

								 	
									Required The compute operation to perform. Possible values: CALL, BROADCAST, APPLY, EXECUTE, RUN, AFFINITY_CALL, AFFINITY_RUN. The component expects different payload types depending on the operation.
								

								 	 	
									IgniteComputeExecution Type
								

								
	
									propagateIncomingBodyIfNo ReturnValue (producer)
								

								 	
									Sets whether to propagate the incoming body if the return type of the underlying Ignite operation is void.
								

								 	
									true
								

								 	
									boolean
								

								
	
									taskName (producer)
								

								 	
									The task name, only applicable if using the link IgniteComputeExecutionTypeEXECUTE execution type.
								

								 	 	
									String
								

								
	
									timeoutMillis (producer)
								

								 	
									The timeout interval for triggered jobs, in milliseconds, which will be set via link IgniteComputewithTimeout(long).
								

								 	 	
									Long
								

								
	
									treatCollectionsAsCache Objects (producer)
								

								 	
									Sets whether to treat Collections as cache objects or as Collections of items to insert/update/compute, etc.
								

								 	
									false
								

								 	
									boolean
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

Expected payload types

					Each operation expects the indicated types:
				
	Operation	Expected payloads
	
									CALL
								

								 	
									Collection of IgniteCallable, or a single IgniteCallable.
								

								
	
									BROADCAST
								

								 	
									IgniteCallable, IgniteRunnable, IgniteClosure.
								

								
	
									APPLY
								

								 	
									IgniteClosure.
								

								
	
									EXECUTE
								

								 	
									ComputeTask, Class<? extends ComputeTask> or an object representing parameters if the taskName option is not null.
								

								
	
									RUN
								

								 	
									A Collection of IgniteRunnables, or a single IgniteRunnable.
								

								
	
									AFFINITY_CALL
								

								 	
									IgniteCallable.
								

								
	
									AFFINITY_RUN
								

								 	
									IgniteRunnable.
								

								

Headers used

					This endpoint uses the following headers:
				
	Header name	Constant	Expected type	Description
	
									CamelIgniteComputeExecutionType
								

								 	
									IgniteConstants.IGNITE_COMPUTE_EXECUTION_TYPE
								

								 	
									IgniteComputeExecutionType enum
								

								 	
									Allows you to dynamically change the compute operation to perform.
								

								
	
									CamelIgniteComputeParameters
								

								 	
									IgniteConstants.IGNITE_COMPUTE_PARAMS
								

								 	
									Any object or Collection of objects.
								

								 	
									Parameters for APPLY, BROADCAST and EXECUTE operations.
								

								
	
									CamelIgniteComputeReducer
								

								 	
									IgniteConstants.IGNITE_COMPUTE_REDUCER
								

								 	
									IgniteReducer
								

								 	
									Reducer for the APPLY and CALL operations.
								

								
	
									CamelIgniteComputeAffinityCacheName
								

								 	
									IgniteConstants.IGNITE_COMPUTE_AFFINITY_CACHE_NAME
								

								 	
									String
								

								 	
									Affinity cache name for the AFFINITY_CALL and AFFINITY_RUN operations.
								

								
	
									CamelIgniteComputeAffinityKey
								

								 	
									IgniteConstants.IGNITE_COMPUTE_AFFINITY_KEY
								

								 	
									Object
								

								 	
									Affinity key for the AFFINITY_CALL and AFFINITY_RUN operations.
								

								

Chapter 156. Ignite Events Component

			Available as of Camel version 2.17
		

			The Ignite Events endpoint is one of camel-ignite endpoints which allows you to receive events from the Ignite cluster by creating a local event listener.
		

			This endpoint only supports consumers. The Exchanges created by this consumer put the received Event object into the body of the IN message.
		
Options

				The Ignite Events component supports 4 options which are listed below.
			
	Name	Description	Default	Type
	
								ignite (consumer)
							

							 	
								Sets the Ignite instance.
							

							 	 	
								Ignite
							

							
	
								configurationResource (consumer)
							

							 	
								Sets the resource from where to load the configuration. It can be a: URI, String (URI) or an InputStream.
							

							 	 	
								Object
							

							
	
								igniteConfiguration (consumer)
							

							 	
								Allows the user to set a programmatic IgniteConfiguration.
							

							 	 	
								IgniteConfiguration
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The Ignite Events endpoint is configured using URI syntax:
			
ignite-events:endpointId

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									endpointId
								

								 	
									The endpoint ID (not used).
								

								 	 	
									String
								

								

Query Parameters (8 parameters):

	Name	Description	Default	Type
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									clusterGroupExpression (consumer)
								

								 	
									The cluster group expression.
								

								 	 	
									ClusterGroupExpression
								

								
	
									events (consumer)
								

								 	
									The event IDs to subscribe to as a Set directly where the IDs are the different constants in org.apache.ignite.events.EventType.
								

								 	
									EventType.EVTS_ALL
								

								 	
									Set<Integer>OrString
								

								
	
									propagateIncomingBodyIfNo ReturnValue (consumer)
								

								 	
									Sets whether to propagate the incoming body if the return type of the underlying Ignite operation is void.
								

								 	
									true
								

								 	
									boolean
								

								
	
									treatCollectionsAsCache Objects (consumer)
								

								 	
									Sets whether to treat Collections as cache objects or as Collections of items to insert/update/compute, etc.
								

								 	
									false
								

								 	
									boolean
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

Chapter 157. Ignite ID Generator Component

			Available as of Camel version 2.17
		

			The Ignite ID Generator endpoint is one of camel-ignite endpoints which allows you to interact with Ignite Atomic Sequences and ID Generators.
		

			This endpoint only supports producers.
		
Options

				The Ignite ID Generator component supports 4 options which are listed below.
			
	Name	Description	Default	Type
	
								ignite (producer)
							

							 	
								Sets the Ignite instance.
							

							 	 	
								Ignite
							

							
	
								configurationResource (producer)
							

							 	
								Sets the resource from where to load the configuration. It can be a: URI, String (URI) or an InputStream.
							

							 	 	
								Object
							

							
	
								igniteConfiguration (producer)
							

							 	
								Allows the user to set a programmatic IgniteConfiguration.
							

							 	 	
								IgniteConfiguration
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The Ignite ID Generator endpoint is configured using URI syntax:
			
ignite-idgen:name

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									name
								

								 	
									Required The sequence name.
								

								 	 	
									String
								

								

Query Parameters (6 parameters):

	Name	Description	Default	Type
	
									batchSize (producer)
								

								 	
									The batch size.
								

								 	 	
									Integer
								

								
	
									initialValue (producer)
								

								 	
									The initial value.
								

								 	
									0
								

								 	
									Long
								

								
	
									operation (producer)
								

								 	
									The operation to invoke on the Ignite ID Generator. Superseded by the IgniteConstants.IGNITE_IDGEN_OPERATION header in the IN message. Possible values: ADD_AND_GET, GET, GET_AND_ADD, GET_AND_INCREMENT, INCREMENT_AND_GET.
								

								 	 	
									IgniteIdGenOperation
								

								
	
									propagateIncomingBodyIfNo ReturnValue (producer)
								

								 	
									Sets whether to propagate the incoming body if the return type of the underlying Ignite operation is void.
								

								 	
									true
								

								 	
									boolean
								

								
	
									treatCollectionsAsCache Objects (producer)
								

								 	
									Sets whether to treat Collections as cache objects or as Collections of items to insert/update/compute, etc.
								

								 	
									false
								

								 	
									boolean
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

Chapter 158. Ignite Messaging Component

			Available as of Camel version 2.17
		

			The Ignite Messaging endpoint is one of camel-ignite endpoints which allows you to send and consume messages from an Ignite topic.
		

			This endpoint supports producers (to send messages) and consumers (to receive messages).
		
Options

				The Ignite Messaging component supports 4 options which are listed below.
			
	Name	Description	Default	Type
	
								ignite (common)
							

							 	
								Sets the Ignite instance.
							

							 	 	
								Ignite
							

							
	
								configurationResource (common)
							

							 	
								Sets the resource from where to load the configuration. It can be a: URI, String (URI) or an InputStream.
							

							 	 	
								Object
							

							
	
								igniteConfiguration (common)
							

							 	
								Allows the user to set a programmatic IgniteConfiguration.
							

							 	 	
								IgniteConfiguration
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The Ignite Messaging endpoint is configured using URI syntax:
			
ignite-messaging:topic

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									topic
								

								 	
									Required The topic name.
								

								 	 	
									String
								

								

Query Parameters (9 parameters):

	Name	Description	Default	Type
	
									propagateIncomingBodyIfNo ReturnValue (common)
								

								 	
									Sets whether to propagate the incoming body if the return type of the underlying Ignite operation is void.
								

								 	
									true
								

								 	
									boolean
								

								
	
									treatCollectionsAsCache Objects (common)
								

								 	
									Sets whether to treat Collections as cache objects or as Collections of items to insert/update/compute, etc.
								

								 	
									false
								

								 	
									boolean
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									clusterGroupExpression (producer)
								

								 	
									The cluster group expression.
								

								 	 	
									ClusterGroupExpression
								

								
	
									sendMode (producer)
								

								 	
									The send mode to use. Possible values: UNORDERED, ORDERED.
								

								 	
									UNORDERED
								

								 	
									IgniteMessagingSend Mode
								

								
	
									timeout (producer)
								

								 	
									The timeout for the send operation when using ordered messages.
								

								 	 	
									Long
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

Headers used

					This endpoint uses the following headers:
				
	Header name	Constant	Expected type	Description
	
									CamelIgniteMessagingTopic
								

								 	
									IgniteConstants.IGNITE_MESSAGING_TOPIC
								

								 	
									String
								

								 	
									Allows you to dynamically change the topic to send messages to (producer). It also carries the topic on which a message was received (consumer).
								

								
	
									CamelIgniteMessagingUUID
								

								 	
									IgniteConstants.IGNITE_MESSAGING_UUID
								

								 	
									UUID
								

								 	
									This header is filled in with the UUID of the subscription when a message arrives (consumer).
								

								

Chapter 159. Ignite Queues Component

			Available as of Camel version 2.17
		

			The Ignite Queue endpoint is one of camel-ignite endpoints which allows you to interact with Ignite Queue data structures.
		

			This endpoint only supports producers.
		
Options

				The Ignite Queues component supports 4 options which are listed below.
			
	Name	Description	Default	Type
	
								ignite (producer)
							

							 	
								Sets the Ignite instance.
							

							 	 	
								Ignite
							

							
	
								configurationResource (producer)
							

							 	
								Sets the resource from where to load the configuration. It can be a: URI, String (URI) or an InputStream.
							

							 	 	
								Object
							

							
	
								igniteConfiguration (producer)
							

							 	
								Allows the user to set a programmatic IgniteConfiguration.
							

							 	 	
								IgniteConfiguration
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The Ignite Queues endpoint is configured using URI syntax:
			
ignite-queue:name

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									name
								

								 	
									Required The queue name.
								

								 	 	
									String
								

								

Query Parameters (7 parameters):

	Name	Description	Default	Type
	
									capacity (producer)
								

								 	
									The queue capacity. Default: non-bounded.
								

								 	 	
									int
								

								
	
									configuration (producer)
								

								 	
									The collection configuration. Default: empty configuration. You can also conveniently set inner properties by using configuration.xyz=123 options.
								

								 	 	
									CollectionConfiguration
								

								
	
									operation (producer)
								

								 	
									The operation to invoke on the Ignite Queue. Superseded by the IgniteConstants.IGNITE_QUEUE_OPERATION header in the IN message. Possible values: CONTAINS, ADD, SIZE, REMOVE, ITERATOR, CLEAR, RETAIN_ALL, ARRAY, DRAIN, ELEMENT, PEEK, OFFER, POLL, TAKE, PUT.
								

								 	 	
									IgniteQueueOperation
								

								
	
									propagateIncomingBodyIfNo ReturnValue (producer)
								

								 	
									Sets whether to propagate the incoming body if the return type of the underlying Ignite operation is void.
								

								 	
									true
								

								 	
									boolean
								

								
	
									timeoutMillis (producer)
								

								 	
									The queue timeout in milliseconds. Default: no timeout.
								

								 	 	
									Long
								

								
	
									treatCollectionsAsCache Objects (producer)
								

								 	
									Sets whether to treat Collections as cache objects or as Collections of items to insert/update/compute, etc.
								

								 	
									false
								

								 	
									boolean
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

Headers used

					This endpoint uses the following headers:
				
	Header name	Constant	Expected type	Description
	
									CamelIgniteQueueOperation
								

								 	
									IgniteConstants.IGNITE_QUEUE_OPERATION
								

								 	
									IgniteQueueOperation enum
								

								 	
									Allows you to dynamically change the queue operation.
								

								
	
									CamelIgniteQueueMaxElements
								

								 	
									IgniteConstants.IGNITE_QUEUE_MAX_ELEMENTS
								

								 	
									Integer or int
								

								 	
									When invoking the DRAIN operation, the amount of items to drain.
								

								
	
									CamelIgniteQueueTransferredCount
								

								 	
									IgniteConstants.IGNITE_QUEUE_TRANSFERRED_COUNT
								

								 	
									Integer or int
								

								 	
									The amount of items transferred as the result of the DRAIN operation.
								

								
	
									CamelIgniteQueueTimeoutMillis
								

								 	
									IgniteConstants.IGNITE_QUEUE_TIMEOUT_MILLIS
								

								 	
									Long or long
								

								 	
									Dynamically sets the timeout in milliseconds to use when invoking the OFFER or POLL operations.
								

								

Chapter 160. Ignite Sets Component

			Available as of Camel version 2.17
		

			The Ignite Sets endpoint is one of camel-ignite endpoints which allows you to interact with Ignite Set data structures.
		

			This endpoint only supports producers.
		
Options

				The Ignite Sets component supports 4 options which are listed below.
			
	Name	Description	Default	Type
	
								ignite (producer)
							

							 	
								Sets the Ignite instance.
							

							 	 	
								Ignite
							

							
	
								configurationResource (producer)
							

							 	
								Sets the resource from where to load the configuration. It can be a: URI, String (URI) or an InputStream.
							

							 	 	
								Object
							

							
	
								igniteConfiguration (producer)
							

							 	
								Allows the user to set a programmatic IgniteConfiguration.
							

							 	 	
								IgniteConfiguration
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The Ignite Sets endpoint is configured using URI syntax:
			
ignite-set:name

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									name
								

								 	
									Required The set name.
								

								 	 	
									String
								

								

Query Parameters (5 parameters):

	Name	Description	Default	Type
	
									configuration (producer)
								

								 	
									The collection configuration. Default: empty configuration. You can also conveniently set inner properties by using configuration.xyz=123 options.
								

								 	 	
									CollectionConfiguration
								

								
	
									operation (producer)
								

								 	
									The operation to invoke on the Ignite Set. Superseded by the IgniteConstants.IGNITE_SETS_OPERATION header in the IN message. Possible values: CONTAINS, ADD, SIZE, REMOVE, ITERATOR, CLEAR, RETAIN_ALL, ARRAY.The set operation to perform.
								

								 	 	
									IgniteSetOperation
								

								
	
									propagateIncomingBodyIfNo ReturnValue (producer)
								

								 	
									Sets whether to propagate the incoming body if the return type of the underlying Ignite operation is void.
								

								 	
									true
								

								 	
									boolean
								

								
	
									treatCollectionsAsCache Objects (producer)
								

								 	
									Sets whether to treat Collections as cache objects or as Collections of items to insert/update/compute, etc.
								

								 	
									false
								

								 	
									boolean
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

Headers used

					This endpoint uses the following headers:
				
	Header name	Constant	Expected type	Description
	
									CamelIgniteSetsOperation
								

								 	
									IgniteConstants.IGNITE_SETS_OPERATION
								

								 	
									IgniteSetOperation enum
								

								 	
									Allows you to dynamically change the set operation.
								

								

Chapter 161. Infinispan Component

			Available as of Camel version 2.13
		

			This component allows you to interact with Infinispan distributed data grid / cache. Infinispan is an extremely scalable, highly available key/value data store and data grid platform written in Java.
		

			From Camel 2.17 onwards Infinispan requires Java 8.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-infinispan</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>
URI format

infinispan://cacheName?[options]

URI Options

				The producer allows sending messages to a local infinispan cache configured in the registry, or to a remote cache using the HotRod protocol. The consumer allows listening for events from local infinispan cache accessible from the registry.
			

				The Infinispan component supports 3 options which are listed below.
			
	Name	Description	Default	Type
	
								configuration (common)
							

							 	
								The default configuration shared among endpoints.
							

							 	 	
								InfinispanConfiguration
							

							
	
								cacheContainer (common)
							

							 	
								The default cache container.
							

							 	 	
								BasicCacheContainer
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The Infinispan endpoint is configured using URI syntax:
			
infinispan:cacheName

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									cacheName
								

								 	
									Required The cache to use
								

								 	 	
									String
								

								

Query Parameters (18 parameters):

	Name	Description	Default	Type
	
									hosts (common)
								

								 	
									Specifies the host of the cache on Infinispan instance
								

								 	 	
									String
								

								
	
									queryBuilder (common)
								

								 	
									Specifies the query builder.
								

								 	 	
									InfinispanQueryBuilder
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									clusteredListener (consumer)
								

								 	
									If true, the listener will be installed for the entire cluster
								

								 	
									false
								

								 	
									boolean
								

								
	
									command (consumer)
								

								 	
									Deprecated The operation to perform.
								

								 	
									PUT
								

								 	
									String
								

								
	
									customListener (consumer)
								

								 	
									Returns the custom listener in use, if provided
								

								 	 	
									InfinispanCustom Listener
								

								
	
									eventTypes (consumer)
								

								 	
									Specifies the set of event types to register by the consumer. Multiple event can be separated by comma. The possible event types are: CACHE_ENTRY_ACTIVATED, CACHE_ENTRY_PASSIVATED, CACHE_ENTRY_VISITED, CACHE_ENTRY_LOADED, CACHE_ENTRY_EVICTED, CACHE_ENTRY_CREATED, CACHE_ENTRY_REMOVED, CACHE_ENTRY_MODIFIED, TRANSACTION_COMPLETED, TRANSACTION_REGISTERED, CACHE_ENTRY_INVALIDATED, DATA_REHASHED, TOPOLOGY_CHANGED, PARTITION_STATUS_CHANGED
								

								 	 	
									String
								

								
	
									sync (consumer)
								

								 	
									If true, the consumer will receive notifications synchronously
								

								 	
									true
								

								 	
									boolean
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									operation (producer)
								

								 	
									The operation to perform.
								

								 	
									PUT
								

								 	
									InfinispanOperation
								

								
	
									cacheContainer (advanced)
								

								 	
									Specifies the cache Container to connect
								

								 	 	
									BasicCacheContainer
								

								
	
									cacheContainerConfiguration (advanced)
								

								 	
									The CacheContainer configuration
								

								 	 	
									Object
								

								
	
									configurationProperties (advanced)
								

								 	
									Implementation specific properties for the CacheManager
								

								 	 	
									Map
								

								
	
									configurationUri (advanced)
								

								 	
									An implementation specific URI for the CacheManager
								

								 	 	
									String
								

								
	
									flags (advanced)
								

								 	
									A comma separated list of Flag to be applied by default on each cache invocation, not applicable to remote caches.
								

								 	 	
									String
								

								
	
									resultHeader (advanced)
								

								 	
									Store the operation result in a header instead of the message body. By default, resultHeader == null and the query result is stored in the message body, any existing content in the message body is discarded. If resultHeader is set, the value is used as the name of the header to store the query result and the original message body is preserved. This value can be overridden by an in message header named: CamelInfinispanOperationResultHeader
								

								 	 	
									Object
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

Message Headers

	Name	Default Value	Type	Context	Description
	
								CamelInfinispanCacheName
							

							 	
								null
							

							 	
								String
							

							 	
								Shared
							

							 	
								The cache participating in the operation or event.
							

							
	
								CamelInfinispanOperation
							

							 	
								PUT
							

							 	
								InfinispanOperation
							

							 	
								Producer
							

							 	
								The operation to perform.
							

							
	
								CamelInfinispanMap
							

							 	
								null
							

							 	
								Map
							

							 	
								Producer
							

							 	
								A Map to use in case of CamelInfinispanOperationPutAll operation
							

							
	
								CamelInfinispanKey
							

							 	
								null
							

							 	
								Object
							

							 	
								Shared
							

							 	
								The key to perform the operation to or the key generating the event.
							

							
	
								CamelInfinispanValue
							

							 	
								null
							

							 	
								Object
							

							 	
								Producer
							

							 	
								The value to use for the operation.
							

							
	
								CamelInfinispanEventType
							

							 	
								null
							

							 	
								String
							

							 	
								Consumer
							

							 	
								The type of the received event. Possible values defined here org.infinispan.notifications.cachelistener.event.Event.Type
							

							
	
								CamelInfinispanIsPre
							

							 	
								null
							

							 	
								Boolean
							

							 	
								Consumer
							

							 	
								Infinispan fires two events for each operation: one before and one after the operation.
							

							
	
								CamelInfinispanLifespanTime
							

							 	
								null
							

							 	
								long
							

							 	
								Producer
							

							 	
								The Lifespan time of a value inside the cache. Negative values are interpreted as infinity.
							

							
	
								CamelInfinispanTimeUnit
							

							 	
								null
							

							 	
								String
							

							 	
								Producer
							

							 	
								The Time Unit of an entry Lifespan Time.
							

							
	
								CamelInfinispanMaxIdleTime
							

							 	
								null
							

							 	
								long
							

							 	
								Producer
							

							 	
								The maximum amount of time an entry is allowed to be idle for before it is considered as expired.
							

							
	
								CamelInfinispanMaxIdleTimeUnit
							

							 	
								null
							

							 	
								String
							

							 	
								Producer
							

							 	
								The Time Unit of an entry Max Idle Time.
							

							
	
								CamelInfinispanQueryBuilder
							

							 	
								null
							

							 	
								InfinispanQueryBuilder
							

							 	
								Producer
							

							 	
								From Camel 2.17: The QueryBuilde to use for QUERY command, if not present the command defaults to InifinispanConfiguration’s one
							

							
	
								CamelInfinispanIgnoreReturnValues
							

							 	
								null
							

							 	
								Boolean
							

							 	
								Producer
							

							 	
								From Camel 2.17: If this header is set, the return value for cache operation returning something is ignored by the client application
							

							
	
								CamelInfinispanOperationResultHeader
							

							 	
								null
							

							 	
								String
							

							 	
								Producer
							

							 	
								From Camel 2.20: Store the operation result in a header instead of the message body
							

							

Examples

	
						Retrieve a specific key from the default cache using a custom cache container:
					
from("direct:start")
 .setHeader(InfinispanConstants.OPERATION).constant(InfinispanOperation.GET)
 .setHeader(InfinispanConstants.KEY).constant("123")
 .to("infinispan?cacheContainer=#cacheContainer");

	
						Retrieve a specific key from a named cache:
					
from("direct:start")
 .setHeader(InfinispanConstants.OPERATION).constant(InfinispanOperation.PUT)
 .setHeader(InfinispanConstants.KEY).constant("123")
 .to("infinispan:myCacheName");

	
						Put a value with lifespan
					
from("direct:start")
 .setHeader(InfinispanConstants.OPERATION).constant(InfinispanOperation.GET)
 .setHeader(InfinispanConstants.KEY).constant("123")
 .setHeader(InfinispanConstants.LIFESPAN_TIME).constant(100L)
 .setHeader(InfinispanConstants.LIFESPAN_TIME_UNIT.constant(TimeUnit.MILLISECONDS.toString())
 .to("infinispan:myCacheName");

Using the Infinispan based idempotent repository

				In this section we will use the Infinispan based idempotent repository.
			

				First, we need to create a cacheManager and then configure our
			
org.apache.camel.component.infinispan.processor.idempotent.InfinispanIdempotentRepository:
<!-- set up the cache manager -->
<bean id="cacheManager"
 class="org.infinispan.manager.DefaultCacheManager"
 init-method="start"
 destroy-method="stop"/>

<!-- set up the repository -->
<bean id="infinispanRepo"
 class="org.apache.camel.component.infinispan.processor.idempotent.InfinispanIdempotentRepository"
 factory-method="infinispanIdempotentRepository">
 <argument ref="cacheManager"/>
 <argument value="idempotent"/>
</bean>

				Then we can create our Infinispan idempotent repository in the spring XML file as well:
			
<camelContext xmlns="http://camel.apache.org/schema/spring">
 <route id="JpaMessageIdRepositoryTest">
 <from uri="direct:start" />
 <idempotentConsumer messageIdRepositoryRef="infinispanStore">
 <header>messageId</header>
 <to uri="mock:result" />
 </idempotentConsumer>
 </route>
</camelContext>

Using the Infinispan based route policy

See Also

	
						Configuring Camel
					
	
						Component
					
	
						Endpoint
					
	
						Getting Started
					

Chapter 162. InfluxDB Component

			Available as of Camel version 2.18
		

			This component allows you to interact with InfluxDB https://influxdata.com/time-series-platform/influxdb/ a time series database. The native body type for this component is Point (the native influxdb class), but it can also accept Map<String, Object> as message body and it will get converted to Point.class, please note that the map must contain an element with InfluxDbConstants.MEASUREMENT_NAME as key.
		

			Aditionally of course you may register your own Converters to your data type to Point, or use the (un)marshalling tools provided by camel.
		

			From Camel 2.18 onwards Influxdb requires Java 8.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-influxdb</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>
URI format

influxdb://beanName?[options]

URI Options

				The producer allows sending messages to a influxdb configured in the registry, using the native java driver.
			

				The InfluxDB component has no options.
			

				The InfluxDB endpoint is configured using URI syntax:
			
influxdb:connectionBean

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									connectionBean
								

								 	
									Required Connection to the influx database, of class InfluxDB.class
								

								 	 	
									String
								

								

Query Parameters (6 parameters):

	Name	Description	Default	Type
	
									batch (producer)
								

								 	
									Define if this operation is a batch operation or not
								

								 	
									false
								

								 	
									boolean
								

								
	
									databaseName (producer)
								

								 	
									The name of the database where the time series will be stored
								

								 	 	
									String
								

								
	
									operation (producer)
								

								 	
									Define if this operation is an insert or a query
								

								 	
									insert
								

								 	
									String
								

								
	
									query (producer)
								

								 	
									Define the query in case of operation query
								

								 	 	
									String
								

								
	
									retentionPolicy (producer)
								

								 	
									The string that defines the retention policy to the data created by the endpoint
								

								 	
									default
								

								 	
									String
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

Message Headers

	Name	Default Value	Type	Context	Description
	 	 	 	 	

Example

				Below is an example route that stores a point into the db (taking the db name from the URI) specific key:
			
from("direct:start")
 .setHeader(InfluxDbConstants.DBNAME_HEADER, constant("myTimeSeriesDB"))
 .to("influxdb://connectionBean);
from("direct:start")
 .to("influxdb://connectionBean?databaseName=myTimeSeriesDB");

				For more information, see these resources…​
			

See Also

	
						Configuring Camel
					
	
						Component
					
	
						Endpoint
					
	
						Getting Started
					

Chapter 163. IPFS Component

			Available as of Camel version 2.23
		

			The ipfs: component provides access to the Interplanetary File System (IPFS).
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-ipfs</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>
URI format

ipfs://cmd?options

Options

				The IPFS component has no options.
			

				The IPFS endpoint is configured using URI syntax:
			
ipfs:host:port/cmd

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									ipfsCmd
								

								 	
									The ipfs command
								

								 	 	
									String
								

								

Query Parameters (2 parameters):

	Name	Description	Default	Type
	
									outdir (producer)
								

								 	
									The ipfs output directory
								

								 	 	
									Path
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

Spring Boot Auto-Configuration

				The component supports 2 options, which are listed below.
			
	Name	Description	Default	Type
	
								camel.component.ipfs.enabled
							

							 	
								Whether to enable auto configuration of the ipfs component. This is enabled by default.
							

							 	 	
								Boolean
							

							
	
								camel.component.ipfs.resolve-property-placeholders
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								Boolean
							

							

Karaf support

				Actually this component is not supported in Karaf
			

Message Headers

<TODO><title>Samples</title>
		
			In this sample we add a file to IPFS, get a file from IPFS and finally access the content of an IPFS file.
		

		
from("direct:start").to("ipfs:add")
from("direct:start").to("ipfs:get?outdir=target")
from("direct:start").to("ipfs:cat");

		 </TODO>
Chapter 164. IRC Component

			Available as of Camel version 1.1
		

			The irc component implements an IRC (Internet Relay Chat) transport.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-irc</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>
URI format

irc:nick@host[:port]/#room[?options]
irc:nick@host[:port]?channels=#channel1,#channel2,#channel3[?options]

				You can append query options to the URI in the following format, ?option=value&option=value&…​
			

Options

				The IRC component supports 2 options which are listed below.
			
	Name	Description	Default	Type
	
								useGlobalSslContext Parameters (security)
							

							 	
								Enable usage of global SSL context parameters.
							

							 	
								false
							

							 	
								boolean
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The IRC endpoint is configured using URI syntax:
			
irc:hostname:port

				with the following path and query parameters:
			
Path Parameters (2 parameters):

	Name	Description	Default	Type
	
									hostname
								

								 	
									Required Hostname for the IRC chat server
								

								 	 	
									String
								

								
	
									port
								

								 	
									Port number for the IRC chat server. If no port is configured then a default port of either 6667, 6668 or 6669 is used.
								

								 	 	
									int
								

								

Query Parameters (24 parameters):

	Name	Description	Default	Type
	
									autoRejoin (common)
								

								 	
									Whether to auto re-join when being kicked
								

								 	
									true
								

								 	
									boolean
								

								
	
									namesOnJoin (common)
								

								 	
									Sends NAMES command to channel after joining it. link onReply has to be true in order to process the result which will have the header value irc.num = '353'.
								

								 	
									false
								

								 	
									boolean
								

								
	
									nickname (common)
								

								 	
									The nickname used in chat.
								

								 	 	
									String
								

								
	
									persistent (common)
								

								 	
									Deprecated Use persistent messages.
								

								 	
									true
								

								 	
									boolean
								

								
	
									realname (common)
								

								 	
									The IRC user’s actual name.
								

								 	 	
									String
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									colors (advanced)
								

								 	
									Whether or not the server supports color codes.
								

								 	
									true
								

								 	
									boolean
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									onJoin (filter)
								

								 	
									Handle user join events.
								

								 	
									true
								

								 	
									boolean
								

								
	
									onKick (filter)
								

								 	
									Handle kick events.
								

								 	
									true
								

								 	
									boolean
								

								
	
									onMode (filter)
								

								 	
									Handle mode change events.
								

								 	
									true
								

								 	
									boolean
								

								
	
									onNick (filter)
								

								 	
									Handle nickname change events.
								

								 	
									true
								

								 	
									boolean
								

								
	
									onPart (filter)
								

								 	
									Handle user part events.
								

								 	
									true
								

								 	
									boolean
								

								
	
									onPrivmsg (filter)
								

								 	
									Handle private message events.
								

								 	
									true
								

								 	
									boolean
								

								
	
									onQuit (filter)
								

								 	
									Handle user quit events.
								

								 	
									true
								

								 	
									boolean
								

								
	
									onReply (filter)
								

								 	
									Whether or not to handle general responses to commands or informational messages.
								

								 	
									false
								

								 	
									boolean
								

								
	
									onTopic (filter)
								

								 	
									Handle topic change events.
								

								 	
									true
								

								 	
									boolean
								

								
	
									nickPassword (security)
								

								 	
									Your IRC server nickname password.
								

								 	 	
									String
								

								
	
									password (security)
								

								 	
									The IRC server password.
								

								 	 	
									String
								

								
	
									sslContextParameters (security)
								

								 	
									Used for configuring security using SSL. Reference to a org.apache.camel.util.jsse.SSLContextParameters in the Registry. This reference overrides any configured SSLContextParameters at the component level. Note that this setting overrides the trustManager option.
								

								 	 	
									SSLContextParameters
								

								
	
									trustManager (security)
								

								 	
									The trust manager used to verify the SSL server’s certificate.
								

								 	 	
									SSLTrustManager
								

								
	
									username (security)
								

								 	
									The IRC server user name.
								

								 	 	
									String
								

								

SSL Support

Using the JSSE Configuration Utility

					As of Camel 2.9, the IRC component supports SSL/TLS configuration through the Camel JSSE Configuration Utility. This utility greatly decreases the amount of component specific code you need to write and is configurable at the endpoint and component levels. The following examples demonstrate how to use the utility with the IRC component.
				

					Programmatic configuration of the endpoint
				
KeyStoreParameters ksp = new KeyStoreParameters();
ksp.setResource("/users/home/server/truststore.jks");
ksp.setPassword("keystorePassword");

TrustManagersParameters tmp = new TrustManagersParameters();
tmp.setKeyStore(ksp);

SSLContextParameters scp = new SSLContextParameters();
scp.setTrustManagers(tmp);

Registry registry = ...
registry.bind("sslContextParameters", scp);

...

from(...)
 .to("ircs://camel-prd-user@server:6669/#camel-test?nickname=camel-prd&password=password&sslContextParameters=#sslContextParameters");

					Spring DSL based configuration of endpoint
				
...
 <camel:sslContextParameters
 id="sslContextParameters">
 <camel:trustManagers>
 <camel:keyStore
 resource="/users/home/server/truststore.jks"
 password="keystorePassword"/>
 </camel:keyManagers>
 </camel:sslContextParameters>...
...
 <to uri="ircs://camel-prd-user@server:6669/#camel-test?nickname=camel-prd&password=password&sslContextParameters=#sslContextParameters"/>...

Using the legacy basic configuration options

					You can also connect to an SSL enabled IRC server, as follows:
				
ircs:host[:port]/#room?username=user&password=pass

					By default, the IRC transport uses SSLDefaultTrustManager. If you need to provide your own custom trust manager, use the trustManager parameter as follows:
				
ircs:host[:port]/#room?username=user&password=pass&trustManager=#referenceToMyTrustManagerBean

Using keys

				Available as of Camel 2.2
			

				Some irc rooms requires you to provide a key to be able to join that channel. The key is just a secret word.
			

				For example we join 3 channels where as only channel 1 and 3 uses a key.
			
irc:nick@irc.server.org?channels=#chan1,#chan2,#chan3&keys=chan1Key,,chan3key

Getting a list of users of the channel

				Using the namesOnJoin option one can invoke the IRC-NAMES command after the component has joined a channel. The server will reply with irc.num = 353. So in order to process the result the property onReply has to be true. Furthermore one has to filter the onReply exchanges in order to get the names.
			

				For example we want to get all exchanges that contain the usernames of the channel:
			
from("ircs:nick@myserver:1234/#mychannelname?namesOnJoin=true&onReply=true")
	.choice()
		.when(header("irc.messageType").isEqualToIgnoreCase("REPLY"))
			.filter(header("irc.num").isEqualTo("353"))
			.to("mock:result").stop();

See Also

	
						Configuring Camel
					
	
						Component
					
	
						Endpoint
					
	
						Getting Started
					

Chapter 165. JacksonXML DataFormat

			Available as of Camel version 2.16
		

			Jackson XML is a Data Format which uses the Jackson library with the XMLMapper extension to unmarshal an XML payload into Java objects or to marshal Java objects into an XML payload.
		

			INFO:If you are familiar with Jackson, this XML data format behaves in the same way as its JSON counterpart, and thus can be used with classes annotated for JSON serialization/deserialization.
		

			This extension also mimics JAXB’s "Code first" approach.
		

			This data format relies on Woodstox (especially for features like pretty printing), a fast and efficient XML processor.
		
from("activemq:My.Queue").
 unmarshal().jacksonxml().
 to("mqseries:Another.Queue");
JacksonXML Options

				The JacksonXML dataformat supports 15 options which are listed below.
			
	Name	Default	Java Type	Description
	
								xmlMapper
							

							 	 	
								String
							

							 	
								Lookup and use the existing XmlMapper with the given id.
							

							
	
								prettyPrint
							

							 	
								false
							

							 	
								Boolean
							

							 	
								To enable pretty printing output nicely formatted. Is by default false.
							

							
	
								unmarshalTypeName
							

							 	 	
								String
							

							 	
								Class name of the java type to use when unarmshalling
							

							
	
								jsonView
							

							 	 	
								Class<?>
							

							 	
								When marshalling a POJO to JSON you might want to exclude certain fields from the JSON output. With Jackson you can use JSON views to accomplish this. This option is to refer to the class which has JsonView annotations
							

							
	
								include
							

							 	 	
								String
							

							 	
								If you want to marshal a pojo to JSON, and the pojo has some fields with null values. And you want to skip these null values, you can set this option to NOT_NULL
							

							
	
								allowJmsType
							

							 	
								false
							

							 	
								Boolean
							

							 	
								Used for JMS users to allow the JMSType header from the JMS spec to specify a FQN classname to use to unmarshal to.
							

							
	
								collectionTypeName
							

							 	 	
								String
							

							 	
								Refers to a custom collection type to lookup in the registry to use. This option should rarely be used, but allows to use different collection types than java.util.Collection based as default.
							

							
	
								useList
							

							 	
								false
							

							 	
								Boolean
							

							 	
								To unarmshal to a List of Map or a List of Pojo.
							

							
	
								enableJaxbAnnotationModule
							

							 	
								false
							

							 	
								Boolean
							

							 	
								Whether to enable the JAXB annotations module when using jackson. When enabled then JAXB annotations can be used by Jackson.
							

							
	
								moduleClassNames
							

							 	 	
								String
							

							 	
								To use custom Jackson modules com.fasterxml.jackson.databind.Module specified as a String with FQN class names. Multiple classes can be separated by comma.
							

							
	
								moduleRefs
							

							 	 	
								String
							

							 	
								To use custom Jackson modules referred from the Camel registry. Multiple modules can be separated by comma.
							

							
	
								enableFeatures
							

							 	 	
								String
							

							 	
								Set of features to enable on the Jackson com.fasterxml.jackson.databind.ObjectMapper. The features should be a name that matches a enum from com.fasterxml.jackson.databind.SerializationFeature, com.fasterxml.jackson.databind.DeserializationFeature, or com.fasterxml.jackson.databind.MapperFeature Multiple features can be separated by comma
							

							
	
								disableFeatures
							

							 	 	
								String
							

							 	
								Set of features to disable on the Jackson com.fasterxml.jackson.databind.ObjectMapper. The features should be a name that matches a enum from com.fasterxml.jackson.databind.SerializationFeature, com.fasterxml.jackson.databind.DeserializationFeature, or com.fasterxml.jackson.databind.MapperFeature Multiple features can be separated by comma
							

							
	
								allowUnmarshallType
							

							 	
								false
							

							 	
								Boolean
							

							 	
								If enabled then Jackson is allowed to attempt to use the CamelJacksonUnmarshalType header during the unmarshalling. This should only be enabled when desired to be used.
							

							
	
								contentTypeHeader
							

							 	
								false
							

							 	
								Boolean
							

							 	
								Whether the data format should set the Content-Type header with the type from the data format if the data format is capable of doing so. For example application/xml for data formats marshalling to XML, or application/json for data formats marshalling to JSon etc.
							

							

Using Jackson XML in Spring DSL

					When using Data Format in Spring DSL you need to declare the data formats first. This is done in the DataFormats XML tag.
				
 <dataFormats>
 <!-- here we define a Xml data format with the id jack and that it should use the TestPojo as the class type when
 doing unmarshal. The unmarshalTypeName is optional, if not provided Camel will use a Map as the type -->
 <jacksonxml id="jack" unmarshalTypeName="org.apache.camel.component.jacksonxml.TestPojo"/>
 </dataFormats>

					And then you can refer to this id in the route:
				
 <route>
 <from uri="direct:back"/>
 <unmarshal ref="jack"/>
 <to uri="mock:reverse"/>
 </route>

Excluding POJO fields from marshalling

				When marshalling a POJO to XML you might want to exclude certain fields from the XML output. With Jackson you can use JSON views to accomplish this. First create one or more marker classes.
			

				Use the marker classes with the @JsonView annotation to include/exclude certain fields. The annotation also works on getters.
			

				Finally use the Camel JacksonXMLDataFormat to marshall the above POJO to XML.
			

				Note that the weight field is missing in the resulting XML:
			
<pojo age="30" weight="70"/>

Include/Exclude fields using the jsonView attribute with `JacksonXML`DataFormat

				As an example of using this attribute you can instead of:
			
JacksonXMLDataFormat ageViewFormat = new JacksonXMLDataFormat(TestPojoView.class, Views.Age.class);
from("direct:inPojoAgeView").
 marshal(ageViewFormat);

				Directly specify your JSON view inside the Java DSL as:
			
from("direct:inPojoAgeView").
 marshal().jacksonxml(TestPojoView.class, Views.Age.class);

				And the same in XML DSL:
			
<from uri="direct:inPojoAgeView"/>
 <marshal>
 <jacksonxml unmarshalTypeName="org.apache.camel.component.jacksonxml.TestPojoView" jsonView="org.apache.camel.component.jacksonxml.Views$Age"/>
 </marshal>

Setting serialization include option

				If you want to marshal a pojo to XML, and the pojo has some fields with null values. And you want to skip these null values, then you need to set either an annotation on the pojo,
			
@JsonInclude(Include.NON_NULL)
public class MyPojo {
 ...
}

				But this requires you to include that annotation in your pojo source code. You can also configure the Camel JacksonXMLDataFormat to set the include option, as shown below:
			
JacksonXMLDataFormat format = new JacksonXMLDataFormat();
format.setInclude("NON_NULL");

				Or from XML DSL you configure this as
			
 <dataFormats>
 <jacksonxml id="jacksonxml" include="NOT_NULL"/>
 </dataFormats>

Unmarshalling from XML to POJO with dynamic class name

				If you use jackson to unmarshal XML to POJO, then you can now specify a header in the message that indicate which class name to unmarshal to.
 The header has key CamelJacksonUnmarshalType if that header is present in the message, then Jackson will use that as FQN for the POJO class to unmarshal the XML payload as.
			

				 For JMS end users there is the JMSType header from the JMS spec that indicates that also. To enable support for JMSType you would need to turn that on, on the jackson data format as shown:
			
JacksonDataFormat format = new JacksonDataFormat();
format.setAllowJmsType(true);

				Or from XML DSL you configure this as
			
 <dataFormats>
 <jacksonxml id="jacksonxml" allowJmsType="true"/>
 </dataFormats>

Unmarshalling from XML to List<Map> or List<pojo>

				If you are using Jackson to unmarshal XML to a list of map/pojo, you can now specify this by setting useList="true" or use the org.apache.camel.component.jacksonxml.ListJacksonXMLDataFormat. For example with Java you can do as shown below:
			
JacksonXMLDataFormat format = new ListJacksonXMLDataFormat();
// or
JacksonXMLDataFormat format = new JacksonXMLDataFormat();
format.useList();
// and you can specify the pojo class type also
format.setUnmarshalType(MyPojo.class);

				And if you use XML DSL then you configure to use list using useList attribute as shown below:
			
 <dataFormats>
 <jacksonxml id="jack" useList="true"/>
 </dataFormats>

				And you can specify the pojo type also
			
 <dataFormats>
 <jacksonxml id="jack" useList="true" unmarshalTypeName="com.foo.MyPojo"/>
 </dataFormats>

Using custom Jackson modules

				You can use custom Jackson modules by specifying the class names of those using the moduleClassNames option as shown below.
			
 <dataFormats>
 <jacksonxml id="jack" useList="true" unmarshalTypeName="com.foo.MyPojo" moduleClassNames="com.foo.MyModule,com.foo.MyOtherModule"/>
 </dataFormats>

				When using moduleClassNames then the custom jackson modules are not configured, by created using default constructor and used as-is. If a custom module needs any custom configuration, then an instance of the module can be created and configured, and then use modulesRefs to refer to the module as shown below:
			
 <bean id="myJacksonModule" class="com.foo.MyModule">
 ... // configure the module as you want
 </bean>

 <dataFormats>
 <jacksonxml id="jacksonxml" useList="true" unmarshalTypeName="com.foo.MyPojo" moduleRefs="myJacksonModule"/>
 </dataFormats>

				 Multiple modules can be specified separated by comma, such as moduleRefs="myJacksonModule,myOtherModule"
			

Enabling or disable features using Jackson

				Jackson has a number of features you can enable or disable, which its ObjectMapper uses. For example to disable failing on unknown properties when marshalling, you can configure this using the disableFeatures:
			
 <dataFormats>
 <jacksonxml id="jacksonxml" unmarshalTypeName="com.foo.MyPojo" disableFeatures="FAIL_ON_UNKNOWN_PROPERTIES"/>
 </dataFormats>

				You can disable multiple features by separating the values using comma. The values for the features must be the name of the enums from Jackson from the following enum classes
			
	
						com.fasterxml.jackson.databind.SerializationFeature
					
	
						com.fasterxml.jackson.databind.DeserializationFeature
					
	
						com.fasterxml.jackson.databind.MapperFeature
					

				To enable a feature use the enableFeatures options instead.
			

				From Java code you can use the type safe methods from camel-jackson module:
			
JacksonDataFormat df = new JacksonDataFormat(MyPojo.class);
df.disableFeature(DeserializationFeature.FAIL_ON_UNKNOWN_PROPERTIES);
df.disableFeature(DeserializationFeature.FAIL_ON_NULL_FOR_PRIMITIVES);

Converting Maps to POJO using Jackson

				Jackson ObjectMapper can be used to convert maps to POJO objects. Jackson component comes with the data converter that can be used to convert java.util.Map instance to non-String, non-primitive and non-Number objects.
			
Map<String, Object> invoiceData = new HashMap<String, Object>();
invoiceData.put("netValue", 500);
producerTemplate.sendBody("direct:mapToInvoice", invoiceData);
...
// Later in the processor
Invoice invoice = exchange.getIn().getBody(Invoice.class);

				If there is a single ObjectMapper instance available in the Camel registry, it will used by the converter to perform the conversion. Otherwise the default mapper will be used.
			

Formatted XML marshalling (pretty-printing)

				Using the prettyPrint option one can output a well formatted XML while marshalling:
			
 <dataFormats>
 <jacksonxml id="jack" prettyPrint="true"/>
 </dataFormats>

				And in Java DSL:
			
from("direct:inPretty").marshal().jacksonxml(true);

				Please note that there are 5 different overloaded jacksonxml() DSL methods which support the prettyPrint option in combination with other settings for unmarshalType, jsonView etc.
			

Dependencies

				To use Jackson XML in your camel routes you need to add the dependency on camel-jacksonxml which implements this data format.
			

				If you use maven you could just add the following to your pom.xml, substituting the version number for the latest & greatest release (see the download page for the latest versions).
			
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-jacksonxml</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>

Chapter 166. Jasypt component

			Available as of Camel 2.5
		

			Jasypt is a simplified encryption library which makes encryption and decryption easy. Camel integrates with Jasypt to allow sensitive information in Properties files to be encrypted. By dropping camel-jasypt on the classpath those encrypted values will automatically be decrypted on-the-fly by Camel. This ensures that human eyes can’t easily spot sensitive information such as usernames and passwords.
		

			If you are using Maven, you need to add the following dependency to your pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-jasypt</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>

			If you are using an Apache Karaf container, you need to add the following dependency to your pom.xml for this component:
		
<dependency>
 <groupId>org.apache.karaf.jaas</groupId>
 <artifactId>org.apache.karaf.jaas.jasypt</artifactId>
 <version>x.x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>
Tooling

				The Jasypt component provides a little command line tooling to encrypt or decrypt values.
			

				The console output the syntax and which options it provides:
			
Apache Camel Jasypt takes the following options

 -h or -help = Displays the help screen
 -c or -command <command> = Command either encrypt or decrypt
 -p or -password <password> = Password to use
 -i or -input <input> = Text to encrypt or decrypt
 -a or -algorithm <algorithm> = Optional algorithm to use

				For example to encrypt the value tiger you run with the following parameters. In the apache camel kit, you cd into the lib folder and run the following java cmd, where <CAMEL_HOME> is where you have downloaded and extract the Camel distribution.
			
$ cd <CAMEL_HOME>/lib
$ java -jar camel-jasypt-2.5.0.jar -c encrypt -p secret -i tiger

				Which outputs the following result
			
Encrypted text: qaEEacuW7BUti8LcMgyjKw==

				This means the encrypted representation qaEEacuW7BUti8LcMgyjKw== can be decrypted back to tiger if you know the master password which was secret.
 If you run the tool again then the encrypted value will return a different result. But decrypting the value will always return the correct original value.
			

				So you can test it by running the tooling using the following parameters:
			
$ cd <CAMEL_HOME>/lib
$ java -jar camel-jasypt-2.5.0.jar -c decrypt -p secret -i qaEEacuW7BUti8LcMgyjKw==

				Which outputs the following result:
			
Decrypted text: tiger

				The idea is then to use those encrypted values in your Properties files. Notice how the password value is encrypted and the value has the tokens surrounding ENC(value here)
			
Tip

				When running jasypt tooling, if you come across java.lang.NoClassDefFoundError: org/jasypt/encryption/pbe/StandardPBEStringEncryptor this means you have to include jasypt7.6.jar in your classpath. Example of adding jar to classpath may be copying jasypt7.6.jar to $JAVA_HOME\jre\lib\ext if you are going to run as java -jar …​. The latter may be adding jasypt7.6.jar to classpath using -cp, in that case you should provide main class to execute as eg: java -cp jasypt-1.9.2.jar:camel-jasypt-2.18.2.jar org.apache.camel.component.jasypt.Main -c encrypt -p secret -i tiger
			

URI Options

				The options below are exclusive for the Jasypt component.
			
	Name	Default Value	Type	Description
	
								password
							

							 	
								null
							

							 	
								String
							

							 	
								Specifies the master password to use for decrypting. This option is mandatory. See below for more details.
							

							
	
								algorithm
							

							 	
								null
							

							 	
								String
							

							 	
								Name of an optional algorithm to use.
							

							

Protecting the master password

				The master password used by Jasypt must be provided, so that it’s capable of decrypting the values. However having this master password out in the open may not be an ideal solution. Therefore you could for example provide it as a JVM system property or as a OS environment setting. If you decide to do so then the password option supports prefixes which dictates this. sysenv: means to lookup the OS system environment with the given key. sys: means to lookup a JVM system property.
			

				For example you could provided the password before you start the application
			
$ export CAMEL_ENCRYPTION_PASSWORD=secret

				Then start the application, such as running the start script.
			

				When the application is up and running you can unset the environment
			
$ unset CAMEL_ENCRYPTION_PASSWORD

				The password option is then a matter of defining as follows: password=sysenv:CAMEL_ENCRYPTION_PASSWORD.
			

Example with Java DSL

				In Java DSL you need to configure Jasypt as a JasyptPropertiesParser instance and set it on the Properties component as show below:
			

				The properties file myproperties.properties then contain the encrypted value, such as shown below. Notice how the password value is encrypted and the value has the tokens surrounding ENC(value here)
			

Example with Spring XML

				In Spring XML you need to configure the JasyptPropertiesParser which is shown below. Then the Camel Properties component is told to use jasypt as the properties parser, which means Jasypt has its chance to decrypt values looked up in the properties.
			
<!-- define the jasypt properties parser with the given password to be used -->
<bean id="jasypt" class="org.apache.camel.component.jasypt.JasyptPropertiesParser">
 <property name="password" value="secret"/>
</bean>

<!-- define the camel properties component -->
<bean id="properties" class="org.apache.camel.component.properties.PropertiesComponent">
 <!-- the properties file is in the classpath -->
 <property name="location" value="classpath:org/apache/camel/component/jasypt/myproperties.properties"/>
 <!-- and let it leverage the jasypt parser -->
 <property name="propertiesParser" ref="jasypt"/>
</bean>

				The Properties component can also be inlined inside the <camelContext> tag which is shown below. Notice how we use the propertiesParserRef attribute to refer to Jasypt.
			
<!-- define the jasypt properties parser with the given password to be used -->
<bean id="jasypt" class="org.apache.camel.component.jasypt.JasyptPropertiesParser">
 <!-- password is mandatory, you can prefix it with sysenv: or sys: to indicate it should use
 an OS environment or JVM system property value, so you dont have the master password defined here -->
 <property name="password" value="secret"/>
</bean>

<camelContext xmlns="http://camel.apache.org/schema/spring">
 <!-- define the camel properties placeholder, and let it leverage jasypt -->
 <propertyPlaceholder id="properties"
 location="classpath:org/apache/camel/component/jasypt/myproperties.properties"
 propertiesParserRef="jasypt"/>
 <route>
 <from uri="direct:start"/>
 <to uri="{{cool.result}}"/>
 </route>
</camelContext>

Example with Blueprint XML

				In Blueprint XML you need to configure the JasyptPropertiesParser which is shown below. Then the Camel Properties component is told to use jasypt as the properties parser, which means Jasypt has its chance to decrypt values looked up in the properties.
			
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:cm="http://aries.apache.org/blueprint/xmlns/blueprint-cm/v1.0.0"
 xsi:schemaLocation="
 http://www.osgi.org/xmlns/blueprint/v1.0.0 http://www.osgi.org/xmlns/blueprint/v1.0.0/blueprint.xsd">

 <cm:property-placeholder id="myblue" persistent-id="mypersistent">
 <!-- list some properties for this test -->
 <cm:default-properties>
 <cm:property name="cool.result" value="mock:{{cool.password}}"/>
 <cm:property name="cool.password" value="ENC(bsW9uV37gQ0QHFu7KO03Ww==)"/>
 </cm:default-properties>
 </cm:property-placeholder>

 <!-- define the jasypt properties parser with the given password to be used -->
 <bean id="jasypt" class="org.apache.camel.component.jasypt.JasyptPropertiesParser">
 <property name="password" value="secret"/>
 </bean>

 <camelContext xmlns="http://camel.apache.org/schema/blueprint">
 <!-- define the camel properties placeholder, and let it leverage jasypt -->
 <propertyPlaceholder id="properties"
 location="blueprint:myblue"
 propertiesParserRef="jasypt"/>
 <route>
 <from uri="direct:start"/>
 <to uri="{{cool.result}}"/>
 </route>
 </camelContext>

</blueprint>

				The Properties component can also be inlined inside the <camelContext> tag which is shown below. Notice how we use the propertiesParserRef attribute to refer to Jasypt.
			
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:cm="http://aries.apache.org/blueprint/xmlns/blueprint-cm/v1.0.0"
 xsi:schemaLocation="
 http://www.osgi.org/xmlns/blueprint/v1.0.0 http://www.osgi.org/xmlns/blueprint/v1.0.0/blueprint.xsd">

 <!-- define the jasypt properties parser with the given password to be used -->
 <bean id="jasypt" class="org.apache.camel.component.jasypt.JasyptPropertiesParser">
 <property name="password" value="secret"/>
 </bean>

 <camelContext xmlns="http://camel.apache.org/schema/blueprint">
 <!-- define the camel properties placeholder, and let it leverage jasypt -->
 <propertyPlaceholder id="properties"
 location="classpath:org/apache/camel/component/jasypt/myproperties.properties"
 propertiesParserRef="jasypt"/>
 <route>
 <from uri="direct:start"/>
 <to uri="{{cool.result}}"/>
 </route>
 </camelContext>

</blueprint>

See Also

	
						Security
					
	
						Properties
					
	
						Encrypted passwords in ActiveMQ - ActiveMQ has a similar feature as this camel-jasypt component
					

Chapter 167. JAXB DataFormat

			Available as of Camel version 1.0
		

			JAXB is a Data Format which uses the JAXB2 XML marshalling standard which is included in Java 6 to unmarshal an XML payload into Java objects or to marshal Java objects into an XML payload.
		
Options

				The JAXB dataformat supports 18 options which are listed below.
			
	Name	Default	Java Type	Description
	
								contextPath
							

							 	 	
								String
							

							 	
								Package name where your JAXB classes are located.
							

							
	
								schema
							

							 	 	
								String
							

							 	
								To validate against an existing schema. Your can use the prefix classpath:, file: or http: to specify how the resource should by resolved. You can separate multiple schema files by using the ',' character.
							

							
	
								schemaSeverityLevel
							

							 	
								0
							

							 	
								Integer
							

							 	
								Sets the schema severity level to use when validating against a schema. This level determines the minimum severity error that triggers JAXB to stop continue parsing. The default value of 0 (warning) means that any error (warning, error or fatal error) will trigger JAXB to stop. There are the following three levels: 0=warning, 1=error, 2=fatal error.
							

							
	
								prettyPrint
							

							 	
								false
							

							 	
								Boolean
							

							 	
								To enable pretty printing output nicely formatted. Is by default false.
							

							
	
								objectFactory
							

							 	
								false
							

							 	
								Boolean
							

							 	
								Whether to allow using ObjectFactory classes to create the POJO classes during marshalling. This only applies to POJO classes that has not been annotated with JAXB and providing jaxb.index descriptor files.
							

							
	
								ignoreJAXBElement
							

							 	
								false
							

							 	
								Boolean
							

							 	
								Whether to ignore JAXBElement elements - only needed to be set to false in very special use-cases.
							

							
	
								mustBeJAXBElement
							

							 	
								false
							

							 	
								Boolean
							

							 	
								Whether marhsalling must be java objects with JAXB annotations. And if not then it fails. This option can be set to false to relax that, such as when the data is already in XML format.
							

							
	
								filterNonXmlChars
							

							 	
								false
							

							 	
								Boolean
							

							 	
								To ignore non xml characheters and replace them with an empty space.
							

							
	
								encoding
							

							 	 	
								String
							

							 	
								To overrule and use a specific encoding
							

							
	
								fragment
							

							 	
								false
							

							 	
								Boolean
							

							 	
								To turn on marshalling XML fragment trees. By default JAXB looks for XmlRootElement annotation on given class to operate on whole XML tree. This is useful but not always - sometimes generated code does not have XmlRootElement annotation, sometimes you need unmarshall only part of tree. In that case you can use partial unmarshalling. To enable this behaviours you need set property partClass. Camel will pass this class to JAXB’s unmarshaler.
							

							
	
								partClass
							

							 	 	
								String
							

							 	
								Name of class used for fragment parsing. See more details at the fragment option.
							

							
	
								partNamespace
							

							 	 	
								String
							

							 	
								XML namespace to use for fragment parsing. See more details at the fragment option.
							

							
	
								namespacePrefixRef
							

							 	 	
								String
							

							 	
								When marshalling using JAXB or SOAP then the JAXB implementation will automatic assign namespace prefixes, such as ns2, ns3, ns4 etc. To control this mapping, Camel allows you to refer to a map which contains the desired mapping.
							

							
	
								xmlStreamWriterWrapper
							

							 	 	
								String
							

							 	
								To use a custom xml stream writer.
							

							
	
								schemaLocation
							

							 	 	
								String
							

							 	
								To define the location of the schema
							

							
	
								noNamespaceSchemaLocation
							

							 	 	
								String
							

							 	
								To define the location of the namespaceless schema
							

							
	
								jaxbProviderProperties
							

							 	 	
								String
							

							 	
								Refers to a custom java.util.Map to lookup in the registry containing custom JAXB provider properties to be used with the JAXB marshaller.
							

							
	
								contentTypeHeader
							

							 	
								false
							

							 	
								Boolean
							

							 	
								Whether the data format should set the Content-Type header with the type from the data format if the data format is capable of doing so. For example application/xml for data formats marshalling to XML, or application/json for data formats marshalling to JSon etc.
							

							

Using the Java DSL

				For example the following uses a named DataFormat of jaxb which is configured with a number of Java package names to initialize the JAXBContext.
			
DataFormat jaxb = new JaxbDataFormat("com.acme.model");

from("activemq:My.Queue").
 unmarshal(jaxb).
 to("mqseries:Another.Queue");

				You can if you prefer use a named reference to a data format which can then be defined in your Registry such as via your Spring XML file. e.g.
			
from("activemq:My.Queue").
 unmarshal("myJaxbDataType").
 to("mqseries:Another.Queue");

Using Spring XML

				The following example shows how to use JAXB to unmarshal using Spring configuring the jaxb data type
			

				This example shows how to configure the data type just once and reuse it on multiple routes.
			

				Multiple context paths
			

				It is possible to use this data format with more than one context path. You can specify context path using : as separator, for example com.mycompany:com.mycompany2. Note that this is handled by JAXB implementation and might change if you use different vendor than RI.
			

Partial marshalling/unmarshalling

				This feature is new to Camel 2.2.0.
 JAXB 2 supports marshalling and unmarshalling XML tree fragments. By default JAXB looks for @XmlRootElement annotation on given class to operate on whole XML tree. This is useful but not always - sometimes generated code does not have @XmlRootElement annotation, sometimes you need unmarshall only part of tree.
 In that case you can use partial unmarshalling. To enable this behaviours you need set property partClass. Camel will pass this class to JAXB’s unmarshaler. If JaxbConstants.JAXB_PART_CLASS is set as one of headers, (even if partClass property is set on DataFormat), the property on DataFormat is surpassed and the one set in the headers is used.
			

				For marshalling you have to add partNamespace attribute with QName of destination namespace. Example of Spring DSL you can find above. If JaxbConstants.JAXB_PART_NAMESPACE is set as one of headers, (even if partNamespace property is set on DataFormat), the property on DataFormat is surpassed and the one set in the headers is used. While setting partNamespace through JaxbConstants.JAXB_PART_NAMESPACE, please note that you need to specify its value {[namespaceUri]}[localPart]
			
 ...
 .setHeader(JaxbConstants.JAXB_PART_NAMESPACE, simple("{http://www.camel.apache.org/jaxb/example/address/1}address"));
 ...

Fragment

				This feature is new to Camel 2.8.0.
 JaxbDataFormat has new property fragment which can set the the Marshaller.JAXB_FRAGMENT encoding property on the JAXB Marshaller. If you don’t want the JAXB Marshaller to generate the XML declaration, you can set this option to be true. The default value of this property is false.
			

Ignoring the NonXML Character

				This feature is new to Camel 2.2.0.
 JaxbDataFromat supports to ignore the NonXML Character, you just need to set the filterNonXmlChars property to be true, JaxbDataFormat will replace the NonXML character with " " when it is marshaling or unmarshaling the message. You can also do it by setting the Exchange property Exchange.FILTER_NON_XML_CHARS.
			

				
			
	 	JDK 1.5	JDK 1.6+
	
								Filtering in use
							

							 	
								StAX API and implementation
							

							 	
								No
							

							
	
								Filtering not in use
							

							 	
								StAX API only
							

							 	
								No
							

							

				This feature has been tested with Woodstox 3.2.9 and Sun JDK 1.6 StAX implementation.
			

				New for Camel 2.12.1
 JaxbDataFormat now allows you to customize the XMLStreamWriter used to marshal the stream to XML. Using this configuration, you can add your own stream writer to completely remove, escape, or replace non-xml characters.
			
 JaxbDataFormat customWriterFormat = new JaxbDataFormat("org.apache.camel.foo.bar");
 customWriterFormat.setXmlStreamWriterWrapper(new TestXmlStreamWriter());

				The following example shows using the Spring DSL and also enabling Camel’s NonXML filtering:
			
<bean id="testXmlStreamWriterWrapper" class="org.apache.camel.jaxb.TestXmlStreamWriter"/>
<jaxb filterNonXmlChars="true" contextPath="org.apache.camel.foo.bar" xmlStreamWriterWrapper="#testXmlStreamWriterWrapper" />

Working with the ObjectFactory

				If you use XJC to create the java class from the schema, you will get an ObjectFactory for you JAXB context. Since the ObjectFactory uses JAXBElement to hold the reference of the schema and element instance value, jaxbDataformat will ignore the JAXBElement by default and you will get the element instance value instead of the JAXBElement object form the unmarshaled message body.
 If you want to get the JAXBElement object form the unmarshaled message body, you need to set the JaxbDataFormat object’s ignoreJAXBElement property to be false.
			

Setting encoding

				You can set the encoding option to use when marshalling. Its the Marshaller.JAXB_ENCODING encoding property on the JAXB Marshaller.
 You can setup which encoding to use when you declare the JAXB data format. You can also provide the encoding in the Exchange property Exchange.CHARSET_NAME. This property will overrule the encoding set on the JAXB data format.
			

				In this Spring DSL we have defined to use iso-8859-1 as the encoding:
			

Controlling namespace prefix mapping

				Available as of Camel 2.11
			

				When marshalling using JAXB or SOAP then the JAXB implementation will automatic assign namespace prefixes, such as ns2, ns3, ns4 etc. To control this mapping, Camel allows you to refer to a map which contains the desired mapping.
			

				Notice this requires having JAXB-RI 2.1 or better (from SUN) on the classpath, as the mapping functionality is dependent on the implementation of JAXB, whether its supported.
			

				For example in Spring XML we can define a Map with the mapping. In the mapping file below, we map SOAP to use soap as prefix. While our custom namespace "http://www.mycompany.com/foo/2" is not using any prefix.
			
 <util:map id="myMap">
 <entry key="http://www.w3.org/2003/05/soap-envelope" value="soap"/>
 <!-- we dont want any prefix for our namespace -->
 <entry key="http://www.mycompany.com/foo/2" value=""/>
 </util:map>

				To use this in JAXB or SOAP you refer to this map, using the namespacePrefixRef attribute as shown below. Then Camel will lookup in the Registry a java.util.Map with the id "myMap", which was what we defined above.
			
 <marshal>
 <soapjaxb version="1.2" contextPath="com.mycompany.foo" namespacePrefixRef="myMap"/>
 </marshal>

Schema validation

				Available as of Camel 2.11
			

				The JAXB Data Format supports validation by marshalling and unmarshalling from/to XML. Your can use the prefix classpath:, file: or http: to specify how the resource should by resolved. You can separate multiple schema files by using the ',' character.
			

				Known issue
			

				Camel 2.11.0 and 2.11.1 has a known issue by validation multiple `Exchange’s in parallel. See CAMEL-6630. This is fixed with Camel 2.11.2/2.12.0.
			

				Using the Java DSL, you can configure it in the following way:
			
JaxbDataFormat jaxbDataFormat = new JaxbDataFormat();
jaxbDataFormat.setContextPath(Person.class.getPackage().getName());
jaxbDataFormat.setSchema("classpath:person.xsd,classpath:address.xsd");

				You can do the same using the XML DSL:
			
<marshal>
 <jaxb id="jaxb" schema="classpath:person.xsd,classpath:address.xsd"/>
</marshal>

				Camel will create and pool the underling SchemaFactory instances on the fly, because the SchemaFactory shipped with the JDK is not thread safe.
 However, if you have a SchemaFactory implementation which is thread safe, you can configure the JAXB data format to use this one:
			
JaxbDataFormat jaxbDataFormat = new JaxbDataFormat();
jaxbDataFormat.setSchemaFactory(thradSafeSchemaFactory);

Schema Location

				Available as of Camel 2.14
			

				The JAXB Data Format supports to specify the SchemaLocation when marshaling the XML.
			

				Using the Java DSL, you can configure it in the following way:
			
JaxbDataFormat jaxbDataFormat = new JaxbDataFormat();
jaxbDataFormat.setContextPath(Person.class.getPackage().getName());
jaxbDataFormat.setSchemaLocation("schema/person.xsd");

				You can do the same using the XML DSL:
			
<marshal>
 <jaxb id="jaxb" schemaLocation="schema/person.xsd"/>
</marshal>

Marshal data that is already XML

				Available as of Camel 2.14.1
			

				The JAXB marshaller requires that the message body is JAXB compatible, eg its a JAXBElement, eg a java instance that has JAXB annotations, or extend JAXBElement. There can be situations where the message body is already in XML, eg from a String type. There is a new option mustBeJAXBElement you can set to false, to relax this check, so the JAXB marshaller only attempts to marshal JAXBElements (javax.xml.bind.JAXBIntrospector#isElement returns true). And in those situations the marshaller fallbacks to marshal the message body as-is.
			

Dependencies

				To use JAXB in your camel routes you need to add the a dependency on camel-jaxb which implements this data format.
			

				If you use maven you could just add the following to your pom.xml, substituting the version number for the latest & greatest release (see the download page for the latest versions).
			
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-jaxb</artifactId>
 <version>x.x.x</version>
</dependency>

Chapter 168. JCache Component

			Available as of Camel version 2.17
		

			The jcache component enables you to perform caching operations using JSR107/JCache as cache implementation.
		
URI Format

jcache:cacheName[?options]

URI Options

				The JCache endpoint is configured using URI syntax:
			
jcache:cacheName

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									cacheName
								

								 	
									Required The name of the cache
								

								 	 	
									String
								

								

Query Parameters (22 parameters):

	Name	Description	Default	Type
	
									cacheConfiguration (common)
								

								 	
									A Configuration for the Cache
								

								 	 	
									Configuration
								

								
	
									cacheConfigurationProperties (common)
								

								 	
									The Properties for the javax.cache.spi.CachingProvider to create the CacheManager
								

								 	 	
									Properties
								

								
	
									cachingProvider (common)
								

								 	
									The fully qualified class name of the javax.cache.spi.CachingProvider
								

								 	 	
									String
								

								
	
									configurationUri (common)
								

								 	
									An implementation specific URI for the CacheManager
								

								 	 	
									String
								

								
	
									managementEnabled (common)
								

								 	
									Whether management gathering is enabled
								

								 	
									false
								

								 	
									boolean
								

								
	
									readThrough (common)
								

								 	
									If read-through caching should be used
								

								 	
									false
								

								 	
									boolean
								

								
	
									statisticsEnabled (common)
								

								 	
									Whether statistics gathering is enabled
								

								 	
									false
								

								 	
									boolean
								

								
	
									storeByValue (common)
								

								 	
									If cache should use store-by-value or store-by-reference semantics
								

								 	
									true
								

								 	
									boolean
								

								
	
									writeThrough (common)
								

								 	
									If write-through caching should be used
								

								 	
									false
								

								 	
									boolean
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									filteredEvents (consumer)
								

								 	
									Events a consumer should filter. If using filteredEvents option, then eventFilters one will be ignored
								

								 	 	
									List
								

								
	
									oldValueRequired (consumer)
								

								 	
									if the old value is required for events
								

								 	
									false
								

								 	
									boolean
								

								
	
									synchronous (consumer)
								

								 	
									if the the event listener should block the thread causing the event
								

								 	
									false
								

								 	
									boolean
								

								
	
									eventFilters (consumer)
								

								 	
									The CacheEntryEventFilter. If using eventFilters option, then filteredEvents one will be ignored
								

								 	 	
									List
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									action (producer)
								

								 	
									To configure using a cache operation by default. If an operation in the message header, then the operation from the header takes precedence.
								

								 	 	
									String
								

								
	
									cacheLoaderFactory (advanced)
								

								 	
									The CacheLoader factory
								

								 	 	
									CacheLoader>
								

								
	
									cacheWriterFactory (advanced)
								

								 	
									The CacheWriter factory
								

								 	 	
									CacheWriter>
								

								
	
									createCacheIfNotExists (advanced)
								

								 	
									Configure if a cache need to be created if it does exist or can’t be pre-configured.
								

								 	
									true
								

								 	
									boolean
								

								
	
									expiryPolicyFactory (advanced)
								

								 	
									The ExpiryPolicy factory
								

								 	 	
									ExpiryPolicy>
								

								
	
									lookupProviders (advanced)
								

								 	
									Configure if a camel-cache should try to find implementations of jcache api in runtimes like OSGi.
								

								 	
									false
								

								 	
									boolean
								

								

					The JCache component supports 5 options which are listed below.
				
	Name	Description	Default	Type
	
									cachingProvider (common)
								

								 	
									The fully qualified class name of the javax.cache.spi.CachingProvider
								

								 	 	
									String
								

								
	
									cacheConfiguration (common)
								

								 	
									A Configuration for the Cache
								

								 	 	
									Configuration
								

								
	
									cacheConfiguration Properties (common)
								

								 	
									The Properties for the javax.cache.spi.CachingProvider to create the CacheManager
								

								 	 	
									Properties
								

								
	
									configurationUri (common)
								

								 	
									An implementation specific URI for the CacheManager
								

								 	 	
									String
								

								
	
									resolveProperty Placeholders (advanced)
								

								 	
									Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
								

								 	
									true
								

								 	
									boolean
								

								

Chapter 169. JClouds Component

			Available as of Camel version 2.9
		

			This component allows interaction with cloud provider key-value engines (blobstores) and compute services. The component uses jclouds which is
 a library that provides abstractions for blobstores and compute services.
		

			ComputeService simplifies the task of managing machines in the cloud. For example, you can use ComputeService to start 5 machines and install your software on them.
 BlobStore simplifies dealing with key-value providers such as Amazon S3. For example, BlobStore can give you a simple Map view of a container.
		

			The camel jclouds component allows you to use both abstractions, as it specifes two types of endpoint the JcloudsBlobStoreEndpoint and the JcloudsComputeEndpoint. You can have both producers and consumers on a blobstore endpoint but you can only have producers on compute endpoints.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-jclouds</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>
Configuring the component

				The camel jclouds component will make use of multiple jclouds blobstores and compute services as long as they are passed to the component during initialization. The component accepts a list blobstores and compute services. Here is how it can be configured.
			
 <bean id="jclouds" class="org.apache.camel.component.jclouds.JcloudsComponent">
 <property name="computeServices">
 <list>
 <ref bean="computeService"/>
 </list>
 </property>
 <property name="blobStores">
 <list>
 <ref bean="blobStore"/>
 </list>
 </property>
 </bean>

 <!-- Creating a blobstore from spring / blueprint xml -->
 <bean id="blobStoreContextFactory" class="org.jclouds.blobstore.BlobStoreContextFactory"/>

 <bean id="blobStoreContext" factory-bean="blobStoreContextFactory" factory-method="createContext">
 <constructor-arg name="provider" value="PROVIDER_NAME"/>
 <constructor-arg name="identity" value="IDENTITY"/>
 <constructor-arg name="credential" value="CREDENTIAL"/>
 </bean>

 <bean id="blobStore" factory-bean="blobStoreContext" factory-method="getBlobStore"/>

 <!-- Creating a compute service from spring / blueprint xml -->
 <bean id="computeServiceContextFactory" class="org.jclouds.compute.ComputeServiceContextFactory"/>

 <bean id="computeServiceContext" factory-bean="computeServiceContextFactory" factory-method="createContext">
 <constructor-arg name="provider" value="PROVIDER_NAME"/>
 <constructor-arg name="identity" value="IDENTITY"/>
 <constructor-arg name="credential" value="CREDENTIAL"/>
 </bean>

 <bean id="computeService" factory-bean="computeServiceContext" factory-method="getComputeService"/>

				As you can see the component is capable of handling multiple blobstores and compute services. The actual implementation that will be used by each endpoint is specified by passing the provider inside the URI.
			

Jclouds Options

jclouds:blobstore:[provider id][?options]
jclouds:compute:[provider id][?options]

				The provider id is the name of the cloud provider that provides the target service (e.g. aws-s3 or aws_ec2).
			

				You can append query options to the URI in the following format, ?option=value&option=value&…​
			

Blobstore URI Options

				The JClouds component supports 3 options which are listed below.
			
	Name	Description	Default	Type
	
								blobStores (common)
							

							 	
								To use the given BlobStore which must be configured when using blobstore.
							

							 	 	
								List
							

							
	
								computeServices (common)
							

							 	
								To use the given ComputeService which must be configured when use compute.
							

							 	 	
								List
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The JClouds endpoint is configured using URI syntax:
			
jclouds:command:providerId

				with the following path and query parameters:
			
Path Parameters (2 parameters):

	Name	Description	Default	Type
	
									command
								

								 	
									Required What command to execute such as blobstore or compute.
								

								 	 	
									JcloudsCommand
								

								
	
									providerId
								

								 	
									Required The name of the cloud provider that provides the target service (e.g. aws-s3 or aws_ec2).
								

								 	 	
									String
								

								

Query Parameters (15 parameters):

	Name	Description	Default	Type
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									blobName (blobstore)
								

								 	
									The name of the blob.
								

								 	 	
									String
								

								
	
									container (blobstore)
								

								 	
									The name of the blob container.
								

								 	 	
									String
								

								
	
									directory (blobstore)
								

								 	
									An optional directory name to use
								

								 	 	
									String
								

								
	
									group (compute)
								

								 	
									The group that will be assigned to the newly created node. Values depend on the actual cloud provider.
								

								 	 	
									String
								

								
	
									hardwareId (compute)
								

								 	
									The hardware that will be used for creating a node. Values depend on the actual cloud provider.
								

								 	 	
									String
								

								
	
									imageId (compute)
								

								 	
									The imageId that will be used for creating a node. Values depend on the actual cloud provider.
								

								 	 	
									String
								

								
	
									locationId (compute)
								

								 	
									The location that will be used for creating a node. Values depend on the actual cloud provider.
								

								 	 	
									String
								

								
	
									nodeId (compute)
								

								 	
									The id of the node that will run the script or destroyed.
								

								 	 	
									String
								

								
	
									nodeState (compute)
								

								 	
									To filter by node status to only select running nodes etc.
								

								 	 	
									String
								

								
	
									operation (compute)
								

								 	
									Specifies the type of operation that will be performed to the blobstore.
								

								 	 	
									String
								

								
	
									user (compute)
								

								 	
									The user on the target node that will run the script.
								

								 	 	
									String
								

								

					You can have as many of these options as you like.
				
jclouds:blobstore:aws-s3?operation=CamelJcloudsGet&container=mycontainer&blobName=someblob

					For producer endpoint you can override all of the above URI options by passing the appropriate headers to the message.
				

Message Headers for blobstore

	Header	Description
	
									CamelJcloudsOperation
								

								 	
									The operation to be performed on the blob. The valid options are * PUT * GET
								

								
	
									CamelJcloudsContainer
								

								 	
									The name of the blob container.
								

								
	
									CamelJcloudsBlobName
								

								 	
									The name of the blob.
								

								

Blobstore Usage Samples

Example 1: Putting to the blob

					This example will show you how you can store any message inside a blob using the jclouds component.
				
from("direct:start")
 .to("jclouds:blobstore:aws-s3" +
 "?operation=PUT" +
 "&container=mycontainer" +
 "&blobName=myblob");

					In the above example you can override any of the URI parameters with headers on the message. Here is how the above example would look like using xml to define our route.
				
<route>
 <from uri="direct:start"/>
 <to uri="jclouds:blobstore:aws-s3?operation=PUT&container=mycontainer&blobName=myblob"/>
</route>

Example 2: Getting/Reading from a blob

					This example will show you how you can read the contnet of a blob using the jclouds component.
				
from("direct:start")
 .to("jclouds:blobstore:aws-s3" +
 "?operation=GET" +
 "&container=mycontainer" +
 "&blobName=myblob");

					In the above example you can override any of the URI parameters with headers on the message. Here is how the above example would look like using xml to define our route.
				
<route>
 <from uri="direct:start"/>
 <to uri="jclouds:blobstore:aws-s3?operation=PUT&container=mycontainer&blobName=myblob"/>
</route>

Example 3: Consuming a blob

					This example will consume all blob that are under the specified container. The generated exchange will contain the payload of the blob as body.
				
 from("jclouds:blobstore:aws-s3" +
 "?container=mycontainer")
 .to("direct:next");

					You can achieve the same goal by using xml, as you can see below.
				
<route>
 <from uri="jclouds:blobstore:aws-s3?operation=GET&container=mycontainer&blobName=myblob"/>
 <to uri="direct:next"/>
</route>
jclouds:compute:aws-ec2?operation=CamelJcloudsCreateNode&imageId=AMI_XXXXX&locationId=eu-west-1&group=mygroup

Compute Usage Samples

				Below are some examples that demonstrate the use of jclouds compute producer in java dsl and spring/blueprint xml.
			
Example 1: Listing the available images.

 from("jclouds:compute:aws-ec2" +
 "&operation=CamelJCloudsListImages")
 .to("direct:next");

					This will create a message that will contain the list of images inside its body. You can also do the same using xml.
				
<route>
 <from uri="jclouds:compute:aws-ec2?operation=CamelJCloudsListImages"/>
 <to uri="direct:next"/>
</route>

Example 2: Create a new node.

 from("direct:start").
 to("jclouds:compute:aws-ec2" +
 "?operation=CamelJcloudsCreateNode" +
 "&imageId=AMI_XXXXX" +
 "&locationId=XXXXX" +
 "&group=myGroup");

					This will create a new node on the cloud provider. The out message in this case will be a set of metadata that contains information about the newly created node (e.g. the ip, hostname etc). Here is the same using spring xml.
				
<route>
 <from uri="direct:start"/>
 <to uri="jclouds:compute:aws-ec2?operation=CamelJcloudsCreateNode&imageId=AMI_XXXXX&locationId=XXXXX&group=myGroup"/>
</route>

Example 3: Run a shell script on running node.

 from("direct:start").
 to("jclouds:compute:aws-ec2" +
 "?operation=CamelJcloudsRunScript" +
 "?nodeId=10" +
 "&user=ubuntu");

					The sample above will retrieve the body of the in message, which is expected to contain the shell script to be executed. Once the script is retrieved, it will be sent to the node for execution under the specified user (in order case ubuntu). The target node is specified using its nodeId. The nodeId can be retrieved either upon the creation of the node, it will be part of the resulting metadata or by a executing a LIST_NODES operation.
				

					Note This will require that the compute service that will be passed to the component, to be initialized with the appropriate jclouds ssh capable module (e.g. jsch or sshj).
				

					Here is the same using spring xml.
				
<route>
 <from uri="direct:start"/>
 <to uri="jclouds:compute:aws-ec2?operation=CamelJcloudsListNodes&?nodeId=10&user=ubuntu"/>
</route>

See also

					If you want to find out more about jclouds here is list of interesting resources
				

					Jclouds Blobstore wiki
				

					Jclouds Compute wiki
				

Chapter 170. JCR Component

			Available as of Camel version 1.3
		

			The jcr component allows you to add/read nodes to/from a JCR compliant content repository (for example, Apache Jackrabbit) with its producer, or register an EventListener with the consumer.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-jcr</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>
URI format

jcr://user:password@repository/path/to/node

				Consumer added
			

				From Camel 2.10 onwards you can use consumer as an EventListener in JCR or a producer to read a node by identifier.
			

Usage

				The repository element of the URI is used to look up the JCR Repository object in the Camel context registry.
			
JCR Options

					The JCR component has no options.
				

					The JCR endpoint is configured using URI syntax:
				
jcr:host/base

					with the following path and query parameters:
				

Path Parameters (2 parameters):

	Name	Description	Default	Type
	
									host
								

								 	
									Required Name of the javax.jcr.Repository to lookup from the Camel registry to be used.
								

								 	 	
									String
								

								
	
									base
								

								 	
									Get the base node when accessing the repository
								

								 	 	
									String
								

								

Query Parameters (14 parameters):

	Name	Description	Default	Type
	
									deep (common)
								

								 	
									When isDeep is true, events whose associated parent node is at absPath or within its subgraph are received.
								

								 	
									false
								

								 	
									boolean
								

								
	
									eventTypes (common)
								

								 	
									eventTypes (a combination of one or more event types encoded as a bit mask value such as javax.jcr.observation.Event.NODE_ADDED, javax.jcr.observation.Event.NODE_REMOVED, etc.).
								

								 	 	
									int
								

								
	
									nodeTypeNames (common)
								

								 	
									When a comma separated nodeTypeName list string is set, only events whose associated parent node has one of the node types (or a subtype of one of the node types) in this list will be received.
								

								 	 	
									String
								

								
	
									noLocal (common)
								

								 	
									If noLocal is true, then events generated by the session through which the listener was registered are ignored. Otherwise, they are not ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									password (common)
								

								 	
									Password for login
								

								 	 	
									String
								

								
	
									sessionLiveCheckInterval (common)
								

								 	
									Interval in milliseconds to wait before each session live checking The default value is 60000 ms.
								

								 	
									60000
								

								 	
									long
								

								
	
									sessionLiveCheckIntervalOn Start (common)
								

								 	
									Interval in milliseconds to wait before the first session live checking. The default value is 3000 ms.
								

								 	
									3000
								

								 	
									long
								

								
	
									username (common)
								

								 	
									Username for login
								

								 	 	
									String
								

								
	
									uuids (common)
								

								 	
									When a comma separated uuid list string is set, only events whose associated parent node has one of the identifiers in the comma separated uuid list will be received.
								

								 	 	
									String
								

								
	
									workspaceName (common)
								

								 	
									The workspace to access. If it’s not specified then the default one will be used
								

								 	 	
									String
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

					Please note that the JCR Producer used message properties instead of message headers in Camel versions earlier than 2.12.3. See https://issues.apache.org/jira/browse/CAMEL-7067 for more details.
				

Example

				The snippet below creates a node named node under the /home/test node in the content repository. One additional property is added to the node as well: my.contents.property which will contain the body of the message being sent.
			
from("direct:a").setHeader(JcrConstants.JCR_NODE_NAME, constant("node"))
 .setHeader("my.contents.property", body())
 .to("jcr://user:pass@repository/home/test");

				
			

				The following code will register an EventListener under the path import-application/inbox for Event.NODE_ADDED and Event.NODE_REMOVED events (event types 1 and 2, both masked as 3) and listening deep for all the children.
			
<route>
 <from uri="jcr://user:pass@repository/import-application/inbox?eventTypes=3&deep=true" />
 <to uri="direct:execute-import-application" />
</route>

See Also

	
						Configuring Camel
					
	
						Component
					
	
						Endpoint
					
	
						Getting Started
					

Chapter 171. JDBC Component

			Available as of Camel version 1.2
		

			The jdbc component enables you to access databases through JDBC, where SQL queries (SELECT) and operations (INSERT, UPDATE, etc) are sent in the message body. This component uses the standard JDBC API, unlike the SQL Component component, which uses spring-jdbc.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-jdbc</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>

			This component can only be used to define producer endpoints, which means that you cannot use the JDBC component in a from() statement.
		
URI format

jdbc:dataSourceName[?options]

				This component only supports producer endpoints.
			

				You can append query options to the URI in the following format, ?option=value&option=value&…​
			

Options

				The JDBC component supports 2 options which are listed below.
			
	Name	Description	Default	Type
	
								dataSource (producer)
							

							 	
								To use the DataSource instance instead of looking up the data source by name from the registry.
							

							 	 	
								DataSource
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The JDBC endpoint is configured using URI syntax:
			
jdbc:dataSourceName

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									dataSourceName
								

								 	
									Required Name of DataSource to lookup in the Registry.
								

								 	 	
									String
								

								

Query Parameters (13 parameters):

	Name	Description	Default	Type
	
									allowNamedParameters (producer)
								

								 	
									Whether to allow using named parameters in the queries.
								

								 	
									true
								

								 	
									boolean
								

								
	
									outputClass (producer)
								

								 	
									Specify the full package and class name to use as conversion when outputType=SelectOne or SelectList.
								

								 	 	
									String
								

								
	
									outputType (producer)
								

								 	
									Determines the output the producer should use.
								

								 	
									SelectList
								

								 	
									JdbcOutputType
								

								
	
									parameters (producer)
								

								 	
									Optional parameters to the java.sql.Statement. For example to set maxRows, fetchSize etc.
								

								 	 	
									Map
								

								
	
									readSize (producer)
								

								 	
									The default maximum number of rows that can be read by a polling query. The default value is 0.
								

								 	 	
									int
								

								
	
									resetAutoCommit (producer)
								

								 	
									Camel will set the autoCommit on the JDBC connection to be false, commit the change after executed the statement and reset the autoCommit flag of the connection at the end, if the resetAutoCommit is true. If the JDBC connection doesn’t support to reset the autoCommit flag, you can set the resetAutoCommit flag to be false, and Camel will not try to reset the autoCommit flag. When used with XA transactions you most likely need to set it to false so that the transaction manager is in charge of committing this tx.
								

								 	
									true
								

								 	
									boolean
								

								
	
									transacted (producer)
								

								 	
									Whether transactions are in use.
								

								 	
									false
								

								 	
									boolean
								

								
	
									useGetBytesForBlob (producer)
								

								 	
									To read BLOB columns as bytes instead of string data. This may be needed for certain databases such as Oracle where you must read BLOB columns as bytes.
								

								 	
									false
								

								 	
									boolean
								

								
	
									useHeadersAsParameters (producer)
								

								 	
									Set this option to true to use the prepareStatementStrategy with named parameters. This allows to define queries with named placeholders, and use headers with the dynamic values for the query placeholders.
								

								 	
									false
								

								 	
									boolean
								

								
	
									useJDBC4ColumnNameAnd LabelSemantics (producer)
								

								 	
									Sets whether to use JDBC 4 or JDBC 3.0 or older semantic when retrieving column name. JDBC 4.0 uses columnLabel to get the column name where as JDBC 3.0 uses both columnName or columnLabel. Unfortunately JDBC drivers behave differently so you can use this option to work out issues around your JDBC driver if you get problem using this component This option is default true.
								

								 	
									true
								

								 	
									boolean
								

								
	
									beanRowMapper (advanced)
								

								 	
									To use a custom org.apache.camel.component.jdbc.BeanRowMapper when using outputClass. The default implementation will lower case the row names and skip underscores, and dashes. For example CUST_ID is mapped as custId.
								

								 	 	
									BeanRowMapper
								

								
	
									prepareStatementStrategy (advanced)
								

								 	
									Allows to plugin to use a custom org.apache.camel.component.jdbc.JdbcPrepareStatementStrategy to control preparation of the query and prepared statement.
								

								 	 	
									JdbcPrepareStatement Strategy
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

Result

				By default the result is returned in the OUT body as an ArrayList<HashMap<String, Object>>. The List object contains the list of rows and the Map objects contain each row with the String key as the column name. You can use the option outputType to control the result.
			

				Note: This component fetches ResultSetMetaData to be able to return the column name as the key in the Map.
			
Message Headers

	Header	Description
	
									CamelJdbcRowCount
								

								 	
									If the query is a SELECT, query the row count is returned in this OUT header.
								

								
	
									CamelJdbcUpdateCount
								

								 	
									If the query is an UPDATE, query the update count is returned in this OUT header.
								

								
	
									CamelGeneratedKeysRows
								

								 	
									Camel 2.10: Rows that contains the generated kets.
								

								
	
									CamelGeneratedKeysRowCount
								

								 	
									Camel 2.10: The number of rows in the header that contains generated keys.
								

								
	
									CamelJdbcColumnNames
								

								 	
									Camel 2.11.1: The column names from the ResultSet as a java.util.Set type.
								

								
	
									CamelJdbcParametes
								

								 	
									Camel 2.12: A java.util.Map which has the headers to be used if useHeadersAsParameters has been enabled.
								

								

Generated keys

				Available as of Camel 2.10
			

				If you insert data using SQL INSERT, then the RDBMS may support auto generated keys. You can instruct the JDBC producer to return the generated keys in headers.
 To do that set the header CamelRetrieveGeneratedKeys=true. Then the generated keys will be provided as headers with the keys listed in the table above.
			

				You can see more details in this unit test.
			

				Using generated keys does not work with together with named parameters.
			

Using named parameters

				Available as of Camel 2.12
			

				In the given route below, we want to get all the projects from the projects table. Notice the SQL query has 2 named parameters, :?lic and :?min.
 Camel will then lookup these parameters from the message headers. Notice in the example above we set two headers with constant value
 for the named parameters:
			
 from("direct:projects")
 .setHeader("lic", constant("ASF"))
 .setHeader("min", constant(123))
 .setBody("select * from projects where license = :?lic and id > :?min order by id")
 .to("jdbc:myDataSource?useHeadersAsParameters=true")

				You can also store the header values in a java.util.Map and store the map on the headers with the key CamelJdbcParameters.
			

Samples

				In the following example, we fetch the rows from the customer table.
			

				First we register our datasource in the Camel registry as testdb:
			

				Then we configure a route that routes to the JDBC component, so the SQL will be executed. Note how we refer to the testdb datasource that was bound in the previous step:
			

				Or you can create a DataSource in Spring like this:
			

				We create an endpoint, add the SQL query to the body of the IN message, and then send the exchange. The result of the query is returned in the OUT body:
			

				If you want to work on the rows one by one instead of the entire ResultSet at once you need to use the Splitter EIP such as:
			

				In Camel 2.13.x or older
			

				In Camel 2.14.x or newer
			
from("direct:hello")
// here we split the data from the testdb into new messages one by one
// so the mock endpoint will receive a message per row in the table
// the StreamList option allows to stream the result of the query without creating a List of rows
// and notice we also enable streaming mode on the splitter
.to("jdbc:testdb?outputType=StreamList")
 .split(body()).streaming()
 .to("mock:result");

Sample - Polling the database every minute

				If we want to poll a database using the JDBC component, we need to combine it with a polling scheduler such as the Timer or Quartz etc. In the following example, we retrieve data from the database every 60 seconds:
			
from("timer://foo?period=60000").setBody(constant("select * from customer")).to("jdbc:testdb").to("activemq:queue:customers");

Sample - Move Data Between Data Sources

				A common use case is to query for data, process it and move it to another data source (ETL operations). In the following example, we retrieve new customer records from the source table every hour, filter/transform them and move them to a destination table:
			
from("timer://MoveNewCustomersEveryHour?period=3600000")
 .setBody(constant("select * from customer where create_time > (sysdate-1/24)"))
 .to("jdbc:testdb")
 .split(body())
 .process(new MyCustomerProcessor()) //filter/transform results as needed
 .setBody(simple("insert into processed_customer values('${body[ID]}','${body[NAME]}')"))
 .to("jdbc:testdb");

				
			

See Also

	
						Configuring Camel
					
	
						Component
					
	
						Endpoint
					
	
						Getting Started
					
	
						SQL
					

Chapter 172. Jetty 9 Component

			Available as of Camel version 1.2
		
Warning

				The producer is deprecated - do not use. We only recommend using jetty as consumer (eg from jetty)
			

			The jetty component provides HTTP-based endpoints for consuming and producing HTTP requests. That is, the Jetty component behaves as a simple Web server.
 Jetty can also be used as a http client which mean you can also use it with Camel as a producer.
		

			Stream
		

			The assert call appears in this example, because the code is part of an unit test.Jetty is stream based, which means the input it receives is submitted to Camel as a stream. That means you will only be able to read the content of the stream once.
 If you find a situation where the message body appears to be empty or you need to access the Exchange.HTTP_RESPONSE_CODE data multiple times (e.g.: doing multicasting, or redelivery error handling), you should use Stream caching or convert the message body to a String which is safe to be re-read multiple times.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-jetty</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>
URI format

jetty:http://hostname[:port][/resourceUri][?options]

				You can append query options to the URI in the following format, ?option=value&option=value&…​
			

Options

				The Jetty 9 component supports 33 options which are listed below.
			
	Name	Description	Default	Type
	
								sslKeyPassword (security)
							

							 	
								The key password, which is used to access the certificate’s key entry in the keystore (this is the same password that is supplied to the keystore command’s -keypass option).
							

							 	 	
								String
							

							
	
								sslPassword (security)
							

							 	
								The ssl password, which is required to access the keystore file (this is the same password that is supplied to the keystore command’s -storepass option).
							

							 	 	
								String
							

							
	
								keystore (security)
							

							 	
								Specifies the location of the Java keystore file, which contains the Jetty server’s own X.509 certificate in a key entry.
							

							 	 	
								String
							

							
	
								errorHandler (advanced)
							

							 	
								This option is used to set the ErrorHandler that Jetty server uses.
							

							 	 	
								ErrorHandler
							

							
	
								sslSocketConnectors (security)
							

							 	
								A map which contains per port number specific SSL connectors.
							

							 	 	
								Map
							

							
	
								socketConnectors (security)
							

							 	
								A map which contains per port number specific HTTP connectors. Uses the same principle as sslSocketConnectors.
							

							 	 	
								Map
							

							
	
								httpClientMinThreads (producer)
							

							 	
								To set a value for minimum number of threads in HttpClient thread pool. Notice that both a min and max size must be configured.
							

							 	 	
								Integer
							

							
	
								httpClientMaxThreads (producer)
							

							 	
								To set a value for maximum number of threads in HttpClient thread pool. Notice that both a min and max size must be configured.
							

							 	 	
								Integer
							

							
	
								minThreads (consumer)
							

							 	
								To set a value for minimum number of threads in server thread pool. Notice that both a min and max size must be configured.
							

							 	 	
								Integer
							

							
	
								maxThreads (consumer)
							

							 	
								To set a value for maximum number of threads in server thread pool. Notice that both a min and max size must be configured.
							

							 	 	
								Integer
							

							
	
								threadPool (consumer)
							

							 	
								To use a custom thread pool for the server. This option should only be used in special circumstances.
							

							 	 	
								ThreadPool
							

							
	
								enableJmx (common)
							

							 	
								If this option is true, Jetty JMX support will be enabled for this endpoint.
							

							 	
								false
							

							 	
								boolean
							

							
	
								jettyHttpBinding (advanced)
							

							 	
								To use a custom org.apache.camel.component.jetty.JettyHttpBinding, which are used to customize how a response should be written for the producer.
							

							 	 	
								JettyHttpBinding
							

							
	
								httpBinding (advanced)
							

							 	
								Not to be used - use JettyHttpBinding instead.
							

							 	 	
								HttpBinding
							

							
	
								httpConfiguration (advanced)
							

							 	
								Jetty component does not use HttpConfiguration.
							

							 	 	
								HttpConfiguration
							

							
	
								mbContainer (advanced)
							

							 	
								To use a existing configured org.eclipse.jetty.jmx.MBeanContainer if JMX is enabled that Jetty uses for registering mbeans.
							

							 	 	
								MBeanContainer
							

							
	
								sslSocketConnector Properties (security)
							

							 	
								A map which contains general SSL connector properties.
							

							 	 	
								Map
							

							
	
								socketConnector Properties (security)
							

							 	
								A map which contains general HTTP connector properties. Uses the same principle as sslSocketConnectorProperties.
							

							 	 	
								Map
							

							
	
								continuationTimeout (consumer)
							

							 	
								Allows to set a timeout in millis when using Jetty as consumer (server). By default Jetty uses 30000. You can use a value of = 0 to never expire. If a timeout occurs then the request will be expired and Jetty will return back a http error 503 to the client. This option is only in use when using Jetty with the Asynchronous Routing Engine.
							

							 	
								30000
							

							 	
								Long
							

							
	
								useContinuation (consumer)
							

							 	
								Whether or not to use Jetty continuations for the Jetty Server.
							

							 	
								true
							

							 	
								boolean
							

							
	
								sslContextParameters (security)
							

							 	
								To configure security using SSLContextParameters
							

							 	 	
								SSLContextParameters
							

							
	
								useGlobalSslContext Parameters (security)
							

							 	
								Enable usage of global SSL context parameters
							

							 	
								false
							

							 	
								boolean
							

							
	
								responseBufferSize (common)
							

							 	
								Allows to configure a custom value of the response buffer size on the Jetty connectors.
							

							 	 	
								Integer
							

							
	
								requestBufferSize (common)
							

							 	
								Allows to configure a custom value of the request buffer size on the Jetty connectors.
							

							 	 	
								Integer
							

							
	
								requestHeaderSize (common)
							

							 	
								Allows to configure a custom value of the request header size on the Jetty connectors.
							

							 	 	
								Integer
							

							
	
								responseHeaderSize (common)
							

							 	
								Allows to configure a custom value of the response header size on the Jetty connectors.
							

							 	 	
								Integer
							

							
	
								proxyHost (proxy)
							

							 	
								To use a http proxy to configure the hostname.
							

							 	 	
								String
							

							
	
								proxyPort (proxy)
							

							 	
								To use a http proxy to configure the port number.
							

							 	 	
								Integer
							

							
	
								useXForwardedFor Header (common)
							

							 	
								To use the X-Forwarded-For header in HttpServletRequest.getRemoteAddr.
							

							 	
								false
							

							 	
								boolean
							

							
	
								sendServerVersion (consumer)
							

							 	
								If the option is true, jetty server will send the date header to the client which sends the request. NOTE please make sure there is no any other camel-jetty endpoint is share the same port, otherwise this option may not work as expected.
							

							 	
								true
							

							 	
								boolean
							

							
	
								allowJavaSerialized Object (advanced)
							

							 	
								Whether to allow java serialization when a request uses context-type=application/x-java-serialized-object. This is by default turned off. If you enable this then be aware that Java will deserialize the incoming data from the request to Java and that can be a potential security risk.
							

							 	
								false
							

							 	
								boolean
							

							
	
								headerFilterStrategy (filter)
							

							 	
								To use a custom org.apache.camel.spi.HeaderFilterStrategy to filter header to and from Camel message.
							

							 	 	
								HeaderFilterStrategy
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The Jetty 9 endpoint is configured using URI syntax:
			
jetty:httpUri

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									httpUri
								

								 	
									Required The url of the HTTP endpoint to call.
								

								 	 	
									URI
								

								

Query Parameters (54 parameters):

	Name	Description	Default	Type
	
									chunked (common)
								

								 	
									If this option is false the Servlet will disable the HTTP streaming and set the content-length header on the response
								

								 	
									true
								

								 	
									boolean
								

								
	
									disableStreamCache (common)
								

								 	
									Determines whether or not the raw input stream from Servlet is cached or not (Camel will read the stream into a in memory/overflow to file, Stream caching) cache. By default Camel will cache the Servlet input stream to support reading it multiple times to ensure it Camel can retrieve all data from the stream. However you can set this option to true when you for example need to access the raw stream, such as streaming it directly to a file or other persistent store. DefaultHttpBinding will copy the request input stream into a stream cache and put it into message body if this option is false to support reading the stream multiple times. If you use Servlet to bridge/proxy an endpoint then consider enabling this option to improve performance, in case you do not need to read the message payload multiple times. The http/http4 producer will by default cache the response body stream. If setting this option to true, then the producers will not cache the response body stream but use the response stream as-is as the message body.
								

								 	
									false
								

								 	
									boolean
								

								
	
									enableMultipartFilter (common)
								

								 	
									Whether Jetty org.eclipse.jetty.servlets.MultiPartFilter is enabled or not. You should set this value to false when bridging endpoints, to ensure multipart requests is proxied/bridged as well.
								

								 	
									false
								

								 	
									boolean
								

								
	
									headerFilterStrategy (common)
								

								 	
									To use a custom HeaderFilterStrategy to filter header to and from Camel message.
								

								 	 	
									HeaderFilterStrategy
								

								
	
									transferException (common)
								

								 	
									If enabled and an Exchange failed processing on the consumer side, and if the caused Exception was send back serialized in the response as a application/x-java-serialized-object content type. On the producer side the exception will be deserialized and thrown as is, instead of the HttpOperationFailedException. The caused exception is required to be serialized. This is by default turned off. If you enable this then be aware that Java will deserialize the incoming data from the request to Java and that can be a potential security risk.
								

								 	
									false
								

								 	
									boolean
								

								
	
									httpBinding (common)
								

								 	
									To use a custom HttpBinding to control the mapping between Camel message and HttpClient.
								

								 	 	
									HttpBinding
								

								
	
									async (consumer)
								

								 	
									Configure the consumer to work in async mode
								

								 	
									false
								

								 	
									boolean
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									continuationTimeout (consumer)
								

								 	
									Allows to set a timeout in millis when using Jetty as consumer (server). By default Jetty uses 30000. You can use a value of = 0 to never expire. If a timeout occurs then the request will be expired and Jetty will return back a http error 503 to the client. This option is only in use when using Jetty with the Asynchronous Routing Engine.
								

								 	
									30000
								

								 	
									Long
								

								
	
									enableCORS (consumer)
								

								 	
									If the option is true, Jetty server will setup the CrossOriginFilter which supports the CORS out of box.
								

								 	
									false
								

								 	
									boolean
								

								
	
									enableJmx (consumer)
								

								 	
									If this option is true, Jetty JMX support will be enabled for this endpoint. See Jetty JMX support for more details.
								

								 	
									false
								

								 	
									boolean
								

								
	
									httpMethodRestrict (consumer)
								

								 	
									Used to only allow consuming if the HttpMethod matches, such as GET/POST/PUT etc. Multiple methods can be specified separated by comma.
								

								 	 	
									String
								

								
	
									matchOnUriPrefix (consumer)
								

								 	
									Whether or not the consumer should try to find a target consumer by matching the URI prefix if no exact match is found.
								

								 	
									false
								

								 	
									boolean
								

								
	
									responseBufferSize (consumer)
								

								 	
									To use a custom buffer size on the javax.servlet.ServletResponse.
								

								 	 	
									Integer
								

								
	
									sendDateHeader (consumer)
								

								 	
									If the option is true, jetty server will send the date header to the client which sends the request. NOTE please make sure there is no any other camel-jetty endpoint is share the same port, otherwise this option may not work as expected.
								

								 	
									false
								

								 	
									boolean
								

								
	
									sendServerVersion (consumer)
								

								 	
									If the option is true, jetty will send the server header with the jetty version information to the client which sends the request. NOTE please make sure there is no any other camel-jetty endpoint is share the same port, otherwise this option may not work as expected.
								

								 	
									true
								

								 	
									boolean
								

								
	
									sessionSupport (consumer)
								

								 	
									Specifies whether to enable the session manager on the server side of Jetty.
								

								 	
									false
								

								 	
									boolean
								

								
	
									useContinuation (consumer)
								

								 	
									Whether or not to use Jetty continuations for the Jetty Server.
								

								 	 	
									Boolean
								

								
	
									eagerCheckContentAvailable (consumer)
								

								 	
									Whether to eager check whether the HTTP requests has content if the content-length header is 0 or not present. This can be turned on in case HTTP clients do not send streamed data.
								

								 	
									false
								

								 	
									boolean
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									filterInitParameters (consumer)
								

								 	
									Configuration of the filter init parameters. These parameters will be applied to the filter list before starting the jetty server.
								

								 	 	
									Map
								

								
	
									filtersRef (consumer)
								

								 	
									Allows using a custom filters which is putted into a list and can be find in the Registry. Multiple values can be separated by comma.
								

								 	 	
									String
								

								
	
									handlers (consumer)
								

								 	
									Specifies a comma-delimited set of Handler instances to lookup in your Registry. These handlers are added to the Jetty servlet context (for example, to add security). Important: You can not use different handlers with different Jetty endpoints using the same port number. The handlers is associated to the port number. If you need different handlers, then use different port numbers.
								

								 	 	
									String
								

								
	
									httpBindingRef (consumer)
								

								 	
									Deprecated Option to disable throwing the HttpOperationFailedException in case of failed responses from the remote server. This allows you to get all responses regardless of the HTTP status code.
								

								 	 	
									String
								

								
	
									multipartFilter (consumer)
								

								 	
									Allows using a custom multipart filter. Note: setting multipartFilterRef forces the value of enableMultipartFilter to true.
								

								 	 	
									Filter
								

								
	
									multipartFilterRef (consumer)
								

								 	
									Deprecated Allows using a custom multipart filter. Note: setting multipartFilterRef forces the value of enableMultipartFilter to true.
								

								 	 	
									String
								

								
	
									optionsEnabled (consumer)
								

								 	
									Specifies whether to enable HTTP OPTIONS for this Servlet consumer. By default OPTIONS is turned off.
								

								 	
									false
								

								 	
									boolean
								

								
	
									traceEnabled (consumer)
								

								 	
									Specifies whether to enable HTTP TRACE for this Servlet consumer. By default TRACE is turned off.
								

								 	
									false
								

								 	
									boolean
								

								
	
									bridgeEndpoint (producer)
								

								 	
									If the option is true, HttpProducer will ignore the Exchange.HTTP_URI header, and use the endpoint’s URI for request. You may also set the option throwExceptionOnFailure to be false to let the HttpProducer send all the fault response back.
								

								 	
									false
								

								 	
									boolean
								

								
	
									connectionClose (producer)
								

								 	
									Specifies whether a Connection Close header must be added to HTTP Request. By default connectionClose is false.
								

								 	
									false
								

								 	
									boolean
								

								
	
									cookieHandler (producer)
								

								 	
									Configure a cookie handler to maintain a HTTP session
								

								 	 	
									CookieHandler
								

								
	
									copyHeaders (producer)
								

								 	
									If this option is true then IN exchange headers will be copied to OUT exchange headers according to copy strategy. Setting this to false, allows to only include the headers from the HTTP response (not propagating IN headers).
								

								 	
									true
								

								 	
									boolean
								

								
	
									httpClientMaxThreads (producer)
								

								 	
									To set a value for maximum number of threads in HttpClient thread pool. This setting override any setting configured on component level. Notice that both a min and max size must be configured. If not set it default to max 254 threads used in Jettys thread pool.
								

								 	
									254
								

								 	
									Integer
								

								
	
									httpClientMinThreads (producer)
								

								 	
									To set a value for minimum number of threads in HttpClient thread pool. This setting override any setting configured on component level. Notice that both a min and max size must be configured. If not set it default to min 8 threads used in Jettys thread pool.
								

								 	
									8
								

								 	
									Integer
								

								
	
									httpMethod (producer)
								

								 	
									Configure the HTTP method to use. The HttpMethod header cannot override this option if set.
								

								 	 	
									HttpMethods
								

								
	
									ignoreResponseBody (producer)
								

								 	
									If this option is true, The http producer won’t read response body and cache the input stream
								

								 	
									false
								

								 	
									boolean
								

								
	
									preserveHostHeader (producer)
								

								 	
									If the option is true, HttpProducer will set the Host header to the value contained in the current exchange Host header, useful in reverse proxy applications where you want the Host header received by the downstream server to reflect the URL called by the upstream client, this allows applications which use the Host header to generate accurate URL’s for a proxied service
								

								 	
									false
								

								 	
									boolean
								

								
	
									throwExceptionOnFailure (producer)
								

								 	
									Option to disable throwing the HttpOperationFailedException in case of failed responses from the remote server. This allows you to get all responses regardless of the HTTP status code.
								

								 	
									true
								

								 	
									boolean
								

								
	
									httpClient (producer)
								

								 	
									Sets a shared HttpClient to use for all producers created by this endpoint. By default each producer will use a new http client, and not share. Important: Make sure to handle the lifecycle of the shared client, such as stopping the client, when it is no longer in use. Camel will call the start method on the client to ensure its started when this endpoint creates a producer. This options should only be used in special circumstances.
								

								 	 	
									HttpClient
								

								
	
									httpClientParameters (producer)
								

								 	
									Configuration of Jetty’s HttpClient. For example, setting httpClient.idleTimeout=30000 sets the idle timeout to 30 seconds. And httpClient.timeout=30000 sets the request timeout to 30 seconds, in case you want to timeout sooner if you have long running request/response calls.
								

								 	 	
									Map
								

								
	
									jettyBinding (producer)
								

								 	
									To use a custom JettyHttpBinding which be used to customize how a response should be written for the producer.
								

								 	 	
									JettyHttpBinding
								

								
	
									jettyBindingRef (producer)
								

								 	
									Deprecated To use a custom JettyHttpBinding which be used to customize how a response should be written for the producer.
								

								 	 	
									String
								

								
	
									okStatusCodeRange (producer)
								

								 	
									The status codes which are considered a success response. The values are inclusive. Multiple ranges can be defined, separated by comma, e.g. 200-204,209,301-304. Each range must be a single number or from-to with the dash included.
								

								 	
									200-299
								

								 	
									String
								

								
	
									urlRewrite (producer)
								

								 	
									Deprecated Refers to a custom org.apache.camel.component.http.UrlRewrite which allows you to rewrite urls when you bridge/proxy endpoints. See more details at http://camel.apache.org/urlrewrite.html
								

								 	 	
									UrlRewrite
								

								
	
									mapHttpMessageBody (advanced)
								

								 	
									If this option is true then IN exchange Body of the exchange will be mapped to HTTP body. Setting this to false will avoid the HTTP mapping.
								

								 	
									true
								

								 	
									boolean
								

								
	
									mapHttpMessageFormUrl EncodedBody (advanced)
								

								 	
									If this option is true then IN exchange Form Encoded body of the exchange will be mapped to HTTP. Setting this to false will avoid the HTTP Form Encoded body mapping.
								

								 	
									true
								

								 	
									boolean
								

								
	
									mapHttpMessageHeaders (advanced)
								

								 	
									If this option is true then IN exchange Headers of the exchange will be mapped to HTTP headers. Setting this to false will avoid the HTTP Headers mapping.
								

								 	
									true
								

								 	
									boolean
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									proxyAuthScheme (proxy)
								

								 	
									Proxy authentication scheme to use
								

								 	 	
									String
								

								
	
									proxyHost (proxy)
								

								 	
									Proxy hostname to use
								

								 	 	
									String
								

								
	
									proxyPort (proxy)
								

								 	
									Proxy port to use
								

								 	 	
									int
								

								
	
									authHost (security)
								

								 	
									Authentication host to use with NTML
								

								 	 	
									String
								

								
	
									sslContextParameters (security)
								

								 	
									To configure security using SSLContextParameters
								

								 	 	
									SSLContextParameters
								

								

Message Headers

				Camel uses the same message headers as the HTTP component. From Camel 2.2, it also uses (Exchange.HTTP_CHUNKED,CamelHttpChunked) header to turn on or turn off the chuched encoding on the camel-jetty consumer.
			

				Camel also populates all request.parameter and request.headers. For example, given a client request with the URL, http://myserver/myserver?orderid=123, the exchange will contain a header named orderid with the value 123.
			

				Starting with Camel 2.2.0, you can get the request.parameter from the message header not only from Get Method, but also other HTTP method.
			

Usage

				The Jetty component supports both consumer and producer endpoints. Another option for producing to other HTTP endpoints, is to use the HTTP Component
			

Producer Example

Warning

					The producer is deprecated - do not use. We only recommend using jetty as consumer (eg from jetty)
				

				The following is a basic example of how to send an HTTP request to an existing HTTP endpoint.
			

				in Java DSL
			
from("direct:start").to("jetty://http://www.google.com");

				or in Spring XML
			
<route>
 <from uri="direct:start"/>
 <to uri="jetty://http://www.google.com"/>
<route>

Consumer Example

				In this sample we define a route that exposes a HTTP service at http://localhost:8080/myapp/myservice:
			

				Usage of localhost
			

				When you specify localhost in a URL, Camel exposes the endpoint only on the local TCP/IP network interface, so it cannot be accessed from outside the machine it operates on.
			

				If you need to expose a Jetty endpoint on a specific network interface, the numerical IP address of this interface should be used as the host. If you need to expose a Jetty endpoint on all network interfaces, the 0.0.0.0 address should be used.
			

				To listen across an entire URI prefix, see How do I let Jetty match wildcards.
			

				If you actually want to expose routes by HTTP and already have a Servlet, you should instead refer to the Servlet Transport.
			

				Our business logic is implemented in the MyBookService class, which accesses the HTTP request contents and then returns a response.
 Note: The assert call appears in this example, because the code is part of an unit test.
			

				The following sample shows a content-based route that routes all requests containing the URI parameter, one, to the endpoint, mock:one, and all others to mock:other.
			

				So if a client sends the HTTP request, http://serverUri?one=hello, the Jetty component will copy the HTTP request parameter, one to the exchange’s in.header. We can then use the simple language to route exchanges that contain this header to a specific endpoint and all others to another. If we used a language more powerful than Simple (such as OGNL) we could also test for the parameter value and do routing based on the header value as well.
			

Session Support

				The session support option, sessionSupport, can be used to enable a HttpSession object and access the session object while processing the exchange. For example, the following route enables sessions:
			
<route>
 <from uri="jetty:http://0.0.0.0/myapp/myservice/?sessionSupport=true"/>
 <processRef ref="myCode"/>
<route>

				The myCode Processor can be instantiated by a Spring bean element:
			
<bean id="myCode"class="com.mycompany.MyCodeProcessor"/>

				Where the processor implementation can access the HttpSession as follows:
			
public void process(Exchange exchange) throws Exception {
 HttpSession session = exchange.getIn(HttpMessage.class).getRequest().getSession();
 ...
}

SSL Support (HTTPS)

				Using the JSSE Configuration Utility
			

				As of Camel 2.8, the Jetty component supports SSL/TLS configuration through the Camel JSSE Configuration Utility. This utility greatly decreases the amount of component specific code you need to write and is configurable at the endpoint and component levels. The following examples demonstrate how to use the utility with the Jetty component.
			

				Programmatic configuration of the component
			
KeyStoreParameters ksp = new KeyStoreParameters();
ksp.setResource("/users/home/server/keystore.jks");
ksp.setPassword("keystorePassword");

KeyManagersParameters kmp = new KeyManagersParameters();
kmp.setKeyStore(ksp);
kmp.setKeyPassword("keyPassword");

SSLContextParameters scp = new SSLContextParameters();
scp.setKeyManagers(kmp);

JettyComponent jettyComponent = getContext().getComponent("jetty", JettyComponent.class);
jettyComponent.setSslContextParameters(scp);

				Spring DSL based configuration of endpoint
			
...
 <camel:sslContextParameters
 id="sslContextParameters">
 <camel:keyManagers
 keyPassword="keyPassword">
 <camel:keyStore
 resource="/users/home/server/keystore.jks"
 password="keystorePassword"/>
 </camel:keyManagers>
 </camel:sslContextParameters>...
...
 <to uri="jetty:https://127.0.0.1/mail/?sslContextParameters=#sslContextParameters"/>
...

				Configuring Jetty Directly
			

				Jetty provides SSL support out of the box. To enable Jetty to run in SSL mode, simply format the URI with the https:// prefix---for example:
			
<from uri="jetty:https://0.0.0.0/myapp/myservice/"/>

				Jetty also needs to know where to load your keystore from and what passwords to use in order to load the correct SSL certificate. Set the following JVM System Properties:
			

				until Camel 2.2
			
	
						jetty.ssl.keystore specifies the location of the Java keystore file, which contains the Jetty server’s own X.509 certificate in a key entry. A key entry stores the X.509 certificate (effectively, the public key) and also its associated private key.
					
	
						jetty.ssl.password the store password, which is required to access the keystore file (this is the same password that is supplied to the keystore command’s -storepass option).
					
	
						jetty.ssl.keypassword the key password, which is used to access the certificate’s key entry in the keystore (this is the same password that is supplied to the keystore command’s -keypass option).
					

				from Camel 2.3 onwards
			
	
						org.eclipse.jetty.ssl.keystore specifies the location of the Java keystore file, which contains the Jetty server’s own X.509 certificate in a key entry. A key entry stores the X.509 certificate (effectively, the public key) and also its associated private key.
					
	
						org.eclipse.jetty.ssl.password the store password, which is required to access the keystore file (this is the same password that is supplied to the keystore command’s -storepass option).
					
	
						org.eclipse.jetty.ssl.keypassword the key password, which is used to access the certificate’s key entry in the keystore (this is the same password that is supplied to the keystore command’s -keypass option).
					

				For details of how to configure SSL on a Jetty endpoint, read the following documentation at the Jetty Site: http://docs.codehaus.org/display/JETTY/How+to+configure+SSL
			

				Some SSL properties aren’t exposed directly by Camel, however Camel does expose the underlying SslSocketConnector, which will allow you to set properties like needClientAuth for mutual authentication requiring a client certificate or wantClientAuth for mutual authentication where a client doesn’t need a certificate but can have one. There’s a slight difference between the various Camel versions:
			

				Up to Camel 2.2
			
<bean id="jetty" class="org.apache.camel.component.jetty.JettyHttpComponent">
 <property name="sslSocketConnectors">
 <map>
 <entry key="8043">
 <bean class="org.mortbay.jetty.security.SslSocketConnector">
 <property name="password"value="..."/>
 <property name="keyPassword"value="..."/>
 <property name="keystore"value="..."/>
 <property name="needClientAuth"value="..."/>
 <property name="truststore"value="..."/>
 </bean>
 </entry>
 </map>
 </property>
</bean>

				Camel 2.3, 2.4
			
<bean id="jetty" class="org.apache.camel.component.jetty.JettyHttpComponent">
 <property name="sslSocketConnectors">
 <map>
 <entry key="8043">
 <bean class="org.eclipse.jetty.server.ssl.SslSocketConnector">
 <property name="password"value="..."/>
 <property name="keyPassword"value="..."/>
 <property name="keystore"value="..."/>
 <property name="needClientAuth"value="..."/>
 <property name="truststore"value="..."/>
 </bean>
 </entry>
 </map>
 </property>
</bean>

				*From Camel 2.5 we switch to use SslSelectChannelConnector *
			
<bean id="jetty" class="org.apache.camel.component.jetty.JettyHttpComponent">
 <property name="sslSocketConnectors">
 <map>
 <entry key="8043">
 <bean class="org.eclipse.jetty.server.ssl.SslSelectChannelConnector">
 <property name="password"value="..."/>
 <property name="keyPassword"value="..."/>
 <property name="keystore"value="..."/>
 <property name="needClientAuth"value="..."/>
 <property name="truststore"value="..."/>
 </bean>
 </entry>
 </map>
 </property>
</bean>

				The value you use as keys in the above map is the port you configure Jetty to listen on.
			
Configuring camel-jetty9 with TLS security on IBM Java

					The default TLS security settings in the camel-jetty9 component are not compatible with the IBM Java VM. All ciphers in IBM Java starts with prefix SSL_*, even ciphers for TLS protocol startes with SSL_*. camel-jetty9 supports only RFC Cipher Suite names and all SSL_* cipher are not secured and are excluded. Jetty excludes all SSL_* ciphers, so there is no negotiable cipher usable for TLS 1.2 and connection fails. As there is no way to change behavior of Jetty’s ssl context, only workaround is to override the default TLS security configuration on the Jetty9 component. To achieve this, add the following code at the end of the method "sslContextParameters()" in the Application.java file.
				
FilterParameters fp = new FilterParameters();
 fp.getInclude().add(".*");

 // Exclude weak / insecure ciphers
 fp.getExclude().add("^.*_(MD5|SHA|SHA1)$");
 // Exclude ciphers that don't support forward secrecy
 fp.getExclude().add("^TLS_RSA_.*$");
 // The following exclusions are present to cleanup known bad cipher
 // suites that may be accidentally included via include patterns.
 // The default enabled cipher list in Java will not include these
 // (but they are available in the supported list).
 /* SSL_ ciphers are not excluded
 fp.getExclude().add("^SSL_.*$"); */
 fp.getExclude().add("^.NULL.$");
 fp.getExclude().add("^.anon.$");

 p.setCipherSuitesFilter(fp);

					This code overrides excluded ciphers defined in Jetty by removing exclusion of all SSL_* ciphers.
				

Configuring general SSL properties

					Available as of Camel 2.5
				

					Instead of a per port number specific SSL socket connector (as shown above) you can now configure general properties which applies for all SSL socket connectors (which is not explicit configured as above with the port number as entry).
				
<bean id="jetty" class="org.apache.camel.component.jetty.JettyHttpComponent">
 <property name="sslSocketConnectorProperties">
 <map>
 <entry key="password"value="..."/>
 <entry key="keyPassword"value="..."/>
 <entry key="keystore"value="..."/>
 <entry key="needClientAuth"value="..."/>
 <entry key="truststore"value="..."/>
 </map>
 </property>
</bean>

How to obtain reference to the X509Certificate

					Jetty stores a reference to the certificate in the HttpServletRequest which you can access from code as follows:
				
HttpServletRequest req = exchange.getIn().getBody(HttpServletRequest.class);
X509Certificate cert = (X509Certificate) req.getAttribute("javax.servlet.request.X509Certificate")

Configuring general HTTP properties

					Available as of Camel 2.5
				

					Instead of a per port number specific HTTP socket connector (as shown above) you can now configure general properties which applies for all HTTP socket connectors (which is not explicit configured as above with the port number as entry).
				
<bean id="jetty" class="org.apache.camel.component.jetty.JettyHttpComponent">
 <property name="socketConnectorProperties">
 <map>
 <entry key="acceptors" value="4"/>
 <entry key="maxIdleTime" value="300000"/>
 </map>
 </property>
</bean>

Obtaining X-Forwarded-For header with HttpServletRequest.getRemoteAddr()

					If the HTTP requests are handled by an Apache server and forwarded to jetty with mod_proxy, the original client IP address is in the X-Forwarded-For header and the HttpServletRequest.getRemoteAddr() will return the address of the Apache proxy.
				

					Jetty has a forwarded property which takes the value from X-Forwarded-For and places it in the HttpServletRequest remoteAddr property. This property is not available directly through the endpoint configuration but it can be easily added using the socketConnectors property:
				
<bean id="jetty" class="org.apache.camel.component.jetty.JettyHttpComponent">
 <property name="socketConnectors">
 <map>
 <entry key="8080">
 <bean class="org.eclipse.jetty.server.nio.SelectChannelConnector">
 <property name="forwarded" value="true"/>
 </bean>
 </entry>
 </map>
 </property>
</bean>

					This is particularly useful when an existing Apache server handles TLS connections for a domain and proxies them to application servers internally.
				

Default behavior for returning HTTP status codes

				The default behavior of HTTP status codes is defined by the org.apache.camel.component.http.DefaultHttpBinding class, which handles how a response is written and also sets the HTTP status code.
			

				If the exchange was processed successfully, the 200 HTTP status code is returned.
 If the exchange failed with an exception, the 500 HTTP status code is returned, and the stacktrace is returned in the body. If you want to specify which HTTP status code to return, set the code in the Exchange.HTTP_RESPONSE_CODE header of the OUT message.
			

Customizing HttpBinding

				By default, Camel uses the org.apache.camel.component.http.DefaultHttpBinding to handle how a response is written. If you like, you can customize this behavior either by implementing your own HttpBinding class or by extending DefaultHttpBinding and overriding the appropriate methods.
			

				The following example shows how to customize the DefaultHttpBinding in order to change how exceptions are returned:
			

				We can then create an instance of our binding and register it in the Spring registry as follows:
			
<bean id="mybinding"class="com.mycompany.MyHttpBinding"/>

				And then we can reference this binding when we define the route:
			
<route><from uri="jetty:http://0.0.0.0:8080/myapp/myservice?httpBindingRef=mybinding"/><to uri="bean:doSomething"/></route>

Jetty handlers and security configuration

				You can configure a list of Jetty handlers on the endpoint, which can be useful for enabling advanced Jetty security features. These handlers are configured in Spring XML as follows:
			
<-- Jetty Security handling -->
<bean id="userRealm" class="org.mortbay.jetty.plus.jaas.JAASUserRealm">
 <property name="name" value="tracker-users"/>
 <property name="loginModuleName" value="ldaploginmodule"/>
</bean>

<bean id="constraint" class="org.mortbay.jetty.security.Constraint">
 <property name="name" value="BASIC"/>
 <property name="roles" value="tracker-users"/>
 <property name="authenticate" value="true"/>
</bean>

<bean id="constraintMapping" class="org.mortbay.jetty.security.ConstraintMapping">
 <property name="constraint" ref="constraint"/>
 <property name="pathSpec" value="/*"/>
</bean>

<bean id="securityHandler" class="org.mortbay.jetty.security.SecurityHandler">
 <property name="userRealm" ref="userRealm"/>
 <property name="constraintMappings" ref="constraintMapping"/>
</bean>

				And from Camel 2.3 onwards you can configure a list of Jetty handlers as follows:
			
<-- Jetty Security handling -->
<bean id="constraint" class="org.eclipse.jetty.http.security.Constraint">
 <property name="name" value="BASIC"/>
 <property name="roles" value="tracker-users"/>
 <property name="authenticate" value="true"/>
</bean>

<bean id="constraintMapping" class="org.eclipse.jetty.security.ConstraintMapping">
 <property name="constraint" ref="constraint"/>
 <property name="pathSpec" value="/*"/>
</bean>

<bean id="securityHandler" class="org.eclipse.jetty.security.ConstraintSecurityHandler">
 <property name="authenticator">
 <bean class="org.eclipse.jetty.security.authentication.BasicAuthenticator"/>
 </property>
 <property name="constraintMappings">
 <list>
 <ref bean="constraintMapping"/>
 </list>
 </property>
</bean>

				You can then define the endpoint as:
			
from("jetty:http://0.0.0.0:9080/myservice?handlers=securityHandler")

				If you need more handlers, set the handlers option equal to a comma-separated list of bean IDs.
			

How to return a custom HTTP 500 reply message

				You may want to return a custom reply message when something goes wrong, instead of the default reply message Camel Jetty replies with.
 You could use a custom HttpBinding to be in control of the message mapping, but often it may be easier to use Camel’s Exception Clause to construct the custom reply message. For example as show here, where we return Dude something went wrong with HTTP error code 500:
			

Multi-part Form support

				From Camel 2.3.0, camel-jetty support to multipart form post out of box. The submitted form-data are mapped into the message header. Camel-jetty creates an attachment for each uploaded file. The file name is mapped to the name of the attachment. The content type is set as the content type of the attachment file name. You can find the example here.
			

				Note: getName() functions as shown below in versions 2.5 and higher. In earlier versions you receive the temporary file name for the attachment instead
			

Jetty JMX support

				From Camel 2.3.0, camel-jetty supports the enabling of Jetty’s JMX capabilities at the component and endpoint level with the endpoint configuration taking priority. Note that JMX must be enabled within the Camel context in order to enable JMX support in this component as the component provides Jetty with a reference to the MBeanServer registered with the Camel context. Because the camel-jetty component caches and reuses Jetty resources for a given protocol/host/port pairing, this configuration option will only be evaluated during the creation of the first endpoint to use a protocol/host/port pairing. For example, given two routes created from the following XML fragments, JMX support would remain enabled for all endpoints listening on "https://0.0.0.0".
			
<from uri="jetty:https://0.0.0.0/myapp/myservice1/?enableJmx=true"/>
<from uri="jetty:https://0.0.0.0/myapp/myservice2/?enableJmx=false"/>

				The camel-jetty component also provides for direct configuration of the Jetty MBeanContainer. Jetty creates MBean names dynamically. If you are running another instance of Jetty outside of the Camel context and sharing the same MBeanServer between the instances, you can provide both instances with a reference to the same MBeanContainer in order to avoid name collisions when registering Jetty MBeans.
			

See Also

	
						Configuring Camel
					
	
						Component
					
	
						Endpoint
					
	
						Getting Started
					
	
						HTTP
					

Chapter 173. JGroups Component

			Available as of Camel version 2.13
		

			JGroups is a toolkit for reliable multicast communication. The jgroups: component provides exchange of messages between Camel infrastructure and JGroups clusters.
		

			Maven users will need to add the following dependency to their pom.xml for this component.
		
<dependency>
 <groupId>org.apache-extras.camel-extra</groupId>
 <artifactId>camel-jgroups</artifactId>
 <!-- use the same version as your Camel core version -->
 <version>x.y.z</version>
</dependency>

			Starting from the Camel 2.13.0, JGroups component has been moved from Camel Extra under the umbrella of the Apache Camel. If you are using Camel 2.13.0 or higher, please use the following POM entry instead.
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-jgroups</artifactId>
 <!-- use the same version as your Camel core version -->
 <version>x.y.z</version>
</dependency>
URI format

jgroups:clusterName[?options]

				Where clusterName represents the name of the JGroups cluster the component should connect to.
			

Options

				The JGroups component supports 4 options which are listed below.
			
	Name	Description	Default	Type
	
								channel (common)
							

							 	
								Channel to use
							

							 	 	
								JChannel
							

							
	
								channelProperties (common)
							

							 	
								Specifies configuration properties of the JChannel used by the endpoint.
							

							 	 	
								String
							

							
	
								enableViewMessages (consumer)
							

							 	
								If set to true, the consumer endpoint will receive org.jgroups.View messages as well (not only org.jgroups.Message instances). By default only regular messages are consumed by the endpoint.
							

							 	
								false
							

							 	
								boolean
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The JGroups endpoint is configured using URI syntax:
			
jgroups:clusterName

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									clusterName
								

								 	
									Required The name of the JGroups cluster the component should connect to.
								

								 	 	
									String
								

								

Query Parameters (6 parameters):

	Name	Description	Default	Type
	
									channelProperties (common)
								

								 	
									Specifies configuration properties of the JChannel used by the endpoint.
								

								 	 	
									String
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									enableViewMessages (consumer)
								

								 	
									If set to true, the consumer endpoint will receive org.jgroups.View messages as well (not only org.jgroups.Message instances). By default only regular messages are consumed by the endpoint.
								

								 	
									false
								

								 	
									boolean
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

Headers

	Header	Constant	Since version	Description
	
								JGROUPS_ORIGINAL_MESSAGE
							

							 	
								JGroupsEndpoint.HEADER_JGROUPS_ORIGINAL_MESSAGE
							

							 	
								2.13.0
							

							 	
								The original org.jgroups.Message instance from which the body of the consumed message has been extracted.
							

							
	
								JGROUPS_SRC
							

							 	
								`JGroupsEndpoint.`HEADER_JGROUPS_SRC
							

							 	
								2.10.0
							

							 	
								Consumer : The org.jgroups.Address instance extracted by org.jgroups.Message.getSrc() method of the consumed message. Producer: The custom source org.jgroups.Address of the message to be sent.
							

							
	
								JGROUPS_DEST
							

							 	
								`JGroupsEndpoint.`HEADER_JGROUPS_DEST
							

							 	
								2.10.0
							

							 	
								Consumer: The org.jgroups.Address instance extracted by org.jgroups.Message.getDest() method of the consumed message. Producer: The custom destination org.jgroups.Address of the message to be sent.
							

							
	
								JGROUPS_CHANNEL_ADDRESS
							

							 	
								`JGroupsEndpoint.`HEADER_JGROUPS_CHANNEL_ADDRESS
							

							 	
								2.13.0
							

							 	
								Address (org.jgroups.Address) of the channel associated with the endpoint.
							

							

				 # Usage
			

				Using jgroups component on the consumer side of the route will capture messages received by the JChannel associated with the endpoint and forward them to the Camel route. JGroups consumer processes incoming messages asynchronously.
			
// Capture messages from cluster named
// 'clusterName' and send them to Camel route.
from("jgroups:clusterName").to("seda:queue");

				Using jgroups component on the producer side of the route will forward body of the Camel exchanges to the JChannel instance managed by the endpoint.
			
// Send message to the cluster named 'clusterName'
from("direct:start").to("jgroups:clusterName");

Predefined filters

				Starting from version 2.13.0 of Camel, JGroups component comes with predefined filters factory class named JGroupsFilters.
			

				If you would like to consume only view changes notifications sent to coordinator of the cluster (and ignore these sent to the "slave" nodes), use the JGroupsFilters.dropNonCoordinatorViews() filter. This filter is particularly useful when you want a single Camel node to become the master in the cluster, because messages passing this filter notifies you when given node has become a coordinator of the cluster. The snippet below demonstrates how to collect only messages received by the master node.
			
import static org.apache.camel.component.jgroups.JGroupsFilters.dropNonCoordinatorViews;
...
from("jgroups:clusterName?enableViewMessages=true").
 filter(dropNonCoordinatorViews()).
 to("seda:masterNodeEventsQueue");

Predefined expressions

				Starting from version 2.13.0 of Camel, JGroups component comes with predefined expressions factory class named JGroupsExpressions.
			

				If you would like to create delayer that would affect the route only if the Camel context has not been started yet, use the JGroupsExpressions.delayIfContextNotStarted(long delay) factory method. The expression created by this factory method will return given delay value only if the Camel context is in the state different than started. This expression is particularly useful if you would like to use JGroups component for keeping singleton (master) route within the cluster. Control Bus start command won’t initialize the singleton route if the Camel Context hasn’t been yet started. So you need to delay a startup of the master route, to be sure that it has been initialized after the Camel Context startup. Because such scenario can happen only during the initialization of the cluster, we don’t want to delay startup of the slave node becoming the new master - that’s why we need a conditional delay expression.
			

				The snippet below demonstrates how to use conditional delaying with the JGroups component to delay the initial startup of master node in the cluster.
			
import static java.util.concurrent.TimeUnit.SECONDS;
import static org.apache.camel.component.jgroups.JGroupsExpressions.delayIfContextNotStarted;
import static org.apache.camel.component.jgroups.JGroupsFilters.dropNonCoordinatorViews;
...
from("jgroups:clusterName?enableViewMessages=true").
 filter(dropNonCoordinatorViews()).
 threads().delay(delayIfContextNotStarted(SECONDS.toMillis(5))). // run in separated and delayed thread. Delay only if the context hasn't been started already.
 to("controlbus:route?routeId=masterRoute&action=start&async=true");

from("timer://master?repeatCount=1").routeId("masterRoute").autoStartup(false).to(masterMockUri);

Examples

Sending (receiving) messages to (from) the JGroups cluster

					In order to send message to the JGroups cluster use producer endpoint, just as demonstrated on the snippet below.
				
from("direct:start").to("jgroups:myCluster");
...
producerTemplate.sendBody("direct:start", "msg")

					To receive the message from the snippet above (on the same or the other physical machine) listen on the messages coming from the given cluster, just as demonstrated on the code fragment below.
				
mockEndpoint.setExpectedMessageCount(1);
mockEndpoint.message(0).body().isEqualTo("msg");
...
from("jgroups:myCluster").to("mock:messagesFromTheCluster");
...
mockEndpoint.assertIsSatisfied();

Receive cluster view change notifications

					The snippet below demonstrates how to create the consumer endpoint listening to the notifications regarding cluster membership changes. By default only regular messages are consumed by the endpoint.
				
mockEndpoint.setExpectedMessageCount(1);
mockEndpoint.message(0).body().isInstanceOf(org.jgroups.View.class);
...
from("jgroups:clusterName?enableViewMessages=true").to(mockEndpoint);
...
mockEndpoint.assertIsSatisfied();

Keeping singleton route within the cluster

					The snippet below demonstrates how to keep the singleton consumer route in the cluster of Camel Contexts. As soon as the master node dies, one of the slaves will be elected as a new master and started. In this particular example we want to keep singleton jetty instance listening for the requests on address` http://localhost:8080/orders`.
				
import static java.util.concurrent.TimeUnit.SECONDS;
import static org.apache.camel.component.jgroups.JGroupsExpressions.delayIfContextNotStarted;
import static org.apache.camel.component.jgroups.JGroupsFilters.dropNonCoordinatorViews;
...
from("jgroups:clusterName?enableViewMessages=true").
 filter(dropNonCoordinatorViews()).
 threads().delay(delayIfContextNotStarted(SECONDS.toMillis(5))). // run in separated and delayed thread. Delay only if the context hasn't been started already.
 to("controlbus:route?routeId=masterRoute&action=start&async=true");

from("jetty:http://localhost:8080/orders").routeId("masterRoute").autoStartup(false).to("jms:orders");

Chapter 174. JiBX DataFormat

			Available as of Camel version 2.6
		

			JiBX is a Data Format which uses the JiBX library to marshal and unmarshal Java objects to and from XML.
		
// lets turn Object messages into XML then send to MQSeries
from("activemq:My.Queue").
 marshal().jibx().
 to("mqseries:Another.Queue");

			Please note that marshaling process can recognize the message type at the runtime. However while unmarshaling message from XML we need to specify target class explicitly.
		
// lets turn XML into PurchaseOrder message
from("mqseries:Another.Queue").
 unmarshal().jibx(PurchaseOrder.class).
 to("activemq:My.Queue");
Options

				The JiBX dataformat supports 3 options which are listed below.
			
	Name	Default	Java Type	Description
	
								unmarshallClass
							

							 	 	
								String
							

							 	
								Class name to use when unmarshalling from XML to Java.
							

							
	
								bindingName
							

							 	 	
								String
							

							 	
								To use a custom binding factory
							

							
	
								contentTypeHeader
							

							 	
								false
							

							 	
								Boolean
							

							 	
								Whether the data format should set the Content-Type header with the type from the data format if the data format is capable of doing so. For example application/xml for data formats marshalling to XML, or application/json for data formats marshalling to JSon etc.
							

							

JiBX Spring DSL

				JiBX data format is also supported by Camel Spring DSL.
			
<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">

 <!-- Define data formats -->
 <dataFormats>
 <jibx id="jibx" unmarshallClass="org.apache.camel.dataformat.jibx.PurchaseOrder"/>
 </dataFormats>

 <!-- Marshal message to XML -->
 <route>
 <from uri="direct:marshal"/>
 <marshal ref="jibx"/>
 <to uri="mock:result"/>
 </route>

 <!-- Unmarshal message from XML -->
 <route>
 <from uri="direct:unmarshal"/>
 <unmarshal ref="jibx"/>
 <to uri="mock:result"/>
 </route>

</camelContext>

Dependencies

				To use JiBX in your camel routes you need to add the a dependency on camel-jibx which implements this data format.
			

				If you use maven you could just add the following to your pom.xml, substituting the version number for the latest & greatest release (see the download page for the latest versions).
			
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-jibx</artifactId>
 <version>2.6.0</version>
</dependency>

Chapter 175. Jing Component

			Available as of Camel version 1.1
		

			The Jing component uses the Jing Library to perform XML validation of the message body using either
		
	
					RelaxNG XML Syntax
				
	
					RelaxNG Compact Syntax
				

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-jing</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>

			Note that the MSV component can also support RelaxNG XML syntax.
		
URI format Camel 2.16

jing:someLocalOrRemoteResource

				From Camel 2.16 the component use jing as name, and you can use the option compactSyntax to turn on either RNG or RNC mode.
			

Options

				The Jing component has no options.
			

				The Jing endpoint is configured using URI syntax:
			
jing:resourceUri

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									resourceUri
								

								 	
									Required URL to a local resource on the classpath or a full URL to a remote resource or resource on the file system which contains the schema to validate against.
								

								 	 	
									String
								

								

Query Parameters (2 parameters):

	Name	Description	Default	Type
	
									compactSyntax (producer)
								

								 	
									Whether to validate using RelaxNG compact syntax or not. By default this is false for using RelaxNG XML Syntax (rng) And true is for using RelaxNG Compact Syntax (rnc)
								

								 	
									false
								

								 	
									boolean
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

Example

				The following example shows how to configure a route from the endpoint direct:start which then goes to one of two endpoints, either mock:valid or mock:invalid based on whether or not the XML matches the given RelaxNG Compact Syntax schema (which is supplied on the classpath).
			

See Also

	
						Configuring Camel
					
	
						Component
					
	
						Endpoint
					
	
						Getting Started
					

Chapter 176. JIRA Component

			Available as of Camel version 2.15
		

			The JIRA component interacts with the JIRA API by encapsulating Atlassian’s REST Java Client for JIRA. It currently provides polling for new issues and new comments. It is also able to create new issues.
		

			Rather than webhooks, this endpoint relies on simple polling. Reasons include:
		
	
					Concern for reliability/stability
				
	
					The types of payloads we’re polling aren’t typically large (plus, paging is available in the API)
				
	
					The need to support apps running somewhere not publicly accessible where a webhook would fail
				

			Note that the JIRA API is fairly expansive. Therefore, this component could be easily expanded to provide additional interactions.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-jira</artifactId>
 <version>${camel-version}</version>
</dependency>
URI format

jira://endpoint[?options]

JIRA Options

				The JIRA component has no options.
			

				The JIRA endpoint is configured using URI syntax:
			
jira:type

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									type
								

								 	
									Required Operation to perform such as create a new issue or a new comment
								

								 	 	
									JIRAType
								

								

Query Parameters (9 parameters):

	Name	Description	Default	Type
	
									password (common)
								

								 	
									Password for login
								

								 	 	
									String
								

								
	
									serverUrl (common)
								

								 	
									Required URL to the JIRA server
								

								 	 	
									String
								

								
	
									username (common)
								

								 	
									Username for login
								

								 	 	
									String
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									delay (consumer)
								

								 	
									Delay in seconds when querying JIRA using the consumer.
								

								 	
									6000
								

								 	
									int
								

								
	
									jql (consumer)
								

								 	
									JQL is the query language from JIRA which allows you to retrieve the data you want. For example jql=project=MyProject Where MyProject is the product key in Jira.
								

								 	 	
									String
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

JQL:

				The JQL URI option is used by both consumer endpoints. Theoretically, items like "project key", etc. could be URI options themselves. However, by requiring the use of JQL, the consumers become much more flexible and powerful.
			

				At the bare minimum, the consumers will require the following:
			
jira://[endpoint]?[required options]&jql=project=[project key]

				One important thing to note is that the newIssue consumer will automatically append "ORDER BY key desc" to your JQL. This is in order to optimize startup processing, rather than having to index every single issue in the project.
			

				Another note is that, similarly, the newComment consumer will have to index every single issue and comment in the project. Therefore, for large projects, it’s vital to optimize the JQL expression as much as possible. For example, the JIRA Toolkit Plugin includes a "Number of comments" custom field — use '"Number of comments" > 0' in your query. Also try to minimize based on state (status=Open), increase the polling delay, etc. Example:
			
jira://[endpoint]?[required options]&jql=RAW(project=[project key] AND status in (Open, \"Coding In Progress\") AND \"Number of comments\">0)"

Chapter 177. JMS Component

JMS Component

Tip

				Using ActiveMQ
			

				If you are using Apache ActiveMQ, you should prefer the ActiveMQ component as it has been optimized for ActiveMQ. All of the options and samples on this page are also valid for the ActiveMQ component.
			

Note

					Transacted and caching
				

					See section Transactions and Cache Levels below if you are using transactions with JMS as it can impact performance.
				

Note

					Request/Reply over JMS
				

					Make sure to read the section Request-reply over JMS further below on this page for important notes about request/reply, as Camel offers a number of options to configure for performance, and clustered environments.
				

				This component allows messages to be sent to (or consumed from) a JMS Queue or Topic. It uses Spring’s JMS support for declarative transactions, including Spring’s JmsTemplate for sending and a MessageListenerContainer for consuming.
			

				Maven users will need to add the following dependency to their pom.xml for this component:
			
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-jms</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>

URI format

jms:[queue:|topic:]destinationName[?options]

				Where destinationName is a JMS queue or topic name. By default, the destinationName is interpreted as a queue name. For example, to connect to the queue, FOO.BAR use:
			
jms:FOO.BAR

				You can include the optional queue: prefix, if you prefer:
			
jms:queue:FOO.BAR

				To connect to a topic, you must include the topic: prefix. For example, to
 connect to the topic, Stocks.Prices, use:
			
jms:topic:Stocks.Prices

				You append query options to the URI using the following format, ?option=value&option=value&…​
			

Notes

Using ActiveMQ

					The JMS component reuses Spring 2’s JmsTemplate for sending messages. This is not ideal for use in a non-J2EE container and typically requires some caching in the JMS provider to avoid poor performance.
				

					If you intend to use Apache ActiveMQ as your Message Broker - which is a good choice as ActiveMQ rocks, then we recommend that you either:
				
	
							Use the ActiveMQ component, which is already optimized to use ActiveMQ efficiently
						
	
							Use the PoolingConnectionFactory in ActiveMQ.
						

Transactions and Cache Levels

					If you are consuming messages and using transactions (transacted=true) then the default settings for cache level can impact performance.
				

					If you are using XA transactions then you cannot cache as it can cause the XA transaction to not work properly.
				

					If you are not using XA, then you should consider caching as it speeds up performance, such as setting cacheLevelName=CACHE_CONSUMER.
				

					Through Camel 2.7.x, the default setting for cacheLevelName is CACHE_CONSUMER. You will need to explicitly set cacheLevelName=CACHE_NONE.
				

					In Camel 2.8 onwards, the default setting for cacheLevelName is CACHE_AUTO. This default auto detects the mode and sets the cache level accordingly to:
				
	
							CACHE_CONSUMER if transacted=false
						
	
							CACHE_NONE if transacted=true
						

					So you can say the default setting is conservative. Consider using cacheLevelName=CACHE_CONSUMER if you are using non-XA transactions.
				

Durable Subscriptions

					If you wish to use durable topic subscriptions, you need to specify both clientId and durableSubscriptionName. The value of the clientId must be unique and can only be used by a single JMS connection instance in your entire network. You may prefer to use Virtual Topics instead to avoid this limitation. More background on durable messaging here.
				

Message Header Mapping

					When using message headers, the JMS specification states that header names must be valid Java identifiers. So try to name your headers to be valid Java identifiers. One benefit of doing this is that you can then use your headers inside a JMS Selector (whose SQL92 syntax mandates Java identifier syntax for headers).
				

					A simple strategy for mapping header names is used by default. The strategy is to replace any dots and hyphens in the header name as shown below and to reverse the replacement when the header name is restored from a JMS message sent over the wire. What does this mean? No more losing method names to invoke on a bean component, no more losing the filename header for the File Component, and so on.
				

					The current header name strategy for accepting header names in Camel is as follows:
				
	
							Dots are replaced by DOT and the replacement is reversed when Camel consume the message
						
	
							Hyphen is replaced by HYPHEN and the replacement is reversed when Camel consumes the message
						

Options

				You can configure many different properties on the JMS endpoint which map to properties on the JMSConfiguration POJO.
			
Warning

					Mapping to Spring JMS
				

					Many of these properties map to properties on Spring JMS, which Camel uses for sending and receiving messages. So you can get more information about these properties by consulting the relevant Spring documentation.
				

Component options

					The JMS component supports 80 options which are listed below.
				
	Name	Description	Default	Type
	
									configuration (advanced)
								

								 	
									To use a shared JMS configuration
								

								 	 	
									JmsConfiguration
								

								
	
									acceptMessagesWhile Stopping (consumer)
								

								 	
									Specifies whether the consumer accept messages while it is stopping. You may consider enabling this option, if you start and stop JMS routes at runtime, while there are still messages enqueued on the queue. If this option is false, and you stop the JMS route, then messages may be rejected, and the JMS broker would have to attempt redeliveries, which yet again may be rejected, and eventually the message may be moved at a dead letter queue on the JMS broker. To avoid this its recommended to enable this option.
								

								 	
									false
								

								 	
									boolean
								

								
	
									allowReplyManagerQuick Stop (consumer)
								

								 	
									Whether the DefaultMessageListenerContainer used in the reply managers for request-reply messaging allow the DefaultMessageListenerContainer.runningAllowed flag to quick stop in case JmsConfigurationisAcceptMessagesWhileStopping is enabled, and org.apache.camel.CamelContext is currently being stopped. This quick stop ability is enabled by default in the regular JMS consumers but to enable for reply managers you must enable this flag.
								

								 	
									false
								

								 	
									boolean
								

								
	
									acknowledgementMode (consumer)
								

								 	
									The JMS acknowledgement mode defined as an Integer. Allows you to set vendor-specific extensions to the acknowledgment mode. For the regular modes, it is preferable to use the acknowledgementModeName instead.
								

								 	 	
									int
								

								
	
									eagerLoadingOf Properties (consumer)
								

								 	
									Enables eager loading of JMS properties as soon as a message is loaded which generally is inefficient as the JMS properties may not be required but sometimes can catch early any issues with the underlying JMS provider and the use of JMS properties
								

								 	
									false
								

								 	
									boolean
								

								
	
									acknowledgementModeName (consumer)
								

								 	
									The JMS acknowledgement name, which is one of: SESSION_TRANSACTED, CLIENT_ACKNOWLEDGE, AUTO_ACKNOWLEDGE, DUPS_OK_ACKNOWLEDGE
								

								 	
									AUTO_ ACKNOWLEDGE
								

								 	
									String
								

								
	
									autoStartup (consumer)
								

								 	
									Specifies whether the consumer container should auto-startup.
								

								 	
									true
								

								 	
									boolean
								

								
	
									cacheLevel (consumer)
								

								 	
									Sets the cache level by ID for the underlying JMS resources. See cacheLevelName option for more details.
								

								 	 	
									int
								

								
	
									cacheLevelName (consumer)
								

								 	
									Sets the cache level by name for the underlying JMS resources. Possible values are: CACHE_AUTO, CACHE_CONNECTION, CACHE_CONSUMER, CACHE_NONE, and CACHE_SESSION. The default setting is CACHE_AUTO. See the Spring documentation and Transactions Cache Levels for more information.
								

								 	
									CACHE_AUTO
								

								 	
									String
								

								
	
									replyToCacheLevelName (producer)
								

								 	
									Sets the cache level by name for the reply consumer when doing request/reply over JMS. This option only applies when using fixed reply queues (not temporary). Camel will by default use: CACHE_CONSUMER for exclusive or shared w/ replyToSelectorName. And CACHE_SESSION for shared without replyToSelectorName. Some JMS brokers such as IBM WebSphere may require to set the replyToCacheLevelName=CACHE_NONE to work. Note: If using temporary queues then CACHE_NONE is not allowed, and you must use a higher value such as CACHE_CONSUMER or CACHE_SESSION.
								

								 	 	
									String
								

								
	
									clientId (common)
								

								 	
									Sets the JMS client ID to use. Note that this value, if specified, must be unique and can only be used by a single JMS connection instance. It is typically only required for durable topic subscriptions. If using Apache ActiveMQ you may prefer to use Virtual Topics instead.
								

								 	 	
									String
								

								
	
									concurrentConsumers (consumer)
								

								 	
									Specifies the default number of concurrent consumers when consuming from JMS (not for request/reply over JMS). See also the maxMessagesPerTask option to control dynamic scaling up/down of threads. When doing request/reply over JMS then the option replyToConcurrentConsumers is used to control number of concurrent consumers on the reply message listener.
								

								 	
									1
								

								 	
									int
								

								
	
									replyToConcurrent Consumers (producer)
								

								 	
									Specifies the default number of concurrent consumers when doing request/reply over JMS. See also the maxMessagesPerTask option to control dynamic scaling up/down of threads.
								

								 	
									1
								

								 	
									int
								

								
	
									connectionFactory (common)
								

								 	
									The connection factory to be use. A connection factory must be configured either on the component or endpoint.
								

								 	 	
									ConnectionFactory
								

								
	
									username (security)
								

								 	
									Username to use with the ConnectionFactory. You can also configure username/password directly on the ConnectionFactory.
								

								 	 	
									String
								

								
	
									password (security)
								

								 	
									Password to use with the ConnectionFactory. You can also configure username/password directly on the ConnectionFactory.
								

								 	 	
									String
								

								
	
									deliveryPersistent (producer)
								

								 	
									Specifies whether persistent delivery is used by default.
								

								 	
									true
								

								 	
									boolean
								

								
	
									deliveryMode (producer)
								

								 	
									Specifies the delivery mode to be used. Possible values are Possibles values are those defined by javax.jms.DeliveryMode. NON_PERSISTENT = 1 and PERSISTENT = 2.
								

								 	 	
									Integer
								

								
	
									durableSubscriptionName (common)
								

								 	
									The durable subscriber name for specifying durable topic subscriptions. The clientId option must be configured as well.
								

								 	 	
									String
								

								
	
									exceptionListener (advanced)
								

								 	
									Specifies the JMS Exception Listener that is to be notified of any underlying JMS exceptions.
								

								 	 	
									ExceptionListener
								

								
	
									errorHandler (advanced)
								

								 	
									Specifies a org.springframework.util.ErrorHandler to be invoked in case of any uncaught exceptions thrown while processing a Message. By default these exceptions will be logged at the WARN level, if no errorHandler has been configured. You can configure logging level and whether stack traces should be logged using errorHandlerLoggingLevel and errorHandlerLogStackTrace options. This makes it much easier to configure, than having to code a custom errorHandler.
								

								 	 	
									ErrorHandler
								

								
	
									errorHandlerLogging Level (logging)
								

								 	
									Allows to configure the default errorHandler logging level for logging uncaught exceptions.
								

								 	
									WARN
								

								 	
									LoggingLevel
								

								
	
									errorHandlerLogStack Trace (logging)
								

								 	
									Allows to control whether stacktraces should be logged or not, by the default errorHandler.
								

								 	
									true
								

								 	
									boolean
								

								
	
									explicitQosEnabled (producer)
								

								 	
									Set if the deliveryMode, priority or timeToLive qualities of service should be used when sending messages. This option is based on Spring’s JmsTemplate. The deliveryMode, priority and timeToLive options are applied to the current endpoint. This contrasts with the preserveMessageQos option, which operates at message granularity, reading QoS properties exclusively from the Camel In message headers.
								

								 	
									false
								

								 	
									boolean
								

								
	
									exposeListenerSession (consumer)
								

								 	
									Specifies whether the listener session should be exposed when consuming messages.
								

								 	
									false
								

								 	
									boolean
								

								
	
									idleTaskExecutionLimit (advanced)
								

								 	
									Specifies the limit for idle executions of a receive task, not having received any message within its execution. If this limit is reached, the task will shut down and leave receiving to other executing tasks (in the case of dynamic scheduling; see the maxConcurrentConsumers setting). There is additional doc available from Spring.
								

								 	
									1
								

								 	
									int
								

								
	
									idleConsumerLimit (advanced)
								

								 	
									Specify the limit for the number of consumers that are allowed to be idle at any given time.
								

								 	
									1
								

								 	
									int
								

								
	
									maxConcurrentConsumers (consumer)
								

								 	
									Specifies the maximum number of concurrent consumers when consuming from JMS (not for request/reply over JMS). See also the maxMessagesPerTask option to control dynamic scaling up/down of threads. When doing request/reply over JMS then the option replyToMaxConcurrentConsumers is used to control number of concurrent consumers on the reply message listener.
								

								 	 	
									int
								

								
	
									replyToMaxConcurrent Consumers (producer)
								

								 	
									Specifies the maximum number of concurrent consumers when using request/reply over JMS. See also the maxMessagesPerTask option to control dynamic scaling up/down of threads.
								

								 	 	
									int
								

								
	
									replyOnTimeoutToMax ConcurrentConsumers (producer)
								

								 	
									Specifies the maximum number of concurrent consumers for continue routing when timeout occurred when using request/reply over JMS.
								

								 	
									1
								

								 	
									int
								

								
	
									maxMessagesPerTask (advanced)
								

								 	
									The number of messages per task. -1 is unlimited. If you use a range for concurrent consumers (eg min max), then this option can be used to set a value to eg 100 to control how fast the consumers will shrink when less work is required.
								

								 	
									-1
								

								 	
									int
								

								
	
									messageConverter (advanced)
								

								 	
									To use a custom Spring org.springframework.jms.support.converter.MessageConverter so you can be in control how to map to/from a javax.jms.Message.
								

								 	 	
									MessageConverter
								

								
	
									mapJmsMessage (advanced)
								

								 	
									Specifies whether Camel should auto map the received JMS message to a suited payload type, such as javax.jms.TextMessage to a String etc. See section about how mapping works below for more details.
								

								 	
									true
								

								 	
									boolean
								

								
	
									messageIdEnabled (advanced)
								

								 	
									When sending, specifies whether message IDs should be added. This is just an hint to the JMS Broker. If the JMS provider accepts this hint, these messages must have the message ID set to null; if the provider ignores the hint, the message ID must be set to its normal unique value
								

								 	
									true
								

								 	
									boolean
								

								
	
									messageTimestampEnabled (advanced)
								

								 	
									Specifies whether timestamps should be enabled by default on sending messages.
								

								 	
									true
								

								 	
									boolean
								

								
	
									alwaysCopyMessage (producer)
								

								 	
									If true, Camel will always make a JMS message copy of the message when it is passed to the producer for sending. Copying the message is needed in some situations, such as when a replyToDestinationSelectorName is set (incidentally, Camel will set the alwaysCopyMessage option to true, if a replyToDestinationSelectorName is set)
								

								 	
									false
								

								 	
									boolean
								

								
	
									useMessageIDAs CorrelationID (advanced)
								

								 	
									Specifies whether JMSMessageID should always be used as JMSCorrelationID for InOut messages.
								

								 	
									false
								

								 	
									boolean
								

								
	
									priority (producer)
								

								 	
									Values greater than 1 specify the message priority when sending (where 0 is the lowest priority and 9 is the highest). The explicitQosEnabled option must also be enabled in order for this option to have any effect.
								

								 	
									4
								

								 	
									int
								

								
	
									pubSubNoLocal (advanced)
								

								 	
									Specifies whether to inhibit the delivery of messages published by its own connection.
								

								 	
									false
								

								 	
									boolean
								

								
	
									receiveTimeout (advanced)
								

								 	
									The timeout for receiving messages (in milliseconds).
								

								 	
									1000
								

								 	
									long
								

								
	
									recoveryInterval (advanced)
								

								 	
									Specifies the interval between recovery attempts, i.e. when a connection is being refreshed, in milliseconds. The default is 5000 ms, that is, 5 seconds.
								

								 	
									5000
								

								 	
									long
								

								
	
									taskExecutor (consumer)
								

								 	
									Allows you to specify a custom task executor for consuming messages.
								

								 	 	
									TaskExecutor
								

								
	
									timeToLive (producer)
								

								 	
									When sending messages, specifies the time-to-live of the message (in milliseconds).
								

								 	
									-1
								

								 	
									long
								

								
	
									transacted (transaction)
								

								 	
									Specifies whether to use transacted mode
								

								 	
									false
								

								 	
									boolean
								

								
	
									lazyCreateTransaction Manager (transaction)
								

								 	
									If true, Camel will create a JmsTransactionManager, if there is no transactionManager injected when option transacted=true.
								

								 	
									true
								

								 	
									boolean
								

								
	
									transactionManager (transaction)
								

								 	
									The Spring transaction manager to use.
								

								 	 	
									PlatformTransaction Manager
								

								
	
									transactionName (transaction)
								

								 	
									The name of the transaction to use.
								

								 	 	
									String
								

								
	
									transactionTimeout (transaction)
								

								 	
									The timeout value of the transaction (in seconds), if using transacted mode.
								

								 	
									-1
								

								 	
									int
								

								
	
									testConnectionOn Startup (common)
								

								 	
									Specifies whether to test the connection on startup. This ensures that when Camel starts that all the JMS consumers have a valid connection to the JMS broker. If a connection cannot be granted then Camel throws an exception on startup. This ensures that Camel is not started with failed connections. The JMS producers is tested as well.
								

								 	
									false
								

								 	
									boolean
								

								
	
									asyncStartListener (advanced)
								

								 	
									Whether to startup the JmsConsumer message listener asynchronously, when starting a route. For example if a JmsConsumer cannot get a connection to a remote JMS broker, then it may block while retrying and/or failover. This will cause Camel to block while starting routes. By setting this option to true, you will let routes startup, while the JmsConsumer connects to the JMS broker using a dedicated thread in asynchronous mode. If this option is used, then beware that if the connection could not be established, then an exception is logged at WARN level, and the consumer will not be able to receive messages; You can then restart the route to retry.
								

								 	
									false
								

								 	
									boolean
								

								
	
									asyncStopListener (advanced)
								

								 	
									Whether to stop the JmsConsumer message listener asynchronously, when stopping a route.
								

								 	
									false
								

								 	
									boolean
								

								
	
									forceSendOriginal Message (producer)
								

								 	
									When using mapJmsMessage=false Camel will create a new JMS message to send to a new JMS destination if you touch the headers (get or set) during the route. Set this option to true to force Camel to send the original JMS message that was received.
								

								 	
									false
								

								 	
									boolean
								

								
	
									requestTimeout (producer)
								

								 	
									The timeout for waiting for a reply when using the InOut Exchange Pattern (in milliseconds). The default is 20 seconds. You can include the header CamelJmsRequestTimeout to override this endpoint configured timeout value, and thus have per message individual timeout values. See also the requestTimeoutCheckerInterval option.
								

								 	
									20000
								

								 	
									long
								

								
	
									requestTimeoutChecker Interval (advanced)
								

								 	
									Configures how often Camel should check for timed out Exchanges when doing request/reply over JMS. By default Camel checks once per second. But if you must react faster when a timeout occurs, then you can lower this interval, to check more frequently. The timeout is determined by the option requestTimeout.
								

								 	
									1000
								

								 	
									long
								

								
	
									transferExchange (advanced)
								

								 	
									You can transfer the exchange over the wire instead of just the body and headers. The following fields are transferred: In body, Out body, Fault body, In headers, Out headers, Fault headers, exchange properties, exchange exception. This requires that the objects are serializable. Camel will exclude any non-serializable objects and log it at WARN level. You must enable this option on both the producer and consumer side, so Camel knows the payloads is an Exchange and not a regular payload.
								

								 	
									false
								

								 	
									boolean
								

								
	
									transferException (advanced)
								

								 	
									If enabled and you are using Request Reply messaging (InOut) and an Exchange failed on the consumer side, then the caused Exception will be send back in response as a javax.jms.ObjectMessage. If the client is Camel, the returned Exception is rethrown. This allows you to use Camel JMS as a bridge in your routing - for example, using persistent queues to enable robust routing. Notice that if you also have transferExchange enabled, this option takes precedence. The caught exception is required to be serializable. The original Exception on the consumer side can be wrapped in an outer exception such as org.apache.camel.RuntimeCamelException when returned to the producer.
								

								 	
									false
								

								 	
									boolean
								

								
	
									transferFault (advanced)
								

								 	
									If enabled and you are using Request Reply messaging (InOut) and an Exchange failed with a SOAP fault (not exception) on the consumer side, then the fault flag on link org.apache.camel.MessageisFault() will be send back in the response as a JMS header with the key link JmsConstantsJMS_TRANSFER_FAULT. If the client is Camel, the returned fault flag will be set on the link org.apache.camel.MessagesetFault(boolean). You may want to enable this when using Camel components that support faults such as SOAP based such as cxf or spring-ws.
								

								 	
									false
								

								 	
									boolean
								

								
	
									jmsOperations (advanced)
								

								 	
									Allows you to use your own implementation of the org.springframework.jms.core.JmsOperations interface. Camel uses JmsTemplate as default. Can be used for testing purpose, but not used much as stated in the spring API docs.
								

								 	 	
									JmsOperations
								

								
	
									destinationResolver (advanced)
								

								 	
									A pluggable org.springframework.jms.support.destination.DestinationResolver that allows you to use your own resolver (for example, to lookup the real destination in a JNDI registry).
								

								 	 	
									DestinationResolver
								

								
	
									replyToType (producer)
								

								 	
									Allows for explicitly specifying which kind of strategy to use for replyTo queues when doing request/reply over JMS. Possible values are: Temporary, Shared, or Exclusive. By default Camel will use temporary queues. However if replyTo has been configured, then Shared is used by default. This option allows you to use exclusive queues instead of shared ones. See Camel JMS documentation for more details, and especially the notes about the implications if running in a clustered environment, and the fact that Shared reply queues has lower performance than its alternatives Temporary and Exclusive.
								

								 	 	
									ReplyToType
								

								
	
									preserveMessageQos (producer)
								

								 	
									Set to true, if you want to send message using the QoS settings specified on the message, instead of the QoS settings on the JMS endpoint. The following three headers are considered JMSPriority, JMSDeliveryMode, and JMSExpiration. You can provide all or only some of them. If not provided, Camel will fall back to use the values from the endpoint instead. So, when using this option, the headers override the values from the endpoint. The explicitQosEnabled option, by contrast, will only use options set on the endpoint, and not values from the message header.
								

								 	
									false
								

								 	
									boolean
								

								
	
									asyncConsumer (consumer)
								

								 	
									Whether the JmsConsumer processes the Exchange asynchronously. If enabled then the JmsConsumer may pickup the next message from the JMS queue, while the previous message is being processed asynchronously (by the Asynchronous Routing Engine). This means that messages may be processed not 100% strictly in order. If disabled (as default) then the Exchange is fully processed before the JmsConsumer will pickup the next message from the JMS queue. Note if transacted has been enabled, then asyncConsumer=true does not run asynchronously, as transaction must be executed synchronously (Camel 3.0 may support async transactions).
								

								 	
									false
								

								 	
									boolean
								

								
	
									allowNullBody (producer)
								

								 	
									Whether to allow sending messages with no body. If this option is false and the message body is null, then an JMSException is thrown.
								

								 	
									true
								

								 	
									boolean
								

								
	
									includeSentJMS MessageID (producer)
								

								 	
									Only applicable when sending to JMS destination using InOnly (eg fire and forget). Enabling this option will enrich the Camel Exchange with the actual JMSMessageID that was used by the JMS client when the message was sent to the JMS destination.
								

								 	
									false
								

								 	
									boolean
								

								
	
									includeAllJMSX Properties (advanced)
								

								 	
									Whether to include all JMSXxxx properties when mapping from JMS to Camel Message. Setting this to true will include properties such as JMSXAppID, and JMSXUserID etc. Note: If you are using a custom headerFilterStrategy then this option does not apply.
								

								 	
									false
								

								 	
									boolean
								

								
	
									defaultTaskExecutor Type (consumer)
								

								 	
									Specifies what default TaskExecutor type to use in the DefaultMessageListenerContainer, for both consumer endpoints and the ReplyTo consumer of producer endpoints. Possible values: SimpleAsync (uses Spring’s SimpleAsyncTaskExecutor) or ThreadPool (uses Spring’s ThreadPoolTaskExecutor with optimal values - cached threadpool-like). If not set, it defaults to the previous behaviour, which uses a cached thread pool for consumer endpoints and SimpleAsync for reply consumers. The use of ThreadPool is recommended to reduce thread trash in elastic configurations with dynamically increasing and decreasing concurrent consumers.
								

								 	 	
									DefaultTaskExecutor Type
								

								
	
									jmsKeyFormatStrategy (advanced)
								

								 	
									Pluggable strategy for encoding and decoding JMS keys so they can be compliant with the JMS specification. Camel provides two implementations out of the box: default and passthrough. The default strategy will safely marshal dots and hyphens (. and -). The passthrough strategy leaves the key as is. Can be used for JMS brokers which do not care whether JMS header keys contain illegal characters. You can provide your own implementation of the org.apache.camel.component.jms.JmsKeyFormatStrategy and refer to it using the notation.
								

								 	 	
									JmsKeyFormatStrategy
								

								
	
									allowAdditionalHeaders (producer)
								

								 	
									This option is used to allow additional headers which may have values that are invalid according to JMS specification. For example some message systems such as WMQ do this with header names using prefix JMS_IBM_MQMD_ containing values with byte array or other invalid types. You can specify multiple header names separated by comma, and use as suffix for wildcard matching.
								

								 	 	
									String
								

								
	
									queueBrowseStrategy (advanced)
								

								 	
									To use a custom QueueBrowseStrategy when browsing queues
								

								 	 	
									QueueBrowseStrategy
								

								
	
									messageCreatedStrategy (advanced)
								

								 	
									To use the given MessageCreatedStrategy which are invoked when Camel creates new instances of javax.jms.Message objects when Camel is sending a JMS message.
								

								 	 	
									MessageCreatedStrategy
								

								
	
									waitForProvision CorrelationToBeUpdated Counter (advanced)
								

								 	
									Number of times to wait for provisional correlation id to be updated to the actual correlation id when doing request/reply over JMS and when the option useMessageIDAsCorrelationID is enabled.
								

								 	
									50
								

								 	
									int
								

								
	
									waitForProvision CorrelationToBeUpdated ThreadSleepingTime (advanced)
								

								 	
									Interval in millis to sleep each time while waiting for provisional correlation id to be updated.
								

								 	
									100
								

								 	
									long
								

								
	
									correlationProperty (producer)
								

								 	
									Use this JMS property to correlate messages in InOut exchange pattern (request-reply) instead of JMSCorrelationID property. This allows you to exchange messages with systems that do not correlate messages using JMSCorrelationID JMS property. If used JMSCorrelationID will not be used or set by Camel. The value of here named property will be generated if not supplied in the header of the message under the same name.
								

								 	 	
									String
								

								
	
									subscriptionDurable (consumer)
								

								 	
									Set whether to make the subscription durable. The durable subscription name to be used can be specified through the subscriptionName property. Default is false. Set this to true to register a durable subscription, typically in combination with a subscriptionName value (unless your message listener class name is good enough as subscription name). Only makes sense when listening to a topic (pub-sub domain), therefore this method switches the pubSubDomain flag as well.
								

								 	
									false
								

								 	
									boolean
								

								
	
									subscriptionShared (consumer)
								

								 	
									Set whether to make the subscription shared. The shared subscription name to be used can be specified through the subscriptionName property. Default is false. Set this to true to register a shared subscription, typically in combination with a subscriptionName value (unless your message listener class name is good enough as subscription name). Note that shared subscriptions may also be durable, so this flag can (and often will) be combined with subscriptionDurable as well. Only makes sense when listening to a topic (pub-sub domain), therefore this method switches the pubSubDomain flag as well. Requires a JMS 2.0 compatible message broker.
								

								 	
									false
								

								 	
									boolean
								

								
	
									subscriptionName (consumer)
								

								 	
									Set the name of a subscription to create. To be applied in case of a topic (pub-sub domain) with a shared or durable subscription. The subscription name needs to be unique within this client’s JMS client id. Default is the class name of the specified message listener. Note: Only 1 concurrent consumer (which is the default of this message listener container) is allowed for each subscription, except for a shared subscription (which requires JMS 2.0).
								

								 	 	
									String
								

								
	
									streamMessageType Enabled (producer)
								

								 	
									Sets whether StreamMessage type is enabled or not. Message payloads of streaming kind such as files, InputStream, etc will either by sent as BytesMessage or StreamMessage. This option controls which kind will be used. By default BytesMessage is used which enforces the entire message payload to be read into memory. By enabling this option the message payload is read into memory in chunks and each chunk is then written to the StreamMessage until no more data.
								

								 	
									false
								

								 	
									boolean
								

								
	
									formatDateHeadersTo Iso8601 (producer)
								

								 	
									Sets whether date headers should be formatted according to the ISO 8601 standard.
								

								 	
									false
								

								 	
									boolean
								

								
	
									headerFilterStrategy (filter)
								

								 	
									To use a custom org.apache.camel.spi.HeaderFilterStrategy to filter header to and from Camel message.
								

								 	 	
									HeaderFilterStrategy
								

								
	
									resolveProperty Placeholders (advanced)
								

								 	
									Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
								

								 	
									true
								

								 	
									boolean
								

								

Endpoint options

					The JMS endpoint is configured using URI syntax:
				
jms:destinationType:destinationName

					with the following path and query parameters:
				

Path Parameters (2 parameters):

	Name	Description	Default	Type
	
									destinationType
								

								 	
									The kind of destination to use
								

								 	
									queue
								

								 	
									String
								

								
	
									destinationName
								

								 	
									Required Name of the queue or topic to use as destination
								

								 	 	
									String
								

								

Query Parameters (91 parameters):

	Name	Description	Default	Type
	
									clientId (common)
								

								 	
									Sets the JMS client ID to use. Note that this value, if specified, must be unique and can only be used by a single JMS connection instance. It is typically only required for durable topic subscriptions. If using Apache ActiveMQ you may prefer to use Virtual Topics instead.
								

								 	 	
									String
								

								
	
									connectionFactory (common)
								

								 	
									Sets the default connection factory to be used if a connection factory is not specified for either link setTemplateConnectionFactory(ConnectionFactory) or link setListenerConnectionFactory(ConnectionFactory)
								

								 	 	
									ConnectionFactory
								

								
	
									disableReplyTo (common)
								

								 	
									Specifies whether Camel ignores the JMSReplyTo header in messages. If true, Camel does not send a reply back to the destination specified in the JMSReplyTo header. You can use this option if you want Camel to consume from a route and you do not want Camel to automatically send back a reply message because another component in your code handles the reply message. You can also use this option if you want to use Camel as a proxy between different message brokers and you want to route message from one system to another.
								

								 	
									false
								

								 	
									boolean
								

								
	
									durableSubscriptionName (common)
								

								 	
									The durable subscriber name for specifying durable topic subscriptions. The clientId option must be configured as well.
								

								 	 	
									String
								

								
	
									jmsMessageType (common)
								

								 	
									Allows you to force the use of a specific javax.jms.Message implementation for sending JMS messages. Possible values are: Bytes, Map, Object, Stream, Text. By default, Camel would determine which JMS message type to use from the In body type. This option allows you to specify it.
								

								 	 	
									JmsMessageType
								

								
	
									testConnectionOnStartup (common)
								

								 	
									Specifies whether to test the connection on startup. This ensures that when Camel starts that all the JMS consumers have a valid connection to the JMS broker. If a connection cannot be granted then Camel throws an exception on startup. This ensures that Camel is not started with failed connections. The JMS producers is tested as well.
								

								 	
									false
								

								 	
									boolean
								

								
	
									acknowledgementModeName (consumer)
								

								 	
									The JMS acknowledgement name, which is one of: SESSION_TRANSACTED, CLIENT_ACKNOWLEDGE, AUTO_ACKNOWLEDGE, DUPS_OK_ACKNOWLEDGE
								

								 	
									AUTO_ ACKNOWLEDGE
								

								 	
									String
								

								
	
									asyncConsumer (consumer)
								

								 	
									Whether the JmsConsumer processes the Exchange asynchronously. If enabled then the JmsConsumer may pickup the next message from the JMS queue, while the previous message is being processed asynchronously (by the Asynchronous Routing Engine). This means that messages may be processed not 100% strictly in order. If disabled (as default) then the Exchange is fully processed before the JmsConsumer will pickup the next message from the JMS queue. Note if transacted has been enabled, then asyncConsumer=true does not run asynchronously, as transaction must be executed synchronously (Camel 3.0 may support async transactions).
								

								 	
									false
								

								 	
									boolean
								

								
	
									autoStartup (consumer)
								

								 	
									Specifies whether the consumer container should auto-startup.
								

								 	
									true
								

								 	
									boolean
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									cacheLevel (consumer)
								

								 	
									Sets the cache level by ID for the underlying JMS resources. See cacheLevelName option for more details.
								

								 	 	
									int
								

								
	
									cacheLevelName (consumer)
								

								 	
									Sets the cache level by name for the underlying JMS resources. Possible values are: CACHE_AUTO, CACHE_CONNECTION, CACHE_CONSUMER, CACHE_NONE, and CACHE_SESSION. The default setting is CACHE_AUTO. See the Spring documentation and Transactions Cache Levels for more information.
								

								 	
									CACHE_AUTO
								

								 	
									String
								

								
	
									concurrentConsumers (consumer)
								

								 	
									Specifies the default number of concurrent consumers when consuming from JMS (not for request/reply over JMS). See also the maxMessagesPerTask option to control dynamic scaling up/down of threads. When doing request/reply over JMS then the option replyToConcurrentConsumers is used to control number of concurrent consumers on the reply message listener.
								

								 	
									1
								

								 	
									int
								

								
	
									maxConcurrentConsumers (consumer)
								

								 	
									Specifies the maximum number of concurrent consumers when consuming from JMS (not for request/reply over JMS). See also the maxMessagesPerTask option to control dynamic scaling up/down of threads. When doing request/reply over JMS then the option replyToMaxConcurrentConsumers is used to control number of concurrent consumers on the reply message listener.
								

								 	 	
									int
								

								
	
									replyTo (consumer)
								

								 	
									Provides an explicit ReplyTo destination, which overrides any incoming value of Message.getJMSReplyTo().
								

								 	 	
									String
								

								
	
									replyToDeliveryPersistent (consumer)
								

								 	
									Specifies whether to use persistent delivery by default for replies.
								

								 	
									true
								

								 	
									boolean
								

								
	
									selector (consumer)
								

								 	
									Sets the JMS selector to use
								

								 	 	
									String
								

								
	
									subscriptionDurable (consumer)
								

								 	
									Set whether to make the subscription durable. The durable subscription name to be used can be specified through the subscriptionName property. Default is false. Set this to true to register a durable subscription, typically in combination with a subscriptionName value (unless your message listener class name is good enough as subscription name). Only makes sense when listening to a topic (pub-sub domain), therefore this method switches the pubSubDomain flag as well.
								

								 	
									false
								

								 	
									boolean
								

								
	
									subscriptionName (consumer)
								

								 	
									Set the name of a subscription to create. To be applied in case of a topic (pub-sub domain) with a shared or durable subscription. The subscription name needs to be unique within this client’s JMS client id. Default is the class name of the specified message listener. Note: Only 1 concurrent consumer (which is the default of this message listener container) is allowed for each subscription, except for a shared subscription (which requires JMS 2.0).
								

								 	 	
									String
								

								
	
									subscriptionShared (consumer)
								

								 	
									Set whether to make the subscription shared. The shared subscription name to be used can be specified through the subscriptionName property. Default is false. Set this to true to register a shared subscription, typically in combination with a subscriptionName value (unless your message listener class name is good enough as subscription name). Note that shared subscriptions may also be durable, so this flag can (and often will) be combined with subscriptionDurable as well. Only makes sense when listening to a topic (pub-sub domain), therefore this method switches the pubSubDomain flag as well. Requires a JMS 2.0 compatible message broker.
								

								 	
									false
								

								 	
									boolean
								

								
	
									acceptMessagesWhileStopping (consumer)
								

								 	
									Specifies whether the consumer accept messages while it is stopping. You may consider enabling this option, if you start and stop JMS routes at runtime, while there are still messages enqueued on the queue. If this option is false, and you stop the JMS route, then messages may be rejected, and the JMS broker would have to attempt redeliveries, which yet again may be rejected, and eventually the message may be moved at a dead letter queue on the JMS broker. To avoid this its recommended to enable this option.
								

								 	
									false
								

								 	
									boolean
								

								
	
									allowReplyManagerQuickStop (consumer)
								

								 	
									Whether the DefaultMessageListenerContainer used in the reply managers for request-reply messaging allow the link DefaultMessageListenerContainerrunningAllowed() flag to quick stop in case link JmsConfigurationisAcceptMessagesWhileStopping() is enabled, and org.apache.camel.CamelContext is currently being stopped. This quick stop ability is enabled by default in the regular JMS consumers but to enable for reply managers you must enable this flag.
								

								 	
									false
								

								 	
									boolean
								

								
	
									consumerType (consumer)
								

								 	
									The consumer type to use, which can be one of: Simple, Default, or Custom. The consumer type determines which Spring JMS listener to use. Default will use org.springframework.jms.listener.DefaultMessageListenerContainer, Simple will use org.springframework.jms.listener.SimpleMessageListenerContainer. When Custom is specified, the MessageListenerContainerFactory defined by the messageListenerContainerFactory option will determine what org.springframework.jms.listener.AbstractMessageListenerContainer to use.
								

								 	
									Default
								

								 	
									ConsumerType
								

								
	
									defaultTaskExecutorType (consumer)
								

								 	
									Specifies what default TaskExecutor type to use in the DefaultMessageListenerContainer, for both consumer endpoints and the ReplyTo consumer of producer endpoints. Possible values: SimpleAsync (uses Spring’s SimpleAsyncTaskExecutor) or ThreadPool (uses Spring’s ThreadPoolTaskExecutor with optimal values - cached threadpool-like). If not set, it defaults to the previous behaviour, which uses a cached thread pool for consumer endpoints and SimpleAsync for reply consumers. The use of ThreadPool is recommended to reduce thread trash in elastic configurations with dynamically increasing and decreasing concurrent consumers.
								

								 	 	
									DefaultTaskExecutor Type
								

								
	
									eagerLoadingOfProperties (consumer)
								

								 	
									Enables eager loading of JMS properties and payload as soon as a message is loaded which generally is inefficient as the JMS properties may not be required but sometimes can catch early any issues with the underlying JMS provider and the use of JMS properties
								

								 	
									false
								

								 	
									boolean
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									exposeListenerSession (consumer)
								

								 	
									Specifies whether the listener session should be exposed when consuming messages.
								

								 	
									false
								

								 	
									boolean
								

								
	
									replyToSameDestination Allowed (consumer)
								

								 	
									Whether a JMS consumer is allowed to send a reply message to the same destination that the consumer is using to consume from. This prevents an endless loop by consuming and sending back the same message to itself.
								

								 	
									false
								

								 	
									boolean
								

								
	
									taskExecutor (consumer)
								

								 	
									Allows you to specify a custom task executor for consuming messages.
								

								 	 	
									TaskExecutor
								

								
	
									deliveryMode (producer)
								

								 	
									Specifies the delivery mode to be used. Possibles values are those defined by javax.jms.DeliveryMode. NON_PERSISTENT = 1 and PERSISTENT = 2.
								

								 	 	
									Integer
								

								
	
									deliveryPersistent (producer)
								

								 	
									Specifies whether persistent delivery is used by default.
								

								 	
									true
								

								 	
									boolean
								

								
	
									explicitQosEnabled (producer)
								

								 	
									Set if the deliveryMode, priority or timeToLive qualities of service should be used when sending messages. This option is based on Spring’s JmsTemplate. The deliveryMode, priority and timeToLive options are applied to the current endpoint. This contrasts with the preserveMessageQos option, which operates at message granularity, reading QoS properties exclusively from the Camel In message headers.
								

								 	
									false
								

								 	
									Boolean
								

								
	
									formatDateHeadersToIso8601 (producer)
								

								 	
									Sets whether date headers should be formatted according to the ISO 8601 standard.
								

								 	
									false
								

								 	
									boolean
								

								
	
									preserveMessageQos (producer)
								

								 	
									Set to true, if you want to send message using the QoS settings specified on the message, instead of the QoS settings on the JMS endpoint. The following three headers are considered JMSPriority, JMSDeliveryMode, and JMSExpiration. You can provide all or only some of them. If not provided, Camel will fall back to use the values from the endpoint instead. So, when using this option, the headers override the values from the endpoint. The explicitQosEnabled option, by contrast, will only use options set on the endpoint, and not values from the message header.
								

								 	
									false
								

								 	
									boolean
								

								
	
									priority (producer)
								

								 	
									Values greater than 1 specify the message priority when sending (where 0 is the lowest priority and 9 is the highest). The explicitQosEnabled option must also be enabled in order for this option to have any effect.
								

								 	
									4
								

								 	
									int
								

								
	
									replyToConcurrentConsumers (producer)
								

								 	
									Specifies the default number of concurrent consumers when doing request/reply over JMS. See also the maxMessagesPerTask option to control dynamic scaling up/down of threads.
								

								 	
									1
								

								 	
									int
								

								
	
									replyToMaxConcurrent Consumers (producer)
								

								 	
									Specifies the maximum number of concurrent consumers when using request/reply over JMS. See also the maxMessagesPerTask option to control dynamic scaling up/down of threads.
								

								 	 	
									int
								

								
	
									replyToOnTimeoutMax ConcurrentConsumers (producer)
								

								 	
									Specifies the maximum number of concurrent consumers for continue routing when timeout occurred when using request/reply over JMS.
								

								 	
									1
								

								 	
									int
								

								
	
									replyToOverride (producer)
								

								 	
									Provides an explicit ReplyTo destination in the JMS message, which overrides the setting of replyTo. It is useful if you want to forward the message to a remote Queue and receive the reply message from the ReplyTo destination.
								

								 	 	
									String
								

								
	
									replyToType (producer)
								

								 	
									Allows for explicitly specifying which kind of strategy to use for replyTo queues when doing request/reply over JMS. Possible values are: Temporary, Shared, or Exclusive. By default Camel will use temporary queues. However if replyTo has been configured, then Shared is used by default. This option allows you to use exclusive queues instead of shared ones. See Camel JMS documentation for more details, and especially the notes about the implications if running in a clustered environment, and the fact that Shared reply queues has lower performance than its alternatives Temporary and Exclusive.
								

								 	 	
									ReplyToType
								

								
	
									requestTimeout (producer)
								

								 	
									The timeout for waiting for a reply when using the InOut Exchange Pattern (in milliseconds). The default is 20 seconds. You can include the header CamelJmsRequestTimeout to override this endpoint configured timeout value, and thus have per message individual timeout values. See also the requestTimeoutCheckerInterval option.
								

								 	
									20000
								

								 	
									long
								

								
	
									timeToLive (producer)
								

								 	
									When sending messages, specifies the time-to-live of the message (in milliseconds).
								

								 	
									-1
								

								 	
									long
								

								
	
									allowAdditionalHeaders (producer)
								

								 	
									This option is used to allow additional headers which may have values that are invalid according to JMS specification. For example some message systems such as WMQ do this with header names using prefix JMS_IBM_MQMD_ containing values with byte array or other invalid types. You can specify multiple header names separated by comma, and use as suffix for wildcard matching.
								

								 	 	
									String
								

								
	
									allowNullBody (producer)
								

								 	
									Whether to allow sending messages with no body. If this option is false and the message body is null, then an JMSException is thrown.
								

								 	
									true
								

								 	
									boolean
								

								
	
									alwaysCopyMessage (producer)
								

								 	
									If true, Camel will always make a JMS message copy of the message when it is passed to the producer for sending. Copying the message is needed in some situations, such as when a replyToDestinationSelectorName is set (incidentally, Camel will set the alwaysCopyMessage option to true, if a replyToDestinationSelectorName is set)
								

								 	
									false
								

								 	
									boolean
								

								
	
									correlationProperty (producer)
								

								 	
									Use this JMS property to correlate messages in InOut exchange pattern (request-reply) instead of JMSCorrelationID property. This allows you to exchange messages with systems that do not correlate messages using JMSCorrelationID JMS property. If used JMSCorrelationID will not be used or set by Camel. The value of here named property will be generated if not supplied in the header of the message under the same name.
								

								 	 	
									String
								

								
	
									disableTimeToLive (producer)
								

								 	
									Use this option to force disabling time to live. For example when you do request/reply over JMS, then Camel will by default use the requestTimeout value as time to live on the message being sent. The problem is that the sender and receiver systems have to have their clocks synchronized, so they are in sync. This is not always so easy to archive. So you can use disableTimeToLive=true to not set a time to live value on the sent message. Then the message will not expire on the receiver system. See below in section About time to live for more details.
								

								 	
									false
								

								 	
									boolean
								

								
	
									forceSendOriginalMessage (producer)
								

								 	
									When using mapJmsMessage=false Camel will create a new JMS message to send to a new JMS destination if you touch the headers (get or set) during the route. Set this option to true to force Camel to send the original JMS message that was received.
								

								 	
									false
								

								 	
									boolean
								

								
	
									includeSentJMSMessageID (producer)
								

								 	
									Only applicable when sending to JMS destination using InOnly (eg fire and forget). Enabling this option will enrich the Camel Exchange with the actual JMSMessageID that was used by the JMS client when the message was sent to the JMS destination.
								

								 	
									false
								

								 	
									boolean
								

								
	
									replyToCacheLevelName (producer)
								

								 	
									Sets the cache level by name for the reply consumer when doing request/reply over JMS. This option only applies when using fixed reply queues (not temporary). Camel will by default use: CACHE_CONSUMER for exclusive or shared w/ replyToSelectorName. And CACHE_SESSION for shared without replyToSelectorName. Some JMS brokers such as IBM WebSphere may require to set the replyToCacheLevelName=CACHE_NONE to work. Note: If using temporary queues then CACHE_NONE is not allowed, and you must use a higher value such as CACHE_CONSUMER or CACHE_SESSION.
								

								 	 	
									String
								

								
	
									replyToDestinationSelector Name (producer)
								

								 	
									Sets the JMS Selector using the fixed name to be used so you can filter out your own replies from the others when using a shared queue (that is, if you are not using a temporary reply queue).
								

								 	 	
									String
								

								
	
									streamMessageTypeEnabled (producer)
								

								 	
									Sets whether StreamMessage type is enabled or not. Message payloads of streaming kind such as files, InputStream, etc will either by sent as BytesMessage or StreamMessage. This option controls which kind will be used. By default BytesMessage is used which enforces the entire message payload to be read into memory. By enabling this option the message payload is read into memory in chunks and each chunk is then written to the StreamMessage until no more data.
								

								 	
									false
								

								 	
									boolean
								

								
	
									allowSerializedHeaders (advanced)
								

								 	
									Controls whether or not to include serialized headers. Applies only when link isTransferExchange() is true. This requires that the objects are serializable. Camel will exclude any non-serializable objects and log it at WARN level.
								

								 	
									false
								

								 	
									boolean
								

								
	
									asyncStartListener (advanced)
								

								 	
									Whether to startup the JmsConsumer message listener asynchronously, when starting a route. For example if a JmsConsumer cannot get a connection to a remote JMS broker, then it may block while retrying and/or failover. This will cause Camel to block while starting routes. By setting this option to true, you will let routes startup, while the JmsConsumer connects to the JMS broker using a dedicated thread in asynchronous mode. If this option is used, then beware that if the connection could not be established, then an exception is logged at WARN level, and the consumer will not be able to receive messages; You can then restart the route to retry.
								

								 	
									false
								

								 	
									boolean
								

								
	
									asyncStopListener (advanced)
								

								 	
									Whether to stop the JmsConsumer message listener asynchronously, when stopping a route.
								

								 	
									false
								

								 	
									boolean
								

								
	
									destinationResolver (advanced)
								

								 	
									A pluggable org.springframework.jms.support.destination.DestinationResolver that allows you to use your own resolver (for example, to lookup the real destination in a JNDI registry).
								

								 	 	
									DestinationResolver
								

								
	
									errorHandler (advanced)
								

								 	
									Specifies a org.springframework.util.ErrorHandler to be invoked in case of any uncaught exceptions thrown while processing a Message. By default these exceptions will be logged at the WARN level, if no errorHandler has been configured. You can configure logging level and whether stack traces should be logged using errorHandlerLoggingLevel and errorHandlerLogStackTrace options. This makes it much easier to configure, than having to code a custom errorHandler.
								

								 	 	
									ErrorHandler
								

								
	
									exceptionListener (advanced)
								

								 	
									Specifies the JMS Exception Listener that is to be notified of any underlying JMS exceptions.
								

								 	 	
									ExceptionListener
								

								
	
									headerFilterStrategy (advanced)
								

								 	
									To use a custom HeaderFilterStrategy to filter header to and from Camel message.
								

								 	 	
									HeaderFilterStrategy
								

								
	
									idleConsumerLimit (advanced)
								

								 	
									Specify the limit for the number of consumers that are allowed to be idle at any given time.
								

								 	
									1
								

								 	
									int
								

								
	
									idleTaskExecutionLimit (advanced)
								

								 	
									Specifies the limit for idle executions of a receive task, not having received any message within its execution. If this limit is reached, the task will shut down and leave receiving to other executing tasks (in the case of dynamic scheduling; see the maxConcurrentConsumers setting). There is additional doc available from Spring.
								

								 	
									1
								

								 	
									int
								

								
	
									includeAllJMSXProperties (advanced)
								

								 	
									Whether to include all JMSXxxx properties when mapping from JMS to Camel Message. Setting this to true will include properties such as JMSXAppID, and JMSXUserID etc. Note: If you are using a custom headerFilterStrategy then this option does not apply.
								

								 	
									false
								

								 	
									boolean
								

								
	
									jmsKeyFormatStrategy (advanced)
								

								 	
									Pluggable strategy for encoding and decoding JMS keys so they can be compliant with the JMS specification. Camel provides two implementations out of the box: default and passthrough. The default strategy will safely marshal dots and hyphens (. and -). The passthrough strategy leaves the key as is. Can be used for JMS brokers which do not care whether JMS header keys contain illegal characters. You can provide your own implementation of the org.apache.camel.component.jms.JmsKeyFormatStrategy and refer to it using the notation.
								

								 	 	
									String
								

								
	
									mapJmsMessage (advanced)
								

								 	
									Specifies whether Camel should auto map the received JMS message to a suited payload type, such as javax.jms.TextMessage to a String etc.
								

								 	
									true
								

								 	
									boolean
								

								
	
									maxMessagesPerTask (advanced)
								

								 	
									The number of messages per task. -1 is unlimited. If you use a range for concurrent consumers (eg min max), then this option can be used to set a value to eg 100 to control how fast the consumers will shrink when less work is required.
								

								 	
									-1
								

								 	
									int
								

								
	
									messageConverter (advanced)
								

								 	
									To use a custom Spring org.springframework.jms.support.converter.MessageConverter so you can be in control how to map to/from a javax.jms.Message.
								

								 	 	
									MessageConverter
								

								
	
									messageCreatedStrategy (advanced)
								

								 	
									To use the given MessageCreatedStrategy which are invoked when Camel creates new instances of javax.jms.Message objects when Camel is sending a JMS message.
								

								 	 	
									MessageCreatedStrategy
								

								
	
									messageIdEnabled (advanced)
								

								 	
									When sending, specifies whether message IDs should be added. This is just an hint to the JMS Broker. If the JMS provider accepts this hint, these messages must have the message ID set to null; if the provider ignores the hint, the message ID must be set to its normal unique value
								

								 	
									true
								

								 	
									boolean
								

								
	
									messageListenerContainer Factory (advanced)
								

								 	
									Registry ID of the MessageListenerContainerFactory used to determine what org.springframework.jms.listener.AbstractMessageListenerContainer to use to consume messages. Setting this will automatically set consumerType to Custom.
								

								 	 	
									MessageListener ContainerFactory
								

								
	
									messageTimestampEnabled (advanced)
								

								 	
									Specifies whether timestamps should be enabled by default on sending messages. This is just an hint to the JMS Broker. If the JMS provider accepts this hint, these messages must have the timestamp set to zero; if the provider ignores the hint, the timestamp must be set to its normal value
								

								 	
									true
								

								 	
									boolean
								

								
	
									pubSubNoLocal (advanced)
								

								 	
									Specifies whether to inhibit the delivery of messages published by its own connection.
								

								 	
									false
								

								 	
									boolean
								

								
	
									receiveTimeout (advanced)
								

								 	
									The timeout for receiving messages (in milliseconds).
								

								 	
									1000
								

								 	
									long
								

								
	
									recoveryInterval (advanced)
								

								 	
									Specifies the interval between recovery attempts, i.e. when a connection is being refreshed, in milliseconds. The default is 5000 ms, that is, 5 seconds.
								

								 	
									5000
								

								 	
									long
								

								
	
									requestTimeoutChecker Interval (advanced)
								

								 	
									Configures how often Camel should check for timed out Exchanges when doing request/reply over JMS. By default Camel checks once per second. But if you must react faster when a timeout occurs, then you can lower this interval, to check more frequently. The timeout is determined by the option requestTimeout.
								

								 	
									1000
								

								 	
									long
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									transferException (advanced)
								

								 	
									If enabled and you are using Request Reply messaging (InOut) and an Exchange failed on the consumer side, then the caused Exception will be send back in response as a javax.jms.ObjectMessage. If the client is Camel, the returned Exception is rethrown. This allows you to use Camel JMS as a bridge in your routing - for example, using persistent queues to enable robust routing. Notice that if you also have transferExchange enabled, this option takes precedence. The caught exception is required to be serializable. The original Exception on the consumer side can be wrapped in an outer exception such as org.apache.camel.RuntimeCamelException when returned to the producer.
								

								 	
									false
								

								 	
									boolean
								

								
	
									transferExchange (advanced)
								

								 	
									You can transfer the exchange over the wire instead of just the body and headers. The following fields are transferred: In body, Out body, Fault body, In headers, Out headers, Fault headers, exchange properties, exchange exception. This requires that the objects are serializable. Camel will exclude any non-serializable objects and log it at WARN level. You must enable this option on both the producer and consumer side, so Camel knows the payloads is an Exchange and not a regular payload.
								

								 	
									false
								

								 	
									boolean
								

								
	
									transferFault (advanced)
								

								 	
									If enabled and you are using Request Reply messaging (InOut) and an Exchange failed with a SOAP fault (not exception) on the consumer side, then the fault flag on link org.apache.camel.MessageisFault() will be send back in the response as a JMS header with the key link JmsConstantsJMS_TRANSFER_FAULT. If the client is Camel, the returned fault flag will be set on the link org.apache.camel.MessagesetFault(boolean). You may want to enable this when using Camel components that support faults such as SOAP based such as cxf or spring-ws.
								

								 	
									false
								

								 	
									boolean
								

								
	
									useMessageIDAsCorrelation ID (advanced)
								

								 	
									Specifies whether JMSMessageID should always be used as JMSCorrelationID for InOut messages.
								

								 	
									false
								

								 	
									boolean
								

								
	
									waitForProvisionCorrelation ToBeUpdatedCounter (advanced)
								

								 	
									Number of times to wait for provisional correlation id to be updated to the actual correlation id when doing request/reply over JMS and when the option useMessageIDAsCorrelationID is enabled.
								

								 	
									50
								

								 	
									int
								

								
	
									waitForProvisionCorrelation ToBeUpdatedThreadSleeping Time (advanced)
								

								 	
									Interval in millis to sleep each time while waiting for provisional correlation id to be updated.
								

								 	
									100
								

								 	
									long
								

								
	
									errorHandlerLoggingLevel (logging)
								

								 	
									Allows to configure the default errorHandler logging level for logging uncaught exceptions.
								

								 	
									WARN
								

								 	
									LoggingLevel
								

								
	
									errorHandlerLogStackTrace (logging)
								

								 	
									Allows to control whether stacktraces should be logged or not, by the default errorHandler.
								

								 	
									true
								

								 	
									boolean
								

								
	
									password (security)
								

								 	
									Password to use with the ConnectionFactory. You can also configure username/password directly on the ConnectionFactory.
								

								 	 	
									String
								

								
	
									username (security)
								

								 	
									Username to use with the ConnectionFactory. You can also configure username/password directly on the ConnectionFactory.
								

								 	 	
									String
								

								
	
									transacted (transaction)
								

								 	
									Specifies whether to use transacted mode
								

								 	
									false
								

								 	
									boolean
								

								
	
									lazyCreateTransaction Manager (transaction)
								

								 	
									If true, Camel will create a JmsTransactionManager, if there is no transactionManager injected when option transacted=true.
								

								 	
									true
								

								 	
									boolean
								

								
	
									transactionManager (transaction)
								

								 	
									The Spring transaction manager to use.
								

								 	 	
									PlatformTransaction Manager
								

								
	
									transactionName (transaction)
								

								 	
									The name of the transaction to use.
								

								 	 	
									String
								

								
	
									transactionTimeout (transaction)
								

								 	
									The timeout value of the transaction (in seconds), if using transacted mode.
								

								 	
									-1
								

								 	
									int
								

								

Message Mapping between JMS and Camel

				Camel automatically maps messages between javax.jms.Message and org.apache.camel.Message.
			

				When sending a JMS message, Camel converts the message body to the following JMS message types:
			
	Body Type	JMS Message	Comment
	
								String
							

							 	
								javax.jms.TextMessage
							

							 	
								
							

							
	
								org.w3c.dom.Node
							

							 	
								javax.jms.TextMessage
							

							 	
								The DOM will be converted to String.
							

							
	
								Map
							

							 	
								javax.jms.MapMessage
							

							 	
								
							

							
	
								java.io.Serializable
							

							 	
								javax.jms.ObjectMessage
							

							 	
								
							

							
	
								byte[]
							

							 	
								javax.jms.BytesMessage
							

							 	
								
							

							
	
								java.io.File
							

							 	
								javax.jms.BytesMessage
							

							 	
								
							

							
	
								java.io.Reader
							

							 	
								javax.jms.BytesMessage
							

							 	
								
							

							
	
								java.io.InputStream
							

							 	
								javax.jms.BytesMessage
							

							 	
								
							

							
	
								java.nio.ByteBuffer
							

							 	
								javax.jms.BytesMessage
							

							 	
								
							

							

				When receiving a JMS message, Camel converts the JMS message to the following body type:
			
	JMS Message	Body Type
	
								javax.jms.TextMessage
							

							 	
								String
							

							
	
								javax.jms.BytesMessage
							

							 	
								byte[]
							

							
	
								javax.jms.MapMessage
							

							 	
								Map<String, Object>
							

							
	
								javax.jms.ObjectMessage
							

							 	
								Object
							

							

Disabling auto-mapping of JMS messages

					You can use the mapJmsMessage option to disable the auto-mapping above. If disabled, Camel will not try to map the received JMS message, but instead uses it directly as the payload. This allows you to avoid the overhead of mapping and let Camel just pass through the JMS message. For instance, it even allows you to route javax.jms.ObjectMessage JMS messages with classes you do not have on the classpath.
				

Using a custom MessageConverter

					You can use the messageConverter option to do the mapping yourself in a Spring org.springframework.jms.support.converter.MessageConverter class.
				

					For example, in the route below we use a custom message converter when sending a message to the JMS order queue:
				
from("file://inbox/order").to("jms:queue:order?messageConverter=#myMessageConverter");

					You can also use a custom message converter when consuming from a JMS destination.
				

Controlling the mapping strategy selected

					You can use the jmsMessageType option on the endpoint URL to force a specific message type for all messages.
				

					In the route below, we poll files from a folder and send them as javax.jms.TextMessage as we have forced the JMS producer endpoint to use text messages:
				
from("file://inbox/order").to("jms:queue:order?jmsMessageType=Text");

					You can also specify the message type to use for each message by setting the header with the key CamelJmsMessageType. For example:
				
from("file://inbox/order").setHeader("CamelJmsMessageType", JmsMessageType.Text).to("jms:queue:order");

					The possible values are defined in the enum class, org.apache.camel.jms.JmsMessageType.
				

Message format when sending

				The exchange that is sent over the JMS wire must conform to the JMS Message spec.
			

				For the exchange.in.header the following rules apply for the header keys:
			
	
						Keys starting with JMS or JMSX are reserved.
					
	
						exchange.in.headers keys must be literals and all be valid Java identifiers (do not use dots in the key name).
					
	
						Camel replaces dots & hyphens and the reverse when when consuming JMS messages:
 . is replaced by DOT and the reverse replacement when Camel consumes the message.
 - is replaced by HYPHEN and the reverse replacement when Camel consumes the message.
					
	
						See also the option jmsKeyFormatStrategy, which allows use of your own custom strategy for formatting keys.
					

				For the exchange.in.header, the following rules apply for the header values:
			
	
						The values must be primitives or their counter objects (such as Integer, Long, Character). The types, String, CharSequence, Date, BigDecimal and BigInteger are all converted to their toString() representation. All other types are dropped.
					

				Camel will log with category org.apache.camel.component.jms.JmsBinding at DEBUG level if it drops a given header value. For example:
			
2008-07-09 06:43:04,046 [main] DEBUG JmsBinding
 - Ignoring non primitive header: order of class: org.apache.camel.component.jms.issues.DummyOrder with value: DummyOrder{orderId=333, itemId=4444, quantity=2}

Message format when receiving

				Camel adds the following properties to the Exchange when it receives a message:
			
	Property	Type	Description
	
								org.apache.camel.jms.replyDestination
							

							 	
								javax.jms.Destination
							

							 	
								The reply destination.
							

							

				Camel adds the following JMS properties to the In message headers when it receives a JMS message:
			
	Header	Type	Description
	
								JMSCorrelationID
							

							 	
								String
							

							 	
								The JMS correlation ID.
							

							
	
								JMSDeliveryMode
							

							 	
								int
							

							 	
								The JMS delivery mode.
							

							
	
								JMSDestination
							

							 	
								javax.jms.Destination
							

							 	
								The JMS destination.
							

							
	
								JMSExpiration
							

							 	
								long
							

							 	
								The JMS expiration.
							

							
	
								JMSMessageID
							

							 	
								String
							

							 	
								The JMS unique message ID.
							

							
	
								JMSPriority
							

							 	
								int
							

							 	
								The JMS priority (with 0 as the lowest priority and 9 as the highest).
							

							
	
								JMSRedelivered
							

							 	
								boolean
							

							 	
								Is the JMS message redelivered.
							

							
	
								JMSReplyTo
							

							 	
								javax.jms.Destination
							

							 	
								The JMS reply-to destination.
							

							
	
								JMSTimestamp
							

							 	
								long
							

							 	
								The JMS timestamp.
							

							
	
								JMSType
							

							 	
								String
							

							 	
								The JMS type.
							

							
	
								JMSXGroupID
							

							 	
								String
							

							 	
								The JMS group ID.
							

							

				As all the above information is standard JMS you can check the JMS documentation for further details.
			

About using Camel to send and receive messages and JMSReplyTo

				The JMS component is complex and you have to pay close attention to how it works in some cases. So this is a short summary of some of the areas/pitfalls to look for.
			

				When Camel sends a message using its JMSProducer, it checks the following conditions:
			
	
						The message exchange pattern,
					
	
						Whether a JMSReplyTo was set in the endpoint or in the message headers,
					
	
						Whether any of the following options have been set on the JMS endpoint: disableReplyTo, preserveMessageQos, explicitQosEnabled.
					

				All this can be a tad complex to understand and configure to support your use case.
			
JmsProducer

					The JmsProducer behaves as follows, depending on configuration:
				
	Exchange Pattern	Other options	Description
	
									InOut
								

								 	
									-
								

								 	
									Camel will expect a reply, set a temporary JMSReplyTo, and after sending the message, it will start to listen for the reply message on the temporary queue.
								

								
	
									InOut
								

								 	
									JMSReplyTo is set
								

								 	
									Camel will expect a reply and, after sending the message, it will start to listen for the reply message on the specified JMSReplyTo queue.
								

								
	
									InOnly
								

								 	
									-
								

								 	
									Camel will send the message and not expect a reply.
								

								
	
									InOnly
								

								 	
									JMSReplyTo is set
								

								 	
									By default, Camel discards the JMSReplyTo destination and clears the JMSReplyTo header before sending the message. Camel then sends the message and does not expect a reply. Camel logs this in the log at WARN level (changed to DEBUG level from Camel 2.6 onwards. You can use preserveMessageQuo=true to instruct Camel to keep the JMSReplyTo. In all situations the JmsProducer does not expect any reply and thus continue after sending the message.
								

								

JmsConsumer

					The JmsConsumer behaves as follows, depending on configuration:
				
	Exchange Pattern	Other options	Description
	
									InOut
								

								 	
									-
								

								 	
									Camel will send the reply back to the JMSReplyTo queue.
								

								
	
									InOnly
								

								 	
									-
								

								 	
									Camel will not send a reply back, as the pattern is InOnly.
								

								
	
									-
								

								 	
									disableReplyTo=true
								

								 	
									This option suppresses replies.
								

								

					So pay attention to the message exchange pattern set on your exchanges.
				

					If you send a message to a JMS destination in the middle of your route you can specify the exchange pattern to use, see more at Request Reply.
 This is useful if you want to send an InOnly message to a JMS topic:
				
from("activemq:queue:in")
 .to("bean:validateOrder")
 .to(ExchangePattern.InOnly, "activemq:topic:order")
 .to("bean:handleOrder");

Reuse endpoint and send to different destinations computed at runtime

				If you need to send messages to a lot of different JMS destinations, it makes sense to reuse a JMS endpoint and specify the real destination in a message header. This allows Camel to reuse the same endpoint, but send to different destinations. This greatly reduces the number of endpoints created and economizes on memory and thread resources.
			

				You can specify the destination in the following headers:
			
	Header	Type	Description
	
								CamelJmsDestination
							

							 	
								javax.jms.Destination
							

							 	
								A destination object.
							

							
	
								CamelJmsDestinationName
							

							 	
								String
							

							 	
								The destination name.
							

							

				For example, the following route shows how you can compute a destination at run time and use it to override the destination appearing in the JMS URL:
			
from("file://inbox")
 .to("bean:computeDestination")
 .to("activemq:queue:dummy");

				The queue name, dummy, is just a placeholder. It must be provided as part of the JMS endpoint URL, but it will be ignored in this example.
			

				In the computeDestination bean, specify the real destination by setting the CamelJmsDestinationName header as follows:
			
public void setJmsHeader(Exchange exchange) {
 String id =
 exchange.getIn().setHeader("CamelJmsDestinationName", "order:" + id");
}

				Then Camel will read this header and use it as the destination instead of the one configured on the endpoint. So, in this example Camel sends the message to activemq:queue:order:2, assuming the id value was 2.
			

				If both the CamelJmsDestination and the CamelJmsDestinationName headers are set, CamelJmsDestination takes priority. Keep in mind that the JMS producer removes both CamelJmsDestination and CamelJmsDestinationName headers from the exchange and do not propagate them to the created JMS message in order to avoid the accidental loops in the routes (in scenarios when the message will be forwarded to the another JMS endpoint).
			

Configuring different JMS providers

				You can configure your JMS provider in Spring XML as follows:
			

				Basically, you can configure as many JMS component instances as you wish and give them a unique name using the id attribute. The preceding example configures an activemq component. You could do the same to configure MQSeries, TibCo, BEA, Sonic and so on.
			

				Once you have a named JMS component, you can then refer to endpoints within that component using URIs. For example for the component name, activemq, you can then refer to destinations using the URI format, activemq:[queue:|topic:]destinationName. You can use the same approach for all other JMS providers.
			

				This works by the SpringCamelContext lazily fetching components from the spring context for the scheme name you use for Endpoint URIs and having the Component resolve the endpoint URIs.
			
Using JNDI to find the ConnectionFactory

					If you are using a J2EE container, you might need to look up JNDI to find the JMS ConnectionFactory rather than use the usual <bean> mechanism in Spring. You can do this using Spring’s factory bean or the new Spring XML namespace. For example:
				
<bean id="weblogic" class="org.apache.camel.component.jms.JmsComponent">
 <property name="connectionFactory" ref="myConnectionFactory"/>
</bean>

<jee:jndi-lookup id="myConnectionFactory" jndi-name="jms/connectionFactory"/>

					See The jee schema in the Spring reference documentation for more details about JNDI lookup.
				

Concurrent Consuming

				A common requirement with JMS is to consume messages concurrently in multiple threads in order to make an application more responsive. You can set the concurrentConsumers option to specify the number of threads servicing the JMS endpoint, as follows:
			
from("jms:SomeQueue?concurrentConsumers=20").
 bean(MyClass.class);

				You can configure this option in one of the following ways:
			
	
						On the JmsComponent,
					
	
						On the endpoint URI or,
					
	
						By invoking setConcurrentConsumers() directly on the JmsEndpoint.
					

Concurrent Consuming with async consumer

					Notice that each concurrent consumer will only pickup the next available message from the JMS broker, when the current message has been fully processed. You can set the option asyncConsumer=true to let the consumer pickup the next message from the JMS queue, while the previous message is being processed asynchronously (by the Asynchronous Routing Engine). See more details in the table on top of the page about the asyncConsumer option.
				
from("jms:SomeQueue?concurrentConsumers=20&asyncConsumer=true").
 bean(MyClass.class);

Request-reply over JMS

				Camel supports Request Reply over JMS. In essence the MEP of the Exchange should be InOut when you send a message to a JMS queue.
			

				Camel offers a number of options to configure request/reply over JMS that influence performance and clustered environments. The table below summaries the options.
			
	Option	Performance	Cluster	Description
	
								Temporary
							

							 	
								Fast
							

							 	
								Yes
							

							 	
								A temporary queue is used as reply queue, and automatic created by Camel. To use this do not specify a replyTo queue name. And you can optionally configure replyToType=Temporary to make it stand out that temporary queues are in use.
							

							
	
								Shared
							

							 	
								Slow
							

							 	
								Yes
							

							 	
								A shared persistent queue is used as reply queue. The queue must be created beforehand, although some brokers can create them on the fly such as Apache ActiveMQ. To use this you must specify the replyTo queue name. And you can optionally configure replyToType=Shared to make it stand out that shared queues are in use. A shared queue can be used in a clustered environment with multiple nodes running this Camel application at the same time. All using the same shared reply queue. This is possible because JMS Message selectors are used to correlate expected reply messages; this impacts performance though. JMS Message selectors is slower, and therefore not as fast as Temporary or Exclusive queues. See further below how to tweak this for better performance.
							

							
	
								Exclusive
							

							 	
								Fast
							

							 	
								No (*Yes)
							

							 	
								An exclusive persistent queue is used as reply queue. The queue must be created beforehand, although some brokers can create them on the fly such as Apache ActiveMQ. To use this you must specify the replyTo queue name. And you must configure replyToType=Exclusive to instruct Camel to use exclusive queues, as Shared is used by default, if a replyTo queue name was configured. When using exclusive reply queues, then JMS Message selectors are not in use, and therefore other applications must not use this queue as well. An exclusive queue cannot be used in a clustered environment with multiple nodes running this Camel application at the same time; as we do not have control if the reply queue comes back to the same node that sent the request message; that is why shared queues use JMS Message selectors to make sure of this. Though if you configure each Exclusive reply queue with an unique name per node, then you can run this in a clustered environment. As then the reply message will be sent back to that queue for the given node, that awaits the reply message.
							

							
	
								concurrentConsumers
							

							 	
								Fast
							

							 	
								Yes
							

							 	
								Camel 2.10.3: Allows to process reply messages concurrently using concurrent message listeners in use. You can specify a range using the concurrentConsumers and maxConcurrentConsumers options. Notice: That using Shared reply queues may not work as well with concurrent listeners, so use this option with care.
							

							
	
								maxConcurrentConsumers
							

							 	
								Fast
							

							 	
								Yes
							

							 	
								Camel 2.10.3: Allows to process reply messages concurrently using concurrent message listeners in use. You can specify a range using the concurrentConsumers and maxConcurrentConsumers options. Notice: That using Shared reply queues may not work as well with concurrent listeners, so use this option with care.
							

							

				The JmsProducer detects the InOut and provides a JMSReplyTo header with the reply destination to be used. By default Camel uses a temporary queue, but you can use the replyTo option on the endpoint to specify a fixed reply queue (see more below about fixed reply queue).
			

				Camel will automatic setup a consumer which listen on the reply queue, so you should not do anything.
 This consumer is a Spring DefaultMessageListenerContainer which listen for replies. However it’s fixed to 1 concurrent consumer.
 That means replies will be processed in sequence as there are only 1 thread to process the replies. If you want to process replies faster, then we need to use concurrency. But not using the concurrentConsumer option. We should use the threads from the Camel DSL instead, as shown in the route below:
			

				Instead of using threads, then use concurrentConsumers option if using Camel 2.10.3 or better. See further below.
			
from(xxx)
.inOut().to("activemq:queue:foo")
.threads(5)
.to(yyy)
.to(zzz);

				In this route we instruct Camel to route replies asynchronously using a thread pool with 5 threads.
			

				From Camel 2.10.3 onwards you can now configure the listener to use concurrent threads using the concurrentConsumers and maxConcurrentConsumers options. This allows you to easier configure this in Camel as shown below:
			
from(xxx)
.inOut().to("activemq:queue:foo?concurrentConsumers=5")
.to(yyy)
.to(zzz);
Request-reply over JMS and using a shared fixed reply queue

					If you use a fixed reply queue when doing Request Reply over JMS as shown in the example below, then pay attention.
				
from(xxx)
.inOut().to("activemq:queue:foo?replyTo=bar")
.to(yyy)

					In this example the fixed reply queue named "bar" is used. By default Camel assumes the queue is shared when using fixed reply queues, and therefore it uses a JMSSelector to only pickup the expected reply messages (eg based on the JMSCorrelationID). See next section for exclusive fixed reply queues. That means its not as fast as temporary queues. You can speedup how often Camel will pull for reply messages using the receiveTimeout option. By default its 1000 millis. So to make it faster you can set it to 250 millis to pull 4 times per second as shown:
				
from(xxx)
.inOut().to("activemq:queue:foo?replyTo=bar&receiveTimeout=250")
.to(yyy)

					Notice this will cause the Camel to send pull requests to the message broker more frequent, and thus require more network traffic.
 It is generally recommended to use temporary queues if possible.
				

Request-reply over JMS and using an exclusive fixed reply queue

					Available as of Camel 2.9
				

					In the previous example, Camel would anticipate the fixed reply queue named "bar" was shared, and thus it uses a JMSSelector to only consume reply messages which it expects. However there is a drawback doing this as JMS selectos is slower. Also the consumer on the reply queue is slower to update with new JMS selector ids. In fact it only updates when the receiveTimeout option times out, which by default is 1 second. So in theory the reply messages could take up till about 1 sec to be detected. On the other hand if the fixed reply queue is exclusive to the Camel reply consumer, then we can avoid using the JMS selectors, and thus be more performant. In fact as fast as using temporary queues. So in Camel 2.9 onwards we introduced the ReplyToType option which you can configure to Exclusive
 to tell Camel that the reply queue is exclusive as shown in the example below:
				
from(xxx)
.inOut().to("activemq:queue:foo?replyTo=bar&replyToType=Exclusive")
.to(yyy)

					Mind that the queue must be exclusive to each and every endpoint. So if you have two routes, then they each need an unique reply queue as shown in the next example:
				
from(xxx)
.inOut().to("activemq:queue:foo?replyTo=bar&replyToType=Exclusive")
.to(yyy)

from(aaa)
.inOut().to("activemq:queue:order?replyTo=order.reply&replyToType=Exclusive")
.to(bbb)

					The same applies if you run in a clustered environment. Then each node in the cluster must use an unique reply queue name. As otherwise each node in the cluster may pickup messages which was intended as a reply on another node. For clustered environments its recommended to use shared reply queues instead.
				

Synchronizing clocks between senders and receivers

				When doing messaging between systems, its desirable that the systems have synchronized clocks. For example when sending a JMS message, then you can set a time to live value on the message. Then the receiver can inspect this value, and determine if the message is already expired, and thus drop the message instead of consume and process it. However this requires that both sender and receiver have synchronized clocks. If you are using ActiveMQ then you can use the timestamp plugin to synchronize clocks.
			

About time to live

				Read first above about synchronized clocks.
			

				When you do request/reply (InOut) over JMS with Camel then Camel uses a timeout on the sender side, which is default 20 seconds from the requestTimeout option. You can control this by setting a higher/lower value. However the time to live value is still set on the JMS message being send. So that requires the clocks to be synchronized between the systems. If they are not, then you may want to disable the time to live value being set. This is now possible using the disableTimeToLive option from Camel 2.8 onwards. So if you set this option to disableTimeToLive=true, then Camel does not set any time to live value when sending JMS messages. But the request timeout is still active. So for example if you do request/reply over JMS and have disabled time to live, then Camel will still use a timeout by 20 seconds (the requestTimeout option). That option can of course also be configured. So the two options requestTimeout and disableTimeToLive gives you fine grained control when doing request/reply.
			

				From Camel 2.13/2.12.3 onwards you can provide a header in the message to override and use as the request timeout value instead of the endpoint configured value. For example:
			
 from("direct:someWhere")
 .to("jms:queue:foo?replyTo=bar&requestTimeout=30s")
 .to("bean:processReply");

				In the route above we have a endpoint configured requestTimeout of 30 seconds. So Camel will wait up till 30 seconds for that reply message to come back on the bar queue. If no reply message is received then a org.apache.camel.ExchangeTimedOutException is set on the Exchange and Camel continues routing the message, which would then fail due the exception, and Camel’s error handler reacts.
			

				If you want to use a per message timeout value, you can set the header with key org.apache.camel.component.jms.JmsConstants#JMS_REQUEST_TIMEOUT which has constant value "CamelJmsRequestTimeout" with a timeout value as long type.
			

				For example we can use a bean to compute the timeout value per individual message, such as calling the "whatIsTheTimeout" method on the service bean as shown below:
			
 from("direct:someWhere")
 .setHeader("CamelJmsRequestTimeout", method(ServiceBean.class, "whatIsTheTimeout"))
 .to("jms:queue:foo?replyTo=bar&requestTimeout=30s")
 .to("bean:processReply");

				When you do fire and forget (InOut) over JMS with Camel then Camel by default does not set any time to live value on the message. You can configure a value by using the timeToLive option. For example to indicate a 5 sec., you set timeToLive=5000. The option disableTimeToLive can be used to force disabling the time to live, also for InOnly messaging. The requestTimeout option is not being used for InOnly messaging.
			

Enabling Transacted Consumption

				A common requirement is to consume from a queue in a transaction and then process the message using the Camel route. To do this, just ensure that you set the following properties on the component/endpoint:
			
	
						transacted = true
					
	
						transactionManager = a Transsaction Manager - typically the JmsTransactionManager
					

				See the Transactional Client EIP pattern for further details.
			

				Transactions and [Request Reply] over JMS
			

				When using Request Reply over JMS you cannot use a single transaction; JMS will not send any messages until a commit is performed, so the server side won’t receive anything at all until the transaction commits. Therefore to use Request Reply you must commit a transaction after sending the request and then use a separate transaction for receiving the response.
			

				To address this issue the JMS component uses different properties to specify transaction use for oneway messaging and request reply messaging:
			

				The transacted property applies only to the InOnly message Exchange Pattern (MEP).
			

				The transactedInOut property applies to the InOut(Request Reply) message Exchange Pattern (MEP).
			

				If you want to use transactions for Request Reply(InOut MEP), you must set transactedInOut=true.
			

				Available as of Camel 2.10
			

				You can leverage the DMLC transacted session API using the following properties on component/endpoint:
			
	
						transacted = true
					
	
						lazyCreateTransactionManager = false
					

				The benefit of doing so is that the cacheLevel setting will be honored when using local transactions without a configured TransactionManager. When a TransactionManager is configured, no caching happens at DMLC level and its necessary to rely on a pooled connection factory. For more details about this kind of setup see here and here.
			

Using JMSReplyTo for late replies

				When using Camel as a JMS listener, it sets an Exchange property with the value of the ReplyTo javax.jms.Destination object, having the key ReplyTo. You can obtain this Destination as follows:
			
Destination replyDestination = exchange.getIn().getHeader(JmsConstants.JMS_REPLY_DESTINATION, Destination.class);

				And then later use it to send a reply using regular JMS or Camel.
			
 // we need to pass in the JMS component, and in this sample we use ActiveMQ
 JmsEndpoint endpoint = JmsEndpoint.newInstance(replyDestination, activeMQComponent);
 // now we have the endpoint we can use regular Camel API to send a message to it
 template.sendBody(endpoint, "Here is the late reply.");

				A different solution to sending a reply is to provide the replyDestination object in the same Exchange property when sending. Camel will then pick up this property and use it for the real destination. The endpoint URI must include a dummy destination, however. For example:
			
 // we pretend to send it to some non existing dummy queue
 template.send("activemq:queue:dummy, new Processor() {
 public void process(Exchange exchange) throws Exception {
 // and here we override the destination with the ReplyTo destination object so the message is sent to there instead of dummy
 exchange.getIn().setHeader(JmsConstants.JMS_DESTINATION, replyDestination);
 exchange.getIn().setBody("Here is the late reply.");
 }
 }

Using a request timeout

				In the sample below we send a Request Reply style message Exchange (we use the requestBody method = InOut) to the slow queue for further processing in Camel and we wait for a return reply:
			

Samples

				JMS is used in many examples for other components as well. But we provide a few samples below to get started.
			
Receiving from JMS

					In the following sample we configure a route that receives JMS messages and routes the message to a POJO:
				
 from("jms:queue:foo").
 to("bean:myBusinessLogic");

					You can of course use any of the EIP patterns so the route can be context based. For example, here’s how to filter an order topic for the big spenders:
				
from("jms:topic:OrdersTopic").
 filter().method("myBean", "isGoldCustomer").
 to("jms:queue:BigSpendersQueue");

Sending to JMS

					In the sample below we poll a file folder and send the file content to a JMS topic. As we want the content of the file as a TextMessage instead of a BytesMessage, we need to convert the body to a String:
				
from("file://orders").
 convertBodyTo(String.class).
 to("jms:topic:OrdersTopic");

Using Annotations

					Camel also has annotations so you can use POJO Consuming and POJO Producing.
				

Spring DSL sample

					The preceding examples use the Java DSL. Camel also supports Spring XML DSL. Here is the big spender sample using Spring DSL:
				
<route>
 <from uri="jms:topic:OrdersTopic"/>
 <filter>
 <method bean="myBean" method="isGoldCustomer"/>
 <to uri="jms:queue:BigSpendersQueue"/>
 </filter>
</route>

Other samples

					JMS appears in many of the examples for other components and EIP patterns, as well in this Camel documentation. So feel free to browse the documentation. If you have time, check out the this tutorial that uses JMS but focuses on how well Spring Remoting and Camel works together Tutorial-JmsRemoting.
				

Using JMS as a Dead Letter Queue storing Exchange

					Normally, when using JMS as the transport, it only transfers the body and headers as the payload. If you want to use JMS with a Dead Letter Channel, using a JMS queue as the Dead Letter Queue, then normally the caused Exception is not stored in the JMS message. You can, however, use the transferExchange option on the JMS dead letter queue to instruct Camel to store the entire Exchange in the queue as a javax.jms.ObjectMessage that holds a org.apache.camel.impl.DefaultExchangeHolder. This allows you to consume from the Dead Letter Queue and retrieve the caused exception from the Exchange property with the key Exchange.EXCEPTION_CAUGHT. The demo below illustrates this:
				
// setup error handler to use JMS as queue and store the entire Exchange
errorHandler(deadLetterChannel("jms:queue:dead?transferExchange=true"));

					Then you can consume from the JMS queue and analyze the problem:
				
from("jms:queue:dead").to("bean:myErrorAnalyzer");

// and in our bean
String body = exchange.getIn().getBody();
Exception cause = exchange.getProperty(Exchange.EXCEPTION_CAUGHT, Exception.class);
// the cause message is
String problem = cause.getMessage();

Using JMS as a Dead Letter Channel storing error only

					You can use JMS to store the cause error message or to store a custom body, which you can initialize yourself. The following example uses the Message Translator EIP to do a transformation on the failed exchange before it is moved to the JMS dead letter queue:
				
// we sent it to a seda dead queue first
errorHandler(deadLetterChannel("seda:dead"));

// and on the seda dead queue we can do the custom transformation before its sent to the JMS queue
from("seda:dead").transform(exceptionMessage()).to("jms:queue:dead");

					Here we only store the original cause error message in the transform. You can, however, use any Expression to send whatever you like. For example, you can invoke a method on a Bean or use a custom processor.
				

Sending an InOnly message and keeping the JMSReplyTo header

				When sending to a JMS destination using camel-jms the producer will use the MEP to detect if its InOnly or InOut messaging. However there can be times where you want to send an InOnly message but keeping the JMSReplyTo header. To do so you have to instruct Camel to keep it, otherwise the JMSReplyTo header will be dropped.
			

				For example to send an InOnly message to the foo queue, but with a JMSReplyTo with bar queue you can do as follows:
			
 template.send("activemq:queue:foo?preserveMessageQos=true", new Processor() {
 public void process(Exchange exchange) throws Exception {
 exchange.getIn().setBody("World");
 exchange.getIn().setHeader("JMSReplyTo", "bar");
 }
 });

				Notice we use preserveMessageQos=true to instruct Camel to keep the JMSReplyTo header.
			

Setting JMS provider options on the destination

				Some JMS providers, like IBM’s WebSphere MQ need options to be set on the JMS destination. For example, you may need to specify the targetClient option. Since targetClient is a WebSphere MQ option and not a Camel URI option, you need to set that on the JMS destination name like so:
			
// ...
.setHeader("CamelJmsDestinationName", constant("queue:///MY_QUEUE?targetClient=1"))
.to("wmq:queue:MY_QUEUE?useMessageIDAsCorrelationID=true");

				Some versions of WMQ won’t accept this option on the destination name and you will get an exception like:
			
com.ibm.msg.client.jms.DetailedJMSException: JMSCC0005: The specified
value 'MY_QUEUE?targetClient=1' is not allowed for
'XMSC_DESTINATION_NAME'

				A workaround is to use a custom DestinationResolver:
			
JmsComponent wmq = new JmsComponent(connectionFactory);

wmq.setDestinationResolver(new DestinationResolver() {
 public Destination resolveDestinationName(Session session, String destinationName, boolean pubSubDomain) throws JMSException {
 MQQueueSession wmqSession = (MQQueueSession) session;
 return wmqSession.createQueue("queue:///" + destinationName + "?targetClient=1");
 }
});

See Also

	
						Configuring Camel
					
	
						Component
					
	
						Endpoint
					
	
						Getting Started
					
	
						Transactional Client
					
	
						Bean Integration
					
	
						Tutorial-JmsRemoting
					
	
						JMSTemplate gotchas
					

Chapter 178. JMX Component

Camel JMX

				Apache Camel has extensive support for JMX to allow you to monitor and control the Camel managed objects with a JMX client.
			

				Camel also provides a JMX component that allows you to subscribe to MBean notifications. This page is about how to manage and monitor Camel using JMX.
			

Options

				The JMX component has no options.
			

				The JMX endpoint is configured using URI syntax:
			
jmx:serverURL

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									serverURL
								

								 	
									server url comes from the remaining endpoint
								

								 	 	
									String
								

								

Query Parameters (29 parameters):

	Name	Description	Default	Type
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									format (consumer)
								

								 	
									URI Property: Format for the message body. Either xml or raw. If xml, the notification is serialized to xml. If raw, then the raw java object is set as the body.
								

								 	
									xml
								

								 	
									String
								

								
	
									granularityPeriod (consumer)
								

								 	
									URI Property: monitor types only The frequency to poll the bean to check the monitor.
								

								 	
									10000
								

								 	
									long
								

								
	
									monitorType (consumer)
								

								 	
									URI Property: monitor types only The type of monitor to create. One of string, gauge, counter.
								

								 	 	
									String
								

								
	
									objectDomain (consumer)
								

								 	
									Required URI Property: The domain for the mbean you’re connecting to
								

								 	 	
									String
								

								
	
									objectName (consumer)
								

								 	
									URI Property: The name key for the mbean you’re connecting to. This value is mutually exclusive with the object properties that get passed.
								

								 	 	
									String
								

								
	
									observedAttribute (consumer)
								

								 	
									URI Property: monitor types only The attribute to observe for the monitor bean.
								

								 	 	
									String
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									handback (advanced)
								

								 	
									URI Property: Value to handback to the listener when a notification is received. This value will be put in the message header with the key jmx.handback
								

								 	 	
									Object
								

								
	
									notificationFilter (advanced)
								

								 	
									URI Property: Reference to a bean that implements the NotificationFilter.
								

								 	 	
									NotificationFilter
								

								
	
									objectProperties (advanced)
								

								 	
									URI Property: properties for the object name. These values will be used if the objectName param is not set
								

								 	 	
									Map
								

								
	
									reconnectDelay (advanced)
								

								 	
									URI Property: The number of seconds to wait before attempting to retry establishment of the initial connection or attempt to reconnect a lost connection
								

								 	
									10
								

								 	
									int
								

								
	
									reconnectOnConnection Failure (advanced)
								

								 	
									URI Property: If true the consumer will attempt to reconnect to the JMX server when any connection failure occurs. The consumer will attempt to re-establish the JMX connection every 'x' seconds until the connection is made-- where 'x' is the configured reconnectionDelay
								

								 	
									false
								

								 	
									boolean
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									testConnectionOnStartup (advanced)
								

								 	
									URI Property: If true the consumer will throw an exception if unable to establish the JMX connection upon startup. If false, the consumer will attempt to establish the JMX connection every 'x' seconds until the connection is made — where 'x' is the configured reconnectionDelay
								

								 	
									true
								

								 	
									boolean
								

								
	
									initThreshold (counter)
								

								 	
									URI Property: counter monitor only Initial threshold for the monitor. The value must exceed this before notifications are fired.
								

								 	 	
									int
								

								
	
									modulus (counter)
								

								 	
									URI Property: counter monitor only The value at which the counter is reset to zero
								

								 	 	
									int
								

								
	
									offset (counter)
								

								 	
									URI Property: counter monitor only The amount to increment the threshold after it’s been exceeded.
								

								 	 	
									int
								

								
	
									differenceMode (gauge)
								

								 	
									URI Property: counter gauge monitor only If true, then the value reported in the notification is the difference from the threshold as opposed to the value itself.
								

								 	
									false
								

								 	
									boolean
								

								
	
									notifyHigh (gauge)
								

								 	
									URI Property: gauge monitor only If true, the gauge will fire a notification when the high threshold is exceeded
								

								 	
									false
								

								 	
									boolean
								

								
	
									notifyLow (gauge)
								

								 	
									URI Property: gauge monitor only If true, the gauge will fire a notification when the low threshold is exceeded
								

								 	
									false
								

								 	
									boolean
								

								
	
									thresholdHigh (gauge)
								

								 	
									URI Property: gauge monitor only Value for the gauge’s high threshold
								

								 	 	
									Double
								

								
	
									thresholdLow (gauge)
								

								 	
									URI Property: gauge monitor only Value for the gauge’s low threshold
								

								 	 	
									Double
								

								
	
									password (security)
								

								 	
									URI Property: credentials for making a remote connection
								

								 	 	
									String
								

								
	
									user (security)
								

								 	
									URI Property: credentials for making a remote connection
								

								 	 	
									String
								

								
	
									notifyDiffer (string)
								

								 	
									URI Property: string monitor only If true, the string monitor will fire a notification when the string attribute differs from the string to compare.
								

								 	
									false
								

								 	
									boolean
								

								
	
									notifyMatch (string)
								

								 	
									URI Property: string monitor only If true, the string monitor will fire a notification when the string attribute matches the string to compare.
								

								 	
									false
								

								 	
									boolean
								

								
	
									stringToCompare (string)
								

								 	
									URI Property: string monitor only Value for the string monitor’s string to compare.
								

								 	 	
									String
								

								

Activating JMX in Camel

Note

					Spring JAR dependency, required for Camel 2.8 or older
				

					spring-context.jar, spring-aop.jar, spring-beans.jar, and spring-core.jar are needed on the classpath by Camel to be able to use JMX instrumentation. If these .jars are not on the classpath, Camel will fallback to non JMX mode. This situation is logged at WARN level using logger name org.apache.camel.impl.DefaultCamelContext.
				

					From Camel 2.9 onwards, the Spring JARs are no longer required to run Camel in JMX mode.
				

Using JMX to manage Apache Camel

					By default, JMX instrumentation agent is enabled in Camel, which means that Camel runtime creates and registers MBean management objects with a MBeanServer instance in the VM. This allows Camel users to instantly obtain insights into how Camel routes perform down to the individual processor level.
				

					The supported types of management objects are endpoint, route, service, and processor. Some of these management objects also expose lifecycle operations in addition to performance counter attributes.
				

					The DefaultManagementNamingStrategy is the default naming strategy which builds object names used for MBean registration. By default, org.apache.camel is the domain name for all object names created by CamelNamingStrategy. The domain name of the MBean object can be configured by Java VM system property:
				
-Dorg.apache.camel.jmx.mbeanObjectDomainName=your.domain.name

					Or, by adding a jmxAgent element inside the camelContext element in Spring configuration:
				
<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
 <jmxAgent id="agent" mbeanObjectDomainName="your.domain.name"/>
 ...
</camelContext>

					Spring configuration always takes precedence over system properties when they both present. It is true for all JMX related configurations.
				

Disabling JMX instrumentation agent in Camel

					You can disable JMX instrumentation agent by setting the Java VM system property as follow:
				
-Dorg.apache.camel.jmx.disabled=true

					The property value is treated as boolean.
				

					Or, by adding a jmxAgent element inside the camelContext element in Spring configuration:
				
<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
 <jmxAgent id="agent" disabled="true"/>
 ...
</camelContext>

					Or in Camel 2.1 its a bit easier (not having to use JVM system property) if using pure Java as you can disable it as follows:
				
CamelContext camel = new DefaultCamelContext();
camel.disableJMX();

Locating a MBeanServer in the Java VM

					Each CamelContext can have an instance of InstrumentationAgent wrapped inside the InstrumentationLifecycleStrategy. The InstrumentationAgent is the object that interfaces with a MBeanServer to register / unregister Camel MBeans. Multiple CamelContexts / InstrumentationAgents can / should share a MBeanServer. By default, Camel runtime picks the first MBeanServer returned by MBeanServerFactory.findMBeanServer method that matches the default domain name of org.apache.camel.
				

					You may want to change the default domain name to match the MBeanServer instance that you are already using in your application. Especially, if your MBeanServer is attached to a JMX connector server, you will not need to create a connector server in Camel.
				

					You can configure the matching default domain name via system property.
				
-Dorg.apache.camel.jmx.mbeanServerDefaultDomain=<your.domain.name>

					Or, by adding a jmxAgent element inside the camelContext element in Spring configuration:
				
<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
 <jmxAgent id="agent" mbeanServerDefaultDomain="your.domain.name"/>
 ...
</camelContext>

					If no matching MBeanServer can be found, a new one is created and the new `MBeanServer’s default domain name is set according to the default and configuration as mentioned above.
				

					It is also possible to use the PlatformMBeanServer when it is desirable to manage JVM MBeans by setting the system property. The MBeanServer default domain name configuration is ignored as it is not applicable.
				
Caution

					Starting in next release (1.5), the default value of usePlatformMBeanServer will be changed to true. You can set the property to false to disable using platform MBeanServer.
				

-Dorg.apache.camel.jmx.usePlatformMBeanServer=True

					Or, by adding a jmxAgent element inside the camelContext element in Spring configuration:
				
<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
 <jmxAgent id="agent" usePlatformMBeanServer="true"/>
 ...
</camelContext>

Creating JMX RMI Connector Server

					JMX connector server enables MBeans to be remotely managed by a JMX client such as JConsole; Camel JMX RMI connector server can be optionally turned on by setting system property and the MBeanServer used by Camel is attached to that connector server.
				
-Dorg.apache.camel.jmx.createRmiConnector=True

					Or, by adding a jmxAgent element inside the camelContext element in Spring configuration:
				
<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
 <jmxAgent id="agent" createConnector="true"/>
 ...
</camelContext>

JMX Service URL

					The default JMX Service URL has the format:
				
service:jmx:rmi:///jndi/rmi://localhost:<registryPort>/<serviceUrlPath>

					registryPort is the RMI registry port and the default value is 1099.
				

					You can set the RMI registry port by system property.
				
-Dorg.apache.camel.jmx.rmiConnector.registryPort=<port number>

					Or, by adding a jmxAgent element inside the camelContext element in Spring configuration:
				
<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
 <jmxAgent id="agent" createConnector="true" registryPort="port number"/>
 ...
</camelContext>

					serviceUrlPath is the path name in the URL and the default value is /jmxrmi/camel.
				

					You can set the service URL path by system property.
				
-Dorg.apache.camel.jmx.serviceUrlPath=<path>
Tip

					Setting ManagementAgent settings in Java
				

					In Camel 2.4 onwards you can also set the various options on the ManagementAgent:
				
context.getManagementStrategy().getManagementAgent().setServiceUrlPath("/foo/bar");
context.getManagementStrategy().getManagementAgent().setRegistryPort(2113);
context.getManagementStrategy().getManagementAgent().setCreateConnector(true);

					Or, by adding a jmxAgent element inside the camelContext element in Spring configuration:
				
<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
 <jmxAgent id="agent" createConnector="true" serviceUrlPath="path"/>
 ...
</camelContext>

					By default, RMI server object listens on a dynamically generated port, which can be a problem for connections established through a firewall. In such situations, RMI connection port can be explicitly set by the system property.
				
-Dorg.apache.camel.jmx.rmiConnector.connectorPort=<port number>

					Or, by adding a jmxAgent element inside the camelContext element in Spring configuration:
				
<camelContext id="camel" xmlns="http://activemq.apache.org/camel/schema/spring">
 <jmxAgent id="agent" createConnector="true" connectorPort="port number"/>
 ...
</camelContext>

					When the connector port option is set, the JMX service URL will become:
				
service:jmx:rmi://localhost:<connectorPort>/jndi/rmi://localhost:<registryPort>/<serviceUrlPath>

The System Properties for Camel JMX support

	Property Name	value	Description
	
									org.apache.camel.jmx
								

								 	
									true or false
								

								 	
									if is true, it will enable jmx feature in Camel
								

								

					See more system properties in this section below: jmxAgent Properties Reference.
				

How to use authentication with JMX

					JMX in the JDK have features for authentication and also for using secure connections over SSL. You have to refer to the SUN documentation how to use this:
				
	
							http://java.sun.com/j2se/1.5.0/docs/guide/management/agent.html
						
	
							http://java.sun.com/javase/6/docs/technotes/guides/management/agent.html
						

JMX inside an Application Server

Tomcat 6

						See this page for details about enabling JMX in Tomcat.
					

						In short, modify your catalina.sh (or catalina.bat in Windows) file to set the following options…​
					
 set CATALINA_OPTS=-Dcom.sun.management.jmxremote \
 -Dcom.sun.management.jmxremote.port=1099 \
 -Dcom.sun.management.jmxremote.ssl=false \
 -Dcom.sun.management.jmxremote.authenticate=false

JBoss AS 4

						By default JBoss creates its own MBeanServer. To allow Camel to expose to the same server follow these steps:
					
	
								Tell Camel to use the Platform MBeanServer (This defaults to true in Camel 1.5)
							

<camel:camelContext id="camelContext">
 <camel:jmxAgent id="jmxAgent" mbeanObjectDomainName="org.yourname" usePlatformMBeanServer="true" />
</camel:camelContext>
	
								Alter your JBoss instance to use the Platform MBeanServer.
 Add the following property to your JAVA_OPTS by editing run.sh or run.conf -Djboss.platform.mbeanserver. See http://wiki.jboss.org/wiki/JBossMBeansInJConsole
							

WebSphere

						Alter the mbeanServerDefaultDomain to be WebSphere:
					
<camel:jmxAgent id="agent" createConnector="true" mbeanObjectDomainName="org.yourname" usePlatformMBeanServer="false" mbeanServerDefaultDomain="WebSphere"/>

Oracle OC4j

						The Oracle OC4J J2EE application server will not allow Camel to access the platform MBeanServer. You can identify this in the log as Camel will log a WARNING.
					
xxx xx, xxxx xx:xx:xx xx org.apache.camel.management.InstrumentationLifecycleStrategy onContextStart
WARNING: Could not register CamelContext MBean
java.lang.SecurityException: Unauthorized access from application: xx to MBean: java.lang:type=ClassLoading
 at oracle.oc4j.admin.jmx.shared.UserMBeanServer.checkRegisterAccess(UserMBeanServer.java:873)

						To resolve this you should disable the JMX agent in Camel, see section Disabling JMX instrumentation agent in Camel.
					

Advanced JMX Configuration

					The Spring configuration file allows you to configure how Camel is exposed to JMX for management. In some cases, you could specify more information here, like the connector’s port or the path name.
				

Example:

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
 <jmxAgent id="agent" createConnector="true" registryPort="2000" mbeanServerDefaultDomain="org.apache.camel.test"/>
 <route>
 <from uri="seda:start"/>
 <to uri="mock:result"/>
 </route>
</camelContext>

					If you wish to change the Java 5 JMX settings you can use various JMX system properties
				

					For example you can enable remote JMX connections to the Sun JMX connector, via setting the following environment variable (using set or export depending on your platform). These settings only configure the Sun JMX connector within Java 1.5+, not the JMX connector that Camel creates by default.
				
SUNJMX=-Dcom.sun.management.jmxremote=true -Dcom.sun.management.jmxremote.port=1616 \
-Dcom.sun.management.jmxremote.authenticate=false -Dcom.sun.management.jmxremote.ssl=false

					(The SUNJMX environment variable is simple used by the startup script for Camel, as additional startup parameters for the JVM. If you start Camel directly, you’ll have to pass these parameters yourself.)
				

jmxAgent Properties Reference

	Spring property	System property	Default Value	Description
	
									id
								

								 	
									
								

								 	
									
								

								 	
									The JMX agent name, and it is not optional
								

								
	
									usePlatformMBeanServer
								

								 	
									org.apache.camel.jmx.usePlatformMBeanServer
								

								 	
									false, true - Release 1.5 or later
								

								 	
									If true, it will use the MBeanServer from the JVM
								

								
	
									mbeanServerDefaultDomain
								

								 	
									org.apache.camel.jmx.mbeanServerDefaultDomain
								

								 	
									org.apache.camel
								

								 	
									The default JMX domain of the MBeanServer
								

								
	
									mbeanObjectDomainName
								

								 	
									org.apache.camel.jmx.mbeanObjectDomainName
								

								 	
									org.apache.camel
								

								 	
									The JMX domain that all object names will use
								

								
	
									createConnector
								

								 	
									org.apache.camel.jmx.createRmiConnect
								

								 	
									false
								

								 	
									If we should create a JMX connector (to allow remote management) for the MBeanServer
								

								
	
									registryPort
								

								 	
									org.apache.camel.jmx.rmiConnector.registryPort
								

								 	
									1099
								

								 	
									The port that the JMX RMI registry will use
								

								
	
									connectorPort
								

								 	
									org.apache.camel.jmx.rmiConnector.connectorPort
								

								 	
									-1 (dynamic)
								

								 	
									The port that the JMX RMI server will use
								

								
	
									serviceUrlPath
								

								 	
									org.apache.camel.jmx.serviceUrlPath
								

								 	
									/jmxrmi/camel
								

								 	
									The path that JMX connector will be registered under
								

								
	
									onlyRegisterProcessorWithCustomId
								

								 	
									org.apache.camel.jmx.onlyRegisterProcessorWithCustomId
								

								 	
									false
								

								 	
									Camel 2.0: If this option is enabled then only processors with a custom id set will be registered. This allows you to filer out unwanted processors in the JMX console.
								

								
	
									statisticsLevel
								

								 	
									
								

								 	
									All / Default
								

								 	
									Camel 2.1: Configures the level for whether performance statistics is enabled for the MBean. See section Configuring level of granularity for performance statistics for more details. From Camel 2.16 onwards the All option is renamed to Default, and a new Extended option has been introduced which allows gathered additional runtime JMX metrics.
								

								
	
									includeHostName
								

								 	
									org.apache.camel.jmx.includeHostName
								

								 	
									
								

								 	
									Camel 2.13: Whether to include the hostname in the MBean naming. From Camel 2.13 onwards this is default false, where as in older releases its default true. You can use this option to restore old behavior if really needed.
								

								
	
									useHostIPAddress
								

								 	
									org.apache.camel.jmx.useHostIPAddress
								

								 	
									false
								

								 	
									Camel 2.16: Whether to use hostname or IP Address in the service url when creating the remote connector. By default the hostname will be used.
								

								
	
									loadStatisticsEnabled
								

								 	
									org.apache.camel.jmx.loadStatisticsEnabled
								

								 	
									false
								

								 	
									Camel 2.16:Whether load statistics is enabled (gathers load statistics using a background thread per CamelContext).
								

								
	
									endpointRuntimeStatisticsEnabled
								

								 	
									org.apache.camel.jmx.endpointRuntimeStatisticsEnabled
								

								 	
									true
								

								 	
									Camel 2.16: Whether endpoint runtime statistics is enabled (gathers runtime usage of each incoming and outgoing endpoints).
								

								

Configuring whether to register MBeans always, for new routes or just by default

					Available as of Camel 2.7
				

					Camel now offers 2 settings to control whether or not to register mbeans
				
	Option	Default	Description
	
									registerAlways
								

								 	
									false
								

								 	
									If enabled then MBeans is always registered.
								

								
	
									registerNewRoutes
								

								 	
									true
								

								 	
									If enabled then adding new routes after CamelContext has been started will also register MBeans from that given route.
								

								

					By default Camel registers MBeans for all the routes configured when its starting. The registerNewRoutes option control if MBeans should also be registered if you add new routes thereafter. You can disable this, if you for example add and remove temporary routes where management is not needed.
				

					Be a bit caution to use the registerAlways option when using dynamic EIP patterns such as the Recipient List having unique endpoints. If so then each unique endpoint and its associated services/producers would also be registered. This could potential lead to system degration due the rising number of mbeans in the registry. A MBean is not a light-weight object and thus consumes memory.
				

Monitoring Camel using JMX

Using JConsole to monitor Camel

					The CamelContext should appear in the list of local connections, if you are running JConsole on the same host as Camel.
				

					To connect to a remote Camel instance, or if the local process does not show up, use Remote Process option, and enter an URL. Here is an example localhost URL:service:jmx:rmi:///jndi/rmi://localhost:1099/jmxrmi/camel.
				

					Using the Apache Camel with JConsole:
				

					[image: image]

				

Which endpoints are registered

					In Camel 2.1 onwards only singleton endpoints are registered as the overhead for non singleton will be substantial in cases where thousands or millions of endpoints are used. This can happens when using a Recipient List EIP or from a ProducerTemplate that sends a lot of messages.
				

Which processors are registered

					See this FAQ.
				

How to use the JMX NotificationListener to listen the camel events?

					The Camel notification events give a coarse grained overview what is happening. You can see lifecycle event from context and endpoints and you can see exchanges being received by and sent to endpoints.
				

					From Camel 2.4 you can use a custom JMX NotificationListener to listen the camel events.
				

					First you need to set up a JmxNotificationEventNotifier before you start the CamelContext:
				
// Set up the JmxNotificationEventNotifier
notifier = new JmxNotificationEventNotifier();
notifier.setSource("MyCamel");
notifier.setIgnoreCamelContextEvents(true);
notifier.setIgnoreRouteEvents(true);
notifier.setIgnoreServiceEvents(true);

CamelContext context = new DefaultCamelContext(createRegistry());
context.getManagementStrategy().addEventNotifier(notifier);

					Second you can register your listener for listening the event:
				
// register the NotificationListener
ObjectName on = ObjectName.getInstance("org.apache.camel:context=camel-1,type=eventnotifiers,name=JmxEventNotifier");
MyNotificationListener listener = new MyNotificationListener();
context.getManagementStrategy().getManagementAgent().getMBeanServer().addNotificationListener(on,
 listener,
 new NotificationFilter() {
 private static final long serialVersionUID = 1L;

 public boolean isNotificationEnabled(Notification notification) {
 return notification.getSource().equals("MyCamel");
 }
 }, null);

Using the Tracer MBean to get fine grained tracing

					Additionally to the coarse grained notifications above Camel 2.9.0 support JMX Notification for fine grained trace events.
				

					These can be found in the Tracer MBean. To activate fine grained tracing you first need to activate tracing on the context or on a route.
				

					This can either be done when configuring the context or on the context / route MBeans.
				

					As a second step you have to set the jmxTraceNotifications attribute to true on the tracer. This can again be done when configuring the context or at runtime on the tracer MBean.
				

					Now you can register for TraceEvent Notifications on the Tracer MBean using JConsole. There will be one Notification for every step on the route with all exchange and message details:
				

					[image: image]

				

Using JMX for your own Camel Code

Registering your own Managed Endpoints

					Available as of Camel 2.0
 You can decorate your own endpoints with Spring managed annotations @ManagedResource to allow to register them in the Camel MBeanServer and thus access your custom MBeans using JMX.
				
Note

						In Camel 2.1 we have changed this to apply other than just endpoints but then you need to implement the interface org.apache.camel.spi.ManagementAware as well. More about this later.
					

					For example we have the following custom endpoint where we define some options to be managed:
				
@ManagedResource(description = "Our custom managed endpoint")
public class CustomEndpoint extends MockEndpoint implements ManagementAware<CustomEndpoint> {

 public CustomEndpoint(final String endpointUri, final Component component) {
 super(endpointUri, component);
 }

 public Object getManagedObject(CustomEndpoint object) {
 return this;
 }

 public boolean isSingleton() {
 return true;
 }

 protected String createEndpointUri() {
 return "custom";
 }

 @ManagedAttribute
 public String getFoo() {
 return "bar";
 }

 @ManagedAttribute
 public String getEndpointUri() {
 return super.getEndpointUri();
 }
}

					Notice from Camel 2.9 onwards its encouraged to use the @ManagedResource, @ManagedAttribute, and @ManagedOperation from the org.apache.camel.api.management package. This allows your custom code to not depend on Spring JARs.
				

Programming your own Managed Services

					Available as of Camel 2.1
				

					Camel now offers to use your own MBeans when registering services for management. What that means is for example you can develop a custom Camel component and have it expose MBeans for endpoints, consumers and producers etc. All you need to do is to implement the interface org.apache.camel.spi.ManagementAware and return the managed object Camel should use.
				

					Now before you think oh boys the JMX API is really painful and terrible, then yeah you are right. Lucky for us Spring though too and they created a range of annotations you can use to export management on an existing bean. That means that you often use that and just return this in the getManagedObject from the ManagementAware interface. For an example see the code example above with the CustomEndpoint.
				

					Now in Camel 2.1 you can do this for all the objects that Camel registers for management which are quite a bunch, but not all.
				

					For services which do not implement this ManagementAware interface then Camel will fallback to using default wrappers as defined in the table below:
				
	Type	MBean wrapper
	
									CamelContext
								

								 	
									ManagedCamelContext
								

								
	
									Component
								

								 	
									ManagedComponent
								

								
	
									Endpoint
								

								 	
									ManagedEndpoint
								

								
	
									Consumer
								

								 	
									ManagedConsumer
								

								
	
									Producer
								

								 	
									ManagedProducer
								

								
	
									Route
								

								 	
									ManagedRoute
								

								
	
									Processor
								

								 	
									ManagedProcessor
								

								
	
									Tracer
								

								 	
									ManagedTracer
								

								
	
									Service
								

								 	
									ManagedService
								

								

					In addition to that there are some extended wrappers for specialized types such as:
				
	Type	MBean wrapper
	
									ScheduledPollConsumer
								

								 	
									ManagedScheduledPollConsumer
								

								
	
									BrowsableEndpoint
								

								 	
									ManagedBrowseableEndpoint
								

								
	
									Throttler
								

								 	
									ManagedThrottler
								

								
	
									Delayer
								

								 	
									ManagedDelayer
								

								
	
									SendProcessor
								

								 	
									ManagedSendProcessor
								

								

					And in the future we will add additional wrappers for more EIP patterns.
				

ManagementNamingStrategy

					Available as of Camel 2.1
				

					Camel provides a pluggable API for naming strategy by org.apache.camel.spi.ManagementNamingStrategy. A default implementation is used to compute the MBean names that all MBeans are registered with.
				

Management naming pattern

					Available as of Camel 2.10
				

					From Camel 2.10 onwards we made it easier to configure a naming pattern for the MBeans. The pattern is used as part of the ObjectName as they key after the domain name.
				

					By default Camel will use MBean names for the ManagedCamelContextMBean as follows:
				
org.apache.camel:context=localhost/camel-1,type=context,name=camel-1

					And from Camel 2.13 onwards the hostname is not included in the MBean names, so the above example would be as follows:
				
org.apache.camel:context=camel-1,type=context,name=camel-1

					If you configure a name on the CamelContext then that name is part of the ObjectName as well. For example if we have
				
<camelContext id="myCamel" ...>

					Then the MBean names will be as follows:
				
org.apache.camel:context=localhost/myCamel,type=context,name=myCamel

					Now if there is a naming clash in the JVM, such as there already exists a MBean with that given name above, then Camel will by default try to auto correct this by finding a new free name in the JMXMBeanServer by using a counter. As shown below the counter is now appended, so we have myCamel-1 as part of the ObjectName:
				
org.apache.camel:context=localhost/myCamel-1,type=context,name=myCamel

					This is possible because Camel uses a naming pattern by default that supports the following tokens:
				
	
							camelId = the CamelContext id (eg the name)
						
	
							name - same as camelId
						
	
							counter - an incrementing counter * bundleId - the OSGi bundle id (only for OSGi environments)
						
	
							symbolicName - the OSGi symbolic name (only for OSGi environments)
						
	
							version - the OSGi bundle version (only for OSGi environments)
						

					The default naming pattern is differentiated between OSGi and non-OSGi as follows:
				
	
							non OSGI: name
						
	
							OSGi: bundleId-name
						
	
							OSGi Camel 2.13: symbolicName
						

					However if there is a naming clash in the JMXMBeanServer then Camel will automatic fallback and use the counter in the pattern to remedy this. And thus the following patterns will then be used:
				
	
							non OSGI: name-counter
						
	
							OSGi: bundleId-name-counter
						
	
							OSGi Camel 2.13: symbolicName-counter
						

					If you set an explicit naming pattern, then that pattern is always used, and the default patterns above is not used.
				

					This allows us to have full control, very easily, of the naming for both the CamelContext id in the Registry as well the JMX MBeans in the JMXMBeanRegistry.
				

					From Camel 2.15 onwards you can configure the default management name pattern using a JVM system property, to configure this globally for the JVM. Notice that you can override this pattern by configure it explicit, as shown in the examples further below.
				

					Set a JVM system property to use a default management name pattern that prefixes the name with cool.
				
System.setProperty(JmxSystemPropertyKeys.MANAGEMENT_NAME_PATTERN, "cool-#name#");

					So if we want to explicit name both the CamelContext and to use fixed MBean names, that do not change (eg has no counters), then we can use the new managementNamePattern attribute:
				
<camelContext id="myCamel" managementNamePattern="#name#">

					Then the MBean names will always be as follows:
				
org.apache.camel:context=localhost/myCamel,type=context,name=myCamel

					In Java, you can configure the managementNamePattern as follows:
				
context.getManagementNameStrategy().setNamePattern("#name#");

					You can also use a different name in the managementNamePattern than the id, so for example we can do:
				
<camelContext id="myCamel" managementNamePattern="coolCamel">

					You may want to do this in OSGi environments in case you do not want the OSGi bundle id as part of the MBean names. As the OSGi bundle id can change if you restart the server, or uninstall and install the same application. You can then do as follows to not use the OSGi bundle id as part of the name:
				
<camelContext id="myCamel" managementNamePattern="#name#">

					Note this requires that myCamel is unique in the entire JVM. If you install a 2nd Camel application that has the same CamelContext id and managementNamePattern then Camel will fail upon starting, and report a MBean already exists exception.
				

ManagementStrategy

					Available as of Camel 2.1
				

					Camel now provides a totally pluggable management strategy that allows you to be 100% in control of management. It is a rich interface with many methods for management. Not only for adding and removing managed objects from the MBeanServer, but also event notification is provided as well using the org.apache.camel.spi.EventNotifier API. What it does, for example, is make it easier to provide an adapter for other management products. In addition, it also allows you to provide more details and features that are provided out of the box at Apache.
				

Configuring level of granularity for performance statistics

					Available as of Camel 2.1
				

					You can now set a pre set level whether performance statistics is enabled or not when Camel start ups. The levels are
				
	
							Extended - As default but with additional statistics gathered during runtime such as fine grained level of usage of endpoints and more. This options requires Camel 2.16
						
	
							All / Default - Camel will enable statistics for both routes and processors (fine grained). From Camel 2.16 onwards the All option was renamed to Default.
						
	
							RoutesOnly - Camel will only enable statistics for routes (coarse grained)
						
	
							Off - Camel will not enable statistics for any.
						

					From Camel 2.9 onwards the performance statistics also include average load statistics per CamelContext and Route MBeans. The statistics is average load based on the number of in-flight exchanges, on a per 1, 5, and 15 minute rate. This is similar to load statistics on Unix systems. Camel 2.11 onwards allows you to explicit disable load performance statistics by setting loadStatisticsEnabled=false on the <jmxAgent>. Note that it will be off if the statics level is configured to off as well. From Camel 2.13 onwards the load performance statistics is by default disabled. You can enable this by setting loadStatisticsEnabled=true on the <jmxAgent>.
				

					At runtime you can always use the management console (such as JConsole) to change on a given route or processor whether its statistics are enabled or not.
				
Note

						What does statistics enabled mean?
					

						Statistics enabled means that Camel will do fine grained performance statistics for that particular MBean. The statistics you can see are many, such as: number of exchanges completed/failed, last/total/mina/max/mean processing time, first/last failed time, etc.
					

					Using Java DSL you set this level by:
				
// only enable routes when Camel starts
context.getManagementStrategy().setStatisticsLevel(ManagementStatisticsLevel.RoutesOnly);

					And from Spring DSL you do:
				
<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
 <jmxAgent id="agent" statisticsLevel="RoutesOnly"/>
 ...
</camelContext>

Hiding sensitive information

				Available as of Camel 2.12
			

				By default, Camel enlists MBeans in JMX such as endpoints configured using URIs. In this configuration, there may be sensitive information such as passwords.
			

				This information can be hidden by enabling the mask option as shown below:
			

				Using Java DSL you turn this on by:
			
 // only enable routes when Camel starts
 context.getManagementStrategy().getManagementAgent().setMask(true);

				And from Spring DSL you do:
			
 <camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
 <jmxAgent id="agent" mask="true"/>
 ...
 </camelContext>

				This will mask URIs having options such as password and passphrase, and use xxxxxx as the replacement value.
			
Declaring which JMX attributes and operations to mask

					On the org.apache.camel.api.management.ManagedAttribute and org.apache.camel.api.management.ManagedOperation, the attribute mask can be set to true to indicate that the result of this JMX attribute/operation should be masked (if enabled on JMX agent, see above).
				

					For example, on the default managed endpoints from camel-core org.apache.camel.api.management.mbean.ManagedEndpointMBean, we have declared that the EndpointUri JMX attribute is masked:
				
@ManagedAttribute(description = "Endpoint URI", mask = true)
String getEndpointUri();

See Also

	
						Management Example
					
	
						Why is my processor not showing up in JConsole
					

Chapter 179. JOLT Component

			Available as of Camel version 2.16
		

			The jolt: component allows you to process a JSON messages using an JOLT specification. This can be ideal when doing JSON to JSON transformation.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-jolt</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>

			
		
URI format

jolt:specName[?options]

				Where specName is the classpath-local URI of the specification to invoke; or the complete URL of the remote specification (eg: file://folder/myfile.json).
			

				You can append query options to the URI in the following format, ?option=value&option=value&…​
			

Options

				The JOLT component supports 2 options which are listed below.
			
	Name	Description	Default	Type
	
								transform (advanced)
							

							 	
								Explicitly sets the Transform to use. If not set a Transform specified by the transformDsl will be created
							

							 	 	
								Transform
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The JOLT endpoint is configured using URI syntax:
			
jolt:resourceUri

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									resourceUri
								

								 	
									Required Path to the resource. You can prefix with: classpath, file, http, ref, or bean. classpath, file and http loads the resource using these protocols (classpath is default). ref will lookup the resource in the registry. bean will call a method on a bean to be used as the resource. For bean you can specify the method name after dot, eg bean:myBean.myMethod.
								

								 	 	
									String
								

								

Query Parameters (5 parameters):

	Name	Description	Default	Type
	
									contentCache (producer)
								

								 	
									Sets whether to use resource content cache or not
								

								 	
									false
								

								 	
									boolean
								

								
	
									inputType (producer)
								

								 	
									Specifies if the input is hydrated JSON or a JSON String.
								

								 	
									Hydrated
								

								 	
									JoltInputOutputType
								

								
	
									outputType (producer)
								

								 	
									Specifies if the output should be hydrated JSON or a JSON String.
								

								 	
									Hydrated
								

								 	
									JoltInputOutputType
								

								
	
									transformDsl (producer)
								

								 	
									Specifies the Transform DSL of the endpoint resource. If none is specified Chainr will be used.
								

								 	
									Chainr
								

								 	
									JoltTransformType
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

Samples

				For example you could use something like
			
from("activemq:My.Queue").
 to("jolt:com/acme/MyResponse.json");

				And a file based resource:
			
from("activemq:My.Queue").
 to("jolt:file://myfolder/MyResponse.json?contentCache=true").
 to("activemq:Another.Queue");

				You can also specify what specification the component should use dynamically via a header, so for example:
			
from("direct:in").
 setHeader("CamelJoltResourceUri").constant("path/to/my/spec.json").
 to("jolt:dummy");

				
			

See Also

	
						Configuring Camel
					
	
						Component
					
	
						Endpoint
					
	
						Getting Started
					

Chapter 180. JPA Component

			Available as of Camel version 1.0
		

			The jpa component enables you to store and retrieve Java objects from persistent storage using EJB 3’s Java Persistence Architecture (JPA), which is a standard interface layer that wraps Object/Relational Mapping (ORM) products such as OpenJPA, Hibernate, TopLink, and so on.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-jpa</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>
Sending to the endpoint

				You can store a Java entity bean in a database by sending it to a JPA producer endpoint. The body of the In message is assumed to be an entity bean (that is, a POJO with an @Entity annotation on it) or a collection or array of entity beans.
			

				If the body is a List of entities, make sure to use entityType=java.util.ArrayList as a configuration passed to the producer endpoint.
			

				If the body does not contain one of the previous listed types, put a Message Translator in front of the endpoint to perform the necessary conversion first.
			

				From Camel 2.19 onwards you can use query, namedQuery or nativeQuery for the producer as well. Also in the value of the parameters, you can use Simple expression which allows you to retrieve parameter values from Message body, header and etc. Those query can be used for retrieving a set of data with using SELECT JPQL/SQL statement as well as executing bulk update/delete with using UPDATE/DELETE JPQL/SQL statement. Please note that you need to specify useExecuteUpdate to true if you execute UPDATE/DELETE with namedQuery as camel don’t look into the named query unlike query and nativeQuery.
			

Consuming from the endpoint

				Consuming messages from a JPA consumer endpoint removes (or updates) entity beans in the database. This allows you to use a database table as a logical queue: consumers take messages from the queue and then delete/update them to logically remove them from the queue.
			

				If you do not wish to delete the entity bean when it has been processed (and when routing is done), you can specify consumeDelete=false on the URI. This will result in the entity being processed each poll.
			

				If you would rather perform some update on the entity to mark it as processed (such as to exclude it from a future query) then you can annotate a method with @Consumed which will be invoked on your entity bean when the entity bean when it has been processed (and when routing is done).
			

				From Camel 2.13 onwards you can use @PreConsumed which will be invoked on your entity bean before it has been processed (before routing).
			

				If you are consuming a lot (100K+) of rows and experience OutOfMemory problems you should set the maximumResults to sensible value.
			

URI format

jpa:entityClassName[?options]

				For sending to the endpoint, the entityClassName is optional. If specified, it helps the Type Converter to ensure the body is of the correct type.
			

				For consuming, the entityClassName is mandatory.
			

				You can append query options to the URI in the following format, ?option=value&option=value&…​
			

Options

				The JPA component supports 5 options which are listed below.
			
	Name	Description	Default	Type
	
								entityManagerFactory (common)
							

							 	
								To use the EntityManagerFactory. This is strongly recommended to configure.
							

							 	 	
								EntityManagerFactory
							

							
	
								transactionManager (common)
							

							 	
								To use the PlatformTransactionManager for managing transactions.
							

							 	 	
								PlatformTransaction Manager
							

							
	
								joinTransaction (common)
							

							 	
								The camel-jpa component will join transaction by default. You can use this option to turn this off, for example if you use LOCAL_RESOURCE and join transaction doesn’t work with your JPA provider. This option can also be set globally on the JpaComponent, instead of having to set it on all endpoints.
							

							 	
								true
							

							 	
								boolean
							

							
	
								sharedEntityManager (common)
							

							 	
								Whether to use Spring’s SharedEntityManager for the consumer/producer. Note in most cases joinTransaction should be set to false as this is not an EXTENDED EntityManager.
							

							 	
								false
							

							 	
								boolean
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The JPA endpoint is configured using URI syntax:
			
jpa:entityType

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									entityType
								

								 	
									Required The JPA annotated class to use as entity.
								

								 	 	
									Class<?>
								

								

Query Parameters (42 parameters):

	Name	Description	Default	Type
	
									joinTransaction (common)
								

								 	
									The camel-jpa component will join transaction by default. You can use this option to turn this off, for example if you use LOCAL_RESOURCE and join transaction doesn’t work with your JPA provider. This option can also be set globally on the JpaComponent, instead of having to set it on all endpoints.
								

								 	
									true
								

								 	
									boolean
								

								
	
									maximumResults (common)
								

								 	
									Set the maximum number of results to retrieve on the Query.
								

								 	
									-1
								

								 	
									int
								

								
	
									namedQuery (common)
								

								 	
									To use a named query.
								

								 	 	
									String
								

								
	
									nativeQuery (common)
								

								 	
									To use a custom native query. You may want to use the option resultClass also when using native queries.
								

								 	 	
									String
								

								
	
									parameters (common)
								

								 	
									This key/value mapping is used for building the query parameters. It is expected to be of the generic type java.util.Map where the keys are the named parameters of a given JPA query and the values are their corresponding effective values you want to select for. When it’s used for producer, Simple expression can be used as a parameter value. It allows you to retrieve parameter values from the message body, header and etc.
								

								 	 	
									Map
								

								
	
									persistenceUnit (common)
								

								 	
									Required The JPA persistence unit used by default.
								

								 	
									camel
								

								 	
									String
								

								
	
									query (common)
								

								 	
									To use a custom query.
								

								 	 	
									String
								

								
	
									resultClass (common)
								

								 	
									Defines the type of the returned payload (we will call entityManager.createNativeQuery(nativeQuery, resultClass) instead of entityManager.createNativeQuery(nativeQuery)). Without this option, we will return an object array. Only has an affect when using in conjunction with native query when consuming data.
								

								 	 	
									Class<?>
								

								
	
									sharedEntityManager (common)
								

								 	
									Whether to use Spring’s SharedEntityManager for the consumer/producer. Note in most cases joinTransaction should be set to false as this is not an EXTENDED EntityManager.
								

								 	
									false
								

								 	
									boolean
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									consumeDelete (consumer)
								

								 	
									If true, the entity is deleted after it is consumed; if false, the entity is not deleted.
								

								 	
									true
								

								 	
									boolean
								

								
	
									consumeLockEntity (consumer)
								

								 	
									Specifies whether or not to set an exclusive lock on each entity bean while processing the results from polling.
								

								 	
									true
								

								 	
									boolean
								

								
	
									deleteHandler (consumer)
								

								 	
									To use a custom DeleteHandler to delete the row after the consumer is done processing the exchange
								

								 	 	
									Object>
								

								
	
									lockModeType (consumer)
								

								 	
									To configure the lock mode on the consumer.
								

								 	
									PESSIMISTIC_WRITE
								

								 	
									LockModeType
								

								
	
									maxMessagesPerPoll (consumer)
								

								 	
									An integer value to define the maximum number of messages to gather per poll. By default, no maximum is set. Can be used to avoid polling many thousands of messages when starting up the server. Set a value of 0 or negative to disable.
								

								 	 	
									int
								

								
	
									preDeleteHandler (consumer)
								

								 	
									To use a custom Pre-DeleteHandler to delete the row after the consumer has read the entity.
								

								 	 	
									Object>
								

								
	
									sendEmptyMessageWhenIdle (consumer)
								

								 	
									If the polling consumer did not poll any files, you can enable this option to send an empty message (no body) instead.
								

								 	
									false
								

								 	
									boolean
								

								
	
									skipLockedEntity (consumer)
								

								 	
									To configure whether to use NOWAIT on lock and silently skip the entity.
								

								 	
									false
								

								 	
									boolean
								

								
	
									transacted (consumer)
								

								 	
									Whether to run the consumer in transacted mode, by which all messages will either commit or rollback, when the entire batch has been processed. The default behavior (false) is to commit all the previously successfully processed messages, and only rollback the last failed message.
								

								 	
									false
								

								 	
									boolean
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									pollStrategy (consumer)
								

								 	
									A pluggable org.apache.camel.PollingConsumerPollingStrategy allowing you to provide your custom implementation to control error handling usually occurred during the poll operation before an Exchange have been created and being routed in Camel.
								

								 	 	
									PollingConsumerPoll Strategy
								

								
	
									flushOnSend (producer)
								

								 	
									Flushes the EntityManager after the entity bean has been persisted.
								

								 	
									true
								

								 	
									boolean
								

								
	
									remove (producer)
								

								 	
									Indicates to use entityManager.remove(entity).
								

								 	
									false
								

								 	
									boolean
								

								
	
									useExecuteUpdate (producer)
								

								 	
									To configure whether to use executeUpdate() when producer executes a query. When you use INSERT, UPDATE or DELETE statement as a named query, you need to specify this option to 'true'.
								

								 	 	
									Boolean
								

								
	
									usePassedInEntityManager (producer)
								

								 	
									If set to true, then Camel will use the EntityManager from the header JpaConstants.ENTITYMANAGER instead of the configured entity manager on the component/endpoint. This allows end users to control which entity manager will be in use.
								

								 	
									false
								

								 	
									boolean
								

								
	
									usePersist (producer)
								

								 	
									Indicates to use entityManager.persist(entity) instead of entityManager.merge(entity). Note: entityManager.persist(entity) doesn’t work for detached entities (where the EntityManager has to execute an UPDATE instead of an INSERT query)!
								

								 	
									false
								

								 	
									boolean
								

								
	
									entityManagerProperties (advanced)
								

								 	
									Additional properties for the entity manager to use.
								

								 	 	
									Map
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									backoffErrorThreshold (scheduler)
								

								 	
									The number of subsequent error polls (failed due some error) that should happen before the backoffMultipler should kick-in.
								

								 	 	
									int
								

								
	
									backoffIdleThreshold (scheduler)
								

								 	
									The number of subsequent idle polls that should happen before the backoffMultipler should kick-in.
								

								 	 	
									int
								

								
	
									backoffMultiplier (scheduler)
								

								 	
									To let the scheduled polling consumer backoff if there has been a number of subsequent idles/errors in a row. The multiplier is then the number of polls that will be skipped before the next actual attempt is happening again. When this option is in use then backoffIdleThreshold and/or backoffErrorThreshold must also be configured.
								

								 	 	
									int
								

								
	
									delay (scheduler)
								

								 	
									Milliseconds before the next poll. You can also specify time values using units, such as 60s (60 seconds), 5m30s (5 minutes and 30 seconds), and 1h (1 hour).
								

								 	
									500
								

								 	
									long
								

								
	
									greedy (scheduler)
								

								 	
									If greedy is enabled, then the ScheduledPollConsumer will run immediately again, if the previous run polled 1 or more messages.
								

								 	
									false
								

								 	
									boolean
								

								
	
									initialDelay (scheduler)
								

								 	
									Milliseconds before the first poll starts. You can also specify time values using units, such as 60s (60 seconds), 5m30s (5 minutes and 30 seconds), and 1h (1 hour).
								

								 	
									1000
								

								 	
									long
								

								
	
									runLoggingLevel (scheduler)
								

								 	
									The consumer logs a start/complete log line when it polls. This option allows you to configure the logging level for that.
								

								 	
									TRACE
								

								 	
									LoggingLevel
								

								
	
									scheduledExecutorService (scheduler)
								

								 	
									Allows for configuring a custom/shared thread pool to use for the consumer. By default each consumer has its own single threaded thread pool.
								

								 	 	
									ScheduledExecutor Service
								

								
	
									scheduler (scheduler)
								

								 	
									To use a cron scheduler from either camel-spring or camel-quartz2 component
								

								 	
									none
								

								 	
									ScheduledPollConsumer Scheduler
								

								
	
									schedulerProperties (scheduler)
								

								 	
									To configure additional properties when using a custom scheduler or any of the Quartz2, Spring based scheduler.
								

								 	 	
									Map
								

								
	
									startScheduler (scheduler)
								

								 	
									Whether the scheduler should be auto started.
								

								 	
									true
								

								 	
									boolean
								

								
	
									timeUnit (scheduler)
								

								 	
									Time unit for initialDelay and delay options.
								

								 	
									MILLISECONDS
								

								 	
									TimeUnit
								

								
	
									useFixedDelay (scheduler)
								

								 	
									Controls if fixed delay or fixed rate is used. See ScheduledExecutorService in JDK for details.
								

								 	
									true
								

								 	
									boolean
								

								

Message Headers

				Camel adds the following message headers to the exchange:
			
	Header	Type	Description
	
								CamelJpaTemplate
							

							 	
								JpaTemplate
							

							 	
								Not supported anymore since Camel 2.12: The JpaTemplate object that is used to access the entity bean. You need this object in some situations, for instance in a type converter or when you are doing some custom processing. See CAMEL-5932 for the reason why the support for this header has been dropped.
							

							
	
								CamelEntityManager
							

							 	
								EntityManager
							

							 	
								Camel 2.12: JPA consumer / Camel 2.12.2: JPA producer: The JPA EntityManager object being used by JpaConsumer or JpaProducer.
							

							

Configuring EntityManagerFactory

				Its strongly advised to configure the JPA component to use a specific EntityManagerFactory instance. If failed to do so each JpaEndpoint will auto create their own instance of EntityManagerFactory which most often is not what you want.
			

				For example, you can instantiate a JPA component that references the myEMFactory entity manager factory, as follows:
			
<bean id="jpa" class="org.apache.camel.component.jpa.JpaComponent">
 <property name="entityManagerFactory" ref="myEMFactory"/>
</bean>

				In Camel 2.3 the JpaComponent will auto lookup the EntityManagerFactory from the Registry which means you do not need to configure this on the JpaComponent as shown above. You only need to do so if there is ambiguity, in which case Camel will log a WARN.
			

Configuring TransactionManager

				Since Camel 2.3 the JpaComponent will auto lookup the TransactionManager from the Registry. If Camel won’t find any TransactionManager instance registered, it will also look up for the TransactionTemplate and try to extract TransactionManager from it.
			

				If none TransactionTemplate is available in the registry, JpaEndpoint will auto create their own instance of TransactionManager which most often is not what you want.
			

				If more than single instance of the TransactionManager is found, Camel will log a WARN. In such cases you might want to instantiate and explicitly configure a JPA component that references the myTransactionManager transaction manager, as follows:
			
<bean id="jpa" class="org.apache.camel.component.jpa.JpaComponent">
 <property name="entityManagerFactory" ref="myEMFactory"/>
 <property name="transactionManager" ref="myTransactionManager"/>
</bean>

Using a consumer with a named query

				For consuming only selected entities, you can use the consumer.namedQuery URI query option. First, you have to define the named query in the JPA Entity class:
			
@Entity
@NamedQuery(name = "step1", query = "select x from MultiSteps x where x.step = 1")
public class MultiSteps {
 ...
}

				After that you can define a consumer uri like this one:
			
from("jpa://org.apache.camel.examples.MultiSteps?consumer.namedQuery=step1")
.to("bean:myBusinessLogic");

Using a consumer with a query

				For consuming only selected entities, you can use the consumer.query URI query option. You only have to define the query option:
			
from("jpa://org.apache.camel.examples.MultiSteps?consumer.query=select o from org.apache.camel.examples.MultiSteps o where o.step = 1")
.to("bean:myBusinessLogic");

Using a consumer with a native query

				For consuming only selected entities, you can use the consumer.nativeQuery URI query option. You only have to define the native query option:
			
from("jpa://org.apache.camel.examples.MultiSteps?consumer.nativeQuery=select * from MultiSteps where step = 1")
.to("bean:myBusinessLogic");

				If you use the native query option, you will receive an object array in the message body.
			

Using a producer with a named query

				For retrieving selected entities or execute bulk update/delete, you can use the namedQuery URI query option. First, you have to define the named query in the JPA Entity class:
			
@Entity
@NamedQuery(name = "step1", query = "select x from MultiSteps x where x.step = 1")
public class MultiSteps {
 ...
}

				After that you can define a producer uri like this one:
			
from("direct:namedQuery")
.to("jpa://org.apache.camel.examples.MultiSteps?namedQuery=step1");

				Note that you need to specify useExecuteUpdate option to true to execute UPDATE/DELETE statement as a named query.
			

Using a producer with a query

				For retrieving selected entities or execute bulk update/delete, you can use the query URI query option. You only have to define the query option:
			
from("direct:query")
.to("jpa://org.apache.camel.examples.MultiSteps?query=select o from org.apache.camel.examples.MultiSteps o where o.step = 1");

Using a producer with a native query

				For retrieving selected entities or execute bulk update/delete, you can use the nativeQuery URI query option. You only have to define the native query option:
			
from("direct:nativeQuery")
.to("jpa://org.apache.camel.examples.MultiSteps?resultClass=org.apache.camel.examples.MultiSteps&nativeQuery=select * from MultiSteps where step = 1");

				If you use the native query option without specifying resultClass, you will receive an object array in the message body.
			

Example

				See Tracer Example for an example using JPA to store traced messages into a database.
			

Using the JPA-Based Idempotent Repository

				The Idempotent Consumer from the EIP patterns is used to filter out duplicate messages. A JPA-based idempotent repository is provided.
			

				To use the JPA based idempotent repository.
			
Procedure
	
						Set up a persistence-unit in the persistence.xml file:
					
	
						Set up a org.springframework.orm.jpa.JpaTemplate which is used by the org.apache.camel.processor.idempotent.jpa.JpaMessageIdRepository:
					
	
						Configure the error formatting macro: snippet: java.lang.IndexOutOfBoundsException: Index: 20, Size: 20
					
	
						Configure the idempotent repository: org.apache.camel.processor.idempotent.jpa.JpaMessageIdRepository:
					
	
						Create the JPA idempotent repository in the Spring XML file:
					

<camelContext xmlns="http://camel.apache.org/schema/spring">
 <route id="JpaMessageIdRepositoryTest">
 <from uri="direct:start" />
 <idempotentConsumer messageIdRepositoryRef="jpaStore">
 <header>messageId</header>
 <to uri="mock:result" />
 </idempotentConsumer>
 </route>
</camelContext>

				When running this Camel component tests inside your IDE
			

				If you run the tests of this component directly inside your IDE, and not through Maven, then you could see exceptions like these:
			
org.springframework.transaction.CannotCreateTransactionException: Could not open JPA EntityManager for transaction; nested exception is
<openjpa-2.2.1-r422266:1396819 nonfatal user error> org.apache.openjpa.persistence.ArgumentException: This configuration disallows runtime optimization,
but the following listed types were not enhanced at build time or at class load time with a javaagent: "org.apache.camel.examples.SendEmail".
 at org.springframework.orm.jpa.JpaTransactionManager.doBegin(JpaTransactionManager.java:427)
 at org.springframework.transaction.support.AbstractPlatformTransactionManager.getTransaction(AbstractPlatformTransactionManager.java:371)
 at org.springframework.transaction.support.TransactionTemplate.execute(TransactionTemplate.java:127)
 at org.apache.camel.processor.jpa.JpaRouteTest.cleanupRepository(JpaRouteTest.java:96)
 at org.apache.camel.processor.jpa.JpaRouteTest.createCamelContext(JpaRouteTest.java:67)
 at org.apache.camel.test.junit4.CamelTestSupport.doSetUp(CamelTestSupport.java:238)
 at org.apache.camel.test.junit4.CamelTestSupport.setUp(CamelTestSupport.java:208)

				The problem here is that the source has been compiled or recompiled through your IDE and not through Maven, which would enhance the byte-code at build time. To overcome this you need to enable dynamic byte-code enhancement of OpenJPA. For example, assuming the current OpenJPA version being used in Camel is 2.2.1, to run the tests inside your IDE you would need to pass the following argument to the JVM:
			
-javaagent:<path_to_your_local_m2_cache>/org/apache/openjpa/openjpa/2.2.1/openjpa-2.2.1.jar

See Also

	
						Configuring Camel
					
	
						Component
					
	
						Endpoint
					
	
						Getting Started
					
	
						Tracer Example
					

Chapter 181. JSon Fastjson DataFormat

			Available as of Camel version 2.20
		

			Fastjson is a Data Format which uses the Fastjson Library
		
from("activemq:My.Queue").
 marshal().json(JsonLibrary.Fastjson).
 to("mqseries:Another.Queue");
Fastjson Options

				The JSon Fastjson dataformat supports 19 options which are listed below.
			
	Name	Default	Java Type	Description
	
								objectMapper
							

							 	 	
								String
							

							 	
								Lookup and use the existing ObjectMapper with the given id when using Jackson.
							

							
	
								useDefaultObjectMapper
							

							 	
								true
							

							 	
								Boolean
							

							 	
								Whether to lookup and use default Jackson ObjectMapper from the registry.
							

							
	
								prettyPrint
							

							 	
								false
							

							 	
								Boolean
							

							 	
								To enable pretty printing output nicely formatted. Is by default false.
							

							
	
								library
							

							 	
								XStream
							

							 	
								JsonLibrary
							

							 	
								Which json library to use.
							

							
	
								unmarshalTypeName
							

							 	 	
								String
							

							 	
								Class name of the java type to use when unarmshalling
							

							
	
								jsonView
							

							 	 	
								Class<?>
							

							 	
								When marshalling a POJO to JSON you might want to exclude certain fields from the JSON output. With Jackson you can use JSON views to accomplish this. This option is to refer to the class which has JsonView annotations
							

							
	
								include
							

							 	 	
								String
							

							 	
								If you want to marshal a pojo to JSON, and the pojo has some fields with null values. And you want to skip these null values, you can set this option to NOT_NULL
							

							
	
								allowJmsType
							

							 	
								false
							

							 	
								Boolean
							

							 	
								Used for JMS users to allow the JMSType header from the JMS spec to specify a FQN classname to use to unmarshal to.
							

							
	
								collectionTypeName
							

							 	 	
								String
							

							 	
								Refers to a custom collection type to lookup in the registry to use. This option should rarely be used, but allows to use different collection types than java.util.Collection based as default.
							

							
	
								useList
							

							 	
								false
							

							 	
								Boolean
							

							 	
								To unarmshal to a List of Map or a List of Pojo.
							

							
	
								enableJaxbAnnotationModule
							

							 	
								false
							

							 	
								Boolean
							

							 	
								Whether to enable the JAXB annotations module when using jackson. When enabled then JAXB annotations can be used by Jackson.
							

							
	
								moduleClassNames
							

							 	 	
								String
							

							 	
								To use custom Jackson modules com.fasterxml.jackson.databind.Module specified as a String with FQN class names. Multiple classes can be separated by comma.
							

							
	
								moduleRefs
							

							 	 	
								String
							

							 	
								To use custom Jackson modules referred from the Camel registry. Multiple modules can be separated by comma.
							

							
	
								enableFeatures
							

							 	 	
								String
							

							 	
								Set of features to enable on the Jackson com.fasterxml.jackson.databind.ObjectMapper. The features should be a name that matches a enum from com.fasterxml.jackson.databind.SerializationFeature, com.fasterxml.jackson.databind.DeserializationFeature, or com.fasterxml.jackson.databind.MapperFeature Multiple features can be separated by comma
							

							
	
								disableFeatures
							

							 	 	
								String
							

							 	
								Set of features to disable on the Jackson com.fasterxml.jackson.databind.ObjectMapper. The features should be a name that matches a enum from com.fasterxml.jackson.databind.SerializationFeature, com.fasterxml.jackson.databind.DeserializationFeature, or com.fasterxml.jackson.databind.MapperFeature Multiple features can be separated by comma
							

							
	
								permissions
							

							 	 	
								String
							

							 	
								Adds permissions that controls which Java packages and classes XStream is allowed to use during unmarshal from xml/json to Java beans. A permission must be configured either here or globally using a JVM system property. The permission can be specified in a syntax where a plus sign is allow, and minus sign is deny. Wildcards is supported by using . as prefix. For example to allow com.foo and all subpackages then specfy com.foo.. Multiple permissions can be configured separated by comma, such as com.foo.,-com.foo.bar.MySecretBean. The following default permission is always included: -,java.lang.,java.util. unless its overridden by specifying a JVM system property with they key org.apache.camel.xstream.permissions.
							

							
	
								allowUnmarshallType
							

							 	
								false
							

							 	
								Boolean
							

							 	
								If enabled then Jackson is allowed to attempt to use the CamelJacksonUnmarshalType header during the unmarshalling. This should only be enabled when desired to be used.
							

							
	
								timezone
							

							 	 	
								String
							

							 	
								If set then Jackson will use the Timezone when marshalling/unmarshalling. This option will have no effect on the others Json DataFormat, like gson, fastjson and xstream.
							

							
	
								contentTypeHeader
							

							 	
								false
							

							 	
								Boolean
							

							 	
								Whether the data format should set the Content-Type header with the type from the data format if the data format is capable of doing so. For example application/xml for data formats marshalling to XML, or application/json for data formats marshalling to JSon etc.
							

							

Dependencies

				To use Fastjson in your camel routes you need to add the dependency on camel-fastjson which implements this data format.
			

				If you use maven you could just add the following to your pom.xml, substituting the version number for the latest & greatest release (see the download page for the latest versions).
			
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-fastjson</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>

Chapter 182. JSon GSon DataFormat

			Available as of Camel version 2.10
		

			Gson is a Data Format which uses the Gson Library
		
from("activemq:My.Queue").
 marshal().json(JsonLibrary.Gson).
 to("mqseries:Another.Queue");
Gson Options

				The JSon GSon dataformat supports 19 options which are listed below.
			
	Name	Default	Java Type	Description
	
								objectMapper
							

							 	 	
								String
							

							 	
								Lookup and use the existing ObjectMapper with the given id when using Jackson.
							

							
	
								useDefaultObjectMapper
							

							 	
								true
							

							 	
								Boolean
							

							 	
								Whether to lookup and use default Jackson ObjectMapper from the registry.
							

							
	
								prettyPrint
							

							 	
								false
							

							 	
								Boolean
							

							 	
								To enable pretty printing output nicely formatted. Is by default false.
							

							
	
								library
							

							 	
								XStream
							

							 	
								JsonLibrary
							

							 	
								Which json library to use.
							

							
	
								unmarshalTypeName
							

							 	 	
								String
							

							 	
								Class name of the java type to use when unarmshalling
							

							
	
								jsonView
							

							 	 	
								Class<?>
							

							 	
								When marshalling a POJO to JSON you might want to exclude certain fields from the JSON output. With Jackson you can use JSON views to accomplish this. This option is to refer to the class which has JsonView annotations
							

							
	
								include
							

							 	 	
								String
							

							 	
								If you want to marshal a pojo to JSON, and the pojo has some fields with null values. And you want to skip these null values, you can set this option to NOT_NULL
							

							
	
								allowJmsType
							

							 	
								false
							

							 	
								Boolean
							

							 	
								Used for JMS users to allow the JMSType header from the JMS spec to specify a FQN classname to use to unmarshal to.
							

							
	
								collectionTypeName
							

							 	 	
								String
							

							 	
								Refers to a custom collection type to lookup in the registry to use. This option should rarely be used, but allows to use different collection types than java.util.Collection based as default.
							

							
	
								useList
							

							 	
								false
							

							 	
								Boolean
							

							 	
								To unarmshal to a List of Map or a List of Pojo.
							

							
	
								enableJaxbAnnotationModule
							

							 	
								false
							

							 	
								Boolean
							

							 	
								Whether to enable the JAXB annotations module when using jackson. When enabled then JAXB annotations can be used by Jackson.
							

							
	
								moduleClassNames
							

							 	 	
								String
							

							 	
								To use custom Jackson modules com.fasterxml.jackson.databind.Module specified as a String with FQN class names. Multiple classes can be separated by comma.
							

							
	
								moduleRefs
							

							 	 	
								String
							

							 	
								To use custom Jackson modules referred from the Camel registry. Multiple modules can be separated by comma.
							

							
	
								enableFeatures
							

							 	 	
								String
							

							 	
								Set of features to enable on the Jackson com.fasterxml.jackson.databind.ObjectMapper. The features should be a name that matches a enum from com.fasterxml.jackson.databind.SerializationFeature, com.fasterxml.jackson.databind.DeserializationFeature, or com.fasterxml.jackson.databind.MapperFeature Multiple features can be separated by comma
							

							
	
								disableFeatures
							

							 	 	
								String
							

							 	
								Set of features to disable on the Jackson com.fasterxml.jackson.databind.ObjectMapper. The features should be a name that matches a enum from com.fasterxml.jackson.databind.SerializationFeature, com.fasterxml.jackson.databind.DeserializationFeature, or com.fasterxml.jackson.databind.MapperFeature Multiple features can be separated by comma
							

							
	
								permissions
							

							 	 	
								String
							

							 	
								Adds permissions that controls which Java packages and classes XStream is allowed to use during unmarshal from xml/json to Java beans. A permission must be configured either here or globally using a JVM system property. The permission can be specified in a syntax where a plus sign is allow, and minus sign is deny. Wildcards is supported by using . as prefix. For example to allow com.foo and all subpackages then specfy com.foo.. Multiple permissions can be configured separated by comma, such as com.foo.,-com.foo.bar.MySecretBean. The following default permission is always included: -,java.lang.,java.util. unless its overridden by specifying a JVM system property with they key org.apache.camel.xstream.permissions.
							

							
	
								allowUnmarshallType
							

							 	
								false
							

							 	
								Boolean
							

							 	
								If enabled then Jackson is allowed to attempt to use the CamelJacksonUnmarshalType header during the unmarshalling. This should only be enabled when desired to be used.
							

							
	
								timezone
							

							 	 	
								String
							

							 	
								If set then Jackson will use the Timezone when marshalling/unmarshalling. This option will have no effect on the others Json DataFormat, like gson, fastjson and xstream.
							

							
	
								contentTypeHeader
							

							 	
								false
							

							 	
								Boolean
							

							 	
								Whether the data format should set the Content-Type header with the type from the data format if the data format is capable of doing so. For example application/xml for data formats marshalling to XML, or application/json for data formats marshalling to JSon etc.
							

							

Dependencies

				To use Gson in your camel routes you need to add the dependency on camel-gson which implements this data format.
			

				If you use maven you could just add the following to your pom.xml, substituting the version number for the latest & greatest release (see the download page for the latest versions).
			
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-gson</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>

Chapter 183. JSon Jackson DataFormat

			Available as of Camel version 2.0
		

			Jackson is a Data Format which uses the Jackson Library
		
from("activemq:My.Queue").
 marshal().json(JsonLibrary.Jackson).
 to("mqseries:Another.Queue");
Jackson Options

				The JSon Jackson dataformat supports 19 options which are listed below.
			
	Name	Default	Java Type	Description
	
								objectMapper
							

							 	 	
								String
							

							 	
								Lookup and use the existing ObjectMapper with the given id when using Jackson.
							

							
	
								useDefaultObjectMapper
							

							 	
								true
							

							 	
								Boolean
							

							 	
								Whether to lookup and use default Jackson ObjectMapper from the registry.
							

							
	
								prettyPrint
							

							 	
								false
							

							 	
								Boolean
							

							 	
								To enable pretty printing output nicely formatted. Is by default false.
							

							
	
								library
							

							 	
								XStream
							

							 	
								JsonLibrary
							

							 	
								Which json library to use.
							

							
	
								unmarshalTypeName
							

							 	 	
								String
							

							 	
								Class name of the java type to use when unarmshalling
							

							
	
								jsonView
							

							 	 	
								Class<?>
							

							 	
								When marshalling a POJO to JSON you might want to exclude certain fields from the JSON output. With Jackson you can use JSON views to accomplish this. This option is to refer to the class which has JsonView annotations
							

							
	
								include
							

							 	 	
								String
							

							 	
								If you want to marshal a pojo to JSON, and the pojo has some fields with null values. And you want to skip these null values, you can set this option to NOT_NULL
							

							
	
								allowJmsType
							

							 	
								false
							

							 	
								Boolean
							

							 	
								Used for JMS users to allow the JMSType header from the JMS spec to specify a FQN classname to use to unmarshal to.
							

							
	
								collectionTypeName
							

							 	 	
								String
							

							 	
								Refers to a custom collection type to lookup in the registry to use. This option should rarely be used, but allows to use different collection types than java.util.Collection based as default.
							

							
	
								useList
							

							 	
								false
							

							 	
								Boolean
							

							 	
								To unarmshal to a List of Map or a List of Pojo.
							

							
	
								enableJaxbAnnotationModule
							

							 	
								false
							

							 	
								Boolean
							

							 	
								Whether to enable the JAXB annotations module when using jackson. When enabled then JAXB annotations can be used by Jackson.
							

							
	
								moduleClassNames
							

							 	 	
								String
							

							 	
								To use custom Jackson modules com.fasterxml.jackson.databind.Module specified as a String with FQN class names. Multiple classes can be separated by comma.
							

							
	
								moduleRefs
							

							 	 	
								String
							

							 	
								To use custom Jackson modules referred from the Camel registry. Multiple modules can be separated by comma.
							

							
	
								enableFeatures
							

							 	 	
								String
							

							 	
								Set of features to enable on the Jackson com.fasterxml.jackson.databind.ObjectMapper. The features should be a name that matches a enum from com.fasterxml.jackson.databind.SerializationFeature, com.fasterxml.jackson.databind.DeserializationFeature, or com.fasterxml.jackson.databind.MapperFeature Multiple features can be separated by comma
							

							
	
								disableFeatures
							

							 	 	
								String
							

							 	
								Set of features to disable on the Jackson com.fasterxml.jackson.databind.ObjectMapper. The features should be a name that matches a enum from com.fasterxml.jackson.databind.SerializationFeature, com.fasterxml.jackson.databind.DeserializationFeature, or com.fasterxml.jackson.databind.MapperFeature Multiple features can be separated by comma
							

							
	
								permissions
							

							 	 	
								String
							

							 	
								Adds permissions that controls which Java packages and classes XStream is allowed to use during unmarshal from xml/json to Java beans. A permission must be configured either here or globally using a JVM system property. The permission can be specified in a syntax where a plus sign is allow, and minus sign is deny. Wildcards is supported by using . as prefix. For example to allow com.foo and all subpackages then specfy com.foo.. Multiple permissions can be configured separated by comma, such as com.foo.,-com.foo.bar.MySecretBean. The following default permission is always included: -,java.lang.,java.util. unless its overridden by specifying a JVM system property with they key org.apache.camel.xstream.permissions.
							

							
	
								allowUnmarshallType
							

							 	
								false
							

							 	
								Boolean
							

							 	
								If enabled then Jackson is allowed to attempt to use the CamelJacksonUnmarshalType header during the unmarshalling. This should only be enabled when desired to be used.
							

							
	
								timezone
							

							 	 	
								String
							

							 	
								If set then Jackson will use the Timezone when marshalling/unmarshalling. This option will have no effect on the others Json DataFormat, like gson, fastjson and xstream.
							

							
	
								contentTypeHeader
							

							 	
								false
							

							 	
								Boolean
							

							 	
								Whether the data format should set the Content-Type header with the type from the data format if the data format is capable of doing so. For example application/xml for data formats marshalling to XML, or application/json for data formats marshalling to JSon etc.
							

							

Using custom ObjectMapper

				You can configure JacksonDataFormat to use a custom ObjectMapper in case you need more control of the mapping configuration.
			

				If you setup a single ObjectMapper in the registry, then Camel will automatic lookup and use this ObjectMapper. For example if you use Spring Boot, then Spring Boot can provide a default ObjectMapper for you if you have Spring MVC enabled. And this would allow Camel to detect that there is one bean of ObjectMapper class type in the Spring Boot bean registry and then use it. When this happens you should set a INFO logging from Camel.
			

Dependencies

				To use Jackson in your camel routes you need to add the dependency on camel-jackson which implements this data format.
			

				If you use maven you could just add the following to your pom.xml, substituting the version number for the latest & greatest release (see the download page for the latest versions).
			
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-jackson</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>

Chapter 184. JSon Johnzon DataFormat

			Available as of Camel version 2.18
		

			Johnzon is a Data Format which uses the Johnzon Library
		
from("activemq:My.Queue").
 marshal().json(JsonLibrary.Johnzon).
 to("mqseries:Another.Queue");
Johnzon Options

				The JSon Johnzon dataformat supports 19 options which are listed below.
			
	Name	Default	Java Type	Description
	
								objectMapper
							

							 	 	
								String
							

							 	
								Lookup and use the existing ObjectMapper with the given id when using Jackson.
							

							
	
								useDefaultObjectMapper
							

							 	
								true
							

							 	
								Boolean
							

							 	
								Whether to lookup and use default Jackson ObjectMapper from the registry.
							

							
	
								prettyPrint
							

							 	
								false
							

							 	
								Boolean
							

							 	
								To enable pretty printing output nicely formatted. Is by default false.
							

							
	
								library
							

							 	
								XStream
							

							 	
								JsonLibrary
							

							 	
								Which json library to use.
							

							
	
								unmarshalTypeName
							

							 	 	
								String
							

							 	
								Class name of the java type to use when unarmshalling
							

							
	
								jsonView
							

							 	 	
								Class<?>
							

							 	
								When marshalling a POJO to JSON you might want to exclude certain fields from the JSON output. With Jackson you can use JSON views to accomplish this. This option is to refer to the class which has JsonView annotations
							

							
	
								include
							

							 	 	
								String
							

							 	
								If you want to marshal a pojo to JSON, and the pojo has some fields with null values. And you want to skip these null values, you can set this option to NOT_NULL
							

							
	
								allowJmsType
							

							 	
								false
							

							 	
								Boolean
							

							 	
								Used for JMS users to allow the JMSType header from the JMS spec to specify a FQN classname to use to unmarshal to.
							

							
	
								collectionTypeName
							

							 	 	
								String
							

							 	
								Refers to a custom collection type to lookup in the registry to use. This option should rarely be used, but allows to use different collection types than java.util.Collection based as default.
							

							
	
								useList
							

							 	
								false
							

							 	
								Boolean
							

							 	
								To unarmshal to a List of Map or a List of Pojo.
							

							
	
								enableJaxbAnnotationModule
							

							 	
								false
							

							 	
								Boolean
							

							 	
								Whether to enable the JAXB annotations module when using jackson. When enabled then JAXB annotations can be used by Jackson.
							

							
	
								moduleClassNames
							

							 	 	
								String
							

							 	
								To use custom Jackson modules com.fasterxml.jackson.databind.Module specified as a String with FQN class names. Multiple classes can be separated by comma.
							

							
	
								moduleRefs
							

							 	 	
								String
							

							 	
								To use custom Jackson modules referred from the Camel registry. Multiple modules can be separated by comma.
							

							
	
								enableFeatures
							

							 	 	
								String
							

							 	
								Set of features to enable on the Jackson com.fasterxml.jackson.databind.ObjectMapper. The features should be a name that matches a enum from com.fasterxml.jackson.databind.SerializationFeature, com.fasterxml.jackson.databind.DeserializationFeature, or com.fasterxml.jackson.databind.MapperFeature Multiple features can be separated by comma
							

							
	
								disableFeatures
							

							 	 	
								String
							

							 	
								Set of features to disable on the Jackson com.fasterxml.jackson.databind.ObjectMapper. The features should be a name that matches a enum from com.fasterxml.jackson.databind.SerializationFeature, com.fasterxml.jackson.databind.DeserializationFeature, or com.fasterxml.jackson.databind.MapperFeature Multiple features can be separated by comma
							

							
	
								permissions
							

							 	 	
								String
							

							 	
								Adds permissions that controls which Java packages and classes XStream is allowed to use during unmarshal from xml/json to Java beans. A permission must be configured either here or globally using a JVM system property. The permission can be specified in a syntax where a plus sign is allow, and minus sign is deny. Wildcards is supported by using . as prefix. For example to allow com.foo and all subpackages then specfy com.foo.. Multiple permissions can be configured separated by comma, such as com.foo.,-com.foo.bar.MySecretBean. The following default permission is always included: -,java.lang.,java.util. unless its overridden by specifying a JVM system property with they key org.apache.camel.xstream.permissions.
							

							
	
								allowUnmarshallType
							

							 	
								false
							

							 	
								Boolean
							

							 	
								If enabled then Jackson is allowed to attempt to use the CamelJacksonUnmarshalType header during the unmarshalling. This should only be enabled when desired to be used.
							

							
	
								timezone
							

							 	 	
								String
							

							 	
								If set then Jackson will use the Timezone when marshalling/unmarshalling. This option will have no effect on the others Json DataFormat, like gson, fastjson and xstream.
							

							
	
								contentTypeHeader
							

							 	
								false
							

							 	
								Boolean
							

							 	
								Whether the data format should set the Content-Type header with the type from the data format if the data format is capable of doing so. For example application/xml for data formats marshalling to XML, or application/json for data formats marshalling to JSon etc.
							

							

Dependencies

				To use Johnzon in your camel routes you need to add the dependency on camel-johnzon which implements this data format.
			

				If you use maven you could just add the following to your pom.xml, substituting the version number for the latest & greatest release (see the download page for the latest versions).
			
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-johnzon</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>

Chapter 185. JSON Schema Validator Component

			Available as of Camel version 2.20
		

			The JSON Schema Validator component performs bean validation of the message body against JSON Schemas v4 draft using the NetworkNT JSON Schema library (https://github.com/networknt/json-schema-validator).
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-json-validator</artifactId>
 <version>x.y.z</version>
 <!-- use the same version as your Camel core version -->
</dependency>
URI format

json-validator:resourceUri[?options]

				Where resourceUri is some URL to a local resource on the classpath or a full URL to a remote resource or resource on the file system which contains the JSON Schema to validate against.
			

URI Options

				The JSON Schema Validator component has no options.
			

				The JSON Schema Validator endpoint is configured using URI syntax:
			
json-validator:resourceUri

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									resourceUri
								

								 	
									Required Path to the resource. You can prefix with: classpath, file, http, ref, or bean. classpath, file and http loads the resource using these protocols (classpath is default). ref will lookup the resource in the registry. bean will call a method on a bean to be used as the resource. For bean you can specify the method name after dot, eg bean:myBean.myMethod.
								

								 	 	
									String
								

								

Query Parameters (7 parameters):

	Name	Description	Default	Type
	
									contentCache (producer)
								

								 	
									Sets whether to use resource content cache or not
								

								 	
									false
								

								 	
									boolean
								

								
	
									failOnNullBody (producer)
								

								 	
									Whether to fail if no body exists.
								

								 	
									true
								

								 	
									boolean
								

								
	
									failOnNullHeader (producer)
								

								 	
									Whether to fail if no header exists when validating against a header.
								

								 	
									true
								

								 	
									boolean
								

								
	
									headerName (producer)
								

								 	
									To validate against a header instead of the message body.
								

								 	 	
									String
								

								
	
									errorHandler (advanced)
								

								 	
									To use a custom ValidatorErrorHandler. The default error handler captures the errors and throws an exception.
								

								 	 	
									JsonValidatorError Handler
								

								
	
									schemaLoader (advanced)
								

								 	
									To use a custom schema loader allowing for adding custom format validation. The default implementation will create a schema loader with draft v4 support.
								

								 	 	
									JsonSchemaLoader
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

Example

				Assumed we have the following JSON Schema
			

				myschema.json
			
{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "definitions": {},
 "id": "my-schema",
 "properties": {
 "id": {
 "default": 1,
 "description": "An explanation about the purpose of this instance.",
 "id": "/properties/id",
 "title": "The id schema",
 "type": "integer"
 },
 "name": {
 "default": "A green door",
 "description": "An explanation about the purpose of this instance.",
 "id": "/properties/name",
 "title": "The name schema",
 "type": "string"
 },
 "price": {
 "default": 12.5,
 "description": "An explanation about the purpose of this instance.",
 "id": "/properties/price",
 "title": "The price schema",
 "type": "number"
 }
 },
 "required": [
 "name",
 "id",
 "price"
],
 "type": "object"
}

				we can validate incoming JSON with the following Camel route, where myschema.json is loaded from the classpath.
			
from("direct:start")
 .to("json-validator:myschema.json")
 .to("mock:end")

Chapter 186. JSon XStream DataFormat

			Available as of Camel version 2.0
		

			XStream is a Data Format which uses the XStream library to marshal and unmarshal Java objects to and from XML.
		

			To use XStream in your camel routes you need to add the a dependency on camel-xstream which implements this data format.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-xstream</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>
Options

				The JSon XStream dataformat supports 19 options which are listed below.
			
	Name	Default	Java Type	Description
	
								objectMapper
							

							 	 	
								String
							

							 	
								Lookup and use the existing ObjectMapper with the given id when using Jackson.
							

							
	
								useDefaultObjectMapper
							

							 	
								true
							

							 	
								Boolean
							

							 	
								Whether to lookup and use default Jackson ObjectMapper from the registry.
							

							
	
								prettyPrint
							

							 	
								false
							

							 	
								Boolean
							

							 	
								To enable pretty printing output nicely formatted. Is by default false.
							

							
	
								library
							

							 	
								XStream
							

							 	
								JsonLibrary
							

							 	
								Which json library to use.
							

							
	
								unmarshalTypeName
							

							 	 	
								String
							

							 	
								Class name of the java type to use when unarmshalling
							

							
	
								jsonView
							

							 	 	
								Class<?>
							

							 	
								When marshalling a POJO to JSON you might want to exclude certain fields from the JSON output. With Jackson you can use JSON views to accomplish this. This option is to refer to the class which has JsonView annotations
							

							
	
								include
							

							 	 	
								String
							

							 	
								If you want to marshal a pojo to JSON, and the pojo has some fields with null values. And you want to skip these null values, you can set this option to NOT_NULL
							

							
	
								allowJmsType
							

							 	
								false
							

							 	
								Boolean
							

							 	
								Used for JMS users to allow the JMSType header from the JMS spec to specify a FQN classname to use to unmarshal to.
							

							
	
								collectionTypeName
							

							 	 	
								String
							

							 	
								Refers to a custom collection type to lookup in the registry to use. This option should rarely be used, but allows to use different collection types than java.util.Collection based as default.
							

							
	
								useList
							

							 	
								false
							

							 	
								Boolean
							

							 	
								To unarmshal to a List of Map or a List of Pojo.
							

							
	
								enableJaxbAnnotationModule
							

							 	
								false
							

							 	
								Boolean
							

							 	
								Whether to enable the JAXB annotations module when using jackson. When enabled then JAXB annotations can be used by Jackson.
							

							
	
								moduleClassNames
							

							 	 	
								String
							

							 	
								To use custom Jackson modules com.fasterxml.jackson.databind.Module specified as a String with FQN class names. Multiple classes can be separated by comma.
							

							
	
								moduleRefs
							

							 	 	
								String
							

							 	
								To use custom Jackson modules referred from the Camel registry. Multiple modules can be separated by comma.
							

							
	
								enableFeatures
							

							 	 	
								String
							

							 	
								Set of features to enable on the Jackson com.fasterxml.jackson.databind.ObjectMapper. The features should be a name that matches a enum from com.fasterxml.jackson.databind.SerializationFeature, com.fasterxml.jackson.databind.DeserializationFeature, or com.fasterxml.jackson.databind.MapperFeature Multiple features can be separated by comma
							

							
	
								disableFeatures
							

							 	 	
								String
							

							 	
								Set of features to disable on the Jackson com.fasterxml.jackson.databind.ObjectMapper. The features should be a name that matches a enum from com.fasterxml.jackson.databind.SerializationFeature, com.fasterxml.jackson.databind.DeserializationFeature, or com.fasterxml.jackson.databind.MapperFeature Multiple features can be separated by comma
							

							
	
								permissions
							

							 	 	
								String
							

							 	
								Adds permissions that controls which Java packages and classes XStream is allowed to use during unmarshal from xml/json to Java beans. A permission must be configured either here or globally using a JVM system property. The permission can be specified in a syntax where a plus sign is allow, and minus sign is deny. Wildcards is supported by using . as prefix. For example to allow com.foo and all subpackages then specfy com.foo.. Multiple permissions can be configured separated by comma, such as com.foo.,-com.foo.bar.MySecretBean. The following default permission is always included: -,java.lang.,java.util. unless its overridden by specifying a JVM system property with they key org.apache.camel.xstream.permissions.
							

							
	
								allowUnmarshallType
							

							 	
								false
							

							 	
								Boolean
							

							 	
								If enabled then Jackson is allowed to attempt to use the CamelJacksonUnmarshalType header during the unmarshalling. This should only be enabled when desired to be used.
							

							
	
								timezone
							

							 	 	
								String
							

							 	
								If set then Jackson will use the Timezone when marshalling/unmarshalling. This option will have no effect on the others Json DataFormat, like gson, fastjson and xstream.
							

							
	
								contentTypeHeader
							

							 	
								false
							

							 	
								Boolean
							

							 	
								Whether the data format should set the Content-Type header with the type from the data format if the data format is capable of doing so. For example application/xml for data formats marshalling to XML, or application/json for data formats marshalling to JSon etc.
							

							

Using the Java DSL

// lets turn Object messages into XML then send to MQSeries
from("activemq:My.Queue").
 marshal().xstream().
 to("mqseries:Another.Queue");

				If you would like to configure the XStream instance used by the Camel for the message transformation, you can simply pass a reference to that instance on the DSL level.
			
XStream xStream = new XStream();
xStream.aliasField("money", PurchaseOrder.class, "cash");
// new Added setModel option since Camel 2.14
xStream.setModel("NO_REFERENCES");
...

from("direct:marshal").
 marshal(new XStreamDataFormat(xStream)).
 to("mock:marshaled");

XMLInputFactory and XMLOutputFactory

				The XStream library uses the javax.xml.stream.XMLInputFactory and javax.xml.stream.XMLOutputFactory, you can control which implementation of this factory should be used.
			

				The Factory is discovered using this algorithm: 1. Use the javax.xml.stream.XMLInputFactory , javax.xml.stream.XMLOutputFactory system property. 2. Use the lib/xml.stream.properties file in the JRE_HOME directory. 3. Use the Services API, if available, to determine the classname by looking in the META-INF/services/javax.xml.stream.XMLInputFactory, META-INF/services/javax.xml.stream.XMLOutputFactory files in jars available to the JRE. 4. Use the platform default XMLInputFactory,XMLOutputFactory instance.
			

How to set the XML encoding in Xstream DataFormat?

				From Camel 2.2.0, you can set the encoding of XML in Xstream DataFormat by setting the Exchange’s property with the key Exchange.CHARSET_NAME, or setting the encoding property on Xstream from DSL or Spring config.
			
from("activemq:My.Queue").
 marshal().xstream("UTF-8").
 to("mqseries:Another.Queue");

Setting the type permissions of Xstream DataFormat

				In Camel, one can always use its own processing step in the route to filter and block certain XML documents to be routed to the XStream’s unmarhall step. From Camel 2.16.1, 2.15.5, you can set XStream’s type permissions to automatically allow or deny the instantiation of certain types.
			

				The default type permissions setting used by Camel denies all types except for those from java.lang and java.util packages. This setting can be changed by setting System property org.apache.camel.xstream.permissions. Its value is a string of comma-separated permission terms, each representing a type being allowed or denied, depending on whether the term is prefixed with '' (note '' may be omitted) or with '-', respectively.
			

				Each term may contain a wildcard character ''. For example, value "-,java.lang.,java.util." indicates denying all types except for java.lang.* and java.util.* classes. Setting this value to an empty string "" reverts to the default XStream’s type permissions handling which denies certain blacklisted classes and allow others.
			

				The type permissions setting can be extended at an individual XStream DataFormat instance by setting its type permissions property.
			
 <dataFormats>
 <xstream id="xstream-default"
 permissions="org.apache.camel.samples.xstream.*"/>
 ...

Chapter 187. JsonPath Language

			Available as of Camel version 2.13
		

			Camel supports JSonPath to allow using Expression or Predicate on json messages.
		
from("queue:books.new")
 .choice()
 .when().jsonpath("$.store.book[?(@.price < 10)]")
 .to("jms:queue:book.cheap")
 .when().jsonpath("$.store.book[?(@.price < 30)]")
 .to("jms:queue:book.average")
 .otherwise()
 .to("jms:queue:book.expensive")
JSonPath Options

				The JsonPath language supports 7 options which are listed below.
			
	Name	Default	Java Type	Description
	
								resultType
							

							 	 	
								String
							

							 	
								Sets the class name of the result type (type from output)
							

							
	
								suppressExceptions
							

							 	
								false
							

							 	
								Boolean
							

							 	
								Whether to suppress exceptions such as PathNotFoundException.
							

							
	
								allowSimple
							

							 	
								true
							

							 	
								Boolean
							

							 	
								Whether to allow in inlined simple exceptions in the JsonPath expression
							

							
	
								allowEasyPredicate
							

							 	
								true
							

							 	
								Boolean
							

							 	
								Whether to allow using the easy predicate parser to pre-parse predicates.
							

							
	
								writeAsString
							

							 	
								false
							

							 	
								Boolean
							

							 	
								Whether to write the output of each row/element as a JSON String value instead of a Map/POJO value.
							

							
	
								headerName
							

							 	 	
								String
							

							 	
								Name of header to use as input, instead of the message body
							

							
	
								trim
							

							 	
								true
							

							 	
								Boolean
							

							 	
								Whether to trim the value to remove leading and trailing whitespaces and line breaks
							

							

Using XML configuration

				If you prefer to configure your routes in your Spring XML file then you can use JSonPath expressions as follows
			
<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="direct:start"/>
 <choice>
 <when>
 <jsonpath>$.store.book[?(@.price < 10)]</jsonpath>
 <to uri="mock:cheap"/>
 </when>
 <when>
 <jsonpath>$.store.book[?(@.price < 30)]</jsonpath>
 <to uri="mock:average"/>
 </when>
 <otherwise>
 <to uri="mock:expensive"/>
 </otherwise>
 </choice>
 </route>
</camelContext>

Syntax

				See the JSonPath project page for further examples.
			

Easy Syntax

				Available as of Camel 2.19
			

				When you just want to define a basic predicate using jsonpath syntax it can be a bit hard to remember the syntax. So for example to find out all the cheap books you have to do
			
$.store.book[?(@.price < 20)]

				However what if you could just write it as
			
store.book.price < 20

				And you can omit the path if you just want to look at nodes with a price key
			
price < 20

				To support this there is a EasyPredicateParser which kicks-in if you have define the predicate using a basic style. That means the predicate must not start with the $ sign, and only include one operator.
			

				The easy syntax is:
			
left OP right

				You can use Camel simple language in the right operator, eg
			
store.book.price < ${header.limit}

Supported message body types

				Camel JSonPath supports message body using the following types:
			
	Type	Comment
	
								File
							

							 	
								Reading from files
							

							
	
								String
							

							 	
								Plain strings
							

							
	
								Map
							

							 	
								Message bodies as java.util.Map types
							

							
	
								List
							

							 	
								Message bodies as java.util.List types
							

							
	
								POJO
							

							 	
								Optional If Jackson is on the classpath, then camel-jsonpath is able to use Jackson to read the message body as POJO and convert to java.util.Map which is supported by JSonPath. For example you can add camel-jackson as dependency to include Jackson.
							

							
	
								InputStream
							

							 	
								If none of the above types matches, then Camel will attempt to read the message body as an java.io.InputStream.
							

							

				If a message body is of unsupported type then an exception is thrown by default, however you can configure JSonPath to suppress exceptions (see below)
			

Suppress exceptions

				Available as of Camel 2.16
			

				By default jsonpath will throw an exception if the json payload does not have a valid path accordingly to the configured jsonpath expression. In some use-cases you may want to ignore this in case the json payload contains optional data. Therefore you can set the option suppressExceptions to true to ignore this as shown:
			
from("direct:start")
 .choice()
 // use true to suppress exceptions
 .when().jsonpath("person.middlename", true)
 .to("mock:middle")
 .otherwise()
 .to("mock:other");

				And in XML DSL:
			
<route>
 <from uri="direct:start"/>
 <choice>
 <when>
 <jsonpath suppressExceptions="true">person.middlename</jsonpath>
 <to uri="mock:middle"/>
 </when>
 <otherwise>
 <to uri="mock:other"/>
 </otherwise>
 </choice>
</route>

				This option is also available on the @JsonPath annotation.
			

Inline Simple exceptions

				Available as of Camel 2.18
			

				Its now possible to inlined Simple language expressions in the JSonPath expression using the simple syntax ${xxx}. An example is shown below:
			
from("direct:start")
 .choice()
 .when().jsonpath("$.store.book[?(@.price < ${header.cheap})]")
 .to("mock:cheap")
 .when().jsonpath("$.store.book[?(@.price < ${header.average})]")
 .to("mock:average")
 .otherwise()
 .to("mock:expensive");

				And in XML DSL:
			
<route>
 <from uri="direct:start"/>
 <choice>
 <when>
 <jsonpath>$.store.book[?(@.price < ${header.cheap})]</jsonpath>
 <to uri="mock:cheap"/>
 </when>
 <when>
 <jsonpath>$.store.book[?(@.price < ${header.average})]</jsonpath>
 <to uri="mock:average"/>
 </when>
 <otherwise>
 <to uri="mock:expensive"/>
 </otherwise>
 </choice>
</route>

				You can turn off support for inlined simple expression by setting the option allowSimple to false as shown:
			
.when().jsonpath("$.store.book[?(@.price < 10)]", false, false)

				And in XML DSL:
			
<jsonpath allowSimple="false">$.store.book[?(@.price < 10)]</jsonpath>

JSonPath injection

				You can use Bean Integration to invoke a method on a bean and use various languages such as JSonPath to extract a value from the message and bind it to a method parameter.
			

				For example
			
public class Foo {

 @Consume(uri = "activemq:queue:books.new")
 public void doSomething(@JsonPath("$.store.book[*].author") String author, @Body String json) {
 // process the inbound message here
 }
}

Encoding Detection

				Since Camel version 2.16, the encoding of the JSON document is detected automatically, if the document is encoded in unicode (UTF-8, UTF-16LE, UTF-16BE, UTF-32LE, UTF-32BE) as specified in RFC-4627. If the encoding is a non-unicode encoding, you can either make sure that you enter the document in String format to the JSONPath component or you can specify the encoding in the header "CamelJsonPathJsonEncoding" (JsonpathConstants.HEADER_JSON_ENCODING).
			

Split JSon data into sub rows as JSon

				You can use jsonpath to split a JSon document, such as:
			
from("direct:start")
 .split().jsonpath("$.store.book[*]")
 .to("log:book");

				Then each book is logged, however the message body is a Map instance. Sometimes you may want to output this as plain String JSon value instead, which can be done from Camel 2.20 onwards with the writeAsString option as shown:
			
from("direct:start")
 .split().jsonpathWriteAsString("$.store.book[*]")
 .to("log:book");

				Then each book is logged as a String JSon value. For earlier versions of Camel you would need to use camel-jackson dataformat and marshal the message body to make it convert the message body from Map to a String type.
			

Using header as input

				Available as of Camel 2.20
			

				By default jsonpath uses the message body as the input source. However you can also use a header as input by specifying the headerName option.
			

				For example to count the number of books from a json document that was stored in a header named books you can do:
			
from("direct:start")
 .setHeader("numberOfBooks")
 .jsonpath("$..store.book.length()", false, int.class, "books")
 .to("mock:result");

				In the jsonpath expression above we specify the name of the header as books and we also told that we wanted the result to be converted as an integer by int.class.
			

				The same example in XML DSL would be:
			
<route>
 <from uri="direct:start"/>
 <setHeader headerName="numberOfBooks">
 <jsonpath headerName="books" resultType="int">$..store.book.length()</jsonpath>
 </transform>
 <to uri="mock:result"/>
</route>

Dependencies

				To use JSonPath in your camel routes you need to add the a dependency on camel-jsonpath which implements the JSonPath language.
			

				If you use maven you could just add the following to your pom.xml, substituting the version number for the latest & greatest release (see the download page for the latest versions).
			
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-jsonpath</artifactId>
 <version>x.x.x</version>
</dependency>

Chapter 188. JT400 Component

			Available as of Camel version 1.5
		

			The jt400 component allows you to exchanges messages with an AS/400 system using data queues.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-jt400</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>
URI format

jt400://user:password@system/QSYS.LIB/LIBRARY.LIB/QUEUE.DTAQ[?options]

				To call remote program (Camel 2.7)
			
jt400://user:password@system/QSYS.LIB/LIBRARY.LIB/program.PGM[?options]

				You can append query options to the URI in the following format, ?option=value&option=value&…​
			

JT400 options

				The JT400 component supports 2 options which are listed below.
			
	Name	Description	Default	Type
	
								connectionPool (advanced)
							

							 	
								Returns the default connection pool used by this component.
							

							 	 	
								AS400ConnectionPool
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The JT400 endpoint is configured using URI syntax:
			
jt400:userID:password/systemName/objectPath.type

				with the following path and query parameters:
			
Path Parameters (5 parameters):

	Name	Description	Default	Type
	
									userID
								

								 	
									Required Returns the ID of the AS/400 user.
								

								 	 	
									String
								

								
	
									password
								

								 	
									Required Returns the password of the AS/400 user.
								

								 	 	
									String
								

								
	
									systemName
								

								 	
									Required Returns the name of the AS/400 system.
								

								 	 	
									String
								

								
	
									objectPath
								

								 	
									Required Returns the fully qualified integrated file system path name of the target object of this endpoint.
								

								 	 	
									String
								

								
	
									type
								

								 	
									Required Whether to work with data queues or remote program call
								

								 	 	
									Jt400Type
								

								

Query Parameters (30 parameters):

	Name	Description	Default	Type
	
									ccsid (common)
								

								 	
									Sets the CCSID to use for the connection with the AS/400 system.
								

								 	 	
									int
								

								
	
									format (common)
								

								 	
									Sets the data format for sending messages.
								

								 	
									text
								

								 	
									Format
								

								
	
									guiAvailable (common)
								

								 	
									Sets whether AS/400 prompting is enabled in the environment running Camel.
								

								 	
									false
								

								 	
									boolean
								

								
	
									keyed (common)
								

								 	
									Whether to use keyed or non-keyed data queues.
								

								 	
									false
								

								 	
									boolean
								

								
	
									outputFieldsIdxArray (common)
								

								 	
									Specifies which fields (program parameters) are output parameters.
								

								 	 	
									Integer[]
								

								
	
									outputFieldsLengthArray (common)
								

								 	
									Specifies the fields (program parameters) length as in the AS/400 program definition.
								

								 	 	
									Integer[]
								

								
	
									searchKey (common)
								

								 	
									Search key for keyed data queues.
								

								 	 	
									String
								

								
	
									searchType (common)
								

								 	
									Search type such as EQ for equal etc.
								

								 	
									EQ
								

								 	
									SearchType
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									readTimeout (consumer)
								

								 	
									Timeout in millis the consumer will wait while trying to read a new message of the data queue.
								

								 	
									30000
								

								 	
									int
								

								
	
									sendEmptyMessageWhenIdle (consumer)
								

								 	
									If the polling consumer did not poll any files, you can enable this option to send an empty message (no body) instead.
								

								 	
									false
								

								 	
									boolean
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									pollStrategy (consumer)
								

								 	
									A pluggable org.apache.camel.PollingConsumerPollingStrategy allowing you to provide your custom implementation to control error handling usually occurred during the poll operation before an Exchange have been created and being routed in Camel.
								

								 	 	
									PollingConsumerPoll Strategy
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									backoffErrorThreshold (scheduler)
								

								 	
									The number of subsequent error polls (failed due some error) that should happen before the backoffMultipler should kick-in.
								

								 	 	
									int
								

								
	
									backoffIdleThreshold (scheduler)
								

								 	
									The number of subsequent idle polls that should happen before the backoffMultipler should kick-in.
								

								 	 	
									int
								

								
	
									backoffMultiplier (scheduler)
								

								 	
									To let the scheduled polling consumer backoff if there has been a number of subsequent idles/errors in a row. The multiplier is then the number of polls that will be skipped before the next actual attempt is happening again. When this option is in use then backoffIdleThreshold and/or backoffErrorThreshold must also be configured.
								

								 	 	
									int
								

								
	
									delay (scheduler)
								

								 	
									Milliseconds before the next poll. You can also specify time values using units, such as 60s (60 seconds), 5m30s (5 minutes and 30 seconds), and 1h (1 hour).
								

								 	
									500
								

								 	
									long
								

								
	
									greedy (scheduler)
								

								 	
									If greedy is enabled, then the ScheduledPollConsumer will run immediately again, if the previous run polled 1 or more messages.
								

								 	
									false
								

								 	
									boolean
								

								
	
									initialDelay (scheduler)
								

								 	
									Milliseconds before the first poll starts. You can also specify time values using units, such as 60s (60 seconds), 5m30s (5 minutes and 30 seconds), and 1h (1 hour).
								

								 	
									1000
								

								 	
									long
								

								
	
									runLoggingLevel (scheduler)
								

								 	
									The consumer logs a start/complete log line when it polls. This option allows you to configure the logging level for that.
								

								 	
									TRACE
								

								 	
									LoggingLevel
								

								
	
									scheduledExecutorService (scheduler)
								

								 	
									Allows for configuring a custom/shared thread pool to use for the consumer. By default each consumer has its own single threaded thread pool.
								

								 	 	
									ScheduledExecutor Service
								

								
	
									scheduler (scheduler)
								

								 	
									To use a cron scheduler from either camel-spring or camel-quartz2 component
								

								 	
									none
								

								 	
									ScheduledPollConsumer Scheduler
								

								
	
									schedulerProperties (scheduler)
								

								 	
									To configure additional properties when using a custom scheduler or any of the Quartz2, Spring based scheduler.
								

								 	 	
									Map
								

								
	
									startScheduler (scheduler)
								

								 	
									Whether the scheduler should be auto started.
								

								 	
									true
								

								 	
									boolean
								

								
	
									timeUnit (scheduler)
								

								 	
									Time unit for initialDelay and delay options.
								

								 	
									MILLISECONDS
								

								 	
									TimeUnit
								

								
	
									useFixedDelay (scheduler)
								

								 	
									Controls if fixed delay or fixed rate is used. See ScheduledExecutorService in JDK for details.
								

								 	
									true
								

								 	
									boolean
								

								
	
									procedureName (procedureName)
								

								 	
									Procedure name from a service program to call
								

								 	 	
									String
								

								
	
									secured (security)
								

								 	
									Whether connections to AS/400 are secured with SSL.
								

								 	
									false
								

								 	
									boolean
								

								

Usage

				When configured as a consumer endpoint, the endpoint will poll a data queue on a remote system. For every entry on the data queue, a new Exchange is sent with the entry’s data in the In message’s body, formatted either as a String or a byte[], depending on the format. For a provider endpoint, the In message body contents will be put on the data queue as either raw bytes or text.
			

Connection pool

				Available as of Camel 2.10
			

				Connection pooling is in use from Camel 2.10 onwards. You can explicit configure a connection pool on the Jt400Component, or as an uri option on the endpoint.
			
Remote program call (Camel 2.7)

					This endpoint expects the input to be either a String array or byte[] array (depending on format) and handles all the CCSID handling through the native jt400 library mechanisms. A parameter can be omitted by passing null as the value in its position (the remote program has to support it). After the program execution the endpoint returns either a String array or byte[] array with the values as they were returned by the program (the input only parameters will contain the same data as the beginning of the invocation). This endpoint does not implement a provider endpoint!
				

Example

				In the snippet below, the data for an exchange sent to the direct:george endpoint will be put in the data queue PENNYLANE in library BEATLES on a system named LIVERPOOL.
 Another user connects to the same data queue to receive the information from the data queue and forward it to the mock:ringo endpoint.
			
public class Jt400RouteBuilder extends RouteBuilder {
 @Override
 public void configure() throws Exception {
 from("direct:george").to("jt400://GEORGE:EGROEG@LIVERPOOL/QSYS.LIB/BEATLES.LIB/PENNYLANE.DTAQ");
 from("jt400://RINGO:OGNIR@LIVERPOOL/QSYS.LIB/BEATLES.LIB/PENNYLANE.DTAQ").to("mock:ringo");
 }
}
Remote program call example (Camel 2.7)

					In the snippet below, the data Exchange sent to the direct:work endpoint will contain three string that will be used as the arguments for the program “compute” in the library “assets”. This program will write the output values in the 2nd and 3rd parameters. All the parameters will be sent to the direct:play endpoint.
				
public class Jt400RouteBuilder extends RouteBuilder {
 @Override
 public void configure() throws Exception {
 from("direct:work").to("jt400://GRUPO:ATWORK@server/QSYS.LIB/assets.LIB/compute.PGM?fieldsLength=10,10,512&ouputFieldsIdx=2,3").to(“direct:play”);
 }
}

Writing to keyed data queues

from("jms:queue:input")
.to("jt400://username:password@system/lib.lib/MSGINDQ.DTAQ?keyed=true");

Reading from keyed data queues

from("jt400://username:password@system/lib.lib/MSGOUTDQ.DTAQ?keyed=true&searchKey=MYKEY&searchType=GE")
.to("jms:queue:output");

See Also

	
						Configuring Camel
					
	
						Component
					
	
						Endpoint
					
	
						Getting Started
					

Chapter 189. Kafka Component

			Available as of Camel version 2.13
		

			The kafka: component is used for communicating with Apache Kafka message broker.
		

			Maven users will need to add the following dependency to their pom.xml for this component.
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-kafka</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>
URI format

kafka:topic[?options]

Options

				The Kafka component supports 8 options which are listed below.
			
	Name	Description	Default	Type
	
								configuration (common)
							

							 	
								Allows to pre-configure the Kafka component with common options that the endpoints will reuse.
							

							 	 	
								KafkaConfiguration
							

							
	
								brokers (common)
							

							 	
								URL of the Kafka brokers to use. The format is host1:port1,host2:port2, and the list can be a subset of brokers or a VIP pointing to a subset of brokers. This option is known as bootstrap.servers in the Kafka documentation.
							

							 	 	
								String
							

							
	
								workerPool (advanced)
							

							 	
								To use a shared custom worker pool for continue routing Exchange after kafka server has acknowledge the message that was sent to it from KafkaProducer using asynchronous non-blocking processing. If using this option then you must handle the lifecycle of the thread pool to shut the pool down when no longer needed.
							

							 	 	
								ExecutorService
							

							
	
								useGlobalSslContext Parameters (security)
							

							 	
								Enable usage of global SSL context parameters.
							

							 	
								false
							

							 	
								boolean
							

							
	
								breakOnFirstError (consumer)
							

							 	
								This options controls what happens when a consumer is processing an exchange and it fails. If the option is false then the consumer continues to the next message and processes it. If the option is true then the consumer breaks out, and will seek back to offset of the message that caused a failure, and then re-attempt to process this message. However this can lead to endless processing of the same message if its bound to fail every time, eg a poison message. Therefore its recommended to deal with that for example by using Camel’s error handler.
							

							 	
								false
							

							 	
								boolean
							

							
	
								allowManualCommit (consumer)
							

							 	
								Whether to allow doing manual commits via KafkaManualCommit. If this option is enabled then an instance of KafkaManualCommit is stored on the Exchange message header, which allows end users to access this API and perform manual offset commits via the Kafka consumer.
							

							 	
								false
							

							 	
								boolean
							

							
	
								kafkaManualCommit Factory (consumer)
							

							 	
								Factory to use for creating KafkaManualCommit instances. This allows to plugin a custom factory to create custom KafkaManualCommit instances in case special logic is needed when doing manual commits that deviates from the default implementation that comes out of the box.
							

							 	 	
								KafkaManualCommit Factory
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The Kafka endpoint is configured using URI syntax:
			
kafka:topic

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									topic
								

								 	
									Required Name of the topic to use. On the consumer you can use comma to separate multiple topics. A producer can only send a message to a single topic.
								

								 	 	
									String
								

								

Query Parameters (93 parameters):

	Name	Description	Default	Type
	
									brokers (common)
								

								 	
									URL of the Kafka brokers to use. The format is host1:port1,host2:port2, and the list can be a subset of brokers or a VIP pointing to a subset of brokers. This option is known as bootstrap.servers in the Kafka documentation.
								

								 	 	
									String
								

								
	
									clientId (common)
								

								 	
									The client id is a user-specified string sent in each request to help trace calls. It should logically identify the application making the request.
								

								 	 	
									String
								

								
	
									headerFilterStrategy (common)
								

								 	
									To use a custom HeaderFilterStrategy to filter header to and from Camel message.
								

								 	 	
									HeaderFilterStrategy
								

								
	
									reconnectBackoffMaxMs (common)
								

								 	
									The maximum amount of time in milliseconds to wait when reconnecting to a broker that has repeatedly failed to connect. If provided, the backoff per host will increase exponentially for each consecutive connection failure, up to this maximum. After calculating the backoff increase, 20% random jitter is added to avoid connection storms.
								

								 	
									1000
								

								 	
									Integer
								

								
	
									allowManualCommit (consumer)
								

								 	
									Whether to allow doing manual commits via KafkaManualCommit. If this option is enabled then an instance of KafkaManualCommit is stored on the Exchange message header, which allows end users to access this API and perform manual offset commits via the Kafka consumer.
								

								 	
									false
								

								 	
									boolean
								

								
	
									autoCommitEnable (consumer)
								

								 	
									If true, periodically commit to ZooKeeper the offset of messages already fetched by the consumer. This committed offset will be used when the process fails as the position from which the new consumer will begin.
								

								 	
									true
								

								 	
									Boolean
								

								
	
									autoCommitIntervalMs (consumer)
								

								 	
									The frequency in ms that the consumer offsets are committed to zookeeper.
								

								 	
									5000
								

								 	
									Integer
								

								
	
									autoCommitOnStop (consumer)
								

								 	
									Whether to perform an explicit auto commit when the consumer stops to ensure the broker has a commit from the last consumed message. This requires the option autoCommitEnable is turned on. The possible values are: sync, async, or none. And sync is the default value.
								

								 	
									sync
								

								 	
									String
								

								
	
									autoOffsetReset (consumer)
								

								 	
									What to do when there is no initial offset in ZooKeeper or if an offset is out of range: smallest : automatically reset the offset to the smallest offset largest : automatically reset the offset to the largest offset fail: throw exception to the consumer
								

								 	
									latest
								

								 	
									String
								

								
	
									breakOnFirstError (consumer)
								

								 	
									This options controls what happens when a consumer is processing an exchange and it fails. If the option is false then the consumer continues to the next message and processes it. If the option is true then the consumer breaks out, and will seek back to offset of the message that caused a failure, and then re-attempt to process this message. However this can lead to endless processing of the same message if its bound to fail every time, eg a poison message. Therefore its recommended to deal with that for example by using Camel’s error handler.
								

								 	
									false
								

								 	
									boolean
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									checkCrcs (consumer)
								

								 	
									Automatically check the CRC32 of the records consumed. This ensures no on-the-wire or on-disk corruption to the messages occurred. This check adds some overhead, so it may be disabled in cases seeking extreme performance.
								

								 	
									true
								

								 	
									Boolean
								

								
	
									consumerRequestTimeoutMs (consumer)
								

								 	
									The configuration controls the maximum amount of time the client will wait for the response of a request. If the response is not received before the timeout elapses the client will resend the request if necessary or fail the request if retries are exhausted.
								

								 	
									40000
								

								 	
									Integer
								

								
	
									consumersCount (consumer)
								

								 	
									The number of consumers that connect to kafka server
								

								 	
									1
								

								 	
									int
								

								
	
									consumerStreams (consumer)
								

								 	
									Number of concurrent consumers on the consumer
								

								 	
									10
								

								 	
									int
								

								
	
									fetchMaxBytes (consumer)
								

								 	
									The maximum amount of data the server should return for a fetch request This is not an absolute maximum, if the first message in the first non-empty partition of the fetch is larger than this value, the message will still be returned to ensure that the consumer can make progress. The maximum message size accepted by the broker is defined via message.max.bytes (broker config) or max.message.bytes (topic config). Note that the consumer performs multiple fetches in parallel.
								

								 	
									52428800
								

								 	
									Integer
								

								
	
									fetchMinBytes (consumer)
								

								 	
									The minimum amount of data the server should return for a fetch request. If insufficient data is available the request will wait for that much data to accumulate before answering the request.
								

								 	
									1
								

								 	
									Integer
								

								
	
									fetchWaitMaxMs (consumer)
								

								 	
									The maximum amount of time the server will block before answering the fetch request if there isn’t sufficient data to immediately satisfy fetch.min.bytes
								

								 	
									500
								

								 	
									Integer
								

								
	
									groupId (consumer)
								

								 	
									A string that uniquely identifies the group of consumer processes to which this consumer belongs. By setting the same group id multiple processes indicate that they are all part of the same consumer group. This option is required for consumers.
								

								 	 	
									String
								

								
	
									heartbeatIntervalMs (consumer)
								

								 	
									The expected time between heartbeats to the consumer coordinator when using Kafka’s group management facilities. Heartbeats are used to ensure that the consumer’s session stays active and to facilitate rebalancing when new consumers join or leave the group. The value must be set lower than session.timeout.ms, but typically should be set no higher than 1/3 of that value. It can be adjusted even lower to control the expected time for normal rebalances.
								

								 	
									3000
								

								 	
									Integer
								

								
	
									kafkaHeaderDeserializer (consumer)
								

								 	
									Sets custom KafkaHeaderDeserializer for deserialization kafka headers values to camel headers values.
								

								 	 	
									KafkaHeaderDeserializer
								

								
	
									keyDeserializer (consumer)
								

								 	
									Deserializer class for key that implements the Deserializer interface.
								

								 	
									org.apache.kafka.common.serialization.StringDeserializer
								

								 	
									String
								

								
	
									maxPartitionFetchBytes (consumer)
								

								 	
									The maximum amount of data per-partition the server will return. The maximum total memory used for a request will be partitions max.partition.fetch.bytes. This size must be at least as large as the maximum message size the server allows or else it is possible for the producer to send messages larger than the consumer can fetch. If that happens, the consumer can get stuck trying to fetch a large message on a certain partition.
								

								 	
									1048576
								

								 	
									Integer
								

								
	
									maxPollIntervalMs (consumer)
								

								 	
									The maximum delay between invocations of poll() when using consumer group management. This places an upper bound on the amount of time that the consumer can be idle before fetching more records. If poll() is not called before expiration of this timeout, then the consumer is considered failed and the group will rebalance in order to reassign the partitions to another member.
								

								 	 	
									Long
								

								
	
									maxPollRecords (consumer)
								

								 	
									The maximum number of records returned in a single call to poll()
								

								 	
									500
								

								 	
									Integer
								

								
	
									offsetRepository (consumer)
								

								 	
									The offset repository to use in order to locally store the offset of each partition of the topic. Defining one will disable the autocommit.
								

								 	 	
									String>
								

								
	
									partitionAssignor (consumer)
								

								 	
									The class name of the partition assignment strategy that the client will use to distribute partition ownership amongst consumer instances when group management is used
								

								 	
									org.apache.kafka.clients.consumer.RangeAssignor
								

								 	
									String
								

								
	
									pollTimeoutMs (consumer)
								

								 	
									The timeout used when polling the KafkaConsumer.
								

								 	
									5000
								

								 	
									Long
								

								
	
									seekTo (consumer)
								

								 	
									Set if KafkaConsumer will read from beginning or end on startup: beginning : read from beginning end : read from end This is replacing the earlier property seekToBeginning
								

								 	 	
									String
								

								
	
									sessionTimeoutMs (consumer)
								

								 	
									The timeout used to detect failures when using Kafka’s group management facilities.
								

								 	
									10000
								

								 	
									Integer
								

								
	
									topicIsPattern (consumer)
								

								 	
									Whether the topic is a pattern (regular expression). This can be used to subscribe to dynamic number of topics matching the pattern.
								

								 	
									false
								

								 	
									boolean
								

								
	
									valueDeserializer (consumer)
								

								 	
									Deserializer class for value that implements the Deserializer interface.
								

								 	
									org.apache.kafka.common.serialization.StringDeserializer
								

								 	
									String
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									bridgeEndpoint (producer)
								

								 	
									If the option is true, then KafkaProducer will ignore the KafkaConstants.TOPIC header setting of the inbound message.
								

								 	
									false
								

								 	
									boolean
								

								
	
									bufferMemorySize (producer)
								

								 	
									The total bytes of memory the producer can use to buffer records waiting to be sent to the server. If records are sent faster than they can be delivered to the server the producer will either block or throw an exception based on the preference specified by block.on.buffer.full.This setting should correspond roughly to the total memory the producer will use, but is not a hard bound since not all memory the producer uses is used for buffering. Some additional memory will be used for compression (if compression is enabled) as well as for maintaining in-flight requests.
								

								 	
									33554432
								

								 	
									Integer
								

								
	
									circularTopicDetection (producer)
								

								 	
									If the option is true, then KafkaProducer will detect if the message is attempted to be sent back to the same topic it may come from, if the message was original from a kafka consumer. If the KafkaConstants.TOPIC header is the same as the original kafka consumer topic, then the header setting is ignored, and the topic of the producer endpoint is used. In other words this avoids sending the same message back to where it came from. This option is not in use if the option bridgeEndpoint is set to true.
								

								 	
									true
								

								 	
									boolean
								

								
	
									compressionCodec (producer)
								

								 	
									This parameter allows you to specify the compression codec for all data generated by this producer. Valid values are none, gzip and snappy.
								

								 	
									none
								

								 	
									String
								

								
	
									connectionMaxIdleMs (producer)
								

								 	
									Close idle connections after the number of milliseconds specified by this config.
								

								 	
									540000
								

								 	
									Integer
								

								
	
									enableIdempotence (producer)
								

								 	
									If set to 'true' the producer will ensure that exactly one copy of each message is written in the stream. If 'false', producer retries may write duplicates of the retried message in the stream. If set to true this option will require max.in.flight.requests.per.connection to be set to 1 and retries cannot be zero and additionally acks must be set to 'all'.
								

								 	
									false
								

								 	
									boolean
								

								
	
									kafkaHeaderSerializer (producer)
								

								 	
									Sets custom KafkaHeaderDeserializer for serialization camel headers values to kafka headers values.
								

								 	 	
									KafkaHeaderSerializer
								

								
	
									key (producer)
								

								 	
									The record key (or null if no key is specified). If this option has been configured then it take precedence over header link KafkaConstantsKEY
								

								 	 	
									String
								

								
	
									keySerializerClass (producer)
								

								 	
									The serializer class for keys (defaults to the same as for messages if nothing is given).
								

								 	
									org.apache.kafka.common.serialization.StringSerializer
								

								 	
									String
								

								
	
									lingerMs (producer)
								

								 	
									The producer groups together any records that arrive in between request transmissions into a single batched request. Normally this occurs only under load when records arrive faster than they can be sent out. However in some circumstances the client may want to reduce the number of requests even under moderate load. This setting accomplishes this by adding a small amount of artificial delaythat is, rather than immediately sending out a record the producer will wait for up to the given delay to allow other records to be sent so that the sends can be batched together. This can be thought of as analogous to Nagle’s algorithm in TCP. This setting gives the upper bound on the delay for batching: once we get batch.size worth of records for a partition it will be sent immediately regardless of this setting, however if we have fewer than this many bytes accumulated for this partition we will 'linger' for the specified time waiting for more records to show up. This setting defaults to 0 (i.e. no delay). Setting linger.ms=5, for example, would have the effect of reducing the number of requests sent but would add up to 5ms of latency to records sent in the absense of load.
								

								 	
									0
								

								 	
									Integer
								

								
	
									maxBlockMs (producer)
								

								 	
									The configuration controls how long sending to kafka will block. These methods can be blocked for multiple reasons. For e.g: buffer full, metadata unavailable.This configuration imposes maximum limit on the total time spent in fetching metadata, serialization of key and value, partitioning and allocation of buffer memory when doing a send(). In case of partitionsFor(), this configuration imposes a maximum time threshold on waiting for metadata
								

								 	
									60000
								

								 	
									Integer
								

								
	
									maxInFlightRequest (producer)
								

								 	
									The maximum number of unacknowledged requests the client will send on a single connection before blocking. Note that if this setting is set to be greater than 1 and there are failed sends, there is a risk of message re-ordering due to retries (i.e., if retries are enabled).
								

								 	
									5
								

								 	
									Integer
								

								
	
									maxRequestSize (producer)
								

								 	
									The maximum size of a request. This is also effectively a cap on the maximum record size. Note that the server has its own cap on record size which may be different from this. This setting will limit the number of record batches the producer will send in a single request to avoid sending huge requests.
								

								 	
									1048576
								

								 	
									Integer
								

								
	
									metadataMaxAgeMs (producer)
								

								 	
									The period of time in milliseconds after which we force a refresh of metadata even if we haven’t seen any partition leadership changes to proactively discover any new brokers or partitions.
								

								 	
									300000
								

								 	
									Integer
								

								
	
									metricReporters (producer)
								

								 	
									A list of classes to use as metrics reporters. Implementing the MetricReporter interface allows plugging in classes that will be notified of new metric creation. The JmxReporter is always included to register JMX statistics.
								

								 	 	
									String
								

								
	
									metricsSampleWindowMs (producer)
								

								 	
									The number of samples maintained to compute metrics.
								

								 	
									30000
								

								 	
									Integer
								

								
	
									noOfMetricsSample (producer)
								

								 	
									The number of samples maintained to compute metrics.
								

								 	
									2
								

								 	
									Integer
								

								
	
									partitioner (producer)
								

								 	
									The partitioner class for partitioning messages amongst sub-topics. The default partitioner is based on the hash of the key.
								

								 	
									org.apache.kafka.clients.producer.internals.DefaultPartitioner
								

								 	
									String
								

								
	
									partitionKey (producer)
								

								 	
									The partition to which the record will be sent (or null if no partition was specified). If this option has been configured then it take precedence over header link KafkaConstantsPARTITION_KEY
								

								 	 	
									Integer
								

								
	
									producerBatchSize (producer)
								

								 	
									The producer will attempt to batch records together into fewer requests whenever multiple records are being sent to the same partition. This helps performance on both the client and the server. This configuration controls the default batch size in bytes. No attempt will be made to batch records larger than this size.Requests sent to brokers will contain multiple batches, one for each partition with data available to be sent.A small batch size will make batching less common and may reduce throughput (a batch size of zero will disable batching entirely). A very large batch size may use memory a bit more wastefully as we will always allocate a buffer of the specified batch size in anticipation of additional records.
								

								 	
									16384
								

								 	
									Integer
								

								
	
									queueBufferingMaxMessages (producer)
								

								 	
									The maximum number of unsent messages that can be queued up the producer when using async mode before either the producer must be blocked or data must be dropped.
								

								 	
									10000
								

								 	
									Integer
								

								
	
									receiveBufferBytes (producer)
								

								 	
									The size of the TCP receive buffer (SO_RCVBUF) to use when reading data.
								

								 	
									65536
								

								 	
									Integer
								

								
	
									reconnectBackoffMs (producer)
								

								 	
									The amount of time to wait before attempting to reconnect to a given host. This avoids repeatedly connecting to a host in a tight loop. This backoff applies to all requests sent by the consumer to the broker.
								

								 	
									50
								

								 	
									Integer
								

								
	
									recordMetadata (producer)
								

								 	
									Whether the producer should store the RecordMetadata results from sending to Kafka. The results are stored in a List containing the RecordMetadata metadata’s. The list is stored on a header with the key link KafkaConstantsKAFKA_RECORDMETA
								

								 	
									true
								

								 	
									boolean
								

								
	
									requestRequiredAcks (producer)
								

								 	
									The number of acknowledgments the producer requires the leader to have received before considering a request complete. This controls the durability of records that are sent. The following settings are common: acks=0 If set to zero then the producer will not wait for any acknowledgment from the server at all. The record will be immediately added to the socket buffer and considered sent. No guarantee can be made that the server has received the record in this case, and the retries configuration will not take effect (as the client won’t generally know of any failures). The offset given back for each record will always be set to -1. acks=1 This will mean the leader will write the record to its local log but will respond without awaiting full acknowledgement from all followers. In this case should the leader fail immediately after acknowledging the record but before the followers have replicated it then the record will be lost. acks=all This means the leader will wait for the full set of in-sync replicas to acknowledge the record. This guarantees that the record will not be lost as long as at least one in-sync replica remains alive. This is the strongest available guarantee.
								

								 	
									1
								

								 	
									String
								

								
	
									requestTimeoutMs (producer)
								

								 	
									The amount of time the broker will wait trying to meet the request.required.acks requirement before sending back an error to the client.
								

								 	
									305000
								

								 	
									Integer
								

								
	
									retries (producer)
								

								 	
									Setting a value greater than zero will cause the client to resend any record whose send fails with a potentially transient error. Note that this retry is no different than if the client resent the record upon receiving the error. Allowing retries will potentially change the ordering of records because if two records are sent to a single partition, and the first fails and is retried but the second succeeds, then the second record may appear first.
								

								 	
									0
								

								 	
									Integer
								

								
	
									retryBackoffMs (producer)
								

								 	
									Before each retry, the producer refreshes the metadata of relevant topics to see if a new leader has been elected. Since leader election takes a bit of time, this property specifies the amount of time that the producer waits before refreshing the metadata.
								

								 	
									100
								

								 	
									Integer
								

								
	
									sendBufferBytes (producer)
								

								 	
									Socket write buffer size
								

								 	
									131072
								

								 	
									Integer
								

								
	
									serializerClass (producer)
								

								 	
									The serializer class for messages.
								

								 	
									org.apache.kafka.common.serialization.StringSerializer
								

								 	
									String
								

								
	
									workerPool (producer)
								

								 	
									To use a custom worker pool for continue routing Exchange after kafka server has acknowledge the message that was sent to it from KafkaProducer using asynchronous non-blocking processing.
								

								 	 	
									ExecutorService
								

								
	
									workerPoolCoreSize (producer)
								

								 	
									Number of core threads for the worker pool for continue routing Exchange after kafka server has acknowledge the message that was sent to it from KafkaProducer using asynchronous non-blocking processing.
								

								 	
									10
								

								 	
									Integer
								

								
	
									workerPoolMaxSize (producer)
								

								 	
									Maximum number of threads for the worker pool for continue routing Exchange after kafka server has acknowledge the message that was sent to it from KafkaProducer using asynchronous non-blocking processing.
								

								 	
									20
								

								 	
									Integer
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									interceptorClasses (monitoring)
								

								 	
									Sets interceptors for producer or consumers. Producer interceptors have to be classes implementing org.apache.kafka.clients.producer.ProducerInterceptor Consumer interceptors have to be classes implementing org.apache.kafka.clients.consumer.ConsumerInterceptor Note that if you use Producer interceptor on a consumer it will throw a class cast exception in runtime
								

								 	 	
									String
								

								
	
									kerberosBeforeReloginMin Time (security)
								

								 	
									Login thread sleep time between refresh attempts.
								

								 	
									60000
								

								 	
									Integer
								

								
	
									kerberosInitCmd (security)
								

								 	
									Kerberos kinit command path. Default is /usr/bin/kinit
								

								 	
									/usr/bin/kinit
								

								 	
									String
								

								
	
									kerberosPrincipalToLocal Rules (security)
								

								 	
									A list of rules for mapping from principal names to short names (typically operating system usernames). The rules are evaluated in order and the first rule that matches a principal name is used to map it to a short name. Any later rules in the list are ignored. By default, principal names of the form username/hostnameREALM are mapped to username. For more details on the format please see security authorization and acls. Multiple values can be separated by comma
								

								 	
									DEFAULT
								

								 	
									String
								

								
	
									kerberosRenewJitter (security)
								

								 	
									Percentage of random jitter added to the renewal time.
								

								 	
									0.05
								

								 	
									Double
								

								
	
									kerberosRenewWindowFactor (security)
								

								 	
									Login thread will sleep until the specified window factor of time from last refresh to ticket’s expiry has been reached, at which time it will try to renew the ticket.
								

								 	
									0.8
								

								 	
									Double
								

								
	
									saslJaasConfig (security)
								

								 	
									Expose the kafka sasl.jaas.config parameter Example: org.apache.kafka.common.security.plain.PlainLoginModule required username=USERNAME password=PASSWORD;
								

								 	 	
									String
								

								
	
									saslKerberosServiceName (security)
								

								 	
									The Kerberos principal name that Kafka runs as. This can be defined either in Kafka’s JAAS config or in Kafka’s config.
								

								 	 	
									String
								

								
	
									saslMechanism (security)
								

								 	
									The Simple Authentication and Security Layer (SASL) Mechanism used. For the valid values see http://www.iana.org/assignments/sasl-mechanisms/sasl-mechanisms.xhtml
								

								 	
									GSSAPI
								

								 	
									String
								

								
	
									securityProtocol (security)
								

								 	
									Protocol used to communicate with brokers. Currently only PLAINTEXT and SSL are supported.
								

								 	
									PLAINTEXT
								

								 	
									String
								

								
	
									sslCipherSuites (security)
								

								 	
									A list of cipher suites. This is a named combination of authentication, encryption, MAC and key exchange algorithm used to negotiate the security settings for a network connection using TLS or SSL network protocol.By default all the available cipher suites are supported.
								

								 	 	
									String
								

								
	
									sslContextParameters (security)
								

								 	
									SSL configuration using a Camel SSLContextParameters object. If configured it’s applied before the other SSL endpoint parameters.
								

								 	 	
									SSLContextParameters
								

								
	
									sslEnabledProtocols (security)
								

								 	
									The list of protocols enabled for SSL connections. TLSv1.2, TLSv1.1 and TLSv1 are enabled by default.
								

								 	
									TLSv1.2,TLSv1.1,TLSv1
								

								 	
									String
								

								
	
									sslEndpointAlgorithm (security)
								

								 	
									The endpoint identification algorithm to validate server hostname using server certificate.
								

								 	 	
									String
								

								
	
									sslKeymanagerAlgorithm (security)
								

								 	
									The algorithm used by key manager factory for SSL connections. Default value is the key manager factory algorithm configured for the Java Virtual Machine.
								

								 	
									SunX509
								

								 	
									String
								

								
	
									sslKeyPassword (security)
								

								 	
									The password of the private key in the key store file. This is optional for client.
								

								 	 	
									String
								

								
	
									sslKeystoreLocation (security)
								

								 	
									The location of the key store file. This is optional for client and can be used for two-way authentication for client.
								

								 	 	
									String
								

								
	
									sslKeystorePassword (security)
								

								 	
									The store password for the key store file.This is optional for client and only needed if ssl.keystore.location is configured.
								

								 	 	
									String
								

								
	
									sslKeystoreType (security)
								

								 	
									The file format of the key store file. This is optional for client. Default value is JKS
								

								 	
									JKS
								

								 	
									String
								

								
	
									sslProtocol (security)
								

								 	
									The SSL protocol used to generate the SSLContext. Default setting is TLS, which is fine for most cases. Allowed values in recent JVMs are TLS, TLSv1.1 and TLSv1.2. SSL, SSLv2 and SSLv3 may be supported in older JVMs, but their usage is discouraged due to known security vulnerabilities.
								

								 	
									TLS
								

								 	
									String
								

								
	
									sslProvider (security)
								

								 	
									The name of the security provider used for SSL connections. Default value is the default security provider of the JVM.
								

								 	 	
									String
								

								
	
									sslTrustmanagerAlgorithm (security)
								

								 	
									The algorithm used by trust manager factory for SSL connections. Default value is the trust manager factory algorithm configured for the Java Virtual Machine.
								

								 	
									PKIX
								

								 	
									String
								

								
	
									sslTruststoreLocation (security)
								

								 	
									The location of the trust store file.
								

								 	 	
									String
								

								
	
									sslTruststorePassword (security)
								

								 	
									The password for the trust store file.
								

								 	 	
									String
								

								
	
									sslTruststoreType (security)
								

								 	
									The file format of the trust store file. Default value is JKS.
								

								 	
									JKS
								

								 	
									String
								

								

					For more information about Producer/Consumer configuration:
				

					http://kafka.apache.org/documentation.html#newconsumerconfigshttp://kafka.apache.org/documentation.html#producerconfigs
				

Message headers

Consumer headers

					The following headers are available when consuming messages from Kafka.
				
	Header constant	Header value	Type	Description
	
									KafkaConstants.TOPIC
								

								 	
									"kafka.TOPIC"
								

								 	
									String
								

								 	
									The topic from where the message originated
								

								
	
									KafkaConstants.PARTITION
								

								 	
									"kafka.PARTITION"
								

								 	
									Integer
								

								 	
									The partition where the message was stored
								

								
	
									KafkaConstants.OFFSET
								

								 	
									"kafka.OFFSET"
								

								 	
									Long
								

								 	
									The offset of the message
								

								
	
									KafkaConstants.KEY
								

								 	
									"kafka.KEY"
								

								 	
									Object
								

								 	
									The key of the message if configured
								

								
	
									KafkaConstants.HEADERS
								

								 	
									"kafka.HEADERS"
								

								 	
									org.apache.kafka.common.header.Headers
								

								 	
									The record headers
								

								
	
									KafkaConstants.LAST_RECORD_BEFORE_COMMIT
								

								 	
									"kafka.LAST_RECORD_BEFORE_COMMIT"
								

								 	
									Boolean
								

								 	
									Whether or not it’s the last record before commit (only available if autoCommitEnable endpoint parameter is false)
								

								
	
									KafkaConstants.MANUAL_COMMIT
								

								 	
									"CamelKafkaManualCommit"
								

								 	
									KafkaManualCommit
								

								 	
									Can be used for forcing manual offset commit when using Kafka consumer.
								

								

Producer headers

					Before sending a message to Kafka you can configure the following headers.
				
	Header constant	Header value	Type	Description
	
									KafkaConstants.KEY
								

								 	
									"kafka.KEY"
								

								 	
									Object
								

								 	
									Required The key of the message in order to ensure that all related message goes in the same partition
								

								
	
									KafkaConstants.TOPIC
								

								 	
									"kafka.TOPIC"
								

								 	
									String
								

								 	
									The topic to which send the message (only read if the bridgeEndpoint endpoint parameter is true)
								

								
	
									KafkaConstants.PARTITION_KEY
								

								 	
									"kafka.PARTITION_KEY"
								

								 	
									Integer
								

								 	
									Explicitly specify the partition (only used if the KafkaConstants.KEY header is defined)
								

								

					After the message is sent to Kafka, the following headers are available
				
	Header constant	Header value	Type	Description
	
									KafkaConstants.KAFKA_RECORDMETA
								

								 	
									"org.apache.kafka.clients.producer.RecordMetadata"
								

								 	
									List<RecordMetadata>
								

								 	
									The metadata (only configured if recordMetadata endpoint parameter is true
								

								

Samples

Consuming messages from Kafka

					Here is the minimal route you need in order to read messages from Kafka.
				
from("kafka:test?brokers=localhost:9092")
 .log("Message received from Kafka : ${body}")
 .log(" on the topic ${headers[kafka.TOPIC]}")
 .log(" on the partition ${headers[kafka.PARTITION]}")
 .log(" with the offset ${headers[kafka.OFFSET]}")
 .log(" with the key ${headers[kafka.KEY]}")

					When consuming messages from Kafka you can use your own offset management and not delegate this management to Kafka. In order to keep the offsets the component needs a StateRepository implementation such as FileStateRepository. This bean should be available in the registry. Here how to use it :
				
// Create the repository in which the Kafka offsets will be persisted
FileStateRepository repository = FileStateRepository.fileStateRepository(new File("/path/to/repo.dat"));

// Bind this repository into the Camel registry
JndiRegistry registry = new JndiRegistry();
registry.bind("offsetRepo", repository);

// Configure the camel context
DefaultCamelContext camelContext = new DefaultCamelContext(registry);
camelContext.addRoutes(new RouteBuilder() {
 @Override
 public void configure() throws Exception {
 from("kafka:" + TOPIC + "?brokers=localhost:{{kafkaPort}}" +
 "&groupId=A" + //
 "&autoOffsetReset=earliest" + // Ask to start from the beginning if we have unknown offset
 "&offsetRepository=#offsetRepo") // Keep the offsets in the previously configured repository
 .to("mock:result");
 }
});

					
				

Producing messages to Kafka

					Here is the minimal route you need in order to write messages to Kafka.
				
from("direct:start")
 .setBody(constant("Message from Camel")) // Message to send
 .setHeader(KafkaConstants.KEY, constant("Camel")) // Key of the message
 .to("kafka:test?brokers=localhost:9092");

SSL configuration

				You have 2 different ways to configure the SSL communication on the Kafka` component.
			

				The first way is through the many SSL endpoint parameters
			
from("kafka:" + TOPIC + "?brokers=localhost:{{kafkaPort}}" +
 "&groupId=A" +
 "&sslKeystoreLocation=/path/to/keystore.jks" +
 "&sslKeystorePassword=changeit" +
 "&sslKeyPassword=changeit")
 .to("mock:result");

				The second way is to use the sslContextParameters endpoint parameter.
			
// Configure the SSLContextParameters object
KeyStoreParameters ksp = new KeyStoreParameters();
ksp.setResource("/path/to/keystore.jks");
ksp.setPassword("changeit");
KeyManagersParameters kmp = new KeyManagersParameters();
kmp.setKeyStore(ksp);
kmp.setKeyPassword("changeit");
SSLContextParameters scp = new SSLContextParameters();
scp.setKeyManagers(kmp);

// Bind this SSLContextParameters into the Camel registry
JndiRegistry registry = new JndiRegistry();
registry.bind("ssl", scp);

// Configure the camel context
DefaultCamelContext camelContext = new DefaultCamelContext(registry);
camelContext.addRoutes(new RouteBuilder() {
 @Override
 public void configure() throws Exception {
 from("kafka:" + TOPIC + "?brokers=localhost:{{kafkaPort}}" +
 "&groupId=A" + //
 "&sslContextParameters=#ssl") // Reference the SSL configuration
 .to("mock:result");
 }
});

Using the Kafka idempotent repository

				Available from Camel 2.19
			

				The camel-kafka library provides a Kafka topic-based idempotent repository. This repository stores broadcasts all changes to idempotent state (add/remove) in a Kafka topic, and populates a local in-memory cache for each repository’s process instance through event sourcing.
			

				The topic used must be unique per idempotent repository instance. The mechanism does not have any requirements about the number of topic partitions; as the repository consumes from all partitions at the same time. It also does not have any requirements about the replication factor of the topic.
			

				Each repository instance that uses the topic (e.g. typically on different machines running in parallel) controls its own consumer group, so in a cluster of 10 Camel processes using the same topic each will control its own offset.
			

				On startup, the instance subscribes to the topic and rewinds the offset to the beginning, rebuilding the cache to the latest state. The cache will not be considered warmed up until one poll of pollDurationMs in length returns 0 records. Startup will not be completed until either the cache has warmed up, or 30 seconds go by; if the latter happens the idempotent repository may be in an inconsistent state until its consumer catches up to the end of the topic.
			

				A KafkaIdempotentRepository has the following properties:
			
	Property	Description
	
								topic
							

							 	
								The name of the Kafka topic to use to broadcast changes. (required)
							

							
	
								bootstrapServers
							

							 	
								The bootstrap.servers property on the internal Kafka producer and consumer. Use this as shorthand if not setting consumerConfig and producerConfig. If used, this component will apply sensible default configurations for the producer and consumer.
							

							
	
								producerConfig
							

							 	
								Sets the properties that will be used by the Kafka producer that broadcasts changes. Overrides bootstrapServers, so must define the Kafka bootstrap.servers property itself
							

							
	
								consumerConfig
							

							 	
								Sets the properties that will be used by the Kafka consumer that populates the cache from the topic. Overrides bootstrapServers, so must define the Kafka bootstrap.servers property itself
							

							
	
								maxCacheSize
							

							 	
								How many of the most recently used keys should be stored in memory (default 1000).
							

							
	
								pollDurationMs
							

							 	
								The poll duration of the Kafka consumer. The local caches are updated immediately. This value will affect how far behind other peers that update their caches from the topic are relative to the idempotent consumer instance that sent the cache action message. The default value of this is 100 ms.
 If setting this value explicitly, be aware that there is a tradeoff between the remote cache liveness and the volume of network traffic between this repository’s consumer and the Kafka brokers. The cache warmup process also depends on there being one poll that fetches nothing - this indicates that the stream has been consumed up to the current point. If the poll duration is excessively long for the rate at which messages are sent on the topic, there exists a possibility that the cache cannot be warmed up and will operate in an inconsistent state relative to its peers until it catches up.
							

							

				The repository can be instantiated by defining the topic and bootstrapServers, or the producerConfig and consumerConfig property sets can be explicitly defined to enable features such as SSL/SASL.
			

				To use, this repository must be placed in the Camel registry, either manually or by registration as a bean in Spring/Blueprint, as it is CamelContext aware.
			

				Sample usage is as follows:
			
KafkaIdempotentRepository kafkaIdempotentRepository = new KafkaIdempotentRepository("idempotent-db-inserts", "localhost:9091");

SimpleRegistry registry = new SimpleRegistry();
registry.put("insertDbIdemRepo", kafkaIdempotentRepository); // must be registered in the registry, to enable access to the CamelContext
CamelContext context = new CamelContext(registry);

// later in RouteBuilder...
from("direct:performInsert")
 .idempotentConsumer(header("id")).messageIdRepositoryRef("insertDbIdemRepo")
 // once-only insert into database
 .end()

				In XML:
			
<!-- simple -->
<bean id="insertDbIdemRepo" class="org.apache.camel.processor.idempotent.kafka.KafkaIdempotentRepository">
 <property name="topic" value="idempotent-db-inserts"/>
 <property name="bootstrapServers" value="localhost:9091"/>
</bean>

<!-- complex -->
<bean id="insertDbIdemRepo" class="org.apache.camel.processor.idempotent.kafka.KafkaIdempotentRepository">
 <property name="topic" value="idempotent-db-inserts"/>
 <property name="maxCacheSize" value="10000"/>
 <property name="consumerConfig">
 <props>
 <prop key="bootstrap.servers">localhost:9091</prop>
 </props>
 </property>
 <property name="producerConfig">
 <props>
 <prop key="bootstrap.servers">localhost:9091</prop>
 </props>
 </property>
</bean>

Using manual commit with Kafka consumer

				Available as of Camel 2.21
			

				By default the Kafka consumer will use auto commit, where the offset will be committed automaticcally in the background using a given interval.
			

				In case you want to force manual commits, you can use KafkaManualCommit API from the Camel Exchange, stored on the message header. This requires to turn on manual commits by either setting the option allowManualCommit to true on the KafkaComponent or on the endpoint, for example:
			
KafkaComponent kafka = new KafkaComponent();
kafka.setAllowManualCommit(true);
...
camelContext.addComponent("kafka", kafka);

				You can then use the KafkaManualCommit from Java code such as a Camel Processor:
			
public void process(Exchange exchange) {
 KafkaManualCommit manual = exchange.getIn().getHeader(KafkaConstants.MANUAL_COMMIT, KafkaManualCommit.class);
 manual.commitSync();
}

				This will force a synchronous commit which will block until the commit is acknowledge on Kafka, or if it fails an exception is thrown.
			

				If you want to use a custom implementation of KafkaManualCommit then you can configure a custom KafkaManualCommitFactory on the KafkaComponent that creates instances of your custom implementation.
			

Kafka Headers propagation

				Available as of Camel 2.22
			

				When consuming messages from Kafka, headers will be propagated to camel exchange headers automatically. Producing flow backed by same behaviour - camel headers of particular exchange will be propagated to kafka message headers.
			

				Since kafka headers allows only byte[] values, in order camel exchnage header to be propagated its value should be serialized to bytes[], otherwise header will be skipped. Following header value types are supported: String, Integer, Long, Double, Boolean, byte[]. Note: all headers propagated from kafka to camel exchange will contain byte[] value by default. In order to override default functionality uri parameters can be set: kafkaHeaderDeserializer for from route and kafkaHeaderSerializer for to route. Example:
			
from("kafka:my_topic?kafkaHeaderDeserializer=#myDeserializer")
...
.to("kafka:my_topic?kafkaHeaderSerializer=#mySerializer")

				By default all headers are being filtered by KafkaHeaderFilterStrategy. Strategy filters out headers which start with Camel or org.apache.camel prefixes. Default strategy can be overridden by using headerFilterStrategy uri parameter in both to and from routes:
			
from("kafka:my_topic?headerFilterStrategy=#myStrategy")
...
.to("kafka:my_topic?headerFilterStrategy=#myStrategy")

				myStrategy object should be subclass of HeaderFilterStrategy and must be placed in the Camel registry, either manually or by registration as a bean in Spring/Blueprint, as it is CamelContext aware.
			

Chapter 190. Kestrel Component (deprecated)

			Available as of Camel version 2.6
		

			The Kestrel component allows messages to be sent to a Kestrel queue, or messages to be consumed from a Kestrel queue. This component uses the spymemcached client for memcached protocol communication with Kestrel servers.
		
Warning

				The kestrel project is inactive and the Camel team regard this components as deprecated.
			

URI format

kestrel://[addresslist/]queuename[?options]

				Where queuename is the name of the queue on Kestrel. The addresslist part of the URI may include one or more host:port pairs. For example, to connect to the queue foo on kserver01:22133, use:
			
kestrel://kserver01:22133/foo

				If the addresslist is omitted, localhost:22133 is assumed, i.e.:
			
kestrel://foo

				Likewise, if a port is omitted from a host:port pair in addresslist, the default port 22133 is assumed, i.e.:
			
kestrel://kserver01/foo

				Here is an example of a Kestrel endpoint URI used for producing to a clustered queue:
			
kestrel://kserver01:22133,kserver02:22133,kserver03:22133/massive

				Here is an example of a Kestrel endpoint URI used for consuming concurrently from a queue:
			
kestrel://kserver03:22133/massive?concurrentConsumers=25&waitTimeMs=500

Options

				The Kestrel component supports 2 options which are listed below.
			
	Name	Description	Default	Type
	
								configuration (advanced)
							

							 	
								To use a shared configured configuration as base for creating new endpoints.
							

							 	 	
								KestrelConfiguration
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The Kestrel endpoint is configured using URI syntax:
			
kestrel:addresses/queue

				with the following path and query parameters:
			
Path Parameters (2 parameters):

	Name	Description	Default	Type
	
									addresses
								

								 	
									The address(es) on which kestrel is running
								

								 	
									localhost:22133
								

								 	
									String[]
								

								
	
									queue
								

								 	
									Required The queue we are polling
								

								 	 	
									String
								

								

Query Parameters (6 parameters):

	Name	Description	Default	Type
	
									concurrentConsumers (common)
								

								 	
									How many concurrent listeners to schedule for the thread pool
								

								 	
									1
								

								 	
									int
								

								
	
									waitTimeMs (common)
								

								 	
									How long a given wait should block (server side), in milliseconds
								

								 	
									100
								

								 	
									int
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

Configuring the Kestrel component using Spring XML

				The simplest form of explicit configuration is as follows:
			
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd
 http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/camel-spring.xsd">

 <bean id="kestrel" class="org.apache.camel.component.kestrel.KestrelComponent"/>

 <camelContext xmlns="http://camel.apache.org/schema/spring">
 </camelContext>

</beans>

				That will enable the Kestrel component with all default settings, i.e. it will use localhost:22133, 100ms wait time, and a single non-concurrent consumer by default.
			

				To use specific options in the base configuration (which supplies configuration to endpoints whose ?properties are not specified), you can set up a KestrelConfiguration POJO as follows:
			
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd
 http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/camel-spring.xsd">

 <bean id="kestrelConfiguration" class="org.apache.camel.component.kestrel.KestrelConfiguration">
 <property name="addresses" value="kestrel01:22133"/>
 <property name="waitTimeMs" value="100"/>
 <property name="concurrentConsumers" value="1"/>
 </bean>

 <bean id="kestrel" class="org.apache.camel.component.kestrel.KestrelComponent">
 <property name="configuration" ref="kestrelConfiguration"/>
 </bean>

 <camelContext xmlns="http://camel.apache.org/schema/spring">
 </camelContext>

</beans>

Usage Examples

Example 1: Consuming

from("kestrel://kserver02:22133/massive?concurrentConsumers=10&waitTimeMs=500")
 .bean("myConsumer", "onMessage");
public class MyConsumer {
 public void onMessage(String message) {
 ...
 }
}

Example 2: Producing

public class MyProducer {
 @EndpointInject(uri = "kestrel://kserver01:22133,kserver02:22133/myqueue")
 ProducerTemplate producerTemplate;

 public void produceSomething() {
 producerTemplate.sendBody("Hello, world.");
 }
}

Example 3: Spring XML Configuration

 <camelContext xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="kestrel://ks01:22133/sequential?concurrentConsumers=1&waitTimeMs=500"/>
 <bean ref="myBean" method="onMessage"/>
 </route>
 <route>
 <from uri="direct:start"/>
 <to uri="kestrel://ks02:22133/stuff"/>
 </route>
 </camelContext>
public class MyBean {
 public void onMessage(String message) {
 ...
 }
}

Dependencies

				The Kestrel component has the following dependencies:
			
	
						spymemcached 2.5 (or greater)
					

spymemcached

					You must have the spymemcached jar on your classpath. Here is a snippet you can use in your pom.xml:
				
<dependency>
 <groupId>spy</groupId>
 <artifactId>memcached</artifactId>
 <version>2.5</version>
</dependency>

					Alternatively, you can download the jar directly.
				

					Warning: Limitations
				
Note

						The spymemcached client library does not work properly with kestrel when JVM assertions are enabled. There is a known issue with spymemcached when assertions are enabled and a requested key contains the /t=…​ extension (i.e. if you’re using the waitTimeMs option on an endpoint URI, which is highly encouraged). Fortunately, JVM assertions are disabled by default, unless you explicitly enable them, so this should not present a problem under normal circumstances. Something to note is that Maven’s Surefire test plugin enables assertions. If you’re using this component in a Maven test environment, you may need to set enableAssertions to false. Please refer to the surefire:test reference for details.
					

See Also

	
						Configuring Camel
					
	
						Component
					
	
						Endpoint
					
	
						Getting Started
					

Chapter 191. Kie-Camel

Overview

				The kie-camel component is an Apache Camel endpoint provided by Red Hat Fuse that integrates Fuse with Red Hat Process Automation Manager. It enables you to specify a Red Hat Process Automation Manager module by using a Maven group ID, artifact ID, and version (GAV) identifier which you can pull into the route and execute. It also enables you to specify portions of the message body as facts. You can use the kie-camel component with embedded engines or with Process Server.
			

				For more details about the kie-camel component, see Integrating Red Hat Fuse with Red Hat Process Automation Manager.
			

Chapter 192. Krati Component (deprecated)

			Available as of Camel version 2.9
		

			This component allows the use krati datastores and datasets inside Camel. Krati is a simple persistent data store with very low latency and high throughput. It is designed for easy integration with read-write-intensive applications with little effort in tuning configuration, performance and JVM garbage collection.
		

			Camel provides a producer and consumer for krati datastore_(key/value engine)_. It also provides an idempotent repository for filtering out duplicate messages.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-krati</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>
URI format

krati:[the path of the datastore][?options]

				The path of the datastore is the relative path of the folder that krati will use for its datastore.
			

				You can append query options to the URI in the following format, ?option=value&option=value&…​
			

Krati Options

				The Krati component has no options.
			

				The Krati endpoint is configured using URI syntax:
			
krati:path

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									path
								

								 	
									Required Path of the datastore is the relative path of the folder that krati will use for its datastore.
								

								 	 	
									String
								

								

Query Parameters (29 parameters):

	Name	Description	Default	Type
	
									hashFunction (common)
								

								 	
									The hash function to use.
								

								 	 	
									HashFunction<byte[]>
								

								
	
									initialCapacity (common)
								

								 	
									The inital capcity of the store.
								

								 	
									100
								

								 	
									int
								

								
	
									keySerializer (common)
								

								 	
									The serializer that will be used to serialize the key.
								

								 	 	
									Object>
								

								
	
									segmentFactory (common)
								

								 	
									Sets the segment factory of the target store.
								

								 	 	
									SegmentFactory
								

								
	
									segmentFileSize (common)
								

								 	
									Data store segments size in MB.
								

								 	
									64
								

								 	
									int
								

								
	
									valueSerializer (common)
								

								 	
									The serializer that will be used to serialize the value.
								

								 	 	
									Object>
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									maxMessagesPerPoll (consumer)
								

								 	
									The maximum number of messages which can be received in one poll. This can be used to avoid reading in too much data and taking up too much memory.
								

								 	 	
									int
								

								
	
									sendEmptyMessageWhenIdle (consumer)
								

								 	
									If the polling consumer did not poll any files, you can enable this option to send an empty message (no body) instead.
								

								 	
									false
								

								 	
									boolean
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									pollStrategy (consumer)
								

								 	
									A pluggable org.apache.camel.PollingConsumerPollingStrategy allowing you to provide your custom implementation to control error handling usually occurred during the poll operation before an Exchange have been created and being routed in Camel.
								

								 	 	
									PollingConsumerPoll Strategy
								

								
	
									key (producer)
								

								 	
									The key.
								

								 	 	
									String
								

								
	
									operation (producer)
								

								 	
									Specifies the type of operation that will be performed to the datastore.
								

								 	 	
									String
								

								
	
									value (producer)
								

								 	
									The Value.
								

								 	 	
									String
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									backoffErrorThreshold (scheduler)
								

								 	
									The number of subsequent error polls (failed due some error) that should happen before the backoffMultipler should kick-in.
								

								 	 	
									int
								

								
	
									backoffIdleThreshold (scheduler)
								

								 	
									The number of subsequent idle polls that should happen before the backoffMultipler should kick-in.
								

								 	 	
									int
								

								
	
									backoffMultiplier (scheduler)
								

								 	
									To let the scheduled polling consumer backoff if there has been a number of subsequent idles/errors in a row. The multiplier is then the number of polls that will be skipped before the next actual attempt is happening again. When this option is in use then backoffIdleThreshold and/or backoffErrorThreshold must also be configured.
								

								 	 	
									int
								

								
	
									delay (scheduler)
								

								 	
									Milliseconds before the next poll. You can also specify time values using units, such as 60s (60 seconds), 5m30s (5 minutes and 30 seconds), and 1h (1 hour).
								

								 	
									500
								

								 	
									long
								

								
	
									greedy (scheduler)
								

								 	
									If greedy is enabled, then the ScheduledPollConsumer will run immediately again, if the previous run polled 1 or more messages.
								

								 	
									false
								

								 	
									boolean
								

								
	
									initialDelay (scheduler)
								

								 	
									Milliseconds before the first poll starts. You can also specify time values using units, such as 60s (60 seconds), 5m30s (5 minutes and 30 seconds), and 1h (1 hour).
								

								 	
									1000
								

								 	
									long
								

								
	
									runLoggingLevel (scheduler)
								

								 	
									The consumer logs a start/complete log line when it polls. This option allows you to configure the logging level for that.
								

								 	
									TRACE
								

								 	
									LoggingLevel
								

								
	
									scheduledExecutorService (scheduler)
								

								 	
									Allows for configuring a custom/shared thread pool to use for the consumer. By default each consumer has its own single threaded thread pool.
								

								 	 	
									ScheduledExecutor Service
								

								
	
									scheduler (scheduler)
								

								 	
									To use a cron scheduler from either camel-spring or camel-quartz2 component
								

								 	
									none
								

								 	
									ScheduledPollConsumer Scheduler
								

								
	
									schedulerProperties (scheduler)
								

								 	
									To configure additional properties when using a custom scheduler or any of the Quartz2, Spring based scheduler.
								

								 	 	
									Map
								

								
	
									startScheduler (scheduler)
								

								 	
									Whether the scheduler should be auto started.
								

								 	
									true
								

								 	
									boolean
								

								
	
									timeUnit (scheduler)
								

								 	
									Time unit for initialDelay and delay options.
								

								 	
									MILLISECONDS
								

								 	
									TimeUnit
								

								
	
									useFixedDelay (scheduler)
								

								 	
									Controls if fixed delay or fixed rate is used. See ScheduledExecutorService in JDK for details.
								

								 	
									true
								

								 	
									boolean
								

								

krati:/tmp/krati?operation=CamelKratiGet&initialCapacity=10000&keySerializer=#myCustomSerializer

					For producer endpoint you can override all of the above URI options by passing the appropriate headers to the message.
				

Message Headers for datastore

	Header	Description
	
									CamelKratiOperation
								

								 	
									The operation to be performed on the datastore. The valid options are CamelKratiAdd, CamelKratiGet, CamelKratiDelete, CamelKratiDeleteAll
								

								
	
									CamelKratiKey
								

								 	
									The key.
								

								
	
									CamelKratiValue
								

								 	
									The value.
								

								

Usage Samples

Example 1: Putting to the datastore.

					This example will show you how you can store any message inside a datastore.
				
from("direct:put").to("krati:target/test/producertest");

					In the above example you can override any of the URI parameters with headers on the message.
 Here is how the above example would look like using xml to define our route.
				
 <route>
 <from uri="direct:put"/>
 <to uri="krati:target/test/producerspringtest"/>
 </route>

Example 2: Getting/Reading from a datastore

					This example will show you how you can read the contnet of a datastore.
				
from("direct:get")
 .setHeader(KratiConstants.KRATI_OPERATION, constant(KratiConstants.KRATI_OPERATION_GET))
 .to("krati:target/test/producertest");

					In the above example you can override any of the URI parameters with headers on the message.
 Here is how the above example would look like using xml to define our route.
				
<route>
 <from uri="direct:get"/>
 <to uri="krati:target/test/producerspringtest?operation=CamelKratiGet"/>
</route>

Example 3: Consuming from a datastore

					This example will consume all items that are under the specified datastore.
				
 from("krati:target/test/consumertest")
 .to("direct:next");

					You can achieve the same goal by using xml, as you can see below.
				
<route>
 <from uri="krati:target/test/consumerspringtest"/>
 <to uri="mock:results"/>
</route>

Idempotent Repository

				As already mentioned this component also offers and idemptonet repository which can be used for filtering out duplicate messages.
			
from("direct://in").idempotentConsumer(header("messageId"), new KratiIdempotentRepositroy("/tmp/idempotent").to("log://out");
See also

					Krati Website
				

Chapter 193. Kubernetes Components

			Available as of Camel version 2.17
		

			The Kubernetes components integrate your application with Kubernetes standalone or on top of Openshift.
		

			The camel-kubernetes consists of 13 components:
		
	
					Kubernetes ConfigMap
				
	
					Kubernetes Namespace
				
	
					Kubernetes Node
				
	
					Kubernetes Persistent Volume
				
	
					Kubernetes Persistent Volume Claim
				
	
					Kubernetes Pod
				
	
					Kubernetes Replication Controller
				
	
					Kubernetes Resource Quota
				
	
					Kubernetes Secrets
				
	
					Kubernetes Service Account
				
	
					Kubernetes Service
				

			In OpenShift, also:
		
	
					Kubernetes Build Config
				
	
					Kubernetes Build
				

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-kubernetes</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>
Headers

	Name	Type	Description
	
								CamelKubernetesOperation
							

							 	
								String
							

							 	
								The Producer operation
							

							
	
								CamelKubernetesNamespaceName
							

							 	
								String
							

							 	
								The Namespace name
							

							
	
								CamelKubernetesNamespaceLabels
							

							 	
								Map
							

							 	
								The Namespace Labels
							

							
	
								CamelKubernetesServiceLabels
							

							 	
								Map
							

							 	
								The Service labels
							

							
	
								CamelKubernetesServiceName
							

							 	
								String
							

							 	
								The Service name
							

							
	
								CamelKubernetesServiceSpec
							

							 	
								io.fabric8.kubernetes.api.model.ServiceSpec
							

							 	
								The Spec for a Service
							

							
	
								CamelKubernetesReplicationControllersLabels
							

							 	
								Map
							

							 	
								Replication controller labels
							

							
	
								CamelKubernetesReplicationControllerName
							

							 	
								String
							

							 	
								Replication controller name
							

							
	
								CamelKubernetesReplicationControllerSpec
							

							 	
								io.fabric8.kubernetes.api.model.ReplicationControllerSpec
							

							 	
								The Spec for a Replication Controller
							

							
	
								CamelKubernetesReplicationControllerReplicas
							

							 	
								Integer
							

							 	
								The number of replicas for a Replication Controller during the Scale operation
							

							
	
								CamelKubernetesPodsLabels
							

							 	
								Map
							

							 	
								Pod labels
							

							
	
								CamelKubernetesPodName
							

							 	
								String
							

							 	
								Pod name
							

							
	
								CamelKubernetesPodSpec
							

							 	
								io.fabric8.kubernetes.api.model.PodSpec
							

							 	
								The Spec for a Pod
							

							
	
								CamelKubernetesPersistentVolumesLabels
							

							 	
								Map
							

							 	
								Persistent Volume labels
							

							
	
								CamelKubernetesPersistentVolumesName
							

							 	
								String
							

							 	
								Persistent Volume name
							

							
	
								CamelKubernetesPersistentVolumesClaimsLabels
							

							 	
								Map
							

							 	
								Persistent Volume Claim labels
							

							
	
								CamelKubernetesPersistentVolumesClaimsName
							

							 	
								String
							

							 	
								Persistent Volume Claim name
							

							
	
								CamelKubernetesPersistentVolumesClaimsSpec
							

							 	
								io.fabric8.kubernetes.api.model.PersistentVolumeClaimSpec
							

							 	
								The Spec for a Persistent Volume claim
							

							
	
								CamelKubernetesSecretsLabels
							

							 	
								Map
							

							 	
								Secret labels
							

							
	
								CamelKubernetesSecretsName
							

							 	
								String
							

							 	
								Secret name
							

							
	
								CamelKubernetesSecret
							

							 	
								io.fabric8.kubernetes.api.model.Secret
							

							 	
								A Secret Object
							

							
	
								CamelKubernetesResourcesQuotaLabels
							

							 	
								Map
							

							 	
								Resource Quota labels
							

							
	
								CamelKubernetesResourcesQuotaName
							

							 	
								String
							

							 	
								Resource Quota name
							

							
	
								CamelKubernetesResourceQuotaSpec
							

							 	
								io.fabric8.kubernetes.api.model.ResourceQuotaSpec
							

							 	
								The Spec for a Resource Quota
							

							
	
								CamelKubernetesServiceAccountsLabels
							

							 	
								Map
							

							 	
								Service Account labels
							

							
	
								CamelKubernetesServiceAccountName
							

							 	
								String
							

							 	
								Service Account name
							

							
	
								CamelKubernetesServiceAccount
							

							 	
								io.fabric8.kubernetes.api.model.ServiceAccount
							

							 	
								A Service Account object
							

							
	
								CamelKubernetesNodesLabels
							

							 	
								Map
							

							 	
								Node labels
							

							
	
								CamelKubernetesNodeName
							

							 	
								String
							

							 	
								Node name
							

							
	
								CamelKubernetesBuildsLabels
							

							 	
								Map
							

							 	
								Openshift Build labels
							

							
	
								CamelKubernetesBuildName
							

							 	
								String
							

							 	
								Openshift Build name
							

							
	
								CamelKubernetesBuildConfigsLabels
							

							 	
								Map
							

							 	
								Openshift Build Config labels
							

							
	
								CamelKubernetesBuildConfigName
							

							 	
								String
							

							 	
								Openshift Build Config name
							

							
	
								CamelKubernetesEventAction
							

							 	
								io.fabric8.kubernetes.client.Watcher.Action
							

							 	
								Action watched by the consumer
							

							
	
								CamelKubernetesEventTimestamp
							

							 	
								String
							

							 	
								Timestamp of the action watched by the consumer
							

							
	
								CamelKubernetesConfigMapName
							

							 	
								String
							

							 	
								ConfigMap name
							

							
	
								CamelKubernetesConfigMapsLabels
							

							 	
								Map
							

							 	
								ConfigMap labels
							

							
	
								CamelKubernetesConfigData
							

							 	
								Map
							

							 	
								ConfigMap Data
							

							

Usage

Producer examples

					Here we show some examples of producer using camel-kubernetes.
				

Create a pod

from("direct:createPod")
 .toF("kubernetes-pods://%s?oauthToken=%s&operation=createPod", host, authToken);

					By using the KubernetesConstants.KUBERNETES_POD_SPEC header you can specify your PodSpec and pass it to this operation.
				

Delete a pod

from("direct:createPod")
 .toF("kubernetes-pods://%s?oauthToken=%s&operation=deletePod", host, authToken);

					By using the KubernetesConstants.KUBERNETES_POD_NAME header you can specify your Pod name and pass it to this operation.
				

Chapter 194. Kubernetes Component (deprecated)

			Available as of Camel version 2.17
		
Important

				The composite kubernetes component has been deprecated. Use individual component splitted as following.
			
	
						Kubernetes Components
					
	
								Kubernetes Build Config
							
	
								Kubernetes Build
							
	
								Kubernetes ConfigMap
							
	
								Kubernetes Namespace
							
	
								Kubernetes Node
							
	
								Kubernetes Persistent Volume
							
	
								Kubernetes Persistent Volume Claim
							
	
								Kubernetes Pod
							
	
								Kubernetes Replication Controller
							
	
								Kubernetes Resource Quota
							
	
								Kubernetes Secrets
							
	
								Kubernetes Service Account
							
	
								Kubernetes Service
							

			The Kubernetes component is a component for integrating your application with Kubernetes standalone or on top of Openshift.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-kubernetes</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>
URI format

kubernetes:masterUrl[?options]

				You can append query options to the URI in the following format, ?option=value&option=value&…​
			

Options

				The Kubernetes component has no options.
			

				The Kubernetes endpoint is configured using URI syntax:
			
kubernetes:masterUrl

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									masterUrl
								

								 	
									Required Kubernetes Master url
								

								 	 	
									String
								

								

Query Parameters (28 parameters):

	Name	Description	Default	Type
	
									apiVersion (common)
								

								 	
									The Kubernetes API Version to use
								

								 	 	
									String
								

								
	
									category (common)
								

								 	
									Required Kubernetes Producer and Consumer category
								

								 	 	
									String
								

								
	
									dnsDomain (common)
								

								 	
									The dns domain, used for ServiceCall EIP
								

								 	 	
									String
								

								
	
									kubernetesClient (common)
								

								 	
									Default KubernetesClient to use if provided
								

								 	 	
									KubernetesClient
								

								
	
									portName (common)
								

								 	
									The port name, used for ServiceCall EIP
								

								 	 	
									String
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									labelKey (consumer)
								

								 	
									The Consumer Label key when watching at some resources
								

								 	 	
									String
								

								
	
									labelValue (consumer)
								

								 	
									The Consumer Label value when watching at some resources
								

								 	 	
									String
								

								
	
									namespace (consumer)
								

								 	
									The namespace
								

								 	 	
									String
								

								
	
									poolSize (consumer)
								

								 	
									The Consumer pool size
								

								 	
									1
								

								 	
									int
								

								
	
									resourceName (consumer)
								

								 	
									The Consumer Resource Name we would like to watch
								

								 	 	
									String
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									operation (producer)
								

								 	
									Producer operation to do on Kubernetes
								

								 	 	
									String
								

								
	
									connectionTimeout (advanced)
								

								 	
									Connection timeout in milliseconds to use when making requests to the Kubernetes API server.
								

								 	 	
									Integer
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									caCertData (security)
								

								 	
									The CA Cert Data
								

								 	 	
									String
								

								
	
									caCertFile (security)
								

								 	
									The CA Cert File
								

								 	 	
									String
								

								
	
									clientCertData (security)
								

								 	
									The Client Cert Data
								

								 	 	
									String
								

								
	
									clientCertFile (security)
								

								 	
									The Client Cert File
								

								 	 	
									String
								

								
	
									clientKeyAlgo (security)
								

								 	
									The Key Algorithm used by the client
								

								 	 	
									String
								

								
	
									clientKeyData (security)
								

								 	
									The Client Key data
								

								 	 	
									String
								

								
	
									clientKeyFile (security)
								

								 	
									The Client Key file
								

								 	 	
									String
								

								
	
									clientKeyPassphrase (security)
								

								 	
									The Client Key Passphrase
								

								 	 	
									String
								

								
	
									oauthToken (security)
								

								 	
									The Auth Token
								

								 	 	
									String
								

								
	
									password (security)
								

								 	
									Password to connect to Kubernetes
								

								 	 	
									String
								

								
	
									trustCerts (security)
								

								 	
									Define if the certs we used are trusted anyway or not
								

								 	 	
									Boolean
								

								
	
									username (security)
								

								 	
									Username to connect to Kubernetes
								

								 	 	
									String
								

								

Headers

	Name	Type	Description
	
								CamelKubernetesOperation
							

							 	
								String
							

							 	
								The Producer operation
							

							
	
								CamelKubernetesNamespaceName
							

							 	
								String
							

							 	
								The Namespace name
							

							
	
								CamelKubernetesNamespaceLabels
							

							 	
								Map
							

							 	
								The Namespace Labels
							

							
	
								CamelKubernetesServiceLabels
							

							 	
								Map
							

							 	
								The Service labels
							

							
	
								CamelKubernetesServiceName
							

							 	
								String
							

							 	
								The Service name
							

							
	
								CamelKubernetesServiceSpec
							

							 	
								io.fabric8.kubernetes.api.model.ServiceSpec
							

							 	
								The Spec for a Service
							

							
	
								CamelKubernetesReplicationControllersLabels
							

							 	
								Map
							

							 	
								Replication controller labels
							

							
	
								CamelKubernetesReplicationControllerName
							

							 	
								String
							

							 	
								Replication controller name
							

							
	
								CamelKubernetesReplicationControllerSpec
							

							 	
								io.fabric8.kubernetes.api.model.ReplicationControllerSpec
							

							 	
								The Spec for a Replication Controller
							

							
	
								CamelKubernetesReplicationControllerReplicas
							

							 	
								Integer
							

							 	
								The number of replicas for a Replication Controller during the Scale operation
							

							
	
								CamelKubernetesPodsLabels
							

							 	
								Map
							

							 	
								Pod labels
							

							
	
								CamelKubernetesPodName
							

							 	
								String
							

							 	
								Pod name
							

							
	
								CamelKubernetesPodSpec
							

							 	
								io.fabric8.kubernetes.api.model.PodSpec
							

							 	
								The Spec for a Pod
							

							
	
								CamelKubernetesPersistentVolumesLabels
							

							 	
								Map
							

							 	
								Persistent Volume labels
							

							
	
								CamelKubernetesPersistentVolumesName
							

							 	
								String
							

							 	
								Persistent Volume name
							

							
	
								CamelKubernetesPersistentVolumesClaimsLabels
							

							 	
								Map
							

							 	
								Persistent Volume Claim labels
							

							
	
								CamelKubernetesPersistentVolumesClaimsName
							

							 	
								String
							

							 	
								Persistent Volume Claim name
							

							
	
								CamelKubernetesPersistentVolumesClaimsSpec
							

							 	
								io.fabric8.kubernetes.api.model.PersistentVolumeClaimSpec
							

							 	
								The Spec for a Persistent Volume claim
							

							
	
								CamelKubernetesSecretsLabels
							

							 	
								Map
							

							 	
								Secret labels
							

							
	
								CamelKubernetesSecretsName
							

							 	
								String
							

							 	
								Secret name
							

							
	
								CamelKubernetesSecret
							

							 	
								io.fabric8.kubernetes.api.model.Secret
							

							 	
								A Secret Object
							

							
	
								CamelKubernetesResourcesQuotaLabels
							

							 	
								Map
							

							 	
								Resource Quota labels
							

							
	
								CamelKubernetesResourcesQuotaName
							

							 	
								String
							

							 	
								Resource Quota name
							

							
	
								CamelKubernetesResourceQuotaSpec
							

							 	
								io.fabric8.kubernetes.api.model.ResourceQuotaSpec
							

							 	
								The Spec for a Resource Quota
							

							
	
								CamelKubernetesServiceAccountsLabels
							

							 	
								Map
							

							 	
								Service Account labels
							

							
	
								CamelKubernetesServiceAccountName
							

							 	
								String
							

							 	
								Service Account name
							

							
	
								CamelKubernetesServiceAccount
							

							 	
								io.fabric8.kubernetes.api.model.ServiceAccount
							

							 	
								A Service Account object
							

							
	
								CamelKubernetesNodesLabels
							

							 	
								Map
							

							 	
								Node labels
							

							
	
								CamelKubernetesNodeName
							

							 	
								String
							

							 	
								Node name
							

							
	
								CamelKubernetesBuildsLabels
							

							 	
								Map
							

							 	
								Openshift Build labels
							

							
	
								CamelKubernetesBuildName
							

							 	
								String
							

							 	
								Openshift Build name
							

							
	
								CamelKubernetesBuildConfigsLabels
							

							 	
								Map
							

							 	
								Openshift Build Config labels
							

							
	
								CamelKubernetesBuildConfigName
							

							 	
								String
							

							 	
								Openshift Build Config name
							

							
	
								CamelKubernetesEventAction
							

							 	
								io.fabric8.kubernetes.client.Watcher.Action
							

							 	
								Action watched by the consumer
							

							
	
								CamelKubernetesEventTimestamp
							

							 	
								String
							

							 	
								Timestamp of the action watched by the consumer
							

							
	
								CamelKubernetesConfigMapName
							

							 	
								String
							

							 	
								ConfigMap name
							

							
	
								CamelKubernetesConfigMapsLabels
							

							 	
								Map
							

							 	
								ConfigMap labels
							

							
	
								CamelKubernetesConfigData
							

							 	
								Map
							

							 	
								ConfigMap Data
							

							

Categories

				Actually the camel-kubernetes component supports the following Kubernetes resources
			
	
						Namespaces
					
	
						Pods
					
	
						Replication Controllers
					
	
						Services
					
	
						Persistent Volumes
					
	
						Persistent Volume Claims
					
	
						Secrets
					
	
						Resource Quota
					
	
						Service Accounts
					
	
						Nodes
					
	
						Configmaps
					

				In Openshift also
			
	
						Builds
					
	
						BuildConfigs
					

Usage

Producer examples

					Here we show some examples of producer using camel-kubernetes.
				

Create a pod

from("direct:createPod")
 .toF("kubernetes://%s?oauthToken=%s&category=pods&operation=createPod", host, authToken);

					By using the KubernetesConstants.KUBERNETES_POD_SPEC header you can specify your PodSpec and pass it to this operation.
				

Delete a pod

from("direct:createPod")
 .toF("kubernetes://%s?oauthToken=%s&category=pods&operation=deletePod", host, authToken);

					By using the KubernetesConstants.KUBERNETES_POD_NAME header you can specify your Pod name and pass it to this operation.
				

Chapter 195. Kubernetes ConfigMap Component

			Available as of Camel version 2.17
		

			The Kubernetes ConfigMap component is one of Kubernetes Components which provides a producer to execute kubernetes ConfigMap operations.
		
Component Options

				The Kubernetes ConfigMap component has no options.
			

Endpoint Options

				The Kubernetes ConfigMap endpoint is configured using URI syntax:
			
kubernetes-config-maps:masterUrl

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									masterUrl
								

								 	
									Required Kubernetes Master url
								

								 	 	
									String
								

								

Query Parameters (19 parameters):

	Name	Description	Default	Type
	
									apiVersion (producer)
								

								 	
									The Kubernetes API Version to use
								

								 	 	
									String
								

								
	
									dnsDomain (producer)
								

								 	
									The dns domain, used for ServiceCall EIP
								

								 	 	
									String
								

								
	
									kubernetesClient (producer)
								

								 	
									Default KubernetesClient to use if provided
								

								 	 	
									KubernetesClient
								

								
	
									operation (producer)
								

								 	
									Producer operation to do on Kubernetes
								

								 	 	
									String
								

								
	
									portName (producer)
								

								 	
									The port name, used for ServiceCall EIP
								

								 	 	
									String
								

								
	
									connectionTimeout (advanced)
								

								 	
									Connection timeout in milliseconds to use when making requests to the Kubernetes API server.
								

								 	 	
									Integer
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									caCertData (security)
								

								 	
									The CA Cert Data
								

								 	 	
									String
								

								
	
									caCertFile (security)
								

								 	
									The CA Cert File
								

								 	 	
									String
								

								
	
									clientCertData (security)
								

								 	
									The Client Cert Data
								

								 	 	
									String
								

								
	
									clientCertFile (security)
								

								 	
									The Client Cert File
								

								 	 	
									String
								

								
	
									clientKeyAlgo (security)
								

								 	
									The Key Algorithm used by the client
								

								 	 	
									String
								

								
	
									clientKeyData (security)
								

								 	
									The Client Key data
								

								 	 	
									String
								

								
	
									clientKeyFile (security)
								

								 	
									The Client Key file
								

								 	 	
									String
								

								
	
									clientKeyPassphrase (security)
								

								 	
									The Client Key Passphrase
								

								 	 	
									String
								

								
	
									oauthToken (security)
								

								 	
									The Auth Token
								

								 	 	
									String
								

								
	
									password (security)
								

								 	
									Password to connect to Kubernetes
								

								 	 	
									String
								

								
	
									trustCerts (security)
								

								 	
									Define if the certs we used are trusted anyway or not
								

								 	 	
									Boolean
								

								
	
									username (security)
								

								 	
									Username to connect to Kubernetes
								

								 	 	
									String
								

								

Chapter 196. Kubernetes Deployments Component

			Available as of Camel version 2.20
		

			The Kubernetes Deployments component is one of Kubernetes Components which provides a producer to execute kubernetes secret operations.
		
Component Options

				The Kubernetes Deployments component has no options.
			

Endpoint Options

				The Kubernetes Deployments endpoint is configured using URI syntax:
			
kubernetes-deployments:masterUrl

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									masterUrl
								

								 	
									Required Kubernetes Master url
								

								 	 	
									String
								

								

Query Parameters (27 parameters):

	Name	Description	Default	Type
	
									apiVersion (common)
								

								 	
									The Kubernetes API Version to use
								

								 	 	
									String
								

								
	
									dnsDomain (common)
								

								 	
									The dns domain, used for ServiceCall EIP
								

								 	 	
									String
								

								
	
									kubernetesClient (common)
								

								 	
									Default KubernetesClient to use if provided
								

								 	 	
									KubernetesClient
								

								
	
									portName (common)
								

								 	
									The port name, used for ServiceCall EIP
								

								 	 	
									String
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									labelKey (consumer)
								

								 	
									The Consumer Label key when watching at some resources
								

								 	 	
									String
								

								
	
									labelValue (consumer)
								

								 	
									The Consumer Label value when watching at some resources
								

								 	 	
									String
								

								
	
									namespace (consumer)
								

								 	
									The namespace
								

								 	 	
									String
								

								
	
									poolSize (consumer)
								

								 	
									The Consumer pool size
								

								 	
									1
								

								 	
									int
								

								
	
									resourceName (consumer)
								

								 	
									The Consumer Resource Name we would like to watch
								

								 	 	
									String
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									operation (producer)
								

								 	
									Producer operation to do on Kubernetes
								

								 	 	
									String
								

								
	
									connectionTimeout (advanced)
								

								 	
									Connection timeout in milliseconds to use when making requests to the Kubernetes API server.
								

								 	 	
									Integer
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									caCertData (security)
								

								 	
									The CA Cert Data
								

								 	 	
									String
								

								
	
									caCertFile (security)
								

								 	
									The CA Cert File
								

								 	 	
									String
								

								
	
									clientCertData (security)
								

								 	
									The Client Cert Data
								

								 	 	
									String
								

								
	
									clientCertFile (security)
								

								 	
									The Client Cert File
								

								 	 	
									String
								

								
	
									clientKeyAlgo (security)
								

								 	
									The Key Algorithm used by the client
								

								 	 	
									String
								

								
	
									clientKeyData (security)
								

								 	
									The Client Key data
								

								 	 	
									String
								

								
	
									clientKeyFile (security)
								

								 	
									The Client Key file
								

								 	 	
									String
								

								
	
									clientKeyPassphrase (security)
								

								 	
									The Client Key Passphrase
								

								 	 	
									String
								

								
	
									oauthToken (security)
								

								 	
									The Auth Token
								

								 	 	
									String
								

								
	
									password (security)
								

								 	
									Password to connect to Kubernetes
								

								 	 	
									String
								

								
	
									trustCerts (security)
								

								 	
									Define if the certs we used are trusted anyway or not
								

								 	 	
									Boolean
								

								
	
									username (security)
								

								 	
									Username to connect to Kubernetes
								

								 	 	
									String
								

								

Chapter 197. Kubernetes HPA Component

			Available as of Camel version 2.23
		

			The Kubernetes HPA component is one of Kubernetes Components which provides a producer to execute kubernetes hpa operations and a consumer to consume kubernetes hpa events.
		
Component Options

				The Kubernetes HPA component has no options.
			

Endpoint Options

				The Kubernetes HPA endpoint is configured using URI syntax:
			
kubernetes-hpa:masterUrl

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									masterUrl
								

								 	
									Required Kubernetes Master url
								

								 	 	
									String
								

								

Query Parameters (28 parameters):

	Name	Description	Default	Type
	
									apiVersion (common)
								

								 	
									The Kubernetes API Version to use
								

								 	 	
									String
								

								
	
									dnsDomain (common)
								

								 	
									The dns domain, used for ServiceCall EIP
								

								 	 	
									String
								

								
	
									kubernetesClient (common)
								

								 	
									Default KubernetesClient to use if provided
								

								 	 	
									KubernetesClient
								

								
	
									portName (common)
								

								 	
									The port name, used for ServiceCall EIP
								

								 	 	
									String
								

								
	
									portProtocol (common)
								

								 	
									The port protocol, used for ServiceCall EIP
								

								 	
									tcp
								

								 	
									String
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									labelKey (consumer)
								

								 	
									The Consumer Label key when watching at some resources
								

								 	 	
									String
								

								
	
									labelValue (consumer)
								

								 	
									The Consumer Label value when watching at some resources
								

								 	 	
									String
								

								
	
									namespace (consumer)
								

								 	
									The namespace
								

								 	 	
									String
								

								
	
									poolSize (consumer)
								

								 	
									The Consumer pool size
								

								 	
									1
								

								 	
									int
								

								
	
									resourceName (consumer)
								

								 	
									The Consumer Resource Name we would like to watch
								

								 	 	
									String
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this option is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									operation (producer)
								

								 	
									Producer operation to do on Kubernetes
								

								 	 	
									String
								

								
	
									connectionTimeout (advanced)
								

								 	
									Connection timeout in milliseconds to use when making requests to the Kubernetes API server.
								

								 	 	
									Integer
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									caCertData (security)
								

								 	
									The CA Cert Data
								

								 	 	
									String
								

								
	
									caCertFile (security)
								

								 	
									The CA Cert File
								

								 	 	
									String
								

								
	
									clientCertData (security)
								

								 	
									The Client Cert Data
								

								 	 	
									String
								

								
	
									clientCertFile (security)
								

								 	
									The Client Cert File
								

								 	 	
									String
								

								
	
									clientKeyAlgo (security)
								

								 	
									The Key Algorithm used by the client
								

								 	 	
									String
								

								
	
									clientKeyData (security)
								

								 	
									The Client Key data
								

								 	 	
									String
								

								
	
									clientKeyFile (security)
								

								 	
									The Client Key file
								

								 	 	
									String
								

								
	
									clientKeyPassphrase (security)
								

								 	
									The Client Key Passphrase
								

								 	 	
									String
								

								
	
									oauthToken (security)
								

								 	
									The Auth Token
								

								 	 	
									String
								

								
	
									password (security)
								

								 	
									Password to connect to Kubernetes
								

								 	 	
									String
								

								
	
									trustCerts (security)
								

								 	
									Define if the certs we used are trusted anyway or not
								

								 	 	
									Boolean
								

								
	
									username (security)
								

								 	
									Username to connect to Kubernetes
								

								 	 	
									String
								

								

Spring Boot Auto-Configuration

				The component supports 2 options, which are listed below.
			
	Name	Description	Default	Type
	
								camel.component.kubernetes-hpa.enabled
							

							 	
								Whether to enable auto configuration of the kubernetes-hpa component. This is enabled by default.
							

							 	 	
								Boolean
							

							
	
								camel.component.kubernetes-hpa.resolve-property-placeholders
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								Boolean
							

							

Chapter 198. Kubernetes Job Component

			Available as of Camel version 2.23
		

			The Kubernetes Job component is one of Kubernetes Components which provides a producer to execute kubernetes job operations.
		
Component Options

				The Kubernetes Job component has no options.
			

Endpoint Options

				The Kubernetes Job endpoint is configured using URI syntax:
			
kubernetes-job:masterUrl

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									masterUrl
								

								 	
									Required Kubernetes Master url
								

								 	 	
									String
								

								

Query Parameters (28 parameters):

	Name	Description	Default	Type
	
									apiVersion (common)
								

								 	
									The Kubernetes API Version to use
								

								 	 	
									String
								

								
	
									dnsDomain (common)
								

								 	
									The dns domain, used for ServiceCall EIP
								

								 	 	
									String
								

								
	
									kubernetesClient (common)
								

								 	
									Default KubernetesClient to use if provided
								

								 	 	
									KubernetesClient
								

								
	
									portName (common)
								

								 	
									The port name, used for ServiceCall EIP
								

								 	 	
									String
								

								
	
									portProtocol (common)
								

								 	
									The port protocol, used for ServiceCall EIP
								

								 	
									tcp
								

								 	
									String
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									labelKey (consumer)
								

								 	
									The Consumer Label key when watching at some resources
								

								 	 	
									String
								

								
	
									labelValue (consumer)
								

								 	
									The Consumer Label value when watching at some resources
								

								 	 	
									String
								

								
	
									namespace (consumer)
								

								 	
									The namespace
								

								 	 	
									String
								

								
	
									poolSize (consumer)
								

								 	
									The Consumer pool size
								

								 	
									1
								

								 	
									int
								

								
	
									resourceName (consumer)
								

								 	
									The Consumer Resource Name we would like to watch
								

								 	 	
									String
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this option is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									operation (producer)
								

								 	
									Producer operation to do on Kubernetes
								

								 	 	
									String
								

								
	
									connectionTimeout (advanced)
								

								 	
									Connection timeout in milliseconds to use when making requests to the Kubernetes API server.
								

								 	 	
									Integer
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									caCertData (security)
								

								 	
									The CA Cert Data
								

								 	 	
									String
								

								
	
									caCertFile (security)
								

								 	
									The CA Cert File
								

								 	 	
									String
								

								
	
									clientCertData (security)
								

								 	
									The Client Cert Data
								

								 	 	
									String
								

								
	
									clientCertFile (security)
								

								 	
									The Client Cert File
								

								 	 	
									String
								

								
	
									clientKeyAlgo (security)
								

								 	
									The Key Algorithm used by the client
								

								 	 	
									String
								

								
	
									clientKeyData (security)
								

								 	
									The Client Key data
								

								 	 	
									String
								

								
	
									clientKeyFile (security)
								

								 	
									The Client Key file
								

								 	 	
									String
								

								
	
									clientKeyPassphrase (security)
								

								 	
									The Client Key Passphrase
								

								 	 	
									String
								

								
	
									oauthToken (security)
								

								 	
									The Auth Token
								

								 	 	
									String
								

								
	
									password (security)
								

								 	
									Password to connect to Kubernetes
								

								 	 	
									String
								

								
	
									trustCerts (security)
								

								 	
									Define if the certs we used are trusted anyway or not
								

								 	 	
									Boolean
								

								
	
									username (security)
								

								 	
									Username to connect to Kubernetes
								

								 	 	
									String
								

								

Spring Boot Auto-Configuration

				The component supports 2 options, which are listed below.
			
	Name	Description	Default	Type
	
								camel.component.kubernetes-job.enabled
							

							 	
								Whether to enable auto configuration of the kubernetes-job component. This is enabled by default.
							

							 	 	
								Boolean
							

							
	
								camel.component.kubernetes-job.resolve-property-placeholders
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								Boolean
							

							

Chapter 199. Kubernetes Namespaces Component

			Available as of Camel version 2.17
		

			The Kubernetes Namespaces component is one of Kubernetes Components which provides a producer to execute kubernetes namespace operations and a consumer to consume kubernetes namespace events.
		
Component Options

				The Kubernetes Namespaces component has no options.
			

Endpoint Options

				The Kubernetes Namespaces endpoint is configured using URI syntax:
			
kubernetes-namespaces:masterUrl

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									masterUrl
								

								 	
									Required Kubernetes Master url
								

								 	 	
									String
								

								

Query Parameters (27 parameters):

	Name	Description	Default	Type
	
									apiVersion (common)
								

								 	
									The Kubernetes API Version to use
								

								 	 	
									String
								

								
	
									dnsDomain (common)
								

								 	
									The dns domain, used for ServiceCall EIP
								

								 	 	
									String
								

								
	
									kubernetesClient (common)
								

								 	
									Default KubernetesClient to use if provided
								

								 	 	
									KubernetesClient
								

								
	
									portName (common)
								

								 	
									The port name, used for ServiceCall EIP
								

								 	 	
									String
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									labelKey (consumer)
								

								 	
									The Consumer Label key when watching at some resources
								

								 	 	
									String
								

								
	
									labelValue (consumer)
								

								 	
									The Consumer Label value when watching at some resources
								

								 	 	
									String
								

								
	
									namespace (consumer)
								

								 	
									The namespace
								

								 	 	
									String
								

								
	
									poolSize (consumer)
								

								 	
									The Consumer pool size
								

								 	
									1
								

								 	
									int
								

								
	
									resourceName (consumer)
								

								 	
									The Consumer Resource Name we would like to watch
								

								 	 	
									String
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									operation (producer)
								

								 	
									Producer operation to do on Kubernetes
								

								 	 	
									String
								

								
	
									connectionTimeout (advanced)
								

								 	
									Connection timeout in milliseconds to use when making requests to the Kubernetes API server.
								

								 	 	
									Integer
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									caCertData (security)
								

								 	
									The CA Cert Data
								

								 	 	
									String
								

								
	
									caCertFile (security)
								

								 	
									The CA Cert File
								

								 	 	
									String
								

								
	
									clientCertData (security)
								

								 	
									The Client Cert Data
								

								 	 	
									String
								

								
	
									clientCertFile (security)
								

								 	
									The Client Cert File
								

								 	 	
									String
								

								
	
									clientKeyAlgo (security)
								

								 	
									The Key Algorithm used by the client
								

								 	 	
									String
								

								
	
									clientKeyData (security)
								

								 	
									The Client Key data
								

								 	 	
									String
								

								
	
									clientKeyFile (security)
								

								 	
									The Client Key file
								

								 	 	
									String
								

								
	
									clientKeyPassphrase (security)
								

								 	
									The Client Key Passphrase
								

								 	 	
									String
								

								
	
									oauthToken (security)
								

								 	
									The Auth Token
								

								 	 	
									String
								

								
	
									password (security)
								

								 	
									Password to connect to Kubernetes
								

								 	 	
									String
								

								
	
									trustCerts (security)
								

								 	
									Define if the certs we used are trusted anyway or not
								

								 	 	
									Boolean
								

								
	
									username (security)
								

								 	
									Username to connect to Kubernetes
								

								 	 	
									String
								

								

Chapter 200. Kubernetes Nodes Component

			Available as of Camel version 2.17
		

			The Kubernetes Nodes component is one of Kubernetes Components which provides a producer to execute kubernetes node operations and a consumer to consume kubernetes node events.
		
Component Options

				The Kubernetes Nodes component has no options.
			

Endpoint Options

				The Kubernetes Nodes endpoint is configured using URI syntax:
			
kubernetes-nodes:masterUrl

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									masterUrl
								

								 	
									Required Kubernetes Master url
								

								 	 	
									String
								

								

Query Parameters (27 parameters):

	Name	Description	Default	Type
	
									apiVersion (common)
								

								 	
									The Kubernetes API Version to use
								

								 	 	
									String
								

								
	
									dnsDomain (common)
								

								 	
									The dns domain, used for ServiceCall EIP
								

								 	 	
									String
								

								
	
									kubernetesClient (common)
								

								 	
									Default KubernetesClient to use if provided
								

								 	 	
									KubernetesClient
								

								
	
									portName (common)
								

								 	
									The port name, used for ServiceCall EIP
								

								 	 	
									String
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									labelKey (consumer)
								

								 	
									The Consumer Label key when watching at some resources
								

								 	 	
									String
								

								
	
									labelValue (consumer)
								

								 	
									The Consumer Label value when watching at some resources
								

								 	 	
									String
								

								
	
									namespace (consumer)
								

								 	
									The namespace
								

								 	 	
									String
								

								
	
									poolSize (consumer)
								

								 	
									The Consumer pool size
								

								 	
									1
								

								 	
									int
								

								
	
									resourceName (consumer)
								

								 	
									The Consumer Resource Name we would like to watch
								

								 	 	
									String
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									operation (producer)
								

								 	
									Producer operation to do on Kubernetes
								

								 	 	
									String
								

								
	
									connectionTimeout (advanced)
								

								 	
									Connection timeout in milliseconds to use when making requests to the Kubernetes API server.
								

								 	 	
									Integer
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									caCertData (security)
								

								 	
									The CA Cert Data
								

								 	 	
									String
								

								
	
									caCertFile (security)
								

								 	
									The CA Cert File
								

								 	 	
									String
								

								
	
									clientCertData (security)
								

								 	
									The Client Cert Data
								

								 	 	
									String
								

								
	
									clientCertFile (security)
								

								 	
									The Client Cert File
								

								 	 	
									String
								

								
	
									clientKeyAlgo (security)
								

								 	
									The Key Algorithm used by the client
								

								 	 	
									String
								

								
	
									clientKeyData (security)
								

								 	
									The Client Key data
								

								 	 	
									String
								

								
	
									clientKeyFile (security)
								

								 	
									The Client Key file
								

								 	 	
									String
								

								
	
									clientKeyPassphrase (security)
								

								 	
									The Client Key Passphrase
								

								 	 	
									String
								

								
	
									oauthToken (security)
								

								 	
									The Auth Token
								

								 	 	
									String
								

								
	
									password (security)
								

								 	
									Password to connect to Kubernetes
								

								 	 	
									String
								

								
	
									trustCerts (security)
								

								 	
									Define if the certs we used are trusted anyway or not
								

								 	 	
									Boolean
								

								
	
									username (security)
								

								 	
									Username to connect to Kubernetes
								

								 	 	
									String
								

								

Chapter 201. Kubernetes Persistent Volume Claim Component

			Available as of Camel version 2.17
		

			The Kubernetes Persistent Volume Claim component is one of Kubernetes Components which provides a producer to execute kubernetes persistent volume claim operations.
		
Component Options

				The Kubernetes Persistent Volume Claim component has no options.
			

Endpoint Options

				The Kubernetes Persistent Volume Claim endpoint is configured using URI syntax:
			
kubernetes-persistent-volumes-claims:masterUrl

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									masterUrl
								

								 	
									Required Kubernetes Master url
								

								 	 	
									String
								

								

Query Parameters (19 parameters):

	Name	Description	Default	Type
	
									apiVersion (producer)
								

								 	
									The Kubernetes API Version to use
								

								 	 	
									String
								

								
	
									dnsDomain (producer)
								

								 	
									The dns domain, used for ServiceCall EIP
								

								 	 	
									String
								

								
	
									kubernetesClient (producer)
								

								 	
									Default KubernetesClient to use if provided
								

								 	 	
									KubernetesClient
								

								
	
									operation (producer)
								

								 	
									Producer operation to do on Kubernetes
								

								 	 	
									String
								

								
	
									portName (producer)
								

								 	
									The port name, used for ServiceCall EIP
								

								 	 	
									String
								

								
	
									connectionTimeout (advanced)
								

								 	
									Connection timeout in milliseconds to use when making requests to the Kubernetes API server.
								

								 	 	
									Integer
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									caCertData (security)
								

								 	
									The CA Cert Data
								

								 	 	
									String
								

								
	
									caCertFile (security)
								

								 	
									The CA Cert File
								

								 	 	
									String
								

								
	
									clientCertData (security)
								

								 	
									The Client Cert Data
								

								 	 	
									String
								

								
	
									clientCertFile (security)
								

								 	
									The Client Cert File
								

								 	 	
									String
								

								
	
									clientKeyAlgo (security)
								

								 	
									The Key Algorithm used by the client
								

								 	 	
									String
								

								
	
									clientKeyData (security)
								

								 	
									The Client Key data
								

								 	 	
									String
								

								
	
									clientKeyFile (security)
								

								 	
									The Client Key file
								

								 	 	
									String
								

								
	
									clientKeyPassphrase (security)
								

								 	
									The Client Key Passphrase
								

								 	 	
									String
								

								
	
									oauthToken (security)
								

								 	
									The Auth Token
								

								 	 	
									String
								

								
	
									password (security)
								

								 	
									Password to connect to Kubernetes
								

								 	 	
									String
								

								
	
									trustCerts (security)
								

								 	
									Define if the certs we used are trusted anyway or not
								

								 	 	
									Boolean
								

								
	
									username (security)
								

								 	
									Username to connect to Kubernetes
								

								 	 	
									String
								

								

Chapter 202. Kubernetes Persistent Volume Component

			Available as of Camel version 2.17
		

			The Kubernetes Persistent Volume component is one of Kubernetes Components which provides a producer to execute kubernetes persistent volume operations.
		
Component Options

				The Kubernetes Persistent Volume component has no options.
			

Endpoint Options

				The Kubernetes Persistent Volume endpoint is configured using URI syntax:
			
kubernetes-persistent-volumes:masterUrl

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									masterUrl
								

								 	
									Required Kubernetes Master url
								

								 	 	
									String
								

								

Query Parameters (19 parameters):

	Name	Description	Default	Type
	
									apiVersion (producer)
								

								 	
									The Kubernetes API Version to use
								

								 	 	
									String
								

								
	
									dnsDomain (producer)
								

								 	
									The dns domain, used for ServiceCall EIP
								

								 	 	
									String
								

								
	
									kubernetesClient (producer)
								

								 	
									Default KubernetesClient to use if provided
								

								 	 	
									KubernetesClient
								

								
	
									operation (producer)
								

								 	
									Producer operation to do on Kubernetes
								

								 	 	
									String
								

								
	
									portName (producer)
								

								 	
									The port name, used for ServiceCall EIP
								

								 	 	
									String
								

								
	
									connectionTimeout (advanced)
								

								 	
									Connection timeout in milliseconds to use when making requests to the Kubernetes API server.
								

								 	 	
									Integer
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									caCertData (security)
								

								 	
									The CA Cert Data
								

								 	 	
									String
								

								
	
									caCertFile (security)
								

								 	
									The CA Cert File
								

								 	 	
									String
								

								
	
									clientCertData (security)
								

								 	
									The Client Cert Data
								

								 	 	
									String
								

								
	
									clientCertFile (security)
								

								 	
									The Client Cert File
								

								 	 	
									String
								

								
	
									clientKeyAlgo (security)
								

								 	
									The Key Algorithm used by the client
								

								 	 	
									String
								

								
	
									clientKeyData (security)
								

								 	
									The Client Key data
								

								 	 	
									String
								

								
	
									clientKeyFile (security)
								

								 	
									The Client Key file
								

								 	 	
									String
								

								
	
									clientKeyPassphrase (security)
								

								 	
									The Client Key Passphrase
								

								 	 	
									String
								

								
	
									oauthToken (security)
								

								 	
									The Auth Token
								

								 	 	
									String
								

								
	
									password (security)
								

								 	
									Password to connect to Kubernetes
								

								 	 	
									String
								

								
	
									trustCerts (security)
								

								 	
									Define if the certs we used are trusted anyway or not
								

								 	 	
									Boolean
								

								
	
									username (security)
								

								 	
									Username to connect to Kubernetes
								

								 	 	
									String
								

								

Chapter 203. Kubernetes Pods Component

			Available as of Camel version 2.17
		

			The Kubernetes Pods component is one of Kubernetes Components which provides a producer to execute kubernetes pod operations.
		
Component Options

				The Kubernetes Pods component has no options.
			

Endpoint Options

				The Kubernetes Pods endpoint is configured using URI syntax:
			
kubernetes-pods:masterUrl

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									masterUrl
								

								 	
									Required Kubernetes Master url
								

								 	 	
									String
								

								

Query Parameters (27 parameters):

	Name	Description	Default	Type
	
									apiVersion (common)
								

								 	
									The Kubernetes API Version to use
								

								 	 	
									String
								

								
	
									dnsDomain (common)
								

								 	
									The dns domain, used for ServiceCall EIP
								

								 	 	
									String
								

								
	
									kubernetesClient (common)
								

								 	
									Default KubernetesClient to use if provided
								

								 	 	
									KubernetesClient
								

								
	
									portName (common)
								

								 	
									The port name, used for ServiceCall EIP
								

								 	 	
									String
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									labelKey (consumer)
								

								 	
									The Consumer Label key when watching at some resources
								

								 	 	
									String
								

								
	
									labelValue (consumer)
								

								 	
									The Consumer Label value when watching at some resources
								

								 	 	
									String
								

								
	
									namespace (consumer)
								

								 	
									The namespace
								

								 	 	
									String
								

								
	
									poolSize (consumer)
								

								 	
									The Consumer pool size
								

								 	
									1
								

								 	
									int
								

								
	
									resourceName (consumer)
								

								 	
									The Consumer Resource Name we would like to watch
								

								 	 	
									String
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									operation (producer)
								

								 	
									Producer operation to do on Kubernetes
								

								 	 	
									String
								

								
	
									connectionTimeout (advanced)
								

								 	
									Connection timeout in milliseconds to use when making requests to the Kubernetes API server.
								

								 	 	
									Integer
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									caCertData (security)
								

								 	
									The CA Cert Data
								

								 	 	
									String
								

								
	
									caCertFile (security)
								

								 	
									The CA Cert File
								

								 	 	
									String
								

								
	
									clientCertData (security)
								

								 	
									The Client Cert Data
								

								 	 	
									String
								

								
	
									clientCertFile (security)
								

								 	
									The Client Cert File
								

								 	 	
									String
								

								
	
									clientKeyAlgo (security)
								

								 	
									The Key Algorithm used by the client
								

								 	 	
									String
								

								
	
									clientKeyData (security)
								

								 	
									The Client Key data
								

								 	 	
									String
								

								
	
									clientKeyFile (security)
								

								 	
									The Client Key file
								

								 	 	
									String
								

								
	
									clientKeyPassphrase (security)
								

								 	
									The Client Key Passphrase
								

								 	 	
									String
								

								
	
									oauthToken (security)
								

								 	
									The Auth Token
								

								 	 	
									String
								

								
	
									password (security)
								

								 	
									Password to connect to Kubernetes
								

								 	 	
									String
								

								
	
									trustCerts (security)
								

								 	
									Define if the certs we used are trusted anyway or not
								

								 	 	
									Boolean
								

								
	
									username (security)
								

								 	
									Username to connect to Kubernetes
								

								 	 	
									String
								

								

Chapter 204. Kubernetes Replication Controller Component

			Available as of Camel version 2.17
		

			The Kubernetes Replication Controller component is one of Kubernetes Components which provides a producer to execute kubernetes replication controller operations and a consumer to consume kubernetes replication controller events.
		
Component Options

				The Kubernetes Replication Controller component has no options.
			

Endpoint Options

				The Kubernetes Replication Controller endpoint is configured using URI syntax:
			
kubernetes-replication-controllers:masterUrl

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									masterUrl
								

								 	
									Required Kubernetes Master url
								

								 	 	
									String
								

								

Query Parameters (27 parameters):

	Name	Description	Default	Type
	
									apiVersion (common)
								

								 	
									The Kubernetes API Version to use
								

								 	 	
									String
								

								
	
									dnsDomain (common)
								

								 	
									The dns domain, used for ServiceCall EIP
								

								 	 	
									String
								

								
	
									kubernetesClient (common)
								

								 	
									Default KubernetesClient to use if provided
								

								 	 	
									KubernetesClient
								

								
	
									portName (common)
								

								 	
									The port name, used for ServiceCall EIP
								

								 	 	
									String
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									labelKey (consumer)
								

								 	
									The Consumer Label key when watching at some resources
								

								 	 	
									String
								

								
	
									labelValue (consumer)
								

								 	
									The Consumer Label value when watching at some resources
								

								 	 	
									String
								

								
	
									namespace (consumer)
								

								 	
									The namespace
								

								 	 	
									String
								

								
	
									poolSize (consumer)
								

								 	
									The Consumer pool size
								

								 	
									1
								

								 	
									int
								

								
	
									resourceName (consumer)
								

								 	
									The Consumer Resource Name we would like to watch
								

								 	 	
									String
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									operation (producer)
								

								 	
									Producer operation to do on Kubernetes
								

								 	 	
									String
								

								
	
									connectionTimeout (advanced)
								

								 	
									Connection timeout in milliseconds to use when making requests to the Kubernetes API server.
								

								 	 	
									Integer
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									caCertData (security)
								

								 	
									The CA Cert Data
								

								 	 	
									String
								

								
	
									caCertFile (security)
								

								 	
									The CA Cert File
								

								 	 	
									String
								

								
	
									clientCertData (security)
								

								 	
									The Client Cert Data
								

								 	 	
									String
								

								
	
									clientCertFile (security)
								

								 	
									The Client Cert File
								

								 	 	
									String
								

								
	
									clientKeyAlgo (security)
								

								 	
									The Key Algorithm used by the client
								

								 	 	
									String
								

								
	
									clientKeyData (security)
								

								 	
									The Client Key data
								

								 	 	
									String
								

								
	
									clientKeyFile (security)
								

								 	
									The Client Key file
								

								 	 	
									String
								

								
	
									clientKeyPassphrase (security)
								

								 	
									The Client Key Passphrase
								

								 	 	
									String
								

								
	
									oauthToken (security)
								

								 	
									The Auth Token
								

								 	 	
									String
								

								
	
									password (security)
								

								 	
									Password to connect to Kubernetes
								

								 	 	
									String
								

								
	
									trustCerts (security)
								

								 	
									Define if the certs we used are trusted anyway or not
								

								 	 	
									Boolean
								

								
	
									username (security)
								

								 	
									Username to connect to Kubernetes
								

								 	 	
									String
								

								

Chapter 205. Kubernetes Resources Quota Component

			Available as of Camel version 2.17
		

			The Kubernetes Resources Quota component is one of Kubernetes Components which provides a producer to execute kubernetes resource quota operations.
		
Component Options

				The Kubernetes Resources Quota component has no options.
			

Endpoint Options

				The Kubernetes Resources Quota endpoint is configured using URI syntax:
			
kubernetes-resources-quota:masterUrl

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									masterUrl
								

								 	
									Required Kubernetes Master url
								

								 	 	
									String
								

								

Query Parameters (19 parameters):

	Name	Description	Default	Type
	
									apiVersion (producer)
								

								 	
									The Kubernetes API Version to use
								

								 	 	
									String
								

								
	
									dnsDomain (producer)
								

								 	
									The dns domain, used for ServiceCall EIP
								

								 	 	
									String
								

								
	
									kubernetesClient (producer)
								

								 	
									Default KubernetesClient to use if provided
								

								 	 	
									KubernetesClient
								

								
	
									operation (producer)
								

								 	
									Producer operation to do on Kubernetes
								

								 	 	
									String
								

								
	
									portName (producer)
								

								 	
									The port name, used for ServiceCall EIP
								

								 	 	
									String
								

								
	
									connectionTimeout (advanced)
								

								 	
									Connection timeout in milliseconds to use when making requests to the Kubernetes API server.
								

								 	 	
									Integer
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									caCertData (security)
								

								 	
									The CA Cert Data
								

								 	 	
									String
								

								
	
									caCertFile (security)
								

								 	
									The CA Cert File
								

								 	 	
									String
								

								
	
									clientCertData (security)
								

								 	
									The Client Cert Data
								

								 	 	
									String
								

								
	
									clientCertFile (security)
								

								 	
									The Client Cert File
								

								 	 	
									String
								

								
	
									clientKeyAlgo (security)
								

								 	
									The Key Algorithm used by the client
								

								 	 	
									String
								

								
	
									clientKeyData (security)
								

								 	
									The Client Key data
								

								 	 	
									String
								

								
	
									clientKeyFile (security)
								

								 	
									The Client Key file
								

								 	 	
									String
								

								
	
									clientKeyPassphrase (security)
								

								 	
									The Client Key Passphrase
								

								 	 	
									String
								

								
	
									oauthToken (security)
								

								 	
									The Auth Token
								

								 	 	
									String
								

								
	
									password (security)
								

								 	
									Password to connect to Kubernetes
								

								 	 	
									String
								

								
	
									trustCerts (security)
								

								 	
									Define if the certs we used are trusted anyway or not
								

								 	 	
									Boolean
								

								
	
									username (security)
								

								 	
									Username to connect to Kubernetes
								

								 	 	
									String
								

								

Chapter 206. Kubernetes Secrets Component

			Available as of Camel version 2.17
		

			The Kubernetes Secrets component is one of Kubernetes Components which provides a producer to execute kubernetes secret operations.
		
Component Options

				The Kubernetes Secrets component has no options.
			

Endpoint Options

				The Kubernetes Secrets endpoint is configured using URI syntax:
			
kubernetes-secrets:masterUrl

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									masterUrl
								

								 	
									Required Kubernetes Master url
								

								 	 	
									String
								

								

Query Parameters (19 parameters):

	Name	Description	Default	Type
	
									apiVersion (producer)
								

								 	
									The Kubernetes API Version to use
								

								 	 	
									String
								

								
	
									dnsDomain (producer)
								

								 	
									The dns domain, used for ServiceCall EIP
								

								 	 	
									String
								

								
	
									kubernetesClient (producer)
								

								 	
									Default KubernetesClient to use if provided
								

								 	 	
									KubernetesClient
								

								
	
									operation (producer)
								

								 	
									Producer operation to do on Kubernetes
								

								 	 	
									String
								

								
	
									portName (producer)
								

								 	
									The port name, used for ServiceCall EIP
								

								 	 	
									String
								

								
	
									connectionTimeout (advanced)
								

								 	
									Connection timeout in milliseconds to use when making requests to the Kubernetes API server.
								

								 	 	
									Integer
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									caCertData (security)
								

								 	
									The CA Cert Data
								

								 	 	
									String
								

								
	
									caCertFile (security)
								

								 	
									The CA Cert File
								

								 	 	
									String
								

								
	
									clientCertData (security)
								

								 	
									The Client Cert Data
								

								 	 	
									String
								

								
	
									clientCertFile (security)
								

								 	
									The Client Cert File
								

								 	 	
									String
								

								
	
									clientKeyAlgo (security)
								

								 	
									The Key Algorithm used by the client
								

								 	 	
									String
								

								
	
									clientKeyData (security)
								

								 	
									The Client Key data
								

								 	 	
									String
								

								
	
									clientKeyFile (security)
								

								 	
									The Client Key file
								

								 	 	
									String
								

								
	
									clientKeyPassphrase (security)
								

								 	
									The Client Key Passphrase
								

								 	 	
									String
								

								
	
									oauthToken (security)
								

								 	
									The Auth Token
								

								 	 	
									String
								

								
	
									password (security)
								

								 	
									Password to connect to Kubernetes
								

								 	 	
									String
								

								
	
									trustCerts (security)
								

								 	
									Define if the certs we used are trusted anyway or not
								

								 	 	
									Boolean
								

								
	
									username (security)
								

								 	
									Username to connect to Kubernetes
								

								 	 	
									String
								

								

Chapter 207. Kubernetes Service Account Component

			Available as of Camel version 2.17
		

			The Kubernetes Service Account component is one of Kubernetes Components which provides a producer to execute kubernetes Service Account operations.
		
Component Options

				The Kubernetes Service Account component has no options.
			

Endpoint Options

				The Kubernetes Service Account endpoint is configured using URI syntax:
			
kubernetes-service-accounts:masterUrl

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									masterUrl
								

								 	
									Required Kubernetes Master url
								

								 	 	
									String
								

								

Query Parameters (19 parameters):

	Name	Description	Default	Type
	
									apiVersion (producer)
								

								 	
									The Kubernetes API Version to use
								

								 	 	
									String
								

								
	
									dnsDomain (producer)
								

								 	
									The dns domain, used for ServiceCall EIP
								

								 	 	
									String
								

								
	
									kubernetesClient (producer)
								

								 	
									Default KubernetesClient to use if provided
								

								 	 	
									KubernetesClient
								

								
	
									operation (producer)
								

								 	
									Producer operation to do on Kubernetes
								

								 	 	
									String
								

								
	
									portName (producer)
								

								 	
									The port name, used for ServiceCall EIP
								

								 	 	
									String
								

								
	
									connectionTimeout (advanced)
								

								 	
									Connection timeout in milliseconds to use when making requests to the Kubernetes API server.
								

								 	 	
									Integer
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									caCertData (security)
								

								 	
									The CA Cert Data
								

								 	 	
									String
								

								
	
									caCertFile (security)
								

								 	
									The CA Cert File
								

								 	 	
									String
								

								
	
									clientCertData (security)
								

								 	
									The Client Cert Data
								

								 	 	
									String
								

								
	
									clientCertFile (security)
								

								 	
									The Client Cert File
								

								 	 	
									String
								

								
	
									clientKeyAlgo (security)
								

								 	
									The Key Algorithm used by the client
								

								 	 	
									String
								

								
	
									clientKeyData (security)
								

								 	
									The Client Key data
								

								 	 	
									String
								

								
	
									clientKeyFile (security)
								

								 	
									The Client Key file
								

								 	 	
									String
								

								
	
									clientKeyPassphrase (security)
								

								 	
									The Client Key Passphrase
								

								 	 	
									String
								

								
	
									oauthToken (security)
								

								 	
									The Auth Token
								

								 	 	
									String
								

								
	
									password (security)
								

								 	
									Password to connect to Kubernetes
								

								 	 	
									String
								

								
	
									trustCerts (security)
								

								 	
									Define if the certs we used are trusted anyway or not
								

								 	 	
									Boolean
								

								
	
									username (security)
								

								 	
									Username to connect to Kubernetes
								

								 	 	
									String
								

								

Chapter 208. Kubernetes Services Component

			Available as of Camel version 2.17
		

			The Kubernetes Services component is one of Kubernetes Components which provides a producer to execute kubernetes service operations and a consumer to consume kubernetes service events.
		
Component Options

				The Kubernetes Services component has no options.
			

Endpoint Options

				The Kubernetes Services endpoint is configured using URI syntax:
			
kubernetes-services:masterUrl

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									masterUrl
								

								 	
									Required Kubernetes Master url
								

								 	 	
									String
								

								

Query Parameters (27 parameters):

	Name	Description	Default	Type
	
									apiVersion (common)
								

								 	
									The Kubernetes API Version to use
								

								 	 	
									String
								

								
	
									dnsDomain (common)
								

								 	
									The dns domain, used for ServiceCall EIP
								

								 	 	
									String
								

								
	
									kubernetesClient (common)
								

								 	
									Default KubernetesClient to use if provided
								

								 	 	
									KubernetesClient
								

								
	
									portName (common)
								

								 	
									The port name, used for ServiceCall EIP
								

								 	 	
									String
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									labelKey (consumer)
								

								 	
									The Consumer Label key when watching at some resources
								

								 	 	
									String
								

								
	
									labelValue (consumer)
								

								 	
									The Consumer Label value when watching at some resources
								

								 	 	
									String
								

								
	
									namespace (consumer)
								

								 	
									The namespace
								

								 	 	
									String
								

								
	
									poolSize (consumer)
								

								 	
									The Consumer pool size
								

								 	
									1
								

								 	
									int
								

								
	
									resourceName (consumer)
								

								 	
									The Consumer Resource Name we would like to watch
								

								 	 	
									String
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									operation (producer)
								

								 	
									Producer operation to do on Kubernetes
								

								 	 	
									String
								

								
	
									connectionTimeout (advanced)
								

								 	
									Connection timeout in milliseconds to use when making requests to the Kubernetes API server.
								

								 	 	
									Integer
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									caCertData (security)
								

								 	
									The CA Cert Data
								

								 	 	
									String
								

								
	
									caCertFile (security)
								

								 	
									The CA Cert File
								

								 	 	
									String
								

								
	
									clientCertData (security)
								

								 	
									The Client Cert Data
								

								 	 	
									String
								

								
	
									clientCertFile (security)
								

								 	
									The Client Cert File
								

								 	 	
									String
								

								
	
									clientKeyAlgo (security)
								

								 	
									The Key Algorithm used by the client
								

								 	 	
									String
								

								
	
									clientKeyData (security)
								

								 	
									The Client Key data
								

								 	 	
									String
								

								
	
									clientKeyFile (security)
								

								 	
									The Client Key file
								

								 	 	
									String
								

								
	
									clientKeyPassphrase (security)
								

								 	
									The Client Key Passphrase
								

								 	 	
									String
								

								
	
									oauthToken (security)
								

								 	
									The Auth Token
								

								 	 	
									String
								

								
	
									password (security)
								

								 	
									Password to connect to Kubernetes
								

								 	 	
									String
								

								
	
									trustCerts (security)
								

								 	
									Define if the certs we used are trusted anyway or not
								

								 	 	
									Boolean
								

								
	
									username (security)
								

								 	
									Username to connect to Kubernetes
								

								 	 	
									String
								

								

Eclipse Kura component

				Available as of Camel 2.15
			

				This documentation page covers the integration options of Camel with the Eclipse Kura M2M gateway. The common reason to deploy Camel routes into the Eclipse Kura is to provide enterprise integration patterns and Camel components to the messaging M2M gateway. For example you might want to install Kura on Raspberry PI, then read temperature from the sensor attached to that Raspberry PI using Kura services and finally forward the current temperature value to your data center service using Camel EIP and components.
			
KuraRouter activator

					Bundles deployed to the Eclipse Kura are usually developed as bundle activators. So the easiest way to deploy Apache Camel routes into the Kura is to create an OSGi bundle containing the class extending org.apache.camel.kura.KuraRouter class:
				
public class MyKuraRouter extends KuraRouter {

 @Override
 public void configure() throws Exception {
 from("timer:trigger").
 to("netty-http:http://app.mydatacenter.com/api");
 }

}

					Keep in mind that KuraRouter implements the org.osgi.framework.BundleActivator interface, so you need to register its start and stop lifecycle methods while creating Kura bundle component class.
				

					Kura router starts its own OSGi-aware CamelContext. It means that for every class extending KuraRouter, there will be a dedicated CamelContext instance. Ideally we recommend to deploy one KuraRouter per OSGi bundle.
				

Deploying KuraRouter

					Bundle containing your Kura router class should import the following packages in the OSGi manifest:
				
Import-Package: org.osgi.framework;version="1.3.0",
 org.slf4j;version="1.6.4",
 org.apache.camel,org.apache.camel.impl,org.apache.camel.core.osgi,org.apache.camel.builder,org.apache.camel.model,
 org.apache.camel.component.kura

					Keep in mind that you don’t have to import every Camel component bundle you plan to use in your routes, as Camel components are resolved as the services on the runtime level.
				

					Before you deploy your router bundle, be sure that you have deployed (and started) the following Camel core bundles (using Kura GoGo shell)…​
				
install file:///home/user/.m2/repository/org/apache/camel/camel-core/2.15.0/camel-core-2.15.0.jar
start <camel-core-bundle-id>
install file:///home/user/.m2/repository/org/apache/camel/camel-core-osgi/2.15.0/camel-core-osgi-2.15.0.jar
start <camel-core-osgi-bundle-id>
install file:///home/user/.m2/repository/org/apache/camel/camel-kura/2.15.0/camel-kura-2.15.0.jar
start <camel-kura-bundle-id>

					…​and all the components you plan to use in your routes:
				
install file:///home/user/.m2/repository/org/apache/camel/camel-stream/2.15.0/camel-stream-2.15.0.jar
start <camel-stream-bundle-id>

					Then finally deploy your router bundle:
				
install file:///home/user/.m2/repository/com/example/myrouter/1.0/myrouter-1.0.jar
start <your-bundle-id>

KuraRouter utilities

					 Kura router base class provides many useful utilities. This section explores each of them.
				
SLF4J logger

						Kura uses SLF4J facade for logging purposes. Protected member log returns SLF4J logger instance associated with the given Kura router.
					
public class MyKuraRouter extends KuraRouter {

 @Override
 public void configure() throws Exception {
 log.info("Configuring Camel routes!");
 ...
 }

}

BundleContext

						Protected member bundleContext returns bundle context associated with the given Kura router.
					
public class MyKuraRouter extends KuraRouter {

 @Override
 public void configure() throws Exception {
 ServiceReference<MyService> serviceRef = bundleContext.getServiceReference(LogService.class.getName());
 MyService myService = bundleContext.getService(serviceRef);
 ...
 }

}

CamelContext

						Protected member camelContext is the CamelContext associated with the given Kura router.
					
public class MyKuraRouter extends KuraRouter {

 @Override
 public void configure() throws Exception {
 camelContext.getStatus();
 ...
 }

}

ProducerTemplate

						Protected member producerTemplate is the ProducerTemplate instance associated with the given Camel context.
					
public class MyKuraRouter extends KuraRouter {

 @Override
 public void configure() throws Exception {
 producerTemplate.sendBody("jms:temperature", 22.0);
 ...
 }

}

ConsumerTemplate

						Protected member consumerTemplate is the ConsumerTemplate instance associated with the given Camel context.
					
public class MyKuraRouter extends KuraRouter {

 @Override
 public void configure() throws Exception {
 double currentTemperature = producerTemplate.receiveBody("jms:temperature", Double.class);
 ...
 }

}

OSGi service resolver

						OSGi service resolver (service(Class<T> serviceType)) can be used to easily retrieve service by type from the OSGi bundle context.
					
public class MyKuraRouter extends KuraRouter {

 @Override
 public void configure() throws Exception {
 MyService myService = service(MyService.class);
 ...
 }

}

						If service is not found, a null value is returned. If you want your application to fail if the service is not available, use requiredService(Class) method instead. The requiredService throws IllegalStateException if a service cannot be found.
					
public class MyKuraRouter extends KuraRouter {

 @Override
 public void configure() throws Exception {
 MyService myService = requiredService(MyService.class);
 ...
 }

}

KuraRouter activator callbacks

					Kura router comes with the lifecycle callbacks that can be used to customize the way the Camel router works. For example to configure the CamelContext instance associated with the router just before the former is started, override beforeStart method of the KuraRouter class:
				
public class MyKuraRouter extends KuraRouter {

 ...

 protected void beforeStart(CamelContext camelContext) {
 OsgiDefaultCamelContext osgiContext = (OsgiCamelContext) camelContext;
 osgiContext.setName("NameOfTheRouter");
 }

}

Loading XML routes from ConfigurationAdmin

					Sometimes it is desired to read the XML definition of the routes from the server configuration. This a common scenario for IoT gateways where over-the-air redeployment cost may be significant. To address this requirement each KuraRouter looks for the kura.camel.BUNDLE-SYMBOLIC-NAME.route property from the kura.camel PID using the OSGi ConfigurationAdmin. This approach allows you to define Camel XML routes file per deployed KuraRouter. In order to update a route, just edit an appropriate configuration property and restart a bundle associated with it. The content of the kura.camel.BUNDLE-SYMBOLIC-NAME.route property is expected to be Camel XML route file, for example:
				
<routes xmlns="http://camel.apache.org/schema/spring">
 <route id="loaded">
 <from uri="direct:bar"/>
 <to uri="mock:bar"/>
 </route>
</routes>

					
				

Deploying Kura router as a declarative OSGi service

					If you would like to deploy your Kura router as a declarative OSGi service, you can use activate and deactivate methods provided by KuraRouter.
				
<scr:component name="org.eclipse.kura.example.camel.MyKuraRouter" activate="activate" deactivate="deactivate" enabled="true" immediate="true">
 <implementation class="org.eclipse.kura.example.camel.MyKuraRouter"/>
</scr:component>

See Also

	
							Configuring Camel
						
	
							Component
						
	
							Endpoint
						
	
							Getting Started
						

Chapter 209. Language Component

			Available as of Camel version 2.5
		

			The language component allows you to send Exchange to an endpoint which executes a script by any of the supported Languages in Camel.
 By having a component to execute language scripts, it allows more dynamic routing capabilities. For example by using the Routing Slip or Dynamic Router EIPs you can send messages to language endpoints where the script is dynamic defined as well.
		

			This component is provided out of the box in camel-core and hence no additional JARs is needed. You only have to include additional Camel components if the language of choice mandates it, such as using Groovy or JavaScript languages.
		
URI format

language://languageName[:script][?options]

				And from Camel 2.11 onwards you can refer to an external resource for the script using same notation as supported by the other Languages in Camel
			
language://languageName:resource:scheme:location][?options]

URI Options

				The Language component has no options.
			

				The Language endpoint is configured using URI syntax:
			
language:languageName:resourceUri

				with the following path and query parameters:
			
Path Parameters (2 parameters):

	Name	Description	Default	Type
	
									languageName
								

								 	
									Required Sets the name of the language to use
								

								 	 	
									String
								

								
	
									resourceUri
								

								 	
									Path to the resource, or a reference to lookup a bean in the Registry to use as the resource
								

								 	 	
									String
								

								

Query Parameters (6 parameters):

	Name	Description	Default	Type
	
									binary (producer)
								

								 	
									Whether the script is binary content or text content. By default the script is read as text content (eg java.lang.String)
								

								 	
									false
								

								 	
									boolean
								

								
	
									cacheScript (producer)
								

								 	
									Whether to cache the compiled script and reuse Notice reusing the script can cause side effects from processing one Camel org.apache.camel.Exchange to the next org.apache.camel.Exchange.
								

								 	
									false
								

								 	
									boolean
								

								
	
									contentCache (producer)
								

								 	
									Sets whether to use resource content cache or not.
								

								 	
									false
								

								 	
									boolean
								

								
	
									script (producer)
								

								 	
									Sets the script to execute
								

								 	 	
									String
								

								
	
									transform (producer)
								

								 	
									Whether or not the result of the script should be used as message body. This options is default true.
								

								 	
									true
								

								 	
									boolean
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

Message Headers

				The following message headers can be used to affect the behavior of the component
			
	Header	Description
	
								CamelLanguageScript
							

							 	
								The script to execute provided in the header. Takes precedence over script configured on the endpoint.
							

							

Examples

				For example you can use the Simple language to Message Translator a message:
			

				In case you want to convert the message body type you can do this as well:
			

				You can also use the Groovy language, such as this example where the input message will by multiplied with 2:
			

				You can also provide the script as a header as shown below. Here we use XPath language to extract the text from the <foo> tag.
			
Object out = producer.requestBodyAndHeader("language:xpath", "<foo>Hello World</foo>", Exchange.LANGUAGE_SCRIPT, "/foo/text()");
assertEquals("Hello World", out);

Loading scripts from resources

				Available as of Camel 2.9
			

				You can specify a resource uri for a script to load in either the endpoint uri, or in the Exchange.LANGUAGE_SCRIPT header.
 The uri must start with one of the following schemes: file:, classpath:, or http:
			

				For example to load a script from the classpath:
			

				By default the script is loaded once and cached. However you can disable the contentCache option and have the script loaded on each evaluation.
 For example if the file myscript.txt is changed on disk, then the updated script is used:
			

				From Camel 2.11 onwards you can refer to the resource similar to the other Languages in Camel by prefixing with "resource:" as shown below:
			

Chapter 210. LDAP Component

			Available as of Camel version 1.5
		

			The ldap component allows you to perform searches in LDAP servers using filters as the message payload.
 This component uses standard JNDI (javax.naming package) to access the server.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-ldap</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>
URI format

ldap:ldapServerBean[?options]

				The ldapServerBean portion of the URI refers to a DirContext bean in the registry. The LDAP component only supports producer endpoints, which means that an ldap URI cannot appear in the from at the start of a route.
			

				You can append query options to the URI in the following format, ?option=value&option=value&…​
			

Options

				The LDAP component has no options.
			

				The LDAP endpoint is configured using URI syntax:
			
ldap:dirContextName

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									dirContextName
								

								 	
									Required Name of either a javax.naming.directory.DirContext, or java.util.Hashtable, or Map bean to lookup in the registry. If the bean is either a Hashtable or Map then a new javax.naming.directory.DirContext instance is created for each use. If the bean is a javax.naming.directory.DirContext then the bean is used as given. The latter may not be possible in all situations where the javax.naming.directory.DirContext must not be shared, and in those situations it can be better to use java.util.Hashtable or Map instead.
								

								 	 	
									String
								

								

Query Parameters (5 parameters):

	Name	Description	Default	Type
	
									base (producer)
								

								 	
									The base DN for searches.
								

								 	
									ou=system
								

								 	
									String
								

								
	
									pageSize (producer)
								

								 	
									When specified the ldap module uses paging to retrieve all results (most LDAP Servers throw an exception when trying to retrieve more than 1000 entries in one query). To be able to use this a LdapContext (subclass of DirContext) has to be passed in as ldapServerBean (otherwise an exception is thrown)
								

								 	 	
									Integer
								

								
	
									returnedAttributes (producer)
								

								 	
									Comma-separated list of attributes that should be set in each entry of the result
								

								 	 	
									String
								

								
	
									scope (producer)
								

								 	
									Specifies how deeply to search the tree of entries, starting at the base DN.
								

								 	
									subtree
								

								 	
									String
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

Result

				The result is returned in the Out body as a ArrayList<javax.naming.directory.SearchResult> object.
			

DirContext

				The URI, ldap:ldapserver, references a Spring bean with the ID, ldapserver. The ldapserver bean may be defined as follows:
			
<bean id="ldapserver" class="javax.naming.directory.InitialDirContext" scope="prototype">
 <constructor-arg>
 <props>
 <prop key="java.naming.factory.initial">com.sun.jndi.ldap.LdapCtxFactory</prop>
 <prop key="java.naming.provider.url">ldap://localhost:10389</prop>
 <prop key="java.naming.security.authentication">none</prop>
 </props>
 </constructor-arg>
</bean>

				The preceding example declares a regular Sun based LDAP DirContext that connects anonymously to a locally hosted LDAP server.
			
Note

					DirContext objects are not required to support concurrency by contract. It is therefore important that the directory context is declared with the setting, scope="prototype", in the bean definition or that the context supports concurrency. In the Spring framework, prototype scoped objects are instantiated each time they are looked up.
				

Samples

				Following on from the Spring configuration above, the code sample below sends an LDAP request to filter search a group for a member. The Common Name is then extracted from the response.
			
ProducerTemplate<Exchange> template = exchange
 .getContext().createProducerTemplate();

Collection<?> results = (Collection<?>) (template
 .sendBody(
 "ldap:ldapserver?base=ou=mygroup,ou=groups,ou=system",
 "(member=uid=huntc,ou=users,ou=system)"));

if (results.size() > 0) {
 // Extract what we need from the device's profile

 Iterator<?> resultIter = results.iterator();
 SearchResult searchResult = (SearchResult) resultIter
 .next();
 Attributes attributes = searchResult
 .getAttributes();
 Attribute deviceCNAttr = attributes.get("cn");
 String deviceCN = (String) deviceCNAttr.get();

 ...

				If no specific filter is required - for example, you just need to look up a single entry - specify a wildcard filter expression. For example, if the LDAP entry has a Common Name, use a filter expression like:
			
(cn=*)
Binding using credentials

					A Camel end user donated this sample code he used to bind to the ldap server using credentials.
				
Properties props = new Properties();
props.setProperty(Context.INITIAL_CONTEXT_FACTORY, "com.sun.jndi.ldap.LdapCtxFactory");
props.setProperty(Context.PROVIDER_URL, "ldap://localhost:389");
props.setProperty(Context.URL_PKG_PREFIXES, "com.sun.jndi.url");
props.setProperty(Context.REFERRAL, "ignore");
props.setProperty(Context.SECURITY_AUTHENTICATION, "simple");
props.setProperty(Context.SECURITY_PRINCIPAL, "cn=Manager");
props.setProperty(Context.SECURITY_CREDENTIALS, "secret");

SimpleRegistry reg = new SimpleRegistry();
reg.put("myldap", new InitialLdapContext(props, null));

CamelContext context = new DefaultCamelContext(reg);
context.addRoutes(
 new RouteBuilder() {
 public void configure() throws Exception {
 from("direct:start").to("ldap:myldap?base=ou=test");
 }
 }
);
context.start();

ProducerTemplate template = context.createProducerTemplate();

Endpoint endpoint = context.getEndpoint("direct:start");
Exchange exchange = endpoint.createExchange();
exchange.getIn().setBody("(uid=test)");
Exchange out = template.send(endpoint, exchange);

Collection<SearchResult> data = out.getOut().getBody(Collection.class);
assert data != null;
assert !data.isEmpty();

System.out.println(out.getOut().getBody());

context.stop();

Configuring SSL

				All required is to create a custom socket factory and reference it in the InitialDirContext bean - see below sample.
			

				SSL Configuration
			
<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.osgi.org/xmlns/blueprint/v1.0.0 http://www.osgi.org/xmlns/blueprint/v1.0.0/blueprint.xsd
 http://camel.apache.org/schema/blueprint http://camel.apache.org/schema/blueprint/camel-blueprint.xsd">

 <sslContextParameters xmlns="http://camel.apache.org/schema/blueprint"
 id="sslContextParameters">
 <keyManagers
 keyPassword="{{keystore.pwd}}">
 <keyStore
 resource="{{keystore.url}}"
 password="{{keystore.pwd}}"/>
 </keyManagers>
 </sslContextParameters>

 <bean id="customSocketFactory" class="zotix.co.util.CustomSocketFactory">
 <argument ref="sslContextParameters" />
 </bean>
 <bean id="ldapserver" class="javax.naming.directory.InitialDirContext" scope="prototype">
 <argument>
 <props>
 <prop key="java.naming.factory.initial" value="com.sun.jndi.ldap.LdapCtxFactory"/>
 <prop key="java.naming.provider.url" value="ldaps://lab.zotix.co:636"/>
 <prop key="java.naming.security.protocol" value="ssl"/>
 <prop key="java.naming.security.authentication" value="simple" />
 <prop key="java.naming.security.principal" value="cn=Manager,dc=example,dc=com"/>
 <prop key="java.naming.security.credentials" value="passw0rd"/>
 <prop key="java.naming.ldap.factory.socket"
 value="zotix.co.util.CustomSocketFactory"/>
 </props>
 </argument>
 </bean>
</blueprint>

				Custom Socket Factory
			
import org.apache.camel.util.jsse.SSLContextParameters;

import javax.net.SocketFactory;
import javax.net.ssl.SSLContext;
import javax.net.ssl.SSLSocketFactory;
import javax.net.ssl.TrustManagerFactory;
import java.io.IOException;
import java.net.InetAddress;
import java.net.Socket;
import java.security.KeyStore;

/**
 * The CustomSocketFactory. Loads the KeyStore and creates an instance of SSLSocketFactory
 */
public class CustomSocketFactory extends SSLSocketFactory {

 private static SSLSocketFactory socketFactory;

 /**
 * Called by the getDefault() method.
 */
 public CustomSocketFactory() {

 }

 /**
 * Called by Blueprint DI to initialise an instance of SocketFactory
 *
 * @param sslContextParameters
 */
 public CustomSocketFactory(SSLContextParameters sslContextParameters) {
 try {
 KeyStore keyStore = sslContextParameters.getKeyManagers().getKeyStore().createKeyStore();
 TrustManagerFactory tmf = TrustManagerFactory.getInstance("SunX509");
 tmf.init(keyStore);
 SSLContext ctx = SSLContext.getInstance("TLS");
 ctx.init(null, tmf.getTrustManagers(), null);
 socketFactory = ctx.getSocketFactory();
 } catch (Exception ex) {
 ex.printStackTrace(System.err); /* handle exception */
 }
 }

 /**
 * Getter for the SocketFactory
 *
 * @return
 */
 public static SocketFactory getDefault() {
 return new CustomSocketFactory();
 }

 @Override
 public String[] getDefaultCipherSuites() {
 return socketFactory.getDefaultCipherSuites();
 }

 @Override
 public String[] getSupportedCipherSuites() {
 return socketFactory.getSupportedCipherSuites();
 }

 @Override
 public Socket createSocket(Socket socket, String string, int i, boolean bln) throws IOException {
 return socketFactory.createSocket(socket, string, i, bln);
 }

 @Override
 public Socket createSocket(String string, int i) throws IOException {
 return socketFactory.createSocket(string, i);
 }

 @Override
 public Socket createSocket(String string, int i, InetAddress ia, int i1) throws IOException {
 return socketFactory.createSocket(string, i, ia, i1);
 }

 @Override
 public Socket createSocket(InetAddress ia, int i) throws IOException {
 return socketFactory.createSocket(ia, i);
 }

 @Override
 public Socket createSocket(InetAddress ia, int i, InetAddress ia1, int i1) throws IOException {
 return socketFactory.createSocket(ia, i, ia1, i1);
 }
}

				
			

See Also

	
						Configuring Camel
					
	
						Component
					
	
						Endpoint
					
	
						Getting Started
					

Chapter 211. LDIF Component

			Available as of Camel version 2.20
		

			The ldif component allows you to do updates on an LDAP server from a LDIF body content.
		

			This component uses a basic URL syntax to access the server. It uses the Apache DS LDAP library to process the LDIF. After processing the LDIF, the response body will be a list of statuses for success/failure of each entry.
		
Note

				The Apache LDAP API is very sensitive to LDIF syntax errors. If in doubt, refer to the unit tests to see an example of each change type.
			

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-ldif</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>
URI format

ldap:ldapServerBean[?options]

				The ldapServerBean portion of the URI refers to a LdapConnection. This should be constructed from a factory at the point of use to avoid connection timeouts. The LDIF component only supports producer endpoints, which means that an ldif URI cannot appear in the from at the start of a route.
			

				For SSL configuration, refer to the camel-ldap component where there is an example of setting up a custom SocketFactory instance.
			

				You can append query options to the URI in the following format, ?option=value&option=value&…​
			

Options

				The LDIF component has no options.
			

				The LDIF endpoint is configured using URI syntax:
			
ldif:ldapConnectionName

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									ldapConnectionName
								

								 	
									Required The name of the LdapConnection bean to pull from the registry. Note that this must be of scope prototype to avoid it being shared among threads or using a connection that has timed out.
								

								 	 	
									String
								

								

Query Parameters (1 parameters):

	Name	Description	Default	Type
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

Body types:

				The body can be a URL to an LDIF file or an inline LDIF file. To signify the difference in body types, an inline LDIF must start with:
			
version: 1

				If not, the component will try to parse the body as a URL.
			

Result

				The result is returned in the Out body as a ArrayList<java.lang.String> object. This contains either "success" or an Exception message for each LDIF entry.
			

LdapConnection

				The URI, ldif:ldapConnectionName, references a bean with the ID, ldapConnectionName. The ldapConnection can be configured using a LdapConnectionConfig bean. Note that the scope must have a scope of prototype to avoid the connection being shared or picking up a stale connection.
			

				The LdapConnection bean may be defined as follows in Spring XML:
			
<bean id="ldapConnectionOptions" class="org.apache.directory.ldap.client.api.LdapConnectionConfig">
 <property name="ldapHost" value="${ldap.host}"/>
 <property name="ldapPort" value="${ldap.port}"/>
 <property name="name" value="${ldap.username}"/>
 <property name="credentials" value="${ldap.password}"/>
 <property name="useSsl" value="false"/>
 <property name="useTls" value="false"/>
</bean>

<bean id="ldapConnectionFactory" class="org.apache.directory.ldap.client.api.DefaultLdapConnectionFactory">
 <constructor-arg index="0" ref="ldapConnectionOptions"/>
</bean>

<bean id="ldapConnection" factory-bean="ldapConnectionFactory" factory-method="newLdapConnection" scope="prototype"/>

				or in a OSGi blueprint.xml:
			
<bean id="ldapConnectionOptions" class="org.apache.directory.ldap.client.api.LdapConnectionConfig">
 <property name="ldapHost" value="${ldap.host}"/>
 <property name="ldapPort" value="${ldap.port}"/>
 <property name="name" value="${ldap.username}"/>
 <property name="credentials" value="${ldap.password}"/>
 <property name="useSsl" value="false"/>
 <property name="useTls" value="false"/>
</bean>

<bean id="ldapConnectionFactory" class="org.apache.directory.ldap.client.api.DefaultLdapConnectionFactory">
 <argument ref="ldapConnectionOptions"/>
</bean>

<bean id="ldapConnection" factory-ref="ldapConnectionFactory" factory-method="newLdapConnection" scope="prototype"/>

Samples

				Following on from the Spring configuration above, the code sample below sends an LDAP request to filter search a group for a member. The Common Name is then extracted from the response.
			
ProducerTemplate<Exchange> template = exchange.getContext().createProducerTemplate();

List<?> results = (Collection<?>) template.sendBody("ldap:ldapConnection, "LDiff goes here");

if (results.size() > 0) {
 // Check for no errors

 for (String result : results) {
 if ("success".equalTo(result)) {
 // LDIF entry success
 } else {
 // LDIF entry failure
 }
 }
}

LevelDB

				Available as of Camel 2.10
			

				Leveldb is a very lightweight and embedable key value database. It allows together with Camel to provide persistent support for various Camel features such as Aggregator.
			

				Current features it provides:
			
	
						LevelDBAggregationRepository
					

Using LevelDBAggregationRepository

					LevelDBAggregationRepository is an AggregationRepository which on the fly persists the aggregated messages. This ensures that you will not loose messages, as the default aggregator will use an in memory only AggregationRepository.
				

					It has the following options:
				
	Option	Type	Description
	
									repositoryName
								

								 	
									String
								

								 	
									A mandatory repository name. Allows you to use a shared LevelDBFile for multiple repositories.
								

								
	
									persistentFileName
								

								 	
									String
								

								 	
									Filename for the persistent storage. If no file exists on startup a new file is created.
								

								
	
									levelDBFile
								

								 	
									LevelDBFile
								

								 	
									Use an existing configured org.apache.camel.component.leveldb.LevelDBFile instance.
								

								
	
									sync
								

								 	
									boolean
								

								 	
									Camel 2.12: Whether or not the LevelDBFile should sync on write or not. Default is false. By sync on write ensures that its always waiting for all writes to be spooled to disk and thus will not loose updates. See LevelDB docs for more details about async vs sync writes.
								

								
	
									returnOldExchange
								

								 	
									boolean
								

								 	
									Whether the get operation should return the old existing Exchange if any existed. By default this option is false to optimize as we do not need the old exchange when aggregating.
								

								
	
									useRecovery
								

								 	
									boolean
								

								 	
									Whether or not recovery is enabled. This option is by default true. When enabled the Camel Aggregator automatic recover failed aggregated exchange and have them resubmitted.
								

								
	
									recoveryInterval
								

								 	
									long
								

								 	
									If recovery is enabled then a background task is run every x’th time to scan for failed exchanges to recover and resubmit. By default this interval is 5000 millis.
								

								
	
									maximumRedeliveries
								

								 	
									int
								

								 	
									Allows you to limit the maximum number of redelivery attempts for a recovered exchange. If enabled then the Exchange will be moved to the dead letter channel if all redelivery attempts failed. By default this option is disabled. If this option is used then the deadLetterUri option must also be provided.
								

								
	
									deadLetterUri
								

								 	
									String
								

								 	
									An endpoint uri for a Dead Letter Channel where exhausted recovered Exchanges will be moved. If this option is used then the maximumRedeliveries option must also be provided.
								

								

					The repositoryName option must be provided. Then either the persistentFileName or the levelDBFile must be provided.
				

What is preserved when persisting

					LevelDBAggregationRepository will only preserve any Serializable compatible message body data types. Message headers must be primitive / string / numbers / etc. If a data type is not such a type its dropped and a WARN is logged. And it only persists the Message body and the Message headers. The Exchange properties are not persisted.
				

Recovery

					The LevelDBAggregationRepository will by default recover any failed Exchange. It does this by having a background tasks that scans for failed Exchanges in the persistent store. You can use the checkInterval option to set how often this task runs. The recovery works as transactional which ensures that Camel will try to recover and redeliver the failed Exchange. Any Exchange which was found to be recovered will be restored from the persistent store and resubmitted and send out again.
				

					The following headers is set when an Exchange is being recovered/redelivered:
				
	Header	Type	Description
	
									Exchange.REDELIVERED
								

								 	
									Boolean
								

								 	
									Is set to true to indicate the Exchange is being redelivered.
								

								
	
									Exchange.REDELIVERY_COUNTER
								

								 	
									Integer
								

								 	
									The redelivery attempt, starting from 1.
								

								

					Only when an Exchange has been successfully processed it will be marked as complete which happens when the confirm method is invoked on the AggregationRepository. This means if the same Exchange fails again it will be kept retried until it success.
				

					You can use option maximumRedeliveries to limit the maximum number of redelivery attempts for a given recovered Exchange. You must also set the deadLetterUri option so Camel knows where to send the Exchange when the maximumRedeliveries was hit.
				

					You can see some examples in the unit tests of camel-leveldb, for example this test.
				
Using LevelDBAggregationRepository in Java DSL

						In this example we want to persist aggregated messages in the target/data/leveldb.dat file.
					

Using LevelDBAggregationRepository in Spring XML

						The same example but using Spring XML instead:
					

Dependencies

					To use LevelDB in your camel routes you need to add the a dependency on camel-leveldb.
				

					If you use maven you could just add the following to your pom.xml, substituting the version number for the latest & greatest release (see the download page for the latest versions).
				
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-leveldb</artifactId>
 <version>2.10.0</version>
</dependency>

See Also

	
							Configuring Camel
						
	
							Component
						
	
							Endpoint
						
	
							Getting Started
						
	
							Aggregator
						
	
							HawtDB
						
	
							Components
						

Chapter 212. Log Component

			Available as of Camel version 1.1
		

			The log: component logs message exchanges to the underlying logging mechanism.
		

			Camel uses sfl4j which allows you to configure logging via, among others:
		
	
					Log4j
				
	
					Logback
				
	
					Java Util Logging
				

URI format

log:loggingCategory[?options]

				Where loggingCategory is the name of the logging category to use. You can append query options to the URI in the following format, ?option=value&option=value&…​
			

				INFO:*Using Logger instance from the the Registry* As of Camel 2.12.4/2.13.1, if there’s single instance of org.slf4j.Logger found in the Registry, the loggingCategory is no longer used to create logger instance. The registered instance is used instead. Also it is possible to reference particular Logger instance using ?logger=#myLogger URI parameter. Eventually, if there’s no registered and URI logger parameter, the logger instance is created using loggingCategory.
			

				For example, a log endpoint typically specifies the logging level using the level option, as follows:
			
log:org.apache.camel.example?level=DEBUG

				The default logger logs every exchange (regular logging). But Camel also ships with the Throughput logger, which is used whenever the groupSize option is specified.
			

				TIP:*Also a log in the DSL* There is also a log directly in the DSL, but it has a different purpose. Its meant for lightweight and human logs. See more details at LogEIP.
			

Options

				The Log component supports 2 options which are listed below.
			
	Name	Description	Default	Type
	
								exchangeFormatter (advanced)
							

							 	
								Sets a custom ExchangeFormatter to convert the Exchange to a String suitable for logging. If not specified, we default to DefaultExchangeFormatter.
							

							 	 	
								ExchangeFormatter
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The Log endpoint is configured using URI syntax:
			
log:loggerName

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									loggerName
								

								 	
									Required The logger name to use
								

								 	 	
									String
								

								

Query Parameters (26 parameters):

	Name	Description	Default	Type
	
									groupActiveOnly (producer)
								

								 	
									If true, will hide stats when no new messages have been received for a time interval, if false, show stats regardless of message traffic.
								

								 	
									true
								

								 	
									Boolean
								

								
	
									groupDelay (producer)
								

								 	
									Set the initial delay for stats (in millis)
								

								 	 	
									Long
								

								
	
									groupInterval (producer)
								

								 	
									If specified will group message stats by this time interval (in millis)
								

								 	 	
									Long
								

								
	
									groupSize (producer)
								

								 	
									An integer that specifies a group size for throughput logging.
								

								 	 	
									Integer
								

								
	
									level (producer)
								

								 	
									Logging level to use. The default value is INFO.
								

								 	
									INFO
								

								 	
									String
								

								
	
									logMask (producer)
								

								 	
									If true, mask sensitive information like password or passphrase in the log.
								

								 	 	
									Boolean
								

								
	
									marker (producer)
								

								 	
									An optional Marker name to use.
								

								 	 	
									String
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									maxChars (formatting)
								

								 	
									Limits the number of characters logged per line.
								

								 	
									10000
								

								 	
									int
								

								
	
									multiline (formatting)
								

								 	
									If enabled then each information is outputted on a newline.
								

								 	
									false
								

								 	
									boolean
								

								
	
									showAll (formatting)
								

								 	
									Quick option for turning all options on. (multiline, maxChars has to be manually set if to be used)
								

								 	
									false
								

								 	
									boolean
								

								
	
									showBody (formatting)
								

								 	
									Show the message body.
								

								 	
									true
								

								 	
									boolean
								

								
	
									showBodyType (formatting)
								

								 	
									Show the body Java type.
								

								 	
									true
								

								 	
									boolean
								

								
	
									showCaughtException (formatting)
								

								 	
									f the exchange has a caught exception, show the exception message (no stack trace). A caught exception is stored as a property on the exchange (using the key link org.apache.camel.ExchangeEXCEPTION_CAUGHT and for instance a doCatch can catch exceptions.
								

								 	
									false
								

								 	
									boolean
								

								
	
									showException (formatting)
								

								 	
									If the exchange has an exception, show the exception message (no stacktrace)
								

								 	
									false
								

								 	
									boolean
								

								
	
									showExchangeId (formatting)
								

								 	
									Show the unique exchange ID.
								

								 	
									false
								

								 	
									boolean
								

								
	
									showExchangePattern (formatting)
								

								 	
									Shows the Message Exchange Pattern (or MEP for short).
								

								 	
									true
								

								 	
									boolean
								

								
	
									showFiles (formatting)
								

								 	
									If enabled Camel will output files
								

								 	
									false
								

								 	
									boolean
								

								
	
									showFuture (formatting)
								

								 	
									If enabled Camel will on Future objects wait for it to complete to obtain the payload to be logged.
								

								 	
									false
								

								 	
									boolean
								

								
	
									showHeaders (formatting)
								

								 	
									Show the message headers.
								

								 	
									false
								

								 	
									boolean
								

								
	
									showOut (formatting)
								

								 	
									If the exchange has an out message, show the out message.
								

								 	
									false
								

								 	
									boolean
								

								
	
									showProperties (formatting)
								

								 	
									Show the exchange properties.
								

								 	
									false
								

								 	
									boolean
								

								
	
									showStackTrace (formatting)
								

								 	
									Show the stack trace, if an exchange has an exception. Only effective if one of showAll, showException or showCaughtException are enabled.
								

								 	
									false
								

								 	
									boolean
								

								
	
									showStreams (formatting)
								

								 	
									Whether Camel should show stream bodies or not (eg such as java.io.InputStream). Beware if you enable this option then you may not be able later to access the message body as the stream have already been read by this logger. To remedy this you will have to use Stream Caching.
								

								 	
									false
								

								 	
									boolean
								

								
	
									skipBodyLineSeparator (formatting)
								

								 	
									Whether to skip line separators when logging the message body. This allows to log the message body in one line, setting this option to false will preserve any line separators from the body, which then will log the body as is.
								

								 	
									true
								

								 	
									boolean
								

								
	
									style (formatting)
								

								 	
									Sets the outputs style to use.
								

								 	
									Default
								

								 	
									OutputStyle
								

								

Regular logger sample

				In the route below we log the incoming orders at DEBUG level before the order is processed:
			
from("activemq:orders").to("log:com.mycompany.order?level=DEBUG").to("bean:processOrder");

				Or using Spring XML to define the route:
			
<route>
 <from uri="activemq:orders"/>
 <to uri="log:com.mycompany.order?level=DEBUG"/>
 <to uri="bean:processOrder"/>
</route>

Regular logger with formatter sample

				In the route below we log the incoming orders at INFO level before the order is processed.
			
from("activemq:orders").
 to("log:com.mycompany.order?showAll=true&multiline=true").to("bean:processOrder");

Throughput logger with groupSize sample

				In the route below we log the throughput of the incoming orders at DEBUG level grouped by 10 messages.
			
from("activemq:orders").
 to("log:com.mycompany.order?level=DEBUG&groupSize=10").to("bean:processOrder");

Throughput logger with groupInterval sample

				This route will result in message stats logged every 10s, with an initial 60s delay and stats should be displayed even if there isn’t any message traffic.
			
from("activemq:orders").
 to("log:com.mycompany.order?level=DEBUG&groupInterval=10000&groupDelay=60000&groupActiveOnly=false").to("bean:processOrder");

				The following will be logged:
			
"Received: 1000 new messages, with total 2000 so far. Last group took: 10000 millis which is: 100 messages per second. average: 100"

Masking sensitive information like password

				Available as of Camel 2.19
			

				You can enable security masking for logging by setting logMask flag to true. Note that this option also affects Log EIP.
			

				To enable mask in Java DSL at CamelContext level:
			
camelContext.setLogMask(true);

				And in XML:
			
<camelContext logMask="true">

				You can also turn it on|off at endpoint level. To enable mask in Java DSL at endpoint level, add logMask=true option in the URI for the log endpoint:
			
from("direct:start").to("log:foo?logMask=true");

				And in XML:
			
<route>
 <from uri="direct:foo"/>
 <to uri="log:foo?logMask=true"/>
</route>

				org.apache.camel.processor.DefaultMaskingFormatter is used for the masking by default. If you want to use a custom masking formatter, put it into registry with the name CamelCustomLogMask. Note that the masking formatter must implement org.apache.camel.spi.MaskingFormatter.
			

Full customization of the logging output

				Available as of Camel 2.11
			

				With the options outlined in the #Formatting section, you can control much of the output of the logger. However, log lines will always follow this structure:
			
Exchange[Id:ID-machine-local-50656-1234567901234-1-2, ExchangePattern:InOut,
Properties:{CamelToEndpoint=log://org.apache.camel.component.log.TEST?showAll=true,
CamelCreatedTimestamp=Thu Mar 28 00:00:00 WET 2013},
Headers:{breadcrumbId=ID-machine-local-50656-1234567901234-1-1}, BodyType:String, Body:Hello World, Out: null]

				This format is unsuitable in some cases, perhaps because you need to…​
			
	
						…​ filter the headers and properties that are printed, to strike a balance between insight and verbosity.
					
	
						…​ adjust the log message to whatever you deem most readable.
					
	
						…​ tailor log messages for digestion by log mining systems, e.g. Splunk.
					
	
						…​ print specific body types differently.
					
	
						…​ etc.
					

				Whenever you require absolute customization, you can create a class that implements the ExchangeFormatter interface. Within the format(Exchange) method you have access to the full Exchange, so you can select and extract the precise information you need, format it in a custom manner and return it. The return value will become the final log message.
			

				You can have the Log component pick up your custom ExchangeFormatter in either of two ways:
			

				Explicitly instantiating the LogComponent in your Registry:
			
<bean name="log" class="org.apache.camel.component.log.LogComponent">
 <property name="exchangeFormatter" ref="myCustomFormatter" />
</bean>
Convention over configuration:*

					Simply by registering a bean with the name logFormatter; the Log Component is intelligent enough to pick it up automatically.
				
<bean name="logFormatter" class="com.xyz.MyCustomExchangeFormatter" />
Note

						the ExchangeFormatter gets applied to all Log endpoints within that Camel Context. If you need different ExchangeFormatters for different endpoints, just instantiate the LogComponent as many times as needed, and use the relevant bean name as the endpoint prefix.
					

					From Camel 2.11.2/2.12 onwards when using a custom log formatter, you can specify parameters in the log uri, which gets configured on the custom log formatter. Though when you do that you should define the "logFormatter" as prototype scoped so its not shared if you have different parameters, eg:
				
<bean name="logFormatter" class="com.xyz.MyCustomExchangeFormatter" scope="prototype"/>

					And then we can have Camel routes using the log uri with different options:
				
<to uri="log:foo?param1=foo&param2=100"/>

<to uri="log:bar?param1=bar&param2=200"/>

Using Log component in OSGi

				Improvement as of Camel 2.12.4/2.13.1
			

				When using Log component inside OSGi (e.g., in Karaf), the underlying logging mechanisms are provided by PAX logging. It searches for a bundle which invokes org.slf4j.LoggerFactory.getLogger() method and associates the bundle with the logger instance. Without specifying custom org.sfl4j.Logger instance, the logger created by Log component is associated with camel-core bundle.
			

				In some scenarios it is required that the bundle associated with logger should be the bundle which contains route definition. To do this, either register single instance of org.slf4j.Logger in the Registry or reference it using logger URI parameter.
			

See Also

	
						LogEIP for using log directly in the DSL for human logs.
					

Chapter 213. Lucene Component

			Available as of Camel version 2.2
		

			The lucene component is based on the Apache Lucene project. Apache Lucene is a powerful high-performance, full-featured text search engine library written entirely in Java. For more details about Lucene, please see the following links
		
	
					http://lucene.apache.org/java/docs/
				
	
					http://lucene.apache.org/java/docs/features.html
				

			The lucene component in camel facilitates integration and utilization of Lucene endpoints in enterprise integration patterns and scenarios. The lucene component does the following
		
	
					builds a searchable index of documents when payloads are sent to the Lucene Endpoint
				
	
					facilitates performing of indexed searches in Camel
				

			This component only supports producer endpoints.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-lucene</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>
URI format

lucene:searcherName:insert[?options]
lucene:searcherName:query[?options]

				You can append query options to the URI in the following format, ?option=value&option=value&…​
			

Insert Options

				The Lucene component supports 2 options which are listed below.
			
	Name	Description	Default	Type
	
								config (advanced)
							

							 	
								To use a shared lucene configuration
							

							 	 	
								LuceneConfiguration
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The Lucene endpoint is configured using URI syntax:
			
lucene:host:operation

				with the following path and query parameters:
			
Path Parameters (2 parameters):

	Name	Description	Default	Type
	
									host
								

								 	
									Required The URL to the lucene server
								

								 	 	
									String
								

								
	
									operation
								

								 	
									Required Operation to do such as insert or query.
								

								 	 	
									LuceneOperation
								

								

Query Parameters (5 parameters):

	Name	Description	Default	Type
	
									analyzer (producer)
								

								 	
									An Analyzer builds TokenStreams, which analyze text. It thus represents a policy for extracting index terms from text. The value for analyzer can be any class that extends the abstract class org.apache.lucene.analysis.Analyzer. Lucene also offers a rich set of analyzers out of the box
								

								 	 	
									Analyzer
								

								
	
									indexDir (producer)
								

								 	
									A file system directory in which index files are created upon analysis of the document by the specified analyzer
								

								 	 	
									File
								

								
	
									maxHits (producer)
								

								 	
									An integer value that limits the result set of the search operation
								

								 	 	
									int
								

								
	
									srcDir (producer)
								

								 	
									An optional directory containing files to be used to be analyzed and added to the index at producer startup.
								

								 	 	
									File
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

Sending/Receiving Messages to/from the cache

Message Headers

	Header	Description
	
									QUERY
								

								 	
									The Lucene Query to performed on the index. The query may include wildcards and phrases
								

								
	
									RETURN_LUCENE_DOCS
								

								 	
									Camel 2.15: Set this header to true to include the actual Lucene documentation when returning hit information.
								

								

Lucene Producers

					This component supports 2 producer endpoints.
				

					insert - The insert producer builds a searchable index by analyzing the body in incoming exchanges and associating it with a token ("content"). query - The query producer performs searches on a pre-created index. The query uses the searchable index to perform score & relevance based searches. Queries are sent via the incoming exchange contains a header property name called 'QUERY'. The value of the header property 'QUERY' is a Lucene Query. For more details on how to create Lucene Queries check out http://lucene.apache.org/java/3_0_0/queryparsersyntax.html
				

Lucene Processor

					There is a processor called LuceneQueryProcessor available to perform queries against lucene without the need to create a producer.
				

Lucene Usage Samples

Example 1: Creating a Lucene index

RouteBuilder builder = new RouteBuilder() {
 public void configure() {
 from("direct:start").
 to("lucene:whitespaceQuotesIndex:insert?
 analyzer=#whitespaceAnalyzer&indexDir=#whitespace&srcDir=#load_dir").
 to("mock:result");
 }
};

Example 2: Loading properties into the JNDI registry in the Camel Context

@Override
protected JndiRegistry createRegistry() throws Exception {
 JndiRegistry registry =
 new JndiRegistry(createJndiContext());
 registry.bind("whitespace", new File("./whitespaceIndexDir"));
 registry.bind("load_dir",
 new File("src/test/resources/sources"));
 registry.bind("whitespaceAnalyzer",
 new WhitespaceAnalyzer());
 return registry;
}
...
CamelContext context = new DefaultCamelContext(createRegistry());

Example 2: Performing searches using a Query Producer

RouteBuilder builder = new RouteBuilder() {
 public void configure() {
 from("direct:start").
 setHeader("QUERY", constant("Seinfeld")).
 to("lucene:searchIndex:query?
 analyzer=#whitespaceAnalyzer&indexDir=#whitespace&maxHits=20").
 to("direct:next");

 from("direct:next").process(new Processor() {
 public void process(Exchange exchange) throws Exception {
 Hits hits = exchange.getIn().getBody(Hits.class);
 printResults(hits);
 }

 private void printResults(Hits hits) {
 LOG.debug("Number of hits: " + hits.getNumberOfHits());
 for (int i = 0; i < hits.getNumberOfHits(); i++) {
 LOG.debug("Hit " + i + " Index Location:" + hits.getHit().get(i).getHitLocation());
 LOG.debug("Hit " + i + " Score:" + hits.getHit().get(i).getScore());
 LOG.debug("Hit " + i + " Data:" + hits.getHit().get(i).getData());
 }
 }
 }).to("mock:searchResult");
 }
};

Example 3: Performing searches using a Query Processor

RouteBuilder builder = new RouteBuilder() {
 public void configure() {
 try {
 from("direct:start").
 setHeader("QUERY", constant("Rodney Dangerfield")).
 process(new LuceneQueryProcessor("target/stdindexDir", analyzer, null, 20)).
 to("direct:next");
 } catch (Exception e) {
 e.printStackTrace();
 }

 from("direct:next").process(new Processor() {
 public void process(Exchange exchange) throws Exception {
 Hits hits = exchange.getIn().getBody(Hits.class);
 printResults(hits);
 }

 private void printResults(Hits hits) {
 LOG.debug("Number of hits: " + hits.getNumberOfHits());
 for (int i = 0; i < hits.getNumberOfHits(); i++) {
 LOG.debug("Hit " + i + " Index Location:" + hits.getHit().get(i).getHitLocation());
 LOG.debug("Hit " + i + " Score:" + hits.getHit().get(i).getScore());
 LOG.debug("Hit " + i + " Data:" + hits.getHit().get(i).getData());
 }
 }
 }).to("mock:searchResult");
 }
};

Chapter 214. Lumberjack Component

			Available as of Camel version 2.18
		

			The Lumberjack component retrieves logs sent over the network using the Lumberjack protocol, from Filebeat for instance. The network communication can be secured with SSL.
		

			This component only supports consumer endpoints.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-lumberjack</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>
URI format

lumberjack:host
lumberjack:host:port

				You can append query options to the URI in the following format, ?option=value&option=value&…​
			

Options

				The Lumberjack component supports 3 options which are listed below.
			
	Name	Description	Default	Type
	
								sslContextParameters (security)
							

							 	
								Sets the default SSL configuration to use for all the endpoints. You can also configure it directly at the endpoint level.
							

							 	 	
								SSLContextParameters
							

							
	
								useGlobalSslContext Parameters (security)
							

							 	
								Enable usage of global SSL context parameters.
							

							 	
								false
							

							 	
								boolean
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The Lumberjack endpoint is configured using URI syntax:
			
lumberjack:host:port

				with the following path and query parameters:
			
Path Parameters (2 parameters):

	Name	Description	Default	Type
	
									host
								

								 	
									Required Network interface on which to listen for Lumberjack
								

								 	 	
									String
								

								
	
									port
								

								 	
									Network port on which to listen for Lumberjack
								

								 	
									5044
								

								 	
									int
								

								

Query Parameters (5 parameters):

	Name	Description	Default	Type
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									sslContextParameters (consumer)
								

								 	
									SSL configuration
								

								 	 	
									SSLContextParameters
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

Result

				The result body is a Map<String, Object> object.
			

Lumberjack Usage Samples

Example 1: Streaming the log messages

RouteBuilder builder = new RouteBuilder() {
 public void configure() {
 from("lumberjack:0.0.0.0"). // Listen on all network interfaces using the default port
 setBody(simple("${body[message]}")). // Select only the log message
 to("stream:out"); // Write it into the output stream
 }
};

Chapter 215. LZF Deflate Compression DataFormat

			Available as of Camel version 2.17
		

			The LZF Data Format is a message compression and de-compression format. It uses the LZF deflate algorithm. Messages marshalled using LZF compression can be unmarshalled using LZF decompression just prior to being consumed at the endpoint. The compression capability is quite useful when you deal with large XML and Text based payloads or when you read messages previously comressed using LZF algotithm.
		
Options

				The LZF Deflate Compression dataformat supports 2 options which are listed below.
			
	Name	Default	Java Type	Description
	
								usingParallelCompression
							

							 	
								false
							

							 	
								Boolean
							

							 	
								Enable encoding (compress) using multiple processing cores.
							

							
	
								contentTypeHeader
							

							 	
								false
							

							 	
								Boolean
							

							 	
								Whether the data format should set the Content-Type header with the type from the data format if the data format is capable of doing so. For example application/xml for data formats marshalling to XML, or application/json for data formats marshalling to JSon etc.
							

							

Marshal

				In this example we marshal a regular text/XML payload to a compressed payload employing LZF compression format and send it an ActiveMQ queue called MY_QUEUE.
			
from("direct:start").marshal().lzf().to("activemq:queue:MY_QUEUE");

Unmarshal

				In this example we unmarshal a LZF payload from an ActiveMQ queue called MY_QUEUE to its original format, and forward it for processing to the UnGZippedMessageProcessor.
			
from("activemq:queue:MY_QUEUE").unmarshal().lzf().process(new UnCompressedMessageProcessor());

Dependencies

				To useLZF compression in your camel routes you need to add a dependency on camel-lzf which implements this data format.
			

				If you use Maven you can just add the following to your pom.xml, substituting the version number for the latest & greatest release (see the download page for the latest versions).
			
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-lzf</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>

Chapter 216. Mail Component

			Available as of Camel version 1.0
		

			The mail component provides access to Email via Spring’s Mail support and the underlying JavaMail system.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-mail</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>
Warning

				Geronimo mail .jar
			

			We have discovered that the geronimo mail .jar (v1.6) has a bug when polling mails with attachments. It cannot correctly identify the Content-Type. So, if you attach a .jpeg file to a mail and you poll it, the Content-Type is resolved as text/plain and not as image/jpeg. For that reason, we have added an org.apache.camel.component.ContentTypeResolver SPI interface which enables you to provide your own implementation and fix this bug by returning the correct Mime type based on the file name. So if the file name ends with jpeg/jpg, you can return image/jpeg.
		

			You can set your custom resolver on the MailComponent instance or on the MailEndpoint instance.
		
Tip

			POP3 or IMAP POP3 has some limitations and end users are encouraged to use IMAP if possible.
		

			INFO: Using mock-mail for testing You can use a mock framework for unit testing, which allows you to test without the need for a real mail server. However you should remember to not include the mock-mail when you go into production or other environments where you need to send mails to a real mail server. Just the presence of the mock-javamail.jar on the classpath means that it will kick in and avoid sending the mails.
		
URI format

				Mail endpoints can have one of the following URI formats (for the protocols, SMTP, POP3, or IMAP, respectively):
			
smtp://[username@]host[:port][?options]
pop3://[username@]host[:port][?options]
imap://[username@]host[:port][?options]

				The mail component also supports secure variants of these protocols (layered over SSL). You can enable the secure protocols by adding s to the scheme:
			
smtps://[username@]host[:port][?options]
pop3s://[username@]host[:port][?options]
imaps://[username@]host[:port][?options]

				You can append query options to the URI in the following format, ?option=value&option=value&…​
			

				The Mail component supports 4 options which are listed below.
			
	Name	Description	Default	Type
	
								configuration (advanced)
							

							 	
								Sets the Mail configuration
							

							 	 	
								MailConfiguration
							

							
	
								contentTypeResolver (advanced)
							

							 	
								Resolver to determine Content-Type for file attachments.
							

							 	 	
								ContentTypeResolver
							

							
	
								useGlobalSslContext Parameters (security)
							

							 	
								Enable usage of global SSL context parameters.
							

							 	
								false
							

							 	
								boolean
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The Mail endpoint is configured using URI syntax:
			
imap:host:port

				with the following path and query parameters:
			
Path Parameters (2 parameters):

	Name	Description	Default	Type
	
									host
								

								 	
									Required The mail server host name
								

								 	 	
									String
								

								
	
									port
								

								 	
									The port number of the mail server
								

								 	 	
									int
								

								

Query Parameters (62 parameters):

	Name	Description	Default	Type
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									closeFolder (consumer)
								

								 	
									Whether the consumer should close the folder after polling. Setting this option to false and having disconnect=false as well, then the consumer keep the folder open between polls.
								

								 	
									true
								

								 	
									boolean
								

								
	
									copyTo (consumer)
								

								 	
									After processing a mail message, it can be copied to a mail folder with the given name. You can override this configuration value, with a header with the key copyTo, allowing you to copy messages to folder names configured at runtime.
								

								 	 	
									String
								

								
	
									delete (consumer)
								

								 	
									Deletes the messages after they have been processed. This is done by setting the DELETED flag on the mail message. If false, the SEEN flag is set instead. As of Camel 2.10 you can override this configuration option by setting a header with the key delete to determine if the mail should be deleted or not.
								

								 	
									false
								

								 	
									boolean
								

								
	
									disconnect (consumer)
								

								 	
									Whether the consumer should disconnect after polling. If enabled this forces Camel to connect on each poll.
								

								 	
									false
								

								 	
									boolean
								

								
	
									handleFailedMessage (consumer)
								

								 	
									If the mail consumer cannot retrieve a given mail message, then this option allows to handle the caused exception by the consumer’s error handler. By enable the bridge error handler on the consumer, then the Camel routing error handler can handle the exception instead. The default behavior would be the consumer throws an exception and no mails from the batch would be able to be routed by Camel.
								

								 	
									false
								

								 	
									boolean
								

								
	
									maxMessagesPerPoll (consumer)
								

								 	
									Specifies the maximum number of messages to gather per poll. By default, no maximum is set. Can be used to set a limit of e.g. 1000 to avoid downloading thousands of files when the server starts up. Set a value of 0 or negative to disable this option.
								

								 	 	
									int
								

								
	
									mimeDecodeHeaders (consumer)
								

								 	
									This option enables transparent MIME decoding and unfolding for mail headers.
								

								 	
									false
								

								 	
									boolean
								

								
	
									peek (consumer)
								

								 	
									Will mark the javax.mail.Message as peeked before processing the mail message. This applies to IMAPMessage messages types only. By using peek the mail will not be eager marked as SEEN on the mail server, which allows us to rollback the mail message if there is an error processing in Camel.
								

								 	
									true
								

								 	
									boolean
								

								
	
									sendEmptyMessageWhenIdle (consumer)
								

								 	
									If the polling consumer did not poll any files, you can enable this option to send an empty message (no body) instead.
								

								 	
									false
								

								 	
									boolean
								

								
	
									skipFailedMessage (consumer)
								

								 	
									If the mail consumer cannot retrieve a given mail message, then this option allows to skip the message and move on to retrieve the next mail message. The default behavior would be the consumer throws an exception and no mails from the batch would be able to be routed by Camel.
								

								 	
									false
								

								 	
									boolean
								

								
	
									unseen (consumer)
								

								 	
									Whether to limit by unseen mails only.
								

								 	
									true
								

								 	
									boolean
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									fetchSize (consumer)
								

								 	
									Sets the maximum number of messages to consume during a poll. This can be used to avoid overloading a mail server, if a mailbox folder contains a lot of messages. Default value of -1 means no fetch size and all messages will be consumed. Setting the value to 0 is a special corner case, where Camel will not consume any messages at all.
								

								 	
									-1
								

								 	
									int
								

								
	
									folderName (consumer)
								

								 	
									The folder to poll.
								

								 	
									INBOX
								

								 	
									String
								

								
	
									mailUidGenerator (consumer)
								

								 	
									A pluggable MailUidGenerator that allows to use custom logic to generate UUID of the mail message.
								

								 	 	
									MailUidGenerator
								

								
	
									mapMailMessage (consumer)
								

								 	
									Specifies whether Camel should map the received mail message to Camel body/headers. If set to true, the body of the mail message is mapped to the body of the Camel IN message and the mail headers are mapped to IN headers. If this option is set to false then the IN message contains a raw javax.mail.Message. You can retrieve this raw message by calling exchange.getIn().getBody(javax.mail.Message.class).
								

								 	
									true
								

								 	
									boolean
								

								
	
									pollStrategy (consumer)
								

								 	
									A pluggable org.apache.camel.PollingConsumerPollingStrategy allowing you to provide your custom implementation to control error handling usually occurred during the poll operation before an Exchange have been created and being routed in Camel.
								

								 	 	
									PollingConsumerPoll Strategy
								

								
	
									postProcessAction (consumer)
								

								 	
									Refers to an MailBoxPostProcessAction for doing post processing tasks on the mailbox once the normal processing ended.
								

								 	 	
									MailBoxPostProcess Action
								

								
	
									bcc (producer)
								

								 	
									Sets the BCC email address. Separate multiple email addresses with comma.
								

								 	 	
									String
								

								
	
									cc (producer)
								

								 	
									Sets the CC email address. Separate multiple email addresses with comma.
								

								 	 	
									String
								

								
	
									from (producer)
								

								 	
									The from email address
								

								 	
									camel@localhost
								

								 	
									String
								

								
	
									replyTo (producer)
								

								 	
									The Reply-To recipients (the receivers of the response mail). Separate multiple email addresses with a comma.
								

								 	 	
									String
								

								
	
									subject (producer)
								

								 	
									The Subject of the message being sent. Note: Setting the subject in the header takes precedence over this option.
								

								 	 	
									String
								

								
	
									to (producer)
								

								 	
									Sets the To email address. Separate multiple email addresses with comma.
								

								 	 	
									String
								

								
	
									javaMailSender (producer)
								

								 	
									To use a custom org.apache.camel.component.mail.JavaMailSender for sending emails.
								

								 	 	
									JavaMailSender
								

								
	
									additionalJavaMail Properties (advanced)
								

								 	
									Sets additional java mail properties, that will append/override any default properties that is set based on all the other options. This is useful if you need to add some special options but want to keep the others as is.
								

								 	 	
									Properties
								

								
	
									alternativeBodyHeader (advanced)
								

								 	
									Specifies the key to an IN message header that contains an alternative email body. For example, if you send emails in text/html format and want to provide an alternative mail body for non-HTML email clients, set the alternative mail body with this key as a header.
								

								 	
									CamelMailAlternativeBody
								

								 	
									String
								

								
	
									attachmentsContentTransfer EncodingResolver (advanced)
								

								 	
									To use a custom AttachmentsContentTransferEncodingResolver to resolve what content-type-encoding to use for attachments.
								

								 	 	
									AttachmentsContent TransferEncoding Resolver
								

								
	
									binding (advanced)
								

								 	
									Sets the binding used to convert from a Camel message to and from a Mail message
								

								 	 	
									MailBinding
								

								
	
									connectionTimeout (advanced)
								

								 	
									The connection timeout in milliseconds.
								

								 	
									30000
								

								 	
									int
								

								
	
									contentType (advanced)
								

								 	
									The mail message content type. Use text/html for HTML mails.
								

								 	
									text/plain
								

								 	
									String
								

								
	
									contentTypeResolver (advanced)
								

								 	
									Resolver to determine Content-Type for file attachments.
								

								 	 	
									ContentTypeResolver
								

								
	
									debugMode (advanced)
								

								 	
									Enable debug mode on the underlying mail framework. The SUN Mail framework logs the debug messages to System.out by default.
								

								 	
									false
								

								 	
									boolean
								

								
	
									headerFilterStrategy (advanced)
								

								 	
									To use a custom org.apache.camel.spi.HeaderFilterStrategy to filter headers.
								

								 	 	
									HeaderFilterStrategy
								

								
	
									ignoreUnsupportedCharset (advanced)
								

								 	
									Option to let Camel ignore unsupported charset in the local JVM when sending mails. If the charset is unsupported then charset=XXX (where XXX represents the unsupported charset) is removed from the content-type and it relies on the platform default instead.
								

								 	
									false
								

								 	
									boolean
								

								
	
									ignoreUriScheme (advanced)
								

								 	
									Option to let Camel ignore unsupported charset in the local JVM when sending mails. If the charset is unsupported then charset=XXX (where XXX represents the unsupported charset) is removed from the content-type and it relies on the platform default instead.
								

								 	
									false
								

								 	
									boolean
								

								
	
									session (advanced)
								

								 	
									Specifies the mail session that camel should use for all mail interactions. Useful in scenarios where mail sessions are created and managed by some other resource, such as a JavaEE container. If this is not specified, Camel automatically creates the mail session for you.
								

								 	 	
									Session
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									useInlineAttachments (advanced)
								

								 	
									Whether to use disposition inline or attachment.
								

								 	
									false
								

								 	
									boolean
								

								
	
									idempotentRepository (filter)
								

								 	
									A pluggable repository org.apache.camel.spi.IdempotentRepository which allows to cluster consuming from the same mailbox, and let the repository coordinate whether a mail message is valid for the consumer to process. By default no repository is in use.
								

								 	 	
									String>
								

								
	
									idempotentRepositoryRemove OnCommit (filter)
								

								 	
									When using idempotent repository, then when the mail message has been successfully processed and is committed, should the message id be removed from the idempotent repository (default) or be kept in the repository. By default its assumed the message id is unique and has no value to be kept in the repository, because the mail message will be marked as seen/moved or deleted to prevent it from being consumed again. And therefore having the message id stored in the idempotent repository has little value. However this option allows to store the message id, for whatever reason you may have.
								

								 	
									true
								

								 	
									boolean
								

								
	
									searchTerm (filter)
								

								 	
									Refers to a javax.mail.search.SearchTerm which allows to filter mails based on search criteria such as subject, body, from, sent after a certain date etc.
								

								 	 	
									SearchTerm
								

								
	
									backoffErrorThreshold (scheduler)
								

								 	
									The number of subsequent error polls (failed due some error) that should happen before the backoffMultipler should kick-in.
								

								 	 	
									int
								

								
	
									backoffIdleThreshold (scheduler)
								

								 	
									The number of subsequent idle polls that should happen before the backoffMultipler should kick-in.
								

								 	 	
									int
								

								
	
									backoffMultiplier (scheduler)
								

								 	
									To let the scheduled polling consumer backoff if there has been a number of subsequent idles/errors in a row. The multiplier is then the number of polls that will be skipped before the next actual attempt is happening again. When this option is in use then backoffIdleThreshold and/or backoffErrorThreshold must also be configured.
								

								 	 	
									int
								

								
	
									delay (scheduler)
								

								 	
									Milliseconds before the next poll.
								

								 	
									60000
								

								 	
									long
								

								
	
									greedy (scheduler)
								

								 	
									If greedy is enabled, then the ScheduledPollConsumer will run immediately again, if the previous run polled 1 or more messages.
								

								 	
									false
								

								 	
									boolean
								

								
	
									initialDelay (scheduler)
								

								 	
									Milliseconds before the first poll starts. You can also specify time values using units, such as 60s (60 seconds), 5m30s (5 minutes and 30 seconds), and 1h (1 hour).
								

								 	
									1000
								

								 	
									long
								

								
	
									runLoggingLevel (scheduler)
								

								 	
									The consumer logs a start/complete log line when it polls. This option allows you to configure the logging level for that.
								

								 	
									TRACE
								

								 	
									LoggingLevel
								

								
	
									scheduledExecutorService (scheduler)
								

								 	
									Allows for configuring a custom/shared thread pool to use for the consumer. By default each consumer has its own single threaded thread pool.
								

								 	 	
									ScheduledExecutor Service
								

								
	
									scheduler (scheduler)
								

								 	
									To use a cron scheduler from either camel-spring or camel-quartz2 component
								

								 	
									none
								

								 	
									ScheduledPollConsumer Scheduler
								

								
	
									schedulerProperties (scheduler)
								

								 	
									To configure additional properties when using a custom scheduler or any of the Quartz2, Spring based scheduler.
								

								 	 	
									Map
								

								
	
									startScheduler (scheduler)
								

								 	
									Whether the scheduler should be auto started.
								

								 	
									true
								

								 	
									boolean
								

								
	
									timeUnit (scheduler)
								

								 	
									Time unit for initialDelay and delay options.
								

								 	
									MILLISECONDS
								

								 	
									TimeUnit
								

								
	
									useFixedDelay (scheduler)
								

								 	
									Controls if fixed delay or fixed rate is used. See ScheduledExecutorService in JDK for details.
								

								 	
									true
								

								 	
									boolean
								

								
	
									sortTerm (sort)
								

								 	
									Sorting order for messages. Only natively supported for IMAP. Emulated to some degree when using POP3 or when IMAP server does not have the SORT capability.
								

								 	 	
									String
								

								
	
									dummyTrustManager (security)
								

								 	
									To use a dummy security setting for trusting all certificates. Should only be used for development mode, and not production.
								

								 	
									false
								

								 	
									boolean
								

								
	
									password (security)
								

								 	
									The password for login
								

								 	 	
									String
								

								
	
									sslContextParameters (security)
								

								 	
									To configure security using SSLContextParameters.
								

								 	 	
									SSLContextParameters
								

								
	
									username (security)
								

								 	
									The username for login
								

								 	 	
									String
								

								

Sample endpoints

					Typically, you specify a URI with login credentials as follows (taking SMTP as an example):
				
smtp://[username@]host[:port][?password=somepwd]

					Alternatively, it is possible to specify both the user name and the password as query options:
				
smtp://host[:port]?password=somepwd&username=someuser

					For example:
				
smtp://mycompany.mailserver:30?password=tiger&username=scott

Components

	
						IMAP
					
	
						IMAPs
					
	
						POP3s
					
	
						POP3s
					
	
						SMTP
					
	
						SMTPs
					

Default ports

					Default port numbers are supported. If the port number is omitted, Camel determines the port number to use based on the protocol.
				
	Protocol	Default Port Number
	
									SMTP
								

								 	
									25
								

								
	
									SMTPS
								

								 	
									465
								

								
	
									POP3
								

								 	
									110
								

								
	
									POP3S
								

								 	
									995
								

								
	
									IMAP
								

								 	
									143
								

								
	
									IMAPS
								

								 	
									993
								

								

SSL support

				The underlying mail framework is responsible for providing SSL support. You may either configure SSL/TLS support by completely specifying the necessary Java Mail API configuration options, or you may provide a configured SSLContextParameters through the component or endpoint configuration.
			
Using the JSSE Configuration Utility

					As of Camel 2.10, the mail component supports SSL/TLS configuration through the Camel JSSE Configuration Utility. This utility greatly decreases the amount of component specific code you need to write and is configurable at the endpoint and component levels. The following examples demonstrate how to use the utility with the mail component.
				

					Programmatic configuration of the endpoint
				
KeyStoreParameters ksp = new KeyStoreParameters();
ksp.setResource("/users/home/server/truststore.jks");
ksp.setPassword("keystorePassword");
TrustManagersParameters tmp = new TrustManagersParameters();
tmp.setKeyStore(ksp);
SSLContextParameters scp = new SSLContextParameters();
scp.setTrustManagers(tmp);
Registry registry = ...
registry.bind("sslContextParameters", scp);
...
from(...)
 .to("smtps://smtp.google.com?username=user@gmail.com&password=password&sslContextParameters=#sslContextParameters");

					Spring DSL based configuration of endpoint
				
...
<camel:sslContextParameters id="sslContextParameters">
 <camel:trustManagers>
 <camel:keyStore resource="/users/home/server/truststore.jks" password="keystorePassword"/>
 </camel:trustManagers>
</camel:sslContextParameters>...
...
<to uri="smtps://smtp.google.com?username=user@gmail.com&password=password&sslContextParameters=#sslContextParameters"/>...

Configuring JavaMail Directly

					Camel uses SUN JavaMail, which only trusts certificates issued by well known Certificate Authorities (the default JVM trust configuration). If you issue your own certificates, you have to import the CA certificates into the JVM’s Java trust/key store files, override the default JVM trust/key store files (see SSLNOTES.txt in JavaMail for details).
				

Mail Message Content

				Camel uses the message exchange’s IN body as the MimeMessage text content. The body is converted to String.class.
			

				Camel copies all of the exchange’s IN headers to the MimeMessage headers.
			

				The subject of the MimeMessage can be configured using a header property on the IN message. The code below demonstrates this:
			

				The same applies for other MimeMessage headers such as recipients, so you can use a header property as To:
			

				Since Camel 2.11 When using the MailProducer the send the mail to server, you should be able to get the message id of the MimeMessage with the key CamelMailMessageId from the Camel message header.
			

Headers take precedence over pre-configured recipients

				The recipients specified in the message headers always take precedence over recipients pre-configured in the endpoint URI. The idea is that if you provide any recipients in the message headers, that is what you get. The recipients pre-configured in the endpoint URI are treated as a fallback.
			

				In the sample code below, the email message is sent to davsclaus@apache.org, because it takes precedence over the pre-configured recipient, info@mycompany.com. Any CC and BCC settings in the endpoint URI are also ignored and those recipients will not receive any mail. The choice between headers and pre-configured settings is all or nothing: the mail component either takes the recipients exclusively from the headers or exclusively from the pre-configured settings. It is not possible to mix and match headers and pre-configured settings.
			
 Map<String, Object> headers = new HashMap<String, Object>();
 headers.put("to", "davsclaus@apache.org");

 template.sendBodyAndHeaders("smtp://admin@localhost?to=info@mycompany.com", "Hello World", headers);

Multiple recipients for easier configuration

				It is possible to set multiple recipients using a comma-separated or a semicolon-separated list. This applies both to header settings and to settings in an endpoint URI. For example:
			
 Map<String, Object> headers = new HashMap<String, Object>();
 headers.put("to", "davsclaus@apache.org ; jstrachan@apache.org ; ningjiang@apache.org");

				The preceding example uses a semicolon, ;, as the separator character.
			

Setting sender name and email

				You can specify recipients in the format, name <email>, to include both the name and the email address of the recipient.
			

				For example, you define the following headers on the a Message:
			
Map headers = new HashMap();
map.put("To", "Claus Ibsen <davsclaus@apache.org>");
map.put("From", "James Strachan <jstrachan@apache.org>");
map.put("Subject", "Camel is cool");

JavaMail API (ex SUN JavaMail)

				JavaMail API is used under the hood for consuming and producing mails.
 We encourage end-users to consult these references when using either POP3 or IMAP protocol. Note particularly that POP3 has a much more limited set of features than IMAP.
			
	
						JavaMail POP3 API
					
	
						JavaMail IMAP API
					
	
						And generally about the MAIL Flags
					

Samples

				We start with a simple route that sends the messages received from a JMS queue as emails. The email account is the admin account on mymailserver.com.
			
from("jms://queue:subscription").to("smtp://admin@mymailserver.com?password=secret");

				In the next sample, we poll a mailbox for new emails once every minute. Notice that we use the special consumer option for setting the poll interval, consumer.delay, as 60000 milliseconds = 60 seconds.
			
from("imap://admin@mymailserver.com
 password=secret&unseen=true&consumer.delay=60000")
 .to("seda://mails");

				In this sample we want to send a mail to multiple recipients:
			

Sending mail with attachment sample

Warning

					Attachments are not support by all Camel components The Attachments API is based on the Java Activation Framework and is generally only used by the Mail API. Since many of the other Camel components do not support attachments, the attachments could potentially be lost as they propagate along the route. The rule of thumb, therefore, is to add attachments just before sending a message to the mail endpoint.
				

				The mail component supports attachments. In the sample below, we send a mail message containing a plain text message with a logo file attachment.
			

SSL sample

				In this sample, we want to poll our Google mail inbox for mails. To download mail onto a local mail client, Google mail requires you to enable and configure SSL. This is done by logging into your Google mail account and changing your settings to allow IMAP access. Google have extensive documentation on how to do this.
			
from("imaps://imap.gmail.com?username=YOUR_USERNAME@gmail.com&password=YOUR_PASSWORD"
 + "&delete=false&unseen=true&consumer.delay=60000").to("log:newmail");

				The preceding route polls the Google mail inbox for new mails once every minute and logs the received messages to the newmail logger category.
 Running the sample with DEBUG logging enabled, we can monitor the progress in the logs:
			
2008-05-08 06:32:09,640 DEBUG MailConsumer - Connecting to MailStore imaps//imap.gmail.com:993 (SSL enabled), folder=INBOX
2008-05-08 06:32:11,203 DEBUG MailConsumer - Polling mailfolder: imaps//imap.gmail.com:993 (SSL enabled), folder=INBOX
2008-05-08 06:32:11,640 DEBUG MailConsumer - Fetching 1 messages. Total 1 messages.
2008-05-08 06:32:12,171 DEBUG MailConsumer - Processing message: messageNumber=[332], from=[James Bond <007@mi5.co.uk>], to=YOUR_USERNAME@gmail.com], subject=[...
2008-05-08 06:32:12,187 INFO newmail - Exchange[MailMessage: messageNumber=[332], from=[James Bond <007@mi5.co.uk>], to=YOUR_USERNAME@gmail.com], subject=[...

Consuming mails with attachment sample

				In this sample we poll a mailbox and store all attachments from the mails as files. First, we define a route to poll the mailbox. As this sample is based on google mail, it uses the same route as shown in the SSL sample:
			
from("imaps://imap.gmail.com?username=YOUR_USERNAME@gmail.com&password=YOUR_PASSWORD"
 + "&delete=false&unseen=true&consumer.delay=60000").process(new MyMailProcessor());

				Instead of logging the mail we use a processor where we can process the mail from java code:
			
 public void process(Exchange exchange) throws Exception {
 // the API is a bit clunky so we need to loop
 Map<String, DataHandler> attachments = exchange.getIn().getAttachments();
 if (attachments.size() > 0) {
 for (String name : attachments.keySet()) {
 DataHandler dh = attachments.get(name);
 // get the file name
 String filename = dh.getName();

 // get the content and convert it to byte[]
 byte[] data = exchange.getContext().getTypeConverter()
 .convertTo(byte[].class, dh.getInputStream());

 // write the data to a file
 FileOutputStream out = new FileOutputStream(filename);
 out.write(data);
 out.flush();
 out.close();
 }
 }
 }

				As you can see the API to handle attachments is a bit clunky but it’s there so you can get the javax.activation.DataHandler so you can handle the attachments using standard API.
			

How to split a mail message with attachments

				In this example we consume mail messages which may have a number of attachments. What we want to do is to use the Splitter EIP per individual attachment, to process the attachments separately. For example if the mail message has 5 attachments, we want the Splitter to process five messages, each having a single attachment. To do this we need to provide a custom Expression to the Splitter where we provide a List<Message> that contains the five messages with the single attachment.
			

				The code is provided out of the box in Camel 2.10 onwards in the camel-mail component. The code is in the class: org.apache.camel.component.mail.SplitAttachmentsExpression, which you can find the source code here
			

				In the Camel route you then need to use this Expression in the route as shown below:
			

				If you use XML DSL then you need to declare a method call expression in the Splitter as shown below
			
<split>
 <method beanType="org.apache.camel.component.mail.SplitAttachmentsExpression"/>
 <to uri="mock:split"/>
</split>

				
			

				From Camel 2.16 onwards you can also split the attachments as byte[] to be stored as the message body. This is done by creating the expression with boolean true
			
SplitAttachmentsExpression split = SplitAttachmentsExpression(true);

				And then use the expression with the splitter eip.
			

Using custom SearchTerm

				Available as of Camel 2.11
			

				You can configure a searchTerm on the MailEndpoint which allows you to filter out unwanted mails.
			

				For example to filter mails to contain Camel in either Subject or Text you can do as follows:
			
<route>
 <from uri="imaps://mymailseerver?username=foo&password=secret&searchTerm.subjectOrBody=Camel"/>
 <to uri="bean:myBean"/>
</route>

				Notice we use the "searchTerm.subjectOrBody" as parameter key to indicate that we want to search on mail subject or body, to contain the word "Camel".
 The class org.apache.camel.component.mail.SimpleSearchTerm has a number of options you can configure:
			

				Or to get the new unseen emails going 24 hours back in time you can do. Notice the "now-24h" syntax. See the table below for more details.
			
<route>
 <from uri="imaps://mymailseerver?username=foo&password=secret&searchTerm.fromSentDate=now-24h"/>
 <to uri="bean:myBean"/>
</route>

				You can have multiple searchTerm in the endpoint uri configuration. They would then be combined together using AND operator, eg so both conditions must match. For example to get the last unseen emails going back 24 hours which has Camel in the mail subject you can do:
			
<route>
 <from uri="imaps://mymailseerver?username=foo&password=secret&searchTerm.subject=Camel&searchTerm.fromSentDate=now-24h"/>
 <to uri="bean:myBean"/>
</route>

				The SimpleSearchTerm is designed to be easily configurable from a POJO, so you can also configure it using a <bean> style in XML
			
<bean id="mySearchTerm" class="org.apache.camel.component.mail.SimpleSearchTerm">
 <property name="subject" value="Order"/>
 <property name="to" value="acme-order@acme.com"/>
 <property name="fromSentDate" value="now"/>
 </bean>

				You can then refer to this bean, using #beanId in your Camel route as shown:
			
<route>
 <from uri="imaps://mymailseerver?username=foo&password=secret&searchTerm=#mySearchTerm"/>
 <to uri="bean:myBean"/>
</route>

				In Java there is a builder class to build compound SearchTerms using the org.apache.camel.component.mail.SearchTermBuilder class. This allows you to build complex terms such as:
			
// we just want the unseen mails which is not spam
SearchTermBuilder builder = new SearchTermBuilder();

builder.unseen().body(Op.not, "Spam").subject(Op.not, "Spam")
 // which was sent from either foo or bar
 .from("foo@somewhere.com").from(Op.or, "bar@somewhere.com");
 // .. and we could continue building the terms

SearchTerm term = builder.build();

See Also

	
						Configuring Camel
					
	
						Component
					
	
						Endpoint
					
	
						Getting Started
					

Chapter 217. Master Component

			Available as of Camel version 2.20
		

			The camel-master: endpoint provides a way to ensure only a single consumer in a cluster consumes from a given endpoint; with automatic failover if that JVM dies.
		

			This can be very useful if you need to consume from some legacy back end which either doesn’t support concurrent consumption or due to commercial or stability reasons you can only have a single connection at any point in time.
		
Using the master endpoint

				Just prefix any camel endpoint with master:someName: where someName is a logical name and is used to acquire the master lock. e.g.
			
from("master:cheese:jms:foo").to("activemq:wine");

				The above simulates the [Exclusive Consumers](http://activemq.apache.org/exclusive-consumer.html) type feature in ActiveMQ; but on any third party JMS provider which maybe doesn’t support exclusive consumers.
			

URI format

master:namespace:endpoint[?options]

				Where endpoint is any Camel endpoint you want to run in master/slave mode.
			

Options

				The Master component supports 3 options which are listed below.
			
	Name	Description	Default	Type
	
								service (advanced)
							

							 	
								Inject the service to use.
							

							 	 	
								CamelClusterService
							

							
	
								serviceSelector (advanced)
							

							 	
								Inject the service selector used to lookup the CamelClusterService to use.
							

							 	 	
								Selector
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The Master endpoint is configured using URI syntax:
			
master:namespace:delegateUri

				with the following path and query parameters:
			
Path Parameters (2 parameters):

	Name	Description	Default	Type
	
									namespace
								

								 	
									Required The name of the cluster namespace to use
								

								 	 	
									String
								

								
	
									delegateUri
								

								 	
									Required The endpoint uri to use in master/slave mode
								

								 	 	
									String
								

								

Query Parameters (4 parameters):

	Name	Description	Default	Type
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

Example

				You can protect a clustered Camel application to only consume files from one active node.
			
// the file endpoint we want to consume from
String url = "file:target/inbox?delete=true";

// use the camel master component in the clustered group named myGroup
// to run a master/slave mode in the following Camel url
from("master:myGroup:" + url)
 .log(name + " - Received file: ${file:name}")
 .delay(delay)
 .log(name + " - Done file: ${file:name}")
 .to("file:target/outbox");

				The master component leverages CamelClusterService you can configure using
			
	
						Java
					
ZooKeeperClusterService service = new ZooKeeperClusterService();
service.setId("camel-node-1");
service.setNodes("myzk:2181");
service.setBasePath("/camel/cluster");

context.addService(service)

	
						Xml (Spring/Blueprint)
					
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://camel.apache.org/schema/spring
 http://camel.apache.org/schema/spring/camel-spring.xsd">

 <bean id="cluster" class="org.apache.camel.component.zookeeper.cluster.ZooKeeperClusterService">
 <property name="id" value="camel-node-1"/>
 <property name="basePath" value="/camel/cluster"/>
 <property name="nodes" value="myzk:2181"/>
 </bean>

 <camelContext xmlns="http://camel.apache.org/schema/spring" autoStartup="false">
 ...
 </camelContext>

</beans>

	
						Spring boot
					
camel.component.zookeeper.cluster.service.enabled = true
camel.component.zookeeper.cluster.service.id = camel-node-1
camel.component.zookeeper.cluster.service.base-path = /camel/cluster
camel.component.zookeeper.cluster.service.nodes = myzk:2181

Implementations

				Camel provide the following ClusterService implementations:
			
	
						camel-atomix
					
	
						camel-consul
					
	
						camel-file
					
	
						camel-kubernetes
					
	
						camel-zookeeper
					

See Also

	
						Configuring Camel
					
	
						Component
					
	
						Endpoint
					
	
						Getting Started
					

Chapter 218. Metrics Component

Metrics Component

				The metrics: component allows to collect various metrics directly from Camel routes. Supported metric types are counter, histogram, meter, timer and gauge. Metrics provides simple way to measure behaviour of application. Configurable reporting backend is enabling different integration options for collecting and visualizing statistics. The component also provides a MetricsRoutePolicyFactory which allows to expose route statistics using Dropwizard Metrics, see bottom of page for details.
			

				Maven users will need to add the following dependency to their pom.xml for this component:
			
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-metrics</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>

URI format

metrics:[meter | counter | histogram | timer | gauge]:metricname[?options]

Options

				The Metrics component supports 2 options which are listed below.
			
	Name	Description	Default	Type
	
								metricRegistry (advanced)
							

							 	
								To use a custom configured MetricRegistry.
							

							 	 	
								MetricRegistry
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The Metrics endpoint is configured using URI syntax:
			
metrics:metricsType:metricsName

				with the following path and query parameters:
			
Path Parameters (2 parameters):

	Name	Description	Default	Type
	
									metricsType
								

								 	
									Required Type of metrics
								

								 	 	
									MetricsType
								

								
	
									metricsName
								

								 	
									Required Name of metrics
								

								 	 	
									String
								

								

Query Parameters (7 parameters):

	Name	Description	Default	Type
	
									action (producer)
								

								 	
									Action when using timer type
								

								 	 	
									MetricsTimerAction
								

								
	
									decrement (producer)
								

								 	
									Decrement value when using counter type
								

								 	 	
									Long
								

								
	
									increment (producer)
								

								 	
									Increment value when using counter type
								

								 	 	
									Long
								

								
	
									mark (producer)
								

								 	
									Mark when using meter type
								

								 	 	
									Long
								

								
	
									subject (producer)
								

								 	
									Subject value when using gauge type
								

								 	 	
									Object
								

								
	
									value (producer)
								

								 	
									Value value when using histogram type
								

								 	 	
									Long
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

Metric Registry

				Camel Metrics component uses by default a MetricRegistry instance with a Slf4jReporter that has a 60 second reporting interval. This default registry can be replaced with a custom one by providing a MetricRegistry bean. If multiple MetricRegistry beans exist in the application, the one with name metricRegistry is used.
			

				For example using Spring Java Configuration:
			
@Configuration
public static class MyConfig extends SingleRouteCamelConfiguration {

 @Bean
 @Override
 public RouteBuilder route() {
 return new RouteBuilder() {
 @Override
 public void configure() throws Exception {
 // define Camel routes here
 }
 };
 }

 @Bean(name = MetricsComponent.METRIC_REGISTRY_NAME)
 public MetricRegistry getMetricRegistry() {
 MetricRegistry registry = ...;
 return registry;
 }
}

				Or using CDI:
			
class MyBean extends RouteBuilder {

 @Override
 public void configure() {
 from("...")
 // Register the 'my-meter' meter in the MetricRegistry below
 .to("metrics:meter:my-meter");
 }

 @Produces
 // If multiple MetricRegistry beans
 // @Named(MetricsComponent.METRIC_REGISTRY_NAME)
 MetricRegistry registry() {
 MetricRegistry registry = new MetricRegistry();
 // ...
 return registry;
 }
}
Caution

				MetricRegistry uses internal thread(s) for reporting. There is no public API in version DropWizard 3.0.1 for users to clean up on exit. Thus using Camel Metrics Component leads to Java classloader leak and my cause OutOfMemoryErrors in some cases.
			

Usage

				Each metric has type and name. Supported types are counter, histogram, meter, timer and gauge. Metric name is simple string. If metric type is not provided then type meter is used by default.
			
Headers

					Metric name defined in URI can be overridden by using header with name CamelMetricsName.
				

					For example
				
from("direct:in")
 .setHeader(MetricsConstants.HEADER_METRIC_NAME, constant("new.name"))
 .to("metrics:counter:name.not.used")
 .to("direct:out");

					will update counter with name new.name instead of name.not.used.
				

					All Metrics specific headers are removed from the message once Metrics endpoint finishes processing of exchange. While processing exchange Metrics endpoint will catch all exceptions and write log entry using level warn.
				

Metrics type counter

metrics:counter:metricname[?options]
Options

	Name	Default	Description
	
									increment
								

								 	
									-
								

								 	
									Long value to add to the counter
								

								
	
									decrement
								

								 	
									-
								

								 	
									Long value to subtract from the counter
								

								

					If neither increment or decrement is defined then counter value will be incremented by one. If increment and decrement are both defined only increment operation is called.
				
// update counter simple.counter by 7
from("direct:in")
 .to("metric:counter:simple.counter?increment=7")
 .to("direct:out");
// increment counter simple.counter by 1
from("direct:in")
 .to("metric:counter:simple.counter")
 .to("direct:out");
// decrement counter simple.counter by 3
from("direct:in")
 .to("metric:counter:simple.counter?decrement=3")
 .to("direct:out");

Headers

					Message headers can be used to override increment and decrement values specified in Metrics component URI.
				
	Name	Description	Expected type
	
									CamelMetricsCounterIncrement
								

								 	
									Override increment value in URI
								

								 	
									Long
								

								
	
									CamelMetricsCounterDecrement
								

								 	
									Override decrement value in URI
								

								 	
									Long
								

								

// update counter simple.counter by 417
from("direct:in")
 .setHeader(MetricsConstants.HEADER_COUNTER_INCREMENT, constant(417L))
 .to("metric:counter:simple.counter?increment=7")
 .to("direct:out");
// updates counter using simple language to evaluate body.length
from("direct:in")
 .setHeader(MetricsConstants.HEADER_COUNTER_INCREMENT, simple("${body.length}"))
 .to("metrics:counter:body.length")
 .to("mock:out");

Metric type histogram

metrics:histogram:metricname[?options]
Options

	Name	Default	Description
	
									value
								

								 	
									-
								

								 	
									Value to use in histogram
								

								

					If no value is not set nothing is added to histogram and warning is logged.
				
// adds value 9923 to simple.histogram
from("direct:in")
 .to("metric:histogram:simple.histogram?value=9923")
 .to("direct:out");
// nothing is added to simple.histogram; warning is logged
from("direct:in")
 .to("metric:histogram:simple.histogram")
 .to("direct:out");

Headers

					Message header can be used to override value specified in Metrics component URI.
				
	Name	Description	Expected type
	
									CamelMetricsHistogramValue
								

								 	
									Override histogram value in URI
								

								 	
									Long
								

								

// adds value 992 to simple.histogram
from("direct:in")
 .setHeader(MetricsConstants.HEADER_HISTOGRAM_VALUE, constant(992L))
 .to("metric:histogram:simple.histogram?value=700")
 .to("direct:out")

Metric type meter

metrics:meter:metricname[?options]
Options

	Name	Default	Description
	
									mark
								

								 	
									-
								

								 	
									Long value to use as mark
								

								

					If mark is not set then meter.mark() is called without argument.
				
// marks simple.meter without value
from("direct:in")
 .to("metric:simple.meter")
 .to("direct:out");
// marks simple.meter with value 81
from("direct:in")
 .to("metric:meter:simple.meter?mark=81")
 .to("direct:out");

Headers

					Message header can be used to override mark value specified in Metrics component URI.
				
	Name	Description	Expected type
	
									CamelMetricsMeterMark
								

								 	
									Override mark value in URI
								

								 	
									Long
								

								

// updates meter simple.meter with value 345
from("direct:in")
 .setHeader(MetricsConstants.HEADER_METER_MARK, constant(345L))
 .to("metric:meter:simple.meter?mark=123")
 .to("direct:out");

Metrics type timer

metrics:timer:metricname[?options]
Options

	Name	Default	Description
	
									action
								

								 	
									-
								

								 	
									start or stop
								

								

					If no action or invalid value is provided then warning is logged without any timer update. If action start is called on already running timer or stop is called on not running timer then nothing is updated and warning is logged.
				
// measure time taken by route "calculate"
from("direct:in")
 .to("metrics:timer:simple.timer?action=start")
 .to("direct:calculate")
 .to("metrics:timer:simple.timer?action=stop");

					TimerContext objects are stored as Exchange properties between different Metrics component calls.
				

Headers

					Message header can be used to override action value specified in Metrics component URI.
				
	Name	Description	Expected type
	
									CamelMetricsTimerAction
								

								 	
									Override timer action in URI
								

								 	
									org.apache.camel.component.metrics.timer.TimerEndpoint.TimerAction
								

								

// sets timer action using header
from("direct:in")
 .setHeader(MetricsConstants.HEADER_TIMER_ACTION, TimerAction.start)
 .to("metric:timer:simple.timer")
 .to("direct:out");

Metric type gauge

metrics:gauge:metricname[?options]
Options

	Name	Default	Description
	
									subject
								

								 	
									-
								

								 	
									Any object to be observed by the gauge
								

								

					If subject is not defined it’s simply ignored, i.e. the gauge is not registered.
				
// update gauge "simple.gauge" by a bean "mySubjectBean"
from("direct:in")
 .to("metric:gauge:simple.gauge?subject=#mySubjectBean")
 .to("direct:out");

Headers

					Message headers can be used to override subject values specified in Metrics component URI. Note: if CamelMetricsName header is specified, then new gauge is registered in addition to default one specified in a URI.
				
	Name	Description	Expected type
	
									CamelMetricsGaugeSubject
								

								 	
									Override subject value in URI
								

								 	
									Object
								

								

// update gauge simple.gauge by a String literal "myUpdatedSubject"
from("direct:in")
 .setHeader(MetricsConstants.HEADER_GAUGE_SUBJECT, constant("myUpdatedSubject"))
 .to("metric:counter:simple.gauge?subject=#mySubjectBean")
 .to("direct:out");

MetricsRoutePolicyFactory

				This factory allows to add a RoutePolicy for each route which exposes route utilization statistics using Dropwizard metrics. This factory can be used in Java and XML as the examples below demonstrates.
			
Note

					Instead of using the MetricsRoutePolicyFactory you can define a MetricsRoutePolicy per route you want to instrument, in case you only want to instrument a few selected routes.
				

				From Java you just add the factory to the CamelContext as shown below:
			
context.addRoutePolicyFactory(new MetricsRoutePolicyFactory());

				And from XML DSL you define a <bean> as follows:
			
 <!-- use camel-metrics route policy to gather metrics for all routes -->
 <bean id="metricsRoutePolicyFactory" class="org.apache.camel.component.metrics.routepolicy.MetricsRoutePolicyFactory"/>

				The MetricsRoutePolicyFactory and MetricsRoutePolicy supports the following options:
			
	Name	Default	Description
	
								useJmx
							

							 	
								false
							

							 	
								Whether to report fine grained statistics to JMX by using the com.codahale.metrics.JmxReporter.
 Notice that if JMX is enabled on CamelContext then a MetricsRegistryService mbean is enlisted under the services type in the JMX tree. That mbean has a single operation to output the statistics using json. Setting useJmx to true is only needed if you want fine grained mbeans per statistics type.
							

							
	
								jmxDomain
							

							 	
								org.apache.camel.metrics
							

							 	
								The JMX domain name
							

							
	
								prettyPrint
							

							 	
								false
							

							 	
								Whether to use pretty print when outputting statistics in json format
							

							
	
								metricsRegistry
							

							 	
								
							

							 	
								Allow to use a shared com.codahale.metrics.MetricRegistry. If none is provided then Camel will create a shared instance used by the this CamelContext.
							

							
	
								rateUnit
							

							 	
								TimeUnit.SECONDS
							

							 	
								The unit to use for rate in the metrics reporter or when dumping the statistics as json.
							

							
	
								durationUnit
							

							 	
								TimeUnit.MILLISECONDS
							

							 	
								The unit to use for duration in the metrics reporter or when dumping the statistics as json.
							

							
	
								namePattern
							

							 	
								name.routeId.type
							

							 	
								Camel 2.17: The name pattern to use. Uses dot as separators, but you can change that. The values name, routeId, and type will be replaced with actual value. Where name is the name of the CamelContext. routeId is the name of the route. And type is the value of responses.
							

							

				
			

				From Java code tou can get hold of the com.codahale.metrics.MetricRegistry from the org.apache.camel.component.metrics.routepolicy.MetricsRegistryService as shown below:
			
MetricRegistryService registryService = context.hasService(MetricsRegistryService.class);
if (registryService != null) {
 MetricsRegistry registry = registryService.getMetricsRegistry();
 ...
}

MetricsMessageHistoryFactory

				Available as of Camel 2.17
			

				This factory allows to use metrics to capture Message History performance statistics while routing messages. It works by using a metrics Timer for each node in all the routes. This factory can be used in Java and XML as the examples below demonstrates.
			

				From Java you just set the factory to the CamelContext as shown below:
			
context.setMessageHistoryFactory(new MetricsMessageHistoryFactory());

				And from XML DSL you define a <bean> as follows:
			
 <!-- use camel-metrics message history to gather metrics for all messages being routed -->
 <bean id="metricsMessageHistoryFactory" class="org.apache.camel.component.metrics.messagehistory.MetricsMessageHistoryFactory"/>

				The following options is supported on the factory:
			
	Name	Default	Description
	
								useJmx
							

							 	
								false
							

							 	
								Whether to report fine grained statistics to JMX by using the com.codahale.metrics.JmxReporter.
 Notice that if JMX is enabled on CamelContext then a MetricsRegistryService mbean is enlisted under the services type in the JMX tree. That mbean has a single operation to output the statistics using json. Setting useJmx to true is only needed if you want fine grained mbeans per statistics type.
							

							
	
								jmxDomain
							

							 	
								org.apache.camel.metrics
							

							 	
								The JMX domain name
							

							
	
								prettyPrint
							

							 	
								false
							

							 	
								Whether to use pretty print when outputting statistics in json format
							

							
	
								metricsRegistry
							

							 	
								
							

							 	
								Allow to use a shared com.codahale.metrics.MetricRegistry. If none is provided then Camel will create a shared instance used by the this CamelContext.
							

							
	
								rateUnit
							

							 	
								TimeUnit.SECONDS
							

							 	
								The unit to use for rate in the metrics reporter or when dumping the statistics as json.
							

							
	
								durationUnit
							

							 	
								TimeUnit.MILLISECONDS
							

							 	
								The unit to use for duration in the metrics reporter or when dumping the statistics as json.
							

							
	
								namePattern
							

							 	
								name.routeId.id.type
							

							 	
								The name pattern to use. Uses dot as separators, but you can change that. The values name, routeId, type, and id will be replaced with actual value. Where name is the name of the CamelContext. routeId is the name of the route. The id pattern represents the node id. And type is the value of history.
							

							

				At runtime the metrics can be accessed from Java API or JMX which allows to gather the data as json output.
			

				From Java code you can do get the service from the CamelContext as shown:
			
MetricsMessageHistoryService service = context.hasService(MetricsMessageHistoryService.class);
String json = service.dumpStatisticsAsJson();

				And the JMX API the MBean is registered in the type=services tree with name=MetricsMessageHistoryService.
			

InstrumentedThreadPoolFactory

				Available as of Camel 2.18
			

				This factory allows you to gather performance information about Camel Thread Pools by injecting a InstrumentedThreadPoolFactory which collects information from inside of Camel. See more details at Advanced configuration of CamelContext using Spring
			

See Also

	
						The camel-example-cdi-metrics example that illustrates the integration between Camel, Metrics and CDI.
					

Chapter 219. Micrometer Component

Micrometer Component

				The micrometer: component allows to collect various metrics directly from Camel routes. Supported metric types are counter, summary, and timer. Micrometer provides simple way to measure the behaviour of an application. Configurable reporting backends (via Micrometer registries) enable different integration options for collecting and visualizing statistics.
			

				The component also provides a MicrometerRoutePolicyFactory which allows to expose route statistics using Micrometer as well as EventNotifier implementations for counting routes and timing exchanges from their creation to their completion.
			

				Maven users need to add the following dependency to their pom.xml for this component:
			
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-micrometer</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>

URI format

micrometer:[counter | summary | timer]:metricname[?options]

Options

				The Micrometer component supports 2 options, which are listed below.
			
	Name	Description	Default	Type
	
								metricsRegistry (advanced)
							

							 	
								To use a custom configured MetricRegistry.
							

							 	 	
								MeterRegistry
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The Micrometer endpoint is configured using URI syntax:
			
micrometer:metricsType:metricsName

				with the following path and query parameters:
			
Path Parameters (3 parameters):

	Name	Description	Default	Type
	
									metricsType
								

								 	
									Required Type of metrics
								

								 	 	
									Type
								

								
	
									metricsName
								

								 	
									Required Name of metrics
								

								 	 	
									String
								

								
	
									tags
								

								 	
									Tags of metrics
								

								 	 	
									Iterable
								

								

Query Parameters (5 parameters):

	Name	Description	Default	Type
	
									action (producer)
								

								 	
									Action expression when using timer type
								

								 	 	
									String
								

								
	
									decrement (producer)
								

								 	
									Decrement value expression when using counter type
								

								 	 	
									String
								

								
	
									increment (producer)
								

								 	
									Increment value expression when using counter type
								

								 	 	
									String
								

								
	
									value (producer)
								

								 	
									Value expression when using histogram type
								

								 	 	
									String
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

Spring Boot Auto-Configuration

				The component supports 3 options, which are listed below.
			
	Name	Description	Default	Type
	
								camel.component.micrometer.enabled
							

							 	
								Whether to enable auto configuration of the micrometer component. This is enabled by default.
							

							 	 	
								Boolean
							

							
	
								camel.component.micrometer.metrics-registry
							

							 	
								To use a custom configured MetricRegistry. The option is a io.micrometer.core.instrument.MeterRegistry type.
							

							 	 	
								String
							

							
	
								camel.component.micrometer.resolve-property-placeholders
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								Boolean
							

							

Meter Registry

				By default the Camel Micrometer component creates a SimpleMeterRegistry instance, suitable mainly for testing. You should define a dedicated registry by providing a MeterRegistry bean. Micrometer registries primarily determine the backend monitoring system to be used. A CompositeMeterRegistry can be used to address more than one monitoring target.
			

				For example using Spring Java Configuration:
			
@Configuration
public static class MyConfig extends SingleRouteCamelConfiguration {

 @Bean
 @Override
 public RouteBuilder route() {
 return new RouteBuilder() {
 @Override
 public void configure() throws Exception {
 // define Camel routes here
 }
 };
 }

 @Bean(name = MicrometerComponent.METRICS_REGISTRY_NAME)
 public MeterRegistry getMeterRegistry() {
 CompositeMeterRegistry registry = ...;
 registry.add(...);
 // ...
 return registry;
 }
}

				Or using CDI:
			
class MyBean extends RouteBuilder {

 @Override
 public void configure() {
 from("...")
 // Register the 'my-meter' meter in the MetricRegistry below
 .to("metrics:meter:my-meter");
 }

 @Produces
 // If multiple MetricRegistry beans
 // @Named(MicrometerComponent.METRIC_REGISTRY_NAME)
 MetricRegistry registry() {
 CompositeMeterRegistry registry = ...;
 registry.add(...);
 // ...
 return registry;
 }
}

Usage of producers

				Each meter has type and name. Supported types are counter, distribution summary and timer. If no type is provided then a counter is used by default.
			

				The meter name is a string that is evaluated as Simple expression. In addition to using the CamelMetricsName header (see below), this allows to select the meter depending on exchange data.
			

				The optional tags URI parameter is a comma-separated string, consisting of key=value expressions. Both key and value are strings that are also evaluated as Simple expression. E.g. the URI parameter tags=X=${header.Y} would assign the current value of header Y to the key X.
			
Headers

					The meter name defined in URI can be overridden by populating a header with name CamelMetricsName. The meter tags defined as URI parameters can be augmented by populating a header with name CamelMetricsTags.
				

					For example
				
from("direct:in")
 .setHeader(MicrometerConstants.HEADER_METRIC_NAME, constant("new.name"))
 .setHeader(MicrometerConstants.HEADER_METRIC_TAGS, constant(Tags.of("dynamic-key", "dynamic-value")))
 .to("metrics:counter:name.not.used?tags=key=value")
 .to("direct:out");

					will update a counter with name new.name instead of name.not.used using the tag dynamic-key with value dynamic-value in addition to the tag key with value value.
				

					All Metrics specific headers are removed from the message once the Micrometer endpoint finishes processing of exchange. While processing exchange Micrometer endpoint will catch all exceptions and write log entry using level warn.
				

Counter

micrometer:counter:name[?options]
Options

	Name	Default	Description
	
									increment
								

								 	
									-
								

								 	
									Double value to add to the counter
								

								
	
									decrement
								

								 	
									-
								

								 	
									Double value to subtract from the counter
								

								

					If neither increment or decrement is defined then counter value will be incremented by one. If increment and decrement are both defined only increment operation is called.
				
// update counter simple.counter by 7
from("direct:in")
 .to("micrometer:counter:simple.counter?increment=7")
 .to("direct:out");
// increment counter simple.counter by 1
from("direct:in")
 .to("micrometer:counter:simple.counter")
 .to("direct:out");

					Both increment and decrement values are evaluated as Simple expressions with a Double result, e.g. if header X contains a value that evaluates to 3.0, the simple.counter counter is decremented by 3.0:
				
// decrement counter simple.counter by 3
from("direct:in")
 .to("micrometer:counter:simple.counter?decrement=${header.X}")
 .to("direct:out");

Headers

					Like in camel-metrics, specific Message headers can be used to override increment and decrement values specified in the Micrometer endpoint URI.
				
	Name	Description	Expected type
	
									CamelMetricsCounterIncrement
								

								 	
									Override increment value in URI
								

								 	
									Double
								

								
	
									CamelMetricsCounterDecrement
								

								 	
									Override decrement value in URI
								

								 	
									Double
								

								

// update counter simple.counter by 417
from("direct:in")
 .setHeader(MicrometerConstants.HEADER_COUNTER_INCREMENT, constant(417.0D))
 .to("micrometer:counter:simple.counter?increment=7")
 .to("direct:out");
// updates counter using simple language to evaluate body.length
from("direct:in")
 .setHeader(MicrometerConstants.HEADER_COUNTER_INCREMENT, simple("${body.length}"))
 .to("micrometer:counter:body.length")
 .to("direct:out");

Distribution Summary

micrometer:summary:metricname[?options]
Options

	Name	Default	Description
	
									value
								

								 	
									-
								

								 	
									Value to use in histogram
								

								

					If no value is not set, nothing is added to histogram and warning is logged.
				
// adds value 9923 to simple.histogram
from("direct:in")
 .to("micrometer:summary:simple.histogram?value=9923")
 .to("direct:out");
// nothing is added to simple.histogram; warning is logged
from("direct:in")
 .to("micrometer:summary:simple.histogram")
 .to("direct:out");

					value is evaluated as Simple expressions with a Double result, e.g. if header X contains a value that evaluates to 3.0, this value is registered with the simple.histogram:
				
from("direct:in")
 .to("micrometer:summary:simple.histogram?value=${header.X}")
 .to("direct:out");

Headers

					Like in camel-metrics, a specific Message header can be used to override the value specified in the Micrometer endpoint URI.
				
	Name	Description	Expected type
	
									CamelMetricsHistogramValue
								

								 	
									Override histogram value in URI
								

								 	
									Long
								

								

// adds value 992.0 to simple.histogram
from("direct:in")
 .setHeader(MicrometerConstants.HEADER_HISTOGRAM_VALUE, constant(992.0D))
 .to("micrometer:summary:simple.histogram?value=700")
 .to("direct:out")

Timer

micrometer:timer:metricname[?options]
Options

	Name	Default	Description
	
									action
								

								 	
									-
								

								 	
									start or stop
								

								

					If no action or invalid value is provided then warning is logged without any timer update. If action start is called on an already running timer or stop is called on an unknown timer, nothing is updated and warning is logged.
				
// measure time spent in route "direct:calculate"
from("direct:in")
 .to("micrometer:timer:simple.timer?action=start")
 .to("direct:calculate")
 .to("micrometer:timer:simple.timer?action=stop");

					Timer.Sample objects are stored as Exchange properties between different Metrics component calls.
				

					action is evaluated as a Simple expression returning a result of type MicrometerTimerAction.
				

Headers

					Like in camel-metrics, a specific Message header can be used to override action value specified in the Micrometer endpoint URI.
				
	Name	Description	Expected type
	
									CamelMetricsTimerAction
								

								 	
									Override timer action in URI
								

								 	
									org.apache.camel.component.micrometer.MicrometerTimerAction
								

								

// sets timer action using header
from("direct:in")
 .setHeader(MicrometerConstants.HEADER_TIMER_ACTION, MicrometerTimerAction.start)
 .to("micrometer:timer:simple.timer")
 .to("direct:out");

MicrometerRoutePolicyFactory

				This factory allows to add a RoutePolicy for each route in order to exposes route utilization statistics using Micrometer. This factory can be used in Java and XML as the examples below demonstrates.
			
Note

					Instead of using the MicrometerRoutePolicyFactory you can define a dedicated MicrometerRoutePolicy per route you want to instrument, in case you only want to instrument a few selected routes.
				

				From Java you just add the factory to the CamelContext as shown below:
			
context.addRoutePolicyFactory(new MicrometerRoutePolicyFactory());

				And from XML DSL you define a <bean> as follows:
			
 <!-- use camel-micrometer route policy to gather metrics for all routes -->
 <bean id="metricsRoutePolicyFactory" class="org.apache.camel.component.micrometer.routepolicy.MicrometerRoutePolicyFactory"/>

				The MicrometerRoutePolicyFactory and MicrometerRoutePolicy supports the following options:
			
	Name	Default	Description
	
								prettyPrint
							

							 	
								false
							

							 	
								Whether to use pretty print when outputting statistics in json format
							

							
	
								meterRegistry
							

							 	
								
							

							 	
								Allow to use a shared MeterRegistry. If none is provided then Camel will create a shared instance used by the this CamelContext.
							

							
	
								durationUnit
							

							 	
								TimeUnit.MILLISECONDS
							

							 	
								The unit to use for duration in when dumping the statistics as json.
							

							

				If JMX is enabled in the CamelContext, the MBean is registered in the type=services tree with name=MicrometerRoutePolicy.
			

MicrometerMessageHistoryFactory

				This factory allows to use metrics to capture Message History performance statistics while routing messages. It works by using a Micrometer Timer for each node in all the routes. This factory can be used in Java and XML as the examples below demonstrates.
			

				From Java you just set the factory to the CamelContext as shown below:
			
context.setMessageHistoryFactory(new MicrometerMessageHistoryFactory());

				And from XML DSL you define a <bean> as follows:
			
 <!-- use camel-micrometer message history to gather metrics for all messages being routed -->
 <bean id="metricsMessageHistoryFactory" class="org.apache.camel.component.micrometer.messagehistory.MicrometerMessageHistoryFactory"/>

				The following options is supported on the factory:
			
	Name	Default	Description
	
								prettyPrint
							

							 	
								false
							

							 	
								Whether to use pretty print when outputting statistics in json format
							

							
	
								meterRegistry
							

							 	
								
							

							 	
								Allow to use a shared MeterRegistry. If none is provided then Camel will create a shared instance used by the this CamelContext.
							

							
	
								durationUnit
							

							 	
								TimeUnit.MILLISECONDS
							

							 	
								The unit to use for duration when dumping the statistics as json.
							

							

				At runtime the metrics can be accessed from Java API or JMX which allows to gather the data as json output.
			

				From Java code you can get the service from the CamelContext as shown:
			
MicrometerMessageHistoryService service = context.hasService(MicrometerMessageHistoryService.class);
String json = service.dumpStatisticsAsJson();

				If JMX is enabled in the CamelContext, the MBean is registered in the type=services tree with name=MicrometerMessageHistory.
			

MicrometerEventNotifiers

				There is a MicrometerRouteEventNotifier (counting added and running routes) and a MicrometerExchangeEventNotifier (timing exchanges from their creation to their completion).
			

				EventNotifiers can be added to the CamelContext, e.g.:
			
camelContext.getManagementStrategy().addEventNotifier(new MicrometerExchangeEventNotifier())

				At runtime the metrics can be accessed from Java API or JMX which allows to gather the data as json output.
			

				From Java code you can do get the service from the CamelContext as shown:
			
MicrometerEventNotifierService service = context.hasService(MicrometerEventNotifierService.class);
String json = service.dumpStatisticsAsJson();

				If JMX is enabled in the CamelContext, the MBean is registered in the type=services tree with name=MicrometerEventNotifier.
			

InstrumentedThreadPoolFactory

				This factory allows you to gather performance information about Camel Thread Pools by injecting a InstrumentedThreadPoolFactory which collects information from inside of Camel. See more details at Advanced configuration of CamelContext using Spring.
			

Exposing Micrometer statistics in JMX

				Micrometer uses MeterRegistry implementations in order to publish statistics. While in production scenarios it is advisable to select a dedicated backend like Prometheus or Graphite, it may be sufficient for test or local deployments to publish statistics to JMX.
			

				In order to achieve this, add the following dependency:
			
 <dependency>
 <groupId>io.micrometer</groupId>
 <artifactId>micrometer-registry-jmx</artifactId>
 <version>${micrometer-version}</version>
 </dependency>

				and add a JmxMeterRegistry instance:
			
 @Bean(name = MicrometerComponent.METRICS_REGISTRY_NAME)
 public MeterRegistry getMeterRegistry() {
 CompositeMeterRegistry meterRegistry = new CompositeMeterRegistry();
 meterRegistry.add(...);
 meterRegistry.add(new JmxMeterRegistry(
 CamelJmxConfig.DEFAULT,
 Clock.SYSTEM,
 HierarchicalNameMapper.DEFAULT));
 return meterRegistry;
 }
}

				The HierarchicalNameMapper strategy determines how meter name and tags are assembled into an MBean name.
			

Example

				camel-example-micrometer provides an example how to set up Micrometer monitoring with Camel using Java configuration and a Prometheus backend.
			

Chapter 220. OPC UA Client Component

			Available as of Camel version 2.19
		

			The Milo Client component provides access to OPC UA servers using the Eclipse Milo™ implementation.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-milo</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>

			The OPC UA Client component supports 6 options which are listed below.
		
	Name	Description	Default	Type
	
							defaultConfiguration (common)
						

						 	
							All default options for client
						

						 	 	
							MiloClientConfiguration
						

						
	
							applicationName (common)
						

						 	
							Default application name
						

						 	 	
							String
						

						
	
							applicationUri (common)
						

						 	
							Default application URI
						

						 	 	
							String
						

						
	
							productUri (common)
						

						 	
							Default product URI
						

						 	 	
							String
						

						
	
							reconnectTimeout (common)
						

						 	
							Default reconnect timeout
						

						 	 	
							Long
						

						
	
							resolveProperty Placeholders (advanced)
						

						 	
							Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
						

						 	
							true
						

						 	
							boolean
						

						

URI format

				The URI syntax of the endpoint is:
			
milo-client:tcp://[user:password@]host:port/path/to/service?node=RAW(nsu=urn:foo:bar;s=item-1)

				If the server does not use a path, then it is possible to simply omit it:
			
milo-client:tcp://[user:password@]host:port?node=RAW(nsu=urn:foo:bar;s=item-1)

				If no user credentials are provided the client will switch to anonymous mode.
			

URI options

				All configuration options in the group client are applicable to the shared client instance. Endpoints will share client instances for each endpoint URI. So the first time a request for that endpoint URI is made, the options of the client group are applied. All further instances will be ignored.
			

				If you need alternate options for the same endpoint URI it is possible though to set the clientId option which will by added internally to the endpoint URI in order to select a different shared connection instance. In other words, shared connections located by the combination of endpoint URI and client id.
			

				The OPC UA Client endpoint is configured using URI syntax:
			
milo-client:endpointUri

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									endpointUri
								

								 	
									Required The OPC UA server endpoint
								

								 	 	
									String
								

								

Query Parameters (24 parameters):

	Name	Description	Default	Type
	
									clientId (common)
								

								 	
									A virtual client id to force the creation of a new connection instance
								

								 	 	
									String
								

								
	
									defaultAwaitWrites (common)
								

								 	
									Default await setting for writes
								

								 	
									false
								

								 	
									boolean
								

								
	
									node (common)
								

								 	
									The node definition (see Node ID)
								

								 	 	
									ExpandedNodeId
								

								
	
									samplingInterval (common)
								

								 	
									The sampling interval in milliseconds
								

								 	 	
									Double
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									allowedSecurityPolicies (client)
								

								 	
									A set of allowed security policy URIs. Default is to accept all and use the highest.
								

								 	 	
									String
								

								
	
									applicationName (client)
								

								 	
									The application name
								

								 	
									Apache Camel adapter for Eclipse Milo
								

								 	
									String
								

								
	
									applicationUri (client)
								

								 	
									The application URI
								

								 	
									http://camel.apache.org/EclipseMilo/Client
								

								 	
									String
								

								
	
									channelLifetime (client)
								

								 	
									Channel lifetime in milliseconds
								

								 	 	
									Long
								

								
	
									keyAlias (client)
								

								 	
									The name of the key in the keystore file
								

								 	 	
									String
								

								
	
									keyPassword (client)
								

								 	
									The key password
								

								 	 	
									String
								

								
	
									keyStorePassword (client)
								

								 	
									The keystore password
								

								 	 	
									String
								

								
	
									keyStoreType (client)
								

								 	
									The key store type
								

								 	 	
									String
								

								
	
									keyStoreUrl (client)
								

								 	
									The URL where the key should be loaded from
								

								 	 	
									URL
								

								
	
									maxPendingPublishRequests (client)
								

								 	
									The maximum number of pending publish requests
								

								 	 	
									Long
								

								
	
									maxResponseMessageSize (client)
								

								 	
									The maximum number of bytes a response message may have
								

								 	 	
									Long
								

								
	
									overrideHost (client)
								

								 	
									Override the server reported endpoint host with the host from the endpoint URI.
								

								 	
									false
								

								 	
									boolean
								

								
	
									productUri (client)
								

								 	
									The product URI
								

								 	
									http://camel.apache.org/EclipseMilo
								

								 	
									String
								

								
	
									requestTimeout (client)
								

								 	
									Request timeout in milliseconds
								

								 	 	
									Long
								

								
	
									sessionName (client)
								

								 	
									Session name
								

								 	 	
									String
								

								
	
									sessionTimeout (client)
								

								 	
									Session timeout in milliseconds
								

								 	 	
									Long
								

								

Node ID

					In order to define a target node a namespace and node id is required. In previous versions this was possible by specifying nodeId and either namespaceUri or namespaceIndex. However this only allowed for using string based node IDs. And while this configuration is still possible, the newer one is preferred.
				

					The new approach is to specify a full namespace+node ID in the format ns=1;i=1 which also allows to use the other node ID formats (like numeric, GUID/UUID or opaque). If the node parameter is used the older ones must not be used. The syntax of this node format is a set of key=value pairs delimited by a semi-colon (;).
				

					Exactly one namespace and one node id key must be used. See the following table for possible keys:
				
	Key	Type	Description
	
									ns
								

								 	
									namespace
								

								 	
									Numeric namespace index
								

								
	
									nsu
								

								 	
									namespace
								

								 	
									Namespace URI
								

								
	
									s
								

								 	
									node
								

								 	
									String node ID
								

								
	
									i
								

								 	
									node
								

								 	
									Numeric node ID
								

								
	
									g
								

								 	
									node
								

								 	
									GUID/UUID node ID
								

								
	
									b
								

								 	
									node
								

								 	
									Base64 encoded string for opaque node ID
								

								

					As the values generated by the syntax cannot be transparently encoded into a URI parameter value, it is necessary to escape them. However Camel allows to wrap the actual value inside RAW(…), which makes escaping unnecessary. For example:
				
milo-client://user:password@localhost:12345?node=RAW(nsu=http://foo.bar;s=foo/bar)

Security policies

					When setting the allowing security policies is it possible to use the well known OPC UA URIs (e.g. http://opcfoundation.org/UA/SecurityPolicy#Basic128Rsa15) or to use the Milo enum literals (e.g. None). Specifying an unknown security policy URI or enum is an error.
				

					The known security policy URIs and enum literals are can be seen here: SecurityPolicy.java
				

					Note: In any case security policies are considered case sensitive.
				

See Also

	
						Configuring Camel
					
	
						Component
					
	
						Endpoint
					
	
						Getting Started
					

Chapter 221. OPC UA Server Component

			Available as of Camel version 2.19
		

			The Milo Server component provides an OPC UA server using the Eclipse Milo™ implementation.
		

			Java 8: This component requires Java 8 at runtime.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-milo</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>

			Messages sent to the endpoint from Camel will be available from the OPC UA server to OPC UA Clients. Value write requests from OPC UA Client will trigger messages which are sent into Apache Camel.
		

			The OPC UA Server component supports 19 options which are listed below.
		
	Name	Description	Default	Type
	
							namespaceUri (common)
						

						 	
							The URI of the namespace, defaults to urn:org:apache:camel
						

						 	 	
							String
						

						
	
							applicationName (common)
						

						 	
							The application name
						

						 	 	
							String
						

						
	
							applicationUri (common)
						

						 	
							The application URI
						

						 	 	
							String
						

						
	
							productUri (common)
						

						 	
							The product URI
						

						 	 	
							String
						

						
	
							bindPort (common)
						

						 	
							The TCP port the server binds to
						

						 	 	
							int
						

						
	
							strictEndpointUrls Enabled (common)
						

						 	
							Set whether strict endpoint URLs are enforced
						

						 	
							false
						

						 	
							boolean
						

						
	
							serverName (common)
						

						 	
							Server name
						

						 	 	
							String
						

						
	
							hostname (common)
						

						 	
							Server hostname
						

						 	 	
							String
						

						
	
							securityPolicies (common)
						

						 	
							Security policies
						

						 	 	
							Set
						

						
	
							securityPoliciesById (common)
						

						 	
							Security policies by URI or name
						

						 	 	
							String>
						

						
	
							userAuthentication Credentials (common)
						

						 	
							Set user password combinations in the form of user1:pwd1,user2:pwd2 Usernames and passwords will be URL decoded
						

						 	 	
							String
						

						
	
							enableAnonymous Authentication (common)
						

						 	
							Enable anonymous authentication, disabled by default
						

						 	
							false
						

						 	
							boolean
						

						
	
							bindAddresses (common)
						

						 	
							Set the addresses of the local addresses the server should bind to
						

						 	 	
							String
						

						
	
							buildInfo (common)
						

						 	
							Server build info
						

						 	 	
							BuildInfo
						

						
	
							serverCertificate (common)
						

						 	
							Server certificate
						

						 	 	
							Result
						

						
	
							certificateManager (common)
						

						 	
							Server certificate manager
						

						 	 	
							CertificateManager
						

						
	
							certificateValidator (common)
						

						 	
							Validator for client certificates
						

						 	 	
							CertificateValidator>
						

						
	
							defaultCertificate Validator (common)
						

						 	
							Validator for client certificates using default file based approach
						

						 	 	
							File
						

						
	
							resolveProperty Placeholders (advanced)
						

						 	
							Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
						

						 	
							true
						

						 	
							boolean
						

						

URI format

milo-server:itemId[?options]

URI options

				The OPC UA Server endpoint is configured using URI syntax:
			
milo-server:itemId

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									itemId
								

								 	
									Required ID of the item
								

								 	 	
									String
								

								

Query Parameters (4 parameters):

	Name	Description	Default	Type
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

See Also

	
						Configuring Camel
					
	
						Component
					
	
						Endpoint
					
	
						Getting Started
					

Chapter 222. MIME Multipart DataFormat

			Available as of Camel version 2.17
		

			This data format that can convert a Camel message with attachments into a Camel message having a MIME-Multipart message as message body (and no attachments).
		

			The use case for this is to enable the user to send attachments over endpoints that do not directly support attachments, either as special protocol implementation (e.g. send a MIME-multipart over an HTTP endpoint) or as a kind of tunneling solution (e.g. because camel-jms does not support attachments but by marshalling the message with attachments into a MIME-Multipart, sending that to a JMS queue, receiving the message from the JMS queue and unmarshalling it again (into a message body with attachments).
		

			The marshal option of the mime-multipart data format will convert a message with attachments into a MIME-Multipart message. If the parameter "multipartWithoutAttachment" is set to true it will also marshal messages without attachments into a multipart message with a single part, if the parameter is set to false it will leave the message alone.
		

			MIME headers of the mulitpart as "MIME-Version" and "Content-Type" are set as camel headers to the message. If the parameter "headersInline" is set to true it will also create a MIME multipart message in any case.
 Furthermore the MIME headers of the multipart are written as part of the message body, not as camel headers.
		

			The unmarshal option of the mime-multipart data format will convert a MIME-Multipart message into a camel message with attachments and leaves other messages alone. MIME-Headers of the MIME-Multipart message have to be set as Camel headers. The unmarshalling will only take place if the "Content-Type" header is set to a "multipart" type. If the option "headersInline" is set to true, the body is always parsed as a MIME message.As a consequence if the message body is a stream and stream caching is not enabled, a message body that is actually not a MIME message with MIME headers in the message body will be replaced by an empty message. Up to Camel version 2.17.1 this will happen all message bodies that do not contain a MIME multipart message regardless of body type and stream cache setting.
		
Options

				The MIME Multipart dataformat supports 6 options which are listed below.
			
	Name	Default	Java Type	Description
	
								multipartSubType
							

							 	
								mixed
							

							 	
								String
							

							 	
								Specify the subtype of the MIME Multipart. Default is mixed.
							

							
	
								multipartWithoutAttachment
							

							 	
								false
							

							 	
								Boolean
							

							 	
								Defines whether a message without attachment is also marshaled into a MIME Multipart (with only one body part). Default is false.
							

							
	
								headersInline
							

							 	
								false
							

							 	
								Boolean
							

							 	
								Defines whether the MIME-Multipart headers are part of the message body (true) or are set as Camel headers (false). Default is false.
							

							
	
								includeHeaders
							

							 	 	
								String
							

							 	
								A regex that defines which Camel headers are also included as MIME headers into the MIME multipart. This will only work if headersInline is set to true. Default is to include no headers
							

							
	
								binaryContent
							

							 	
								false
							

							 	
								Boolean
							

							 	
								Defines whether the content of binary parts in the MIME multipart is binary (true) or Base-64 encoded (false) Default is false.
							

							
	
								contentTypeHeader
							

							 	
								false
							

							 	
								Boolean
							

							 	
								Whether the data format should set the Content-Type header with the type from the data format if the data format is capable of doing so. For example application/xml for data formats marshalling to XML, or application/json for data formats marshalling to JSon etc.
							

							

Message Headers (marshal)

	Name	Type	Description
	
								Message-Id
							

							 	
								String
							

							 	
								The marshal operation will set this parameter to the generated MIME message id if the "headersInline" parameter is set to false.
							

							
	
								MIME-Version
							

							 	
								String
							

							 	
								The marshal operation will set this parameter to the applied MIME version (1.0) if the "headersInline" parameter is set to false.
							

							
	
								Content-Type
							

							 	
								String
							

							 	
								The content of this header will be used as a content type for the message body part. If no content type is set, "application/octet-stream" is assumed. After the marshal operation the content type is set to "multipart/related" or empty if the "headersInline" parameter is set to true.
							

							
	
								Content-Encoding
							

							 	
								String
							

							 	
								If the incoming content type is "text/*" the content encoding will be set to the encoding parameter of the Content-Type MIME header of the body part. Furthermore the given charset is applied for text to binary conversions.
							

							

Message Headers (unmarshal)

	Name	Type	Description
	
								Content-Type
							

							 	
								String
							

							 	
								If this header is not set to "multipart/*" the unmarshal operation will not do anything. In other cases the multipart will be parsed into a camel message with attachments and the header is set to the Content-Type header of the body part, except if this is application/octet-stream. In the latter case the header is removed.
							

							
	
								Content-Encoding
							

							 	
								String
							

							 	
								If the content-type of the body part contains an encoding parameter this header will be set to the value of this encoding parameter (converted from MIME endoding descriptor to Java encoding descriptor)
							

							
	
								MIME-Version
							

							 	
								String
							

							 	
								The unmarshal operation will read this header and use it for parsing the MIME multipart. The header is removed afterwards
							

							

Examples

from(...).marshal().mimeMultipart()

				With a message where no Content-Type header is set, will create a Message with the following message Camel headers:
			

				Camel Message Headers
			
Content-Type=multipart/mixed; \n boundary="----=_Part_0_14180567.1447658227051"
Message-Id=<...>
MIME-Version=1.0
The message body will be:

				Camel Message Body
			
------=_Part_0_14180567.1447658227051
Content-Type: application/octet-stream
Content-Transfer-Encoding: base64
Qm9keSB0ZXh0
------=_Part_0_14180567.1447658227051
Content-Type: application/binary
Content-Transfer-Encoding: base64
Content-Disposition: attachment; filename="Attachment File Name"
AAECAwQFBgc=
------=_Part_0_14180567.1447658227051--

				A message with the header Content-Type set to "text/plain" sent to the route
			
from("...").marshal().mimeMultipart("related", true, true, "(included|x-.*)", true);

				will create a message without any specific MIME headers set as Camel headers (the Content-Type header is removed from the Camel message) and the following message body that includes also all headers of the original message starting with "x-" and the header with name "included":
			

				Camel Message Body
			
Message-ID: <...>
MIME-Version: 1.0
Content-Type: multipart/related;
 boundary="----=_Part_0_1134128170.1447659361365"
x-bar: also there
included: must be included
x-foo: any value

------=_Part_0_1134128170.1447659361365
Content-Type: text/plain
Content-Transfer-Encoding: 8bit

Body text
------=_Part_0_1134128170.1447659361365
Content-Type: application/binary
Content-Transfer-Encoding: binary
Content-Disposition: attachment; filename="Attachment File Name"

[binary content]
------=_Part_0_1134128170.1447659361365

Dependencies

				To use MIME-Multipart in your Camel routes you need to add a dependency on camel-mail which implements this data format.
			

				If you use Maven you can just add the following to your pom.xml:
			
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-mail</artifactId>
 <version>x.x.x</version> <!-- use the same version as your Camel core version -->
</dependency>

Chapter 223. Mina2 Component

			Available as of Camel version 2.10
		

			The mina2: component is a transport for working with Apache MINA 2.x
		
Tip

			Favor using Netty as Netty is a much more active maintained and popular project than Apache Mina currently is
		

			INFO: Be careful with sync=false on consumer endpoints. Since camel-mina2 all consumer exchanges are InOut. This is different to camel-mina.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-mina2</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>
URI format

mina2:tcp://hostname[:port][?options]
mina2:udp://hostname[:port][?options]
mina2:vm://hostname[:port][?options]

				You can specify a codec in the Registry using the codec option. If you are using TCP and no codec is specified then the textline flag is used to determine if text line based codec or object serialization should be used instead. By default the object serialization is used.
			

				For UDP if no codec is specified the default uses a basic ByteBuffer based codec.
			

				The VM protocol is used as a direct forwarding mechanism in the same JVM.
			

				A Mina producer has a default timeout value of 30 seconds, while it waits for a response from the remote server.
			

				In normal use, camel-mina only supports marshalling the body content—message headers and exchange properties are not sent.
 However, the option, transferExchange, does allow you to transfer the exchange itself over the wire. See options below.
			

				You can append query options to the URI in the following format, ?option=value&option=value&…​
			

Options

				The Mina2 component supports 3 options which are listed below.
			
	Name	Description	Default	Type
	
								configuration (advanced)
							

							 	
								To use the shared mina configuration.
							

							 	 	
								Mina2Configuration
							

							
	
								useGlobalSslContext Parameters (security)
							

							 	
								Enable usage of global SSL context parameters.
							

							 	
								false
							

							 	
								boolean
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The Mina2 endpoint is configured using URI syntax:
			
mina2:protocol:host:port

				with the following path and query parameters:
			
Path Parameters (3 parameters):

	Name	Description	Default	Type
	
									protocol
								

								 	
									Required Protocol to use
								

								 	 	
									String
								

								
	
									host
								

								 	
									Required Hostname to use. Use localhost or 0.0.0.0 for local server as consumer. For producer use the hostname or ip address of the remote server.
								

								 	 	
									String
								

								
	
									port
								

								 	
									Required Port number
								

								 	 	
									int
								

								

Query Parameters (27 parameters):

	Name	Description	Default	Type
	
									disconnect (common)
								

								 	
									Whether or not to disconnect(close) from Mina session right after use. Can be used for both consumer and producer.
								

								 	
									false
								

								 	
									boolean
								

								
	
									minaLogger (common)
								

								 	
									You can enable the Apache MINA logging filter. Apache MINA uses slf4j logging at INFO level to log all input and output.
								

								 	
									false
								

								 	
									boolean
								

								
	
									sync (common)
								

								 	
									Setting to set endpoint as one-way or request-response.
								

								 	
									true
								

								 	
									boolean
								

								
	
									timeout (common)
								

								 	
									You can configure the timeout that specifies how long to wait for a response from a remote server. The timeout unit is in milliseconds, so 60000 is 60 seconds.
								

								 	
									30000
								

								 	
									long
								

								
	
									writeTimeout (common)
								

								 	
									Maximum amount of time it should take to send data to the MINA session. Default is 10000 milliseconds.
								

								 	
									10000
								

								 	
									long
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									clientMode (consumer)
								

								 	
									If the clientMode is true, mina consumer will connect the address as a TCP client.
								

								 	
									false
								

								 	
									boolean
								

								
	
									disconnectOnNoReply (consumer)
								

								 	
									If sync is enabled then this option dictates MinaConsumer if it should disconnect where there is no reply to send back.
								

								 	
									true
								

								 	
									boolean
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									noReplyLogLevel (consumer)
								

								 	
									If sync is enabled this option dictates MinaConsumer which logging level to use when logging a there is no reply to send back.
								

								 	
									WARN
								

								 	
									LoggingLevel
								

								
	
									cachedAddress (producer)
								

								 	
									Whether to create the InetAddress once and reuse. Setting this to false allows to pickup DNS changes in the network.
								

								 	
									true
								

								 	
									boolean
								

								
	
									lazySessionCreation (producer)
								

								 	
									Sessions can be lazily created to avoid exceptions, if the remote server is not up and running when the Camel producer is started.
								

								 	
									true
								

								 	
									boolean
								

								
	
									maximumPoolSize (advanced)
								

								 	
									Number of worker threads in the worker pool for TCP and UDP
								

								 	
									16
								

								 	
									int
								

								
	
									orderedThreadPoolExecutor (advanced)
								

								 	
									Whether to use ordered thread pool, to ensure events are processed orderly on the same channel.
								

								 	
									true
								

								 	
									boolean
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									transferExchange (advanced)
								

								 	
									Only used for TCP. You can transfer the exchange over the wire instead of just the body. The following fields are transferred: In body, Out body, fault body, In headers, Out headers, fault headers, exchange properties, exchange exception. This requires that the objects are serializable. Camel will exclude any non-serializable objects and log it at WARN level.
								

								 	
									false
								

								 	
									boolean
								

								
	
									allowDefaultCodec (codec)
								

								 	
									The mina component installs a default codec if both, codec is null and textline is false. Setting allowDefaultCodec to false prevents the mina component from installing a default codec as the first element in the filter chain. This is useful in scenarios where another filter must be the first in the filter chain, like the SSL filter.
								

								 	
									true
								

								 	
									boolean
								

								
	
									codec (codec)
								

								 	
									To use a custom minda codec implementation.
								

								 	 	
									ProtocolCodecFactory
								

								
	
									decoderMaxLineLength (codec)
								

								 	
									To set the textline protocol decoder max line length. By default the default value of Mina itself is used which are 1024.
								

								 	
									1024
								

								 	
									int
								

								
	
									encoderMaxLineLength (codec)
								

								 	
									To set the textline protocol encoder max line length. By default the default value of Mina itself is used which are Integer.MAX_VALUE.
								

								 	
									-1
								

								 	
									int
								

								
	
									encoding (codec)
								

								 	
									You can configure the encoding (a charset name) to use for the TCP textline codec and the UDP protocol. If not provided, Camel will use the JVM default Charset
								

								 	 	
									String
								

								
	
									filters (codec)
								

								 	
									You can set a list of Mina IoFilters to use.
								

								 	 	
									List
								

								
	
									textline (codec)
								

								 	
									Only used for TCP. If no codec is specified, you can use this flag to indicate a text line based codec; if not specified or the value is false, then Object Serialization is assumed over TCP.
								

								 	
									false
								

								 	
									boolean
								

								
	
									textlineDelimiter (codec)
								

								 	
									Only used for TCP and if textline=true. Sets the text line delimiter to use. If none provided, Camel will use DEFAULT. This delimiter is used to mark the end of text.
								

								 	 	
									Mina2TextLineDelimiter
								

								
	
									autoStartTls (security)
								

								 	
									Whether to auto start SSL handshake.
								

								 	
									true
								

								 	
									boolean
								

								
	
									sslContextParameters (security)
								

								 	
									To configure SSL security.
								

								 	 	
									SSLContextParameters
								

								

Using a custom codec

				See the Mina how to write your own codec. To use your custom codec with camel-mina, you should register your codec in the Registry; for example, by creating a bean in the Spring XML file. Then use the codec option to specify the bean ID of your codec. See HL7 that has a custom codec.
			

Sample with sync=false

				In this sample, Camel exposes a service that listens for TCP connections on port 6200. We use the textline codec. In our route, we create a Mina consumer endpoint that listens on port 6200:
			
from("mina2:tcp://localhost:" + port1 + "?textline=true&sync=false").to("mock:result");

				As the sample is part of a unit test, we test it by sending some data to it on port 6200.
			
MockEndpoint mock = getMockEndpoint("mock:result");
mock.expectedBodiesReceived("Hello World");

template.sendBody("mina2:tcp://localhost:" + port1 + "?textline=true&sync=false", "Hello World");

assertMockEndpointsSatisfied();

Sample with sync=true

				In the next sample, we have a more common use case where we expose a TCP service on port 6201 also use the textline codec. However, this time we want to return a response, so we set the sync option to true on the consumer.
			
from("mina2:tcp://localhost:" + port2 + "?textline=true&sync=true").process(new Processor() {
 public void process(Exchange exchange) throws Exception {
 String body = exchange.getIn().getBody(String.class);
 exchange.getOut().setBody("Bye " + body);
 }
});

				Then we test the sample by sending some data and retrieving the response using the template.requestBody() method. As we know the response is a String, we cast it to String and can assert that the response is, in fact, something we have dynamically set in our processor code logic.
			
String response = (String)template.requestBody("mina2:tcp://localhost:" + port2 + "?textline=true&sync=true", "World");
assertEquals("Bye World", response);

Sample with Spring DSL

				Spring DSL can, of course, also be used for MINA. In the sample below we expose a TCP server on port 5555:
			
 <route>
 <from uri="mina2:tcp://localhost:5555?textline=true"/>
 <to uri="bean:myTCPOrderHandler"/>
 </route>

				In the route above, we expose a TCP server on port 5555 using the textline codec. We let the Spring bean with ID, myTCPOrderHandler, handle the request and return a reply. For instance, the handler bean could be implemented as follows:
			
 public String handleOrder(String payload) {
 ...
 return "Order: OK"
 }

Closing Session When Complete

				When acting as a server you sometimes want to close the session when, for example, a client conversion is finished. To instruct Camel to close the session, you should add a header with the key CamelMinaCloseSessionWhenComplete set to a boolean true value.
			

				For instance, the example below will close the session after it has written the bye message back to the client:
			
 from("mina2:tcp://localhost:8080?sync=true&textline=true").process(new Processor() {
 public void process(Exchange exchange) throws Exception {
 String body = exchange.getIn().getBody(String.class);
 exchange.getOut().setBody("Bye " + body);
 exchange.getOut().setHeader(Mina2Constants.MINA_CLOSE_SESSION_WHEN_COMPLETE, true);
 }
 });

Get the IoSession for message

				You can get the IoSession from the message header with this key Mina2Constants.MINA_IOSESSION, and also get the local host address with the key Mina2Constants.MINA_LOCAL_ADDRESS and remote host address with the key Mina2Constants.MINA_REMOTE_ADDRESS.
			

Configuring Mina filters

				Filters permit you to use some Mina Filters, such as SslFilter. You can also implement some customized filters. Please note that codec and logger are also implemented as Mina filters of type, IoFilter. Any filters you may define are appended to the end of the filter chain; that is, after codec and logger.
			

See Also

	
						Configuring Camel
					
	
						Component
					
	
						Endpoint
					
	
						Getting Started
					
	
						Netty
					

Chapter 224. MLLP Component

			Available as of Camel version 2.17
		

			The MLLP component is specifically designed to handle the nuances of the MLLP protocol and provide the functionality required by Healthcare providers to communicate with other systems using the MLLP protocol. The MLLP component provides a simple configuration URI, automated HL7 acknowledgment generation and automatic acknowledgement interrogation.
		

			The MLLP protocol does not typically use a large number of concurrent TCP connections - a single active TCP connection is the normal case. Therefore, the MLLP component uses a simple thread-per-connection model based an standard Java Sockets. This keeps the implementation simple and eliminates the dependencies other than Camel itself.
		

			The component supports the following:
		
	
					A Camel consumer using a TCP Server
				
	
					A Camel producer using a TCP Client
				

			The MLLP component uses byte[] payloads, and relies on Camel Type Conversion to convert byte[] to other types.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-mllp</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>
MLLP Options

				The MLLP component supports 5 options which are listed below.
			
	Name	Description	Default	Type
	
								logPhi (advanced)
							

							 	
								Set the component to log PHI data.
							

							 	
								true
							

							 	
								Boolean
							

							
	
								logPhiMaxBytes (advanced)
							

							 	
								Set the maximum number of bytes of PHI that will be logged in a log entry.
							

							 	
								5120
							

							 	
								Integer
							

							
	
								defaultCharset (advanced)
							

							 	
								Set the default character set to use for byte to/from String conversions.
							

							 	
								ISO-8859-1
							

							 	
								String
							

							
	
								configuration (common)
							

							 	
								Sets the default configuration to use when creating MLLP endpoints.
							

							 	 	
								MllpConfiguration
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The MLLP endpoint is configured using URI syntax:
			
mllp:hostname:port

				with the following path and query parameters:
			
Path Parameters (2 parameters):

	Name	Description	Default	Type
	
									hostname
								

								 	
									Required Hostname or IP for connection for the TCP connection. The default value is null, which means any local IP address
								

								 	 	
									String
								

								
	
									port
								

								 	
									Required Port number for the TCP connection
								

								 	 	
									int
								

								

Query Parameters (27 parameters):

	Name	Description	Default	Type
	
									autoAck (common)
								

								 	
									Enable/Disable the automatic generation of a MLLP Acknowledgement MLLP Consumers only
								

								 	
									true
								

								 	
									boolean
								

								
	
									bufferWrites (common)
								

								 	
									Deprecated Enable/Disable the buffering of HL7 payloads before writing to the socket.
								

								 	
									false
								

								 	
									boolean
								

								
	
									hl7Headers (common)
								

								 	
									Enable/Disable the automatic generation of message headers from the HL7 Message MLLP Consumers only
								

								 	
									true
								

								 	
									boolean
								

								
	
									requireEndOfData (common)
								

								 	
									Enable/Disable strict compliance to the MLLP standard. The MLLP standard specifies START_OF_BLOCKhl7 payloadEND_OF_BLOCKEND_OF_DATA, however, some systems do not send the final END_OF_DATA byte. This setting controls whether or not the final END_OF_DATA byte is required or optional.
								

								 	
									true
								

								 	
									boolean
								

								
	
									stringPayload (common)
								

								 	
									Enable/Disable converting the payload to a String. If enabled, HL7 Payloads received from external systems will be validated converted to a String. If the charsetName property is set, that character set will be used for the conversion. If the charsetName property is not set, the value of MSH-18 will be used to determine th appropriate character set. If MSH-18 is not set, then the default ISO-8859-1 character set will be use.
								

								 	
									true
								

								 	
									boolean
								

								
	
									validatePayload (common)
								

								 	
									Enable/Disable the validation of HL7 Payloads If enabled, HL7 Payloads received from external systems will be validated (see Hl7Util.generateInvalidPayloadExceptionMessage for details on the validation). If and invalid payload is detected, a MllpInvalidMessageException (for consumers) or a MllpInvalidAcknowledgementException will be thrown.
								

								 	
									false
								

								 	
									boolean
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to receive incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. If disabled, the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions by logging them at WARN or ERROR level and ignored.
								

								 	
									true
								

								 	
									boolean
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	
									InOut
								

								 	
									ExchangePattern
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used (this component only supports synchronous operations).
								

								 	
									true
								

								 	
									boolean
								

								
	
									backlog (tcp)
								

								 	
									The maximum queue length for incoming connection indications (a request to connect) is set to the backlog parameter. If a connection indication arrives when the queue is full, the connection is refused.
								

								 	
									5
								

								 	
									Integer
								

								
	
									lenientBind (tcp)
								

								 	
									TCP Server Only - Allow the endpoint to start before the TCP ServerSocket is bound. In some environments, it may be desirable to allow the endpoint to start before the TCP ServerSocket is bound.
								

								 	
									false
								

								 	
									boolean
								

								
	
									maxConcurrentConsumers (tcp)
								

								 	
									The maximum number of concurrent MLLP Consumer connections that will be allowed. If a new connection is received and the maximum is number are already established, the new connection will be reset immediately.
								

								 	
									5
								

								 	
									int
								

								
	
									reuseAddress (tcp)
								

								 	
									Enable/disable the SO_REUSEADDR socket option.
								

								 	
									false
								

								 	
									Boolean
								

								
	
									acceptTimeout (timeout)
								

								 	
									Timeout (in milliseconds) while waiting for a TCP connection TCP Server Only
								

								 	
									60000
								

								 	
									int
								

								
	
									bindRetryInterval (timeout)
								

								 	
									TCP Server Only - The number of milliseconds to wait between bind attempts
								

								 	
									5000
								

								 	
									int
								

								
	
									bindTimeout (timeout)
								

								 	
									TCP Server Only - The number of milliseconds to retry binding to a server port
								

								 	
									30000
								

								 	
									int
								

								
	
									connectTimeout (timeout)
								

								 	
									Timeout (in milliseconds) for establishing for a TCP connection TCP Client only
								

								 	
									30000
								

								 	
									int
								

								
	
									idleTimeout (timeout)
								

								 	
									The approximate idle time allowed before the Client TCP Connection will be reset. A null value or a value less than or equal to zero will disable the idle timeout.
								

								 	 	
									Integer
								

								
	
									maxReceiveTimeouts (timeout)
								

								 	
									Deprecated The maximum number of timeouts (specified by receiveTimeout) allowed before the TCP Connection will be reset.
								

								 	 	
									Integer
								

								
	
									keepAlive (tcp)
								

								 	
									Enable/disable the SO_KEEPALIVE socket option.
								

								 	
									true
								

								 	
									Boolean
								

								
	
									receiveBufferSize (tcp)
								

								 	
									Sets the SO_RCVBUF option to the specified value (in bytes)
								

								 	
									8192
								

								 	
									Integer
								

								
	
									sendBufferSize (tcp)
								

								 	
									Sets the SO_SNDBUF option to the specified value (in bytes)
								

								 	
									8192
								

								 	
									Integer
								

								
	
									tcpNoDelay (tcp)
								

								 	
									Enable/disable the TCP_NODELAY socket option.
								

								 	
									true
								

								 	
									Boolean
								

								
	
									readTimeout (timeout)
								

								 	
									The SO_TIMEOUT value (in milliseconds) used after the start of an MLLP frame has been received
								

								 	
									5000
								

								 	
									int
								

								
	
									receiveTimeout (timeout)
								

								 	
									The SO_TIMEOUT value (in milliseconds) used when waiting for the start of an MLLP frame
								

								 	
									15000
								

								 	
									int
								

								
	
									charsetName (codec)
								

								 	
									Set the CamelCharsetName property on the exchange
								

								 	 	
									String
								

								

MLLP Consumer

				The MLLP Consumer supports receiving MLLP-framed messages and sending HL7 Acknowledgements. The MLLP Consumer can automatically generate the HL7 Acknowledgement (HL7 Application Acknowledgements only - AA, AE and AR), or the acknowledgement can be specified using the CamelMllpAcknowledgement exchange property. Additionally, the type of acknowledgement that will be generated can be controlled by setting the CamelMllpAcknowledgementType exchange property.
			

Message Headers

				The MLLP Consumer adds these headers on the Camel message:
			
	
								Key
							

							 	
								Description
							

							 	
	
								CamelMllpLocalAddress
							

							 	
								 The local TCP Address of the Socket
							

							 	
	
								CamelMllpRemoteAddress
							

							 	
								 The local TCP Address of the Socket
							

							 	
	
								CamelMllpSendingApplication
							

							 	
								MSH-3 value
							

							 	
	
								CamelMllpSendingFacility
							

							 	
								MSH-4 value
							

							 	
	
								CamelMllpReceivingApplication
							

							 	
								MSH-5 value
							

							 	
	
								CamelMllpReceivingFacility
							

							 	
								MSH-6 value
							

							 	
	
								CamelMllpTimestamp
							

							 	
								MSH-7 value
							

							 	
	
								CamelMllpSecurity
							

							 	
								MSH-8 value
							

							 	
	
								CamelMllpMessageType
							

							 	
								MSH-9 value
							

							 	
	
								CamelMllpEventType
							

							 	
								MSH-9-1 value
							

							 	
	
								CamelMllpTriggerEvent
							

							 	
								MSH-9-2 value
							

							 	
	
								CamelMllpMessageControlId
							

							 	
								MSH-10 value
							

							 	
	
								CamelMllpProcessingId
							

							 	
								MSH-11 value
							

							 	
	
								CamelMllpVersionId
							

							 	
								MSH-12 value
							

							 	
	
								CamelMllpCharset
							

							 	
								MSH-18 value
							

							 	

				All headers are String types. If a header value is missing, its value is null.
			

Exchange Properties

				The type of acknowledgment the MLLP Consumer generates and state of the TCP Socket can be controlled by these properties on the Camel exchange:
			
	
								Key
							

							 	
								Type
							

							 	
								Description
							

							
	
								CamelMllpAcknowledgement
							

							 	
								byte[]
							

							 	
								If present, this property will we sent to client as the MLLP Acknowledgement
							

							
	
								CamelMllpAcknowledgementString
							

							 	
								 String
							

							 	
								If present and CamelMllpAcknowledgement is not present, this property will we sent to client as the MLLP Acknowledgement
							

							
	
								CamelMllpAcknowledgementMsaText
							

							 	
								String
							

							 	
								If neither CamelMllpAcknowledgement or CamelMllpAcknowledgementString are present and autoAck is true, this property can be used to specify the the contents of MSA-3 in the generated HL7 acknowledgement
							

							
	
								CamelMllpAcknowledgementType
							

							 	
								 String
							

							 	
								If neither CamelMllpAcknowledgement or CamelMllpAcknowledgementString are present and autoAck is true, this property can be used to specify the HL7 acknowledgement type (i.e. AA, AE, AR)
							

							
	
								CamelMllpAutoAcknowledge
							

							 	
								Boolean
							

							 	
								Overrides the autoAck query parameter
							

							
	
								CamelMllpCloseConnectionBeforeSend
							

							 	
								Boolean
							

							 	
								If true, the Socket will be closed before sending data
							

							
	
								CamelMllpResetConnectionBeforeSend
							

							 	
								Boolean
							

							 	
								If true, the Socket will be reset before sending data
							

							
	
								CamelMllpCloseConnectionAfterSend
							

							 	
								Boolean
							

							 	
								If true, the Socket will be closed immediately after sending data
							

							
	
								CamelMllpResetConnectionAfterSend
							

							 	
								Boolean
							

							 	
								If true, the Socket will be reset immediately after sending any data
							

							

MLLP Producer

				The MLLP Producer supports sending MLLP-framed messages and receiving HL7 Acknowledgements. The MLLP Producer interrogates the HL7 Acknowledgments and raises exceptions if a negative acknowledgement is received. The received acknowledgement is interrogated and an exception is raised in the event of a negative acknowledgement.
			

Message Headers

				The MLLP Producer adds these headers on the Camel message:
			
	
								Key
							

							 	
								Description
							

							 	
	
								CamelMllpLocalAddress
							

							 	
								 The local TCP Address of the Socket
							

							 	
								
							

							
	
								CamelMllpRemoteAddress
							

							 	
								 The remote TCP Address of the Socket
							

							 	
								
							

							
	
								CamelMllpAcknowledgement
							

							 	
								 The HL7 Acknowledgment byte[] received
							

							 	
								
							

							
	
								CamelMllpAcknowledgementString
							

							 	
								 The HL7 Acknowledgment received, converted to a String
							

							 	
								
							

							

Exchange Properties

				The state of the TCP Socket can be controlled by these properties on the Camel exchange:
			
	
								Key
							

							 	
								Type
							

							 	
								Description
							

							
	
								CamelMllpCloseConnectionBeforeSend
							

							 	
								Boolean
							

							 	
								If true, the Socket will be closed before sending data
							

							
	
								CamelMllpResetConnectionBeforeSend
							

							 	
								Boolean
							

							 	
								If true, the Socket will be reset before sending data
							

							
	
								CamelMllpCloseConnectionAfterSend
							

							 	
								Boolean
							

							 	
								If true, the Socket will be closed immediately after sending data
							

							
	
								CamelMllpResetConnectionAfterSend
							

							 	
								Boolean
							

							 	
								If true, the Socket will be reset immediately after sending any data
							

							

Chapter 225. Mock Component

			Documentation for Mock component is currently unavailable.
		

Chapter 226. MongoDB Component

			Available as of Camel version 2.10
		

			According to Wikipedia: "NoSQL is a movement promoting a loosely defined class of non-relational data stores that break with a long history of relational databases and ACID guarantees." NoSQL solutions have grown in popularity in the last few years, and major extremely-used sites and services such as Facebook, LinkedIn, Twitter, etc. are known to use them extensively to achieve scalability and agility.
		

			Basically, NoSQL solutions differ from traditional RDBMS (Relational Database Management Systems) in that they don’t use SQL as their query language and generally don’t offer ACID-like transactional behaviour nor relational data. Instead, they are designed around the concept of flexible data structures and schemas (meaning that the traditional concept of a database table with a fixed schema is dropped), extreme scalability on commodity hardware and blazing-fast processing.
		

			MongoDB is a very popular NoSQL solution and the camel-mongodb component integrates Camel with MongoDB allowing you to interact with MongoDB collections both as a producer (performing operations on the collection) and as a consumer (consuming documents from a MongoDB collection).
		

			MongoDB revolves around the concepts of documents (not as is office documents, but rather hierarchical data defined in JSON/BSON) and collections. This component page will assume you are familiar with them. Otherwise, visit http://www.mongodb.org/.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-mongodb</artifactId>
 <version>x.y.z</version>
 <!-- use the same version as your Camel core version -->
</dependency>
URI format

mongodb:connectionBean?database=databaseName&collection=collectionName&operation=operationName[&moreOptions...]

MongoDB options

				The MongoDB component has no options.
			

				The MongoDB endpoint is configured using URI syntax:
			
mongodb:connectionBean

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									connectionBean
								

								 	
									Required Name of com.mongodb.Mongo to use.
								

								 	 	
									String
								

								

Query Parameters (23 parameters):

	Name	Description	Default	Type
	
									collection (common)
								

								 	
									Sets the name of the MongoDB collection to bind to this endpoint
								

								 	 	
									String
								

								
	
									collectionIndex (common)
								

								 	
									Sets the collection index (JSON FORMAT : field1 : order1, field2 : order2)
								

								 	 	
									String
								

								
	
									createCollection (common)
								

								 	
									Create collection during initialisation if it doesn’t exist. Default is true.
								

								 	
									true
								

								 	
									boolean
								

								
	
									database (common)
								

								 	
									Sets the name of the MongoDB database to target
								

								 	 	
									String
								

								
	
									operation (common)
								

								 	
									Sets the operation this endpoint will execute against MongoDB. For possible values, see MongoDbOperation.
								

								 	 	
									MongoDbOperation
								

								
	
									outputType (common)
								

								 	
									Convert the output of the producer to the selected type : DBObjectList DBObject or DBCursor. DBObjectList or DBCursor applies to findAll and aggregate. DBObject applies to all other operations.
								

								 	 	
									MongoDbOutputType
								

								
	
									writeConcern (common)
								

								 	
									Set the WriteConcern for write operations on MongoDB using the standard ones. Resolved from the fields of the WriteConcern class by calling the link WriteConcernvalueOf(String) method.
								

								 	
									ACKNOWLEDGED
								

								 	
									WriteConcern
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									cursorRegenerationDelay (advanced)
								

								 	
									MongoDB tailable cursors will block until new data arrives. If no new data is inserted, after some time the cursor will be automatically freed and closed by the MongoDB server. The client is expected to regenerate the cursor if needed. This value specifies the time to wait before attempting to fetch a new cursor, and if the attempt fails, how long before the next attempt is made. Default value is 1000ms.
								

								 	
									1000
								

								 	
									long
								

								
	
									dynamicity (advanced)
								

								 	
									Sets whether this endpoint will attempt to dynamically resolve the target database and collection from the incoming Exchange properties. Can be used to override at runtime the database and collection specified on the otherwise static endpoint URI. It is disabled by default to boost performance. Enabling it will take a minimal performance hit.
								

								 	
									false
								

								 	
									boolean
								

								
	
									readPreference (advanced)
								

								 	
									Sets a MongoDB ReadPreference on the Mongo connection. Read preferences set directly on the connection will be overridden by this setting. The link ReadPreferencevalueOf(String) utility method is used to resolve the passed readPreference value. Some examples for the possible values are nearest, primary or secondary etc.
								

								 	 	
									ReadPreference
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									writeResultAsHeader (advanced)
								

								 	
									In write operations, it determines whether instead of returning WriteResult as the body of the OUT message, we transfer the IN message to the OUT and attach the WriteResult as a header.
								

								 	
									false
								

								 	
									boolean
								

								
	
									persistentId (tail)
								

								 	
									One tail tracking collection can host many trackers for several tailable consumers. To keep them separate, each tracker should have its own unique persistentId.
								

								 	 	
									String
								

								
	
									persistentTailTracking (tail)
								

								 	
									Enable persistent tail tracking, which is a mechanism to keep track of the last consumed message across system restarts. The next time the system is up, the endpoint will recover the cursor from the point where it last stopped slurping records.
								

								 	
									false
								

								 	
									boolean
								

								
	
									persistRecords (tail)
								

								 	
									Sets the number of tailed records after which the tail tracking data is persisted to MongoDB.
								

								 	
									-1
								

								 	
									int
								

								
	
									tailTrackCollection (tail)
								

								 	
									Collection where tail tracking information will be persisted. If not specified, link MongoDbTailTrackingConfigDEFAULT_COLLECTION will be used by default.
								

								 	 	
									String
								

								
	
									tailTrackDb (tail)
								

								 	
									Indicates what database the tail tracking mechanism will persist to. If not specified, the current database will be picked by default. Dynamicity will not be taken into account even if enabled, i.e. the tail tracking database will not vary past endpoint initialisation.
								

								 	 	
									String
								

								
	
									tailTrackField (tail)
								

								 	
									Field where the last tracked value will be placed. If not specified, link MongoDbTailTrackingConfigDEFAULT_FIELD will be used by default.
								

								 	 	
									String
								

								
	
									tailTrackIncreasingField (tail)
								

								 	
									Correlation field in the incoming record which is of increasing nature and will be used to position the tailing cursor every time it is generated. The cursor will be (re)created with a query of type: tailTrackIncreasingField lastValue (possibly recovered from persistent tail tracking). Can be of type Integer, Date, String, etc. NOTE: No support for dot notation at the current time, so the field should be at the top level of the document.
								

								 	 	
									String
								

								
	
									tailTrackingStrategy (tail)
								

								 	
									Sets the strategy used to extract the increasing field value and to create the query to position the tail cursor.
								

								 	
									LITERAL
								

								 	
									MongoDBTailTracking Enum
								

								

Configuration of database in Spring XML

				The following Spring XML creates a bean defining the connection to a MongoDB instance.
			
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd">
 <bean id="mongoBean" class="com.mongodb.Mongo">
 <constructor-arg name="host" value="${mongodb.host}" />
 <constructor-arg name="port" value="${mongodb.port}" />
 </bean>
</beans>

Sample route

				The following route defined in Spring XML executes the operation dbStats on a collection.
			

				Get DB stats for specified collection
			
<route>
 <from uri="direct:start" />
 <!-- using bean 'mongoBean' defined above -->
 <to uri="mongodb:mongoBean?database=${mongodb.database}&collection=${mongodb.collection}&operation=getDbStats" />
 <to uri="direct:result" />
</route>

MongoDB operations - producer endpoints

Query operations

findById

						This operation retrieves only one element from the collection whose _id field matches the content of the IN message body. The incoming object can be anything that has an equivalent to a BSON type. See http://bsonspec.org//specification[http://bsonspec.org//specification] and http://www.mongodb.org/display/DOCS/Java+Types.
					
from("direct:findById")
 .to("mongodb:myDb?database=flights&collection=tickets&operation=findById")
 .to("mock:resultFindById");
Tip

						Supports optional parameters. This operation supports specifying a fields filter. See Specifying optional parameters.
					

findOneByQuery

						Use this operation to retrieve just one element from the collection that matches a MongoDB query. The query object is extracted from the IN message body, i.e. it should be of type DBObject or convertible to DBObject. It can be a JSON String or a Hashmap. See #Type conversions for more info.
					

						Example with no query (returns any object of the collection):
					
from("direct:findOneByQuery")
 .to("mongodb:myDb?database=flights&collection=tickets&operation=findOneByQuery")
 .to("mock:resultFindOneByQuery");

						Example with a query (returns one matching result):
					
from("direct:findOneByQuery")
 .setBody().constant("{ \"name\": \"Raul Kripalani\" }")
 .to("mongodb:myDb?database=flights&collection=tickets&operation=findOneByQuery")
 .to("mock:resultFindOneByQuery");
Tip

						Supports optional parameters. This operation supports specifying a fields filter and/or a sort clause. See Specifying optional parameters.
					

findAll

						The findAll operation returns all documents matching a query, or none at all, in which case all documents contained in the collection are returned. The query object is extracted from the IN message body, i.e. it should be of type DBObject or convertible to DBObject. It can be a JSON String or a Hashmap. See #Type conversions for more info.
					

						Example with no query (returns all object in the collection):
					
from("direct:findAll")
 .to("mongodb:myDb?database=flights&collection=tickets&operation=findAll")
 .to("mock:resultFindAll");

						Example with a query (returns all matching results):
					
from("direct:findAll")
 .setBody().constant("{ \"name\": \"Raul Kripalani\" }")
 .to("mongodb:myDb?database=flights&collection=tickets&operation=findAll")
 .to("mock:resultFindAll");

						Paging and efficient retrieval is supported via the following headers:
					
	Header key	Quick constant	Description (extracted from MongoDB API doc)	Expected type
	
										CamelMongoDbNumToSkip
									

									 	
										MongoDbConstants.NUM_TO_SKIP
									

									 	
										Discards a given number of elements at the beginning of the cursor.
									

									 	
										int/Integer
									

									
	
										CamelMongoDbLimit
									

									 	
										MongoDbConstants.LIMIT
									

									 	
										Limits the number of elements returned.
									

									 	
										int/Integer
									

									
	
										CamelMongoDbBatchSize
									

									 	
										MongoDbConstants.BATCH_SIZE
									

									 	
										Limits the number of elements returned in one batch. A cursor typically fetches a batch of result objects and store them locally. If batchSize is positive, it represents the size of each batch of objects retrieved. It can be adjusted to optimize performance and limit data transfer. If batchSize is negative, it will limit of number objects returned, that fit within the max batch size limit (usually 4MB), and cursor will be closed. For example if batchSize is -10, then the server will return a maximum of 10 documents and as many as can fit in 4MB, then close the cursor. Note that this feature is different from limit() in that documents must fit within a maximum size, and it removes the need to send a request to close the cursor server-side. The batch size can be changed even after a cursor is iterated, in which case the setting will apply on the next batch retrieval.
									

									 	
										int/Integer
									

									

						You can also "stream" the documents returned from the server into your route by including outputType=DBCursor (Camel 2.16+) as an endpoint option which may prove simpler than setting the above headers. This hands your Exchange the DBCursor from the Mongo driver, just as if you were executing the findAll() within the Mongo shell, allowing your route to iterate over the results. By default and without this option, this component will load the documents from the driver’s cursor into a List and return this to your route - which may result in a large number of in-memory objects. Remember, with a DBCursor do not ask for the number of documents matched - see the MongoDB documentation site for details.
					

						Example with option outputType=DBCursor and batch size :
					
from("direct:findAll")
 .setHeader(MongoDbConstants.BATCH_SIZE).constant(10)
 .setBody().constant("{ \"name\": \"Raul Kripalani\" }")
 .to("mongodb:myDb?database=flights&collection=tickets&operation=findAll&outputType=DBCursor")
 .to("mock:resultFindAll");

						The findAll operation will also return the following OUT headers to enable you to iterate through result pages if you are using paging:
					
	Header key	Quick constant	Description (extracted from MongoDB API doc)	Data type
	
										CamelMongoDbResultTotalSize
									

									 	
										MongoDbConstants.RESULT_TOTAL_SIZE
									

									 	
										Number of objects matching the query. This does not take limit/skip into consideration.
									

									 	
										int/Integer
									

									
	
										CamelMongoDbResultPageSize
									

									 	
										MongoDbConstants.RESULT_PAGE_SIZE
									

									 	
										Number of objects matching the query. This does not take limit/skip into consideration.
									

									 	
										int/Integer
									

									

Tip

						Supports optional parameters. This operation supports specifying a fields filter and/or a sort clause. See Specifying optional parameters.
					

count

						Returns the total number of objects in a collection, returning a Long as the OUT message body.
 The following example will count the number of records in the "dynamicCollectionName" collection. Notice how dynamicity is enabled, and as a result, the operation will not run against the "notableScientists" collection, but against the "dynamicCollectionName" collection.
					
// from("direct:count").to("mongodb:myDb?database=tickets&collection=flights&operation=count&dynamicity=true");
Long result = template.requestBodyAndHeader("direct:count", "irrelevantBody", MongoDbConstants.COLLECTION, "dynamicCollectionName");
assertTrue("Result is not of type Long", result instanceof Long);

						From Camel 2.14 onwards you can provide a com.mongodb.DBObject object in the message body as a query, and operation will return the amount of documents matching this criteria.
					

						
					
DBObject query = ...
Long count = template.requestBodyAndHeader("direct:count", query, MongoDbConstants.COLLECTION, "dynamicCollectionName");

Specifying a fields filter (projection)

						Query operations will, by default, return the matching objects in their entirety (with all their fields). If your documents are large and you only require retrieving a subset of their fields, you can specify a field filter in all query operations, simply by setting the relevant DBObject (or type convertible to DBObject, such as a JSON String, Map, etc.) on the CamelMongoDbFieldsFilter header, constant shortcut: MongoDbConstants.FIELDS_FILTER.
					

						Here is an example that uses MongoDB’s BasicDBObjectBuilder to simplify the creation of DBObjects. It retrieves all fields except _id and boringField:
					
// route: from("direct:findAll").to("mongodb:myDb?database=flights&collection=tickets&operation=findAll")
DBObject fieldFilter = BasicDBObjectBuilder.start().add("_id", 0).add("boringField", 0).get();
Object result = template.requestBodyAndHeader("direct:findAll", (Object) null, MongoDbConstants.FIELDS_FILTER, fieldFilter);

Specifying a sort clause

						There is a often a requirement to fetch the min/max record from a collection based on sorting by a particular field. In Mongo the operation is performed using syntax similar to:
					
db.collection.find().sort({_id: -1}).limit(1)
// or
db.collection.findOne({$query:{},$orderby:{_id:-1}})

						In a Camel route the SORT_BY header can be used with the findOneByQuery operation to achieve the same result. If the FIELDS_FILTER header is also specified the operation will return a single field/value pair that can be passed directly to another component (for example, a parameterized MyBatis SELECT query). This example demonstrates fetching the temporally newest document from a collection and reducing the result to a single field, based on the documentTimestamp field:
					
.from("direct:someTriggeringEvent")
.setHeader(MongoDbConstants.SORT_BY).constant("{\"documentTimestamp\": -1}")
.setHeader(MongoDbConstants.FIELDS_FILTER).constant("{\"documentTimestamp\": 1}")
.setBody().constant("{}")
.to("mongodb:myDb?database=local&collection=myDemoCollection&operation=findOneByQuery")
.to("direct:aMyBatisParameterizedSelect")
;

Create/update operations

insert

						Inserts an new object into the MongoDB collection, taken from the IN message body. Type conversion is attempted to turn it into DBObject or a List.
 Two modes are supported: single insert and multiple insert. For multiple insert, the endpoint will expect a List, Array or Collections of objects of any type, as long as they are - or can be converted to - DBObject. All objects are inserted at once. The endpoint will intelligently decide which backend operation to invoke (single or multiple insert) depending on the input.
					

						Example:
					
from("direct:insert")
 .to("mongodb:myDb?database=flights&collection=tickets&operation=insert");

						The operation will return a WriteResult, and depending on the WriteConcern or the value of the invokeGetLastError option, getLastError() would have been called already or not. If you want to access the ultimate result of the write operation, you need to retrieve the CommandResult by calling getLastError() or getCachedLastError() on the WriteResult. Then you can verify the result by calling CommandResult.ok(), CommandResult.getErrorMessage() and/or CommandResult.getException().
					

						Note that the new object’s _id must be unique in the collection. If you don’t specify the value, MongoDB will automatically generate one for you. But if you do specify it and it is not unique, the insert operation will fail (and for Camel to notice, you will need to enable invokeGetLastError or set a WriteConcern that waits for the write result).
					

						This is not a limitation of the component, but it is how things work in MongoDB for higher throughput. If you are using a custom _id, you are expected to ensure at the application level that is unique (and this is a good practice too).
					

						Since Camel 2.15: OID(s) of the inserted record(s) is stored in the message header under CamelMongoOid key (MongoDbConstants.OID constant). The value stored is org.bson.types.ObjectId for single insert or java.util.List<org.bson.types.ObjectId> if multiple records have been inserted.
					

save

						The save operation is equivalent to an upsert (UPdate, inSERT) operation, where the record will be updated, and if it doesn’t exist, it will be inserted, all in one atomic operation. MongoDB will perform the matching based on the _id field.
					

						Beware that in case of an update, the object is replaced entirely and the usage of MongoDB’s $modifiers is not permitted. Therefore, if you want to manipulate the object if it already exists, you have two options:
					
	
								perform a query to retrieve the entire object first along with all its fields (may not be efficient), alter it inside Camel and then save it.
							
	
								use the update operation with $modifiers, which will execute the update at the server-side instead. You can enable the upsert flag, in which case if an insert is required, MongoDB will apply the $modifiers to the filter query object and insert the result.
							

						For example:
					
from("direct:insert")
 .to("mongodb:myDb?database=flights&collection=tickets&operation=save");

update

						Update one or multiple records on the collection. Requires a List<DBObject> as the IN message body containing exactly 2 elements:
					
	
								Element 1 (index 0) ⇒ filter query ⇒ determines what objects will be affected, same as a typical query object
							
	
								Element 2 (index 1) ⇒ update rules ⇒ how matched objects will be updated. All modifier operations from MongoDB are supported.
							

Note

							Multiupdates . By default, MongoDB will only update 1 object even if multiple objects match the filter query. To instruct MongoDB to update all matching records, set the CamelMongoDbMultiUpdate IN message header to true.
						

						A header with key CamelMongoDbRecordsAffected will be returned (MongoDbConstants.RECORDS_AFFECTED constant) with the number of records updated (copied from WriteResult.getN()).
					

						Supports the following IN message headers:
					
	Header key	Quick constant	Description (extracted from MongoDB API doc)	Expected type
	
										CamelMongoDbMultiUpdate
									

									 	
										MongoDbConstants.MULTIUPDATE
									

									 	
										If the update should be applied to all objects matching. See http://www.mongodb.org/display/DOCS/Atomic+Operations
									

									 	
										boolean/Boolean
									

									
	
										CamelMongoDbUpsert
									

									 	
										MongoDbConstants.UPSERT
									

									 	
										If the database should create the element if it does not exist
									

									 	
										boolean/Boolean
									

									

						For example, the following will update all records whose filterField field equals true by setting the value of the "scientist" field to "Darwin":
					
// route: from("direct:update").to("mongodb:myDb?database=science&collection=notableScientists&operation=update");
DBObject filterField = new BasicDBObject("filterField", true);
DBObject updateObj = new BasicDBObject("$set", new BasicDBObject("scientist", "Darwin"));
Object result = template.requestBodyAndHeader("direct:update", new Object[] {filterField, updateObj}, MongoDbConstants.MULTIUPDATE, true);

Delete operations

remove

						Remove matching records from the collection. The IN message body will act as the removal filter query, and is expected to be of type DBObject or a type convertible to it.
 The following example will remove all objects whose field 'conditionField' equals true, in the science database, notableScientists collection:
					
// route: from("direct:remove").to("mongodb:myDb?database=science&collection=notableScientists&operation=remove");
DBObject conditionField = new BasicDBObject("conditionField", true);
Object result = template.requestBody("direct:remove", conditionField);

						A header with key CamelMongoDbRecordsAffected is returned (MongoDbConstants.RECORDS_AFFECTED constant) with type int, containing the number of records deleted (copied from WriteResult.getN()).
					

Bulk Write Operations

bulkWrite

						Available as of Camel 2.21
					

						Performs write operations in bulk with controls for order of execution. Requires a List<WriteModel<DBObject>> as the IN message body containing commands for insert, update, and delete operations.
					

						The following example will insert a new scientist "Pierre Curie", update record with id "5" by setting the value of the "scientist" field to "Marie Curie" and delete record with id "3" :
					
// route: from("direct:bulkWrite").to("mongodb:myDb?database=science&collection=notableScientists&operation=bulkWrite");
List<WriteModel<DBObject>> bulkOperations = Arrays.asList(
 new InsertOneModel<>(new BasicDBObject("scientist", "Pierre Curie")),
 new UpdateOneModel<>(new BasicDBObject("_id", "5"),
 new BasicDBObject("$set", new BasicDBObject("scientist", "Marie Curie"))),
 new DeleteOneModel<>(new BasicDBObject("_id", "3")));

BulkWriteResult result = template.requestBody("direct:bulkWrite", bulkOperations, BulkWriteResult.class);

						By default, operations are executed in order and interrupted on the first write error without processing any remaining write operations in the list. To instruct MongoDB to continue to process remaining write operations in the list, set the CamelMongoDbBulkOrdered IN message header to false. Unordered operations are executed in parallel and this behavior is not guaranteed.
					
	Header key	Quick constant	Description (extracted from MongoDB API doc)	Expected type
	
										CamelMongoDbBulkOrdered
									

									 	
										MongoDbConstants.BULK_ORDERED
									

									 	
										Perform an ordered or unordered operation execution. Defaults to true.
									

									 	
										boolean/Boolean
									

									

Other operations

aggregate

						Available as of Camel 2.14
					

						Perform a aggregation with the given pipeline contained in the body. Aggregations could be long and heavy operations. Use with care.
					
// route: from("direct:aggregate").to("mongodb:myDb?database=science&collection=notableScientists&operation=aggregate");
from("direct:aggregate")
 .setBody().constant("[{ $match : {$or : [{\"scientist\" : \"Darwin\"},{\"scientist\" : \"Einstein\"}]}},{ $group: { _id: \"$scientist\", count: { $sum: 1 }} }]")
 .to("mongodb:myDb?database=science&collection=notableScientists&operation=aggregate")
 .to("mock:resultAggregate");

						Supports the following IN message headers:
					
	Header key	Quick constant	Description (extracted from MongoDB API doc)	Expected type
	
										CamelMongoDbBatchSize
									

									 	
										MongoDbConstants.BATCH_SIZE
									

									 	
										Sets the number of documents to return per batch.
									

									 	
										int/Integer
									

									
	
										CamelMongoDbAllowDiskUse
									

									 	
										MongoDbConstants.ALLOW_DISK_USE
									

									 	
										Enable aggregation pipeline stages to write data to temporary files.
									

									 	
										boolean/Boolean
									

									

						Efficient retrieval is supported via outputType=DBCursor.
					

						You can also "stream" the documents returned from the server into your route by including outputType=DBCursor (Camel 2.21+) as an endpoint option which may prove simpler than setting the above headers. This hands your Exchange the DBCursor from the Mongo driver, just as if you were executing the aggregate() within the Mongo shell, allowing your route to iterate over the results. By default and without this option, this component will load the documents from the driver’s cursor into a List and return this to your route - which may result in a large number of in-memory objects. Remember, with a DBCursor do not ask for the number of documents matched - see the MongoDB documentation site for details.
					

						Example with option outputType=DBCursor and batch size:
					
// route: from("direct:aggregate").to("mongodb:myDb?database=science&collection=notableScientists&operation=aggregate");
from("direct:aggregate")
 .setHeader(MongoDbConstants.BATCH_SIZE).constant(10)
 .setBody().constant("[{ $match : {$or : [{\"scientist\" : \"Darwin\"},{\"scientist\" : \"Einstein\"}]}},{ $group: { _id: \"$scientist\", count: { $sum: 1 }} }]")
 .to("mongodb:myDb?database=science&collection=notableScientists&operation=aggregate&outputType=DBCursor")
 .to("mock:resultAggregate");

getDbStats

						Equivalent of running the db.stats() command in the MongoDB shell, which displays useful statistic figures about the database.
 For example:
					
> db.stats();
{
 "db" : "test",
 "collections" : 7,
 "objects" : 719,
 "avgObjSize" : 59.73296244784423,
 "dataSize" : 42948,
 "storageSize" : 1000058880,
 "numExtents" : 9,
 "indexes" : 4,
 "indexSize" : 32704,
 "fileSize" : 1275068416,
 "nsSizeMB" : 16,
 "ok" : 1
}

						Usage example:
					
// from("direct:getDbStats").to("mongodb:myDb?database=flights&collection=tickets&operation=getDbStats");
Object result = template.requestBody("direct:getDbStats", "irrelevantBody");
assertTrue("Result is not of type DBObject", result instanceof DBObject);

						The operation will return a data structure similar to the one displayed in the shell, in the form of a DBObject in the OUT message body.
					

getColStats

						Equivalent of running the db.collection.stats() command in the MongoDB shell, which displays useful statistic figures about the collection.
 For example:
					
> db.camelTest.stats();
{
 "ns" : "test.camelTest",
 "count" : 100,
 "size" : 5792,
 "avgObjSize" : 57.92,
 "storageSize" : 20480,
 "numExtents" : 2,
 "nindexes" : 1,
 "lastExtentSize" : 16384,
 "paddingFactor" : 1,
 "flags" : 1,
 "totalIndexSize" : 8176,
 "indexSizes" : {
 "_id_" : 8176
 },
 "ok" : 1
}

						Usage example:
					
// from("direct:getColStats").to("mongodb:myDb?database=flights&collection=tickets&operation=getColStats");
Object result = template.requestBody("direct:getColStats", "irrelevantBody");
assertTrue("Result is not of type DBObject", result instanceof DBObject);

						The operation will return a data structure similar to the one displayed in the shell, in the form of a DBObject in the OUT message body.
					

command

						Available as of Camel 2.15
					

						Run the body as a command on database. Usefull for admin operation as getting host informations, replication or sharding status.
					

						Collection parameter is not use for this operation.
					
// route: from("command").to("mongodb:myDb?database=science&operation=command");
DBObject commandBody = new BasicDBObject("hostInfo", "1");
Object result = template.requestBody("direct:command", commandBody);

Dynamic operations

					An Exchange can override the endpoint’s fixed operation by setting the CamelMongoDbOperation header, defined by the MongoDbConstants.OPERATION_HEADER constant.
 The values supported are determined by the MongoDbOperation enumeration and match the accepted values for the operation parameter on the endpoint URI.
				

					For example:
				
// from("direct:insert").to("mongodb:myDb?database=flights&collection=tickets&operation=insert");
Object result = template.requestBodyAndHeader("direct:insert", "irrelevantBody", MongoDbConstants.OPERATION_HEADER, "count");
assertTrue("Result is not of type Long", result instanceof Long);

Tailable Cursor Consumer

				MongoDB offers a mechanism to instantaneously consume ongoing data from a collection, by keeping the cursor open just like the tail -f command of *nix systems. This mechanism is significantly more efficient than a scheduled poll, due to the fact that the server pushes new data to the client as it becomes available, rather than making the client ping back at scheduled intervals to fetch new data. It also reduces otherwise redundant network traffic.
			

				There is only one requisite to use tailable cursors: the collection must be a "capped collection", meaning that it will only hold N objects, and when the limit is reached, MongoDB flushes old objects in the same order they were originally inserted. For more information, please refer to: http://www.mongodb.org/display/DOCS/Tailable+Cursors.
			

				The Camel MongoDB component implements a tailable cursor consumer, making this feature available for you to use in your Camel routes. As new objects are inserted, MongoDB will push them as DBObjects in natural order to your tailable cursor consumer, who will transform them to an Exchange and will trigger your route logic.
			

How the tailable cursor consumer works

				To turn a cursor into a tailable cursor, a few special flags are to be signalled to MongoDB when first generating the cursor. Once created, the cursor will then stay open and will block upon calling the DBCursor.next() method until new data arrives. However, the MongoDB server reserves itself the right to kill your cursor if new data doesn’t appear after an indeterminate period. If you are interested to continue consuming new data, you have to regenerate the cursor. And to do so, you will have to remember the position where you left off or else you will start consuming from the top again.
			

				The Camel MongoDB tailable cursor consumer takes care of all these tasks for you. You will just need to provide the key to some field in your data of increasing nature, which will act as a marker to position your cursor every time it is regenerated, e.g. a timestamp, a sequential ID, etc. It can be of any datatype supported by MongoDB. Date, Strings and Integers are found to work well. We call this mechanism "tail tracking" in the context of this component.
			

				The consumer will remember the last value of this field and whenever the cursor is to be regenerated, it will run the query with a filter like: increasingField > lastValue, so that only unread data is consumed.
			

				Setting the increasing field: Set the key of the increasing field on the endpoint URI tailTrackingIncreasingField option. In Camel 2.10, it must be a top-level field in your data, as nested navigation for this field is not yet supported. That is, the "timestamp" field is okay, but "nested.timestamp" will not work. Please open a ticket in the Camel JIRA if you do require support for nested increasing fields.
			

				Cursor regeneration delay: One thing to note is that if new data is not already available upon initialisation, MongoDB will kill the cursor instantly. Since we don’t want to overwhelm the server in this case, a cursorRegenerationDelay option has been introduced (with a default value of 1000ms.), which you can modify to suit your needs.
			

				An example:
			
from("mongodb:myDb?database=flights&collection=cancellations&tailTrackIncreasingField=departureTime")
 .id("tailableCursorConsumer1")
 .autoStartup(false)
 .to("mock:test");

				The above route will consume from the "flights.cancellations" capped collection, using "departureTime" as the increasing field, with a default regeneration cursor delay of 1000ms.
			

Persistent tail tracking

				Standard tail tracking is volatile and the last value is only kept in memory. However, in practice you will need to restart your Camel container every now and then, but your last value would then be lost and your tailable cursor consumer would start consuming from the top again, very likely sending duplicate records into your route.
			

				To overcome this situation, you can enable the persistent tail tracking feature to keep track of the last consumed increasing value in a special collection inside your MongoDB database too. When the consumer initialises again, it will restore the last tracked value and continue as if nothing happened.
			

				The last read value is persisted on two occasions: every time the cursor is regenerated and when the consumer shuts down. We may consider persisting at regular intervals too in the future (flush every 5 seconds) for added robustness if the demand is there. To request this feature, please open a ticket in the Camel JIRA.
			

Enabling persistent tail tracking

				To enable this function, set at least the following options on the endpoint URI:
			
	
						persistentTailTracking option to true
					
	
						persistentId option to a unique identifier for this consumer, so that the same collection can be reused across many consumers
					

				Additionally, you can set the tailTrackDb, tailTrackCollection and tailTrackField options to customise where the runtime information will be stored. Refer to the endpoint options table at the top of this page for descriptions of each option.
			

				For example, the following route will consume from the "flights.cancellations" capped collection, using "departureTime" as the increasing field, with a default regeneration cursor delay of 1000ms, with persistent tail tracking turned on, and persisting under the "cancellationsTracker" id on the "flights.camelTailTracking", storing the last processed value under the "lastTrackingValue" field (camelTailTracking and lastTrackingValue are defaults).
			
from("mongodb:myDb?database=flights&collection=cancellations&tailTrackIncreasingField=departureTime&persistentTailTracking=true" +
 "&persistentId=cancellationsTracker")
 .id("tailableCursorConsumer2")
 .autoStartup(false)
 .to("mock:test");

				Below is another example identical to the one above, but where the persistent tail tracking runtime information will be stored under the "trackers.camelTrackers" collection, in the "lastProcessedDepartureTime" field:
			
from("mongodb:myDb?database=flights&collection=cancellations&tailTrackIncreasingField=departureTime&persistentTailTracking=true" +
 "&persistentId=cancellationsTracker&tailTrackDb=trackers&tailTrackCollection=camelTrackers" +
 "&tailTrackField=lastProcessedDepartureTime")
 .id("tailableCursorConsumer3")
 .autoStartup(false)
 .to("mock:test");

Oplog Tail Tracking

				The oplog collection tracking feature allows to implement trigger like functionality in MongoDB. In order to activate this collection you will have first to activate a replica set. For more information on this topic please check https://docs.mongodb.com/manual/tutorial/deploy-replica-set/ .
			

				Below you can find an example of a Java DSL based route demonstrating how you can use the component to track the oplog collection. In this specific case we are filtering the events which affect a collection customers in database optlog_test. Note that the tailTrackIncreasingField is a timestamp field ('ts') which implies that you have to use the tailTrackingStrategy parameter with the TIMESTAMP value.
			
import com.mongodb.BasicDBObject;
import com.mongodb.MongoClient;
import org.apache.camel.Exchange;
import org.apache.camel.Message;
import org.apache.camel.Processor;
import org.apache.camel.builder.RouteBuilder;
import org.apache.camel.component.mongodb.MongoDBTailTrackingEnum;
import org.apache.camel.main.Main;

import java.io.InputStream;

/**
 * For this to work you need to turn on the replica set
 * <p>
 * Commands to create a replica set:
 * <p>
 * rs.initiate({
 * _id : "rs0",
 * members: [{ _id : 0, host : "localhost:27017" }]
 * })
 */
public class MongoDbTracker {

 private final String database;

 private final String collection;

 private final String increasingField;

 private MongoDBTailTrackingEnum trackingStrategy;

 private int persistRecords = -1;

 private boolean persistenTailTracking;

 public MongoDbTracker(String database, String collection, String increasingField) {
 this.database = database;
 this.collection = collection;
 this.increasingField = increasingField;
 }

 public static void main(String[] args) throws Exception {
 final MongoDbTracker mongoDbTracker = new MongoDbTracker("local", "oplog.rs", "ts");
 mongoDbTracker.setTrackingStrategy(MongoDBTailTrackingEnum.TIMESTAMP);
 mongoDbTracker.setPersistRecords(5);
 mongoDbTracker.setPersistenTailTracking(true);
 mongoDbTracker.startRouter();
 // run until you terminate the JVM
 System.out.println("Starting Camel. Use ctrl + c to terminate the JVM.\n");

 }

 public void setTrackingStrategy(MongoDBTailTrackingEnum trackingStrategy) {
 this.trackingStrategy = trackingStrategy;
 }

 public void setPersistRecords(int persistRecords) {
 this.persistRecords = persistRecords;
 }

 public void setPersistenTailTracking(boolean persistenTailTracking) {
 this.persistenTailTracking = persistenTailTracking;
 }

 void startRouter() throws Exception {
 // create a Main instance
 Main main = new Main();
 main.bind(MongoConstants.CONN_NAME, new MongoClient("localhost", 27017));
 main.addRouteBuilder(new RouteBuilder() {
 @Override
 public void configure() throws Exception {
 getContext().getTypeConverterRegistry().addTypeConverter(InputStream.class, BasicDBObject.class,
 new MongoToInputStreamConverter());
 from("mongodb://" + MongoConstants.CONN_NAME + "?database=" + database
 + "&collection=" + collection
 + "&persistentTailTracking=" + persistenTailTracking
 + "&persistentId=trackerName" + "&tailTrackDb=local"
 + "&tailTrackCollection=talendTailTracking"
 + "&tailTrackField=lastTrackingValue"
 + "&tailTrackIncreasingField=" + increasingField
 + "&tailTrackingStrategy=" + trackingStrategy.toString()
 + "&persistRecords=" + persistRecords
 + "&cursorRegenerationDelay=1000")
 .filter().jsonpath("$[?(@.ns=='optlog_test.customers')]")
 .id("logger")
 .to("log:logger?level=WARN")
 .process(new Processor() {
 public void process(Exchange exchange) throws Exception {
 Message message = exchange.getIn();
 System.out.println(message.getBody().toString());
 exchange.getOut().setBody(message.getBody().toString());
 }
 });
 }
 });
 main.run();
 }
}

Type conversions

				The MongoDbBasicConverters type converter included with the camel-mongodb component provides the following conversions:
			
	Name	From type	To type	How?
	
								fromMapToDBObject
							

							 	
								Map
							

							 	
								DBObject
							

							 	
								constructs a new BasicDBObject via the new BasicDBObject(Map m) constructor
							

							
	
								fromBasicDBObjectToMap
							

							 	
								BasicDBObject
							

							 	
								Map
							

							 	
								BasicDBObject already implements Map
							

							
	
								fromStringToDBObject
							

							 	
								String
							

							 	
								DBObject
							

							 	
								uses com.mongodb.util.JSON.parse(String s)
							

							
	
								fromAnyObjectToDBObject
							

							 	
								Object
							

							 	
								DBObject
							

							 	
								uses the Jackson library to convert the object to a Map, which is in turn used to initialise a new BasicDBObject
							

							

				This type converter is auto-discovered, so you don’t need to configure anything manually.
			

See also

	
						MongoDB website
					
	
						NoSQL Wikipedia article
					
	
						MongoDB Java driver API docs - current version * Unit tests for more examples of usage
					

Chapter 227. MongoDB GridFS Component

			Available as of Camel version 2.18
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-mongodb-gridfs</artifactId>
 <version>x.y.z</version>
 <!-- use the same version as your Camel core version -->
</dependency>
URI format

mongodb-gridfs:connectionBean?database=databaseName&bucket=bucketName[&moreOptions...]

MongoDB GridFS options

				The MongoDB GridFS component has no options.
			

				The MongoDB GridFS endpoint is configured using URI syntax:
			
mongodb-gridfs:connectionBean

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									connectionBean
								

								 	
									Required Name of com.mongodb.Mongo to use.
								

								 	 	
									String
								

								

Query Parameters (17 parameters):

	Name	Description	Default	Type
	
									bucket (common)
								

								 	
									Sets the name of the GridFS bucket within the database. Default is fs.
								

								 	
									fs
								

								 	
									String
								

								
	
									database (common)
								

								 	
									Required Sets the name of the MongoDB database to target
								

								 	 	
									String
								

								
	
									readPreference (common)
								

								 	
									Sets a MongoDB ReadPreference on the Mongo connection. Read preferences set directly on the connection will be overridden by this setting. The link com.mongodb.ReadPreferencevalueOf(String) utility method is used to resolve the passed readPreference value. Some examples for the possible values are nearest, primary or secondary etc.
								

								 	 	
									ReadPreference
								

								
	
									writeConcern (common)
								

								 	
									Set the WriteConcern for write operations on MongoDB using the standard ones. Resolved from the fields of the WriteConcern class by calling the link WriteConcernvalueOf(String) method.
								

								 	 	
									WriteConcern
								

								
	
									writeConcernRef (common)
								

								 	
									Set the WriteConcern for write operations on MongoDB, passing in the bean ref to a custom WriteConcern which exists in the Registry. You can also use standard WriteConcerns by passing in their key. See the link setWriteConcern(String) setWriteConcern method.
								

								 	 	
									WriteConcern
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									delay (consumer)
								

								 	
									Sets the delay between polls within the Consumer. Default is 500ms
								

								 	
									500
								

								 	
									long
								

								
	
									fileAttributeName (consumer)
								

								 	
									If the QueryType uses a FileAttribute, this sets the name of the attribute that is used. Default is camel-processed.
								

								 	
									camel-processed
								

								 	
									String
								

								
	
									initialDelay (consumer)
								

								 	
									Sets the initialDelay before the consumer will start polling. Default is 1000ms
								

								 	
									1000
								

								 	
									long
								

								
	
									persistentTSCollection (consumer)
								

								 	
									If the QueryType uses a persistent timestamp, this sets the name of the collection within the DB to store the timestamp.
								

								 	
									camel-timestamps
								

								 	
									String
								

								
	
									persistentTSObject (consumer)
								

								 	
									If the QueryType uses a persistent timestamp, this is the ID of the object in the collection to store the timestamp.
								

								 	
									camel-timestamp
								

								 	
									String
								

								
	
									query (consumer)
								

								 	
									Additional query parameters (in JSON) that are used to configure the query used for finding files in the GridFsConsumer
								

								 	 	
									String
								

								
	
									queryStrategy (consumer)
								

								 	
									Sets the QueryStrategy that is used for polling for new files. Default is Timestamp
								

								 	
									TimeStamp
								

								 	
									QueryStrategy
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									operation (producer)
								

								 	
									Sets the operation this endpoint will execute against GridRS.
								

								 	 	
									String
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

Configuration of database in Spring XML

				The following Spring XML creates a bean defining the connection to a MongoDB instance.
			
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd">
 <bean id="mongoBean" class="com.mongodb.Mongo">
 <constructor-arg name="host" value="${mongodb.host}" />
 <constructor-arg name="port" value="${mongodb.port}" />
 </bean>
</beans>

Sample route

				The following route defined in Spring XML executes the operation findOne on a collection.
			

				Get a file from GridFS
			
<route>
 <from uri="direct:start" />
 <!-- using bean 'mongoBean' defined above -->
 <to uri="mongodb-gridfs:mongoBean?database=${mongodb.database}&operation=findOne" />
 <to uri="direct:result" />
</route>

				
			

GridFS operations - producer endpoint

count

					Returns the total number of file in the collection, returning an Integer as the OUT message body.
				
// from("direct:count").to("mongodb-gridfs?database=tickets&operation=count");
Integer result = template.requestBodyAndHeader("direct:count", "irrelevantBody");
assertTrue("Result is not of type Long", result instanceof Integer);

					You can provide a filename header to provide a count of files matching that filename.
				
Map<String, Object> headers = new HashMap<String, Object>();
headers.put(Exchange.FILE_NAME, "filename.txt");
Integer count = template.requestBodyAndHeaders("direct:count", query, headers);

listAll

					Returns an Reader that lists all the filenames and their IDs in a tab separated stream.
				
// from("direct:listAll").to("mongodb-gridfs?database=tickets&operation=listAll");
Reader result = template.requestBodyAndHeader("direct:listAll", "irrelevantBody");

filename1.txt 1252314321
filename2.txt 2897651254

					
				

findOne

					Finds a file in the GridFS system and sets the body to an InputStream of the content. Also provides the metadata has headers. It uses Exchange.FILE_NAME from the incoming headers to determine the file to find.
				
// from("direct:findOne").to("mongodb-gridfs?database=tickets&operation=findOne");
Map<String, Object> headers = new HashMap<String, Object>();
headers.put(Exchange.FILE_NAME, "filename.txt");
InputStream result = template.requestBodyAndHeaders("direct:findOne", "irrelevantBody", headers);

					
				

create

					Creates a new file in the GridFs database. It uses the Exchange.FILE_NAME from the incoming headers for the name and the body contents (as an InputStream) as the content.
				
// from("direct:create").to("mongodb-gridfs?database=tickets&operation=create");
Map<String, Object> headers = new HashMap<String, Object>();
headers.put(Exchange.FILE_NAME, "filename.txt");
InputStream stream = ... the data for the file ...
template.requestBodyAndHeaders("direct:create", stream, headers);

remove

					Removes a file from the GridFS database.
				
// from("direct:remove").to("mongodb-gridfs?database=tickets&operation=remove");
Map<String, Object> headers = new HashMap<String, Object>();
headers.put(Exchange.FILE_NAME, "filename.txt");
template.requestBodyAndHeaders("direct:remove", "", headers);

GridFS Consumer

				See also
			
	
						MongoDB website
					
	
						NoSQL Wikipedia article
					
	
						MongoDB Java driver API docs - current version * Unit tests for more examples of usage
					

Chapter 228. MongoDB Component

			Available as of Camel version 2.19
		

			Note: Camel MongoDB3 component Use the Mongo Driver for Java 3.4. If your are looking for previews versions look the Camel MongoDB component
		

			According to Wikipedia: "NoSQL is a movement promoting a loosely defined class of non-relational data stores that break with a long history of relational databases and ACID guarantees." NoSQL solutions have grown in popularity in the last few years, and major extremely-used sites and services such as Facebook, LinkedIn, Twitter, etc. are known to use them extensively to achieve scalability and agility.
		

			Basically, NoSQL solutions differ from traditional RDBMS (Relational Database Management Systems) in that they don’t use SQL as their query language and generally don’t offer ACID-like transactional behaviour nor relational data. Instead, they are designed around the concept of flexible data structures and schemas (meaning that the traditional concept of a database table with a fixed schema is dropped), extreme scalability on commodity hardware and blazing-fast processing.
		

			MongoDB is a very popular NoSQL solution and the camel-mongodb component integrates Camel with MongoDB allowing you to interact with MongoDB collections both as a producer (performing operations on the collection) and as a consumer (consuming documents from a MongoDB collection).
		

			MongoDB revolves around the concepts of documents (not as is office documents, but rather hierarchical data defined in JSON/BSON) and collections. This component page will assume you are familiar with them. Otherwise, visit http://www.mongodb.org/.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-mongodb3</artifactId>
 <version>x.y.z</version>
 <!-- use the same version as your Camel core version -->
</dependency>
URI format

mongodb3:connectionBean?database=databaseName&collection=collectionName&operation=operationName[&moreOptions...]

MongoDB options

				The MongoDB component has no options.
			

				The MongoDB endpoint is configured using URI syntax:
			
mongodb3:connectionBean

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									connectionBean
								

								 	
									Required Name of com.mongodb.Mongo to use.
								

								 	 	
									String
								

								

Query Parameters (19 parameters):

	Name	Description	Default	Type
	
									collection (common)
								

								 	
									Sets the name of the MongoDB collection to bind to this endpoint
								

								 	 	
									String
								

								
	
									collectionIndex (common)
								

								 	
									Sets the collection index (JSON FORMAT : field1 : order1, field2 : order2)
								

								 	 	
									String
								

								
	
									createCollection (common)
								

								 	
									Create collection during initialisation if it doesn’t exist. Default is true.
								

								 	
									true
								

								 	
									boolean
								

								
	
									database (common)
								

								 	
									Sets the name of the MongoDB database to target
								

								 	 	
									String
								

								
	
									operation (common)
								

								 	
									Sets the operation this endpoint will execute against MongoDB. For possible values, see MongoDbOperation.
								

								 	 	
									MongoDbOperation
								

								
	
									outputType (common)
								

								 	
									Convert the output of the producer to the selected type : DocumentList Document or MongoIterable. DocumentList or MongoIterable applies to findAll and aggregate. Document applies to all other operations.
								

								 	 	
									MongoDbOutputType
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									cursorRegenerationDelay (advanced)
								

								 	
									MongoDB tailable cursors will block until new data arrives. If no new data is inserted, after some time the cursor will be automatically freed and closed by the MongoDB server. The client is expected to regenerate the cursor if needed. This value specifies the time to wait before attempting to fetch a new cursor, and if the attempt fails, how long before the next attempt is made. Default value is 1000ms.
								

								 	
									1000
								

								 	
									long
								

								
	
									dynamicity (advanced)
								

								 	
									Sets whether this endpoint will attempt to dynamically resolve the target database and collection from the incoming Exchange properties. Can be used to override at runtime the database and collection specified on the otherwise static endpoint URI. It is disabled by default to boost performance. Enabling it will take a minimal performance hit.
								

								 	
									false
								

								 	
									boolean
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									writeResultAsHeader (advanced)
								

								 	
									In write operations, it determines whether instead of returning WriteResult as the body of the OUT message, we transfer the IN message to the OUT and attach the WriteResult as a header.
								

								 	
									false
								

								 	
									boolean
								

								
	
									persistentId (tail)
								

								 	
									One tail tracking collection can host many trackers for several tailable consumers. To keep them separate, each tracker should have its own unique persistentId.
								

								 	 	
									String
								

								
	
									persistentTailTracking (tail)
								

								 	
									Enable persistent tail tracking, which is a mechanism to keep track of the last consumed message across system restarts. The next time the system is up, the endpoint will recover the cursor from the point where it last stopped slurping records.
								

								 	
									false
								

								 	
									boolean
								

								
	
									tailTrackCollection (tail)
								

								 	
									Collection where tail tracking information will be persisted. If not specified, link MongoDbTailTrackingConfigDEFAULT_COLLECTION will be used by default.
								

								 	 	
									String
								

								
	
									tailTrackDb (tail)
								

								 	
									Indicates what database the tail tracking mechanism will persist to. If not specified, the current database will be picked by default. Dynamicity will not be taken into account even if enabled, i.e. the tail tracking database will not vary past endpoint initialisation.
								

								 	 	
									String
								

								
	
									tailTrackField (tail)
								

								 	
									Field where the last tracked value will be placed. If not specified, link MongoDbTailTrackingConfigDEFAULT_FIELD will be used by default.
								

								 	 	
									String
								

								
	
									tailTrackIncreasingField (tail)
								

								 	
									Correlation field in the incoming record which is of increasing nature and will be used to position the tailing cursor every time it is generated. The cursor will be (re)created with a query of type: tailTrackIncreasingField lastValue (possibly recovered from persistent tail tracking). Can be of type Integer, Date, String, etc. NOTE: No support for dot notation at the current time, so the field should be at the top level of the document.
								

								 	 	
									String
								

								

					Note on options of MoongoDB component
				

					writeConcern Remove in camel 2.19. See Mongo client options the section called “Configuration of database in Spring XML”. Set the WriteConcern for write operations on MongoDB using the standard ones. Resolved from the fields of the WriteConcern class by calling the link WriteConcernvalueOf(String) method.
				

					readPreference Remove in camel 2.19. See Mongo client options the section called “Configuration of database in Spring XML”. Sets a MongoDB ReadPreference on the Mongo connection. Read preferences set directly on the connection will be overridden by this setting. The link com.mongodb.ReadPreferencevalueOf(String) utility method is used to resolve the passed readPreference value. Some examples for the possible values are nearest primary or secondary etc.
				

Configuration of database in Spring XML

				The following Spring XML creates a bean defining the connection to a MongoDB instance.
			

				Since mongo java driver 3, the WriteConcern and readPreference options are not dynamically modifiable. They are defined in the mongoClient object
			
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xmlns:mongo="http://www.springframework.org/schema/data/mongo"
xsi:schemaLocation="http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context.xsd
 http://www.springframework.org/schema/data/mongo
 http://www.springframework.org/schema/data/mongo/spring-mongo.xsd
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd">

 <mongo:mongo-client id="mongoBean" host="${mongo.url}" port="${mongo.port}" credentials="${mongo.user}:${mongo.pass}@${mongo.dbname}">
 <mongo:client-options write-concern="NORMAL" />
 </mongo:mongo-client>
</beans>

Sample route

				The following route defined in Spring XML executes the operation dbStats on a collection.
			

				Get DB stats for specified collection
			
<route>
 <from uri="direct:start" />
 <!-- using bean 'mongoBean' defined above -->
 <to uri="mongodb3:mongoBean?database=${mongodb.database}&collection=${mongodb.collection}&operation=getDbStats" />
 <to uri="direct:result" />
</route>

MongoDB operations - producer endpoints

Query operations

findById

						This operation retrieves only one element from the collection whose _id field matches the content of the IN message body. The incoming object can be anything that has an equivalent to a Bson type. See http://bsonspec.org//specification[http://bsonspec.org//specification] and http://www.mongodb.org/display/DOCS/Java+Types.
					
from("direct:findById")
 .to("mongodb3:myDb?database=flights&collection=tickets&operation=findById")
 .to("mock:resultFindById");
Tip

						Supports optional parameters. This operation supports specifying a fields filter. See Specifying optional parameters.
					

findOneByQuery

						Use this operation to retrieve just one element (the first) from the collection that matches a MongoDB query. The query object is extracted CamelMongoDbCriteria header. if the CamelMongoDbCriteria header is null the query object is extracted message body, i.e. it should be of type Bson or convertible to Bson. It can be a JSON String or a Hashmap. See #Type conversions for more info. you can use the Filters class from MongoDB Driver.
					

						Example with no query (returns any object of the collection):
					
from("direct:findOneByQuery")
 .to("mongodb3:myDb?database=flights&collection=tickets&operation=findOneByQuery")
 .to("mock:resultFindOneByQuery");

						Example with a query (returns one matching result):
					
from("direct:findOneByQuery")
 .setHeader(MongoDbConstants.CRITERIA, Filters.eq("name", "Raul Kripalani"))
 .to("mongodb3:myDb?database=flights&collection=tickets&operation=findOneByQuery")
 .to("mock:resultFindOneByQuery");
Tip

						Supports optional parameters. This operation supports specifying a fields projection and/or a sort clause. See Specifying optional parameters.
					

findAll

						The findAll operation returns all documents matching a query, or none at all, in which case all documents contained in the collection are returned. The query object is extracted CamelMongoDbCriteria header. if the CamelMongoDbCriteria header is null the query object is extracted message body, i.e. it should be of type Bson or convertible to Bson. It can be a JSON String or a Hashmap. See #Type conversions for more info.
					

						Example with no query (returns all object in the collection):
					
from("direct:findAll")
 .to("mongodb3:myDb?database=flights&collection=tickets&operation=findAll")
 .to("mock:resultFindAll");

						Example with a query (returns all matching results):
					
from("direct:findAll")
 .setHeader(MongoDbConstants.CRITERIA, Filters.eq("name", "Raul Kripalani"))
 .to("mongodb3:myDb?database=flights&collection=tickets&operation=findAll")
 .to("mock:resultFindAll");

						Paging and efficient retrieval is supported via the following headers:
					
	Header key	Quick constant	Description (extracted from MongoDB API doc)	Expected type
	
										CamelMongoDbNumToSkip
									

									 	
										MongoDbConstants.NUM_TO_SKIP
									

									 	
										Discards a given number of elements at the beginning of the cursor.
									

									 	
										int/Integer
									

									
	
										CamelMongoDbLimit
									

									 	
										MongoDbConstants.LIMIT
									

									 	
										Limits the number of elements returned.
									

									 	
										int/Integer
									

									
	
										CamelMongoDbBatchSize
									

									 	
										MongoDbConstants.BATCH_SIZE
									

									 	
										Limits the number of elements returned in one batch. A cursor typically fetches a batch of result objects and store them locally. If batchSize is positive, it represents the size of each batch of objects retrieved. It can be adjusted to optimize performance and limit data transfer. If batchSize is negative, it will limit of number objects returned, that fit within the max batch size limit (usually 4MB), and cursor will be closed. For example if batchSize is -10, then the server will return a maximum of 10 documents and as many as can fit in 4MB, then close the cursor. Note that this feature is different from limit() in that documents must fit within a maximum size, and it removes the need to send a request to close the cursor server-side. The batch size can be changed even after a cursor is iterated, in which case the setting will apply on the next batch retrieval.
									

									 	
										int/Integer
									

									

						Example with option outputType=MongoIterable and batch size :
					
from("direct:findAll")
 .setHeader(MongoDbConstants.BATCH_SIZE).constant(10)
 .setHeader(MongoDbConstants.CRITERIA, Filters.eq("name", "Raul Kripalani"))
 .to("mongodb3:myDb?database=flights&collection=tickets&operation=findAll&outputType=MongoIterable")
 .to("mock:resultFindAll");

						The findAll operation will also return the following OUT headers to enable you to iterate through result pages if you are using paging:
					
	Header key	Quick constant	Description (extracted from MongoDB API doc)	Data type
	
										CamelMongoDbResultTotalSize
									

									 	
										MongoDbConstants.RESULT_TOTAL_SIZE
									

									 	
										Number of objects matching the query. This does not take limit/skip into consideration.
									

									 	
										int/Integer
									

									
	
										CamelMongoDbResultPageSize
									

									 	
										MongoDbConstants.RESULT_PAGE_SIZE
									

									 	
										Number of objects matching the query. This does not take limit/skip into consideration.
									

									 	
										int/Integer
									

									

Tip

						Supports optional parameters. This operation supports specifying a fields projection and/or a sort clause. See Specifying optional parameters.
					

count

						Returns the total number of objects in a collection, returning a Long as the OUT message body.
 The following example will count the number of records in the "dynamicCollectionName" collection. Notice how dynamicity is enabled, and as a result, the operation will not run against the "notableScientists" collection, but against the "dynamicCollectionName" collection.
					
// from("direct:count").to("mongodb3:myDb?database=tickets&collection=flights&operation=count&dynamicity=true");
Long result = template.requestBodyAndHeader("direct:count", "irrelevantBody", MongoDbConstants.COLLECTION, "dynamicCollectionName");
assertTrue("Result is not of type Long", result instanceof Long);

						You can provide a query The query object is extracted CamelMongoDbCriteria header. if the CamelMongoDbCriteria header is null the query object is extracted message body, i.e. it should be of type Bson or convertible to Bson., and operation will return the amount of documents matching this criteria.
					
Document query = ...
Long count = template.requestBodyAndHeader("direct:count", query, MongoDbConstants.COLLECTION, "dynamicCollectionName");

Specifying a fields filter (projection)

						Query operations will, by default, return the matching objects in their entirety (with all their fields). If your documents are large and you only require retrieving a subset of their fields, you can specify a field filter in all query operations, simply by setting the relevant Bson (or type convertible to Bson, such as a JSON String, Map, etc.) on the CamelMongoDbFieldsProjection header, constant shortcut: MongoDbConstants.FIELDS_PROJECTION.
					

						Here is an example that uses MongoDB’s Projections to simplify the creation of Bson. It retrieves all fields except _id and boringField:
					
// route: from("direct:findAll").to("mongodb3:myDb?database=flights&collection=tickets&operation=findAll")
Bson fieldProjection = Projection.exclude("_id", "boringField");
Object result = template.requestBodyAndHeader("direct:findAll", ObjectUtils.NULL, MongoDbConstants.FIELDS_PROJECTION, fieldProjection);

						Here is an example that uses MongoDB’s Projections to simplify the creation of Bson. It retrieves all fields except _id and boringField:
					
// route: from("direct:findAll").to("mongodb3:myDb?database=flights&collection=tickets&operation=findAll")
Bson fieldProjection = Projection.exclude("_id", "boringField");
Object result = template.requestBodyAndHeader("direct:findAll", ObjectUtils.NULL, MongoDbConstants.FIELDS_PROJECTION, fieldProjection);

Specifying a sort clause

						There is a often a requirement to fetch the min/max record from a collection based on sorting by a particular field that uses MongoDB’s Sorts to simplify the creation of Bson. It retrieves all fields except _id and boringField:
					
// route: from("direct:findAll").to("mongodb3:myDb?database=flights&collection=tickets&operation=findAll")
Bson sorts = Sorts.descending("_id");
Object result = template.requestBodyAndHeader("direct:findAll", ObjectUtils.NULL, MongoDbConstants.SORT_BY, sorts);

						In a Camel route the SORT_BY header can be used with the findOneByQuery operation to achieve the same result. If the FIELDS_PROJECTION header is also specified the operation will return a single field/value pair that can be passed directly to another component (for example, a parameterized MyBatis SELECT query). This example demonstrates fetching the temporally newest document from a collection and reducing the result to a single field, based on the documentTimestamp field:
					
.from("direct:someTriggeringEvent")
.setHeader(MongoDbConstants.SORT_BY).constant(Sorts.descending("documentTimestamp"))
.setHeader(MongoDbConstants.FIELDS_PROJECTION).constant(Projection.include("documentTimestamp"))
.setBody().constant("{}")
.to("mongodb3:myDb?database=local&collection=myDemoCollection&operation=findOneByQuery")
.to("direct:aMyBatisParameterizedSelect")
;

Create/update operations

insert

						Inserts an new object into the MongoDB collection, taken from the IN message body. Type conversion is attempted to turn it into Document or a List.
 Two modes are supported: single insert and multiple insert. For multiple insert, the endpoint will expect a List, Array or Collections of objects of any type, as long as they are - or can be converted to - Document. Example:
					
from("direct:insert")
 .to("mongodb3:myDb?database=flights&collection=tickets&operation=insert");

						The operation will return a WriteResult, and depending on the WriteConcern or the value of the invokeGetLastError option, getLastError() would have been called already or not. If you want to access the ultimate result of the write operation, you need to retrieve the CommandResult by calling getLastError() or getCachedLastError() on the WriteResult. Then you can verify the result by calling CommandResult.ok(), CommandResult.getErrorMessage() and/or CommandResult.getException().
					

						Note that the new object’s _id must be unique in the collection. If you don’t specify the value, MongoDB will automatically generate one for you. But if you do specify it and it is not unique, the insert operation will fail (and for Camel to notice, you will need to enable invokeGetLastError or set a WriteConcern that waits for the write result).
					

						This is not a limitation of the component, but it is how things work in MongoDB for higher throughput. If you are using a custom _id, you are expected to ensure at the application level that is unique (and this is a good practice too).
					

						OID(s) of the inserted record(s) is stored in the message header under CamelMongoOid key (MongoDbConstants.OID constant). The value stored is org.bson.types.ObjectId for single insert or java.util.List<org.bson.types.ObjectId> if multiple records have been inserted.
					

						In MongoDB Java Driver 3.x the insertOne and insertMany operation return void. The Camel insert operation return the Document or List of Documents inserted. Note that each Documents are Updated by a new OID if need.
					

save

						The save operation is equivalent to an upsert (UPdate, inSERT) operation, where the record will be updated, and if it doesn’t exist, it will be inserted, all in one atomic operation. MongoDB will perform the matching based on the _id field.
					

						Beware that in case of an update, the object is replaced entirely and the usage of MongoDB’s $modifiers is not permitted. Therefore, if you want to manipulate the object if it already exists, you have two options:
					
	
								perform a query to retrieve the entire object first along with all its fields (may not be efficient), alter it inside Camel and then save it.
							
	
								use the update operation with $modifiers, which will execute the update at the server-side instead. You can enable the upsert flag, in which case if an insert is required, MongoDB will apply the $modifiers to the filter query object and insert the result.
							

						If the document to be saved does not contain the _id attribute, the operation will be an insert, and the new _id created will be placed in the CamelMongoOid header.
					

						For example:
					
from("direct:insert")
 .to("mongodb3:myDb?database=flights&collection=tickets&operation=save");

update

						Update one or multiple records on the collection. Requires a filter query and a update rules.
					

						You can define the filter using MongoDBConstants.CRITERIA header as Bson and define the update rules as Bson in Body.
					

						The second way Require a List<Bson> as the IN message body containing exactly 2 elements:
					
	
								Element 1 (index 0) ⇒ filter query ⇒ determines what objects will be affected, same as a typical query object
							
	
								Element 2 (index 1) ⇒ update rules ⇒ how matched objects will be updated. All modifier operations from MongoDB are supported.
							

Note

							Multiupdates . By default, MongoDB will only update 1 object even if multiple objects match the filter query. To instruct MongoDB to update all matching records, set the CamelMongoDbMultiUpdate IN message header to true.
						

						A header with key CamelMongoDbRecordsAffected will be returned (MongoDbConstants.RECORDS_AFFECTED constant) with the number of records updated (copied from WriteResult.getN()).
					

						Supports the following IN message headers:
					
	Header key	Quick constant	Description (extracted from MongoDB API doc)	Expected type
	
										CamelMongoDbMultiUpdate
									

									 	
										MongoDbConstants.MULTIUPDATE
									

									 	
										If the update should be applied to all objects matching. See http://www.mongodb.org/display/DOCS/Atomic+Operations
									

									 	
										boolean/Boolean
									

									
	
										CamelMongoDbUpsert
									

									 	
										MongoDbConstants.UPSERT
									

									 	
										If the database should create the element if it does not exist
									

									 	
										boolean/Boolean
									

									

						For example, the following will update all records whose filterField field equals true by setting the value of the "scientist" field to "Darwin":
					
// route: from("direct:update").to("mongodb3:myDb?database=science&collection=notableScientists&operation=update");
Bson filterField = Filters.eq("filterField", true);
String updateObj = Updates.set("scientist", "Darwin");
Object result = template.requestBodyAndHeader("direct:update", new Bson[] {filterField, Document.parse(updateObj)}, MongoDbConstants.MULTIUPDATE, true);
// route: from("direct:update").to("mongodb3:myDb?database=science&collection=notableScientists&operation=update");
Maps<String, Object> headers = new HashMap<>(2);
headers.add(MongoDbConstants.MULTIUPDATE, true);
headers.add(MongoDbConstants.FIELDS_FILTER, Filters.eq("filterField", true));
String updateObj = Updates.set("scientist", "Darwin");;
Object result = template.requestBodyAndHeaders("direct:update", updateObj, headers);
// route: from("direct:update").to("mongodb3:myDb?database=science&collection=notableScientists&operation=update");
String updateObj = "[{\"filterField\": true}, {\"$set\", {\"scientist\", \"Darwin\"}}]";
Object result = template.requestBodyAndHeader("direct:update", updateObj, MongoDbConstants.MULTIUPDATE, true);

Delete operations

remove

						Remove matching records from the collection. The IN message body will act as the removal filter query, and is expected to be of type DBObject or a type convertible to it.
 The following example will remove all objects whose field 'conditionField' equals true, in the science database, notableScientists collection:
					
// route: from("direct:remove").to("mongodb3:myDb?database=science&collection=notableScientists&operation=remove");
Bson conditionField = Filters.eq("conditionField", true);
Object result = template.requestBody("direct:remove", conditionField);

						A header with key CamelMongoDbRecordsAffected is returned (MongoDbConstants.RECORDS_AFFECTED constant) with type int, containing the number of records deleted (copied from WriteResult.getN()).
					

Bulk Write Operations

bulkWrite

						Available as of Camel 2.21
					

						Performs write operations in bulk with controls for order of execution. Requires a List<WriteModel<Document>> as the IN message body containing commands for insert, update, and delete operations.
					

						The following example will insert a new scientist "Pierre Curie", update record with id "5" by setting the value of the "scientist" field to "Marie Curie" and delete record with id "3" :
					
// route: from("direct:bulkWrite").to("mongodb:myDb?database=science&collection=notableScientists&operation=bulkWrite");
List<WriteModel<Document>> bulkOperations = Arrays.asList(
 new InsertOneModel<>(new Document("scientist", "Pierre Curie")),
 new UpdateOneModel<>(new Document("_id", "5"),
 new Document("$set", new Document("scientist", "Marie Curie"))),
 new DeleteOneModel<>(new Document("_id", "3")));

BulkWriteResult result = template.requestBody("direct:bulkWrite", bulkOperations, BulkWriteResult.class);

						By default, operations are executed in order and interrupted on the first write error without processing any remaining write operations in the list. To instruct MongoDB to continue to process remaining write operations in the list, set the CamelMongoDbBulkOrdered IN message header to false. Unordered operations are executed in parallel and this behavior is not guaranteed.
					
	Header key	Quick constant	Description (extracted from MongoDB API doc)	Expected type
	
										CamelMongoDbBulkOrdered
									

									 	
										MongoDbConstants.BULK_ORDERED
									

									 	
										Perform an ordered or unordered operation execution. Defaults to true.
									

									 	
										boolean/Boolean
									

									

Other operations

aggregate

						Perform a aggregation with the given pipeline contained in the body. Aggregations could be long and heavy operations. Use with care.
					
// route: from("direct:aggregate").to("mongodb3:myDb?database=science&collection=notableScientists&operation=aggregate");
List<Bson> aggregate = Arrays.asList(match(or(eq("scientist", "Darwin"), eq("scientist",
 group("$scientist", sum("count", 1)));
from("direct:aggregate")
 .setBody().constant(aggregate)
 .to("mongodb3:myDb?database=science&collection=notableScientists&operation=aggregate")
 .to("mock:resultAggregate");

						Supports the following IN message headers:
					
	Header key	Quick constant	Description (extracted from MongoDB API doc)	Expected type
	
										CamelMongoDbBatchSize
									

									 	
										MongoDbConstants.BATCH_SIZE
									

									 	
										Sets the number of documents to return per batch.
									

									 	
										int/Integer
									

									
	
										CamelMongoDbAllowDiskUse
									

									 	
										MongoDbConstants.ALLOW_DISK_USE
									

									 	
										Enable aggregation pipeline stages to write data to temporary files.
									

									 	
										boolean/Boolean
									

									

						Efficient retrieval is supported via outputType=MongoIterable.
					

						You can also "stream" the documents returned from the server into your route by including outputType=DBCursor (Camel 2.21+) as an endpoint option which may prove simpler than setting the above headers. This hands your Exchange the DBCursor from the Mongo driver, just as if you were executing the aggregate() within the Mongo shell, allowing your route to iterate over the results. By default and without this option, this component will load the documents from the driver’s cursor into a List and return this to your route - which may result in a large number of in-memory objects. Remember, with a DBCursor do not ask for the number of documents matched - see the MongoDB documentation site for details.
					

						Example with option outputType=MongoIterable and batch size:
					
// route: from("direct:aggregate").to("mongodb3:myDb?database=science&collection=notableScientists&operation=aggregate&outputType=MongoIterable");
List<Bson> aggregate = Arrays.asList(match(or(eq("scientist", "Darwin"), eq("scientist",
 group("$scientist", sum("count", 1)));
from("direct:aggregate")
 .setHeader(MongoDbConstants.BATCH_SIZE).constant(10)
 .setBody().constant(aggregate)
 .to("mongodb3:myDb?database=science&collection=notableScientists&operation=aggregate&outputType=MongoIterable")
 .to("mock:resultAggregate");

getDbStats

						Equivalent of running the db.stats() command in the MongoDB shell, which displays useful statistic figures about the database.
 For example:
					
> db.stats();
{
 "db" : "test",
 "collections" : 7,
 "objects" : 719,
 "avgObjSize" : 59.73296244784423,
 "dataSize" : 42948,
 "storageSize" : 1000058880,
 "numExtents" : 9,
 "indexes" : 4,
 "indexSize" : 32704,
 "fileSize" : 1275068416,
 "nsSizeMB" : 16,
 "ok" : 1
}

						Usage example:
					
// from("direct:getDbStats").to("mongodb3:myDb?database=flights&collection=tickets&operation=getDbStats");
Object result = template.requestBody("direct:getDbStats", "irrelevantBody");
assertTrue("Result is not of type Document", result instanceof Document);

						The operation will return a data structure similar to the one displayed in the shell, in the form of a Document in the OUT message body.
					

getColStats

						Equivalent of running the db.collection.stats() command in the MongoDB shell, which displays useful statistic figures about the collection.
 For example:
					
> db.camelTest.stats();
{
 "ns" : "test.camelTest",
 "count" : 100,
 "size" : 5792,
 "avgObjSize" : 57.92,
 "storageSize" : 20480,
 "numExtents" : 2,
 "nindexes" : 1,
 "lastExtentSize" : 16384,
 "paddingFactor" : 1,
 "flags" : 1,
 "totalIndexSize" : 8176,
 "indexSizes" : {
 "_id_" : 8176
 },
 "ok" : 1
}

						Usage example:
					
// from("direct:getColStats").to("mongodb3:myDb?database=flights&collection=tickets&operation=getColStats");
Object result = template.requestBody("direct:getColStats", "irrelevantBody");
assertTrue("Result is not of type Document", result instanceof Document);

						The operation will return a data structure similar to the one displayed in the shell, in the form of a Document in the OUT message body.
					

command

						Run the body as a command on database. Usefull for admin operation as getting host informations, replication or sharding status.
					

						Collection parameter is not use for this operation.
					
// route: from("command").to("mongodb3:myDb?database=science&operation=command");
DBObject commandBody = new BasicDBObject("hostInfo", "1");
Object result = template.requestBody("direct:command", commandBody);

Dynamic operations

					An Exchange can override the endpoint’s fixed operation by setting the CamelMongoDbOperation header, defined by the MongoDbConstants.OPERATION_HEADER constant.
 The values supported are determined by the MongoDbOperation enumeration and match the accepted values for the operation parameter on the endpoint URI.
				

					For example:
				
// from("direct:insert").to("mongodb3:myDb?database=flights&collection=tickets&operation=insert");
Object result = template.requestBodyAndHeader("direct:insert", "irrelevantBody", MongoDbConstants.OPERATION_HEADER, "count");
assertTrue("Result is not of type Long", result instanceof Long);

Tailable Cursor Consumer

				MongoDB offers a mechanism to instantaneously consume ongoing data from a collection, by keeping the cursor open just like the tail -f command of *nix systems. This mechanism is significantly more efficient than a scheduled poll, due to the fact that the server pushes new data to the client as it becomes available, rather than making the client ping back at scheduled intervals to fetch new data. It also reduces otherwise redundant network traffic.
			

				There is only one requisite to use tailable cursors: the collection must be a "capped collection", meaning that it will only hold N objects, and when the limit is reached, MongoDB flushes old objects in the same order they were originally inserted. For more information, please refer to: http://www.mongodb.org/display/DOCS/Tailable+Cursors.
			

				The Camel MongoDB component implements a tailable cursor consumer, making this feature available for you to use in your Camel routes. As new objects are inserted, MongoDB will push them as Document in natural order to your tailable cursor consumer, who will transform them to an Exchange and will trigger your route logic.
			

How the tailable cursor consumer works

				To turn a cursor into a tailable cursor, a few special flags are to be signalled to MongoDB when first generating the cursor. Once created, the cursor will then stay open and will block upon calling the MongoCursor.next() method until new data arrives. However, the MongoDB server reserves itself the right to kill your cursor if new data doesn’t appear after an indeterminate period. If you are interested to continue consuming new data, you have to regenerate the cursor. And to do so, you will have to remember the position where you left off or else you will start consuming from the top again.
			

				The Camel MongoDB tailable cursor consumer takes care of all these tasks for you. You will just need to provide the key to some field in your data of increasing nature, which will act as a marker to position your cursor every time it is regenerated, e.g. a timestamp, a sequential ID, etc. It can be of any datatype supported by MongoDB. Date, Strings and Integers are found to work well. We call this mechanism "tail tracking" in the context of this component.
			

				The consumer will remember the last value of this field and whenever the cursor is to be regenerated, it will run the query with a filter like: increasingField > lastValue, so that only unread data is consumed.
			

				Setting the increasing field: Set the key of the increasing field on the endpoint URI tailTrackingIncreasingField option. In Camel 2.10, it must be a top-level field in your data, as nested navigation for this field is not yet supported. That is, the "timestamp" field is okay, but "nested.timestamp" will not work. Please open a ticket in the Camel JIRA if you do require support for nested increasing fields.
			

				Cursor regeneration delay: One thing to note is that if new data is not already available upon initialisation, MongoDB will kill the cursor instantly. Since we don’t want to overwhelm the server in this case, a cursorRegenerationDelay option has been introduced (with a default value of 1000ms.), which you can modify to suit your needs.
			

				An example:
			
from("mongodb3:myDb?database=flights&collection=cancellations&tailTrackIncreasingField=departureTime")
 .id("tailableCursorConsumer1")
 .autoStartup(false)
 .to("mock:test");

				The above route will consume from the "flights.cancellations" capped collection, using "departureTime" as the increasing field, with a default regeneration cursor delay of 1000ms.
			

Persistent tail tracking

				Standard tail tracking is volatile and the last value is only kept in memory. However, in practice you will need to restart your Camel container every now and then, but your last value would then be lost and your tailable cursor consumer would start consuming from the top again, very likely sending duplicate records into your route.
			

				To overcome this situation, you can enable the persistent tail tracking feature to keep track of the last consumed increasing value in a special collection inside your MongoDB database too. When the consumer initialises again, it will restore the last tracked value and continue as if nothing happened.
			

				The last read value is persisted on two occasions: every time the cursor is regenerated and when the consumer shuts down. We may consider persisting at regular intervals too in the future (flush every 5 seconds) for added robustness if the demand is there. To request this feature, please open a ticket in the Camel JIRA.
			

Enabling persistent tail tracking

				To enable this function, set at least the following options on the endpoint URI:
			
	
						persistentTailTracking option to true
					
	
						persistentId option to a unique identifier for this consumer, so that the same collection can be reused across many consumers
					

				Additionally, you can set the tailTrackDb, tailTrackCollection and tailTrackField options to customise where the runtime information will be stored. Refer to the endpoint options table at the top of this page for descriptions of each option.
			

				For example, the following route will consume from the "flights.cancellations" capped collection, using "departureTime" as the increasing field, with a default regeneration cursor delay of 1000ms, with persistent tail tracking turned on, and persisting under the "cancellationsTracker" id on the "flights.camelTailTracking", storing the last processed value under the "lastTrackingValue" field (camelTailTracking and lastTrackingValue are defaults).
			
from("mongodb3:myDb?database=flights&collection=cancellations&tailTrackIncreasingField=departureTime&persistentTailTracking=true" +
 "&persistentId=cancellationsTracker")
 .id("tailableCursorConsumer2")
 .autoStartup(false)
 .to("mock:test");

				Below is another example identical to the one above, but where the persistent tail tracking runtime information will be stored under the "trackers.camelTrackers" collection, in the "lastProcessedDepartureTime" field:
			
from("mongodb3:myDb?database=flights&collection=cancellations&tailTrackIncreasingField=departureTime&persistentTailTracking=true" +
 "&persistentId=cancellationsTracker&tailTrackDb=trackers&tailTrackCollection=camelTrackers" +
 "&tailTrackField=lastProcessedDepartureTime")
 .id("tailableCursorConsumer3")
 .autoStartup(false)
 .to("mock:test");

Type conversions

				The MongoDbBasicConverters type converter included with the camel-mongodb component provides the following conversions:
			
	Name	From type	To type	How?
	
								fromMapToDocument
							

							 	
								Map
							

							 	
								Document
							

							 	
								constructs a new Document via the new Document(Map m) constructor.
							

							
	
								fromDocumentToMap
							

							 	
								Document
							

							 	
								Map
							

							 	
								Document already implements Map.
							

							
	
								fromStringToDocument
							

							 	
								String
							

							 	
								Document
							

							 	
								uses com.mongodb.Document.parse(String s).
							

							
	
								fromAnyObjectToDocument
							

							 	
								Object
							

							 	
								Document
							

							 	
								uses the Jackson library to convert the object to a Map, which is in turn used to initialise a new Document.
							

							
	
								fromStringToList
							

							 	
								String
							

							 	
								List<Bson>
							

							 	
								uses org.bson.codecs.configuration.CodecRegistries to convert to BsonArray then to List<Bson>.
							

							

				This type converter is auto-discovered, so you don’t need to configure anything manually.
			

See also

	
						MongoDB website
					
	
						NoSQL Wikipedia article
					
	
						MongoDB Java driver API docs - current version * Unit tests for more examples of usage
					

Chapter 229. MQTT Component

Important

				The Camel MQTT component is deprecated in Fuse and is likely to be removed in a future release. We recommend that you use the Camel Paho component instead.
			

			Available as of Camel version 2.10
		

			The mqtt: component is used for communicating with MQTT compliant message brokers, like Apache ActiveMQ or Mosquitto
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-mqtt</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>
URI format

mqtt://name[?options]

				Where name is the name you want to assign the component.
			

Options

				The MQTT component supports 4 options which are listed below.
			
	Name	Description	Default	Type
	
								host (common)
							

							 	
								The URI of the MQTT broker to connect too - this component also supports SSL - e.g. ssl://127.0.0.1:8883
							

							 	 	
								String
							

							
	
								userName (security)
							

							 	
								Username to be used for authentication against the MQTT broker
							

							 	 	
								String
							

							
	
								password (security)
							

							 	
								Password to be used for authentication against the MQTT broker
							

							 	 	
								String
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The MQTT endpoint is configured using URI syntax:
			
mqtt:name

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									name
								

								 	
									Required A logical name to use which is not the topic name.
								

								 	 	
									String
								

								

Query Parameters (39 parameters):

	Name	Description	Default	Type
	
									blockingExecutor (common)
								

								 	
									SSL connections perform blocking operations against internal thread pool unless you call the setBlockingExecutor method to configure that executor they will use instead.
								

								 	 	
									Executor
								

								
	
									byDefaultRetain (common)
								

								 	
									The default retain policy to be used on messages sent to the MQTT broker
								

								 	
									false
								

								 	
									boolean
								

								
	
									cleanSession (common)
								

								 	
									Set to false if you want the MQTT server to persist topic subscriptions and ack positions across client sessions. Defaults to true.
								

								 	
									false
								

								 	
									boolean
								

								
	
									clientId (common)
								

								 	
									Use to set the client Id of the session. This is what an MQTT server uses to identify a session where setCleanSession(false); is being used. The id must be 23 characters or less. Defaults to auto generated id (based on your socket address, port and timestamp).
								

								 	 	
									String
								

								
	
									connectAttemptsMax (common)
								

								 	
									The maximum number of reconnect attempts before an error is reported back to the client on the first attempt by the client to connect to a server. Set to -1 to use unlimited attempts. Defaults to -1.
								

								 	
									-1
								

								 	
									long
								

								
	
									connectWaitInSeconds (common)
								

								 	
									Delay in seconds the Component will wait for a connection to be established to the MQTT broker
								

								 	
									10
								

								 	
									int
								

								
	
									disconnectWaitInSeconds (common)
								

								 	
									The number of seconds the Component will wait for a valid disconnect on stop() from the MQTT broker
								

								 	
									5
								

								 	
									int
								

								
	
									dispatchQueue (common)
								

								 	
									A HawtDispatch dispatch queue is used to synchronize access to the connection. If an explicit queue is not configured via the setDispatchQueue method, then a new queue will be created for the connection. Setting an explicit queue might be handy if you want multiple connection to share the same queue for synchronization.
								

								 	 	
									DispatchQueue
								

								
	
									host (common)
								

								 	
									The URI of the MQTT broker to connect too - this component also supports SSL - e.g. ssl://127.0.0.1:8883
								

								 	
									tcp://127.0.0.1:1883
								

								 	
									URI
								

								
	
									keepAlive (common)
								

								 	
									Configures the Keep Alive timer in seconds. Defines the maximum time interval between messages received from a client. It enables the server to detect that the network connection to a client has dropped, without having to wait for the long TCP/IP timeout.
								

								 	 	
									short
								

								
	
									localAddress (common)
								

								 	
									The local InetAddress and port to use
								

								 	 	
									URI
								

								
	
									maxReadRate (common)
								

								 	
									Sets the maximum bytes per second that this transport will receive data at. This setting throttles reads so that the rate is not exceeded. Defaults to 0 which disables throttling.
								

								 	 	
									int
								

								
	
									maxWriteRate (common)
								

								 	
									Sets the maximum bytes per second that this transport will send data at. This setting throttles writes so that the rate is not exceeded. Defaults to 0 which disables throttling.
								

								 	 	
									int
								

								
	
									mqttQosPropertyName (common)
								

								 	
									The property name to look for on an Exchange for an individual published message. If this is set (one of AtMostOnce, AtLeastOnce or ExactlyOnce) - then that QoS will be set on the message sent to the MQTT message broker.
								

								 	
									MQTTQos
								

								 	
									String
								

								
	
									mqttRetainPropertyName (common)
								

								 	
									The property name to look for on an Exchange for an individual published message. If this is set (expects a Boolean value) - then the retain property will be set on the message sent to the MQTT message broker.
								

								 	
									MQTTRetain
								

								 	
									String
								

								
	
									mqttTopicPropertyName (common)
								

								 	
									These a properties that are looked for in an Exchange - to publish to
								

								 	
									MQTTTopicPropertyName
								

								 	
									String
								

								
	
									publishTopicName (common)
								

								 	
									The default Topic to publish messages on
								

								 	
									camel/mqtt/test
								

								 	
									String
								

								
	
									qualityOfService (common)
								

								 	
									Quality of service level to use for topics.
								

								 	
									AtLeastOnce
								

								 	
									String
								

								
	
									receiveBufferSize (common)
								

								 	
									Sets the size of the internal socket receive buffer. Defaults to 65536 (64k)
								

								 	
									65536
								

								 	
									int
								

								
	
									reconnectAttemptsMax (common)
								

								 	
									The maximum number of reconnect attempts before an error is reported back to the client after a server connection had previously been established. Set to -1 to use unlimited attempts. Defaults to -1.
								

								 	
									-1
								

								 	
									long
								

								
	
									reconnectBackOffMultiplier (common)
								

								 	
									The Exponential backoff be used between reconnect attempts. Set to 1 to disable exponential backoff. Defaults to 2.
								

								 	
									2.0
								

								 	
									double
								

								
	
									reconnectDelay (common)
								

								 	
									How long to wait in ms before the first reconnect attempt. Defaults to 10.
								

								 	
									10
								

								 	
									long
								

								
	
									reconnectDelayMax (common)
								

								 	
									The maximum amount of time in ms to wait between reconnect attempts. Defaults to 30,000.
								

								 	
									30000
								

								 	
									long
								

								
	
									sendBufferSize (common)
								

								 	
									Sets the size of the internal socket send buffer. Defaults to 65536 (64k)
								

								 	
									65536
								

								 	
									int
								

								
	
									sendWaitInSeconds (common)
								

								 	
									The maximum time the Component will wait for a receipt from the MQTT broker to acknowledge a published message before throwing an exception
								

								 	
									5
								

								 	
									int
								

								
	
									sslContext (common)
								

								 	
									To configure security using SSLContext configuration
								

								 	 	
									SSLContext
								

								
	
									subscribeTopicName (common)
								

								 	
									Deprecated These are set on the Endpoint - together with properties inherited from MQTT
								

								 	 	
									String
								

								
	
									subscribeTopicNames (common)
								

								 	
									A comma-delimited list of Topics to subscribe to for messages. Note that each item of this list can contain MQTT wildcards (and/or), in order to subscribe to topics matching a certain pattern within a hierarchy. For example, is a wildcard for all topics at a level within the hierarchy, so if a broker has topics topics/one and topics/two, then topics/ can be used to subscribe to both. A caveat to consider here is that if the broker adds topics/three, the route would also begin to receive messages from that topic.
								

								 	 	
									String
								

								
	
									trafficClass (common)
								

								 	
									Sets traffic class or type-of-service octet in the IP header for packets sent from the transport. Defaults to 8 which means the traffic should be optimized for throughput.
								

								 	
									8
								

								 	
									int
								

								
	
									version (common)
								

								 	
									Set to 3.1.1 to use MQTT version 3.1.1. Otherwise defaults to the 3.1 protocol version.
								

								 	
									3.1
								

								 	
									String
								

								
	
									willMessage (common)
								

								 	
									The Will message to send. Defaults to a zero length message.
								

								 	 	
									String
								

								
	
									willQos (common)
								

								 	
									Sets the quality of service to use for the Will message. Defaults to AT_MOST_ONCE.
								

								 	
									AtMostOnce
								

								 	
									QoS
								

								
	
									willRetain (common)
								

								 	
									Set to true if you want the Will to be published with the retain option.
								

								 	 	
									QoS
								

								
	
									willTopic (common)
								

								 	
									If set the server will publish the client’s Will message to the specified topics if the client has an unexpected disconnection.
								

								 	 	
									String
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									lazySessionCreation (producer)
								

								 	
									Sessions can be lazily created to avoid exceptions, if the remote server is not up and running when the Camel producer is started.
								

								 	
									true
								

								 	
									boolean
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

Samples

				Sending messages:
			
from("direct:foo").to("mqtt:cheese?publishTopicName=test.mqtt.topic");

				Consuming messages:
			
from("mqtt:bar?subscribeTopicName=test.mqtt.topic").transform(body().convertToString()).to("mock:result")

Endpoints

				Camel supports the Message Endpoint pattern using the Endpoint interface. Endpoints are usually created by a Component and Endpoints are usually referred to in the DSL via their URIs.
			

				From an Endpoint you can use the following methods
			
	
						createProducer() will create a Producer for sending message exchanges to the endpoint
					
	
						createConsumer() implements the Event Driven Consumer pattern for consuming message exchanges from the endpoint via a Processor when creating a Consumer
					
	
						createPollingConsumer() implements the Polling Consumer pattern for consuming message exchanges from the endpoint via a PollingConsumer
					

See Also

	
						Configuring Camel
					
	
						Message Endpoint pattern
					
	
						URIs
					
	
						Writing Components
					

Chapter 230. MSV Component

			Available as of Camel version 1.1
		

			The MSV component performs XML validation of the message body using the MSV Library and any of the supported XML schema languages, such as XML Schema or RelaxNG XML Syntax.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-msv</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>

			Note that the Jing component also supports RelaxNG Compact Syntax
		
URI format

msv:someLocalOrRemoteResource[?options]

				Where someLocalOrRemoteResource is some URL to a local resource on the classpath or a full URL to a remote resource or resource on the file system. For example
			
msv:org/foo/bar.rng
msv:file:../foo/bar.rng
msv:http://acme.com/cheese.rng

				You can append query options to the URI in the following format, ?option=value&option=value&…​
			

Options

				The MSV component supports 3 options which are listed below.
			
	Name	Description	Default	Type
	
								schemaFactory (advanced)
							

							 	
								To use the javax.xml.validation.SchemaFactory.
							

							 	 	
								SchemaFactory
							

							
	
								resourceResolverFactory (advanced)
							

							 	
								To use a custom LSResourceResolver which depends on a dynamic endpoint resource URI
							

							 	 	
								ValidatorResource ResolverFactory
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The MSV endpoint is configured using URI syntax:
			
msv:resourceUri

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									resourceUri
								

								 	
									Required URL to a local resource on the classpath, or a reference to lookup a bean in the Registry, or a full URL to a remote resource or resource on the file system which contains the XSD to validate against.
								

								 	 	
									String
								

								

Query Parameters (11 parameters):

	Name	Description	Default	Type
	
									failOnNullBody (producer)
								

								 	
									Whether to fail if no body exists.
								

								 	
									true
								

								 	
									boolean
								

								
	
									failOnNullHeader (producer)
								

								 	
									Whether to fail if no header exists when validating against a header.
								

								 	
									true
								

								 	
									boolean
								

								
	
									headerName (producer)
								

								 	
									To validate against a header instead of the message body.
								

								 	 	
									String
								

								
	
									errorHandler (advanced)
								

								 	
									To use a custom org.apache.camel.processor.validation.ValidatorErrorHandler. The default error handler captures the errors and throws an exception.
								

								 	 	
									ValidatorErrorHandler
								

								
	
									resourceResolver (advanced)
								

								 	
									To use a custom LSResourceResolver. Do not use together with resourceResolverFactory
								

								 	 	
									LSResourceResolver
								

								
	
									resourceResolverFactory (advanced)
								

								 	
									To use a custom LSResourceResolver which depends on a dynamic endpoint resource URI. The default resource resolver factory resturns a resource resolver which can read files from the class path and file system. Do not use together with resourceResolver.
								

								 	 	
									ValidatorResource ResolverFactory
								

								
	
									schemaFactory (advanced)
								

								 	
									To use a custom javax.xml.validation.SchemaFactory
								

								 	 	
									SchemaFactory
								

								
	
									schemaLanguage (advanced)
								

								 	
									Configures the W3C XML Schema Namespace URI.
								

								 	
									http://www.w3.org/2001/XMLSchema
								

								 	
									String
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									useDom (advanced)
								

								 	
									Whether DOMSource/DOMResult or SaxSource/SaxResult should be used by the validator.
								

								 	
									false
								

								 	
									boolean
								

								
	
									useSharedSchema (advanced)
								

								 	
									Whether the Schema instance should be shared or not. This option is introduced to work around a JDK 1.6.x bug. Xerces should not have this issue.
								

								 	
									true
								

								 	
									boolean
								

								

Example

				The following example shows how to configure a route from endpoint direct:start which then goes to one of two endpoints, either mock:valid or mock:invalid based on whether or not the XML matches the given RelaxNG XML Schema (which is supplied on the classpath).
			

See Also

	
						Configuring Camel
					
	
						Component
					
	
						Endpoint
					
	
						Getting Started
					

Chapter 231. Mustache Component

			Available as of Camel version 2.12
		

			The mustache: component allows for processing a message using a Mustache template. This can be ideal when using Templating to generate responses for requests.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-mustache</artifactId>
<version>x.x.x</version> <!-- use the same version as your Camel core version -->
</dependency>
URI format

mustache:templateName[?options]

				Where templateName is the classpath-local URI of the template to invoke; or the complete URL of the remote template (eg: file://folder/myfile.mustache).
			

				You can append query options to the URI in the following format, ?option=value&option=value&…​
			

Options

				The Mustache component supports 2 options which are listed below.
			
	Name	Description	Default	Type
	
								mustacheFactory (advanced)
							

							 	
								To use a custom MustacheFactory
							

							 	 	
								MustacheFactory
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The Mustache endpoint is configured using URI syntax:
			
mustache:resourceUri

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									resourceUri
								

								 	
									Required Path to the resource. You can prefix with: classpath, file, http, ref, or bean. classpath, file and http loads the resource using these protocols (classpath is default). ref will lookup the resource in the registry. bean will call a method on a bean to be used as the resource. For bean you can specify the method name after dot, eg bean:myBean.myMethod.
								

								 	 	
									String
								

								

Query Parameters (5 parameters):

	Name	Description	Default	Type
	
									contentCache (producer)
								

								 	
									Sets whether to use resource content cache or not
								

								 	
									false
								

								 	
									boolean
								

								
	
									encoding (producer)
								

								 	
									Character encoding of the resource content.
								

								 	 	
									String
								

								
	
									endDelimiter (producer)
								

								 	
									Characters used to mark template code end.
								

								 	
									}}
								

								 	
									String
								

								
	
									startDelimiter (producer)
								

								 	
									Characters used to mark template code beginning.
								

								 	
									{{
								

								 	
									String
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

Mustache Context

				Camel will provide exchange information in the Mustache context (just a Map). The Exchange is transferred as:
			
	key	value
	
								exchange
							

							 	
								The Exchange itself.
							

							
	
								exchange.properties
							

							 	
								The Exchange properties.
							

							
	
								headers
							

							 	
								The headers of the In message.
							

							
	
								camelContext
							

							 	
								The Camel Context.
							

							
	
								request
							

							 	
								The In message.
							

							
	
								body
							

							 	
								The In message body.
							

							
	
								response
							

							 	
								The Out message (only for InOut message exchange pattern).
							

							

Dynamic templates

				Camel provides two headers by which you can define a different resource location for a template or the template content itself. If any of these headers is set then Camel uses this over the endpoint configured resource. This allows you to provide a dynamic template at runtime.
			
	Header	Type	Description	Support Version
	
								MustacheConstants.MUSTACHE_RESOURCE_URI
							

							 	
								String
							

							 	
								A URI for the template resource to use instead of the endpoint configured.
							

							 	
	
								MustacheConstants.MUSTACHE_TEMPLATE
							

							 	
								String
							

							 	
								The template to use instead of the endpoint configured.
							

							 	

Samples

				For example you could use something like:
			
from("activemq:My.Queue").
to("mustache:com/acme/MyResponse.mustache");

				To use a Mustache template to formulate a response for a message for InOut message exchanges (where there is a JMSReplyTo header).
			

				If you want to use InOnly and consume the message and send it to another destination you could use:
			
from("activemq:My.Queue").
to("mustache:com/acme/MyResponse.mustache").
to("activemq:Another.Queue");

				It’s possible to specify what template the component should use dynamically via a header, so for example:
			
from("direct:in").
setHeader(MustacheConstants.MUSTACHE_RESOURCE_URI).constant("path/to/my/template.mustache").
to("mustache:dummy");

The Email Sample

				In this sample we want to use Mustache templating for an order confirmation email. The email template is laid out in Mustache as:
			
Dear {{headers.lastName}}}, {{headers.firstName}}

Thanks for the order of {{headers.item}}.

Regards Camel Riders Bookstore
{{body}}

See Also

	
						Configuring Camel
					
	
						Component
					
	
						Endpoint
					
	
						Getting Started
					

Chapter 232. MVEL Component

			Available as of Camel version 2.12
		

			The mvel: component allows you to process a message using an MVEL template. This can be ideal when using Templating to generate responses for requests.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-mvel</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>
URI format

mvel:templateName[?options]

				Where templateName is the classpath-local URI of the template to invoke; or the complete URL of the remote template (eg: file://folder/myfile.mvel).
			

				You can append query options to the URI in the following format, ?option=value&option=value&…​
			

Options

				The MVEL component has no options.
			

				The MVEL endpoint is configured using URI syntax:
			
mvel:resourceUri

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									resourceUri
								

								 	
									Required Path to the resource. You can prefix with: classpath, file, http, ref, or bean. classpath, file and http loads the resource using these protocols (classpath is default). ref will lookup the resource in the registry. bean will call a method on a bean to be used as the resource. For bean you can specify the method name after dot, eg bean:myBean.myMethod.
								

								 	 	
									String
								

								

Query Parameters (3 parameters):

	Name	Description	Default	Type
	
									contentCache (producer)
								

								 	
									Sets whether to use resource content cache or not
								

								 	
									false
								

								 	
									boolean
								

								
	
									encoding (producer)
								

								 	
									Character encoding of the resource content.
								

								 	 	
									String
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

Message Headers

				The mvel component sets a couple headers on the message.
			
	Header	Description
	
								CamelMvelResourceUri
							

							 	
								The templateName as a String object.
							

							

MVEL Context

				Camel will provide exchange information in the MVEL context (just a Map). The Exchange is transfered as:
			
	key	value
	
								exchange
							

							 	
								The Exchange itself.
							

							
	
								exchange.properties
							

							 	
								The Exchange properties.
							

							
	
								headers
							

							 	
								The headers of the In message.
							

							
	
								camelContext
							

							 	
								The Camel Context intance.
							

							
	
								request
							

							 	
								The In message.
							

							
	
								in
							

							 	
								The In message.
							

							
	
								body
							

							 	
								The In message body.
							

							
	
								out
							

							 	
								The Out message (only for InOut message exchange pattern).
							

							
	
								response
							

							 	
								The Out message (only for InOut message exchange pattern).
							

							

Hot reloading

				The mvel template resource is, by default, hot reloadable for both file and classpath resources (expanded jar). If you set contentCache=true, Camel will only load the resource once, and thus hot reloading is not possible. This scenario can be used in production, when the resource never changes.
			

Dynamic templates

				Camel provides two headers by which you can define a different resource location for a template or the template content itself. If any of these headers is set then Camel uses this over the endpoint configured resource. This allows you to provide a dynamic template at runtime.
			
	Header	Type	Description
	
								CamelMvelResourceUri
							

							 	
								String
							

							 	
								A URI for the template resource to use instead of the endpoint configured.
							

							
	
								CamelMvelTemplate
							

							 	
								String
							

							 	
								The template to use instead of the endpoint configured.
							

							

Samples

				For example you could use something like
			
from("activemq:My.Queue").
 to("mvel:com/acme/MyResponse.mvel");

				To use a MVEL template to formulate a response to a message for InOut message exchanges (where there is a JMSReplyTo header).
			

				To specify what template the component should use dynamically via a header, so for example:
			
from("direct:in").
 setHeader("CamelMvelResourceUri").constant("path/to/my/template.mvel").
 to("mvel:dummy");

				To specify a template directly as a header the component should use dynamically via a header, so for example:
			
from("direct:in").
 setHeader("CamelMvelTemplate").constant("@{\"The result is \" + request.body * 3}\" }").
 to("velocity:dummy");

See Also

	
						Configuring Camel
					
	
						Component
					
	
						Endpoint
					
	
						Getting Started
					

Chapter 233. MVEL Language

			Available as of Camel version 2.0
		

			Camel allows Mvel to be used as an Expression or Predicate the DSL or Xml Configuration.
		

			You could use Mvel to create an Predicate in a Message Filter or as an Expression for a Recipient List
		

			You can use Mvel dot notation to invoke operations. If you for instance have a body that contains a POJO that has a getFamiliyName method then you can construct the syntax as follows:
		
"request.body.familyName"
 // or
"getRequest().getBody().getFamilyName()"
Mvel Options

				The MVEL language supports 1 options which are listed below.
			
	Name	Default	Java Type	Description
	
								trim
							

							 	
								true
							

							 	
								Boolean
							

							 	
								Whether to trim the value to remove leading and trailing whitespaces and line breaks
							

							

Variables

	Variable	Type	Description
	
								this
							

							 	
								Exchange
							

							 	
								the Exchange is the root object
							

							
	
								exchange
							

							 	
								Exchange
							

							 	
								the Exchange object
							

							
	
								exception
							

							 	
								Throwable
							

							 	
								the Exchange exception (if any)
							

							
	
								exchangeId
							

							 	
								String
							

							 	
								the exchange id
							

							
	
								fault
							

							 	
								Message
							

							 	
								the Fault message (if any)
							

							
	
								request
							

							 	
								Message
							

							 	
								the exchange.in message
							

							
	
								response
							

							 	
								Message
							

							 	
								the exchange.out message (if any)
							

							
	
								properties
							

							 	
								Map
							

							 	
								the exchange properties
							

							
	
								property(name)
							

							 	
								Object
							

							 	
								the property by the given name
							

							
	
								property(name, type)
							

							 	
								Type
							

							 	
								the property by the given name as the given type
							

							

Samples

				For example you could use Mvel inside a Message Filter in XML
			
<route>
 <from uri="seda:foo"/>
 <filter>
 <mvel>request.headers.foo == 'bar'</mvel>
 <to uri="seda:bar"/>
 </filter>
</route>

				And the sample using Java DSL:
			
 from("seda:foo").filter().mvel("request.headers.foo == 'bar'").to("seda:bar");

Loading script from external resource

				Available as of Camel 2.11
			

				You can externalize the script and have Camel load it from a resource such as "classpath:", "file:", or "http:".
 This is done using the following syntax: "resource:scheme:location", eg to refer to a file on the classpath you can do:
			
.setHeader("myHeader").mvel("resource:classpath:script.mvel")

Dependencies

				To use Mvel in your camel routes you need to add the a dependency on camel-mvel which implements the Mvel language.
			

				If you use maven you could just add the following to your pom.xml, substituting the version number for the latest & greatest release (see the download page for the latest versions).
			
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-mvel</artifactId>
 <version>x.x.x</version>
</dependency>

Chapter 234. MyBatis Component

			Available as of Camel version 2.7
		

			The mybatis: component allows you to query, poll, insert, update and delete data in a relational database using MyBatis.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-mybatis</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>
URI format

mybatis:statementName[?options]

				Where statementName is the statement name in the MyBatis XML mapping file which maps to the query, insert, update or delete operation you wish to evaluate.
			

				You can append query options to the URI in the following format, ?option=value&option=value&…​
			

				This component will by default load the MyBatis SqlMapConfig file from the root of the classpath with the expected name of SqlMapConfig.xml.
 If the file is located in another location, you will need to configure the configurationUri option on the MyBatisComponent component.
			

Options

				The MyBatis component supports 3 options which are listed below.
			
	Name	Description	Default	Type
	
								sqlSessionFactory (advanced)
							

							 	
								To use the SqlSessionFactory
							

							 	 	
								SqlSessionFactory
							

							
	
								configurationUri (common)
							

							 	
								Location of MyBatis xml configuration file. The default value is: SqlMapConfig.xml loaded from the classpath
							

							 	
								SqlMapConfig.xml
							

							 	
								String
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The MyBatis endpoint is configured using URI syntax:
			
mybatis:statement

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									statement
								

								 	
									Required The statement name in the MyBatis XML mapping file which maps to the query, insert, update or delete operation you wish to evaluate.
								

								 	 	
									String
								

								

Query Parameters (29 parameters):

	Name	Description	Default	Type
	
									outputHeader (common)
								

								 	
									Store the query result in a header instead of the message body. By default, outputHeader == null and the query result is stored in the message body, any existing content in the message body is discarded. If outputHeader is set, the value is used as the name of the header to store the query result and the original message body is preserved. Setting outputHeader will also omit populating the default CamelMyBatisResult header since it would be the same as outputHeader all the time.
								

								 	 	
									String
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									inputHeader (consumer)
								

								 	
									User the header value for input parameters instead of the message body. By default, inputHeader == null and the input parameters are taken from the message body. If outputHeader is set, the value is used and query parameters will be taken from the header instead of the body.
								

								 	 	
									String
								

								
	
									maxMessagesPerPoll (consumer)
								

								 	
									This option is intended to split results returned by the database pool into the batches and deliver them in multiple exchanges. This integer defines the maximum messages to deliver in single exchange. By default, no maximum is set. Can be used to set a limit of e.g. 1000 to avoid when starting up the server that there are thousands of files. Set a value of 0 or negative to disable it.
								

								 	
									0
								

								 	
									int
								

								
	
									onConsume (consumer)
								

								 	
									Statement to run after data has been processed in the route
								

								 	 	
									String
								

								
	
									routeEmptyResultSet (consumer)
								

								 	
									Whether allow empty resultset to be routed to the next hop
								

								 	
									false
								

								 	
									boolean
								

								
	
									sendEmptyMessageWhenIdle (consumer)
								

								 	
									If the polling consumer did not poll any files, you can enable this option to send an empty message (no body) instead.
								

								 	
									false
								

								 	
									boolean
								

								
	
									transacted (consumer)
								

								 	
									Enables or disables transaction. If enabled then if processing an exchange failed then the consumer break out processing any further exchanges to cause a rollback eager
								

								 	
									false
								

								 	
									boolean
								

								
	
									useIterator (consumer)
								

								 	
									Process resultset individually or as a list
								

								 	
									true
								

								 	
									boolean
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									pollStrategy (consumer)
								

								 	
									A pluggable org.apache.camel.PollingConsumerPollingStrategy allowing you to provide your custom implementation to control error handling usually occurred during the poll operation before an Exchange have been created and being routed in Camel.
								

								 	 	
									PollingConsumerPoll Strategy
								

								
	
									processingStrategy (consumer)
								

								 	
									To use a custom MyBatisProcessingStrategy
								

								 	 	
									MyBatisProcessing Strategy
								

								
	
									executorType (producer)
								

								 	
									The executor type to be used while executing statements. simple - executor does nothing special. reuse - executor reuses prepared statements. batch - executor reuses statements and batches updates.
								

								 	
									SIMPLE
								

								 	
									ExecutorType
								

								
	
									statementType (producer)
								

								 	
									Mandatory to specify for the producer to control which kind of operation to invoke.
								

								 	 	
									StatementType
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									backoffErrorThreshold (scheduler)
								

								 	
									The number of subsequent error polls (failed due some error) that should happen before the backoffMultipler should kick-in.
								

								 	 	
									int
								

								
	
									backoffIdleThreshold (scheduler)
								

								 	
									The number of subsequent idle polls that should happen before the backoffMultipler should kick-in.
								

								 	 	
									int
								

								
	
									backoffMultiplier (scheduler)
								

								 	
									To let the scheduled polling consumer backoff if there has been a number of subsequent idles/errors in a row. The multiplier is then the number of polls that will be skipped before the next actual attempt is happening again. When this option is in use then backoffIdleThreshold and/or backoffErrorThreshold must also be configured.
								

								 	 	
									int
								

								
	
									delay (scheduler)
								

								 	
									Milliseconds before the next poll. You can also specify time values using units, such as 60s (60 seconds), 5m30s (5 minutes and 30 seconds), and 1h (1 hour).
								

								 	
									500
								

								 	
									long
								

								
	
									greedy (scheduler)
								

								 	
									If greedy is enabled, then the ScheduledPollConsumer will run immediately again, if the previous run polled 1 or more messages.
								

								 	
									false
								

								 	
									boolean
								

								
	
									initialDelay (scheduler)
								

								 	
									Milliseconds before the first poll starts. You can also specify time values using units, such as 60s (60 seconds), 5m30s (5 minutes and 30 seconds), and 1h (1 hour).
								

								 	
									1000
								

								 	
									long
								

								
	
									runLoggingLevel (scheduler)
								

								 	
									The consumer logs a start/complete log line when it polls. This option allows you to configure the logging level for that.
								

								 	
									TRACE
								

								 	
									LoggingLevel
								

								
	
									scheduledExecutorService (scheduler)
								

								 	
									Allows for configuring a custom/shared thread pool to use for the consumer. By default each consumer has its own single threaded thread pool.
								

								 	 	
									ScheduledExecutor Service
								

								
	
									scheduler (scheduler)
								

								 	
									To use a cron scheduler from either camel-spring or camel-quartz2 component
								

								 	
									none
								

								 	
									ScheduledPollConsumer Scheduler
								

								
	
									schedulerProperties (scheduler)
								

								 	
									To configure additional properties when using a custom scheduler or any of the Quartz2, Spring based scheduler.
								

								 	 	
									Map
								

								
	
									startScheduler (scheduler)
								

								 	
									Whether the scheduler should be auto started.
								

								 	
									true
								

								 	
									boolean
								

								
	
									timeUnit (scheduler)
								

								 	
									Time unit for initialDelay and delay options.
								

								 	
									MILLISECONDS
								

								 	
									TimeUnit
								

								
	
									useFixedDelay (scheduler)
								

								 	
									Controls if fixed delay or fixed rate is used. See ScheduledExecutorService in JDK for details.
								

								 	
									true
								

								 	
									boolean
								

								

Message Headers

				Camel will populate the result message, either IN or OUT with a header with the statement used:
			
	Header	Type	Description
	
								CamelMyBatisStatementName
							

							 	
								String
							

							 	
								The statementName used (for example: insertAccount).
							

							
	
								CamelMyBatisResult
							

							 	
								Object
							

							 	
								The response returned from MtBatis in any of the operations. For instance an INSERT could return the auto-generated key, or number of rows etc.
							

							

Message Body

				The response from MyBatis will only be set as the body if it’s a SELECT statement. That means, for example, for INSERT statements Camel will not replace the body. This allows you to continue routing and keep the original body. The response from MyBatis is always stored in the header with the key CamelMyBatisResult.
			

Samples

				For example if you wish to consume beans from a JMS queue and insert them into a database you could do the following:
			
from("activemq:queue:newAccount").
 to("mybatis:insertAccount?statementType=Insert");

				Notice we have to specify the statementType, as we need to instruct Camel which kind of operation to invoke.
			

				Where insertAccount is the MyBatis ID in the SQL mapping file:
			
 <!-- Insert example, using the Account parameter class -->
 <insert id="insertAccount" parameterType="Account">
 insert into ACCOUNT (
 ACC_ID,
 ACC_FIRST_NAME,
 ACC_LAST_NAME,
 ACC_EMAIL
)
 values (
 #{id}, #{firstName}, #{lastName}, #{emailAddress}
)
 </insert>

Using StatementType for better control of MyBatis

				When routing to an MyBatis endpoint you will want more fine grained control so you can control whether the SQL statement to be executed is a SELECT, UPDATE, DELETE or INSERT etc. So for instance if we want to route to an MyBatis endpoint in which the IN body contains parameters to a SELECT statement we can do:
			

				In the code above we can invoke the MyBatis statement selectAccountById and the IN body should contain the account id we want to retrieve, such as an Integer type.
			

				We can do the same for some of the other operations, such as SelectList:
			

				And the same for UPDATE, where we can send an Account object as the IN body to MyBatis:
			
Using InsertList StatementType

					Available as of Camel 2.10
				

					MyBatis allows you to insert multiple rows using its for-each batch driver. To use this, you need to use the <foreach> in the mapper XML file. For example as shown below:
				

					Then you can insert multiple rows, by sending a Camel message to the mybatis endpoint which uses the InsertList statement type, as shown below:
				

Using UpdateList StatementType

					Available as of Camel 2.11
				

					MyBatis allows you to update multiple rows using its for-each batch driver. To use this, you need to use the <foreach> in the mapper XML file. For example as shown below:
				
<update id="batchUpdateAccount" parameterType="java.util.Map">
 update ACCOUNT set
 ACC_EMAIL = #{emailAddress}
 where
 ACC_ID in
 <foreach item="Account" collection="list" open="(" close=")" separator=",">
 #{Account.id}
 </foreach>
</update>

					Then you can update multiple rows, by sending a Camel message to the mybatis endpoint which uses the UpdateList statement type, as shown below:
				
from("direct:start")
 .to("mybatis:batchUpdateAccount?statementType=UpdateList")
 .to("mock:result");

Using DeleteList StatementType

					Available as of Camel 2.11
				

					MyBatis allows you to delete multiple rows using its for-each batch driver. To use this, you need to use the <foreach> in the mapper XML file. For example as shown below:
				
<delete id="batchDeleteAccountById" parameterType="java.util.List">
 delete from ACCOUNT
 where
 ACC_ID in
 <foreach item="AccountID" collection="list" open="(" close=")" separator=",">
 #{AccountID}
 </foreach>
</delete>

					Then you can delete multiple rows, by sending a Camel message to the mybatis endpoint which uses the DeleteList statement type, as shown below:
				
from("direct:start")
 .to("mybatis:batchDeleteAccount?statementType=DeleteList")
 .to("mock:result");

Notice on InsertList, UpdateList and DeleteList StatementTypes

					Parameter of any type (List, Map, etc.) can be passed to mybatis and an end user is responsible for handling it as required
 with the help of mybatis dynamic queries capabilities.
				

Scheduled polling example

					This component supports scheduled polling and can therefore be used as a Polling Consumer. For example to poll the database every minute:
				
from("mybatis:selectAllAccounts?delay=60000").to("activemq:queue:allAccounts");

					See "ScheduledPollConsumer Options" on Polling Consumer for more options.
				

					Alternatively you can use another mechanism for triggering the scheduled polls, such as the Timer or Quartz components. In the sample below we poll the database, every 30 seconds using the Timer component and send the data to the JMS queue:
				
from("timer://pollTheDatabase?delay=30000").to("mybatis:selectAllAccounts").to("activemq:queue:allAccounts");

					And the MyBatis SQL mapping file used:
				
 <!-- Select with no parameters using the result map for Account class. -->
 <select id="selectAllAccounts" resultMap="AccountResult">
 select * from ACCOUNT
 </select>

Using onConsume

					This component supports executing statements after data have been consumed and processed by Camel. This allows you to do post updates in the database. Notice all statements must be UPDATE statements. Camel supports executing multiple statements whose names should be separated by commas.
				

					The route below illustrates we execute the consumeAccount statement data is processed. This allows us to change the status of the row in the database to processed, so we avoid consuming it twice or more.
				

					And the statements in the sqlmap file:
				

Participating in transactions

					Setting up a transaction manager under camel-mybatis can be a little bit fiddly, as it involves externalising the database configuration outside the standard MyBatis SqlMapConfig.xml file.
				

					The first part requires the setup of a DataSource. This is typically a pool (either DBCP, or c3p0), which needs to be wrapped in a Spring proxy. This proxy enables non-Spring use of the DataSource to participate in Spring transactions (the MyBatis SqlSessionFactory does just this).
				
 <bean id="dataSource" class="org.springframework.jdbc.datasource.TransactionAwareDataSourceProxy">
 <constructor-arg>
 <bean class="com.mchange.v2.c3p0.ComboPooledDataSource">
 <property name="driverClass" value="org.postgresql.Driver"/>
 <property name="jdbcUrl" value="jdbc:postgresql://localhost:5432/myDatabase"/>
 <property name="user" value="myUser"/>
 <property name="password" value="myPassword"/>
 </bean>
 </constructor-arg>
 </bean>

					This has the additional benefit of enabling the database configuration to be externalised using property placeholders.
				

					A transaction manager is then configured to manage the outermost DataSource:
				
 <bean id="txManager" class="org.springframework.jdbc.datasource.DataSourceTransactionManager">
 <property name="dataSource" ref="dataSource"/>
 </bean>

					A mybatis-springSqlSessionFactoryBean then wraps that same DataSource:
				
 <bean id="sqlSessionFactory" class="org.mybatis.spring.SqlSessionFactoryBean">
 <property name="dataSource" ref="dataSource"/>
 <!-- standard mybatis config file -->
 <property name="configLocation" value="/META-INF/SqlMapConfig.xml"/>
 <!-- externalised mappers -->
 <property name="mapperLocations" value="classpath*:META-INF/mappers/**/*.xml"/>
 </bean>

					The camel-mybatis component is then configured with that factory:
				
 <bean id="mybatis" class="org.apache.camel.component.mybatis.MyBatisComponent">
 <property name="sqlSessionFactory" ref="sqlSessionFactory"/>
 </bean>

					Finally, a transaction policy is defined over the top of the transaction manager, which can then be used as usual:
				
 <bean id="PROPAGATION_REQUIRED" class="org.apache.camel.spring.spi.SpringTransactionPolicy">
 <property name="transactionManager" ref="txManager"/>
 <property name="propagationBehaviorName" value="PROPAGATION_REQUIRED"/>
 </bean>

 <camelContext id="my-model-context" xmlns="http://camel.apache.org/schema/spring">
 <route id="insertModel">
 <from uri="direct:insert"/>
 <transacted ref="PROPAGATION_REQUIRED"/>
 <to uri="mybatis:myModel.insert?statementType=Insert"/>
 </route>
 </camelContext>

See Also

	
						Configuring Camel
					
	
						Component
					
	
						Endpoint
					
	
						Getting Started
					

Chapter 235. MyBatis Bean Component

			Available as of Camel version 2.22
		

			The mybatis-bean: component allows you to query, insert, update and delete data in a relational database using MyBatis bean annotations.
		

			This component can only be used as a producer. If you want to consume from MyBatis then use the regular mybatis component.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-mybatis</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>

			This component will by default load the MyBatis SqlMapConfig file from the root of the classpath with the expected name of SqlMapConfig.xml.
 If the file is located in another location, you will need to configure the configurationUri option on the MyBatisComponent component.
		
Options

				The MyBatis Bean component supports 3 options, which are listed below.
			
	Name	Description	Default	Type
	
								sqlSessionFactory (advanced)
							

							 	
								To use the SqlSessionFactory
							

							 	 	
								SqlSessionFactory
							

							
	
								configurationUri (producer)
							

							 	
								Location of MyBatis xml configuration file. The default value is: SqlMapConfig.xml loaded from the classpath
							

							 	
								SqlMapConfig.xml
							

							 	
								String
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The MyBatis Bean endpoint is configured using URI syntax:
			
mybatis-bean:beanName:methodName

				with the following path and query parameters:
			
Path Parameters (2 parameters):

	Name	Description	Default	Type
	
									beanName
								

								 	
									Required Name of the bean with the MyBatis annotations. This can either by a type alias or a FQN class name.
								

								 	 	
									String
								

								
	
									methodName
								

								 	
									Required Name of the method on the bean that has the SQL query to be executed.
								

								 	 	
									String
								

								

Query Parameters (4 parameters):

	Name	Description	Default	Type
	
									executorType (producer)
								

								 	
									The executor type to be used while executing statements. simple - executor does nothing special. reuse - executor reuses prepared statements. batch - executor reuses statements and batches updates.
								

								 	
									SIMPLE
								

								 	
									ExecutorType
								

								
	
									inputHeader (producer)
								

								 	
									User the header value for input parameters instead of the message body. By default, inputHeader == null and the input parameters are taken from the message body. If outputHeader is set, the value is used and query parameters will be taken from the header instead of the body.
								

								 	 	
									String
								

								
	
									outputHeader (producer)
								

								 	
									Store the query result in a header instead of the message body. By default, outputHeader == null and the query result is stored in the message body, any existing content in the message body is discarded. If outputHeader is set, the value is used as the name of the header to store the query result and the original message body is preserved. Setting outputHeader will also omit populating the default CamelMyBatisResult header since it would be the same as outputHeader all the time.
								

								 	 	
									String
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								

Spring Boot Auto-Configuration

				The component supports 4 options, which are listed below.
			
	Name	Description	Default	Type
	
								camel.component.mybatis-bean.configuration-uri
							

							 	
								Location of MyBatis xml configuration file. The default value is: SqlMapConfig.xml loaded from the classpath
							

							 	
								SqlMapConfig.xml
							

							 	
								String
							

							
	
								camel.component.mybatis-bean.enabled
							

							 	
								Whether to enable auto configuration of the mybatis-bean component. This is enabled by default.
							

							 	 	
								Boolean
							

							
	
								camel.component.mybatis-bean.resolve-property-placeholders
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								Boolean
							

							
	
								camel.component.mybatis-bean.sql-session-factory
							

							 	
								To use the SqlSessionFactory. The option is a org.apache.ibatis.session.SqlSessionFactory type.
							

							 	 	
								String
							

							

Message Headers

				Camel will populate the result message, either IN or OUT with a header with the statement used:
			
	Header	Type	Description
	
								CamelMyBatisResult
							

							 	
								Object
							

							 	
								The response returned from MtBatis in any of the operations. For instance an INSERT could return the auto-generated key, or number of rows etc.
							

							

Message Body

				The response from MyBatis will only be set as the body if it’s a SELECT statement. That means, for example, for INSERT statements Camel will not replace the body. This allows you to continue routing and keep the original body. The response from MyBatis is always stored in the header with the key CamelMyBatisResult.
			

Samples

				For example if you wish to consume beans from a JMS queue and insert them into a database you could do the following:
			
from("activemq:queue:newAccount")
 .to("mybatis-bean:AccountService:insertBeanAccount");

				Notice we have to specify the bean name and method name, as we need to instruct Camel which kind of operation to invoke.
			

				Where AccountService is the type alias for the bean that has the MyBatis bean annotations. You can configure type alias in the SqlMapConfig file:
			
 <typeAliases>
 <typeAlias alias="Account" type="org.apache.camel.component.mybatis.Account"/>
 <typeAlias alias="AccountService" type="org.apache.camel.component.mybatis.bean.AccountService"/>
 </typeAliases>
On the `AccountService` bean you can declare the MyBatis mappins using annotations as shown:
public interface AccountService {

 @Select("select ACC_ID as id, ACC_FIRST_NAME as firstName, ACC_LAST_NAME as lastName"
 + ", ACC_EMAIL as emailAddress from ACCOUNT where ACC_ID = #{id}")
 Account selectBeanAccountById(@Param("id") int no);

 @Select("select * from ACCOUNT order by ACC_ID")
 @ResultMap("Account.AccountResult")
 List<Account> selectBeanAllAccounts();

 @Insert("insert into ACCOUNT (ACC_ID,ACC_FIRST_NAME,ACC_LAST_NAME,ACC_EMAIL)"
 + " values (#{id}, #{firstName}, #{lastName}, #{emailAddress})")
 void insertBeanAccount(Account account);

}

Chapter 236. Nagios Component

			Available as of Camel version 2.3
		

			The Nagios component allows you to send passive checks to Nagios.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-nagios</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>
URI format

nagios://host[:port][?Options]

				Camel provides two abilities with the Nagios component. You can send passive check messages by sending a message to its endpoint.
 Camel also provides a EventNotifer which allows you to send notifications to Nagios.
			

Options

				The Nagios component supports 2 options which are listed below.
			
	Name	Description	Default	Type
	
								configuration (advanced)
							

							 	
								To use a shared NagiosConfiguration
							

							 	 	
								NagiosConfiguration
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The Nagios endpoint is configured using URI syntax:
			
nagios:host:port

				with the following path and query parameters:
			
Path Parameters (2 parameters):

	Name	Description	Default	Type
	
									host
								

								 	
									Required This is the address of the Nagios host where checks should be send.
								

								 	 	
									String
								

								
	
									port
								

								 	
									Required The port number of the host.
								

								 	 	
									int
								

								

Query Parameters (7 parameters):

	Name	Description	Default	Type
	
									connectionTimeout (producer)
								

								 	
									Connection timeout in millis.
								

								 	
									5000
								

								 	
									int
								

								
	
									sendSync (producer)
								

								 	
									Whether or not to use synchronous when sending a passive check. Setting it to false will allow Camel to continue routing the message and the passive check message will be send asynchronously.
								

								 	
									true
								

								 	
									boolean
								

								
	
									timeout (producer)
								

								 	
									Sending timeout in millis.
								

								 	
									5000
								

								 	
									int
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									encryption (security)
								

								 	
									To specify an encryption method.
								

								 	 	
									Encryption
								

								
	
									encryptionMethod (security)
								

								 	
									Deprecated To specify an encryption method.
								

								 	 	
									NagiosEncryptionMethod
								

								
	
									password (security)
								

								 	
									Password to be authenticated when sending checks to Nagios.
								

								 	 	
									String
								

								

Sending message examples

				You can send a message to Nagios where the message payload contains the message. By default it will be OK level and use the CamelContext name as the service name. You can overrule these values using headers as shown above.
			

				For example we send the Hello Nagios message to Nagios as follows:
			
 template.sendBody("direct:start", "Hello Nagios");

 from("direct:start").to("nagios:127.0.0.1:5667?password=secret").to("mock:result");

				To send a CRITICAL message you can send the headers such as:
			
 Map headers = new HashMap();
 headers.put(NagiosConstants.LEVEL, "CRITICAL");
 headers.put(NagiosConstants.HOST_NAME, "myHost");
 headers.put(NagiosConstants.SERVICE_NAME, "myService");
 template.sendBodyAndHeaders("direct:start", "Hello Nagios", headers);

Using NagiosEventNotifer

				The Nagios component also provides an EventNotifer which you can use to send events to Nagios. For example we can enable this from Java as follows:
			
 NagiosEventNotifier notifier = new NagiosEventNotifier();
 notifier.getConfiguration().setHost("localhost");
 notifier.getConfiguration().setPort(5667);
 notifier.getConfiguration().setPassword("password");

 CamelContext context = ...
 context.getManagementStrategy().addEventNotifier(notifier);
 return context;

				In Spring XML its just a matter of defining a Spring bean with the type EventNotifier and Camel will pick it up as documented here: Advanced configuration of CamelContext using Spring.
			

See Also

	
						Configuring Camel
					
	
						Component
					
	
						Endpoint
					
	
						Getting Started
					

Chapter 237. Nats Component

			Available as of Camel version 2.17
		

			NATS is a fast and reliable messaging platform.
		

			Maven users will need to add the following dependency to their pom.xml for this component.
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-nats</artifactId>
 <!-- use the same version as your Camel core version -->
 <version>x.y.z</version>
</dependency>
URI format

nats:servers[?options]

				Where servers represents the list of NATS servers.
			

Options

				The Nats component supports 2 options which are listed below.
			
	Name	Description	Default	Type
	
								useGlobalSslContext Parameters (security)
							

							 	
								Enable usage of global SSL context parameters.
							

							 	
								false
							

							 	
								boolean
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The Nats endpoint is configured using URI syntax:
			
nats:servers

				with the following path and query parameters:
			
Path Parameters (1 parameters):

	Name	Description	Default	Type
	
									servers
								

								 	
									Required URLs to one or more NAT servers. Use comma to separate URLs when specifying multiple servers.
								

								 	 	
									String
								

								

Query Parameters (22 parameters):

	Name	Description	Default	Type
	
									flushConnection (common)
								

								 	
									Define if we want to flush connection or not
								

								 	
									false
								

								 	
									boolean
								

								
	
									flushTimeout (common)
								

								 	
									Set the flush timeout
								

								 	
									1000
								

								 	
									int
								

								
	
									maxReconnectAttempts (common)
								

								 	
									Max reconnection attempts
								

								 	
									3
								

								 	
									int
								

								
	
									noRandomizeServers (common)
								

								 	
									Whether or not randomizing the order of servers for the connection attempts
								

								 	
									false
								

								 	
									boolean
								

								
	
									pedantic (common)
								

								 	
									Whether or not running in pedantic mode (this affects performace)
								

								 	
									false
								

								 	
									boolean
								

								
	
									pingInterval (common)
								

								 	
									Ping interval to be aware if connection is still alive (in milliseconds)
								

								 	
									4000
								

								 	
									int
								

								
	
									reconnect (common)
								

								 	
									Whether or not using reconnection feature
								

								 	
									true
								

								 	
									boolean
								

								
	
									reconnectTimeWait (common)
								

								 	
									Waiting time before attempts reconnection (in milliseconds)
								

								 	
									2000
								

								 	
									int
								

								
	
									topic (common)
								

								 	
									Required The name of topic we want to use
								

								 	 	
									String
								

								
	
									verbose (common)
								

								 	
									Whether or not running in verbose mode
								

								 	
									false
								

								 	
									boolean
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									maxMessages (consumer)
								

								 	
									Stop receiving messages from a topic we are subscribing to after maxMessages
								

								 	 	
									String
								

								
	
									poolSize (consumer)
								

								 	
									Consumer pool size
								

								 	
									10
								

								 	
									int
								

								
	
									queueName (consumer)
								

								 	
									The Queue name if we are using nats for a queue configuration
								

								 	 	
									String
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									replySubject (producer)
								

								 	
									the subject to which subscribers should send response
								

								 	 	
									String
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									secure (security)
								

								 	
									Set secure option indicating TLS is required
								

								 	
									false
								

								 	
									boolean
								

								
	
									ssl (security)
								

								 	
									Whether or not using SSL
								

								 	
									false
								

								 	
									boolean
								

								
	
									sslContextParameters (security)
								

								 	
									To configure security using SSLContextParameters
								

								 	 	
									SSLContextParameters
								

								
	
									tlsDebug (security)
								

								 	
									TLS Debug, it will add additional console output
								

								 	
									false
								

								 	
									boolean
								

								

Headers

	Name	Type	Description
	
								CamelNatsMessageTimestamp
							

							 	
								long
							

							 	
								The timestamp of a consumed message.
							

							
	
								CamelNatsSubscriptionId
							

							 	
								Integer
							

							 	
								The subscription ID of a consumer.
							

							

				 Producer example:
			
from("direct:send").to("nats://localhost:4222?topic=test");

				
			

				Consumer example:
			
from("nats://localhost:4222?topic=test&maxMessages=5&queueName=test").to("mock:result");

Chapter 238. Netty Component (deprecated)

			Available as of Camel version 2.3
		
Warning

				This component is deprecated. You should use Netty4.
			

			The netty component in Camel is a socket communication component, based on the Netty project.
		

			Netty is a NIO client server framework which enables quick and easy development of network applications such as protocol servers and clients.
 Netty greatly simplifies and streamlines network programming such as TCP and UDP socket server.
		

			This camel component supports both producer and consumer endpoints.
		

			The Netty component has several options and allows fine-grained control of a number of TCP/UDP communication parameters (buffer sizes, keepAlives, tcpNoDelay etc) and facilitates both In-Only and In-Out communication on a Camel route.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-netty</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>
URI format

				The URI scheme for a netty component is as follows
			
netty:tcp://localhost:99999[?options]
netty:udp://remotehost:99999/[?options]

				This component supports producer and consumer endpoints for both TCP and UDP.
			

				You can append query options to the URI in the following format, ?option=value&option=value&…​
			

Options

				The Netty component supports 4 options which are listed below.
			
	Name	Description	Default	Type
	
								configuration (advanced)
							

							 	
								To use the NettyConfiguration as configuration when creating endpoints.
							

							 	 	
								NettyConfiguration
							

							
	
								maximumPoolSize (advanced)
							

							 	
								The core pool size for the ordered thread pool, if its in use. The default value is 16.
							

							 	
								16
							

							 	
								int
							

							
	
								useGlobalSslContext Parameters (security)
							

							 	
								Enable usage of global SSL context parameters.
							

							 	
								false
							

							 	
								boolean
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The Netty endpoint is configured using URI syntax:
			
netty:protocol:host:port

				with the following path and query parameters:
			
Path Parameters (3 parameters):

	Name	Description	Default	Type
	
									protocol
								

								 	
									Required The protocol to use which can be tcp or udp.
								

								 	 	
									String
								

								
	
									host
								

								 	
									Required The hostname. For the consumer the hostname is localhost or 0.0.0.0 For the producer the hostname is the remote host to connect to
								

								 	 	
									String
								

								
	
									port
								

								 	
									Required The host port number
								

								 	 	
									int
								

								

Query Parameters (67 parameters):

	Name	Description	Default	Type
	
									disconnect (common)
								

								 	
									Whether or not to disconnect(close) from Netty Channel right after use. Can be used for both consumer and producer.
								

								 	
									false
								

								 	
									boolean
								

								
	
									keepAlive (common)
								

								 	
									Setting to ensure socket is not closed due to inactivity
								

								 	
									true
								

								 	
									boolean
								

								
	
									reuseAddress (common)
								

								 	
									Setting to facilitate socket multiplexing
								

								 	
									true
								

								 	
									boolean
								

								
	
									sync (common)
								

								 	
									Setting to set endpoint as one-way or request-response
								

								 	
									true
								

								 	
									boolean
								

								
	
									tcpNoDelay (common)
								

								 	
									Setting to improve TCP protocol performance
								

								 	
									true
								

								 	
									boolean
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									broadcast (consumer)
								

								 	
									Setting to choose Multicast over UDP
								

								 	
									false
								

								 	
									boolean
								

								
	
									clientMode (consumer)
								

								 	
									If the clientMode is true, netty consumer will connect the address as a TCP client.
								

								 	
									false
								

								 	
									boolean
								

								
	
									backlog (consumer)
								

								 	
									Allows to configure a backlog for netty consumer (server). Note the backlog is just a best effort depending on the OS. Setting this option to a value such as 200, 500 or 1000, tells the TCP stack how long the accept queue can be If this option is not configured, then the backlog depends on OS setting.
								

								 	 	
									int
								

								
	
									bossCount (consumer)
								

								 	
									When netty works on nio mode, it uses default bossCount parameter from Netty, which is 1. User can use this operation to override the default bossCount from Netty
								

								 	
									1
								

								 	
									int
								

								
	
									bossPool (consumer)
								

								 	
									To use a explicit org.jboss.netty.channel.socket.nio.BossPool as the boss thread pool. For example to share a thread pool with multiple consumers. By default each consumer has their own boss pool with 1 core thread.
								

								 	 	
									BossPool
								

								
	
									channelGroup (consumer)
								

								 	
									To use a explicit ChannelGroup.
								

								 	 	
									ChannelGroup
								

								
	
									disconnectOnNoReply (consumer)
								

								 	
									If sync is enabled then this option dictates NettyConsumer if it should disconnect where there is no reply to send back.
								

								 	
									true
								

								 	
									boolean
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									maxChannelMemorySize (consumer)
								

								 	
									The maximum total size of the queued events per channel when using orderedThreadPoolExecutor. Specify 0 to disable.
								

								 	
									10485760
								

								 	
									long
								

								
	
									maxTotalMemorySize (consumer)
								

								 	
									The maximum total size of the queued events for this pool when using orderedThreadPoolExecutor. Specify 0 to disable.
								

								 	
									209715200
								

								 	
									long
								

								
	
									nettyServerBootstrapFactory (consumer)
								

								 	
									To use a custom NettyServerBootstrapFactory
								

								 	 	
									NettyServerBootstrap Factory
								

								
	
									networkInterface (consumer)
								

								 	
									When using UDP then this option can be used to specify a network interface by its name, such as eth0 to join a multicast group.
								

								 	 	
									String
								

								
	
									noReplyLogLevel (consumer)
								

								 	
									If sync is enabled this option dictates NettyConsumer which logging level to use when logging a there is no reply to send back.
								

								 	
									WARN
								

								 	
									LoggingLevel
								

								
	
									orderedThreadPoolExecutor (consumer)
								

								 	
									Whether to use ordered thread pool, to ensure events are processed orderly on the same channel. See details at the netty javadoc of org.jboss.netty.handler.execution.OrderedMemoryAwareThreadPoolExecutor for more details.
								

								 	
									true
								

								 	
									boolean
								

								
	
									serverClosedChannel ExceptionCaughtLogLevel (consumer)
								

								 	
									If the server (NettyConsumer) catches an java.nio.channels.ClosedChannelException then its logged using this logging level. This is used to avoid logging the closed channel exceptions, as clients can disconnect abruptly and then cause a flood of closed exceptions in the Netty server.
								

								 	
									DEBUG
								

								 	
									LoggingLevel
								

								
	
									serverExceptionCaughtLog Level (consumer)
								

								 	
									If the server (NettyConsumer) catches an exception then its logged using this logging level.
								

								 	
									WARN
								

								 	
									LoggingLevel
								

								
	
									serverPipelineFactory (consumer)
								

								 	
									To use a custom ServerPipelineFactory
								

								 	 	
									ServerPipelineFactory
								

								
	
									workerCount (consumer)
								

								 	
									When netty works on nio mode, it uses default workerCount parameter from Netty, which is cpu_core_threads2. User can use this operation to override the default workerCount from Netty
								

								 	 	
									int
								

								
	
									workerPool (consumer)
								

								 	
									To use a explicit org.jboss.netty.channel.socket.nio.WorkerPool as the worker thread pool. For example to share a thread pool with multiple consumers. By default each consumer has their own worker pool with 2 x cpu count core threads.
								

								 	 	
									WorkerPool
								

								
	
									connectTimeout (producer)
								

								 	
									Time to wait for a socket connection to be available. Value is in millis.
								

								 	
									10000
								

								 	
									long
								

								
	
									requestTimeout (producer)
								

								 	
									Allows to use a timeout for the Netty producer when calling a remote server. By default no timeout is in use. The value is in milli seconds, so eg 30000 is 30 seconds. The requestTimeout is using Netty’s ReadTimeoutHandler to trigger the timeout.
								

								 	 	
									long
								

								
	
									clientPipelineFactory (producer)
								

								 	
									To use a custom ClientPipelineFactory
								

								 	 	
									ClientPipelineFactory
								

								
	
									lazyChannelCreation (producer)
								

								 	
									Channels can be lazily created to avoid exceptions, if the remote server is not up and running when the Camel producer is started.
								

								 	
									true
								

								 	
									boolean
								

								
	
									producerPoolEnabled (producer)
								

								 	
									Whether producer pool is enabled or not. Important: Do not turn this off, as the pooling is needed for handling concurrency and reliable request/reply.
								

								 	
									true
								

								 	
									boolean
								

								
	
									producerPoolMaxActive (producer)
								

								 	
									Sets the cap on the number of objects that can be allocated by the pool (checked out to clients, or idle awaiting checkout) at a given time. Use a negative value for no limit.
								

								 	
									-1
								

								 	
									int
								

								
	
									producerPoolMaxIdle (producer)
								

								 	
									Sets the cap on the number of idle instances in the pool.
								

								 	
									100
								

								 	
									int
								

								
	
									producerPoolMinEvictable Idle (producer)
								

								 	
									Sets the minimum amount of time (value in millis) an object may sit idle in the pool before it is eligible for eviction by the idle object evictor.
								

								 	
									300000
								

								 	
									long
								

								
	
									producerPoolMinIdle (producer)
								

								 	
									Sets the minimum number of instances allowed in the producer pool before the evictor thread (if active) spawns new objects.
								

								 	 	
									int
								

								
	
									udpConnectionlessSending (producer)
								

								 	
									This option supports connection less udp sending which is a real fire and forget. A connected udp send receive the PortUnreachableException if no one is listen on the receiving port.
								

								 	
									false
								

								 	
									boolean
								

								
	
									useChannelBuffer (producer)
								

								 	
									If the useChannelBuffer is true, netty producer will turn the message body into ChannelBuffer before sending it out.
								

								 	
									false
								

								 	
									boolean
								

								
	
									bootstrapConfiguration (advanced)
								

								 	
									To use a custom configured NettyServerBootstrapConfiguration for configuring this endpoint.
								

								 	 	
									NettyServerBootstrap Configuration
								

								
	
									options (advanced)
								

								 	
									Allows to configure additional netty options using option. as prefix. For example option.child.keepAlive=false to set the netty option child.keepAlive=false. See the Netty documentation for possible options that can be used.
								

								 	 	
									Map
								

								
	
									receiveBufferSize (advanced)
								

								 	
									The TCP/UDP buffer sizes to be used during inbound communication. Size is bytes.
								

								 	
									65536
								

								 	
									long
								

								
	
									receiveBufferSizePredictor (advanced)
								

								 	
									Configures the buffer size predictor. See details at Jetty documentation and this mail thread.
								

								 	 	
									int
								

								
	
									sendBufferSize (advanced)
								

								 	
									The TCP/UDP buffer sizes to be used during outbound communication. Size is bytes.
								

								 	
									65536
								

								 	
									long
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									transferExchange (advanced)
								

								 	
									Only used for TCP. You can transfer the exchange over the wire instead of just the body. The following fields are transferred: In body, Out body, fault body, In headers, Out headers, fault headers, exchange properties, exchange exception. This requires that the objects are serializable. Camel will exclude any non-serializable objects and log it at WARN level.
								

								 	
									false
								

								 	
									boolean
								

								
	
									allowDefaultCodec (codec)
								

								 	
									The netty component installs a default codec if both, encoder/deocder is null and textline is false. Setting allowDefaultCodec to false prevents the netty component from installing a default codec as the first element in the filter chain.
								

								 	
									true
								

								 	
									boolean
								

								
	
									autoAppendDelimiter (codec)
								

								 	
									Whether or not to auto append missing end delimiter when sending using the textline codec.
								

								 	
									true
								

								 	
									boolean
								

								
	
									decoder (codec)
								

								 	
									Deprecated A custom ChannelHandler class that can be used to perform special marshalling of inbound payloads. Must override org.jboss.netty.channel.ChannelUpStreamHandler.
								

								 	 	
									ChannelHandler
								

								
	
									decoderMaxLineLength (codec)
								

								 	
									The max line length to use for the textline codec.
								

								 	
									1024
								

								 	
									int
								

								
	
									decoders (codec)
								

								 	
									A list of decoders to be used. You can use a String which have values separated by comma, and have the values be looked up in the Registry. Just remember to prefix the value with so Camel knows it should lookup.
								

								 	 	
									String
								

								
	
									delimiter (codec)
								

								 	
									The delimiter to use for the textline codec. Possible values are LINE and NULL.
								

								 	
									LINE
								

								 	
									TextLineDelimiter
								

								
	
									encoder (codec)
								

								 	
									Deprecated A custom ChannelHandler class that can be used to perform special marshalling of outbound payloads. Must override org.jboss.netty.channel.ChannelDownStreamHandler.
								

								 	 	
									ChannelHandler
								

								
	
									encoders (codec)
								

								 	
									A list of encoders to be used. You can use a String which have values separated by comma, and have the values be looked up in the Registry. Just remember to prefix the value with so Camel knows it should lookup.
								

								 	 	
									String
								

								
	
									encoding (codec)
								

								 	
									The encoding (a charset name) to use for the textline codec. If not provided, Camel will use the JVM default Charset.
								

								 	 	
									String
								

								
	
									textline (codec)
								

								 	
									Only used for TCP. If no codec is specified, you can use this flag to indicate a text line based codec; if not specified or the value is false, then Object Serialization is assumed over TCP.
								

								 	
									false
								

								 	
									boolean
								

								
	
									enabledProtocols (security)
								

								 	
									Which protocols to enable when using SSL
								

								 	
									TLSv1,TLSv1.1,TLSv1.2
								

								 	
									String
								

								
	
									keyStoreFile (security)
								

								 	
									Client side certificate keystore to be used for encryption
								

								 	 	
									File
								

								
	
									keyStoreFormat (security)
								

								 	
									Keystore format to be used for payload encryption. Defaults to JKS if not set
								

								 	
									JKS
								

								 	
									String
								

								
	
									keyStoreResource (security)
								

								 	
									Client side certificate keystore to be used for encryption. Is loaded by default from classpath, but you can prefix with classpath:, file:, or http: to load the resource from different systems.
								

								 	 	
									String
								

								
	
									needClientAuth (security)
								

								 	
									Configures whether the server needs client authentication when using SSL.
								

								 	
									false
								

								 	
									boolean
								

								
	
									passphrase (security)
								

								 	
									Password setting to use in order to encrypt/decrypt payloads sent using SSH
								

								 	 	
									String
								

								
	
									securityProvider (security)
								

								 	
									Security provider to be used for payload encryption. Defaults to SunX509 if not set.
								

								 	
									SunX509
								

								 	
									String
								

								
	
									ssl (security)
								

								 	
									Setting to specify whether SSL encryption is applied to this endpoint
								

								 	
									false
								

								 	
									boolean
								

								
	
									sslClientCertHeaders (security)
								

								 	
									When enabled and in SSL mode, then the Netty consumer will enrich the Camel Message with headers having information about the client certificate such as subject name, issuer name, serial number, and the valid date range.
								

								 	
									false
								

								 	
									boolean
								

								
	
									sslContextParameters (security)
								

								 	
									To configure security using SSLContextParameters
								

								 	 	
									SSLContextParameters
								

								
	
									sslHandler (security)
								

								 	
									Reference to a class that could be used to return an SSL Handler
								

								 	 	
									SslHandler
								

								
	
									trustStoreFile (security)
								

								 	
									Server side certificate keystore to be used for encryption
								

								 	 	
									File
								

								
	
									trustStoreResource (security)
								

								 	
									Server side certificate keystore to be used for encryption. Is loaded by default from classpath, but you can prefix with classpath:, file:, or http: to load the resource from different systems.
								

								 	 	
									String
								

								

Registry based Options

				Codec Handlers and SSL Keystores can be enlisted in the Registry, such as in the Spring XML file. The values that could be passed in, are the following:
			
	Name	Description
	
								passphrase
							

							 	
								password setting to use in order to encrypt/decrypt payloads sent using SSH
							

							
	
								keyStoreFormat
							

							 	
								keystore format to be used for payload encryption. Defaults to "JKS" if not set
							

							
	
								securityProvider
							

							 	
								Security provider to be used for payload encryption. Defaults to "SunX509" if not set.
							

							
	
								keyStoreFile
							

							 	
								deprecated: Client side certificate keystore to be used for encryption
							

							
	
								trustStoreFile
							

							 	
								deprecated: Server side certificate keystore to be used for encryption
							

							
	
								keyStoreResource
							

							 	
								Camel 2.11.1: Client side certificate keystore to be used for encryption. Is loaded by default from classpath, but you can prefix with "classpath:", "file:", or "http:" to load the resource from different systems.
							

							
	
								trustStoreResource
							

							 	
								Camel 2.11.1: Server side certificate keystore to be used for encryption. Is loaded by default from classpath, but you can prefix with "classpath:", "file:", or "http:" to load the resource from different systems.
							

							
	
								sslHandler
							

							 	
								Reference to a class that could be used to return an SSL Handler
							

							
	
								encoder
							

							 	
								A custom ChannelHandler class that can be used to perform special marshalling of outbound payloads. Must override org.jboss.netty.channel.ChannelDownStreamHandler.
							

							
	
								encorders
							

							 	
								A list of encoders to be used. You can use a String which have values separated by comma, and have the values be looked up in the Registry. Just remember to prefix the value with # so Camel knows it should lookup.
							

							
	
								decoder
							

							 	
								A custom ChannelHandler class that can be used to perform special marshalling of inbound payloads. Must override org.jboss.netty.channel.ChannelUpStreamHandler.
							

							
	
								decoders
							

							 	
								A list of decoders to be used. You can use a String which have values separated by comma, and have the values be looked up in the Registry. Just remember to prefix the value with # so Camel knows it should lookup.
							

							

				Important: Read below about using non shareable encoders/decoders.
			
Using non shareable encoders or decoders

					If your encoders or decoders is not shareable (eg they have the @Shareable class annotation), then your encoder/decoder must implement the org.apache.camel.component.netty.ChannelHandlerFactory interface, and return a new instance in the newChannelHandler method. This is to ensure the encoder/decoder can safely be used. If this is not the case, then the Netty component will log a WARN when
 an endpoint is created.
				

					The Netty component offers a org.apache.camel.component.netty.ChannelHandlerFactories factory class, that has a number of commonly used methods.
				

Sending Messages to/from a Netty endpoint

Netty Producer

					In Producer mode, the component provides the ability to send payloads to a socket endpoint
 using either TCP or UDP protocols (with optional SSL support).
				

					The producer mode supports both one-way and request-response based operations.
				

Netty Consumer

					In Consumer mode, the component provides the ability to:
				
	
							listen on a specified socket using either TCP or UDP protocols (with optional SSL support),
						
	
							receive requests on the socket using text/xml, binary and serialized object based payloads and
						
	
							send them along on a route as message exchanges.
						

					The consumer mode supports both one-way and request-response based operations.
				

Headers

				The following headers are filled for the exchanges created by the Netty consumer:
			
	Header key	Class	Description
	
								NettyConstants.NETTY_CHANNEL_HANDLER_CONTEXT / CamelNettyChannelHandlerContext
							

							 	
								org.jboss.netty.channel.ChannelHandlerContext
							

							 	
								`ChannelHandlerContext `instance associated with the connection received by netty.
							

							
	
								NettyConstants.NETTY_MESSAGE_EVENT / CamelNettyMessageEvent
							

							 	
								org.jboss.netty.channel.MessageEvent
							

							 	
								`MessageEvent `instance associated with the connection received by netty.
							

							
	
								NettyConstants.NETTY_REMOTE_ADDRESS / CamelNettyRemoteAddress
							

							 	
								java.net.SocketAddress
							

							 	
								Remote address of the incoming socket connection.
							

							
	
								NettyConstants.NETTY_LOCAL_ADDRESS / CamelNettyLocalAddress
							

							 	
								java.net.SocketAddress
							

							 	
								Local address of the incoming socket connection.
							

							

Usage Samples

A UDP Netty endpoint using Request-Reply and serialized object payload

RouteBuilder builder = new RouteBuilder() {
 public void configure() {
 from("netty:udp://localhost:5155?sync=true")
 .process(new Processor() {
 public void process(Exchange exchange) throws Exception {
 Poetry poetry = (Poetry) exchange.getIn().getBody();
 poetry.setPoet("Dr. Sarojini Naidu");
 exchange.getOut().setBody(poetry);
 }
 }
 }
};

A TCP based Netty consumer endpoint using One-way communication

RouteBuilder builder = new RouteBuilder() {
 public void configure() {
 from("netty:tcp://localhost:5150")
 .to("mock:result");
 }
};

An SSL/TCP based Netty consumer endpoint using Request-Reply communication

					Using the JSSE Configuration Utility
				

					As of Camel 2.9, the Netty component supports SSL/TLS configuration through the Camel JSSE Configuration Utility. This utility greatly decreases the amount of component specific code you need to write and is configurable at the endpoint and component levels. The following examples demonstrate how to use the utility with the Netty component.
				

					Programmatic configuration of the component
				
KeyStoreParameters ksp = new KeyStoreParameters();
ksp.setResource("/users/home/server/keystore.jks");
ksp.setPassword("keystorePassword");

KeyManagersParameters kmp = new KeyManagersParameters();
kmp.setKeyStore(ksp);
kmp.setKeyPassword("keyPassword");

SSLContextParameters scp = new SSLContextParameters();
scp.setKeyManagers(kmp);

NettyComponent nettyComponent = getContext().getComponent("netty", NettyComponent.class);
nettyComponent.setSslContextParameters(scp);

					Spring DSL based configuration of endpoint
				
...
 <camel:sslContextParameters
 id="sslContextParameters">
 <camel:keyManagers
 keyPassword="keyPassword">
 <camel:keyStore
 resource="/users/home/server/keystore.jks"
 password="keystorePassword"/>
 </camel:keyManagers>
 </camel:sslContextParameters>...
...
 <to uri="netty:tcp://localhost:5150?sync=true&ssl=true&sslContextParameters=#sslContextParameters"/>
...

					Using Basic SSL/TLS configuration on the Jetty Component
				
JndiRegistry registry = new JndiRegistry(createJndiContext());
registry.bind("password", "changeit");
registry.bind("ksf", new File("src/test/resources/keystore.jks"));
registry.bind("tsf", new File("src/test/resources/keystore.jks"));

context.createRegistry(registry);
context.addRoutes(new RouteBuilder() {
 public void configure() {
 String netty_ssl_endpoint =
 "netty:tcp://localhost:5150?sync=true&ssl=true&passphrase=#password"
 + "&keyStoreFile=#ksf&trustStoreFile=#tsf";
 String return_string =
 "When You Go Home, Tell Them Of Us And Say,"
 + "For Your Tomorrow, We Gave Our Today.";

 from(netty_ssl_endpoint)
 .process(new Processor() {
 public void process(Exchange exchange) throws Exception {
 exchange.getOut().setBody(return_string);
 }
 }
 }
});

					Getting access to SSLSession and the client certificate
				

					Available as of Camel 2.12
				

					You can get access to the javax.net.ssl.SSLSession if you eg need to get details about the client certificate. When ssl=true then the Netty component will store the SSLSession as a header on the Camel Message as shown below:
				
SSLSession session = exchange.getIn().getHeader(NettyConstants.NETTY_SSL_SESSION, SSLSession.class);
// get the first certificate which is client certificate
javax.security.cert.X509Certificate cert = session.getPeerCertificateChain()[0];
Principal principal = cert.getSubjectDN();

					Remember to set needClientAuth=true to authenticate the client, otherwise SSLSession cannot access information about the client certificate, and you may get an exception javax.net.ssl.SSLPeerUnverifiedException: peer not authenticated. You may also get this exception if the client certificate is expired or not valid etc.
				
Tip

					The option sslClientCertHeaders can be set to true which then enriches the Camel Message with headers having details about the client certificate. For example the subject name is readily available in the header CamelNettySSLClientCertSubjectName.
				

Using Multiple Codecs

					In certain cases it may be necessary to add chains of encoders and decoders to the netty pipeline. To add multpile codecs to a camel netty endpoint the 'encoders' and 'decoders' uri parameters should be used. Like the 'encoder' and 'decoder' parameters they are used to supply references (to lists of ChannelUpstreamHandlers and ChannelDownstreamHandlers) that should be added to the pipeline. Note that if encoders is specified then the encoder param will be ignored, similarly for decoders and the decoder param.
				

					INFO: Read further above about using non shareable encoders/decoders.
				

					The lists of codecs need to be added to the Camel’s registry so they can be resolved when the endpoint is created.
				

					Spring’s native collections support can be used to specify the codec lists in an application context
				

					The bean names can then be used in netty endpoint definitions either as a comma separated list or contained in a List e.g.
				

					or via spring.
				

Closing Channel When Complete

				When acting as a server you sometimes want to close the channel when, for example, a client conversion is finished.
 You can do this by simply setting the endpoint option disconnect=true.
			

				However you can also instruct Camel on a per message basis as follows.
 To instruct Camel to close the channel, you should add a header with the key CamelNettyCloseChannelWhenComplete set to a boolean true value.
 For instance, the example below will close the channel after it has written the bye message back to the client:
			
 from("netty:tcp://localhost:8080").process(new Processor() {
 public void process(Exchange exchange) throws Exception {
 String body = exchange.getIn().getBody(String.class);
 exchange.getOut().setBody("Bye " + body);
 // some condition which determines if we should close
 if (close) {
 exchange.getOut().setHeader(NettyConstants.NETTY_CLOSE_CHANNEL_WHEN_COMPLETE, true);
 }
 }
 });

Adding custom channel pipeline factories to gain complete control over a created pipeline

				Available as of Camel 2.5
			

				Custom channel pipelines provide complete control to the user over the handler/interceptor chain by inserting custom handler(s), encoder(s) & decoders without having to specify them in the Netty Endpoint URL in a very simple way.
			

				In order to add a custom pipeline, a custom channel pipeline factory must be created and registered with the context via the context registry (JNDIRegistry,or the camel-spring ApplicationContextRegistry etc).
			

				A custom pipeline factory must be constructed as follows
			
	
						A Producer linked channel pipeline factory must extend the abstract class ClientPipelineFactory.
					
	
						A Consumer linked channel pipeline factory must extend the abstract class ServerPipelineFactory.
					
	
						The classes should override the getPipeline() method in order to insert custom handler(s), encoder(s) and decoder(s). Not overriding the getPipeline() method creates a pipeline with no handlers, encoders or decoders wired to the pipeline.
					

				The example below shows how ServerChannel Pipeline factory may be created
			

				Using custom pipeline factory
			
public class SampleServerChannelPipelineFactory extends ServerPipelineFactory {
 private int maxLineSize = 1024;

 public ChannelPipeline getPipeline() throws Exception {
 ChannelPipeline channelPipeline = Channels.pipeline();

 channelPipeline.addLast("encoder-SD", new StringEncoder(CharsetUtil.UTF_8));
 channelPipeline.addLast("decoder-DELIM", new DelimiterBasedFrameDecoder(maxLineSize, true, Delimiters.lineDelimiter()));
 channelPipeline.addLast("decoder-SD", new StringDecoder(CharsetUtil.UTF_8));
 // here we add the default Camel ServerChannelHandler for the consumer, to allow Camel to route the message etc.
 channelPipeline.addLast("handler", new ServerChannelHandler(consumer));

 return channelPipeline;
 }
}

				The custom channel pipeline factory can then be added to the registry and instantiated/utilized on a camel route in the following way
			
Registry registry = camelContext.getRegistry();
serverPipelineFactory = new TestServerChannelPipelineFactory();
registry.bind("spf", serverPipelineFactory);
context.addRoutes(new RouteBuilder() {
 public void configure() {
 String netty_ssl_endpoint =
 "netty:tcp://localhost:5150?serverPipelineFactory=#spf"
 String return_string =
 "When You Go Home, Tell Them Of Us And Say,"
 + "For Your Tomorrow, We Gave Our Today.";

 from(netty_ssl_endpoint)
 .process(new Processor() {
 public void process(Exchange exchange) throws Exception {
 exchange.getOut().setBody(return_string);
 }
 }
 }
});

Reusing Netty boss and worker thread pools

				Available as of Camel 2.12
			

				Netty has two kind of thread pools: boss and worker. By default each Netty consumer and producer has their private thread pools. If you want to reuse these thread pools among multiple consumers or producers then the thread pools must be created and enlisted in the Registry.
			

				For example using Spring XML we can create a shared worker thread pool using the NettyWorkerPoolBuilder with 2 worker threads as shown below:
			
 <!-- use the worker pool builder to help create the shared thread pool -->
 <bean id="poolBuilder" class="org.apache.camel.component.netty.NettyWorkerPoolBuilder">
 <property name="workerCount" value="2"/>
 </bean>

 <!-- the shared worker thread pool -->
 <bean id="sharedPool" class="org.jboss.netty.channel.socket.nio.WorkerPool"
 factory-bean="poolBuilder" factory-method="build" destroy-method="shutdown">
 </bean>
Tip

				For boss thread pool there is a org.apache.camel.component.netty.NettyServerBossPoolBuilder builder for Netty consumers, and a org.apache.camel.component.netty.NettyClientBossPoolBuilder for the Netty producers.
			

				Then in the Camel routes we can refer to this worker pools by configuring the workerPool option in the URI as shown below:
			
 <route>
 <from uri="netty:tcp://localhost:5021?textline=true&sync=true&workerPool=#sharedPool&orderedThreadPoolExecutor=false"/>
 <to uri="log:result"/>
 ...
 </route>

				And if we have another route we can refer to the shared worker pool:
			
 <route>
 <from uri="netty:tcp://localhost:5022?textline=true&sync=true&workerPool=#sharedPool&orderedThreadPoolExecutor=false"/>
 <to uri="log:result"/>
 ...
 </route>
	
						and so forth.
					

See Also

	
						Configuring Camel
					
	
						Component
					
	
						Endpoint
					
	
						Getting Started
					
	
						Netty HTTP
					
	
						MINA
					

Chapter 239. Netty HTTP Component (deprecated)

			Available as of Camel version 2.12
		

			The netty-http component is an extension to Netty component to facilitiate HTTP transport with Netty.
		

			This camel component supports both producer and consumer endpoints.
		
Warning

				This component is deprecated. You should use Netty4 HTTP.
			

			INFO: Stream. Netty is stream based, which means the input it receives is submitted to Camel as a stream. That means you will only be able to read the content of the stream once. If you find a situation where the message body appears to be empty or you need to access the data multiple times (eg: doing multicasting, or redelivery error handling) you should use Stream caching or convert the message body to a String which is safe to be re-read multiple times. Notice Netty4 HTTP reads the entire stream into memory using io.netty.handler.codec.http.HttpObjectAggregator to build the entire full http message. But the resulting message is still a stream based message which is readable once.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-netty-http</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>
URI format

				The URI scheme for a netty component is as follows
			
netty-http:http://localhost:8080[?options]

				You can append query options to the URI in the following format, ?option=value&option=value&…​
			

				INFO: Query parameters vs endpoint options. You may be wondering how Camel recognizes URI query parameters and endpoint options. For example you might create endpoint URI as follows - netty-http:http//example.com?myParam=myValue&compression=true . In this example myParam is the HTTP parameter, while compression is the Camel endpoint option. The strategy used by Camel in such situations is to resolve available endpoint options and remove them from the URI. It means that for the discussed example, the HTTP request sent by Netty HTTP producer to the endpoint will look as follows - http//example.com?myParam=myValue , because compression endpoint option will be resolved and removed from the target URL. Keep also in mind that you cannot specify endpoint options using dynamic headers (like CamelHttpQuery). Endpoint options can be specified only at the endpoint URI definition level (like to or from DSL elements).
			

HTTP Options

				INFO: A lot more options. Important: This component inherits all the options from Netty. So make sure to look at the Netty documentation as well.
 Notice that some options from Netty is not applicable when using this Netty HTTP component, such as options related to UDP transport.
			

				The Netty HTTP component supports 7 options which are listed below.
			
	Name	Description	Default	Type
	
								nettyHttpBinding (advanced)
							

							 	
								To use a custom org.apache.camel.component.netty.http.NettyHttpBinding for binding to/from Netty and Camel Message API.
							

							 	 	
								NettyHttpBinding
							

							
	
								configuration (common)
							

							 	
								To use the NettyConfiguration as configuration when creating endpoints.
							

							 	 	
								NettyHttpConfiguration
							

							
	
								headerFilterStrategy (advanced)
							

							 	
								To use a custom org.apache.camel.spi.HeaderFilterStrategy to filter headers.
							

							 	 	
								HeaderFilterStrategy
							

							
	
								securityConfiguration (security)
							

							 	
								Refers to a org.apache.camel.component.netty.http.NettyHttpSecurityConfiguration for configuring secure web resources.
							

							 	 	
								NettyHttpSecurity Configuration
							

							
	
								useGlobalSslContext Parameters (security)
							

							 	
								Enable usage of global SSL context parameters.
							

							 	
								false
							

							 	
								boolean
							

							
	
								maximumPoolSize (advanced)
							

							 	
								The core pool size for the ordered thread pool, if its in use. The default value is 16.
							

							 	
								16
							

							 	
								int
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The Netty HTTP endpoint is configured using URI syntax:
			
netty-http:protocol:host:port/path

				with the following path and query parameters:
			
Path Parameters (4 parameters):

	Name	Description	Default	Type
	
									protocol
								

								 	
									Required The protocol to use which is either http or https
								

								 	 	
									String
								

								
	
									host
								

								 	
									Required The local hostname such as localhost, or 0.0.0.0 when being a consumer. The remote HTTP server hostname when using producer.
								

								 	 	
									String
								

								
	
									port
								

								 	
									The host port number
								

								 	 	
									int
								

								
	
									path
								

								 	
									Resource path
								

								 	 	
									String
								

								

Query Parameters (78 parameters):

	Name	Description	Default	Type
	
									bridgeEndpoint (common)
								

								 	
									If the option is true, the producer will ignore the Exchange.HTTP_URI header, and use the endpoint’s URI for request. You may also set the throwExceptionOnFailure to be false to let the producer send all the fault response back. The consumer working in the bridge mode will skip the gzip compression and WWW URL form encoding (by adding the Exchange.SKIP_GZIP_ENCODING and Exchange.SKIP_WWW_FORM_URLENCODED headers to the consumed exchange).
								

								 	
									false
								

								 	
									boolean
								

								
	
									disconnect (common)
								

								 	
									Whether or not to disconnect(close) from Netty Channel right after use. Can be used for both consumer and producer.
								

								 	
									false
								

								 	
									boolean
								

								
	
									keepAlive (common)
								

								 	
									Setting to ensure socket is not closed due to inactivity
								

								 	
									true
								

								 	
									boolean
								

								
	
									reuseAddress (common)
								

								 	
									Setting to facilitate socket multiplexing
								

								 	
									true
								

								 	
									boolean
								

								
	
									sync (common)
								

								 	
									Setting to set endpoint as one-way or request-response
								

								 	
									true
								

								 	
									boolean
								

								
	
									tcpNoDelay (common)
								

								 	
									Setting to improve TCP protocol performance
								

								 	
									true
								

								 	
									boolean
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									matchOnUriPrefix (consumer)
								

								 	
									Whether or not Camel should try to find a target consumer by matching the URI prefix if no exact match is found.
								

								 	
									false
								

								 	
									boolean
								

								
	
									send503whenSuspended (consumer)
								

								 	
									Whether to send back HTTP status code 503 when the consumer has been suspended. If the option is false then the Netty Acceptor is unbound when the consumer is suspended, so clients cannot connect anymore.
								

								 	
									true
								

								 	
									boolean
								

								
	
									backlog (consumer)
								

								 	
									Allows to configure a backlog for netty consumer (server). Note the backlog is just a best effort depending on the OS. Setting this option to a value such as 200, 500 or 1000, tells the TCP stack how long the accept queue can be If this option is not configured, then the backlog depends on OS setting.
								

								 	 	
									int
								

								
	
									bossCount (consumer)
								

								 	
									When netty works on nio mode, it uses default bossCount parameter from Netty, which is 1. User can use this operation to override the default bossCount from Netty
								

								 	
									1
								

								 	
									int
								

								
	
									bossPool (consumer)
								

								 	
									To use a explicit org.jboss.netty.channel.socket.nio.BossPool as the boss thread pool. For example to share a thread pool with multiple consumers. By default each consumer has their own boss pool with 1 core thread.
								

								 	 	
									BossPool
								

								
	
									channelGroup (consumer)
								

								 	
									To use a explicit ChannelGroup.
								

								 	 	
									ChannelGroup
								

								
	
									chunkedMaxContentLength (consumer)
								

								 	
									Value in bytes the max content length per chunked frame received on the Netty HTTP server.
								

								 	
									1048576
								

								 	
									int
								

								
	
									compression (consumer)
								

								 	
									Allow using gzip/deflate for compression on the Netty HTTP server if the client supports it from the HTTP headers.
								

								 	
									false
								

								 	
									boolean
								

								
	
									disableStreamCache (consumer)
								

								 	
									Determines whether or not the raw input stream from Netty HttpRequestgetContent() is cached or not (Camel will read the stream into a in light-weight memory based Stream caching) cache. By default Camel will cache the Netty input stream to support reading it multiple times to ensure it Camel can retrieve all data from the stream. However you can set this option to true when you for example need to access the raw stream, such as streaming it directly to a file or other persistent store. Mind that if you enable this option, then you cannot read the Netty stream multiple times out of the box, and you would need manually to reset the reader index on the Netty raw stream.
								

								 	
									false
								

								 	
									boolean
								

								
	
									disconnectOnNoReply (consumer)
								

								 	
									If sync is enabled then this option dictates NettyConsumer if it should disconnect where there is no reply to send back.
								

								 	
									true
								

								 	
									boolean
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									httpMethodRestrict (consumer)
								

								 	
									To disable HTTP methods on the Netty HTTP consumer. You can specify multiple separated by comma.
								

								 	 	
									String
								

								
	
									mapHeaders (consumer)
								

								 	
									If this option is enabled, then during binding from Netty to Camel Message then the headers will be mapped as well (eg added as header to the Camel Message as well). You can turn off this option to disable this. The headers can still be accessed from the org.apache.camel.component.netty.http.NettyHttpMessage message with the method getHttpRequest() that returns the Netty HTTP request org.jboss.netty.handler.codec.http.HttpRequest instance.
								

								 	
									true
								

								 	
									boolean
								

								
	
									maxChannelMemorySize (consumer)
								

								 	
									The maximum total size of the queued events per channel when using orderedThreadPoolExecutor. Specify 0 to disable.
								

								 	
									10485760
								

								 	
									long
								

								
	
									maxHeaderSize (consumer)
								

								 	
									The maximum length of all headers. If the sum of the length of each header exceeds this value, a TooLongFrameException will be raised.
								

								 	
									8192
								

								 	
									int
								

								
	
									maxTotalMemorySize (consumer)
								

								 	
									The maximum total size of the queued events for this pool when using orderedThreadPoolExecutor. Specify 0 to disable.
								

								 	
									209715200
								

								 	
									long
								

								
	
									nettyServerBootstrapFactory (consumer)
								

								 	
									To use a custom NettyServerBootstrapFactory
								

								 	 	
									NettyServerBootstrap Factory
								

								
	
									nettySharedHttpServer (consumer)
								

								 	
									To use a shared Netty HTTP server. See Netty HTTP Server Example for more details.
								

								 	 	
									NettySharedHttpServer
								

								
	
									noReplyLogLevel (consumer)
								

								 	
									If sync is enabled this option dictates NettyConsumer which logging level to use when logging a there is no reply to send back.
								

								 	
									WARN
								

								 	
									LoggingLevel
								

								
	
									orderedThreadPoolExecutor (consumer)
								

								 	
									Whether to use ordered thread pool, to ensure events are processed orderly on the same channel. See details at the netty javadoc of org.jboss.netty.handler.execution.OrderedMemoryAwareThreadPoolExecutor for more details.
								

								 	
									true
								

								 	
									boolean
								

								
	
									serverClosedChannel ExceptionCaughtLogLevel (consumer)
								

								 	
									If the server (NettyConsumer) catches an java.nio.channels.ClosedChannelException then its logged using this logging level. This is used to avoid logging the closed channel exceptions, as clients can disconnect abruptly and then cause a flood of closed exceptions in the Netty server.
								

								 	
									DEBUG
								

								 	
									LoggingLevel
								

								
	
									serverExceptionCaughtLog Level (consumer)
								

								 	
									If the server (NettyConsumer) catches an exception then its logged using this logging level.
								

								 	
									WARN
								

								 	
									LoggingLevel
								

								
	
									serverPipelineFactory (consumer)
								

								 	
									To use a custom ServerPipelineFactory
								

								 	 	
									ServerPipelineFactory
								

								
	
									traceEnabled (consumer)
								

								 	
									Specifies whether to enable HTTP TRACE for this Netty HTTP consumer. By default TRACE is turned off.
								

								 	
									false
								

								 	
									boolean
								

								
	
									urlDecodeHeaders (consumer)
								

								 	
									If this option is enabled, then during binding from Netty to Camel Message then the header values will be URL decoded (eg %20 will be a space character. Notice this option is used by the default org.apache.camel.component.netty.http.NettyHttpBinding and therefore if you implement a custom org.apache.camel.component.netty.http.NettyHttpBinding then you would need to decode the headers accordingly to this option.
								

								 	
									false
								

								 	
									boolean
								

								
	
									workerCount (consumer)
								

								 	
									When netty works on nio mode, it uses default workerCount parameter from Netty, which is cpu_core_threads2. User can use this operation to override the default workerCount from Netty
								

								 	 	
									int
								

								
	
									workerPool (consumer)
								

								 	
									To use a explicit org.jboss.netty.channel.socket.nio.WorkerPool as the worker thread pool. For example to share a thread pool with multiple consumers. By default each consumer has their own worker pool with 2 x cpu count core threads.
								

								 	 	
									WorkerPool
								

								
	
									connectTimeout (producer)
								

								 	
									Time to wait for a socket connection to be available. Value is in millis.
								

								 	
									10000
								

								 	
									long
								

								
	
									requestTimeout (producer)
								

								 	
									Allows to use a timeout for the Netty producer when calling a remote server. By default no timeout is in use. The value is in milli seconds, so eg 30000 is 30 seconds. The requestTimeout is using Netty’s ReadTimeoutHandler to trigger the timeout.
								

								 	 	
									long
								

								
	
									throwExceptionOnFailure (producer)
								

								 	
									Option to disable throwing the HttpOperationFailedException in case of failed responses from the remote server. This allows you to get all responses regardless of the HTTP status code.
								

								 	
									true
								

								 	
									boolean
								

								
	
									clientPipelineFactory (producer)
								

								 	
									To use a custom ClientPipelineFactory
								

								 	 	
									ClientPipelineFactory
								

								
	
									lazyChannelCreation (producer)
								

								 	
									Channels can be lazily created to avoid exceptions, if the remote server is not up and running when the Camel producer is started.
								

								 	
									true
								

								 	
									boolean
								

								
	
									okStatusCodeRange (producer)
								

								 	
									The status codes which are considered a success response. The values are inclusive. Multiple ranges can be defined, separated by comma, e.g. 200-204,209,301-304. Each range must be a single number or from-to with the dash included. The default range is 200-299
								

								 	
									200-299
								

								 	
									String
								

								
	
									producerPoolEnabled (producer)
								

								 	
									Whether producer pool is enabled or not. Important: Do not turn this off, as the pooling is needed for handling concurrency and reliable request/reply.
								

								 	
									true
								

								 	
									boolean
								

								
	
									producerPoolMaxActive (producer)
								

								 	
									Sets the cap on the number of objects that can be allocated by the pool (checked out to clients, or idle awaiting checkout) at a given time. Use a negative value for no limit.
								

								 	
									-1
								

								 	
									int
								

								
	
									producerPoolMaxIdle (producer)
								

								 	
									Sets the cap on the number of idle instances in the pool.
								

								 	
									100
								

								 	
									int
								

								
	
									producerPoolMinEvictable Idle (producer)
								

								 	
									Sets the minimum amount of time (value in millis) an object may sit idle in the pool before it is eligible for eviction by the idle object evictor.
								

								 	
									300000
								

								 	
									long
								

								
	
									producerPoolMinIdle (producer)
								

								 	
									Sets the minimum number of instances allowed in the producer pool before the evictor thread (if active) spawns new objects.
								

								 	 	
									int
								

								
	
									useChannelBuffer (producer)
								

								 	
									If the useChannelBuffer is true, netty producer will turn the message body into ChannelBuffer before sending it out.
								

								 	
									false
								

								 	
									boolean
								

								
	
									useRelativePath (producer)
								

								 	
									Sets whether to use a relative path in HTTP requests. Some third party backend systems such as IBM Datapower do not support absolute URIs in HTTP POSTs, and setting this option to true can work around this problem.
								

								 	
									false
								

								 	
									boolean
								

								
	
									bootstrapConfiguration (advanced)
								

								 	
									To use a custom configured NettyServerBootstrapConfiguration for configuring this endpoint.
								

								 	 	
									NettyServerBootstrap Configuration
								

								
	
									configuration (advanced)
								

								 	
									To use a custom configured NettyHttpConfiguration for configuring this endpoint.
								

								 	 	
									NettyHttpConfiguration
								

								
	
									headerFilterStrategy (advanced)
								

								 	
									To use a custom org.apache.camel.spi.HeaderFilterStrategy to filter headers.
								

								 	 	
									HeaderFilterStrategy
								

								
	
									nettyHttpBinding (advanced)
								

								 	
									To use a custom org.apache.camel.component.netty.http.NettyHttpBinding for binding to/from Netty and Camel Message API.
								

								 	 	
									NettyHttpBinding
								

								
	
									options (advanced)
								

								 	
									Allows to configure additional netty options using option. as prefix. For example option.child.keepAlive=false to set the netty option child.keepAlive=false. See the Netty documentation for possible options that can be used.
								

								 	 	
									Map
								

								
	
									receiveBufferSize (advanced)
								

								 	
									The TCP/UDP buffer sizes to be used during inbound communication. Size is bytes.
								

								 	
									65536
								

								 	
									long
								

								
	
									receiveBufferSizePredictor (advanced)
								

								 	
									Configures the buffer size predictor. See details at Jetty documentation and this mail thread.
								

								 	 	
									int
								

								
	
									sendBufferSize (advanced)
								

								 	
									The TCP/UDP buffer sizes to be used during outbound communication. Size is bytes.
								

								 	
									65536
								

								 	
									long
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									transferException (advanced)
								

								 	
									If enabled and an Exchange failed processing on the consumer side, and if the caused Exception was send back serialized in the response as a application/x-java-serialized-object content type. On the producer side the exception will be deserialized and thrown as is, instead of the HttpOperationFailedException. The caused exception is required to be serialized. This is by default turned off. If you enable this then be aware that Java will deserialize the incoming data from the request to Java and that can be a potential security risk.
								

								 	
									false
								

								 	
									boolean
								

								
	
									transferExchange (advanced)
								

								 	
									Only used for TCP. You can transfer the exchange over the wire instead of just the body. The following fields are transferred: In body, Out body, fault body, In headers, Out headers, fault headers, exchange properties, exchange exception. This requires that the objects are serializable. Camel will exclude any non-serializable objects and log it at WARN level.
								

								 	
									false
								

								 	
									boolean
								

								
	
									decoder (codec)
								

								 	
									Deprecated To use a single decoder. This options is deprecated use encoders instead.
								

								 	 	
									ChannelHandler
								

								
	
									decoders (codec)
								

								 	
									A list of decoders to be used. You can use a String which have values separated by comma, and have the values be looked up in the Registry. Just remember to prefix the value with so Camel knows it should lookup.
								

								 	 	
									String
								

								
	
									encoder (codec)
								

								 	
									Deprecated To use a single encoder. This options is deprecated use encoders instead.
								

								 	 	
									ChannelHandler
								

								
	
									encoders (codec)
								

								 	
									A list of encoders to be used. You can use a String which have values separated by comma, and have the values be looked up in the Registry. Just remember to prefix the value with so Camel knows it should lookup.
								

								 	 	
									String
								

								
	
									enabledProtocols (security)
								

								 	
									Which protocols to enable when using SSL
								

								 	
									TLSv1,TLSv1.1,TLSv1.2
								

								 	
									String
								

								
	
									keyStoreFile (security)
								

								 	
									Client side certificate keystore to be used for encryption
								

								 	 	
									File
								

								
	
									keyStoreFormat (security)
								

								 	
									Keystore format to be used for payload encryption. Defaults to JKS if not set
								

								 	
									JKS
								

								 	
									String
								

								
	
									keyStoreResource (security)
								

								 	
									Client side certificate keystore to be used for encryption. Is loaded by default from classpath, but you can prefix with classpath:, file:, or http: to load the resource from different systems.
								

								 	 	
									String
								

								
	
									needClientAuth (security)
								

								 	
									Configures whether the server needs client authentication when using SSL.
								

								 	
									false
								

								 	
									boolean
								

								
	
									passphrase (security)
								

								 	
									Password setting to use in order to encrypt/decrypt payloads sent using SSH
								

								 	 	
									String
								

								
	
									securityConfiguration (security)
								

								 	
									Refers to a org.apache.camel.component.netty.http.NettyHttpSecurityConfiguration for configuring secure web resources.
								

								 	 	
									NettyHttpSecurity Configuration
								

								
	
									securityOptions (security)
								

								 	
									To configure NettyHttpSecurityConfiguration using key/value pairs from the map
								

								 	 	
									Map
								

								
	
									securityProvider (security)
								

								 	
									Security provider to be used for payload encryption. Defaults to SunX509 if not set.
								

								 	
									SunX509
								

								 	
									String
								

								
	
									ssl (security)
								

								 	
									Setting to specify whether SSL encryption is applied to this endpoint
								

								 	
									false
								

								 	
									boolean
								

								
	
									sslClientCertHeaders (security)
								

								 	
									When enabled and in SSL mode, then the Netty consumer will enrich the Camel Message with headers having information about the client certificate such as subject name, issuer name, serial number, and the valid date range.
								

								 	
									false
								

								 	
									boolean
								

								
	
									sslContextParameters (security)
								

								 	
									To configure security using SSLContextParameters
								

								 	 	
									SSLContextParameters
								

								
	
									sslHandler (security)
								

								 	
									Reference to a class that could be used to return an SSL Handler
								

								 	 	
									SslHandler
								

								
	
									trustStoreFile (security)
								

								 	
									Server side certificate keystore to be used for encryption
								

								 	 	
									File
								

								
	
									trustStoreResource (security)
								

								 	
									Server side certificate keystore to be used for encryption. Is loaded by default from classpath, but you can prefix with classpath:, file:, or http: to load the resource from different systems.
								

								 	 	
									String
								

								

Message Headers

				The following headers can be used on the producer to control the HTTP request.
			
	Name	Type	Description
	
								CamelHttpMethod
							

							 	
								String
							

							 	
								Allow to control what HTTP method to use such as GET, POST, TRACE etc. The type can also be a org.jboss.netty.handler.codec.http.HttpMethod instance.
							

							
	
								CamelHttpQuery
							

							 	
								String
							

							 	
								Allows to provide URI query parameters as a String value that overrides the endpoint configuration. Separate multiple parameters using the & sign. For example: foo=bar&beer=yes.
							

							
	
								CamelHttpPath
							

							 	
								String
							

							 	
								Camel 2.13.1/2.12.4: Allows to provide URI context-path and query parameters as a String value that overrides the endpoint configuration. This allows to reuse the same producer for calling same remote http server, but using a dynamic context-path and query parameters.
							

							
	
								Content-Type
							

							 	
								String
							

							 	
								To set the content-type of the HTTP body. For example: text/plain; charset="UTF-8".
							

							
	
								CamelHttpResponseCode
							

							 	
								int
							

							 	
								Allows to set the HTTP Status code to use. By default 200 is used for success, and 500 for failure.
							

							

				The following headers is provided as meta-data when a route starts from an Netty HTTP endpoint:
			

				The description in the table takes offset in a route having: from("netty-http:http:0.0.0.0:8080/myapp")…​
			
	Name	Type	Description
	
								CamelHttpMethod
							

							 	
								String
							

							 	
								The HTTP method used, such as GET, POST, TRACE etc.
							

							
	
								CamelHttpUrl
							

							 	
								String
							

							 	
								The URL including protocol, host and port, etc
							

							
	
								CamelHttpUri
							

							 	
								String
							

							 	
								The URI without protocol, host and port, etc
							

							
	
								CamelHttpQuery
							

							 	
								String
							

							 	
								Any query parameters, such as foo=bar&beer=yes
							

							
	
								CamelHttpRawQuery
							

							 	
								String
							

							 	
								Camel 2.13.0: Any query parameters, such as foo=bar&beer=yes. Stored in the raw form, as they arrived to the consumer (i.e. before URL decoding).
							

							
	
								CamelHttpPath
							

							 	
								String
							

							 	
								Additional context-path. This value is empty if the client called the context-path /myapp. If the client calls /myapp/mystuff, then this header value is /mystuff. In other words its the value after the context-path configured on the route endpoint.
							

							
	
								CamelHttpCharacterEncoding
							

							 	
								String
							

							 	
								The charset from the content-type header.
							

							
	
								CamelHttpAuthentication
							

							 	
								String
							

							 	
								If the user was authenticated using HTTP Basic then this header is added with the value Basic.
							

							
	
								Content-Type
							

							 	
								String
							

							 	
								The content type if provided. For example: text/plain; charset="UTF-8".
							

							

Access to Netty types

				This component uses the org.apache.camel.component.netty.http.NettyHttpMessage as the message implementation on the Exchange. This allows end users to get access to the original Netty request/response instances if needed, as shown below. Mind that the original response may not be accessible at all times.
			
org.jboss.netty.handler.codec.http.HttpRequest request = exchange.getIn(NettyHttpMessage.class).getHttpRequest();

Examples

				In the route below we use Netty HTTP as a HTTP server, which returns back a hardcoded "Bye World" message.
			
 from("netty-http:http://0.0.0.0:8080/foo")
 .transform().constant("Bye World");

				And we can call this HTTP server using Camel also, with the ProducerTemplate as shown below:
			
 String out = template.requestBody("netty-http:http://localhost:8080/foo", "Hello World", String.class);
 System.out.println(out);

				And we get back "Bye World" as the output.
			

How do I let Netty match wildcards

				By default Netty HTTP will only match on exact uri’s. But you can instruct Netty to match prefixes. For example
			
from("netty-http:http://0.0.0.0:8123/foo").to("mock:foo");

				In the route above Netty HTTP will only match if the uri is an exact match, so it will match if you enter
 http://0.0.0.0:8123/foo but not match if you do http://0.0.0.0:8123/foo/bar.
			

				So if you want to enable wildcard matching you do as follows:
			
from("netty-http:http://0.0.0.0:8123/foo?matchOnUriPrefix=true").to("mock:foo");

				So now Netty matches any endpoints with starts with foo.
			

				To match any endpoint you can do:
			
from("netty-http:http://0.0.0.0:8123?matchOnUriPrefix=true").to("mock:foo");

Using multiple routes with same port

				In the same CamelContext you can have multiple routes from Netty HTTP that shares the same port (eg a org.jboss.netty.bootstrap.ServerBootstrap instance). Doing this requires a number of bootstrap options to be identical in the routes, as the routes will share the same org.jboss.netty.bootstrap.ServerBootstrap instance. The instance will be configured with the options from the first route created.
			

				The options the routes must be identical configured is all the options defined in the org.apache.camel.component.netty.NettyServerBootstrapConfiguration configuration class. If you have configured another route with different options, Camel will throw an exception on startup, indicating the options is not identical. To mitigate this ensure all options is identical.
			

				Here is an example with two routes that share the same port.
			

				Two routes sharing the same port
			
from("netty-http:http://0.0.0.0:{{port}}/foo")
 .to("mock:foo")
 .transform().constant("Bye World");

from("netty-http:http://0.0.0.0:{{port}}/bar")
 .to("mock:bar")
 .transform().constant("Bye Camel");

				And here is an example of a mis configured 2nd route that do not have identical org.apache.camel.component.netty.NettyServerBootstrapConfiguration option as the 1st route. This will cause Camel to fail on startup.
			

				Two routes sharing the same port, but the 2nd route is misconfigured and will fail on starting
			
from("netty-http:http://0.0.0.0:{{port}}/foo")
 .to("mock:foo")
 .transform().constant("Bye World");

// we cannot have a 2nd route on same port with SSL enabled, when the 1st route is NOT
from("netty-http:http://0.0.0.0:{{port}}/bar?ssl=true")
 .to("mock:bar")
 .transform().constant("Bye Camel");
Reusing same server bootstrap configuration with multiple routes

					By configuring the common server bootstrap option in an single instance of a org.apache.camel.component.netty.NettyServerBootstrapConfiguration type, we can use the bootstrapConfiguration option on the Netty HTTP consumers to refer and reuse the same options across all consumers.
				
<bean id="nettyHttpBootstrapOptions" class="org.apache.camel.component.netty.NettyServerBootstrapConfiguration">
 <property name="backlog" value="200"/>
 <property name="connectTimeout" value="20000"/>
 <property name="workerCount" value="16"/>
</bean>

					And in the routes you refer to this option as shown below
				
<route>
 <from uri="netty-http:http://0.0.0.0:{{port}}/foo?bootstrapConfiguration=#nettyHttpBootstrapOptions"/>
 ...
</route>

<route>
 <from uri="netty-http:http://0.0.0.0:{{port}}/bar?bootstrapConfiguration=#nettyHttpBootstrapOptions"/>
 ...
</route>

<route>
 <from uri="netty-http:http://0.0.0.0:{{port}}/beer?bootstrapConfiguration=#nettyHttpBootstrapOptions"/>
 ...
</route>

Reusing same server bootstrap configuration with multiple routes across multiple bundles in OSGi container

					See the Netty HTTP Server Example for more details and example how to do that.
				

Using HTTP Basic Authentication

				The Netty HTTP consumer supports HTTP basic authentication by specifying the security realm name to use, as shown below
			
<route>
 <from uri="netty-http:http://0.0.0.0:{{port}}/foo?securityConfiguration.realm=karaf"/>
 ...
</route>

				The realm name is mandatory to enable basic authentication. By default the JAAS based authenticator is used, which will use the realm name specified (karaf in the example above) and use the JAAS realm and the JAAS \{{LoginModule}}s of this realm for authentication.
			

				End user of Apache Karaf / ServiceMix has a karaf realm out of the box, and hence why the example above would work out of the box in these containers.
			
Specifying ACL on web resources

					The org.apache.camel.component.netty.http.SecurityConstraint allows to define constrains on web resources. And the org.apache.camel.component.netty.http.SecurityConstraintMapping is provided out of the box, allowing to easily define inclusions and exclusions with roles.
				

					For example as shown below in the XML DSL, we define the constraint bean:
				
 <bean id="constraint" class="org.apache.camel.component.netty.http.SecurityConstraintMapping">
 <!-- inclusions defines url -> roles restrictions -->
 <!-- a * should be used for any role accepted (or even no roles) -->
 <property name="inclusions">
 <map>
 <entry key="/*" value="*"/>
 <entry key="/admin/*" value="admin"/>
 <entry key="/guest/*" value="admin,guest"/>
 </map>
 </property>
 <!-- exclusions is used to define public urls, which requires no authentication -->
 <property name="exclusions">
 <set>
 <value>/public/*</value>
 </set>
 </property>
 </bean>

					The constraint above is define so that
				
	
							access to /* is restricted and any roles is accepted (also if user has no roles)
						
	
							access to /admin/* requires the admin role
						
	
							access to /guest/* requires the admin or guest role
						
	
							access to /public/* is an exclusion which means no authentication is needed, and is therefore public for everyone without logging in
						

					To use this constraint we just need to refer to the bean id as shown below:
				
<route>
 <from uri="netty-http:http://0.0.0.0:{{port}}/foo?matchOnUriPrefix=true&securityConfiguration.realm=karaf&securityConfiguration.securityConstraint=#constraint"/>
 ...
</route>

See Also

	
						Configuring Camel
					
	
						Component
					
	
						Endpoint
					
	
						Getting Started
					
	
						Netty
					
	
						Netty HTTP Server Example
					
	
						Jetty
					

Chapter 240. Netty4 Component

			Available as of Camel version 2.14
		

			The netty4 component in Camel is a socket communication component, based on the Netty project version 4.
 Netty is a NIO client server framework which enables quick and easy development of netwServerInitializerFactoryork applications such as protocol servers and clients.
 Netty greatly simplifies and streamlines network programming such as TCP and UDP socket server.
		

			This camel component supports both producer and consumer endpoints.
		

			The Netty component has several options and allows fine-grained control of a number of TCP/UDP communication parameters (buffer sizes, keepAlives, tcpNoDelay etc) and facilitates both In-Only and In-Out communication on a Camel route.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-netty4</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>
URI format

				The URI scheme for a netty component is as follows
			
netty4:tcp://localhost:99999[?options]
netty4:udp://remotehost:99999/[?options]

				This component supports producer and consumer endpoints for both TCP and UDP.
			

				You can append query options to the URI in the following format, ?option=value&option=value&…​
			

Options

				The Netty4 component supports 5 options which are listed below.
			
	Name	Description	Default	Type
	
								maximumPoolSize (advanced)
							

							 	
								The thread pool size for the EventExecutorGroup if its in use. The default value is 16.
							

							 	
								16
							

							 	
								int
							

							
	
								configuration (advanced)
							

							 	
								To use the NettyConfiguration as configuration when creating endpoints.
							

							 	 	
								NettyConfiguration
							

							
	
								executorService (advanced)
							

							 	
								To use the given EventExecutorGroup
							

							 	 	
								EventExecutorGroup
							

							
	
								useGlobalSslContext Parameters (security)
							

							 	
								Enable usage of global SSL context parameters.
							

							 	
								false
							

							 	
								boolean
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The Netty4 endpoint is configured using URI syntax:
			
netty4:protocol:host:port

				with the following path and query parameters:
			
Path Parameters (3 parameters):

	Name	Description	Default	Type
	
									protocol
								

								 	
									Required The protocol to use which can be tcp or udp.
								

								 	 	
									String
								

								
	
									host
								

								 	
									Required The hostname. For the consumer the hostname is localhost or 0.0.0.0 For the producer the hostname is the remote host to connect to
								

								 	 	
									String
								

								
	
									port
								

								 	
									Required The host port number
								

								 	 	
									int
								

								

Query Parameters (72 parameters):

	Name	Description	Default	Type
	
									disconnect (common)
								

								 	
									Whether or not to disconnect(close) from Netty Channel right after use. Can be used for both consumer and producer.
								

								 	
									false
								

								 	
									boolean
								

								
	
									keepAlive (common)
								

								 	
									Setting to ensure socket is not closed due to inactivity
								

								 	
									true
								

								 	
									boolean
								

								
	
									reuseAddress (common)
								

								 	
									Setting to facilitate socket multiplexing
								

								 	
									true
								

								 	
									boolean
								

								
	
									reuseChannel (common)
								

								 	
									This option allows producers and consumers (in client mode) to reuse the same Netty Channel for the lifecycle of processing the Exchange. This is useful if you need to call a server multiple times in a Camel route and want to use the same network connection. When using this the channel is not returned to the connection pool until the Exchange is done; or disconnected if the disconnect option is set to true. The reused Channel is stored on the Exchange as an exchange property with the key link NettyConstantsNETTY_CHANNEL which allows you to obtain the channel during routing and use it as well.
								

								 	
									false
								

								 	
									boolean
								

								
	
									sync (common)
								

								 	
									Setting to set endpoint as one-way or request-response
								

								 	
									true
								

								 	
									boolean
								

								
	
									tcpNoDelay (common)
								

								 	
									Setting to improve TCP protocol performance
								

								 	
									true
								

								 	
									boolean
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									broadcast (consumer)
								

								 	
									Setting to choose Multicast over UDP
								

								 	
									false
								

								 	
									boolean
								

								
	
									clientMode (consumer)
								

								 	
									If the clientMode is true, netty consumer will connect the address as a TCP client.
								

								 	
									false
								

								 	
									boolean
								

								
	
									reconnect (consumer)
								

								 	
									Used only in clientMode in consumer, the consumer will attempt to reconnect on disconnection if this is enabled
								

								 	
									true
								

								 	
									boolean
								

								
	
									reconnectInterval (consumer)
								

								 	
									Used if reconnect and clientMode is enabled. The interval in milli seconds to attempt reconnection
								

								 	
									10000
								

								 	
									int
								

								
	
									backlog (consumer)
								

								 	
									Allows to configure a backlog for netty consumer (server). Note the backlog is just a best effort depending on the OS. Setting this option to a value such as 200, 500 or 1000, tells the TCP stack how long the accept queue can be If this option is not configured, then the backlog depends on OS setting.
								

								 	 	
									int
								

								
	
									bossCount (consumer)
								

								 	
									When netty works on nio mode, it uses default bossCount parameter from Netty, which is 1. User can use this operation to override the default bossCount from Netty
								

								 	
									1
								

								 	
									int
								

								
	
									bossGroup (consumer)
								

								 	
									Set the BossGroup which could be used for handling the new connection of the server side across the NettyEndpoint
								

								 	 	
									EventLoopGroup
								

								
	
									disconnectOnNoReply (consumer)
								

								 	
									If sync is enabled then this option dictates NettyConsumer if it should disconnect where there is no reply to send back.
								

								 	
									true
								

								 	
									boolean
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									nettyServerBootstrapFactory (consumer)
								

								 	
									To use a custom NettyServerBootstrapFactory
								

								 	 	
									NettyServerBootstrap Factory
								

								
	
									networkInterface (consumer)
								

								 	
									When using UDP then this option can be used to specify a network interface by its name, such as eth0 to join a multicast group.
								

								 	 	
									String
								

								
	
									noReplyLogLevel (consumer)
								

								 	
									If sync is enabled this option dictates NettyConsumer which logging level to use when logging a there is no reply to send back.
								

								 	
									WARN
								

								 	
									LoggingLevel
								

								
	
									serverClosedChannel ExceptionCaughtLogLevel (consumer)
								

								 	
									If the server (NettyConsumer) catches an java.nio.channels.ClosedChannelException then its logged using this logging level. This is used to avoid logging the closed channel exceptions, as clients can disconnect abruptly and then cause a flood of closed exceptions in the Netty server.
								

								 	
									DEBUG
								

								 	
									LoggingLevel
								

								
	
									serverExceptionCaughtLog Level (consumer)
								

								 	
									If the server (NettyConsumer) catches an exception then its logged using this logging level.
								

								 	
									WARN
								

								 	
									LoggingLevel
								

								
	
									serverInitializerFactory (consumer)
								

								 	
									To use a custom ServerInitializerFactory
								

								 	 	
									ServerInitializer Factory
								

								
	
									usingExecutorService (consumer)
								

								 	
									Whether to use ordered thread pool, to ensure events are processed orderly on the same channel.
								

								 	
									true
								

								 	
									boolean
								

								
	
									connectTimeout (producer)
								

								 	
									Time to wait for a socket connection to be available. Value is in millis.
								

								 	
									10000
								

								 	
									int
								

								
	
									requestTimeout (producer)
								

								 	
									Allows to use a timeout for the Netty producer when calling a remote server. By default no timeout is in use. The value is in milli seconds, so eg 30000 is 30 seconds. The requestTimeout is using Netty’s ReadTimeoutHandler to trigger the timeout.
								

								 	 	
									long
								

								
	
									clientInitializerFactory (producer)
								

								 	
									To use a custom ClientInitializerFactory
								

								 	 	
									ClientInitializer Factory
								

								
	
									correlationManager (producer)
								

								 	
									To use a custom correlation manager to manage how request and reply messages are mapped when using request/reply with the netty producer. This should only be used if you have a way to map requests together with replies such as if there is correlation ids in both the request and reply messages. This can be used if you want to multiplex concurrent messages on the same channel (aka connection) in netty. When doing this you must have a way to correlate the request and reply messages so you can store the right reply on the inflight Camel Exchange before its continued routed. We recommend extending the TimeoutCorrelationManagerSupport when you build custom correlation managers. This provides support for timeout and other complexities you otherwise would need to implement as well. See also the producerPoolEnabled option for more details.
								

								 	 	
									NettyCamelState CorrelationManager
								

								
	
									lazyChannelCreation (producer)
								

								 	
									Channels can be lazily created to avoid exceptions, if the remote server is not up and running when the Camel producer is started.
								

								 	
									true
								

								 	
									boolean
								

								
	
									producerPoolEnabled (producer)
								

								 	
									Whether producer pool is enabled or not. Important: If you turn this off then a single shared connection is used for the producer, also if you are doing request/reply. That means there is a potential issue with interleaved responses if replies comes back out-of-order. Therefore you need to have a correlation id in both the request and reply messages so you can properly correlate the replies to the Camel callback that is responsible for continue processing the message in Camel. To do this you need to implement NettyCamelStateCorrelationManager as correlation manager and configure it via the correlationManager option. See also the correlationManager option for more details.
								

								 	
									true
								

								 	
									boolean
								

								
	
									producerPoolMaxActive (producer)
								

								 	
									Sets the cap on the number of objects that can be allocated by the pool (checked out to clients, or idle awaiting checkout) at a given time. Use a negative value for no limit.
								

								 	
									-1
								

								 	
									int
								

								
	
									producerPoolMaxIdle (producer)
								

								 	
									Sets the cap on the number of idle instances in the pool.
								

								 	
									100
								

								 	
									int
								

								
	
									producerPoolMinEvictable Idle (producer)
								

								 	
									Sets the minimum amount of time (value in millis) an object may sit idle in the pool before it is eligible for eviction by the idle object evictor.
								

								 	
									300000
								

								 	
									long
								

								
	
									producerPoolMinIdle (producer)
								

								 	
									Sets the minimum number of instances allowed in the producer pool before the evictor thread (if active) spawns new objects.
								

								 	 	
									int
								

								
	
									udpConnectionlessSending (producer)
								

								 	
									This option supports connection less udp sending which is a real fire and forget. A connected udp send receive the PortUnreachableException if no one is listen on the receiving port.
								

								 	
									false
								

								 	
									boolean
								

								
	
									useByteBuf (producer)
								

								 	
									If the useByteBuf is true, netty producer will turn the message body into ByteBuf before sending it out.
								

								 	
									false
								

								 	
									boolean
								

								
	
									allowSerializedHeaders (advanced)
								

								 	
									Only used for TCP when transferExchange is true. When set to true, serializable objects in headers and properties will be added to the exchange. Otherwise Camel will exclude any non-serializable objects and log it at WARN level.
								

								 	
									false
								

								 	
									boolean
								

								
	
									bootstrapConfiguration (advanced)
								

								 	
									To use a custom configured NettyServerBootstrapConfiguration for configuring this endpoint.
								

								 	 	
									NettyServerBootstrap Configuration
								

								
	
									channelGroup (advanced)
								

								 	
									To use a explicit ChannelGroup.
								

								 	 	
									ChannelGroup
								

								
	
									nativeTransport (advanced)
								

								 	
									Whether to use native transport instead of NIO. Native transport takes advantage of the host operating system and is only supported on some platforms. You need to add the netty JAR for the host operating system you are using. See more details at: http://netty.io/wiki/native-transports.html
								

								 	
									false
								

								 	
									boolean
								

								
	
									options (advanced)
								

								 	
									Allows to configure additional netty options using option. as prefix. For example option.child.keepAlive=false to set the netty option child.keepAlive=false. See the Netty documentation for possible options that can be used.
								

								 	 	
									Map
								

								
	
									receiveBufferSize (advanced)
								

								 	
									The TCP/UDP buffer sizes to be used during inbound communication. Size is bytes.
								

								 	
									65536
								

								 	
									int
								

								
	
									receiveBufferSizePredictor (advanced)
								

								 	
									Configures the buffer size predictor. See details at Jetty documentation and this mail thread.
								

								 	 	
									int
								

								
	
									sendBufferSize (advanced)
								

								 	
									The TCP/UDP buffer sizes to be used during outbound communication. Size is bytes.
								

								 	
									65536
								

								 	
									int
								

								
	
									synchronous (advanced)
								

								 	
									Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).
								

								 	
									false
								

								 	
									boolean
								

								
	
									transferExchange (advanced)
								

								 	
									Only used for TCP. You can transfer the exchange over the wire instead of just the body. The following fields are transferred: In body, Out body, fault body, In headers, Out headers, fault headers, exchange properties, exchange exception. This requires that the objects are serializable. Camel will exclude any non-serializable objects and log it at WARN level.
								

								 	
									false
								

								 	
									boolean
								

								
	
									udpByteArrayCodec (advanced)
								

								 	
									For UDP only. If enabled the using byte array codec instead of Java serialization protocol.
								

								 	
									false
								

								 	
									boolean
								

								
	
									workerCount (advanced)
								

								 	
									When netty works on nio mode, it uses default workerCount parameter from Netty, which is cpu_core_threads2. User can use this operation to override the default workerCount from Netty
								

								 	 	
									int
								

								
	
									workerGroup (advanced)
								

								 	
									To use a explicit EventLoopGroup as the boss thread pool. For example to share a thread pool with multiple consumers or producers. By default each consumer or producer has their own worker pool with 2 x cpu count core threads.
								

								 	 	
									EventLoopGroup
								

								
	
									allowDefaultCodec (codec)
								

								 	
									The netty component installs a default codec if both, encoder/deocder is null and textline is false. Setting allowDefaultCodec to false prevents the netty component from installing a default codec as the first element in the filter chain.
								

								 	
									true
								

								 	
									boolean
								

								
	
									autoAppendDelimiter (codec)
								

								 	
									Whether or not to auto append missing end delimiter when sending using the textline codec.
								

								 	
									true
								

								 	
									boolean
								

								
	
									decoder (codec)
								

								 	
									Deprecated A custom ChannelHandler class that can be used to perform special marshalling of inbound payloads.
								

								 	 	
									ChannelHandler
								

								
	
									decoderMaxLineLength (codec)
								

								 	
									The max line length to use for the textline codec.
								

								 	
									1024
								

								 	
									int
								

								
	
									decoders (codec)
								

								 	
									A list of decoders to be used. You can use a String which have values separated by comma, and have the values be looked up in the Registry. Just remember to prefix the value with so Camel knows it should lookup.
								

								 	 	
									String
								

								
	
									delimiter (codec)
								

								 	
									The delimiter to use for the textline codec. Possible values are LINE and NULL.
								

								 	
									LINE
								

								 	
									TextLineDelimiter
								

								
	
									encoder (codec)
								

								 	
									Deprecated A custom ChannelHandler class that can be used to perform special marshalling of outbound payloads.
								

								 	 	
									ChannelHandler
								

								
	
									encoders (codec)
								

								 	
									A list of encoders to be used. You can use a String which have values separated by comma, and have the values be looked up in the Registry. Just remember to prefix the value with so Camel knows it should lookup.
								

								 	 	
									String
								

								
	
									encoding (codec)
								

								 	
									The encoding (a charset name) to use for the textline codec. If not provided, Camel will use the JVM default Charset.
								

								 	 	
									String
								

								
	
									textline (codec)
								

								 	
									Only used for TCP. If no codec is specified, you can use this flag to indicate a text line based codec; if not specified or the value is false, then Object Serialization is assumed over TCP.
								

								 	
									false
								

								 	
									boolean
								

								
	
									enabledProtocols (security)
								

								 	
									Which protocols to enable when using SSL
								

								 	
									TLSv1,TLSv1.1,TLSv1.2
								

								 	
									String
								

								
	
									keyStoreFile (security)
								

								 	
									Client side certificate keystore to be used for encryption
								

								 	 	
									File
								

								
	
									keyStoreFormat (security)
								

								 	
									Keystore format to be used for payload encryption. Defaults to JKS if not set
								

								 	 	
									String
								

								
	
									keyStoreResource (security)
								

								 	
									Client side certificate keystore to be used for encryption. Is loaded by default from classpath, but you can prefix with classpath:, file:, or http: to load the resource from different systems.
								

								 	 	
									String
								

								
	
									needClientAuth (security)
								

								 	
									Configures whether the server needs client authentication when using SSL.
								

								 	
									false
								

								 	
									boolean
								

								
	
									passphrase (security)
								

								 	
									Password setting to use in order to encrypt/decrypt payloads sent using SSH
								

								 	 	
									String
								

								
	
									securityProvider (security)
								

								 	
									Security provider to be used for payload encryption. Defaults to SunX509 if not set.
								

								 	 	
									String
								

								
	
									ssl (security)
								

								 	
									Setting to specify whether SSL encryption is applied to this endpoint
								

								 	
									false
								

								 	
									boolean
								

								
	
									sslClientCertHeaders (security)
								

								 	
									When enabled and in SSL mode, then the Netty consumer will enrich the Camel Message with headers having information about the client certificate such as subject name, issuer name, serial number, and the valid date range.
								

								 	
									false
								

								 	
									boolean
								

								
	
									sslContextParameters (security)
								

								 	
									To configure security using SSLContextParameters
								

								 	 	
									SSLContextParameters
								

								
	
									sslHandler (security)
								

								 	
									Reference to a class that could be used to return an SSL Handler
								

								 	 	
									SslHandler
								

								
	
									trustStoreFile (security)
								

								 	
									Server side certificate keystore to be used for encryption
								

								 	 	
									File
								

								
	
									trustStoreResource (security)
								

								 	
									Server side certificate keystore to be used for encryption. Is loaded by default from classpath, but you can prefix with classpath:, file:, or http: to load the resource from different systems.
								

								 	 	
									String
								

								

Registry based Options

				Codec Handlers and SSL Keystores can be enlisted in the Registry, such as in the Spring XML file. The values that could be passed in, are the following:
			
	Name	Description
	
								passphrase
							

							 	
								password setting to use in order to encrypt/decrypt payloads sent using SSH
							

							
	
								keyStoreFormat
							

							 	
								keystore format to be used for payload encryption. Defaults to "JKS" if not set
							

							
	
								securityProvider
							

							 	
								Security provider to be used for payload encryption. Defaults to "SunX509" if not set.
							

							
	
								keyStoreFile
							

							 	
								deprecated: Client side certificate keystore to be used for encryption
							

							
	
								trustStoreFile
							

							 	
								deprecated: Server side certificate keystore to be used for encryption
							

							
	
								keyStoreResource
							

							 	
								Camel 2.11.1: Client side certificate keystore to be used for encryption. Is loaded by default from classpath, but you can prefix with "classpath:", "file:", or "http:" to load the resource from different systems.
							

							
	
								trustStoreResource
							

							 	
								Camel 2.11.1: Server side certificate keystore to be used for encryption. Is loaded by default from classpath, but you can prefix with "classpath:", "file:", or "http:" to load the resource from different systems.
							

							
	
								sslHandler
							

							 	
								Reference to a class that could be used to return an SSL Handler
							

							
	
								encoder
							

							 	
								A custom ChannelHandler class that can be used to perform special marshalling of outbound payloads. Must override io.netty.channel.ChannelInboundHandlerAdapter.
							

							
	
								encoders
							

							 	
								A list of encoders to be used. You can use a String which have values separated by comma, and have the values be looked up in the Registry. Just remember to prefix the value with # so Camel knows it should lookup.
							

							
	
								decoder
							

							 	
								A custom ChannelHandler class that can be used to perform special marshalling of inbound payloads. Must override io.netty.channel.ChannelOutboundHandlerAdapter.
							

							
	
								decoders
							

							 	
								A list of decoders to be used. You can use a String which have values separated by comma, and have the values be looked up in the Registry. Just remember to prefix the value with # so Camel knows it should lookup.
							

							

Note

					Read below about using non shareable encoders/decoders.
				

Using non shareable encoders or decoders

					If your encoders or decoders is not shareable (eg they have the @Shareable class annotation), then your encoder/decoder must implement the org.apache.camel.component.netty.ChannelHandlerFactory interface, and return a new instance in the newChannelHandler method. This is to ensure the encoder/decoder can safely be used. If this is not the case, then the Netty component will log a WARN when
 an endpoint is created.
				

					The Netty component offers a org.apache.camel.component.netty.ChannelHandlerFactories factory class, that has a number of commonly used methods.
				

Sending Messages to/from a Netty endpoint

Netty Producer

					In Producer mode, the component provides the ability to send payloads to a socket endpoint using either TCP or UDP protocols (with optional SSL support).
				

					The producer mode supports both one-way and request-response based operations.
				

Netty Consumer

					In Consumer mode, the component provides the ability to:
				
	
							listen on a specified socket using either TCP or UDP protocols (with optional SSL support),
						
	
							receive requests on the socket using text/xml, binary and serialized object based payloads and
						
	
							send them along on a route as message exchanges.
						

					The consumer mode supports both one-way and request-response based operations.
				

Examples

A UDP Netty endpoint using Request-Reply and serialized object payload

RouteBuilder builder = new RouteBuilder() {
 public void configure() {
 from("netty4:udp://localhost:5155?sync=true")
 .process(new Processor() {
 public void process(Exchange exchange) throws Exception {
 Poetry poetry = (Poetry) exchange.getIn().getBody();
 poetry.setPoet("Dr. Sarojini Naidu");
 exchange.getOut().setBody(poetry);
 }
 }
 }
};

A TCP based Netty consumer endpoint using One-way communication

RouteBuilder builder = new RouteBuilder() {
 public void configure() {
 from("netty4:tcp://localhost:5150")
 .to("mock:result");
 }
};

An SSL/TCP based Netty consumer endpoint using Request-Reply communication

					Using the JSSE Configuration Utility
				

					As of Camel 2.9, the Netty component supports SSL/TLS configuration through the Camel JSSE Configuration Utility. This utility greatly decreases the amount of component specific code you need to write and is configurable at the endpoint and component levels. The following examples demonstrate how to use the utility with the Netty component.
				

					Programmatic configuration of the component
				
KeyStoreParameters ksp = new KeyStoreParameters();
ksp.setResource("/users/home/server/keystore.jks");
ksp.setPassword("keystorePassword");

KeyManagersParameters kmp = new KeyManagersParameters();
kmp.setKeyStore(ksp);
kmp.setKeyPassword("keyPassword");

SSLContextParameters scp = new SSLContextParameters();
scp.setKeyManagers(kmp);

NettyComponent nettyComponent = getContext().getComponent("netty4", NettyComponent.class);
nettyComponent.setSslContextParameters(scp);

					Spring DSL based configuration of endpoint
				
...
 <camel:sslContextParameters
 id="sslContextParameters">
 <camel:keyManagers
 keyPassword="keyPassword">
 <camel:keyStore
 resource="/users/home/server/keystore.jks"
 password="keystorePassword"/>
 </camel:keyManagers>
 </camel:sslContextParameters>...
...
 <to uri="netty4:tcp://localhost:5150?sync=true&ssl=true&sslContextParameters=#sslContextParameters"/>
...

					[[Netty4-UsingBasicSSL/TLSconfigurationontheJettyComponent]] Using Basic SSL/TLS configuration on the Jetty Component
				
JndiRegistry registry = new JndiRegistry(createJndiContext());
registry.bind("password", "changeit");
registry.bind("ksf", new File("src/test/resources/keystore.jks"));
registry.bind("tsf", new File("src/test/resources/keystore.jks"));

context.createRegistry(registry);
context.addRoutes(new RouteBuilder() {
 public void configure() {
 String netty_ssl_endpoint =
 "netty4:tcp://localhost:5150?sync=true&ssl=true&passphrase=#password"
 + "&keyStoreFile=#ksf&trustStoreFile=#tsf";
 String return_string =
 "When You Go Home, Tell Them Of Us And Say,"
 + "For Your Tomorrow, We Gave Our Today.";

 from(netty_ssl_endpoint)
 .process(new Processor() {
 public void process(Exchange exchange) throws Exception {
 exchange.getOut().setBody(return_string);
 }
 }
 }
});

					Getting access to SSLSession and the client certificate
				

					You can get access to the javax.net.ssl.SSLSession if you eg need to get details about the client certificate. When ssl=true then the Netty4 component will store the SSLSession as a header on the Camel Message as shown below:
				
SSLSession session = exchange.getIn().getHeader(NettyConstants.NETTY_SSL_SESSION, SSLSession.class);
// get the first certificate which is client certificate
javax.security.cert.X509Certificate cert = session.getPeerCertificateChain()[0];
Principal principal = cert.getSubjectDN();

					Remember to set needClientAuth=true to authenticate the client, otherwise SSLSession cannot access information about the client certificate, and you may get an exception javax.net.ssl.SSLPeerUnverifiedException: peer not authenticated. You may also get this exception if the client certificate is expired or not valid etc.
				
Tip

					The option sslClientCertHeaders can be set to true which then enriches the Camel Message with headers having details about the client certificate. For example the subject name is readily available in the header CamelNettySSLClientCertSubjectName.
				

Using Multiple Codecs

					In certain cases it may be necessary to add chains of encoders and decoders to the netty pipeline. To add multpile codecs to a camel netty endpoint the 'encoders' and 'decoders' uri parameters should be used. Like the 'encoder' and 'decoder' parameters they are used to supply references (to lists of ChannelUpstreamHandlers and ChannelDownstreamHandlers) that should be added to the pipeline. Note that if encoders is specified then the encoder param will be ignored, similarly for decoders and the decoder param.
				
Note

						Read further above about using non shareable encoders/decoders.
					

					The lists of codecs need to be added to the Camel’s registry so they can be resolved when the endpoint is created.
				
ChannelHandlerFactory lengthDecoder = ChannelHandlerFactories.newLengthFieldBasedFrameDecoder(1048576, 0, 4, 0, 4);

StringDecoder stringDecoder = new StringDecoder();
registry.bind("length-decoder", lengthDecoder);
registry.bind("string-decoder", stringDecoder);

LengthFieldPrepender lengthEncoder = new LengthFieldPrepender(4);
StringEncoder stringEncoder = new StringEncoder();
registry.bind("length-encoder", lengthEncoder);
registry.bind("string-encoder", stringEncoder);

List<ChannelHandler> decoders = new ArrayList<ChannelHandler>();
decoders.add(lengthDecoder);
decoders.add(stringDecoder);

List<ChannelHandler> encoders = new ArrayList<ChannelHandler>();
encoders.add(lengthEncoder);
encoders.add(stringEncoder);

registry.bind("encoders", encoders);
registry.bind("decoders", decoders);

					Spring’s native collections support can be used to specify the codec lists in an application context
				
<util:list id="decoders" list-class="java.util.LinkedList">
 <bean class="org.apache.camel.component.netty4.ChannelHandlerFactories" factory-method="newLengthFieldBasedFrameDecoder">
 <constructor-arg value="1048576"/>
 <constructor-arg value="0"/>
 <constructor-arg value="4"/>
 <constructor-arg value="0"/>
 <constructor-arg value="4"/>
 </bean>
 <bean class="io.netty.handler.codec.string.StringDecoder"/>
 </util:list>

 <util:list id="encoders" list-class="java.util.LinkedList">
 <bean class="io.netty.handler.codec.LengthFieldPrepender">
 <constructor-arg value="4"/>
 </bean>
 <bean class="io.netty.handler.codec.string.StringEncoder"/>
 </util:list>

 <bean id="length-encoder" class="io.netty.handler.codec.LengthFieldPrepender">
 <constructor-arg value="4"/>
 </bean>
 <bean id="string-encoder" class="io.netty.handler.codec.string.StringEncoder"/>

 <bean id="length-decoder" class="org.apache.camel.component.netty4.ChannelHandlerFactories" factory-method="newLengthFieldBasedFrameDecoder">
 <constructor-arg value="1048576"/>
 <constructor-arg value="0"/>
 <constructor-arg value="4"/>
 <constructor-arg value="0"/>
 <constructor-arg value="4"/>
 </bean>
 <bean id="string-decoder" class="io.netty.handler.codec.string.StringDecoder"/>

					The bean names can then be used in netty endpoint definitions either as a comma separated list or contained in a List e.g.
				
 from("direct:multiple-codec").to("netty4:tcp://localhost:{{port}}?encoders=#encoders&sync=false");

 from("netty4:tcp://localhost:{{port}}?decoders=#length-decoder,#string-decoder&sync=false").to("mock:multiple-codec");

					or via XML.
				
<camelContext id="multiple-netty-codecs-context" xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="direct:multiple-codec"/>
 <to uri="netty4:tcp://localhost:5150?encoders=#encoders&sync=false"/>
 </route>
 <route>
 <from uri="netty4:tcp://localhost:5150?decoders=#length-decoder,#string-decoder&sync=false"/>
 <to uri="mock:multiple-codec"/>
 </route>
</camelContext>

Closing Channel When Complete

				When acting as a server you sometimes want to close the channel when, for example, a client conversion is finished.
 You can do this by simply setting the endpoint option disconnect=true.
			

				However you can also instruct Camel on a per message basis as follows.
 To instruct Camel to close the channel, you should add a header with the key CamelNettyCloseChannelWhenComplete set to a boolean true value.
 For instance, the example below will close the channel after it has written the bye message back to the client:
			
from("netty4:tcp://localhost:8080").process(new Processor() {
 public void process(Exchange exchange) throws Exception {
 String body = exchange.getIn().getBody(String.class);
 exchange.getOut().setBody("Bye " + body);
 // some condition which determines if we should close
 if (close) {
 exchange.getOut().setHeader(NettyConstants.NETTY_CLOSE_CHANNEL_WHEN_COMPLETE, true);
 }
 }
});

				Adding custom channel pipeline factories to gain complete control over a
			

Custom pipeline

				Custom channel pipelines provide complete control to the user over the handler/interceptor chain by inserting custom handler(s), encoder(s) & decoders without having to specify them in the Netty Endpoint URL in a very simple way.
			

				In order to add a custom pipeline, a custom channel pipeline factory must be created and registered with the context via the context registry (JNDIRegistry, or the camel-spring ApplicationContextRegistry etc).
			

				A custom pipeline factory must be constructed as follows
			
	
						A Producer linked channel pipeline factory must extend the abstract class ClientPipelineFactory.
					
	
						A Consumer linked channel pipeline factory must extend the abstract class ServerInitializerFactory.
					
	
						The classes should override the initChannel() method in order to insert custom handler(s), encoder(s) and decoder(s). Not overriding the initChannel() method creates a pipeline with no handlers, encoders or decoders wired to the pipeline.
					

				The example below shows how ServerInitializerFactory factory may be created
			
Using custom pipeline factory

public class SampleServerInitializerFactory extends ServerInitializerFactory {
 private int maxLineSize = 1024;

 protected void initChannel(Channel ch) throws Exception {
 ChannelPipeline channelPipeline = ch.pipeline();

 channelPipeline.addLast("encoder-SD", new StringEncoder(CharsetUtil.UTF_8));
 channelPipeline.addLast("decoder-DELIM", new DelimiterBasedFrameDecoder(maxLineSize, true, Delimiters.lineDelimiter()));
 channelPipeline.addLast("decoder-SD", new StringDecoder(CharsetUtil.UTF_8));
 // here we add the default Camel ServerChannelHandler for the consumer, to allow Camel to route the message etc.
 channelPipeline.addLast("handler", new ServerChannelHandler(consumer));
 }
}

					The custom channel pipeline factory can then be added to the registry and instantiated/utilized on a camel route in the following way
				
Registry registry = camelContext.getRegistry();
ServerInitializerFactory factory = new TestServerInitializerFactory();
registry.bind("spf", factory);
context.addRoutes(new RouteBuilder() {
 public void configure() {
 String netty_ssl_endpoint =
 "netty4:tcp://localhost:5150?serverInitializerFactory=#spf"
 String return_string =
 "When You Go Home, Tell Them Of Us And Say,"
 + "For Your Tomorrow, We Gave Our Today.";

 from(netty_ssl_endpoint)
 .process(new Processor() {
 public void process(Exchange exchange) throws Exception {
 exchange.getOut().setBody(return_string);
 }
 }
 }
});

Reusing Netty boss and worker thread pools

				Netty has two kind of thread pools: boss and worker. By default each Netty consumer and producer has their private thread pools. If you want to reuse these thread pools among multiple consumers or producers then the thread pools must be created and enlisted in the Registry.
			

				For example using Spring XML we can create a shared worker thread pool using the NettyWorkerPoolBuilder with 2 worker threads as shown below:
			
<!-- use the worker pool builder to help create the shared thread pool -->
<bean id="poolBuilder" class="org.apache.camel.component.netty.NettyWorkerPoolBuilder">
 <property name="workerCount" value="2"/>
</bean>

<!-- the shared worker thread pool -->
<bean id="sharedPool" class="org.jboss.netty.channel.socket.nio.WorkerPool"
 factory-bean="poolBuilder" factory-method="build" destroy-method="shutdown">
</bean>
Tip

				For boss thread pool there is a org.apache.camel.component.netty4.NettyServerBossPoolBuilder builder for Netty consumers, and a org.apache.camel.component.netty4.NettyClientBossPoolBuilder for the Netty producers.
			

				Then in the Camel routes we can refer to this worker pools by configuring the workerPool option in the URI as shown below:
			
<route>
 <from uri="netty4:tcp://localhost:5021?textline=true&sync=true&workerPool=#sharedPool&usingExecutorService=false"/>
 <to uri="log:result"/>
 ...
</route>

				And if we have another route we can refer to the shared worker pool:
			
<route>
 <from uri="netty4:tcp://localhost:5022?textline=true&sync=true&workerPool=#sharedPool&usingExecutorService=false"/>
 <to uri="log:result"/>
 ...
</route>

				and so forth.
			

Multiplexing concurrent messages over a single connection with request/reply

				When using Netty for request/reply messaging via the netty producer then by default each message is sent via a non-shared connection (pooled). This ensures that replies are automatic being able to map to the correct request thread for further routing in Camel. In other words correlation between request/reply messages happens out-of-the-box because the replies comes back on the same connection that was used for sending the request; and this connection is not shared with others. When the response comes back, the connection is returned back to the connection pool, where it can be reused by others.
			

				However if you want to multiplex concurrent request/responses on a single shared connection, then you need to turn off the connection pooling by setting producerPoolEnabled=false. Now this means there is a potential issue with interleaved responses if replies comes back out-of-order. Therefore you need to have a correlation id in both the request and reply messages so you can properly correlate the replies to the Camel callback that is responsible for continue processing the message in Camel. To do this you need to implement NettyCamelStateCorrelationManager as correlation manager and configure it via the correlationManager=#myManager option.
			
Note

					We recommend extending the TimeoutCorrelationManagerSupport when you build custom correlation managers. This provides support for timeout and other complexities you otherwise would need to implement as well.
				

See Also

	
						Netty HTTP
					
	
						MINA
					

Chapter 241. Netty4 HTTP Component

			Available as of Camel version 2.14
		

			The netty4-http component is an extension to Netty4 component to facilitiate HTTP transport with Netty4.
		

			This camel component supports both producer and consumer endpoints.
		

			INFO: Stream. Netty is stream based, which means the input it receives is submitted to Camel as a stream. That means you will only be able to read the content of the stream once. If you find a situation where the message body appears to be empty or you need to access the data multiple times (eg: doing multicasting, or redelivery error handling) you should use Stream caching or convert the message body to a String which is safe to be re-read multiple times. Notice Netty4 HTTP reads the entire stream into memory using io.netty.handler.codec.http.HttpObjectAggregator to build the entire full http message. But the resulting message is still a stream based message which is readable once.
		

			Maven users will need to add the following dependency to their pom.xml for this component:
		
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-netty4-http</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>
URI format

				The URI scheme for a netty component is as follows
			
netty4-http:http://localhost:8080[?options]

				You can append query options to the URI in the following format, ?option=value&option=value&…​
			

				INFO: Query parameters vs endpoint options. You may be wondering how Camel recognizes URI query parameters and endpoint options. For example you might create endpoint URI as follows - netty4-http:http//example.com?myParam=myValue&compression=true . In this example myParam is the HTTP parameter, while compression is the Camel endpoint option. The strategy used by Camel in such situations is to resolve available endpoint options and remove them from the URI. It means that for the discussed example, the HTTP request sent by Netty HTTP producer to the endpoint will look as follows - http//example.com?myParam=myValue , because compression endpoint option will be resolved and removed from the target URL. Keep also in mind that you cannot specify endpoint options using dynamic headers (like CamelHttpQuery). Endpoint options can be specified only at the endpoint URI definition level (like to or from DSL elements).
			

HTTP Options

				INFO: A lot more options. Important: This component inherits all the options from Netty4. So make sure to look at the Netty4 documentation as well.
 Notice that some options from Netty4 is not applicable when using this Netty4 HTTP component, such as options related to UDP transport.
			

				The Netty4 HTTP component supports 8 options which are listed below.
			
	Name	Description	Default	Type
	
								nettyHttpBinding (advanced)
							

							 	
								To use a custom org.apache.camel.component.netty4.http.NettyHttpBinding for binding to/from Netty and Camel Message API.
							

							 	 	
								NettyHttpBinding
							

							
	
								configuration (common)
							

							 	
								To use the NettyConfiguration as configuration when creating endpoints.
							

							 	 	
								NettyHttpConfiguration
							

							
	
								headerFilterStrategy (advanced)
							

							 	
								To use a custom org.apache.camel.spi.HeaderFilterStrategy to filter headers.
							

							 	 	
								HeaderFilterStrategy
							

							
	
								securityConfiguration (security)
							

							 	
								Refers to a org.apache.camel.component.netty4.http.NettyHttpSecurityConfiguration for configuring secure web resources.
							

							 	 	
								NettyHttpSecurity Configuration
							

							
	
								useGlobalSslContext Parameters (security)
							

							 	
								Enable usage of global SSL context parameters.
							

							 	
								false
							

							 	
								boolean
							

							
	
								maximumPoolSize (advanced)
							

							 	
								The thread pool size for the EventExecutorGroup if its in use. The default value is 16.
							

							 	
								16
							

							 	
								int
							

							
	
								executorService (advanced)
							

							 	
								To use the given EventExecutorGroup
							

							 	 	
								EventExecutorGroup
							

							
	
								resolveProperty Placeholders (advanced)
							

							 	
								Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.
							

							 	
								true
							

							 	
								boolean
							

							

				The Netty4 HTTP endpoint is configured using URI syntax:
			
netty4-http:protocol:host:port/path

				with the following path and query parameters:
			
Path Parameters (4 parameters):

	Name	Description	Default	Type
	
									protocol
								

								 	
									Required The protocol to use which is either http or https
								

								 	 	
									String
								

								
	
									host
								

								 	
									Required The local hostname such as localhost, or 0.0.0.0 when being a consumer. The remote HTTP server hostname when using producer.
								

								 	 	
									String
								

								
	
									port
								

								 	
									The host port number
								

								 	 	
									int
								

								
	
									path
								

								 	
									Resource path
								

								 	 	
									String
								

								

Query Parameters (79 parameters):

	Name	Description	Default	Type
	
									bridgeEndpoint (common)
								

								 	
									If the option is true, the producer will ignore the Exchange.HTTP_URI header, and use the endpoint’s URI for request. You may also set the throwExceptionOnFailure to be false to let the producer send all the fault response back. The consumer working in the bridge mode will skip the gzip compression and WWW URL form encoding (by adding the Exchange.SKIP_GZIP_ENCODING and Exchange.SKIP_WWW_FORM_URLENCODED headers to the consumed exchange).
								

								 	
									false
								

								 	
									boolean
								

								
	
									disconnect (common)
								

								 	
									Whether or not to disconnect(close) from Netty Channel right after use. Can be used for both consumer and producer.
								

								 	
									false
								

								 	
									boolean
								

								
	
									keepAlive (common)
								

								 	
									Setting to ensure socket is not closed due to inactivity
								

								 	
									true
								

								 	
									boolean
								

								
	
									reuseAddress (common)
								

								 	
									Setting to facilitate socket multiplexing
								

								 	
									true
								

								 	
									boolean
								

								
	
									reuseChannel (common)
								

								 	
									This option allows producers and consumers (in client mode) to reuse the same Netty Channel for the lifecycle of processing the Exchange. This is useful if you need to call a server multiple times in a Camel route and want to use the same network connection. When using this the channel is not returned to the connection pool until the Exchange is done; or disconnected if the disconnect option is set to true. The reused Channel is stored on the Exchange as an exchange property with the key link NettyConstantsNETTY_CHANNEL which allows you to obtain the channel during routing and use it as well.
								

								 	
									false
								

								 	
									boolean
								

								
	
									sync (common)
								

								 	
									Setting to set endpoint as one-way or request-response
								

								 	
									true
								

								 	
									boolean
								

								
	
									tcpNoDelay (common)
								

								 	
									Setting to improve TCP protocol performance
								

								 	
									true
								

								 	
									boolean
								

								
	
									bridgeErrorHandler (consumer)
								

								 	
									Allows for bridging the consumer to the Camel routing Error Handler, which mean any exceptions occurred while the consumer is trying to pickup incoming messages, or the likes, will now be processed as a message and handled by the routing Error Handler. By default the consumer will use the org.apache.camel.spi.ExceptionHandler to deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	
									false
								

								 	
									boolean
								

								
	
									matchOnUriPrefix (consumer)
								

								 	
									Whether or not Camel should try to find a target consumer by matching the URI prefix if no exact match is found.
								

								 	
									false
								

								 	
									boolean
								

								
	
									send503whenSuspended (consumer)
								

								 	
									Whether to send back HTTP status code 503 when the consumer has been suspended. If the option is false then the Netty Acceptor is unbound when the consumer is suspended, so clients cannot connect anymore.
								

								 	
									true
								

								 	
									boolean
								

								
	
									backlog (consumer)
								

								 	
									Allows to configure a backlog for netty consumer (server). Note the backlog is just a best effort depending on the OS. Setting this option to a value such as 200, 500 or 1000, tells the TCP stack how long the accept queue can be If this option is not configured, then the backlog depends on OS setting.
								

								 	 	
									int
								

								
	
									bossCount (consumer)
								

								 	
									When netty works on nio mode, it uses default bossCount parameter from Netty, which is 1. User can use this operation to override the default bossCount from Netty
								

								 	
									1
								

								 	
									int
								

								
	
									bossGroup (consumer)
								

								 	
									Set the BossGroup which could be used for handling the new connection of the server side across the NettyEndpoint
								

								 	 	
									EventLoopGroup
								

								
	
									chunkedMaxContentLength (consumer)
								

								 	
									Value in bytes the max content length per chunked frame received on the Netty HTTP server.
								

								 	
									1048576
								

								 	
									int
								

								
	
									compression (consumer)
								

								 	
									Allow using gzip/deflate for compression on the Netty HTTP server if the client supports it from the HTTP headers.
								

								 	
									false
								

								 	
									boolean
								

								
	
									disconnectOnNoReply (consumer)
								

								 	
									If sync is enabled then this option dictates NettyConsumer if it should disconnect where there is no reply to send back.
								

								 	
									true
								

								 	
									boolean
								

								
	
									exceptionHandler (consumer)
								

								 	
									To let the consumer use a custom ExceptionHandler. Notice if the option bridgeErrorHandler is enabled then this options is not in use. By default the consumer will deal with exceptions, that will be logged at WARN or ERROR level and ignored.
								

								 	 	
									ExceptionHandler
								

								
	
									exchangePattern (consumer)
								

								 	
									Sets the exchange pattern when the consumer creates an exchange.
								

								 	 	
									ExchangePattern
								

								
	
									httpMethodRestrict (consumer)
								

								 	
									To disable HTTP methods on the Netty HTTP consumer. You can specify multiple separated by comma.
								

								 	 	
									String
								

								
	
									mapHeaders (consumer)
								

								 	
									If this option is enabled, then during binding from Netty to Camel Message then the headers will be mapped as well (eg added as header to the Camel Message as well). You can turn off this option to disable this. The headers can still be accessed from the org.apache.camel.component.netty.http.NettyHttpMessage message with the method getHttpRequest() that returns the Netty HTTP request io.netty.handler.codec.http.HttpRequest instance.
								

								 	
									true
								

								 	
									boolean
								

								
	
									maxHeaderSize (consumer)
								

								 	
									The maximum length of all headers. If the sum of the length of each header exceeds this value, a io.netty.handler.codec.TooLongFrameException will be raised.
								

								 	
									8192
								

								 	
									int
								

								
	
									nettyServerBootstrapFactory (consumer)
								

								 	
									To use a custom NettyServerBootstrapFactory
								

								 	 	
									NettyServerBootstrap Factory
								

								
	
									nettySharedHttpServer (consumer)
								

								 	
									To use a shared Netty HTTP server. See Netty HTTP Server Example for more details.
								

								 	 	
									NettySharedHttpServer
								

								
	
									noReplyLogLevel (consumer)
								

								 	
									If sync is enabled this option dictates NettyConsumer which logging level to use when logging a there is no reply to send back.
								

								 	
									WARN
								

								 	
									LoggingLevel
								

								
	
									serverClosedChannel ExceptionCaughtLogLevel (consumer)
								

								 	
									If the server (NettyConsumer) catches an java.nio.channels.ClosedChannelException then its logged using this logging level. This is used to avoid logging the closed channel exceptions, as clients can disconnect abruptly and then cause a flood of closed exceptions in the Netty server.
								

								 	
									DEBUG
								

								 	
									LoggingLevel
								

								
	
									serverExceptionCaughtLog Level (consumer)
								

								 	
									If the server (NettyConsumer) catches an exception then its logged using this logging level.
								

								 	
									WARN
								

								 	
									LoggingLevel
								

								
	
									serverInitializerFactory (consumer)
								

								 	
									To use a custom ServerInitializerFactory
								

								 	 	
									ServerInitializer Factory
								

								
	
									traceEnabled (consumer)
								

								 	
									Specifies whether to enable HTTP TRACE for this Netty HTTP consumer. By default TRACE is turned off.
								

								 	
									false
								

								 	
									boolean
								

								
	
									urlDecodeHeaders (consumer)
								

								 	
									If this option is enabled, then during binding from Netty to Camel Message then the header values will be URL decoded (eg %20 will be a space character. Notice this option is used by the default org.apache.camel.component.netty.http.NettyHttpBinding and therefore if you implement a custom org.apache.camel.component.netty4.http.NettyHttpBinding then you would need to decode the headers accordingly to this option.
								

								 	
									false
								

								 	
									boolean
								

								
	
									usingExecutorService (consumer)
								

								 	
									Whether to use ordered thread pool, to ensure events are processed orderly on the same channel.
								

								 	
									true
								

								 	
									boolean
								

								
	
									connectTimeout (producer)
								

								 	
									Time to wait for a socket connection to be available. Value is in millis.
								

								 	
									10000
								

								 	
									int
								

								
	
									cookieHandler (producer)
								

								 	
									Configure a cookie handler to maintain a HTTP session
								

								 	 	
									CookieHandler
								

								
	
									requestTimeout (producer)
								

								 	
									Allows to use a timeout for the Netty producer when calling a remote server. By default no timeout is in use. The valu