Red Hat Fuse 7.5
Apache CXF Development Guide

Develop applications with Apache CXF Web services

 Fuse Documentation Team
	 <fuse-docs-support@redhat.com>
	

		Copyright © 2023 Red Hat, Inc.
	

		The text of and illustrations in this document are licensed by Red Hat under a Creative Commons Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available at http://creativecommons.org/licenses/by-sa/3.0/. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must provide the URL for the original version.
	

		Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.
	

		Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift, Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.
	

		Linux® is the registered trademark of Linus Torvalds in the United States and other countries.
	

		Java® is a registered trademark of Oracle and/or its affiliates.
	

		XFS® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States and/or other countries.
	

		MySQL® is a registered trademark of MySQL AB in the United States, the European Union and other countries.
	

		Node.js® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the official Joyent Node.js open source or commercial project.
	

		The OpenStack® Word Mark and OpenStack logo are either registered trademarks/service marks or trademarks/service marks of the OpenStack Foundation, in the United States and other countries and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.
	

		All other trademarks are the property of their respective owners.
	

Abstract

				Guide to developing Web services using Apache CXF.
			

Part I. Writing WSDL Contracts

				This part describes how to define a Web service interface using WSDL.
			

Chapter 1. Introducing WSDL Contracts

Abstract

					WSDL documents define services using Web Service Description Language and a number of possible extensions. The documents have a logical part and a concrete part. The abstract part of the contract defines the service in terms of implementation neutral data types and messages. The concrete part of the document defines how an endpoint implementing a service will interact with the outside world.
				

					The recommended approach to design services is to define your services in WSDL and XML Schema before writing any code. When hand-editing WSDL documents you must make sure that the document is valid, as well as correct. To do this you must have some familiarity with WSDL. You can find the standard on the W3C web site, www.w3.org.
				

Structure of a WSDL document

Overview

					A WSDL document is, at its simplest, a collection of elements contained within a root definition element. These elements describe a service and how an endpoint implementing that service is accessed.
				

					A WSDL document has two distinct parts:
				
	
							A logical part that defines the service in implementation neutral terms
						
	
							A concrete part that defines how an endpoint implementing the service is exposed on a network
						

The logical part

					 The logical part of a WSDL document contains the types, the message, and the portType elements. It describes the service’s interface and the messages exchanged by the service. Within the types element, XML Schema is used to define the structure of the data that makes up the messages. A number of message elements are used to define the structure of the messages used by the service. The portType element contains one or more operation elements that define the messages sent by the operations exposed by the service.
				

The concrete part

					 The concrete part of a WSDL document contains the binding and the service elements. It describes how an endpoint that implements the service connects to the outside world. The binding elements describe how the data units described by the message elements are mapped into a concrete, on-the-wire data format, such as SOAP. The service elements contain one or more port elements which define the endpoints implementing the service.
				

WSDL elements

					A WSDL document is made up of the following elements:
				
	
							definitions — The root element of a WSDL document. The attributes of this element specify the name of the WSDL document, the document’s target namespace, and the shorthand definitions for the namespaces referenced in the WSDL document.
						
	
							types — The XML Schema definitions for the data units that form the building blocks of the messages used by a service. For information about defining data types see Chapter 2, Defining Logical Data Units.
						
	
							message — The description of the messages exchanged during invocation of a services operations. These elements define the arguments of the operations making up your service. For information on defining messages see Chapter 3, Defining Logical Messages Used by a Service.
						
	
							portType — A collection of operation elements describing the logical interface of a service. For information about defining port types see Chapter 4, Defining Your Logical Interfaces.
						
	
							operation — The description of an action performed by a service. Operations are defined by the messages passed between two endpoints when the operation is invoked. For information on defining operations see the section called “Operations”.
						
	
							binding — The concrete data format specification for an endpoint. A binding element defines how the abstract messages are mapped into the concrete data format used by an endpoint. This element is where specifics such as parameter order and return values are specified.
						
	
							service — A collection of related port elements. These elements are repositories for organizing endpoint definitions.
						
	
							port — The endpoint defined by a binding and a physical address. These elements bring all of the abstract definitions together, combined with the definition of transport details, and they define the physical endpoint on which a service is exposed.
						

Designing a contract

					To design a WSDL contract for your services you must perform the following steps:
				
	
							Define the data types used by your services.
						
	
							Define the messages used by your services.
						
	
							Define the interfaces for your services.
						
	
							Define the bindings between the messages used by each interface and the concrete representation of the data on the wire.
						
	
							Define the transport details for each of the services.
						

Chapter 2. Defining Logical Data Units

Abstract

					When describing a service in a WSDL contract complex data types are defined as logical units using XML Schema.
				

Introduction to Logical Data Units

					When defining a service, the first thing you must consider is how the data used as parameters for the exposed operations is going to be represented. Unlike applications that are written in a programming language that uses fixed data structures, services must define their data in logical units that can be consumed by any number of applications. This involves two steps:
				
	
							Breaking the data into logical units that can be mapped into the data types used by the physical implementations of the service
						
	
							Combining the logical units into messages that are passed between endpoints to carry out the operations
						

					This chapter discusses the first step. Chapter 3, Defining Logical Messages Used by a Service discusses the second step.
				

Mapping data into logical data units

Overview

					The interfaces used to implement a service define the data representing operation parameters as XML documents. If you are defining an interface for a service that is already implemented, you must translate the data types of the implemented operations into discreet XML elements that can be assembled into messages. If you are starting from scratch, you must determine the building blocks from which your messages are built, so that they make sense from an implementation standpoint.
				

Available type systems for defining service data units

					According to the WSDL specification, you can use any type system you choose to define data types in a WSDL contract. However, the W3C specification states that XML Schema is the preferred canonical type system for a WSDL document. Therefore, XML Schema is the intrinsic type system in Apache CXF.
				

XML Schema as a type system

					XML Schema is used to define how an XML document is structured. This is done by defining the elements that make up the document. These elements can use native XML Schema types, like xsd:int, or they can use types that are defined by the user. User defined types are either built up using combinations of XML elements or they are defined by restricting existing types. By combining type definitions and element definitions you can create intricate XML documents that can contain complex data.
				

					When used in WSDL XML Schema defines the structure of the XML document that holds the data used to interact with a service. When defining the data units used by your service, you can define them as types that specify the structure of the message parts. You can also define your data units as elements that make up the message parts.
				

Considerations for creating your data units

					You might consider simply creating logical data units that map directly to the types you envision using when implementing the service. While this approach works, and closely follows the model of building RPC-style applications, it is not necessarily ideal for building a piece of a service-oriented architecture.
				

					The Web Services Interoperability Organization’s WS-I basic profile provides a number of guidelines for defining data units and can be accessed at http://www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-24.html#WSDLTYPES. In addition, the W3C also provides the following guidelines for using XML Schema to represent data types in WSDL documents:
				
	
							Use elements, not attributes.
						
	
							Do not use protocol-specific types as base types.
						

Adding data units to a contract

Overview

					Depending on how you choose to create your WSDL contract, creating new data definitions requires varying amounts of knowledge. The Apache CXF GUI tools provide a number of aids for describing data types using XML Schema. Other XML editors offer different levels of assistance. Regardless of the editor you choose, it is a good idea to have some knowledge about what the resulting contract should look like.
				

Procedure

					Defining the data used in a WSDL contract involves the following steps:
				
	
							Determine all the data units used in the interface described by the contract.
						
	
							Create a types element in your contract.
						
	
							Create a schema element, shown in Example 2.1, “Schema entry for a WSDL contract”, as a child of the type element.
						

							The targetNamespace attribute specifies the namespace under which new data types are defined. Best practice is to also define the namespace that provides access to the target namespace. The remaining entries should not be changed.
						
Example 2.1. Schema entry for a WSDL contract
<schema targetNamespace="http://schemas.iona.com/bank.idl"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://schemas.iona.com/bank.idl"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

	
							For each complex type that is a collection of elements, define the data type using a complexType element. See the section called “Defining data structures”.
						
	
							For each array, define the data type using a complexType element. See the section called “Defining arrays”.
						
	
							For each complex type that is derived from a simple type, define the data type using a simpleType element. See the section called “Defining types by restriction”.
						
	
							For each enumerated type, define the data type using a simpleType element. See the section called “Defining enumerated types”.
						
	
							For each element, define it using an element element. See the section called “Defining elements”.
						

XML Schema simple types

Overview

					If a message part is going to be of a simple type it is not necessary to create a type definition for it. However, the complex types used by the interfaces defined in the contract are defined using simple types.
				

Entering simple types

					XML Schema simple types are mainly placed in the element elements used in the types section of your contract. They are also used in the base attribute of restriction elements and extension elements.
				

					Simple types are always entered using the xsd prefix. For example, to specify that an element is of type int, you would enter xsd:int in its type attribute as shown in Example 2.2, “Defining an element with a simple type”.
				
Example 2.2. Defining an element with a simple type
<element name="simpleInt" type="xsd:int" />

Supported XSD simple types

					Apache CXF supports the following XML Schema simple types:
				
	
							xsd:string
						
	
							xsd:normalizedString
						
	
							xsd:int
						
	
							xsd:unsignedInt
						
	
							xsd:long
						
	
							xsd:unsignedLong
						
	
							xsd:short
						
	
							xsd:unsignedShort
						
	
							xsd:float
						
	
							xsd:double
						
	
							xsd:boolean
						
	
							xsd:byte
						
	
							xsd:unsignedByte
						
	
							xsd:integer
						
	
							xsd:positiveInteger
						
	
							xsd:negativeInteger
						
	
							xsd:nonPositiveInteger
						
	
							xsd:nonNegativeInteger
						
	
							xsd:decimal
						
	
							xsd:dateTime
						
	
							xsd:time
						
	
							xsd:date
						
	
							xsd:QName
						
	
							xsd:base64Binary
						
	
							xsd:hexBinary
						
	
							xsd:ID
						
	
							xsd:token
						
	
							xsd:language
						
	
							xsd:Name
						
	
							xsd:NCName
						
	
							xsd:NMTOKEN
						
	
							xsd:anySimpleType
						
	
							xsd:anyURI
						
	
							xsd:gYear
						
	
							xsd:gMonth
						
	
							xsd:gDay
						
	
							xsd:gYearMonth
						
	
							xsd:gMonthDay
						

Defining complex data types

Abstract

						XML Schema provides a flexible and powerful mechanism for building complex data structures from its simple data types. You can create data structures by creating a sequence of elements and attributes. You can also extend your defined types to create even more complex types.
					

						In addition to building complex data structures, you can also describe specialized types such as enumerated types, data types that have a specific range of values, or data types that need to follow certain patterns by either extending or restricting the primitive types.
					

Defining data structures

						
					
Overview

						In XML Schema, data units that are a collection of data fields are defined using complexType elements. Specifying a complex type requires three pieces of information:
					
	
								The name of the defined type is specified in the name attribute of the complexType element.
							
	
								The first child element of the complexType describes the behavior of the structure’s fields when it is put on the wire. See the section called “Complex type varieties”.
							
	
								Each of the fields of the defined structure are defined in element elements that are grandchildren of the complexType element. See the section called “Defining the parts of a structure”.
							

						For example, the structure shown in Example 2.3, “Simple Structure” is defined in XML Schema as a complex type with two elements.
					
Example 2.3. Simple Structure
struct personalInfo
{
 string name;
 int age;
};

						Example 2.4, “A complex type” shows one possible XML Schema mapping for the structure shown in Example 2.3, “Simple Structure” The structure defined in Example 2.4, “A complex type” generates a message containing two elements: name and age.
					

						.
					
Example 2.4. A complex type
<complexType name="personalInfo">
 <sequence>
 <element name="name" type="xsd:string" />
 <element name="age" type="xsd:int" />
 </sequence>
</complexType>

Complex type varieties

						XML Schema has three ways of describing how the fields of a complex type are organized when represented as an XML document and passed on the wire. The first child element of the complexType element determines which variety of complex type is being used. Table 2.1, “Complex type descriptor elements” shows the elements used to define complex type behavior.
					
Table 2.1. Complex type descriptor elements
	Element	Complex Type Behavior
	
										 sequence
									

									 	
										All of a complex type’s fields can be present and they must be in the order in which they are specified in the type definition.
									

									
	
										 all
									

									 	
										All of the complex type’s fields can be present but they can be in any order.
									

									
	
										 choice
									

									 	
										Only one of the elements in the structure can be placed in the message.
									

									

						If the structure is defined using a choice element, as shown in Example 2.5, “Simple complex choice type”, it generates a message with either a name element or an age element.
					
Example 2.5. Simple complex choice type
<complexType name="personalInfo">
 <choice>
 <element name="name" type="xsd:string"/>
 <element name="age" type="xsd:int"/>
 </choice>
</complexType>

Defining the parts of a structure

						 You define the data fields that make up a structure using element elements. Every complexType element should contain at least one element element. Each element element in the complexType element represents a field in the defined data structure.
					

						To fully describe a field in a data structure, element elements have two required attributes:
					
	
								 The name attribute specifies the name of the data field and it must be unique within the defined complex type.
							
	
								 The type attribute specifies the type of the data stored in the field. The type can be either one of the XML Schema simple types, or any named complex type that is defined in the contract.
							

						 In addition to name and type, element elements have two other commonly used optional attributes: minOcurrs and maxOccurs. These attributes place bounds on the number of times the field occurs in the structure. By default, each field occurs only once in a complex type. Using these attributes, you can change how many times a field must or can appear in a structure. For example, you can define a field, previousJobs, that must occur at least three times, and no more than seven times, as shown in Example 2.6, “Simple complex type with occurrence constraints”.
					
Example 2.6. Simple complex type with occurrence constraints
<complexType name="personalInfo">
 <all>
 <element name="name" type="xsd:string"/>
 <element name="age" type="xsd:int"/>
 <element name="previousJobs" type="xsd:string:
 minOccurs="3" maxOccurs="7"/>
 </all>
</complexType>

						You can also use the minOccurs to make the age field optional by setting the minOccurs to zero as shown in Example 2.7, “Simple complex type with minOccurs set to zero”. In this case age can be omitted and the data will still be valid.
					
Example 2.7. Simple complex type with minOccurs set to zero
<complexType name="personalInfo">
 <choice>
 <element name="name" type="xsd:string"/>
 <element name="age" type="xsd:int" minOccurs="0"/>
 </choice>
</complexType>

Defining attributes

						 In XML documents, attributes are contained in the element’s tag. For example, in the complexType element in the code below, name is an attribute. To specify an attribute for a complex type, you define an attribute element in the complexType element definition. An attribute element can appear only after the all, sequence, or choice element. Specify one attribute element for each of the complex type’s attributes. Any attribute elements must be direct children of the complexType element.
					
Example 2.8. Complex type with an attribute
<complexType name="personalInfo">
 <all>
 <element name="name" type="xsd:string"/>
 <element name="previousJobs" type="xsd:string"
 minOccurs="3" maxOccurs="7"/>
 </all>
 <attribute name="age" type="xsd:int" use="required" />
</complexType>

						In the previous code, the attribute element specifies that the personalInfo complex type has an age attribute. The attribute element has these attributes:
					
	
								name — A required attribute that specifies the string that identifies the attribute.
							
	
								type — Specifies the type of the data stored in the field. The type can be one of the XML Schema simple types.
							
	
								use — An optional attribute that specifies whether the complex type is required to have this attribute. Valid values are required or optional. The default is that the attribute is optional.
							

						In an attribute element, you can specify the optional default attribute, which lets you specify a default value for the attribute.
					

Defining arrays

Overview

						Apache CXF supports two methods for defining arrays in a contract. The first is define a complex type with a single element whose maxOccurs attribute has a value greater than one. The second is to use SOAP arrays. SOAP arrays provide added functionality such as the ability to easily define multi-dimensional arrays and to transmit sparsely populated arrays.
					

Complex type arrays

						Complex type arrays are a special case of a sequence complex type. You simply define a complex type with a single element and specify a value for the maxOccurs attribute. For example, to define an array of twenty floating point numbers you use a complex type similar to the one shown in Example 2.9, “Complex type array”.
					
Example 2.9. Complex type array
<complexType name="personalInfo">
 <element name="averages" type="xsd:float" maxOccurs="20"/>
</complexType>

						You can also specify a value for the minOccurs attribute.
					

SOAP arrays

						SOAP arrays are defined by deriving from the SOAP-ENC:Array base type using the wsdl:arrayType element. The syntax for this is shown in Example 2.10, “Syntax for a SOAP array derived using wsdl:arrayType”. Ensure that the definitions element declares xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/".
					
Example 2.10. Syntax for a SOAP array derived using wsdl:arrayType
<complexType name="TypeName">
 <complexContent>
 <restriction base="SOAP-ENC:Array">
 <attribute ref="SOAP-ENC:arrayType"
 wsdl:arrayType="ElementType<ArrayBounds>"/>
 </restriction>
 </complexContent>
</complexType>

						Using this syntax, TypeName specifies the name of the newly-defined array type. ElementType specifies the type of the elements in the array. ArrayBounds specifies the number of dimensions in the array. To specify a single dimension array use []; to specify a two-dimensional array use either [][] or [,].
					

						For example, the SOAP Array, SOAPStrings, shown in Example 2.11, “Definition of a SOAP array”, defines a one-dimensional array of strings. The wsdl:arrayType attribute specifies the type of the array elements, xsd:string, and the number of dimensions, with [] implying one dimension.
					
Example 2.11. Definition of a SOAP array
<complexType name="SOAPStrings">
 <complexContent>
 <restriction base="SOAP-ENC:Array">
 <attribute ref="SOAP-ENC:arrayType"
 wsdl:arrayType="xsd:string[]"/>
 </restriction>
 </complexContent>
</complexType>

						You can also describe a SOAP Array using a simple element as described in the SOAP 1.1 specification. The syntax for this is shown in Example 2.12, “Syntax for a SOAP array derived using an element”.
					
Example 2.12. Syntax for a SOAP array derived using an element
<complexType name="TypeName">
 <complexContent>
 <restriction base="SOAP-ENC:Array">
 <sequence>
 <element name="ElementName" type="ElementType"
 maxOccurs="unbounded"/>
 </sequence>
 </restriction>
 </complexContent>
</complexType>

						When using this syntax, the element’s maxOccurs attribute must always be set to unbounded.
					

Defining types by extension

						Like most major coding languages, XML Schema allows you to create data types that inherit some of their elements from other data types. This is called defining a type by extension. For example, you could create a new type called alienInfo, that extends the personalInfo structure defined in Example 2.4, “A complex type” by adding a new element called planet.
					

						Types defined by extension have four parts:
					
	
								The name of the type is defined by the name attribute of the complexType element.
							
	
								The complexContent element specifies that the new type will have more than one element.
							
Note

									If you are only adding new attributes to the complex type, you can use a simpleContent element.
								

	
								The type from which the new type is derived, called the base type, is specified in the base attribute of the extension element.
							
	
								The new type’s elements and attributes are defined in the extension element, the same as they are for a regular complex type.
							

						For example, alienInfo is defined as shown in Example 2.13, “Type defined by extension”.
					
Example 2.13. Type defined by extension
<complexType name="alienInfo">
 <complexContent>
 <extension base="xsd1:personalInfo">
 <sequence>
 <element name="planet" type="xsd:string"/>
 </sequence>
 </extension>
 </complexContent>
</complexType>

Defining types by restriction

Overview

						XML Schema allows you to create new types by restricting the possible values of an XML Schema simple type. For example, you can define a simple type, SSN, which is a string of exactly nine characters. New types defined by restricting simple types are defined using a simpleType element.
					

						The definition of a type by restriction requires three things:
					
	
								The name of the new type is specified by the name attribute of the simpleType element.
							
	
								The simple type from which the new type is derived, called the base type, is specified in the restriction element. See the section called “Specifying the base type”.
							
	
								The rules, called facets, defining the restrictions placed on the base type are defined as children of the restriction element. See the section called “Defining the restrictions”.
							

Specifying the base type

						The base type is the type that is being restricted to define the new type. It is specified using a restriction element. The restriction element is the only child of a simpleType element and has one attribute, base, that specifies the base type. The base type can be any of the XML Schema simple types.
					

						For example, to define a new type by restricting the values of an xsd:int you use a definition like the one shown in Example 2.14, “Using int as the base type”.
					
Example 2.14. Using int as the base type
<simpleType name="restrictedInt">
 <restriction base="xsd:int">
 ...
 </restriction>
</simpleType>

Defining the restrictions

						The rules defining the restrictions placed on the base type are called facets. Facets are elements with one attribute, value, that defines how the facet is enforced. The available facets and their valid value settings depend on the base type. For example, xsd:string supports six facets, including:
					
	
								length
							
	
								minLength
							
	
								maxLength
							
	
								pattern
							
	
								whitespace
							
	
								enumeration
							

						Each facet element is a child of the restriction element.
					

Example

						Example 2.15, “SSN simple type description” shows an example of a simple type, SSN, which represents a social security number. The resulting type is a string of the form xxx-xx-xxxx. <SSN>032-43-9876<SSN> is a valid value for an element of this type, but <SSN>032439876</SSN> is not.
					
Example 2.15. SSN simple type description
<simpleType name="SSN">
 <restriction base="xsd:string">
 <pattern value="\d{3}-\d{2}-\d{4}"/>
 </restriction>
</simpleType>

Defining enumerated types

Overview

						Enumerated types in XML Schema are a special case of definition by restriction. They are described by using the enumeration facet which is supported by all XML Schema primitive types. As with enumerated types in most modern programming languages, a variable of this type can only have one of the specified values.
					

Defining an enumeration in XML Schema

						The syntax for defining an enumeration is shown in Example 2.16, “Syntax for an enumeration”.
					
Example 2.16. Syntax for an enumeration
<simpleType name="EnumName">
 <restriction base="EnumType">
 <enumeration value="Case1Value"/>
 <enumeration value="Case2Value"/>
 ...
 <enumeration value="CaseNValue"/>
 </restriction>
</simpleType>

						EnumName specifies the name of the enumeration type. EnumType specifies the type of the case values. CaseNValue, where N is any number one or greater, specifies the value for each specific case of the enumeration. An enumerated type can have any number of case values, but because it is derived from a simple type, only one of the case values is valid at a time.
					

Example

						For example, an XML document with an element defined by the enumeration widgetSize, shown in Example 2.17, “widgetSize enumeration”, would be valid if it contained <widgetSize>big</widgetSize>, but it would not be valid if it contained <widgetSize>big,mungo</widgetSize>.
					
Example 2.17. widgetSize enumeration
<simpleType name="widgetSize">
 <restriction base="xsd:string">
 <enumeration value="big"/>
 <enumeration value="large"/>
 <enumeration value="mungo"/>
 </restriction>
</simpleType>

Defining elements

					Elements in XML Schema represent an instance of an element in an XML document generated from the schema. The most basic element consists of a single element element. Like the element element used to define the members of a complex type, they have three attributes:
				
	
							name — A required attribute that specifies the name of the element as it appears in an XML document.
						
	
							type — Specifies the type of the element. The type can be any XML Schema primitive type or any named complex type defined in the contract. This attribute can be omitted if the type has an in-line definition.
						
	
							nillable — Specifies whether an element can be omitted from a document entirely. If nillable is set to true, the element can be omitted from any document generated using the schema.
						

					An element can also have an in-line type definition. In-line types are specified using either a complexType element or a simpleType element. Once you specify if the type of data is complex or simple, you can define any type of data needed using the tools available for each type of data. In-line type definitions are discouraged because they are not reusable.
				

Chapter 3. Defining Logical Messages Used by a Service

Abstract

					A service is defined by the messages exchanged when its operations are invoked. In a WSDL contract these messages are defined using message element. The messages are made up of one or more parts that are defined using part elements.
				

Overview

				A service’s operations are defined by specifying the logical messages that are exchanged when an operation is invoked. These logical messages define the data that is passed over a network as an XML document. They contain all of the parameters that are a part of a method invocation. Logical messages are defined using the message element in your contracts. Each logical message consists of one or more parts, defined in part elements.
			

				While your messages can list each parameter as a separate part, the recommended practice is to use only a single part that encapsulates the data needed for the operation.
			

Messages and parameter lists

				Each operation exposed by a service can have only one input message and one output message. The input message defines all of the information the service receives when the operation is invoked. The output message defines all of the data that the service returns when the operation is completed. Fault messages define the data that the service returns when an error occurs.
			

				In addition, each operation can have any number of fault messages. The fault messages define the data that is returned when the service encounters an error. These messages usually have only one part that provides enough information for the consumer to understand the error.
			

Message design for integrating with legacy systems

				 If you are defining an existing application as a service, you must ensure that each parameter used by the method implementing the operation is represented in a message. You must also ensure that the return value is included in the operation’s output message.
			

				One approach to defining your messages is RPC style. When using RPC style, you define the messages using one part for each parameter in the method’s parameter list. Each message part is based on a type defined in the types element of the contract. Your input message contains one part for each input parameter in the method. Your output message contains one part for each output parameter, plus a part to represent the return value, if needed. If a parameter is both an input and an output parameter, it is listed as a part for both the input message and the output message.
			

				RPC style message definition is useful when service enabling legacy systems that use transports such as Tibco or CORBA. These systems are designed around procedures and methods. As such, they are easiest to model using messages that resemble the parameter lists for the operation being invoked. RPC style also makes a cleaner mapping between the service and the application it is exposing.
			

Message design for SOAP services

				 While RPC style is useful for modeling existing systems, the service’s community strongly favors the wrapped document style. In wrapped document style, each message has a single part. The message’s part references a wrapper element defined in the types element of the contract. The wrapper element has the following characteristics:
			
	
						It is a complex type containing a sequence of elements. For more information see the section called “Defining complex data types”.
					
	
						If it is a wrapper for an input message:
					
	
								It has one element for each of the method’s input parameters.
							
	
								Its name is the same as the name of the operation with which it is associated.
							

	
						If it is a wrapper for an output message:
					
	
								It has one element for each of the method’s output parameters and one element for each of the method’s inout parameters.
							
	
								Its first element represents the method’s return parameter.
							
	
								Its name would be generated by appending Response to the name of the operation with which the wrapper is associated.
							

Message naming

				Each message in a contract must have a unique name within its namespace. It is recommended that you use the following naming conventions:
			
	
						Messages should only be used by a single operation.
					
	
						Input message names are formed by appending Request to the name of the operation.
					
	
						Output message names are formed by appending Response to the name of the operation.
					
	
						Fault message names should represent the reason for the fault.
					

Message parts

				 Message parts are the formal data units of the logical message. Each part is defined using a part element, and is identified by a name attribute and either a type attribute or an element attribute that specifies its data type. The data type attributes are listed in Table 3.1, “Part data type attributes”.
			
Table 3.1. Part data type attributes
	Attribute	Description
	
								 element="elem_name"
							

							 	
								The data type of the part is defined by an element called elem_name.
							

							
	
								 type="type_name"
							

							 	
								The data type of the part is defined by a type called type_name.
							

							

				Messages are allowed to reuse part names. For instance, if a method has a parameter, foo, that is passed by reference or is an in/out, it can be a part in both the request message and the response message, as shown in Example 3.1, “Reused part”.
			
Example 3.1. Reused part
<message name="fooRequest">
 <part name="foo" type="xsd:int"/>
<message>
<message name="fooReply">
 <part name="foo" type="xsd:int"/>
<message>

Example

				For example, imagine you had a server that stored personal information and provided a method that returned an employee’s data based on the employee’s ID number. The method signature for looking up the data is similar to Example 3.2, “personalInfo lookup method”.
			
Example 3.2. personalInfo lookup method
personalInfo lookup(long empId)

				This method signature can be mapped to the RPC style WSDL fragment shown in Example 3.3, “RPC WSDL message definitions”.
			
Example 3.3. RPC WSDL message definitions
<message name="personalLookupRequest">
 <part name="empId" type="xsd:int"/>
<message/>
<message name="personalLookupResponse>
 <part name="return" element="xsd1:personalInfo"/>
<message/>

				It can also be mapped to the wrapped document style WSDL fragment shown in Example 3.4, “Wrapped document WSDL message definitions”.
			
Example 3.4. Wrapped document WSDL message definitions
<wsdl:types>
 <xsd:schema ... >
 ...
 <element name="personalLookup">
 <complexType>
 <sequence>
 <element name="empID" type="xsd:int" />
 </sequence>
 </complexType>
 </element>
 <element name="personalLookupResponse">
 <complexType>
 <sequence>
 <element name="return" type="personalInfo" />
 </sequence>
 </complexType>
 </element>
 </schema>
</types>
<wsdl:message name="personalLookupRequest">
 <wsdl:part name="empId" element="xsd1:personalLookup"/>
<message/>
<wsdl:message name="personalLookupResponse">
 <wsdl:part name="return" element="xsd1:personalLookupResponse"/>
<message/>

Chapter 4. Defining Your Logical Interfaces

Abstract

					Logical service interfaces are defined using the portType element.
				

Overview

				Logical service interfaces are defined using the WSDL portType element. The portType element is a collection of abstract operation definitions. Each operation is defined by the input, output, and fault messages used to complete the transaction the operation represents. When code is generated to implement the service interface defined by a portType element, each operation is converted into a method containing the parameters defined by the input, output, and fault messages specified in the contract.
			

Process

				To define a logical interface in a WSDL contract you must do the following:
			
	
						Create a portType element to contain the interface definition and give it a unique name. See the section called “Port types”.
					
	
						Create an operation element for each operation defined in the interface. See the section called “Operations”.
					
	
						For each operation, specify the messages used to represent the operation’s parameter list, return type, and exceptions. See the section called “Operation messages”.
					

Port types

				 A WSDL portType element is the root element in a logical interface definition. While many Web service implementations map portType elements directly to generated implementation objects, a logical interface definition does not specify the exact functionality provided by the the implemented service. For example, a logical interface named ticketSystem can result in an implementation that either sells concert tickets or issues parking tickets.
			

				The portType element is the unit of a WSDL document that is mapped into a binding to define the physical data used by an endpoint exposing the defined service.
			

				Each portType element in a WSDL document must have a unique name, which is specified using the name attribute, and is made up of a collection of operations, which are described in operation elements. A WSDL document can describe any number of port types.
			

Operations

				Logical operations, defined using WSDL operation elements, define the interaction between two endpoints. For example, a request for a checking account balance and an order for a gross of widgets can both be defined as operations.
			

				Each operation defined within a portType element must have a unique name, specified using the name attribute. The name attribute is required to define an operation.
			

Operation messages

				Logical operations are made up of a set of elements representing the logical messages communicated between the endpoints to execute the operation. The elements that can describe an operation are listed in Table 4.1, “Operation message elements”.
			
Table 4.1. Operation message elements
	Element	Description
	
								input
							

							 	
								Specifies the message the client endpoint sends to the service provider when a request is made. The parts of this message correspond to the input parameters of the operation.
							

							
	
								output
							

							 	
								Specifies the message that the service provider sends to the client endpoint in response to a request. The parts of this message correspond to any operation parameters that can be changed by the service provider, such as values passed by reference. This includes the return value of the operation.
							

							
	
								fault
							

							 	
								Specifies a message used to communicate an error condition between the endpoints.
							

							

				An operation is required to have at least one input or one output element. An operation can have both input and output elements, but it can only have one of each. Operations are not required to have any fault elements, but can, if required, have any number of fault elements.
			

				The elements have the two attributes listed in Table 4.2, “Attributes of the input and output elements”.
			
Table 4.2. Attributes of the input and output elements
	Attribute	Description
	
								name
							

							 	
								Identifies the message so it can be referenced when mapping the operation to a concrete data format. The name must be unique within the enclosing port type.
							

							
	
								message
							

							 	
								Specifies the abstract message that describes the data being sent or received. The value of the message attribute must correspond to the name attribute of one of the abstract messages defined in the WSDL document.
							

							

				It is not necessary to specify the name attribute for all input and output elements; WSDL provides a default naming scheme based on the enclosing operation’s name. If only one element is used in the operation, the element name defaults to the name of the operation. If both an input and an output element are used, the element name defaults to the name of the operation with either Request or Response respectively appended to the name.
			

Return values

				Because the operation element is an abstract definition of the data passed during an operation, WSDL does not provide for return values to be specified for an operation. If a method returns a value it will be mapped into the output element as the last part of that message.
			

Example

				For example, you might have an interface similar to the one shown in Example 4.1, “personalInfo lookup interface”.
			
Example 4.1. personalInfo lookup interface
interface personalInfoLookup
{
 personalInfo lookup(in int empID)
 raises(idNotFound);
}

				This interface can be mapped to the port type in Example 4.2, “personalInfo lookup port type”.
			
Example 4.2. personalInfo lookup port type
<message name="personalLookupRequest">
 <part name="empId" element="xsd1:personalLookup"/>
<message/>
<message name="personalLookupResponse">
 <part name="return" element="xsd1:personalLookupResponse"/>
<message/>
<message name="idNotFoundException">
 <part name="exception" element="xsd1:idNotFound"/>
<message/>
<portType name="personalInfoLookup">
 <operation name="lookup">
 <input name="empID" message="tns:personalLookupRequest"/>
 <output name="return" message="tns:personalLookupResponse"/>
 <fault name="exception" message="tns:idNotFoundException"/>
 </operation>
</portType>

Part II. Web Services Bindings

				This part describes how to add Apache CXF bindings to a WSDL document.
			

Chapter 5. Understanding Bindings in WSDL

Abstract

					Bindings map the logical messages used to define a service into a concrete payload format that can be transmitted and received by an endpoint.
				

Overview

				Bindings provide a bridge between the logical messages used by a service to a concrete data format that an endpoint uses in the physical world. They describe how the logical messages are mapped into a payload format that is used on the wire by an endpoint. It is within the bindings that details such as parameter order, concrete data types, and return values are specified. For example, the parts of a message can be reordered in a binding to reflect the order required by an RPC call. Depending on the binding type, you can also identify which of the message parts, if any, represent the return type of a method.
			

Port types and bindings

				Port types and bindings are directly related. A port type is an abstract definition of a set of interactions between two logical services. A binding is a concrete definition of how the messages used to implement the logical services will be instantiated in the physical world. Each binding is then associated with a set of network details that finish the definition of one endpoint that exposes the logical service defined by the port type.
			

				To ensure that an endpoint defines only a single service, WSDL requires that a binding can only represent a single port type. For example, if you had a contract with two port types, you could not write a single binding that mapped both of them into a concrete data format. You would need two bindings.
			

				However, WSDL allows for a port type to be mapped to several bindings. For example, if your contract had a single port type, you could map it into two or more bindings. Each binding could alter how the parts of the message are mapped or they could specify entirely different payload formats for the message.
			

The WSDL elements

				 Bindings are defined in a contract using the WSDL binding element. The binding element consists of attributes like, name, that specifies a unique name for the binding and type that provides reference to PortType. The value of this attribute is used to associate the binding with an endpoint as discussed in Chapter 4, Defining Your Logical Interfaces.
			

				The actual mappings are defined in the children of the binding element. These elements vary depending on the type of payload format you decide to use. The different payload formats and the elements used to specify their mappings are discussed in the following chapters.
			

Adding to a contract

				Apache CXF provides command line tools that can generate bindings for predefined service interfaces.
			

				The tools will add the proper elements to your contract for you. However, it is recommended that you have some knowledge of how the different types of bindings work.
			

				You can also add a binding to a contract using any text editor. When hand editing a contract, you are responsible for ensuring that the contract is valid.
			

Supported bindings

				Apache CXF supports the following bindings:
			
	
						SOAP 1.1
					
	
						SOAP 1.2
					
	
						CORBA
					
	
						Pure XML
					

Chapter 6. Using SOAP 1.1 Messages

Abstract

					Apache CXF provides a tool to generate a SOAP 1.1 binding which does not use any SOAP headers. However, you can add SOAP headers to your binding using any text or XML editor.
				

Adding a SOAP 1.1 Binding

Using wsdl2soap

					 To generate a SOAP 1.1 binding using wsdl2soap use the following command: wsdl2soap-iport-type-name-bbinding-name-doutput-directory-ooutput-file-nsoap-body-namespace-style (document/rpc)-use (literal/encoded)-v-verbose-quietwsdlurl
				
Note

						To use wsdl2soap you will need to download the Apache CXF distribution.
					

					The command has the following options:
				
	Option	Interpretation
	
									-i port-type-name
								

								 	
									Specifies the portType element for which a binding is generated.
								

								
	
									wsdlurl
								

								 	
									The path and name of the WSDL file containing the portType element definition.
								

								

					The tool has the following optional arguments:
				
	Option	Interpretation
	
									-b binding-name
								

								 	
									Specifies the name of the generated SOAP binding.
								

								
	
									-d output-directory
								

								 	
									Specifies the directory to place the generated WSDL file.
								

								
	
									-o output-file
								

								 	
									Specifies the name of the generated WSDL file.
								

								
	
									-n soap-body-namespace
								

								 	
									Specifies the SOAP body namespace when the style is RPC.
								

								
	
									-style (document/rpc)
								

								 	
									Specifies the encoding style (document or RPC) to use in the SOAP binding. The default is document.
								

								
	
									-use (literal/encoded)
								

								 	
									Specifies the binding use (encoded or literal) to use in the SOAP binding. The default is literal.
								

								
	
									-v
								

								 	
									Displays the version number for the tool.
								

								
	
									-verbose
								

								 	
									Displays comments during the code generation process.
								

								
	
									-quiet
								

								 	
									Suppresses comments during the code generation process.
								

								

					The -iport-type-name and wsdlurl arguments are required. If the -style rpc argument is specified, the -nsoap-body-namspace argument is also required. All other arguments are optional and may be listed in any order.
				
Important

						wsdl2soap does not support the generation of document/encoded SOAP bindings.
					

Example

					If your system has an interface that takes orders and offers a single operation to process the orders it is defined in a WSDL fragment similar to the one shown in Example 6.1, “Ordering System Interface”.
				
Example 6.1. Ordering System Interface
<?xml version="1.0" encoding="UTF-8"?>
<definitions name="widgetOrderForm.wsdl"
 targetNamespace="http://widgetVendor.com/widgetOrderForm"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://widgetVendor.com/widgetOrderForm"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://widgetVendor.com/types/widgetTypes"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/">

<message name="widgetOrder">
 <part name="numOrdered" type="xsd:int"/>
</message>
<message name="widgetOrderBill">
 <part name="price" type="xsd:float"/>
</message>
<message name="badSize">
 <part name="numInventory" type="xsd:int"/>
</message>

<portType name="orderWidgets">
 <operation name="placeWidgetOrder">
 <input message="tns:widgetOrder" name="order"/>
 <output message="tns:widgetOrderBill" name="bill"/>
 <fault message="tns:badSize" name="sizeFault"/>
 </operation>
</portType>
...
</definitions>

					The SOAP binding generated for orderWidgets is shown in Example 6.2, “SOAP 1.1 Binding for orderWidgets”.
				
Example 6.2. SOAP 1.1 Binding for orderWidgets
<binding name="orderWidgetsBinding" type="tns:orderWidgets">
 <soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="placeWidgetOrder">
 <soap:operation soapAction="" style="document"/>
 <input name="order">
 <soap:body use="literal"/>
 </input>
 <output name="bill">
 <soap:body use="literal"/>
 </output>
 <fault name="sizeFault">
 <soap:body use="literal"/>
 </fault>
 </operation>
</binding>

					This binding specifies that messages are sent using the document/literal message style.
				

Adding SOAP Headers to a SOAP 1.1 Binding

Overview

					 SOAP headers are defined by adding soap:header elements to your default SOAP 1.1 binding. The soap:header element is an optional child of the input, output, and fault elements of the binding. The SOAP header becomes part of the parent message. A SOAP header is defined by specifying a message and a message part. Each SOAP header can only contain one message part, but you can insert as many SOAP headers as needed.
				

Syntax

					 The syntax for defining a SOAP header is shown in Example 6.3, “SOAP Header Syntax”. The message attribute of soap:header is the qualified name of the message from which the part being inserted into the header is taken. The part attribute is the name of the message part inserted into the SOAP header. Because SOAP headers are always document style, the WSDL message part inserted into the SOAP header must be defined using an element. Together the message and the part attributes fully describe the data to insert into the SOAP header.
				
Example 6.3. SOAP Header Syntax
<binding name="headwig">
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="weave">
 <soap:operation soapAction="" style="document"/>
 <input name="grain">
 <soap:body ... />
 <soap:header message="QName" part="partName"/>
 </input>
...
</binding>

					As well as the mandatory message and part attributes, soap:header also supports the namespace, the use, and the encodingStyle attributes. These attributes function the same for soap:header as they do for soap:body.
				

Splitting messages between body and header

					 The message part inserted into the SOAP header can be any valid message part from the contract. It can even be a part from the parent message which is being used as the SOAP body. Because it is unlikely that you would want to send information twice in the same message, the SOAP binding provides a means for specifying the message parts that are inserted into the SOAP body.
				

					The soap:body element has an optional attribute, parts, that takes a space delimited list of part names. When parts is defined, only the message parts listed are inserted into the SOAP body. You can then insert the remaining parts into the SOAP header.
				
Note

						When you define a SOAP header using parts of the parent message, Apache CXF automatically fills in the SOAP headers for you.
					

Example

					Example 6.4, “SOAP 1.1 Binding with a SOAP Header” shows a modified version of the orderWidgets service shown in Example 6.1, “Ordering System Interface”. This version has been modified so that each order has an xsd:base64binary value placed in the SOAP header of the request and response. The SOAP header is defined as being the keyVal part from the widgetKey message. In this case you are responsible for adding the SOAP header to your application logic because it is not part of the input or output message.
				
Example 6.4. SOAP 1.1 Binding with a SOAP Header
<?xml version="1.0" encoding="UTF-8"?>
<definitions name="widgetOrderForm.wsdl"
 targetNamespace="http://widgetVendor.com/widgetOrderForm"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://widgetVendor.com/widgetOrderForm"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://widgetVendor.com/types/widgetTypes"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/">

<types>
 <schema targetNamespace="http://widgetVendor.com/types/widgetTypes"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <element name="keyElem" type="xsd:base64Binary"/>
 </schema>
</types>

<message name="widgetOrder">
 <part name="numOrdered" type="xsd:int"/>
</message>
<message name="widgetOrderBill">
 <part name="price" type="xsd:float"/>
</message>
<message name="badSize">
 <part name="numInventory" type="xsd:int"/>
</message>
<message name="widgetKey">
 <part name="keyVal" element="xsd1:keyElem"/>
</message>

<portType name="orderWidgets">
 <operation name="placeWidgetOrder">
 <input message="tns:widgetOrder" name="order"/>
 <output message="tns:widgetOrderBill" name="bill"/>
 <fault message="tns:badSize" name="sizeFault"/>
 </operation>
</portType>

<binding name="orderWidgetsBinding" type="tns:orderWidgets">
 <soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="placeWidgetOrder">
 <soap:operation soapAction="" style="document"/>
 <input name="order">
 <soap:body use="literal"/>
 <soap:header message="tns:widgetKey" part="keyVal"/>
 </input>
 <output name="bill">
 <soap:body use="literal"/>
 <soap:header message="tns:widgetKey" part="keyVal"/>
 </output>
 <fault name="sizeFault">
 <soap:body use="literal"/>
 </fault>
 </operation>
</binding>
...
</definitions>

					You can also modify Example 6.4, “SOAP 1.1 Binding with a SOAP Header” so that the header value is a part of the input and output messages.
				

Chapter 7. Using SOAP 1.2 Messages

Abstract

					Apache CXF provides tools to generate a SOAP 1.2 binding which does not use any SOAP headers. You can add SOAP headers to your binding using any text or XML editor.
				

Adding a SOAP 1.2 Binding to a WSDL Document

Using wsdl2soap

Note

						To use wsdl2soap you will need to download the Apache CXF distribution.
					

					 To generate a SOAP 1.2 binding using wsdl2soap use the following command: wsdl2soap-iport-type-name-bbinding-name-soap12-doutput-directory-ooutput-file-nsoap-body-namespace-style (document/rpc)-use (literal/encoded)-v-verbose-quietwsdlurl The tool has the following required arguments:
				
	Option	Interpretation
	
									-i port-type-name
								

								 	
									Specifies the portType element for which a binding is generated.
								

								
	
									-soap12
								

								 	
									Specifies that the generated binding uses SOAP 1.2.
								

								
	
									wsdlurl
								

								 	
									The path and name of the WSDL file containing the portType element definition.
								

								

					The tool has the following optional arguments:
				
	Option	Interpretation
	
									-b binding-name
								

								 	
									Specifies the name of the generated SOAP binding.
								

								
	
									-soap12
								

								 	
									Specifies that the generated binding will use SOAP 1.2.
								

								
	
									-d output-directory
								

								 	
									Specifies the directory to place the generated WSDL file.
								

								
	
									-o output-file
								

								 	
									Specifies the name of the generated WSDL file.
								

								
	
									-n soap-body-namespace
								

								 	
									Specifies the SOAP body namespace when the style is RPC.
								

								
	
									-style (document/rpc)
								

								 	
									Specifies the encoding style (document or RPC) to use in the SOAP binding. The default is document.
								

								
	
									-use (literal/encoded)
								

								 	
									Specifies the binding use (encoded or literal) to use in the SOAP binding. The default is literal.
								

								
	
									-v
								

								 	
									Displays the version number for the tool.
								

								
	
									-verbose
								

								 	
									Displays comments during the code generation process.
								

								
	
									-quiet
								

								 	
									Suppresses comments during the code generation process.
								

								

					The -i port-type-name and wsdlurl arguments are required. If the -style rpc argument is specified, the -n soap-body-namspace argument is also required. All other arguments are optional and can be listed in any order.
				
Important

						wsdl2soap does not support the generation of document/encoded SOAP 1.2 bindings.
					

Example

					If your system has an interface that takes orders and offers a single operation to process the orders it is defined in a WSDL fragment similar to the one shown in Example 7.1, “Ordering System Interface”.
				
Example 7.1. Ordering System Interface
<?xml version="1.0" encoding="UTF-8"?>
<definitions name="widgetOrderForm.wsdl"
 targetNamespace="http://widgetVendor.com/widgetOrderForm"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/"
 xmlns:tns="http://widgetVendor.com/widgetOrderForm"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://widgetVendor.com/types/widgetTypes"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/">

<message name="widgetOrder">
 <part name="numOrdered" type="xsd:int"/>
</message>
<message name="widgetOrderBill">
 <part name="price" type="xsd:float"/>
</message>
<message name="badSize">
 <part name="numInventory" type="xsd:int"/>
</message>

<portType name="orderWidgets">
 <operation name="placeWidgetOrder">
 <input message="tns:widgetOrder" name="order"/>
 <output message="tns:widgetOrderBill" name="bill"/>
 <fault message="tns:badSize" name="sizeFault"/>
 </operation>
</portType>
...
</definitions>

					The SOAP binding generated for orderWidgets is shown in Example 7.2, “SOAP 1.2 Binding for orderWidgets”.
				
Example 7.2. SOAP 1.2 Binding for orderWidgets
<binding name="orderWidgetsBinding" type="tns:orderWidgets">
 <soap12:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="placeWidgetOrder">
 <soap12:operation soapAction="" style="document"/>
 <input name="order">
 <soap12:body use="literal"/>
 </input>
 <output name="bill">
 <wsoap12:body use="literal"/>
 </output>
 <fault name="sizeFault">
 <soap12:body use="literal"/>
 </fault>
 </operation>
</binding>

					This binding specifies that messages are sent using the document/literal message style.
				

Adding Headers to a SOAP 1.2 Message

Overview

					 SOAP message headers are defined by adding soap12:header elements to your SOAP 1.2 message. The soap12:header element is an optional child of the input, output, and fault elements of the binding. The SOAP header becomes part of the parent message. A SOAP header is defined by specifying a message and a message part. Each SOAP header can only contain one message part, but you can insert as many headers as needed.
				

Syntax

					The syntax for defining a SOAP header is shown in Example 7.3, “SOAP Header Syntax”.
				
Example 7.3. SOAP Header Syntax
<binding name="headwig">
 <soap12:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="weave">
 <soap12:operation soapAction="" style="documment"/>
 <input name="grain">
 <soap12:body ... />
 <soap12:header message="QName" part="partName"
 use="literal|encoded"
 encodingStyle="encodingURI"
 namespace="namespaceURI" />
 </input>
...
</binding>

					The soap12:header element’s attributes are described in Table 7.1, “soap12:header Attributes”.
				
Table 7.1. soap12:header Attributes
	Attribute	Description
	
									 message
								

								 	
									A required attribute specifying the qualified name of the message from which the part being inserted into the header is taken.
								

								
	
									 part
								

								 	
									A required attribute specifying the name of the message part inserted into the SOAP header.
								

								
	
									 use
								

								 	
									Specifies if the message parts are to be encoded using encoding rules. If set to encoded the message parts are encoded using the encoding rules specified by the value of the encodingStyle attribute. If set to literal, the message parts are defined by the schema types referenced.
								

								
	
									 encodingStyle
								

								 	
									Specifies the encoding rules used to construct the message.
								

								
	
									 namespace
								

								 	
									Defines the namespace to be assigned to the header element serialized with use="encoded".
								

								

Splitting messages between body and header

					 The message part inserted into the SOAP header can be any valid message part from the contract. It can even be a part from the parent message which is being used as the SOAP body. Because it is unlikely that you would send information twice in the same message, the SOAP 1.2 binding provides a means for specifying the message parts that are inserted into the SOAP body.
				

					The soap12:body element has an optional attribute, parts, that takes a space delimited list of part names. When parts is defined, only the message parts listed are inserted into the body of the SOAP 1.2 message. You can then insert the remaining parts into the message’s header.
				
Note

						When you define a SOAP header using parts of the parent message, Apache CXF automatically fills in the SOAP headers for you.
					

Example

					Example 7.4, “SOAP 1.2 Binding with a SOAP Header” shows a modified version of the orderWidgets service shown in Example 7.1, “Ordering System Interface”. This version is modified so that each order has an xsd:base64binary value placed in the header of the request and the response. The header is defined as being the keyVal part from the widgetKey message. In this case you are responsible for adding the application logic to create the header because it is not part of the input or output message.
				
Example 7.4. SOAP 1.2 Binding with a SOAP Header
<?xml version="1.0" encoding="UTF-8"?>
<definitions name="widgetOrderForm.wsdl"
 targetNamespace="http://widgetVendor.com/widgetOrderForm"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/"
 xmlns:tns="http://widgetVendor.com/widgetOrderForm"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://widgetVendor.com/types/widgetTypes"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/">

<types>
 <schema targetNamespace="http://widgetVendor.com/types/widgetTypes"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <element name="keyElem" type="xsd:base64Binary"/>
 </schema>
</types>

<message name="widgetOrder">
 <part name="numOrdered" type="xsd:int"/>
</message>
<message name="widgetOrderBill">
 <part name="price" type="xsd:float"/>
</message>
<message name="badSize">
 <part name="numInventory" type="xsd:int"/>
</message>
<message name="widgetKey">
 <part name="keyVal" element="xsd1:keyElem"/>
</message>

<portType name="orderWidgets">
 <operation name="placeWidgetOrder">
 <input message="tns:widgetOrder" name="order"/>
 <output message="tns:widgetOrderBill" name="bill"/>
 <fault message="tns:badSize" name="sizeFault"/>
 </operation>
</portType>

<binding name="orderWidgetsBinding" type="tns:orderWidgets">
 <soap12:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="placeWidgetOrder">
 <soap12:operation soapAction="" style="document"/>
 <input name="order">
 <soap12:body use="literal"/>
 <soap12:header message="tns:widgetKey" part="keyVal"/>
 </input>
 <output name="bill">
 <soap12:body use="literal"/>
 <soap12:header message="tns:widgetKey" part="keyVal"/>
 </output>
 <fault name="sizeFault">
 <soap12:body use="literal"/>
 </fault>
 </operation>
</binding>
...
</definitions>

					You can modify Example 7.4, “SOAP 1.2 Binding with a SOAP Header” so that the header value is a part of the input and output messages, as shown in Example 7.5, “SOAP 1.2 Binding for orderWidgets with a SOAP Header”. In this case keyVal is a part of the input and output messages. In the soap12:body elements the parts attribute specifies that keyVal should not be inserted into the body. However, it is inserted into the header.
				
Example 7.5. SOAP 1.2 Binding for orderWidgets with a SOAP Header
<?xml version="1.0" encoding="UTF-8"?>
<definitions name="widgetOrderForm.wsdl"
 targetNamespace="http://widgetVendor.com/widgetOrderForm"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/"
 xmlns:tns="http://widgetVendor.com/widgetOrderForm"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://widgetVendor.com/types/widgetTypes"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/">

<types>
 <schema targetNamespace="http://widgetVendor.com/types/widgetTypes"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <element name="keyElem" type="xsd:base64Binary"/>
 </schema>
</types>

<message name="widgetOrder">
 <part name="numOrdered" type="xsd:int"/>
 <part name="keyVal" element="xsd1:keyElem"/>
</message>
<message name="widgetOrderBill">
 <part name="price" type="xsd:float"/>
 <part name="keyVal" element="xsd1:keyElem"/>
</message>
<message name="badSize">
 <part name="numInventory" type="xsd:int"/>
</message>

<portType name="orderWidgets">
 <operation name="placeWidgetOrder">
 <input message="tns:widgetOrder" name="order"/>
 <output message="tns:widgetOrderBill" name="bill"/>
 <fault message="tns:badSize" name="sizeFault"/>
 </operation>
</portType>

<binding name="orderWidgetsBinding" type="tns:orderWidgets">
 <soap12:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="placeWidgetOrder">
 <soap12:operation soapAction="" style="document"/>
 <input name="order">
 <soap12:body use="literal" parts="numOrdered"/>
 <soap12:header message="tns:widgetOrder" part="keyVal"/>
 </input>
 <output name="bill">
 <soap12:body use="literal" parts="bill"/>
 <soap12:header message="tns:widgetOrderBill" part="keyVal"/>
 </output>
 <fault name="sizeFault">
 <soap12:body use="literal"/>
 </fault>
 </operation>
</binding>
...
</definitions>

Chapter 8. Sending Binary Data Using SOAP with Attachments

Abstract

					SOAP attachments provide a mechanism for sending binary data as part of a SOAP message. Using SOAP with attachments requires that you define your SOAP messages as MIME multipart messages.
				

Overview

				SOAP messages generally do not carry binary data. However, the W3C SOAP 1.1 specification allows for using MIME multipart/related messages to send binary data in SOAP messages. This technique is called using SOAP with attachments. SOAP attachments are defined in the W3C’s SOAP Messages with Attachments Note.
			

Namespace

				The WSDL extensions used to define the MIME multipart/related messages are defined in the namespace http://schemas.xmlsoap.org/wsdl/mime/.
			

				In the discussion that follows, it is assumed that this namespace is prefixed with mime. The entry in the WSDL definitions element to set this up is shown in Example 8.1, “MIME Namespace Specification in a Contract”.
			
Example 8.1. MIME Namespace Specification in a Contract
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"

Changing the message binding

				 In a default SOAP binding, the first child element of the input, output, and fault elements is a soap:body element describing the body of the SOAP message representing the data. When using SOAP with attachments, the soap:body element is replaced with a mime:multipartRelated element.
			
Note

					WSDL does not support using mime:multipartRelated for fault messages.
				

				The mime:multipartRelated element tells Apache CXF that the message body is a multipart message that potentially contains binary data. The contents of the element define the parts of the message and their contents. mime:multipartRelated elements contain one or more mime:part elements that describe the individual parts of the message.
			

				The first mime:part element must contain the soap:body element that would normally appear in a default SOAP binding. The remaining mime:part elements define the attachments that are being sent in the message.
			

Describing a MIME multipart message

				 MIME multipart messages are described using a mime:multipartRelated element that contains a number of mime:part elements. To fully describe a MIME multipart message you must do the following:
			
	
						Inside the input or output message you are sending as a MIME multipart message, add a mime:mulipartRelated element as the first child element of the enclosing message.
					
	
						Add a mime:part child element to the mime:multipartRelated element and set its name attribute to a unique string.
					
	
						Add a soap:body element as the child of the mime:part element and set its attributes appropriately.
					
Note

							If the contract had a default SOAP binding, you can copy the soap:body element from the corresponding message from the default binding into the MIME multipart message.
						

	
						 Add another mime:part child element to the mime:multipartReleated element and set its name attribute to a unique string.
					
	
						 Add a mime:content child element to the mime:part element to describe the contents of this part of the message.
					

						To fully describe the contents of a MIME message part the mime:content element has the following attributes:
					
Table 8.1. mime:content Attributes
	Attribute	Description +
	
										 part
									

									 	
										Specifies the name of the WSDL message part, from the parent message definition, that is used as the content of this part of the MIME multipart message being placed on the wire.
									

									
										+
									

									
	
										 type
									

									 	
										The MIME type of the data in this message part. MIME types are defined as a type and a subtype using the syntax type/subtype.
									

									
										+
									

									
										There are a number of predefined MIME types such as image/jpeg and text/plain. The MIME types are maintained by the Internet Assigned Numbers Authority (IANA) and described in detail in Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies and Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types.
									

									
										+
									

									

	
						For each additional MIME part, repeat steps [i303819] and [i303821].
					

Example

				Example 8.2, “Contract using SOAP with Attachments” shows a WSDL fragment defining a service that stores X-rays in JPEG format. The image data, xRay, is stored as an xsd:base64binary and is packed into the MIME multipart message’s second part, imageData. The remaining two parts of the input message, patientName and patientNumber, are sent in the first part of the MIME multipart image as part of the SOAP body.
			
Example 8.2. Contract using SOAP with Attachments
<?xml version="1.0" encoding="UTF-8"?>
<definitions name="XrayStorage"
 targetNamespace="http://mediStor.org/x-rays"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="http://mediStor.org/x-rays"
 xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <message name="storRequest">
 <part name="patientName" type="xsd:string"/>
 <part name="patientNumber" type="xsd:int"/>
 <part name="xRay" type="xsd:base64Binary"/>
 </message>
 <message name="storResponse">
 <part name="success" type="xsd:boolean"/>
 </message>

 <portType name="xRayStorage">
 <operation name="store">
 <input message="tns:storRequest" name="storRequest"/>
 <output message="tns:storResponse" name="storResponse"/>
 </operation>
 </portType>

 <binding name="xRayStorageBinding" type="tns:xRayStorage">
 <soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="store">
 <soap:operation soapAction="" style="document"/>
 <input name="storRequest">
 <mime:multipartRelated>
 <mime:part name="bodyPart">
 <soap:body use="literal"/>
 </mime:part>
 <mime:part name="imageData">
 <mime:content part="xRay" type="image/jpeg"/>
 </mime:part>
 </mime:multipartRelated>
 </input>
 <output name="storResponse">
 <soap:body use="literal"/>
 </output>
 </operation>
 </binding>

 <service name="xRayStorageService">
 <port binding="tns:xRayStorageBinding" name="xRayStoragePort">
 <soap:address location="http://localhost:9000"/>
 </port>
 </service>
</definitions>

Chapter 9. Sending Binary Data with SOAP MTOM

Abstract

					SOAP Message Transmission Optimization Mechanism (MTOM) replaces SOAP with attachments as a mechanism for sending binary data as part of an XML message. Using MTOM with Apache CXF requires adding the correct schema types to a service’s contract and enabling the MTOM optimizations.
				

Overview of MTOM

					 SOAP Message Transmission Optimization Mechanism (MTOM) specifies an optimized method for sending binary data as part of a SOAP message. Unlike SOAP with Attachments, MTOM requires the use of XML-binary Optimized Packaging (XOP) packages for transmitting binary data. Using MTOM to send binary data does not require you to fully define the MIME Multipart/Related message as part of the SOAP binding. It does, however, require that you do the following:
				
	
							Annotate the data that you are going to send as an attachment.
						

							You can annotate either your WSDL or the Java class that implements your data.
						

	
							Enable the runtime’s MTOM support.
						

							This can be done either programmatically or through configuration.
						

	
							Develop a DataHandler for the data being passed as an attachment.
						
Note

								Developing DataHandlers is beyond the scope of this book.
							

Annotating Data Types to use MTOM

Overview

					In WSDL, when defining a data type for passing along a block of binary data, such as an image file or a sound file, you define the element for the data to be of type xsd:base64Binary. By default, any element of type xsd:base64Binary results in the generation of a byte[] which can be serialized using MTOM. However, the default behavior of the code generators does not take full advantage of the serialization.
				

					In order to fully take advantage of MTOM you must add annotations to either your service’s WSDL document or the JAXB class that implements the binary data structure. Adding the annotations to the WSDL document forces the code generators to generate streaming data handlers for the binary data. Annotating the JAXB class involves specifying the proper content types and might also involve changing the type specification of the field containing the binary data.
				

WSDL first

					Example 9.1, “Message for MTOM” shows a WSDL document for a Web service that uses a message which contains one string field, one integer field, and a binary field. The binary field is intended to carry a large image file, so it is not appropriate to send it as part of a normal SOAP message.
				
Example 9.1. Message for MTOM
<?xml version="1.0" encoding="UTF-8"?>
<definitions name="XrayStorage"
 targetNamespace="http://mediStor.org/x-rays"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="http://mediStor.org/x-rays"
 xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/"
 xmlns:xsd1="http://mediStor.org/types/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <types>
 <schema targetNamespace="http://mediStor.org/types/"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <complexType name="xRayType">
 <sequence>
 <element name="patientName" type="xsd:string" />
 <element name="patientNumber" type="xsd:int" />
 <element name="imageData" type="xsd:base64Binary" />
 </sequence>
 </complexType>
 <element name="xRay" type="xsd1:xRayType" />
 </schema>
 </types>

 <message name="storRequest">
 <part name="record" element="xsd1:xRay"/>
 </message>
 <message name="storResponse">
 <part name="success" type="xsd:boolean"/>
 </message>

 <portType name="xRayStorage">
 <operation name="store">
 <input message="tns:storRequest" name="storRequest"/>
 <output message="tns:storResponse" name="storResponse"/>
 </operation>
 </portType>

 <binding name="xRayStorageSOAPBinding" type="tns:xRayStorage">
 <soap12:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="store">
 <soap12:operation soapAction="" style="document"/>
 <input name="storRequest">
 <soap12:body use="literal"/>
 </input>
 <output name="storResponse">
 <soap12:body use="literal"/>
 </output>
 </operation>
 </binding>
 ...
</definitions>

					If you want to use MTOM to send the binary part of the message as an optimized attachment you must add the xmime:expectedContentTypes attribute to the element containing the binary data. This attribute is defined in the http://www.w3.org/2005/05/xmlmime namespace and specifies the MIME types that the element is expected to contain. You can specify a comma separated list of MIME types. The setting of this attribute changes how the code generators create the JAXB class for the data. For most MIME types, the code generator creates a DataHandler. Some MIME types, such as those for images, have defined mappings.
				
Note

						The MIME types are maintained by the Internet Assigned Numbers Authority(IANA) and are described in detail in Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies and Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types.
					

					For most uses you specify application/octet-stream.
				

					Example 9.2, “Binary Data for MTOM” shows how you can modify xRayType from Example 9.1, “Message for MTOM” for using MTOM.
				
Example 9.2. Binary Data for MTOM
...
 <types>
 <schema targetNamespace="http://mediStor.org/types/"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:xmime="http://www.w3.org/2005/05/xmlmime">
 <complexType name="xRayType">
 <sequence>
 <element name="patientName" type="xsd:string" />
 <element name="patientNumber" type="xsd:int" />
 <element name="imageData" type="xsd:base64Binary"
 xmime:expectedContentTypes="application/octet-stream"/>
 </sequence>
 </complexType>
 <element name="xRay" type="xsd1:xRayType" />
 </schema>
 </types>
...

					The generated JAXB class generated for xRayType no longer contains a byte[]. Instead the code generator sees the xmime:expectedContentTypes attribute and generates a DataHandler for the imageData field.
				
Note

						You do not need to change the binding element to use MTOM. The runtime makes the appropriate changes when the data is sent.
					

Java first

					 If you are doing Java first development you can make your JAXB class MTOM ready by doing the following:
				
	
							Make sure the field holding the binary data is a DataHandler.
						
	
							Add the @XmlMimeType() annotation to the field containing the data you want to stream as an MTOM attachment.
						

					Example 9.3, “JAXB Class for MTOM” shows a JAXB class annotated for using MTOM.
				
Example 9.3. JAXB Class for MTOM
@XmlType
public class XRayType {
 protected String patientName;
 protected int patientNumber;
 @XmlMimeType("application/octet-stream")
 protected DataHandler imageData;
 ...
}

Enabling MTOM

					By default the Apache CXF runtime does not enable MTOM support. It sends all binary data as either part of the normal SOAP message or as an unoptimized attachment. You can activate MTOM support either programmatically or through the use of configuration.
				
Using JAX-WS APIs

Overview

						Both service providers and consumers must have the MTOM optimizations enabled. The JAX-WS APIs offer different mechanisms for each type of endpoint.
					

Service provider

						 If you published your service provider using the JAX-WS APIs you enable the runtime’s MTOM support as follows:
					
	
								Access the Endpoint object for your published service.
							

								The easiest way to access the Endpoint object is when you publish the endpoint. For more information see Chapter 31, Publishing a Service.
							

	
								Get the SOAP binding from the Endpoint using its getBinding() method, as shown in Example 9.4, “Getting the SOAP Binding from an Endpoint”.
							
Example 9.4. Getting the SOAP Binding from an Endpoint
// Endpoint ep is declared previously
SOAPBinding binding = (SOAPBinding)ep.getBinding();

								You must cast the returned binding object to a SOAPBinding object to access the MTOM property.
							

	
								Set the binding’s MTOM enabled property to true using the binding’s setMTOMEnabled() method, as shown in Example 9.5, “Setting a Service Provider’s MTOM Enabled Property”.
							
Example 9.5. Setting a Service Provider’s MTOM Enabled Property
binding.setMTOMEnabled(true);

Consumer

						 To MTOM enable a JAX-WS consumer you must do the following:
					
	
								Cast the consumer’s proxy to a BindingProvider object.
							

								For information on getting a consumer proxy see Chapter 25, Developing a Consumer Without a WSDL Contract or Chapter 28, Developing a Consumer From a WSDL Contract.
							

	
								Get the SOAP binding from the BindingProvider using its getBinding() method, as shown in Example 9.6, “Getting a SOAP Binding from a BindingProvider”.
							
Example 9.6. Getting a SOAP Binding from a BindingProvider
// BindingProvider bp declared previously
SOAPBinding binding = (SOAPBinding)bp.getBinding();

	
								Set the bindings MTOM enabled property to true using the binding’s setMTOMEnabled() method, as shown in Example 9.7, “Setting a Consumer’s MTOM Enabled Property”.
							
Example 9.7. Setting a Consumer’s MTOM Enabled Property
binding.setMTOMEnabled(true);

Using configuration

						
					
Overview

						If you publish your service using XML, such as when deploying to a container, you can enable your endpoint’s MTOM support in the endpoint’s configuration file. For more information on configuring endpoint’s see Part IV, “Configuring Web Service Endpoints”.
					

Procedure

						The MTOM property is set inside the jaxws:endpoint element for your endpoint. To enable MTOM do the following:
					
	
								Add a jaxws:property child element to the endpoint’s jaxws:endpoint element.
							
	
								Add a entry child element to the jaxws:property element.
							
	
								Set the entry element’s key attribute to mtom-enabled.
							
	
								Set the entry element’s value attribute to true.
							

Example

						Example 9.8, “Configuration for Enabling MTOM” shows an endpoint that is MTOM enabled.
					
Example 9.8. Configuration for Enabling MTOM
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
 http://cxf.apache.org/jaxws http://cxf.apache.org/schema/jaxws.xsd">

 <jaxws:endpoint id="xRayStorage"
 implementor="demo.spring.xRayStorImpl"
 address="http://localhost/xRayStorage">
 <jaxws:properties>
 <entry key="mtom-enabled" value="true"/>
 </jaxws:properties>
 </jaxws:endpoint>
</beans>

Chapter 10. Using XML Documents

Abstract

					The pure XML payload format provides an alternative to the SOAP binding by allowing services to exchange data using straight XML documents without the overhead of a SOAP envelope.
				

XML binding namespace

				The extensions used to describe XML format bindings are defined in the namespace http://cxf.apache.org/bindings/xformat. Apache CXF tools use the prefix xformat to represent the XML binding extensions. Add the following line to your contracts:
			
xmlns:xformat="http://cxf.apache.org/bindings/xformat"

Hand editing

				 To map an interface to a pure XML payload format do the following:
			
	
						Add the namespace declaration to include the extensions defining the XML binding. See the section called “XML binding namespace”.
					
	
						Add a standard WSDL binding element to your contract to hold the XML binding, give the binding a unique name, and specify the name of the WSDL portType element that represents the interface being bound.
					
	
						 Add an xformat:binding child element to the binding element to identify that the messages are being handled as pure XML documents without SOAP envelopes.
					
	
						 Optionally, set the xformat:binding element’s rootNode attribute to a valid QName. For more information on the effect of the rootNode attribute see the section called “XML messages on the wire”.
					
	
						For each operation defined in the bound interface, add a standard WSDL operation element to hold the binding information for the operation’s messages.
					
	
						For each operation added to the binding, add the input, output, and fault children elements to represent the messages used by the operation.
					

						These elements correspond to the messages defined in the interface definition of the logical operation.
					

	
						 Optionally add an xformat:body element with a valid rootNode attribute to the added input, output, and fault elements to override the value of rootNode set at the binding level.
					

Note

					If any of your messages have no parts, for example the output message for an operation that returns void, you must set the rootNode attribute for the message to ensure that the message written on the wire is a valid, but empty, XML document.
				

XML messages on the wire

				When you specify that an interface’s messages are to be passed as XML documents, without a SOAP envelope, you must take care to ensure that your messages form valid XML documents when they are written on the wire. You also need to ensure that non-Apache CXF participants that receive the XML documents understand the messages generated by Apache CXF.
			

				A simple way to solve both problems is to use the optional rootNode attribute on either the global xformat:binding element or on the individual message’s xformat:body elements. The rootNode attribute specifies the QName for the element that serves as the root node for the XML document generated by Apache CXF. When the rootNode attribute is not set, Apache CXF uses the root element of the message part as the root element when using doc style messages, or an element using the message part name as the root element when using rpc style messages.
			

				For example, if the rootNode attribute is not set the message defined in Example 10.1, “Valid XML Binding Message” would generate an XML document with the root element lineNumber.
			
Example 10.1. Valid XML Binding Message
<type ... >
 ...
 <element name="operatorID" type="xsd:int"/>
 ...
</types>
<message name="operator">
 <part name="lineNumber" element="ns1:operatorID"/>
</message>

				For messages with one part, Apache CXF will always generate a valid XML document even if the rootNode attribute is not set. However, the message in Example 10.2, “Invalid XML Binding Message” would generate an invalid XML document.
			
Example 10.2. Invalid XML Binding Message
<types>
 ...
 <element name="pairName" type="xsd:string"/>
 <element name="entryNum" type="xsd:int"/>
 ...
</types>

<message name="matildas">
 <part name="dancing" element="ns1:pairName"/>
 <part name="number" element="ns1:entryNum"/>
</message>

				Without the rootNode attribute specified in the XML binding, Apache CXF will generate an XML document similar to Example 10.3, “Invalid XML Document” for the message defined in Example 10.2, “Invalid XML Binding Message”. The generated XML document is invalid because it has two root elements: pairName and entryNum.
			
Example 10.3. Invalid XML Document
<pairName>
 Fred&Linda
</pairName>
<entryNum>
 123
</entryNum>

				If you set the rootNode attribute, as shown in Example 10.4, “XML Binding with rootNode set” Apache CXF will wrap the elements in the specified root element. In this example, the rootNode attribute is defined for the entire binding and specifies that the root element will be named entrants.
			
Example 10.4. XML Binding with rootNode set
<portType name="danceParty">
 <operation name="register">
 <input message="tns:matildas" name="contestant"/>
 </operation>
</portType>

<binding name="matildaXMLBinding" type="tns:dancingMatildas">
 <xmlformat:binding rootNode="entrants"/>
 <operation name="register">
 <input name="contestant"/>
 <output name="entered"/>
</binding>

				An XML document generated from the input message would be similar to Example 10.5, “XML Document generated using the rootNode attribute”. Notice that the XML document now only has one root element.
			
Example 10.5. XML Document generated using the rootNode attribute
<entrants>
 <pairName>
 Fred&Linda
 <entryNum>
 123
 </entryNum>
</entrants>

Overriding the binding’s rootNode attribute setting

				You can also set the rootNode attribute for each individual message, or override the global setting for a particular message, by using the xformat:body element inside of the message binding. For example, if you wanted the output message defined in Example 10.4, “XML Binding with rootNode set” to have a different root element from the input message, you could override the binding’s root element as shown in Example 10.6, “Using xformat:body”.
			
Example 10.6. Using xformat:body
<binding name="matildaXMLBinding" type="tns:dancingMatildas">
 <xmlformat:binding rootNode="entrants"/>
 <operation name="register">
 <input name="contestant"/>
 <output name="entered">
 <xformat:body rootNode="entryStatus" />
 </output>
 </operation>
</binding>

Part III. Web Services Transports

				This part describes how to add Apache CXF transports to a WSDL document.
			

Chapter 11. Understanding How Endpoints are Defined in WSDL

Abstract

					Endpoints represent an instantiated service. They are defined by combining a binding and the networking details used to expose the endpoint.
				

Overview

				An endpoint can be thought of as a physical manifestation of a service. It combines a binding, which specifies the physical representation of the logical data used by a service, and a set of networking details that define the physical connection details used to make the service contactable by other endpoints.
			
Note

					CXF providers are servers for CXF consumers, which correspond to clients. If you are using the CXF (camel-cxf) component as the starting endpoint in a route, then the endpoint is both a Camel consumer and a CXF provider. If you are using the Camel CXF component, as an ending endpoint in a route, then the endpoint is both a Camel producer and a CXF consumer.
				

Endpoints and services

				In the same way a binding can only map a single interface, an endpoint can only map to a single service. However, a service can be manifested by any number of endpoints. For example, you could define a ticket selling service that was manifested by four different endpoints. However, you could not have a single endpoint that manifested both a ticket selling service and a widget selling service.
			

The WSDL elements

				 Endpoints are defined in a contract using a combination of the WSDL service element and the WSDL port element. The service element is a collection of related port elements. The port elements define the actual endpoints.
			

				The WSDL service element has a single attribute, name, that specifies a unique name. The service element is used as the parent element of a collection of related port elements. WSDL makes no specification about how the port elements are related. You can associate the port elements in any manner you see fit.
			

				The WSDL port element has a has a binding attribute, that specifies the binding used by the endpoint and is a reference to the wsdl:binding element. It also includes the name attribute, which is a mandatory attribute that provides a unique name among all ports. The port element is the parent element of the elements that specify the actual transport details used by the endpoint. The elements used to specify the transport details are discussed in the following sections.
			

Adding endpoints to a contract

				Apache CXF provides command line tools that can generated endpoints for predefined service interface and binding combinations.
			

				The tools will add the proper elements to your contract for you. However, it is recommended that you have some knowledge of how the different transports used in defining an endpoint work.
			

				You can also add an endpoint to a contract using any text editor. When you hand edit a contract, you are responsible for ensuring that the contract is valid.
			

Supported transports

				Endpoint definitions are built using extensions defined for each of the transports Apache CXF supports. This includes the following transports:
			
	
						HTTP
					
	
						CORBA
					
	
						Java Messaging Service
					

Chapter 12. Using HTTP

Abstract

					HTTP is the underlying transport for the Web. It provides a standardized, robust, and flexible platform for communicating between endpoints. Because of these factors it is the assumed transport for most WS-* specifications and is integral to RESTful architectures.
				

Adding a Basic HTTP Endpoint

					
				
Alternative HTTP runtimes

					Apache CXF supports the following alternative HTTP runtime implementations:
				
	
							Undertow, which is described in detail in the section called “Configuring the Undertow Runtime”.
						
	
							Netty, which is described in detail in the section called “Configuring the Netty Runtime”.
						

Netty HTTP URL

					Normally, a HTTP endpoint uses whichever HTTP runtime is included on the classpath (either Undertow or Netty). If both the Undertow runtime and Netty runtime are included on the classpath, however, you need to specify explicitly when you want to use the Netty runtime, because the Undertow runtime will be used by default.
				

					In the case where more than one HTTP runtime is available on the classpath, you can select the Undertow runtime by specifying the endpoint URL to have the following format:
				
netty://http://RestOfURL

Payload types

					There are three ways of specifying an HTTP endpoint’s address depending on the payload format you are using.
				
	
							SOAP 1.1 uses the standardized soap:address element.
						
	
							SOAP 1.2 uses the soap12:address element.
						
	
							All other payload formats use the http:address element.
						

Note

						From Camel 2.16.0 release, Apache Camel CXF Payload supports stream cache out of box.
					

SOAP 1.1

					 When you are sending SOAP 1.1 messages over HTTP you must use the SOAP 1.1 address element to specify the endpoint’s address. It has one attribute, location, that specifies the endpoint’s address as a URL. The SOAP 1.1 address element is defined in the namespace http://schemas.xmlsoap.org/wsdl/soap/.
				

					Example 12.1, “SOAP 1.1 Port Element” shows a port element used to send SOAP 1.1 messages over HTTP.
				
Example 12.1. SOAP 1.1 Port Element
<definitions ...
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" ...>
 ...
 <service name="SOAP11Service">
 <port binding="SOAP11Binding" name="SOAP11Port">
 <soap:address location="http://artie.com/index.xml">
 </port>
 </service>
 ...
<definitions>

SOAP 1.2

					 When you are sending SOAP 1.2 messages over HTTP you must use the SOAP 1.2 address element to specify the endpoint’s address. It has one attribute, location, that specifies the endpoint’s address as a URL. The SOAP 1.2 address element is defined in the namespace http://schemas.xmlsoap.org/wsdl/soap12/.
				

					Example 12.2, “SOAP 1.2 Port Element” shows a port element used to send SOAP 1.2 messages over HTTP.
				
Example 12.2. SOAP 1.2 Port Element
<definitions ...
 xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/" ... >
 <service name="SOAP12Service">
 <port binding="SOAP12Binding" name="SOAP12Port">
 <soap12:address location="http://artie.com/index.xml">
 </port>
 </service>
 ...
</definitions>

Other messages types

					 When your messages are mapped to any payload format other than SOAP you must use the HTTP address element to specify the endpoint’s address. It has one attribute, location, that specifies the endpoint’s address as a URL. The HTTP address element is defined in the namespace http://schemas.xmlsoap.org/wsdl/http/.
				

					Example 12.3, “HTTP Port Element” shows a port element used to send an XML message.
				
Example 12.3. HTTP Port Element
<definitions ...
 xmlns:http="http://schemas.xmlsoap.org/wsdl/http/" ... >
 <service name="HTTPService">
 <port binding="HTTPBinding" name="HTTPPort">
 <http:address location="http://artie.com/index.xml">
 </port>
 </service>
 ...
</definitions>

Configuring a Consumer

Mechanisms for HTTP Consumer Endpoints

						HTTP consumer endpoints can specify a number of HTTP connection attributes including whether the endpoint automatically accepts redirect responses, whether the endpoint can use chunking, whether the endpoint will request a keep-alive, and how the endpoint interacts with proxies. In addition to the HTTP connection properties, an HTTP consumer endpoint can specify how it is secured.
					

						A consumer endpoint can be configured using two mechanisms:
					
	
								Configuration
							
	
								WSDL
							

Using Configuration

						
					
Namespace

						The elements used to configure an HTTP consumer endpoint are defined in the namespace http://cxf.apache.org/transports/http/configuration. It is commonly referred to using the prefix http-conf. In order to use the HTTP configuration elements you must add the lines shown in Example 12.4, “HTTP Consumer Configuration Namespace” to the beans element of your endpoint’s configuration file. In addition, you must add the configuration elements' namespace to the xsi:schemaLocation attribute.
					
Example 12.4. HTTP Consumer Configuration Namespace
<beans ...
 xmlns:http-conf="http://cxf.apache.org/transports/http/configuration"
 ...
 xsi:schemaLocation="...
 http://cxf.apache.org/transports/http/configuration
 http://cxf.apache.org/schemas/configuration/http-conf.xsd
 ...">

Undertow runtime or Netty runtime

						You can use the elements from the http-conf namespace to configure either the Undertow runtime or the Netty runtime.
					

The conduit element

						 You configure an HTTP consumer endpoint using the http-conf:conduit element and its children. The http-conf:conduit element takes a single attribute, name, that specifies the WSDL port element corresponding to the endpoint. The value for the name attribute takes the form portQName`.http-conduit`. Example 12.5, “http-conf:conduit Element” shows the http-conf:conduit element that would be used to add configuration for an endpoint that is specified by the WSDL fragment <port binding="widgetSOAPBinding" name="widgetSOAPPort> when the endpoint’s target namespace is http://widgets.widgetvendor.net.
					
Example 12.5. http-conf:conduit Element
...
 <http-conf:conduit name="{http://widgets/widgetvendor.net}widgetSOAPPort.http-conduit">
 ...
 </http-conf:conduit>
...

						The http-conf:conduit element has child elements that specify configuration information. They are described in Table 12.1, “Elements Used to Configure an HTTP Consumer Endpoint”.
					
Table 12.1. Elements Used to Configure an HTTP Consumer Endpoint
	Element	Description
	
										http-conf:client
									

									 	
										Specifies the HTTP connection properties such as timeouts, keep-alive requests, content types, etc. See the section called “The client element”.
									

									
	
										 http-conf:authorization
									

									 	
										Specifies the parameters for configuring the basic authentication method that the endpoint uses preemptively. The preferred approach is to supply a http-conf:basicAuthSupplier object.
									

									
	
										 http-conf:proxyAuthorization
									

									 	
										Specifies the parameters for configuring basic authentication against outgoing HTTP proxy servers.
									

									
	
										 http-conf:tlsClientParameters
									

									 	
										Specifies the parameters used to configure SSL/TLS.
									

									
	
										 http-conf:basicAuthSupplier
									

									 	
										Specifies the bean reference or class name of the object that supplies the basic authentication information used by the endpoint, either preemptively or in response to a 401 HTTP challenge.
									

									
	
										 http-conf:trustDecider
									

									 	
										Specifies the bean reference or class name of the object that checks the HTTP(S) URLConnection object to establish trust for a connection with an HTTPS service provider before any information is transmitted.
									

									

The client element

						 The http-conf:client element is used to configure the non-security properties of a consumer endpoint’s HTTP connection. Its attributes, described in Table 12.2, “HTTP Consumer Configuration Attributes”, specify the connection’s properties.
					
Table 12.2. HTTP Consumer Configuration Attributes
	Attribute	Description
	
										 ConnectionTimeout
									

									 	
										Specifies the amount of time, in milliseconds, that the consumer attempts to establish a connection before it times out. The default is 30000.
									

									
										0 specifies that the consumer will continue to send the request indefinitely.
									

									
	
										 ReceiveTimeout
									

									 	
										Specifies the amount of time, in milliseconds, that the consumer will wait for a response before it times out. The default is 30000.
									

									
										0 specifies that the consumer will wait indefinitely.
									

									
	
										 AutoRedirect
									

									 	
										Specifies if the consumer will automatically follow a server issued redirection. The default is false.
									

									
	
										 MaxRetransmits
									

									 	
										Specifies the maximum number of times a consumer will retransmit a request to satisfy a redirect. The default is -1 which specifies that unlimited retransmissions are allowed.
									

									
	
										 AllowChunking
									

									 	
										Specifies whether the consumer will send requests using chunking. The default is true which specifies that the consumer will use chunking when sending requests.
									

									
										Chunking cannot be used if either of the following are true:
									

									 	
												http-conf:basicAuthSupplier is configured to provide credentials preemptively.
											
	
												AutoRedirect is set to true.
											

									
										In both cases the value of AllowChunking is ignored and chunking is disallowed.
									

									
	
										 Accept
									

									 	
										Specifies what media types the consumer is prepared to handle. The value is used as the value of the HTTP Accept property. The value of the attribute is specified using multipurpose internet mail extensions (MIME) types.
									

									
	
										 AcceptLanguage
									

									 	
										Specifies what language (for example, American English) the consumer prefers for the purpose of receiving a response. The value is used as the value of the HTTP AcceptLanguage property.
									

									
										Language tags are regulated by the International Organization for Standards (ISO) and are typically formed by combining a language code, determined by the ISO-639 standard, and country code, determined by the ISO-3166 standard, separated by a hyphen. For example, en-US represents American English.
									

									
	
										 AcceptEncoding
									

									 	
										Specifies what content encodings the consumer is prepared to handle. Content encoding labels are regulated by the Internet Assigned Numbers Authority (IANA). The value is used as the value of the HTTP AcceptEncoding property.
									

									
	
										 ContentType
									

									 	
										Specifies the media type of the data being sent in the body of a message. Media types are specified using multipurpose internet mail extensions (MIME) types. The value is used as the value of the HTTP ContentType property. The default is text/xml.
									

									
										For web services, this should be set to text/xml. If the client is sending HTML form data to a CGI script, this should be set to application/x-www-form-urlencoded. If the HTTP POST request is bound to a fixed payload format (as opposed to SOAP), the content type is typically set to application/octet-stream.
									

									
	
										 Host
									

									 	
										Specifies the Internet host and port number of the resource on which the request is being invoked. The value is used as the value of the HTTP Host property.
									

									
										This attribute is typically not required. It is only required by certain DNS scenarios or application designs. For example, it indicates what host the client prefers for clusters (that is, for virtual servers mapping to the same Internet protocol (IP) address).
									

									
	
										 Connection
									

									 	
										Specifies whether a particular connection is to be kept open or closed after each request/response dialog. There are two valid values:
									

									 	
												Keep-Alive — Specifies that the consumer wants the connection kept open after the initial request/response sequence. If the server honors it, the connection is kept open until the consumer closes it.
											
	
												close(default) — Specifies that the connection to the server is closed after each request/response sequence.
											

									
	
										 CacheControl
									

									 	
										Specifies directives about the behavior that must be adhered to by caches involved in the chain comprising a request from a consumer to a service provider. See the section called “Consumer Cache Control Directives”.
									

									
	
										 Cookie
									

									 	
										Specifies a static cookie to be sent with all requests.
									

									
	
										 BrowserType
									

									 	
										Specifies information about the browser from which the request originates. In the HTTP specification from the World Wide Web consortium (W3C) this is also known as the user-agent. Some servers optimize based on the client that is sending the request.
									

									
	
										 Referer
									

									 	
										Specifies the URL of the resource that directed the consumer to make requests on a particular service. The value is used as the value of the HTTP Referer property.
									

									
										This HTTP property is used when a request is the result of a browser user clicking on a hyperlink rather than typing a URL. This can allow the server to optimize processing based upon previous task flow, and to generate lists of back-links to resources for the purposes of logging, optimized caching, tracing of obsolete or mistyped links, and so on. However, it is typically not used in web services applications.
									

									
										If the AutoRedirect attribute is set to true and the request is redirected, any value specified in the Referer attribute is overridden. The value of the HTTP Referer property is set to the URL of the service that redirected the consumer’s original request.
									

									
	
										 DecoupledEndpoint
									

									 	
										Specifies the URL of a decoupled endpoint for the receipt of responses over a separate provider→consumer connection. For more information on using decoupled endpoints see, the section called “Using the HTTP Transport in Decoupled Mode”.
									

									
										You must configure both the consumer endpoint and the service provider endpoint to use WS-Addressing for the decoupled endpoint to work.
									

									
	
										 ProxyServer
									

									 	
										Specifies the URL of the proxy server through which requests are routed.
									

									
	
										 ProxyServerPort
									

									 	
										Specifies the port number of the proxy server through which requests are routed.
									

									
	
										 ProxyServerType
									

									 	
										Specifies the type of proxy server used to route requests. Valid values are:
									

									 	
												HTTP(default)
											
	
												SOCKS
											

									

Example

						Example 12.6, “HTTP Consumer Endpoint Configuration” shows the configuration of an HTTP consumer endpoint that wants to keep its connection to the provider open between requests, that will only retransmit requests once per invocation, and that cannot use chunking streams.
					
Example 12.6. HTTP Consumer Endpoint Configuration
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:http-conf="http://cxf.apache.org/transports/http/configuration"
 xsi:schemaLocation="http://cxf.apache.org/transports/http/configuration
 http://cxf.apache.org/schemas/configuration/http-conf.xsd
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd">

 <http-conf:conduit name="{http://apache.org/hello_world_soap_http}SoapPort.http-conduit">
 <http-conf:client Connection="Keep-Alive"
 MaxRetransmits="1"
 AllowChunking="false" />
 </http-conf:conduit>
</beans>

More information

						For more information on HTTP conduits see Chapter 16, Conduits.
					

Using WSDL

Namespace

						The WSDL extension elements used to configure an HTTP consumer endpoint are defined in the namespace http://cxf.apache.org/transports/http/configuration. It is commonly referred to using the prefix http-conf. In order to use the HTTP configuration elements you must add the line shown in Example 12.7, “HTTP Consumer WSDL Element’s Namespace” to the definitions element of your endpoint’s WSDL document.
					
Example 12.7. HTTP Consumer WSDL Element’s Namespace
<definitions ...
 xmlns:http-conf="http://cxf.apache.org/transports/http/configuration"

Undertow runtime or Netty runtime

						You can use the elements from the http-conf namespace to configure either the Undertow runtime or the Netty runtime.
					

The client element

						The http-conf:client element is used to specify the connection properties of an HTTP consumer in a WSDL document. The http-conf:client element is a child of the WSDL port element. It has the same attributes as the client element used in the configuration file. The attributes are described in Table 12.2, “HTTP Consumer Configuration Attributes”.
					

Example

						Example 12.8, “WSDL to Configure an HTTP Consumer Endpoint” shows a WSDL fragment that configures an HTTP consumer endpoint to specify that it does not interact with caches.
					
Example 12.8. WSDL to Configure an HTTP Consumer Endpoint
<service ... >
 <port ... >
 <soap:address ... />
 <http-conf:client CacheControl="no-cache" />
 </port>
</service>

Consumer Cache Control Directives

						Table 12.3, “http-conf:client Cache Control Directives” lists the cache control directives supported by an HTTP consumer.
					
Table 12.3. http-conf:client Cache Control Directives
	Directive	Behavior
	
										no-cache
									

									 	
										Caches cannot use a particular response to satisfy subsequent requests without first revalidating that response with the server. If specific response header fields are specified with this value, the restriction applies only to those header fields within the response. If no response header fields are specified, the restriction applies to the entire response.
									

									
	
										no-store
									

									 	
										Caches must not store either any part of a response or any part of the request that invoked it.
									

									
	
										max-age
									

									 	
										The consumer can accept a response whose age is no greater than the specified time in seconds.
									

									
	
										max-stale
									

									 	
										The consumer can accept a response that has exceeded its expiration time. If a value is assigned to max-stale, it represents the number of seconds beyond the expiration time of a response up to which the consumer can still accept that response. If no value is assigned, the consumer can accept a stale response of any age.
									

									
	
										min-fresh
									

									 	
										The consumer wants a response that is still fresh for at least the specified number of seconds indicated.
									

									
	
										no-transform
									

									 	
										Caches must not modify media type or location of the content in a response between a provider and a consumer.
									

									
	
										only-if-cached
									

									 	
										Caches should return only responses that are currently stored in the cache, and not responses that need to be reloaded or revalidated.
									

									
	
										cache-extension
									

									 	
										Specifies additional extensions to the other cache directives. Extensions can be informational or behavioral. An extended directive is specified in the context of a standard directive, so that applications not understanding the extended directive can adhere to the behavior mandated by the standard directive.
									

									

Configuring a Service Provider

Mechanisms for a HTTP Service Provider

						HTTP service provider endpoints can specify a number of HTTP connection attributes including if it will honor keep alive requests, how it interacts with caches, and how tolerant it is of errors in communicating with a consumer.
					

						A service provider endpoint can be configured using two mechanisms:
					
	
								Configuration
							
	
								WSDL
							

Using Configuration

						
					
Namespace

						The elements used to configure an HTTP provider endpoint are defined in the namespace http://cxf.apache.org/transports/http/configuration. It is commonly referred to using the prefix http-conf. In order to use the HTTP configuration elements you must add the lines shown in Example 12.9, “HTTP Provider Configuration Namespace” to the beans element of your endpoint’s configuration file. In addition, you must add the configuration elements' namespace to the xsi:schemaLocation attribute.
					
Example 12.9. HTTP Provider Configuration Namespace
<beans ...
 xmlns:http-conf="http://cxf.apache.org/transports/http/configuration"
 ...
 xsi:schemaLocation="...
 http://cxf.apache.org/transports/http/configuration
 http://cxf.apache.org/schemas/configuration/http-conf.xsd
 ...">

Undertow runtime or Netty runtime

						You can use the elements from the http-conf namespace to configure either the Undertow runtime or the Netty runtime.
					

The destination element

						 You configure an HTTP service provider endpoint using the http-conf:destination element and its children. The http-conf:destination element takes a single attribute, name, that specifies the WSDL port element that corresponds to the endpoint. The value for the name attribute takes the form portQName`.http-destination`. Example 12.10, “http-conf:destination Element” shows the http-conf:destination element that is used to add configuration for an endpoint that is specified by the WSDL fragment <port binding="widgetSOAPBinding" name="widgetSOAPPort> when the endpoint’s target namespace is http://widgets.widgetvendor.net.
					
Example 12.10. http-conf:destination Element
...
 <http-conf:destination name="{http://widgets/widgetvendor.net}widgetSOAPPort.http-destination">
 ...
 </http-conf:destination>
...

						The http-conf:destination element has a number of child elements that specify configuration information. They are described in Table 12.4, “Elements Used to Configure an HTTP Service Provider Endpoint”.
					
Table 12.4. Elements Used to Configure an HTTP Service Provider Endpoint
	Element	Description
	
										 http-conf:server
									

									 	
										Specifies the HTTP connection properties. See the section called “The server element”.
									

									
	
										 http-conf:contextMatchStrategy
									

									 	
										Specifies the parameters that configure the context match strategy for processing HTTP requests.
									

									
	
										 http-conf:fixedParameterOrder
									

									 	
										Specifies whether the parameter order of an HTTP request handled by this destination is fixed.
									

									

The server element

						 The http-conf:server element is used to configure the properties of a service provider endpoint’s HTTP connection. Its attributes, described in Table 12.5, “HTTP Service Provider Configuration Attributes”, specify the connection’s properties.
					
Table 12.5. HTTP Service Provider Configuration Attributes
	Attribute	Description
	
										 ReceiveTimeout
									

									 	
										Sets the length of time, in milliseconds, the service provider attempts to receive a request before the connection times out. The default is 30000.
									

									
										0 specifies that the provider will not timeout.
									

									
	
										 SuppressClientSendErrors
									

									 	
										Specifies whether exceptions are to be thrown when an error is encountered on receiving a request. The default is false; exceptions are thrown on encountering errors.
									

									
	
										 SuppressClientReceiveErrors
									

									 	
										Specifies whether exceptions are to be thrown when an error is encountered on sending a response to a consumer. The default is false; exceptions are thrown on encountering errors.
									

									
	
										 HonorKeepAlive
									

									 	
										Specifies whether the service provider honors requests for a connection to remain open after a response has been sent. The default is false; keep-alive requests are ignored.
									

									
	
										 RedirectURL
									

									 	
										Specifies the URL to which the client request should be redirected if the URL specified in the client request is no longer appropriate for the requested resource. In this case, if a status code is not automatically set in the first line of the server response, the status code is set to 302 and the status description is set to Object Moved. The value is used as the value of the HTTP RedirectURL property.
									

									
	
										 CacheControl
									

									 	
										Specifies directives about the behavior that must be adhered to by caches involved in the chain comprising a response from a service provider to a consumer. See the section called “Service Provider Cache Control Directives”.
									

									
	
										 ContentLocation
									

									 	
										Sets the URL where the resource being sent in a response is located.
									

									
	
										 ContentType
									

									 	
										Specifies the media type of the information being sent in a response. Media types are specified using multipurpose internet mail extensions (MIME) types. The value is used as the value of the HTTP ContentType location.
									

									
	
										 ContentEncoding
									

									 	
										Specifies any additional content encodings that have been applied to the information being sent by the service provider. Content encoding labels are regulated by the Internet Assigned Numbers Authority (IANA). Possible content encoding values include zip, gzip, compress, deflate, and identity. This value is used as the value of the HTTP ContentEncoding property.
									

									
										The primary use of content encodings is to allow documents to be compressed using some encoding mechanism, such as zip or gzip. Apache CXF performs no validation on content codings. It is the user’s responsibility to ensure that a specified content coding is supported at application level.
									

									
	
										 ServerType
									

									 	
										Specifies what type of server is sending the response. Values take the form program-name/version; for example, Apache/1.2.5.
									

									

Example

						Example 12.11, “HTTP Service Provider Endpoint Configuration” shows the configuration for an HTTP service provider endpoint that honors keep-alive requests and suppresses all communication errors.
					
Example 12.11. HTTP Service Provider Endpoint Configuration
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:http-conf="http://cxf.apache.org/transports/http/configuration"
 xsi:schemaLocation="http://cxf.apache.org/transports/http/configuration
 http://cxf.apache.org/schemas/configuration/http-conf.xsd
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd">

 <http-conf:destination name="{http://apache.org/hello_world_soap_http}SoapPort.http-destination">
 <http-conf:server SuppressClientSendErrors="true"
 SuppressClientReceiveErrors="true"
 HonorKeepAlive="true" />
 </http-conf:destination>
</beans>

Using WSDL

Namespace

						The WSDL extension elements used to configure an HTTP provider endpoint are defined in the namespace http://cxf.apache.org/transports/http/configuration. It is commonly referred to using the prefix http-conf. To use the HTTP configuration elements you must add the line shown in Example 12.12, “HTTP Provider WSDL Element’s Namespace” to the definitions element of your endpoint’s WSDL document.
					
Example 12.12. HTTP Provider WSDL Element’s Namespace
<definitions ...
 xmlns:http-conf="http://cxf.apache.org/transports/http/configuration"

Undertow runtime or Netty runtime

						You can use the elements from the http-conf namespace to configure either the Undertow runtime or the Netty runtime.
					

The server element

						The http-conf:server element is used to specify the connection properties of an HTTP service provider in a WSDL document. The http-conf:server element is a child of the WSDL port element. It has the same attributes as the server element used in the configuration file. The attributes are described in Table 12.5, “HTTP Service Provider Configuration Attributes”.
					

Example

						Example 12.13, “WSDL to Configure an HTTP Service Provider Endpoint” shows a WSDL fragment that configures an HTTP service provider endpoint specifying that it will not interact with caches.
					
Example 12.13. WSDL to Configure an HTTP Service Provider Endpoint
<service ... >
 <port ... >
 <soap:address ... />
 <http-conf:server CacheControl="no-cache" />
 </port>
</service>

Service Provider Cache Control Directives

						Table 12.6, “http-conf:server Cache Control Directives” lists the cache control directives supported by an HTTP service provider.
					
Table 12.6. http-conf:server Cache Control Directives
	Directive	Behavior
	
										no-cache
									

									 	
										Caches cannot use a particular response to satisfy subsequent requests without first revalidating that response with the server. If specific response header fields are specified with this value, the restriction applies only to those header fields within the response. If no response header fields are specified, the restriction applies to the entire response.
									

									
	
										public
									

									 	
										Any cache can store the response.
									

									
	
										private
									

									 	
										Public (shared) caches cannot store the response because the response is intended for a single user. If specific response header fields are specified with this value, the restriction applies only to those header fields within the response. If no response header fields are specified, the restriction applies to the entire response.
									

									
	
										no-store
									

									 	
										Caches must not store any part of the response or any part of the request that invoked it.
									

									
	
										no-transform
									

									 	
										Caches must not modify the media type or location of the content in a response between a server and a client.
									

									
	
										must-revalidate
									

									 	
										Caches must revalidate expired entries that relate to a response before that entry can be used in a subsequent response.
									

									
	
										proxy-revalidate
									

									 	
										Does the same as must-revalidate, except that it can only be enforced on shared caches and is ignored by private unshared caches. When using this directive, the public cache directive must also be used.
									

									
	
										max-age
									

									 	
										Clients can accept a response whose age is no greater that the specified number of seconds.
									

									
	
										s-max-age
									

									 	
										Does the same as max-age, except that it can only be enforced on shared caches and is ignored by private unshared caches. The age specified by s-max-age overrides the age specified by max-age. When using this directive, the proxy-revalidate directive must also be used.
									

									
	
										cache-extension
									

									 	
										Specifies additional extensions to the other cache directives. Extensions can be informational or behavioral. An extended directive is specified in the context of a standard directive, so that applications not understanding the extended directive can adhere to the behavior mandated by the standard directive.
									

									

Configuring the Undertow Runtime

Overview

					The Undertow runtime is used by HTTP service providers and HTTP consumers using a decoupled endpoint. The runtime’s thread pool can be configured, and you can also set a number of the security settings for an HTTP service provider through the Undertow runtime.
				

Maven dependency

					If you use Apache Maven as your build system, you can add the Undertow runtime to your project by including the following dependency in your project’s pom.xml file:
				
<dependency>
 <groupId>org.apache.cxf</groupId>
 <artifactId>cxf-rt-transports-http-undertow</artifactId>
 <version>${cxf-version}</version>
</dependency>

Namespace

					The elements used to configure the Undertow runtime are defined in the namespace http://cxf.apache.org/transports/http-undertow/configuration. In order to use the Undertow configuration elements you must add the lines shown in Example 12.14, “Undertow Runtime Configuration Namespace” to the beans element of your endpoint’s configuration file. In this example, the namespace is assigned the prefix httpu. In addition, you must add the configuration element’s namespace to the xsi:schemaLocation attribute.
				
Example 12.14. Undertow Runtime Configuration Namespace
<beans ...
 xmlns:httpu="http://cxf.apache.org/transports/http-undertow/configuration"
 ...
 xsi:schemaLocation="...
 http://cxf.apache.org/transports/http-undertow/configuration
 http://cxf.apache.org/schemas/configuration/http-undertow.xsd
 ...">

The engine-factory element

					 The httpu:engine-factory element is the root element used to configure the Undertow runtime used by an application. It has a single required attribute, bus, whose value is the name of the Bus that manages the Undertow instances being configured.
				
Note

						The value is typically cxf which is the name of the default Bus instance.
					

					The http:engine-factory element has three children that contain the information used to configure the HTTP ports instantiated by the Undertow runtime factory. The children are described in Table 12.7, “Elements for Configuring a Undertow Runtime Factory”.
				
Table 12.7. Elements for Configuring a Undertow Runtime Factory
	Element	Description
	
									httpu:engine
								

								 	
									Specifies the configuration for a particular Undertow runtime instance. See the section called “The engine element”.
								

								
	
									 httpu:identifiedTLSServerParameters
								

								 	
									Specifies a reusable set of properties for securing an HTTP service provider. It has a single attribute, id, that specifies a unique identifier by which the property set can be referred.
								

								
	
									 httpu:identifiedThreadingParameters
								

								 	
									Specifies a reusable set of properties for controlling a Undertow instance’s thread pool. It has a single attribute, id, that specifies a unique identifier by which the property set can be referred.
								

								
									See the section called “Configuring the thread pool”.
								

								

The engine element

					The httpu:engine element is used to configure specific instances of the Undertow runtime. It has a single attribute, port, that specifies the number of the port being managed by the Undertow instance.
				
Note

						You can specify a value of 0 for the port attribute. Any threading properties specified in an httpu:engine element with its port attribute set to 0 are used as the configuration for all Undertow listeners that are not explicitly configured.
					

					Each httpu:engine element can have two children: one for configuring security properties and one for configuring the Undertow instance’s thread pool. For each type of configuration you can either directly provide the configuration information or you can provide a reference to a set of configuration properties defined in the parent httpu:engine-factory element.
				

					The child elements used to provide the configuration properties are described in Table 12.8, “Elements for Configuring an Undertow Runtime Instance”.
				
Table 12.8. Elements for Configuring an Undertow Runtime Instance
	Element	Description
	
									 httpu:tlsServerParameters
								

								 	
									Specifies a set of properties for configuring the security used for the specific Undertow instance.
								

								
	
									 httpu:tlsServerParametersRef
								

								 	
									Refers to a set of security properties defined by a identifiedTLSServerParameters element. The id attribute provides the id of the referred identifiedTLSServerParameters element.
								

								
	
									 httpu:threadingParameters
								

								 	
									Specifies the size of the thread pool used by the specific Undertow instance. See the section called “Configuring the thread pool”.
								

								
	
									 httpu:threadingParametersRef
								

								 	
									Refers to a set of properties defined by a identifiedThreadingParameters element. The id attribute provides the id of the referred identifiedThreadingParameters element.
								

								

Configuring the thread pool

					 You can configure the size of an Undertow instance’s thread pool by either:
				
	
							Specifying the size of the thread pool using a identifiedThreadingParameters element in the engine-factory element. You then refer to the element using a threadingParametersRef element.
						
	
							Specifying the size of the of the thread pool directly using a threadingParameters element.
						

					The threadingParameters has two attributes to specify the size of a thread pool. The attributes are described in Table 12.9, “Attributes for Configuring an Undertow Thread Pool”.
				
Note

						The httpu:identifiedThreadingParameters element has a single child threadingParameters element.
					

Table 12.9. Attributes for Configuring an Undertow Thread Pool
	Attribute	Description
	
									 minThreads
								

								 	
									Specifies the minimum number of threads available to the Undertow instance for processing requests.
								

								
	
									 maxThreads
								

								 	
									Specifies the maximum number of threads available to the Undertow instance for processing requests.
								

								

Example

					Example 12.15, “Configuring an Undertow Instance” shows a configuration fragment that configures an Undertow instance on port number 9001.
				
Example 12.15. Configuring an Undertow Instance
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:sec="http://cxf.apache.org/configuration/security"
 xmlns:http="http://cxf.apache.org/transports/http/configuration"
 xmlns:httpu="http://cxf.apache.org/transports/http-undertow/configuration"
 xmlns:jaxws="http://java.sun.com/xml/ns/jaxws"
 xsi:schemaLocation="http://cxf.apache.org/configuration/security
 		 http://cxf.apache.org/schemas/configuration/security.xsd
 http://cxf.apache.org/transports/http/configuration
 http://cxf.apache.org/schemas/configuration/http-conf.xsd
 http://cxf.apache.org/transports/http-undertow/configuration
 http://cxf.apache.org/schemas/configuration/http-undertow.xsd
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-2.0.xsd">
 ...

 <httpu:engine-factory bus="cxf">
 <httpu:identifiedTLSServerParameters id="secure">
 <sec:keyManagers keyPassword="password">
 <sec:keyStore type="JKS" password="password"
 file="certs/cherry.jks"/>
 </sec:keyManagers>
 </httpu:identifiedTLSServerParameters>

 <httpu:engine port="9001">
 <httpu:tlsServerParametersRef id="secure" />
 <httpu:threadingParameters minThreads="5"
 maxThreads="15" />
 </httpu:engine>
 </httpu:engine-factory>
 </beans>

Configuring the Netty Runtime

Overview

					The Netty runtime is used by HTTP service providers and HTTP consumers using a decoupled endpoint. The runtime’s thread pool can be configured, and you can also set a number of the security settings for an HTTP service provider through the Netty runtime.
				

Maven dependencies

					If you use Apache Maven as your build system, you can add the server-side implementation of the Netty runtime (for defining Web service endpoints) to your project by including the following dependency in your project’s pom.xml file:
				
<dependency>
 <groupId>org.apache.cxf</groupId>
 <artifactId>cxf-rt-transports-http-netty-server</artifactId>
 <version>${cxf-version}</version>
</dependency>

					You can add the client-side implementation of the Netty runtime (for defining Web service clients) to your project by including the following dependency in your project’s pom.xml file:
				
<dependency>
 <groupId>org.apache.cxf</groupId>
 <artifactId>cxf-rt-transports-http-netty-client</artifactId>
 <version>${cxf-version}</version>
</dependency>

Namespace

					The elements used to configure the Netty runtime are defined in the namespace http://cxf.apache.org/transports/http-netty-server/configuration. It is commonly referred to using the prefix httpn. In order to use the Netty configuration elements you must add the lines shown in Example 12.16, “Netty Runtime Configuration Namespace” to the beans element of your endpoint’s configuration file. In addition, you must add the configuration elements' namespace to the xsi:schemaLocation attribute.
				
Example 12.16. Netty Runtime Configuration Namespace
<beans ...
 xmlns:httpn="http://cxf.apache.org/transports/http-netty-server/configuration"
 ...
 xsi:schemaLocation="...
 http://cxf.apache.org/transports/http-netty-server/configuration
 http://cxf.apache.org/schemas/configuration/http-netty-server.xsd
 ...">

The engine-factory element

					 The httpn:engine-factory element is the root element used to configure the Netty runtime used by an application. It has a single required attribute, bus, whose value is the name of the Bus that manages the Netty instances being configured.
				
Note

						The value is typically cxf, which is the name of the default Bus instance.
					

					The httpn:engine-factory element has three children that contain the information used to configure the HTTP ports instantiated by the Netty runtime factory. The children are described in Table 12.10, “Elements for Configuring a Netty Runtime Factory”.
				
Table 12.10. Elements for Configuring a Netty Runtime Factory
	Element	Description
	
									httpn:engine
								

								 	
									Specifies the configuration for a particular Netty runtime instance. See the section called “The engine element”.
								

								
	
									 httpn:identifiedTLSServerParameters
								

								 	
									Specifies a reusable set of properties for securing an HTTP service provider. It has a single attribute, id, that specifies a unique identifier by which the property set can be referred.
								

								
	
									 httpn:identifiedThreadingParameters
								

								 	
									Specifies a reusable set of properties for controlling a Netty instance’s thread pool. It has a single attribute, id, that specifies a unique identifier by which the property set can be referred.
								

								
									See the section called “Configuring the thread pool”.
								

								

The engine element

					 The httpn:engine element is used to configure specific instances of the Netty runtime. Table 12.11, “Attributes for Configuring a Netty Runtime Instance” shows the attributes supported by the httpn:engine element.
				
Table 12.11. Attributes for Configuring a Netty Runtime Instance
	Attribute	Description
	
									port
								

								 	
									Specifies the port used by the Netty HTTP server instance. You can specify a value of 0 for the port attribute. Any threading properties specified in an engine element with its port attribute set to 0 are used as the configuration for all Netty listeners that are not explicitly configured.
								

								
	
									host
								

								 	
									Specifies the listen address used by the Netty HTTP server instance. The value can be a hostname or an IP address. If not specified, Netty HTTP server will listen on all local addresses.
								

								
	
									readIdleTime
								

								 	
									Specifies the maximum read idle time for a Netty connection. The timer is reset whenever there are any read actions on the underlying stream.
								

								
	
									writeIdleTime
								

								 	
									Specifies the maximum write idle time for a Netty connection. The timer is reset whenever there are any write actions on the underlying stream.
								

								
	
									maxChunkContentSize
								

								 	
									Specifies the maximum aggregated content size for a Netty connection. The default value is 10MB.
								

								

					A httpn:engine element has one child element for configuring security properties and one child element for configuring the Netty instance’s thread pool. For each type of configuration you can either directly provide the configuration information or you can provide a reference to a set of configuration properties defined in the parent httpn:engine-factory element.
				

					The supported child elements of httpn:engine are shown in Table 12.12, “Elements for Configuring a Netty Runtime Instance”.
				
Table 12.12. Elements for Configuring a Netty Runtime Instance
	Element	Description
	
									 httpn:tlsServerParameters
								

								 	
									Specifies a set of properties for configuring the security used for the specific Netty instance.
								

								
	
									 httpn:tlsServerParametersRef
								

								 	
									Refers to a set of security properties defined by a identifiedTLSServerParameters element. The id attribute provides the id of the referred identifiedTLSServerParameters element.
								

								
	
									 httpn:threadingParameters
								

								 	
									Specifies the size of the thread pool used by the specific Netty instance. See the section called “Configuring the thread pool”.
								

								
	
									 httpn:threadingParametersRef
								

								 	
									Refers to a set of properties defined by a identifiedThreadingParameters element. The id attribute provides the id of the referred identifiedThreadingParameters element.
								

								
	
									httpn:sessionSupport
								

								 	
									When true, enables support for HTTP sessions. Default is false.
								

								
	
									httpn:reuseAddress
								

								 	
									Specifies a boolean value to set the ReuseAddress TCP socket option. Default is false.
								

								

Configuring the thread pool

					 You can configure the size of a Netty instance’s thread pool by either:
				
	
							Specifying the size of the thread pool using a identifiedThreadingParameters element in the engine-factory element. You then refer to the element using a threadingParametersRef element.
						
	
							Specifying the size of the of the thread pool directly using a threadingParameters element.
						

					The threadingParameters element has one attribute to specify the size of a thread pool, as described in Table 12.13, “Attributes for Configuring a Netty Thread Pool”.
				
Note

						The httpn:identifiedThreadingParameters element has a single child threadingParameters element.
					

Table 12.13. Attributes for Configuring a Netty Thread Pool
	Attribute	Description
	
									threadPoolSize
								

								 	
									Specifies the number of threads available to the Netty instance for processing requests.
								

								

Example

					Example 12.17, “Configuring a Netty Instance” shows a configuration fragment that configures a variety of Netty ports.
				
Example 12.17. Configuring a Netty Instance
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:beans="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:h="http://cxf.apache.org/transports/http/configuration"
 xmlns:httpn="http://cxf.apache.org/transports/http-netty-server/configuration"
 xmlns:sec="http://cxf.apache.org/configuration/security"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://cxf.apache.org/configuration/security
 http://cxf.apache.org/schemas/configuration/security.xsd
 http://cxf.apache.org/transports/http/configuration
 http://cxf.apache.org/schemas/configuration/http-conf.xsd
 http://cxf.apache.org/transports/http-netty-server/configuration
 http://cxf.apache.org/schemas/configuration/http-netty-server.xsd"
>
 ...
 <httpn:engine-factory bus="cxf">
 <httpn:identifiedTLSServerParameters id="sample1">
 <httpn:tlsServerParameters jsseProvider="SUN" secureSocketProtocol="TLS">
 <sec:clientAuthentication want="false" required="false"/>
 </httpn:tlsServerParameters>
 </httpn:identifiedTLSServerParameters>

 <httpn:identifiedThreadingParameters id="sampleThreading1">
 <httpn:threadingParameters threadPoolSize="120"/>
 </httpn:identifiedThreadingParameters>

 <httpn:engine port="9000" readIdleTime="30000" writeIdleTime="90000">
 <httpn:threadingParametersRef id="sampleThreading1"/>
 </httpn:engine>

 <httpn:engine port="0">
 <httpn:threadingParameters threadPoolSize="400"/>
 </httpn:engine>

 <httpn:engine port="9001" readIdleTime="40000" maxChunkContentSize="10000">
 <httpn:threadingParameters threadPoolSize="99" />
 <httpn:sessionSupport>true</httpn:sessionSupport>
 </httpn:engine>

 <httpn:engine port="9002">
 <httpn:tlsServerParameters>
 <sec:clientAuthentication want="true" required="true"/>
 </httpn:tlsServerParameters>
 </httpn:engine>

 <httpn:engine port="9003">
 <httpn:tlsServerParametersRef id="sample1"/>
 </httpn:engine>

 </httpn:engine-factory>
</beans>

Using the HTTP Transport in Decoupled Mode

Overview

					In normal HTTP request/response scenarios, the request and the response are sent using the same HTTP connection. The service provider processes the request and responds with a response containing the appropriate HTTP status code and the contents of the response. In the case of a successful request, the HTTP status code is set to 200.
				

					In some instances, such as when using WS-RM or when requests take an extended period of time to execute, it makes sense to decouple the request and response message. In this case the service providers sends the consumer a 202 Accepted response to the consumer over the back-channel of the HTTP connection on which the request was received. It then processes the request and sends the response back to the consumer using a new decoupled server→client HTTP connection. The consumer runtime receives the incoming response and correlates it with the appropriate request before returning to the application code.
				

Configuring decoupled interactions

					Using the HTTP transport in decoupled mode requires that you do the following:
				
	
							Configure the consumer to use WS-Addressing.
						

							See the section called “Configuring an endpoint to use WS-Addressing”.
						

	
							Configure the consumer to use a decoupled endpoint.
						

							See the section called “Configuring the consumer”.
						

	
							Configure any service providers that the consumer interacts with to use WS-Addressing.
						

							See the section called “Configuring an endpoint to use WS-Addressing”.
						

Configuring an endpoint to use WS-Addressing

					 Specify that the consumer and any service provider with which the consumer interacts use WS-Addressing.
				

					You can specify that an endpoint uses WS-Addressing in one of two ways:
				
	
							Adding the wswa:UsingAddressing element to the endpoint’s WSDL port element as shown in Example 12.18, “Activating WS-Addressing using WSDL”.
						
Example 12.18. Activating WS-Addressing using WSDL
...
<service name="WidgetSOAPService">
 <port name="WidgetSOAPPort" binding="tns:WidgetSOAPBinding">
 <soap:address="http://widgetvendor.net/widgetSeller" />
 <wswa:UsingAddressing xmlns:wswa="http://www.w3.org/2005/02/addressing/wsdl"/>
 </port>
</service>
...

	
							Adding the WS-Addressing policy to the endpoint’s WSDL port element as shown in Example 12.19, “Activating WS-Addressing using a Policy”.
						
Example 12.19. Activating WS-Addressing using a Policy
...
<service name="WidgetSOAPService">
 <port name="WidgetSOAPPort" binding="tns:WidgetSOAPBinding">
 <soap:address="http://widgetvendor.net/widgetSeller" />
 <wsp:Policy xmlns:wsp="http://www.w3.org/2006/07/ws-policy"> <wsam:Addressing xmlns:wsam="http://www.w3.org/2007/02/addressing/metadata"> <wsp:Policy/> </wsam:Addressing> </wsp:Policy>
 </port>
</service>
...

Note

						The WS-Addressing policy supersedes the wswa:UsingAddressing WSDL element.
					

Configuring the consumer

					 Configure the consumer endpoint to use a decoupled endpoint using the DecoupledEndpoint attribute of the http-conf:conduit element.
				

					Example 12.20, “Configuring a Consumer to Use a Decoupled HTTP Endpoint” shows the configuration for setting up the endpoint defined in Example 12.18, “Activating WS-Addressing using WSDL” to use use a decoupled endpoint. The consumer now receives all responses at http://widgetvendor.net/widgetSellerInbox.
				
Example 12.20. Configuring a Consumer to Use a Decoupled HTTP Endpoint
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:http="http://cxf.apache.org/transports/http/configuration"
 xsi:schemaLocation="http://cxf.apache.org/transports/http/configuration
 http://cxf.apache.org/schemas/configuration/http-conf.xsd
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd">

 <http:conduit name="{http://widgetvendor.net/services}WidgetSOAPPort.http-conduit">
 <http:client DecoupledEndpoint="http://widgetvendor.net:9999/decoupled_endpoint" />
 </http:conduit>
</beans>

How messages are processed

					Using the HTTP transport in decoupled mode adds extra layers of complexity to the processing of HTTP messages. While the added complexity is transparent to the implementation level code in an application, it might be important to understand what happens for debugging reasons.
				

					Figure 12.1, “Message Flow in for a Decoupled HTTP Transport” shows the flow of messages when using HTTP in decoupled mode.
				
Figure 12.1. Message Flow in for a Decoupled HTTP Transport
[image: There are fifteen steps in a decoupled message exchange.]

					A request starts the following process:
				
	
							The consumer implementation invokes an operation and a request message is generated.
						
	
							The WS-Addressing layer adds the WS-A headers to the message.
						

							When a decoupled endpoint is specified in the consumer’s configuration, the address of the decoupled endpoint is placed in the WS-A ReplyTo header.
						

	
							The message is sent to the service provider.
						
	
							The service provider receives the message.
						
	
							The request message from the consumer is dispatched to the provider’s WS-A layer.
						
	
							Because the WS-A ReplyTo header is not set to anonymous, the provider sends back a message with the HTTP status code set to 202, acknowledging that the request has been received.
						
	
							The HTTP layer sends a 202 Accepted message back to the consumer using the original connection’s back-channel.
						
	
							The consumer receives the 202 Accepted reply on the back-channel of the HTTP connection used to send the original message.
						

							When the consumer receives the 202 Accepted reply, the HTTP connection closes.
						

	
							The request is passed to the service provider’s implementation where the request is processed.
						
	
							When the response is ready, it is dispatched to the WS-A layer.
						
	
							The WS-A layer adds the WS-Addressing headers to the response message.
						
	
							The HTTP transport sends the response to the consumer’s decoupled endpoint.
						
	
							The consumer’s decoupled endpoint receives the response from the service provider.
						
	
							The response is dispatched to the consumer’s WS-A layer where it is correlated to the proper request using the WS-A RelatesTo header.
						
	
							The correlated response is returned to the client implementation and the invoking call is unblocked.
						

Chapter 13. Using SOAP Over JMS

Abstract

					Apache CXF implements the W3C standard SOAP/JMS transport. This standard is intended to provide a more robust alternative to SOAP/HTTP services. Apache CXF applications using this transport should be able to interoperate with applications that also implement the SOAP/JMS standard. The transport is configured directly in an endpoint’s WSDL.
				

					NOTE: Support for the JMS 1.0.2 APIs has been removed in CXF 3.0. If you are using RedHat JBoss Fuse 6.2 or higher (includes CXF 3.0), your JMS provider must support the JMS 1.1 APIs.
				

Basic configuration

Overview

					The SOAP over JMS protocol is defined by the World Wide Web Consortium(W3C) as a way of providing a more reliable transport layer to the customary SOAP/HTTP protocol used by most services. The Apache CXF implementation is fully compliant with the specification and should be compatible with any framework that is also compliant.
				

					This transport uses JNDI to find the JMS destinations. When an operation is invoked, the request is packaged as a SOAP message and sent in the body of a JMS message to the specified destination.
				

					To use the SOAP/JMS transport:
				
	
							Specify that the transport type is SOAP/JMS.
						
	
							Specify the target destination using a JMS URI.
						
	
							Optionally, configure the JNDI connection.
						
	
							Optionally, add additional JMS configuration.
						

Specifying the JMS transport type

					You configure a SOAP binding to use the JMS transport when specifying the WSDL binding. You set the soap:binding element’s transport attribute to http://www.w3.org/2010/soapjms/. Example 13.1, “SOAP over JMS binding specification” shows a WSDL binding that uses SOAP/JMS.
				
Example 13.1. SOAP over JMS binding specification
<wsdl:binding ... >
 <soap:binding style="document"
 transport="http://www.w3.org/2010/soapjms/" />
 ...
</wsdl:binding>

Specifying the target destination

					You specify the address of the JMS target destination when specifying the WSDL port for the endpoint. The address specification for a SOAP/JMS endpoint uses the same soap:address element and attribute as a SOAP/HTTP endpoint. The difference is the address specification. JMS endpoints use a JMS URI as defined in the URI Scheme for JMS 1.0. Example 13.2, “JMS URI syntax” shows the syntax for a JMS URI.
				
Example 13.2. JMS URI syntax
jms:variant:destination?options

					Table 13.1, “JMS URI variants” describes the available variants for the JMS URI.
				
Table 13.1. JMS URI variants
	Variant	Description
	
									jndi
								

								 	
									Specifies that the destination name is a JNDI queue name. When using this variant, you must provide the configuration for accessing the JNDI provider.
								

								
	
									jndi-topic
								

								 	
									Specifies that the destination name is a JNDI topic name. When using this variant, you must provide the configuration for accessing the JNDI provider.
								

								
	
									queue
								

								 	
									Specifies that the destination is a queue name resolved using JMS. The string provided is passed into Session.createQueue() to create a representation of the destination.
								

								
	
									topic
								

								 	
									Specifies that the destination is a topic name resolved using JMS. The string provided is passed into Session.createTopic() to create a representation of the destination.
								

								

					The options portion of a JMS URI are used to configure the transport and are discussed in the section called “JMS URIs”.
				

					Example 13.3, “SOAP/JMS endpoint address” shows the WSDL port entry for a SOAP/JMS endpoint whose target destination is looked up using JNDI.
				
Example 13.3. SOAP/JMS endpoint address
<wsdl:port ... >
 ...
 <soap:address location="jms:jndi:dynamicQueues/test.cxf.jmstransport.queue" />
</wsdl:port>

Configuring JNDI and the JMS transport

					The SOAP/JMS provides several ways to configure the JNDI connection and the JMS transport:
				
	
							the section called “JMS URIs”
						
	
							the section called “WSDL extensions”
						

JMS URIs

Overview

					When using SOAP/JMS, a JMS URI is used to specify the endpoint’s target destination. The JMS URI can also be used to configure JMS connection by appending one or more options to the URI. These options are detailed in the IETF standard, URI Scheme for Java Message Service 1.0. They can be used to configure the JNDI system, the reply destination, the delivery mode to use, and other JMS properties.
				

Syntax

					As shown in Example 13.4, “Syntax for JMS URI options”, you can append one or more options to the end of a JMS URI by separating them from the destination’s address with a question mark(?). Multiple options are separated by an ampersand(&). Example 13.4, “Syntax for JMS URI options” shows the syntax for using multiple options in a JMS URI.
				
Example 13.4. Syntax for JMS URI options
jms:variant:jmsAddress?option1=value1&option2=value2&_optionN_=valueN

JMS properties

					Table 13.2, “JMS properties settable as URI options” shows the URI options that affect the JMS transport layer.
				
Table 13.2. JMS properties settable as URI options
	Property	Default	Description
	
									conduitIdSelectorPrefix
								

								 	 	
									[Optional] A string value that is prefixed to all correlation IDs that the conduit creates. The selector can use it to listen for replies.
								

								
	
									deliveryMode
								

								 	
									PERSISTENT
								

								 	
									Specifies whether to use JMS PERSISTENT or NON_PERSISTENT message semantics. In the case of PERSISTENT delivery mode, the JMS broker stores messages in persistent storage before acknowledging them; whereas NON_PERSISTENT messages are kept in memory only.
								

								
	
									durableSubscriptionClientID
								

								 	 	
									[Optional] Specifies the client identifier for the connection. This property is used to associate a connection with a state that the provider maintains on behalf of the client. This enables subsequent subscribers with the same identity to resume the subscription in the state that the preceding subscriber left it.
								

								
	
									durableSubscriptionName
								

								 	 	
									[Optional] Specifies the name of the subscription.
								

								
	
									messageType
								

								 	
									byte
								

								 	
									Specifies the JMS message type used by CXF. Valid values are:
								

								 	
											byte
										
	
											text
										
	
											binary
										

								
	
									password
								

								 	 	
									[Optional] Specifies the password for creating the connection. Appending this property to the URI is discouraged.
								

								
	
									priority
								

								 	
									4
								

								 	
									Specifies the JMS message priority, which ranges from 0 (lowest) to 9 (highest).
								

								
	
									receiveTimout
								

								 	
									60000
								

								 	
									Specifies the time, in milliseconds, the client will wait for a reply when request/reply exchanges are used.
								

								
	
									reconnectOnException
								

								 	
									true
								

								 	
									[Deprecated in CXF 3.0] Specifies whether the transport should reconnect when exceptions occur.
								

								
									As of 3.0, the transport will always reconnect when an exception occurs.
								

								
	
									replyToName
								

								 	 	
									[Optional] Specifies the reply destination for queue messages. The reply destination appears in the JMSReplyTo header. Setting this property is recommended for applications that have request-reply semantics because the JMS provider will assign a temporary reply queue if one is not specified.
								

								
									The value of this property is interpreted according to the variant specified in the JMS URI:
								

								 	
											jndi variant—the name of the destination queue resolved by JNDI
										
	
											queue variant—the name of the destination queue resolved using JMS
										

								
	
									sessionTransacted
								

								 	
									false
								

								 	
									Specifies the transaction type. Valid values are:
								

								 	
											true—resource local transactions
										
	
											false—JTA transactions
										

								
	
									timeToLive
								

								 	
									0
								

								 	
									Specifies the time, in milliseconds, after which the JMS provider will discard the message. A value of 0 indicates an infinite lifetime.
								

								
	
									topicReplyToName
								

								 	 	
									[Optional] Specifies the reply destination for topic messages. The value of this property is interpreted according to the variant specified in the JMS URI:
								

								 	
											jndi-topic—the name of the destination topic resolved by JNDI
										
	
											topic—the name of the destination topic resolved by JMS
										

								
	
									useConduitIdSelector
								

								 	
									true
								

								 	
									Specifies whether the conduit’s UUID will be used as the prefix for all correlation IDs.
								

								
									As all conduits are assigned a unique UUID, setting this property to true enables multiple endpoints to share a JMS queue or topic.
								

								
	
									username
								

								 	 	
									[Optional] Specifies the username to use to create the connection.
								

								

JNDI properties

					Table 13.3, “JNDI properties settable as URI options” shows the URI options that can be used to configure JNDI for this endpoint.
				
Table 13.3. JNDI properties settable as URI options
	Property	Description
	
									jndiConnectionFactoryName
								

								 	
									Specifies the JNDI name of the JMS connection factory.
								

								
	
									jndiInitialContextFactory
								

								 	
									Specifies the fully qualified Java class name of the JNDI provider (which must be of javax.jms.InitialContextFactory type). Equivalent to setting the java.naming.factory.initial Java system property.
								

								
	
									jndiTransactionManagerName
								

								 	
									Specifies the name of the JTA transaction manager that will be searched for in Spring, Blueprint, or JNDI. If a transaction manager is found, JTA transactions will be enabled. See the sessionTransacted JMS property.
								

								
	
									jndiURL
								

								 	
									Specifies the URL that initializes the JNDI provider. Equivalent to setting the java.naming.provider.url Java system property.
								

								

Additional JNDI properties

					The properties, java.naming.factory.initial and java.naming.provider.url, are standard properties, which are required to initialize any JNDI provider. Sometimes, however, a JNDI provider might support custom properties in addition to the standard ones. In this case, you can set an arbitrary JNDI property by setting a URI option of the form jndi-PropertyName.
				

					For example, if you were using SUN’s LDAP implementation of JNDI, you could set the JNDI property, java.naming.factory.control, in a JMS URI as shown in Example 13.5, “Setting a JNDI property in a JMS URI”.
				
Example 13.5. Setting a JNDI property in a JMS URI
jms:queue:FOO.BAR?jndi-java.naming.factory.control=com.sun.jndi.ldap.ResponseControlFactory

Example

					If the JMS provider is not already configured, it is possible to provide the requisite JNDI configuration details in the URI using options (see Table 13.3, “JNDI properties settable as URI options”). For example, to configure an endpoint to use the Apache ActiveMQ JMS provider and connect to the queue called test.cxf.jmstransport.queue, use the URI shown in Example 13.6, “JMS URI that configures a JNDI connection”.
				
Example 13.6. JMS URI that configures a JNDI connection
jms:jndi:dynamicQueues/test.cxf.jmstransport.queue
?jndiInitialContextFactory=org.apache.activemq.jndi.ActiveMQInitialContextFactory
&jndiConnectionFactoryName=ConnectionFactory
&jndiURL=tcp://localhost:61616

Publishing a service

					 The JAX-WS standard publish() method cannot be used to publish a SOAP/JMS service. Instead, you must use the Apache CXF’s JaxWsServerFactoryBean class as shown in Example 13.7, “Publishing a SOAP/JMS service”.
				
Example 13.7. Publishing a SOAP/JMS service
String address = "jms:jndi:dynamicQueues/test.cxf.jmstransport.queue3"
 + "?jndiInitialContextFactory"
 + "=org.apache.activemq.jndi.ActiveMQInitialContextFactory"
 + "&jndiConnectionFactoryName=ConnectionFactory"
 + "&jndiURL=tcp://localhost:61500";
Hello implementor = new HelloImpl();
JaxWsServerFactoryBean svrFactory = new JaxWsServerFactoryBean();
svrFactory.setServiceClass(Hello.class);
svrFactory.setAddress(address);
svrFactory.setTransportId(JMSSpecConstants.SOAP_JMS_SPECIFICIATION_TRANSPORTID);
svrFactory.setServiceBean(implementor);
svrFactory.create();

					The code in Example 13.7, “Publishing a SOAP/JMS service” does the following:
				

					Creates the JMS URI representing t he endpoint’s address.
				

					Instantiates a JaxWsServerFactoryBean to publish the service.
				

					Sets the address field of the factory bean with the JMS URI of the service.
				

					Specifies that the service created by the factory will use the SOAP/JMS transport.
				

Consuming a service

					 The standard JAX-WS APIs cannot be used to consume a SOAP/JMS service. Instead, you must use the Apache CXF’s JaxWsProxyFactoryBean class as shown in Example 13.8, “Consuming a SOAP/JMS service”.
				
Example 13.8. Consuming a SOAP/JMS service
// Java
public void invoke() throws Exception {
 String address = "jms:jndi:dynamicQueues/test.cxf.jmstransport.queue3"
 + "?jndiInitialContextFactory"
 + "=org.apache.activemq.jndi.ActiveMQInitialContextFactory"
 + "&jndiConnectionFactoryName=ConnectionFactory&jndiURL=tcp://localhost:61500";
 JaxWsProxyFactoryBean factory = new JaxWsProxyFactoryBean();
 factory.setAddress(address);
 factory.setTransportId(JMSSpecConstants.SOAP_JMS_SPECIFICIATION_TRANSPORTID);
 factory.setServiceClass(Hello.class);
 Hello client = (Hello)factory.create();
 String reply = client.sayHi(" HI");
 System.out.println(reply);
}

					The code in Example 13.8, “Consuming a SOAP/JMS service” does the following:
				

					Creates the JMS URI representing t he endpoint’s address.
				

					Instantiates a JaxWsProxyFactoryBean to create the proxy.
				

					Sets the address field of the factory bean with the JMS URI of the service.
				

					Specifies that the proxy created by the factory will use the SOAP/JMS transport.
				

WSDL extensions

Overview

					You can specify the basic configuration of the JMS transport by inserting WSDL extension elements into the contract, either at binding scope, service scope, or port scope. The WSDL extensions enable you to specify the properties for bootstrapping a JNDI InitialContext, which can then be used to look up JMS destinations. You can also set some properties that affect the behavior of the JMS transport layer.
				

SOAP/JMS namespace

					the SOAP/JMS WSDL extensions are defined in the http://www.w3.org/2010/soapjms/ namespace. To use them in your WSDL contracts add the following setting to the wsdl:definitions element:
				
<wsdl:definitions ...
 xmlns:soapjms="http://www.w3.org/2010/soapjms/"
 ... >

WSDL extension elements

					Table 13.4, “SOAP/JMS WSDL extension elements” shows all of the WSDL extension elements you can use to configure the JMS transport.
				
Table 13.4. SOAP/JMS WSDL extension elements
	Element	Default	Description
	
									soapjms:jndiInitialContextFactory
								

								 	 	
									Specifies the fully qualified Java class name of the JNDI provider. Equivalent to setting the java.naming.factory.initial Java system property.
								

								
	
									soapjms:jndiURL
								

								 	 	
									Specifies the URL that initializes the JNDI provider. Equivalent to setting the java.naming.provider.url Java system property.
								

								
	
									soapjms:jndiContextParameter
								

								 	 	
									Specifies an additional property for creating the JNDI InitialContext. Use the name and value attributes to specify the property.
								

								
	
									soapjms:jndiConnectionFactoryName
								

								 	 	
									Specifies the JNDI name of the JMS connection factory.
								

								
	
									soapjms:deliveryMode
								

								 	
									PERSISTENT
								

								 	
									Specifies whether to use JMS PERSISTENT or NON_PERSISTENT message semantics. In the case of PERSISTENT delivery mode, the JMS broker stores messages in persistent storage before acknowledging them; whereas NON_PERSISTENT messages are kept in memory only.
								

								
	
									soapjms:replyToName
								

								 	 	
									[Optional] Specifies the reply destination for queue messages. The reply destination appears in the JMSReplyTo header. Setting this property is recommended for applications that have request-reply semantics because the JMS provider will assign a temporary reply queue if one is not specified.
								

								
									The value of this property is interpreted according to the variant specified in the JMS URI:
								

								 	
											jndi variant—the name of the destination queue resolved by JNDI
										
	
											queue variant—the name of the destination queue resolved using JMS
										

								
	
									soapjms:priority
								

								 	
									4
								

								 	
									Specifies the JMS message priority, which ranges from 0 (lowest) to 9 (highest).
								

								
	
									soapjms:timeToLive
								

								 	
									0
								

								 	
									Time, in milliseconds, after which the JMS provider will discard the message. A value of 0 represents an infinite lifetime.
								

								

Configuration scopes

					The WSDL elements placement in the WSDL contract effect the scope of the configuration changes on the endpoints defined in the contract. The SOAP/JMS WSDL elements can be placed as children of either the wsdl:binding element, the wsdl:service element, or the wsdl:port element. The parent of the SOAP/JMS elements determine which of the following scopes the configuration is placed into.
				
	Binding scope
	
								You can configure the JMS transport at the binding scope by placing extension elements inside the wsdl:binding element. Elements in this scope define the default configuration for all endpoints that use this binding. Any settings in the binding scope can be overridden at the service scope or the port scope.
							
	Service scope
	
								You can configure the JMS transport at the service scope by placing extension elements inside a wsdl:service element. Elements in this scope define the default configuration for all endpoints in this service. Any settings in the service scope can be overridden at the port scope.
							
	Port scope
	
								You can configure the JMS transport at the port scope by placing extension elements inside a wsdl:port element. Elements in the port scope define the configuration for this port. They override the defaults of the same extension elements defined at the service scope or at the binding scope.
							

Example

					Example 13.9, “WSDL contract with SOAP/JMS configuration” shows a WSDL contract for a SOAP/JMS service. It configures the JNDI layer in the binding scope, the message delivery details in the service scope, and the reply destination in the port scope.
				
Example 13.9. WSDL contract with SOAP/JMS configuration
<wsdl:definitions ...
 xmlns:soapjms="http://www.w3.org/2010/soapjms/"
 ... >
 ...
 <wsdl:binding name="JMSGreeterPortBinding" type="tns:JMSGreeterPortType">
 ...
 <soapjms:jndiInitialContextFactory>
 org.apache.activemq.jndi.ActiveMQInitialContextFactory
 </soapjms:jndiInitialContextFactory>
 <soapjms:jndiURL>tcp://localhost:61616</soapjms:jndiURL>
 <soapjms:jndiConnectionFactoryName>
 ConnectionFactory
 </soapjms:jndiConnectionFactoryName>
 ...
 </wsdl:binding>
 ...
 <wsdl:service name="JMSGreeterService">
 ...
 <soapjms:deliveryMode>NON_PERSISTENT</soapjms:deliveryMode>
 <soapjms:timeToLive>60000</soapjms:timeToLive>
 ...
 <wsdl:port binding="tns:JMSGreeterPortBinding" name="GreeterPort">
 <soap:address location="jms:jndi:dynamicQueues/test.cxf.jmstransport.queue" />
 <soapjms:replyToName>
 dynamicQueues/greeterReply.queue
 </soapjms:replyToName>
 ...
 </wsdl:port>
 ...
 </wsdl:service>
 ...
</wsdl:definitions>

					The WSDL in Example 13.9, “WSDL contract with SOAP/JMS configuration” does the following:
				

					Declares the namespace for the SOAP/JMS extensions.
				

					Configures the JNDI connections in the binding scope.
				

					Sets the JMS delivery style to non-persistent and each message to live for one minute.
				

					Specifies the target destination.
				

					Configures the JMS transport so that reply messages are delivered on the greeterReply.queue queue.
				

Chapter 14. Using Generic JMS

Abstract

					Apache CXF provides a generic implementation of a JMS transport. The generic JMS transport is not restricted to using SOAP messages and allows for connecting to any application that uses JMS.
				

					NOTE: Support for the JMS 1.0.2 APIs has been removed in CXF 3.0. If you are using RedHat JBoss Fuse 6.2 or higher (includes CXF 3.0), your JMS provider must support the JMS 1.1 APIs.
				

Approaches to Configuring JMS

					The Apache CXF generic JMS transport can connect to any JMS provider and work with applications that exchange JMS messages with bodies of either TextMessage or ByteMessage.
				

					There are two ways to enable and configure the JMS transport:
				
	
							the section called “Using the JMS configuration bean”
						
	
							the section called “Using WSDL to configure JMS”
						

Using the JMS configuration bean

Overview

					To simplify JMS configuration and make it more powerful, Apache CXF uses a single JMS configuration bean to configure JMS endpoints. The bean is implemented by the org.apache.cxf.transport.jms.JMSConfiguration class. It can be used to either configure endpoint’s directly or to configure the JMS conduits and destinations.
				

Configuration namespace

					The JMS configuration bean uses the Spring p-namespace to make the configuration as simple as possible. To use this namespace you need to declare it in the configuration’s root element as shown in Example 14.1, “Declaring the Spring p-namespace”.
				
Example 14.1. Declaring the Spring p-namespace
<beans ...
 xmlns:p="http://www.springframework.org/schema/p"
 ... >
 ...
</beans>

Specifying the configuration

					 You specify the JMS configuration by defining a bean of class org.apache.cxf.transport.jms.JMSConfiguration. The properties of the bean provide the configuration settings for the transport.
				
Important

						In CXF 3.0, the JMS transport no longer has a dependency on Spring JMS, so some Spring JMS-related options have been removed.
					

					Table 14.1, “General JMS Configuration Properties” lists properties that are common to both providers and consumers.
				
Table 14.1. General JMS Configuration Properties
	Property	Default	Description
	
									connectionFactory
								

								 	 	
									[Required] Specifies a reference to a bean that defines a JMS ConnectionFactory.
								

								
	
									wrapInSingleConnectionFactory
								

								 	
									true [pre v3.0]
								

								 	
									Removed in CXF 3.0
								

								
									pre CXF 3.0 Specifies whether to wrap the ConnectionFactory with a Spring SingleConnectionFactory.
								

								
									Enable this property when using a ConnectionFactory that does not pool connections, as it will improve the performance of the JMS transport. This is so because the JMS transport creates a new connection for each message, and the SingleConnectionFactory is needed to cache the connection, so it can be reused.
								

								
	
									reconnectOnException
								

								 	
									false
								

								 	
									Deprecated in CXF 3.0 CXF always reconnects when an exception occurs.
								

								
									pre CXF 3.0 Specifies whether to create a new connection when an exception occurs.
								

								
									When wrapping the ConnectionFactory with a Spring SingleConnectionFactory:
								

								 	
											true — on an exception, create a new connection
										

											Do not enable this option when using a PooledConnectionFactory, as this option only returns the pooled connection, but does not reconnect.
										

	
											false — on an exception, do not try to reconnect
										

								
	
									targetDestination
								

								 	 	
									Specifies the JNDI name or provider-specific name of a destination.
								

								
	
									replyDestination
								

								 	 	
									Specifies the JMS name of the JMS destination where replies are sent. This property allows the use of a user-defined destination for replies. For more details see the section called “Using a Named Reply Destination”.
								

								
	
									destinationResolver
								

								 	
									DynamicDestinationResolver
								

								 	
									Specifies a reference to a Spring DestinationResolver.
								

								
									This property allows you to define how destination names are resolved to JMS destinations. Valid values are:
								

								 	
											DynamicDestinationResolver — resolve destination names using the features of the JMS provider.
										
	
											JndiDestinationResolver — resolve destination names using JNDI.
										

								
	
									transactionManager
								

								 	 	
									Specifies a reference to a Spring transaction manager. This enables the service to participate in JTA transactions.
								

								
	
									taskExecutor
								

								 	
									SimpleAsyncTaskExecutor
								

								 	
									Removed in CXF 3.0
								

								
									pre CXF 3.0 Specifies a reference to a Spring TaskExecutor. This is used in listeners to decide how to handle incoming messages.
								

								
	
									useJms11
								

								 	
									false
								

								 	
									Removed in CXF 3.0 CXF 3.0 supports JMS 1.1 features only.
								

								
									pre CXF 3.0 Specifies whether JMS 1.1 features are used. Valid values are:
								

								 	
											true — JMS 1.1 features
										
	
											false — JMS 1.0.2 features
										

								
	
									messageIdEnabled
								

								 	
									true
								

								 	
									Removed in CXF 3.0
								

								
									pre CXF 3.0 Specifies whether the JMS transport wants the JMS broker to provide message IDs. Valid values are:
								

								 	
											true — broker needs to provide message IDs
										
	
											false — broker need not provide message IDs
										

											In this case, the endpoint calls its message producer’s setDisableMessageID() method with a value of true. The broker is then given a hint that it need not generate message IDs or add them to the endpoint’s messages. The broker either accepts the hint or ignores it.
										

								
	
									messageTimestampEnabled
								

								 	
									true
								

								 	
									Removed in CXF 3.0
								

								
									pre CXF 3.0 Specifies whether the JMS transport wants the JMS broker to provide message time stamps. Valid values are:
								

								 	
											true — broker needs to provide message timestamps
										
	
											false — broker need not provide message timestamps
										

											In this case, the endpoint calls its message producer’s setDisableMessageTimestamp() method with a value of true. The broker is then given a hint that it need not generate time stamps or add them to the endpoint’s messages. The broker either accepts the hint or ignores it.
										

								
	
									cacheLevel
								

								 	
									-1 (feature disabled)
								

								 	
									Removed in CXF 3.0
								

								
									pre CXF 3.0 Specifies the level of caching that the JMS listener container may apply. Valid values are:
								

								 	
											0 — CACHE_NONE
										
	
											1 — CACHE_CONNECTION
										
	
											2 — CACHE_SESSION
										
	
											3 — CACHE_CONSUMER
										
	
											4 — CACHE_AUTO
										

								
									For details, see Class DefaultMessageListenerContainer
								

								
	
									pubSubNoLocal
								

								 	
									false
								

								 	
									Specifies whether to receive your own messages when using topics.
								

								 	
											true — do not receive your own messages
										
	
											false — receive your own messages
										

								
	
									receiveTimeout
								

								 	
									60000
								

								 	
									Specifies the time, in milliseconds, to wait for response messages.
								

								
	
									explicitQosEnabled
								

								 	
									false
								

								 	
									Specifies whether the QoS settings (such as priority, persistence, time to live) are explicitly set for each message (true) or use the default values (false).
								

								
	
									deliveryMode
								

								 	
									2
								

								 	
									Specifies whether a message is persistent. Valid values are:
								

								 	
											1 (NON_PERSISTENT)—messages are kept memory only
										
	
											2 (PERSISTENT)—messages are persisted to disk
										

								
	
									priority
								

								 	
									4
								

								 	
									Specifies message priority. JMS priority values range from 0 (lowest) to 9 (highest). See your JMS provider’s documentation for details.
								

								
	
									timeToLive
								

								 	
									0 (indefinitely)
								

								 	
									Specifies the time, in milliseconds, before a message that has been sent is discarded.
								

								
	
									sessionTransacted
								

								 	
									false
								

								 	
									Specifies whether JMS transactions are used.
								

								
	
									concurrentConsumers
								

								 	
									1
								

								 	
									Removed in CXF 3.0
								

								
									pre CXF 3.0 Specifies the minimum number of concurrent consumers for the listener.
								

								
	
									maxConcurrentConsumers
								

								 	
									1
								

								 	
									Removed in CXF 3.0
								

								
									pre CXF 3.0 Specifies the maximum number of concurrent consumers for the listener.
								

								
	
									messageSelector
								

								 	 	
									Specifies the string value of the selector used to filter incoming messages. This property enables multiple connections to share a queue. For more information on the syntax used to specify message selectors, see the JMS 1.1 specification.
								

								
	
									subscriptionDurable
								

								 	
									false
								

								 	
									Specifies whether the server uses durable subscriptions.
								

								
	
									durableSubscriptionName
								

								 	 	
									Specifies the name (string) used to register the durable subscription.
								

								
	
									messageType
								

								 	
									text
								

								 	
									Specifies how the message data will be packaged as a JMS message. Valid values are:
								

								 	
											text — specifies that the data will be packaged as a TextMessage
										
	
											byte — specifies that the data will be packaged as an array of bytes (byte[])
										
	
											binary — specifies that the data will be packaged as an ByteMessage
										

								
	
									pubSubDomain
								

								 	
									false
								

								 	
									Specifies whether the target destination is a topic or a queue. Valid values are:
								

								 	
											true — topic
										
	
											false — queue
										

								
	
									jmsProviderTibcoEms
								

								 	
									false
								

								 	
									Specifies whether the JMS provider is Tibco EMS.
								

								
									When set to true, the principal in the security context is populated from the JMS_TIBCO_SENDER header.
								

								
	
									useMessageIDAsCorrelationID
								

								 	
									false
								

								 	
									Removed in CXF 3.0
								

								
									Specifies whether JMS will use the message ID to correlate messages.
								

								
									When set to true, the client sets a generated correlation ID.
								

								
	
									maxSuspendedContinuations
								

								 	
									-1 (feature disabled)
								

								 	
									CXF 3.0 Specifies the maximum number of suspended continuations the JMS destination may have. When the current number exceeds the specified maximum, the JMSListenerContainer is stopped.
								

								
	
									reconnectPercentOfMax
								

								 	
									70
								

								 	
									CXF 3.0 Specifies when to restart the JMSListenerContainer stopped for exceeding maxSuspendedContinuations.
								

								
									The listener container is restarted when its current number of suspended continuations falls below the value of (maxSuspendedContinuations * reconnectPercentOfMax/100).
								

								

					As shown in Example 14.2, “JMS configuration bean”, the bean’s properties are specified as attributes to the bean element. They are all declared in the Spring p namespace.
				
Example 14.2. JMS configuration bean
<bean id="jmsConfig"
 class="org.apache.cxf.transport.jms.JMSConfiguration"
 p:connectionFactory="jmsConnectionFactory"
 p:targetDestination="dynamicQueues/greeter.request.queue"
 p:pubSubDomain="false" />

Applying the configuration to an endpoint

					The JMSConfiguration bean can be applied directly to both server and client endpoints using the Apache CXF features mechanism. To do so:
				
	
							Set the endpoint’s address attribute to jms://.
						
	
							Add a jaxws:feature element to the endpoint’s configuration.
						
	
							Add a bean of type org.apache.cxf.transport.jms.JMSConfigFeature to the feature.
						
	
							Set the bean element’s p:jmsConfig-ref attribute to the ID of the JMSConfiguration bean.
						

					Example 14.3, “Adding JMS configuration to a JAX-WS client” shows a JAX-WS client that uses the JMS configuration from Example 14.2, “JMS configuration bean”.
				
Example 14.3. Adding JMS configuration to a JAX-WS client
<jaxws:client id="CustomerService"
 xmlns:customer="http://customerservice.example.com/"
 serviceName="customer:CustomerServiceService"
 endpointName="customer:CustomerServiceEndpoint"
 address="jms://"
 serviceClass="com.example.customerservice.CustomerService">
 <jaxws:features>
 <bean xmlns="http://www.springframework.org/schema/beans"
 class="org.apache.cxf.transport.jms.JMSConfigFeature"
 p:jmsConfig-ref="jmsConfig"/>
 </jaxws:features>
</jaxws:client>

Applying the configuration to the transport

					The JMSConfiguration bean can be applied to JMS conduits and JMS destinations using the jms:jmsConfig-ref element. The jms:jmsConfig-ref element’s value is the ID of the JMSConfiguration bean.
				

					Example 14.4, “Adding JMS configuration to a JMS conduit” shows a JMS conduit that uses the JMS configuration from Example 14.2, “JMS configuration bean”.
				
Example 14.4. Adding JMS configuration to a JMS conduit
<jms:conduit name="{http://cxf.apache.org/jms_conf_test}HelloWorldQueueBinMsgPort.jms-conduit">
 ...
 <jms:jmsConfig-ref>jmsConf</jms:jmsConfig-ref>
</jms:conduit>

Optimizing Client-Side JMS Performance

Overview

					Two major settings affect the JMS performance of clients: pooling and synchronous receives.
				

Pooling

					On the client side, CXF creates a new JMS session and JMS producer for each message. This is so because neither session nor producer objects are thread safe. Creating a producer is especially time intensive because it requires communicating with the server.
				

					Pooling connection factories improves performance by caching the connection, session, and producer.
				

					For ActiveMQ, configuring pooling is simple; for example:
				
import org.apache.activemq.ActiveMQConnectionFactory;
import org.apache.activemq.pool.PooledConnectionFactory;

ConnectionFactory cf = new ActiveMQConnectionFactory("tcp://localhost:61616");
PooledConnectionFactory pcf = new PooledConnectionFactory();

//Set expiry timeout because the default (0) prevents reconnection on failure
pcf.setExpiryTimeout(5000);
pcf.setConnectionFactory(cf);

JMSConfiguration jmsConfig = new JMSConfiguration();

jmsConfig.setConnectionFactory(pdf);

					For more information on pooling, see "Appendix A Optimizing Performance of JMS Single- and Multiple-Resource Transactions" in the Red Hat JBoss Fuse Transaction Guide
				

Avoiding synchronous receives

					For request/reply exchanges, the JMS transport sends a request and then waits for a reply. Whenever possible, request/reply messaging is implemented asynchronously using a JMS MessageListener.
				

					However, CXF must use a synchronous Consumer.receive() method when it needs to share queues between endpoints. This scenario requires the MessageListener to use a message selector to filter the messages. The message selector must be known in advance, so the MessageListener is opened only once.
				

					Two cases in which the message selector cannot be known in advance should be avoided:
				
	
							When JMSMessageID is used as the JMSCorrelationID
						

							If the JMS properties useConduitIdSelector and conduitSelectorPrefix are not set on the JMS transport, the client does not set a JMSCorrelationId. This causes the server to use the JMSMessageId of the request message as the JMSCorrelationId. As JMSMessageID cannot be known in advance, the client has to use a synchronous Consumer.receive() method.
						

							Note that you must use the Consumer.receive() method with IBM JMS endpoints (their default).
						

	
							The user sets the JMStype in the request message and then sets a custom JMSCorrelationID.
						

							Again, as the custom JMSCorrelationID cannot be known in advance, the client has to use a synchronous Consumer.receive() method.
						

					So the general rule is to avoid using settings that require using a synchronous receive.
				

Configuring JMS Transactions

Overview

					CXF 3.0 supports both local JMS transactions and JTA transactions on CXF endpoints, when using one-way messaging.
				

Local transactions

					Transactions using local resources roll back the JMS message only when an exception occurs. They do not directly coordinate other resources, such as database transactions.
				

					To set up a local transaction, configure the endpoint as you normally would, and set the property sessionTrasnsacted to true.
				
Note

						For more information on transactions and pooling, see the Red Hat JBoss Fuse Transaction Guide.
					

JTA transactions

					Using JTA transactions, you can coordinate any number of XA resources. If a CXF endpoint is configured for JTA transactions, it starts a transaction before calling the service implementation. The transaction will be committed if no exception occurs. Otherwise, it will be rolled back.
				

					In JTA transactions, a JMS message is consumed and the data written to a database. When an exception occurs, both resources are rolled back, so either the message is consumed and the data is written to the database, or the message is rolled back and the data is not written to the database.
				

					Configuring JTA transactions requires two steps:
				
	
							Defining a transaction manager
						
	
									bean method
								
	
											Define a transaction manager
										
<bean id="transactionManager"
 class="org.apache.geronimo.transaction.manager.GeronimoTransactionManager"/>

	
											Set the name of the transaction manager in the JMS URI
										
jms:queue:myqueue?jndiTransactionManager=TransactionManager

											This example finds a bean with the ID TransactionManager.
										

	
									OSGi reference method
								
	
											Look up the transaction manager as an OSGi service using Blueprint
										
<reference id="TransactionManager" interface="javax.transaction.TransactionManager"/>

	
											Set the name of the transaction manager in the JMS URI
										
jms:jndi:myqueue?jndiTransactionManager=java:comp/env/TransactionManager

											This example looks up the transaction manager in JNDI.
										

	
							Configuring a JCA pooled connection factory
						

							Using Spring to define the JCA pooled connection factory:
						
<bean id="xacf" class="org.apache.activemq.ActiveMQXAConnectionFactory">
 <property name="brokerURL" value="tcp://localhost:61616" />
</bean>

<bean id="ConnectionFactory" class="org.apache.activemq.jms.pool.JcaPooledConnectionFactory">
 <property name="transactionManager" ref="transactionManager" />
 <property name="connectionFactory" ref="xacf" />
</bean>

							In this example, the first bean defines an ActiveMQ XA connection factory, which is given to a JcaPooledConnectionFactory. The JcaPooledConnectionFactory is then provided as the default bean with id ConnectionFactory.
						

							Note that the JcaPooledConnectionFactory looks like a normal ConnectionFactory. But when a new connection and session are opened, it checks for an XA transaction and, if found, automatically registers the JMS session as an XA resource. This allows the JMS session to participate in the JMS transaction.
						
Important

								Directly setting an XA ConnectionFactory on the JMS transport will not work!
							

Using WSDL to configure JMS

JMS WSDL Extension Namespance

						The WSDL extensions for defining a JMS endpoint are defined in the namespace http://cxf.apache.org/transports/jms. In order to use the JMS extensions you will need to add the line shown in Example 14.5, “JMS WSDL extension namespace” to the definitions element of your contract.
					
Example 14.5. JMS WSDL extension namespace
xmlns:jms="http://cxf.apache.org/transports/jms"

Basic JMS configuration

Overview

						The JMS address information is provided using the jms:address element and its child, the jms:JMSNamingProperties element. The jms:address element’s attributes specify the information needed to identify the JMS broker and the destination. The jms:JMSNamingProperties element specifies the Java properties used to connect to the JNDI service.
					
Important

							Information specified using the JMS feature will override the information in the endpoint’s WSDL file.
						

Specifying the JMS address

						 The basic configuration for a JMS endpoint is done by using a jms:address element as the child of your service’s port element. The jms:address element used in WSDL is identical to the one used in the configuration file. Its attributes are listed in Table 14.2, “JMS endpoint attributes”.
					
Table 14.2. JMS endpoint attributes
	Attribute	Description
	
										 destinationStyle
									

									 	
										Specifies if the JMS destination is a JMS queue or a JMS topic.
									

									
	
										 jndiConnectionFactoryName
									

									 	
										Specifies the JNDI name bound to the JMS connection factory to use when connecting to the JMS destination.
									

									
	
										 jmsDestinationName
									

									 	
										Specifies the JMS name of the JMS destination to which requests are sent.
									

									
	
										 jmsReplyDestinationName
									

									 	
										Specifies the JMS name of the JMS destinations where replies are sent. This attribute allows you to use a user defined destination for replies. For more details see the section called “Using a Named Reply Destination”.
									

									
	
										 jndiDestinationName
									

									 	
										Specifies the JNDI name bound to the JMS destination to which requests are sent.
									

									
	
										 jndiReplyDestinationName
									

									 	
										Specifies the JNDI name bound to the JMS destinations where replies are sent. This attribute allows you to use a user defined destination for replies. For more details see the section called “Using a Named Reply Destination”.
									

									
	
										 connectionUserName
									

									 	
										Specifies the user name to use when connecting to a JMS broker.
									

									
	
										 connectionPassword
									

									 	
										Specifies the password to use when connecting to a JMS broker.
									

									

						The jms:address WSDL element uses a jms:JMSNamingProperties child element to specify additional information needed to connect to a JNDI provider.
					

Specifying JNDI properties

						 To increase interoperability with JMS and JNDI providers, the jms:address element has a child element, jms:JMSNamingProperties, that allows you to specify the values used to populate the properties used when connecting to the JNDI provider. The jms:JMSNamingProperties element has two attributes: name and value. name specifies the name of the property to set. value attribute specifies the value for the specified property. jms:JMSNamingProperties element can also be used for specification of provider specific properties.
					

						The following is a list of common JNDI properties that can be set:
					
	
								java.naming.factory.initial
							
	
								java.naming.provider.url
							
	
								java.naming.factory.object
							
	
								java.naming.factory.state
							
	
								java.naming.factory.url.pkgs
							
	
								java.naming.dns.url
							
	
								java.naming.authoritative
							
	
								java.naming.batchsize
							
	
								java.naming.referral
							
	
								java.naming.security.protocol
							
	
								java.naming.security.authentication
							
	
								java.naming.security.principal
							
	
								java.naming.security.credentials
							
	
								java.naming.language
							
	
								java.naming.applet
							

						For more details on what information to use in these attributes, check your JNDI provider’s documentation and consult the Java API reference material.
					

Example

						Example 14.6, “JMS WSDL port specification” shows an example of a JMS WSDL port specification.
					
Example 14.6. JMS WSDL port specification
<service name="JMSService">
 <port binding="tns:Greeter_SOAPBinding" name="SoapPort">
 <jms:address jndiConnectionFactoryName="ConnectionFactory"
 jndiDestinationName="dynamicQueues/test.Celtix.jmstransport" >
 <jms:JMSNamingProperty name="java.naming.factory.initial"
 value="org.activemq.jndi.ActiveMQInitialContextFactory" />
 <jms:JMSNamingProperty name="java.naming.provider.url"
 value="tcp://localhost:61616" />
 </jms:address>
 </port>
</service>

JMS client configuration

Overview

						JMS consumer endpoints specify the type of messages they use. JMS consumer endpoint can use either a JMS ByteMessage or a JMS TextMessage.
					

						When using an ByteMessage the consumer endpoint uses a byte[] as the method for storing data into and retrieving data from the JMS message body. When messages are sent, the message data, including any formating information, is packaged into a byte[] and placed into the message body before it is placed on the wire. When messages are received, the consumer endpoint will attempt to unmarshall the data stored in the message body as if it were packed in a byte[].
					

						When using a TextMessage, the consumer endpoint uses a string as the method for storing and retrieving data from the message body. When messages are sent, the message information, including any format-specific information, is converted into a string and placed into the JMS message body. When messages are received the consumer endpoint will attempt to unmarshall the data stored in the JMS message body as if it were packed into a string.
					

						When native JMS applications interact with Apache CXF consumers, the JMS application is responsible for interpreting the message and the formatting information. For example, if the Apache CXF contract specifies that the binding used for a JMS endpoint is SOAP, and the messages are packaged as TextMessage, the receiving JMS application will get a text message containing all of the SOAP envelope information.
					

Specifying the message type

						 The type of messages accepted by a JMS consumer endpoint is configured using the optional jms:client element. The jms:client element is a child of the WSDL port element and has one attribute:
					
Table 14.3. JMS Client WSDL Extensions
	
										 messageType
									

									
	
										Specifies how the message data will be packaged as a JMS message. text specifies that the data will be packaged as a TextMessage. binary specifies that the data will be packaged as an ByteMessage.
									

									

Example

						Example 14.7, “WSDL for a JMS consumer endpoint” shows the WSDL for configuring a JMS consumer endpoint.
					
Example 14.7. WSDL for a JMS consumer endpoint
<service name="JMSService">
 <port binding="tns:Greeter_SOAPBinding" name="SoapPort">
 <jms:address jndiConnectionFactoryName="ConnectionFactory"
 jndiDestinationName="dynamicQueues/test.Celtix.jmstransport" >
 <jms:JMSNamingProperty name="java.naming.factory.initial"
 value="org.activemq.jndi.ActiveMQInitialContextFactory" />
 <jms:JMSNamingProperty name="java.naming.provider.url"
 value="tcp://localhost:61616" />
 </jms:address>
 <jms:client messageType="binary" />
 </port>
</service>

JMS provider configuration

Overview

						JMS provider endpoints have a number of behaviors that are configurable. These include:
					
	
								how messages are correlated
							
	
								the use of durable subscriptions
							
	
								if the service uses local JMS transactions
							
	
								the message selectors used by the endpoint
							

Specifying the configuration

						 Provider endpoint behaviors are configured using the optional jms:server element. The jms:server element is a child of the WSDL wsdl:port element and has the following attributes:
					
Table 14.4. JMS provider endpoint WSDL extensions
	Attribute	Description
	
										 useMessageIDAsCorrealationID
									

									 	
										Specifies whether JMS will use the message ID to correlate messages. The default is false.
									

									
	
										 durableSubscriberName
									

									 	
										Specifies the name used to register a durable subscription.
									

									
	
										 messageSelector
									

									 	
										Specifies the string value of a message selector to use. For more information on the syntax used to specify message selectors, see the JMS 1.1 specification.
									

									
	
										 transactional
									

									 	
										Specifies whether the local JMS broker will create transactions around message processing. The default is false. [a]
									

									
	[a]
											Currently, setting the transactional attribute to true is not supported by the runtime.
										

Example

						Example 14.8, “WSDL for a JMS provider endpoint” shows the WSDL for configuring a JMS provider endpoint.
					
Example 14.8. WSDL for a JMS provider endpoint
<service name="JMSService">
 <port binding="tns:Greeter_SOAPBinding" name="SoapPort">
 <jms:address jndiConnectionFactoryName="ConnectionFactory"
 jndiDestinationName="dynamicQueues/test.Celtix.jmstransport" >
 <jms:JMSNamingProperty name="java.naming.factory.initial"
 value="org.activemq.jndi.ActiveMQInitialContextFactory" />
 <jms:JMSNamingProperty name="java.naming.provider.url"
 value="tcp://localhost:61616" />
 </jms:address>
 <jms:server messageSelector="cxf_message_selector"
 useMessageIDAsCorrelationID="true"
 transactional="true"
 durableSubscriberName="cxf_subscriber" />
 </port>
</service>

Using a Named Reply Destination

					
				
Overview

					By default, Apache CXF endpoints using JMS create a temporary queue for sending replies back and forth. If you prefer to use named queues, you can configure the queue used to send replies as part of an endpoint’s JMS configuration.
				

Setting the reply destination name

					You specify the reply destination using either the jmsReplyDestinationName attribute or the jndiReplyDestinationName attribute in the endpoint’s JMS configuration. A client endpoint will listen for replies on the specified destination and it will specify the value of the attribute in the ReplyTo field of all outgoing requests. A service endpoint will use the value of the jndiReplyDestinationName attribute as the location for placing replies if there is no destination specified in the request’s ReplyTo field.
				

Example

					Example 14.9, “JMS Consumer Specification Using a Named Reply Queue” shows the configuration for a JMS client endpoint.
				
Example 14.9. JMS Consumer Specification Using a Named Reply Queue
<jms:conduit name="{http://cxf.apache.org/jms_endpt}HelloWorldJMSPort.jms-conduit">
 <jms:address destinationStyle="queue"
 jndiConnectionFactoryName="myConnectionFactory"
 jndiDestinationName="myDestination"
 jndiReplyDestinationName="myReplyDestination" >
 <jms:JMSNamingProperty name="java.naming.factory.initial"
 value="org.apache.cxf.transport.jms.MyInitialContextFactory" />
 <jms:JMSNamingProperty name="java.naming.provider.url"
 value="tcp://localhost:61616" />
 </jms:address>
 </jms:conduit>

Chapter 15. Integrating with Apache ActiveMQ

Overview

				If you are using Apache ActiveMQ as your JMS provider, the JNDI name of your destinations can be specified in a special format that dynamically creates JNDI bindings for queues or topics. This means that it is not necessary to configure the JMS provider in advance with the JNDI bindings for your queues or topics.
			

The initial context factory

				The key to integrating Apache ActiveMQ with JNDI is the ActiveMQInitialContextFactory class. This class is used to create a JNDI InitialContext instance, which you can then use to access JMS destinations in the JMS broker.
			

				Example 15.1, “SOAP/JMS WSDL to connect to Apache ActiveMQ” shows SOAP/JMS WSDL extensions to create a JNDI InitialContext that is integrated with Apache ActiveMQ.
			
Example 15.1. SOAP/JMS WSDL to connect to Apache ActiveMQ
<soapjms:jndiInitialContextFactory>
 org.apache.activemq.jndi.ActiveMQInitialContextFactory
</soapjms:jndiInitialContextFactory>
<soapjms:jndiURL>tcp://localhost:61616</soapjms:jndiURL>

				In Example 15.1, “SOAP/JMS WSDL to connect to Apache ActiveMQ”, the Apache ActiveMQ client connects to the broker port located at tcp://localhost:61616.
			

Looking up the connection factory

				As well as creating a JNDI InitialContext instance, you must specify the JNDI name that is bound to a javax.jms.ConnectionFactory instance. In the case of Apache ActiveMQ, there is a predefined binding in the InitialContext instance, which maps the JNDI name ConnectionFactory to an ActiveMQConnectionFactory instance. Example 15.2, “SOAP/JMS WSDL for specifying the Apache ActiveMQ connection factory” shaows the SOAP/JMS extension element for specifying the Apache ActiveMQ connection factory.
			
Example 15.2. SOAP/JMS WSDL for specifying the Apache ActiveMQ connection factory
<soapjms:jndiConnectionFactoryName>
 ConnectionFactory
</soapjms:jndiConnectionFactoryName>

Syntax for dynamic destinations

				To access queues or topics dynamically, specify the destination’s JNDI name as a JNDI composite name in either of the following formats:
			
dynamicQueues/QueueName
dynamicTopics/TopicName

				QueueName and TopicName are the names that the Apache ActiveMQ broker uses. They are not abstract JNDI names.
			

				Example 15.3, “WSDL port specification with a dynamically created queue” shows a WSDL port that uses a dynamically created queue.
			
Example 15.3. WSDL port specification with a dynamically created queue
<service name="JMSService">
 <port binding="tns:GreeterBinding" name="JMSPort">
 <jms:address jndiConnectionFactoryName="ConnectionFactory"
 jndiDestinationName="dynamicQueues/greeter.request.queue" >
 <jms:JMSNamingProperty name="java.naming.factory.initial"
 value="org.activemq.jndi.ActiveMQInitialContextFactory" />
 <jms:JMSNamingProperty name="java.naming.provider.url"
 value="tcp://localhost:61616" />
 </jms:address>
 </port>
</service>

				When the application attempts to open the JMS connection, Apache ActiveMQ will check to see if a queue with the JNDI name greeter.request.queue exists. If it does not exist, it will create a new queue and bind it to the JNDI name greeter.request.queue.
			

Chapter 16. Conduits

Abstract

					Conduits are a low-level piece of the transport architecture that are used to implement outbound connections. Their behavior and life-cycle can effect system performance and processing load.
				

Overview

				Conduits manage the client-side, or outbound, transport details in the Apache CXF runtime. They are responsible for opening ports, establishing outbound connections, sending messages, and listening for any responses between an application and a single external endpoint. If an application connects to multiple endpoints, it will have one conduit instance for each endpoint.
			

				Each transport type implements its own conduit using the Conduit interface. This allows for a standardized interface between the application level functionality and the transports.
			

				In general, you only need to worry about the conduits being used by your application when configuring the client-side transport details. The underlying semantics of how the runtime handles conduits is, generally, not something a developer needs to worry about.
			

				However, there are cases when an understanding of conduit’s can prove helpful:
			
	
						Implementing a custom transport
					
	
						Advanced application tuning to manage limited resources
					

Conduit life-cycle

				Conduits are managed by the client implementation object. Once created, a conduit lives for the duration of the client implementation object. The conduit’s life-cycle is:
			
	
						When the client implementation object is created, it is given a reference to a ConduitSelector object.
					
	
						When the client needs to send a message is request’s a reference to a conduit from the conduit selector.
					

						If the message is for a new endpoint, the conduit selector creates a new conduit and passes it to the client implementation. Otherwise, it passes the client a reference to the conduit for the target endpoint.
					

	
						The conduit sends messages when needed.
					
	
						When the client implementation object is destroyed, all of the conduits associated with it are destroyed.
					

Conduit weight

				The weight of a conduit object depends on the transport implementation. HTTP conduits are extremely light weight. JMS conduits are heavy because they are associated with the JMS Session object and one or more JMSListenerContainer objects.
			

Part IV. Configuring Web Service Endpoints

				This guide describes how to create Apache CXF endpoints in Red Hat Fuse.
			

Chapter 17. Configuring JAX-WS Endpoints

Abstract

					JAX-WS endpoints are configured using one of three Spring configuration elements. The correct element depends on what type of endpoint you are configuring and which features you wish to use. For consumers you use the jaxws:client element. For service providers you can use either the jaxws:endpoint element or the jaxws:server element.
				

					The information used to define an endpoint is typically defined in the endpoint’s contract. You can use the configuration element’s to override the information in the contract. You can also use the configuration elements to provide information that is not provided in the contract.
				

					You must use the configuration elements to activate advanced features such as WS-RM. This is done by providing child elements to the endpoint’s configuration element. Note that when dealing with endpoints developed using a Java-first approach it is likely that the SEI serving as the endpoint’s contract is lacking information about the type of binding and transport to use.
				

Configuring Service Providers

Elements for Configuring Service Providers

						Apache CXF has two elements that can be used to configure a service provider:
					
	
								the section called “Using the jaxws:endpoint Element”
							
	
								the section called “Using the jaxws:server Element”
							

						The differences between the two elements are largely internal to the runtime. The jaxws:endpoint element injects properties into the org.apache.cxf.jaxws.EndpointImpl object created to support a service endpoint. The jaxws:server element injects properties into the org.apache.cxf.jaxws.support.JaxWsServerFactoryBean object created to support the endpoint. The EndpointImpl object passes the configuration data to the JaxWsServerFactoryBean object. The JaxWsServerFactoryBean object is used to create the actual service object. Because either configuration element will configure a service endpoint, you can choose based on the syntax you prefer.
					

Using the jaxws:endpoint Element

Overview

						The jaxws:endpoint element is the default element for configuring JAX-WS service providers. Its attributes and children specify all of the information needed to instantiate a service provider. Many of the attributes map to information in the service’s contract. The children are used to configure interceptors and other advanced features.
					

Identifying the endpoint being configured

						For the runtime to apply the configuration to the proper service provider, it must be able to identify it. The basic means for identifying a service provider is to specify the class that implements the endpoint. This is done using the jaxws:endpoint element’s implementor attribute.
					

						For instances where different endpoint’s share a common implementation, it is possible to provide different configuration for each endpoint. There are two approaches for distinguishing a specific endpoint in configuration:
					
	
								a combination of the serviceName attribute and the endpointName attribute
							

								The serviceName attribute specifies the wsdl:service element defining the service’s endpoint. The endpointName attribute specifies the specific wsdl:port element defining the service’s endpoint. Both attributes are specified as QNames using the format ns:name. ns is the namespace of the element and name is the value of the element’s name attribute.
							
Note

									If the wsdl:service element only has one wsdl:port element, the endpointName attribute can be omitted.
								

	
								the name attribute
							

								The name attribute specifies the QName of the specific wsdl:port element defining the service’s endpoint. The QName is provided in the format {ns}localPart. ns is the namespace of the wsdl:port element and localPart is the value of the wsdl:port element’s name attribute.
							

Attributes

						The attributes of the jaxws:endpoint element configure the basic properties of the endpoint. These properties include the address of the endpoint, the class that implements the endpoint, and the bus that hosts the endpoint.
					

						Table 17.1, “Attributes for Configuring a JAX-WS Service Provider Using the jaxws:endpoint Element” describes the attribute of the jaxws:endpoint element.
					
Table 17.1. Attributes for Configuring a JAX-WS Service Provider Using the jaxws:endpoint Element
	Attribute	Description
	
										 id
									

									 	
										Specifies a unique identifier that other configuration elements can use to refer to the endpoint.
									

									
	
										 implementor
									

									 	
										Specifies the class implementing the service. You can specify the implementation class using either the class name or an ID reference to a Spring bean configuring the implementation class. This class must be on the classpath.
									

									
	
										 implementorClass
									

									 	
										Specifies the class implementing the service. This attribute is useful when the value provided to the implementor attribute is a reference to a bean that is wrapped using Spring AOP.
									

									
	
										 address
									

									 	
										Specifies the address of an HTTP endpoint. This value overrides the value specified in the services contract.
									

									
	
										 wsdlLocation
									

									 	
										Specifies the location of the endpoint’s WSDL contract. The WSDL contract’s location is relative to the folder from which the service is deployed.
									

									
	
										 endpointName
									

									 	
										Specifies the value of the service’s wsdl:port element’s name attribute. It is specified as a QName using the format ns:name where ns is the namespace of the wsdl:port element.
									

									
	
										 serviceName
									

									 	
										Specifies the value of the service’s wsdl:service element’s name attribute. It is specified as a QName using the format ns:name where ns is the namespace of the wsdl:service element.
									

									
	
										 publish
									

									 	
										Specifies if the service should be automatically published. If this is set to false, the developer must explicitly publish the endpointas described in Chapter 31, Publishing a Service.
									

									
	
										 bus
									

									 	
										Specifies the ID of the Spring bean configuring the bus used to manage the service endpoint. This is useful when configuring several endpoints to use a common set of features.
									

									
	
										 bindingUri
									

									 	
										Specifies the ID of the message binding the service uses. A list of valid binding IDs is provided in Chapter 23, Apache CXF Binding IDs.
									

									
	
										 name
									

									 	
										Specifies the stringified QName of the service’s wsdl:port element. It is specified as a QName using the format {ns}localPart. ns is the namespace of the wsdl:port element and localPart is the value of the wsdl:port element’s name attribute.
									

									
	
										 abstract
									

									 	
										Specifies if the bean is an abstract bean. Abstract beans act as parents for concrete bean definitions and are not instantiated. The default is false. Setting this to true instructs the bean factory not to instantiate the bean.
									

									
	
										 depends-on
									

									 	
										Specifies a list of beans that the endpoint depends on being instantiated before it can be instantiated.
									

									
	
										 createdFromAPI
									

									 	
										Specifies that the user created that bean using Apache CXF APIs, such as Endpoint.publish() or Service.getPort().
									

									
										The default is false.
									

									
										Setting this to true does the following:
									

									 	
												Changes the internal name of the bean by appending .jaxws-endpoint to its id
											
	
												Makes the bean abstract
											

									
	
										 publishedEndpointUrl
									

									 	
										The URL that is placed in the address element of the generated WSDL. If this value is not specified, the value of the address attribute is used. This attribute is useful when the "public" URL is not be the same as the URL on which the service is deployed.
									

									

						In addition to the attributes listed in Table 17.1, “Attributes for Configuring a JAX-WS Service Provider Using the jaxws:endpoint Element”, you might need to use multiple xmlns:shortName attributes to declare the namespaces used by the endpointName and serviceName attributes.
					

Example

						Example 17.1, “Simple JAX-WS Endpoint Configuration” shows the configuration for a JAX-WS endpoint that specifies the address where the endpoint is published. The example assumes that you want to use the defaults for all other values or that the implementation has specified values in the annotations.
					
Example 17.1. Simple JAX-WS Endpoint Configuration
<beans ...
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 ...
 schemaLocation="...
 http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd
 ...">
 <jaxws:endpoint id="example"
 implementor="org.apache.cxf.example.DemoImpl"
 address="http://localhost:8080/demo" />
</beans>

						Example 17.2, “JAX-WS Endpoint Configuration with a Service Name” shows the configuration for a JAX-WS endpoint whose contract contains two service definitions. In this case, you must specify which service definition to instantiate using the serviceName attribute.
					
Example 17.2. JAX-WS Endpoint Configuration with a Service Name
<beans ...
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 ...
 schemaLocation="...
 http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd
 ...">

 <jaxws:endpoint id="example2"
 implementor="org.apache.cxf.example.DemoImpl"
 serviceName="samp:demoService2"
 xmlns:samp="http://org.apache.cxf/wsdl/example" />

</beans>

						The xmlns:samp attribute specifies the namespace in which the WSDL service element is defined.
					

Using the jaxws:server Element

Overview

						The jaxws:server element is an element for configuring JAX-WS service providers. It injects the configuration information into the org.apache.cxf.jaxws.support.JaxWsServerFactoryBean. This is a Apache CXF specific object. If you are using a pure Spring approach to building your services, you will not be forced to use Apache CXF specific APIs to interact with the service.
					

						The attributes and children of the jaxws:server element specify all of the information needed to instantiate a service provider. The attributes specify the information that is required to instantiate an endpoint. The children are used to configure interceptors and other advanced features.
					

Identifying the endpoint being configured

						In order for the runtime to apply the configuration to the proper service provider, it must be able to identify it. The basic means for identifying a service provider is to specify the class that implements the endpoint. This is done using the jaxws:server element’s serviceBean attribute.
					

						For instances where different endpoint’s share a common implementation, it is possible to provide different configuration for each endpoint. There are two approaches for distinguishing a specific endpoint in configuration:
					
	
								a combination of the serviceName attribute and the endpointName attribute
							

								The serviceName attribute specifies the wsdl:service element defining the service’s endpoint. The endpointName attribute specifies the specific wsdl:port element defining the service’s endpoint. Both attributes are specified as QNames using the format ns:name. ns is the namespace of the element and name is the value of the element’s name attribute.
							
Note

									If the wsdl:service element only has one wsdl:port element, the endpointName attribute can be omitted.
								

	
								the name attribute
							

								The name attribute specifies the QName of the specific wsdl:port element defining the service’s endpoint. The QName is provided in the format {ns}localPart. ns is the namespace of the wsdl:port element and localPart is the value of the wsdl:port element’s name attribute.
							

Attributes

						The attributes of the jaxws:server element configure the basic properties of the endpoint. These properties include the address of the endpoint, the class that implements the endpoint, and the bus that hosts the endpoint.
					

						Table 17.2, “Attributes for Configuring a JAX-WS Service Provider Using the jaxws:server Element” describes the attribute of the jaxws:server element.
					
Table 17.2. Attributes for Configuring a JAX-WS Service Provider Using the jaxws:server Element
	Attribute	Description
	
										 id
									

									 	
										Specifies a unique identifier that other configuration elements can use to refer to the endpoint.
									

									
	
										 serviceBean
									

									 	
										Specifies the class implementing the service. You can specify the implementation class using either the class name or an ID reference to a Spring bean configuring the implementation class. This class must be on the classpath.
									

									
	
										 serviceClass
									

									 	
										Specifies the class implementing the service. This attribute is useful when the value provided to the implementor attribute is a reference to a bean that is wrapped using Spring AOP.
									

									
	
										 address
									

									 	
										Specifies the address of an HTTP endpoint. This value will override the value specified in the services contract.
									

									
	
										 wsdlLocation
									

									 	
										Specifies the location of the endpoint’s WSDL contract. The WSDL contract’s location is relative to the folder from which the service is deployed.
									

									
	
										 endpointName
									

									 	
										Specifies the value of the service’s wsdl:port element’s name attribute. It is specified as a QName using the format ns:name, where ns is the namespace of the wsdl:port element.
									

									
	
										 serviceName
									

									 	
										Specifies the value of the service’s wsdl:service element’s name attribute. It is specified as a QName using the format ns:name, where ns is the namespace of the wsdl:service element.
									

									
	
										 publish
									

									 	
										Specifies if the service should be automatically published. If this is set to false, the developer must explicitly publish the endpointas described in Chapter 31, Publishing a Service.
									

									
	
										 bus
									

									 	
										Specifies the ID of the Spring bean configuring the bus used to manage the service endpoint. This is useful when configuring several endpoints to use a common set of features.
									

									
	
										 bindingId
									

									 	
										Specifies the ID of the message binding the service uses. A list of valid binding IDs is provided in Chapter 23, Apache CXF Binding IDs.
									

									
	
										 name
									

									 	
										Specifies the stringified QName of the service’s wsdl:port element. It is specified as a QName using the format {ns}localPart, where ns is the namespace of the wsdl:port element and localPart is the value of the wsdl:port element’s name attribute.
									

									
	
										 abstract
									

									 	
										Specifies if the bean is an abstract bean. Abstract beans act as parents for concrete bean definitions and are not instantiated. The default is false. Setting this to true instructs the bean factory not to instantiate the bean.
									

									
	
										 depends-on
									

									 	
										Specifies a list of beans that the endpoint depends on being instantiated before the endpoint can be instantiated.
									

									
	
										 createdFromAPI
									

									 	
										Specifies that the user created that bean using Apache CXF APIs, such as Endpoint.publish() or Service.getPort().
									

									
										The default is false.
									

									
										Setting this to true does the following:
									

									 	
												Changes the internal name of the bean by appending .jaxws-endpoint to its id
											
	
												Makes the bean abstract
											

									

						In addition to the attributes listed in Table 17.2, “Attributes for Configuring a JAX-WS Service Provider Using the jaxws:server Element”, you might need to use multiple xmlns:shortName attributes to declare the namespaces used by the endpointName and serviceName attributes.
					

Example

						Example 17.3, “Simple JAX-WS Server Configuration” shows the configuration for a JAX-WS endpoint that specifies the address where the endpoint is published.
					
Example 17.3. Simple JAX-WS Server Configuration
<beans ...
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 ...
 schemaLocation="...
 http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd
 ...">
 <jaxws:server id="exampleServer"
 serviceBean="org.apache.cxf.example.DemoImpl"
 address="http://localhost:8080/demo" />
</beans>

Adding Functionality to Service Providers

Overview

						The jaxws:endpoint and the jaxws:server elements provide the basic configuration information needed to instantiate a service provider. To add functionality to your service provider or to perform advanced configuration you must add child elements to the configuration.
					

						Child elements allow you to do the following:
					
	
								Chapter 19, Apache CXF Logging
							
	
								Chapter 59, Configuring Endpoints to Use Interceptors
							
	
								Chapter 20, Deploying WS-Addressing
							
	
								Chapter 21, Enabling Reliable Messaging
							
	
								the section called “Enable Schema Validation on a JAX-WS Endpoint”
							

Elements

						Table 17.3, “Elements Used to Configure JAX-WS Service Providers” describes the child elements that jaxws:endpoint supports.
					
Table 17.3. Elements Used to Configure JAX-WS Service Providers
	Element	Description
	
										 jaxws:handlers
									

									 	
										Specifies a list of JAX-WS Handler implementations for processing messages. For more information on JAX-WS Handler implementations see Chapter 43, Writing Handlers.
									

									
	
										 jaxws:inInterceptors
									

									 	
										Specifies a list of interceptors that process inbound requests. For more information see Part VII, “Developing Apache CXF Interceptors”.
									

									
	
										 jaxws:inFaultInterceptors
									

									 	
										Specifies a list of interceptors that process inbound fault messages. For more information see Part VII, “Developing Apache CXF Interceptors”.
									

									
	
										 jaxws:outInterceptors
									

									 	
										Specifies a list of interceptors that process outbound replies. For more information see Part VII, “Developing Apache CXF Interceptors”.
									

									
	
										 jaxws:outFaultInterceptors
									

									 	
										Specifies a list of interceptors that process outbound fault messages. For more information see Part VII, “Developing Apache CXF Interceptors”.
									

									
	
										 jaxws:binding
									

									 	
										Specifies a bean configuring the message binding used by the endpoint. Message bindings are configured using implementations of the org.apache.cxf.binding.BindingFactory interface.[a]
									

									
	
										 jaxws:dataBinding [b]
									

									 	
										Specifies the class implementing the data binding used by the endpoint. This is specified using an embedded bean definition.
									

									
	
										 jaxws:executor
									

									 	
										Specifies a Java executor that is used for the service. This is specified using an embedded bean definition.
									

									
	
										 jaxws:features
									

									 	
										Specifies a list of beans that configure advanced features of Apache CXF. You can provide either a list of bean references or a list of embedded beans.
									

									
	
										 jaxws:invoker
									

									 	
										Specifies an implementation of the org.apache.cxf.service.Invoker interface used by the service. [c]
									

									
	
										 jaxws:properties
									

									 	
										Specifies a Spring map of properties that are passed along to the endpoint. These properties can be used to control features like enabling MTOM support.
									

									
	
										 jaxws:serviceFactory
									

									 	
										Specifies a bean configuring the JaxWsServiceFactoryBean object used to instantiate the service.
									

									
	[a]
											The SOAP binding is configured using the soap:soapBinding bean.
										

[b]
											The jaxws:endpoint element does not support the jaxws:dataBinding element.
										

[c]
											The Invoker implementation controls how a service is invoked. For example, it controls whether each request is handled by a new instance of the service implementation or if state is preserved across invocations.
										

Enable Schema Validation on a JAX-WS Endpoint

Overview

						You can set the schema-validation-enabled property to enable schema validation on a jaxws:endpoint element or on a jaxws:server element. When schema validation is enabled, the messages sent between client and server are checked for conformity to the schema. By default, schema validation is turned off, because it has a significant impact on performance.
					

Example

						To enable schema validation on a JAX-WS endpoint, set the schema-validation-enabled property in the jaxws:properties child element of the jaxws:endpoint element or of the jaxws:server element. For example, to enable schema validation on a jaxws:endpoint element:
					
<jaxws:endpoint name="{http://apache.org/hello_world_soap_http}SoapPort"
 wsdlLocation="wsdl/hello_world.wsdl"
 createdFromAPI="true">
 <jaxws:properties>
 <entry key="schema-validation-enabled" value="BOTH" />
 </jaxws:properties>
</jaxws:endpoint>

						For the list of allowed values of the schema-validation-enabled property, see the section called “Schema Validation Type Values”.
					

Configuring Consumer Endpoints

Overview

					JAX-WS consumer endpoints are configured using the jaxws:client element. The element’s attributes provide the basic information necessary to create a consumer.
				

					To add other functionality, like WS-RM, to the consumer you add children to the jaxws:client element. Child elements are also used to configure the endpoint’s logging behavior and to inject other properties into the endpoint’s implementation.
				

Basic Configuration Properties

					The attributes described in Table 17.4, “Attributes Used to Configure a JAX-WS Consumer” provide the basic information necessary to configure a JAX-WS consumer. You only need to provide values for the specific properties you want to configure. Most of the properties have sensible defaults, or they rely on information provided by the endpoint’s contract.
				
Table 17.4. Attributes Used to Configure a JAX-WS Consumer
	Attribute	Description
	
									 address
								

								 	
									Specifies the HTTP address of the endpoint where the consumer will make requests. This value overrides the value set in the contract.
								

								
	
									 bindingId
								

								 	
									Specifies the ID of the message binding the consumer uses. A list of valid binding IDs is provided in Chapter 23, Apache CXF Binding IDs.
								

								
	
									 bus
								

								 	
									Specifies the ID of the Spring bean configuring the bus managing the endpoint.
								

								
	
									 endpointName
								

								 	
									Specifies the value of the wsdl:port element’s name attribute for the service on which the consumer is making requests. It is specified as a QName using the format ns:name, where ns is the namespace of the wsdl:port element.
								

								
	
									 serviceName
								

								 	
									Specifies the value of the wsdl:service element’s name attribute for the service on which the consumer is making requests. It is specified as a QName using the format ns:name where ns is the namespace of the wsdl:service element.
								

								
	
									 username
								

								 	
									Specifies the username used for simple username/password authentication.
								

								
	
									 password
								

								 	
									Specifies the password used for simple username/password authentication.
								

								
	
									 serviceClass
								

								 	
									Specifies the name of the service endpoint interface(SEI).
								

								
	
									 wsdlLocation
								

								 	
									Specifies the location of the endpoint’s WSDL contract. The WSDL contract’s location is relative to the folder from which the client is deployed.
								

								
	
									 name
								

								 	
									Specifies the stringified QName of the wsdl:port element for the service on which the consumer is making requests. It is specified as a QName using the format {ns}localPart, where ns is the namespace of the wsdl:port element and localPart is the value of the wsdl:port element’s name attribute.
								

								
	
									 abstract
								

								 	
									Specifies if the bean is an abstract bean. Abstract beans act as parents for concrete bean definitions and are not instantiated. The default is false. Setting this to true instructs the bean factory not to instantiate the bean.
								

								
	
									 depends-on
								

								 	
									Specifies a list of beans that the endpoint depends on being instantiated before it can be instantiated.
								

								
	
									 createdFromAPI
								

								 	
									Specifies that the user created that bean using Apache CXF APIs like Service.getPort().
								

								
									The default is false.
								

								
									Setting this to true does the following:
								

								 	
											Changes the internal name of the bean by appending .jaxws-client to its id
										
	
											Makes the bean abstract
										

								

					In addition to the attributes listed in Table 17.4, “Attributes Used to Configure a JAX-WS Consumer”, it might be necessary to use multiple xmlns:shortName attributes to declare the namespaces used by the endpointName and the serviceName attributes.
				

Adding functionality

					To add functionality to your consumer or to perform advanced configuration, you must add child elements to the configuration.
				

					Child elements allow you to do the following:
				
	
							Chapter 19, Apache CXF Logging
						
	
							Chapter 59, Configuring Endpoints to Use Interceptors
						
	
							Chapter 20, Deploying WS-Addressing
						
	
							Chapter 21, Enabling Reliable Messaging
						
	
							the section called “Enable schema validation on a JAX-WS consumer”
						

					Table 17.5, “Elements For Configuring a Consumer Endpoint” describes the child element’s you can use to configure a JAX-WS consumer.
				
Table 17.5. Elements For Configuring a Consumer Endpoint
	Element	Description
	
									 jaxws:binding
								

								 	
									Specifies a bean configuring the message binding used by the endpoint. Message bindings are configured using implementations of the org.apache.cxf.binding.BindingFactory interface.[a]
								

								
	
									 jaxws:dataBinding
								

								 	
									Specifies the class implementing the data binding used by the endpoint. You specify this using an embedded bean definition. The class implementing the JAXB data binding is org.apache.cxf.jaxb.JAXBDataBinding.
								

								
	
									 jaxws:features
								

								 	
									Specifies a list of beans that configure advanced features of Apache CXF. You can provide either a list of bean references or a list of embedded beans.
								

								
	
									 jaxws:handlers
								

								 	
									Specifies a list of JAX-WS Handler implementations for processing messages. For more information in JAX-WS Handler implementations see Chapter 43, Writing Handlers.
								

								
	
									 jaxws:inInterceptors
								

								 	
									Specifies a list of interceptors that process inbound responses. For more information see Part VII, “Developing Apache CXF Interceptors”.
								

								
	
									 jaxws:inFaultInterceptors
								

								 	
									Specifies a list of interceptors that process inbound fault messages. For more information see Part VII, “Developing Apache CXF Interceptors”.
								

								
	
									 jaxws:outInterceptors
								

								 	
									Specifies a list of interceptors that process outbound requests. For more information see Part VII, “Developing Apache CXF Interceptors”.
								

								
	
									 jaxws:outFaultInterceptors
								

								 	
									Specifies a list of interceptors that process outbound fault messages. For more information see Part VII, “Developing Apache CXF Interceptors”.
								

								
	
									 jaxws:properties
								

								 	
									Specifies a map of properties that are passed to the endpoint.
								

								
	
									 jaxws:conduitSelector
								

								 	
									Specifies an org.apache.cxf.endpoint.ConduitSelector implementation for the client to use. A ConduitSelector implementation will override the default process used to select the Conduit object that is used to process outbound requests.
								

								
	[a]
										The SOAP binding is configured using the soap:soapBinding bean.
									

Example

					Example 17.4, “Simple Consumer Configuration” shows a simple consumer configuration.
				
Example 17.4. Simple Consumer Configuration
<beans ...
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 ...
 schemaLocation="...
 http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd
 ...">
 <jaxws:client id="bookClient"
 serviceClass="org.apache.cxf.demo.BookClientImpl"
 address="http://localhost:8080/books"/>
 ...
</beans>

Enable schema validation on a JAX-WS consumer

					To enable schema validation on a JAX-WS consumer, set the schema-validation-enabled property in the jaxws:properties child element of the jaxws:client element—for example:
				
<jaxws:client name="{http://apache.org/hello_world_soap_http}SoapPort"
 createdFromAPI="true">
 <jaxws:properties>
 <entry key="schema-validation-enabled" value="BOTH" />
 </jaxws:properties>
</jaxws:client>

					For the list of allowed values of the schema-validation-enabled property, see the section called “Schema Validation Type Values”.
				

Chapter 18. Configuring JAX-RS Endpoints

Abstract

					This chapter explains how to instantiate and configure JAX-RS server endpoints in Blueprint XML and in Spring XML, and also how to instantiate and configure JAX-RS client endpoints (client proxy beans) in XML
				

Configuring JAX-RS Server Endpoints

Defining a JAX-RS Server Endpoint

Basic server endpoint definition

						To define a JAX-RS server endpoint in XML, you need to specify at least the following:
					
	
								A jaxrs:server element, which is used to define the endpoint in XML. Note that the jaxrs: namespace prefix maps to different namespaces in Blueprint and in Spring respectively.
							
	
								The base URL of the JAX-RS service, using the address attribute of the jaxrs:server element. Note that there are two different ways of specifying the address URL, which affects how the endpoint gets deployed:
							
	
										As a relative URL—for example, /customers. In this case, the endpoint is deployed into the default HTTP container, and the endpoint’s base URL is implicitly obtained by combining the CXF servlet base URL with the specified relative URL.
									

										For example, if you deploy a JAX-RS endpoint to the Fuse container, the specified /customers URL would get resolved to the URL, http://Hostname:8181/cxf/customers (assuming that the container is using the default 8181 port).
									

	
										As an absolute URL — for example, http://0.0.0.0:8200/cxf/customers. In this case, a new HTTP listener port is opened for the JAX-RS endpoint (if it is not already open). For example, in the context of Fuse, a new Undertow container would implicitly be created to host the JAX-RS endpoint. The special IP address, 0.0.0.0, acts as a wildcard, matching any of the hostnames assigned to the current host (which can be useful on multi-homed host machines).
									

	
								One or more JAX-RS root resource classes, which provide the implementation of the JAX-RS service. The simplest way to specify the resource classes is to list them inside a jaxrs:serviceBeans element.
							

Blueprint example

						The following Blueprint XML example shows how to define a JAX-RS endpoint, which specifies the relative address, /customers (so that it deploys into the default HTTP container) and is implemented by the service.CustomerService resource class:
					
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jaxrs="http://cxf.apache.org/blueprint/jaxrs"
 xmlns:cxf="http://cxf.apache.org/blueprint/core"
 xsi:schemaLocation="
http://www.osgi.org/xmlns/blueprint/v1.0.0 https://www.osgi.org/xmlns/blueprint/v1.0.0/blueprint.xsd
http://cxf.apache.org/blueprint/jaxrs http://cxf.apache.org/schemas/blueprint/jaxrs.xsd
http://cxf.apache.org/blueprint/core http://cxf.apache.org/schemas/blueprint/core.xsd
">

 <cxf:bus>
 <cxf:features>
 <cxf:logging/>
 </cxf:features>
 </cxf:bus>

 <jaxrs:server id="customerService" address="/customers">
 <jaxrs:serviceBeans>
 <ref component-id="serviceBean" />
 </jaxrs:serviceBeans>
 </jaxrs:server>

 <bean id="serviceBean" class="service.CustomerService"/>
</blueprint>

Blueprint XML namespaces

						To define a JAX-RS endpoint in Blueprint, you typically require at least the following XML namespaces:
					
	Prefix	Namespace
	
										(default)
									

									 	
										http://www.osgi.org/xmlns/blueprint/v1.0.0
									

									
	
										cxf
									

									 	
										http://cxf.apache.org/blueprint/core
									

									
	
										jaxrs
									

									 	
										http://cxf.apache.org/blueprint/jaxrs
									

									

Spring example

						The following Spring XML example shows how to define a JAX-RS endpoint, which specifies the relative address, /customers (so that it deploys into the default HTTP container) and is implemented by the service.CustomerService resource class:
					
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jaxrs="http://cxf.apache.org/jaxrs"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
 http://cxf.apache.org/jaxrs http://cxf.apache.org/schemas/jaxrs.xsd">

 <jaxrs:server id="customerService" address="/customers">
 <jaxrs:serviceBeans>
 <ref bean="serviceBean"/>
 </jaxrs:serviceBeans>
 </jaxrs:server>

 <bean id="serviceBean" class="service.CustomerService"/>
</beans>

Spring XML namespaces

						To define a JAX-RS endpoint in Spring, you typically require at least the following XML namespaces:
					
	Prefix	Namespace
	
										(default)
									

									 	
										http://www.springframework.org/schema/beans
									

									
	
										cxf
									

									 	
										http://cxf.apache.org/core
									

									
	
										jaxrs
									

									 	
										http://cxf.apache.org/jaxrs
									

									

Auto-discovery in Spring XML

						(Spring only) Instead of specifying the JAX-RS root resource classes explicitly, Spring XML enables you to configure auto-discovery, so that specific Java packages are searched for resource classes (classes annotated by @Path) and all of the discovered resource classes are automatically attached to the endpoint. In this case, you need to specify just the address attribute and the basePackages attribute in the jaxrs:server element.
					

						For example, to define a JAX-RS endpoint which uses all of the JAX-RS resource classes under the a.b.c Java package, you can define the endpoint in Spring XML, as follows:
					
<jaxrs:server address="/customers" basePackages="a.b.c"/>

						The auto-discovery mechanism also discovers and installs into the endpoint any JAX-RS provider classes that it finds under the specified Java packages.
					

Lifecycle management in Spring XML

						(Spring only) Spring XML enables you to control the lifecycle of beans by setting the scope attribute on a bean element. The following scope values are supported by Spring:
					
	singleton
	
									(Default) Creates a single bean instance, which is used everywhere and lasts for the entire lifetime of the Spring container.
								
	prototype
	
									Creates a new bean instance every time the bean is injected into another bean or when a bean is obtained by invoking getBean() on the bean registry.
								
	request
	
									(Only available in a Web-aware container) Creates a new bean instance for every request invoked on the bean.
								
	session
	
									(Only available in a Web-aware container) Creates a new bean for the lifetime of a single HTTP session.
								
	globalSession
	
									(Only available in a Web-aware container) Creates a new bean for the lifetime of a single HTTP session that is shared between portlets.
								

						For more details about Spring scopes, please consult the Spring framework documentation on Bean scopes.
					

						Note that Spring scopes do not work properly, if you specify JAX-RS resource beans through the jaxrs:serviceBeans element. If you specify the scope attribute on the resource beans in this case, the scope attribute is effectively ignored.
					

						In order to make bean scopes work properly within a JAX-RS server endpoint, you require a level of indirection that is provided by a service factory. The simplest way to configure bean scopes is to specify resource beans using the beanNames attribute on the jaxrs:server element, as follows:
					
<beans ... >
 <jaxrs:server id="customerService" address="/service1"
 beanNames="customerBean1 customerBean2"/>

 <bean id="customerBean1" class="demo.jaxrs.server.CustomerRootResource1" scope="prototype"/>
 <bean id="customerBean2" class="demo.jaxrs.server.CustomerRootResource2" scope="prototype"/>
</beans>

						Where the preceding example configures two resource beans, customerBean1 and customerBean2. The beanNames attribute is specified as a space-separated list of resource bean IDs.
					

						For the ultimate degree of flexibility, you have the option of defining service factory objects explicitly, when you configure the JAX-RS server endpoint, using the jaxrs:serviceFactories element. This more verbose approach has the advantage that you can replace the default service factory implementation with your custom implementation, thus giving you ultimate control over the bean lifecycle. The following example shows how to configure the two resource beans, customerBean1 and customerBean2, using this approach:
					
<beans ... >
 <jaxrs:server id="customerService" address="/service1">
 <jaxrs:serviceFactories>
 <ref bean="sfactory1" />
 <ref bean="sfactory2" />
 </jaxrs:serviceFactories>
 </jaxrs:server>

 <bean id="sfactory1" class="org.apache.cxf.jaxrs.spring.SpringResourceFactory">
 <property name="beanId" value="customerBean1"/>
 </bean>
 <bean id="sfactory2" class="org.apache.cxf.jaxrs.spring.SpringResourceFactory">
 <property name="beanId" value="customerBean2"/>
 </bean>

 <bean id="customerBean1" class="demo.jaxrs.server.CustomerRootResource1" scope="prototype"/>
 <bean id="customerBean2" class="demo.jaxrs.server.CustomerRootResource2" scope="prototype"/>
</beans>
Note

							If you specify a non-singleton lifecycle, it is often a good idea to implement and register a org.apache.cxf.service.Invoker bean (where the instance can be registered by referencing it from a jaxrs:server/jaxrs:invoker element).
						

Attaching a WADL document

						You can optionally associate a WADL document with the JAX-RS server endpoint using the docLocation attribute on the jaxrs:server element. For example:
					
<jaxrs:server address="/rest" docLocation="wadl/bookStore.wadl">
 <jaxrs:serviceBeans>
 <bean class="org.bar.generated.BookStore"/>
 </jaxrs:serviceBeans>
</jaxrs:server>

Schema validation

						If you have some external XML schemas, for describing message content in JAX-B format, you can associate these external schemas with the JAX-RS server endpoint through the jaxrs:schemaLocations element.
					

						For example, if you have associated the server endpoint with a WADL document and you also want to enable schema validation on incoming messages, you can specify associated XML schema files as follows:
					
<jaxrs:server address="/rest"
 docLocation="wadl/bookStore.wadl">
 <jaxrs:serviceBeans>
 <bean class="org.bar.generated.BookStore"/>
 </jaxrs:serviceBeans>
 <jaxrs:schemaLocations>
 <jaxrs:schemaLocation>classpath:/schemas/a.xsd</jaxrs:schemaLocation>
 <jaxrs:schemaLocation>classpath:/schemas/b.xsd</jaxrs:schemaLocation>
 </jaxrs:schemaLocations>
</jaxrs:server>

						Alternatively, if you want to include all of the schema files, *.xsd, in a given directory, you can just specify the directory name, as follows:
					
<jaxrs:server address="/rest"
 docLocation="wadl/bookStore.wadl">
 <jaxrs:serviceBeans>
 <bean class="org.bar.generated.BookStore"/>
 </jaxrs:serviceBeans>
 <jaxrs:schemaLocations>
 <jaxrs:schemaLocation>classpath:/schemas/</jaxrs:schemaLocation>
 </jaxrs:schemaLocations>
</jaxrs:server>

						Specifying schemas in this way is generally useful for any kind of functionality that requires access to the JAX-B schemas.
					

Specifying the data binding

						You can use the jaxrs:dataBinding element to specify the data binding that encodes the message body in request and reply messages. For example, to specify the JAX-B data binding, you could configure a JAX-RS endpoint as follows:
					
<jaxrs:server id="jaxbbook" address="/jaxb">
 <jaxrs:serviceBeans>
 <ref bean="serviceBean" />
 </jaxrs:serviceBeans>
 <jaxrs:dataBinding>
 <bean class="org.apache.cxf.jaxb.JAXBDataBinding"/>
 </jaxrs:dataBinding>
</jaxrs:server>>

						Or to specify the Aegis data binding, you could configure a JAX-RS endpoint as follows:
					
<jaxrs:server id="aegisbook" address="/aegis">
 <jaxrs:serviceBeans>
 <ref bean="serviceBean" />
 </jaxrs:serviceBeans>
 <jaxrs:dataBinding>
 <bean class="org.apache.cxf.aegis.databinding.AegisDatabinding">
 <property name="aegisContext">
 <bean class="org.apache.cxf.aegis.AegisContext">
 <property name="writeXsiTypes" value="true"/>
 </bean>
 </property>
 </bean>
 </jaxrs:dataBinding>
</jaxrs:server>

Using the JMS transport

						It is possible to configure JAX-RS to use a JMS messaging library as a transport protocol, instead of HTTP. Because JMS itself is not a transport protocol, the actual messaging protocol depends on the particular JMS implementation that you configure.
					

						For example, the following Spring XML example shows how to configure a JAX-RS server endpoint to use the JMS transport protocol:
					
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jms="http://cxf.apache.org/transports/jms"
 xmlns:jaxrs="http://cxf.apache.org/jaxrs"
 xsi:schemaLocation="
http://cxf.apache.org/transports/jms http://cxf.apache.org/schemas/configuration/jms.xsd
http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd
http://cxf.apache.org/jaxrs http://cxf.apache.org/schemas/jaxrs.xsd">

 <bean class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer"/>
 <bean id="ConnectionFactory" class="org.apache.activemq.ActiveMQConnectionFactory">
 <property name="brokerURL" value="tcp://localhost:${testutil.ports.EmbeddedJMSBrokerLauncher}" />
 </bean>

 <jaxrs:server xmlns:s="http://books.com"
 	serviceName="s:BookService"
 	transportId= "http://cxf.apache.org/transports/jms"
 	address="jms:queue:test.jmstransport.text?replyToName=test.jmstransport.response">
 <jaxrs:serviceBeans>
 <bean class="org.apache.cxf.systest.jaxrs.JMSBookStore"/>
 </jaxrs:serviceBeans>
 </jaxrs:server>

</beans>

						Note the following points about the preceding example:
					
	
								JMS implementation—the JMS implementation is provided by the ConnectionFactory bean, which instantiates an Apache ActiveMQ connection factory object. After you instantiate the connection factory, it is automatically installed as the default JMS implementation layer.
							
	
								JMS conduit or destination object—Apache CXF implicitly instantiates a JMS conduit object (to represent a JMS consumer) or a JMS destination object (to represent a JMS provider). This object must be uniquely identified by a QName, which is defined through the attribute setttings xmlns:s="http://books.com" (defining the namespace prefix) and serviceName="s:BookService" (defining the QName).
							
	
								Transport ID—to select the JMS transport, the transportId attribute must be set to http://cxf.apache.org/transports/jms.
							
	
								JMS address—the jaxrs:server/@address attribute uses a standardized syntax to specify the JMS queue or JMS topic to send to. For details of this syntax, see https://tools.ietf.org/id/draft-merrick-jms-uri-06.txt.
							

Extension mappings and language mappings

						A JAX-RS server endpoint can be configured so that it automatically maps a file suffix (appearing in the URL) to a MIME content type header, and maps a language suffix to a language type header. For example, consider a HTTP request of the following form:
					
GET /resource.xml

						You can configure the JAX-RS server endpoint to map the .xml suffix automatically, as follows:
					
<jaxrs:server id="customerService" address="/">
 <jaxrs:serviceBeans>
 <bean class="org.apache.cxf.jaxrs.systests.CustomerService" />
 </jaxrs:serviceBeans>
 <jaxrs:extensionMappings>
 <entry key="json" value="application/json"/>
 <entry key="xml" value="application/xml"/>
 </jaxrs:extensionMappings>
</jaxrs:server>

						When the preceding server endpoint receives the HTTP request, it automatically creates a new content type header of type, application/xml, and strips the .xml suffix from the resource URL.
					

						For the language mapping, consider a HTTP request of the following form:
					
GET /resource.en

						You can configure the JAX-RS server endpoint to map the .en suffix automatically, as follows:
					
<jaxrs:server id="customerService" address="/">
 <jaxrs:serviceBeans>
 <bean class="org.apache.cxf.jaxrs.systests.CustomerService" />
 </jaxrs:serviceBeans>
 <jaxrs:languageMappings>
 <entry key="en" value="en-gb"/>
 </jaxrs:languageMappings>
</jaxrs:server>

						When the preceding server endpoint receives the HTTP request, it automatically creates a new accept language header with the value, en-gb, and strips the .en suffix from the resource URL.
					

jaxrs:server Attributes

Attributes

						Table 18.1, “JAX-RS Server Endpoint Attributes” describes the attributes available on the jaxrs:server element.
					
Table 18.1. JAX-RS Server Endpoint Attributes
	Attribute	Description
	
										id
									

									 	
										Specifies a unique identifier that other configuration elements can use to refer to the endpoint.
									

									
	
										address
									

									 	
										Specifies the address of an HTTP endpoint. This value will override the value specified in the services contract.
									

									
	
										basePackages
									

									 	
										(Spring only) Enables auto-discovery, by specifying a comma-separated list of Java packages, which are searched to discover JAX-RS root resource classes and/or JAX-RS provider classes.
									

									
	
										beanNames
									

									 	
										Specifies a space-separated list of bean IDs of JAX-RS root resource beans. In the context of Spring XML, it is possible to define a root resource beans' lifecycle by setting the scope attribute on the root resource bean element.
									

									
	
										bindingId
									

									 	
										Specifies the ID of the message binding the service uses. A list of valid binding IDs is provided in Chapter 23, Apache CXF Binding IDs.
									

									
	
										bus
									

									 	
										Specifies the ID of the Spring bean configuring the bus used to manage the service endpoint. This is useful when configuring several endpoints to use a common set of features.
									

									
	
										docLocation
									

									 	
										Specifies the location of an external WADL document.
									

									
	
										modelRef
									

									 	
										Specifies a model schema as a classpath resource (for example, a URL of the form classpath:/path/to/model.xml). For details of how to define a JAX-RS model schema, see the section called “Defining REST Services with the Model Schema”.
									

									
	
										publish
									

									 	
										Specifies if the service should be automatically published. If set to false, the developer must explicitly publish the endpoint.
									

									
	
										publishedEndpointUrl
									

									 	
										Specifies the URL base address, which gets inserted into the wadl:resources/@base attribute of the auto-generated WADL interface.
									

									
	
										serviceAnnotation
									

									 	
										(Spring only) Specifies the service annotation class name for auto-discovery in Spring. When used in combination with the basePackages property, this option restricts the collection of auto-discovered classes to include only the classes that are annotated by this annotation type. guess!! Is this correct?
									

									
	
										serviceClass
									

									 	
										Specifies the name of a JAX-RS root resource class (which implements a JAX-RS service). In this case, the class is instantiated by Apache CXF, not by Blueprint or Spring. If you want to instantiate the class in Blueprint or Spring, use the jaxrs:serviceBeans child element instead.
									

									
	
										serviceName
									

									 	
										Specifies the service QName (using the format ns:name) for the JAX-RS endpoint in the special case where a JMS transport is used. For details, see the section called “Using the JMS transport”.
									

									
	
										staticSubresourceResolution
									

									 	
										If true, disables dynamic resolution of static sub-resources. Default is false.
									

									
	
										transportId
									

									 	
										For selecting a non-standard transport layer (in place of HTTP). In particular, you can select the JMS transport by setting this property to http://cxf.apache.org/transports/jms. For details, see the section called “Using the JMS transport”.
									

									
	
										abstract
									

									 	
										(Spring only) Specifies if the bean is an abstract bean. Abstract beans act as parents for concrete bean definitions and are not instantiated. The default is false. Setting this to true instructs the bean factory not to instantiate the bean.
									

									
	
										depends-on
									

									 	
										(Spring only) Specifies a list of beans that the endpoint depends on being instantiated before the endpoint can be instantiated.
									

									

jaxrs:server Child Elements

Child elements

						Table 18.2, “JAX-RS Server Endpoint Child Elements” describes the child elements of the jaxrs:server element.
					
Table 18.2. JAX-RS Server Endpoint Child Elements
	Element	Description
	
										jaxrs:executor
									

									 	
										Specifies a Java Executor (thread pool implementation) that is used for the service. This is specified using an embedded bean definition.
									

									
	
										jaxrs:features
									

									 	
										Specifies a list of beans that configure advanced features of Apache CXF. You can provide either a list of bean references or a list of embedded beans.
									

									
	
										jaxrs:binding
									

									 	
										Not used.
									

									
	
										jaxrs:dataBinding
									

									 	
										Specifies the class implementing the data binding used by the endpoint. This is specified using an embedded bean definition. For more details, see the section called “Specifying the data binding”.
									

									
	
										jaxrs:inInterceptors
									

									 	
										Specifies a list of interceptors that process inbound requests. For more information see Part VII, “Developing Apache CXF Interceptors”.
									

									
	
										jaxrs:inFaultInterceptors
									

									 	
										Specifies a list of interceptors that process inbound fault messages. For more information see Part VII, “Developing Apache CXF Interceptors”.
									

									
	
										jaxrs:outInterceptors
									

									 	
										Specifies a list of interceptors that process outbound replies. For more information see Part VII, “Developing Apache CXF Interceptors”.
									

									
	
										jaxrs:outFaultInterceptors
									

									 	
										Specifies a list of interceptors that process outbound fault messages. For more information see Part VII, “Developing Apache CXF Interceptors”.
									

									
	
										jaxrs:invoker
									

									 	
										Specifies an implementation of the org.apache.cxf.service.Invoker interface used by the service. [a]
									

									
	
										jaxrs:serviceFactories
									

									 	
										Provides you with the maximum degree of control over the lifecycle of the JAX-RS root resources associated with this endpoint. The children of this element (which must be instances of org.apache.cxf.jaxrs.lifecycle.ResourceProvider type) are used to create JAX-RS root resource instances.
									

									
	
										jaxrs:properties
									

									 	
										Specifies a Spring map of properties that are passed along to the endpoint. These properties can be used to control features like enabling MTOM support.
									

									
	
										jaxrs:serviceBeans
									

									 	
										The children of this element are instances of (bean element) or references to (ref element) JAX-RS root resources. Note that in this case the scope attribute (Spring only), if present in the bean element, is ignored.
									

									
	
										jaxrs:modelBeans
									

									 	
										Consists of a list of references to one or more org.apache.cxf.jaxrs.model.UserResource beans, which are the basic elements of a resource model (corresponding to jaxrs:resource elements). For details, see the section called “Defining REST Services with the Model Schema”.
									

									
	
										jaxrs:model
									

									 	
										Defines a resource model directly in this endpoint (that is, this jaxrs:model element can contain one or more jaxrs:resource elements). For details, see the section called “Defining REST Services with the Model Schema”.
									

									
	
										jaxrs:providers
									

									 	
										Enables you to register one or more custom JAX-RS providers with this endpoint. The children of this element are instances of (bean element) or references to (ref element) JAX-RS providers.
									

									
	
										jaxrs:extensionMappings
									

									 	
										When the URL of a REST invocation ends in a file extension, you can use this element to associate it automatically with a particular content type. For example, the .xml file extension could be associated with the application/xml content type. For details, see the section called “Extension mappings and language mappings”.
									

									
	
										jaxrs:languageMappings
									

									 	
										When the URL of a REST invocation ends in a language suffix, you can use this element to map this to a particular language. For example, the .en language suffix could be associated with the en-GB language. For details, see the section called “Extension mappings and language mappings”.
									

									
	
										jaxrs:schemaLocations
									

									 	
										Specifies one or more XML schemas used for validating XML message content. This element can contain one or more jaxrs:schemaLocation elements, each specifying the location of an XML schema file (usually as a classpath URL). For details, see the section called “Schema validation”.
									

									
	
										jaxrs:resourceComparator
									

									 	
										Enables you to register a custom resource comparator, which implements the algorithm used to match an incoming URL path to a particular resource class or method.
									

									
	
										jaxrs:resourceClasses
									

									 	
										(Blueprint only) Can be used instead of the jaxrs:server/@serviceClass attribute, if you want to create multiple resources from class names. The children of jaxrs:resourceClasses must be class elements with a name attribute set to the name of the resource class. In this case, the classes are instantiated by Apache CXF, not by Blueprint or Spring.
									

									
	[a]
											The Invoker implementation controls how a service is invoked. For example, it controls whether each request is handled by a new instance of the service implementation or if state is preserved across invocations.
										

Configuring JAX-RS Client Endpoints

Defining a JAX-RS Client Endpoint

Injecting client proxies

						The main point of instantiating a client proxy bean in an XML language (Blueprint XML or Spring XML) is in order to inject it into another bean, which can then use the client proxy to invoke the REST service. To create a client proxy bean in XML, use the jaxrs:client element.
					

Namespaces

						The JAX-RS client endpoint is defined using a different XML namespace from the server endpoint. The following table shows which namespace to use for which XML language:
					
	XML Language	Namespace for client endpoint
	
										Blueprint
									

									 	
										http://cxf.apache.org/blueprint/jaxrs-client
									

									
	
										Spring
									

									 	
										http://cxf.apache.org/jaxrs-client
									

									

Basic client endpoint definition

						The following example shows how to create a client proxy bean in Blueprint XML or Spring XML:
					
<jaxrs:client id="restClient"
 address="http://localhost:8080/test/services/rest"
 serviceClass="org.apache.cxf.systest.jaxrs.BookStoreJaxrsJaxws"/>

						Where you must set the following attributes to define the basic client endpoint:
					
	id
	
									The bean ID of the client proxy can be used to inject the client proxy into other beans in your XML configuration.
								
	address
	
									The address attribute specifies the base URL of the REST invocations.
								
	serviceClass
	
									The serviceClass attribute provides a description of the REST service by specifying a root resource class (annotated by @Path). In fact, this is a server class, but it is not used directly by the client. The specified class is used only for its metadata (through Java reflection and JAX-RS annotations), which is used to construct the client proxy dynamically.
								

Specifying headers

						You can add HTTP headers to the client proxy’s invocations using the jaxrs:headers child elements, as follows:
					
<jaxrs:client id="restClient"
 address="http://localhost:8080/test/services/rest"
 serviceClass="org.apache.cxf.systest.jaxrs.BookStoreJaxrsJaxws"
 inheritHeaders="true">
 <jaxrs:headers>
 <entry key="Accept" value="text/xml"/>
 </jaxrs:headers>
</jaxrs:client>

jaxrs:client Attributes

Attributes

						Table 18.3, “JAX-RS Client Endpoint Attributes” describes the attributes available on the jaxrs:client element.
					
Table 18.3. JAX-RS Client Endpoint Attributes
	Attribute	Description
	
										address
									

									 	
										Specifies the HTTP address of the endpoint where the consumer will make requests. This value overrides the value set in the contract.
									

									
	
										bindingId
									

									 	
										Specifies the ID of the message binding the consumer uses. A list of valid binding IDs is provided in Chapter 23, Apache CXF Binding IDs.
									

									
	
										bus
									

									 	
										Specifies the ID of the Spring bean configuring the bus managing the endpoint.
									

									
	
										inheritHeaders
									

									 	
										Specifies whether the headers set for this proxy will be inherited, if a subresource proxy is created from this proxy. Default is false.
									

									
	
										username
									

									 	
										Specifies the username used for simple username/password authentication.
									

									
	
										password
									

									 	
										Specifies the password used for simple username/password authentication.
									

									
	
										modelRef
									

									 	
										Specifies a model schema as a classpath resource (for example, a URL of the form classpath:/path/to/model.xml). For details of how to define a JAX-RS model schema, see the section called “Defining REST Services with the Model Schema”.
									

									
	
										serviceClass
									

									 	
										Specifies the name of a service interface or a resource class (that is annotated with @PATH), re-using it from the JAX-RS server implementation. In this case, the specified class is not invoked directly (it is actually a server class). The specified class is used only for its metadata (through Java reflection and JAX-RS annotations), which is used to construct the client proxy dynamically.
									

									
	
										serviceName
									

									 	
										Specifies the service QName (using the format ns:name) for the JAX-RS endpoint in the special case where a JMS transport is used. For details, see the section called “Using the JMS transport”.
									

									
	
										threadSafe
									

									 	
										Specifies whether or not the client proxy is thread-safe. Default is false.
									

									
	
										transportId
									

									 	
										For selecting a non-standard transport layer (in place of HTTP). In particular, you can select the JMS transport by setting this property to http://cxf.apache.org/transports/jms. For details, see the section called “Using the JMS transport”.
									

									
	
										abstract
									

									 	
										(Spring only) Specifies if the bean is an abstract bean. Abstract beans act as parents for concrete bean definitions and are not instantiated. The default is false. Setting this to true instructs the bean factory not to instantiate the bean.
									

									
	
										depends-on
									

									 	
										(Spring only) Specifies a list of beans that the endpoint depends on being instantiated before it can be instantiated.
									

									

jaxrs:client Child Elements

Child elements

						Table 18.4, “JAX-RS Client Endpoint Child Elements” describes the child elements of the jaxrs:client element.
					
Table 18.4. JAX-RS Client Endpoint Child Elements
	Element	Description
	
										jaxrs:executor
									

									 	
	
										jaxrs:features
									

									 	
										Specifies a list of beans that configure advanced features of Apache CXF. You can provide either a list of bean references or a list of embedded beans.
									

									
	
										jaxrs:binding
									

									 	
										Not used.
									

									
	
										jaxrs:dataBinding
									

									 	
										Specifies the class implementing the data binding used by the endpoint. This is specified using an embedded bean definition. For more details, see the section called “Specifying the data binding”.
									

									
	
										jaxrs:inInterceptors
									

									 	
										Specifies a list of interceptors that process inbound responses. For more information see Part VII, “Developing Apache CXF Interceptors”.
									

									
	
										jaxrs:inFaultInterceptors
									

									 	
										Specifies a list of interceptors that process inbound fault messages. For more information see Part VII, “Developing Apache CXF Interceptors”.
									

									
	
										jaxrs:outInterceptors
									

									 	
										Specifies a list of interceptors that process outbound requests. For more information see Part VII, “Developing Apache CXF Interceptors”.
									

									
	
										jaxrs:outFaultInterceptors
									

									 	
										Specifies a list of interceptors that process outbound fault messages. For more information see Part VII, “Developing Apache CXF Interceptors”.
									

									
	
										jaxrs:properties
									

									 	
										Specifies a map of properties that are passed to the endpoint.
									

									
	
										jaxrs:providers
									

									 	
										Enables you to register one or more custom JAX-RS providers with this endpoint. The children of this element are instances of (bean element) or references to (ref element) JAX-RS providers.
									

									
	
										jaxrs:modelBeans
									

									 	
										Consists of a list of references to one or more org.apache.cxf.jaxrs.model.UserResource beans, which are the basic elements of a resource model (corresponding to jaxrs:resource elements). For details, see the section called “Defining REST Services with the Model Schema”.
									

									
	
										jaxrs:model
									

									 	
										Defines a resource model directly in this endpoint (that is, a jaxrs:model element containing one or more jaxrs:resource elements). For details, see the section called “Defining REST Services with the Model Schema”.
									

									
	
										jaxrs:headers
									

									 	
										Used for setting headers on the outgoing message. For details, see the section called “Specifying headers”.
									

									
	
										jaxrs:schemaLocations
									

									 	
										Specifies one or more XML schemas used for validating XML message content. This element can contain one or more jaxrs:schemaLocation elements, each specifying the location of an XML schema file (usually as a classpath URL). For details, see the section called “Schema validation”.
									

									

Defining REST Services with the Model Schema

RESTful services without annotations

					The JAX-RS model schema makes it possible to define RESTful services without annotating Java classes. That is, instead of adding annotations like @Path, @PathParam, @Consumes, @Produces, and so on, directly to a Java class (or interface), you can provide all of the relevant REST metadata in a separate XML file, using the model schema. This can be useful, for example, in cases where you are unable to modify the Java source that implements the service.
				

Example model schema

					Example 18.1, “Sample JAX-RS Model Schema” shows an example of a model schema that defines service metadata for the BookStoreNoAnnotations root resource class.
				
Example 18.1. Sample JAX-RS Model Schema
<model xmlns="http://cxf.apache.org/jaxrs">
 <resource name="org.apache.cxf.systest.jaxrs.BookStoreNoAnnotations" path="bookstore"
 produces="application/json" consumes="application/json">
 <operation name="getBook" verb="GET" path="/books/{id}" produces="application/xml">
 <param name="id" type="PATH"/>
 </operation>
 <operation name="getBookChapter" path="/books/{id}/chapter">
 <param name="id" type="PATH"/>
 </operation>
 <operation name="updateBook" verb="PUT">
 <param name="book" type="REQUEST_BODY"/>
 </operation>
 </resource>
 <resource name="org.apache.cxf.systest.jaxrs.ChapterNoAnnotations">
 <operation name="getItself" verb="GET"/>
 <operation name="updateChapter" verb="PUT" consumes="application/xml">
 <param name="content" type="REQUEST_BODY"/>
 </operation>
 </resource>
</model>

Namespaces

					The XML namespace that you use to define a model schema depends on whether you are defining the corresponding JAX-RS endpoint in Blueprint XML or in Spring XML. The following table shows which namespace to use for which XML language:
				
	XML Language	Namespace
	
									Blueprint
								

								 	
									http://cxf.apache.org/blueprint/jaxrs
								

								
	
									Spring
								

								 	
									http://cxf.apache.org/jaxrs
								

								

How to attach a model schema to an endpoint

					To define and attach a model schema to an endpoint, perform the following steps:
				
	
							Define the model schema, using the appropriate XML namespace for your chosen injection platform (Blueprint XML or Spring XML).
						
	
							Add the model schema file to your project’s resources, so that the schema file is available on the classpath in the final package (JAR, WAR, or OSGi bundle file).
						
Note

								Alternatively, it is also possible to embed a model schema directly into a JAX-RS endpoint, using the endpoint’s jaxrs:model child element.
							

	
							Configure the endpoint to use the model schema, by setting the endpoint’s modelRef attribute to the location of the model schema on the classpath (using a classpath URL).
						
	
							If necessary, instantiate the root resources explicitly, using the jaxrs:serviceBeans element. You can skip this step, if the model schema references root resource classes directly (instead of referencing base interfaces).
						

Configuration of model schema referencing a class

					If the model schema applies directly to root resource classes, there is no need to define any root resource beans using the jaxrs:serviceBeans element, because the model schema automatically instantiates the root resource beans.
				

					For example, given that customer-resources.xml is a model schema that associates metadata with customer resource classes, you could instantiate a customerService service endpoint as follows:
				
<jaxrs:server id="customerService"
 address="/customers"
 modelRef="classpath:/org/example/schemas/customer-resources.xml" />

Configuration of model schema referencing an interface

					If the model schema applies to Java interfaces (which are the base interfaces of the root resources), you must instantiate the root resource classes using the jaxrs:serviceBeans element in the endpoint.
				

					For example, given that customer-interfaces.xml is a model schema that associates metadata with customer interfaces, you could instantiate a customerService service endpoint as follows:
				
<jaxrs:server id="customerService"
 address="/customers"
 modelRef="classpath:/org/example/schemas/customer-interfaces.xml">
 <jaxrs:serviceBeans>
 <ref component-id="serviceBean" />
 </jaxrs:serviceBeans>
</jaxrs:server>

<bean id="serviceBean" class="service.CustomerService"/>

Model Schema Reference

					A model schema is defined using the following XML elements:
				
	model
	
								Root element of the model schema. If you need to reference the model schema (for example, from a JAX-RS endpoint using the modelRef attribute), you should set the id attribute on this element.
							
	model/resource
	
								The resource element is used to associate metadata with a specific root resource class (or with a corresponding interface). You can define the following attributes on the resource element:
							
	Attribute	Description +
	
												name
											

											 	
												The name of the resource class (or corresponding interface) to which this resource model is applied.
											

											
												+
											

											
	
												path
											

											 	
												The component of the REST URL path that maps to this resource.
											

											
												+
											

											
	
												consumes
											

											 	
												Specifies the content type (Internet media type) consumed by this resource—for example, application/xml or application/json.
											

											
												+
											

											
	
												produces
											

											 	
												Specifies the content type (Internet media type) produced by this resource—for example, application/xml or application/json.
											

											
												+
											

											

	model/resource/operation
	
								The operation element is used to associate metadata with Java methods. You can define the following attributes on an operation element:
							
	Attribute	Description +
	
												name
											

											 	
												The name of the Java method to which this element is applied.
											

											
												+
											

											
	
												path
											

											 	
												The component of the REST URL path that maps to this method. This attribute value can include parameter references, for example: path="/books/{id}/chapter", where {id} extracts the value of the id parameter from the path.
											

											
												+
											

											
	
												verb
											

											 	
												Specifies the HTTP verb that maps to this method. Typically one of: GET, POST, PUT, or DELETE. If the HTTP verb is not specified, it is assumed that the Java method is a sub-resource locater, which returns a reference to a sub-resource object (where the sub-resource class must also be provided with metadata using a resource element).
											

											
												+
											

											
	
												consumes
											

											 	
												Specifies the content type (Internet media type) consumed by this operation—for example, application/xml or application/json.
											

											
												+
											

											
	
												produces
											

											 	
												Specifies the content type (Internet media type) produced by this operation—for example, application/xml or application/json.
											

											
												+
											

											
	
												oneway
											

											 	
												If true, configures the operation to be oneway, meaning that no reply message is needed. Defaults to false.
											

											
												+
											

											

	model/resource/operation/param
	
								The param element is used extract a value from the REST URL and inject it into one of the method parameters. You can define the following attributes on a param element:
							
	Attribute	Description +
	
												name
											

											 	
												The name of the Java method parameter to which this element is applied.
											

											
												+
											

											
	
												type
											

											 	
												Specifies how the parameter value is extracted from the REST URL or message. It can be set to one of the following values: PATH, QUERY, MATRIX, HEADER, COOKIE, FORM, CONTEXT, REQUEST_BODY.
											

											
												+
											

											
	
												defaultValue
											

											 	
												Default value to inject into the parameter, in case a value could not be extracted from the REST URL or message.
											

											
												+
											

											
	
												encoded
											

											 	
												If true, the parameter value is injected in its URI encoded form (that is, using %nn encoding). Default is false. For example, when extracting a parameter from the URL path, /name/Joe%20Bloggs with encoded set to true, the parameter is injected as Joe%20Bloggs; otherwise, the parameter would be injected as Joe Bloggs.
											

											
												+
											

											

Chapter 19. Apache CXF Logging

Abstract

					This chapter describes how to configure logging in the Apache CXF runtime.
				

Overview of Apache CXF Logging

Overview

					Apache CXF uses the Java logging utility, java.util.logging. Logging is configured in a logging configuration file that is written using the standard java.util.Properties format. To run logging on an application, you can specify logging programmatically or by defining a property at the command that points to the logging configuration file when you start the application.
				

Default properties file

					Apache CXF comes with a default logging.properties file, which is located in your InstallDir/etc directory. This file configures both the output destination for the log messages and the message level that is published. The default configuration sets the loggers to print message flagged with the WARNING level to the console. You can either use the default file without changing any of the configuration settings or you can change the configuration settings to suit your specific application.
				

Logging feature

					Apache CXF includes a logging feature that can be plugged into your client or your service to enable logging. Example 19.1, “Configuration for Enabling Logging” shows the configuration to enable the logging feature.
				
Example 19.1. Configuration for Enabling Logging
<jaxws:endpoint...>
 <jaxws:features>
 <bean class="org.apache.cxf.feature.LoggingFeature"/>
 </jaxws:features>
</jaxws:endpoint>

					For more information, see the section called “Logging Message Content”.
				

Where to begin?

					To run a simple example of logging follow the instructions outlined in a the section called “Simple Example of Using Logging”.
				

					For more information on how logging works in Apache CXF, read this entire chapter.
				

More information on java.util.logging

					The java.util.logging utility is one of the most widely used Java logging frameworks. There is a lot of information available online that describes how to use and extend this framework. As a starting point, however, the following documents gives a good overview of java.util.logging:
				
	
							http://download.oracle.com/javase/1.5.0/docs/guide/logging/overview.html
						
	
							http://download.oracle.com/javase/1.5.0/docs/api/java/util/logging/package-summary.html
						

Simple Example of Using Logging

Changing the log levels and output destination

					To change the log level and output destination of the log messages in the wsdl_first sample application, complete the following steps:
				
	
							Run the sample server as described in the Running the demo using java section of the README.txt file in the InstallDir/samples/wsdl_first directory. Note that the server start command specifies the default logging.properties file, as follows:
						
	Platform	Command +
	
											Windows
										

										 	
											start java -Djava.util.logging.config.file=%CXF_HOME%\etc\logging.properties demo.hw.server.Server
										

										
											+
										

										
	
											UNIX
										

										 	
											java -Djava.util.logging.config.file=$CXF_HOME/etc/logging.properties demo.hw.server.Server &
										

										
											+
										

										

							The default logging.properties file is located in the InstallDir/etc directory. It configures the Apache CXF loggers to print WARNING level log messages to the console. As a result, you see very little printed to the console.
						

	
							Stop the server as described in the README.txt file.
						
	
							Make a copy of the default logging.properties file, name it mylogging.properties file, and save it in the same directory as the default logging.properties file.
						
	
							Change the global logging level and the console logging levels in your mylogging.properties file to INFO by editing the following lines of configuration:
						
.level= INFO
java.util.logging.ConsoleHandler.level = INFO

	
							Restart the server using the following command:
						
	Platform	Command +
	
											Windows
										

										 	
											start java -Djava.util.logging.config.file=%CXF_HOME%\etc\mylogging.properties demo.hw.server.Server
										

										
											+
										

										
	
											UNIX
										

										 	
											java -Djava.util.logging.config.file=$CXF_HOME/etc/mylogging.properties demo.hw.server.Server &
										

										
											+
										

										

							Because you configured the global logging and the console logger to log messages of level INFO, you see a lot more log messages printed to the console.
						

Default logging configuration file

Overview of Logging Configuration

						The default logging configuration file, logging.properties, is located in the InstallDir/etc directory. It configures the Apache CXF loggers to print WARNING level messages to the console. If this level of logging is suitable for your application, you do not have to make any changes to the file before using it. You can, however, change the level of detail in the log messages. For example, you can change whether log messages are sent to the console, to a file or to both. In addition, you can specify logging at the level of individual packages.
					
Note

							This section discusses the configuration properties that appear in the default logging.properties file. There are, however, many other java.util.logging configuration properties that you can set. For more information on the java.util.logging API, see the java.util.logging javadoc at: http://download.oracle.com/javase/1.5/docs/api/java/util/logging/package-summary.html.
						

Configuring Logging Output

Overview

						The Java logging utility, java.util.logging, uses handler classes to output log messages. Table 19.1, “Java.util.logging Handler Classes” shows the handlers that are configured in the default logging.properties file.
					
Table 19.1. Java.util.logging Handler Classes
	Handler Class	Outputs to
	
										ConsoleHandler
									

									 	
										Outputs log messages to the console
									

									
	
										FileHandler
									

									 	
										Outputs log messages to a file
									

									

Important

							The handler classes must be on the system classpath in order to be installed by the Java VM when it starts. This is done when you set the Apache CXF environment.
						

Configuring the console handler

						Example 19.2, “Configuring the Console Handler” shows the code for configuring the console logger.
					
Example 19.2. Configuring the Console Handler
handlers= java.util.logging.ConsoleHandler

						The console handler also supports the configuration properties shown in Example 19.3, “Console Handler Properties”.
					
Example 19.3. Console Handler Properties
java.util.logging.ConsoleHandler.level = WARNING
java.util.logging.ConsoleHandler.formatter = java.util.logging.SimpleFormatter

						The configuration properties shown in Example 19.3, “Console Handler Properties” can be explained as follows:
					

						The console handler supports a separate log level configuration property. This allows you to limit the log messages printed to the console while the global logging setting can be different (see the section called “Configuring Logging Levels”). The default setting is WARNING.
					

						Specifies the java.util.logging formatter class that the console handler class uses to format the log messages. The default setting is the java.util.logging.SimpleFormatter.
					

Configuring the file handler

						Example 19.4, “Configuring the File Handler” shows code that configures the file handler.
					
Example 19.4. Configuring the File Handler
handlers= java.util.logging.FileHandler

						The file handler also supports the configuration properties shown in Example 19.5, “File Handler Configuration Properties”.
					
Example 19.5. File Handler Configuration Properties
java.util.logging.FileHandler.pattern = %h/java%u.log
java.util.logging.FileHandler.limit = 50000
java.util.logging.FileHandler.count = 1
java.util.logging.FileHandler.formatter = java.util.logging.XMLFormatter

						The configuration properties shown in Example 19.5, “File Handler Configuration Properties” can be explained as follows:
					

						Specifies the location and pattern of the output file. The default setting is your home directory.
					

						Specifies, in bytes, the maximum amount that the logger writes to any one file. The default setting is 50000. If you set it to zero, there is no limit on the amount that the logger writes to any one file.
					

						Specifies how many output files to cycle through. The default setting is 1.
					

						Specifies the java.util.logging formatter class that the file handler class uses to format the log messages. The default setting is the java.util.logging.XMLFormatter.
					

Configuring both the console handler and the file handler

						You can set the logging utility to output log messages to both the console and to a file by specifying the console handler and the file handler, separated by a comma, as shown in Configuring Both Console Logging and File.
					

Configuring Both Console Logging and File

							

Logging

						
handlers= java.util.logging.FileHandler, java.util.logging.ConsoleHandler

Configuring Logging Levels

Logging levels

						The java.util.logging framework supports the following levels of logging, from the least verbose to the most verbose:
					
	
								SEVERE
							
	
								WARNING
							
	
								INFO
							
	
								CONFIG
							
	
								FINE
							
	
								FINER
							
	
								FINEST
							

Configuring the global logging level

						To configure the types of event that are logged across all loggers, configure the global logging level as shown in Example 19.6, “Configuring Global Logging Levels”.
					
Example 19.6. Configuring Global Logging Levels
.level= WARNING

Configuring logging at an individual package

level

						The java.util.logging framework supports configuring logging at the level of an individual package. For example, the line of code shown in Example 19.7, “Configuring Logging at the Package Level” configures logging at a SEVERE level on classes in the com.xyz.foo package.
					
Example 19.7. Configuring Logging at the Package Level
com.xyz.foo.level = SEVERE

Enabling Logging at the Command Line

Overview

					You can run the logging utility on an application by defining a java.util.logging.config.file property when you start the application. You can either specify the default logging.properties file or a logging.properties file that is unique to that application.
				

Specifying the log configuration file on application

start-up

					To specify logging on application start-up add the flag shown in Example 19.8, “Flag to Start Logging on the Command Line” when starting the application.
				
Example 19.8. Flag to Start Logging on the Command Line
-Djava.util.logging.config.file=myfile

Logging for Subsystems and Services

Overview

					You can use the com.xyz.foo.level configuration property described in the section called “Configuring logging at an individual package” to set fine-grained logging for specified Apache CXF logging subsystems.
				

Apache CXF logging subsystems

					Table 19.2, “Apache CXF Logging Subsystems” shows a list of available Apache CXF logging subsystems.
				
Table 19.2. Apache CXF Logging Subsystems
	Subsystem	Description
	
									org.apache.cxf.aegis
								

								 	
									Aegis binding
								

								
	
									org.apache.cxf.binding.coloc
								

								 	
									colocated binding
								

								
	
									org.apache.cxf.binding.http
								

								 	
									HTTP binding
								

								
	
									org.apache.cxf.binding.jbi
								

								 	
									JBI binding
								

								
	
									org.apache.cxf.binding.object
								

								 	
									Java Object binding
								

								
	
									org.apache.cxf.binding.soap
								

								 	
									SOAP binding
								

								
	
									org.apache.cxf.binding.xml
								

								 	
									XML binding
								

								
	
									org.apache.cxf.bus
								

								 	
									Apache CXF bus
								

								
	
									org.apache.cxf.configuration
								

								 	
									configuration framework
								

								
	
									org.apache.cxf.endpoint
								

								 	
									server and client endpoints
								

								
	
									org.apache.cxf.interceptor
								

								 	
									interceptors
								

								
	
									org.apache.cxf.jaxws
								

								 	
									Front-end for JAX-WS style message exchange, JAX-WS handler processing, and interceptors relating to JAX-WS and configuration
								

								
	
									org.apache.cxf.jbi
								

								 	
									JBI container integration classes
								

								
	
									org.apache.cxf.jca
								

								 	
									JCA container integration classes
								

								
	
									org.apache.cxf.js
								

								 	
									JavaScript front-end
								

								
	
									org.apache.cxf.transport.http
								

								 	
									HTTP transport
								

								
	
									org.apache.cxf.transport.https
								

								 	
									secure version of HTTP transport, using HTTPS
								

								
	
									org.apache.cxf.transport.jbi
								

								 	
									JBI transport
								

								
	
									org.apache.cxf.transport.jms
								

								 	
									JMS transport
								

								
	
									org.apache.cxf.transport.local
								

								 	
									transport implementation using local file system
								

								
	
									org.apache.cxf.transport.servlet
								

								 	
									HTTP transport and servlet implementation for loading JAX-WS endpoints into a servlet container
								

								
	
									org.apache.cxf.ws.addressing
								

								 	
									WS-Addressing implementation
								

								
	
									org.apache.cxf.ws.policy
								

								 	
									WS-Policy implementation
								

								
	
									org.apache.cxf.ws.rm
								

								 	
									WS-ReliableMessaging (WS-RM) implementation
								

								
	
									org.apache.cxf.ws.security.wss4j
								

								 	
									WSS4J security implementation
								

								

Example

					The WS-Addressing sample is contained in the InstallDir/samples/ws_addressing directory. Logging is configured in the logging.properties file located in that directory. The relevant lines of configuration are shown in Example 19.9, “Configuring Logging for WS-Addressing”.
				
Example 19.9. Configuring Logging for WS-Addressing
java.util.logging.ConsoleHandler.formatter = demos.ws_addressing.common.ConciseFormatter
...
org.apache.cxf.ws.addressing.soap.MAPCodec.level = INFO

					The configuration in Example 19.9, “Configuring Logging for WS-Addressing” enables the snooping of log messages relating to WS-Addressing headers, and displays them to the console in a concise form.
				

					For information on running this sample, see the README.txt file located in the InstallDir/samples/ws_addressing directory.
				

Logging Message Content

Overview

					You can log the content of the messages that are sent between a service and a consumer. For example, you might want to log the contents of SOAP messages that are being sent between a service and a consumer.
				

Configuring message content logging

					To log the messages that are sent between a service and a consumer, and vice versa, complete the following steps:
				
	
							Add the logging feature to your endpoint’s configuration.
						
	
							Add the logging feature to your consumer’s configuration.
						
	
							Configure the logging system log INFO level messages.
						

Adding the logging feature to an endpoint

					Add the logging feature your endpoint’s configuration as shown in Example 19.10, “Adding Logging to Endpoint Configuration”.
				
Example 19.10. Adding Logging to Endpoint Configuration
<jaxws:endpoint ...>
 <jaxws:features>
 <bean class="org.apache.cxf.feature.LoggingFeature"/>
 </jaxws:features>
</jaxws:endpoint>

					The example XML shown in Example 19.10, “Adding Logging to Endpoint Configuration” enables the logging of SOAP messages.
				

Adding the logging feature to a consumer

					Add the logging feature your client’s configuration as shown in Example 19.11, “Adding Logging to Client Configuration”.
				
Example 19.11. Adding Logging to Client Configuration
<jaxws:client ...>
 <jaxws:features>
 <bean class="org.apache.cxf.feature.LoggingFeature"/>
 </jaxws:features>
</jaxws:client>

					The example XML shown in Example 19.11, “Adding Logging to Client Configuration” enables the logging of SOAP messages.
				

Set logging to log INFO level messages

					Ensure that the logging.properties file associated with your service is configured to log INFO level messages, as shown in Example 19.12, “Setting the Logging Level to INFO”.
				
Example 19.12. Setting the Logging Level to INFO
.level= INFO
java.util.logging.ConsoleHandler.level = INFO

Logging SOAP messages

					To see the logging of SOAP messages modify the wsdl_first sample application located in the InstallDir/samples/wsdl_first directory, as follows:
				
	
							Add the jaxws:features element shown in Example 19.13, “Endpoint Configuration for Logging SOAP Messages” to the cxf.xml configuration file located in the wsdl_first sample’s directory:
						
Example 19.13. Endpoint Configuration for Logging SOAP Messages
<jaxws:endpoint name="{http://apache.org/hello_world_soap_http}SoapPort"
 createdFromAPI="true">
 <jaxws:properties>
 <entry key="schema-validation-enabled" value="true" />
 </jaxws:properties>
 <jaxws:features>
 <bean class="org.apache.cxf.feature.LoggingFeature"/>
 </jaxws:features>
</jaxws:endpoint>

	
							The sample uses the default logging.properties file, which is located in the InstallDir/etc directory. Make a copy of this file and name it mylogging.properties.
						
	
							In the mylogging.properties file, change the logging levels to INFO by editing the .level and the java.util.logging.ConsoleHandler.level configuration properties as follows:
						
.level= INFO
java.util.logging.ConsoleHandler.level = INFO

	
							Start the server using the new configuration settings in both the cxf.xml file and the mylogging.properties file as follows:
						
	Platform	Command +
	
											Windows
										

										 	
											start java -Djava.util.logging.config.file=%CXF_HOME%\etc\mylogging.properties demo.hw.server.Server
										

										
											+
										

										
	
											UNIX
										

										 	
											java -Djava.util.logging.config.file=$CXF_HOME/etc/mylogging.properties demo.hw.server.Server &
										

										
											+
										

										

	
							Start the hello world client using the following command:
						
	Platform	Command +
	
											Windows
										

										 	
											java -Djava.util.logging.config.file=%CXF_HOME%\etc\mylogging.properties demo.hw.client.Client .\wsdl\hello_world.wsdl
										

										
											+
										

										
	
											UNIX
										

										 	
											java -Djava.util.logging.config.file=$CXF_HOME/etc/mylogging.properties demo.hw.client.Client ./wsdl/hello_world.wsdl
										

										
											+
										

										

					The SOAP messages are logged to the console.
				

Chapter 20. Deploying WS-Addressing

Abstract

					Apache CXF supports WS-Addressing for JAX-WS applications. This chapter explains how to deploy WS-Addressing in the Apache CXF runtime environment.
				

Introduction to WS-Addressing

Overview

					WS-Addressing is a specification that allows services to communicate addressing information in a transport neutral way. It consists of two parts:
				
	
							A structure for communicating a reference to a Web service endpoint
						
	
							A set of Message Addressing Properties (MAP) that associate addressing information with a particular message
						

Supported specifications

					Apache CXF supports both the WS-Addressing 2004/08 specification and the WS-Addressing 2005/03 specification.
				

Further information

					For detailed information on WS-Addressing, see the 2004/08 submission at http://www.w3.org/Submission/ws-addressing/.
				

WS-Addressing Interceptors

Overview

					In Apache CXF, WS-Addressing functionality is implemented as interceptors. The Apache CXF runtime uses interceptors to intercept and work with the raw messages that are being sent and received. When a transport receives a message, it creates a message object and sends that message through an interceptor chain. If the WS-Addressing interceptors are added to the application’s interceptor chain, any WS-Addressing information included with a message is processed.
				

WS-Addressing Interceptors

					The WS-Addressing implementation consists of two interceptors, as described in Table 20.1, “WS-Addressing Interceptors”.
				
Table 20.1. WS-Addressing Interceptors
	Interceptor	Description
	
									org.apache.cxf.ws.addressing.MAPAggregator
								

								 	
									A logical interceptor responsible for aggregating the Message Addressing Properties (MAPs) for outgoing messages.
								

								
	
									org.apache.cxf.ws.addressing.soap.MAPCodec
								

								 	
									A protocol-specific interceptor responsible for encoding and decoding the Message Addressing Properties (MAPs) as SOAP headers.
								

								

Enabling WS-Addressing

Overview

					To enable WS-Addressing the WS-Addressing interceptors must be added to the inbound and outbound interceptor chains. This is done in one of the following ways:
				
	
							Apache CXF Features
						
	
							RMAssertion and WS-Policy Framework
						
	
							Using Policy Assertion in a WS-Addressing Feature
						

Adding WS-Addressing as a Feature

					WS-Addressing can be enabled by adding the WS-Addressing feature to the client and the server configuration as shown in Example 20.1, “client.xml and Adding WS-Addressing Feature to Client Configuration” and Example 20.2, “server.xml and Adding WS-Addressing Feature to Server Configuration” respectively.
				
Example 20.1. client.xml and Adding WS-Addressing Feature to Client Configuration
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 xmlns:wsa="http://cxf.apache.org/ws/addressing"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://cxf.apache.org/ws/addressing
 http://cxf.apache.org/schemas/ws-addr-conf.xsd">

 <jaxws:client ...>
 <jaxws:features>
 <wsa:addressing/>
 </jaxws:features>
 </jaxws:client>
</beans>

Example 20.2. server.xml and Adding WS-Addressing Feature to Server Configuration
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 xmlns:wsa="http://cxf.apache.org/ws/addressing"
 xsi:schemaLocation="
http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd">

 <jaxws:endpoint ...>
 <jaxws:features>
 <wsa:addressing/>
 </jaxws:features>
 </jaxws:endpoint>
</beans>

Configuring WS-Addressing Attributes

Overview

					The Apache CXF WS-Addressing feature element is defined in the namespace http://cxf.apache.org/ws/addressing. It supports the two attributes described in Table 20.2, “WS-Addressing Attributes”.
				
Table 20.2. WS-Addressing Attributes
	Attribute Name	Value
	
									allowDuplicates
								

								 	
									A boolean that determines if duplicate MessageIDs are tolerated. The default setting is true.
								

								
	
									usingAddressingAdvisory
								

								 	
									A boolean that indicates if the presence of the UsingAddressing element in the WSDL is advisory only; that is, its absence does not prevent the encoding of WS-Addressing headers.
								

								

Configuring WS-Addressing attributes

					Configure WS-Addressing attributes by adding the attribute and the value you want to set it to the WS-Addressing feature in your server or client configuration file. For example, the following configuration extract sets the allowDuplicates attribute to false on the server endpoint:
				
<beans ... xmlns:wsa="http://cxf.apache.org/ws/addressing" ...>
 <jaxws:endpoint ...>
 <jaxws:features>
 <wsa:addressing allowDuplicates="false"/>
 </jaxws:features>
 </jaxws:endpoint>
</beans>

Using a WS-Policy assertion embedded in a feature

					In Example 20.3, “Using the Policies to Configure WS-Addressing” an addressing policy assertion to enable non-anonymous responses is embedded in the policies element.
				
Example 20.3. Using the Policies to Configure WS-Addressing
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:wsa="http://cxf.apache.org/ws/addressing"
 xmlns:wsp="http://www.w3.org/2006/07/ws-policy"
 xmlns:policy="http://cxf.apache.org/policy-config"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 xsi:schemaLocation="
http://www.w3.org/2006/07/ws-policy http://www.w3.org/2006/07/ws-policy.xsd
http://cxf.apache.org/ws/addressing http://cxf.apache.org/schema/ws/addressing.xsd
http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd
http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd">

 <jaxws:endpoint name="{http://cxf.apache.org/greeter_control}GreeterPort"
 createdFromAPI="true">
 <jaxws:features>
 <policy:policies>
 <wsp:Policy xmlns:wsam="http://www.w3.org/2007/02/addressing/metadata">
 <wsam:Addressing>
 <wsp:Policy>
 <wsam:NonAnonymousResponses/>
 </wsp:Policy>
 </wsam:Addressing>
 </wsp:Policy>
 <policy:policies>
 </jaxws:features>
 </jaxws:endpoint>
</beans>

Chapter 21. Enabling Reliable Messaging

Abstract

					Apache CXF supports WS-Reliable Messaging(WS-RM). This chapter explains how to enable and configure WS-RM in Apache CXF.
				

Introduction to WS-RM

Overview

					WS-ReliableMessaging (WS-RM) is a protocol that ensures the reliable delivery of messages in a distributed environment. It enables messages to be delivered reliably between distributed applications in the presence of software, system, or network failures.
				

					For example, WS-RM can be used to ensure that the correct messages have been delivered across a network exactly once, and in the correct order.
				

How WS-RM works

					 WS-RM ensures the reliable delivery of messages between a source and a destination endpoint. The source is the initial sender of the message and the destination is the ultimate receiver, as shown in Figure 21.1, “Web Services Reliable Messaging”.
				
Figure 21.1. Web Services Reliable Messaging
[image: reliable message exchange]

					The flow of WS-RM messages can be described as follows:
				
	
							 The RM source sends a CreateSequence protocol message to the RM destination. This contains a reference for the endpoint that receives acknowledgements (the wsrm:AcksTo endpoint).
						
	
							 The RM destination sends a CreateSequenceResponse protocol message back to the RM source. This message contains the sequence ID for the RM sequence session.
						
	
							 The RM source adds an RM Sequence header to each message sent by the application source. This header contains the sequence ID and a unique message ID.
						
	
							The RM source transmits each message to the RM destination.
						
	
							 The RM destination acknowledges the receipt of the message from the RM source by sending messages that contain the RM SequenceAcknowledgement header.
						
	
							The RM destination delivers the message to the application destination in an exactly-once-in-order fashion.
						
	
							The RM source retransmits a message that it has not yet received an acknowledgement.
						

							The first retransmission attempt is made after a base retransmission interval. Successive retransmission attempts are made, by default, at exponential back-off intervals or, alternatively, at fixed intervals. For more details, see the section called “Configuring WS-RM”.
						

					This entire process occurs symmetrically for both the request and the response message; that is, in the case of the response message, the server acts as the RM source and the client acts as the RM destination.
				

WS-RM delivery assurances

					WS-RM guarantees reliable message delivery in a distributed environment, regardless of the transport protocol used. Either the source or the destination endpoint logs an error if reliable delivery can not be assured.
				

Supported specifications

					Apache CXF supports the following versions of the WS-RM specification:
				
	WS-ReliableMessaging 1.0
	
								(Default) Corresponds to the February 2005 submission version, which is now out of date. For reasons of backward compatibility, however, this version is used as the default.
							

								Version 1.0 of WS-RM uses the following namespace:
							
http://schemas.xmlsoap.org/ws/2005/02/rm/

								This version of WS-RM can be used with either of the following WS-Addressing versions:
							
http://schemas.xmlsoap.org/ws/2004/08/addressing (default)
http://www.w3.org/2005/08/addressing

								Strictly speaking, in order to comply with the February 2005 submission version of WS-RM, you ought to use the first of these WS-Addressing versions (which is the default in Apache CXF). But most other Web service implementations have switched to the more recent WS-Addressing specification, so Apache CXF allows you to choose the WS-A version, to facilitate interoperability (see the section called “Runtime Control”).
							

	WS-ReliableMessaging 1.1/1.2
	
								Corresponds to the official 1.1/1.2 Web Services Reliable Messaging specification.
							

								Versions 1.1 and 1.2 of WS-RM uses the following namespace:
							
http://docs.oasis-open.org/ws-rx/wsrm/200702

								The 1.1 and 1.2 versions of WS-RM use the following WS-Addressing version:
							
http://www.w3.org/2005/08/addressing

Selecting the WS-RM version

					You can select which WS-RM specification version to use, as follows:
				
	Server side
	
								On the provider side, Apache CXF adapts to whichever version of WS-ReliableMessaging is used by the client and responds appropriately.
							
	Client side
	
								On the client side, the WS-RM version is determined either by the namespace that you use in the client configuration (see the section called “Configuring WS-RM”) or by overriding the WS-RM version at run time, using the runtime control options (see the section called “Runtime Control”).
							

WS-RM Interceptors

Overview

					In Apache CXF, WS-RM functionality is implemented as interceptors. The Apache CXF runtime uses interceptors to intercept and work with the raw messages that are being sent and received. When a transport receives a message, it creates a message object and sends that message through an interceptor chain. If the application’s interceptor chain includes the WS-RM interceptors, the application can participate in reliable messaging sessions. The WS-RM interceptors handle the collection and aggregation of the message chunks. They also handle all of the acknowledgement and retransmission logic.
				

Apache CXF WS-RM Interceptors

					 The Apache CXF WS-RM implementation consists of four interceptors, which are described in Table 21.1, “Apache CXF WS-ReliableMessaging Interceptors”.
				
Table 21.1. Apache CXF WS-ReliableMessaging Interceptors
	Interceptor	Description
	
									org.apache.cxf.ws.rm.RMOutInterceptor
								

								 	
									Deals with the logical aspects of providing reliability guarantees for outgoing messages.
								

								
									Responsible for sending the CreateSequence requests and waiting for their CreateSequenceResponse responses.
								

								
									Also responsible for aggregating the sequence properties—ID and message number—for an application message.
								

								
	
									org.apache.cxf.ws.rm.RMInInterceptor
								

								 	
									Responsible for intercepting and processing RM protocol messages and SequenceAcknowledgement messages that are piggybacked on application messages.
								

								
	
									org.apache.cxf.ws.rm.RMCaptureInInterceptor
								

								 	
									Caching incoming messages for persistent storage.
								

								
	
									org.apache.cxf.ws.rm.RMDeliveryInterceptor
								

								 	
									Assuring InOrder delivery of messages to the application.
								

								
	
									org.apache.cxf.ws.rm.soap.RMSoapInterceptor
								

								 	
									Responsible for encoding and decoding the reliability properties as SOAP headers.
								

								
	
									org.apache.cxf.ws.rm.RetransmissionInterceptor
								

								 	
									Responsible for creating copies of application messages for future resending.
								

								

Enabling WS-RM

					The presence of the WS-RM interceptors on the interceptor chains ensures that WS-RM protocol messages are exchanged when necessary. For example, when intercepting the first application message on the outbound interceptor chain, the RMOutInterceptor sends a CreateSequence request and waits to process the original application message until it receives the CreateSequenceResponse response. In addition, the WS-RM interceptors add the sequence headers to the application messages and, on the destination side, extract them from the messages. It is not necessary to make any changes to your application code to make the exchange of messages reliable.
				

					For more information on how to enable WS-RM, see the section called “Enabling WS-RM”.
				

Configuring WS-RM Attributes

					You control sequence demarcation and other aspects of the reliable exchange through configuration. For example, by default Apache CXF attempts to maximize the lifetime of a sequence, thus reducing the overhead incurred by the out-of-band WS-RM protocol messages. To enforce the use of a separate sequence per application message configure the WS-RM source’s sequence termination policy (setting the maximum sequence length to 1).
				

					For more information on configuring WS-RM behavior, see the section called “Configuring WS-RM”.
				

Enabling WS-RM

					
				
Overview

					To enable reliable messaging, the WS-RM interceptors must be added to the interceptor chains for both inbound and outbound messages and faults. Because the WS-RM interceptors use WS-Addressing, the WS-Addressing interceptors must also be present on the interceptor chains.
				

					You can ensure the presence of these interceptors in one of two ways:
				
	
							Explicitly, by adding them to the dispatch chains using Spring beans
						
	
							Implicitly, using WS-Policy assertions, which cause the Apache CXF runtime to transparently add the interceptors on your behalf.
						

Spring beans: explicitly adding interceptors

					To enable WS-RM add the WS-RM and WS-Addressing interceptors to the Apache CXF bus, or to a consumer or service endpoint using Spring bean configuration. This is the approach taken in the WS-RM sample that is found in the InstallDir/samples/ws_rm directory. The configuration file, ws-rm.cxf, shows the WS-RM and WS-Addressing interceptors being added one-by-one as Spring beans (see Example 21.1, “Enabling WS-RM Using Spring Beans”).
				
Example 21.1. Enabling WS-RM Using Spring Beans
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/
 beans http://www.springframework.org/schema/beans/spring-beans.xsd">
 <bean id="mapAggregator" class="org.apache.cxf.ws.addressing.MAPAggregator"/>
 <bean id="mapCodec" class="org.apache.cxf.ws.addressing.soap.MAPCodec"/>
 <bean id="rmLogicalOut" class="org.apache.cxf.ws.rm.RMOutInterceptor">
 <property name="bus" ref="cxf"/>
 </bean>
 <bean id="rmLogicalIn" class="org.apache.cxf.ws.rm.RMInInterceptor">
 <property name="bus" ref="cxf"/>
 </bean>
 <bean id="rmCodec" class="org.apache.cxf.ws.rm.soap.RMSoapInterceptor"/>
 <bean id="cxf" class="org.apache.cxf.bus.CXFBusImpl">
 <property name="inInterceptors">
 <list>
 <ref bean="mapAggregator"/>
 <ref bean="mapCodec"/>
 <ref bean="rmLogicalIn"/>
 <ref bean="rmCodec"/>
 </list>
 </property>
 <property name="inFaultInterceptors">
 <list>
 <ref bean="mapAggregator"/>
 <ref bean="mapCodec"/>
 <ref bean="rmLogicalIn"/>
 <ref bean="rmCodec"/>
 </list>
 </property>
 <property name="outInterceptors">
 <list>
 <ref bean="mapAggregator"/>
 <ref bean="mapCodec"/>
 <ref bean="rmLogicalOut"/>
 <ref bean="rmCodec"/>
 </list>
 </property>
 <property name="outFaultInterceptors">
 <list>
 <ref bean="mapAggregator">
 <ref bean="mapCodec"/>
 <ref bean="rmLogicalOut"/>
 <ref bean="rmCodec"/>
 </list>
 </property>
 </bean>
</beans>

					The code shown in Example 21.1, “Enabling WS-RM Using Spring Beans” can be explained as follows:
				

					A Apache CXF configuration file is a Spring XML file. You must include an opening Spring beans element that declares the namespaces and schema files for the child elements that are encapsulated by the beans element.
				

					Configures each of the WS-Addressing interceptors—MAPAggregator and MAPCodec. For more information on WS-Addressing, see Chapter 20, Deploying WS-Addressing.
				

					Configures each of the WS-RM interceptors—RMOutInterceptor, RMInInterceptor, and RMSoapInterceptor.
				

					Adds the WS-Addressing and WS-RM interceptors to the interceptor chain for inbound messages.
				

					Adds the WS-Addressing and WS-RM interceptors to the interceptor chain for inbound faults.
				

					Adds the WS-Addressing and WS-RM interceptors to the interceptor chain for outbound messages.
				

					Adds the WS-Addressing and WS-RM interceptors to the interceptor chain for outbound faults.
				

WS-Policy framework: implicitly adding interceptors

					The WS-Policy framework provides the infrastructure and APIs that allow you to use WS-Policy. It is compliant with the November 2006 draft publications of the Web Services Policy 1.5—Framework and Web Services Policy 1.5—Attachment specifications.
				

					To enable WS-RM using the Apache CXF WS-Policy framework, do the following:
				
	
							Add the policy feature to your client and server endpoint. Example 21.2, “Configuring WS-RM using WS-Policy” shows a reference bean nested within a jaxws:feature element. The reference bean specifies the AddressingPolicy, which is defined as a separate element within the same configuration file.
						
Example 21.2. Configuring WS-RM using WS-Policy
<jaxws:client>
 <jaxws:features>
 <ref bean="AddressingPolicy"/>
 </jaxws:features>
</jaxws:client>
<wsp:Policy wsu:Id="AddressingPolicy" xmlns:wsam="http://www.w3.org/2007/02/addressing/metadata">
 <wsam:Addressing>
 <wsp:Policy>
 <wsam:NonAnonymousResponses/>
 </wsp:Policy>
 </wsam:Addressing>
</wsp:Policy>

	
							Add a reliable messaging policy to the wsdl:service element—or any other WSDL element that can be used as an attachment point for policy or policy reference elements—to your WSDL file, as shown in Example 21.3, “Adding an RM Policy to Your WSDL File”.
						
Example 21.3. Adding an RM Policy to Your WSDL File
<wsp:Policy wsu:Id="RM"
 xmlns:wsp="http://www.w3.org/2006/07/ws-policy"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">
 <wsam:Addressing xmlns:wsam="http://www.w3.org/2007/02/addressing/metadata">
 <wsp:Policy/>
 </wsam:Addressing>
 <wsrmp:RMAssertion xmlns:wsrmp="http://schemas.xmlsoap.org/ws/2005/02/rm/policy">
 <wsrmp:BaseRetransmissionInterval Milliseconds="10000"/>
 </wsrmp:RMAssertion>
</wsp:Policy>
...
<wsdl:service name="ReliableGreeterService">
 <wsdl:port binding="tns:GreeterSOAPBinding" name="GreeterPort">
 <soap:address location="http://localhost:9020/SoapContext/GreeterPort"/>
 <wsp:PolicyReference URI="#RM" xmlns:wsp="http://www.w3.org/2006/07/ws-policy"/>
 </wsdl:port>
</wsdl:service>

Runtime Control

Overview

					Several message context property values can be set in client code to control WS-RM at runtime, with key values defined by public constants in the org.apache.cxf.ws.rm.RMManager class.
				

Runtime control options

					The following table lists the keys defined by the org.apache.cxf.ws.rm.RMManager class.
				
	Key	Description
	
									WSRM_VERSION_PROPERTY
								

								 	
									String WS-RM version namespace (http://schemas.xmlsoap.org/ws/2005/02/rm/ or http://docs.oasis-open.org/ws-rx/wsrm/200702).
								

								
	
									WSRM_WSA_VERSION_PROPERTY
								

								 	
									String WS-Addressing version namespace (http://schemas.xmlsoap.org/ws/2004/08/addressing or http://www.w3.org/2005/08/addressing) - this property is ignored unless you’re using the http://schemas.xmlsoap.org/ws/2005/02/rm/ RM namespace).
								

								
	
									WSRM_LAST_MESSAGE_PROPERTY
								

								 	
									Boolean value true to tell the WS-RM code that the last message is being sent, allowing the code to close the WS-RM sequence and release resources (as of the 3.0.0 version of CXF, the WS-RM will close the RM sequence by default, when you close your client).
								

								
	
									WSRM_INACTIVITY_TIMEOUT_PROPERTY
								

								 	
									Long inactivity timeout in milliseconds.
								

								
	
									WSRM_RETRANSMISSION_INTERVAL_PROPERTY
								

								 	
									Long base retransmission interval in milliseconds.
								

								
	
									WSRM_EXPONENTIAL_BACKOFF_PROPERTY
								

								 	
									Boolean exponential back-off flag.
								

								
	
									WSRM_ACKNOWLEDGEMENT_INTERVAL_PROPERTY
								

								 	
									Long acknowledgement interval in milliseconds.
								

								

Controlling WS-RM through JMX

					You can also monitor and control many aspects of WS-RM using the JMX Management features of Apache CXF. The full list of JMX operations is defined by org.apache.cxf.ws.rm.ManagedRMManager and org.apache.cxf.ws.rm.ManagedRMEndpoint, but these operations include viewing the current RM state down to the individual message level. You can also use JXM to close or terminate a WS-RM sequence, and to receive notification of when previously-sent messages are acknowledged by the remote RM endpoint.
				

Example of JMX control

					For example, if you have the JMX server enabled in your client configuration, you could use the following code to track the last acknowledgement number received:
				
// Java
private static class AcknowledgementListener implements NotificationListener {
 private volatile long lastAcknowledgement;

 @Override
 public void handleNotification(Notification notification, Object handback) {
 if (notification instanceof AcknowledgementNotification) {
 AcknowledgementNotification ack = (AcknowledgementNotification)notification;
 lastAcknowledgement = ack.getMessageNumber();
 }
 }

 // initialize client
...
 // attach to JMX bean for notifications
 // NOTE: you must have sent at least one message to initialize RM before executing this code
 Endpoint ep = ClientProxy.getClient(client).getEndpoint();
 InstrumentationManager im = bus.getExtension(InstrumentationManager.class);
 MBeanServer mbs = im.getMBeanServer();
 RMManager clientManager = bus.getExtension(RMManager.class);
 ObjectName name = RMUtils.getManagedObjectName(clientManager, ep);
 System.out.println("Looking for endpoint name " + name);
 AcknowledgementListener listener = new AcknowledgementListener();
 mbs.addNotificationListener(name, listener, null, null);

 // send messages using RM with acknowledgement status reported to listener
...

Configuring WS-RM

					
				
Configuring Apache CXF-Specific WS-RM Attributes

Overview

						To configure the Apache CXF-specific attributes, use the rmManager Spring bean. Add the following to your configuration file:
					
	
								The http://cxf.apache.org/ws/rm/manager namespace to your list of namespaces.
							
	
								An rmManager Spring bean for the specific attribute that your want to configure.
							

						Example 21.4, “Configuring Apache CXF-Specific WS-RM Attributes” shows a simple example.
					
Example 21.4. Configuring Apache CXF-Specific WS-RM Attributes
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:wsrm-mgr="http://cxf.apache.org/ws/rm/manager"
 xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd
 http://cxf.apache.org/ws/rm/manager http://cxf.apache.org/schemas/configuration/wsrm-manager.xsd">
...
<wsrm-mgr:rmManager>
<!--
 ...Your configuration goes here
-->
</wsrm-mgr:rmManager>

Children of the rmManager Spring bean

						Table 21.2, “Children of the rmManager Spring Bean” shows the child elements of the rmManager Spring bean, defined in the http://cxf.apache.org/ws/rm/manager namespace.
					
Table 21.2. Children of the rmManager Spring Bean
	Element	Description
	
										RMAssertion
									

									 	
										An element of type RMAssertion
									

									
	
										deliveryAssurance
									

									 	
										An element of type DeliveryAssuranceType that describes the delivery assurance that should apply
									

									
	
										sourcePolicy
									

									 	
										An element of type SourcePolicyType that allows you to configure details of the RM source
									

									
	
										destinationPolicy
									

									 	
										An element of type DestinationPolicyType that allows you to configure details of the RM destination
									

									

Example

						For an example, see the section called “Maximum unacknowledged messages threshold”.
					

Configuring Standard WS-RM Policy Attributes

Overview

						You can configure standard WS-RM policy attributes in one of the following ways:
					
	
								the section called “RMAssertion in rmManager Spring bean”
							
	
								the section called “Policy within a feature”
							
	
								the section called “WSDL file”
							
	
								the section called “External attachment”
							

WS-Policy RMAssertion Children

						Table 21.3, “Children of the WS-Policy RMAssertion Element” shows the elements defined in the http://schemas.xmlsoap.org/ws/2005/02/rm/policy namespace:
					
Table 21.3. Children of the WS-Policy RMAssertion Element
	Name	Description
	
										InactivityTimeout
									

									 	
										Specifies the amount of time that must pass without receiving a message before an endpoint can consider an RM sequence to have been terminated due to inactivity.
									

									
	
										BaseRetransmissionInterval
									

									 	
										Sets the interval within which an acknowledgement must be received by the RM Source for a given message. If an acknowledgement is not received within the time set by the BaseRetransmissionInterval, the RM Source will retransmit the message.
									

									
	
										ExponentialBackoff
									

									 	
										Indicates the retransmission interval will be adjusted using the commonly known exponential backoff algorithm (Tanenbaum).
									

									
										For more information, see Computer Networks, Andrew S. Tanenbaum, Prentice Hall PTR, 2003.
									

									
	
										AcknowledgementInterval
									

									 	
										In WS-RM, acknowledgements are sent on return messages or sent stand-alone. If a return message is not available to send an acknowledgement, an RM Destination can wait for up to the acknowledgement interval before sending a stand-alone acknowledgement. If there are no unacknowledged messages, the RM Destination can choose not to send an acknowledgement.
									

									

More detailed reference information

						For more detailed reference information, including descriptions of each element’s sub-elements and attributes, please refer to http://schemas.xmlsoap.org/ws/2005/02/rm/wsrm-policy.xsd.
					

RMAssertion in rmManager Spring bean

						You can configure standard WS-RM policy attributes by adding an RMAssertion within a Apache CXF rmManager Spring bean. This is the best approach if you want to keep all of your WS-RM configuration in the same configuration file; that is, if you want to configure Apache CXF-specific attributes and standard WS-RM policy attributes in the same file.
					

						For example, the configuration in Example 21.5, “Configuring WS-RM Attributes Using an RMAssertion in an rmManager Spring Bean” shows:
					
	
								A standard WS-RM policy attribute, BaseRetransmissionInterval, configured using an RMAssertion within an rmManager Spring bean.
							
	
								An Apache CXF-specific RM attribute, intraMessageThreshold, configured in the same configuration file.
							

Example 21.5. Configuring WS-RM Attributes Using an RMAssertion in an rmManager Spring Bean
<beans xmlns:wsrm-policy="http://schemas.xmlsoap.org/ws/2005/02/rm/policy"
 xmlns:wsrm-mgr="http://cxf.apache.org/ws/rm/manager"
...>
<wsrm-mgr:rmManager id="org.apache.cxf.ws.rm.RMManager">
 <wsrm-policy:RMAssertion>
 <wsrm-policy:BaseRetransmissionInterval Milliseconds="4000"/>
 </wsrm-policy:RMAssertion>
 <wsrm-mgr:destinationPolicy>
 <wsrm-mgr:acksPolicy intraMessageThreshold="0" />
 </wsrm-mgr:destinationPolicy>
</wsrm-mgr:rmManager>
</beans>

Policy within a feature

						You can configure standard WS-RM policy attributes within features, as shown in Example 21.6, “Configuring WS-RM Attributes as a Policy within a Feature”.
					
Example 21.6. Configuring WS-RM Attributes as a Policy within a Feature
<xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:wsa="http://cxf.apache.org/ws/addressing"
 xmlns:wsp="http://www.w3.org/2006/07/ws-policy"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 xsi:schemaLocation="
http://www.w3.org/2006/07/ws-policy http://www.w3.org/2006/07/ws-policy.xsd
http://cxf.apache.org/ws/addressing http://cxf.apache.org/schema/ws/addressing.xsd
http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd
http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd">
 <jaxws:endpoint name="{http://cxf.apache.org/greeter_control}GreeterPort" createdFromAPI="true">
 <jaxws:features>
 <wsp:Policy>
 <wsrm:RMAssertion xmlns:wsrm="http://schemas.xmlsoap.org/ws/2005/02/rm/policy">
 <wsrm:AcknowledgementInterval Milliseconds="200" />
 </wsrm:RMAssertion>
 <wsam:Addressing xmlns:wsam="http://www.w3.org/2007/02/addressing/metadata">
 <wsp:Policy>
 <wsam:NonAnonymousResponses/>
 </wsp:Policy>
 </wsam:Addressing>
 </wsp:Policy>
 </jaxws:features>
 </jaxws:endpoint>
</beans>

WSDL file

						If you use the WS-Policy framework to enable WS-RM, you can configure standard WS-RM policy attributes in a WSDL file. This is a good approach if you want your service to interoperate and use WS-RM seamlessly with consumers deployed to other policy-aware Web services stacks.
					

						For an example, see the section called “WS-Policy framework: implicitly adding interceptors” where the base retransmission interval is configured in the WSDL file.
					

External attachment

						 You can configure standard WS-RM policy attributes in an external attachment file. This is a good approach if you cannot, or do not want to, change your WSDL file.
					

						Example 21.7, “Configuring WS-RM in an External Attachment” shows an external attachment that enables both WS-A and WS-RM (base retransmission interval of 30 seconds) for a specific EPR.
					
Example 21.7. Configuring WS-RM in an External Attachment
<attachments xmlns:wsp="http://www.w3.org/2006/07/ws-policy" xmlns:wsa="http://www.w3.org/2005/08/addressing">
 <wsp:PolicyAttachment>
 <wsp:AppliesTo>
 <wsa:EndpointReference>
 <wsa:Address>http://localhost:9020/SoapContext/GreeterPort</wsa:Address>
 </wsa:EndpointReference>
 </wsp:AppliesTo>
 <wsp:Policy>
 <wsam:Addressing xmlns:wsam="http://www.w3.org/2007/02/addressing/metadata">
 <wsp:Policy/>
 </wsam:Addressing>
 <wsrmp:RMAssertion xmlns:wsrmp="http://schemas.xmlsoap.org/ws/2005/02/rm/policy">
 <wsrmp:BaseRetransmissionInterval Milliseconds="30000"/>
 </wsrmp:RMAssertion>
 </wsp:Policy>
 </wsp:PolicyAttachment>
</attachments>/

WS-RM Configuration Use Cases

Overview

						This subsection focuses on configuring WS-RM attributes from a use case point of view. Where an attribute is a standard WS-RM policy attribute, defined in the http://schemas.xmlsoap.org/ws/2005/02/rm/policy/ namespace, only the example of setting it in an RMAssertion within an rmManager Spring bean is shown. For details of how to set such attributes as a policy within a feature; in a WSDL file, or in an external attachment, see the section called “Configuring Standard WS-RM Policy Attributes”.
					

						The following use cases are covered:
					
	
								the section called “Base retransmission interval”
							
	
								the section called “Exponential backoff for retransmission”
							
	
								the section called “Acknowledgement interval”
							
	
								the section called “Maximum unacknowledged messages threshold”
							
	
								the section called “Maximum length of an RM sequence”
							
	
								the section called “Message delivery assurance policies”
							

Base retransmission interval

						 The BaseRetransmissionInterval element specifies the interval at which an RM source retransmits a message that has not yet been acknowledged. It is defined in the http://schemas.xmlsoap.org/ws/2005/02/rm/wsrm-policy.xsd schema file. The default value is 3000 milliseconds.
					

						Example 21.8, “Setting the WS-RM Base Retransmission Interval” shows how to set the WS-RM base retransmission interval.
					
Example 21.8. Setting the WS-RM Base Retransmission Interval
<beans xmlns:wsrm-policy="http://schemas.xmlsoap.org/ws/2005/02/rm/policy
...>
<wsrm-mgr:rmManager id="org.apache.cxf.ws.rm.RMManager">
 <wsrm-policy:RMAssertion>
 <wsrm-policy:BaseRetransmissionInterval Milliseconds="4000"/>
 </wsrm-policy:RMAssertion>
</wsrm-mgr:rmManager>
</beans>

Exponential backoff for retransmission

						 The ExponentialBackoff element determines if successive retransmission attempts for an unacknowledged message are performed at exponential intervals.
					

						The presence of the ExponentialBackoff element enables this feature. An exponential backoff ratio of 2 is used by default. ExponentialBackoff is a flag. When the element is present, exponential backoff is enabled. When the element is absent, exponential backoff is disabled. No value is required.
					

						Example 21.9, “Setting the WS-RM Exponential Backoff Property” shows how to set the WS-RM exponential backoff for retransmission.
					
Example 21.9. Setting the WS-RM Exponential Backoff Property
<beans xmlns:wsrm-policy="http://schemas.xmlsoap.org/ws/2005/02/rm/policy
...>
<wsrm-mgr:rmManager id="org.apache.cxf.ws.rm.RMManager">
 <wsrm-policy:RMAssertion>
 <wsrm-policy:ExponentialBackoff/>
 </wsrm-policy:RMAssertion>
</wsrm-mgr:rmManager>
</beans>

Acknowledgement interval

						 The AcknowledgementInterval element specifies the interval at which the WS-RM destination sends asynchronous acknowledgements. These are in addition to the synchronous acknowledgements that it sends on receipt of an incoming message. The default asynchronous acknowledgement interval is 0 milliseconds. This means that if the AcknowledgementInterval is not configured to a specific value, acknowledgements are sent immediately (that is, at the first available opportunity).
					

						Asynchronous acknowledgements are sent by the RM destination only if both of the following conditions are met:
					
	
								The RM destination is using a non-anonymous wsrm:acksTo endpoint.
							
	
								The opportunity to piggyback an acknowledgement on a response message does not occur before the expiry of the acknowledgement interval.
							

						Example 21.10, “Setting the WS-RM Acknowledgement Interval” shows how to set the WS-RM acknowledgement interval.
					
Example 21.10. Setting the WS-RM Acknowledgement Interval
<beans xmlns:wsrm-policy="http://schemas.xmlsoap.org/ws/2005/02/rm/policy
...>
<wsrm-mgr:rmManager id="org.apache.cxf.ws.rm.RMManager">
 <wsrm-policy:RMAssertion>
 <wsrm-policy:AcknowledgementInterval Milliseconds="2000"/>
 </wsrm-policy:RMAssertion>
</wsrm-mgr:rmManager>
</beans>

Maximum unacknowledged messages threshold

						 The maxUnacknowledged attribute sets the maximum number of unacknowledged messages that can accrue per sequence before the sequence is terminated.
					

						Example 21.11, “Setting the WS-RM Maximum Unacknowledged Message Threshold” shows how to set the WS-RM maximum unacknowledged messages threshold.
					
Example 21.11. Setting the WS-RM Maximum Unacknowledged Message Threshold
<beans xmlns:wsrm-mgr="http://cxf.apache.org/ws/rm/manager
...>
<wsrm-mgr:reliableMessaging>
 <wsrm-mgr:sourcePolicy>
 <wsrm-mgr:sequenceTerminationPolicy maxUnacknowledged="20" />
 </wsrm-mgr:sourcePolicy>
</wsrm-mgr:reliableMessaging>
</beans>

Maximum length of an RM sequence

						 The maxLength attribute sets the maximum length of a WS-RM sequence. The default value is 0, which means that the length of a WS-RM sequence is unbound.
					

						When this attribute is set, the RM endpoint creates a new RM sequence when the limit is reached, and after receiving all of the acknowledgements for the previously sent messages. The new message is sent using a newsequence.
					

						Example 21.12, “Setting the Maximum Length of a WS-RM Message Sequence” shows how to set the maximum length of an RM sequence.
					
Example 21.12. Setting the Maximum Length of a WS-RM Message Sequence
<beans xmlns:wsrm-mgr="http://cxf.apache.org/ws/rm/manager
...>
<wsrm-mgr:reliableMessaging>
 <wsrm-mgr:sourcePolicy>
 <wsrm-mgr:sequenceTerminationPolicy maxLength="100" />
 </wsrm-mgr:sourcePolicy>
</wsrm-mgr:reliableMessaging>
</beans>

Message delivery assurance policies

						You can configure the RM destination to use the following delivery assurance policies:
					
	
								AtMostOnce — The RM destination delivers the messages to the application destination only once. If a message is delivered more than once an error is raised. It is possible that some messages in a sequence may not be delivered.
							
	
								AtLeastOnce — The RM destination delivers the messages to the application destination at least once. Every message sent will be delivered or an error will be raised. Some messages might be delivered more than once.
							
	
								InOrder — The RM destination delivers the messages to the application destination in the order that they are sent. This delivery assurance can be combined with the AtMostOnce or AtLeastOnce assurances.
							

						Example 21.13, “Setting the WS-RM Message Delivery Assurance Policy” shows how to set the WS-RM message delivery assurance.
					
Example 21.13. Setting the WS-RM Message Delivery Assurance Policy
<beans xmlns:wsrm-mgr="http://cxf.apache.org/ws/rm/manager
...>
<wsrm-mgr:reliableMessaging>
 <wsrm-mgr:deliveryAssurance>
 <wsrm-mgr:AtLeastOnce />
 </wsrm-mgr:deliveryAssurance>
</wsrm-mgr:reliableMessaging>
</beans>

Configuring WS-RM Persistence

Overview

					The Apache CXF WS-RM features already described in this chapter provide reliability for cases such as network failures. WS-RM persistence provides reliability across other types of failure such as an RM source or an RM destination crash.
				

					WS-RM persistence involves storing the state of the various RM endpoints in persistent storage. This enables the endpoints to continue sending and receiving messages when they are reincarnated.
				

					Apache CXF enables WS-RM persistence in a configuration file. The default WS-RM persistence store is JDBC-based. For convenience, Apache CXF includes Derby for out-of-the-box deployment. In addition, the persistent store is also exposed using a Java API. To implement your own persistence mechanism, you can implement one using this API with your preferred DB.
				
Important

						WS-RM persistence is supported for oneway calls only, and it is disabled by default.
					

How it works

					Apache CXF WS-RM persistence works as follows:
				
	
							At the RM source endpoint, an outgoing message is persisted before transmission. It is evicted from the persistent store after the acknowledgement is received.
						
	
							After a recovery from crash, it recovers the persisted messages and retransmits until all the messages have been acknowledged. At that point, the RM sequence is closed.
						
	
							At the RM destination endpoint, an incoming message is persisted, and upon a successful store, the acknowledgement is sent. When a message is successfully dispatched, it is evicted from the persistent store.
						
	
							After a recovery from a crash, it recovers the persisted messages and dispatches them. It also brings the RM sequence to a state where new messages are accepted, acknowledged, and delivered.
						

Enabling WS-persistence

					To enable WS-RM persistence, you must specify the object implementing the persistent store for WS-RM. You can develop your own or you can use the JDBC based store that comes with Apache CXF.
				

					The configuration shown in Example 21.14, “Configuration for the Default WS-RM Persistence Store” enables the JDBC-based store that comes with Apache CXF.
				
Example 21.14. Configuration for the Default WS-RM Persistence Store
<bean id="RMTxStore" class="org.apache.cxf.ws.rm.persistence.jdbc.RMTxStore"/>
<wsrm-mgr:rmManager id="org.apache.cxf.ws.rm.RMManager">
 <property name="store" ref="RMTxStore"/>
</wsrm-mgr:rmManager>

Configuring WS-persistence

					The JDBC-based store that comes with Apache CXF supports the properties shown in Table 21.4, “JDBC Store Properties”.
				
Table 21.4. JDBC Store Properties
	Attribute Name	Type	Default Setting
	
									 driverClassName
								

								 	
									String
								

								 	
									org.apache.derby.jdbc.EmbeddedDriver
								

								
	
									 userName
								

								 	
									String
								

								 	
									null
								

								
	
									 passWord
								

								 	
									String
								

								 	
									null
								

								
	
									 url
								

								 	
									String
								

								 	
									jdbc:derby:rmdb;create=true
								

								

					The configuration shown in Example 21.15, “Configuring the JDBC Store for WS-RM Persistence” enables the JDBC-based store that comes with Apache CXF, while setting the driverClassName and url to non-default values.
				
Example 21.15. Configuring the JDBC Store for WS-RM Persistence
<bean id="RMTxStore" class="org.apache.cxf.ws.rm.persistence.jdbc.RMTxStore">
 <property name="driverClassName" value="com.acme.jdbc.Driver"/>
 <property name="url" value="jdbc:acme:rmdb;create=true"/>
</bean>

Chapter 22. Enabling High Availability

Abstract

					This chapter explains how to enable and configure high availability in the Apache CXF runtime.
				

Introduction to High Availability

Overview

					Scalable and reliable applications require high availability to avoid any single point of failure in a distributed system. You can protect your system from single points of failure using replicated services.
				

					A replicated service is comprised of multiple instances, or replicas, of the same service. Together these act as a single logical service. Clients invoke requests on the replicated service, and Apache CXF delivers the requests to one of the member replicas. The routing to a replica is transparent to the client.
				

HA with static failover

					 Apache CXF supports high availability (HA) with static failover in which replica details are encoded in the service WSDL file. The WSDL file contains multiple ports, and can contain multiple hosts, for the same service. The number of replicas in the cluster remains static as long as the WSDL file remains unchanged. Changing the cluster size involves editing the WSDL file.
				

Enabling HA with Static Failover

Overview

					 To enable HA with static failover, you must do the following:
				
	
							the section called “Encode replica details in your service WSDL file”
						
	
							the section called “Add the clustering feature to your client configuration”
						

Encode replica details in your service WSDL file

					You must encode the details of the replicas in your cluster in your service WSDL file. Example 22.1, “Enabling HA with Static Failover: WSDL File” shows a WSDL file extract that defines a service cluster of three replicas.
				
Example 22.1. Enabling HA with Static Failover: WSDL File
<wsdl:service name="ClusteredService">
 <wsdl:port binding="tns:Greeter_SOAPBinding" name="Replica1">
 <soap:address location="http://localhost:9001/SoapContext/Replica1"/>
 </wsdl:port>

 <wsdl:port binding="tns:Greeter_SOAPBinding" name="Replica2">
 <soap:address location="http://localhost:9002/SoapContext/Replica2"/>
 </wsdl:port>

 <wsdl:port binding="tns:Greeter_SOAPBinding" name="Replica3">
 <soap:address location="http://localhost:9003/SoapContext/Replica3"/>
 </wsdl:port>

</wsdl:service>

					The WSDL extract shown in Example 22.1, “Enabling HA with Static Failover: WSDL File” can be explained as follows:
				

					Defines a service, ClusterService, which is exposed on three ports:
				
	
							Replica1
						
	
							Replica2
						
	
							Replica3
						

					Defines Replica1 to expose the ClusterService as a SOAP over HTTP endpoint on port 9001.
				

					Defines Replica2 to expose the ClusterService as a SOAP over HTTP endpoint on port 9002.
				

					Defines Replica3 to expose the ClusterService as a SOAP over HTTP endpoint on port 9003.
				

Add the clustering feature to your client configuration

					 In your client configuration file, add the clustering feature as shown in Example 22.2, “Enabling HA with Static Failover: Client Configuration”.
				
Example 22.2. Enabling HA with Static Failover: Client Configuration
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 xmlns:clustering="http://cxf.apache.org/clustering"
 xsi:schemaLocation="http://cxf.apache.org/jaxws
 http://cxf.apache.org/schemas/jaxws.xsd
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd">

 <jaxws:client name="{http://apache.org/hello_world_soap_http}Replica1"
 createdFromAPI="true">
 <jaxws:features>
 <clustering:failover/>
 </jaxws:features>
 </jaxws:client>

 <jaxws:client name="{http://apache.org/hello_world_soap_http}Replica2"
 createdFromAPI="true">
 <jaxws:features>
 <clustering:failover/>
 </jaxws:features>
 </jaxws:client>

 <jaxws:client name="{http://apache.org/hello_world_soap_http}Replica3"
 createdFromAPI="true">
 <jaxws:features>
 <clustering:failover/>
 </jaxws:features>
 </jaxws:client>

</beans>

Configuring HA with Static Failover

Overview

					 By default, HA with static failover uses a sequential strategy when selecting a replica service if the original service with which a client is communicating becomes unavailable, or fails. The sequential strategy selects a replica service in the same sequential order every time it is used. Selection is determined by Apache CXF’s internal service model and results in a deterministic failover pattern.
				

Configuring a random strategy

					 You can configure HA with static failover to use a random strategy instead of the sequential strategy when selecting a replica. The random strategy selects a random replica service each time a service becomes unavailable, or fails. The choice of failover target from the surviving members in a cluster is entirely random.
				

					To configure the random strategy, add the configuration shown in Example 22.3, “Configuring a Random Strategy for Static Failover” to your client configuration file.
				
Example 22.3. Configuring a Random Strategy for Static Failover
<beans ...>
 <bean id="Random" class="org.apache.cxf.clustering.RandomStrategy"/>

 <jaxws:client name="{http://apache.org/hello_world_soap_http}Replica3"
 createdFromAPI="true">
 <jaxws:features>
 <clustering:failover>
 <clustering:strategy>
 <ref bean="Random"/>
 </clustering:strategy>
 </clustering:failover>
 </jaxws:features>
 </jaxws:client>
</beans>

					The configuration shown in Example 22.3, “Configuring a Random Strategy for Static Failover” can be explained as follows:
				

					Defines a Random bean and implementation class that implements the random strategy.
				

					Specifies that the random strategy is used when selecting a replica.
				

Chapter 23. Apache CXF Binding IDs

Table of Binding IDs

Table 23.1. Binding IDs for Message Bindings
	Binding	ID
	
								CORBA
							

							 	
								http://cxf.apache.org/bindings/corba
							

							
	
								HTTP/REST
							

							 	
								http://apache.org/cxf/binding/http
							

							
	
								SOAP 1.1
							

							 	
								http://schemas.xmlsoap.org/wsdl/soap/http
							

							
	
								SOAP 1.1 w/ MTOM
							

							 	
								http://schemas.xmlsoap.org/wsdl/soap/http?mtom=true
							

							
	
								SOAP 1.2
							

							 	
								http://www.w3.org/2003/05/soap/bindings/HTTP/
							

							
	
								SOAP 1.2 w/ MTOM
							

							 	
								http://www.w3.org/2003/05/soap/bindings/HTTP/?mtom=true
							

							
	
								XML
							

							 	
								http://cxf.apache.org/bindings/xformat
							

							

Appendix A. Using the Maven OSGi Tooling

Abstract

					Manually creating a bundle, or a collection of bundles, for a large project can be cumbersome. The Maven bundle plug-in makes the job easier by automating the process and providing a number of shortcuts for specifying the contents of the bundle manifest.
				

The Maven Bundle Plug-In

					The Red Hat Fuse OSGi tooling uses the Maven bundle plug-in from Apache Felix. The bundle plug-in is based on the bnd tool from Peter Kriens. It automates the construction of OSGi bundle manifests by introspecting the contents of the classes being packaged in the bundle. Using the knowledge of the classes contained in the bundle, the plug-in can calculate the proper values to populate the Import-Packages and the Export-Package properties in the bundle manifest. The plug-in also has default values that are used for other required properties in the bundle manifest.
				

					To use the bundle plug-in, do the following:
				
	
							the section called “Setting up a Red Hat Fuse OSGi project” the bundle plug-in to your project’s POM file.
						
	
							the section called “Configuring the Bundle Plug-In” the plug-in to correctly populate your bundle’s manifest.
						

Setting up a Red Hat Fuse OSGi project

Overview

					A Maven project for building an OSGi bundle can be a simple single level project. It does not require any sub-projects. However, it does require that you do the following:
				
	
							Add the bundle plug-in to your POM.
						
	
							Instruct Maven to package the results as an OSGi bundle.
						

Note

						There are several Maven archetypes you can use to set up your project with the appropriate settings.
					

Directory structure

					A project that constructs an OSGi bundle can be a single level project. It only requires that you have a top-level POM file and a src folder. As in all Maven projects, you place all Java source code in the src/java folder, and you place any non-Java resources in the src/resources folder.
				

					Non-Java resources include Spring configuration files, JBI endpoint configuration files, and WSDL contracts.
				
Note

						Red Hat Fuse OSGi projects that use Apache CXF, Apache Camel, or another Spring configured bean also include a beans.xml file located in the src/resources/META-INF/spring folder.
					

Adding a bundle plug-in

					 Before you can use the bundle plug-in you must add a dependency on Apache Felix. After you add the dependency, you can add the bundle plug-in to the plug-in portion of the POM.
				

					Example A.1, “Adding an OSGi bundle plug-in to a POM” shows the POM entries required to add the bundle plug-in to your project.
				
Example A.1. Adding an OSGi bundle plug-in to a POM
...
<dependencies>
 <dependency>
 <groupId>org.apache.felix</groupId>
 <artifactId>org.osgi.core</artifactId>
 <version>1.0.0</version>
 </dependency>
...
</dependencies>
...
<build>
 <plugins>
 <plugin>
 <groupId>org.apache.felix</groupId>
 <artifactId>maven-bundle-plugin</artifactId>
 <configuration>
 <instructions>
 <Bundle-SymbolicName>${pom.artifactId}</Bundle-SymbolicName>
 <Import-Package>*,org.apache.camel.osgi</Import-Package>
 <Private-Package>org.apache.servicemix.examples.camel</Private-Package>
 </instructions>
 </configuration>
 </plugin>
 </plugins>
</build>
...

					The entries in Example A.1, “Adding an OSGi bundle plug-in to a POM” do the following:
				

					Adds the dependency on Apache Felix
				

					Adds the bundle plug-in to your project
				

					Configures the plug-in to use the project’s artifact ID as the bundle’s symbolic name
				

					Configures the plug-in to include all Java packages imported by the bundled classes; also imports the org.apache.camel.osgi package
				

					Configures the plug-in to bundle the listed class, but not to include them in the list of exported packages
				
Note

						Edit the configuration to meet the requirements of your project.
					

					For more information on configuring the bundle plug-in, see the section called “Configuring the Bundle Plug-In”.
				

Activating a bundle plug-in

					To have Maven use the bundle plug-in, instruct it to package the results of the project as a bundle. Do this by setting the POM file’s packaging element to bundle.
				

Useful Maven archetypes

					 There are several Maven archetypes available to generate a project that is preconfigured to use the bundle plug-in:
				
	
							the section called “Spring OSGi archetype”
						
	
							the section called “Apache CXF code-first archetype”
						
	
							the section called “Apache CXF wsdl-first archetype”
						
	
							the section called “Apache Camel archetype”
						

Spring OSGi archetype

					The Spring OSGi archetype creates a generic project for building an OSGi project using Spring DM, as shown:
				
org.springframework.osgi/spring-bundle-osgi-archetype/1.1.2

					You invoke the archetype using the following command:
				
mvn archetype:generate -DarchetypeGroupId=org.springframework.osgi -DarchetypeArtifactId=spring-osgi-bundle-archetype -DarchetypeVersion=1.1.2 -DgroupId=groupId -DartifactId=artifactId -Dversion=version

Apache CXF code-first archetype

					The Apache CXF code-first archetype creates a project for building a service from Java, as shown:
				
org.apache.servicemix.tooling/servicemix-osgi-cxf-code-first-archetype/2010.02.0-fuse-02-00

					You invoke the archetype using the following command:
				
mvn archetype:generate -DarchetypeGroupId=org.apache.servicemix.tooling -DarchetypeArtifactId=servicemix-osgi-cxf-code-first-archetype -DarchetypeVersion=2010.02.0-fuse-02-00 -DgroupId=groupId -DartifactId=artifactId -Dversion=version

Apache CXF wsdl-first archetype

					The Apache CXF wsdl-first archetype creates a project for creating a service from WSDL, as shown:
				
org.apache.servicemix.tooling/servicemix-osgi-cxf-wsdl-first-archetype/2010.02.0-fuse-02-00

					You invoke the archetype using the following command:
				
mvn archetype:generate -DarchetypeGroupId=org.apache.servicemix.tooling -DarchetypeArtifactId=servicemix-osgi-cxf-wsdl-first-archetype -DarchetypeVersion=2010.02.0-fuse-02-00 -DgroupId=groupId -DartifactId=artifactId -Dversion=version

Apache Camel archetype

					The Apache Camel archetype creates a project for building a route that is deployed into Red Hat Fuse, as shown:
				
org.apache.servicemix.tooling/servicemix-osgi-camel-archetype/2010.02.0-fuse-02-00

					You invoke the archetype using the following command:
				
mvn archetype:generate -DarchetypeGroupId=org.apache.servicemix.tooling -DarchetypeArtifactId=servicemix-osgi-camel-archetype -DarchetypeVersion=2010.02.0-fuse-02-00 -DgroupId=groupId -DartifactId=artifactId -Dversion=version

Configuring the Bundle Plug-In

Overview

					A bundle plug-in requires very little information to function. All of the required properties use default settings to generate a valid OSGi bundle.
				

					While you can create a valid bundle using just the default values, you will probably want to modify some of the values. You can specify most of the properties inside the plug-in’s instructions element.
				

Configuration properties

					Some of the commonly used configuration properties are:
				
	
							Bundle-SymbolicName
						
	
							Bundle-Name
						
	
							Bundle-Version
						
	
							Export-Package
						
	
							Private-Package
						
	
							Import-Package
						

Setting a bundle’s symbolic name

					 By default, the bundle plug-in sets the value for the Bundle-SymbolicName property to groupId + "." + artifactId, with the following exceptions:
				
	
							If groupId has only one section (no dots), the first package name with classes is returned.
						

							For example, if the group Id is commons-logging:commons-logging, the bundle’s symbolic name is org.apache.commons.logging.
						

	
							If artifactId is equal to the last section of groupId, then groupId is used.
						

							For example, if the POM specifies the group ID and artifact ID as org.apache.maven:maven, the bundle’s symbolic name is org.apache.maven.
						

	
							If artifactId starts with the last section of groupId, that portion is removed.
						

							For example, if the POM specifies the group ID and artifact ID as org.apache.maven:maven-core, the bundle’s symbolic name is org.apache.maven.core.
						

					To specify your own value for the bundle’s symbolic name, add a Bundle-SymbolicName child in the plug-in’s instructions element, as shown in Example A.2, “Setting a bundle’s symbolic name”.
				
Example A.2. Setting a bundle’s symbolic name
<plugin>
 <groupId>org.apache.felix</groupId>
 <artifactId>maven-bundle-plugin</artifactId>
 <configuration>
 <instructions>
 <Bundle-SymbolicName>${project.artifactId}</Bundle-SymbolicName>
 ...
 </instructions>
 </configuration>
</plugin>

Setting a bundle’s name

					 By default, a bundle’s name is set to ${project.name}.
				

					To specify your own value for the bundle’s name, add a Bundle-Name child to the plug-in’s instructions element, as shown in Example A.3, “Setting a bundle’s name”.
				
Example A.3. Setting a bundle’s name
<plugin>
 <groupId>org.apache.felix</groupId>
 <artifactId>maven-bundle-plugin</artifactId>
 <configuration>
 <instructions>
 <Bundle-Name>JoeFred</Bundle-Name>
 ...
 </instructions>
 </configuration>
</plugin>

Setting a bundle’s version

					 By default, a bundle’s version is set to ${project.version}. Any dashes (-) are replaced with dots (.) and the number is padded up to four digits. For example, 4.2-SNAPSHOT becomes 4.2.0.SNAPSHOT.
				

					To specify your own value for the bundle’s version, add a Bundle-Version child to the plug-in’s instructions element, as shown in Example A.4, “Setting a bundle’s version”.
				
Example A.4. Setting a bundle’s version
<plugin>
 <groupId>org.apache.felix</groupId>
 <artifactId>maven-bundle-plugin</artifactId>
 <configuration>
 <instructions>
 <Bundle-Version>1.0.3.1</Bundle-Version>
 ...
 </instructions>
 </configuration>
</plugin>

Specifying exported packages

					 By default, the OSGi manifest’s Export-Package list is populated by all of the packages in your local Java source code (under src/main/java), except for the default package, ., and any packages containing .impl or .internal.
				
Important

						If you use a Private-Package element in your plug-in configuration and you do not specify a list of packages to export, the default behavior includes only the packages listed in the Private-Package element in the bundle. No packages are exported.
					

					The default behavior can result in very large packages and in exporting packages that should be kept private. To change the list of exported packages you can add an Export-Package child to the plug-in’s instructions element.
				

					The Export-Package element specifies a list of packages that are to be included in the bundle and that are to be exported. The package names can be specified using the * wildcard symbol. For example, the entry com.fuse.demo.* includes all packages on the project’s classpath that start with com.fuse.demo.
				

					You can specify packages to be excluded be prefixing the entry with !. For example, the entry !com.fuse.demo.private excludes the package com.fuse.demo.private.
				

					When excluding packages, the order of entries in the list is important. The list is processed in order from the beginning and any subsequent contradicting entries are ignored.
				

					For example, to include all packages starting with com.fuse.demo except the package com.fuse.demo.private, list the packages using:
				
!com.fuse.demo.private,com.fuse.demo.*

					However, if you list the packages using com.fuse.demo.*,!com.fuse.demo.private, then com.fuse.demo.private is included in the bundle because it matches the first pattern.
				

Specifying private packages

					 If you want to specify a list of packages to include in a bundle without exporting them, you can add a Private-Package instruction to the bundle plug-in configuration. By default, if you do not specify a Private-Package instruction, all packages in your local Java source are included in the bundle.
				
Important

						If a package matches an entry in both the Private-Package element and the Export-Package element, the Export-Package element takes precedence. The package is added to the bundle and exported.
					

					The Private-Package element works similarly to the Export-Package element in that you specify a list of packages to be included in the bundle. The bundle plug-in uses the list to find all classes on the project’s classpath that are to be included in the bundle. These packages are packaged in the bundle, but not exported (unless they are also selected by the Export-Package instruction).
				

					Example A.5, “Including a private package in a bundle” shows the configuration for including a private package in a bundle
				
Example A.5. Including a private package in a bundle
<plugin>
 <groupId>org.apache.felix</groupId>
 <artifactId>maven-bundle-plugin</artifactId>
 <configuration>
 <instructions>
 <Private-Package>org.apache.cxf.wsdlFirst.impl</Private-Package>
 ...
 </instructions>
 </configuration>
</plugin>

Specifying imported packages

					 By default, the bundle plug-in populates the OSGi manifest’s Import-Package property with a list of all the packages referred to by the contents of the bundle.
				

					While the default behavior is typically sufficient for most projects, you might find instances where you want to import packages that are not automatically added to the list. The default behavior can also result in unwanted packages being imported.
				

					To specify a list of packages to be imported by the bundle, add an Import-Package child to the plug-in’s instructions element. The syntax for the package list is the same as for the Export-Package element and the Private-Package element.
				
Important

						When you use the Import-Package element, the plug-in does not automatically scan the bundle’s contents to determine if there are any required imports. To ensure that the contents of the bundle are scanned, you must place an * as the last entry in the package list.
					

					Example A.6, “Specifying the packages imported by a bundle” shows the configuration for specifying the packages imported by a bundle
				
Example A.6. Specifying the packages imported by a bundle
<plugin>
 <groupId>org.apache.felix</groupId>
 <artifactId>maven-bundle-plugin</artifactId>
 <configuration>
 <instructions>
 <Import-Package>javax.jws, javax.wsdl, org.apache.cxf.bus, org.apache.cxf.bus.spring, org.apache.cxf.bus.resource, org.apache.cxf.configuration.spring, org.apache.cxf.resource, org.springframework.beans.factory.config, * </Import-Package>
 ...
 </instructions>
 </configuration>
</plugin>

More information

					For more information on configuring a bundle plug-in, see:
				
	
							olink:OsgiDependencies/OsgiDependencies
						
	
							Apache Felix documentation
						
	
							Peter Kriens' aQute Software Consultancy web site
						

Part V. Developing Applications Using JAX-WS

				This guide describes how to develop Web services using the standard JAX-WS APIs.
			

Chapter 24. Bottom-Up Service Development

Abstract

					There are many instances where you have Java code that already implements a set of functionality that you want to expose as part of a service oriented application. You may also simply want to avoid using WSDL to define your interface. Using JAX-WS annotations, you can add the information required to service enable a Java class. You can also create a Service Endpoint Interface (SEI) that can be used in place of a WSDL contract. If you want a WSDL contract, Apache CXF provides tools to generate a contract from annotated Java code.
				

Introduction to JAX-WS Service Development

					To create a service starting from Java you must do the following:
				
	
							the section called “Creating the SEI” a Service Endpoint Interface (SEI) that defines the methods you want to expose as a service.
						
Note

								You can work directly from a Java class, but working from an interface is the recommended approach. Interfaces are better suited for sharing with the developers who are responsible for developing the applications consuming your service. The interface is smaller and does not provide any of the service’s implementation details.
							

	
							the section called “Annotating the Code” the required annotations to your code.
						
	
							the section called “Generating WSDL” the WSDL contract for your service.
						
Note

								If you intend to use the SEI as the service’s contract, it is not necessary to generate a WSDL contract.
							

	
							Chapter 31, Publishing a Service the service as a service provider.
						

Creating the SEI

					
				
Overview

					The service endpoint interface (SEI) is the piece of Java code that is shared between a service implementation and the consumers that make requests on that service. The SEI defines the methods implemented by the service and provides details about how the service will be exposed as an endpoint. When starting with a WSDL contract, the SEI is generated by the code generators. However, when starting from Java, it is the developer’s responsibility to create the SEI. There are two basic patterns for creating an SEI:
				
	
							Green field development — In this pattern, you are developing a new service without any existing Java code or WSDL. It is best to start by creating the SEI. You can then distribute the SEI to any developers that are responsible for implementing the service providers and consumers that use the SEI.
						
Note

								The recommended way to do green field service development is to start by creating a WSDL contract that defines the service and its interfaces. See Chapter 26, A Starting Point WSDL Contract.
							

	
							 Service enablement — In this pattern, you typically have an existing set of functionality that is implemented as a Java class, and you want to service enable it. This means that you must do two things:
						
	
									Create an SEI that contains only the operations that are going to be exposed as part of the service.
								
	
									Modify the existing Java class so that it implements the SEI.
								
Note

										Although you can add the JAX-WS annotations to a Java class, it is not recommended.
									

Writing the interface

					 The SEI is a standard Java interface. It defines a set of methods that a class implements. It can also define a number of member fields and constants to which the implementing class has access.
				

					In the case of an SEI the methods defined are intended to be mapped to operations exposed by a service. The SEI corresponds to a wsdl:portType element. The methods defined by the SEI correspond to wsdl:operation elements in the wsdl:portType element.
				
Note

						JAX-WS defines an annotation that allows you to specify methods that are not exposed as part of a service. However, the best practice is to leave those methods out of the SEI.
					

					Example 24.1, “Simple SEI” shows a simple SEI for a stock updating service.
				
Example 24.1. Simple SEI
package com.fusesource.demo;

public interface quoteReporter
{
 public Quote getQuote(String ticker);
}

Implementing the interface

					 Because the SEI is a standard Java interface, the class that implements it is a standard Java class. If you start with a Java class you must modify it to implement the interface. If you start with the SEI, the implementation class implements the SEI.
				

					Example 24.2, “Simple Implementation Class” shows a class for implementing the interface in Example 24.1, “Simple SEI”.
				
Example 24.2. Simple Implementation Class
package com.fusesource.demo;

import java.util.*;

public class stockQuoteReporter implements quoteReporter
{
 ...
public Quote getQuote(String ticker)
 {
 Quote retVal = new Quote();
 retVal.setID(ticker);
 retVal.setVal(Board.check(ticker));[1]
 Date retDate = new Date();
 retVal.setTime(retDate.toString());
 return(retVal);
 }
}

Annotating the Code

Overview of JAX-WS Annotations

						 The JAX-WS annotations specify the metadata used to map the SEI to a fully specified service definition. Among the information provided in the annotations are the following:
					
	
								The target namespace for the service.
							
	
								The name of the class used to hold the request message
							
	
								The name of the class used to hold the response message
							
	
								If an operation is a one way operation
							
	
								The binding style the service uses
							
	
								The name of the class used for any custom exceptions
							
	
								The namespaces under which the types used by the service are defined
							

Note

							Most of the annotations have sensible defaults and it is not necessary to provide values for them. However, the more information you provide in the annotations, the better your service definition is specified. A well-specified service definition increases the likelihood that all parts of a distributed application will work together.
						

Required Annotations

Overview

						In order to create a service from Java code you are only required to add one annotation to your code. You must add the @WebService annotation on both the SEI and the implementation class.
					

The @WebService annotation

						 The @WebService annotation is defined by the javax.jws.WebService interface and it is placed on an interface or a class that is intended to be used as a service. @WebService has the properties described in Table 24.1, “@WebService Properties”
					
Table 24.1. @WebService Properties
	Property	Description
	
										 name
									

									 	
										Specifies the name of the service interface. This property is mapped to the name attribute of the wsdl:portType element that defines the service’s interface in a WSDL contract. The default is to append PortType to the name of the implementation class. [a]
									

									
	
										 targetNamespace
									

									 	
										Specifies the target namespace where the service is defined. If this property is not specified, the target namespace is derived from the package name.
									

									
	
										 serviceName
									

									 	
										Specifies the name of the published service. This property is mapped to the name attribute of the wsdl:service element that defines the published service. The default is to use the name of the service’s implementation class.
									

									
	
										 wsdlLocation
									

									 	
										Specifies the URL where the service’s WSDL contract is stored. This must be specified using a relative URL. The default is the URL where the service is deployed.
									

									
	
										 endpointInterface
									

									 	
										Specifies the full name of the SEI that the implementation class implements. This property is only specified when the attribute is used on a service implementation class.
									

									
	
										 portName
									

									 	
										Specifies the name of the endpoint at which the service is published. This property is mapped to the name attribute of the wsdl:port element that specifies the endpoint details for a published service. The default is the append Port to the name of the service’s implementation class.
									

									
	[a]
											When you generate WSDL from an SEI the interface’s name is used in place of the implementation class' name.
										

Note

							It is not necessary to provide values for any of the @WebService annotation’s properties. However, it is recommended that you provide as much information as you can.
						

Annotating the SEI

						 The SEI requires that you add the @WebService annotation. Because the SEI is the contract that defines the service, you should specify as much detail as possible about the service in the @WebService annotation’s properties.
					

						Example 24.3, “Interface with the @WebService Annotation” shows the interface defined in Example 24.1, “Simple SEI” with the @WebService annotation.
					
Example 24.3. Interface with the @WebService Annotation
package com.fusesource.demo;

import javax.jws.*;

@WebService(name="quoteUpdater",
 targetNamespace="http:\\demos.redhat.com",
	 serviceName="updateQuoteService",
 wsdlLocation="http:\\demos.redhat.com\quoteExampleService?wsdl",
 portName="updateQuotePort")
public interface quoteReporter
{
 public Quote getQuote(String ticker);
}

						The @WebService annotation in Example 24.3, “Interface with the @WebService Annotation” does the following:
					

						Specifies that the value of the name attribute of the wsdl:portType element defining the service interface is quoteUpdater.
					

						Specifies that the target namespace of the service is http:\\demos.redhat.com.
					

						Specifies that the value of the name of the wsdl:service element defining the published service is updateQuoteService.
					

						Specifies that the service will publish its WSDL contract at http:\\demos.redhat.com\quoteExampleService?wsdl.
					

						Specifies that the value of the name attribute of the wsdl:port element defining the endpoint exposing the service is updateQuotePort.
					

Annotating the service implementation

						 In addition to annotating the SEI with the @WebService annotation, you also must annotate the service implementation class with the @WebService annotation. When adding the annotation to the service implementation class you only need to specify the endpointInterface property. As shown in Example 24.4, “Annotated Service Implementation Class” the property must be set to the full name of the SEI.
					
Example 24.4. Annotated Service Implementation Class
package org.eric.demo;

import javax.jws.*;

@WebService(endpointInterface="com.fusesource.demo.quoteReporter")
public class stockQuoteReporter implements quoteReporter
{
public Quote getQuote(String ticker)
 {
 ...
 }
}

Optional Annotations

Abstract

							While the @WebService annotation is sufficient for service enabling a Java interface or a Java class, it does not fully describe how the service will be exposed as a service provider. The JAX-WS programming model uses a number of optional annotations for adding details about your service, such as the binding it uses, to the Java code. You add these annotations to the service’s SEI.
						

							The more details you provide in the SEI the easier it is for developers to implement applications that can use the functionality it defines. It also makes the WSDL documents generated by the tools more specific.
						

Overview

Defining the Binding Properties with Annotations

							If you are using a SOAP binding for your service, you can use JAX-WS annotations to specify a number of the bindings properties. These properties correspond directly to the properties you can specify in a service’s WSDL contract. Some of the settings, such as the parameter style, can restrict how you implement a method. These settings can also effect which annotations can be used when annotating method parameters.
						

The @SOAPBinding annotation

						 The @SOAPBinding annotation is defined by the javax.jws.soap.SOAPBinding interface. It provides details about the SOAP binding used by the service when it is deployed. If the @SOAPBinding annotation is not specified, a service is published using a wrapped doc/literal SOAP binding.
					

						You can put the @SOAPBinding annotation on the SEI and any of the SEI’s methods. When it is used on a method, setting of the method’s @SOAPBinding annotation take precedence.
					

						Table 24.2, “@SOAPBinding Properties” shows the properties for the @SOAPBinding annotation.
					
Table 24.2. @SOAPBinding Properties
	Property	Values	Description
	
										 style
									

									 	
										Style.DOCUMENT (default)
									

									
										Style.RPC
									

									 	
										Specifies the style of the SOAP message. If RPC style is specified, each message part within the SOAP body is a parameter or return value and appears inside a wrapper element within the soap:body element. The message parts within the wrapper element correspond to operation parameters and must appear in the same order as the parameters in the operation. If DOCUMENT style is specified, the contents of the SOAP body must be a valid XML document, but its form is not as tightly constrained.
									

									
	
										 use
									

									 	
										Use.LITERAL (default)
									

									
										Use.ENCODED[a]
									

									 	
										Specifies how the data of the SOAP message is streamed.
									

									
	
										 parameterStyle [b]
									

									 	
										ParameterStyle.BARE
									

									
										ParameterStyle.WRAPPED (default)
									

									 	
										Specifies how the method parameters, which correspond to message parts in a WSDL contract, are placed into the SOAP message body. If BARE is specified, each parameter is placed into the message body as a child element of the message root. If WRAPPED is specified, all of the input parameters are wrapped into a single element on a request message and all of the output parameters are wrapped into a single element in the response message.
									

									
	[a]
											Use.ENCODED is not currently supported.
										

[b]
											If you set the style to RPC you must use the WRAPPED parameter style.
										

Document bare style parameters

						Document bare style is the most direct mapping between Java code and the resulting XML representation of the service. When using this style, the schema types are generated directly from the input and output parameters defined in the operation’s parameter list.
					

						You specify you want to use bare document\literal style by using the @SOAPBinding annotation with its style property set to Style.DOCUMENT, and its parameterStyle property set to ParameterStyle.BARE.
					

						To ensure that an operation does not violate the restrictions of using document style when using bare parameters, your operations must adhere to the following conditions:
					
	
								The operation must have no more than one input or input/output parameter.
							
	
								If the operation has a return type other than void, it must not have any output or input/output parameters.
							
	
								If the operation has a return type of void, it must have no more than one output or input/output parameter.
							

Note

							Any parameters that are placed in the SOAP header using the @WebParam annotation or the @WebResult annotation are not counted against the number of allowed parameters.
						

Document wrapped parameters

						Document wrapped style allows a more RPC like mapping between the Java code and the resulting XML representation of the service. When using this style, the parameters in the method’s parameter list are wrapped into a single element by the binding. The disadvantage of this is that it introduces an extra-layer of indirection between the Java implementation and how the messages are placed on the wire.
					

						To specify that you want to use wrapped document\literal style use the @SOAPBinding annotation with its style property set to Style.DOCUMENT, and its parameterStyle property set to ParameterStyle.WRAPPED.
					

						You have some control over how the wrappers are generated by using the the section called “The @RequestWrapper annotation” annotation and the the section called “The @ResponseWrapper annotation” annotation.
					

Example

						Example 24.5, “Specifying a Document Bare SOAP Binding with the SOAP Binding Annotation” shows an SEI that uses document bare SOAP messages.
					
Example 24.5. Specifying a Document Bare SOAP Binding with the SOAP Binding Annotation
package org.eric.demo;

import javax.jws.*;
import javax.jws.soap.*;
import javax.jws.soap.SOAPBinding.*;

@WebService(name="quoteReporter")
@SOAPBinding(parameterStyle=ParameterStyle.BARE)
public interface quoteReporter
{
 ...
}

Overview

Defining Operation Properties with Annotations

							When the runtime maps your Java method definitions into XML operation definitions it provides details such as:
						
	
								What the exchanged messages look like in XML
							
	
								If the message can be optimized as a one way message
							
	
								The namespaces where the messages are defined
							

The @WebMethod annotation

						 The @WebMethod annotation is defined by the javax.jws.WebMethod interface. It is placed on the methods in the SEI. The @WebMethod annotation provides the information that is normally represented in the wsdl:operation element describing the operation to which the method is associated.
					

						Table 24.3, “@WebMethod Properties” describes the properties of the @WebMethod annotation.
					
Table 24.3. @WebMethod Properties
	Property	Description
	
										 operationName
									

									 	
										Specifies the value of the associated wsdl:operation element’s name. The default value is the name of the method.
									

									
	
										 action
									

									 	
										Specifies the value of the soapAction attribute of the soap:operation element generated for the method. The default value is an empty string.
									

									
	
										 exclude
									

									 	
										Specifies if the method should be excluded from the service interface. The default is false.
									

									

The @RequestWrapper annotation

						 The @RequestWrapper annotation is defined by the javax.xml.ws.RequestWrapper interface. It is placed on the methods in the SEI. The @RequestWrapper annotation specifies the Java class implementing the wrapper bean for the method parameters of the request message starting a message exchange. It also specifies the element names, and namespaces, used by the runtime when marshalling and unmarshalling the request messages.
					

						Table 24.4, “@RequestWrapper Properties” describes the properties of the @RequestWrapper annotation.
					
Table 24.4. @RequestWrapper Properties
	Property	Description
	
										 localName
									

									 	
										Specifies the local name of the wrapper element in the XML representation of the request message. The default value is either the name of the method, or the value of the the section called “The @WebMethod annotation” annotation’s operationName property.
									

									
	
										 targetNamespace
									

									 	
										Specifies the namespace under which the XML wrapper element is defined. The default value is the target namespace of the SEI.
									

									
	
										 className
									

									 	
										Specifies the full name of the Java class that implements the wrapper element.
									

									

Note

							Only the className property is required.
						

Important

							If the method is also annotated with the @SOAPBinding annotation, and its parameterStyle property is set to ParameterStyle.BARE, this annotation is ignored.
						

The @ResponseWrapper annotation

						 The @ResponseWrapper annotation is defined by the javax.xml.ws.ResponseWrapper interface. It is placed on the methods in the SEI. The @ResponseWrapper specifies the Java class implementing the wrapper bean for the method parameters in the response message in the message exchange. It also specifies the element names, and namespaces, used by the runtime when marshaling and unmarshalling the response messages.
					

						Table 24.5, “@ResponseWrapper Properties” describes the properties of the @ResponseWrapper annotation.
					
Table 24.5. @ResponseWrapper Properties
	Property	Description
	
										 localName
									

									 	
										Specifies the local name of the wrapper element in the XML representation of the response message. The default value is either the name of the method with Response appended, or the value of the the section called “The @WebMethod annotation” annotation’s operationName property with Response appended.
									

									
	
										 targetNamespace
									

									 	
										Specifies the namespace where the XML wrapper element is defined. The default value is the target namespace of the SEI.
									

									
	
										 className
									

									 	
										Specifies the full name of the Java class that implements the wrapper element.
									

									

Note

							Only the className property is required.
						

Important

							If the method is also annotated with the @SOAPBinding annotation and its parameterStyle property is set to ParameterStyle.BARE, this annotation is ignored.
						

The @WebFault annotation

						 The @WebFault annotation is defined by the javax.xml.ws.WebFault interface. It is placed on exceptions that are thrown by your SEI. The @WebFault annotation is used to map the Java exception to a wsdl:fault element. This information is used to marshall the exceptions into a representation that can be processed by both the service and its consumers.
					

						Table 24.6, “@WebFault Properties” describes the properties of the @WebFault annotation.
					
Table 24.6. @WebFault Properties
	Property	Description
	
										 name
									

									 	
										Specifies the local name of the fault element.
									

									
	
										 targetNamespace
									

									 	
										Specifies the namespace under which the fault element is defined. The default value is the target namespace of the SEI.
									

									
	
										 faultName
									

									 	
										Specifies the full name of the Java class that implements the exception.
									

									

Important

							The name property is required.
						

The @Oneway annotation

						 The @Oneway annotation is defined by the javax.jws.Oneway interface. It is placed on the methods in the SEI that will not require a response from the service. The @Oneway annotation tells the run time that it can optimize the execution of the method by not waiting for a response and by not reserving any resources to process a response.
					

						This annotation can only be used on methods that meet the following criteria:
					
	
								They return void
							
	
								They have no parameters that implement the Holder interface
							
	
								They do not throw any exceptions that can be passed back to a consumer
							

Example

						Example 24.6, “SEI with Annotated Methods” shows an SEI with its methods annotated.
					
Example 24.6. SEI with Annotated Methods
package com.fusesource.demo;

import javax.jws.*;
import javax.xml.ws.*;

@WebService(name="quoteReporter")
public interface quoteReporter
{
 @WebMethod(operationName="getStockQuote")
 @RequestWrapper(targetNamespace="http://demo.redhat.com/types",
 className="java.lang.String")
 @ResponseWrapper(targetNamespace="http://demo.redhat.com/types",
 className="org.eric.demo.Quote")
 public Quote getQuote(String ticker);
}

Overview

Defining Parameter Properties with Annotations

							The method parameters in the SEI correspond to the wsdl:message elements and their wsdl:part elements. JAX-WS provides annotations that allow you to describe the wsdl:part elements that are generated for the method parameters.
						

The @WebParam annotation

						 The @WebParam annotation is defined by the javax.jws.WebParam interface. It is placed on the parameters of the methods defined in the SEI. The @WebParam annotation allows you to specify the direction of the parameter, if the parameter will be placed in the SOAP header, and other properties of the generated wsdl:part.
					

						Table 24.7, “@WebParam Properties” describes the properties of the @WebParam annotation.
					
Table 24.7. @WebParam Properties
	Property	Values	Description
	
										 name
									

									 	 	
										Specifies the name of the parameter as it appears in the generated WSDL document. For RPC bindings, this is the name of the wsdl:part representing the parameter. For document bindings, this is the local name of the XML element representing the parameter. Per the JAX-WS specification, the default is argN, where N is replaced with the zero-based argument index (i.e., arg0, arg1, etc.).
									

									
	
										 targetNamespace
									

									 	 	
										Specifies the namespace for the parameter. It is only used with document bindings where the parameter maps to an XML element. The default is to use the service’s namespace.
									

									
	
										 mode
									

									 	
										Mode.IN (default)[a]
									

									
										Mode.OUT
									

									
										Mode.INOUT
									

									 	
										Specifies the direction of the parameter.
									

									
	
										 header
									

									 	
										false (default)
									

									
										true
									

									 	
										Specifies if the parameter is passed as part of the SOAP header.
									

									
	
										 partName
									

									 	 	
										Specifies the value of the name attribute of the wsdl:part element for the parameter. This property is used for document style SOAP bindings.
									

									
	[a]
											Any parameter that implements the Holder interface is mapped to Mode.INOUT by default.
										

The @WebResult annotation

						 The @WebResult annotation is defined by the javax.jws.WebResult interface. It is placed on the methods defined in the SEI. The @WebResult annotation allows you to specify the properties of the wsdl:part that is generated for the method’s return value.
					

						Table 24.8, “@WebResult Properties” describes the properties of the @WebResult annotation.
					
Table 24.8. @WebResult Properties
	Property	Description
	
										 name
									

									 	
										Specifies the name of the return value as it appears in the generated WSDL document. For RPC bindings, this is the name of the wsdl:part representing the return value. For document bindings, this is the local name of the XML element representing the return value. The default value is return.
									

									
	
										 targetNamespace
									

									 	
										Specifies the namespace for the return value. It is only used with document bindings where the return value maps to an XML element. The default is to use the service’s namespace.
									

									
	
										 header
									

									 	
										Specifies if the return value is passed as part of the SOAP header.
									

									
	
										 partName
									

									 	
										Specifies the value of the name attribute of the wsdl:part element for the return value. This property is used for document style SOAP bindings.
									

									

Example

						Example 24.7, “Fully Annotated SEI” shows an SEI that is fully annotated.
					
Example 24.7. Fully Annotated SEI
package com.fusesource.demo;

import javax.jws.*;
import javax.xml.ws.*;
import javax.jws.soap.*;
import javax.jws.soap.SOAPBinding.*;
import javax.jws.WebParam.*;

@WebService(targetNamespace="http://demo.redhat.com",
 name="quoteReporter")
@SOAPBinding(style=Style.RPC, use=Use.LITERAL)
public interface quoteReporter
{
 @WebMethod(operationName="getStockQuote")
 @RequestWrapper(targetNamespace="http://demo.redhat.com/types",
 className="java.lang.String")
 @ResponseWrapper(targetNamespace="http://demo.redhat.com/types",
 className="org.eric.demo.Quote")
 @WebResult(targetNamespace="http://demo.redhat.com/types",
 name="updatedQuote")
 public Quote getQuote(
 @WebParam(targetNamespace="http://demo.redhat.com/types",
 name="stockTicker",
 mode=Mode.IN)
 String ticker
);
}

Apache CXF Annotations

WSDL Documentation

							
						
@WSDLDocumentation annotation

							 The @WSDLDocumentation annotation is defined by the org.apache.cxf.annotations.WSDLDocumentation interface. It can be placed on the SEI or the SEI methods.
						

							This annotation enables you to add documentation, which will then appear within wsdl:documentation elements after the SEI is converted to WSDL. By default, the documentation elements appear inside the port type, but you can specify the placement property to make the documentation appear at other locations in the WSDL file. the section called “@WSDLDocumentation properties” shows the properties supported by the @WSDLDocumentation annotation.
						

@WSDLDocumentation properties

	Property	Description
	
											value
										

										 	
											(Required) A string containing the documentation text.
										

										
	
											placement
										

										 	
											(Optional) Specifies where in the WSDL file this documentation is to appear. For the list of possible placement values, see the section called “Placement in the WSDL contract”.
										

										
	
											faultClass
										

										 	
											(Optional) If the placement is set to be FAULT_MESSAGE, PORT_TYPE_OPERATION_FAULT, or BINDING_OPERATION_FAULT, you must also set this property to the Java class that represents the fault.
										

										

@WSDLDocumentationCollection annotation

							 The @WSDLDocumentationCollection annotation is defined by the org.apache.cxf.annotations.WSDLDocumentationCollection interface. It can be placed on the SEI or the SEI methods.
						

							This annotation is used to insert multiple documentation elements at a single placement location or at various placement locations.
						

Placement in the WSDL contract

							To specify where the documentation should appear in the WSDL contract, you can specify the placement property, which is of type WSDLDocumentation.Placement. The placement can have one of the following values:
						
	
									WSDLDocumentation.Placement.BINDING
								
	
									WSDLDocumentation.Placement.BINDING_OPERATION
								
	
									WSDLDocumentation.Placement.BINDING_OPERATION_FAULT
								
	
									WSDLDocumentation.Placement.BINDING_OPERATION_INPUT
								
	
									WSDLDocumentation.Placement.BINDING_OPERATION_OUTPUT
								
	
									WSDLDocumentation.Placement.DEFAULT
								
	
									WSDLDocumentation.Placement.FAULT_MESSAGE
								
	
									WSDLDocumentation.Placement.INPUT_MESSAGE
								
	
									WSDLDocumentation.Placement.OUTPUT_MESSAGE
								
	
									WSDLDocumentation.Placement.PORT_TYPE
								
	
									WSDLDocumentation.Placement.PORT_TYPE_OPERATION
								
	
									WSDLDocumentation.Placement.PORT_TYPE_OPERATION_FAULT
								
	
									WSDLDocumentation.Placement.PORT_TYPE_OPERATION_INPUT
								
	
									WSDLDocumentation.Placement.PORT_TYPE_OPERATION_OUTPUT
								
	
									WSDLDocumentation.Placement.SERVICE
								
	
									WSDLDocumentation.Placement.SERVICE_PORT
								
	
									WSDLDocumentation.Placement.TOP
								

Example of @WSDLDocumentation

							the section called “Using @WSDLDocumentation” shows how to add a @WSDLDocumentation annotation to the SEI and to one of its methods.
						

Using @WSDLDocumentation

@WebService
@WSDLDocumentation("A very simple example of an SEI")
public interface HelloWorld {
 @WSDLDocumentation("A traditional form of greeting")
 String sayHi(@WebParam(name = "text") String text);
}

							When WSDL, shown in the section called “WSDL generated with documentation”, is generated from the SEI in the section called “Using @WSDLDocumentation”, the default placements of the documentation elements are, respectively, PORT_TYPE and PORT_TYPE_OPERATION.
						

WSDL generated with documentation

<wsdl:definitions ... >
 ...
 <wsdl:portType name="HelloWorld">
 <wsdl:documentation>A very simple example of an SEI</wsdl:documentation>
 <wsdl:operation name="sayHi">
 <wsdl:documentation>A traditional form of greeting</wsdl:documentation>
 <wsdl:input name="sayHi" message="tns:sayHi">
 </wsdl:input>
 <wsdl:output name="sayHiResponse" message="tns:sayHiResponse">
 </wsdl:output>
 </wsdl:operation>
 </wsdl:portType>
 ...
</wsdl:definitions>
Example of @WSDLDocumentationCollection

							the section called “Using @WSDLDocumentationCollection” shows how to add a @WSDLDocumentationCollection annotation to an SEI.
						

Using @WSDLDocumentationCollection

@WebService
@WSDLDocumentationCollection(
 {
 @WSDLDocumentation("A very simple example of an SEI"),
 @WSDLDocumentation(value = "My top level documentation",
 placement = WSDLDocumentation.Placement.TOP),
 @WSDLDocumentation(value = "Binding documentation",
 placement = WSDLDocumentation.Placement.BINDING)
 }
)
public interface HelloWorld {
 @WSDLDocumentation("A traditional form of Geeky greeting")
 String sayHi(@WebParam(name = "text") String text);
}

Schema Validation of Messages

							
						
@SchemaValidation annotation

							The @SchemaValidation annotation is defined by the org.apache.cxf.annotations.SchemaValidation interface. It can be placed on the SEI and on individual SEI methods.
						

							This annotation turns on schema validation of the XML messages sent to this endpoint. This can be useful for testing purposes, when you suspect there is a problem with the format of incoming XML messages. By default, validation is disabled, because it has a significant impact on performance.
						

Schema validation type

							The schema validation behaviour is controlled by the type parameter, whose value is an enumeration of org.apache.cxf.annotations.SchemaValidation.SchemaValidationType type. the section called “Schema Validation Type Values” shows the list of available validation types.
						

Schema Validation Type Values

	Type	Description
	
											IN
										

										 	
											Apply schema validation to incoming messages on client and server.
										

										
	
											OUT
										

										 	
											Apply schema validation to outgoing messages on client and server.
										

										
	
											BOTH
										

										 	
											Apply schema validation to both incoming and outgoing messages on client and server.
										

										
	
											NONE
										

										 	
											All schema validation is disabled.
										

										
	
											REQUEST
										

										 	
											Apply schema validation to Request messages—that is, causing validation to be applied to outgoing client messages and to incoming server messages.
										

										
	
											RESPONSE
										

										 	
											Apply schema validation to Response messages—that is, causing validation to be applied to incoming client messages, and outgoing server messages.
										

										

Example

							The following example shows how to enable schema validation of messages for endpoints based on the MyService SEI. Note how the annotation can be applied to the SEI as a whole, as well as to individual methods in the SEI.
						
@WebService
@SchemaValidation(type = SchemaValidationType.BOTH)
public interface MyService {
 Foo validateBoth(Bar data);

 @SchemaValidation(type = SchemaValidationType.NONE)
 Foo validateNone(Bar data);

 @SchemaValidation(type = SchemaValidationType.IN)
 Foo validateIn(Bar data);

 @SchemaValidation(type = SchemaValidationType.OUT)
 Foo validateOut(Bar data);

 @SchemaValidation(type = SchemaValidationType.REQUEST)
 Foo validateRequest(Bar data);

 @SchemaValidation(type = SchemaValidationType.RESPONSE)
 Foo validateResponse(Bar data);
}

Specifying the Data Binding

							
						
@DataBinding annotation

							The @DataBinding annotation is defined by the org.apache.cxf.annotations.DataBinding interface. It is placed on the SEI.
						

							This annotation is used to associate a data binding with the SEI, replacing the default JAXB data binding. The value of the @DataBinding annotation must be the class that provides the data binding, ClassName.class.
						

Supported data bindings

							The following data bindings are currently supported by Apache CXF:
						
	
									org.apache.cxf.jaxb.JAXBDataBinding
								

									(Default) The standard JAXB data binding.
								

	
									org.apache.cxf.sdo.SDODataBinding
								

									The Service Data Objects (SDO) data binding is based on the Apache Tuscany SDO implementation. If you want to use this data binding in the context of a Maven build, you need to add a dependency on the cxf-rt-databinding-sdo artifact.
								

	
									org.apache.cxf.aegis.databinding.AegisDatabinding
								

									If you want to use this data binding in the context of a Maven build, you need to add a dependency on the cxf-rt-databinding-aegis artifact.
								

	
									org.apache.cxf.xmlbeans.XmlBeansDataBinding
								

									If you want to use this data binding in the context of a Maven build, you need to add a dependency on the cxf-rt-databinding-xmlbeans artifact.
								

	
									org.apache.cxf.databinding.source.SourceDataBinding
								

									This data binding belongs to the Apache CXF core.
								

	
									org.apache.cxf.databinding.stax.StaxDataBinding
								

									This data binding belongs to the Apache CXF core.
								

Example

							the section called “Setting the data binding” shows how to associate the SDO binding with the HelloWorld SEI
						

Setting the data binding

@WebService
@DataBinding(org.apache.cxf.sdo.SDODataBinding.class)
public interface HelloWorld {
 String sayHi(@WebParam(name = "text") String text);
}

Compressing Messages

@GZIP annotation

							 The @GZIP annotation is defined by the org.apache.cxf.annotations.GZIP interface. It is placed on the SEI.
						

							Enables GZIP compression of messages. GZIP is a negotiated enhancement. That is, an initial request from a client will not be gzipped, but an Accept header will be added and, if the server supports GZIP compression, the response will be gzipped and any subsequent requests will be also.
						

							the section called “@GZIP Properties” shows the optional properties supported by the @GZIP annotation.
						

@GZIP Properties

	Property	Description
	
											threshold
										

										 	
											Messages smaller than the size specified by this property are not gzipped. Default is -1 (no limit).
										

										

@FastInfoset

							 The @FastInfoset annotation is defined by the org.apache.cxf.annotations.FastInfoset interface. It is placed on the SEI.
						

							Enables the use of FastInfoset format for messages. FastInfoset is a binary encoding format for XML, which aims to optimize both the message size and the processing performance of XML messages. For more details, see the following Sun article on Fast Infoset.
						

							FastInfoset is a negotiated enhancement. That is, an initial request from a client will not be in FastInfoset format, but an Accept header will be added and, if the server supports FastInfoset, the response will be in FastInfoset and any subsequent requests will be also.
						

							the section called “@FastInfoset Properties” shows the optional properties supported by the @FastInfoset annotation.
						

@FastInfoset Properties

	Property	Description
	
											force
										

										 	
											A boolean property that forces the use of FastInfoset format, instead of negotiating. When true, force the use of FastInfoset format; otherwise, negotiate. Default is false.
										

										

Example of @GZIP

							the section called “Enabling GZIP” shows how to enable GZIP compression for the HelloWorld SEI.
						

Enabling GZIP

@WebService
@GZIP
public interface HelloWorld {
 String sayHi(@WebParam(name = "text") String text);
}

Exampe of @FastInfoset

							the section called “Enabling FastInfoset” shows how to enable the FastInfoset format for the HelloWorld SEI.
						

Enabling FastInfoset

@WebService
@FastInfoset
public interface HelloWorld {
 String sayHi(@WebParam(name = "text") String text);
}

Enable Logging on an Endpoint

							
						
@Logging annotation

							The @Logging annotation is defined by the org.apache.cxf.annotations.Logging interface. It is placed on the SEI.
						

							This annotation enables logging for all endpoints associated with the SEI. the section called “@Logging Properties” shows the optional properties you can set in this annotation.
						

@Logging Properties

	Property	Description
	
											limit
										

										 	
											Specifies the size limit, beyond which the message is truncated in the logs. Default is 64K.
										

										
	
											inLocation
										

										 	
											Specifies the location to log incoming messages. Can be either <stderr>, <stdout>, <logger>, or a filename. Default is <logger>.
										

										
	
											outLocation
										

										 	
											Specifies the location to log outgoing messages. Can be either <stderr>, <stdout>, <logger>, or a filename. Default is <logger>.
										

										

Example

							the section called “Logging configuration using annotations” shows how to enable logging for the HelloWorld SEI, where incoming messages are sent to <stdout> and outgoing messages are sent to <logger>.
						

Logging configuration using annotations

@WebService
@Logging(limit=16000, inLocation="<stdout>")
public interface HelloWorld {
 String sayHi(@WebParam(name = "text") String text);
}

Adding Properties and Policies to an Endpoint

Abstract

								Both properties and policies can be used to associate configuration data with an endpoint. The essential difference between them is that properties are a Apache CXF specific configuration mechanism whereas policies are a standard WSDL configuration mechanism. Policies typically originate from WS specifications and standards and they are normally set by defining wsdl:policy elements that appear in the WSDL contract. By contrast, properties are Apache CXF-specific and they are normally set by defining jaxws:properties elements in the Apache CXF Spring configuration file.
							

								It is also possible, however, to define property settings and WSDL policy settings in Java using annotations, as described here.
							

Adding properties

@EndpointProperty annotation

							 The @EndpointProperty annotation is defined by the org.apache.cxf.annotations.EndpointProperty interface. It is placed on the SEI.
						

							This annotation adds Apache CXF-specific configuration settings to an endpoint. Endpoint properties can also be specified in a Spring configuration file. For example, to configure WS-Security on an endpoint, you could add endpoint properties using the jaxws:properties element in a Spring configuration file as follows:
						
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 ... >

 <jaxws:endpoint
 id="MyService"
 address="https://localhost:9001/MyService"
 serviceName="interop:MyService"
 endpointName="interop:MyServiceEndpoint"
 implementor="com.foo.MyService">

 <jaxws:properties>
 <entry key="ws-security.callback-handler" value="interop.client.UTPasswordCallback"/>
 <entry key="ws-security.signature.properties" value="etc/keystore.properties"/>
 <entry key="ws-security.encryption.properties" value="etc/truststore.properties"/>
 <entry key="ws-security.encryption.username" value="useReqSigCert"/>
 </jaxws:properties>

 </jaxws:endpoint>
</beans>

							Alternatively, you could specify the preceding configuration settings in Java by adding @EndpointProperty annotations to the SEI, as shown in the section called “Configuring WS-Security Using @EndpointProperty Annotations”.
						

Configuring WS-Security Using @EndpointProperty Annotations

@WebService
@EndpointProperty(name="ws-security.callback-handler" value="interop.client.UTPasswordCallback")
@EndpointProperty(name="ws-security.signature.properties" value="etc/keystore.properties")
@EndpointProperty(name="ws-security.encryption.properties" value="etc/truststore.properties")
@EndpointProperty(name="ws-security.encryption.username" value="useReqSigCert")
public interface HelloWorld {
 String sayHi(@WebParam(name = "text") String text);
}
@EndpointProperties annotation

							 The @EndpointProperties annotation is defined by the org.apache.cxf.annotations.EndpointProperties interface. It is placed on the SEI.
						

							This annotation provides a way of grouping multiple @EndpointProperty annotations into a list. Using @EndpointProperties, it is possible to re-write the section called “Configuring WS-Security Using @EndpointProperty Annotations” as shown in the section called “Configuring WS-Security Using an @EndpointProperties Annotation”.
						

Configuring WS-Security Using an @EndpointProperties Annotation

@WebService
@EndpointProperties(
 {
 @EndpointProperty(name="ws-security.callback-handler" value="interop.client.UTPasswordCallback"),
 @EndpointProperty(name="ws-security.signature.properties" value="etc/keystore.properties"),
 @EndpointProperty(name="ws-security.encryption.properties" value="etc/truststore.properties"),
 @EndpointProperty(name="ws-security.encryption.username" value="useReqSigCert")
})
public interface HelloWorld {
 String sayHi(@WebParam(name = "text") String text);
}

Adding policies

@Policy annotation

							 The @Policy annotation is defined by the org.apache.cxf.annotations.Policy interface. It can be placed on the SEI or the SEI methods.
						

							This annotation is used to associate a WSDL policy with an SEI or an SEI method. The policy is specified by providing a URI that references an XML file containing a standard wsdl:policy element. If a WSDL contract is to be generated from the SEI (for example, using the java2ws command-line tool), you can specify whether or not you want to include this policy in the WSDL.
						

							the section called “@Policy Properties” shows the properties supported by the @Policy annotation.
						

@Policy Properties

	Property	Description
	
											uri
										

										 	
											(Required) The location of the file containing the policy definition.
										

										
	
											includeInWSDL
										

										 	
											(Optional) Whether to include the policy in the generated contract, when generating WSDL. Default is true.
										

										
	
											placement
										

										 	
											(Optional) Specifies where in the WSDL file this documentation is to appear. For the list of possible placement values, see the section called “Placement in the WSDL contract”.
										

										
	
											faultClass
										

										 	
											(Optional) If the placement is set to be BINDING_OPERATION_FAULT or PORT_TYPE_OPERATION_FAULT, you must also set this property to specify which fault this policy applies to. The value is the Java class that represents the fault.
										

										

@Policies annotation

							 The @Policies annotation is defined by the org.apache.cxf.annotations.Policies interface. It can be placed on the SEI or thse SEI methods.
						

							This annotation provides a way of grouping multiple @Policy annotations into a list.
						

Placement in the WSDL contract

							To specify where the policy should appear in the WSDL contract, you can specify the placement property, which is of type Policy.Placement. The placement can have one of the following values:
						
Policy.Placement.BINDING
Policy.Placement.BINDING_OPERATION
Policy.Placement.BINDING_OPERATION_FAULT
Policy.Placement.BINDING_OPERATION_INPUT
Policy.Placement.BINDING_OPERATION_OUTPUT
Policy.Placement.DEFAULT
Policy.Placement.PORT_TYPE
Policy.Placement.PORT_TYPE_OPERATION
Policy.Placement.PORT_TYPE_OPERATION_FAULT
Policy.Placement.PORT_TYPE_OPERATION_INPUT
Policy.Placement.PORT_TYPE_OPERATION_OUTPUT
Policy.Placement.SERVICE
Policy.Placement.SERVICE_PORT

Example of @Policy

							The following example shows how to associate WSDL policies with the HelloWorld SEI and how to associate a policy with the sayHi method. The policies themselves are stored in XML files in the file system, under the annotationpolicies directory.
						
@WebService
@Policy(uri = "annotationpolicies/TestImplPolicy.xml",
 placement = Policy.Placement.SERVICE_PORT),
@Policy(uri = "annotationpolicies/TestPortTypePolicy.xml",
 placement = Policy.Placement.PORT_TYPE)
public interface HelloWorld {
 @Policy(uri = "annotationpolicies/TestOperationPTPolicy.xml",
 placement = Policy.Placement.PORT_TYPE_OPERATION),
 String sayHi(@WebParam(name = "text") String text);
}

Example of @Policies

							You can use the @Policies annotation to group multiple @Policy annotations into a list, as shown in the following example:
						
@WebService
@Policies({
 @Policy(uri = "annotationpolicies/TestImplPolicy.xml",
 placement = Policy.Placement.SERVICE_PORT),
 @Policy(uri = "annotationpolicies/TestPortTypePolicy.xml",
 placement = Policy.Placement.PORT_TYPE)
})
public interface HelloWorld {
 @Policy(uri = "annotationpolicies/TestOperationPTPolicy.xml",
 placement = Policy.Placement.PORT_TYPE_OPERATION),
 String sayHi(@WebParam(name = "text") String text);
}

Generating WSDL

					
				
Using Maven

					Once your code is annotated, you can generate a WSDL contract for your service using the java2ws Maven plug-in’s -wsdl option. For a detailed listing of options for the java2ws Maven plug-in see the section called “java2ws”.
				

					Example 24.8, “Generating WSDL from Java” shows how to set up the java2ws Maven plug-in to generate WSDL.
				
Example 24.8. Generating WSDL from Java
<plugin>
 <groupId>org.apache.cxf</groupId>
 <artifactId>cxf-java2ws-plugin</artifactId>
 <version>${cxf.version}</version>
 <executions>
 <execution>
 <id>process-classes</id>
 <phase>process-classes</phase>
 <configuration>
 <className>className</className>
 <genWsdl>true</genWsdl>
 </configuration>
 <goals>
 <goal>java2ws</goal>
 </goals>
 </execution>
 </executions>
</plugin>

Note

						Replace the value of className with the qualified className.
					

Example

					Example 24.9, “Generated WSDL from an SEI” shows the WSDL contract that is generated for the SEI shown in Example 24.7, “Fully Annotated SEI”.
				
Example 24.9. Generated WSDL from an SEI
<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions targetNamespace="http://demo.eric.org/"
 xmlns:tns="http://demo.eric.org/"
		 xmlns:ns1=""
		 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
		 xmlns:ns2="http://demo.eric.org/types"
		 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
		 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <wsdl:types>
 <xsd:schema>
 <xs:complexType name="quote">
 <xs:sequence>
 <xs:element name="ID" type="xs:string" minOccurs="0"/>
 <xs:element name="time" type="xs:string" minOccurs="0"/>
 <xs:element name="val" type="xs:float"/>
 </xs:sequence>
 </xs:complexType>
 </xsd:schema>
 </wsdl:types>
 <wsdl:message name="getStockQuote">
 <wsdl:part name="stockTicker" type="xsd:string">
 </wsdl:part>
 </wsdl:message>
 <wsdl:message name="getStockQuoteResponse">
 <wsdl:part name="updatedQuote" type="tns:quote">
 </wsdl:part>
 </wsdl:message>
 <wsdl:portType name="quoteReporter">
 <wsdl:operation name="getStockQuote">
 <wsdl:input name="getQuote" message="tns:getStockQuote">
 </wsdl:input>
 <wsdl:output name="getQuoteResponse" message="tns:getStockQuoteResponse">
 </wsdl:output>
 </wsdl:operation>
 </wsdl:portType>
 <wsdl:binding name="quoteReporterBinding" type="tns:quoteReporter">
 <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http" />
 <wsdl:operation name="getStockQuote">
 <soap:operation style="rpc" />
 <wsdl:input name="getQuote">
 <soap:body use="literal" />
 </wsdl:input>
 <wsdl:output name="getQuoteResponse">
 <soap:body use="literal"/>
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>
 <wsdl:service name="quoteReporterService">
 <wsdl:port name="quoteReporterPort" binding="tns:quoteReporterBinding">
 <soap:address location="http://localhost:9000/quoteReporterService" />
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

[1]
						Board is an assumed class whose implementation is left to the reader.
					

Chapter 25. Developing a Consumer Without a WSDL Contract

Abstract

					You do not need a WSDL contract to develop a service consumer. You can create a service consumer from an annotated SEI. Along with the SEI you need to know the address at which the endpoint exposing the service is published, the QName of the service element that defines the endpoint exposing the service, and the QName of the port element defining the endpoint on which your consumer makes requests. This information can be specified in the SEI’s annotations or provided separately.
				

Java-First Consumer Development

					To create a consumer without a WSDL contract you must do the following:
				
	
							Create a Service object for the service on which the consumer will invoke operations.
						
	
							Add a port to the Service object.
						
	
							Get a proxy for the service using the Service object’s getPort() method.
						
	
							Implement the consumer’s business logic.
						

Creating a Service Object

					
				
Overview

					The javax.xml.ws.Service class represents the wsdl:service element which contains the definition of all of the endpoints that expose a service. As such, it provides methods that allow you to get endpoints, defined by wsdl:port elements, that are proxies for making remote invocations on a service.
				
Note

						The Service class provides the abstractions that allow the client code to work with Java types as opposed to working with XML documents.
					

The create() methods

					 The Service class has two static create() methods that can be used to create a new Service object. As shown in Example 25.1, “Service create() Methods”, both of the create() methods take the QName of the wsdl:service element the Service object will represent, and one takes a URI specifying the location of the WSDL contract.
				
Note

						All services publish their WSDL contracts. For SOAP/HTTP services the URI is usually the URI for the service appended with ?wsdl.
					

Example 25.1. Service create() Methods

						public staticServicecreateURLwsdlLocationQNameserviceNameWebServiceExceptionpublic staticServicecreateQNameserviceNameWebServiceException
					

					The value of the serviceName parameter is a QName. The value of its namespace part is the target namespace of the service. The service’s target namespace is specified in the targetNamespace property of the @WebService annotation. The value of the QName’s local part is the value of wsdl:service element’s name attribute. You can determine this value in one of the following ways: . It is specified in the serviceName property of the @WebService annotation.
				
	
							You append Service to the value of the name property of the @WebService annotation.
						
	
							You append Service to the name of the SEI.
						

Important

						Programmatically-created CXF consumers deployed in OSGi environments require special handling to avoid the likelihood of incurring ClassNotFoundExceptions. For each bundle that contains programmatically-created CXF consumers, you need to create a singleton CXF default bus and ensure that all of the bundle’s CXF consumers use it. Without this safeguard, one bundle could be assigned the CXF default bus created in another bundle, which could cause the inheriting bundle to fail.
					

						For example, suppose bundle A did not explicitly set a CXF default bus and was assigned the CXF default bus created in bundle B. If the CXF bus in bundle A needed to be configured with additional features (such as SSL or WS-Security) or needed to load certain classes or resources from the application in bundle A, it would fail. This is so because the CXF bus instance sets a thread context class loader (TCCL) as the bundle class loader of the bundle that created it (in this case bundle B). Furthermore, certain frameworks, such as wss4j (implements WS-Security in CXF) use the TCCL to load resources, such as calback handler classes or other property files, from inside the bundle. Because bundle A is assigned bundle B’s default CXF bus and it’s TCCL, the wss4j layer cannot load the required resources from bundle A, which results in ClassNotFoundException errors.
					

						To create the singleton CXF default bus, insert this code:
					
BusFactory.setThreadDefaultBus(BusFactory.newInstance().createBus());

						at the beginning of the main method that creates the service object, as shown in the section called “Example”.
					

Example

					Example 25.2, “Creating a Service Object” shows code for creating a Service object for the SEI shown in Example 24.7, “Fully Annotated SEI”.
				
Example 25.2. Creating a Service Object
package com.fusesource.demo;

import javax.xml.namespace.QName;
import javax.xml.ws.Service;

public class Client
{
public static void main(String args[])
 {
 BusFactory.setThreadDefaultBus(BusFactory.newInstance().createBus());
 QName serviceName = new QName("http://demo.redhat.com", "stockQuoteReporter");
 Service s = Service.create(serviceName);
 ...
 }
}

					The code in Example 25.2, “Creating a Service Object” does the following:
				

					Creates a singleton CXF default bus that is available to all CXF consumers of the service.
				

					Builds the QName for the service using the targetNamespace property and the name property of the @WebService annotation.
				

					Calls the single parameter create() method to create a new Service object.
				
Note

						Using the single parameter create() frees you from having any dependencies on accessing a WSDL contract.
					

Adding a Port to a Service

					
				
Overview

					The endpoint information for a service is defined in a wsdl:port element, and the Service object creates a proxy instance for each of the endpoints defined in a WSDL contract, if one is specified. If you do not specify a WSDL contract when you create your Service object, the Service object has no information about the endpoints that implement your service, and therefore cannot create any proxy instances. In this case, you must provide the Service object with the information needed to represent a wsdl:port element using the addPort() method.
				

The addPort() method

					The Service class defines an addPort() method, shown in Example 25.3, “The addPort() Method”, that is used in cases where there is no WSDL contract available to the consumer implementation. The addPort() method allows you to give a Service object the information, which is typically stored in a wsdl:port element, necessary to create a proxy for a service implementation.
				
Example 25.3. The addPort() Method

						addPortQNameportNameStringbindingIdStringendpointAddressWebServiceException
					

					 The value of the portName is a QName. The value of its namespace part is the target namespace of the service. The service’s target namespace is specified in the targetNamespace property of the @WebService annotation. The value of the QName’s local part is the value of wsdl:port element’s name attribute. You can determine this value in one of the following ways:
				
	
							Specify it in the portName property of the @WebService annotation.
						
	
							Append Port to the value of the name property of the @WebService annotation.
						
	
							Append Port to the name of the SEI.
						

					 The value of the bindingId parameter is a string that uniquely identifies the type of binding used by the endpoint. For a SOAP binding you use the standard SOAP namespace: http://schemas.xmlsoap.org/soap/. If the endpoint is not using a SOAP binding, the value of the bindingId parameter is determined by the binding developer. The value of the endpointAddress parameter is the address where the endpoint is published. For a SOAP/HTTP endpoint, the address is an HTTP address. Transports other than HTTP use different address schemes.
				

Example

					Example 25.4, “Adding a Port to a Service Object” shows code for adding a port to the Service object created in Example 25.2, “Creating a Service Object”.
				
Example 25.4. Adding a Port to a Service Object
package com.fusesource.demo;

import javax.xml.namespace.QName;
import javax.xml.ws.Service;

public class Client
{
public static void main(String args[])
 {
 ...
 QName portName = new QName("http://demo.redhat.com", "stockQuoteReporterPort");
 s.addPort(portName,
 "http://schemas.xmlsoap.org/soap/",
 "http://localhost:9000/StockQuote");
 ...
 }
}

					The code in Example 25.4, “Adding a Port to a Service Object” does the following:
				

					Creates the QName for the portName parameter.
				

					Calls the addPort() method.
				

					Specifies that the endpoint uses a SOAP binding.
				

					Specifies the address where the endpoint is published.
				

Getting a Proxy for an Endpoint

					
				
Overview

					A service proxy is an object that provides all of the methods exposed by a remote service and handles all of the details required to make the remote invocations. The Service object provides service proxies for all of the endpoints it is aware of through the getPort() method. Once you have a service proxy, you can invoke its methods. The proxy forwards the invocation to the remote service endpoint using the connection details specified in the service’s contract.
				

The getPort() method

					 The getPort() method, shown in Example 25.5, “The getPort() Method”, returns a service proxy for the specified endpoint. The returned proxy is of the same class as the SEI.
				
Example 25.5. The getPort() Method

						public<T> TgetPortQNameportNameClass<T>serviceEndpointInterfaceWebServiceException
					

					 The value of the portName parameter is a QName that identifies the wsdl:port element that defines the endpoint for which the proxy is created. The value of the serviceEndpointInterface parameter is the fully qualified name of the SEI.
				
Note

						When you are working without a WSDL contract the value of the portName parameter is typically the same as the value used for the portName parameter when calling addPort().
					

Example

					Example 25.6, “Getting a Service Proxy” shows code for getting a service proxy for the endpoint added in Example 25.4, “Adding a Port to a Service Object”.
				
Example 25.6. Getting a Service Proxy
package com.fusesource.demo;

import javax.xml.namespace.QName;
import javax.xml.ws.Service;

public class Client
{
public static void main(String args[])
 {
 ...
 quoteReporter proxy = s.getPort(portName, quoteReporter.class);
 ...
 }
}

Implementing the Consumer’s Business Logic

					
				
Overview

					Once you instantiate a service proxy for a remote endpoint, you can invoke its methods as if it were a local object. The calls block until the remote method completes.
				
Note

						If a method is annotated with the @OneWay annotation, the call returns immediately.
					

Example

					Example 25.7, “Consumer Implemented without a WSDL Contract” shows a consumer for the service defined in Example 24.7, “Fully Annotated SEI”.
				
Example 25.7. Consumer Implemented without a WSDL Contract
package com.fusesource.demo;

import java.io.File;
import java.net.URL;
import javax.xml.namespace.QName;
import javax.xml.ws.Service;

public class Client
{
public static void main(String args[])
 {
 QName serviceName = new QName("http://demo.eric.org", "stockQuoteReporter");
 Service s = Service.create(serviceName);

 QName portName = new QName("http://demo.eric.org", "stockQuoteReporterPort");
 s.addPort(portName, "http://schemas.xmlsoap.org/soap/", "http://localhost:9000/EricStockQuote");

 quoteReporter proxy = s.getPort(portName, quoteReporter.class);

 Quote quote = proxy.getQuote("ALPHA");
 System.out.println("Stock "+quote.getID()+" is worth "+quote.getVal()+" as of "+quote.getTime());
 }
}

					The code in Example 25.7, “Consumer Implemented without a WSDL Contract” does the following:
				

					Creates a Service object.
				

					Adds an endpoint definition to the Service object.
				

					Gets a service proxy from the Service object.
				

					Invokes an operation on the service proxy.
				

Chapter 26. A Starting Point WSDL Contract

Sample WSDL Contract

					Example 26.1, “HelloWorld WSDL Contract” shows the HelloWorld WSDL contract. This contract defines a single interface, Greeter, in the wsdl:portType element. The contract also defines the endpoint which will implement the service in the wsdl:port element.
				
Example 26.1. HelloWorld WSDL Contract
<?xml version="1.0" encoding=";UTF-8"?>
<wsdl:definitions name="HelloWorld"
 targetNamespace="http://apache.org/hello_world_soap_http"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://apache.org/hello_world_soap_http"
 xmlns:x1="http://apache.org/hello_world_soap_http/types"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <wsdl:types>
 <schema targetNamespace="http://apache.org/hello_world_soap_http/types"
 xmlns="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified">
 <element name="sayHiResponse">
 <complexType>
 <sequence>
 <element name="responseType" type="string"/>
 </sequence>
 </complexType>
 </element>
 <element name="greetMe">
 <complexType>
 <sequence>
 <element name="requestType" type="string"/>
 </sequence>
 </complexType>
 </element>
 <element name="greetMeResponse">
 <complexType>
 <sequence>
 <element name="responseType" type="string"/>
 </sequence>
 </complexType>
 </element>
 <element name="greetMeOneWay">
 <complexType>
 <sequence>
 <element name="requestType" type="string"/>
 </sequence>
 </complexType>
 </element>
 <element name="pingMe">
 <complexType/>
 </element>
 <element name="pingMeResponse">
 <complexType/>
 </element>
 <element name="faultDetail">
 <complexType>
 <sequence>
 <element name="minor" type="short"/>
 <element name="major" type="short"/>
 </sequence>
 </complexType>
 </element>
 </schema>
 </wsdl:types>

 <wsdl:message name="sayHiRequest">
 <wsdl:part element="x1:sayHi" name="in"/>
 </wsdl:message>
 <wsdl:message name="sayHiResponse">
 <wsdl:part element="x1:sayHiResponse" name="out"/>
 </wsdl:message>
 <wsdl:message name="greetMeRequest">
 <wsdl:part element="x1:greetMe" name="in"/>
 </wsdl:message>
 <wsdl:message name="greetMeResponse">
 <wsdl:part element="x1:greetMeResponse" name="out"/>
 </wsdl:message>
 <wsdl:message name="greetMeOneWayRequest">
 <wsdl:part element="x1:greetMeOneWay" name="in"/>
 </wsdl:message>
 <wsdl:message name="pingMeRequest">
 <wsdl:part name="in" element="x1:pingMe"/>
 </wsdl:message>
 <wsdl:message name="pingMeResponse">
 <wsdl:part name="out" element="x1:pingMeResponse"/>
 </wsdl:message>
 <wsdl:message name="pingMeFault">
 <wsdl:part name="faultDetail" element="x1:faultDetail"/>
 </wsdl:message>

 <wsdl:portType name="Greeter">
 <wsdl:operation name="sayHi">
 <wsdl:input message="tns:sayHiRequest" name="sayHiRequest"/>
 <wsdl:output message="tns:sayHiResponse" name="sayHiResponse"/>
 </wsdl:operation>

 <wsdl:operation name="greetMe">
 <wsdl:input message="tns:greetMeRequest" name="greetMeRequest"/>
 <wsdl:output message="tns:greetMeResponse" name="greetMeResponse"/>
 </wsdl:operation>

 <wsdl:operation name="greetMeOneWay">
 <wsdl:input message="tns:greetMeOneWayRequest" name="greetMeOneWayRequest"/>
 </wsdl:operation>

 <wsdl:operation name="pingMe">
 <wsdl:input name="pingMeRequest" message="tns:pingMeRequest"/>
 <wsdl:output name="pingMeResponse" message="tns:pingMeResponse"/>
 <wsdl:fault name="pingMeFault" message="tns:pingMeFault"/>
 </wsdl:operation>
 </wsdl:portType>

 <wsdl:binding name="Greeter_SOAPBinding" type="tns:Greeter">
 ...
 </wsdl:binding>

 <wsdl:service name="SOAPService">
 <wsdl:port binding="tns:Greeter_SOAPBinding" name="SoapPort">
 <soap:address location="http://localhost:9000/SoapContext/SoapPort"/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

					The Greeter interface defined in Example 26.1, “HelloWorld WSDL Contract” defines the following operations:
				

					sayHi — Has a single output parameter, of xsd:string.
				

					greetMe — Has an input parameter, of xsd:string, and an output parameter, of xsd:string.
				

					greetMeOneWay — Has a single input parameter, of xsd:string. Because this operation has no output parameters, it is optimized to be a oneway invocation (that is, the consumer does not wait for a response from the server).
				

					pingMe — Has no input parameters and no output parameters, but it can raise a fault exception.
				

Chapter 27. Top-Down Service Development

Abstract

					In the top-down method of developing a service provider you start from a WSDL document that defines the operations and methods the service provider will implement. Using the WSDL document, you generate starting point code for the service provider. Adding the business logic to the generated code is done using normal Java programming APIs.
				

Overview of JAX-WS Service Provider Development

					Once you have a WSDL document, the process for developing a JAX-WS service provider is as follows:
				
	
							the section called “Generating the Starting Point Code” starting point code.
						
	
							Implement the service provider’s operations.
						
	
							Chapter 31, Publishing a Service the implemented service.
						

Generating the Starting Point Code

Overview

					JAX-WS specifies a detailed mapping from a service defined in WSDL to the Java classes that will implement that service as a service provider. The logical interface, defined by the wsdl:portType element, is mapped to a service endpoint interface (SEI). Any complex types defined in the WSDL are mapped into Java classes following the mapping defined by the Java Architecture for XML Binding (JAXB) specification. The endpoint defined by the wsdl:service element is also generated into a Java class that is used by consumers to access service providers implementing the service.
				

					The cxf-codegen-plugin Maven plug-in generates this code. It also provides options for generating starting point code for your implementation. The code generator provides a number of options for controlling the generated code.
				

Running the code generator

					Example 27.1, “Service Code Generation” shows how to use the code generator to generate starting point code for a service.
				
Example 27.1. Service Code Generation
<plugin>
 <groupId>org.apache.cxf</groupId>
 <artifactId>cxf-codegen-plugin</artifactId>
 <version>${cxf.version}</version>
 <executions>
 <execution>
 <id>generate-sources</id>
 <phase>generate-sources</phase>
 <configuration>
 <sourceRoot>outputDir</sourceRoot>
 <wsdlOptions>
 <wsdlOption>
 <wsdl>wsdl</wsdl>
 <extraargs>
 <extraarg>-server</extraarg>
 <extraarg>-impl</extraarg>
 </extraargs>
 </wsdlOption>
 </wsdlOptions>
 </configuration>
 <goals>
 <goal>wsdl2java</goal>
 </goals>
 </execution>
 </executions>
</plugin>

					This does the following:
				
	
							The -impl option generates a shell implementation class for each wsdl:portType element in the WSDL contract.
						
	
							The -server option generates a simple main() to run your service provider as a stand alone application.
						
	
							The sourceRoot specifies that the generated code is written to a directory called outputDir.
						
	
							wsdl element specifies the WSDL contract from which code is generated.
						

					For a complete list of the options for the code generator see the section called “cxf-codegen-plugin”.
				

Generated code

					Table 27.1, “Generated Classes for a Service Provider” describes the files generated for creating a service provider.
				
Table 27.1. Generated Classes for a Service Provider
	File	Description
	
									 portTypeName.java
								

								 	
									The SEI. This file contains the interface your service provider implements. You should not edit this file.
								

								
	
									serviceName.java
								

								 	
									The endpoint. This file contains the Java class consumers use to make requests on the service.
								

								
	
									 portTypeNameImpl.java
								

								 	
									The skeleton implementation class. Modify this file to build your service provider.
								

								
	
									portTypeNameServer.java
								

								 	
									A basic server mainline that allows you to deploy your service provider as a stand alone process. For more information see Chapter 31, Publishing a Service.
								

								

					In addition, the code generator will generate Java classes for all of the types defined in the WSDL contract.
				

Generated packages

					 The generated code is placed into packages based on the namespaces used in the WSDL contract. The classes generated to support the service (based on the wsdl:portType element, the wsdl:service element, and the wsdl:port element) are placed in a package based on the target namespace of the WSDL contract. The classes generated to implement the types defined in the types element of the contract are placed in a package based on the targetNamespace attribute of the types element.
				

					The mapping algorithm is as follows:
				
	
							The leading http:// or urn:// are stripped off the namespace.
						
	
							If the first string in the namespace is a valid Internet domain, for example it ends in .com or .gov, then the leading www. is stripped off the string, and the two remaining components are flipped.
						
	
							If the final string in the namespace ends with a file extension of the pattern .xxx or .xx, then the extension is stripped.
						
	
							The remaining strings in the namespace are appended to the resulting string and separated by dots.
						
	
							All letters are made lowercase.
						

Implementing the Service Provider

Generating the implementation code

					 You generate the implementation class used to build your service provider with the code generator’s -impl flag.
				
Note

						If your service’s contract includes any custom types defined in XML Schema, you must ensure that the classes for the types are generated and available.
					

					For more information on using the code generator see the section called “cxf-codegen-plugin”.
				

Generated code

					 The implementation code consists of two files:
				
	
							portTypeName.java — The service interface(SEI) for the service.
						
	
							portTypeNameImpl.java — The class you will use to implement the operations defined by the service.
						

Implement the operation’s logic

					 To provide the business logic for your service’s operations complete the stub methods in portTypeNameImpl.java. You usually use standard Java to implement the business logic. If your service uses custom XML Schema types, you must use the generated classes for each type to manipulate them. There are also some Apache CXF specific APIs that can be used to access some advanced features.
				

Example

					For example, an implementation class for the service defined in Example 26.1, “HelloWorld WSDL Contract” may look like Example 27.2, “Implementation of the Greeter Service”. Only the code portions highlighted in bold must be inserted by the programmer.
				
Example 27.2. Implementation of the Greeter Service
package demo.hw.server;

import org.apache.hello_world_soap_http.Greeter;

@javax.jws.WebService(portName = "SoapPort", serviceName = "SOAPService",
 targetNamespace = "http://apache.org/hello_world_soap_http",
 endpointInterface = "org.apache.hello_world_soap_http.Greeter")

public class GreeterImpl implements Greeter {

 public String greetMe(String me) {
 System.out.println("Executing operation greetMe"); System.out.println("Message received: " + me + "\n"); return "Hello " + me;
 }

 public void greetMeOneWay(String me) {
 System.out.println("Executing operation greetMeOneWay\n"); System.out.println("Hello there " + me);
 }

 public String sayHi() {
 System.out.println("Executing operation sayHi\n"); return "Bonjour";
 }

 public void pingMe() throws PingMeFault {
 FaultDetail faultDetail = new FaultDetail(); faultDetail.setMajor((short)2); faultDetail.setMinor((short)1); System.out.println("Executing operation pingMe, throwing PingMeFault exception\n"); throw new PingMeFault("PingMeFault raised by server", faultDetail);
 }
}

Chapter 28. Developing a Consumer From a WSDL Contract

Abstract

					One way of creating a consumer is to start from a WSDL contract. The contract defines the operations, messages, and transport details of the service on which a consumer makes requests. The starting point code for the consumer is generated from the WSDL contract. The functionality required by the consumer is added to the generated code.
				

Generating the Stub Code

					
				
Overview

					The cxf-codegen-plugin Maven plug-in generates the stub code from the WSDL contract. The stub code provides the supporting code that is required to invoke operations on the remote service.
				

					For consumers, the cxf-codegen-plugin Maven plug-in generates the following types of code:
				
	
							Stub code — Supporting files for implementing a consumer.
						
	
							Starting point code — Sample code that connects to the remote service and invokes every operation on the remote service.
						

Generating the consumer code

					 To generate consumer code use the cxf-codegen-plugin Maven plug-in. Example 28.1, “Consumer Code Generation” shows how to use the code generator to generate consumer code.
				
Example 28.1. Consumer Code Generation
<plugin>
 <groupId>org.apache.cxf</groupId>
 <artifactId>cxf-codegen-plugin</artifactId>
 <version>${cxf.version}</version>
 <executions>
 <execution>
 <id>generate-sources</id>
 <phase>generate-sources</phase>
 <configuration>
 <sourceRoot>outputDir</sourceRoot>
 <wsdlOptions>
 <wsdlOption>
 <wsdl>wsdl</wsdl>
 <extraargs>
 <extraarg>-client</extraarg>
 </extraargs>
 </wsdlOption>
 </wsdlOptions>
 </configuration>
 <goals>
 <goal>wsdl2java</goal>
 </goals>
 </execution>
 </executions>
</plugin>

					Where outputDir is the location of a directory where the generated files are placed and wsdl specifies the WSDL contract’s location. The -client option generates starting point code for the consumer’s main() method.
				

					For a complete list of the arguments available for the cxf-codegen-plugin Maven plug-in see the section called “cxf-codegen-plugin”.
				

Generated code

					 The code generation plug-in generates the following Java packages for the contract shown in Example 26.1, “HelloWorld WSDL Contract”:
				
	
							org.apache.hello_world_soap_http — This package is generated from the http://apache.org/hello_world_soap_http target namespace. All of the WSDL entities defined in this namespace (for example, the Greeter port type and the SOAPService service) map to Java classes this Java package.
						
	
							org.apache.hello_world_soap_http.types — This package is generated from the http://apache.org/hello_world_soap_http/types target namespace. All of the XML types defined in this namespace (that is, everything defined in the wsdl:types element of the HelloWorld contract) map to Java classes in this Java package.
						

					The stub files generated by the cxf-codegen-plugin Maven plug-in fall into the following categories:
				
	
							Classes representing WSDL entities in the org.apache.hello_world_soap_http package. The following classes are generated to represent WSDL entities:
						
	
									Greeter — A Java interface that represents the Greeter wsdl:portType element. In JAX-WS terminology, this Java interface is the service endpoint interface (SEI).
								
	
									SOAPService — A Java service class (extending javax.xml.ws.Service) that represents the SOAPService wsdl:service element.
								
	
									PingMeFault — A Java exception class (extending java.lang.Exception) that represents the pingMeFault wsdl:fault element.
								

	
							Classes representing XML types in the org.objectweb.hello_world_soap_http.types package. In the HelloWorld example, the only generated types are the various wrappers for the request and reply messages. Some of these data types are useful for the asynchronous invocation model.
						

Implementing a Consumer

Overview

					To implement a consumer when starting from a WSDL contract, you must use the following stubs:
				
	
							Service class
						
	
							SEI
						

					Using these stubs, the consumer code instantiates a service proxy to make requests on the remote service. It also implements the consumer’s business logic.
				

Generated service class

					Example 28.2, “Outline of a Generated Service Class” shows the typical outline of a generated service class, ServiceName_Service[2], which extends the javax.xml.ws.Service base class.
				
Example 28.2. Outline of a Generated Service Class
@WebServiceClient(name="..." targetNamespace="..."
 wsdlLocation="...")
public class ServiceName extends javax.xml.ws.Service
{
 ...
 public ServiceName(URL wsdlLocation, QName serviceName) { }

 public ServiceName() { }

 // Available only if you specify '-fe cxf' option in wsdl2java
 public ServiceName(Bus bus) { }

 @WebEndpoint(name="...")
 public SEI getPortName() { }
 .
 .
 .
}

					The ServiceName class in Example 28.2, “Outline of a Generated Service Class” defines the following methods:
				
	
							ServiceName(URL wsdlLocation, QName serviceName) — Constructs a service object based on the data in the wsdl:service element with the QName ServiceName service in the WSDL contract that is obtainable from wsdlLocation.
						
	
							ServiceName() — The default constructor. It constructs a service object based on the service name and the WSDL contract that were provided at the time the stub code was generated (for example, when running the wsdl2java tool). Using this constructor presupposes that the WSDL contract remains available at a specified location.
						
	
							ServiceName(Bus bus) — (CXF specific) An additional constructor that enables you to specify the Bus instance used to configure the Service. This can be useful in the context of a multi-threaded application, where multiple Bus instances can be associated with different threads. This constructor provides a simple way of ensuring that the Bus that you specify is the one that is used with this Service. Only available if you specify the -fe cxf option when invoking the wsdl2java tool.
						
	
							getPortName() — Returns a proxy for the endpoint defined by the wsdl:port element with the name attribute equal to PortName. A getter method is generated for every wsdl:port element defined by the ServiceName service. A wsdl:service element that contains multiple endpoint definitions results in a generated service class with multiple getPortName() methods.
						

Service endpoint interface

					 For every interface defined in the original WSDL contract, you can generate a corresponding SEI. A service endpoint interface is the Java mapping of a wsdl:portType element. Each operation defined in the original wsdl:portType element maps to a corresponding method in the SEI. The operation’s parameters are mapped as follows: . The input parameters are mapped to method arguments.
				
	
							The first output parameter is mapped to a return value.
						
	
							If there is more than one output parameter, the second and subsequent output parameters map to method arguments (moreover, the values of these arguments must be passed using Holder types).
						

					For example, Example 28.3, “The Greeter Service Endpoint Interface” shows the Greeter SEI, which is generated from the wsdl:portType element defined in Example 26.1, “HelloWorld WSDL Contract”. For simplicity, Example 28.3, “The Greeter Service Endpoint Interface” omits the standard JAXB and JAX-WS annotations.
				
Example 28.3. The Greeter Service Endpoint Interface
package org.apache.hello_world_soap_http;
 ...
public interface Greeter
{
 public String sayHi();
 public String greetMe(String requestType);
 public void greetMeOneWay(String requestType);
 public void pingMe() throws PingMeFault;
}

Consumer main function

					Example 28.4, “Consumer Implementation Code” shows the code that implements the HelloWorld consumer. The consumer connects to the SoapPort port on the SOAPService service and then proceeds to invoke each of the operations supported by the Greeter port type.
				
Example 28.4. Consumer Implementation Code
package demo.hw.client;

import java.io.File;
import java.net.URL;
import javax.xml.namespace.QName;
import org.apache.hello_world_soap_http.Greeter;
import org.apache.hello_world_soap_http.PingMeFault;
import org.apache.hello_world_soap_http.SOAPService;

public final class Client {

 private static final QName SERVICE_NAME =
 new QName("http://apache.org/hello_world_soap_http",
 "SOAPService");

 private Client()
 {
 }

 public static void main(String args[]) throws Exception
 {
 if (args.length == 0)
 {
 System.out.println("please specify wsdl");
 System.exit(1);
 }

 URL wsdlURL;
 File wsdlFile = new File(args[0]);
 if (wsdlFile.exists())
 {
 wsdlURL = wsdlFile.toURL();
 }
 else
 {
 wsdlURL = new URL(args[0]);
 }

 System.out.println(wsdlURL);
 SOAPService ss = new SOAPService(wsdlURL,SERVICE_NAME);
 Greeter port = ss.getSoapPort();
 String resp;

 System.out.println("Invoking sayHi...");
 resp = port.sayHi();
 System.out.println("Server responded with: " + resp);
 System.out.println();

 System.out.println("Invoking greetMe...");
 resp = port.greetMe(System.getProperty("user.name"));
 System.out.println("Server responded with: " + resp);
 System.out.println();

 System.out.println("Invoking greetMeOneWay...");
 port.greetMeOneWay(System.getProperty("user.name"));
 System.out.println("No response from server as method is OneWay");
 System.out.println();

 try {
 System.out.println("Invoking pingMe, expecting exception...");
 port.pingMe();
 } catch (PingMeFault ex) {
 System.out.println("Expected exception: PingMeFault has occurred.");
 System.out.println(ex.toString());
 }
 System.exit(0);
 }
}

					 The Client.main() method from Example 28.4, “Consumer Implementation Code” proceeds as follows:
				

					Provided that the Apache CXF runtime classes are on your classpath, the runtime is implicitly initialized. There is no need to call a special function to initialize Apache CXF.
				

					The consumer expects a single string argument that gives the location of the WSDL contract for HelloWorld. The WSDL contract’s location is stored in wsdlURL.
				

					You create a service object using the constructor that requires the WSDL contract’s location and service name. Call the appropriate getPortName() method to obtain an instance of the required port. In this case, the SOAPService service supports only the SoapPort port, which implements the Greeter service endpoint interface.
				

					The consumer invokes each of the methods supported by the Greeter service endpoint interface.
				

					In the case of the pingMe() method, the example code shows how to catch the PingMeFault fault exception.
				

Client proxy generated with -fe cxf option

					If you generate your client proxy by specifying the -fe cxf option in wsdl2java (thereby selecting the cxf frontend), the generated client proxy code is better integrated with Java 7. In this case, when you call a getServiceNamePort() method, you get back a type that is a sub-interface of the SEI and implements the following additional interfaces:
				
	
							java.lang.AutoCloseable
						
	
							javax.xml.ws.BindingProvider (JAX-WS 2.0)
						
	
							org.apache.cxf.endpoint.Client
						

					To see how this simplifies working with a client proxy, consider the following Java code sample, written using a standard JAX-WS proxy object:
				
// Programming with standard JAX-WS proxy object
//
(ServiceNamePortType port = service.getServiceNamePort();
((BindingProvider)port).getRequestContext()
 .put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, address);
port.serviceMethod(...);
((Closeable)port).close();

					And compare the preceding code with the following equivalent code sample, written using code generated by the cxf frontend:
				
// Programming with proxy generated using '-fe cxf' option
//
try (ServiceNamePortTypeProxy port = service.getServiceNamePort()) {
 port.getRequestContext().put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, address);
 port.serviceMethod(...);
}

[2]
						If the name attribute of the wsdl:service element ends in Service the _Service is not used.
					

Chapter 29. Finding WSDL at Runtime

Abstract

					Hard coding the location of WSDL documents into an application is not scalable. In real deployment environments, you will want to allow the WSDL document’s location be resolved at runtime. Apache CXF provides a number of tools to make this possible.
				

Mechanisms for Locating the WSDL Document

					When developing consumers using the JAX-WS APIs you are must provide a hard coded path to the WSDL document that defines your service. While this is OK in a small environment, using hard coded paths does not work well in enterprise deployments.
				

					To address this issue, Apache CXF provides three mechanisms for removing the requirement of using hard coded paths:
				
	
							the section called “Instantiating a Proxy by Injection”
						
	
							the section called “Using a JAX-WS Catalog”
						
	
							the section called “Using a contract resolver”
						

Note

						Injecting the proxy into your implementation code is generally the best option because it is the easiest to implement. It requires only a client endpoint and a configuration file for injecting and instantiating the service proxy.
					

Instantiating a Proxy by Injection

Overview

					Apache CXF’s use of the Spring Framework allows you to avoid the hassle of using the JAX-WS APIs to create service proxies. It allows you to define a client endpoint in a configuration file and then inject a proxy directly into the implementation code. When the runtime instantiates the implementation object, it will also instantiate a proxy for the external service based on the configuration. The implementation is handed by reference to the instantiated proxy.
				

					Because the proxy is instantiated using information in the configuration file, the WSDL location does not need to be hard coded. It can be changed at deployment time. You can also specify that the runtime should search the application’s classpath for the WSDL.
				

Procedure

					To inject a proxy for an external service into a service provider’s implementation do the following:
				
	
							Deploy the required WSDL documents in a well known location that all parts of the application can access.
						
Note

								If you are deploying the application as a WAR file, it is recommended that you place all of the WSDL documents and XML Schema documents in the WEB-INF/wsdl folder of the WAR.
							

Note

								If you are deploying the application as a JAR file, it is recommended that you place all of the WSDL documents and XML Schema documents in the META-INF/wsdl folder of the JAR.
							

	
							Configure a JAX-WS client endpoint for the proxy that is being injected.
						
	
							Inject the proxy into your service provide using the @Resource annotation.
						

Configuring the proxy

					 You configure a JAX-WS client endpoint using the jaxws:client element in you application’s configuration file. This tells the runtime to instantiate a org.apache.cxf.jaxws.JaxWsClientProxy object with the specified properties. This object is the proxy that will be injected into the service provider.
				

					At a minimum you need to provide values for the following attributes:
				
	
							id—Specifies the ID used to identify the client to be injected.
						
	
							serviceClass—Specifies the SEI of the service on which the proxy makes requests.
						

					Example 29.1, “Configuration for a Proxy to be Injected into a Service Implementation” shows the configuration for a JAX-WS client endpoint.
				
Example 29.1. Configuration for a Proxy to be Injected into a Service Implementation
<beans ...
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 ...
 schemaLocation="...
 http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd
 ...">
 <jaxws:client id="bookClient"
 serviceClass="org.apache.cxf.demo.BookService"
 wsdlLocation="classpath:books.wsdl"/>
 ...
</beans>

Note

						In Example 29.1, “Configuration for a Proxy to be Injected into a Service Implementation” the wsdlLocation attribute instructs the runtime to load the WSDL from the classpath. If books.wsdl is on the classpath, the runtime will be able to find it.
					

					For more information on configuring a JAX-WS client see the section called “Configuring Consumer Endpoints”.
				

Coding the provider implementation

					 You inject the configured proxy into a service implementation as a resource using the @Resource as shown in Example 29.2, “Injecting a Proxy into a Service Implementation”.
				
Example 29.2. Injecting a Proxy into a Service Implementation
package demo.hw.server;

import org.apache.hello_world_soap_http.Greeter;

@javax.jws.WebService(portName = "SoapPort", serviceName = "SOAPService",
 targetNamespace = "http://apache.org/hello_world_soap_http",
 endpointInterface = "org.apache.hello_world_soap_http.Greeter")
public class StoreImpl implements Store {

@Resource(name="bookClient") private BookService proxy;

}

					The annotation’s name property corresponds to the value of the JAX-WS client’s id attribute. The configured proxy is injected into the BookService object declared immediately after the annotation. You can use this object to make invocations on the proxy’s external service.
				

Using a JAX-WS Catalog

Overview

					The JAX-WS specification mandates that all implementations support:
				

					a standard catalog facility to be used when resolving any Web service document that is part of the description of a Web service, specifically WSDL and XML Schema documents.
				

					This catalog facility uses the XML catalog facility specified by OASIS. All of the JAX-WS APIs and annotation that take a WSDL URI use the catalog to resolve the WSDL document’s location.
				

					This means that you can provide an XML catalog file that rewrites the locations of your WSDL documents to suite specific deployment environments.
				

Writing the catalog

					JAX-WS catalogs are standard XML catalogs as defined by the OASIS XML Catalogs 1.1 specification. They allow you to specify mapping:
				
	
							a document’s public identifier and/or a system identifier to a URI.
						
	
							the URI of a resource to another URI.
						

					Table 29.1, “Common JAX-WS Catalog Elements” lists some common elements used for WSDL location resolution.
				
Table 29.1. Common JAX-WS Catalog Elements
	Element	Description
	
									uri
								

								 	
									Maps a URI to an alternate URI.
								

								
	
									rewriteURI
								

								 	
									Rewrites the beginning of a URI. For example, this element allows you to map all URIs that start with http://cxf.apache.org to URIs that start with classpath:.
								

								
	
									uriSuffix
								

								 	
									Maps a URI to an alternate URI based on the suffix of the original URI. For example you could map all URIs that end in foo.xsd to classpath:foo.xsd.
								

								

Packaging the catalog

					The JAX-WS specification mandates that the catalog used to resolve WSDL and XML Schema documents is assembled using all available resources named META-INF/jax-ws-catalog.xml. If your application is packaged into a single JAR, or WAR, you can place the catalog into a single file.
				

					If your application is packaged as multiple JARs, you can split the catalog into a number of files. Each catalog file could be modularized to only deal with WSDLs accessed by the code in the specific JARs.
				

Using a contract resolver

Overview

					The most involved mechanism for resolving WSDL document locations at runtime is to implement your own custom contract resolver. This requires that you provide an implementation of the Apache CXF specific ServiceContractResolver interface. You also need to register your custom resolver with the bus.
				

					Once properly registered, the custom contract resolver will be used to resolve the location of any required WSDL and schema documents.
				

Implementing the contract resolver

					 A contract resolver is an implementation of the org.apache.cxf.endpoint.ServiceContractResolver interface. As shown in Example 29.3, “ServiceContractResolver Interface”, this interface has a single method, getContractLocation(), that needs to be implemented. getContractLocation() takes the QName of a service and returns the URI for the service’s WSDL contract.
				
Example 29.3. ServiceContractResolver Interface
public interface ServiceContractResolver
{
 URI getContractLocation(QName qname);
}

					The logic used to resolve the WSDL contract’s location is application specific. You can add logic that resolves contract locations from a UDDI registry, a database, a custom location on a file system, or any other mechanism you choose.
				

Registering the contract resolver programmatically

					 Before the Apache CXF runtime will use your contract resolver, you must register it with a contract resolver registry. Contract resolver registries implement the org.apache.cxf.endpoint.ServiceContractResolverRegistry interface. However, you do not need to implement your own registry. Apache CXF provides a default implementation in the org.apache.cxf.endpoint.ServiceContractResolverRegistryImpl class.
				

					To register a contract resolver with the default registry you do the following:
				
	
							Get a reference to the default bus object.
						
	
							Get the service contract registry from the bus using the bus' getExtension() method.
						
	
							Create an instance of your contract resolver.
						
	
							Register your contract resolver with the registry using the registry’s register() method.
						

					Example 29.4, “Registering a Contract Resolver” shows the code for registering a contract resolver with the default registry.
				
Example 29.4. Registering a Contract Resolver
BusFactory bf=BusFactory.newInstance();
Bus bus=bf.createBus();

ServiceContractResolverRegistry registry = bus.getExtension(ServiceContractResolverRegistry);

JarServiceContractResolver resolver = new JarServiceContractResolver();

registry.register(resolver);

					The code in Example 29.4, “Registering a Contract Resolver” does the following:
				

					Gets a bus instance.
				

					Gets the bus' contract resolver registry.
				

					Creates an instance of a contract resolver.
				

					Registers the contract resolver with the registry.
				

Registering a contract resolver using configuration

					You can also implement a contract resolver so that it can be added to a client through configuration. The contract resolver is implemented in such a way that when the runtime reads the configuration and instantiates the resolver, the resolver registers itself. Because the runtime handles the initialization, you can decide at runtime if a client needs to use the contract resolver.
				

					To implement a contract resolver so that it can be added to a client through configuration do the following:
				
	
							Add an init() method to your contract resolver implementation.
						
	
							Add logic to your init() method that registers the contract resolver with the contract resolver registry as shown in Example 29.4, “Registering a Contract Resolver”.
						
	
							Decorate the init() method with the @PostConstruct annotation.
						

					Example 29.5, “Service Contract Resolver that can be Registered Using Configuration” shows a contract resolver implementation that can be added to a client using configuration.
				
Example 29.5. Service Contract Resolver that can be Registered Using Configuration
import javax.annotation.PostConstruct;
import javax.annotation.Resource;
import javax.xml.namespace.QName;

import org.apache.cxf.Bus;
import org.apache.cxf.BusFactory;

public class UddiResolver implements ServiceContractResolver
{
 private Bus bus;
 ...

 @PostConstruct
 public void init()
 {
 BusFactory bf=BusFactory.newInstance();
 Bus bus=bf.createBus();
 if (null != bus)
 {
 ServiceContractResolverRegistry resolverRegistry = bus.getExtension(ServiceContractResolverRegistry.class);
 if (resolverRegistry != null)
 {
 resolverRegistry.register(this);
 }
 }
 }

 public URI getContractLocation(QName serviceName)
 {
 ...
 }
}

					To register the contract resolver with a client you need to add a bean element to the client’s configuration. The bean element’s class attribute is the name of the class implementing the contract resolver.
				

					Example 29.6, “Bean Configuring a Contract Resolver” shows a bean for adding a configuration resolver implemented by the org.apache.cxf.demos.myContractResolver class.
				
Example 29.6. Bean Configuring a Contract Resolver
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd">
 ...
 <bean id="myResolver" class="org.apache.cxf.demos.myContractResolver" />
 ...
</beans>

Contract resolution order

					When a new proxy is created, the runtime uses the contract registry resolver to locate the remote service’s WSDL contract. The contract resolver registry calls each contract resolver’s getContractLocation() method in the order in which the resolvers were registered. It returns the first URI returned from one of the registered contract resolvers.
				

					If you registered a contract resolver that attempted to resolve the WSDL contract at a well known shared file system, it would be the only contract resolver used. However, if you subsequently registered a contract resolver that resolved WSDL locations using a UDDI registry, the registry could use both resolvers to locate a service’s WSDL contract. The registry would first attempt to locate the contract using the shared file system contract resolver. If that contract resolver failed, the registry would then attempt to locate it using the UDDI contract resolver.
				

Chapter 30. Generic Fault Handling

Abstract

					The JAX-WS specification defines two types of faults. One is a generic JAX-WS runtime exception. The other is a protocol specific class of exceptions that is thrown during message processing.
				

Runtime Faults

					
				
Overview

					Most of the JAX-WS APIs throw a generic javax.xml.ws.WebServiceException exception.
				

APIs that throw WebServiceException

					Table 30.1, “APIs that Throw WebServiceException” lists some of the JAX-WS APIs that can throw the generic WebServiceException exception.
				
Table 30.1. APIs that Throw WebServiceException
	API	Reason
	
									Binding.setHandlerChain()
								

								 	
									There is an error in the handler chain configuration.
								

								
	
									BindingProvider.getEndpointReference()
								

								 	
									The specified class is not assigned from a W3CEndpointReference.
								

								
	
									Dispatch.invoke()
								

								 	
									There is an error in the Dispatch instance’s configuration or an error occurred while communicating with the service.
								

								
	
									Dispatch.invokeAsync()
								

								 	
									There is an error in the Dispatch instance’s configuration.
								

								
	
									Dispatch.invokeOneWay()
								

								 	
									There is an error in the Dispatch instance’s configuration or an error occurred while communicating with the service.
								

								
	
									LogicalMessage.getPayload()
								

								 	
									An error occurred when using a supplied JAXBContext to unmarshall the payload. The cause field of the WebServiceException contains the original JAXBException.
								

								
	
									LogicalMessage.setPayload()
								

								 	
									An error occurred when setting the payload of the message. If the exception is thrown when using a JAXBContext, the cause field of the WebServiceException contains the original JAXBException.
								

								
	
									WebServiceContext.getEndpointReference()
								

								 	
									The specified class is not assigned from a W3CEndpointReference.
								

								

Protocol Faults

Overview

					Protocol exceptions are thrown when an error occurs during the processing of a request. All synchronous remote invocations can throw a protocol exception. The underlying cause occurs either in the consumer’s message handling chain or in the service provider.
				

					The JAX-WS specification defines a generic protocol exception. It also specifies a SOAP-specific protocol exception and an HTTP-specific protocol exception.
				

Types of protocol exceptions

					The JAX-WS specification defines three types of protocol exception. Which exception you catch depends on the transport and binding used by your application.
				

					Table 30.2, “Types of Generic Protocol Exceptions” describes the three types of protocol exception and when they are thrown.
				
Table 30.2. Types of Generic Protocol Exceptions
	Exception Class	When Thrown
	
									javax.xml.ws.ProtocolException
								

								 	
									This exception is the generic protocol exception. It can be caught regardless of the protocol in use. It can be cast into a specific fault type if you are using the SOAP binding or the HTTP binding. When using the XML binding in combination with the HTTP or JMS transports, the generic protocol exception cannot be cast into a more specific fault type.
								

								
	
									javax.xml.ws.soap.SOAPFaultException
								

								 	
									This exception is thrown by remote invocations when using the SOAP binding. For more information see the section called “Using the SOAP protocol exception”.
								

								
	
									javax.xml.ws.http.HTTPException
								

								 	
									This exception is thrown when using the Apache CXF HTTP binding to develop RESTful Web services. For more information see Part VI, “Developing RESTful Web Services”.
								

								

Using the SOAP protocol exception

					The SOAPFaultException exception wraps a SOAP fault. The underlying SOAP fault is stored in the fault field as a javax.xml.soap.SOAPFault object.
				

					If a service implementation needs to throw an exception that does not fit any of the custom exceptions created for the application, it can wrap the fault in a SOAPFaultException using the exceptions creator and throw it back to the consumer. Example 30.1, “Throwing a SOAP Protocol Exception” shows code for creating and throwing a SOAPFaultException if the method is passed an invalid parameter.
				
Example 30.1. Throwing a SOAP Protocol Exception
public Quote getQuote(String ticker)
{
 ...
 if(tickers.length()<3)
 {
 SOAPFault fault = SOAPFactory.newInstance().createFault();
 fault.setFaultString("Ticker too short");
 throw new SOAPFaultException(fault);
 }
 ...
}

					When a consumer catches a SOAPFaultException exception they can retrieve the underlying cause of the exception by examining the wrapped SOAPFault exception. As shown in Example 30.2, “Getting the Fault from a SOAP Protocol Exception”, the SOAPFault exception is retrieved using the SOAPFaultException exception’s getFault() method.
				
Example 30.2. Getting the Fault from a SOAP Protocol Exception
...
try
{
 proxy.getQuote(ticker);
}
catch (SOAPFaultException sfe)
{
 SOAPFault fault = sfe.getFault();
 ...
}

Chapter 31. Publishing a Service

Abstract

					When you want to deploy a JAX-WS service as a standalone Java application, you must explicitly implement the code that publishes the service provider.
				

When to Publish a Service

					Apache CXF provides a number of ways to publish a service as a service provider. How you publish a service depends on the deployment environment you are using. Many of the containers supported by Apache CXF do not require writing logic for publishing endpoints. There are two exceptions:
				
	
							deploying a server as a standalone Java application
						
	
							deploying a server into an OSGi container without Blueprint
						

					For detailed information in deploying applications into the supported containers see Part IV, “Configuring Web Service Endpoints”.
				

APIs Used to Publish a Service

Overview

					The javax.xml.ws.Enddpoint class does the work of publishing a JAX-WS service provider. To publishing an endpoint do the following:
				
	
							Create an Endpoint object for your service provider.
						
	
							Publish the endpoint.
						
	
							Stop the endpoint when application shuts down.
						

					The Endpoint class provides methods for creating and publishing service providers. It also provides a method that can create and publish a service provider in a single method call.
				

Instantiating an service provider

					 A service provider is instantiated using an Endpoint object. You instantiate an Endpoint object for your service provider using one of the following methods:
				
	
							staticEndpointcreateObjectimplementor This create() method returns an Endpoint for the specified service implementation. The Endpoint object is created using the information provided by the implementation class' javax.xml.ws.BindingType annotation, if it is present. If the annotation is not present, the Endpoint uses a default SOAP 1.1/HTTP binding.
						
	
							staticEndpointcreateURIbindingIDObjectimplementor This create() method returns an Endpoint object for the specified implementation object using the specified binding. This method overrides the binding information provided by the javax.xml.ws.BindingType annotation, if it is present. If the bindingID cannot be resolved, or it is null, the binding specified in the javax.xml.ws.BindingType is used to create the Endpoint. If neither the bindingID or the javax.xml.ws.BindingType can be used, the Endpoint is created using a default SOAP 1.1/HTTP binding.
						
	
							staticEndpointpublishStringaddressObjectimplementor The publish() method creates an Endpoint object for the specified implementation, and publishes it. The binding used for the Endpoint object is determined by the URL scheme of the provided address. The list of bindings available to the implementation are scanned for a binding that supports the URL scheme. If one is found the Endpoint object is created and published. If one is not found, the method fails.
						

							Using publish() is the same as invoking one of the create() methods, and then invoking the publish() method used in ???TITLE???.
						

Important

						The implementation object passed to any of the Endpoint creation methods must either be an instance of a class annotated with javax.jws.WebService and meeting the requirements for being an SEI implementation or it must be an instance of a class annotated with javax.xml.ws.WebServiceProvider and implementing the Provider interface.
					

Publishing a service provider

					 You can publish a service provider using either of the following Endpoint methods:
				
	
							publishStringaddress This publish() method publishes the service provider at the address specified.
						
Important

								The address's URL scheme must be compatible with one of the service provider’s bindings.
							

	
							publishObjectserverContext This publish() method publishes the service provider based on the information provided in the specified server context. The server context must define an address for the endpoint, and the context must also be compatible with one of the service provider’s available bindings.
						

Stopping a published service provider

					 When the service provider is no longer needed you should stop it using its stop() method. The stop() method, shown in Example 31.1, “Method for Stopping a Published Endpoint”, shuts down the endpoint and cleans up any resources it is using.
				
Example 31.1. Method for Stopping a Published Endpoint

						stop
					

Important

						Once the endpoint is stopped it cannot be republished.
					

Publishing a Service in a Plain Java Application

Overview

					When you want to deploy your application as a plain java application you need to implement the logic for publishing your endpoints in the application’s main() method. Apache CXF provides you two options for writing your application’s main() method.
				
	
							use the main() method generated by the wsdl2java tool
						
	
							write a custom main() method that publishes the endpoints
						

Generating a Server Mainline

					 The code generators -server flag makes the tool generate a simple server mainline. The generated server mainline, as shown in Example 31.2, “Generated Server Mainline”, publishes one service provider for each port element in the specified WSDL contract.
				

					For more information see the section called “cxf-codegen-plugin”.
				

					Example 31.2, “Generated Server Mainline” shows a generated server mainline.
				
Example 31.2. Generated Server Mainline
package org.apache.hello_world_soap_http;

import javax.xml.ws.Endpoint;

public class GreeterServer {

 protected GreeterServer() throws Exception {
 System.out.println("Starting Server");
 Object implementor = new GreeterImpl();
 String address = "http://localhost:9000/SoapContext/SoapPort";
 Endpoint.publish(address, implementor);
 }

 public static void main(String args[]) throws Exception {
 new GreeterServer();
 System.out.println("Server ready...");

 Thread.sleep(5 * 60 * 1000);
 System.out.println("Server exiting");
 System.exit(0);
 }
}

					The code in Example 31.2, “Generated Server Mainline” does the following:
				

					Instantiates a copy of the service implementation object.
				

					Creates the address for the endpoint based on the contents of the address child of the wsdl:port element in the endpoint’s contract.
				

					Publishes the endpoint.
				

Writing a Server Mainline

					 If you used the Java first development model or you do not want to use the generated server mainline you can write your own. To write your server mainline you must do the following:
				
	
							the section called “Instantiating an service provider” an javax.xml.ws.Endpoint object for the service provider.
						
	
							Create an optional server context to use when publishing the service provider.
						
	
							the section called “Publishing a service provider” the service provider using one of the publish() methods.
						
	
							Stop the service provider when the application is ready to exit.
						

					Example 31.3, “Custom Server Mainline” shows the code for publishing a service provider.
				
Example 31.3. Custom Server Mainline
package org.apache.hello_world_soap_http;

import javax.xml.ws.Endpoint;

public class GreeterServer
{
 protected GreeterServer() throws Exception
 {
 }

 public static void main(String args[]) throws Exception
 {
 GreeterImpl impl = new GreeterImpl();
 Endpoint endpt.create(impl);
 endpt.publish("http://localhost:9000/SoapContext/SoapPort");

 boolean done = false;
 while(!done)
 {
 ...
 }

 endpt.stop();
 System.exit(0);
 }
}

					The code in Example 31.3, “Custom Server Mainline” does the following:
				

					Instantiates a copy of the service’s implementation object.
				

					Creates an unpublished Endpoint for the service implementation.
				

					Publishes the service provider at http://localhost:9000/SoapContext/SoapPort.
				

					Loops until the server should be shutdown.
				

					Stops the published endpoint.
				

Publishing a Service in an OSGi Container

Overview

					When you develop an application that will be deployed into an OSGi container, you need to coordinate the publishing and stopping of your endpoints with the life-cycle of the bundle in which it is packaged. You want your endpoints published when the bundle is started and you want the endpoints stopped when the bundle is stopped.
				

					You tie your endpoints life-cycle to the bundle’s life-cycle by implementing an OSGi bundle activator. A bundle activator is used by the OSGi container to create the resource for a bundle when it is started. The container also uses the bundle activator to clean up the bundles resources when it is stopped.
				

The bundle activator interface

					 You create a bundle activator for your application by implementing the org.osgi.framework.BundleActivator interface. The BundleActivator interface, shown in Example 31.4, “Bundle Activator Interface”, it has two methods that need to be implemented.
				
Example 31.4. Bundle Activator Interface
interface BundleActivator
{
 public void start(BundleContext context)
 throws java.lang.Exception;

 public void stop(BundleContext context)
 throws java.lang.Exception;
}

					The start() method is called by the container when it starts the bundle. This is where you instantiate and publish the endpoints.
				

					The stop() method is called by the container when it stops the bundle. This is where you would stop the endpoints.
				

Implementing the start method

					The bundle activator’s start method is where you publish your endpoints. To publish your endpoints the start method must do the following:
				
	
							the section called “Instantiating an service provider” an javax.xml.ws.Endpoint object for the service provider.
						
	
							Create an optional server context to use when publishing the service provider.
						
	
							the section called “Publishing a service provider” the service provider using one of the publish() methods.
						

					Example 31.5, “Bundle Activator Start Method for Publishing an Endpoint” shows code for publishing a service provider.
				
Example 31.5. Bundle Activator Start Method for Publishing an Endpoint
package com.widgetvendor.osgi;

import javax.xml.ws.Endpoint;
import org.osgi.framework.BundleActivator;
import org.osgi.framework.BundleContext;

public class widgetActivator implements BundleActivator
{
 private Endpoint endpt;
 ...

 public void start(BundleContext context)
 {
 WidgetOrderImpl impl = new WidgetOrderImpl();
 endpt = Endpoint.create(impl);
 endpt.publish("http://localhost:9000/SoapContext/SoapPort");
 }

 ...

}

					The code in Example 31.5, “Bundle Activator Start Method for Publishing an Endpoint” does the following:
				

					Instantiates a copy of the service’s implementation object.
				

					Creates an unpublished Endpoint for the service implementation.
				

					Publish the service provider at http://localhost:9000/SoapContext/SoapPort.
				

Implementing the stop method

					The bundle activator’s stop method is where you clean up the resources used by your application. Its implementation should include logic for stopping all of the endpoint’s published by the application.
				

					Example 31.6, “Bundle Activator Stop Method for Stopping an Endpoint” shows a stop method for stopping a published endpoint.
				
Example 31.6. Bundle Activator Stop Method for Stopping an Endpoint
package com.widgetvendor.osgi;

import javax.xml.ws.Endpoint;
import org.osgi.framework.BundleActivator;
import org.osgi.framework.BundleContext;

public class widgetActivator implements BundleActivator
{
 private Endpoint endpt;
 ...

 public void stop(BundleContext context)
 {
 endpt.stop();
 }

 ...

}

Informing the container

					You must add inform the container that the application’s bundle includes a bundle activator. You do this by adding the Bundle-Activator property to the bundle’s manifest. This property tells the container which class in the bundle to use when activating the bundle. Its value is the fully qualified name of the class implementing the bundle activator.
				

					Example 31.7, “Bundle Activator Manifest Entry” shows a manifest entry for a bundle whose activator is implemented by the class com.widgetvendor.osgi.widgetActivator.
				
Example 31.7. Bundle Activator Manifest Entry
Bundle-Activator: com.widgetvendor.osgi.widgetActivator

Chapter 32. Basic Data Binding Concepts

Abstract

					There are a number of general topics that apply to how Apache CXF handles type mapping.
				

Including and Importing Schema Definitions

Overview

					Apache CXF supports the including and importing of schema definitions, using the include and import schema tags. These tags enable you to insert definitions from external files or resources into the scope of a schema element. The essential difference between including and importing is:
				
	
							Including brings in definitions that belong to the same target namespace as the enclosing schema element.
						
	
							Importing brings in definitions that belong to a different target namespace from the enclosing schema element.
						

xsd:include syntax

					The include directive has the following syntax:
				
<include schemaLocation="anyURI" />

					The referenced schema, given by anyURI, must either belong to the same target namespace as the enclosing schema, or not belong to any target namespace at all. If the referenced schema does not belong to any target namespace, it is automatically adopted into the enclosing schema’s namespace when it is included.
				

					Example 32.1, “Example of a Schema that Includes Another Schema” shows an example of an XML Schema document that includes another XML Schema document.
				
Example 32.1. Example of a Schema that Includes Another Schema
<definitions targetNamespace="http://schemas.redhat.com/tests/schema_parser"
 xmlns:tns="http://schemas.redhat.com/tests/schema_parser"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://schemas.xmlsoap.org/wsdl/">
 <types>
 <schema targetNamespace="http://schemas.redhat.com/tests/schema_parser"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <include schemaLocation="included.xsd"/>
 <complexType name="IncludingSequence">
 <sequence>
 <element name="includedSeq" type="tns:IncludedSequence"/>
 </sequence>
 </complexType>
 </schema>
 </types>
 ...
</definitions>

					Example 32.2, “Example of an Included Schema” shows the contents of the included schema file.
				
Example 32.2. Example of an Included Schema
<schema targetNamespace="http://schemas.redhat.com/tests/schema_parser"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <!-- Included type definitions -->
 <complexType name="IncludedSequence">
 <sequence>
 <element name="varInt" type="int"/>
 <element name="varString" type="string"/>
 </sequence>
 </complexType>
</schema>

xsd:import syntax

					The import directive has the following syntax:
				
<import namespace="namespaceAnyURI"
 schemaLocation="schemaAnyURI" />

					The imported definitions must belong to the namespaceAnyURI target namespace. If namespaceAnyURI is blank or remains unspecified, the imported schema definitions are unqualified.
				

					Example 32.3, “Example of a Schema that Imports Another Schema” shows an example of an XML Schema that imports another XML Schema.
				
Example 32.3. Example of a Schema that Imports Another Schema
<definitions targetNamespace="http://schemas.redhat.com/tests/schema_parser"
 xmlns:tns="http://schemas.redhat.com/tests/schema_parser"
 xmlns:imp="http://schemas.redhat.com/tests/imported_types"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://schemas.xmlsoap.org/wsdl/">
 <types>
 <schema targetNamespace="http://schemas.redhat.com/tests/schema_parser"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <import namespace="http://schemas.redhat.com/tests/imported_types"
 schemaLocation="included.xsd"/>
 <complexType name="IncludingSequence">
 <sequence>
 <element name="includedSeq" type="imp:IncludedSequence"/>
 </sequence>
 </complexType>
 </schema>
 </types>
 ...
</definitions>

					Example 32.4, “Example of an Imported Schema” shows the contents of the imported schema file.
				
Example 32.4. Example of an Imported Schema
<schema targetNamespace="http://schemas.redhat.com/tests/imported_types"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <!-- Included type definitions -->
 <complexType name="IncludedSequence">
 <sequence>
 <element name="varInt" type="int"/>
 <element name="varString" type="string"/>
 </sequence>
 </complexType>
</schema>

Using non-referenced schema documents

					Using types defined in a schema document that is not referenced in the service’s WSDL document is a three step process:
				
	
							Convert the schema document to a WSDL document using the xsd2wsdl tool.
						
	
							Generate Java for the types using the wsdl2java tool on the generated WSDL document.
						
Important

								You will get a warning from the wsdl2java tool stating that the WSDL document does not define any services. You can ignore this warning.
							

	
							Add the generated classes to your classpath.
						

XML Namespace Mapping

Overview

					XML Schema type, group, and element definitions are scoped using namespaces. The namespaces prevent possible naming clashes between entities that use the same name. Java packages serve a similar purpose. Therefore, Apache CXF maps the target namespace of a schema document into a package containing the classes necessary to implement the structures defined in the schema document.
				

Package naming

					 The name of the generated package is derived from a schema’s target namespace using the following algorithm:
				
	
							The URI scheme, if present, is stripped.
						
Note

								Apache CXF will only strip the http:, https:, and urn: schemes.
							

							For example, the namespace http:\\www.widgetvendor.com\types\widgetTypes.xsd becomes \\widgetvendor.com\types\widgetTypes.xsd.
						

	
							The trailing file type identifier, if present, is stripped.
						

							For example, \\www.widgetvendor.com\types\widgetTypes.xsd becomes \\widgetvendor.com\types\widgetTypes.
						

	
							The resulting string is broken into a list of strings using / and : as separators.
						

							So, \\www.widgetvendor.com\types\widgetTypes becomes the list {"www.widegetvendor.com", "types", "widgetTypes"}.
						

	
							If the first string in the list is an internet domain name, it is decomposed as follows:
						
	
									The leading www. is stripped.
								
	
									The remaining string is split into its component parts using the . as the separator.
								
	
									The order of the list is reversed.
								

									So, {"www.widegetvendor.com", "types", "widgetTypes"} becomes {"com", "widegetvendor", "types", "widgetTypes"}
								
Note

										Internet domain names end in one of the following: .com, .net, .edu, .org, .gov, or in one of the two-letter country codes.
									

	
							The strings are converted into all lower case.
						

							So, {"com", "widegetvendor", "types", "widgetTypes"} becomes {"com", "widegetvendor", "types", "widgettypes"}.
						

	
							The strings are normalized into valid Java package name components as follows:
						
	
									If the strings contain any special characters, the special characters are converted to an underscore(_).
								
	
									If any of the strings are a Java keyword, the keyword is prefixed with an underscore(_).
								
	
									If any of the strings begin with a numeral, the string is prefixed with an underscore(_).
								

	
							The strings are concatenated using . as a separator.
						

							So, {"com", "widegetvendor", "types", "widgettypes"} becomes the package name com.widgetvendor.types.widgettypes.
						

					The XML Schema constructs defined in the namespace http:\\www.widgetvendor.com\types\widgetTypes.xsd are mapped to the Java package com.widgetvendor.types.widgettypes.
				

Package contents

					 A JAXB generated package contains the following:
				
	
							A class implementing each complex type defined in the schema
						

							For more information on complex type mapping see Chapter 35, Using Complex Types.
						

	
							An enum type for any simple types defined using the enumeration facet
						

							For more information on how enumerations are mapped see the section called “Enumerations”.
						

	
							A public ObjectFactory class that contains methods for instantiating objects from the schema
						

							For more information on the ObjectFactory class see the section called “The Object Factory”.
						

	
							A package-info.java file that provides metadata about the classes in the package
						

The Object Factory

Overview

					JAXB uses an object factory to provide a mechanism for instantiating instances of JAXB generated constructs. The object factory contains methods for instantiating all of the XML schema defined constructs in the package’s scope. The only exception is that enumerations do not get a creation method in the object factory.
				

Complex type factory methods

					 For each Java class generated to implement an XML schema complex type, the object factory contains a method for creating an instance of the class. This method takes the form:
				
typeName createtypeName();

					For example, if your schema contained a complex type named widgetType, Apache CXF generates a class called WidgetType to implement it. Example 32.5, “Complex Type Object Factory Entry” shows the generated creation method in the object factory.
				
Example 32.5. Complex Type Object Factory Entry
public class ObjectFactory
{
 ...
 WidgetType createWidgetType()
 {
 return new WidgetType();
 }
 ...
}

Element factory methods

					 For elements that are declared in the schema’s global scope, Apache CXF inserts a factory method into the object factory. As discussed in Chapter 33, Using XML Elements, XML Schema elements are mapped to JAXBElement<T> objects. The creation method takes the form:
				
public JAXBElement<elementType> createelementName(elementType value);

					For example if you have an element named comment of type xsd:string, Apache CXF generates the object factory method shown in Example 32.6, “Element Object Factory Entry”
				
Example 32.6. Element Object Factory Entry
public class ObjectFactory
{
 ...
 @XmlElementDecl(namespace = "...", name = "comment")
 public JAXBElement<String> createComment(String value) {
 return new JAXBElement<String>(_Comment_QNAME, String.class, null, value);
 }
 ...
}

Adding Classes to the Runtime Marshaller

Overview

					When the Apache CXF runtime reads and writes XML data it uses a map that associates the XML Schema types with their representative Java types. By default, the map contains all of the types defined in the target namespace of the WSDL contract’s schema element. It also contains any types that are generated from the namespaces of any schemas that are imported into the WSDL contract.
				

					The addition of types from namespaces other than the schema namespace used by an application’s schema element is accomplished using the @XmlSeeAlso annotation. If your application needs to work with types that are generated outside the scope of your application’s WSDL document, you can edit the @XmlSeeAlso annotation to add them to the JAXB map.
				

Using the @XmlSeeAlso annotation

					 The @XmlSeeAlso annotation can be added to the SEI of your service. It contains a comma separated list of classes to include in the JAXB context. Example 32.7, “Syntax for Adding Classes to the JAXB Context” shows the syntax for using the @XmlSeeAlso annotation.
				
Example 32.7. Syntax for Adding Classes to the JAXB Context
import javax.xml.bind.annotation.XmlSeeAlso;
 @WebService()
 @XmlSeeAlso({Class1.class, Class2.class, ..., ClassN.class})
 public class GeneratedSEI {
 ...
 }

					In cases where you have access to the JAXB generated classes, it is more efficient to use the ObjectFactory classes generated to support the needed types. Including the ObjectFactory class includes all of the classes that are known to the object factory.
				

Example

					Example 32.8, “Adding Classes to the JAXB Context” shows an SEI annotated with @XmlSeeAlso.
				
Example 32.8. Adding Classes to the JAXB Context
...
import javax.xml.bind.annotation.XmlSeeAlso;
...
 @WebService()
 @XmlSeeAlso({org.apache.schemas.types.test.ObjectFactory.class, org.apache.schemas.tests.group_test.ObjectFactory.class})
 public interface Foo {
 ...
 }

Chapter 33. Using XML Elements

Abstract

					XML Schema elements are used to define an instance of an element in an XML document. Elements are defined either in the global scope of an XML Schema document, or they are defined as a member of a complex type. When they are defined in the global scope, Apache CXF maps them to a JAXB element class that makes manipulating them easier.
				

Overview

				An element instance in an XML document is defined by an XML Schema element element in the global scope of an XML Schema document To make it easier for Java developers to work with elements, Apache CXF maps globally scoped elements to either a special JAXB element class or to a Java class that is generated to match its content type.
			

				How the element is mapped depends on if the element is defined using a named type referenced by the type attribute or if the element is defined using an in-line type definition. Elements defined with in-line type definitions are mapped to Java classes.
			

				It is recommended that elements are defined using a named type because in-line types are not reusable by other elements in the schema.
			

XML Schema mapping

				 In XML Schema elements are defined using element elements. element elements has one required attribute. The name specifies the name of the element as it appears in an XML document.
			

				In addition to the name attribute element elements have the optional attributes listed in Table 33.1, “Attributes Used to Define an Element”.
			
Table 33.1. Attributes Used to Define an Element
	Attribute	Description
	
								type
							

							 	
								Specifies the type of the element. The type can be any XML Schema primitive type or any named complex type defined in the contract. If this attribute is not specified, you will need to include an in-line type definition.
							

							
	
								nillable
							

							 	
								Specifies if an element can be left out of a document entirely. If nillable is set to true, the element can be omitted from any document generated using the schema.
							

							
	
								abstract
							

							 	
								Specifies if an element can be used in an instance document. true indicates that the element cannot appear in the instance document. Instead, another element whose substitutionGroup attribute contains the QName of this element must appear in this element’s place. For information on how this attribute effects code generation see the section called “Java mapping of abstract elements”.
							

							
	
								substitutionGroup
							

							 	
								Specifies the name of an element that can be substituted with this element. For more information on using type substitution see Chapter 37, Element Substitution.
							

							
	
								default
							

							 	
								Specifies a default value for an element. For information on how this attribute effects code generation see the section called “Java mapping of elements with a default value”.
							

							
	
								fixed
							

							 	
								Specifies a fixed value for the element.
							

							

				Example 33.1, “Simple XML Schema Element Definition” shows a simple element definition.
			
Example 33.1. Simple XML Schema Element Definition
<element name="joeFred" type="xsd:string" />

				An element can also define its own type using an in-line type definition. In-line types are specified using either a complexType element or a simpleType element. Once you specify whether the type of data is complex or simple, you can define any type of data needed using the tools available for each type of data.
			

				Example 33.2, “XML Schema Element Definition with an In-Line Type” shows an element definition with an in-line type definition.
			
Example 33.2. XML Schema Element Definition with an In-Line Type
<element name="skate">
 <complexType>
 <sequence>
 <element name="numWheels" type="xsd:int" />
 <element name="brand" type="xsd:string" />
 </sequence>
 </complexType>
</element>

Java mapping of elements with a named type

				 By default, globally defined elements are mapped to JAXBElement<T> objects where the template class is determined by the value of the element element’s type attribute. For primitive types, the template class is derived using the wrapper class mapping described in the section called “Wrapper classes”. For complex types, the Java class generated to support the complex type is used as the template class.
			

				To support the mapping and to relieve the developer of unnecessary worry about an element’s QName, an object factory method is generated for each globally defined element, as shown in Example 33.3, “Object Factory Method for a Globally Scoped Element”.
			
Example 33.3. Object Factory Method for a Globally Scoped Element
public class ObjectFactory {

 private final static QName _name_QNAME = new QName("targetNamespace", "localName");

 ...

 @XmlElementDecl(namespace = "targetNamespace", name = "localName")
 public JAXBElement<type> createname(type value);

}

				For example, the element defined in Example 33.1, “Simple XML Schema Element Definition” results in the object factory method shown in Example 33.4, “Object Factory for a Simple Element”.
			
Example 33.4. Object Factory for a Simple Element
public class ObjectFactory {

 private final static QName _JoeFred_QNAME = new QName("...", "joeFred");

 ...

 @XmlElementDecl(namespace = "...", name = "joeFred")
 public JAXBElement<String> createJoeFred(String value);

}

				Example 33.5, “Using a Globally Scoped Element” shows an example of using a globally scoped element in Java.
			
Example 33.5. Using a Globally Scoped Element
JAXBElement<String> element = createJoeFred("Green");
String color = element.getValue();

Using elements with named types in WSDL

				If a globally scoped element is used to define a message part, the generated Java parameter is not an instance of JAXBElement<T>. Instead it is mapped to a regular Java type or class.
			

				Given the WSDL fragment shown in Example 33.6, “WSDL Using an Element as a Message Part”, the resulting method has a parameter of type String.
			
Example 33.6. WSDL Using an Element as a Message Part
<?xml version="1.0" encoding=";UTF-8"?>
<wsdl:definitions name="HelloWorld"
 targetNamespace="http://apache.org/hello_world_soap_http"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://apache.org/hello_world_soap_http"
 xmlns:x1="http://apache.org/hello_world_soap_http/types"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <wsdl:types>
 <schema targetNamespace="http://apache.org/hello_world_soap_http/types"
 xmlns="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified"><element name="sayHi">
 <element name="sayHi" type="string"/>
 <element name="sayHiResponse" type="string"/>
 </schema>
 </wsdl:types>

 <wsdl:message name="sayHiRequest">
 <wsdl:part element="x1:sayHi" name="in"/>
 </wsdl:message>
 <wsdl:message name="sayHiResponse">
 <wsdl:part element="x1:sayHiResponse" name="out"/>
 </wsdl:message>

 <wsdl:portType name="Greeter">
 <wsdl:operation name="sayHi">
 <wsdl:input message="tns:sayHiRequest" name="sayHiRequest"/>
 <wsdl:output message="tns:sayHiResponse" name="sayHiResponse"/>
 </wsdl:operation>
 </wsdl:portType>
 ...
</wsdl:definitions>

				Example 33.7, “Java Method Using a Global Element as a Part” shows the generated method signature for the sayHi operation.
			
Example 33.7. Java Method Using a Global Element as a Part

					StringsayHiStringin
				

Java mapping of elements with an in-line type

				 When an element is defined using an in-line type, it is mapped to Java following the same rules used for mapping other types to Java. The rules for simple types are described in Chapter 34, Using Simple Types. The rules for complex types are described in Chapter 35, Using Complex Types.
			

				When a Java class is generated for an element with an in-line type definition, the generated class is decorated with the @XmlRootElement annotation. The @XmlRootElement annotation has two useful properties: name and namespace. These attributes are described in Table 33.2, “Properties for the @XmlRootElement Annotation”.
			
Table 33.2. Properties for the @XmlRootElement Annotation
	Property	Description
	
								name
							

							 	
								Specifies the value of the XML Schema element element’s name attribute.
							

							
	
								namespace
							

							 	
								Specifies the namespace in which the element is defined. If this element is defined in the target namespace, the property is not specified.
							

							

				The @XmlRootElement annotation is not used if the element meets one or more of the following conditions:
			
	
						The element’s nillable attribute is set to true
					
	
						The element is the head element of a substitution group
					

						For more information on substitution groups see Chapter 37, Element Substitution.
					

Java mapping of abstract elements

				When the element’s abstract attribute is set to true the object factory method for instantiating instances of the type is not generated. If the element is defined using an in-line type, the Java class supporting the in-line type is generated.
			

Java mapping of elements with a default value

				 When the element’s default attribute is used the defaultValue property is added to the generated @XmlElementDecl annotation. For example, the element defined in Example 33.8, “XML Schema Element with a Default Value” results in the object factory method shown in Example 33.9, “Object Factory Method for an Element with a Default Value”.
			
Example 33.8. XML Schema Element with a Default Value
<element name="size" type="xsd:int" default="7"/>

Example 33.9. Object Factory Method for an Element with a Default Value
 @XmlElementDecl(namespace = "...", name = "size", defaultValue = "7")
 public JAXBElement<Integer> createUnionJoe(Integer value) {
 return new JAXBElement<Integer>(_Size_QNAME, Integer.class, null, value);
 }

Chapter 34. Using Simple Types

Abstract

					XML Schema simple types are either XML Schema primitive types like xsd:int, or are defined using the simpleType element. They are used to specify elements that do not contain any children or attributes. They are generally mapped to native Java constructs and do not require the generation of special classes to implement them. Enumerated simple types do not result in generated code because they are mapped to Java enum types.
				

Primitive Types

Overview

					When a message part is defined using one of the XML Schema primitive types, the generated parameter’s type is mapped to a corresponding Java native type. The same pattern is used when mapping elements that are defined within the scope of a complex type. The resulting field is of the corresponding Java native type.
				

Mappings

					Table 34.1, “XML Schema Primitive Type to Java Native Type Mapping” lists the mapping between XML Schema primitive types and Java native types.
				
Table 34.1. XML Schema Primitive Type to Java Native Type Mapping
	XML Schema Type	Java Type
	
									xsd:string
								

								 	
									String
								

								
	
									xsd:integer
								

								 	
									BigInteger
								

								
	
									xsd:int
								

								 	
									int
								

								
	
									xsd:long
								

								 	
									long
								

								
	
									xsd:short
								

								 	
									short
								

								
	
									xsd:decimal
								

								 	
									BigDecimal
								

								
	
									xsd:float
								

								 	
									float
								

								
	
									xsd:double
								

								 	
									double
								

								
	
									xsd:boolean
								

								 	
									boolean
								

								
	
									xsd:byte
								

								 	
									byte
								

								
	
									xsd:QName
								

								 	
									QName
								

								
	
									xsd:dateTime
								

								 	
									XMLGregorianCalendar
								

								
	
									xsd:base64Binary
								

								 	
									byte[]
								

								
	
									xsd:hexBinary
								

								 	
									byte[]
								

								
	
									xsd:unsignedInt
								

								 	
									long
								

								
	
									xsd:unsignedShort
								

								 	
									int
								

								
	
									xsd:unsignedByte
								

								 	
									short
								

								
	
									xsd:time
								

								 	
									XMLGregorianCalendar
								

								
	
									xsd:date
								

								 	
									XMLGregorianCalendar
								

								
	
									xsd:g
								

								 	
									XMLGregorianCalendar
								

								
	
									xsd:anySimpleType [a]
								

								 	
									Object
								

								
	
									xsd:anySimpleType [b]
								

								 	
									String
								

								
	
									xsd:duration
								

								 	
									Duration
								

								
	
									xsd:NOTATION
								

								 	
									QName
								

								
	[a]
										For elements of this type.
									

[b]
										For attributes of this type.
									

Wrapper classes

					 Mapping XML Schema primitive types to Java primitive types does not work for all possible XML Schema constructs. Several cases require that an XML Schema primitive type is mapped to the Java primitive type’s corresponding wrapper type. These cases include:
				
	
							An element element with its nillable attribute set to true as shown:
						
<element name="finned" type="xsd:boolean"
 nillable="true" />

	
							An element element with its minOccurs attribute set to 0 and its maxOccurs attribute set to 1, or its maxOccurs attribute not specified, as shown :
						
<element name="plane" type="xsd:string" minOccurs="0" />

	
							An attribute element with its use attribute set to optional, or not specified, and having neither its default attribute nor its fixed attribute specified, as shown:
						
<element name="date">
 <complexType>
 <sequence/>
 <attribute name="calType" type="xsd:string"
 use="optional" />
 </complexType>
</element>

					Table 34.2, “Primitive Schema Type to Java Wrapper Class Mapping” shows how XML Schema primitive types are mapped into Java wrapper classes in these cases.
				
Table 34.2. Primitive Schema Type to Java Wrapper Class Mapping
	Schema Type	Java Type
	
									xsd:int
								

								 	
									java.lang.Integer
								

								
	
									xsd:long
								

								 	
									java.lang.Long
								

								
	
									xsd:short
								

								 	
									java.lang.Short
								

								
	
									xsd:float
								

								 	
									java.lang.Float
								

								
	
									xsd:double
								

								 	
									java.lang.Double
								

								
	
									xsd:boolean
								

								 	
									java.lang.Boolean
								

								
	
									xsd:byte
								

								 	
									java.lang.Byte
								

								
	
									xsd:unsignedByte
								

								 	
									java.lang.Short
								

								
	
									xsd:unsignedShort
								

								 	
									java.lang.Integer
								

								
	
									xsd:unsignedInt
								

								 	
									java.lang.Long
								

								
	
									xsd:unsignedLong
								

								 	
									java.math.BigInteger
								

								
	
									xsd:duration
								

								 	
									java.lang.String
								

								

Simple Types Defined by Restriction

Overview

					XML Schema allows you to create simple types by deriving a new type from another primitive type or simple type. Simple types are described using a simpleType element.
				

					The new types are described by restricting the base type with one or more facets. These facets limit the possible valid values that can be stored in the new type. For example, you could define a simple type, SSN, which is a string of exactly 9 characters.
				

					Each of the primitive XML Schema types has their own set of optional facets.
				

Procedure

					To define your own simple type do the following:
				
	
							Determine the base type for your new simple type.
						
	
							Determine what restrictions define the new type based on the available facets for the chosen base type.
						
	
							Using the syntax shown in this section, enter the appropriate simpleType element into the types section of your contract.
						

Defining a simple type in XML Schema

					Example 34.1, “Simple type syntax” shows the syntax for describing a simple type.
				
Example 34.1. Simple type syntax
<simpleType name="typeName">
 <restriction base="baseType">
 <facet value="value" />
 <facet value="value" />
 ...
 </restriction>
</simpleType>

					The type description is enclosed in a simpleType element and identified by the value of the name attribute. The base type from which the new simple type is being defined is specified by the base attribute of the xsd:restriction element. Each facet element is specified within the restriction element. The available facets and their valid settings depend on the base type. For example, xsd:string has a number of facets including:
				
	
							length
						
	
							minLength
						
	
							maxLength
						
	
							pattern
						
	
							whitespace
						

					Example 34.2, “Postal Code Simple Type” shows the definition for a simple type that represents the two-letter postal code used for US states. It can only contain two, uppercase letters. TX is a valid value, but tx or tX are not valid values.
				
Example 34.2. Postal Code Simple Type
<xsd:simpleType name="postalCode">
 <xsd:restriction base="xsd:string">
 <xsd:pattern value="[A-Z]{2}" />
 </xsd:restriction>
</xsd:simpleType>

Mapping to Java

					 Apache CXF maps user-defined simple types to the Java type of the simple type’s base type. So, any message using the simple type postalCode, shown in Example 34.2, “Postal Code Simple Type”, is mapped to a String because the base type of postalCode is xsd:string. For example, the WSDL fragment shown in Example 34.3, “Credit Request with Simple Types” results in a Java method, state(), that takes a parameter, postalCode, of String.
				
Example 34.3. Credit Request with Simple Types
<message name="stateRequest">
 <part name="postalCode" type="postalCode" />
</message>
...
<portType name="postalSupport">
 <operation name="state">
 <input message="tns:stateRequest" name="stateRec" />
 <output message="tns:stateResponse" name="credResp" />
 </operation>
</portType>

Enforcing facets

					 By default, Apache CXF does not enforce any of the facets that are used to restrict a simple type. However, you can configure Apache CXF endpoints to enforce the facets by enabling schema validation.
				

					To configure Apache CXF endpoints to use schema validation set the schema-validation-enabled property to true. Example 34.4, “Service Provider Configured to Use Schema Validation” shows the configuration for a service provider that uses schema validation
				
Example 34.4. Service Provider Configured to Use Schema Validation
<jaxws:endpoint name="{http://apache.org/hello_world_soap_http}SoapPort"
 wsdlLocation="wsdl/hello_world.wsdl"
 createdFromAPI="true">
 <jaxws:properties>
 <entry key="schema-validation-enabled" value="BOTH" />
 </jaxws:properties>
</jaxws:endpoint>

					For more information on configuring schema validation, see the section called “Schema Validation Type Values”.
				

Enumerations

Overview

					In XML Schema, enumerated types are simple types that are defined using the xsd:enumeration facet. Unlike atomic simple types, they are mapped to Java enums.
				

Defining an enumerated type in XML Schema

					 Enumerations are a simple type using the xsd:enumeration facet. Each xsd:enumeration facet defines one possible value for the enumerated type.
				

					Example 34.5, “XML Schema Defined Enumeration” shows the definition for an enumerated type. It has the following possible values:
				
	
							big
						
	
							large
						
	
							mungo
						
	
							gargantuan
						

Example 34.5. XML Schema Defined Enumeration
<simpleType name="widgetSize">
 <restriction base="xsd:string">
 <enumeration value="big"/>
 <enumeration value="large"/>
 <enumeration value="mungo"/>
 <enumeration value="gargantuan"/>
 </restriction>

Mapping to Java

					 XML Schema enumerations where the base type is xsd:string are automatically mapped to Java enum type. You can instruct the code generator to map enumerations with other base types to Java enum types by using the customizations described in the section called “Customizing Enumeration Mapping”.
				

					The enum type is created as follows:
				
	
							The name of the type is taken from the name attribute of the simple type definition and converted to a Java identifier.
						

							In general, this means converting the first character of the XML Schema’s name to an uppercase letter. If the first character of the XML Schema’s name is an invalid character, an underscrore (_) is prepended to the name.
						

	
							For each enumeration facet, an enum constant is generated based on the value of the value attribute.
						

							The constant’s name is derived by converting all of the lowercase letters in the value to their uppercase equivalent.
						

	
							A constructor is generated that takes the Java type mapped from the enumeration’s base type.
						
	
							A public method called value() is generated to access the facet value that is represented by an instance of the type.
						

							The return type of the value() method is the base type of the XML Schema type.
						

	
							A public method called fromValue() is generated to create an instance of the enum type based on a facet value.
						

							The parameter type of the value() method is the base type of the XML Schema type.
						

	
							The class is decorated with the @XmlEnum annotation.
						

					The enumerated type defined in Example 34.5, “XML Schema Defined Enumeration” is mapped to the enum type shown in Example 34.6, “Generated Enumerated Type for a String Bases XML Schema Enumeration”.
				
Example 34.6. Generated Enumerated Type for a String Bases XML Schema Enumeration
@XmlType(name = "widgetSize")
@XmlEnum
public enum WidgetSize {

 @XmlEnumValue("big")
 BIG("big"),
 @XmlEnumValue("large")
 LARGE("large"),
 @XmlEnumValue("mungo")
 MUNGO("mungo"),
 @XmlEnumValue("gargantuan")
 GARGANTUAN("gargantuan");
 private final String value;

 WidgetSize(String v) {
 value = v;
 }

 public String value() {
 return value;
 }

 public static WidgetSize fromValue(String v) {
 for (WidgetSize c: WidgetSize.values()) {
 if (c.value.equals(v)) {
 return c;
 }
 }
 throw new IllegalArgumentException(v);
 }

}

Lists

Overview

					XML Schema supports a mechanism for defining data types that are a list of space separated simple types. An example of an element, primeList, using a list type is shown in Example 34.7, “List Type Example”.
				
Example 34.7. List Type Example
<primeList>1 3 5 7 9 11 13<\primeList>

					XML Schema list types are generally mapped to Java List<T> objects. The only variation to this pattern is when a message part is mapped directly to an instance of an XML Schema list type.
				

Defining list types in XML Schema

					 XML Schema list types are simple types and as such are defined using a simpleType element. The most common syntax used to define a list type is shown in Example 34.8, “Syntax for XML Schema List Types”.
				
Example 34.8. Syntax for XML Schema List Types
<simpleType name="listType">
 <list itemType="atomicType">
 <facet value="value" />
 <facet value="value" />
 ...
 </list>
</simpleType>

					The value given for atomicType defines the type of the elements in the list. It can only be one of the built in XML Schema atomic types, like xsd:int or xsd:string, or a user-defined simple type that is not a list.
				

					In addition to defining the type of elements listed in the list type, you can also use facets to further constrain the properties of the list type. Table 34.3, “List Type Facets” shows the facets used by list types.
				
Table 34.3. List Type Facets
	Facet	Effect
	
									length
								

								 	
									Defines the number of elements in an instance of the list type.
								

								
	
									minLength
								

								 	
									Defines the minimum number of elements allowed in an instance of the list type.
								

								
	
									maxLength
								

								 	
									Defines the maximum number of elements allowed in an instance of the list type.
								

								
	
									enumeration
								

								 	
									Defines the allowable values for elements in an instance of the list type.
								

								
	
									pattern
								

								 	
									Defines the lexical form of the elements in an instance of the list type. Patterns are defined using regular expressions.
								

								

					For example, the definition for the simpleList element shown in Example 34.7, “List Type Example”, is shown in Example 34.9, “Definition of a List Type”.
				
Example 34.9. Definition of a List Type
<simpleType name="primeListType">
 <list itemType="int"/>
</simpleType>
<element name="primeList" type="primeListType"/>

					In addition to the syntax shown in Example 34.8, “Syntax for XML Schema List Types” you can also define a list type using the less common syntax shown in Example 34.10, “Alternate Syntax for List Types”.
				
Example 34.10. Alternate Syntax for List Types
<simpleType name="listType">
 <list>
 <simpleType>
 <restriction base="atomicType">
 <facet value="value"/>
 <facet value="value"/>
 ...
 </restriction>
 </simpleType>
 </list>
 </simpleType>

Mapping list type elements to Java

					When an element is defined a list type, the list type is mapped to a collection property. A collection property is a Java List<T> object. The template class used by the List<T> is the wrapper class mapped from the list’s base type. For example, the list type defined in Example 34.9, “Definition of a List Type” is mapped to a List<Integer>.
				

					For more information on wrapper type mapping see the section called “Wrapper classes”.
				

Mapping list type parameters to Java

					When a message part is defined as a list type, or is mapped to an element of a list type, the resulting method parameter is mapped to an array instead of a List<T> object. The base type of the array is the wrapper class of the list type’s base class.
				

					For example, the WSDL fragment in Example 34.11, “WSDL with a List Type Message Part” results in the method signature shown in Example 34.12, “Java Method with a List Type Parameter”.
				
Example 34.11. WSDL with a List Type Message Part
<definitions ...>
 ...
 <types ...>
 <schema ... >
 <simpleType name="primeListType">
 <list itemType="int"/>
 </simpleType>
 <element name="primeList" type="primeListType"/>
 </schemas>
 </types>
 <message name="numRequest"> <part name="inputData" element="xsd1:primeList" /> </message>
 <message name="numResponse">;
 <part name="outputData" type="xsd:int">
 ...
 <portType name="numberService">
 <operation name="primeProcessor">
 <input name="numRequest" message="tns:numRequest" />
 <output name="numResponse" message="tns:numResponse" />
 </operation>
 ...
 </portType>
 ...
</definitions>

Example 34.12. Java Method with a List Type Parameter
public interface NumberService {

 @XmlList
 @WebResult(name = "outputData", targetNamespace = "", partName = "outputData")
 @WebMethod
 public int primeProcessor(
 @WebParam(partName = "inputData", name = "primeList", targetNamespace = "...") java.lang.Integer[] inputData
);
}

Unions

Overview

					In XML Schema, a union is a construct that allows you to describe a type whose data can be one of a number of simple types. For example, you can define a type whose value is either the integer 1 or the string first. Unions are mapped to Java Strings.
				

Defining in XML Schema

					 XML Schema unions are defined using a simpleType element. They contain at least one union element that defines the member types of the union. The member types of the union are the valid types of data that can be stored in an instance of the union. They are defined using the union element’s memberTypes attribute. The value of the memberTypes attribute contains a list of one or more defined simple type names. Example 34.13, “Simple Union Type” shows the definition of a union that can store either an integer or a string.
				
Example 34.13. Simple Union Type
<simpleType name="orderNumUnion">
 <union memberTypes="xsd:string xsd:int" />
</simpleType>

					In addition to specifying named types as a member type of a union, you can also define an anonymous simple type as a member type of a union. This is done by adding the anonymous type definition inside of the union element. Example 34.14, “Union with an Anonymous Member Type” shows an example of a union containing an anonymous member type that restricts the possible values of a valid integer to the range 1 through 10.
				
Example 34.14. Union with an Anonymous Member Type
<simpleType name="restrictedOrderNumUnion">
 <union memberTypes="xsd:string">
 <simpleType>
 <restriction base="xsd:int">
 <minInclusive value="1" />
 <maxInclusive value="10" />
 </restriction>
 </simpleType>
 </union>
</simpleType>

Mapping to Java

					 XML Schema union types are mapped to Java String objects. By default, Apache CXF does not validate the contents of the generated object. To have Apache CXF validate the contents you will must configure the runtime to use schema validation as described in the section called “Enforcing facets”.
				

Simple Type Substitution

Overview

					XML allows for simple type substitution between compatible types using the xsi:type attribute. The default mapping of simple types to Java primitive types, however, does not fully support simple type substitution. The runtime can handle basic simple type substitution, but information is lost. The code generators can be customized to generate Java classes that facilitate lossless simple type substitution.
				

Default mapping and marshaling

					Because Java primitive types do not support type substitution, the default mapping of simple types to Java primitive types presents problems for supporting simple type substitution. The Java virtual machine will balk if an attempt is made to pass a short into a variable that expects an int even though the schema defining the types allows it.
				

					To get around the limitations imposed by the Java type system, Apache CXF allows for simple type substitution when the value of the element’s xsi:type attribute meets one of the following conditions:
				
	
							It specifies a primitive type that is compatible with the element’s schema type.
						
	
							It specifies a type that derives by restriction from the element’s schema type.
						
	
							It specifies a complex type that derives by extension from the element’s schema type.
						

					When the runtime does the type substitution it does not retain any knowledge of the type specified in the element’s xsi:type attribute. If the type substitution is from a complex type to a simple type, only the value directly related to the simple type is preserved. Any other elements and attributes added by extension are lost.
				

Supporting lossless type substitution

					 You can customize the generation of simple types to facilitate lossless support of simple type substitution in the following ways:
				
	
							Set the globalBindings customization element’s mapSimpleTypeDef to true.
						

							This instructs the code generator to create Java value classes for all named simple types defined in the global scope.
						

							For more information see the section called “Generating Java Classes for Simple Types”.
						

	
							Add a javaType element to the globalBindings customization element.
						

							This instructs the code generators to map all instances of an XML Schema primitive type to s specific class of object.
						

							For more information see the section called “Specifying the Java Class of an XML Schema Primitive”.
						

	
							Add a baseType customization element to the specific elements you want to customize.
						

							The baseType customization element allows you to specify the Java type generated to represent a property. To ensure the best compatibility for simple type substitution, use java.lang.Object as the base type.
						

							For more information see the section called “Specifying the Base Type of an Element or an Attribute”.
						

Chapter 35. Using Complex Types

Abstract

					Complex types can contain multiple elements and they can have attributes. They are mapped into Java classes that can hold the data represented by the type definition. Typically, the mapping is to a bean with a set of properties representing the elements and the attributes of the content model..
				

Basic Complex Type Mapping

Overview

					XML Schema complex types define constructs containing more complex information than a simple type. The most simple complex types define an empty element with an attribute. More intricate complex types are made up of a collection of elements.
				

					By default, an XML Schema complex type is mapped to a Java class, with a member variable to represent each element and attribute listed in the XML Schema definition. The class has setters and getters for each member variable.
				

Defining in XML Schema

					XML Schema complex types are defined using the complexType element. The complexType element wraps the rest of elements used to define the structure of the data. It can appear either as the parent element of a named type definition, or as the child of an element element anonymously defining the structure of the information stored in the element. When the complexType element is used to define a named type, it requires the use of the name attribute. The name attribute specifies a unique identifier for referencing the type.
				

					Complex type definitions that contain one or more elements have one of the child elements described in Table 35.1, “Elements for Defining How Elements Appear in a Complex Type”. These elements determine how the specified elements appear in an instance of the type.
				
Table 35.1. Elements for Defining How Elements Appear in a Complex Type
	Element	Description
	
									all
								

								 	
									All of the elements defined as part of the complex type must appear in an instance of the type. However, they can appear in any order.
								

								
	
									choice
								

								 	
									Only one of the elements defined as part of the complex type can appear in an instance of the type.
								

								
	
									sequence
								

								 	
									All of the elements defined as part of the complex type must appear in an instance of the type, and they must also appear in the order specified in the type definition.
								

								

Note

						If a complex type definition only uses attributes, you do not need one of the elements described in Table 35.1, “Elements for Defining How Elements Appear in a Complex Type”.
					

					After deciding how the elements will appear, you define the elements by adding one or more element element children to the definition.
				

					Example 35.1, “XML Schema Complex Type” shows a complex type definition in XML Schema.
				
Example 35.1. XML Schema Complex Type
<complexType name="sequence">
 <sequence>
 <element name="name" type="xsd:string" />
 <element name="street" type="xsd:short" />
 <element name="city" type="xsd:string" />
 <element name="state" type="xsd:string" />
 <element name="zipCode" type="xsd:string" />
 </sequence>
</complexType>

Mapping to Java

					 XML Schema complex types are mapped to Java classes. Each element in the complex type definition is mapped to a member variable in the Java class. Getter and setter methods are also generated for each element in the complex type.
				

					All generated Java classes are decorated with the @XmlType annotation. If the mapping is for a named complex type, the annotations name is set to the value of the complexType element’s name attribute. If the complex type is defined as part of an element definition, the value of the @XmlType annotation’s name property is the value of the element element’s name attribute.
				
Note

						As described in the section called “Java mapping of elements with an in-line type”, the generated class is decorated with the @XmlRootElement annotation if it is generated for a complex type defined as part of an element definition.
					

					To provide the runtime with guidelines indicating how the elements of the XML Schema complex type should be handled, the code generators alter the annotations used to decorate the class and its member variables.
				
	All Complex Type
	
								All complex types are defined using the all element. They are annotated as follows:
							
	
										The @XmlType annotation’s propOrder property is empty.
									
	
										Each element is decorated with the @XmlElement annotation.
									
	
										The @XmlElement annotation’s required property is set to true.
									

										Example 35.2, “Mapping of an All Complex Type” shows the mapping for an all complex type with two elements.
									
Example 35.2. Mapping of an All Complex Type
@XmlType(name = "all", propOrder = {

})
public class All {
 @XmlElement(required = true)
 protected BigDecimal amount;
 @XmlElement(required = true)
 protected String type;

 public BigDecimal getAmount() {
 return amount;
 }

 public void setAmount(BigDecimal value) {
 this.amount = value;
 }

 public String getType() {
 return type;
 }

 public void setType(String value) {
 this.type = value;
 }
}

	Choice Complex Type
	
								Choice complex types are defined using the choice element. They are annotated as follows:
							
	
										The @XmlType annotation’s propOrder property lists the names of the elements in the order they appear in the XML Schema definition.
									
	
										None of the member variables are annotated.
									

										Example 35.3, “Mapping of a Choice Complex Type” shows the mapping for a choice complex type with two elements.
									
Example 35.3. Mapping of a Choice Complex Type
@XmlType(name = "choice", propOrder = {
 "address",
 "floater"
})
public class Choice {

 protected Sequence address;
 protected Float floater;

 public Sequence getAddress() {
 return address;
 }

 public void setAddress(Sequence value) {
 this.address = value;
 }

 public Float getFloater() {
 return floater;
 }

 public void setFloater(Float value) {
 this.floater = value;
 }

}

	Sequence Complex Type
	
								A sequence complex type is defined using the sequence element. It is annotated as follows:
							
	
										The @XmlType annotation’s propOrder property lists the names of the elements in the order they appear in the XML Schema definition.
									
	
										Each element is decorated with the @XmlElement annotation.
									
	
										The @XmlElement annotation’s required property is set to true.
									

										Example 35.4, “Mapping of a Sequence Complex Type” shows the mapping for the complex type defined in Example 35.1, “XML Schema Complex Type”.
									
Example 35.4. Mapping of a Sequence Complex Type
@XmlType(name = "sequence", propOrder = {
 "name",
 "street",
 "city",
 "state",
 "zipCode"
})
public class Sequence {

 @XmlElement(required = true)
 protected String name;
 protected short street;
 @XmlElement(required = true)
 protected String city;
 @XmlElement(required = true)
 protected String state;
 @XmlElement(required = true)
 protected String zipCode;

 public String getName() {
 return name;
 }

 public void setName(String value) {
 this.name = value;
 }

 public short getStreet() {
 return street;
 }

 public void setStreet(short value) {
 this.street = value;
 }

 public String getCity() {
 return city;
 }

 public void setCity(String value) {
 this.city = value;
 }

 public String getState() {
 return state;
 }

 public void setState(String value) {
 this.state = value;
 }

 public String getZipCode() {
 return zipCode;
 }

 public void setZipCode(String value) {
 this.zipCode = value;
 }
}

Attributes

Overview

					Apache CXF supports the use of attribute elements and attributeGroup elements within the scope of a complexType element. When defining structures for an XML document attribute declarations provide a means of adding information that is specified within the tag, not the value that the tag contains. For example, when describing the XML element <value currency="euro">410<\value> in XML Schema the currency attribute is described using an attribute element as shown in Example 35.5, “XML Schema Defining and Attribute”.
				

					The attributeGroup element allows you to define a group of reusable attributes that can be referenced by all complex types defined by the schema. For example, if you are defining a series of elements that all use the attributes category and pubDate, you could define an attribute group with these attributes and reference them in all the elements that use them. This is shown in Example 35.7, “Attribute Group Definition”.
				

					When describing data types for use in developing application logic, attributes whose use attribute is set to either optional or required are treated as elements of a structure. For each attribute declaration contained within a complex type description, an element is generated in the class for the attribute, along with the appropriate getter and setter methods.
				

Defining an attribute in XML Schema

					An XML Schema attribute element has one required attribute, name, that is used to identify the attribute. It also has four optional attributes that are described in Table 35.2, “Optional Attributes Used to Define Attributes in XML Schema”.
				
Table 35.2. Optional Attributes Used to Define Attributes in XML Schema
	Attribute	Description
	
									use
								

								 	
									Specifies if the attribute is required. Valid values are required, optional, or prohibited. optional is the default value.
								

								
	
									type
								

								 	
									Specifies the type of value the attribute can take. If it is not used the schema type of the attribute must be defined in-line.
								

								
	
									default
								

								 	
									Specifies a default value to use for the attribute. It is only used when the attribute element’s use attribute is set to optional.
								

								
	
									fixed
								

								 	
									Specifies a fixed value to use for the attribute. It is only used when the attribute element’s use attribute is set to optional.
								

								

					Example 35.5, “XML Schema Defining and Attribute” shows an attribute element defining an attribute, currency, whose value is a string.
				
Example 35.5. XML Schema Defining and Attribute
<element name="value">
 <complexType>
 <xsd:simpleContent>
 <xsd:extension base="xsd:integer">
 <xsd:attribute name="currency" type="xsd:string"
 use="required"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>
</xsd:element>

					If the type attribute is omitted from the attribute element, the format of the data must be described in-line. Example 35.6, “Attribute with an In-Line Data Description” shows an attribute element for an attribute, category, that can take the values autobiography, non-fiction, or fiction.
				
Example 35.6. Attribute with an In-Line Data Description
<attribute name="category" use="required">
 <simpleType>
 <restriction base="xsd:string">
 <enumeration value="autobiography"/>
 <enumeration value="non-fiction"/>
 <enumeration value="fiction"/>
 </restriction>
 </simpleType>
</attribute>

Using an attribute group in XML Schema

					Using an attribute group in a complex type definition is a two step process:
				
	
							Define the attribute group.
						

							An attribute group is defined using an attributeGroup element with a number of attribute child elements. The attributeGroup requires a name attribute that defines the string used to refer to the attribute group. The attribute elements define the members of the attribute group and are specified as shown in the section called “Defining an attribute in XML Schema”. Example 35.7, “Attribute Group Definition” shows the description of the attribute group catalogIndecies. The attribute group has two members: category, which is optional, and pubDate, which is required.
						
Example 35.7. Attribute Group Definition
<attributeGroup name="catalogIndices">
 <attribute name="category" type="catagoryType" />
 <attribute name="pubDate" type="dateTime"
 use="required" />
</attributeGroup>

	
							Use the attribute group in the definition of a complex type.
						

							You use attribute groups in complex type definitions by using the attributeGroup element with the ref attribute. The value of the ref attribute is the name given the attribute group that you want to use as part of the type definition. For example if you want to use the attribute group catalogIndecies in the complex type dvdType, you would use <attributeGroup ref="catalogIndecies" /> as shown in Example 35.8, “Complex Type with an Attribute Group”.
						
Example 35.8. Complex Type with an Attribute Group
<complexType name="dvdType">
 <sequence>
 <element name="title" type="xsd:string" />
 <element name="director" type="xsd:string" />
 <element name="numCopies" type="xsd:int" />
 </sequence>
 <attributeGroup ref="catalogIndices" />
</complexType>

Mapping attributes to Java

					 Attributes are mapped to Java in much the same way that member elements are mapped to Java. Required attributes and optional attributes are mapped to member variables in the generated Java class. The member variables are decorated with the @XmlAttribute annotation. If the attribute is required, the @XmlAttribute annotation’s required property is set to true.
				

					The complex type defined in Example 35.9, “techDoc Description” is mapped to the Java class shown in Example 35.10, “techDoc Java Class”.
				
Example 35.9. techDoc Description
<complexType name="techDoc">
 <all>
 <element name="product" type="xsd:string" />
 <element name="version" type="xsd:short" />
 </all>
 <attribute name="usefullness" type="xsd:float"
 use="optional" default="0.01" />
</complexType>

Example 35.10. techDoc Java Class
@XmlType(name = "techDoc", propOrder = {

})
public class TechDoc {

 @XmlElement(required = true)
 protected String product;
 protected short version;
 @XmlAttribute protected Float usefullness;

 public String getProduct() {
 return product;
 }

 public void setProduct(String value) {
 this.product = value;
 }

 public short getVersion() {
 return version;
 }

 public void setVersion(short value) {
 this.version = value;
 }

 public float getUsefullness() { if (usefullness == null) { return 0.01F; } else { return usefullness; } }

 public void setUsefullness(Float value) {
 this.usefullness = value;
 }
}

					As shown in Example 35.10, “techDoc Java Class”, the default attribute and the fixed attribute instruct the code generators to add code to the getter method generated for the attribute. This additional code ensures that the specified value is returned if no value is set.
				
Important

						The fixed attribute is treated the same as the default attribute. If you want the fixed attribute to be treated as a Java constant you can use the customization described in the section called “Customizing Fixed Value Attribute Mapping”.
					

Mapping attribute groups to Java

					Attribute groups are mapped to Java as if the members of the group were explicitly used in the type definition. If the attribute group has three members, and it is used in a complex type, the generated class for that type will include a member variable, along with the getter and setter methods, for each member of the attribute group. For example, the complex type defined in Example 35.8, “Complex Type with an Attribute Group”, Apache CXF generates a class containing the member variables category and pubDate to support the members of the attribute group as shown in Example 35.11, “dvdType Java Class”.
				
Example 35.11. dvdType Java Class
@XmlType(name = "dvdType", propOrder = {
 "title",
 "director",
 "numCopies"
})
public class DvdType {

 @XmlElement(required = true)
 protected String title;
 @XmlElement(required = true)
 protected String director;
 protected int numCopies;
 @XmlAttribute protected CatagoryType category; @XmlAttribute(required = true) @XmlSchemaType(name = "dateTime") protected XMLGregorianCalendar pubDate;

 public String getTitle() {
 return title;
 }

 public void setTitle(String value) {
 this.title = value;
 }

 public String getDirector() {
 return director;
 }

 public void setDirector(String value) {
 this.director = value;
 }

 public int getNumCopies() {
 return numCopies;
 }

 public void setNumCopies(int value) {
 this.numCopies = value;
 }

 public CatagoryType getCatagory() {
 return catagory;
 }

 public void setCatagory(CatagoryType value) {
 this.catagory = value;
 }

 public XMLGregorianCalendar getPubDate() {
 return pubDate;
 }

 public void setPubDate(XMLGregorianCalendar value) {
 this.pubDate = value;
 }

}

Deriving Complex Types from Simple Types

Overview

					Apache CXF supports derivation of a complex type from a simple type. A simple type has, by definition, neither sub-elements nor attributes. Hence, one of the main reasons for deriving a complex type from a simple type is to add attributes to the simple type.
				

					There are two ways of deriving a complex type from a simple type:
				
	
							By extension
						
	
							By restriction
						

Derivation by extension

					Example 35.12, “Deriving a Complex Type from a Simple Type by Extension” shows an example of a complex type, internationalPrice, derived by extension from the xsd:decimal primitive type to include a currency attribute.
				
Example 35.12. Deriving a Complex Type from a Simple Type by Extension
<complexType name="internationalPrice">
 <simpleContent>
 <extension base="xsd:decimal">
 <attribute name="currency" type="xsd:string"/>
 </extension>
 </simpleContent>
 </complexType>

					The simpleContent element indicates that the new type does not contain any sub-elements. The extension element specifies that the new type extends xsd:decimal.
				

Derivation by restriction

					Example 35.13, “Deriving a Complex Type from a Simple Type by Restriction” shows an example of a complex type, idType, that is derived by restriction from xsd:string. The defined type restricts the possible values of xsd:stringto values that are ten characters in length. It also adds an attribute to the type.
				
Example 35.13. Deriving a Complex Type from a Simple Type by Restriction
<complexType name="idType">
 <simpleContent>
 <restriction base="xsd:string">
 <length value="10" />
 <attribute name="expires" type="xsd:dateTime" />
 </restriction>
 </simpleContent>
</complexType>

					As in Example 35.12, “Deriving a Complex Type from a Simple Type by Extension” the simpleContent element signals that the new type does not contain any children. This example uses a restriction element to constrain the possible values used in the new type. The attribute element adds the element to the new type.
				

Mapping to Java

					A complex type derived from a simple type is mapped to a Java class that is decorated with the @XmlType annotation. The generated class contains a member variable, value, of the simple type from which the complex type is derived. The member variable is decorated with the @XmlValue annotation. The class also has a getValue() method and a setValue() method. In addition, the generated class has a member variable, and the associated getter and setter methods, for each attribute that extends the simple type.
				

					Example 35.14, “idType Java Class” shows the Java class generated for the idType type defined in Example 35.13, “Deriving a Complex Type from a Simple Type by Restriction”.
				
Example 35.14. idType Java Class
@XmlType(name = "idType", propOrder = {
 "value"
})
public class IdType {

 @XmlValue
 protected String value;
 @XmlAttribute
 @XmlSchemaType(name = "dateTime")
 protected XMLGregorianCalendar expires;

 public String getValue() {
 return value;
 }

 public void setValue(String value) {
 this.value = value;
 }

 public XMLGregorianCalendar getExpires() {
 return expires;
 }

 public void setExpires(XMLGregorianCalendar value) {
 this.expires = value;
 }

}

Deriving Complex Types from Complex Types

Overview

					Using XML Schema, you can derive new complex types by either extending or restricting other complex types using the complexContent element. When generating the Java class to represent the derived complex type, Apache CXF extends the base type’s class. In this way, the generated Java code preserves the inheritance hierarchy intended in the XML Schema.
				

Schema syntax

					You derive complex types from other complex types by using the complexContent element, and either the extension element or the restriction element. The complexContent element specifies that the included data description includes more than one field. The extension element and the restriction element, which are children of the complexContent element, specify the base type being modified to create the new type. The base type is specified by the base attribute.
				

Extending a complex type

					To extend a complex type use the extension element to define the additional elements and attributes that make up the new type. All elements that are allowed in a complex type description are allowable as part of the new type’s definition. For example, you can add an anonymous enumeration to the new type, or you can use the choice element to specify that only one of the new fields can be valid at a time.
				

					Example 35.15, “Deriving a Complex Type by Extension” shows an XML Schema fragment that defines two complex types, widgetOrderInfo and widgetOrderBillInfo. widgetOrderBillInfo is derived by extending widgetOrderInfo to include two new elements: orderNumber and amtDue.
				
Example 35.15. Deriving a Complex Type by Extension
<complexType name="widgetOrderInfo">
 <sequence>
 <element name="amount" type="xsd:int"/>
 <element name="order_date" type="xsd:dateTime"/>
 <element name="type" type="xsd1:widgetSize"/>
 <element name="shippingAddress" type="xsd1:Address"/>
 </sequence>
 <attribute name="rush" type="xsd:boolean" use="optional" />
</complexType>
<complexType name="widgetOrderBillInfo">
 <complexContent>
 <extension base="xsd1:widgetOrderInfo">
 <sequence>
 <element name="amtDue" type="xsd:decimal"/>
 <element name="orderNumber" type="xsd:string"/>
 </sequence>
 <attribute name="paid" type="xsd:boolean"
 default="false" />
 </extension>
 </complexContent>
</complexType>

Restricting a complex type

					To restrict a complex type use the restriction element to limit the possible values of the base type’s elements or attributes. When restricting a complex type you must list all of the elements and attributes of the base type. For each element you can add restrictive attributes to the definition. For example, you can add a maxOccurs attribute to an element to limit the number of times it can occur. You can also use the fixed attribute to force one or more of the elements to have predetermined values.
				

					Example 35.16, “Defining a Complex Type by Restriction” shows an example of defining a complex type by restricting another complex type. The restricted type, wallawallaAddress, can only be used for addresses in Walla Walla, Washington because the values for the city element, the state element, and the zipCode element are fixed.
				
Example 35.16. Defining a Complex Type by Restriction
<complexType name="Address">
 <sequence>
 <element name="name" type="xsd:string"/>
 <element name="street" type="xsd:short" maxOccurs="3"/>
 <element name="city" type="xsd:string"/>
 <element name="state" type="xsd:string"/>
 <element name="zipCode" type="xsd:string"/>
 </sequence>
</complexType>
<complexType name="wallawallaAddress">
 <complexContent>
 <restriction base="xsd1:Address">
 <sequence>
 <element name="name" type="xsd:string"/>
 <element name="street" type="xsd:short"
 maxOccurs="3"/>
 <element name="city" type="xsd:string"
 fixed="WallaWalla"/>
 <element name="state" type="xsd:string"
 fixed="WA" />
 <element name="zipCode" type="xsd:string"
 fixed="99362" />
 </sequence>
 </restriction>
 </complexContent>
</complexType>

Mapping to Java

					 As it does with all complex types, Apache CXF generates a class to represent complex types derived from another complex type. The Java class generated for the derived complex type extends the Java class generated to support the base complex type. The base Java class is also modified to include the @XmlSeeAlso annotation. The base class' @XmlSeeAlso annotation lists all of the classes that extend the base class.
				

					When the new complex type is derived by extension, the generated class will include member variables for all of the added elements and attributes. The new member variables will be generated according to the same mappings as all other elements.
				

					When the new complex type is derived by restriction, the generated class will have no new member variables. The generated class will simply be a shell that does not provide any additional functionality. It is entirely up to you to ensure that the restrictions defined in the XML Schema are enforced.
				

					For example, the schema in Example 35.15, “Deriving a Complex Type by Extension” results in the generation of two Java classes: WidgetOrderInfo and WidgetBillOrderInfo. WidgetOrderBillInfo extends WidgetOrderInfo because widgetOrderBillInfo is derived by extension from widgetOrderInfo. Example 35.17, “WidgetOrderBillInfo” shows the generated class for widgetOrderBillInfo.
				
Example 35.17. WidgetOrderBillInfo
@XmlType(name = "widgetOrderBillInfo", propOrder = {
 "amtDue",
 "orderNumber"
})
public class WidgetOrderBillInfo
 extends WidgetOrderInfo
{
 @XmlElement(required = true)
 protected BigDecimal amtDue;
 @XmlElement(required = true)
 protected String orderNumber;
 @XmlAttribute
 protected Boolean paid;

 public BigDecimal getAmtDue() {
 return amtDue;
 }

 public void setAmtDue(BigDecimal value) {
 this.amtDue = value;
 }

 public String getOrderNumber() {
 return orderNumber;
 }

 public void setOrderNumber(String value) {
 this.orderNumber = value;
 }

 public boolean isPaid() {
 if (paid == null) {
 return false;
 } else {
 return paid;
 }
 }

 public void setPaid(Boolean value) {
 this.paid = value;
 }
}

Occurrence Constraints

Schema Elements Supporting Occurrence Constraints

						XML Schema allows you to specify the occurrence constraints on four of the XML Schema elements that make up a complex type definition:
					
	
								the section called “Occurrence Constraints on the All Element”
							
	
								the section called “Occurrence Constraints on the Choice Element”
							
	
								the section called “Occurrence Constraints on Elements”
							
	
								the section called “Occurrence Constraints on Sequences”
							

Occurrence Constraints on the All Element

XML Schema

						Complex types defined with the all element do not allow for multiple occurrences of the structure defined by the all element. You can, however, make the structure defined by the all element optional by setting its minOccurs attribute to 0.
					

Mapping to Java

						Setting the all element’s minOccurs attribute to 0 has no effect on the generated Java class.
					

Occurrence Constraints on the Choice Element

Overview

						By default, the results of a choice element can only appear once in an instance of a complex type. You can change the number of times the element chosen to represent the structure defined by a choice element is allowed to appear using its minOccurs attribute and its mxOccurs attribute. Using these attributes you can specify that the choice type can occur zero to an unlimited number of times in an instance of a complex type. The element chosen for the choice type does not need to be the same for each occurrence of the type.
					

Using in XML Schema

						The minOccurs attribute specifies the minimum number of times the choice type must appear. Its value can be any positive integer. Setting the minOccurs attribute to 0 specifies that the choice type does not need to appear inside an instance of the complex type.
					

						The maxOccurs attribute specifies the maximum number of times the choice type can appear. Its value can be any non-zero, positive integer or unbounded. Setting the maxOccurs attribute to unbounded specifies that the choice type can appear an infinite number of times.
					

						Example 35.18, “Choice Occurrence Constraints” shows the definition of a choice type, ClubEvent, with choice occurrence constraints. The choice type overall can be repeated 0 to unbounded times.
					
Example 35.18. Choice Occurrence Constraints
<complexType name="ClubEvent">
 <choice minOccurs="0" maxOccurs="unbounded">
 <element name="MemberName" type="xsd:string"/>
 <element name="GuestName" type="xsd:string"/>
 </choice>
</complexType>

Mapping to Java

						 Unlike single instance choice structures, XML Schema choice structures that can occur multiple times are mapped to a Java class with a single member variable. This single member variable is a List<T> object that holds all of the data for the multiple occurrences of the sequence. For example, if the sequence defined in Example 35.18, “Choice Occurrence Constraints” occurred two times, then the list would have two items.
					

						The name of the Java class' member variable is derived by concatenating the names of the member elements. The element names are separated by Or and the first letter of the variable name is converted to lower case. For example, the member variable generated from Example 35.18, “Choice Occurrence Constraints” would be named memberNameOrGuestName.
					

						The type of object stored in the list depends on the relationship between the types of the member elements. For example:
					
	
								If the member elements are of the same type the generated list will contain JAXBElement<T> objects. The base type of the JAXBElement<T> objects is determined by the normal mapping of the member elements' type.
							
	
								If the member elements are of different types and their Java representations implement a common interface, the list will contains objects of the common interface.
							
	
								If the member elements are of different types and their Java representations extend a common base class, the list will contains objects of the common base class.
							
	
								If none of the other conditions are met, the list will contain Object objects.
							

						The generated Java class will only have a getter method for the member variable. The getter method returns a reference to the live list. Any modifications made to the returned list will effect the actual object.
					

						The Java class is decorated with the @XmlType annotation. The annotation’s name property is set to the value of the name attribute from the parent element of the XML Schema definition. The annotation’s propOrder property contains the single member variable representing the elements in the sequence.
					

						The member variable representing the elements in the choice structure are decorated with the @XmlElements annotation. The @XmlElements annotation contains a comma separated list of @XmlElement annotations. The list has one @XmlElement annotation for each member element defined in the XML Schema definition of the type. The @XmlElement annotations in the list have their name property set to the value of the XML Schema element element’s name attribute and their type property set to the Java class resulting from the mapping of the XML Schema element element’s type.
					

						Example 35.19, “Java Representation of Choice Structure with an Occurrence Constraint” shows the Java mapping for the XML Schema choice structure defined in Example 35.18, “Choice Occurrence Constraints”.
					
Example 35.19. Java Representation of Choice Structure with an Occurrence Constraint
@XmlType(name = "ClubEvent", propOrder = {
 "memberNameOrGuestName"
})
public class ClubEvent {

 @XmlElementRefs({
 @XmlElementRef(name = "GuestName", type = JAXBElement.class),
 @XmlElementRef(name = "MemberName", type = JAXBElement.class)
 })
 protected List<JAXBElement<String>> memberNameOrGuestName;

 public List<JAXBElement<String>> getMemberNameOrGuestName() {
 if (memberNameOrGuestName == null) {
 memberNameOrGuestName = new ArrayList<JAXBElement<String>>();
 }
 return this.memberNameOrGuestName;
 }

}

minOccurs set to 0

						If only the minOccurs element is specified and its value is 0, the code generators generate the Java class as if the minOccurs attribute were not set.
					

Occurrence Constraints on Elements

Overview

						You can specify how many times a specific element in a complex type appears using the element element’s minOccurs attribute and maxOccurs attribute. The default value for both attributes is 1.
					

minOccurs set to 0

						 When you set one of the complex type’s member element’s minOccurs attribute to 0, the @XmlElement annotation decorating the corresponding Java member variable is changed. Instead of having its required property set to true, the @XmlElement annotation’s required property is set to false.
					

minOccurs set to a value greater than 1

						In XML Schema you can specify that an element must occur more than once in an instance of the type by setting the element element’s minOccurs attribute to a value greater than one. However, the generated Java class will not support the XML Schema constraint. Apache CXF generates the supporting Java member variable as if the minOccurs attribute were not set.
					

Elements with maxOccurs set

						When you want a member element to appear multiple times in an instance of a complex type, you set the element’s maxOccurs attribute to a value greater than 1. You can set the maxOccurs attribute’s value to unbounded to specify that the member element can appear an unlimited number of times.
					

						The code generators map a member element with the maxOccurs attribute set to a value greater than 1 to a Java member variable that is a List<T> object. The base class of the list is determined by mapping the element’s type to Java. For XML Schema primitive types, the wrapper classes are used as described in the section called “Wrapper classes”. For example, if the member element is of type xsd:int the generated member variable is a List<Integer> object.
					

Occurrence Constraints on Sequences

Overview

						By default, the contents of a sequence element can only appear once in an instance of a complex type. You can change the number of times the sequence of elements defined by a sequence element is allowed to appear using its minOccurs attribute and its maxOccurs attribute. Using these attributes you can specify that the sequence type can occur zero to an unlimited number of times in an instance of a complex type.
					

Using XML Schema

						The minOccurs attribute specifies the minimum number of times the sequence must occur in an instance of the defined complex type. Its value can be any positive integer. Setting the minOccurs attribute to 0 specifies that the sequence does not need to appear inside an instance of the complex type.
					

						The maxOccurs attribute specifies the upper limit for how many times the sequence can occur in an instance of the defined complex type. Its value can be any non-zero, positive integer or unbounded. Setting the maxOccurs attribute to unbounded specifies that the sequence can appear an infinite number of times.
					

						Example 35.20, “Sequence with Occurrence Constraints” shows the definition of a sequence type, CultureInfo, with sequence occurrence constraints. The sequence can be repeated 0 to 2 times.
					
Example 35.20. Sequence with Occurrence Constraints
<complexType name="CultureInfo">
 <sequence minOccurs="0" maxOccurs="2">
 <element name="Name" type="string"/>
 <element name="Lcid" type="int"/>
 </sequence>
</complexType>

Mapping to Java

						 Unlike single instance sequences, XML Schema sequences that can occur multiple times are mapped to a Java class with a single member variable. This single member variable is a List<T> object that holds all of the data for the multiple occurrences of the sequence. For example, if the sequence defined in Example 35.20, “Sequence with Occurrence Constraints” occurred two times, then the list would have four items.
					

						The name of the Java class' member variable is derived by concatenating the names of the member elements. The element names are separated by And and the first letter of the variable name is converted to lower case. For example, the member variable generated from Example 35.20, “Sequence with Occurrence Constraints” is named nameAndLcid.
					

						The type of object stored in the list depends on the relationship between the types of the member elements. For example:
					
	
								If the member elements are of the same type the generated list will contain JAXBElement<T> objects. The base type of the JAXBElement<T> objects is determined by the normal mapping of the member elements' type.
							
	
								If the member elements are of different types and their Java representations implement a common interface, the list will contains objects of the common interface.
							
	
								If the member elements are of different types and their Java representations extend a common base class, the list will contain objects of the common base class.
							
	
								If none of the other conditions are met, the list will contain Object objects.
							

						The generated Java class only has a getter method for the member variable. The getter method returns a reference to the live list. Any modifications made to the returned list effects the actual object.
					

						The Java class is decorated with the @XmlType annotation. The annotation’s name property is set to the value of the name attribute from the parent element of the XML Schema definition. The annotation’s propOrder property contains the single member variable representing the elements in the sequence.
					

						The member variable representing the elements in the sequence are decorated with the @XmlElements annotation. The @XmlElements annotation contains a comma separated list of @XmlElement annotations. The list has one @XmlElement annotation for each member element defined in the XML Schema definition of the type. The @XmlElement annotations in the list have their name property set to the value of the XML Schema element element’s name attribute and their type property set to the Java class resulting from the mapping of the XML Schema element element’s type.
					

						Example 35.21, “Java Representation of Sequence with an Occurrence Constraint” shows the Java mapping for the XML Schema sequence defined in Example 35.20, “Sequence with Occurrence Constraints”.
					
Example 35.21. Java Representation of Sequence with an Occurrence Constraint
@XmlType(name = "CultureInfo", propOrder = {
 "nameAndLcid"
})
public class CultureInfo {

 @XmlElements({
 @XmlElement(name = "Name", type = String.class),
 @XmlElement(name = "Lcid", type = Integer.class)
 })
 protected List<Serializable> nameAndLcid;

 public List<Serializable> getNameAndLcid() {
 if (nameAndLcid == null) {
 nameAndLcid = new ArrayList<Serializable>();
 }
 return this.nameAndLcid;
 }

}

minOccurs set to 0

						If only the minOccurs element is specified and its value is 0, the code generators generate the Java class as if the minOccurs attribute is not set.
					

Using Model Groups

Overview

					XML Schema model groups are convenient shortcuts that allows you to reference a group of elements from a user-defined complex type.For example, you can define a group of elements that are common to several types in your application and then reference the group repeatedly. Model groups are defined using the group element, and are similar to complex type definitions. The mapping of model groups to Java is also similar to the mapping for complex types.
				

Defining a model group in XML Schema

					You define a model group in XML Schema using the group element with the name attribute. The value of the name attribute is a string that is used to refer to the group throughout the schema. The group element, like the complexType element, can have the sequence element, the all element, or the choice element as its immediate child.
				

					Inside the child element, you define the members of the group using element elements. For each member of the group, specify one element element. Group members can use any of the standard attributes for the element element including minOccurs and maxOccurs. So, if your group has three elements and one of them can occur up to three times, you define a group with three element elements, one of which uses maxOccurs="3". Example 35.22, “XML Schema Model Group” shows a model group with three elements.
				
Example 35.22. XML Schema Model Group
<group name="passenger">
 <sequence>
 <element name="name" type="xsd:string" />
 <element name="clubNum" type="xsd:long" />
 <element name="seatPref" type="xsd:string"
 maxOccurs="3" />
 </sequence>
</group>

Using a model group in a type definition

					Once a model group has been defined, it can be used as part of a complex type definition. To use a model group in a complex type definition, use the group element with the ref attribute. The value of the ref attribute is the name given to the group when it was defined. For example, to use the group defined in Example 35.22, “XML Schema Model Group” you use <group ref="tns:passenger" /> as shown in Example 35.23, “Complex Type with a Model Group”.
				
Example 35.23. Complex Type with a Model Group
<complexType name="reservation">
 <sequence>
 <group ref="tns:passenger" />
 <element name="origin" type="xsd:string" />
 <element name="destination" type="xsd:string" />
 <element name="fltNum" type="xsd:long" />
 </sequence>
</complexType>

					When a model group is used in a type definition, the group becomes a member of the type. So an instance of reservation has four member elements. The first element is the passenger element and it contains the member elements defined by the group shown in Example 35.22, “XML Schema Model Group”. An example of an instance of reservation is shown in Example 35.24, “Instance of a Type with a Model Group”.
				
Example 35.24. Instance of a Type with a Model Group
<reservation>
 <passenger> <name>A. Smart</name> <clubNum>99</clubNum> <seatPref>isle1</seatPref> </passenger>
 <origin>LAX</origin>
 <destination>FRA</destination>
 <fltNum>34567</fltNum>
</reservation>

Mapping to Java

					By default, a model group is only mapped to Java artifacts when it is included in a complex type definition. When generating code for a complex type that includes a model group, Apache CXF simply includes the member variables for the model group into the Java class generated for the type. The member variables representing the model group are annotated based on the definitions of the model group.
				

					Example 35.25, “Type with a Group” shows the Java class generated for the complex type defined in Example 35.23, “Complex Type with a Model Group”.
				
Example 35.25. Type with a Group
@XmlType(name = "reservation", propOrder = {
 "name",
 "clubNum",
 "seatPref",
 "origin",
 "destination",
 "fltNum"
})
public class Reservation {

 @XmlElement(required = true)
 protected String name;
 protected long clubNum;
 @XmlElement(required = true)
 protected List<String> seatPref;
 @XmlElement(required = true)
 protected String origin;
 @XmlElement(required = true)
 protected String destination;
 protected long fltNum;

 public String getName() {
 return name;
 }

 public void setName(String value) {
 this.name = value;
 }

 public long getClubNum() {
 return clubNum;
 }

 public void setClubNum(long value) {
 this.clubNum = value;
 }

 public List<String> getSeatPref() {
 if (seatPref == null) {
 seatPref = new ArrayList<String>();
 }
 return this.seatPref;
 }

 public String getOrigin() {
 return origin;
 }

 public void setOrigin(String value) {
 this.origin = value;
 }

 public String getDestination() {
 return destination;
 }

 public void setDestination(String value) {
 this.destination = value;
 }

 public long getFltNum() {
 return fltNum;
 }

 public void setFltNum(long value) {
 this.fltNum = value;
 }

Multiple occurrences

					You can specify that the model group appears more than once by setting the group element’s maxOccurs attribute to a value greater than one. To allow for multiple occurrences of the model group Apache CXF maps the model group to a List<T> object. The List<T> object is generated following the rules for the group’s first child:
				
	
							If the group is defined using a sequence element see the section called “Occurrence Constraints on Sequences”.
						
	
							If the group is defined using a choice element see the section called “Occurrence Constraints on the Choice Element”.
						

Chapter 36. Using Wild Card Types

Abstract

					There are instances when a schema author wants to defer binding elements or attributes to a defined type. For these cases, XML Schema provides three mechanisms for specifying wild card place holders. These are all mapped to Java in ways that preserve their XML Schema functionality.
				

Using Any Elements

Overview

					The XML Schema any element is used to create a wild card place holder in complex type definitions. When an XML element is instantiated for an XML Schema any element, it can be any valid XML element. The any element does not place any restrictions on either the content or the name of the instantiated XML element.
				

					For example, given the complex type defined in Example 36.1, “XML Schema Type Defined with an Any Element” you can instantiate either of the XML elements shown in Example 36.2, “XML Document with an Any Element”.
				
Example 36.1. XML Schema Type Defined with an Any Element
<element name="FlyBoy">
 <complexType>
 <sequence>
 <any />
 <element name="rank" type="xsd:int" />
 </sequence>
 </complexType>
</element>

Example 36.2. XML Document with an Any Element
<FlyBoy>
 <learJet>CL-215</learJet>
 <rank>2</rank>
</element>
<FlyBoy>
 <viper>Mark II</viper>
 <rank>1</rank>
</element>

					XML Schema any elements are mapped to either a Java Object object or a Java org.w3c.dom.Element object.
				

Specifying in XML Schema

					 The any element can be used when defining sequence complex types and choice complex types. In most cases, the any element is an empty element. It can, however, take an annotation element as a child.
				

					Table 36.1, “Attributes of the XML Schema Any Element” describes the any element’s attributes.
				
Table 36.1. Attributes of the XML Schema Any Element
	Attribute	Description
	
									namespace
								

								 	
									Specifies the namespace of the elements that can be used to instantiate the element in an XML document. The valid values are:
								

								 	##any
	
												Specifies that elements from any namespace can be used. This is the default.
											
	##other
	
												Specifies that elements from any namespace other than the parent element’s namespace can be used.
											
	##local
	
												Specifies elements without a namespace must be used.
											
	##targetNamespace
	
												Specifies that elements from the parent element’s namespace must be used.
											
	A space delimited list of URIs #\#local and \#\#targetNamespace
	
												Specifies that elements from any of the listed namespaces can be used.
											

								
	
									maxOccurs
								

								 	
									Specifies the maximum number of times an instance of the element can appear in the parent element. The default value is 1. To specify that an instance of the element can appear an unlimited number of times, you can set the attribute’s value to unbounded.
								

								
	
									minOccurs
								

								 	
									Specifies the minimum number of times an instance of the element can appear in the parent element. The default value is 1.
								

								
	
									processContents
								

								 	
									Specifies how the element used to instantiate the any element should be validated. Valid values are:
								

								 	strict
	
												Specifies that the element must be validated against the proper schema. This is the default value.
											
	lax
	
												Specifies that the element should be validated against the proper schema. If it cannot be validated, no errors are thrown.
											
	skip
	
												Specifies that the element should not be validated.
											

								

					Example 36.3, “Complex Type Defined with an Any Element” shows a complex type defined with an any element
				
Example 36.3. Complex Type Defined with an Any Element
<complexType name="surprisePackage">
 <sequence>
 <any processContents="lax" />
 <element name="to" type="xsd:string" />
 <element name="from" type="xsd:string" />
 </sequence>
</complexType>

Mapping to Java

					 XML Schema any elements result in the creation of a Java property named any. The property has associated getter and setter methods. The type of the resulting property depends on the value of the element’s processContents attribute. If the any element’s processContents attribute is set to skip, the element is mapped to a org.w3c.dom.Element object. For all other values of the processContents attribute an any element is mapped to a Java Object object.
				

					The generated property is decorated with the @XmlAnyElement annotation. This annotation has an optional lax property that instructs the runtime what to do when marshaling the data. Its default value is false which instructs the runtime to automatically marshal the data into a org.w3c.dom.Element object. Setting lax to true instructs the runtime to attempt to marshal the data into JAXB types. When the any element’s processContents attribute is set to skip, the lax property is set to its default value. For all other values of the processContents attribute, lax is set to true.
				

					Example 36.4, “Java Class with an Any Element” shows how the complex type defined in Example 36.3, “Complex Type Defined with an Any Element” is mapped to a Java class.
				
Example 36.4. Java Class with an Any Element
public class SurprisePackage {

 @XmlAnyElement(lax = true) protected Object any;
 @XmlElement(required = true)
 protected String to;
 @XmlElement(required = true)
 protected String from;

 public Object getAny() { return any; }

 public void setAny(Object value) { this.any = value; }

 public String getTo() {
 return to;
 }

 public void setTo(String value) {
 this.to = value;
 }

 public String getFrom() {
 return from;
 }

 public void setFrom(String value) {
 this.from = value;
 }

}

Marshalling

					If the Java property for an any element has its lax set to false, or the property is not specified, the runtime makes no attempt to parse the XML data into JAXB objects. The data is always stored in a DOM Element object.
				

					If the Java property for an any element has its lax set to true, the runtime attempts to marshal the XML data into the appropriate JAXB objects. The runtime attempts to identify the proper JAXB classes using the following procedure:
				
	
							It checks the element tag of the XML element against the list of elements known to the runtime. If it finds a match, the runtime marshals the XML data into the proper JAXB class for the element.
						
	
							It checks the XML element’s xsi:type attribute. If it finds a match, the runtime marshals the XML element into the proper JAXB class for that type.
						
	
							If it cannot find a match it marshals the XML data into a DOM Element object.
						

					Usually an application’s runtime knows about all of the types generated from the schema’s included in its contract. This includes the types defined in the contract’s wsdl:types element, any data types added to the contract through inclusion, and any types added to the contract through importing other schemas. You can also make the runtime aware of additional types using the @XmlSeeAlso annotation which is described in the section called “Adding Classes to the Runtime Marshaller”.
				

Unmarshalling

					If the Java property for an any element has its lax set to false, or the property is not specified, the runtime will only accept DOM Element objects. Attempting to use any other type of object will result in a marshalling error.
				

					If the Java property for an any element has its lax set to true, the runtime uses its internal map between Java data types and the XML Schema constructs they represent to determine the XML structure to write to the wire. If the runtime knows the class and can map it to an XML Schema construct, it writes out the data and inserts an xsi:type attribute to identify the type of data the element contains.
				

					If the runtime cannot map the Java object to a known XML Schema construct, it will throw a marshaling exception. You can add types to the runtime’s map using the @XmlSeeAlso annotation which is described in the section called “Adding Classes to the Runtime Marshaller”.
				

Using the XML Schema anyType Type

Overview

					The XML Schema type xsd:anyType is the root type for all XML Schema types. All of the primitives are derivatives of this type, as are all user defined complex types. As a result, elements defined as being of xsd:anyType can contain data in the form of any of the XML Schema primitives as well as any complex type defined in a schema document.
				

					In Java the closest matching type is the Object class. It is the class from which all other Java classes are sub-typed.
				

Using in XML Schema

					 You use the xsd:anyType type as you would any other XML Schema complex type. It can be used as the value of an element element’s type element. It can also be used as the base type from which other types are defined.
				

					Example 36.5, “Complex Type with a Wild Card Element” shows an example of a complex type that contains an element of type xsd:anyType.
				
Example 36.5. Complex Type with a Wild Card Element
<complexType name="wildStar">
 <sequence>
 <element name="name" type="xsd:string" />
 <element name="ship" type="xsd:anyType" />
 </sequence>
</complexType>

Mapping to Java

					 Elements that are of type xsd:anyType are mapped to Object objects. Example 36.6, “Java Representation of a Wild Card Element” shows the mapping of Example 36.5, “Complex Type with a Wild Card Element” to a Java class.
				
Example 36.6. Java Representation of a Wild Card Element
public class WildStar {

 @XmlElement(required = true)
 protected String name;
 @XmlElement(required = true) protected Object ship;

 public String getName() {
 return name;
 }

 public void setName(String value) {
 this.name = value;
 }

 public Object getShip() { return ship; }

 public void setShip(Object value) { this.ship = value; }
}

					This mapping allows you to place any data into the property representing the wild card element. The Apache CXF runtime handles the marshaling and unmarshaling of the data into usable Java representation.
				

Marshalling

					When Apache CXF marshals XML data into Java types, it attempts to marshal anyType elements into known JAXB objects. To determine if it is possible to marshal an anyType element into a JAXB generated object, the runtime inspects the element’s xsi:type attribute to determine the actual type used to construct the data in the element. If the xsi:type attribute is not present, the runtime attempts to identify the element’s actual data type by introspection. If the element’s actual data type is determined to be one of the types known by the application’s JAXB context, the element is marshaled into a JAXB object of the proper type.
				

					If the runtime cannot determine the actual data type of the element, or the actual data type of the element is not a known type, the runtime marshals the content into a org.w3c.dom.Element object. You will then need to work with the element’s content using the DOM APis.
				

					An application’s runtime usually knows about all of the types generated from the schema’s included in its contract. This includes the types defined in the contract’s wsdl:types element, any data types added to the contract through inclusion, and any types added to the contract through importing other schema documents. You can also make the runtime aware of additional types using the @XmlSeeAlso annotation which is described in the section called “Adding Classes to the Runtime Marshaller”.
				

Unmarshalling

					When Apache CXF unmarshals Java types into XML data, it uses an internal map between Java data types and the XML Schema constructs they represent to determine the XML structure to write to the wire. If the runtime knows the class and can map the class to an XML Schema construct, it writes out the data and inserts an xsi:type attribute to identify the type of data the element contains. If the data is stored in a org.w3c.dom.Element object, the runtime writes the XML structure represented by the object but it does not include an xsi:type attribute.
				

					If the runtime cannot map the Java object to a known XML Schema construct, it throws a marshaling exception. You can add types to the runtime’s map using the @XmlSeeAlso annotation which is described in the section called “Adding Classes to the Runtime Marshaller”.
				

Using Unbound Attributes

Overview

					XML Schema has a mechanism that allows you to leave a place holder for an arbitrary attribute in a complex type definition. Using this mechanism, you can define a complex type that can have any attribute. For example, you can create a type that defines the elements <robot name="epsilon" />, <robot age="10000" />, or <robot type="weevil" /> without specifying the three attributes. This can be particularly useful when flexibility in your data is required.
				

Defining in XML Schema

					 Undeclared attributes are defined in XML Schema using the anyAttribute element. It can be used wherever an attribute element can be used. The anyAttribute element has no attributes, as shown in Example 36.7, “Complex Type with an Undeclared Attribute”.
				
Example 36.7. Complex Type with an Undeclared Attribute
<complexType name="arbitter">
 <sequence>
 <element name="name" type="xsd:string" />
 <element name="rate" type="xsd:float" />
 </sequence>
 <anyAttribute />
</complexType>

					The defined type, arbitter, has two elements and can have one attribute of any type. The elements three elements shown in Example 36.8, “Examples of Elements Defined with a Wild Card Attribute” can all be generated from the complex type arbitter.
				
Example 36.8. Examples of Elements Defined with a Wild Card Attribute
<officer rank="12"><name>...</name><rate>...</rate></officer>
<lawyer type="divorce"><name>...</name><rate>...</rate></lawyer>
<judge><name>...</name><rate>...</rate></judge>

Mapping to Java

					When a complex type containing an anyAttribute element is mapped to Java, the code generator adds a member called otherAttributes to the generated class. otherAttributes is of type java.util.Map<QName, String> and it has a getter method that returns a live instance of the map. Because the map returned from the getter is live, any modifications to the map are automatically applied. Example 36.9, “Class for a Complex Type with an Undeclared Attribute” shows the class generated for the complex type defined in Example 36.7, “Complex Type with an Undeclared Attribute”.
				
Example 36.9. Class for a Complex Type with an Undeclared Attribute
public class Arbitter {

 @XmlElement(required = true)
 protected String name;
 protected float rate;

 @XmlAnyAttribute private Map<QName, String> otherAttributes = new HashMap<QName, String>();

 public String getName() {
 return name;
 }

 public void setName(String value) {
 this.name = value;
 }

 public float getRate() {
 return rate;
 }

 public void setRate(float value) {
 this.rate = value;
 }

 public Map<QName, String> getOtherAttributes() { return otherAttributes; }

}

Working with undeclared attributes

					The otherAttributes member of the generated class expects to be populated with a Map object. The map is keyed using QNames. Once you get the map , you can access any attributes set on the object and set new attributes on the object.
				

					Example 36.10, “Working with Undeclared Attributes” shows sample code for working with undeclared attributes.
				
Example 36.10. Working with Undeclared Attributes
Arbitter judge = new Arbitter();
Map<QName, String> otherAtts = judge.getOtherAttributes();

QName at1 = new QName("test.apache.org", "house");
QName at2 = new QName("test.apache.org", "veteran");

otherAtts.put(at1, "Cape");
otherAtts.put(at2, "false");

String vetStatus = otherAtts.get(at2);

					The code in Example 36.10, “Working with Undeclared Attributes” does the following:
				

					Gets the map containing the undeclared attributes.
				

					Creates QNames to work with the attributes.
				

					Sets the values for the attributes into the map.
				

					Retrieves the value for one of the attributes.
				

Chapter 37. Element Substitution

Abstract

					XML Schema substitution groups allow you to define a group of elements that can replace a top level, or head, element. This is useful in cases where you have multiple elements that share a common base type or with elements that need to be interchangeable.
				

Substitution Groups in XML Schema

Overview

					A substitution group is a feature of XML schema that allows you to specify elements that can replace another element in documents generated from that schema. The replaceable element is called the head element and must be defined in the schema’s global scope. The elements of the substitution group must be of the same type as the head element or a type that is derived from the head element’s type.
				

					In essence, a substitution group allows you to build a collection of elements that can be specified using a generic element. For example, if you are building an ordering system for a company that sells three types of widgets you might define a generic widget element that contains a set of common data for all three widget types. Then you can define a substitution group that contains a more specific set of data for each type of widget. In your contract you can then specify the generic widget element as a message part instead of defining a specific ordering operation for each type of widget. When the actual message is built, the message can contain any of the elements of the substitution group.
				

Syntax

					Substitution groups are defined using the substitutionGroup attribute of the XML Schema element element. The value of the substitutionGroup attribute is the name of the element that the element being defined replaces. For example, if your head element is widget, adding the attribute substitutionGroup="widget" to an element named woodWidget specifies that anywhere a widget element is used, you can substitute a woodWidget element. This is shown in Example 37.1, “Using a Substitution Group”.
				
Example 37.1. Using a Substitution Group
<element name="widget" type="xsd:string" />
<element name="woodWidget" type="xsd:string"
 substitutionGroup="widget" />

Type restrictions

					The elements of a substitution group must be of the same type as the head element or of a type derived from the head element’s type. For example, if the head element is of type xsd:int all members of the substitution group must be of type xsd:int or of a type derived from xsd:int. You can also define a substitution group similar to the one shown in Example 37.2, “Substitution Group with Complex Types” where the elements of the substitution group are of types derived from the head element’s type.
				
Example 37.2. Substitution Group with Complex Types
<complexType name="widgetType">
 <sequence>
 <element name="shape" type="xsd:string" />
 <element name="color" type="xsd:string" />
 </sequence>
</complexType>
<complexType name="woodWidgetType">
 <complexContent>
 <extension base="widgetType">
 <sequence>
 <element name="woodType" type="xsd:string" />
 </sequence>
 </extension>
 </complexContent>
</complexType>
<complexType name="plasticWidgetType">
 <complexContent>
 <extension base="widgetType">
 <sequence>
 <element name="moldProcess" type="xsd:string" />
 </sequence>
 </extension>
 </complexContent>
</complexType>
<element name="widget" type="widgetType" />
<element name="woodWidget" type="woodWidgetType"
 substitutionGroup="widget" />
<element name="plasticWidget" type="plasticWidgetType"
 substitutionGroup="widget" />
<complexType name="partType">
 <sequence>
 <element ref="widget" />
 </sequence>
</complexType>
<element name="part" type="partType" />

					The head element of the substitution group, widget, is defined as being of type widgetType. Each element of the substitution group extends widgetType to include data that is specific to ordering that type of widget.
				

					Based on the schema in Example 37.2, “Substitution Group with Complex Types”, the part elements in Example 37.3, “XML Document using a Substitution Group” are valid.
				
Example 37.3. XML Document using a Substitution Group
<part>
 <widget>
 <shape>round</shape>
 <color>blue</color>
 </widget>
</part>
<part>
 <plasticWidget>
 <shape>round</shape>
 <color>blue</color>
 <moldProcess>sandCast</moldProcess>
 </plasticWidget>
</part>
<part>
 <woodWidget>
 <shape>round</shape>
 <color>blue</color>
 <woodType>elm</woodType>
 </woodWidget>
</part>

Abstract head elements

					You can define an abstract head element that can never appear in a document produced using your schema. Abstract head elements are similar to abstract classes in Java because they are used as the basis for defining more specific implementations of a generic class. Abstract heads also prevent the use of the generic element in the final product.
				

					You declare an abstract head element by setting the abstract attribute of an element element to true, as shown in Example 37.4, “Abstract Head Definition”. Using this schema, a valid review element can contain either a positiveComment element or a negativeComment element, but cannot contain a comment element.
				
Example 37.4. Abstract Head Definition
<element name="comment" type="xsd:string" abstract="true" />
<element name="positiveComment" type="xsd:string"
 substitutionGroup="comment" />
<element name="negtiveComment" type="xsd:string"
 substitutionGroup="comment" />
<element name="review">
 <complexContent>
 <all>
 <element name="custName" type="xsd:string" />
 <element name="impression" ref="comment" />
 </all>
 </complexContent>
</element>

Substitution Groups in Java

Overview

					Apache CXF, as specified in the JAXB specification, supports substitution groups using Java’s native class hierarchy in combination with the ability of the JAXBElement class' support for wildcard definitions. Because the members of a substitution group must all share a common base type, the classes generated to support the elements' types also share a common base type. In addition, Apache CXF maps instances of the head element to JAXBElement<? extends T> properties.
				

Generated object factory methods

					 The object factory generated to support a package containing a substitution group has methods for each of the elements in the substitution group. For each of the members of the substitution group, except for the head element, the @XmlElementDecl annotation decorating the object factory method includes two additional properties, as described in Table 37.1, “Properties for Declaring a JAXB Element is a Member of a Substitution Group”.
				
Table 37.1. Properties for Declaring a JAXB Element is a Member of a Substitution Group
	Property	Description
	
									substitutionHeadNamespace
								

								 	
									Specifies the namespace where the head element is defined.
								

								
	
									substitutionHeadName
								

								 	
									Specifies the value of the head element’s name attribute.
								

								

					The object factory method for the head element of the substitution group’s @XmlElementDecl contains only the default namespace property and the default name property.
				

					In addition to the element instantiation methods, the object factory contains a method for instantiating an object representing the head element. If the members of the substitution group are all of complex types, the object factory also contains methods for instantiating instances of each complex type used.
				

					Example 37.5, “Object Factory Method for a Substitution Group” shows the object factory method for the substitution group defined in Example 37.2, “Substitution Group with Complex Types”.
				
Example 37.5. Object Factory Method for a Substitution Group
public class ObjectFactory {

 private final static QName _Widget_QNAME = new QName(...);
 private final static QName _PlasticWidget_QNAME = new QName(...);
 private final static QName _WoodWidget_QNAME = new QName(...);

 public ObjectFactory() {
 }

 public WidgetType createWidgetType() {
 return new WidgetType();
 }

 public PlasticWidgetType createPlasticWidgetType() {
 return new PlasticWidgetType();
 }

 public WoodWidgetType createWoodWidgetType() {
 return new WoodWidgetType();
 }

 @XmlElementDecl(namespace="...", name = "widget")
 public JAXBElement<WidgetType> createWidget(WidgetType value) {
 return new JAXBElement<WidgetType>(_Widget_QNAME, WidgetType.class, null, value);
 }

 @XmlElementDecl(namespace = "...", name = "plasticWidget", substitutionHeadNamespace = "...", substitutionHeadName = "widget")
 public JAXBElement<PlasticWidgetType> createPlasticWidget(PlasticWidgetType value) {
 return new JAXBElement<PlasticWidgetType>(_PlasticWidget_QNAME, PlasticWidgetType.class, null, value);
 }

 @XmlElementDecl(namespace = "...", name = "woodWidget", substitutionHeadNamespace = "...", substitutionHeadName = "widget")
 public JAXBElement<WoodWidgetType> createWoodWidget(WoodWidgetType value) {
 return new JAXBElement<WoodWidgetType>(_WoodWidget_QNAME, WoodWidgetType.class, null, value);
 }

}

Substitution groups in interfaces

					 If the head element of a substitution group is used as a message part in one of an operation’s messages, the resulting method parameter will be an object of the class generated to support that element. It will not necessarily be an instance of the JAXBElement<? extends T> class. The runtime relies on Java’s native type hierarchy to support the type substitution, and Java will catch any attempts to use unsupported types.
				

					To ensure that the runtime knows all of the classes needed to support the element substitution, the SEI is decorated with the @XmlSeeAlso annotation. This annotation specifies a list of classes required by the runtime for marshalling. Fore more information on using the @XmlSeeAlso annotation see the section called “Adding Classes to the Runtime Marshaller”.
				

					Example 37.7, “Generated Interface Using a Substitution Group” shows the SEI generated for the interface shown in Example 37.6, “WSDL Interface Using a Substitution Group”. The interface uses the substitution group defined in Example 37.2, “Substitution Group with Complex Types”.
				
Example 37.6. WSDL Interface Using a Substitution Group
<message name="widgetMessage">
 <part name="widgetPart" element="xsd1:widget" />
 </message>
 <message name="numWidgets">
 <part name="numInventory" type="xsd:int" />
 </message>
 <message name="badSize">
 <part name="numInventory" type="xsd:int" />
 </message>
 <portType name="orderWidgets">
 <operation name="placeWidgetOrder">
 <input message="tns:widgetOrder" name="order" />
 <output message="tns:widgetOrderBill" name="bill" />
 <fault message="tns:badSize" name="sizeFault" />
 </operation>
 <operation name="checkWidgets">
 <input message="tns:widgetMessage" name="request" />
 <output message="tns:numWidgets" name="response" />
 </operation>
 </portType>

Example 37.7. Generated Interface Using a Substitution Group
@WebService(targetNamespace = "...", name = "orderWidgets")
@XmlSeeAlso({com.widgetvendor.types.widgettypes.ObjectFactory.class})
public interface OrderWidgets {

 @SOAPBinding(parameterStyle = SOAPBinding.ParameterStyle.BARE)
 @WebResult(name = "numInventory", targetNamespace = "", partName = "numInventory")
 @WebMethod
 public int checkWidgets(
 @WebParam(partName = "widgetPart", name = "widget", targetNamespace = "...")
 com.widgetvendor.types.widgettypes.WidgetType widgetPart
);
}

					The SEI shown in Example 37.7, “Generated Interface Using a Substitution Group” lists the object factory in the @XmlSeeAlso annotation. Listing the object factory for a namespace provides access to all of the generated classes for that namespace.
				

Substitution groups in complex types

					 When the head element of a substitution group is used as an element in a complex type, the code generator maps the element to a JAXBElement<? extends T> property. It does not map it to a property containing an instance of the generated class generated to support the substitution group.
				

					For example, the complex type defined in Example 37.8, “Complex Type Using a Substitution Group” results in the Java class shown in Example 37.9, “Java Class for a Complex Type Using a Substitution Group”. The complex type uses the substitution group defined in Example 37.2, “Substitution Group with Complex Types”.
				
Example 37.8. Complex Type Using a Substitution Group
<complexType name="widgetOrderInfo">
 <sequence>
 <element name="amount" type="xsd:int"/>
 <element ref="xsd1:widget"/>
 </sequence>
</complexType>

Example 37.9. Java Class for a Complex Type Using a Substitution Group
@XmlAccessorType(XmlAccessType.FIELD)
@XmlType(name = "widgetOrderInfo", propOrder = {"amount","widget",})
public class WidgetOrderInfo {

 protected int amount;
 @XmlElementRef(name = "widget", namespace = "...", type = JAXBElement.class) protected JAXBElement<? extends WidgetType> widget;
 public int getAmount() {
 return amount;
 }

 public void setAmount(int value) {
 this.amount = value;
 }

 public JAXBElement<? extends WidgetType> getWidget() { return widget; }

 public void setWidget(JAXBElement<? extends WidgetType> value) { this.widget = ((JAXBElement<? extends WidgetType>) value); }

}

Setting a substitution group property

					How you work with a substitution group depends on whether the code generator mapped the group to a straight Java class or to a JAXBElement<? extends T> class. When the element is simply mapped to an object of the generated value class, you work with the object the same way you work with other Java objects that are part of a type hierarchy. You can substitute any of the subclasses for the parent class. You can inspect the object to determine its exact class, and cast it appropriately.
				

					The JAXB specification recommends that you use the object factory methods for instantiating objects of the generated classes.
				

					When the code generators create a JAXBElement<? extends T> object to hold instances of a substitution group, you must wrap the element’s value in a JAXBElement<? extends T> object. The best method to do this is to use the element creation methods provided by the object factory. They provide an easy means for creating an element based on its value.
				

					Example 37.10, “Setting a Member of a Substitution Group” shows code for setting an instance of a substitution group.
				
Example 37.10. Setting a Member of a Substitution Group
ObjectFactory of = new ObjectFactory();
PlasticWidgetType pWidget = of.createPlasticWidgetType();
pWidget.setShape = "round';
pWidget.setColor = "green";
pWidget.setMoldProcess = "injection";

JAXBElement<PlasticWidgetType> widget = of.createPlasticWidget(pWidget);

WidgetOrderInfo order = of.createWidgetOrderInfo();
order.setWidget(widget);

					The code in Example 37.10, “Setting a Member of a Substitution Group” does the following:
				

					Instantiates an object factory.
				

					Instantiates a PlasticWidgetType object.
				

					Instantiates a JAXBElement<PlasticWidgetType> object to hold a plastic widget element.
				

					Instantiates a WidgetOrderInfo object.
				

					Sets the WidgetOrderInfo object’s widget to the JAXBElement object holding the plastic widget element.
				

Getting the value of a substitution group property

					The object factory methods do not help when extracting the element’s value from a JAXBElement<? extends T> object. You must to use the JAXBElement<? extends T> object’s getValue() method. The following options determine the type of object returned by the getValue() method:
				
	
							Use the isInstance() method of all the possible classes to determine the class of the element’s value object.
						
	
							Use the JAXBElement<? extends T> object’s getName() method to determine the element’s name.
						

							The getName() method returns a QName. Using the local name of the element, you can determine the proper class for the value object.
						

	
							Use the JAXBElement<? extends T> object’s getDeclaredType() method to determine the class of the value object.
						

							The getDeclaredType() method returns the Class object of the element’s value object.
						
Warning

								There is a possibility that the getDeclaredType() method will return the base class for the head element regardless of the actual class of the value object.
							

					Example 37.11, “Getting the Value of a Member of the Substitution Group” shows code retrieving the value from a substitution group. To determine the proper class of the element’s value object the example uses the element’s getName() method.
				
Example 37.11. Getting the Value of a Member of the Substitution Group
String elementName = order.getWidget().getName().getLocalPart();
if (elementName.equals("woodWidget")
{
 WoodWidgetType widget=order.getWidget().getValue();
}
else if (elementName.equals("plasticWidget")
{
 PlasticWidgetType widget=order.getWidget().getValue();
}
else
{
 WidgetType widget=order.getWidget().getValue();
}

Widget Vendor Example

Widget Ordering Interface

						This section shows an example of substitution groups being used in Apache CXF to solve a real world application. A service and consumer are developed using the widget substitution group defined in Example 37.2, “Substitution Group with Complex Types”. The service offers two operations: checkWidgets and placeWidgetOrder. Example 37.12, “Widget Ordering Interface” shows the interface for the ordering service.
					
Example 37.12. Widget Ordering Interface
<message name="widgetOrder">
 <part name="widgetOrderForm" type="xsd1:widgetOrderInfo"/>
</message>
<message name="widgetOrderBill">
 <part name="widgetOrderConformation"
 type="xsd1:widgetOrderBillInfo"/>
</message>
<message name="widgetMessage">
 <part name="widgetPart" element="xsd1:widget" />
</message>
<message name="numWidgets">
 <part name="numInventory" type="xsd:int" />
</message>
<portType name="orderWidgets">
 <operation name="placeWidgetOrder">
 <input message="tns:widgetOrder" name="order"/>
 <output message="tns:widgetOrderBill" name="bill"/>
 </operation>
 <operation name="checkWidgets">
 <input message="tns:widgetMessage" name="request" />
 <output message="tns:numWidgets" name="response" />
 </operation>
</portType>

						Example 37.13, “Widget Ordering SEI” shows the generated Java SEI for the interface.
					
Example 37.13. Widget Ordering SEI
@WebService(targetNamespace = "http://widgetVendor.com/widgetOrderForm", name = "orderWidgets")
@XmlSeeAlso({com.widgetvendor.types.widgettypes.ObjectFactory.class})
public interface OrderWidgets {

 @SOAPBinding(parameterStyle = SOAPBinding.ParameterStyle.BARE)
 @WebResult(name = "numInventory", targetNamespace = "", partName = "numInventory")
 @WebMethod
 public int checkWidgets(
 @WebParam(partName = "widgetPart", name = "widget", targetNamespace = "http://widgetVendor.com/types/widgetTypes")
 com.widgetvendor.types.widgettypes.WidgetType widgetPart
);

 @SOAPBinding(parameterStyle = SOAPBinding.ParameterStyle.BARE)
 @WebResult(name = "widgetOrderConformation", targetNamespace = "", partName = "widgetOrderConformation")
 @WebMethod
 public com.widgetvendor.types.widgettypes.WidgetOrderBillInfo placeWidgetOrder(
 @WebParam(partName = "widgetOrderForm", name = "widgetOrderForm", targetNamespace = "")
 com.widgetvendor.types.widgettypes.WidgetOrderInfo widgetOrderForm
) throws BadSize;
}

Note

							Because the example only demonstrates the use of substitution groups, some of the business logic is not shown.
						

The checkWidgets Operation

Overview

						checkWidgets is a simple operation that has a parameter that is the head member of a substitution group. This operation demonstrates how to deal with individual parameters that are members of a substitution group. The consumer must ensure that the parameter is a valid member of the substitution group. The service must properly determine which member of the substitution group was sent in the request.
					

Consumer implementation

						The generated method signature uses the Java class supporting the type of the substitution group’s head element. Because the member elements of a substitution group are either of the same type as the head element or of a type derived from the head element’s type, the Java classes generated to support the members of the substitution group inherit from the Java class generated to support the head element. Java’s type hierarchy natively supports using subclasses in place of the parent class.
					

						Because of how Apache CXF generates the types for a substitution group and Java’s type hierarchy, the client can invoke checkWidgets() without using any special code. When developing the logic to invoke checkWidgets() you can pass in an object of one of the classes generated to support the widget substitution group.
					

						Example 37.14, “Consumer Invoking checkWidgets()” shows a consumer invoking checkWidgets().
					
Example 37.14. Consumer Invoking checkWidgets()
System.out.println("What type of widgets do you want to order?");
System.out.println("1 - Normal");
System.out.println("2 - Wood");
System.out.println("3 - Plastic");
System.out.println("Selection [1-3]");
String selection = reader.readLine();
String trimmed = selection.trim();
char widgetType = trimmed.charAt(0);
switch (widgetType)
{
 case '1':
 {
 WidgetType widget = new WidgetType();
 ...
 break;
 }
 case '2':
 {
 WoodWidgetType widget = new WoodWidgetType();
 ...
 break;
 }
 case '3':
 {
 PlasticWidgetType widget = new PlasticWidgetType();
 ...
 break;
 }
 default :
 System.out.println("Invaid Widget Selection!!");
}

proxy.checkWidgets(widgets);

Service implementation

						The service’s implementation of checkWidgets() gets a widget description as a WidgetType object, checks the inventory of widgets, and returns the number of widgets in stock. Because all of the classes used to implement the substitution group inherit from the same base class, you can implement checkWidgets() without using any JAXB specific APIs.
					

						All of the classes generated to support the members of the substitution group for widget extend the WidgetType class. Because of this fact, you can use instanceof to determine what type of widget was passed in and simply cast the widgetPart object into the more restrictive type if appropriate. Once you have the proper type of object, you can check the inventory of the right kind of widget.
					

						Example 37.15, “Service Implementation of checkWidgets()” shows a possible implementation.
					
Example 37.15. Service Implementation of checkWidgets()
public int checkWidgets(WidgetType widgetPart)
{
 if (widgetPart instanceof WidgetType)
 {
 return checkWidgetInventory(widgetType);
 }
 else if (widgetPart instanceof WoodWidgetType)
 {
 WoodWidgetType widget = (WoodWidgetType)widgetPart;
 return checkWoodWidgetInventory(widget);
 }
 else if (widgetPart instanceof PlasticWidgetType)
 {
 PlasticWidgetType widget = (PlasticWidgetType)widgetPart;
 return checkPlasticWidgetInventory(widget);
 }
}

The placeWidgetOrder Operation

Overview

						placeWidgetOrder uses two complex types containing the substitution group. This operation demonstrates to use such a structure in a Java implementation. Both the consumer and the service must get and set members of a substitution group.
					

Consumer implementation

						To invoke placeWidgetOrder() the consumer must construct a widget order containing one element of the widget substitution group. When adding the widget to the order, the consumer should use the object factory methods generated for each element of the substitution group. This ensures that the runtime and the service can correctly process the order. For example, if an order is being placed for a plastic widget, the ObjectFactory.createPlasticWidget() method is used to create the element before adding it to the order.
					

						Example 37.16, “Setting a Substitution Group Member” shows consumer code for setting the widget property of the WidgetOrderInfo object.
					
Example 37.16. Setting a Substitution Group Member
ObjectFactory of = new ObjectFactory();

WidgetOrderInfo order = new of.createWidgetOrderInfo();
...
System.out.println();
System.out.println("What color widgets do you want to order?");
String color = reader.readLine();
System.out.println();
System.out.println("What shape widgets do you want to order?");
String shape = reader.readLine();
System.out.println();
System.out.println("What type of widgets do you want to order?");
System.out.println("1 - Normal");
System.out.println("2 - Wood");
System.out.println("3 - Plastic");
System.out.println("Selection [1-3]");
String selection = reader.readLine();
String trimmed = selection.trim();
char widgetType = trimmed.charAt(0);
switch (widgetType)
{
 case '1':
 {
 WidgetType widget = of.createWidgetType();
 widget.setColor(color);
 widget.setShape(shape);
 JAXB<WidgetType> widgetElement = of.createWidget(widget); order.setWidget(widgetElement);
 break;
 }
 case '2':
 {
 WoodWidgetType woodWidget = of.createWoodWidgetType();
 woodWidget.setColor(color);
 woodWidget.setShape(shape);
 System.out.println();
 System.out.println("What type of wood are your widgets?");
 String wood = reader.readLine();
 woodWidget.setWoodType(wood);
 JAXB<WoodWidgetType> widgetElement = of.createWoodWidget(woodWidget); order.setWoodWidget(widgetElement);
 break;
 }
 case '3':
 {
 PlasticWidgetType plasticWidget = of.createPlasticWidgetType();
 plasticWidget.setColor(color);
 plasticWidget.setShape(shape);
 System.out.println();
 System.out.println("What type of mold to use for your
 widgets?");
 String mold = reader.readLine();
 plasticWidget.setMoldProcess(mold);
 JAXB<WidgetType> widgetElement = of.createPlasticWidget(plasticWidget); order.setPlasticWidget(widgetElement);
 break;
 }
 default :
 System.out.println("Invaid Widget Selection!!");
 }

Service implementation

						The placeWidgetOrder() method receives an order in the form of a WidgetOrderInfo object, processes the order, and returns a bill to the consumer in the form of a WidgetOrderBillInfo object. The orders can be for a plain widget, a plastic widget, or a wooden widget. The type of widget ordered is determined by what type of object is stored in widgetOrderForm object’s widget property. The widget property is a substitution group and can contain a widget element, a woodWidget element, or a plasticWidget element.
					

						The implementation must determine which of the possible elements is stored in the order. This can be accomplished using the JAXBElement<? extends T> object’s getName() method to determine the element’s QName. The QName can then be used to determine which element in the substitution group is in the order. Once the element included in the bill is known, you can extract its value into the proper type of object.
					

						Example 37.17, “Implementation of placeWidgetOrder()” shows a possible implementation.
					
Example 37.17. Implementation of placeWidgetOrder()
public com.widgetvendor.types.widgettypes.WidgetOrderBillInfo placeWidgetOrder(WidgetOrderInfo widgetOrderForm)
{
 ObjectFactory of = new ObjectFactory();

 WidgetOrderBillInfo bill = new WidgetOrderBillInfo()

 // Copy the shipping address and the number of widgets
 // ordered from widgetOrderForm to bill
 ...

 int numOrdered = widgetOrderForm.getAmount();

 String elementName = widgetOrderForm.getWidget().getName().getLocalPart();
 if (elementName.equals("woodWidget")
 {
 WoodWidgetType widget=order.getWidget().getValue();
 buildWoodWidget(widget, numOrdered);

 // Add the widget info to bill
 JAXBElement<WoodWidgetType> widgetElement = of.createWoodWidget(widget);
 bill.setWidget(widgetElement);

 float amtDue = numOrdered * 0.75;
 bill.setAmountDue(amtDue);
 }
 else if (elementName.equals("plasticWidget")
 {
 PlasticWidgetType widget=order.getWidget().getValue();
 buildPlasticWidget(widget, numOrdered);

 // Add the widget info to bill
 JAXBElement<PlasticWidgetType> widgetElement = of.createPlasticWidget(widget);
 bill.setWidget(widgetElement);

 float amtDue = numOrdered * 0.90;
 bill.setAmountDue(amtDue);
 }
 else
 {
 WidgetType widget=order.getWidget().getValue();
 buildWidget(widget, numOrdered);

 // Add the widget info to bill
 JAXBElement<WidgetType> widgetElement = of.createWidget(widget);
 bill.setWidget(widgetElement);

 float amtDue = numOrdered * 0.30;
 bill.setAmountDue(amtDue);
 }

 return(bill);
}

						The code in Example 37.17, “Implementation of placeWidgetOrder()” does the following:
					

						Instantiates an object factory to create elements.
					

						Instantiates a WidgetOrderBillInfo object to hold the bill.
					

						Gets the number of widgets ordered.
					

						Gets the local name of the element stored in the order.
					

						Checks to see if the element is a woodWidget element.
					

						Extracts the value of the element from the order to the proper type of object.
					

						Creates a JAXBElement<T> object placed into the bill.
					

						Sets the bill object’s widget property.
					

						Sets the bill object’s amountDue property.
					

Chapter 38. Customizing How Types are Generated

Abstract

					The default JAXB mappings address most of the cases encountered when using XML Schema to define the objects for a Java application. For instances where the default mappings are insufficient, JAXB provides an extensive customization mechanism.
				

Basics of Customizing Type Mappings

Overview

					The JAXB specification defines a number of XML elements that customize how Java types are mapped to XML Schema constructs. These elements can be specified in-line with XML Schema constructs. If you cannot, or do not want to, modify the XML Schema definitions, you can specify the customizations in external binding document.
				

Namespace

					 The elements used to customize the JAXB data bindings are defined in the namespace http://java.sun.com/xml/ns/jaxb. You must add a namespace declaration similar to the one shown in Example 38.1, “JAXB Customization Namespace”. This is added to the root element of all XML documents defining JAXB customizations.
				
Example 38.1. JAXB Customization Namespace
xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"

Version declaration

					 When using the JAXB customizations, you must indicate the JAXB version being used. This is done by adding a jaxb:version attribute to the root element of the external binding declaration. If you are using in-line customization, you must include the jaxb:version attribute in the schema element containing the customizations. The value of the attribute is always 2.0.
				

					Example 38.2, “Specifying the JAXB Customization Version” shows an example of the jaxb:version attribute used in a schema element.
				
Example 38.2. Specifying the JAXB Customization Version
< schema ...
 jaxb:version="2.0">

Using in-line customization

					 The most direct way to customize how the code generators map XML Schema constructs to Java constructs is to add the customization elements directly to the XML Schema definitions. The JAXB customization elements are placed inside the xsd:appinfo element of the XML schema construct that is being modified.
				

					Example 38.3, “Customized XML Schema” shows an example of a schema containing an in-line JAXB customization.
				
Example 38.3. Customized XML Schema
<schema targetNamespace="http://widget.com/types/widgetTypes"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
 jaxb:version="2.0">
 <complexType name="size">
 <annotation> <appinfo> <jaxb:class name="widgetSize" /> </appinfo> </annotation>
 <sequence>
 <element name="longSize" type="xsd:string" />
 <element name="numberSize" type="xsd:int" />
 </sequence>
 </complexType>
<schema>

Using an external binding declaration

					 When you cannot, or do not want to, make changes to the XML Schema document that defines your type, you can specify the customizations using an external binding declaration. An external binding declaration consists of a number of nested jaxb:bindings elements. Example 38.4, “JAXB External Binding Declaration Syntax” shows the syntax of an external binding declaration.
				
Example 38.4. JAXB External Binding Declaration Syntax
<jaxb:bindings xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 jaxb:version="2.0">
 <jaxb:bindings [schemaLocation="schemaUri" | wsdlLocation="wsdlUri">
 <jaxb:bindings node="nodeXPath">
 binding declaration
 </jaxb:bindings>
 ...
 </jaxb:bindings>
<jaxb:bindings>

					The schemaLocation attribute and the wsdlLocation attribute are used to identify the schema document to which the modifications are applied. Use the schemaLocation attribute if you are generating code from a schema document. Use the wsdlLocation attribute if you are generating code from a WSDL document.
				

					The node attribute is used to identify the specific XML schema construct that is to be modified. It is an XPath statement that resolves to an XML Schema element.
				

					Given the schema document widgetSchema.xsd, shown in Example 38.5, “XML Schema File”, the external binding declaration shown in Example 38.6, “External Binding Declaration” modifies the generation of the complex type size.
				
Example 38.5. XML Schema File
<schema targetNamespace="http://widget.com/types/widgetTypes"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 version="1.0">
 <complexType name="size">
 <sequence>
 <element name="longSize" type="xsd:string" />
 <element name="numberSize" type="xsd:int" />
 </sequence>
 </complexType>
<schema>

Example 38.6. External Binding Declaration
<jaxb:bindings xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 jaxb:version="2.0">
 <jaxb:bindings schemaLocation="wsdlSchema.xsd">
 <jaxb:bindings node="xsd:complexType[@name='size']">
 <jaxb:class name="widgetSize" />
 </jaxb:bindings>
 </jaxb:bindings>
<jaxb:bindings>

					To instruct the code generators to use the external binging declaration use the wsdl2java tool’s -b binding-file option, as shown below:
				
wsdl2java -b widgetBinding.xml widget.wsdl

Specifying the Java Class of an XML Schema Primitive

Overview

					By default, XML Schema types are mapped to Java primitive types. While this is the most logical mapping between XML Schema and Java, it does not always meet the requirements of the application developer. You might want to map an XML Schema primitive type to a Java class that can hold extra information, or you might want to map an XML primitive type to a class that allows for simple type substitution.
				

					The JAXB javaType customization element allows you to customize the mapping between an XML Schema primitive type and a Java primitive type. It can be used to customize the mappings at both the global level and the individual instance level. You can use the javaType element as part of a simple type definition or as part of a complex type definition.
				

					When using the javaType customization element you must specify methods for converting the XML representation of the primitive type to and from the target Java class. Some mappings have default conversion methods. For instances where there are no default mappings, Apache CXF provides JAXB methods to ease the development of the required methods.
				

Syntax

					 The javaType customization element takes four attributes, as described in Table 38.1, “Attributes for Customizing the Generation of a Java Class for an XML Schema Type”.
				
Table 38.1. Attributes for Customizing the Generation of a Java Class for an XML Schema Type
	Attribute	Required	Description
	
									name
								

								 	
									Yes
								

								 	
									Specifies the name of the Java class to which the XML Schema primitive type is mapped. It must be either a valid Java class name or the name of a Java primitive type. You must ensure that this class exists and is accessible to your application. The code generator does not check for this class.
								

								
	
									xmlType
								

								 	
									No
								

								 	
									Specifies the XML Schema primitive type that is being customized. This attribute is only used when the javaType element is used as a child of the globalBindings element.
								

								
	
									parseMethod
								

								 	
									No
								

								 	
									Specifies the method responsible for parsing the string-based XML representation of the data into an instance of the Java class. For more information see the section called “Specifying the converters”.
								

								
	
									printMethod
								

								 	
									No
								

								 	
									Specifies the method responsible for converting a Java object to the string-based XML representation of the data. For more information see the section called “Specifying the converters”.
								

								

					The javaType customization element can be used in three ways:
				
	
							To modify all instances of an XML Schema primitive type — The javaType element modifies all instances of an XML Schema type in the schema document when it is used as a child of the globalBindings customization element. When it is used in this manner, you must specify a value for the xmlType attribute that identifies the XML Schema primitive type being modified.
						

							Example 38.7, “Global Primitive Type Customization” shows an in-line global customization that instructs the code generators to use java.lang.Integer for all instances of xsd:short in the schema.
						
Example 38.7. Global Primitive Type Customization
<schema targetNamespace="http://widget.com/types/widgetTypes"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
 jaxb:version="2.0">
 <annotation>
 <appinfo>
 <jaxb:globalBindings ...>
 <jaxb:javaType name="java.lang.Integer"
 xmlType="xsd:short" />
 </globalBindings
 </appinfo>
 </annotation>
 ...
</schema>

	
							To modify a simple type definition — The javaType element modifies the class generated for all instances of an XML simple type when it is applied to a named simple type definition. When using the javaType element to modify a simple type definition, do not use the xmlType attribute.
						

							Example 38.8, “Binding File for Customizing a Simple Type” shows an external binding file that modifies the generation of a simple type named zipCode.
						
Example 38.8. Binding File for Customizing a Simple Type
<jaxb:bindings xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 jaxb:version="2.0">
 <jaxb:bindings wsdlLocation="widgets.wsdl">
 <jaxb:bindings node="xsd:simpleType[@name='zipCode']">
 <jaxb:javaType name="com.widgetVendor.widgetTypes.zipCodeType"
 parseMethod="com.widgetVendor.widgetTypes.support.parseZipCode"
 printMethod="com.widgetVendor.widgetTypes.support.printZipCode" />
 </jaxb:bindings>
 </jaxb:bindings>
<jaxb:bindings>

	
							To modify an element or attribute of a complex type definition — The javaType can be applied to individual parts of a complex type definition by including it as part of a JAXB property customization. The javaType element is placed as a child to the property’s baseType element. When using the javaType element to modify a specific part of a complex type definition, do not use the xmlType attribute.
						

							Example 38.9, “Binding File for Customizing an Element in a Complex Type” shows a binding file that modifies an element of a complex type.
						
Example 38.9. Binding File for Customizing an Element in a Complex Type
<jaxb:bindings xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 jaxb:version="2.0">
 <jaxb:bindings schemaLocation="enumMap.xsd">
 <jaxb:bindings node="xsd:ComplexType[@name='widgetOrderInfo']">
 <jaxb:bindings node="xsd:element[@name='cost']">
 <jaxb:property>
 <jaxb:baseType>
 <jaxb:javaType name="com.widgetVendor.widgetTypes.costType"
 parseMethod="parseCost"
 printMethod="printCost" >
 </jaxb:baseType>
 </jaxb:property>
 </jaxb:bindings>
 </jaxb:bindings>
 </jaxb:bindings>
<jaxb:bindings>

							For more information on using the baseType element see the section called “Specifying the Base Type of an Element or an Attribute”.
						

Specifying the converters

					 The Apache CXF cannot convert XML Schema primitive types into random Java classes. When you use the javaType element to customize the mapping of an XML Schema primitive type, the code generator creates an adapter class that is used to marshal and unmarshal the customized XML Schema primitive type. A sample adapter class is shown in Example 38.10, “JAXB Adapter Class”.
				
Example 38.10. JAXB Adapter Class
public class Adapter1 extends XmlAdapter<String, javaType>
{
 public javaType unmarshal(String value)
 {
 return(parseMethod(value));
 }

 public String marshal(javaType value)
 {
 return(printMethod(value));
 }
}

					parseMethod and printMethod are replaced by the value of the corresponding parseMethod attribute and printMethod attribute. The values must identify valid Java methods. You can specify the method’s name in one of two ways:
				
	
							A fully qualified Java method name in the form of packagename.ClassName.methodName
						
	
							A simple method name in the form of methodName
						

							When you only provide a simple method name, the code generator assumes that the method exists in the class specified by the javaType element’s name attribute.
						

Important

						The code generators do not generate parse or print methods. You are responsible for supplying them. For information on developing parse and print methods see the section called “Implementing converters”.
					

					If a value for the parseMethod attribute is not provided, the code generator assumes that the Java class specified by the name attribute has a constructor whose first parameter is a Java String object. The generated adapter’s unmarshal() method uses the assumed constructor to populate the Java object with the XML data.
				

					If a value for the printMethod attribute is not provided, the code generator assumes that the Java class specified by the name attribute has a toString() method. The generated adapter’s marshal() method uses the assumed toString() method to convert the Java object to XML data.
				

					If the javaType element’s name attribute specifies a Java primitive type, or one of the Java primitive’s wrapper types, the code generators use the default converters. For more information on default converters see the section called “Default primitive type converters”.
				

What is generated

					 As mentioned in the section called “Specifying the converters”, using the javaType customization element triggers the generation of one adapter class for each customization of an XML Schema primitive type. The adapters are named in sequence using the pattern AdapterN. If you specify two primitive type customizations, the code generators create two adapter classes: Adapter1 and Adapter2.
				

					The code generated for an XML schema construct depends on whether the effected XML Schema construct is a globally defined element or is defined as part of a complex type.
				

					When the XML Schema construct is a globally defined element, the object factory method generated for the type is modified from the default method as follows:
				
	
							The method is decorated with an @XmlJavaTypeAdapter annotation.
						

							The annotation instructs the runtime which adapter class to use when processing instances of this element. The adapter class is specified as a class object.
						

	
							The default type is replaced by the class specified by the javaType element’s name attribute.
						

					Example 38.11, “Customized Object Factory Method for a Global Element” shows the object factory method for an element affected by the customization shown in Example 38.7, “Global Primitive Type Customization”.
				
Example 38.11. Customized Object Factory Method for a Global Element
 @XmlElementDecl(namespace = "http://widgetVendor.com/types/widgetTypes", name = "shorty")
 @XmlJavaTypeAdapter(org.w3._2001.xmlschema.Adapter1.class)
 public JAXBElement<Integer> createShorty(Integer value) {
 return new JAXBElement<Integer>(_Shorty_QNAME, Integer.class, null, value);
 }

					When the XML Schema construct is defined as part of a complex type, the generated Java property is modified as follows:
				
	
							The property is decorated with an @XmlJavaTypeAdapter annotation.
						

							The annotation instructs the runtime which adapter class to use when processing instances of this element. The adapter class is specified as a class object.
						

	
							The property’s @XmlElement includes a type property.
						

							The value of the type property is the class object representing the generated object’s default base type. In the case of XML Schema primitive types, the class is String.
						

	
							The property is decorated with an @XmlSchemaType annotation.
						

							The annotation identifies the XML Schema primitive type of the construct.
						

	
							The default type is replaced by the class specified by the javaType element’s name attribute.
						

					Example 38.12, “Customized Complex Type” shows the object factory method for an element affected by the customization shown in Example 38.7, “Global Primitive Type Customization”.
				
Example 38.12. Customized Complex Type
public class NumInventory {

 @XmlElement(required = true, type = String.class) @XmlJavaTypeAdapter(Adapter1.class) @XmlSchemaType(name = "short") protected Integer numLeft;
 @XmlElement(required = true)
 protected String size;

 public Integer getNumLeft() {
 return numLeft;
 }

 public void setNumLeft(Integer value) {
 this.numLeft = value;
 }

 public String getSize() {
 return size;
 }

 public void setSize(String value) {
 this.size = value;
 }

}

Implementing converters

					 The Apache CXF runtime does not know how to convert XML primitive types to and from the Java class specified by the javaType element, except that it should call the methods specified by the parseMethod attribute and the printMethod attribute. You are responsible for providing implementations of the methods the runtime calls. The implemented methods must be capable of working with the lexical structures of the XML primitive type.
				

					To simplify the implementation of the data conversion methods, Apache CXF provides the javax.xml.bind.DatatypeConverter class. This class provides methods for parsing and printing all of the XML Schema primitive types. The parse methods take string representations of the XML data and they return an instance of the default type defined in Table 34.1, “XML Schema Primitive Type to Java Native Type Mapping”. The print methods take an instance of the default type and they return a string representation of the XML data.
				

					The Java documentation for the DatatypeConverter class can be found at https://docs.oracle.com/javase/8/docs/api/javax/xml/bind/DatatypeConverter.html.
				

Default primitive type converters

					When specifying a Java primitive type, or one of the Java primitive type Wrapper classes, in the javaType element’s name attribute, it is not necessary to specify values for the parseMethod attribute or the printMethod attribute. The Apache CXF runtime substitutes default converters if no values are provided.
				

					The default data converters use the JAXB DatatypeConverter class to parse the XML data. The default converters will also provide any type casting necessary to make the conversion work.
				

Generating Java Classes for Simple Types

Overview

					By default, named simple types do not result in generated types unless they are enumerations. Elements defined using a simple type are mapped to properties of a Java primitive type.
				

					There are instances when you need to have simple types generated into Java classes, such as is when you want to use type substitution.
				

					To instruct the code generators to generate classes for all globally defined simple types, set the globalBindings customization element’s mapSimpleTypeDef to true.
				

Adding the customization

					 To instruct the code generators to create Java classes for named simple types add the globalBinding element’s mapSimpleTypeDef attribute and set its value to true.
				

					Example 38.13, “in-Line Customization to Force Generation of Java Classes for SimpleTypes” shows an in-line customization that forces the code generator to generate Java classes for named simple types.
				
Example 38.13. in-Line Customization to Force Generation of Java Classes for SimpleTypes
<schema targetNamespace="http://widget.com/types/widgetTypes"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
 jaxb:version="2.0">
 <annotation>
 <appinfo>
 <jaxb:globalBindings mapSimpleTypeDef="true" />
 </appinfo>
 </annotation>
 ...
</schema>

					Example 38.14, “Binding File to Force Generation of Constants” shows an external binding file that customizes the generation of simple types.
				
Example 38.14. Binding File to Force Generation of Constants
<jaxb:bindings xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 jaxb:version="2.0">
 <jaxb:bindings schemaLocation="types.xsd">
 <jaxb:globalBindings mapSimpleTypeDef="true" />
 <jaxb:bindings>
<jaxb:bindings>

Important

						This customization only affects named simple types that are defined in the global scope.
					

Generated classes

					The class generated for a simple type has one property called value. The value property is of the Java type defined by the mappings in the section called “Primitive Types”. The generated class has a getter and a setter for the value property.
				

					Example 38.16, “Customized Mapping of a Simple Type” shows the Java class generated for the simple type defined in Example 38.15, “Simple Type for Customized Mapping”.
				
Example 38.15. Simple Type for Customized Mapping
<simpleType name="simpleton">
 <restriction base="xsd:string">
 <maxLength value="10"/>
 </restriction>
</simpleType>

Example 38.16. Customized Mapping of a Simple Type
@XmlAccessorType(XmlAccessType.FIELD)
@XmlType(name = "simpleton", propOrder = {"value"})
public class Simpleton {

 @XmlValue
 protected String value;

 public String getValue() {
 return value;
 }

 public void setValue(String value) {
 this.value = value;
 }

}

Customizing Enumeration Mapping

					
				
Overview

					If you want enumerated types that are based on a schema type other than xsd:string, you must instruct the code generator to map it. You can also control the name of the generated enumeration constants.
				

					The customization is done using the jaxb:typesafeEnumClass element along with one or more jaxb:typesafeEnumMember elements.
				

					There might also be instances where the default settings for the code generator cannot create valid Java identifiers for all of the members of an enumeration. You can customize how the code generators handle this by using an attribute of the globalBindings customization.
				

Member name customizer

					 If the code generator encounters a naming collision when generating the members of an enumeration or if it cannot create a valid Java identifier for a member of the enumeration, the code generator, by default, generates a warning and does not generate a Java enum type for the enumeration.
				

					You can alter this behavior by adding the globalBinding element’s typesafeEnumMemberName attribute. The typesafeEnumMemberName attribute’s values are described in Table 38.2, “Values for Customizing Enumeration Member Name Generation”.
				
Table 38.2. Values for Customizing Enumeration Member Name Generation
	Value	Description
	
									skipGeneration(default)
								

								 	
									Specifies that the Java enum type is not generated and generates a warning.
								

								
	
									generateName
								

								 	
									Specifies that member names will be generated following the pattern VALUE_N. N starts off at one, and is incremented for each member of the enumeration.
								

								
	
									generateError
								

								 	
									Specifies that the code generator generates an error when it cannot map an enumeration to a Java enum type.
								

								

					Example 38.17, “Customization to Force Type Safe Member Names” shows an in-line customization that forces the code generator to generate type safe member names.
				
Example 38.17. Customization to Force Type Safe Member Names
<schema targetNamespace="http://widget.com/types/widgetTypes"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
 jaxb:version="2.0">
 <annotation>
 <appinfo>
 <jaxb:globalBindings typesafeEnumMemberName="generateName" />
 </appinfo>
 </annotation>
 ...
</schema>

Class customizer

					 The jaxb:typesafeEnumClass element specifies that an XML Schema enumeration should be mapped to a Java enum type. It has two attributes that are described in Table 38.3, “Attributes for Customizing a Generated Enumeration Class”. When the jaxb:typesafeEnumClass element is specified in-line, it must be placed inside the xsd:annotation element of the simple type it is modifying.
				
Table 38.3. Attributes for Customizing a Generated Enumeration Class
	Attribute	Description
	
									name
								

								 	
									Specifies the name of the generated Java enum type. This value must be a valid Java identifier.
								

								
	
									map
								

								 	
									Specifies if the enumeration should be mapped to a Java enum type. The default value is true.
								

								

Member customizer

					 The jaxb:typesafeEnumMember element specifies the mapping between an XML Schema enumeration facet and a Java enum type constant. You must use one jaxb:typesafeEnumMember element for each enumeration facet in the enumeration being customized.
				

					When using in-line customization, this element can be used in one of two ways:
				
	
							It can be placed inside the xsd:annotation element of the enumeration facet it is modifying.
						
	
							They can all be placed as children of the jaxb:typesafeEnumClass element used to customize the enumeration.
						

					The jaxb:typesafeEnumMember element has a name attribute that is required. The name attribute specifies the name of the generated Java enum type constant. It’s value must be a valid Java identifier.
				

					The jaxb:typesafeEnumMember element also has a value attribute. The value is used to associate the enumeration facet with the proper jaxb:typesafeEnumMember element. The value of the value attribute must match one of the values of an enumeration facets' value attribute. This attribute is required when you use an external binding specification for customizing the type generation, or when you group the jaxb:typesafeEnumMember elements as children of the jaxb:typesafeEnumClass element.
				

Examples

					Example 38.18, “In-line Customization of an Enumerated Type” shows an enumerated type that uses in-line customization and has the enumeration’s members customized separately.
				
Example 38.18. In-line Customization of an Enumerated Type
<schema targetNamespace="http://widget.com/types/widgetTypes"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
 jaxb:version="2.0">
 <simpleType name="widgetInteger">
 <annotation>
 <appinfo>
 <jaxb:typesafeEnumClass />
 </appinfo>
 </annotation>
 <restriction base="xsd:int">
 <enumeration value="1">
 <annotation>
 <appinfo>
 <jaxb:typesafeEnumMember name="one" />
 </appinfo>
 </annotation>
 </enumeration>
 <enumeration value="2">
 <annotation>
 <appinfo>
 <jaxb:typesafeEnumMember name="two" />
 </appinfo>
 </annotation>
 </enumeration>
 <enumeration value="3">
 <annotation>
 <appinfo>
 <jaxb:typesafeEnumMember name="three" />
 </appinfo>
 </annotation>
 </enumeration>
 <enumeration value="4">
 <annotation>
 <appinfo>
 <jaxb:typesafeEnumMember name="four" />
 </appinfo>
 </annotation>
 </enumeration>
 </restriction>
 </simpleType>
<schema>

					Example 38.19, “In-line Customization of an Enumerated Type Using a Combined Mapping” shows an enumerated type that uses in-line customization and combines the member’s customization in the class customization.
				
Example 38.19. In-line Customization of an Enumerated Type Using a Combined Mapping
<schema targetNamespace="http://widget.com/types/widgetTypes"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
 jaxb:version="2.0">
 <simpleType name="widgetInteger">
 <annotation>
 <appinfo>
 <jaxb:typesafeEnumClass>
 <jaxb:typesafeEnumMember value="1" name="one" />
 <jaxb:typesafeEnumMember value="2" name="two" />
 <jaxb:typesafeEnumMember value="3" name="three" />
 <jaxb:typesafeEnumMember value="4" name="four" />
 </jaxb:typesafeEnumClass>
 </appinfo>
 </annotation>
 <restriction base="xsd:int">
 <enumeration value="1" />
 <enumeration value="2" />
 <enumeration value="3" />
 <enumeration value="4" >
 </restriction>
 </simpleType>
<schema>

					Example 38.20, “Binding File for Customizing an Enumeration” shows an external binding file that customizes an enumerated type.
				
Example 38.20. Binding File for Customizing an Enumeration
<jaxb:bindings xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 jaxb:version="2.0">
 <jaxb:bindings schemaLocation="enumMap.xsd">
 <jaxb:bindings node="xsd:simpleType[@name='widgetInteger']">
 <jaxb:typesafeEnumClass>
 <jaxb:typesafeEnumMember value="1" name="one" />
 <jaxb:typesafeEnumMember value="2" name="two" />
 <jaxb:typesafeEnumMember value="3" name="three" />
 <jaxb:typesafeEnumMember value="4" name="four" />
 </jaxb:typesafeEnumClass>
 </jaxb:bindings>
 </jaxb:bindings>
<jaxb:bindings>

Customizing Fixed Value Attribute Mapping

					
				
Overview

					By default, the code generators map attributes defined as having a fixed value to normal properties. When using schema validation, Apache CXF can enforce the schema definition (see the section called “Schema Validation Type Values”). However, using schema validation increases message processing time.
				

					Another way to map attributes that have fixed values to Java is to map them to Java constants. You can instruct the code generator to map fixed value attributes to Java constants using the globalBindings customization element. You can also customize the mapping of fixed value attributes to Java constants at a more localized level using the property element.
				

Global customization

					 You can alter this behavior by adding the globalBinding element’s fixedAttributeAsConstantProperty attribute. Setting this attribute to true instructs the code generator to map any attribute defined using fixed attribute to a Java constant.
				

					Example 38.21, “in-Line Customization to Force Generation of Constants” shows an in-line customization that forces the code generator to generate constants for attributes with fixed values.
				
Example 38.21. in-Line Customization to Force Generation of Constants
<schema targetNamespace="http://widget.com/types/widgetTypes"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
 jaxb:version="2.0">
 <annotation>
 <appinfo>
 <jaxb:globalBindings fixedAttributeAsConstantProperty="true" />
 </appinfo>
 </annotation>
 ...
</schema>

					Example 38.22, “Binding File to Force Generation of Constants” shows an external binding file that customizes the generation of fixed attributes.
				
Example 38.22. Binding File to Force Generation of Constants
<jaxb:bindings xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 jaxb:version="2.0">
 <jaxb:bindings schemaLocation="types.xsd">
 <jaxb:globalBindings fixedAttributeAsConstantProperty="true" />
 <jaxb:bindings>
<jaxb:bindings>

Local mapping

					 You can customize attribute mapping on a per-attribute basis using the property element’s fixedAttributeAsConstantProperty attribute. Setting this attribute to true instructs the code generator to map any attribute defined using fixed attribute to a Java constant.
				

					Example 38.23, “In-Line Customization to Force Generation of Constants” shows an in-line customization that forces the code generator to generate constants for a single attribute with a fixed value.
				
Example 38.23. In-Line Customization to Force Generation of Constants
<schema targetNamespace="http://widget.com/types/widgetTypes"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
 jaxb:version="2.0">
 <complexType name="widgetAttr">
 <sequence>
 ...
 </sequence>
 <attribute name="fixer" type="xsd:int" fixed="7">
 <annotation> <appinfo> <jaxb:property fixedAttributeAsConstantProperty="true" /> </appinfo> </annotation>
 </attribute>
 </complexType>
 ...
</schema>

					Example 38.24, “Binding File to Force Generation of Constants” shows an external binding file that customizes the generation of a fixed attribute.
				
Example 38.24. Binding File to Force Generation of Constants
<jaxb:bindings xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 jaxb:version="2.0">
 <jaxb:bindings schemaLocation="types.xsd">
 <jaxb:bindings node="xsd:complexType[@name='widgetAttr']">
 <jaxb:bindings node="xsd:attribute[@name='fixer']">
 <jaxb:property fixedAttributeAsConstantProperty="true" />
 </jaxb:bindings>
 </jaxb:bindings>
 </jaxb:bindings>
<jaxb:bindings>

Java mapping

					In the default mapping, all attributes are mapped to standard Java properties with getter and setter methods. When this customization is applied to an attribute defined using the fixed attribute, the attribute is mapped to a Java constant, as shown in Example 38.25, “Mapping of a Fixed Value Attribute to a Java Constant”.
				
Example 38.25. Mapping of a Fixed Value Attribute to a Java Constant
@XmlAttribute
public final static type NAME = value;

					type is determined by mapping the base type of the attribute to a Java type using the mappings described in the section called “Primitive Types”.
				

					NAME is determined by converting the value of the attribute element’s name attribute to all capital letters.
				

					value is determined by the value of the attribute element’s fixed attribute.
				

					For example, the attribute defined in Example 38.23, “In-Line Customization to Force Generation of Constants” is mapped as shown in Example 38.26, “Fixed Value Attribute Mapped to a Java Constant”.
				
Example 38.26. Fixed Value Attribute Mapped to a Java Constant
@XmlRootElement(name = "widgetAttr")
public class WidgetAttr {

 ...

 @XmlAttribute
 public final static int FIXER = 7;

 ...

}

Specifying the Base Type of an Element or an Attribute

Overview

					Occasionally you need to customize the class of the object generated for an element, or for an attribute defined as part of an XML Schema complex type. For example, you might want to use a more generalized class of object to allow for simple type substitution.
				

					One way to do this is to use the JAXB base type customization. It allows a developer, on a case by case basis, to specify the class of object generated to represent an element or an attribute. The base type customization allows you to specify an alternate mapping between the XML Schema construct and the generated Java object. This alternate mapping can be a simple specialization or a generalization of the default base class. It can also be a mapping of an XML Schema primitive type to a Java class.
				

Customization usage

					 To apply the JAXB base type property to an XML Schema construct use the JAXB baseType customization element. The baseType customization element is a child of the JAXB property element, so it must be properly nested.
				

					Depending on how you want to customize the mapping of the XML Schema construct to Java object, you add either the baseType customization element’s name attribute, or a javaType child element. The name attribute is used to map the default class of the generated object to another class within the same class hierarchy. The javaType element is used when you want to map XML Schema primitive types to a Java class.
				
Important

						You cannot use both the name attribute and a javaType child element in the same baseType customization element.
					

Specializing or generalizing the default mapping

					 The baseType customization element’s name attribute is used to redefine the class of the generated object to a class within the same Java class hierarchy. The attribute specifies the fully qualified name of the Java class to which the XML Schema construct is mapped. The specified Java class must be either a super-class or a sub-class of the Java class that the code generator normally generates for the XML Schema construct. For XML Schema primitive types that map to Java primitive types, the wrapper class is used as the default base class for the purpose of customization.
				

					For example, an element defined as being of xsd:int uses java.lang.Integer as its default base class. The value of the name attribute can specify any super-class of Integer such as Number or Object.
				

					For simple type substitution, the most common customization is to map the primitive types to an Object object.
				

					Example 38.27, “In-Line Customization of a Base Type” shows an in-line customization that maps one element in a complex type to a Java Object object.
				
Example 38.27. In-Line Customization of a Base Type
<complexType name="widgetOrderInfo">
 <all>
 <element name="amount" type="xsd:int" />
 <element name="shippingAdress" type="Address">
 <annotation> <appinfo> <jaxb:property> <jaxb:baseType name="java.lang.Object" /> </jaxb:property> </appinfo> </annotation>
 </element>
 <element name="type" type="xsd:string"/>
 </all>
</complexType>

					Example 38.28, “External Binding File to Customize a Base Type” shows an external binding file for the customization shown in Example 38.27, “In-Line Customization of a Base Type”.
				
Example 38.28. External Binding File to Customize a Base Type
<jaxb:bindings xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 jaxb:version="2.0">
 <jaxb:bindings schemaLocation="enumMap.xsd">
 <jaxb:bindings node="xsd:ComplexType[@name='widgetOrderInfo']">
 <jaxb:bindings node="xsd:element[@name='shippingAddress']">
 <jaxb:property>
 <jaxb:baseType name="java.lang.Object" />
 </jaxb:property>
 </jaxb:bindings>
 </jaxb:bindings>
 </jaxb:bindings>
<jaxb:bindings>

					The resulting Java object’s @XmlElement annotation includes a type property. The value of the type property is the class object representing the generated object’s default base type. In the case of XML Schema primitive types, the class is the wrapper class of the corresponding Java primitive type.
				

					Example 38.29, “Java Class with a Modified Base Class” shows the class generated based on the schema definition in Example 38.28, “External Binding File to Customize a Base Type”.
				
Example 38.29. Java Class with a Modified Base Class
public class WidgetOrderInfo {

 protected int amount;
 @XmlElement(required = true)
 protected String type;
 @XmlElement(required = true, type = Address.class) protected Object shippingAddress;

 ...
 public Object getShippingAddress() {
 return shippingAddress;
 }

 public void setShippingAddress(Object value) {
 this.shippingAddress = value;
 }

}

Usage with javaType

					 The javaType element can be used to customize how elements and attributes defined using XML Schema primitive types are mapped to Java objects. Using the javaType element provides a lot more flexibility than simply using the baseType element’s name attribute. The javaType element allows you to map a primitive type to any class of object.
				

					For a detailed description of using the javaType element, see the section called “Specifying the Java Class of an XML Schema Primitive”.
				

Chapter 39. Using A JAXBContext Object

Abstract

					The JAXBContext object allows the Apache CXF’s runtime to transform data between XML elements and Java object. Application developers need to instantiate a JAXBContext object they want to use JAXB objects in message handlers and when implementing consumers that work with raw XML messages.
				

				
			
Overview

				The JAXBContext object is a low-level object used by the runtime. It allows the runtime to convert between XML elements and their corresponding Java representations. An application developer generally does not need to work with JAXBContext objects. The marshaling and unmarshaling of XML data is typically handled by the transport and binding layers of a JAX-WS application.
			

				However, there are instances when an application will need to manipulate the XML message content directly. In two of these instances:
			
	
						the section called “Using XML in a Consumer”
					
	
						Chapter 43, Writing Handlers
					

				You will need instantiate a JAXBContext object using one of the two available JAXBContext.newInstance() methods.
			

Best practices

				JAXBContext objects are resource intensive to instantiate. It is recommended that an application create as few instances as possible. One way to do this is to create a single JAXBContext object that can manage all of the JAXB objects used by your application and share it among as many parts of your application as possible.
			

				JAXBContext objects are thread safe.
			

Getting a JAXBContext object using an object factory

				 The JAXBContext class provides a newInstance() method, shown in Example 39.1, “Getting a JAXB Context Using Classes”, that takes a list of classes that implement JAXB objects.
			
Example 39.1. Getting a JAXB Context Using Classes

					staticJAXBContextnewInstanceClass…​classesToBeBoundJAXBException
				

				The returned JAXBObject object will be able to marshal and unmarshal data for the JAXB object implemented by the classes passed into the method. It will also be able to work with any classes that are statically referenced from any of the classes passed into the method.
			

				While it is possible to pass the name of every JAXB class used by your application to the newInstance() method it is not efficient. A more efficient way to accomplish the same goal is to pass in the object factory, or object factories, generated for your application. The resulting JAXBContext object will be able to manage any JAXB classes the specified object factories can instantiate.
			

Getting a JAXBContext object using package names

				 The JAXBContext class provides a newInstance() method, shown in Example 39.2, “Getting a JAXB Context Using Classes”, that takes a colon (:) seperated list of package names. The specified packages should contain JAXB objects derived from XML Schema.
			
Example 39.2. Getting a JAXB Context Using Classes

					staticJAXBContextnewInstanceStringcontextPathJAXBException
				

				The returned JAXBContext object will be able to marshal and unmarshal data for all of the JAXB objects implemented by the classes in the specified packages.
			

Chapter 40. Developing Asynchronous Applications

Abstract

					JAX-WS provides an easy mechanism for accessing services asynchronously. The SEI can specify additional methods that can be used to access a service asynchronously. The Apache CXF code generators generate the extra methods for you. You simply add the business logic.
				

Types of Asynchronous Invocation

					In addition to the usual synchronous mode of invocation, Apache CXF supports two forms of asynchronous invocation:
				
	
							 Polling approach — To invoke the remote operation using the polling approach, you call a method that has no output parameters, but returns a javax.xml.ws.Response object. The Response object (which inherits from the javax.util.concurrency.Future interface) can be polled to check whether or not a response message has arrived.
						
	
							 Callback approach — To invoke the remote operation using the callback approach, you call a method that takes a reference to a callback object (of javax.xml.ws.AsyncHandler type) as one of its parameters. When the response message arrives at the client, the runtime calls back on the AsyncHandler object, and gives it the contents of the response message.
						

WSDL for Asynchronous Examples

					Example 40.1, “WSDL Contract for Asynchronous Example” shows the WSDL contract that is used for the asynchronous examples. The contract defines a single interface, GreeterAsync, which contains a single operation, greetMeSometime.
				
Example 40.1. WSDL Contract for Asynchronous Example
<?xml version="1.0" encoding="UTF-8"?><wsdl:definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://apache.org/hello_world_async_soap_http"
 xmlns:x1="http://apache.org/hello_world_async_soap_http/types"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://apache.org/hello_world_async_soap_http"
 name="HelloWorld">
 <wsdl:types>
 <schema targetNamespace="http://apache.org/hello_world_async_soap_http/types"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:x1="http://apache.org/hello_world_async_soap_http/types"
 elementFormDefault="qualified">
 <element name="greetMeSometime">
 <complexType>
 <sequence>
 <element name="requestType" type="xsd:string"/>
 </sequence>
 </complexType>
 </element>
 <element name="greetMeSometimeResponse">
 <complexType>
 <sequence>
 <element name="responseType"
 type="xsd:string"/>
 </sequence>
 </complexType>
 </element>
 </schema>
 </wsdl:types>

 <wsdl:message name="greetMeSometimeRequest">
 <wsdl:part name="in" element="x1:greetMeSometime"/>
 </wsdl:message>
 <wsdl:message name="greetMeSometimeResponse">
 <wsdl:part name="out"
 element="x1:greetMeSometimeResponse"/>
 </wsdl:message>

 <wsdl:portType name="GreeterAsync">
 <wsdl:operation name="greetMeSometime">
 <wsdl:input name="greetMeSometimeRequest"
 message="tns:greetMeSometimeRequest"/>
 <wsdl:output name="greetMeSometimeResponse"
 message="tns:greetMeSometimeResponse"/>
 </wsdl:operation>
 </wsdl:portType>

 <wsdl:binding name="GreeterAsync_SOAPBinding"
 type="tns:GreeterAsync">
 ...
 </wsdl:binding>

 <wsdl:service name="SOAPService">
 <wsdl:port name="SoapPort"
 binding="tns:GreeterAsync_SOAPBinding">
 <soap:address location="http://localhost:9000/SoapContext/SoapPort"/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

Generating the Stub Code

					
				
Overview

					The asynchronous style of invocation requires extra stub code for the dedicated asynchronous methods defined on the SEI. This special stub code is not generated by default. To switch on the asynchronous feature and generate the requisite stub code, you must use the mapping customization feature from the WSDL 2.0 specification.
				

					Customization enables you to modify the way the Maven code generation plug-in generates stub code. In particular, it enables you to modify the WSDL-to-Java mapping and to switch on certain features. Here, customization is used to switch on the asynchronous invocation feature. Customizations are specified using a binding declaration, which you define using a jaxws:bindings tag (where the jaxws prefix is tied to the http://java.sun.com/xml/ns/jaxws namespace). There are two ways of specifying a binding declaration:
				
	External Binding Declaration
	
								When using an external binding declaration the jaxws:bindings element is defined in a file separate from the WSDL contract. You specify the location of the binding declaration file to code generator when you generate the stub code.
							
	Embedded Binding Declaration
	
								When using an embedded binding declaration you embed the jaxws:bindings element directly in a WSDL contract, treating it as a WSDL extension. In this case, the settings in jaxws:bindings apply only to the immediate parent element.
							

Using an external binding declaration

					The template for a binding declaration file that switches on asynchronous invocations is shown in Example 40.2, “Template for an Asynchronous Binding Declaration”.
				
Example 40.2. Template for an Asynchronous Binding Declaration
<bindings xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 wsdlLocation="AffectedWSDL"
 xmlns="http://java.sun.com/xml/ns/jaxws">
 <bindings node="AffectedNode">
 <enableAsyncMapping>true</enableAsyncMapping>
 </bindings>
</bindings>

					Where AffectedWSDL specifies the URL of the WSDL contract that is affected by this binding declaration. The AffectedNode is an XPath value that specifies which node (or nodes) from the WSDL contract are affected by this binding declaration. You can set AffectedNode to wsdl:definitions, if you want the entire WSDL contract to be affected. The jaxws:enableAsyncMapping element is set to true to enable the asynchronous invocation feature.
				

					For example, if you want to generate asynchronous methods only for the GreeterAsync interface, you can specify <bindings node="wsdl:definitions/wsdl:portType[@name='GreeterAsync']"> in the preceding binding declaration.
				

					Assuming that the binding declaration is stored in a file, async_binding.xml, you would set up your POM as shown in Example 40.3, “Consumer Code Generation”.
				
Example 40.3. Consumer Code Generation
<plugin>
 <groupId>org.apache.cxf</groupId>
 <artifactId>cxf-codegen-plugin</artifactId>
 <version>${cxf.version}</version>
 <executions>
 <execution>
 <id>generate-sources</id>
 <phase>generate-sources</phase>
 <configuration>
 <sourceRoot>outputDir</sourceRoot>
 <wsdlOptions>
 <wsdlOption>
 <wsdl>hello_world.wsdl</wsdl>
 <extraargs>
 <extraarg>-client</extraarg>
 <extraarg>-b async_binding.xml</extraarg>
 </extraargs>
 </wsdlOption>
 </wsdlOptions>
 </configuration>
 <goals>
 <goal>wsdl2java</goal>
 </goals>
 </execution>
 </executions>
</plugin>

					The -b option tells the code generator where to locate the external binding file.
				

					For more information on the code generator see the section called “cxf-codegen-plugin”.
				

Using an embedded binding declaration

					You can also embed the binding customization directly into the WSDL document defining the service by placing the jaxws:bindings element and its associated jaxws:enableAsynchMapping child directly into the WSDL. You also must add a namespace declaration for the jaxws prefix.
				

					Example 40.4, “WSDL with Embedded Binding Declaration for Asynchronous Mapping” shows a WSDL file with an embedded binding declaration that activates the asynchronous mapping for an operation.
				
Example 40.4. WSDL with Embedded Binding Declaration for Asynchronous Mapping
<wsdl:definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
 ...
 xmlns:jaxws="http://java.sun.com/xml/ns/jaxws"
 ...>
 ...
 <wsdl:portType name="GreeterAsync">
 <wsdl:operation name="greetMeSometime">
 <jaxws:bindings> <jaxws:enableAsyncMapping>true</jaxws:enableAsyncMapping> </jaxws:bindings>
 <wsdl:input name="greetMeSometimeRequest"
 message="tns:greetMeSometimeRequest"/>
 <wsdl:output name="greetMeSometimeResponse"
 message="tns:greetMeSometimeResponse"/>
 </wsdl:operation>
 </wsdl:portType>
 ...
</wsdl:definitions>

					When embedding the binding declaration into the WSDL document you can control the scope affected by the declaration by changing where you place the declaration. When the declaration is placed as a child of the wsdl:definitions element the code generator creates asynchronous methods for all of the operations defined in the WSDL document. If it is placed as a child of a wsdl:portType element the code generator creates asynchronous methods for all of the operations defined in the interface. If it is placed as a child of a wsdl:operation element the code generator creates asynchronous methods for only that operation.
				

					It is not necessary to pass any special options to the code generator when using embedded declarations. The code generator will recognize them and act accordingly.
				

Generated interface

					 After generating the stub code in this way, the GreeterAsync SEI (in the file GreeterAsync.java) is defined as shown in Example 40.5, “Service Endpoint Interface with Methods for Asynchronous Invocations”.
				
Example 40.5. Service Endpoint Interface with Methods for Asynchronous Invocations
package org.apache.hello_world_async_soap_http;

import org.apache.hello_world_async_soap_http.types.GreetMeSometimeResponse;
...

public interface GreeterAsync
{
 public Future<?> greetMeSometimeAsync(
 java.lang.String requestType,
 AsyncHandler<GreetMeSometimeResponse> asyncHandler
);

 public Response<GreetMeSometimeResponse> greetMeSometimeAsync(
 java.lang.String requestType
);

 public java.lang.String greetMeSometime(
 java.lang.String requestType
);
}

					 In addition to the usual synchronous method, greetMeSometime(), two asynchronous methods are also generated for the greetMeSometime operation:
				
	
							 Callback approach publicFuture<?>greetMeSomtimeAsyncjava.lang.StringrequestTypeAsyncHandler<GreetMeSomtimeResponse>asyncHandler
						
	
							 Polling approach publicResponse<GreetMeSomeTimeResponse>greetMeSometimeAsyncjava.lang.StringrequestType
						

Implementing an Asynchronous Client with the Polling Approach

					
				
Overview

					The polling approach is the more straightforward of the two approaches to developing an asynchronous application. The client invokes the asynchronous method called OperationNameAsync() and is returned a Response<T> object that it polls for a response. What the client does while it is waiting for a response is depends on the requirements of the application. There are two basic patterns for handling the polling:
				
	
							Non-blocking polling— You periodically check to see if the result is ready by calling the non-blocking Response<T>.isDone() method. If the result is ready, the client processes it. If it not, the client continues doing other things.
						
	
							Blocking polling— You call Response<T>.get() right away, and block until the response arrives (optionally specifying a timeout).
						

Using the non-blocking pattern

					Example 40.6, “Non-Blocking Polling Approach for an Asynchronous Operation Call” illustrates using non-blocking polling to make an asynchronous invocation on the greetMeSometime operation defined in Example 40.1, “WSDL Contract for Asynchronous Example”. The client invokes the asynchronous operation and periodically checks to see if the result is returned.
				
Example 40.6. Non-Blocking Polling Approach for an Asynchronous Operation Call
package demo.hw.client;

import java.io.File;
import java.util.concurrent.Future;

import javax.xml.namespace.QName;
import javax.xml.ws.Response;

import org.apache.hello_world_async_soap_http.*;

public final class Client {
 private static final QName SERVICE_NAME
 = new QName("http://apache.org/hello_world_async_soap_http",
 "SOAPService");

 private Client() {}

 public static void main(String args[]) throws Exception {

 // set up the proxy for the client

 Response<GreetMeSometimeResponse> greetMeSomeTimeResp =
 port.greetMeSometimeAsync(System.getProperty("user.name"));

 while (!greetMeSomeTimeResp.isDone()) {
 // client does some work
 }
 GreetMeSometimeResponse reply = greetMeSomeTimeResp.get();
 // process the response

 System.exit(0);
 }
}

					The code in Example 40.6, “Non-Blocking Polling Approach for an Asynchronous Operation Call” does the following:
				

					Invokes the greetMeSometimeAsync() on the proxy.
				

					The method call returns the Response<GreetMeSometimeResponse> object to the client immediately. The Apache CXF runtime handles the details of receiving the reply from the remote endpoint and populating the Response<GreetMeSometimeResponse> object.
				
Note

						The runtime transmits the request to the remote endpoint’s greetMeSometime() method and handles the details of the asynchronous nature of the call transparently. The endpoint, and therefore the service implementation, never worries about the details of how the client intends to wait for a response.
					

					Checks to see if a response has arrived by checking the isDone() of the returned Response object.
				

					If the response has not arrived, the client continues working before checking again.
				

					When the response arrives, the client retrieves it from the Response object using the get() method.
				

Using the blocking pattern

					When using the block polling pattern, the Response object’s isDone() is never called. Instead, the Response object’s get() method is called immediately after invoking the remote operation. The get() blocks until the response is available.
				

					You can also pass a timeout limit to the get() method.
				

					Example 40.7, “Blocking Polling Approach for an Asynchronous Operation Call” shows a client that uses blocking polling.
				
Example 40.7. Blocking Polling Approach for an Asynchronous Operation Call
package demo.hw.client;

import java.io.File;
import java.util.concurrent.Future;

import javax.xml.namespace.QName;
import javax.xml.ws.Response;

import org.apache.hello_world_async_soap_http.*;

public final class Client {
 private static final QName SERVICE_NAME
 = new QName("http://apache.org/hello_world_async_soap_http",
 "SOAPService");

 private Client() {}

 public static void main(String args[]) throws Exception {

 // set up the proxy for the client

 Response<GreetMeSometimeResponse> greetMeSomeTimeResp =
 port.greetMeSometimeAsync(System.getProperty("user.name"));
 GreetMeSometimeResponse reply = greetMeSomeTimeResp.get();
 // process the response
 System.exit(0);
 }
}

Implementing an Asynchronous Client with the Callback Approach

					
				
Overview

					An alternative approach to making an asynchronous operation invocation is to implement a callback class. You then call the asynchronous remote method that takes the callback object as a parameter. The runtime returns the response to the callback object.
				

					To implement an application that uses callbacks, do the following:
				
	
							Create a callback class that implements the AsyncHandler interface.
						
Note

								Your callback object can perform any amount of response processing required by your application.
							

	
							Make remote invocations using the operationNameAsync() that takes the callback object as a parameter and returns a Future<?> object.
						
	
							If your client requires access to the response data, you can poll the returned Future<?> object’s isDone() method to see if the remote endpoint has sent the response.
						

							If the callback object does all of the response processing, it is not necessary to check if the response has arrived.
						

Implementing the callback

					 The callback class must implement the javax.xml.ws.AsyncHandler interface. The interface defines a single method: handleResponseResponse<T>res The Apache CXF runtime calls the handleResponse() method to notify the client that the response has arrived. Example 40.8, “The javax.xml.ws.AsyncHandler Interface” shows an outline of the AsyncHandler interface that you must implement.
				
Example 40.8. The javax.xml.ws.AsyncHandler Interface
public interface javax.xml.ws.AsyncHandler
{
 void handleResponse(Response<T> res)
}

					Example 40.9, “Callback Implementation Class” shows a callback class for the greetMeSometime operation defined in Example 40.1, “WSDL Contract for Asynchronous Example”.
				
Example 40.9. Callback Implementation Class
package demo.hw.client;

import javax.xml.ws.AsyncHandler;
import javax.xml.ws.Response;

import org.apache.hello_world_async_soap_http.types.*;

public class GreeterAsyncHandler implements AsyncHandler<GreetMeSometimeResponse>
{
 private GreetMeSometimeResponse reply;

 public void handleResponse(Response<GreetMeSometimeResponse>
 response)
 {
 try
 {
 reply = response.get();
 }
 catch (Exception ex)
 {
 ex.printStackTrace();
 }
 }

 public String getResponse()
 {
 return reply.getResponseType();
 }
}

					The callback implementation shown in Example 40.9, “Callback Implementation Class” does the following:
				

					Defines a member variable, response, that holds the response returned from the remote endpoint.
				

					Implements handleResponse().
				

					This implementation simply extracts the response and assigns it to the member variable reply.
				

					Implements an added method called getResponse().
				

					This method is a convenience method that extracts the data from reply and returns it.
				

Implementing the consumer

					Example 40.10, “Callback Approach for an Asynchronous Operation Call” illustrates a client that uses the callback approach to make an asynchronous call to the GreetMeSometime operation defined in Example 40.1, “WSDL Contract for Asynchronous Example”.
				
Example 40.10. Callback Approach for an Asynchronous Operation Call
package demo.hw.client;

import java.io.File;
import java.util.concurrent.Future;

import javax.xml.namespace.QName;
import javax.xml.ws.Response;

import org.apache.hello_world_async_soap_http.*;

public final class Client {
 ...

 public static void main(String args[]) throws Exception
 {
 ...
 // Callback approach
 GreeterAsyncHandler callback = new GreeterAsyncHandler();

 Future<?> response =
 port.greetMeSometimeAsync(System.getProperty("user.name"),
 callback);
 while (!response.isDone())
 {
 // Do some work
 }
 resp = callback.getResponse();
 ...
 System.exit(0);
 }
}

					The code in Example 40.10, “Callback Approach for an Asynchronous Operation Call” does the following:
				

					Instantiates a callback object.
				

					Invokes the greetMeSometimeAsync() that takes the callback object on the proxy.
				

					The method call returns the Future<?> object to the client immediately. The Apache CXF runtime handles the details of receiving the reply from the remote endpoint, invoking the callback object’s handleResponse() method, and populating the Response<GreetMeSometimeResponse> object.
				
Note

						The runtime transmits the request to the remote endpoint’s greetMeSometime() method and handles the details of the asynchronous nature of the call without the remote endpoint’s knowledge. The endpoint, and therefore the service implementation, does not need to worry about the details of how the client intends to wait for a response.
					

					Uses the returned Future<?> object’s isDone() method to check if the response has arrived from the remote endpoint.
				

					Invokes the callback object’s getResponse() method to get the response data.
				

Catching Exceptions Returned from a Remote Service

Overview

					Consumers making asynchronous requests will not receive the same exceptions returned when they make synchronous requests. Any exceptions returned to the consumer asynchronously are wrapped in an ExecutionException exception. The actual exception thrown by the service is stored in the ExecutionException exception’s cause field.
				

Catching the exception

					 Exceptions generated by a remote service are thrown locally by the method that passes the response to the consumer’s business logic. When the consumer makes a synchronous request, the method making the remote invocation throws the exception. When the consumer makes an asynchronous request, the Response<T> object’s get() method throws the exception. The consumer will not discover that an error was encountered in processing the request until it attempts to retrieve the response message.
				

					Unlike the methods generated by the JAX-WS framework, the Response<T> object’s get() method throws neither user modeled exceptions nor generic JAX-WS exceptions. Instead, it throws a java.util.concurrent.ExecutionException exception.
				

Getting the exception details

					The framework stores the exception returned from the remote service in the ExecutionException exception’s cause field. The details about the remote exception are extracted by getting the value of the cause field and examining the stored exception. The stored exception can be any user defined exception or one of the generic JAX-WS exceptions.
				

Example

					Example 40.11, “Catching an Exception using the Polling Approach” shows an example of catching an exception using the polling approach.
				
Example 40.11. Catching an Exception using the Polling Approach
package demo.hw.client;

import java.io.File;
import java.util.concurrent.Future;

import javax.xml.namespace.QName;
import javax.xml.ws.Response;

import org.apache.hello_world_async_soap_http.*;

public final class Client
{
 private static final QName SERVICE_NAME
 = new QName("http://apache.org/hello_world_async_soap_http",
 "SOAPService");

 private Client() {}

 public static void main(String args[]) throws Exception
 {
 ...
 // port is a previously established proxy object.
 Response<GreetMeSometimeResponse> resp =
 port.greetMeSometimeAsync(System.getProperty("user.name"));

 while (!resp.isDone())
 {
 // client does some work
 }

 try
 {
 GreetMeSometimeResponse reply = greetMeSomeTimeResp.get();
 // process the response
 }
 catch (ExecutionException ee)
 {
 Throwable cause = ee.getCause();
 System.out.println("Exception "+cause.getClass().getName()+" thrown by the remote service.");
 }
 }
}

					The code in Example 40.11, “Catching an Exception using the Polling Approach” does the following:
				

					Wraps the call to the Response<T> object’s get() method in a try/catch block.
				

					Catches a ExecutionException exception.
				

					Extracts the cause field from the exception.
				

					If the consumer was using the callback approach the code used to catch the exception would be placed in the callback object where the service’s response is extracted.
				

Chapter 41. Using Raw XML Messages

Abstract

					The high-level JAX-WS APIs shield the developer from using native XML messages by marshaling the data into JAXB objects. However, there are cases when it is better to have direct access to the raw XML message data that is passing on the wire. The JAX-WS APIs provide two interfaces that provide access to the raw XML: the Dispatch interface is the client-side interface, and the Provider interface is the server-side interface.
				

Using XML in a Consumer

Abstract

						 The Dispatch interface is a low-level JAX-WS API that allows you work directly with raw messages. It accepts and returns messages, or payloads, of a number of types including DOM objects, SOAP messages, and JAXB objects. Because it is a low-level API, the Dispatch interface does not perform any of the message preparation that the higher-level JAX-WS APIs perform. You must ensure that the messages, or payloads, that you pass to the Dispatch object are properly constructed, and make sense for the remote operation being invoked.
					

Usage Modes

Overview

						Dispatch objects have two usage modes:
					
	
								Message mode
							
	
								Message Payload mode (Payload mode)
							

						The usage mode you specify for a Dispatch object determines the amount of detail that is passed to the user level code.
					

Message mode

						 In message mode, a Dispatch object works with complete messages. A complete message includes any binding specific headers and wrappers. For example, a consumer interacting with a service that requires SOAP messages must provide the Dispatch object’s invoke() method a fully specified SOAP message. The invoke() method also returns a fully specified SOAP message. The consumer code is responsible for completing and reading the SOAP message’s headers and the SOAP message’s envelope information.
					

						Message mode is not ideal when working with JAXB objects.
					

						To specify that a Dispatch object uses message mode provide the value java.xml.ws.Service.Mode.MESSAGE when creating the Dispatch object. For more information about creating a Dispatch object see the section called “Creating a Dispatch object”.
					

Payload mode

						 In payload mode, also called message payload mode, a Dispatch object works with only the payload of a message. For example, a Dispatch object working in payload mode works only with the body of a SOAP message. The binding layer processes any binding level wrappers and headers. When a result is returned from the invoke() method the binding level wrappers and headers are already striped away, and only the body of the message is left.
					

						When working with a binding that does not use special wrappers, such as the Apache CXF XML binding, payload mode and message mode provide the same results.
					

						To specify that a Dispatch object uses payload mode provide the value java.xml.ws.Service.Mode.PAYLOAD when creating the Dispatch object. For more information about creating a Dispatch object see the section called “Creating a Dispatch object”.
					

Data Types

Overview

						Because Dispatch objects are low-level objects, they are not optimized for using the same JAXB generated types as the higher level consumer APIs. Dispatch objects work with the following types of objects:
					
	
								javax.xml.transform.Source
							
	
								javax.xml.soap.SOAPMessage
							
	
								javax.activation.DataSource
							
	
								the section called “Using JAXB objects”
							

Using Source objects

						 A Dispatch object accepts and returns objects that are derived from the javax.xml.transform.Source interface. Source objects are supported by any binding, and in either message mode or payload mode.
					

						Source objects are low level objects that hold XML documents. Each Source implementation provides methods that access the stored XML documents and then manipulate its contents. The following objects implement the Source interface:
					
	DOMSource
	
									Holds XML messages as a Document Object Model(DOM) tree. The XML message is stored as a set of Node objects that are accessed using the getNode() method. Nodes can be either updated or added to the DOM tree using the setNode() method.
								
	SAXSource
	
									Holds XML messages as a Simple API for XML (SAX) object. SAX objects contain an InputSource object that holds the raw data and an XMLReader object that parses the raw data.
								
	StreamSource
	
									Holds XML messages as a data stream. The data stream can be manipulated the same as any other data stream.
								

						If you create your Dispatch object so that it uses generic Source objects, Apache CXF returns the messages as SAXSource objects.
					

						This behavior can be changed using the endpoint’s source-preferred-format property. See Part IV, “Configuring Web Service Endpoints” for information about configuring the Apache CXF runtime.
					

Using SOAPMessage objects

						 Dispatch objects can use javax.xml.soap.SOAPMessage objects when the following conditions are true:
					
	
								The Dispatch object is using the SOAP binding
							
	
								The Dispatch object is using message mode
							

						A SOAPMessage object holds a SOAP message. They contain one SOAPPart object and zero or more AttachmentPart objects. The SOAPPart object contains the SOAP specific portions of the SOAP message including the SOAP envelope, any SOAP headers, and the SOAP message body. The AttachmentPart objects contain binary data that is passed as an attachment.
					

Using DataSource objects

						 Dispatch objects can use objects that implement the javax.activation.DataSource interface when the following conditions are true:
					
	
								The Dispatch object is using the HTTP binding
							
	
								The Dispatch object is using message mode
							

						DataSource objects provide a mechanism for working with MIME typed data from a variety of sources, including URLs, files, and byte arrays.
					

Using JAXB objects

						While Dispatch objects are intended to be low level APIs that allow you to work with raw messages, they also allow you to work with JAXB objects. To work with JAXB objects a Dispatch object must be passed a JAXBContext that can marshal and unmarshal the JAXB objects in use. The JAXBContext is passed when the Dispatch object is created.
					

						You can pass any JAXB object understood by the JAXBContext object as the parameter to the invoke() method. You can also cast the returned message into any JAXB object understood by the JAXBContext object.
					

						For information on creating a JAXBContext object see Chapter 39, Using A JAXBContext Object.
					

Working with Dispatch Objects

Procedure

						To use a Dispatch object to invoke a remote service the following sequence should be followed:
					
	
								Create a Dispatch object.
							
	
								Construct a request message.
							
	
								Call the proper invoke() method.
							
	
								Parse the response message.
							

Creating a Dispatch object

						 To create a Dispatch object do the following:
					
	
								Create a Service object to represent the wsdl:service element that defines the service on which the Dispatch object will make invocations. See the section called “Creating a Service Object”.
							
	
								Create the Dispatch object using the Service object’s createDispatch() method, shown in Example 41.1, “The createDispatch() Method”.
							
Example 41.1. The createDispatch() Method

									publicDispatch<T>createDispatchQNameportNamejava.lang.Class<T>typeService.ModemodeWebServiceException
								

Note

									If you are using JAXB objects the method signature for createDispatch() is: publicDispatch<T>createDispatchQNameportNamejavax.xml.bind.JAXBContextcontextService.ModemodeWebServiceException
								

								Table 41.1, “Parameters for createDispatch()” describes the parameters for the createDispatch() method.
							
Table 41.1. Parameters for createDispatch()
	Parameter	Description
	
												portName
											

											 	
												Specifies the QName of the wsdl:port element that represents the service provider where the Dispatch object will make invocations.
											

											
	
												type
											

											 	
												Specifies the data type of the objects used by the Dispatch object. See the section called “Data Types”. When working with JAXB objects, this parameter specifies the JAXBContext object used to marshal and unmarshal the JAXB objects.
											

											
	
												mode
											

											 	
												Specifies the usage mode for the Dispatch object. See the section called “Usage Modes”.
											

											

						Example 41.2, “Creating a Dispatch Object” shows the code for creating a Dispatch object that works with DOMSource objects in payload mode.
					
Example 41.2. Creating a Dispatch Object
package com.fusesource.demo;

import javax.xml.namespace.QName;
import javax.xml.ws.Service;

public class Client
{
public static void main(String args[])
 {
 QName serviceName = new QName("http://org.apache.cxf", "stockQuoteReporter");
 Service s = Service.create(serviceName);

 QName portName = new QName("http://org.apache.cxf", "stockQuoteReporterPort");
 Dispatch<DOMSource> dispatch = s.createDispatch(portName,
 DOMSource.class,
 Service.Mode.PAYLOAD);
 ...

Constructing request messages

						When working with Dispatch objects, requests must be built from scratch. The developer is responsible for ensuring that the messages passed to a Dispatch object match a request that the targeted service provider can process. This requires precise knowledge about the messages used by the service provider and what, if any, header information it requires.
					

						This information can be provided by a WSDL document or an XML Schema document that defines the messages. While service providers vary greatly there are a few guidelines to be followed:
					
	
								The root element of the request is based in the value of the name attribute of the wsdl:operation element corresponding to the operation being invoked.
							
Warning

									If the service being invoked uses doc/literal bare messages, the root element of the request is based on the value of the name attribute of the wsdl:part element referred to by the wsdl:operation element.
								

	
								The root element of the request is namespace qualified.
							
	
								If the service being invoked uses rpc/literal messages, the top-level elements in the request will not be namespace qualified.
							
Important

									The children of top-level elements may be namespace qualified. To be certain you must check their schema definitions.
								

	
								If the service being invoked uses rpc/literal messages, none of the top-level elements can be null.
							
	
								If the service being invoked uses doc/literal messages, the schema definition of the message determines if any of the elements are namespace qualified.
							

						For more information about how services use XML messages see, the WS-I Basic Profile.
					

Synchronous invocation

						 For consumers that make synchronous invocations that generate a response, use the Dispatch object’s invoke() method shown in Example 41.3, “The Dispatch.invoke() Method”.
					
Example 41.3. The Dispatch.invoke() Method

							TinvokeTmsgWebServiceException
						

						The type of both the response and the request passed to the invoke() method are determined when the Dispatch object is created. For example if you create a Dispatch object using createDispatch(portName, SOAPMessage.class, Service.Mode.MESSAGE), both the response and the request are SOAPMessage objects.
					
Note

							When using JAXB objects, both the response and the request can be of any type the provided JAXBContext object can marshal and unmarshal. Also, the response and the request can be different JAXB objects.
						

						Example 41.4, “Making a Synchronous Invocation Using a Dispatch Object” shows code for making a synchronous invocation on a remote service using a DOMSource object.
					
Example 41.4. Making a Synchronous Invocation Using a Dispatch Object
// Creating a DOMSource Object for the request
DocumentBuilder db = DocumentBuilderFactory.newDocumentBuilder();
Document requestDoc = db.newDocument();
Element root = requestDoc.createElementNS("http://org.apache.cxf/stockExample",
 "getStockPrice");
root.setNodeValue("DOW");
DOMSource request = new DOMSource(requestDoc);

// Dispatch disp created previously
DOMSource response = disp.invoke(request);

Asynchronous invocation

						 Dispatch objects also support asynchronous invocations. As with the higher level asynchronous APIs discussed in Chapter 40, Developing Asynchronous Applications, Dispatch objects can use both the polling approach and the callback approach.
					

						When using the polling approach, the invokeAsync() method returns a Response<t> object that can be polled to see if the response has arrived. Example 41.5, “The Dispatch.invokeAsync() Method for Polling” shows the signature of the method used to make an asynchronous invocation using the polling approach.
					
Example 41.5. The Dispatch.invokeAsync() Method for Polling

							Response <T>invokeAsyncTmsgWebServiceException
						

						For detailed information on using the polling approach for asynchronous invocations see the section called “Implementing an Asynchronous Client with the Polling Approach”.
					

						When using the callback approach, the invokeAsync() method takes an AsyncHandler implementation that processes the response when it is returned. Example 41.6, “The Dispatch.invokeAsync() Method Using a Callback” shows the signature of the method used to make an asynchronous invocation using the callback approach.
					
Example 41.6. The Dispatch.invokeAsync() Method Using a Callback

							Future<?>invokeAsyncTmsgAsyncHandler<T>handlerWebServiceException
						

						For detailed information on using the callback approach for asynchronous invocations see the section called “Implementing an Asynchronous Client with the Callback Approach”.
					
Note

							As with the synchronous invoke() method, the type of the response and the type of the request are determined when you create the Dispatch object.
						

Oneway invocation

						 When a request does not generate a response, make remote invocations using the Dispatch object’s invokeOneWay(). Example 41.7, “The Dispatch.invokeOneWay() Method” shows the signature for this method.
					
Example 41.7. The Dispatch.invokeOneWay() Method

							invokeOneWayTmsgWebServiceException
						

						The type of object used to package the request is determined when the Dispatch object is created. For example if the Dispatch object is created using createDispatch(portName, DOMSource.class, Service.Mode.PAYLOAD), then the request is packaged into a DOMSource object.
					
Note

							When using JAXB objects, the response and the request can be of any type the provided JAXBContext object can marshal and unmarshal.
						

						Example 41.8, “Making a One Way Invocation Using a Dispatch Object” shows code for making a oneway invocation on a remote service using a JAXB object.
					
Example 41.8. Making a One Way Invocation Using a Dispatch Object
// Creating a JAXBContext and an Unmarshaller for the request
JAXBContext jbc = JAXBContext.newInstance("org.apache.cxf.StockExample");
Unmarshaller u = jbc.createUnmarshaller();

// Read the request from disk
File rf = new File("request.xml");
GetStockPrice request = (GetStockPrice)u.unmarshal(rf);

// Dispatch disp created previously
disp.invokeOneWay(request);

Using XML in a Service Provider

Abstract

						The Provider interface is a low-level JAX-WS API that allows you to implement a service provider that works directly with messages as raw XML. The messages are not packaged into JAXB objects before being passed to an object that implements the Provider interface.
					

Messaging Modes

Overview

						Objects that implement the Provider interface have two messaging modes:
					
	
								Message mode
							
	
								Payload mode
							

						The messaging mode you specify determines the level of messaging detail that is passed to your implementation.
					

Message mode

						 When using message mode, a Provider implementation works with complete messages. A complete message includes any binding specific headers and wrappers. For example, a Provider implementation that uses a SOAP binding receives requests as fully specified SOAP message. Any response returned from the implementation must be a fully specified SOAP message.
					

						To specify that a Provider implementation uses message mode by provide the value java.xml.ws.Service.Mode.MESSAGE as the value to the javax.xml.ws.ServiceMode annotation, as shown in Example 41.9, “Specifying that a Provider Implementation Uses Message Mode”.
					
Example 41.9. Specifying that a Provider Implementation Uses Message Mode
@WebServiceProvider
@ServiceMode(value=Service.Mode.MESSAGE)
public class stockQuoteProvider implements Provider<SOAPMessage>
{
 ...
}

Payload mode

						 In payload mode a Provider implementation works with only the payload of a message. For example, a Provider implementation working in payload mode works only with the body of a SOAP message. The binding layer processes any binding level wrappers and headers.
					

						When working with a binding that does not use special wrappers, such as the Apache CXF XML binding, payload mode and message mode provide the same results.
					

						To specify that a Provider implementation uses payload mode by provide the value java.xml.ws.Service.Mode.PAYLOAD as the value to the javax.xml.ws.ServiceMode annotation, as shown in Example 41.10, “Specifying that a Provider Implementation Uses Payload Mode”.
					
Example 41.10. Specifying that a Provider Implementation Uses Payload Mode
@WebServiceProvider
@ServiceMode(value=Service.Mode.PAYLOAD)
public class stockQuoteProvider implements Provider<DOMSource>
{
 ...
}

						If you do not provide a value for the @ServiceMode annotation, the Provider implementation uses payload mode.
					

Data Types

Overview

						Because they are low-level objects, Provider implementations cannot use the same JAXB generated types as the higher level consumer APIs. Provider implementations work with the following types of objects:
					
	
								javax.xml.transform.Source
							
	
								javax.xml.soap.SOAPMessage
							
	
								javax.activation.DataSource
							

Using Source objects

						 A Provider implementation can accept and return objects that are derived from the javax.xml.transform.Source interface. Source objects are low level objects that hold XML documents. Each Source implementation provides methods that access the stored XML documents and manipulate its contents. The following objects implement the Source interface:
					
	DOMSource
	
									Holds XML messages as a Document Object Model(DOM) tree. The XML message is stored as a set of Node objects that are accessed using the getNode() method. Nodes can be either updated or added to the DOM tree using the setNode() method.
								
	SAXSource
	
									Holds XML messages as a Simple API for XML (SAX) object. SAX objects contain an InputSource object that holds the raw data and an XMLReader object that parses the raw data.
								
	StreamSource
	
									Holds XML messages as a data stream. The data stream can be manipulated the same as any other data stream.
								

						If you create your Provider object so that it uses generic Source objects, Apache CXF returns the messages as SAXSource objects.
					

						This behavior can be changed using the endpoint’s source-preferred-format property. See Part IV, “Configuring Web Service Endpoints” for information about configuring the Apache CXF runtime.
					
Important

							When using Source objects the developer is responsible for ensuring that all required binding specific wrappers are added to the message. For example, when interacting with a service expecting SOAP messages, the developer must ensure that the required SOAP envelope is added to the outgoing request and that the SOAP envelope’s contents are correct.
						

Using SOAPMessage objects

						 Provider implementations can use javax.xml.soap.SOAPMessage objects when the following conditions are true:
					
	
								The Provider implementation is using the SOAP binding
							
	
								The Provider implementation is using message mode
							

						A SOAPMessage object holds a SOAP message. They contain one SOAPPart object and zero or more AttachmentPart objects. The SOAPPart object contains the SOAP specific portions of the SOAP message including the SOAP envelope, any SOAP headers, and the SOAP message body. The AttachmentPart objects contain binary data that is passed as an attachment.
					

Using DataSource objects

						 Provider implementations can use objects that implement the javax.activation.DataSource interface when the following conditions are true:
					
	
								The implementation is using the HTTP binding
							
	
								The implementation is using message mode
							

						DataSource objects provide a mechanism for working with MIME typed data from a variety of sources, including URLs, files, and byte arrays.
					

Implementing a Provider Object

						
					
Overview

						The Provider interface is relatively easy to implement. It only has one method, invoke(), that must be implemented. In addition it has three simple requirements:
					
	
								An implementation must have the @WebServiceProvider annotation.
							
	
								An implementation must have a default public constructor.
							
	
								An implementation must implement a typed version of the Provider interface.
							

								In other words, you cannot implement a Provider<T> interface. You must implement a version of the interface that uses a concrete data type as listed in the section called “Data Types”. For example, you can implement an instance of a Provider<SAXSource>.
							

						The complexity of implementing the Provider interface is in the logic handling the request messages and building the proper responses.
					

Working with messages

						Unlike the higher-level SEI based service implementations, Provider implementations receive requests as raw XML data, and must send responses as raw XML data. This requires that the developer has intimate knowledge of the messages used by the service being implemented. These details can typically be found in the WSDL document describing the service.
					

						WS-I Basic Profile provides guidelines about the messages used by services, including:
					
	
								The root element of a request is based in the value of the name attribute of the wsdl:operation element that corresponds to the operation that is invoked.
							
Warning

									If the service uses doc/literal bare messages, the root element of the request is based on the value of name attribute of the wsdl:part element referred to by the wsdl:operation element.
								

	
								The root element of all messages is namespace qualified.
							
	
								If the service uses rpc/literal messages, the top-level elements in the messages are not namespace qualified.
							
Important

									The children of top-level elements might be namespace qualified, but to be certain you will must check their schema definitions.
								

	
								If the service uses rpc/literal messages, none of the top-level elements can be null.
							
	
								If the service uses doc/literal messages, then the schema definition of the message determines if any of the elements are namespace qualified.
							

The @WebServiceProvider annotation

						 To be recognized by JAX-WS as a service implementation, a Provider implementation must be decorated with the @WebServiceProvider annotation.
					

						Table 41.2, “@WebServiceProvider Properties” describes the properties that can be set for the @WebServiceProvider annotation.
					
Table 41.2. @WebServiceProvider Properties
	Property	Description
	
										portName
									

									 	
										Specifies the value of the name attribute of the wsdl:port element that defines the service’s endpoint.
									

									
	
										serviceName
									

									 	
										Specifies the value of the name attribute of the wsdl:service element that contains the service’s endpoint.
									

									
	
										targetNamespace
									

									 	
										Specifies the targetname space of the service’s WSDL definition.
									

									
	
										wsdlLocation
									

									 	
										Specifies the URI for the WSDL document defining the service.
									

									

						All of these properties are optional, and are empty by default. If you leave them empty, Apache CXF creates values using information from the implementation class.
					

Implementing the invoke() method

						 The Provider interface has only one method, invoke(), that must be implemented. The invoke() method receives the incoming request packaged into the type of object declared by the type of Provider interface being implemented, and returns the response message packaged into the same type of object. For example, an implementation of a Provider<SOAPMessage> interface receives the request as a SOAPMessage object and returns the response as a SOAPMessage object.
					

						The messaging mode used by the Provider implementation determines the amount of binding specific information the request and the response messages contain. Implementations using message mode receive all of the binding specific wrappers and headers along with the request. They must also add all of the binding specific wrappers and headers to the response message. Implementations using payload mode only receive the body of the request. The XML document returned by an implementation using payload mode is placed into the body of the request message.
					

Examples

						Example 41.11, “Provider<SOAPMessage> Implementation” shows a Provider implementation that works with SOAPMessage objects in message mode.
					
Example 41.11. Provider<SOAPMessage> Implementation
import javax.xml.ws.Provider;
import javax.xml.ws.Service;
import javax.xml.ws.ServiceMode;
import javax.xml.ws.WebServiceProvider;

@WebServiceProvider(portName="stockQuoteReporterPort"
 serviceName="stockQuoteReporter")
@ServiceMode(value="Service.Mode.MESSAGE")
public class stockQuoteReporterProvider implements Provider<SOAPMessage>
{
public stockQuoteReporterProvider()
 {
 }

public SOAPMessage invoke(SOAPMessage request)
 {
 SOAPBody requestBody = request.getSOAPBody();
 if(requestBody.getElementName.getLocalName.equals("getStockPrice"))
 {
 MessageFactory mf = MessageFactory.newInstance();
 SOAPFactory sf = SOAPFactory.newInstance();

 SOAPMessage response = mf.createMessage();
 SOAPBody respBody = response.getSOAPBody();
 Name bodyName = sf.createName("getStockPriceResponse");
 respBody.addBodyElement(bodyName);
 SOAPElement respContent = respBody.addChildElement("price");
 respContent.setValue("123.00");
 response.saveChanges();
 return response;
 }
 ...
 }
}

						The code in Example 41.11, “Provider<SOAPMessage> Implementation” does the following:
					

						Specifies that the following class implements a Provider object that implements the service whose wsdl:service element is named stockQuoteReporter, and whose wsdl:port element is named stockQuoteReporterPort.
					

						Specifies that this Provider implementation uses message mode.
					

						Provides the required default public constructor.
					

						Provides an implementation of the invoke() method that takes a SOAPMessage object and returns a SOAPMessage object.
					

						Extracts the request message from the body of the incoming SOAP message.
					

						Checks the root element of the request message to determine how to process the request.
					

						Creates the factories required for building the response.
					

						Builds the SOAP message for the response.
					

						Returns the response as a SOAPMessage object.
					

						Example 41.12, “Provider<DOMSource> Implementation” shows an example of a Provider implementation using DOMSource objects in payload mode.
					
Example 41.12. Provider<DOMSource> Implementation
import javax.xml.ws.Provider;
import javax.xml.ws.Service;
import javax.xml.ws.ServiceMode;
import javax.xml.ws.WebServiceProvider;

@WebServiceProvider(portName="stockQuoteReporterPort" serviceName="stockQuoteReporter")
@ServiceMode(value="Service.Mode.PAYLOAD")
public class stockQuoteReporterProvider implements Provider<DOMSource>
public stockQuoteReporterProvider()
 {
 }

public DOMSource invoke(DOMSource request)
 {
 DOMSource response = new DOMSource();
 ...
 return response;
 }
}

						The code in Example 41.12, “Provider<DOMSource> Implementation” does the following:
					

						Specifies that the class implements a Provider object that implements the service whose wsdl:service element is named stockQuoteReporter, and whose wsdl:port element is named stockQuoteReporterPort.
					

						Specifies that this Provider implementation uses payload mode.
					

						Provides the required default public constructor.
					

						Provides an implementation of the invoke() method that takes a DOMSource object and returns a DOMSource object.
					

Chapter 42. Working with Contexts

Abstract

					JAX-WS uses contexts to pass metadata along the messaging chain. This metadata, depending on its scope, is accessible to implementation level code. It is also accessible to JAX-WS handlers that operate on the message below the implementation level.
				

Understanding Contexts

Overview

					In many instances it is necessary to pass information about a message to other parts of an application. Apache CXF does this using a context mechanism. Contexts are maps that hold properties relating to an outgoing or an incoming message. The properties stored in the context are typically metadata about the message, and the underlying transport used to communicate the message. For example, the transport specific headers used in transmitting the message, such as the HTTP response code or the JMS correlation ID, are stored in the JAX-WS contexts.
				

					The contexts are available at all levels of a JAX-WS application. However, they differ in subtle ways depending upon where in the message processing stack you are accessing the context. JAX-WS Handler implementations have direct access to the contexts and can access all properties that are set in them. Service implementations access contexts by having them injected, and can only access properties that are set in the APPLICATION scope. Consumer implementations can only access properties that are set in the APPLICATION scope.
				

					Figure 42.1, “Message Contexts and Message Processing Path” shows how the context properties pass through Apache CXF. As a message passes through the messaging chain, its associated message context passes along with it.
				
Figure 42.1. Message Contexts and Message Processing Path
[image: message contexts are available through out the client and server message processing chains]

How properties are stored in a context

					 The message contexts are all implementations of the javax.xml.ws.handler.MessageContext interface. The MessageContext interface extends the java.util.Map<String key, Object value> interface. Map objects store information as key value pairs.
				

					In a message context, properties are stored as name/value pairs. A property’s key is a String that identifies the property. The value of a property can be any value stored in any Java object. When the value is returned from a message context, the application must know the type to expect and cast accordingly. For example, if a property’s value is stored in a UserInfo object it is still returned from a message context as an Object object that must be cast back into a UserInfo object.
				

					Properties in a message context also have a scope. The scope determines where a property can be accessed in the message processing chain.
				

Property scopes

					 Properties in a message context are scoped. A property can be in one of the following scopes:
				
	APPLICATION
	
								Properties scoped as APPLICATION are available to JAX-WS Handler implementations, consumer implementation code, and service provider implementation code. If a handler needs to pass a property to the service provider implementation, it sets the property’s scope to APPLICATION. All properties set from either the consumer implementation or the service provider implementation contexts are automatically scoped as APPLICATION.
							
	HANDLER
	
								Properties scoped as HANDLER are only available to JAX-WS Handler implementations. Properties stored in a message context from a Handler implementation are scoped as HANDLER by default.
							

					You can change a property’s scope using the message context’s setScope() method. Example 42.1, “The MessageContext.setScope() Method” shows the method’s signature.
				
Example 42.1. The MessageContext.setScope() Method

						setScopeStringkeyMessageContext.Scopescopejava.lang.IllegalArgumentException
					

					The first parameter specifies the property’s key. The second parameter specifies the new scope for the property. The scope can be either:
				
	
							MessageContext.Scope.APPLICATION
						
	
							MessageContext.Scope.HANDLER
						

Overview of contexts in handlers

					 Classes that implement the JAX-WS Handler interface have direct access to a message’s context information. The message’s context information is passed into the Handler implementation’s handleMessage(), handleFault(), and close() methods.
				

					Handler implementations have access to all of the properties stored in the message context, regardless of their scope. In addition, logical handlers use a specialized message context called a LogicalMessageContext. LogicalMessageContext objects have methods that access the contents of the message body.
				

Overview of contexts in service implementations

					Service implementations can access properties scoped as APPLICATION from the message context. The service provider’s implementation object accesses the message context through the WebServiceContext object.
				

					For more information see the section called “Working with Contexts in a Service Implementation”.
				

Overview of contexts in consumer implementations

					Consumer implementations have indirect access to the contents of the message context. The consumer implementation has two separate message contexts:
				
	
							Request context — holds a copy of the properties used for outgoing requests
						
	
							Response context — holds a copy of the properties from an incoming response
						

					The dispatch layer transfers the properties between the consumer implementation’s message contexts and the message context used by the Handler implementations.
				

					When a request is passed to the dispatch layer from the consumer implementation, the contents of the request context are copied into the message context that is used by the dispatch layer. When the response is returned from the service, the dispatch layer processes the message and sets the appropriate properties into its message context. After the dispatch layer processes a response, it copies all of the properties scoped as APPLICATION in its message context to the consumer implementation’s response context.
				

					For more information see the section called “Working with Contexts in a Consumer Implementation”.
				

Working with Contexts in a Service Implementation

					
				
Overview

					Context information is made available to service implementations using the WebServiceContext interface. From the WebServiceContext object you can obtain a MessageContext object that is populated with the current request’s context properties in the application scope. You can manipulate the values of the properties, and they are propagated back through the response chain.
				
Note

						The MessageContext interface inherits from the java.util.Map interface. Its contents can be manipulated using the Map interface’s methods.
					

Obtaining a context

					To obtain the message context in a service implementation do the following:
				
	
							Declare a variable of type WebServiceContext.
						
	
							 Decorate the variable with the javax.annotation.Resource annotation to indicate that the context information is being injected into the variable.
						
	
							 Obtain the MessageContext object from the WebServiceContext object using the getMessageContext() method.
						
Important

								getMessageContext() can only be used in methods that are decorated with the @WebMethod annotation.
							

					Example 42.2, “Obtaining a Context Object in a Service Implementation” shows code for obtaining a context object.
				
Example 42.2. Obtaining a Context Object in a Service Implementation
import javax.xml.ws.*;
import javax.xml.ws.handler.*;
import javax.annotation.*;

@WebServiceProvider
public class WidgetServiceImpl
{
 @Resource
 WebServiceContext wsc;

 @WebMethod
 public String getColor(String itemNum)
 {
 MessageContext context = wsc.getMessageContext();
 }

 ...
}

Reading a property from a context

					 Once you have obtained the MessageContext object for your implementation, you can access the properties stored there using the get() method shown in Example 42.3, “The MessageContext.get() Method”.
				
Example 42.3. The MessageContext.get() Method

						VgetObjectkey
					

Note

						This get() is inherited from the Map interface.
					

					The key parameter is the string representing the property you want to retrieve from the context. The get() returns an object that must be cast to the proper type for the property. Table 42.1, “Properties Available in the Service Implementation Context” lists a number of the properties that are available in a service implementation’s context.
				
Important

						Changing the values of the object returned from the context also changes the value of the property in the context.
					

					Example 42.4, “Getting a Property from a Service’s Message Context” shows code for getting the name of the WSDL operation element that represents the invoked operation.
				
Example 42.4. Getting a Property from a Service’s Message Context
import javax.xml.ws.handler.MessageContext;
import org.apache.cxf.message.Message;

 ...
 // MessageContext context retrieved in a previous example
 QName wsdl_operation = (QName)context.get(Message.WSDL_OPERATION);

Setting properties in a context

					 Once you have obtained the MessageContext object for your implementation, you can set properties, and change existing properties, using the put() method shown in Example 42.5, “The MessageContext.put() Method”.
				
Example 42.5. The MessageContext.put() Method

						VputKkeyVvalueClassCastExceptionIllegalArgumentExceptionNullPointerException
					

					If the property being set already exists in the message context, the put() method replaces the existing value with the new value and returns the old value. If the property does not already exist in the message context, the put() method sets the property and returns null.
				

					Example 42.6, “Setting a Property in a Service’s Message Context” shows code for setting the response code for an HTTP request.
				
Example 42.6. Setting a Property in a Service’s Message Context
import javax.xml.ws.handler.MessageContext;
import org.apache.cxf.message.Message;

 ...
 // MessageContext context retrieved in a previous example
 context.put(Message.RESPONSE_CODE, new Integer(404));

Supported contexts

					Table 42.1, “Properties Available in the Service Implementation Context” lists the properties accessible through the context in a service implementation object.
				
Table 42.1. Properties Available in the Service Implementation Context
	Property Name	Description
	
									org.apache.cxf.message.Message
								

								
	
									PROTOCOL_HEADERS[a]
								

								 	
									Specifies the transport specific header information. The value is stored as a java.util.Map<String, List<String>>.
								

								
	
									RESPONSE_CODE
								

								 	
									Specifies the response code returned to the consumer. The value is stored as an Integer object.
								

								
	
									ENDPOINT_ADDRESS
								

								 	
									Specifies the address of the service provider. The value is stored as a String.
								

								
	
									HTTP_REQUEST_METHOD
								

								 	
									Specifies the HTTP verb sent with a request. The value is stored as a String.
								

								
	
									PATH_INFO
								

								 	
									Specifies the path of the resource being requested. The value is stored as a String.
								

								
									The path is the portion of the URI after the hostname and before any query string. For example, if an endpoint’s URI is http://cxf.apache.org/demo/widgets the path is /demo/widgets.
								

								
	
									QUERY_STRING
								

								 	
									Specifies the query, if any, attached to the URI used to invoke the request. The value is stored as a String.
								

								
									Queries appear at the end of the URI after a ?. For example, if a request is made to http://cxf.apache.org/demo/widgets?color the query is color.
								

								
	
									MTOM_ENABLED
								

								 	
									Specifies whether or not the service provider can use MTOM for SOAP attachments. The value is stored as a Boolean.
								

								
	
									SCHEMA_VALIDATION_ENABLED
								

								 	
									Specifies whether or not the service provider validates messages against a schema. The value is stored as a Boolean.
								

								
	
									FAULT_STACKTRACE_ENABLED
								

								 	
									Specifies if the runtime provides a stack trace along with a fault message. The value is stored as a Boolean.
								

								
	
									CONTENT_TYPE
								

								 	
									Specifies the MIME type of the message. The value is stored as a String.
								

								
	
									BASE_PATH
								

								 	
									Specifies the path of the resource being requested. The value is stored as a java.net.URL.
								

								
									The path is the portion of the URI after the hostname and before any query string. For example, if an endpoint’s URL is http://cxf.apache.org/demo/widgets the base path is /demo/widgets.
								

								
	
									ENCODING
								

								 	
									Specifies the encoding of the message. The value is stored as a String.
								

								
	
									FIXED_PARAMETER_ORDER
								

								 	
									Specifies whether the parameters must appear in the message in a particular order. The value is stored as a Boolean.
								

								
	
									MAINTAIN_SESSION
								

								 	
									Specifies if the consumer wants to maintain the current session for future requests. The value is stored as a Boolean.
								

								
	
									WSDL_DESCRIPTION
								

								 	
									Specifies the WSDL document that defines the service being implemented. The value is stored as a org.xml.sax.InputSource object.
								

								
	
									WSDL_SERVICE
								

								 	
									Specifies the qualified name of the wsdl:service element that defines the service being implemented. The value is stored as a QName.
								

								
	
									WSDL_PORT
								

								 	
									Specifies the qualified name of the wsdl:port element that defines the endpoint used to access the service. The value is stored as a QName.
								

								
	
									WSDL_INTERFACE
								

								 	
									Specifies the qualified name of the wsdl:portType element that defines the service being implemented. The value is stored as a QName.
								

								
	
									WSDL_OPERATION
								

								 	
									Specifies the qualified name of the wsdl:operation element that corresponds to the operation invoked by the consumer. The value is stored as a QName.
								

								
	
									javax.xml.ws.handler.MessageContext
								

								
	
									MESSAGE_OUTBOUND_PROPERTY
								

								 	
									Specifies if a message is outbound. The value is stored as a Boolean. true specifies that a message is outbound.
								

								
	
									INBOUND_MESSAGE_ATTACHMENTS
								

								 	
									Contains any attachments included in the request message. The value is stored as a java.util.Map<String, DataHandler>.
								

								
									The key value for the map is the MIME Content-ID for the header.
								

								
	
									OUTBOUND_MESSAGE_ATTACHMENTS
								

								 	
									Contains any attachments for the response message. The value is stored as a java.util.Map<String, DataHandler>.
								

								
									The key value for the map is the MIME Content-ID for the header.
								

								
	
									WSDL_DESCRIPTION
								

								 	
									Specifies the WSDL document that defines the service being implemented. The value is stored as a org.xml.sax.InputSource object.
								

								
	
									WSDL_SERVICE
								

								 	
									Specifies the qualified name of the wsdl:service element that defines the service being implemented. The value is stored as a QName.
								

								
	
									WSDL_PORT
								

								 	
									Specifies the qualified name of the wsdl:port element that defines the endpoint used to access the service. The value is stored as a QName.
								

								
	
									WSDL_INTERFACE
								

								 	
									Specifies the qualified name of the wsdl:portType element that defines the service being implemented. The value is stored as a QName.
								

								
	
									WSDL_OPERATION
								

								 	
									Specifies the qualified name of the wsdl:operation element that corresponds to the operation invoked by the consumer. The value is stored as a QName.
								

								
	
									HTTP_RESPONSE_CODE
								

								 	
									Specifies the response code returned to the consumer. The value is stored as an Integer object.
								

								
	
									HTTP_REQUEST_HEADERS
								

								 	
									Specifies the HTTP headers on a request. The value is stored as a java.util.Map<String, List<String>>.
								

								
	
									HTTP_RESPONSE_HEADERS
								

								 	
									Specifies the HTTP headers for the response. The value is stored as a java.util.Map<String, List<String>>.
								

								
	
									HTTP_REQUEST_METHOD
								

								 	
									Specifies the HTTP verb sent with a request. The value is stored as a String.
								

								
	
									SERVLET_REQUEST
								

								 	
									Contains the servlet’s request object. The value is stored as a javax.servlet.http.HttpServletRequest.
								

								
	
									SERVLET_RESPONSE
								

								 	
									Contains the servlet’s response object. The value is stored as a javax.servlet.http.HttpResponse.
								

								
	
									SERVLET_CONTEXT
								

								 	
									Contains the servlet’s context object. The value is stored as a javax.servlet.ServletContext.
								

								
	
									PATH_INFO
								

								 	
									Specifies the path of the resource being requested. The value is stored as a String.
								

								
									The path is the portion of the URI after the hostname and before any query string. For example, if an endpoint’s URL is http://cxf.apache.org/demo/widgets the path is /demo/widgets.
								

								
	
									QUERY_STRING
								

								 	
									Specifies the query, if any, attached to the URI used to invoke the request. The value is stored as a String.
								

								
									Queries appear at the end of the URI after a ?. For example, if a request is made to http://cxf.apache.org/demo/widgets?color the query string is color.
								

								
	
									REFERENCE_PARAMETERS
								

								 	
									Specifies the WS-Addressing reference parameters. This includes all of the SOAP headers whose wsa:IsReferenceParameter attribute is set to true. The value is stored as a java.util.List.
								

								
	
									org.apache.cxf.transport.jms.JMSConstants
								

								
	
									JMS_SERVER_HEADERS
								

								 	
									Contains the JMS message headers. For more information see the section called “Working with JMS Message Properties”.
								

								
	[a]
										When using HTTP this property is the same as the standard JAX-WS defined property.
									

Working with Contexts in a Consumer Implementation

					
				
Overview

					Consumer implementations have access to context information through the BindingProvider interface. The BindingProvider instance holds context information in two separate contexts:
				
	
							Request Context The request context enables you to set properties that affect outbound messages. Request context properties are applied to a specific port instance and, once set, the properties affect every subsequent operation invocation made on the port, until such time as a property is explicitly cleared. For example, you might use a request context property to set a connection timeout or to initialize data for sending in a header.
						
	
							Response Context The response context enables you to read the property values set by the response to the last operation invocation made from the current thread. Response context properties are reset after every operation invocation. For example, you might access a response context property to read header information received from the last inbound message.
						

Important

						Only information that is placed in the application scope of a message context can be accessed by the consumer implementation.
					

Obtaining a context

					 Contexts are obtained using the javax.xml.ws.BindingProvider interface. The BindingProvider interface has two methods for obtaining a context:
				
	
							getRequestContext() The getRequestContext() method, shown in Example 42.7, “The getRequestContext() Method”, returns the request context as a Map object. The returned Map object can be used to directly manipulate the contents of the context.
						
Example 42.7. The getRequestContext() Method

								Map<String, Object>getRequestContext
							

	
							getResponseContext() The getResponseContext(), shown in Example 42.8, “The getResponseContext() Method”, returns the response context as a Map object. The returned Map object’s contents reflect the state of the response context’s contents from the most recent successful request on a remote service made in the current thread.
						
Example 42.8. The getResponseContext() Method

								Map<String, Object>getResponseContext
							

					Since proxy objects implement the BindingProvider interface, a BindingProvider object can be obtained by casting a proxy object. The contexts obtained from the BindingProvider object are only valid for operations invoked on the proxy object used to create it.
				

					Example 42.9, “Getting a Consumer’s Request Context” shows code for obtaining the request context for a proxy.
				
Example 42.9. Getting a Consumer’s Request Context
// Proxy widgetProxy obtained previously
BindingProvider bp = (BindingProvider)widgetProxy;
Map<String, Object> requestContext = bp.getRequestContext();

Reading a property from a context

					 Consumer contexts are stored in java.util.Map<String, Object> objects. The map has keys that are String objects and values that contain arbitrary objects. Use java.util.Map.get() to access an entry in the map of response context properties.
				

					To retrieve a particular context property, ContextPropertyName, use the code shown in Example 42.10, “Reading a Response Context Property”.
				
Example 42.10. Reading a Response Context Property
// Invoke an operation.
port.SomeOperation();

// Read response context property.
java.util.Map<String, Object> responseContext =
 ((javax.xml.ws.BindingProvider)port).getResponseContext();
PropertyType propValue = (PropertyType) responseContext.get(ContextPropertyName);

Setting properties in a context

					 Consumer contexts are hash maps stored in java.util.Map<String, Object> objects. The map has keys that are String objects and values that are arbitrary objects. To set a property in a context use the java.util.Map.put() method.
				

					While you can set properties in both the request context and the response context, only the changes made to the request context have any impact on message processing. The properties in the response context are reset when each remote invocation is completed on the current thread.
				

					The code shown in Example 42.11, “Setting a Request Context Property” changes the address of the target service provider by setting the value of the BindingProvider.ENDPOINT_ADDRESS_PROPERTY.
				
Example 42.11. Setting a Request Context Property
// Set request context property.
java.util.Map<String, Object> requestContext =
 ((javax.xml.ws.BindingProvider)port).getRequestContext();
requestContext.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, "http://localhost:8080/widgets");

// Invoke an operation.
port.SomeOperation();

Important

						Once a property is set in the request context its value is used for all subsequent remote invocations. You can change the value and the changed value will then be used.
					

Supported contexts

					Apache CXF supports the following context properties in consumer implementations:
				
Table 42.2. Consumer Context Properties
	Property Name	Description
	
									javax.xml.ws.BindingProvider
								

								
	
									ENDPOINT_ADDRESS_PROPERTY
								

								 	
									Specifies the address of the target service. The value is stored as a String.
								

								
	
									USERNAME_PROPERTY[a]
								

								 	
									Specifies the username used for HTTP basic authentication. The value is stored as a String.
								

								
	
									PASSWORD_PROPERTY[b]
								

								 	
									Specifies the password used for HTTP basic authentication. The value is stored as a String.
								

								
	
									SESSION_MAINTAIN_PROPERTY[c]
								

								 	
									Specifies if the client wants to maintain session information. The value is stored as a Boolean object.
								

								
	
									org.apache.cxf.ws.addressing.JAXWSAConstants
								

								
	
									CLIENT_ADDRESSING_PROPERTIES
								

								 	
									Specifies the WS-Addressing information used by the consumer to contact the desired service provider. The value is stored as a org.apache.cxf.ws.addressing.AddressingProperties.
								

								
	
									org.apache.cxf.transports.jms.context.JMSConstants
								

								
	
									JMS_CLIENT_REQUEST_HEADERS
								

								 	
									Contains the JMS headers for the message. For more information see the section called “Working with JMS Message Properties”.
								

								
	[a]
										This property is overridden by the username defined in the HTTP security settings.
									

[b]
										This property is overridden by the password defined in the HTTP security settings.
									

[c]
										The Apache CXF ignores this property.
									

Working with JMS Message Properties

Abstract

						The Apache CXF JMS transport has a context mechanism that can be used to inspect a JMS message’s properties. The context mechanism can also be used to set a JMS message’s properties.
					

Inspecting JMS Message Headers

Abstract

							Consumers and services use different context mechanisms to access the JMS message header properties. However, both mechanisms return the header properties as a org.apache.cxf.transports.jms.context.JMSMessageHeadersType object.
						

Getting the JMS Message Headers in a Service

						 To get the JMS message header properties from the WebServiceContext object, do the following:
					
	
								Obtain the context as described in the section called “Obtaining a context”.
							
	
								Get the message headers from the message context using the message context’s get() method with the parameter org.apache.cxf.transports.jms.JMSConstants.JMS_SERVER_HEADERS.
							

						Example 42.12, “Getting JMS Message Headers in a Service Implementation” shows code for getting the JMS message headers from a service’s message context:
					
Example 42.12. Getting JMS Message Headers in a Service Implementation
import org.apache.cxf.transport.jms.JMSConstants;
import org.apache.cxf.transports.jms.context.JMSMessageHeadersType;

@WebService(serviceName = "HelloWorldService",
 portName = "HelloWorldPort",
 endpointInterface = "org.apache.cxf.hello_world_jms.HelloWorldPortType",
 targetNamespace = "http://cxf.apache.org/hello_world_jms")
 public class GreeterImplTwoWayJMS implements HelloWorldPortType
 {
 @Resource
 protected WebServiceContext wsContext;
 ...

 @WebMethod
 public String greetMe(String me)
 {
 MessageContext mc = wsContext.getMessageContext();
 JMSMessageHeadersType headers = (JMSMessageHeadersType) mc.get(JMSConstants.JMS_SERVER_HEADERS);
 ...
 }
 ...
}

Getting JMS Message Header Properties in a Consumer

						 Once a message is successfully retrieved from the JMS transport you can inspect the JMS header properties using the consumer’s response context. In addition, you can set or check the length of time the client will wait for a response before timing out, as described in the section called “Client Receive Timeout”. To get the JMS message headers from a consumer’s response context do the following:
					
	
								Get the response context as described in the section called “Obtaining a context”.
							
	
								Get the JMS message header properties from the response context using the context’s get() method with org.apache.cxf.transports.jms.JMSConstants.JMS_CLIENT_RESPONSE_HEADERS as the parameter.
							

						Example 42.13, “Getting the JMS Headers from a Consumer Response Header” shows code for getting the JMS message header properties from a consumer’s response context.
					
Example 42.13. Getting the JMS Headers from a Consumer Response Header
import org.apache.cxf.transports.jms.context.*;
// Proxy greeter initialized previously
BindingProvider bp = (BindingProvider)greeter;
Map<String, Object> responseContext = bp.getResponseContext();
JMSMessageHeadersType responseHdr = (JMSMessageHeadersType)
 responseContext.get(JMSConstants.JMS_CLIENT_RESPONSE_HEADERS);
...
}

						The code in Example 42.13, “Getting the JMS Headers from a Consumer Response Header” does the following:
					

						Casts the proxy to a BindingProvider.
					

						Gets the response context.
					

						Retrieves the JMS message headers from the response context.
					

Inspecting the Message Header Properties

Standard JMS Header Properties

						Table 42.3, “JMS Header Properties” lists the standard properties in the JMS header that you can inspect.
					
Table 42.3. JMS Header Properties
	Property Name	Property Type	Getter Method
	
										Correlation ID
									

									 	
										string
									

									 	
										getJMSCorralationID()
									

									
	
										Delivery Mode
									

									 	
										int
									

									 	
										getJMSDeliveryMode()
									

									
	
										Message Expiration
									

									 	
										long
									

									 	
										getJMSExpiration()
									

									
	
										Message ID
									

									 	
										string
									

									 	
										getJMSMessageID()
									

									
	
										Priority
									

									 	
										int
									

									 	
										getJMSPriority()
									

									
	
										Redelivered
									

									 	
										boolean
									

									 	
										getJMSRedlivered()
									

									
	
										Time Stamp
									

									 	
										long
									

									 	
										getJMSTimeStamp()
									

									
	
										Type
									

									 	
										string
									

									 	
										getJMSType()
									

									
	
										Time To Live
									

									 	
										long
									

									 	
										getTimeToLive()
									

									

Optional Header Properties

						 In addition, you can inspect any optional properties stored in the JMS header using JMSMessageHeadersType.getProperty(). The optional properties are returned as a List of org.apache.cxf.transports.jms.context.JMSPropertyType. Optional properties are stored as name/value pairs.
					

Example

						Example 42.14, “Reading the JMS Header Properties” shows code for inspecting some of the JMS properties using the response context.
					
Example 42.14. Reading the JMS Header Properties
// JMSMessageHeadersType messageHdr retrieved previously
System.out.println("Correlation ID: "+messageHdr.getJMSCorrelationID());
System.out.println("Message Priority: "+messageHdr.getJMSPriority());
System.out.println("Redelivered: "+messageHdr.getRedelivered());

JMSPropertyType prop = null;
List<JMSPropertyType> optProps = messageHdr.getProperty();
Iterator<JMSPropertyType> iter = optProps.iterator();
while (iter.hasNext())
{
 prop = iter.next();
 System.out.println("Property name: "+prop.getName());
 System.out.println("Property value: "+prop.getValue());
}

						The code in Example 42.14, “Reading the JMS Header Properties” does the following:
					

						Prints the value of the message’s correlation ID.
					

						Prints the value of the message’s priority property.
					

						Prints the value of the message’s redelivered property.
					

						Gets the list of the message’s optional header properties.
					

						Gets an Iterator to traverse the list of properties.
					

						Iterates through the list of optional properties and prints their name and value.
					

Setting JMS Properties

Abstract

							Using the request context in a consumer endpoint, you can set a number of the JMS message header properties and the consumer endpoint’s timeout value. These properties are valid for a single invocation. You must reset them each time you invoke an operation on the service proxy.
						

							Note that you cannot set header properties in a service.
						

JMS Header Properties

						Table 42.4, “Settable JMS Header Properties” lists the properties in the JMS header that can be set using the consumer endpoint’s request context.
					
Table 42.4. Settable JMS Header Properties
	Property Name	Property Type	Setter Method
	
										Correlation ID
									

									 	
										string
									

									 	
										setJMSCorralationID()
									

									
	
										Delivery Mode
									

									 	
										int
									

									 	
										setJMSDeliveryMode()
									

									
	
										Priority
									

									 	
										int
									

									 	
										setJMSPriority()
									

									
	
										Time To Live
									

									 	
										long
									

									 	
										setTimeToLive()
									

									

						To set these properties do the following:
					
	
								Create an org.apache.cxf.transports.jms.context.JMSMessageHeadersType object.
							
	
								Populate the values you want to set using the appropriate setter methods described in Table 42.4, “Settable JMS Header Properties”.
							
	
								Set the values to the request context by calling the request context’s put() method using org.apache.cxf.transports.jms.JMSConstants.JMS_CLIENT_REQUEST_HEADERS as the first argument, and the new JMSMessageHeadersType object as the second argument.
							

Optional JMS Header Properties

						 You can also set optional properties to the JMS header. Optional JMS header properties are stored in the JMSMessageHeadersType object that is used to set the other JMS header properties. They are stored as a List object containing org.apache.cxf.transports.jms.context.JMSPropertyType objects. To add optional properties to the JMS header do the following:
					
	
								Create a JMSPropertyType object.
							
	
								Set the property’s name field using setName().
							
	
								Set the property’s value field using setValue().
							
	
								Add the property to the JMS message header using JMSMessageHeadersType.getProperty().add(JMSPropertyType).
							
	
								Repeat the procedure until all of the properties have been added to the message header.
							

Client Receive Timeout

						 In addition to the JMS header properties, you can set the amount of time a consumer endpoint waits for a response before timing out. You set the value by calling the request context’s put() method with org.apache.cxf.transports.jms.JMSConstants.JMS_CLIENT_RECEIVE_TIMEOUT as the first argument and a long representing the amount of time in milliseconds that you want the consumer to wait as the second argument.
					

Example

						Example 42.15, “Setting JMS Properties using the Request Context” shows code for setting some of the JMS properties using the request context.
					
Example 42.15. Setting JMS Properties using the Request Context
import org.apache.cxf.transports.jms.context.*;
 // Proxy greeter initialized previously
InvocationHandler handler = Proxy.getInvocationHandler(greeter);

BindingProvider bp= null;
if (handler instanceof BindingProvider)
{
 bp = (BindingProvider)handler;
 Map<String, Object> requestContext = bp.getRequestContext();

 JMSMessageHeadersType requestHdr = new JMSMessageHeadersType();
 requestHdr.setJMSCorrelationID("WithBob");
 requestHdr.setJMSExpiration(3600000L);

 JMSPropertyType prop = new JMSPropertyType;
 prop.setName("MyProperty");
 prop.setValue("Bluebird");
 requestHdr.getProperty().add(prop);

 requestContext.put(JMSConstants.CLIENT_REQUEST_HEADERS, requestHdr);

 requestContext.put(JMSConstants.CLIENT_RECEIVE_TIMEOUT, new Long(1000));
}

						The code in Example 42.15, “Setting JMS Properties using the Request Context” does the following:
					

						Gets the InvocationHandler for the proxy whose JMS properties you want to change.
					

						Checks to see if the InvocationHandler is a BindingProvider.
					

						Casts the returned InvocationHandler object into a BindingProvider object to retrieve the request context.
					

						Gets the request context.
					

						Creates a JMSMessageHeadersType object to hold the new message header values.
					

						Sets the Correlation ID.
					

						Sets the Expiration property to 60 minutes.
					

						Creates a new JMSPropertyType object.
					

						Sets the values for the optional property.
					

						Adds the optional property to the message header.
					

						Sets the JMS message header values into the request context.
					

						Sets the client receive timeout property to 1 second.
					

Chapter 43. Writing Handlers

Abstract

					JAX-WS provides a flexible plug-in framework for adding message processing modules to an application. These modules, known as handlers, are independent of the application level code and can provide low-level message processing capabilities.
				

Handlers: An Introduction

Overview

					When a service proxy invokes an operation on a service, the operation’s parameters are passed to Apache CXF where they are built into a message and placed on the wire. When the message is received by the service, Apache CXF reads the message from the wire, reconstructs the message, and then passes the operation parameters to the application code responsible for implementing the operation. When the application code is finished processing the request, the reply message undergoes a similar chain of events on its trip to the service proxy that originated the request. This is shown in Figure 43.1, “Message Exchange Path”.
				
Figure 43.1. Message Exchange Path
[image: message exchange path between a client and a server]

					JAX-WS defines a mechanism for manipulating the message data between the application level code and the network. For example, you might want the message data passed over the open network to be encrypted using a proprietary encryption mechanism. You could write a JAX-WS handler that encrypted and decrypted the data. Then you could insert the handler into the message processing chains of all clients and servers.
				

					As shown in Figure 43.2, “Message Exchange Path with Handlers”, the handlers are placed in a chain that is traversed between the application level code and the transport code that places the message onto the network.
				
Figure 43.2. Message Exchange Path with Handlers
[image: handlers are placed on the message exchange path between the transport and the application layers]

Handler types

					The JAX-WS specification defines two basic handler types:
				
	
							Logical Handler Logical handlers can process the message payload and the properties stored in the message context. For example, if the application uses pure XML messages, the logical handlers have access to the entire message. If the application uses SOAP messages, the logical handlers have access to the contents of the SOAP body. They do not have access to either the SOAP headers or any attachments unless they were placed into the message context.
						

							Logical handlers are placed closest to the application code on the handler chain. This means that they are executed first when a message is passed from the application code to the transport. When a message is received from the network and passed back to the application code, the logical handlers are executed last.
						

	
							Protocol Handler Protocol handlers can process the entire message received from the network and the properties stored in the message context. For example, if the application uses SOAP messages, the protocol handlers would have access to the contents of the SOAP body, the SOAP headers, and any attachments.
						

							Protocol handlers are placed closest to the transport on the handler chain. This means that they are executed first when a message is received from the network. When a message is sent to the network from the application code, the protocol handlers are executed last.
						
Note

								The only protocol handler supported by Apache CXF is specific to SOAP.
							

Implementation of handlers

					The differences between the two handler types are very subtle and they share a common base interface. Because of their common parentage, logical handlers and protocol handlers share a number of methods that must be implemented, including:
				
	
							handleMessage() The handleMessage() method is the central method in any handler. It is the method responsible for processing normal messages.
						
	
							handleFault() handleFault() is the method responsible for processing fault messages.
						
	
							close() close() is called on all executed handlers in a handler chain when a message has reached the end of the chain. It is used to clean up any resources consumed during message processing.
						

					The differences between the implementation of a logical handler and the implementation of a protocol handler revolve around the following:
				
	
							The specific interface that is implemented
						

							All handlers implement an interface that derives from the Handler interface. Logical handlers implement the LogicalHandler interface. Protocol handlers implement protocol specific extensions of the Handler interface. For example, SOAP handlers implement the SOAPHandler interface.
						

	
							The amount of information available to the handler
						

							Protocol handlers have access to the contents of messages and all of the protocol specific information that is packaged with the message content. Logical handlers can only access the contents of the message. Logical handlers have no knowledge of protocol details.
						

Adding handlers to an application

					To add a handler to an application you must do the following:
				
	
							Determine whether the handler is going to be used on the service providers, the consumers, or both.
						
	
							Determine which type of handler is the most appropriate for the job.
						
	
							Implement the proper interface.
						

							To implement a logical handler see the section called “Implementing a Logical Handler”.
						

							To implement a protocol handler see the section called “Implementing a Protocol Handler”.
						

	
							Configure your endpoint(s) to use the handlers. See the section called “Configuring Endpoints to Use Handlers”.
						

Implementing a Logical Handler

Overview

					Logical handlers implement the javax.xml.ws.handler.LogicalHandler interface. The LogicalHandler interface, shown in Example 43.1, “LogicalHandler Synopsis” passes a LogicalMessageContext object to the handleMessage() method and the handleFault() method. The context object provides access to the body of the message and to any properties set into the message exchange’s context.
				
Example 43.1. LogicalHandler Synopsis
public interface LogicalHandler extends Handler
{
 boolean handleMessage(LogicalMessageContext context);
 boolean handleFault(LogicalMessageContext context);
 void close(LogicalMessageContext context);
}

Procedure

					To implement a logical hander you do the following:
				
	
							Implement any the section called “Initializing a Handler” logic required by the handler.
						
	
							Implement the the section called “Handling Messages in a Logical Handler” logic.
						
	
							Implement the the section called “Handling Fault Messages” logic.
						
	
							Implement the logic for the section called “Closing a Handler” the handler when it is finished.
						
	
							Implement any logic for the section called “Releasing a Handler” the handler’s resources before it is destroyed.
						

Handling Messages in a Logical Handler

					
				
Overview

					Normal message processing is handled by the handleMessage() method.
				

					The handleMessage() method receives a LogicalMessageContext object that provides access to the message body and any properties stored in the message context.
				

					The handleMessage() method returns either true or false depending on how message processing is to continue. It can also throw an exception.
				

Getting the message data

					 The LogicalMessageContext object passed into logical message handlers allows access to the message body using the context’s getMessage() method. The getMessage() method, shown in Example 43.2, “Method for Getting the Message Payload in a Logical Handler”, returns the message payload as a LogicalMessage object.
				
Example 43.2. Method for Getting the Message Payload in a Logical Handler

						LogicalMessagegetMessage
					

					Once you have the LogicalMessage object, you can use it to manipulate the message body. The LogicalMessage interface, shown in Example 43.3, “Logical Message Holder”, has getters and setters for working with the actual message body.
				
Example 43.3. Logical Message Holder

						LogicalMessageSourcegetPayloadObjectgetPayloadJAXBContextcontextsetPayloadObjectpayloadJAXBContextcontextsetPayloadSourcepayload
					

Important

						The contents of the message payload are determined by the type of binding in use. The SOAP binding only allows access to the SOAP body of the message. The XML binding allows access to the entire message body.
					

Working with the message body as an XML object

					One pair of getters and setters of the logical message work with the message payload as a javax.xml.transform.dom.DOMSource object.
				

					The getPayload() method that has no parameters returns the message payload as a DOMSource object. The returned object is the actual message payload. Any changes made to the returned object change the message body immediately.
				

					You can replace the body of the message with a DOMSource object using the setPayload() method that takes the single Source object.
				

Working with the message body as a JAXB object

					The other pair of getters and setters allow you to work with the message payload as a JAXB object. They use a JAXBContext object to transform the message payload into JAXB objects.
				

					To use the JAXB objects you do the following:
				
	
							Get a JAXBContext object that can manage the data types in the message body.
						

							For information on creating a JAXBContext object see Chapter 39, Using A JAXBContext Object.
						

	
							Get the message body as shown in Example 43.4, “Getting the Message Body as a JAXB Object”.
						
Example 43.4. Getting the Message Body as a JAXB Object
JAXBContext jaxbc = JAXBContext(myObjectFactory.class);
Object body = message.getPayload(jaxbc);

	
							Cast the returned object to the proper type.
						
	
							Manipulate the message body as needed.
						
	
							Put the updated message body back into the context as shown in Example 43.5, “Updating the Message Body Using a JAXB Object”.
						
Example 43.5. Updating the Message Body Using a JAXB Object
message.setPayload(body, jaxbc);

Working with context properties

					The logical message context passed into a logical handler is an instance of the application’s message context and can access all of the properties stored in it. Handlers have access to properties at both the APPLICATION scope and the HANDLER scope.
				

					Like the application’s message context, the logical message context is a subclass of Java Map. To access the properties stored in the context, you use the get() method and put() method inherited from the Map interface.
				

					By default, any properties you set in the message context from inside a logical handler are assigned a scope of HANDLER. If you want the application code to be able to access the property you need to use the context’s setScope() method to explicitly set the property’s scope to APPLICATION.
				

					For more information on working with properties in the message context see the section called “Understanding Contexts”.
				

Determining the direction of the message

					 It is often important to know the direction a message is passing through the handler chain. For example, you would want to retrieve a security token from incoming requests and attach a security token to an outgoing response.
				

					The direction of the message is stored in the message context’s outbound message property. You retrieve the outbound message property from the message context using the MessageContext.MESSAGE_OUTBOUND_PROPERTY key as shown in Example 43.6, “Getting the Message’s Direction from the SOAP Message Context”.
				
Example 43.6. Getting the Message’s Direction from the SOAP Message Context
Boolean outbound;
outbound = (Boolean)smc.get(MessageContext.MESSAGE_OUTBOUND_PROPERTY);

					The property is stored as a Boolean object. You can use the object’s booleanValue() method to determine the property’s value. If the property is set to true, the message is outbound. If the property is set to false the message is inbound.
				

Determining the return value

					How the handleMessage() method completes its message processing has a direct impact on how message processing proceeds. It can complete by doing one of the following actions:
				
	
							Return true—Returning true signals to the Apache CXF runtime that message processing should continue normally. The next handler, if any, has its handleMessage() invoked.
						
	
							Return false—Returning false signals to the Apache CXF runtime that normal message processing must stop. How the runtime proceeds depends on the message exchange pattern in use for the current message.
						

							For request-response message exchanges the following happens:
						
	
									The direction of message processing is reversed.
								

									For example, if a request is being processed by a service provider, the message stops progressing toward the service’s implementation object. Instead, it is sent back towards the binding for return to the consumer that originated the request.
								

	
									Any message handlers that reside along the handler chain in the new processing direction have their handleMessage() method invoked in the order in which they reside in the chain.
								
	
									When the message reaches the end of the handler chain it is dispatched.
								

									For one-way message exchanges the following happens:
								

	
									Message processing stops.
								
	
									All previously invoked message handlers have their close() method invoked.
								
	
									The message is dispatched.
								

	
							Throw a ProtocolException exception—Throwing a ProtocolException exception, or a subclass of this exception, signals the Apache CXF runtime that fault message processing is beginning. How the runtime proceeds depends on the message exchange pattern in use for the current message.
						

							For request-response message exchanges the following happens:
						
	
									If the handler has not already created a fault message, the runtime wraps the message in a fault message.
								
	
									The direction of message processing is reversed.
								

									For example, if a request is being processed by a service provider, the message stops progressing toward the service’s implementation object. Instead, it is sent back towards the binding for return to the consumer that originated the request.
								

	
									Any message handlers that reside along the handler chain in the new processing direction have their handleFault() method invoked in the order in which they reside in the chain.
								
	
									When the fault message reaches the end of the handler chain it is dispatched.
								

									For one-way message exchanges the following happens:
								

	
									If the handler has not already created a fault message, the runtime wraps the message in a fault message.
								
	
									Message processing stops.
								
	
									All previously invoked message handlers have their close() method invoked.
								
	
									The fault message is dispatched.
								

	
							Throw any other runtime exception—Throwing a runtime exception other than a ProtocolException exception signals the Apache CXF runtime that message processing is to stop. All previously invoked message handlers have the close() method invoked and the exception is dispatched. If the message is part of a request-response message exchange, the exception is dispatched so that it is returned to the consumer that originated the request.
						

Example

					Example 43.7, “Logical Message Handler Message Processing” shows an implementation of handleMessage() message for a logical message handler that is used by a service consumer. It processes requests before they are sent to the service provider.
				
Example 43.7. Logical Message Handler Message Processing
public class SmallNumberHandler implements LogicalHandler<LogicalMessageContext>
{
 public final boolean handleMessage(LogicalMessageContext messageContext)
 {
 try
 {
 boolean outbound = (Boolean)messageContext.get(MessageContext.MESSAGE_OUTBOUND_PROPERTY);

 if (outbound)
 {
 LogicalMessage msg = messageContext.getMessage();

 JAXBContext jaxbContext = JAXBContext.newInstance(ObjectFactory.class);
 Object payload = msg.getPayload(jaxbContext);
 if (payload instanceof JAXBElement)
 {
 payload = ((JAXBElement)payload).getValue();
 }

 if (payload instanceof AddNumbers)
 {
 AddNumbers req = (AddNumbers)payload;

 int a = req.getArg0();
 int b = req.getArg1();
 int answer = a + b;

 if (answer < 20)
 {
 AddNumbersResponse resp = new AddNumbersResponse();
 resp.setReturn(answer);
 msg.setPayload(new ObjectFactory().createAddNumbersResponse(resp),
 jaxbContext);

 return false;
 }
 }
 else
 {
 throw new WebServiceException("Bad Request");
 }
 }
 return true;
 }
 catch (JAXBException ex)
 {
 throw new ProtocolException(ex);
 }
 }
...
}

					The code in Example 43.7, “Logical Message Handler Message Processing” does the following:
				

					Checks if the message is an outbound request.
				

					If the message is an outbound request, the handler does additional message processing.
				

					Gets the LogicalMessage representation of the message payload from the message context.
				

					Gets the actual message payload as a JAXB object.
				

					Checks to make sure the request is of the correct type.
				

					If it is, the handler continues processing the message.
				

					Checks the value of the sum.
				

					If it is less than the threshold of 20 then it builds a response and returns it to the client.
				

					Builds the response.
				

					Returns false to stop message processing and return the response to the client.
				

					Throws a runtime exception if the message is not of the correct type.
				

					This exception is returned to the client.
				

					Returns true if the message is an inbound response or the sum does not meet the threshold.
				

					Message processing continues normally.
				

					Throws a ProtocolException if a JAXB marshalling error is encountered.
				

					The exception is passed back to the client after it is processed by the handleFault() method of the handlers between the current handler and the client.
				

Implementing a Protocol Handler

Overview

					Protocol handlers are specific to the protocol in use. Apache CXF provides the SOAP protocol handler as specified by JAX-WS. A SOAP protocol handler implements the javax.xml.ws.handler.soap.SOAPHandler interface.
				

					The SOAPHandler interface, shown in Example 43.8, “SOAPHandler Synopsis”, uses a SOAP specific message context that provides access to the message as a SOAPMessage object. It also allows you to access the SOAP headers.
				
Example 43.8. SOAPHandler Synopsis
public interface SOAPHandler extends Handler
{
 boolean handleMessage(SOAPMessageContext context);
 boolean handleFault(SOAPMessageContext context);
 void close(SOAPMessageContext context);
 Set<QName> getHeaders()
}

					In addition to using a SOAP specific message context, SOAP protocol handlers require that you implement an additional method called getHeaders(). This additional method returns the QNames of the header blocks the handler can process.
				

Procedure

					To implement a logical hander do the following:
				
	
							Implement any the section called “Initializing a Handler” logic required by the handler.
						
	
							Implement the the section called “Handling Messages in a SOAP Handler” logic.
						
	
							Implement the the section called “Handling Fault Messages” logic.
						
	
							Implement the getHeaders() method.
						
	
							Implement the logic for the section called “Closing a Handler” the handler when it is finished.
						
	
							Implement any logic for the section called “Releasing a Handler” the handler’s resources before it is destroyed.
						

Implementing the getHeaders() method

					 The getHeaders(), shown in Example 43.9, “The SOAPHander.getHeaders() Method”, method informs the Apache CXF runtime what SOAP headers the handler is responsible for processing. It returns the QNames of the outer element of each SOAP header the handler understands.
				
Example 43.9. The SOAPHander.getHeaders() Method

						Set<QName>getHeaders
					

					For many cases simply returning null is sufficient. However, if the application uses the mustUnderstand attribute of any of the SOAP headers, then it is important to specify the headers understood by the application’s SOAP handlers. The runtime checks the set of SOAP headers that all of the registered handlers understand against the list of headers with the mustUnderstand attribute set to true. If any of the flagged headers are not in the list of understood headers, the runtime rejects the message and throws a SOAP must understand exception.
				

Handling Messages in a SOAP Handler

					
				
Overview

					Normal message processing is handled by the handleMessage() method.
				

					The handleMessage() method receives a SOAPMessageContext object that provides access to the message body as a SOAPMessage object and the SOAP headers associated with the message. In addition, the context provides access to any properties stored in the message context.
				

					The handleMessage() method returns either true or false depending on how message processing is to continue. It can also throw an exception.
				

Working with the message body

					 You can get the SOAP message using the SOAP message context’s getMessage() method. It returns the message as a live SOAPMessage object. Any changes to the message in the handler are automatically reflected in the message stored in the context.
				

					If you wish to replace the existing message with a new one, you can use the context’s setMessage() method. The setMessage() method takes a SOAPMessage object.
				

Getting the SOAP headers

					You can access the SOAP message’s headers using the SOAPMessage object’s getHeader() method. This will return the SOAP header as a SOAPHeader object that you will need to inspect to find the header elements you wish to process.
				

					The SOAP message context provides a getHeaders() method, shown in Example 43.10, “The SOAPMessageContext.getHeaders() Method”, that will return an array containing JAXB objects for the specified SOAP headers.
				
Example 43.10. The SOAPMessageContext.getHeaders() Method

						Ojbect[]getHeadersQNameheaderJAXBContextcontextbooleanallRoles
					

					You specify the headers using the QName of their element. You can further limit the headers that are returned by setting the allRoles parameter to false. That instructs the runtime to only return the SOAP headers that are applicable to the active SOAP roles.
				

					If no headers are found, the method returns an empty array.
				

					For more information about instantiating a JAXBContext object see Chapter 39, Using A JAXBContext Object.
				

Working with context properties

					 The SOAP message context passed into a logical handler is an instance of the application’s message context and can access all of the properties stored in it. Handlers have access to properties at both the APPLICATION scope and the Handler scope.
				

					Like the application’s message context, the SOAP message context is a subclass of Java Map. To access the properties stored in the context, you use the get() method and put() method inherited from the Map interface.
				

					By default, any properties you set in the context from inside a logical handler will be assigned a scope of HANDLER. If you want the application code to be able to access the property you need to use the context’s setScope() method to explicitly set the property’s scope to APPLICATION.
				

					For more information on working with properties in the message context see the section called “Understanding Contexts”.
				

Determining the direction of the message

					 It is often important to know the direction a message is passing through the handler chain. For example, you would want to add headers to an outgoing message and strip headers from an incoming message.
				

					The direction of the message is stored in the message context’s outbound message property. You retrieve the outbound message property from the message context using the MessageContext.MESSAGE_OUTBOUND_PROPERTY key as shown in Example 43.11, “Getting the Message’s Direction from the SOAP Message Context”.
				
Example 43.11. Getting the Message’s Direction from the SOAP Message Context
Boolean outbound;
outbound = (Boolean)smc.get(MessageContext.MESSAGE_OUTBOUND_PROPERTY);

					The property is stored as a Boolean object. You can use the object’s booleanValue() method to determine the property’s value. If the property is set to true, the message is outbound. If the property is set to false the message is inbound.
				

Determining the return value

					How the handleMessage() method completes its message processing has a direct impact on how message processing proceeds. It can complete by doing one of the following actions:
				
	
							return true—Returning true signals to the Apache CXF runtime that message processing should continue normally. The next handler, if any, has its handleMessage() invoked.
						
	
							return false—Returning false signals to the Apache CXF runtime that normal message processing is to stop. How the runtime proceeds depends on the message exchange pattern in use for the current message.
						

							For request-response message exchanges the following happens:
						
	
									The direction of message processing is reversed.
								

									For example, if a request is being processed by a service provider, the message will stop progressing toward the service’s implementation object. It will instead be sent back towards the binding for return to the consumer that originated the request.
								

	
									Any message handlers that reside along the handler chain in the new processing direction have their handleMessage() method invoked in the order in which they reside in the chain.
								
	
									When the message reaches the end of the handler chain it is dispatched.
								

									For one-way message exchanges the following happens:
								

	
									Message processing stops.
								
	
									All previously invoked message handlers have their close() method invoked.
								
	
									The message is dispatched.
								

	
							throw a ProtocolException exception—Throwing a ProtocolException exception, or a subclass of this exception, signals the Apache CXF runtime that fault message processing is to start. How the runtime proceeds depends on the message exchange pattern in use for the current message.
						

							For request-response message exchanges the following happens:
						
	
									If the handler has not already created a fault message, the runtime wraps the message in a fault message.
								
	
									The direction of message processing is reversed.
								

									For example, if a request is being processed by a service provider, the message will stop progressing toward the service’s implementation object. It will be sent back towards the binding for return to the consumer that originated the request.
								

	
									Any message handlers that reside along the handler chain in the new processing direction have their handleFault() method invoked in the order in which they reside in the chain.
								
	
									When the fault message reaches the end of the handler chain it is dispatched.
								

									For one-way message exchanges the following happens:
								

	
									If the handler has not already created a fault message, the runtime wraps the message in a fault message.
								
	
									Message processing stops.
								
	
									All previously invoked message handlers have their close() method invoked.
								
	
									The fault message is dispatched.
								

	
							throw any other runtime exception—Throwing a runtime exception other than a ProtocolException exception signals the Apache CXF runtime that message processing is to stop. All previously invoked message handlers have the close() method invoked and the exception is dispatched. If the message is part of a request-response message exchange the exception is dispatched so that it is returned to the consumer that originated the request.
						

Example

					Example 43.12, “Handling a Message in a SOAP Handler” shows a handleMessage() implementation that prints the SOAP message to the screen.
				
Example 43.12. Handling a Message in a SOAP Handler
public boolean handleMessage(SOAPMessageContext smc)
{
 PrintStream out;

 Boolean outbound = (Boolean)smc.get(MessageContext.MESSAGE_OUTBOUND_PROPERTY);

 if (outbound.booleanValue())
 {
 out.println("\nOutbound message:");
 }
 else
 {
 out.println("\nInbound message:");
 }

 SOAPMessage message = smc.getMessage();

 message.writeTo(out);
 out.println();

 return true;
}

					The code in Example 43.12, “Handling a Message in a SOAP Handler” does the following:
				

					Retrieves the outbound property from the message context.
				

					Tests the messages direction and prints the appropriate message.
				

					Retrieves the SOAP message from the context.
				

					Prints the message to the console.
				

Initializing a Handler

Overview

					When the runtime creates an instance of a handler, it creates all of the resources the hander needs to process messages. While you can place all of the logic for doing this in the handler’s constructor, it may not be the most appropriate place. The handler framework performs a number of optional steps when it instantiates a handler. You can add resource injection and other initialization logic that will be executed during the optional steps.
				

					You do not have to provide any initialization methods for a handler.
				

Order of initialization

					 The Apache CXF runtime initializes a handler in the following manner:
				
	
							The handler’s constructor is called.
						
	
							Any resources that are specified by the @Resource annotation are injected.
						
	
							The method decorated with @PostConstruct annotation, if it is present, is called.
						
Note

								Methods decorated with the @PostConstruct annotation must have a void return type and have no parameters.
							

	
							The handler is place in the Ready state.
						

Handling Fault Messages

					
				
Overview

					Handlers use the handleFault() method for processing fault messages when a ProtocolException exception is thrown during message processing.
				

					The handleFault() method receives either a LogicalMessageContext object or SOAPMessageContext object depending on the type of handler. The received context gives the handler’s implementation access to the message payload.
				

					The handleFault() method returns either true or false, depending on how fault message processing is to proceed. It can also throw an exception.
				

Getting the message payload

					The context object received by the handleFault() method is similar to the one received by the handleMessage() method. You use the context’s getMessage() method to access the message payload in the same way. The only difference is the payload contained in the context.
				

					For more information on working with a LogicalMessageContext see the section called “Handling Messages in a Logical Handler”.
				

					For more information on working with a SOAPMessageContext see the section called “Handling Messages in a SOAP Handler”.
				

Determining the return value

					How the handleFault() method completes its message processing has a direct impact on how message processing proceeds. It completes by performing one of the following actions:
				
	Return true
	
								Returning true signals that fault processing should continue normally. The handleFault() method of the next handler in the chain will be invoked.
							
	Return false
	
								Returning false signals that fault processing stops. The close() method of the handlers that were invoked in processing the current message are invoked and the fault message is dispatched.
							
	Throw an exception
	
								Throwing an exception stops fault message processing. The close() method of the handlers that were invoked in processing the current message are invoked and the exception is dispatched.
							

Example

					Example 43.13, “Handling a Fault in a Message Handler” shows an implementation of handleFault() that prints the message body to the screen.
				
Example 43.13. Handling a Fault in a Message Handler
public final boolean handleFault(LogicalMessageContext messageContext)
{
 System.out.println("handleFault() called with message:");

 LogicalMessage msg=messageContext.getMessage();
 System.out.println(msg.getPayload());

 return true;
}

Closing a Handler

					 When a handler chain is finished processing a message, the runtime calls each executed handler’s close() method. This is the appropriate place to clean up any resources that were used by the handler during message processing or resetting any properties to a default state.
				

					If a resource needs to persist beyond a single message exchange, you should not clean it up during in the handler’s close() method.
				

Releasing a Handler

					
				
Overview

					The runtime releases a handler when the service or service proxy to which the handler is bound is shutdown. The runtime will invoke an optional release method before invoking the handler’s destructor. This optional release method can be used to release any resources used by the handler or perform other actions that would not be appropriate in the handler’s destructor.
				

					You do not have to provide any clean-up methods for a handler.
				

Order of release

					The following happens when the handler is released:
				
	
							The handler finishes processing any active messages.
						
	
							The runtime invokes the method decorated with the @PreDestroy annotation.
						

							This method should clean up any resources used by the handler.
						

	
							The handler’s destructor is called.
						

Configuring Endpoints to Use Handlers

Programmatic Configuration

Adding a Handler Chain to a Consumer

Overview

							Adding a handler chain to a consumer involves explicitly building the chain of handlers. Then you set the handler chain directly on the service proxy’s Binding object.
						
Important

								Any handler chains configured using the Spring configuration override the handler chains configured programmaticaly.
							

Procedure

							To add a handler chain to a consumer you do the following:
						
	
									Create a List<Handler> object to hold the handler chain.
								
	
									Create an instance of each handler that will be added to the chain.
								
	
									Add each of the instantiated handler objects to the list in the order they are to be invoked by the runtime.
								
	
									Get the Binding object from the service proxy.
								

									Apache CXF provides an implementation of the Binding interface called org.apache.cxf.jaxws.binding.DefaultBindingImpl.
								

	
									Set the handler chain on the proxy using the Binding object’s setHandlerChain() method.
								

Example

							Example 43.14, “Adding a Handler Chain to a Consumer” shows code for adding a handler chain to a consumer.
						
Example 43.14. Adding a Handler Chain to a Consumer
import javax.xml.ws.BindingProvider;
import javax.xml.ws.handler.Handler;
import java.util.ArrayList;
import java.util.List;

import org.apache.cxf.jaxws.binding.DefaultBindingImpl;
...
SmallNumberHandler sh = new SmallNumberHandler();
List<Handler> handlerChain = new ArrayList<Handler>();
handlerChain.add(sh);

DefaultBindingImpl binding = ((BindingProvider)proxy).getBinding();
binding.getBinding().setHandlerChain(handlerChain);

							The code in Example 43.14, “Adding a Handler Chain to a Consumer” does the following:
						

							Instantiates a handler.
						

							Creates a List object to hold the chain.
						

							Adds the handler to the chain.
						

							Gets the Binding object from the proxy as a DefaultBindingImpl object.
						

							Assigns the handler chain to the proxy’s binding.
						

Adding a Handler Chain to a Service Provider

Overview

							You add a handler chain to a service provider by decorating either the SEI or the implementation class with the @HandlerChain annotation. The annotation points to a meta-data file defining the handler chain used by the service provider.
						

Procedure

							To add handler chain to a service provider you do the following:
						
	
									Decorate the provider’s implementation class with the @HandlerChain annotation.
								
	
									Create a handler configuration file that defines the handler chain.
								

The @HandlerChain annotation

							 The javax.jws.HandlerChain annotation decorates service provider’s implementation class. It instructs the runtime to load the handler chain configuration file specified by its file property.
						

							The annotation’s file property supports two methods for identifying the handler configuration file to load:
						
	
									a URL
								
	
									a relative path name
								

							Example 43.15, “Service Implementation that Loads a Handler Chain” shows a service provider implementation that will use the handler chain defined in a file called handlers.xml. handlers.xml must be located in the directory from which the service provider is run.
						
Example 43.15. Service Implementation that Loads a Handler Chain
import javax.jws.HandlerChain;
import javax.jws.WebService;
...

@WebService(name = "AddNumbers",
 targetNamespace = "http://apache.org/handlers",
 portName = "AddNumbersPort",
 endpointInterface = "org.apache.handlers.AddNumbers",
 serviceName = "AddNumbersService")
@HandlerChain(file = "handlers.xml")
public class AddNumbersImpl implements AddNumbers
{
...
}

Handler configuration file

							 The handler configuration file defines a handler chain using the XML grammar that accompanies JSR 109 (Web Services for Java EE, Version 1.2). This grammar is defined in the http://java.sun.com/xml/ns/javaee.
						

							The root element of the handler configuration file is the handler-chains element. The handler-chains element has one or more handler-chain elements.
						

							The handler-chain element define a handler chain. Table 43.1, “Elements Used to Define a Server-Side Handler Chain” describes the handler-chain element’s children.
						
Table 43.1. Elements Used to Define a Server-Side Handler Chain
	Element	Description
	
											 handler
										

										 	
											Contains the elements that describe a handler.
										

										
	
											 service-name-pattern
										

										 	
											Specifies the QName of the WSDL service element defining the service to which the handler chain is bound. You can use * as a wildcard when defining the QName.
										

										
	
											 port-name-pattern
										

										 	
											Specifies the QName of the WSDL port element defining the endpoint to which the handler chain is bound. You can use * as a wildcard when defining the QName.
										

										
	
											 protocol-binding
										

										 	
											Specifies the message binding for which the handler chain is used. The binding is specified as a URI or using one of the following aliases: #\#SOAP11_HTTP, \##SOAP11_HTTP_MTOM, \##SOAP12_HTTP, \##SOAP12_HTTP_MTOM, or \#\#XML_HTTP.
										

										
											For more information about message binding URIs see Chapter 23, Apache CXF Binding IDs.
										

										

							The handler-chain element is only required to have a single handler element as a child. It can, however, support as many handler elements as needed to define the complete handler chain. The handlers in the chain are executed in the order they specified in the handler chain definition.
						
Important

								The final order of execution will be determined by sorting the specified handlers into logical handlers and protocol handlers. Within the groupings, the order specified in the configuration will be used.
							

							The other children, such as protocol-binding, are used to limit the scope of the defined handler chain. For example, if you use the service-name-pattern element, the handler chain will only be attached to service providers whose WSDL port element is a child of the specified WSDL service element. You can only use one of these limiting children in a handler element.
						

							The handler element defines an individual handler in a handler chain. Its handler-class child element specifies the fully qualified name of the class implementing the handler. The handler element can also have an optional handler-name element that specifies a unique name for the handler.
						

							Example 43.16, “Handler Configuration File” shows a handler configuration file that defines a single handler chain. The chain is made up of two handlers.
						
Example 43.16. Handler Configuration File
<handler-chains xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee">
 <handler-chain>
 <handler>
 <handler-name>LoggingHandler</handler-name>
 <handler-class>demo.handlers.common.LoggingHandler</handler-class>
 </handler>
 <handler>
 <handler-name>AddHeaderHandler</handler-name>
 <handler-class>demo.handlers.common.AddHeaderHandler</handler-class>
 </handler>
 </handler-chain>
</handler-chains>

Spring Configuration

Overview

						The easiest way to configure an endpoint to use a handler chain is to define the chain in the endpoint’s configuration. This is done by adding a jaxwxs:handlers child to the element configuring the endpoint.
					
Important

							A handler chain added through the configuration file takes precedence over a handler chain configured programatically.
						

Procedure

						To configure an endpoint to load a handler chain you do the following:
					
	
								If the endpoint does not already have a configuration element, add one.
							

								For more information on configuring Apache CXF endpoints see Chapter 17, Configuring JAX-WS Endpoints.
							

	
								Add a jaxws:handlers child element to the endpoint’s configuration element.
							
	
								For each handler in the chain, add a bean element specifying the class that implements the handler.
							

								If your handler implementation is used in more than one place you can reference a bean element using the ref element.
							

The handlers element

						 The jaxws:handlers element defines a handler chain in an endpoint’s configuration. It can appear as a child to all of the JAX-WS endpoint configuration elements. These are:
					
	
								jaxws:endpoint configures a service provider.
							
	
								jaxws:server also configures a service provider.
							
	
								jaxws:client configures a service consumer.
							

						You add handlers to the handler chain in one of two ways:
					
	
								add a bean element defining the implementation class
							
	
								use a ref element to refer to a named bean element from elsewhere in the configuration file
							

						The order in which the handlers are defined in the configuration is the order in which they will be executed. The order may be modified if you mix logical handlers and protocol handlers. The run time will sort them into the proper order while maintaining the basic order specified in the configuration.
					

Example

						Example 43.17, “Configuring an Endpoint to Use a Handler Chain In Spring” shows the configuration for a service provider that loads a handler chain.
					
Example 43.17. Configuring an Endpoint to Use a Handler Chain In Spring
<beans ...
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 ...
 schemaLocation="...
 http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd
 ...">
 <jaxws:endpoint id="HandlerExample"
 implementor="org.apache.cxf.example.DemoImpl"
 address="http://localhost:8080/demo">
 <jaxws:handlers> <bean class="demo.handlers.common.LoggingHandler" /> <bean class="demo.handlers.common.AddHeaderHandler" /> </jaxws:handlers>
 </jaws:endpoint>
</beans>

Chapter 44. Maven Tooling Reference

Plug-in Setup

Abstract

						before you can use the Apache CXF plug-ins, you must first add the proper dependencies and repositories to your POM.
					

Dependencies

					You need to add the following dependencies to your project’s POM:
				
	
							the JAX-WS frontend
						
<dependency>
 <groupId>org.apache.cxf</groupId>
 <artifactId>cxf-rt-frontend-jaxws</artifactId>
 <version>version</version>
</dependency>

	
							the HTTP transport
						
<dependency>
 <groupId>org.apache.cxf</groupId>
 <artifactId>cxf-rt-transports-http</artifactId>
 <version>version</version>
</dependency>

	
							the Undertow transport
						
<dependency>
 <groupId>org.apache.cxf</groupId>
 <artifactId>cxf-rt-transports-http-undertow</artifactId>
 <version>version</version>
</dependency>

cxf-codegen-plugin

Abstract

						Generates JAX-WS compliant Java code from a WSDL document
					

Overview

Basic example

					The following POM extract shows a simple example of how to configure the Maven cxf-codegen-plugin to process the myService.wsdl WSDL file:
				
<plugin>
 <groupId>org.apache.cxf</groupId>
 <artifactId>cxf-codegen-plugin</artifactId>
 <version>3.2.7.fuse-750027-redhat-00001</version>
 <executions>
 <execution>
 <id>generate-sources</id>
 <phase>generate-sources</phase>
 <configuration>
 <sourceRoot>target/generated/src/main/java</sourceRoot>
 <wsdlOptions>
 <wsdlOption>
 <wsdl>src/main/resources/wsdl/myService.wsdl</wsdl>
 </wsdlOption>
 </wsdlOptions>
 </configuration>
 <goals>
 <goal>wsdl2java</goal>
 </goals>
 </execution>
 </executions>
</plugin>

Basic configuration settings

					In the preceding example, you can customize the following configuration settings
				
	configuration/sourceRoot
	
								Specifies the directory where the generated Java files will be stored. Default is target/generated-sources/cxf.
							
	configuration/wsdlOptions/wsdlOption/wsdl
	
								Specifies the location of the WSDL file.
							

Description

					The wsdl2java task takes a WSDL document and generates fully annotated Java code from which to implement a service. The WSDL document must have a valid portType element, but it does not need to contain a binding element or a service element. Using the optional arguments you can customize the generated code.
				

WSDL options

					At least one wsdlOptions element is required to configure the plug-in. The wsdlOptions element’s wsdl child is required and specifies a WSDL document to be processed by the plug-in. In addition to the wsdl element, the wsdlOptions element can take a number of children that can customize how the WSDL document is processed.
				

					More than one wsdlOptions element can be listed in the plug-in configuration. Each element configures a single WSDL document for processing.
				

Default options

					The defaultOptions element is an optional element. It can be used to set options that are used across all of the specified WSDL documents.
				
Important

						If an option is duplicated in the wsdlOptions element, the value in the wsdlOptions element takes precedent.
					

Specifying code generation options

					To specify generic code generation options (corresponding to the switches supported by the Apache CXF wsdl2java command-line tool), you can add the extraargs element as a child of a wsdlOption element. For example, you can add the -impl option and the -verbose option as follows:
				
...
<configuration>
 <sourceRoot>target/generated/src/main/java</sourceRoot>
 <wsdlOptions>
 <wsdlOption>
 <wsdl>${basedir}/src/main/resources/wsdl/myService.wsdl</wsdl>
 <!-- you can set the options of wsdl2java command by using the <extraargs> -->
 <extraargs>
 <extraarg>-impl</extraarg>
 <extraarg>-verbose</extraarg>
 </extraargs>
 </wsdlOption>
 </wsdlOptions>
</configuration>
...

					If a switch takes arguments, you can specify these using subsequent extraarg elements. For example, to specify the jibx data binding, you can configure the plug-in as follows:
				
...
<configuration>
 <sourceRoot>target/generated/src/main/java</sourceRoot>
 <wsdlOptions>
 <wsdlOption>
 <wsdl>${basedir}/src/main/resources/wsdl/myService.wsdl</wsdl>
 <extraargs>
 <extraarg>-databinding</extraarg>
 <extraarg>jibx</extraarg>
 </extraargs>
 </wsdlOption>
 </wsdlOptions>
</configuration>
...

Specifying binding files

					To specify the location of one or more JAX-WS binding files, you can add the bindingFiles element as a child of wsdlOption—for example:
				
...
<configuration>
 <wsdlOptions>
 <wsdlOption>
 <wsdl>${basedir}/src/main/resources/wsdl/myService.wsdl</wsdl>
 <bindingFiles>
 <bindingFile>${basedir}/src/main/resources/wsdl/async_binding.xml</bindingFile>
 </bindingFiles>
 </wsdlOption>
 </wsdlOptions>
</configuration>
...

Generating code for a specific WSDL service

					To specify the name of the WSDL service for which code is to be generated, you can add the serviceName element as a child of wsdlOption (the default behaviour is to generate code for every service in the WSDL document)—for example:
				
...
<configuration>
 <wsdlOptions>
 <wsdlOption>
 <wsdl>${basedir}/src/main/resources/wsdl/myService.wsdl</wsdl>
 <serviceName>MyWSDLService</serviceName>
 </wsdlOption>
 </wsdlOptions>
</configuration>
...

Generating code for multiple WSDL files

					To generate code for multiple WSDL files, simply insert additional wsdlOption elements for the WSDL files. If you want to specify some common options that apply to all of the WSDL files, put the common options into the defaultOptions element as shown:
				
<configuration>
 <defaultOptions>
 <bindingFiles>
 <bindingFile>${basedir}/src/main/jaxb/bindings.xml</bindingFile>
 </bindingFiles>
 <noAddressBinding>true</noAddressBinding>
 </defaultOptions>
 <wsdlOptions>
 <wsdlOption>
 <wsdl>${basedir}/src/main/resources/wsdl/myService.wsdl</wsdl>
 <serviceName>MyWSDLService</serviceName>
 </wsdlOption>
 <wsdlOption>
 <wsdl>${basedir}/src/main/resources/wsdl/myOtherService.wsdl</wsdl>
 <serviceName>MyOtherWSDLService</serviceName>
 </wsdlOption>
 </wsdlOptions>
</configuration>

					It is also possible to specify multiple WSDL files using wildcard matching. In this case, specify the directory containing the WSDL files using the wsdlRoot element and then select the required WSDL files using an include element, which supports wildcarding with the * character. For example, to select all of the WSDL files ending in Service.wsdl from the src/main/resources/wsdl root directory, you could configure the plug-in as follows:
				
<configuration>
 <defaultOptions>
 <bindingFiles>
 <bindingFile>${basedir}/src/main/jaxb/bindings.xml</bindingFile>
 </bindingFiles>
 <noAddressBinding>true</noAddressBinding>
 </defaultOptions>
 <wsdlRoot>${basedir}/src/main/resources/wsdl</wsdlRoot>
 <includes>
 <include>*Service.wsdl</include>
 </includes>
</configuration>

Downloading WSDL from a Maven repository

					To download a WSDL file directly from a Maven repository, add a wsdlArtifact element as a child of the wsdlOption element and specify the coordinates of the Maven artifact, as follows:
				
...
<configuration>
 <wsdlOptions>
 <wsdlOption>
 <wsdlArtifact>
 <groupId>org.apache.pizza</groupId>
 <artifactId>PizzaService</artifactId>
 <version>1.0.0</version>
 </wsdlArtifact>
 </wsdlOption>
 </wsdlOptions>
</configuration>
...

Encoding

					(Requires JAXB 2.2) To specify the character encoding (Charset) used for the generated Java files, add an encoding element as a child of the configuration element, as follows:
				
...
<configuration>
 <wsdlOptions>
 <wsdlOption>
 <wsdl>${basedir}/src/main/resources/wsdl/myService.wsdl</wsdl>
 </wsdlOption>
 </wsdlOptions>
 <encoding>UTF-8</encoding>
</configuration>
...

Forking a separate process

					You can configure the codegen plug-in to fork a separate JVM for code generation, by adding the fork element as a child of the configuration element. The fork element can be set to one of the following values:
				
	once
	
								Fork a single new JVM to process all of the WSDL files specified in the codegen plug-in’s configuration.
							
	always
	
								Fork a new JVM to process each WSDL file specified in the codegen plug-in’s configuration.
							
	false
	
								(Default) Disables forking.
							

					If the codegen plug-in is configured to fork a separate JVM (that is, the fork option is set to a non-false value), you can specify additional JVM arguments to the forked JVM through the additionalJvmArgs element. For example, the following fragment configures the codegen plug-in to fork a single JVM, which is restricted to access XML schemas from the local file system only (by setting the javax.xml.accessExternalSchema system property):
				
...
<configuration>
 <wsdlOptions>
 <wsdlOption>
 <wsdl>${basedir}/src/main/resources/wsdl/myService.wsdl</wsdl>
 </wsdlOption>
 </wsdlOptions>
 <fork>once</fork>
 <additionalJvmArgs>-Djavax.xml.accessExternalSchema=jar:file,file</additionalJvmArgs>
</configuration>
...

Options reference

					The options used to manage the code generation process are reviewed in the following table.
				
	Option	Interpretation
	
									[option]`-fe
								

								 	
									-frontend frontend`
								

								
	
									Specifies the front end used by the code generator. Possible values are jaxws, jaxws21, and cxf. The jaxws21 frontend is used to generate JAX-WS 2.1 compliant code. The cxf frontend, which can optionally be used instead of the jaxws frontend, provides an extra constructor for Service classes. This constructor conveniently enables you to specify the Bus instance for configuring the service. Default is jaxws.
								

								 	
									[option]`-db
								

								
	
									-databinding databinding`
								

								 	
									Specifies the data binding used by the code generator. Possible values are: jaxb, xmlbeans, sdo (sdo-static and sdo-dynamic), and jibx. Default is jaxb.
								

								
	
									-wv wsdlVersion
								

								 	
									Specifies the WSDL version expected by the tool. Default is 1.1.[a]
								

								
	
									-p wsdlNamespace=PackageName
								

								 	
									Specifies zero, or more, package names to use for the generated code. Optionally specifies the WSDL namespace to package name mapping.
								

								
	
									-b bindingName
								

								 	
									Specifies one or more JAXWS or JAXB binding files. Use a separate -b flag for each binding file.
								

								
	
									-sn serviceName
								

								 	
									Specifies the name of the WSDL service for which code is to be generated. The default is to generate code for every service in the WSDL document.
								

								
	
									-reserveClass classname
								

								 	
									Used with -autoNameResolution, defines a class names for wsdl-to-java not to use when generating classes. Use this option multiple times for multiple classes.
								

								
	
									-catalog catalogUrl
								

								 	
									Specifies the URL of an XML catalog to use for resolving imported schemas and WSDL documents.
								

								
	
									-d output-directory
								

								 	
									Specifies the directory into which the generated code files are written.
								

								
	
									-compile
								

								 	
									Compiles generated Java files.
								

								
	
									-classdir complile-class-dir
								

								 	
									Specifies the directory into which the compiled class files are written.
								

								
	
									-clientjar jar-file-name
								

								 	
									Generates the JAR file that contains all the client classes and the WSDL. The specified wsdlLocation does not work when this option is specified.
								

								
	
									-client
								

								 	
									Generates starting point code for a client mainline.
								

								
	
									-server
								

								 	
									Generates starting point code for a server mainline.
								

								
	
									-impl
								

								 	
									Generates starting point code for an implementation object.
								

								
	
									-all
								

								 	
									Generates all starting point code: types, service proxy, service interface, server mainline, client mainline, implementation object, and an Ant build.xml file.
								

								
	
									-ant
								

								 	
									Generates the Ant build.xml file.
								

								
	
									-autoNameResolution
								

								 	
									Automatically resolve naming conflicts without requiring the use of binding customizations.
								

								
	
									-defaultValues=DefaultValueProvider
								

								 	
									Instructs the tool to generate default values for the generated client and the generated implementation. Optionally, you can also supply the name of the class used to generate the default values. By default, the RandomValueProvider class is used.
								

								
	
									-nexclude schema-namespace=java-packagename
								

								 	
									Ignore the specified WSDL schema namespace when generating code. This option may be specified multiple times. Also, optionally specifies the Java package name used by types described in the excluded namespace(s).
								

								
	
									-exsh (true/false)
								

								 	
									Enables or disables processing of extended soap header message binding. Default is false.
								

								
	
									-noTypes
								

								 	
									Turns off generating types.
								

								
	
									-dns (true/false)
								

								 	
									Enables or disables the loading of the default namespace package name mapping. Default is true.
								

								
	
									-dex (true/false)
								

								 	
									Enables or disables the loading of the default excludes namespace mapping. Default is true.
								

								
	
									-xjcargs
								

								 	
									Specifies a comma separated list of arguments to be passed to directly to the XJC when the JAXB data binding is being used. To get a list of all possible XJC arguments use the -xjc-X.
								

								
	
									-noAddressBinding
								

								 	
									Instructs the tool to use the Apache CXF proprietary WS-Addressing type instead of the JAX-WS 2.1 compliant mapping.
								

								
	
									[option]`-validate [=all
								

								 	
									basic
								

								
	
									none]`
								

								 	
									Instructs the tool to validate the WSDL document before attempting to generate any code.
								

								
	
									-keep
								

								 	
									Instructs the tool to not overwrite any existing files.
								

								
	
									-wsdlLocation wsdlLocation
								

								 	
									Specifies the value of the @WebService annotation’s wsdlLocation property.
								

								
	
									-v
								

								 	
									Displays the version number for the tool.
								

								
	
									[option]`-verbose
								

								 	
									-V`
								

								
	
									Displays comments during the code generation process.
								

								 	
									-quiet
								

								
	
									Suppresses comments during the code generation process.
								

								 	
									-allowElementReferences[=true], -aer[=true]
								

								
	
									If true, disregards the rule given in section 2.3.1.2(v) of the JAX-WS 2.2 specification disallowing element references when using wrapper-style mapping. Default is false.
								

								 	
									-asyncMethods[=method1,method2,…​]
								

								
	
									List of subsequently generated Java class methods to allow for client-side asynchronous calls; similar to enableAsyncMapping in a JAX-WS binding file.
								

								 	
									-bareMethods[=method1,method2,…​]
								

								
	
									List of subsequently generated Java class methods to have wrapper style (see below), similar to enableWrapperStyle in JAX-WS binding file.
								

								 	
									-mimeMethods[=method1,method2,…​]
								

								
	
									List of subsequently generated Java class methods to enable mime:content mapping, similar to enableMIMEContent in JAX-WS binding file.
								

								 	
									-faultSerialVersionUID fault-serialVersionUID
								

								
	
									How to generate suid of fault exceptions. Possible values are: NONE, TIMESTAMP, FQCN, or a specific number. Default is NONE.
								

								 	
									-encoding encoding
								

								
	
									Specifies the Charset encoding to use when generating Java code.
								

								 	
									-exceptionSuper
								

								
	
									Superclass for fault beans generated from wsdl:fault elements (defaults to java.lang.Exception).
								

								 	
									-seiSuper interfaceName
								

								
	
									Specifies a base interface for the generated SEI interfaces. For example, this option can be used to add the Java 7 AutoCloseable interface as a super interface.
								

								 	
									-mark-generated
								

								
	[a]
										Currently, Apache CXF only provides WSDL 1.1 support for the code generator.
									

java2ws

Abstract

						generates a WSDL document from Java code
					

Synopsis

<plugin>
 <groupId>org.apache.cxf</groupId>
 <artifactId>cxf-java2ws-plugin</artifactId>
 <version>version</version>
 <executions>
 <execution>
 <id>process-classes</id>
 <phase>process-classes</phase>
 <configuration>
 <className>className</className>
 <option>...</option>
 ...
 </configuration>
 <goals>
 <goal>java2ws</goal>
 </goals>
 </execution>
 </executions>
</plugin>

Description

					The java2ws task takes a service endpoint implementation (SEI) and generates the support files used to implement a Web service. It can generate the following:
				
	
							a WSDL document
						
	
							the server code needed to deploy the service as a POJO
						
	
							client code for accessing the service
						
	
							wrapper and fault beans
						

Required configuration

					The plug-in requires that the className configuration element is present. The element’s value is the fully qualified name of the SEI to be processed.
				

Optional configuration

					The configuration element’s listed in the following table can be used to fine tune the WSDL generation.
				
	Element	Description
	
									frontend
								

								 	
									Specifies front end to use for processing the SEI and generating the support classes. jaxws is the default. simple is also supported.
								

								
	
									databinding
								

								 	
									Specifies the data binding used for processing the SEI and generating the support classes. The default when using the JAX-WS front end is jaxb. The default when using the simple frontend is aegis.
								

								
	
									genWsdl
								

								 	
									Instructs the tool to generate a WSDL document when set to true.
								

								
	
									genWrapperbean
								

								 	
									Instructs the tool to generate the wrapper bean and the fault beans when set to true.
								

								
	
									genClient
								

								 	
									Instructs the tool to generate client code when set to true.
								

								
	
									genServer
								

								 	
									Instructs the tool to generate server code when set to true.
								

								
	
									outputFile
								

								 	
									Specifies the name of the generated WSDL file.
								

								
	
									classpath
								

								 	
									Specifies the classpath searched when processing the SEI.
								

								
	
									soap12
								

								 	
									Specifies that the generated WSDL document is to include a SOAP 1.2 binding when set to true.
								

								
	
									targetNamespace
								

								 	
									Specifies the target namespace to use in the generated WSDL file.
								

								
	
									serviceName
								

								 	
									Specifies the value of the generated service element’s name attribute.
								

								

Part VI. Developing RESTful Web Services

				This guide describes how to use the JAX-RS APIs to implement Web services.
			

Chapter 45. Introduction to RESTful Web Services

Abstract

					Representational State Transfer (REST) is a software architecture style that centers around the transmission of data over HTTP, using only the four basic HTTP verbs. It also eschews the use of any additional wrappers such as a SOAP envelope and the use of any state data.
				

Overview

				Representational State Transfer (REST) is an architectural style first described in a doctoral dissertation by a researcher named Roy Fielding. In RESTful systems, servers expose resources using a URI, and clients access these resources using the four HTTP verbs. As clients receive representations of a resource they are placed in a state. When they access a new resource, typically by following a link, they change, or transition, their state. In order to work, REST assumes that resources are capable of being represented using a pervasive standard grammar.
			

				The World Wide Web is the most ubiquitous example of a system designed on REST principles. Web browsers act as clients accessing resources hosted on Web servers. The resources are represented using HTML or XML grammars that all Web browsers can consume. The browsers can also easily follow the links to new resources.
			

				The advantages of RESTful systems is that they are highly scalable and highly flexible. Because the resources are accessed and manipulated using the four HTTP verbs, the resources are exposed using a URIs, and the resources are represented using standard grammars, clients are not as affected by changes to the servers. Also, RESTful systems can take full advantage of the scalability features of HTTP such as caching and proxies.
			

Basic REST principles

				RESTful architectures adhere to the following basic principles:
			
	
						Application state and functionality are divided into resources.
					
	
						Resources are addressable using standard URIs that can be used as hypermedia links.
					
	
						All resources use only the four HTTP verbs.
					
	
								DELETE
							
	
								GET
							
	
								POST
							
	
								PUT
							

	
						All resources provide information using the MIME types supported by HTTP.
					
	
						The protocol is stateless.
					
	
						Responses are cacheable.
					
	
						The protocol is layered.
					

Resources

				Resources are central to REST. A resource is a source of information that can be addressed using a URI. In the early days of the Web, resources were largely static documents. In the modern Web, a resource can be any source of information. For example a Web service can be a resource if it can be accessed using a URI.
			

				RESTful endpoints exchange representations of the resources they address. A representation is a document containing the data provided by the resource. For example, the method of a Web service that provides access to a customer record would be a resource, the copy of the customer record exchanged between the service and the consumer is a representation of the resource.
			

REST best practices

				When designing RESTful Web services it is helpful to keep in mind the following:
			
	
						Provide a distinct URI for each resource you wish to expose.
					

						For example, if you are building a system that deals with driving records, each record should have a unique URI. If the system also provides information on parking violations and speeding fines, each type of resource should also have a unique base. For example, speeding fines could be accessed through /speedingfines/driverID and parking violations could be accessed through /parkingfines/driverID.
					

	
						Use nouns in your URIs.
					

						Using nouns highlights the fact that resources are things and not actions. URIs such as /ordering imply an action, whereas /orders implies a thing.
					

	
						Methods that map to GET should not change any data.
					
	
						Use links in your responses.
					

						Putting links to other resources in your responses makes it easier for clients to follow a chain of data. For example, if your service returns a collection of resources, it would be easier for a client to access each of the individual resources using the provided links. If links are not included, a client needs to have additional logic to follow the chain to a specific node.
					

	
						Make your service stateless.
					

						Requiring the client or the service to maintain state information forces a tight coupling between the two. Tight couplings make upgrading and migrating more difficult. Maintaining state can also make recovery from communication errors more difficult.
					

Designing a RESTful Web Service

				Regardless of the framework you use to implement a RESTful Web service, there are a number of steps that should be followed:
			
	
						Define the resources the service will expose.
					

						In general, a service will expose one or more resources that are organized as a tree. For example, a driving record service could be organized into three resources:
					
	
								/license/driverID
							
	
								/license/driverID/speedingfines
							
	
								/license/driverID/parkingfines
							

	
						Define what actions you want to be able to perform on each resource.
					

						For example, you may want to be able to update a diver’s address or remove a parking ticket from a driver’s record.
					

	
						Map the actions to the appropriate HTTP verbs.
					

				Once you have defined the service, you can implement it using Apache CXF.
			

Implementing REST with Apache CXF

				Apache CXF provides an implementation of the Java API for RESTFul Web Services(JAX-RS). JAX-RS provides a standardized way to map POJOs to resources using annotations.
			

				When moving from the abstract service definition to a RESTful Web service implemented using JAX-RS, you need to do the following:
			
	
						Create a root resource class for the resource that represents the top of the service’s resource tree.
					

						See the section called “Root resource classes”.
					

	
						Map the service’s other resources into sub-resources.
					

						See the section called “Working with sub-resources”.
					

	
						Create methods to implement each of the HTTP verbs used by each of the resources.
					

						See the section called “Working with resource methods”.
					

Note

					Apache CXF continues to support the old HTTP binding to map Java interfaces into RESTful Web services. The HTTP binding provides basic functionality and has a number of limitations. Developers are encouraged to update their applications to use JAX-RS.
				

Data bindings

				By default, Apache CXF uses Java Architecture for XML Binding (JAXB) objects to map the resources and their representations to Java objects. Provides clean, well defined mappings between Java objects and XML elements.
			

				The Apache CXF JAX-RS implementation also supports exchanging data using JavaScript Object Notation (JSON). JSON is a popular data format used by Ajax developers. The marshaling of data between JSON and JAXB is handled by the Apache CXF runtime.
			

Chapter 46. Creating Resources

Abstract

					In RESTful Web services all requests are handled by resources. The JAX-RS APIs implement resources as a Java class. A resource class is a Java class that is annotated with one, or more, JAX-RS annotations. The core of a RESTful Web service implemented using JAX-RS is a root resource class. The root resource class is the entry point to the resource tree exposed by a service. It may handle all requests itself, or it may provide access to sub-resources that handle requests.
				

Introduction

Overview

					RESTful Web services implemented using JAX-RS APIs provide responses as representations of a resource implemented by Java classes. A resource class is a class that uses JAX-RS annotations to implement a resource. For most RESTful Web services, there is a collection of resources that need to be accessed. The resource class' annotations provide information such as the URI of the resources and which HTTP verb each operation handles.
				

Types of resources

					The JAX-RS APIs allow you to create two basic types of resources:
				
	
							A the section called “Root resource classes” is the entry point to a service’s resource tree. It is decorated with the @Path annotation to define the base URI for the resources in the service.
						
	
							the section called “Working with sub-resources” are accessed through the root resource. They are implemented by methods that are decorated with the @Path annotation. A sub-resource’s @Path annotation defines a URI relative to the base URI of a root resource.
						

Example

					Example 46.1, “Simple resource class” shows a simple resource class.
				
Example 46.1. Simple resource class
package demo.jaxrs.server;

import javax.ws.rs.GET;
import javax.ws.rs.Path;
import javax.ws.rs.PathParam;

@Path("/customerservice")
public class CustomerService
{
 public CustomerService()
 {
 }

 @GET
 public Customer getCustomer(@QueryParam("id") String id)
 {
 ...
 }

 ...
}

					Two items make the class defined in Example 46.1, “Simple resource class” a resource class:
				

					The @Path annotation specifies the base URI for the resource.
				

					The @GET annotation specifies that the method implements the HTTP GET method for the resource.
				

Basic JAX-RS annotations

Overview

					The most basic pieces of information required by a RESTful Web service implementation are:
				
	
							the URI of the service’s resources
						
	
							how the class' methods are mapped to the HTTP verbs
						

					JAX-RS defines a set of annotations that provide this basic information. All resource classes must have at least one of these annotations.
				

Setting the path

					 The @Path annotation specifies the URI of a resource. The annotation is defined by the javax.ws.rs.Path interface and it can be used to decorate either a resource class or a resource method. It takes a string value as its only parameter. The string value is a URI template that specifies the location of an implemented resource.
				

					The URI template specifies a relative location for the resource. As shown in Example 46.2, “URI template syntax”, the template can contain the following:
				
	
							unprocessed path components
						
	
							parameter identifiers surrounded by { }
						
Note

								Parameter identifiers can include regular expressions to alter the default path processing.
							

Example 46.2. URI template syntax
@Path("resourceName/{param1}/../{paramN}")

					For example, the URI template widgets/{color}/{number} would map to widgets/blue/12. The value of the color parameter is assigned to blue. The value of the number parameter is assigned 12.
				

					How the URI template is mapped to a complete URI depends on what the @Path annotation is decorating. If it is placed on a root resource class, the URI template is the root URI of all resources in the tree and it is appended directly to the URI at which the service is published. If the annotation decorates a sub-resource, it is relative to the root resource URI.
				

Specifying HTTP verbs

					 JAX-RS uses five annotations for specifying the HTTP verb that will be used for a method:
				
	
							javax.ws.rs.DELETE specifies that the method maps to a DELETE.
						
	
							javax.ws.rs.GET specifies that the method maps to a GET.
						
	
							javax.ws.rs.POST specifies that the method maps to a POST.
						
	
							javax.ws.rs.PUT specifies that the method maps to a PUT.
						
	
							javax.ws.rs.HEAD specifies that the method maps to a HEAD.
						

					When you map your methods to HTTP verbs, you must ensure that the mapping makes sense. For example, if you map a method that is intended to submit a purchase order, you would map it to a PUT or a POST. Mapping it to a GET or a DELETE would result in unpredictable behavior.
				

Root resource classes

Overview

					A root resource class is the entry point into a JAX-RS implemented RESTful Web service. It is decorated with a @Path that specifies the root URI of the resources implemented by the service. Its methods either directly implement operations on the resource or provide access to sub-resources.
				

Requirements

					 In order for a class to be a root resource class it must meet the following criteria:
				
	
							The class must be decorated with the @Path annotation.
						

							The specified path is the root URI for all of the resources implemented by the service. If the root resource class specifies that its path is widgets and one of its methods implements the GET verb, then a GET on widgets invokes that method. If a sub-resource specifies that its URI is {id}, then the full URI template for the sub-resource is widgets/{id} and it will handle requests made to URIs like widgets/12 and widgets/42.
						

	
							The class must have a public constructor for the runtime to invoke.
						

							The runtime must be able to provide values for all of the constructor’s parameters. The constructor’s parameters can include parameters decorated with the JAX-RS parameter annotations. For more information on the parameter annotations see Chapter 47, Passing Information into Resource Classes and Methods.
						

	
							At least one of the classes methods must either be decorated with an HTTP verb annotation or the @Path annotation.
						

Example

					Example 46.3, “Root resource class” shows a root resource class that provides access to a sub-resource.
				
Example 46.3. Root resource class
package demo.jaxrs.server;

import javax.ws.rs.DELETE;
import javax.ws.rs.GET;
import javax.ws.rs.POST;
import javax.ws.rs.PUT;
import javax.ws.rs.Path;
import javax.ws.rs.PathParam;
import javax.ws.rs.QueryParam;
import javax.ws.rs.core.Response;

@Path("/customerservice/")
public class CustomerService
{
 public CustomerService()
 {
 ...
 }

 @GET
 public Customer getCustomer(@QueryParam("id") String id)
 {
 ...
 }

 @DELETE
 public Response deleteCustomer(@QueryParam("id") String id)
 {
 ...
 }

 @PUT
 public Response updateCustomer(Customer customer)
 {
 ...
 }

 @POST
 public Response addCustomer(Customer customer)
 {
 ...
 }

 @Path("/orders/{orderId}/")
 public Order getOrder(@PathParam("orderId") String orderId)
 {
 ...
 }

}

					The class in Example 46.3, “Root resource class” meets all of the requirements for a root resource class.
				

					The class is decorated with the @Path annotation. The root URI for the resources exposed by the service is customerservice.
				

					The class has a public constructor. In this case the no argument constructor is used for simplicity.
				

					The class implements each of the four HTTP verbs for the resource.
				

					The class also provides access to a sub-resource through the getOrder() method. The URI for the sub-resource, as specified using the the @Path annotation, is customerservice/order/id. The sub-resource is implemented by the Order class.
				

					For more information on implementing sub-resources see the section called “Working with sub-resources”.
				

Working with resource methods

Overview

					Resource methods are annotated using JAX-RS annotations. They have one of the HTTP method annotation specifying the types of requests that the method processes. JAX-RS places several constraints on resource methods.
				

General constraints

					All resource methods must meet the following conditions:
				
	
							It must be public.
						
	
							It must be decorated with one of the HTTP method annotations described in the section called “Specifying HTTP verbs”.
						
	
							It must not have more than one entity parameter as described in the section called “Parameters”.
						

Parameters

					 Resource method parameters take two forms:
				
	
							entity parameters—Entity parameters are not annotated. Their value is mapped from the request entity body. An entity parameter can be of any type for which your application has an entity provider. Typically they are JAXB objects.
						
Important

								A resource method can have only one entity parameter.
							

							For more information on entity providers see Chapter 51, Entity Support.
						

	
							annotated parameters—Annotated parameters use one of the JAX-RS annotations that specify how the value of the parameter is mapped from the request. Typically, the value of the parameter is mapped from portions of the request URI.
						

							For more information about using the JAX-RS annotations for mapping request data to method parameters see Chapter 47, Passing Information into Resource Classes and Methods.
						

					Example 46.4, “Resource method with a valid parameter list” shows a resource method with a valid parameter list.
				
Example 46.4. Resource method with a valid parameter list
@POST
@Path("disaster/monster/giant/{id}")
public void addDaikaiju(Kaiju kaiju,
 @PathParam("id") String id)
{
 ...
}

					Example 46.5, “Resource method with an invalid parameter list” shows a resource method with an invalid parameter list. It has two parameters that are not annotated.
				
Example 46.5. Resource method with an invalid parameter list
@POST
@Path("disaster/monster/giant/")
public void addDaikaiju(Kaiju kaiju,
 String id)
{
 ...
}

Return values

					Resource methods can return one of the following:
				
	
							void
						
	
							any Java class for which the application has an entity provider
						

							For more information on entity providers see Chapter 51, Entity Support.
						

	
							a Response object
						

							For more information on Response objects see the section called “Fine tuning an application’s responses”.
						

	
							a GenericEntity<T> object
						

							For more information on GenericEntity<T> objects see the section called “Returning entities with generic type information”.
						

					All resource methods return an HTTP status code to the requester. When the return type of the method is void or the value being returned is null, the resource method sets the HTTP status code to 204. When the resource method returns any value other than null, it sets the HTTP status code to 200.
				

Working with sub-resources

Overview

					It is likely that a service will need to be handled by more than one resource. For example, in an order processing service best-practices suggests that each customer would be handled as a unique resource. Each order would also be handled as a unique resource.
				

					Using the JAX-RS APIs, you would implement the customer resources and the order resources as sub-resources. A sub-resource is a resource that is accessed through a root resource class. They are defined by adding a @Path annotation to a resource class' method. Sub-resources can be implemented in one of two ways:
				
	
							Sub-resource method—directly implements an HTTP verb for a sub-resource and is decorated with one of the annotations described in the section called “Specifying HTTP verbs”.
						
	
							Sub-resource locator—points to a class that implements the sub-resource.
						

Specifying a sub-resource

					 Sub-resources are specified by decorating a method with the @Path annotation. The URI of the sub-resource is constructed as follows:
				
	
							Append the value of the sub-resource’s @Path annotation to the value of the sub-resource’s parent resource’s @Path annotation.
						

							The parent resource’s @Path annotation maybe located on a method in a resource class that returns an object of the class containing the sub-resource.
						

	
							Repeat the previous step until the root resource is reached.
						
	
							The assembled URI is appended to the base URI at which the service is deployed.
						

					For example the URI of the sub-resource shown in Example 46.6, “Order sub-resource” could be baseURI/customerservice/order/12.
				
Example 46.6. Order sub-resource
...
@Path("/customerservice/")
public class CustomerService
{
 ...
 @Path("/orders/{orderId}/")
 @GET
 public Order getOrder(@PathParam("orderId") String orderId)
 {
 ...
 }
}

Sub-resource methods

					 A sub-resource method is decorated with both a @Path annotation and one of the HTTP verb annotations. The sub-resource method is directly responsible for handling a request made on the resource using the specified HTTP verb.
				

					Example 46.7, “Sub-resource methods” shows a resource class with three sub-resource methods:
				
	
							getOrder() handles HTTP GET requests for resources whose URI matches /customerservice/orders/{orderId}/.
						
	
							updateOrder() handles HTTP PUT requests for resources whose URI matches /customerservice/orders/{orderId}/.
						
	
							newOrder() handles HTTP POST requests for the resource at /customerservice/orders/.
						

Example 46.7. Sub-resource methods
...
@Path("/customerservice/")
public class CustomerService
{
 ...
 @Path("/orders/{orderId}/")
 @GET
 public Order getOrder(@PathParam("orderId") String orderId)
 {
 ...
 }

 @Path("/orders/{orderId}/")
 @PUT
 public Order updateOrder(@PathParam("orderId") String orderId,
 Order order)
 {
 ...
 }

 @Path("/orders/")
 @POST
 public Order newOrder(Order order)
 {
 ...
 }
}

Note

						Sub-resource methods with the same URI template are equivalent to resource class returned by a sub-resource locator.
					

Sub-resource locators

					 Sub-resource locators are not decorated with one of the HTTP verb annotations and do not directly handle are request on the sub-resource. Instead, a sub-resource locator returns an instance of a resource class that can handle the request.
				

					In addition to not having an HTTP verb annotation, sub-resource locators also cannot have any entity parameters. All of the parameters used by a sub-resource locator method must use one of the annotations described in Chapter 47, Passing Information into Resource Classes and Methods.
				

					As shown in Example 46.8, “Sub-resource locator returning a specific class”, sub-resource locator allows you to encapsulate a resource as a reusable class instead of putting all of the methods into one super class. The processOrder() method is a sub-resource locator. When a request is made on a URI matching the URI template /orders/{orderId}/ it returns an instance of the Order class. The Order class has methods that are decorated with HTTP verb annotations. A PUT request is handled by the updateOrder() method.
				
Example 46.8. Sub-resource locator returning a specific class
...
@Path("/customerservice/")
public class CustomerService
{
 ...
 @Path("/orders/{orderId}/")
 public Order processOrder(@PathParam("orderId") String orderId)
 {
 ...
 }

 ...
}

public class Order
{
 ...
 @GET
 public Order getOrder(@PathParam("orderId") String orderId)
 {
 ...
 }

 @PUT
 public Order updateOrder(@PathParam("orderId") String orderId,
 Order order)
 {
 ...
 }

}

					Sub-resource locators are processed at runtime so that they can support polymorphism. The return value of a sub-resource locator can be a generic Object, an abstract class, or the top of a class hierarchy. For example, if your service needed to process both PayPal orders and credit card orders, the processOrder() method’s signature from Example 46.8, “Sub-resource locator returning a specific class” could remain unchanged. You would simply need to implement two classes, ppOrder and ccOder, that extended the Order class. The implementation of processOrder() would instantiate the desired implementation of the sub-resource based on what ever logic is required.
				

Resource selection method

Overview

					It is possible for a given URI to map to one or more resource methods. For example the URI customerservice/12/ma could match the templates @Path("customerservice/{id}") or @Path("customerservice/{id}/{state}"). JAX-RS specifies a detailed algorithm for matching a resource method to a request. The algorithm compares the normalized URI, the HTTP verb, and the media types of the request and response entities to the annotations on the resource classes.
				

The basic selection algorithm

					The JAX-RS selection algorithm is broken down into three stages:
				
	
							Determine the root resource class.
						

							The request URI is matched against all of the classes decorated with the @Path annotation. The classes whose @Path annotation matches the request URI are determined.
						

							If the value of the resource class' @Path annotation matches the entire request URI, the class' methods are used as input into the third stage.
						

	
							Determine the object will handle the request.
						

							If the request URI is longer than the value of the selected class' @Path annotation, the values of the resource methods' @Path annotations are used to look for a sub-resource that can process the request.
						

							If one or more sub-resource methods match the request URI, these methods are used as input for the third stage.
						

							If the only matches for the request URI are sub-resource locaters, the resource methods of the object created by the sub-resource locater to match the request URI. This stage is repeated until a sub-resource method matches the request URI.
						

	
							Select the resource method that will handle the request.
						

							The resource method whose HTTP verb annotation matches the HTTP verb in the request. In addition, the selected resource method must accept the media type of the request entity body and be capable of producing a response that conforms to the media type(s) specified in the request.
						

Selecting from multiple resource classes

					The first two stages of the selection algorithm determine the resource that will handle the request. In some cases the resource is implemented by a resource class. In other cases, it is implemented by one or more sub-resources that use the same URI template. When there are multiple resources that match a request URI, resource classes are preferred over sub-resources.
				

					If more than one resource still matches the request URI after sorting between resource classes and sub-resources, the following criteria are used to select a single resource:
				
	
							Prefer the resource with the most literal characters in its URI template.
						

							Literal characters are characters that are not part of a template variable. For example, /widgets/{id}/{color} has ten literal characters and /widgets/1/{color} has eleven literal characters. So, the request URI /widgets/1/red would be matched to the resource with /widgets/1/{color} as its URI template.
						
Note

								A trailing slash (/) counts as a literal character. So /joefred/ will be preferred over /joefred.
							

	
							Prefer the resource with the most variables in its URI template.
						

							The request URI /widgets/30/green could match both /widgets/{id}/{color} and /widgets/{amount}/. However, the resource with the URI template /widgets/{id}/{color} will be selected because it has two variables.
						

	
							Prefer the resource with the most variables containing regular expressions.
						

							The request URI /widgets/30/green could match both /widgets/{number}/{color} and /widgets/{id:.}/{color}*. However, the resource with the URI template */widgets/{id:.}/{color} will be selected because it has a variable containing a regular expression.
						

Selecting from multiple resource methods

					In many cases, selecting a resource that matches the request URI results in a single resource method that can process the request. The method is determined by matching the HTTP verb specified in the request with a resource method’s HTTP verb annotation. In addition to having the appropriate HTTP verb annotation, the selected method must also be able to handle the request entity included in the request and be able to produce the proper type of response specified in the request’s metadata.
				
Note

						The type of request entity a resource method can handle is specified by the @Consumes annotation. The type of responses a resource method can produce are specified using the @Produces annotation.
					

					When selecting a resource produces multiple methods that can handle a request the following criteria is used to select the resource method that will handle the request:
				
	
							Prefer resource methods over sub-resources.
						
	
							Prefer sub-resource methods over sub-resource locaters.
						
	
							Prefer methods that use the most specific values in the @Consumes annotation and the @Produces annotation.
						

							For example, a method that has the annotation @Consumes("text/xml") would be preferred over a method that has the annotation @Consumes("text/*"). Both methods would be preferred over a method without an @Consumes annotation or the annotation @Consumes("*/*").
						

	
							Prefer methods that most closely match the content type of the request body entity.
						
Note

								The content type of the request body entity is specified in the HTTP Content-Type property.
							

	
							Prefer methods that most closely match the content type accepted as a response.
						
Note

								The content types accepted as a response are specified in the HTTP Accept property.
							

Customizing the selection process

					 In some cases, developers have reported the algorithm being somewhat restrictive in the way multiple resource classes are selected. For example, if a given resource class has been matched and if this class has no matching resource method, then the algorithm stops executing. It never checks the remaining matching resource classes.
				

					Apache CXF provides the org.apache.cxf.jaxrs.ext.ResourceComparator interface which can be used to customize how the runtime handles multiple matching resource classes. The ResourceComparator interface, shown in Example 46.9, “Interface for customizing resource selection”, has to methods that need to be implemented. One compares two resource classes and the other compares two resource methods.
				
Example 46.9. Interface for customizing resource selection
package org.apache.cxf.jaxrs.ext;

import org.apache.cxf.jaxrs.model.ClassResourceInfo;
import org.apache.cxf.jaxrs.model.OperationResourceInfo;
import org.apache.cxf.message.Message;

public interface ResourceComparator
{
 int compare(ClassResourceInfo cri1,
 ClassResourceInfo cri2,
 Message message);

 int compare(OperationResourceInfo oper1,
 OperationResourceInfo oper2,
 Message message);
}

					Custom implementations select between the two resources as follows:
				
	
							Return 1 if the first parameter is a better match than the second parameter
						
	
							Return -1 if the second parameter is a better match than the first parameter
						

					If 0 is returned then the runtime will proceed with the default selection algorithm
				

					You register a custom ResourceComparator implementation by adding a resourceComparator child to the service’s jaxrs:server element.
				

Chapter 47. Passing Information into Resource Classes and Methods

Abstract

					JAX-RS specifies a number of annotations that allow the developer to control where the information passed into resources come from. The annotations conform to common HTTP concepts such as matrix parameters in a URI. The standard APIs allow the annotations to be used on method parameters, bean properties, and resource class fields. Apache CXF provides an extension that allows for the injection of a sequence of parameters to be injected into a bean.
				

Basics of injecting data

Overview

					Parameters, fields, and bean properties that are initialized using data from the HTTP request message have their values injected into them by the runtime. The specific data that is injected is specified by a set of annotations described in the section called “Using JAX-RS APIs”.
				

					The JAX-RS specification places a few restrictions on when the data is injected. It also places a few restrictions on the types of objects into which request data can be injected.
				

When data is injected

					Request data is injected into objects when they are instantiated due to a request. This means that only objects that directly correspond to a resource can use the injection annotations. As discussed in Chapter 46, Creating Resources, these objects will either be a root resource decorated with the @Path annotation or an object returned from a sub-resource locator method.
				

Supported data types

					The specific set of data types that data can be injected into depends on the annotation used to specify the source of the injected data. However, all of the injection annotations support at least the following set of data types:
				
	
							primitives such as int, char, or long
						
	
							Objects that have a constructor that accepts a single String argument
						
	
							Objects that have a static valueOf() method that accepts a single String argument
						
	
							List<T>, Set<T>, or SortedSet<T> objects where T satisfies the other conditions in the list
						

Note

						Where injection annotations have different requirements for supported data types, the differences will be highlighted in the discussion of the annotation.
					

Using JAX-RS APIs

JAX-RS Annotation Types

						The standard JAX-RS API specifies annotations that can be used to inject values into fields, bean properties, and method parameters. The annotations can be split up into three distinct types:
					
	
								the section called “Injecting data from a request URI”
							
	
								the section called “Injecting data from the HTTP message header”
							
	
								the section called “Injecting data from HTML forms”
							

Injecting data from a request URI

Overview

						One of the best practices for designing a RESTful Web service is that each resource should have a unique URI. A developer can use this principle to provide a good deal of information to the underlying resource implementation. When designing URI templates for a resource, a developer can build the templates to include parameter information that can be injected into the resource implementation. Developers can also leverage query and matrix parameters for feeding information into the resource implementations.
					

Getting data from the URI’s path

						 One of the more common mechanisms for getting information about a resource is through the variables used in creating the URI templates for a resource. This is accomplished using the javax.ws.rs.PathParam annotation. The @PathParam annotation has a single parameter that identifies the URI template variable from which the data will be injected.
					

						In Example 47.1, “Injecting data from a URI template variable” the @PathParam annotation specifies that the value of the URI template variable color is injected into the itemColor field.
					
Example 47.1. Injecting data from a URI template variable
import javax.ws.rs.Path;
import javax.ws.rs.PathParam
...

@Path("/boxes/{shape}/{color}")
class Box
{
 ...

 @PathParam("color")
 String itemColor;

 ...
}

						The data types supported by the @PathParam annotation are different from the ones described in the section called “Supported data types”. The entity into which the @PathParam annotation injects data must be of one of the following types:
					
	
								PathSegment
							

								The value will be the final segment of the matching part of the path.
							

	
								List<PathSegment>
							

								The value will be a list of PathSegment objects corresponding to the path segment(s) that matched the named template parameter.
							

	
								primitives such as int, char, or long
							
	
								Objects that have a constructor that accepts a single String argument
							
	
								Objects that have a static valueOf() method that accepts a single String argument
							

Using query parameters

						 A common way of passing information on the Web is to use query parameters in a URI. Query parameters appear at the end of the URI and are separated from the resource location portion of the URI by a question mark(?). They consist of one, or more, name value pairs where the name and value are separated by an equal sign(=). When more than one query parameter is specified, the pairs are separated from each other by either a semicolon(;) or an ampersand(&). Example 47.2, “URI with a query string” shows the syntax of a URI with query parameters.
					
Example 47.2. URI with a query string
http://fusesource.org?name=value;name2=value2;...

Note

							You can use either the semicolon or the ampersand to separate query parameters, but not both.
						

						The javax.ws.rs.QueryParam annotation extracts the value of a query parameter and injects it into a JAX-RS resource. The annotation takes a single parameter that identifies the name of the query parameter from which the value is extracted and injected into the specified field, bean property, or parameter. The @QueryParam annotation supports the types described in the section called “Supported data types”.
					

						Example 47.3, “Resource method using data from a query parameter” shows a resource method that injects the value of the query parameter id into the method’s id parameter.
					
Example 47.3. Resource method using data from a query parameter
import javax.ws.rs.QueryParam;
import javax.ws.rs.PathParam;
import javax.ws.rs.POST;
import javax.ws.rs.Path;
...

@Path("/monstersforhire/")
public class MonsterService
{
 ...
 @POST
 @Path("/{type}")
 public void updateMonster(@PathParam("type") String type,
 @QueryParam("id") String id)
 {
 ...
 }
 ...
}

						To process an HTTP POST to /monstersforhire/daikaiju?id=jonas the updateMonster() method’s type is set to daikaiju and the id is set to jonas.
					

Using matrix parameters

						 URI matrix parameters, like URI query parameters, are name/value pairs that can provide additional information selecting a resource. Unlike query parameters, matrix parameters can appear anywhere in a URI and they are separated from the hierarchical path segments of the URI using a semicolon(;). /mostersforhire/daikaiju;id=jonas has one matrix parameter called id and /monstersforhire/japan;type=daikaiju/flying;wingspan=40 has two matrix parameters called type and wingspan.
					
Note

							Matrix parameters are not evaluated when computing a resource’s URI. So, the URI used to locate the proper resource to handle the request URI /monstersforhire/japan;type=daikaiju/flying;wingspan=40 is /monstersforhire/japan/flying.
						

						The value of a matrix parameter is injected into a field, parameter, or bean property using the javax.ws.rs.MatrixParam annotation. The annotation takes a single parameter that identifies the name of the matrix parameter from which the value is extracted and injected into the specified field, bean property, or parameter. The @MatrixParam annotation supports the types described in the section called “Supported data types”.
					

						Example 47.4, “Resource method using data from matrix parameters” shows a resource method that injects the value of the matrix parameters type and id into the method’s parameters.
					
Example 47.4. Resource method using data from matrix parameters
import javax.ws.rs.MatrixParam;
import javax.ws.rs.POST;
import javax.ws.rs.Path;
...

@Path("/monstersforhire/")
public class MonsterService
{
 ...
 @POST
 public void updateMonster(@MatrixParam("type") String type,
 @MatrixParam("id") String id)
 {
 ...
 }
 ...
}

						To process an HTTP POST to /monstersforhire;type=daikaiju;id=whale the updateMonster() method’s type is set to daikaiju and the id is set to whale.
					
Note

							JAX-RS evaluates all of the matrix parameters in a URI at once, so it cannot enforce constraints on a matrix parameters location in a URI. For example /monstersforhire/japan;type=daikaiju/flying;wingspan=40 , /monstersforhire/japan/flying;type=daikaiju;wingspan=40, and /monstersforhire/japan;type=daikaiju;wingspan=40/flying are all treated as equivalent by a RESTful Web service implemented using the JAX-RS APIs.
						

Disabling URI decoding

						 By default all request URIs are decoded. So the URI /monster/night%20stalker and the URI /monster/night stalker are equivalent. The automatic URI decoding makes it easy to send characters outside of the ASCII character set as parameters.
					

						If you do not wish to have URI automatically decoded, you can use the javax.ws.rs.Encoded annotation to deactivate the URI decoding. The annotation can be used to deactivate URI decoding at the following levels:
					
	
								class level—Decorating a class with the @Encoded annotation deactivates the URI decoding for all parameters, field, and bean properties in the class.
							
	
								method level—Decorating a method with the @Encoded annotation deactivates the URI decoding for all parameters of the class.
							
	
								parameter/field level—Decorating a parameter or field with the @Encoded annotation deactivates the URI decoding for all parameters of the class.
							

						Example 47.5, “Disabling URI decoding” shows a resource whose getMonster() method does not use URI decoding. The addMonster() method only disables URI decoding for the type parameter.
					
Example 47.5. Disabling URI decoding
@Path("/monstersforhire/")
public class MonsterService
{
 ...

 @GET
 @Encoded
 @Path("/{type}")
 public Monster getMonster(@PathParam("type") String type,
 @QueryParam("id") String id)
 {
 ...
 }

 @PUT
 @Path("/{id}")
 public void addMonster(@Encoded @PathParam("type") String type,
 @QueryParam("id") String id)
 {
 ...
 }
 ...
}

Error handling

						If an error occurs when attempting to inject data using one of the URI injection annotations a WebApplicationException exception wrapping the original exception is generated. The WebApplicationException exception’s status is set to 404.
					

Injecting data from the HTTP message header

Overview

						In normal usage the HTTP headers in a request message pass along generic information about the message, how it is to be handled in transit, and details about the expected response. While a few standard headers are commonly recognized and used, the HTTP specification allows for any name/value pair to be used as an HTTP header. The JAX-RS APIs provide an easy mechanism for injecting HTTP header information into a resource implementation.
					

						One of the most commonly used HTTP headers is the cookie. Cookies allow HTTP clients and servers to share static information across multiple request/response sequences. The JAX-RS APIs provide an annotation inject data directly from a cookie into a resource implementation.
					

Injecting information from the HTTP headers

						 The javax.ws.rs.HeaderParam annotation is used to inject the data from an HTTP header field into a parameter, field, or bean property. It has a single parameter that specifies the name of the HTTP header field from which the value is extracted and injected into the resource implementation. The associated parameter, field, or bean property must conform to the data types described in the section called “Supported data types”.
					

						Injecting the If-Modified-Since header shows code for injecting the value of the HTTP If-Modified-Since header into a class' oldestDate field.
					

Injecting the If-Modified-Since header

							

import javax.ws.rs.HeaderParam;
...
class RecordKeeper
{
 ...
 @HeaderParam("If-Modified-Since")
 String oldestDate;
 ...
}

						

Injecting information from a cookie

						 Cookies are a special type of HTTP header. They are made up of one or more name/value pairs that are passed to the resource implementation on the first request. After the first request, the cookie is passes back and forth between the provider and consumer with each message. Only the consumer, because they generate requests, can change the cookie. Cookies are commonly used to maintain session across multiple request/response sequences, storing user settings, and other data that can persist.
					

						The javax.ws.rs.CookieParam annotation extracts the value from a cookie’s field and injects it into a resource implementation. It takes a single parameter that specifies the name of the cookie’s field from which the value is to be extracted. In addition to the data types listed in the section called “Supported data types”, entities decorated with the @CookieParam can also be a Cookie object.
					

						Example 47.6, “Injecting a cookie” shows code for injecting the value of the handle cookie into a field in the CB class.
					
Example 47.6. Injecting a cookie
import javax.ws.rs.CookieParam;
...
class CB
{
 ...
 @CookieParam("handle")
 String handle;
 ...
}

Error handling

						If an error occurs when attempting to inject data using one of the HTTP message injection annotations a WebApplicationException exception wrapping the original exception is generated. The WebApplicationException exception’s status is set to 400.
					

Injecting data from HTML forms

						
					
Overview

						HTML forms are an easy means of getting information from a user and they are also easy to create. Form data can be used for HTTP GET requests and HTTP POST requests:
					
	GET
	
									When form data is sent as part of an HTTP GET request the data is appended to the URI as a set of query parameters. Injecting data from query parameters is discussed in the section called “Using query parameters”.
								
	POST
	
									When form data is sent as part of an HTTP POST request the data is placed in the HTTP message body. The form data can be handled using a regular entity parameter that supports the form data. It can also be handled by using the @FormParam annotation to extract the data and inject the pieces into resource method parameters.
								

Using the @FormParam annotation to inject form data

						The javax.ws.rs.FormParam annotation extracts field values from form data and injects the value into resource method parameters. The annotation takes a single parameter that specifies the key of the field from which it extracts the values. The associated parameter must conform to the data types described in the section called “Supported data types”.
					
Important

							The JAX-RS API Javadoc states that the @FormParam annotation can be placed on fields, methods, and parameters. However, the @FormParam annotation is only meaningful when placed on resource method parameters.
						

Example

						Injecting form data into resource method parameters shows a resource method that injects form data into its parameters. The method assumes that the client’s form includes three fields—title, tags, and body—that contain string data.
					

Injecting form data into resource method parameters

							

import javax.ws.rs.FormParam;
import javax.ws.rs.POST;

...
@POST
public boolean updatePost(@FormParam("title") String title,
 @FormParam("tags") String tags,
 @FormParam("body") String post)
{
 ...
}

						

Specifying a default value to inject

						
					
Overview

						To provide for a more robust service implementation, you may want to ensure that any optional parameters can be set to a default value. This can be particularly useful for values that are taken from query parameters and matrix parameters since entering long URI strings is highly error prone. You may also want to set a default value for a parameter extracted from a cookie since it is possible for a requesting system not have the proper information to construct a cookie with all the values.
					

						The javax.ws.rs.DefaultValue annotation can be used in conjunction with the following injection annotations:
					
	
								@PathParam
							
	
								@QueryParam
							
	
								@MatrixParam
							
	
								@FormParam
							
	
								@HeaderParam
							
	
								@CookieParam
							

						The @DefaultValue annotation specifies a default value to be used when the data corresponding to the injection annotation is not present in the request.
					

Syntax

						Syntax for setting the default value of a parameter shows the syntax for using the @DefaultValue annotation.
					

Syntax for setting the default value of a parameter

							

import javax.ws.rs.DefaultValue;
 ...
 void resourceMethod(@MatrixParam("matrix")
 @DefaultValue("value)
 int someValue, ...)
 ...

						

						The annotation must come before the parameter, bean, or field, it will effect. The position of the @DefaultValue annotation relative to the accompanying injection annotation does not matter.
					

						The @DefaultValue annotation takes a single parameter. This parameter is the value that will be injected into the field if the proper data cannot be extracted based on the injection annotation. The value can be any String value. The value should be compatible with type of the associated field. For example, if the associated field is of type int, a default value of blue results in an exception.
					

Dealing with lists and sets

						If the type of the annotated parameter, bean or field is List, Set, or SortedSet then the resulting collection will have a single entry mapped from the supplied default value.
					

Example

						Setting default values shows two examples of using the @DefaultValue to specify a default value for a field whose value is injected.
					

Setting default values

							

import javax.ws.rs.DefaultValue;
import javax.ws.rs.PathParam;
import javax.ws.rs.QueryParam;
import javax.ws.rs.GET;
import javax.ws.rs.Path;

@Path("/monster")
public class MonsterService
{

 @Get
 public Monster getMonster(@QueryParam("id") @DefaultValue("42") int id,
 @QueryParam("type") @DefaultValue("bogeyman") String type)
 {
 ...
 }

 ...
}

						

						The getMonster() method in Setting default values is invoked when a GET request is sent to baseURI/monster. The method expects two query parameters, id and type, appended to the URI. So a GET request using the URI baseURI/monster?id=1&type=fomóiri would return the Fomóiri with the id of one.
					

						Because the @DefaultValue annotation is placed on both parameters, the getMonster() method can function if the query parameters are omitted. A GET request sent to baseURI/monster is equivalent to a GET request using the URI baseURI/monster?id=42&type=bogeyman.
					

Injecting Parameters into a Java Bean

Overview

						When posting HTML forms over REST, a common pattern on the server side is to create a Java bean to encapsulate all of the data received in the form (and possibly data from other parameters and HTML headers, as well). Normally, creating this Java bean would be a two step process: a resource method receives the form values by injection (for example, by adding @FormParam annotations to its method parameters), and the resource method then calls the bean’s constructor, passing in the form data.
					

						Using the JAX-RS 2.0 @BeanParam annotation, it is possible to implement this pattern in a single step. The form data can be injected directly into the fields of the bean class and the bean itself is created automatically by the JAX-RS runtime. This is most easily explained by example.
					

Injection target

						The @BeanParam annotation can be attached to resource method parameters, resource fields, or bean properties. A parameter target is the only kind of target that can be used with all resource class lifecycles, however. The other kinds of target are restricted to the per-request lifecycle. This situation is summarized in Table 47.1, “@BeanParam Injection Targets”.
					
Table 47.1. @BeanParam Injection Targets
	Target	Resource Class Lifecycles
	
										PARAMETER
									

									 	
										All
									

									
	
										FIELD
									

									 	
										Per-request (default)
									

									
	
										METHOD (bean property)
									

									 	
										Per-request (default)
									

									

Example without BeanParam annotation

						The following example shows how you might go about capturing form data in a Java bean using the conventional approach (without using @BeanParam):
					
// Java
import javax.ws.rs.POST;
import javax.ws.rs.FormParam;
import javax.ws.rs.core.Response;
...
@POST
public Response orderTable(@FormParam("orderId") String orderId,
 @FormParam("color") String color,
 @FormParam("quantity") String quantity,
 @FormParam("price") String price)
{
 ...
 TableOrder bean = new TableOrder(orderId, color, quantity, price);
 ...
 return Response.ok().build();
}

						In this example, the orderTable method processes a form that is used to order a quantity of tables from a furniture Web site. When the order form is posted, the form values are injected into the parameters of the orderTable method, and the orderTable method explicitly creates an instance of the TableOrder class, using the injected form data.
					

Example with BeanParam annotation

						The previous example can be refactored to take advantage of the @BeanParam annotation. When using the @BeanParam approach, the form parameters can be injected directly into the fields of the bean class, TableOrder. In fact, you can use any of the standard JAX-RS parameter annotations in the bean class: including @PathParam, @QueryParam, @FormParam, @MatrixParam, @CookieParam, and @HeaderParam. The code for processing the form can be refactored as follows:
					
// Java
import javax.ws.rs.POST;
import javax.ws.rs.FormParam;
import javax.ws.rs.core.Response;
...
public class TableOrder {
 @FormParam("orderId")
 private String orderId;

 @FormParam("color")
 private String color;

 @FormParam("quantity")
 private String quantity;

 @FormParam("price")
 private String price;

 // Define public getter/setter methods
 // (Not shown)
 ...
}
...
@POST
public Response orderTable(@BeanParam TableOrder orderBean)
{
 ...
 // Do whatever you like with the 'orderBean' bean
 ...
 return Response.ok().build();
}

						Now that the form annotations have been added to the bean class, TableOrder, you can replace all of the @FormParam annotations in the signature of the resource method with just a single @BeanParam annotation, as shown. Now, when the form is posted to the orderTable resource method, the JAX-RS runtime automatically creates a TableOrder instance, orderBean, and injects all of the data specified by the parameter annotations on the bean class.
					

Parameter Converters

Overview

					Using parameter converters, it is possible to inject a parameter (of String type) into any type of field, bean property, or resource method argument. By implementing and binding a suitable parameter converter, you can extend the JAX-RS runtime so that it is capable of converting the parameter String value to the target type.
				

Automatic conversions

					Parameters are received as instances of String, so you can always inject them directly into fields, bean properties, and method parameters of String type. In addition, the JAX-RS runtime has the capability to convert parameter strings automatically to the following types:
				
	
							Primitive types.
						
	
							Types that have a constructor that accepts a single String argument.
						
	
							Types that have a static method named valueOf or fromString with a single String argument that returns an instance of the type.
						
	
							List<T>, Set<T>, or SortedSet<T>, if T is one of the types described in 2 or 3.
						

Parameter converters

					In order to inject a parameter into a type not covered by automatic conversion, you can define a custom parameter converter for the type. A parameter converter is a JAX-RS extension that enables you to define conversion from String to a custom type, and also in the reverse direction, from the custom type to a String.
				

Factory pattern

					The JAX-RS parameter converter mechanism uses a factory pattern. So, instead of registering a parameter converter directly, you must register a parameter converter provider (of type, javax.ws.rs.ext.ParamConverterProvider), which creates a parameter converter (of type, javax.ws.rs.ext.ParamConverter) on demand.
				

ParamConverter interface

					The javax.ws.rs.ext.ParamConverter interface is defined as follows:
				
// Java
package javax.ws.rs.ext;

import java.lang.annotation.Documented;
import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;

import javax.ws.rs.DefaultValue;

public interface ParamConverter<T> {

 @Target({ElementType.TYPE})
 @Retention(RetentionPolicy.RUNTIME)
 @Documented
 public static @interface Lazy {}

 public T fromString(String value);

 public String toString(T value);
}

					To implement your own ParamConverter class, you must implement this interface, overriding the fromString method (to convert the parameter string to your target type) and the toString method (to convert your target type back to a string).
				

ParamConverterProvider interface

					The javax.ws.rs.ext.ParamConverterProvider interface is defined as follows:
				
// Java
package javax.ws.rs.ext;

import java.lang.annotation.Annotation;
import java.lang.reflect.Type;

public interface ParamConverterProvider {
 public <T> ParamConverter<T> getConverter(Class<T> rawType, Type genericType, Annotation annotations[]);
}

					To implement your own ParamConverterProvider class, you must implement this interface, overriding the getConverter method, which is a factory method that creates ParamConverter instances.
				

Binding the parameter converter provider

					To bind the parameter converter provider to the JAX-RS runtime (thus making it available to your application), you must annotate your implementation class with the @Provider annotation, as follows:
				
// Java
...
import javax.ws.rs.ext.ParamConverterProvider;
import javax.ws.rs.ext.Provider;

@Provider
public class TargetTypeProvider implements ParamConverterProvider {
 ...
}

					This annotation ensures that your parameter converter provider is automatically registered during the scanning phase of deployment.
				

Example

					The following example shows how to implement a ParamConverterProvider and a ParamConverter which has the capability to convert parameter strings to and from the TargetType type:
				
// Java
import java.lang.annotation.Annotation;
import java.lang.reflect.Type;

import javax.ws.rs.ext.ParamConverter;
import javax.ws.rs.ext.ParamConverterProvider;
import javax.ws.rs.ext.Provider;

@Provider
public class TargetTypeProvider implements ParamConverterProvider {

 @Override
 public <T> ParamConverter<T> getConverter(
 Class<T> rawType,
 Type genericType,
 Annotation[] annotations
) {
 if (rawType.getName().equals(TargetType.class.getName())) {
 return new ParamConverter<T>() {

 @Override
 public T fromString(String value) {
 // Perform conversion of value
 // ...
 TargetType convertedValue = // ... ;
 return convertedValue;
 }

 @Override
 public String toString(T value) {
 if (value == null) { return null; }
 // Assuming that TargetType.toString is defined
 return value.toString();
 }
 };
 }
 return null;
 }

}

Using the parameter converter

					Now that you have defined a parameter converter for TargetType, it is possible to inject parameters directly into TargetType fields and arguments, for example:
				
// Java
import javax.ws.rs.FormParam;
import javax.ws.rs.POST;
...
@POST
public Response updatePost(@FormParam("target") TargetType target)
{
 ...
}

Lazy conversion of default value

					If you specify default values for your parameters (using the @DefaultValue annotation), you can choose whether the default value is converted to the target type right away (default behaviour), or whether the default value should be converted only when required (lazy conversion). To select lazy conversion, add the @ParamConverter.Lazy annotation to the target type. For example:
				
// Java
import javax.ws.rs.FormParam;
import javax.ws.rs.POST;
import javax.ws.rs.DefaultValue;
import javax.ws.rs.ext.ParamConverter.Lazy;
...
@POST
public Response updatePost(
 @FormParam("target")
 @DefaultValue("default val")
 @ParamConverter.Lazy
 TargetType target)
{
 ...
}

Using Apache CXF extensions

Overview

					Apache CXF provides an extension to the standard JAX-WS injection mechanism that allows developers to replace a sequence of injection annotations with a single annotation. The single annotation is placed on a bean containing fields for the data that is extracted using the annotation. For example, if a resource method is expecting a request URI to include three query parameters called id, type, and size, it could use a single @QueryParam annotation to inject all of the parameters into a bean with corresponding fields.
				
Note

						Consider using the @BeanParam annotation instead (available since JAX-RS 2.0). The standardized @BeanParam approach is more flexible than the proprietary Apache CXF extension, and is thus the recommended alternative. For details, see the section called “Injecting Parameters into a Java Bean”.
					

Supported injection annotations

					This extension does not support all of the injection parameters. It only supports the following ones:
				
	
							@PathParam
						
	
							@QueryParam
						
	
							@MatrixParam
						
	
							@FormParam
						

Syntax

					To indicate that an annotation is going to use serial injection into a bean, you need to do two things:
				
	
							Specify the annotation’s parameter as an empty string. For example @PathParam("") specifies that a sequence of URI template variables are to be serialized into a bean.
						
	
							Ensure that the annotated parameter is a bean with fields that match the values being injected.
						

Example

					Example 47.7, “Injecting query parameters into a bean” shows an example of injecting a number of Query parameters into a bean. The resource method expect the request URI to include two query parameters: type and id. Their values are injected into the corresponding fields of the Monster bean.
				
Example 47.7. Injecting query parameters into a bean
import javax.ws.rs.QueryParam;
import javax.ws.rs.PathParam;
import javax.ws.rs.POST;
import javax.ws.rs.Path;
...

@Path("/monstersforhire/")
public class MonsterService
{
 ...
 @POST
 public void updateMonster(@QueryParam("") Monster bean)
 {
 ...
 }
 ...
}

public class Monster
{
 String type;
 String id;

 ...
}

Chapter 48. Returning Information to the Consumer

Abstract

					RESTful requests require that at least an HTTP response code be returned to the consumer. In many cases, a request can be satisfied by returning a plain JAXB object or a GenericEntity object. When the resource method needs to return additional metadata along with the response entity, JAX-RS resource methods can return a Response object containing any needed HTTP headers or other metadata.
				

Return Types

					The information returned to the consumer determines the exact type of object a resource method returns. This may seem obvious, but the mapping between Java return objects and what is returned to a RESTful consumer is not one-to-one. At a minimum, RESTful consumers need to be returned a valid HTTP return code in addition to any response entity body. The mapping of the data contained within a Java object to a response entity is effected by the MIME types a consumer is willing to accept.
				

					To address the issues involved in mapping Java object to RESTful response messages, resource methods are allowed to return four types of Java constructs:
				
	
							the section called “Returning plain Java constructs” return basic information with HTTP return codes determined by the JAX-RS runtime.
						
	
							the section called “Returning plain Java constructs” return complex information with HTTP return codes determined by the JAX-RS runtime.
						
	
							the section called “Fine tuning an application’s responses” return complex information with a programmatically determined HTTP return status. The Response object also allows HTTP headers to be specified.
						
	
							the section called “Returning entities with generic type information” return complex information with HTTP return codes determined by the JAX-RS runtime. The GenericEnitity object provides more information to the runtime components serializing the data.
						

Returning plain Java constructs

Overview

					In many cases a resource class can return a standard Java type, a JAXB object, or any object for which the application has an entity provider. In these cases the runtime determines the MIME type information using the Java class of the object being returned. The runtime also determines the appropriate HTTP return code to send to the consumer.
				

Returnable types

					Resource methods can return void or any Java type for which an entity writer is provided. By default, the runtime has providers for the following:
				
	
							the Java primitives
						
	
							the Number representations of the Java primitives
						
	
							JAXB objects
						

					the section called “Natively supported types” lists all of the return types supported by default. the section called “Custom writers” describes how to implement a custom entity writer.
				

MIME types

					The runtime determines the MIME type of the returned entity by first checking the resource method and resource class for a @Produces annotation. If it finds one, it uses the MIME type specified in the annotation. If it does not find one specified by the resource implementation, it relies on the entity providers to determine the proper MIME type.
				

					By default the runtime assign MIME types as follows:
				
	
							Java primitives and their Number representations are assigned a MIME type of application/octet-stream.
						
	
							JAXB objects are assigned a MIME type of application/xml.
						

					Applications can use other mappings by implementing custom entity providers as described in the section called “Custom writers”.
				

Response codes

					When resource methods return plain Java constructs, the runtime automatically sets the response’s status code if the resource method completes without throwing an exception. The status code is set as follows:
				
	
							204(No Content)—the resource method’s return type is void
						
	
							204(No Content)—the value of the returned entity is null
						
	
							200(OK)—the value of the returned entity is not null
						

					If an exception is thrown before the resource method completes the return status code is set as described in Chapter 50, Handling Exceptions.
				

Fine tuning an application’s responses

Basics of building responses

Overview

						RESTful services often need more precise control over the response returned to a consumer than is allowed when a resource method returns a plain Java construct. The JAX-RS Response class allows a resource method to have some control over the return status sent to the consumer and to specify HTTP message headers and cookies in the response.
					

						Response objects wrap the object representing the entity that is returned to the consumer. Response objects are instantiated using the ResponseBuilder class as a factory.
					

						The ResponseBuilder class also has many of the methods used to manipulate the response’s metadata. For instance the ResonseBuilder class contains the methods for setting HTTP headers and cache control directives.
					

Relationship between a response and a response builder

						 The Response class has a protected constructor, so they cannot be instantiated directly. They are created using the ResponseBuilder class enclosed by the Response class. The ResponseBuilder class is a holder for all of the information that will be encapsulated in the response created from it. The ResponseBuilder class also has all of the methods responsible for setting HTTP header properties on the message.
					

						The Response class does provide some methods that ease setting the proper response code and wrapping the entity. There are methods for each of the common response status codes. The methods corresponding to status that include an entity body, or required metadata, include versions that allow for directly setting the information into the associated response builder.
					

						The ResponseBuilder class' build() method returns a response object containing the information stored in the response builder at the time the method is invoked. After the response object is returned, the response builder is returned to a clean state.
					

Getting a response builder

						 There are two ways to get a response builder:
					
	
								Using the static methods of the Response class as shown in Getting a response builder using the Response class.
							

Getting a response builder using the Response class

									

import javax.ws.rs.core.Response;

Response r = Response.ok().build();

								

								When getting a response builder this way you do not get access to an instance you can manipulate in multiple steps. You must string all of the actions into a single method call.
							

	
								Using the Apache CXF specific ResponseBuilderImpl class. This class allows you to work directly with a response builder. However, it requires that you manually set all of the response builders information manually.
							

								Example 48.1, “Getting a response builder using the ResponseBuilderImpl class” shows how Getting a response builder using the Response class could be rewritten using the ResponseBuilderImpl class.
							
Example 48.1. Getting a response builder using the ResponseBuilderImpl class
import javax.ws.rs.core.Response;
import org.apache.cxf.jaxrs.impl.ResponseBuilderImpl;

ResponseBuilderImpl builder = new ResponseBuilderImpl();
builder.status(200);
Response r = builder.build();

Note

									You could also simply assign the ResponseBuilder returned from a Response class' method to a ResponseBuilderImpl object.
								

More information

						For more information about the Response class see the Response class' Javadoc.
					

						For more information about the ResponseBuilder class see the ResponseBuilder class' Javadoc.
					

						For more information on the Apache CXF ResponseBuilderIml class see the ResponseBuilderImpl Javadoc.
					

Creating responses for common use cases

Overview

						The Response class provides shortcut methods for handling the more common responses that a RESTful service will need. These methods handle setting the proper headers using either provided values or default values. They also handle populating the entity body when appropriate.
					

Creating responses for successful requests

						 When a request is successfully processed the application needs to send a response to acknowledge that the request has been fulfilled. That response may contain an entity.
					

						The most common response when successfully completing a response is OK. An OK response typically contains an entity that corresponds to the request. The Response class has an overloaded ok() method that sets the response status to 200 and adds a supplied entity to the enclosed response builder. There are five versions of the ok() method. The most commonly used variant are:
					
	
								Response.ok()—creates a response with a status of 200 and an empty entity body.
							
	
								Response.ok(java.lang.Object entity)—creates a response with a status of 200, stores the supplied object in the responses entity body, and determines the entities media type by introspecting the object.
							

						Creating a response with an 200 response shows an example of creating a response with an OK status.
					

Creating a response with an 200 response

							

import javax.ws.rs.core.Response;
import demo.jaxrs.server.Customer;
...

Customer customer = new Customer("Jane", 12);

return Response.ok(customer).build();

						

						For cases where the requester is not expecting an entity body, it may be more appropriate to send a 204 No Content status instead of an 200 OK status. The Response.noContent() method will create an appropriate response object.
					

						Creating a response with a 204 status shows an example of creating a response with an 204 status.
					

Creating a response with a 204 status

							

import javax.ws.rs.core.Response;

return Response.noContent().build();

						

Creating responses for redirection

						The Response class provides methods for handling three of the redirection response statuses.
					
	303 See Other
	
									 The 303 See Other status is useful when the requested resource needs to permanently redirect the consumer to a new resource to process the request.
								

									The Response classes seeOther() method creates a response with a 303 status and places the new resource URI in the message’s Location field. The seeOther() method takes a single parameter that specifies the new URI as a java.net.URI object.
								

	304 Not Modified
	
									 The 304 Not Modified status can be used for different things depending on the nature of the request. It can be used to signify that the requested resource has not changed since a previous GET request. It can also be used to signify that a request to modify the resource did not result in the resource being changed.
								

									The Response classes notModified() methods creates a response with a 304 status and sets the modified date property on the HTTP message. There are three versions of the notModified() method:
								
	
											notModified
										
	
											notModifiedjavax.ws.rs.core.Entitytag
										
	
											notModifiedjava.lang.Stringtag
										

	307 Temporary Redirect
	
									 The 307 Temporary Redirect status is useful when the requested resource needs to direct the consumer to a new resource, but wants the consumer to continue using this resource to handle future requests.
								

									The Response classes temporaryRedirect() method creates a response with a 307 status and places the new resource URI in the message’s Location field. The temporaryRedirect() method takes a single parameter that specifies the new URI as a java.net.URI object.
								

						Creating a response with a 304 status shows an example of creating a response with an 304 status.
					

Creating a response with a 304 status

							

import javax.ws.rs.core.Response;

return Response.notModified().build();

						

Creating responses to signal errors

						 The Response class provides methods to create responses for two basic processing errors:
					
	
								serverError—creates a response with a status of 500 Internal Server Error.
							
	
								notAcceptablejava.util.List<javax.ws.rs.core.Variant>variants—creates a response with a 406 Not Acceptable status and an entity body containing a list of acceptable resource types.
							

						Creating a response with a 500 status shows an example of creating a response with an 500 status.
					

Creating a response with a 500 status

							

import javax.ws.rs.core.Response;

return Response.serverError().build();

						

Handling more advanced responses

						
					
Overview

						The Response class methods provide short cuts for creating responses for common cases. When you need to address more complicated cases such as specifying cache control directives, adding custom HTTP headers, or sending a status not handled by the Response class, you need to use the ResponseBuilder classes methods to populate the response before using the build() method to generate the response object.
					

						As discussed in the section called “Getting a response builder”, you can use the Apache CXF ResponseBuilderImpl class to create a response builder instance that can be manipulated directly.
					

Adding custom headers

						 Custom headers are added to a response using the ResponseBuilder class' header() method. The header() method takes two parameters:
					
	
								name—a string specifying the name of the header
							
	
								value—a Java object containing the data stored in the header
							

						You can set multiple headers on the message by calling the header() method repeatedly.
					

						Adding a header to a response shows code for adding a header to a response.
					

Adding a header to a response

							

import javax.ws.rs.core.Response;
import org.apache.cxf.jaxrs.impl.ResponseBuilderImpl;

ResponseBuilderImpl builder = new ResponseBuilderImpl();
builder.header("username", "joe");
Response r = builder.build();

						

Adding a cookie

						 Custom headers are added to a response using the ResponseBuilder class' cookie() method. The cookie() method takes one or more cookies. Each cookie is stored in a javax.ws.rs.core.NewCookie object. The easiest of the NewCookie class' contructors to use takes two parameters:
					
	
								name—a string specifying the name of the cookie
							
	
								value—a string specifying the value of the cookie
							

						You can set multiple cookies by calling the cookie() method repeatedly.
					

						Adding a cookie to a response shows code for adding a cookie to a response.
					

Adding a cookie to a response

							

import javax.ws.rs.core.Response;
import javax.ws.rs.core.NewCookie;

NewCookie cookie = new NewCookie("username", "joe");

Response r = Response.ok().cookie(cookie).build();

						
Warning

							Calling the cookie() method with a null parameter list erases any cookies already associated with the response.
						

Setting the response status

						 When you want to return a status other than one of the statuses supported by the Response class' helper methods, you can use the ResponseBuilder class' status() method to set the response’s status code. The status() method has two variants. One takes an int that specifies the response code. The other takes a Response.Status object to specify the response code.
					

						The Response.Status class is an enumeration enclosed in the Response class. It has entries for most of the defined HTTP response codes.
					

						Adding a header to a response shows code for setting the response status to 404 Not Found.
					

Adding a header to a response

							

import javax.ws.rs.core.Response;
import org.apache.cxf.jaxrs.impl.ResponseBuilderImpl;

ResponseBuilderImpl builder = new ResponseBuilderImpl();
builder.status(404);
Response r = builder.build();

						

Setting cache control directives

						 The ResponseBuilder class' cacheControl() method allows you to set the cache control headers on the response. The cacheControl() method takes a javax.ws.rs.CacheControl object that specifies the cache control directives for the response.
					

						The CacheControl class has methods that correspond to all of the cache control directives supported by the HTTP specification. Where the directive is a simple on or off value the setter method takes a boolean value. Where the directive requires a numeric value, such as the max-age directive, the setter takes an int value.
					

						Adding a header to a response shows code for setting the no-store cache control directive.
					

Adding a header to a response

							

import javax.ws.rs.core.Response;
import javax.ws.rs.core.CacheControl;
import org.apache.cxf.jaxrs.impl.ResponseBuilderImpl;

CacheControl cache = new CacheControl();
cache.setNoCache(true);

ResponseBuilderImpl builder = new ResponseBuilderImpl();
builder.cacheControl(cache);
Response r = builder.build();

						

Returning entities with generic type information

					
				
Overview

					There are occasions where the application needs more control over the MIME type of the returned object or the entity provider used to serialize the response. The JAX-RS javax.ws.rs.core.GenericEntity<T> class provides finer control over the serializing of entities by providing a mechanism for specifying the generic type of the object representing the entity.
				

Using a GenericEntity<T> object

					One of the criteria used for selecting the entity provider that serializes a response is the generic type of the object. The generic type of an object represents the Java type of the object. When a common Java type or a JAXB object is returned, the runtime can use Java reflection to determine the generic type. However, when a JAX-RS Response object is returned, the runtime cannot determine the generic type of the wrapped entity and the actual Java class of the object is used as the Java type.
				

					To ensure that the entity provider is provided with correct generic type information, the entity can be wrapped in a GenericEntity<T> object before being added to the Response object being returned.
				

					Resource methods can also directly return a GenericEntity<T> object. In practice, this approach is rarely used. The generic type information determined by reflection of an unwrapped entity and the generic type information stored for an entity wrapped in a GenericEntity<T> object are typically the same.
				

Creating a GenericEntity<T> object

					There are two ways to create a GenericEntity<T> object:
				
	
							Create a subclass of the GenericEntity<T> class using the entity being wrapped. Creating a GenericEntity<T> object using a subclass shows how to create a GenericEntity<T> object containing an entity of type List<String> whose generic type will be available at runtime.
						

Creating a GenericEntity<T> object using a subclass

								

import javax.ws.rs.core.GenericEntity;

List<String> list = new ArrayList<String>();
...
GenericEntity<List<String>> entity =
 new GenericEntity<List<String>>(list) {};
Response response = Response.ok(entity).build();

							

							The subclass used to create a GenericEntity<T> object is typically anonymous.
						

	
							Create an instance directly by supplying the generic type information with the entity. Example 48.2, “Directly instantiating a GenericEntity<T> object” shows how to create a response containing an entity of type AtomicInteger.
						
Example 48.2. Directly instantiating a GenericEntity<T> object
import javax.ws.rs.core.GenericEntity;

AtomicInteger result = new AtomicInteger(12);
GenericEntity<AtomicInteger> entity =
 new GenericEntity<AtomicInteger>(result,
 result.getClass().getGenericSuperclass());
Response response = Response.ok(entity).build();

Asynchronous Response

Asynchronous Processing on the Server

Overview

						The purpose of asynchronous processing of invocations on the server side is to enable more efficient use of threads and, ultimately, to avoid the scenario where client connection attempts are refused because all of the server’s request threads are blocked. When an invocation is processed asynchronously, the request thread is freed up almost immediately.
					
Note

							Note that even when asynchronous processing is enabled on the server side, a client will still remain blocked until it receives a response from the server. If you want to see asynchronous behaviour on the client side, you must implement client-side asynchronous processing. See the section called “Asynchronous Processing on the Client”.
						

Basic model for asynchronous processing

						Figure 48.1, “Threading Model for Asynchronous Processing” shows an overview of the basic model for asynchronous processing on the server side.
					
Figure 48.1. Threading Model for Asynchronous Processing
[image: asyncresponse 01]

						In outline, a request is processed as follows in the asynchronous model:
					
	
								An asynchronous resource method is invoked within a request thread (and receives a reference to an AsyncResponse object, which will be needed later to send back the response).
							
	
								The resource method encapsulates the suspended request in a Runnable object, which contains all of the information and processing logic required to process the request.
							
	
								The resource method pushes the Runnable object onto the blocking queue of the executor thread pool.
							
	
								The resource method can now return, thus freeing up the request thread.
							
	
								When the Runnable object gets to the top of the queue, it is processed by one of the threads in the executor thread pool. The encapsulated AsyncResponse object is then used to send the response back to the client.
							

Thread pool implementation with Java executor

						The java.util.concurrent API is a powerful API that enables you to create a complete thread pool implementation very easily. In the terminology of the Java concurrency API, a thread pool is called an executor. It requires only a single line of code to create a complete working thread pool, including the working threads and the blocking queue that feeds them.
					

						For example, to create a complete working thread pool like the Executor Thread Pool shown in Figure 48.1, “Threading Model for Asynchronous Processing”, create a java.util.concurrent.Executor instance, as follows:
					
Executor executor = new ThreadPoolExecutor(
 5, // Core pool size
 5, // Maximum pool size
 0, // Keep-alive time
 TimeUnit.SECONDS, // Time unit
 new ArrayBlockingQueue<Runnable>(10) // Blocking queue
);

						This constructor creates a new thread pool with five threads, fed by a single blocking queue with which can hold up to 10 Runnable objects. To submit a task to the thread pool, call the executor.execute method, passing in a reference to a Runnable object (which encapsulates the asynchronous task).
					

Defining an asynchronous resource method

						To define a resource method that is asynchronous, inject an argument of type javax.ws.rs.container.AsyncResponse using the @Suspended annotation and make sure that the method returns void. For example:
					
// Java
...
import javax.ws.rs.GET;
import javax.ws.rs.Path;
import javax.ws.rs.PathParam;
import javax.ws.rs.container.AsyncResponse;
import javax.ws.rs.container.Suspended;

@Path("/bookstore")
public class BookContinuationStore {
 ...
 @GET
 @Path("{id}")
 public void handleRequestInPool(@PathParam("id") String id,
 @Suspended AsyncResponse response) {
 ...
 }
 ...
}

						Note that the resource method must return void, because the injected AsyncResponse object will be used to return the response at a later time.
					

AsyncResponse class

						The javax.ws.rs.container.AsyncResponse class provides an a abstract handle on an incoming client connection. When an AsyncResponse object is injected into a resource method, the underlying TCP client connection is initially in a suspended state. At a later time, when you are ready to return the response, you can re-activate the underlying TCP client connection and pass back the response, by calling resume on the AsyncResponse instance. Alternatively, if you need to abort the invocation, you could call cancel on the AsyncResponse instance.
					

Encapsulating a suspended request as a Runnable

						In the asynchronous processing scenario shown in Figure 48.1, “Threading Model for Asynchronous Processing”, you push the suspended request onto a queue, from where it can be processed at a later time by a dedicated thread pool. In order for this approach to work, however, you need to have some way of encapsulating the suspended request in an object. The suspended request object needs to encapsulate the following things:
					
	
								Parameters from the incoming request (if any).
							
	
								The AsyncResponse object, which provides a handle on the incoming client connection and a way of sending back the response.
							
	
								The logic of the invocation.
							

						A convenient way to encapsulate these things is to define a Runnable class to represent the suspended request, where the Runnable.run() method encapsulates the logic of the invocation. The most elegant way to do this is to implement the Runnable as a local class, as shown in the following example.
					

Example of asynchronous processing

						To implement the asynchronous processing scenario, the implementation of the resource method must pass a Runnable object (representing the suspended request) to the executor thread pool. In Java 7 and 8, you can exploit some novel syntax to define the Runnable class as a local class, as shown in the following example:
					
// Java
package org.apache.cxf.systest.jaxrs;

import java.util.HashMap;
import java.util.Map;
import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.Executor;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicInteger;

import javax.ws.rs.GET;
import javax.ws.rs.NotFoundException;
import javax.ws.rs.Path;
import javax.ws.rs.PathParam;
import javax.ws.rs.Produces;
import javax.ws.rs.container.AsyncResponse;
import javax.ws.rs.container.CompletionCallback;
import javax.ws.rs.container.ConnectionCallback;
import javax.ws.rs.container.Suspended;
import javax.ws.rs.container.TimeoutHandler;

import org.apache.cxf.phase.PhaseInterceptorChain;

@Path("/bookstore")
public class BookContinuationStore {

 private Map<String, String> books = new HashMap<String, String>();
 private Executor executor = new ThreadPoolExecutor(5, 5, 0, TimeUnit.SECONDS,
 new ArrayBlockingQueue<Runnable>(10));

 public BookContinuationStore() {
 init();
 }
 ...
 @GET
 @Path("{id}")
 public void handleRequestInPool(final @PathParam("id") String id,
 final @Suspended AsyncResponse response) {
 executor.execute(new Runnable() {
 public void run() {
 // Retrieve the book data for 'id'
 // which is presumed to be a very slow, blocking operation
 // ...
 bookdata = ...
 // Re-activate the client connection with 'resume'
 // and send the 'bookdata' object as the response
 response.resume(bookdata);
 }
 });
 }
 ...
}

						Note how the resource method arguments, id and response, are passed straight into the definition of the Runnable local class. This special syntax enables you to use the resource method arguments directly in the Runnable.run() method, without having to define corresponding fields in the local class.
					
Important

							In order for this special syntax to work, the resource method parameters must be declared as final (which implies that they must not be changed in the method implementation).
						

Timeouts and Timeout Handlers

Overview

						The asynchronous processing model also provides support for imposing timeouts on REST invocations. By default, a timeout results in a HTTP error response being sent back to the client. But you also have the option of registering a timeout handler callback, which enables you to customize the response to a timeout event.
					

Example of setting a timeout without a handler

						To define a simple invocation timeout, without specifying a timeout handler, call the setTimeout method on the AsyncResponse object, as shown in the following example:
					
// Java
// Java
...
import java.util.concurrent.TimeUnit;
...
import javax.ws.rs.GET;
import javax.ws.rs.NotFoundException;
import javax.ws.rs.Path;
import javax.ws.rs.PathParam;
import javax.ws.rs.Produces;
import javax.ws.rs.container.AsyncResponse;
import javax.ws.rs.container.Suspended;
import javax.ws.rs.container.TimeoutHandler;

@Path("/bookstore")
public class BookContinuationStore {
 ...
 @GET
 @Path("/books/defaulttimeout")
 public void getBookDescriptionWithTimeout(@Suspended AsyncResponse async) {
 async.setTimeout(2000, TimeUnit.MILLISECONDS);
 // Optionally, send request to executor queue for processing
 // ...
 }
 ...
}

						Note that you can specify the timeout value using any time unit from the java.util.concurrent.TimeUnit class. The preceding example does not show the code for sending the request to the executor thread pool. If you just wanted to test the timeout behaviour, you could include just the call to async.SetTimeout in the resource method body, and the timeout would be triggered on every invocation.
					

						The AsyncResponse.NO_TIMEOUT value represents an infinite timeout.
					

Default timeout behaviour

						By default, if the invocation timeout is triggered, the JAX-RS runtime raises a ServiceUnavailableException exception and sends back a HTTP error response with the status 503.
					

TimeoutHandler interface

						If you want to customize the timeout behaviour, you must define a timeout handler, by implementing the TimeoutHandler interface:
					
// Java
package javax.ws.rs.container;

public interface TimeoutHandler {
 public void handleTimeout(AsyncResponse asyncResponse);
}

						When you override the handleTimeout method in your implementation class, you can choose between the following approaches to dealing with the timeout:
					
	
								Cancel the response, by calling the asyncResponse.cancel method.
							
	
								Send a response, by calling the asyncResponse.resume method with the response value.
							
	
								Extend the waiting period, by calling the asyncResponse.setTimeout method. (For example, to wait for a further 10 seconds, you could call asyncResponse.setTimeout(10, TimeUnit.SECONDS)).
							

Example of setting a timeout with a handler

						To define an invocation timeout with a timeout handler, call both the setTimeout method and the setTimeoutHandler method on the AsyncResponse object, as shown in the following example:
					
// Java
...
import javax.ws.rs.GET;
import javax.ws.rs.NotFoundException;
import javax.ws.rs.Path;
import javax.ws.rs.PathParam;
import javax.ws.rs.Produces;
import javax.ws.rs.container.AsyncResponse;
import javax.ws.rs.container.Suspended;
import javax.ws.rs.container.TimeoutHandler;

@Path("/bookstore")
public class BookContinuationStore {
 ...
 @GET
 @Path("/books/cancel")
 public void getBookDescriptionWithCancel(@PathParam("id") String id,
 @Suspended AsyncResponse async) {
 async.setTimeout(2000, TimeUnit.MILLISECONDS);
 async.setTimeoutHandler(new CancelTimeoutHandlerImpl());
 // Optionally, send request to executor queue for processing
 // ...
 }
 ...
}

						Where this example registers an instance of the CancelTimeoutHandlerImpl timeout handler to handle the invocation timeout.
					

Using a timeout handler to cancel the response

						The CancelTimeoutHandlerImpl timeout handler is defined as follows:
					
// Java
...
import javax.ws.rs.container.AsyncResponse;
...
import javax.ws.rs.container.TimeoutHandler;

@Path("/bookstore")
public class BookContinuationStore {
 ...
 private class CancelTimeoutHandlerImpl implements TimeoutHandler {

 @Override
 public void handleTimeout(AsyncResponse asyncResponse) {
 asyncResponse.cancel();
 }

 }
 ...
}

						The effect of calling cancel on the AsyncResponse object is to send a HTTP 503 (Service unavailable) error response to the client. You can optionally specify an argument to the cancel method (either an int or a java.util.Date value), which would be used to set a Retry-After: HTTP header in the response message. Clients often ignore the Retry-After: header, however.
					

Dealing with a cancelled response in the Runnable instance

						If you have encapsulated a suspended request as a Runnable instance, which is queued for processing in an executor thread pool, you might find that the AsyncResponse has been cancelled by the time the thread pool gets around to processing the request. For this reason, you ought to add some code to your Runnable instance, which enables it to cope with a cancelled AsyncResponse object. For example:
					
// Java
...
@Path("/bookstore")
public class BookContinuationStore {
 ...
 private void sendRequestToThreadPool(final String id, final AsyncResponse response) {

 executor.execute(new Runnable() {
 public void run() {
 if (!response.isCancelled()) {
 // Process the suspended request ...
 // ...
 }
 }
 });

 }
 ...
}

Handling Dropped Connections

Overview

						It is possible to add a callback to deal with the case where the client connection is lost.
					

ConnectionCallback interface

						To add a callback for dropped connections, you must implement the javax.ws.rs.container.ConnectionCallback interface, which is defined as follows:
					
// Java
package javax.ws.rs.container;

public interface ConnectionCallback {
 public void onDisconnect(AsyncResponse disconnected);
}

Registering a connection callback

						After implementing a connection callback, you must register it with the current AsyncResponse object, by calling one of the register methods. For example, to register a connection callback of type, MyConnectionCallback:
					
asyncResponse.register(new MyConnectionCallback());

Typical scenario for connection callback

						Typically, the main reason for implementing a connection callback would be to free up resources associated with the dropped client connection (where you could use the AsyncResponse instance as the key to identify the resources that need to be freed).
					

Registering Callbacks

Overview

						You can optionally add a callback to an AsyncResponse instance, in order to be notified when the invocation has completed. There are two alternative points in the processing when this callback can be invoked, either:
					
	
								After the request processing is finished and the response has already been sent back to the client, or
							
	
								After the request processing is finished and an unmapped Throwable has been propagated to the hosting I/O container.
							

CompletionCallback interface

						To add a completion callback, you must implement the javax.ws.rs.container.CompletionCallback interface, which is defined as follows:
					
// Java
package javax.ws.rs.container;

public interface CompletionCallback {
 public void onComplete(Throwable throwable);
}

						Usually, the throwable argument is null. However, if the request processing resulted in an unmapped exception, throwable contains the unmapped exception instance.
					

Registering a completion callback

						After implementing a completion callback, you must register it with the current AsyncResponse object, by calling one of the register methods. For example, to register a completion callback of type, MyCompletionCallback:
					
asyncResponse.register(new MyCompletionCallback());

Chapter 49. JAX-RS 2.0 Client API

Abstract

					JAX-RS 2.0 defines a full-featured client API which can be used for making REST invocations or any HTTP client invocations. This includes a fluent API (to simplify building up requests), a framework for parsing messages (based on a type of plug-in known as an entity provider), and support for asynchronous invocations on the client side.
				

Introduction to the JAX-RS 2.0 Client API

Overview

					JAX-RS 2.0 defines a fluent API for JAX-RS clients, which enables you to build up a HTTP request step-by-step and then invoke the request using the appropriate HTTP verb (GET, POST, PUT, or DELETE).
				
Note

						It is also possible to define a JAX-RS client in Blueprint XML or Spring XML (using the jaxrs:client element). For details of this approach, see the section called “Configuring JAX-RS Client Endpoints”.
					

Dependencies

					To use the JAX-RS 2.0 client API in your application, you must add the following Maven dependency to your project’s pom.xml file:
				
<dependency>
 <groupId>org.apache.cxf</groupId>
 <artifactId>cxf-rt-rs-client</artifactId>
 <version>3.2.7.fuse-750027-redhat-00001</version>
</dependency>

					If you plan to use the asynchronous invocation feature (see the section called “Asynchronous Processing on the Client”), you also need the following Maven dependency:
				
<dependency>
 <groupId>org.apache.cxf</groupId>
 <artifactId>cxf-rt-transports-http-hc</artifactId>
 <version>3.2.7.fuse-750027-redhat-00001</version>
</dependency>

Client API package

					The JAX-RS 2.0 client interfaces and classes are located in the following Java package:
				
javax.ws.rs.client

					When developing JAX-RS 2.0 Java clients, you also typically need to access classes from the core package:
				
javax.ws.rs.core

Example of a simple client request

					The following code fragment shows a simple example, where the JAX-RS 2.0 client API is used to make an invocation on the http://example.org/bookstore JAX-RS service, invoking with the GET HTTP method:
				
// Java
import javax.ws.rs.client.ClientBuilder;
import javax.ws.rs.client.Client;
import javax.ws.rs.core.Response;
...
Client client = ClientBuilder.newClient();
Response res = client.target("http://example.org/bookstore/books/123")
 .request("application/xml").get();

Fluent API

					The JAX-RS 2.0 client API is designed as a fluent API (sometimes called a Domain Specific Language). In the fluent API, a chain of Java methods is invoked in a single statement, in such a way that the Java methods look like the commands from a simple language. In JAX-RS 2.0, the fluent API is used to build and invoke a REST request.
				

Steps to make a REST invocation

					Using the JAX-RS 2.0 client API, a client invocation is built and invoked in a series of steps, as follows:
				
	
							Bootstrap the client.
						
	
							Configure the target.
						
	
							Build and make the invocation.
						
	
							Parse the response.
						

Bootstrap the client

					The first step is to bootstrap the client, by creating a javax.ws.rs.client.Client object. This Client instance is a relatively heavyweight object, which represents the stack of technologies required to support a JAX-RS client (possibly including, interceptors and additional CXF features). Ideally, you should re-use client objects when you can, instead of creating new ones.
				

					To create a new Client object, invoke a static method on the ClientBuilder class, as follows:
				
// Java
import javax.ws.rs.client.ClientBuilder;
import javax.ws.rs.client.Client;
...
Client client = ClientBuilder.newClient();
...

Configure the target

					By configuring the target, you effectively define the URI that will be used for the REST invocation. The following example shows how you can define a base URI, base, and then add additional path segments to the base URI, using the path(String) method:
				
// Java
import javax.ws.rs.client.WebTarget;
...
WebTarget base = client.target("http://example.org/bookstore/");
WebTarget books = base.path("books").path("{id}");
...

Build and make the invocation

					This is really two steps rolled up into one: firstly, you build up the HTTP request (including headers, accepted media types, and so on); and secondly, you invoke the relevant HTTP method (optionally providing a request message body, if one is required).
				

					For example, to create and invoke a request that accepts the application/xml media type:
				
// Java
import javax.ws.rs.core.Response;
...
Response resp = books.resolveTemplate("id", "123").request("application/xml").get();

Parse the response

					Finally, you need to parse the respose, resp, obtained in the previous step. Usually, the response is returned in the form of a javax.ws.rs.core.Response object, which encapsulates HTTP headers, along with other HTTP metadata, and the HTTP message body (if any).
				

					If you want to access the returned HTTP message in String format, you can easily do so by invoking the readEntity method with a String.class argument, as follows:
				
// Java
...
String msg = resp.readEntity(String.class);

					You can always access the message body of a response as a String, by specifying String.class as the argument to readEntity. For more general transformations or conversions of the message body, you can provide an entity provider to perform the conversion. For more details, see the section called “Parsing Requests and Responses”.
				

Building the Client Target

Overview

					After creating the initial Client instance, the next step is to build up the request URI. The WebTarget builder class enables you to configure all aspects of the URI, including the URI path and query parameters.
				

WebTarget builder class

					The javax.ws.rs.client.WebTarget builder class provides the part of the fluent API that enables you to build up the REST URI for the request.
				

Create the client target

					To create a WebTarget instance, invoke one of the target methods on a javax.ws.rs.client.Client instance. For example:
				
// Java
import javax.ws.rs.client.WebTarget;
...
WebTarget base = client.target("http://example.org/bookstore/");

Base path and path segments

					You can specify the complete path all in one go, using the target method; or you can specify a base path, and then add path segments piece by piece, using a combination of the target method and the path methods. The advantage of combining a base path with path segments is that you can easily re-use the base path WebTarget object for multiple invocations on slightly different targets. For example:
				
// Java
import javax.ws.rs.client.WebTarget;
...
WebTarget base = client.target("http://example.org/bookstore/");
WebTarget headers = base.path("bookheaders");
// Now make some invocations on the 'headers' target...
...
WebTarget collections = base.path("collections");
// Now make some invocations on the 'collections' target...
...

URI template parameters

					The syntax of the target path also supports URI template parameters. That is, a path segment can be initialized with a template parameter, {param}, which subsequently gets resolved to a specify value. For example:
				
// Java
import javax.ws.rs.client.WebTarget;
import javax.ws.rs.core.Response;
...
WebTarget base = client.target("http://example.org/bookstore/");
WebTarget books = base.path("books").path("{id}");
...
Response resp = books.resolveTemplate("id", "123").request("application/xml").get();

					Where the resolveTemplate method replaces the path segment, {id}, with the value 123.
				

Define query parameters

					Query parameters can be appended to the URI path, where the beginning of the query parameters is marked by a single ? character. This mechanism enables you to set a series of name/value pairs, using the syntax: ?name1=value1&name2=value2&…​
				

					A WebTarget instance enables you to define query parameters using the queryParam method, as follows:
				
// Java
WebTarget target = client.target("http://example.org/bookstore/")
 .queryParam("userId","Agamemnon")
 .queryParam("lang","gr");

Define matrix parameters

					Matrix parameters are somewhat similar to query parameters, but are not as widely supported and use a different syntax. To define a matrix parameter on a WebTarget instance, invoke the matrixParam(String, Object) method.
				

Building the Client Invocation

Overview

					After building the target URI, using the WebTarget builder class, the next step is to configure the other aspects of the request—such as HTTP headers, cookies, and so on—using the Invocation.Builder class. The final step in building the invocation is to invoke the appropriate HTTP verb (GET, POST, PUT, or DELETE) and provide a message body, if required.
				

Invocation.Builder class

					The javax.ws.rs.client.Invocation.Builder builder class provides the part of the fluent API that enables you to build up the contents of the HTTP message and to invoke a HTTP method.
				

Create the invocation builder

					To create an Invocation.Builder instance, invoke one of the request methods on a javax.ws.rs.client.WebTarget instance. For example:
				
// Java
import javax.ws.rs.client.WebTarget;
import javax.ws.rs.client.Invocation.Builder;
...
WebTarget books = client.target("http://example.org/bookstore/books/123");
Invocation.Builder invbuilder = books.request();

Define HTTP headers

					You can add a HTTP header to the request message using the header method, as follows:
				
Invocation.Builder invheader = invbuilder.header("From", "fionn@example.org");

Define cookies

					You can add a cookie to the request message using the cookie method, as follows:
				
Invocation.Builder invcookie = invbuilder.cookie("myrestclient", "123xyz");

Define properties

					You can set a property in the context of this request using the property method, as follows:
				
Invocation.Builder invproperty = invbuilder.property("Name", "Value");

Define accepted media types, languages, or encodings

					You can define accepted media types, languages, or encodings, as follows:
				
Invocation.Builder invmedia = invbuilder.accept("application/xml")
 .acceptLanguage("en-US")
 .acceptEncoding("gzip");

Invoke HTTP method

					The process of building a REST invocation is terminated by invoking a HTTP method, which performs the HTTP invocation. The following methods (inherited from the javax.ws.rs.client.SyncInvoker base class) can be invoked:
				
get
post
delete
put
head
trace
options

					If the specific HTTP verb you want to invoke is not on this list, you can use the generic method method to invoke any HTTP method.
				

Typed responses

					All of the HTTP invocation methods are provided with an untyped variant and a typed variant (which takes an extra argument). If you invoke a request using the default get() method (taking no arguments), a javax.ws.rs.core.Response object is returned from the invocation. For example:
				
Response res = client.target("http://example.org/bookstore/books/123")
 .request("application/xml").get();

					It is also possible, however, to ask for the response to be returned as a specific type, using the get(Class<T>) method. For example, to invoke a request and ask for the response to be returned as a BookInfo object:
				
BookInfo res = client.target("http://example.org/bookstore/books/123")
 .request("application/xml").get(BookInfo.class);

					In order for this to work, however, you must register a suitable entity provider with the Client instance, which is capable of mapping the response format, application/xml, to the requested type. For more details about entity providers, see the section called “Parsing Requests and Responses”.
				

Specifying the outgoing message in post or put

					For HTTP methods that include a message body in the request (such as POST or PUT), you must specify the message body as the first argument of the method. The message body must be specified as a javax.ws.rs.client.Entity object, where the Entity encapsulates the message contents and its associated media type. For example, to invoke a POST method, where the message contents are provided as a String type:
				
import javax.ws.rs.client.Entity;
...
Response res = client.target("http://example.org/bookstore/registerbook")
 .request("application/xml")
 .put(Entity.entity("Red Hat Install Guide", "text/plain"));

					If necessary, the Entity.entity() constructor method will automatically map the supplied message instance to the specified media type, using the registered entity providers. It is always possible to specify the message body as a simple String type.
				

Delayed invocation

					Instead of invoking the HTTP request right away (for example, by invoking the get() method), you have the option of creating an javax.ws.rs.client.Invocation object, which can be invoked at a later time. The Invocation object encapsulates all of the details of the pending invocation, including the HTTP method.
				

					The following methods can be used to build an Invocation object:
				
buildGet
buildPost
buildDelete
buildPut
build

					For example, to create a GET Invocation object and invoke it at a later time, you can use code like the following:
				
import javax.ws.rs.client.Invocation;
import javax.ws.rs.core.Response;
...
Invocation getBookInfo = client.target("http://example.org/bookstore/books/123")
 .request("application/xml").buildGet();
...
// Later on, in some other part of the application:
Response = getBookInfo.invoke();

Asynchronous invocation

					The JAX-RS 2.0 client API supports asynchronous invocations on the client side. To make an asynchronous invocation, simply invoke the async() method in the chain of methods following request(). For example:
				
Future<Response> res = client.target("http://example.org/bookstore/books/123")
 .request("application/xml")
 .async()
 .get();

					When you make an asynchronous invocation, the returned value is a java.util.concurrent.Future object. For more details about asynchronous invocations, see the section called “Asynchronous Processing on the Client”.
				

Parsing Requests and Responses

Overview

					An essential aspect of making HTTP invocations is that the client must be able to parse the outgoing request messages and the incoming responses. In JAX-RS 2.0, the key concept is the Entity class, which represents a raw message tagged with a media type. In order to parse the raw message, you can register multiple entity providers, which have the capability to convert media types to and from particular Java types.
				

					In other words, in the context of JAX-RS 2.0, an Entity is the representation of a raw message and an entity provider is the plug-in that provides the capability to parse the raw message (based on the media type).
				

Entities

					An Entity is a message body augmented by metadata (media type, language, and encoding). An Entity instance holds the message in a raw format and is associated with a specific media type. To convert the contents of an Entity object to a Java object you require an entity provider, which is capable of mapping the given media type to the required Java type.
				

Variants

					A javax.ws.rs.core.Variant object encapsulates the metadata associated with an Entity, as follows:
				
	
							Media type,
						
	
							Language,
						
	
							Encoding.
						

					Effectively, you can think of an Entity as consisting of the HTTP message contents, augmented by Variant metadata.
				

Entity providers

					An entity provider is a class that provides the capability of mapping between a media type and a Java type. Effectively, you can think of an entity provider as a class that provides the ability to parse messages of a particular media type (or possibly of multiple media types). There are two different varieties of entity provider:
				
	MessageBodyReader
	
								Provides the capability of mapping from media type(s) to a Java type.
							
	MessageBodyWriter
	
								Provides the capability of mapping from a Java type to a media type.
							

Standard entity providers

					Entity providers for the following Java and media type combinations are provided as standard:
				
	byte[]
	
								All media types (*/*).
							
	java.lang.String
	
								All media types (*/*).
							
	java.io.InputStream
	
								All media types (*/*).
							
	java.io.Reader
	
								All media types (*/*).
							
	java.io.File
	
								All media types (*/*).
							
	javax.activation.DataSource
	
								All media types (*/*).
							
	javax.xml.transform.Source
	
								XML types (text/xml, application/xml, and media types of the form application/*+xml).
							
	javax.xml.bind.JAXBElement and application-supplied JAXB classes
	
								XML types (text/xml, application/xml, and media types of the form application/*+xml).
							
	MultivaluedMap<String,String>
	
								Form content (application/x-www-form-urlencoded).
							
	StreamingOutput
	
								All media types (*/*), MessageBodyWriter only.
							
	java.lang.Boolean, java.lang.Character, java.lang.Number
	
								Only for text/plain. Corresponding primitive types supported through boxing/unboxing conversion.
							

Response object

					The default return type is the javax.ws.rs.core.Response type, which represents an untyped response. The Response object provides access to the complete HTTP response, including the message body, HTTP status, HTTP headers, media type, and so on.
				

Accessing the response status

					You can access the response status, either through the getStatus method (which returns the HTTP status code):
				
int status = resp.getStatus();

					Or though the getStatusInfo method, which also provides a description string:
				
String statusReason = resp.getStatusInfo().getReasonPhrase();

Accessing the returned headers

					You can access the HTTP headers using any of the following methods:
				
MultivaluedMap<String,Object>
getHeaders()

MultivaluedMap<String,String>
getStringHeaders()

String
getHeaderString(String name)

					For example, if you know that the Response has a Date header, you could access it as follows:
				
String dateAsString = resp.getHeaderString("Date");

Accessing the returned cookies

					You can access any new cookies set on the Response using the getCookies method, as follows:
				
import javax.ws.rs.core.NewCookie;
...
java.util.Map<String,NewCookie> cookieMap = resp.getCookies();
java.util.Collection<NewCookie> cookieCollection = cookieMap.values();

Accessing the returned message content

					You can access the returned message content by invoking one of the readEntity methods on the Response object. The readEntity method automatically invokes the available entity providers to convert the message to the requested type (specified as the first argument of readEntity). For example, to access the message content as a String type:
				
String messageBody = resp.readEntity(String.class);

Collection return value

					If you need to access the returned message as a Java generic type—for example, as a List or Collection type—you can specify the request message type using the javax.ws.rs.core.GenericType<T> construction. For example:
				
import javax.ws.rs.client.ClientBuilder;
import javax.ws.rs.client.Client;
import javax.ws.rs.core.GenericType;
import java.util.List;
...
GenericType<List<String>> stringListType = new GenericType<List<String>>() {};

Client client = ClientBuilder.newClient();
List<String> bookNames = client.target("http://example.org/bookstore/booknames")
 .request("text/plain")
 .get(stringListType);

Configuring the Client Endpoint

Overview

					It is possible to augment the functionality of the base javax.ws.rs.client.Client object by registering and configuring features and providers.
				

Example

					The following example shows a client configured to have a logging feature, a custom entity provider, and to set the prettyLogging property to true:
				
// Java
import javax.ws.rs.client.ClientBuilder;
import javax.ws.rs.client.Client;
import org.apache.cxf.feature.LoggingFeature;
...
Client client = ClientBuilder.newClient();
client.register(LoggingFeature.class)
 .register(MyCustomEntityProvider.class)
 .property("LoggingFeature.prettyLogging","true");

Configurable API for registering objects

					The Client class supports the Configurable API for registering objects, which provides several variants of the register method. In most cases, you would register either a class or an object instance, as shown in the following examples:
				
client.register(LoggingFeature.class)
client.register(new LoggingFeature())

					For more details about the register variants, see the reference documentation for Configurable.
				

What can you configure on the client?

					You can configure the following aspects of a client endpoint:
				
	
							Features
						
	
							Providers
						
	
							Properties
						
	
							Filters
						
	
							Interceptors
						

Features

					A javax.ws.rs.core.Feature is effectively a plug-in that adds an extra feature or functionality to a JAX-RS client. Often, a feature installs one or more interceptors in order to provide the required functionality.
				

Providers

					A provider is a particular kind of client plug-in that provides a mapping capability. The JAX-RS 2.0 specification defines the following kinds of provider:
				
	Entity providers
	
								An entity provider provides the capability of mapping between a specific media type a Java type. For more details, see the section called “Parsing Requests and Responses”.
							
	Exception mapping providers
	
								An exception mapping provider maps a checked runtime exception to an instance of Response.
							
	Context providers
	
								A context provider is used on the server side, to supply context to resource classes and other service providers.
							

Filters

					A JAX-RS 2.0 filter is a plug-in that gives you access to the URI, headers, and miscellaneous context data at various points (extension points) of the message processing pipeline. For details, see Chapter 61, JAX-RS 2.0 Filters and Interceptors.
				

Interceptors

					A JAX-RS 2.0 interceptor is a plug-in that gives you access to the message body of a request or response as it is being read or written. For details, see Chapter 61, JAX-RS 2.0 Filters and Interceptors.
				

Properties

					By setting one or more properties on the client, you can customize the configuration of a registered feature or a registered provider.
				

Other configurable types

					It is possible, not only to configure a javax.ws.rs.client.Client (and javax.ws.rs.client.ClientBuilder) object, but also a WebTarget object. When you change the configuration of a WebTarget object, the underlying client configuration is deep copied to give the new WebTarget configuration. Hence, it is possible to change the configuration of the WebTarget object without changing the configuration of the original Client object.
				

Asynchronous Processing on the Client

Overview

					JAX-RS 2.0 supports asynchronous processing of invocations on the client side. Two different styles of asynchronous processing are supported: either using a java.util.concurrent.Future<V> return value; or by registering an invocation callback.
				

Asynchronous invocation with Future<V> return value

					Using the Future<V> approach to asynchronous processing, you can invoke a client request asynchronously, as follows:
				
// Java
import javax.ws.rs.client.ClientBuilder;
import javax.ws.rs.client.Client;
import java.util.concurrent.Future;
import javax.ws.rs.core.Response;
...
Client client = ClientBuilder.newClient();
Future<Response> futureResp = client.target("http://example.org/bookstore/books/123")
 .request("application/xml")
 .async()
 .get();
...
// At a later time, check (and wait) for the response:
Response resp = futureResp.get();

					You can use a similar approach for typed responses. For example, to get a response of type, BookInfo:
				
Client client = ClientBuilder.newClient();
Future<BookInfo> futureResp = client.target("http://example.org/bookstore/books/123")
 .request("application/xml")
 .async()
 .get(BookInfo.class);
...
// At a later time, check (and wait) for the response:
BookInfo resp = futureResp.get();

Asynchronous invocation with invocation callback

					Instead of accessing the return value using a Future<V> object, you can define an invocation callback (using javax.ws.rs.client.InvocationCallback<RESPONSE>), as follows:
				
// Java
import javax.ws.rs.client.ClientBuilder;
import javax.ws.rs.client.Client;
import java.util.concurrent.Future;
import javax.ws.rs.core.Response;
import javax.ws.rs.client.InvocationCallback;
...
Client client = ClientBuilder.newClient();
Future<Response> futureResp = client.target("http://example.org/bookstore/books/123")
 .request("application/xml")
 .async()
 .get(
 new InvocationCallback<Response>() {
 @Override
 public void completed(final Response resp) {
 // Do something when invocation is complete
 ...
 }

 @Override
 public void failed(final Throwable throwable) {
 throwable.printStackTrace();
 }
 });
...

					You can use a similar approach for typed responses:
				
// Java
import javax.ws.rs.client.ClientBuilder;
import javax.ws.rs.client.Client;
import java.util.concurrent.Future;
import javax.ws.rs.core.Response;
import javax.ws.rs.client.InvocationCallback;
...
Client client = ClientBuilder.newClient();
Future<BookInfo> futureResp = client.target("http://example.org/bookstore/books/123")
 .request("application/xml")
 .async()
 .get(
 new InvocationCallback<BookInfo>() {
 @Override
 public void completed(final BookInfo resp) {
 // Do something when invocation is complete
 ...
 }

 @Override
 public void failed(final Throwable throwable) {
 throwable.printStackTrace();
 }
 });
...

Chapter 50. Handling Exceptions

Abstract

					When possible, exceptions caught by a resource method should cause a useful error to be returned to the requesting consumer. JAX-RS resource methods can throw a WebApplicationException exception. You can also provide ExceptionMapper<E> implementations to map exceptions to appropriate responses.
				

Overview of JAX-RS Exception Classes

Overview

					In JAX-RS 1.x, the only available exception class is WebApplicationException. Since JAX-WS 2.0, however, a number of additional JAX-RS exception classes have been defined.
				

JAX-RS runtime level exceptions

					The following exceptions are meant to be thrown by the JAX-RS runtime only (that is, you must not throw these exceptions from your application level code):
				
	ProcessingException
	
								(JAX-RS 2.0 only) The javax.ws.rs.ProcessingException can be thrown during request processing or during response processing in the JAX-RS runtime. For example, this error could be thrown due to errors in the filter chain or interceptor chain processing.
							
	ResponseProcessingException
	
								(JAX-RS 2.0 only) The javax.ws.rs.client.ResponseProcessingException is a subclass of ProcessingException, which can be thrown when errors occur in the JAX-RS runtime on the client side.
							

JAX-RS application level exceptions

					The following exceptions are intended to be thrown (and caught) in your application level code:
				
	WebApplicationException
	
								The javax.ws.rs.WebApplicationException is a generic application level JAX-RS exception, which can be thrown in application code on the server side. This exception type can encapsulate a HTTP status code, an error message, and (optionally) a response message. For details, see the section called “Using WebApplicationException exceptions to report”.
							
	ClientErrorException
	
								(JAX-RS 2.0 only) The javax.ws.rs.ClientErrorException exception class inherits from WebApplicationException and is used to encapsulate HTTP 4xx status codes.
							
	ServerErrorException
	
								(JAX-RS 2.0 only) The javax.ws.rs.ServerErrorException exception class inherits from WebApplicationException and is used to encapsulate HTTP 5xx status codes.
							
	RedirectionException
	
								(JAX-RS 2.0 only) The javax.ws.rs.RedirectionException exception class inherits from WebApplicationException and is used to encapsulate HTTP 3xx status codes.
							

Using WebApplicationException exceptions to report

 errors
indexterm:[WebApplicationException]
Overview

					The JAX-RS API introduced the WebApplicationException runtime exception to provide an easy way for resource methods to create exceptions that are appropriate for RESTful clients to consume. WebApplicationException exceptions can include a Response object that defines the entity body to return to the originator of the request. It also provides a mechanism for specifying the HTTP status code to be returned to the client if no entity body is provided.
				

Creating a simple exception

					The easiest means of creating a WebApplicationException exception is to use either the no argument constructor or the constructor that wraps the original exception in a WebApplicationException exception. Both constructors create a WebApplicationException with an empty response.
				

					When an exception created by either of these constructors is thrown, the runtime returns a response with an empty entity body and a status code of 500 Server Error.
				

Setting the status code returned to the client

					 When you want to return an error code other than 500, you can use one of the four WebApplicationException constructors that allow you to specify the status. Two of these constructors, shown in Example 50.1, “Creating a WebApplicationException with a status code”, take the return status as an integer.
				
Example 50.1. Creating a WebApplicationException with a status code

						WebApplicationExceptionintstatusWebApplicationExceptionjava.lang.Throwablecauseintstatus
					

					The other two, shown in Example 50.2, “Creating a WebApplicationException with a status code” take the response status as an instance of Response.Status.
				
Example 50.2. Creating a WebApplicationException with a status code

						WebApplicationExceptionjavax.ws.rs.core.Response.StatusstatusWebApplicationExceptionjava.lang.Throwablecausejavax.ws.rs.core.Response.Statusstatus
					

					When an exception created by either of these constructors is thrown, the runtime returns a response with an empty entity body and the specified status code.
				

Providing an entity body

					 If you want a message to be sent along with the exception, you can use one of the WebApplicationException constructors that takes a Response object. The runtime uses the Response object to create the response sent to the client. The entity stored in the response is mapped to the entity body of the message and the status field of the response is mapped to the HTTP status of the message.
				

					Example 50.3, “Sending a message with an exception” shows code for returning a text message to a client containing the reason for the exception and sets the HTTP message status to 409 Conflict.
				
Example 50.3. Sending a message with an exception
import javax.ws.rs.core.Response;
import javax.ws.rs.WebApplicationException;
import org.apache.cxf.jaxrs.impl.ResponseBuilderImpl;

...
ResponseBuilderImpl builder = new ResponseBuilderImpl();
builder.status(Response.Status.CONFLICT);
builder.entity("The requested resource is conflicted.");
Response response = builder.build();
throw WebApplicationException(response);

Extending the generic exception

					It is possible to extend the WebApplicationException exception. This would allow you to create custom exceptions and eliminate some boiler plate code.
				

					Example 50.4, “Extending WebApplicationException” shows a new exception that creates a similar response to the code in Example 50.3, “Sending a message with an exception”.
				
Example 50.4. Extending WebApplicationException
public class ConflicteddException extends WebApplicationException
{
 public ConflictedException(String message)
 {
 ResponseBuilderImpl builder = new ResponseBuilderImpl();
 builder.status(Response.Status.CONFLICT);
 builder.entity(message);
 super(builder.build());
 }
}

...
throw ConflictedException("The requested resource is conflicted.");

JAX-RS 2.0 Exception Types

Overview

					JAX-RS 2.0 introduces a number of specific HTTP exception types that you can throw (and catch) in your application code (in addition to the existing WebApplicationException exception type). These exception types can be used to wrap standard HTTP status codes, either for HTTP client errors (HTTP 4xx status codes), or HTTP server errors (HTTP 5xx status codes).
				

Exception hierarchy

					Figure 50.1, “JAX-RS 2.0 Application Exception Hierarchy” shows the hierarchy of application level exceptions supported in JAX-RS 2.0.
				
Figure 50.1. JAX-RS 2.0 Application Exception Hierarchy
[image: exceptions 01]

WebApplicationException class

					The javax.ws.rs.WebApplicationException exception class (which has been available since JAX-RS 1.x) is at the base of the JAX-RS 2.0 exception hierarchy, and is described in detail in the section called “Using WebApplicationException exceptions to report”.
				

ClientErrorException class

					The javax.ws.rs.ClientErrorException exception class is used to encapsulate HTTP client errors (HTTP 4xx status codes). In your application code, you can throw this exception or one of its subclasses.
				

ServerErrorException class

					The javax.ws.rs.ServerErrorException exception class is used to encapsulate HTTP server errors (HTTP 5xx status codes). In your application code, you can throw this exception or one of its subclasses.
				

RedirectionException class

					The javax.ws.rs.RedirectionException exception class is used to encapsulate HTTP request redirection (HTTP 3xx status codes). The constructors of this class take a URI argument, which specifies the redirect location. The redirect URI is accessible through the getLocation() method. Normally, HTTP redirection is transparent on the client side.
				

Client exception subclasses

					You can raise the following HTTP client exceptions (HTTP 4xx status codes) in a JAX-RS 2.0 application:
				
	BadRequestException
	
								Encapsulates the 400 Bad Request HTTP error status.
							
	ForbiddenException
	
								Encapsulates the 403 Forbidden HTTP error status.
							
	NotAcceptableException
	
								Encapsulates the 406 Not Acceptable HTTP error status.
							
	NotAllowedException
	
								Encapsulates the 405 Method Not Allowed HTTP error status.
							
	NotAuthorizedException
	
								Encapsulates the 401 Unauthorized HTTP error status. This exception could be raised in either of the following cases:
							
	
										The client did not send the required credentials (in a HTTP Authorization header), or
									
	
										The client presented the credentials, but the credentials were not valid.
									

	NotFoundException
	
								Encapsulates the 404 Not Found HTTP error status.
							
	NotSupportedException
	
								Encapsulates the 415 Unsupported Media Type HTTP error status.
							

Server exception subclasses

					You can raise the following HTTP server exceptions (HTTP 5xx status codes) in a JAX-RS 2.0 application:
				
	InternalServerErrorException
	
								Encapsulates the 500 Internal Server Error HTTP error status.
							
	ServiceUnavailableException
	
								Encapsulates the 503 Service Unavailable HTTP error status.
							

Mapping Exceptions to Responses

Overview

					There are instances where throwing a WebApplicationException exception is impractical or impossible. For example, you may not want to catch all possible exceptions and then create a WebApplicationException for them. You may also want to use custom exceptions that make working with your application code easier.
				

					To handle these cases the JAX-RS API allows you to implement a custom exception provider that generates a Response object to send to a client. Custom exception providers are created by implementing the ExceptionMapper<E> interface. When registered with the Apache CXF runtime, the custom provider will be used whenever an exception of type E is thrown.
				

How exception mappers are selected

					Exception mappers are used in two cases:
				
	
							When any exception or one of its subclasses, is thrown, the runtime will check for an appropriate exception mapper. An exception mapper is selected if it handles the specific exception thrown. If there is not an exception mapper for the specific exception that was thrown, the exception mapper for the nearest superclass of the exception is selected.
						
	
							By default, a WebApplicationException will be handled by the default mapper, WebApplicationExceptionMapper. Even if an additional custom mapper is registered, which could potentially handle a WebApplicationException exception (for example, a custom RuntimeException mapper), the custom mapper will not be used and the WebApplicationExceptionMapper will be used instead.
						

							This behaviour can be changed, however, by setting the default.wae.mapper.least.specific property to true on a Message object. When this option is enabled, the default WebApplicationExceptionMapper is relegated to the lowest priority, so that it becomes possible to handle a WebApplicationException exception with a custom exception mapper. For example, if this option is enabled, it would be possible to catch a WebApplicationException exception by registering a custom RuntimeException mapper. See the section called “Registering an exception mapper for WebApplicationException”.
						

					If an exception mapper is not found for an exception, the exception is wrapped in an ServletException exception and passed onto the container runtime. The container runtime will then determine how to handle the exception.
				

Implementing an exception mapper

					 Exception mappers are created by implementing the javax.ws.rs.ext.ExceptionMapper<E> interface. As shown in Example 50.5, “Exception mapper interface”, the interface has a single method, toResponse(), that takes the original exception as a parameter and returns a Response object.
				
Example 50.5. Exception mapper interface
public interface ExceptionMapper<E extends java.lang.Throwable>
{
 public Response toResponse(E exception);
}

					The Response object created by the exception mapper is processed by the runtime just like any other Response object. The resulting response to the consumer will contain the status, headers, and entity body encapsulated in the Response object.
				

					Exception mapper implementations are considered providers by the runtime. Therefore they must be decorated with the @Provider annotation.
				

					If an exception occurs while the exception mapper is building the Response object, the runtime will send a response with a status of 500 Server Error to the consumer.
				

					Example 50.6, “Mapping an exception to a response” shows an exception mapper that intercepts Spring AccessDeniedException exceptions and generates a response with a 403 Forbidden status and an empty entity body.
				
Example 50.6. Mapping an exception to a response
import javax.ws.rs.core.Response;
import javax.ws.rs.ext.ExceptionMapper;

import org.springframework.security.AccessDeniedException;

@Provider
public class SecurityExceptionMapper implements ExceptionMapper<AccessDeniedException>
{

 public Response toResponse(AccessDeniedException exception)
 {
 return Response.status(Response.Status.FORBIDDEN).build();
 }

}

					The runtime will catch any AccessDeniedException exceptions and create a Response object with no entity body and a status of 403. The runtime will then process the Response object as it would for a normal response. The result is that the consumer will receive an HTTP response with a status of 403.
				

Registering an exception mapper

					Before a JAX-RS application can use an exception mapper, the exception mapper must be registered with the runtime. Exception mappers are registered with the runtime using the jaxrs:providers element in the application’s configuration file.
				

					The jaxrs:providers element is a child of the jaxrs:server element and contains a list of bean elements. Each bean element defines one exception mapper.
				

					Example 50.7, “Registering exception mappers with the runtime” shows a JAX-RS server configured to use a custom exception mapper, SecurityExceptionMapper.
				
Example 50.7. Registering exception mappers with the runtime
<beans ...>
 <jaxrs:server id="customerService" address="/">
 ...
 <jaxrs:providers>
 <bean id="securityException" class="com.bar.providers.SecurityExceptionMapper"/>
 </jaxrs:providers>
 </jaxrs:server>
</beans>

Registering an exception mapper for WebApplicationException

					Registering an exception mapper for a WebApplicationException exception is a special case, because this exception type is automatically handled by the default WebApplicationExceptionMapper. Normally, even when you register a custom mapper that you would expect to handle WebApplicationException, it will continue to be handled by the default WebApplicationExceptionMapper. To change this default behaviour, you need to set the default.wae.mapper.least.specific property to true.
				

					For example, the following XML code shows how to enable the default.wae.mapper.least.specific property on a JAX-RS endpoint:
				
<beans ...>
 <jaxrs:server id="customerService" address="/">
 ...
 <jaxrs:providers>
 <bean id="securityException" class="com.bar.providers.SecurityExceptionMapper"/>
 </jaxrs:providers>
 <jaxrs:properties>
 <entry key="default.wae.mapper.least.specific" value="true"/>
 </jaxrs:properties>
 </jaxrs:server>
</beans>

					You can also set the default.wae.mapper.least.specific property in an interceptor, as shown in the following example:
				
// Java
public void handleMessage(Message message)
{
 m.put("default.wae.mapper.least.specific", true);
 ...

Chapter 51. Entity Support

Abstract

					The Apache CXF runtime supports a limited number of mappings between MIME types and Java objects out of the box. Developers can extend the mappings by implementing custom readers and writers. The custom readers and writers are registered with the runtime at start-up.
				

Overview

				The runtime relies on JAX-RS MessageBodyReader and MessageBodyWriter implementations to serialize and de-serialize data between the HTTP messages and their Java representations. The readers and writers can restrict the MIME types they are capable of processing.
			

				The runtime provides readers and writers for a number of common mappings. If an application requires more advanced mappings, a developer can provide custom implementations of the MessageBodyReader interface and/or the MessageBodyWriter interface. Custom readers and writers are registered with the runtime when the application is started.
			

Natively supported types

				Table 51.1, “Natively supported entity mappings” lists the entity mappings provided by Apache CXF out of the box.
			
Table 51.1. Natively supported entity mappings
	Java Type	MIME Type
	
								primitive types
							

							 	
								text/plain
							

							
	
								java.lang.Number
							

							 	
								text/plain
							

							
	
								byte[]
							

							 	
								/
							

							
	
								java.lang.String
							

							 	
								/
							

							
	
								java.io.InputStream
							

							 	
								/
							

							
	
								java.io.Reader
							

							 	
								/
							

							
	
								java.io.File
							

							 	
								/
							

							
	
								javax.activation.DataSource
							

							 	
								/
							

							
	
								javax.xml.transform.Source
							

							 	
								text/xml, application/xml, application/*+xml
							

							
	
								javax.xml.bind.JAXBElement
							

							 	
								text/xml, application/xml, application/*+xml
							

							
	
								JAXB annotated objects
							

							 	
								text/xml, application/xml, application/*+xml
							

							
	
								javax.ws.rs.core.MultivaluedMap<String, String>
							

							 	
								application/x-www-form-urlencoded [a]
							

							
	
								javax.ws.rs.core.StreamingOutput
							

							 	
								/ [b]
							

							
	[a]
									This mapping is used for handling HTML form data.
								

[b]
									This mapping is only supported for returning data to a consumer.
								

Custom readers

				 Custom entity readers are responsible for mapping incoming HTTP requests into a Java type that a service’s implementation can manipulate. They implement the javax.ws.rs.ext.MessageBodyReader interface.
			

				The interface, shown in Example 51.1, “Message reader interface”, has two methods that need implementing:
			
Example 51.1. Message reader interface
package javax.ws.rs.ext;

public interface MessageBodyReader<T>
{
 public boolean isReadable(java.lang.Class<?> type,
 java.lang.reflect.Type genericType,
 java.lang.annotation.Annotation[] annotations,
 javax.ws.rs.core.MediaType mediaType);

 public T readFrom(java.lang.Class<T> type,
 java.lang.reflect.Type genericType,
 java.lang.annotation.Annotation[] annotations,
 javax.ws.rs.core.MediaType mediaType,
 javax.ws.rs.core.MultivaluedMap<String, String> httpHeaders,
 java.io.InputStream entityStream)
 throws java.io.IOException, WebApplicationException;
}

	isReadable()
	
							The isReadable() method determines if the reader is capable of reading the data stream and creating the proper type of entity representation. If the reader can create the proper type of entity the method returns true.
						

							Table 51.2, “Parameters used to determine if a reader can produce an entity” describes the isReadable() method’s parameters.
						
Table 51.2. Parameters used to determine if a reader can produce an entity
	Parameter	Type	Description
	
											type
										

										 	
											Class<T>
										

										 	
											Specifies the actual Java class of the object used to store the entity.
										

										
	
											genericType
										

										 	
											Type
										

										 	
											Specifies the Java type of the object used to store the entity. For example, if the message body is to be converted into a method parameter, the value will be the type of the method parameter as returned by the Method.getGenericParameterTypes() method.
										

										
	
											annotations
										

										 	
											Annotation[]
										

										 	
											Specifies the list of annotations on the declaration of the object created to store the entity. For example if the message body is to be converted into a method parameter, this will be the annotations on that parameter returned by the Method.getParameterAnnotations() method.
										

										
	
											mediaType
										

										 	
											MediatType
										

										 	
											Specifies the MIME type of the HTTP entity.
										

										

	readFrom()
	
							The readFrom() method reads the HTTP entity and coverts it into the desired Java object. If the reading is successful the method returns the created Java object containing the entity. If an error occurs when reading the input stream the method should throw an IOException exception. If an error occurs that requires an HTTP error response, an WebApplicationException with the HTTP response should be thrown.
						

							Table 51.3, “Parameters used to read an entity” describes the readFrom() method’s parameters.
						
Table 51.3. Parameters used to read an entity
	Parameter	Type	Description
	
											type
										

										 	
											Class<T>
										

										 	
											Specifies the actual Java class of the object used to store the entity.
										

										
	
											genericType
										

										 	
											Type
										

										 	
											Specifies the Java type of the object used to store the entity. For example, if the message body is to be converted into a method parameter, the value will be the type of the method parameter as returned by the Method.getGenericParameterTypes() method.
										

										
	
											annotations
										

										 	
											Annotation[]
										

										 	
											Specifies the list of annotations on the declaration of the object created to store the entity. For example if the message body is to be converted into a method parameter, this will be the annotations on that parameter returned by the Method.getParameterAnnotations() method.
										

										
	
											mediaType
										

										 	
											MediatType
										

										 	
											Specifies the MIME type of the HTTP entity.
										

										
	
											httpHeaders
										

										 	
											MultivaluedMap<String, String>
										

										 	
											Specifies the HTTP message headers associated with the entity.
										

										
	
											entityStream
										

										 	
											InputStream
										

										 	
											Specifies the input stream containing the HTTP entity.
										

										

Important

								This method should not close the input stream.
							

				Before an MessageBodyReader implementation can be used as an entity reader, it must be decorated with the javax.ws.rs.ext.Provider annotation. The @Provider annotation alerts the runtime that the supplied implementation provides additional functionality. The implementation must also be registered with the runtime as described in the section called “Registering readers and writers”.
			

				By default a custom entity provider handles all MIME types. You can limit the MIME types that a custom entity reader will handle using the javax.ws.rs.Consumes annotation. The @Consumes annotation specifies a comma separated list of MIME types that the custom entity provider reads. If an entity is not of a specified MIME type, the entity provider will not be selected as a possible reader.
			

				Example 51.2, “XML source entity reader” shows an entity reader the consumes XML entities and stores them in a Source object.
			
Example 51.2. XML source entity reader
import java.io.IOException;
import java.io.InputStream;
import java.lang.annotation.Annotation;
import java.lang.reflect.Type;

import javax.ws.rs.Consumes;
import javax.ws.rs.WebApplicationException;
import javax.ws.rs.core.MediaType;
import javax.ws.rs.core.MultivaluedMap;
import javax.ws.rs.ext.MessageBodyReader;
import javax.ws.rs.ext.Provider;
import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.transform.Source;
import javax.xml.transform.dom.DOMSource;
import javax.xml.transform.stream.StreamSource;

import org.w3c.dom.Document;
import org.apache.cxf.jaxrs.ext.xml.XMLSource;

@Provider
@Consumes({"application/xml", "application/*+xml", "text/xml", "text/html" })
public class SourceProvider implements MessageBodyReader<Object>
{
 public boolean isReadable(Class<?> type,
 Type genericType,
 Annotation[] annotations,
 MediaType mt)
 {
 return Source.class.isAssignableFrom(type) || XMLSource.class.isAssignableFrom(type);
 }

 public Object readFrom(Class<Object> source,
 Type genericType,
 Annotation[] annotations,
 MediaType mediaType,
 MultivaluedMap<String, String> httpHeaders,
 InputStream is)
 throws IOException
 {
 if (DOMSource.class.isAssignableFrom(source))
 {
 Document doc = null;
 DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
 DocumentBuilder builder;
 try
 {
 builder = factory.newDocumentBuilder();
 doc = builder.parse(is);
 }
 catch (Exception e)
 {
 IOException ioex = new IOException("Problem creating a Source object");
 ioex.setStackTrace(e.getStackTrace());
 throw ioex;
 }

 return new DOMSource(doc);
 }
 else if (StreamSource.class.isAssignableFrom(source) || Source.class.isAssignableFrom(source))
 {
 return new StreamSource(is);
 }
 else if (XMLSource.class.isAssignableFrom(source))
 {
 return new XMLSource(is);
 }

 throw new IOException("Unrecognized source");
 }
}

Custom writers

				 Custom entity writers are responsible for mapping Java types into HTTP entities. They implement the javax.ws.rs.ext.MessageBodyWriter interface.
			

				The interface, shown in Example 51.3, “Message writer interface”, has three methods that need implementing:
			
Example 51.3. Message writer interface
package javax.ws.rs.ext;

public interface MessageBodyWriter<T>
{
 public boolean isWriteable(java.lang.Class<?> type,
 java.lang.reflect.Type genericType,
 java.lang.annotation.Annotation[] annotations,
 javax.ws.rs.core.MediaType mediaType);

 public long getSize(T t,
 java.lang.Class<?> type,
 java.lang.reflect.Type genericType,
 java.lang.annotation.Annotation[] annotations,
 javax.ws.rs.core.MediaType mediaType);

 public void writeTo(T t,
 java.lang.Class<?> type,
 java.lang.reflect.Type genericType,
 java.lang.annotation.Annotation[] annotations,
 javax.ws.rs.core.MediaType mediaType,
 javax.ws.rs.core.MultivaluedMap<String, Object> httpHeaders,
 java.io.OutputStream entityStream)
 throws java.io.IOException, WebApplicationException;
}

	isWriteable()
	
							The isWriteable() method determines if the entity writer can map the Java type to the proper entity type. If the writer can do the mapping, the method returns true.
						

							Table 51.4, “Parameters used to read an entity” describes the isWritable() method’s parameters.
						
Table 51.4. Parameters used to read an entity
	Parameter	Type	Description
	
											type
										

										 	
											Class<T>
										

										 	
											Specifies the Java class of the object being written.
										

										
	
											genericType
										

										 	
											Type
										

										 	
											Specifies the Java type of object to be written, obtained either by reflection of a resource method return type or via inspection of the returned instance. The GenericEntity class, described in the section called “Returning entities with generic type information”, provides support for controlling this value.
										

										
	
											annotations
										

										 	
											Annotation[]
										

										 	
											Specifies the list of annotations on the method returning the entity.
										

										
	
											mediaType
										

										 	
											MediatType
										

										 	
											Specifies the MIME type of the HTTP entity.
										

										

	getSize()
	
							The getSize() method is called before the writeTo(). It returns the length, in bytes, of the entity being written. If a positive value is returned the value is written into the HTTP message’s Content-Length header.
						

							Table 51.5, “Parameters used to read an entity” describes the getSize() method’s parameters.
						
Table 51.5. Parameters used to read an entity
	Parameter	Type	Description
	
											t
										

										 	
											generic
										

										 	
											Specifies the instance being written.
										

										
	
											type
										

										 	
											Class<T>
										

										 	
											Specifies the Java class of the object being written.
										

										
	
											genericType
										

										 	
											Type
										

										 	
											Specifies the Java type of object to be written, obtained either by reflection of a resource method return type or via inspection of the returned instance. The GenericEntity class, described in the section called “Returning entities with generic type information”, provides support for controlling this value.
										

										
	
											annotations
										

										 	
											Annotation[]
										

										 	
											Specifies the list of annotations on the method returning the entity.
										

										
	
											mediaType
										

										 	
											MediatType
										

										 	
											Specifies the MIME type of the HTTP entity.
										

										

	writeTo()
	
							The writeTo() method converts a Java object into the desired entity type and writes the entity to the output stream. If an error occurs when writing the entity to the output stream the method should throw an IOException exception. If an error occurs that requires an HTTP error response, an WebApplicationException with the HTTP response should be thrown.
						

							Table 51.6, “Parameters used to read an entity” describes the writeTo() method’s parameters.
						
Table 51.6. Parameters used to read an entity
	Parameter	Type	Description
	
											t
										

										 	
											generic
										

										 	
											Specifies the instance being written.
										

										
	
											type
										

										 	
											Class<T>
										

										 	
											Specifies the Java class of the object being written.
										

										
	
											genericType
										

										 	
											Type
										

										 	
											Specifies the Java type of object to be written, obtained either by reflection of a resource method return type or via inspection of the returned instance. The GenericEntity class, described in the section called “Returning entities with generic type information”, provides support for controlling this value.
										

										
	
											annotations
										

										 	
											Annotation[]
										

										 	
											Specifies the list of annotations on the method returning the entity.
										

										
	
											mediaType
										

										 	
											MediatType
										

										 	
											Specifies the MIME type of the HTTP entity.
										

										
	
											httpHeaders
										

										 	
											MultivaluedMap<String, Object>
										

										 	
											Specifies the HTTP response headers associated with the entity.
										

										
	
											entityStream
										

										 	
											OutputStream
										

										 	
											Specifies the output stream into which the entity is written.
										

										

				Before a MessageBodyWriter implementation can be used as an entity writer, it must be decorated with the javax.ws.rs.ext.Provider annotation. The @Provider annotation alerts the runtime that the supplied implementation provides additional functionality. The implementation must also be registered with the runtime as described in the section called “Registering readers and writers”.
			

				By default a custom entity provider handles all MIME types. You can limit the MIME types that a custom entity writer will handle using the javax.ws.rs.Produces annotation. The @Produces annotation specifies a comma separated list of MIME types that the custom entity provider generates. If an entity is not of a specified MIME type, the entity provider will not be selected as a possible writer.
			

				Example 51.4, “XML source entity writer” shows an entity writer that takes Source objects and produces XML entities.
			
Example 51.4. XML source entity writer
import java.io.IOException;
import java.io.OutputStream;
import java.lang.annotation.Annotation;
import java.lang.reflect.Type;

import javax.ws.rs.Produces;
import javax.ws.rs.WebApplicationException;
import javax.ws.rs.core.MediaType;
import javax.ws.rs.core.MultivaluedMap;
import javax.ws.rs.ext.MessageBodyWriter;
import javax.ws.rs.ext.Provider;
import javax.xml.transform.Source;
import javax.xml.transform.Transformer;
import javax.xml.transform.TransformerException;
import javax.xml.transform.TransformerFactory;
import javax.xml.transform.stream.StreamResult;

import org.w3c.dom.Document;

import org.apache.cxf.jaxrs.ext.xml.XMLSource;

@Provider
@Produces({"application/xml", "application/*+xml", "text/xml" })
public class SourceProvider implements MessageBodyWriter<Source>
{

 public boolean isWriteable(Class<?> type,
 Type genericType,
 Annotation[] annotations,
 MediaType mt)
 {
 return Source.class.isAssignableFrom(type);
 }

 public void writeTo(Source source,
 Class<?> clazz,
 Type genericType,
 Annotation[] annotations,
 MediaType mediatype,
 MultivaluedMap<String, Object> httpHeaders,
 OutputStream os)
 throws IOException
 {
 StreamResult result = new StreamResult(os);
 TransformerFactory tf = TransformerFactory.newInstance();
 try
 {
 Transformer t = tf.newTransformer();
 t.transform(source, result);
 }
 catch (TransformerException te)
 {
 te.printStackTrace();
 throw new WebApplicationException(te);
 }
 }

 public long getSize(Source source,
 Class<?> type,
 Type genericType,
 Annotation[] annotations,
 MediaType mt)
 {
 return -1;
 }
}

Registering readers and writers

				Before a JAX-RS application can use any custom entity providers, the custom providers must be registered with the runtime. Providers are registered with the runtime using either the jaxrs:providers element in the application’s configuration file or using the JAXRSServerFactoryBean class.
			

				The jaxrs:providers element is a child of the jaxrs:server element and contains a list of bean elements. Each bean element defines one entity provider.
			

				Example 51.5, “Registering entity providers with the runtime” show a JAX-RS server configured to use a set of custom entity providers.
			
Example 51.5. Registering entity providers with the runtime
<beans ...>
 <jaxrs:server id="customerService" address="/">
 ...
 <jaxrs:providers>
 <bean id="isProvider" class="com.bar.providers.InputStreamProvider"/>
 <bean id="longProvider" class="com.bar.providers.LongProvider"/>
 </jaxrs:providers>
 </jaxrs:server>
</beans>

				The JAXRSServerFactoryBean class is a Apache CXF extension that provides access to the configuration APIs. It has a setProvider() method that allows you to add instantiated entity providers to an application. Example 51.6, “Programmatically registering an entity provider” shows code for registering an entity provider programmatically.
			
Example 51.6. Programmatically registering an entity provider
import org.apache.cxf.jaxrs.JAXRSServerFactoryBean;
...
JAXRSServerFactoryBean sf = new JAXRSServerFactoryBean();
...
SourceProvider provider = new SourceProvider();
sf.setProvider(provider);
...

Chapter 52. Getting and Using Context Information

Abstract

					Context information includes detailed information about a resource’s URI, the HTTP headers, and other details that are not readily available using the other injection annotations. Apache CXF provides special class that amalgamates the all possible context information into a single object.
				

Introduction to contexts

Context annotation

					 You specify that context information is to be injected into a field or a resource method parameter using the javax.ws.rs.core.Context annotation. Annotating a field or parameter of one of the context types will instruct the runtime to inject the appropriate context information into the annotated field or parameter.
				

Types of contexts

					Table 52.1, “Context types” lists the types of context information that can be injected and the objects that support them.
				
Table 52.1. Context types
	Object	Context information
	
									 UriInfo
								

								 	
									The full request URI
								

								
	
									 HttpHeaders
								

								 	
									The HTTP message headers
								

								
	
									 Request
								

								 	
									Information that can be used to determine the best representation variant or to determine if a set of preconditions have been set
								

								
	
									 SecurityContext
								

								 	
									Information about the security of the requester including the authentication scheme in use, if the request channel is secure, and the user principle
								

								

Where context information can be used

					Context information is available to the following parts of a JAX-RS application:
				
	
							resource classes
						
	
							resource methods
						
	
							entity providers
						
	
							exception mappers
						

Scope

					All context information injected using the @Context annotation is specific to the current request. This is true in all cases including entity providers and exception mappers.
				

Adding contexts

					 The JAX-RS framework allows developers to extend the types of information that can be injected using the context mechanism. You add custom contexts by implementing a Context<T> object and registering it with the runtime.
				

Working with the full request URI

Abstract

						The request URI contains a significant amount of information. Most of this information can be accessed using method parameters as described in the section called “Injecting data from a request URI”, however using parameters forces certain constraints on how the URI is processed. Using parameters to access the segments of a URI also does not provide a resource access to the full request URI.
					

						You can provide access to the complete request URI by injecting the URI context into a resource. The URI is provided as a UriInfo object. The UriInfo interface provides functions for decomposing the URI in a number of ways. It can also provide the URI as a UriBuilder object that allows you to construct URIs to return to clients.
					

					 :experimental:
				
Injecting the URI information

Overview

						 When a class field or method parameter that is a UriInfo object is decorated with the @Context annotation, the URI context for the current request is injected into the UriInfo object.
					

Example

						Injecting the URI context into a class field shows a class with a field populated by injecting the URI context.
					

Injecting the URI context into a class field

							

import javax.ws.rs.core.Context;
import javax.ws.rs.core.UriInfo;
import javax.ws.rs.Path;
...
@Path("/monstersforhire/")
public class MonsterService
{
 @Context
 UriInfo requestURI;
 ...
}

						

Working with the URI

						
					
Overview

						One of the main advantages of using the URI context is that it provides access to the base URI of the service and the path segment of the URI for the selected resource. This information can be useful for a number of purposes such as making processing decisions based on the URI or calculating URIs to return as part of the response. For example if the base URI of the request contains a .com extension the service may decide to use US dollars and if the base URI contains a .co.uk extension is may decide to us British Pounds.
					

						The UriInfo interface provides methods for accessing the parts of the URI:
					
	
								the base URI
							
	
								the resource path
							
	
								the full URI
							

Getting the Base URI

						The base URI is the root URI on which the service is published. It does not contain any portion of the URI specified in any of the service’s @Path annotations. For example if a service implementing the resource defined in Example 47.5, “Disabling URI decoding” were published to http://fusesource.org and a request was made on http://fusesource.org/montersforhire/nightstalker?12 the base URI would be http://fusesource.org.
					

						Table 52.2, “Methods for accessing a resource’s base URI” describes the methods that return the base URI.
					
Table 52.2. Methods for accessing a resource’s base URI
	Method	Desription
	
										URIgetBaseUri
									

									 	
										Returns the service’s base URI as a URI object.
									

									
	
										 UriBuildergetBaseUriBuilder
									

									 	
										Returns the base URI as a javax.ws.rs.core.UriBuilder object. The UriBuilder class is useful for creating URIs for other resources implemented by the service.
									

									

Getting the path

						The path portion of the request URI is the portion of the URI that was used to select the current resource. It does not include the base URI, but does include any URI template variable and matrix parameters included in the URI.
					

						The value of the path depends on the resource selected. For example, the paths for the resources defined in Getting a resource’s path would be:
					
	
								rootPath — /monstersforhire/
							
	
								getterPath — /mostersforhire/nightstalker
							

								The GET request was made on /monstersforhire/nightstalker.
							

	
								putterPath — /mostersforhire/911
							

								The PUT request was made on /monstersforhire/911.
							

Getting a resource’s path

							

@Path("/monstersforhire/")
public class MonsterService
{
 @Context
 UriInfo rootUri;

 ...

 @GET
 public List<Monster> getMonsters(@Context UriInfo getUri)
 {
 String rootPath = rootUri.getPath();
 ...
 }

 @GET
 @Path("/{type}")
 public Monster getMonster(@PathParam("type") String type,
 @Context UriInfo getUri)
 {
 String getterPath = getUri.getPath();
 ...
 }

 @PUT
 @Path("/{id}")
 public void addMonster(@Encoded @PathParam("type") String type,
 @Context UriInfo putUri)
 {
 String putterPath = putUri.getPath();
 ...
 }
 ...
}

						

						Table 52.3, “Methods for accessing a resource’s path” describes the methods that return the resource path.
					
Table 52.3. Methods for accessing a resource’s path
	Method	Desription
	
										StringgetPath
									

									 	
										Returns the resource’s path as a decoded URI.
									

									
	
										StringgetPathbooleandecode
									

									 	
										Returns the resource’s path. Specifying false disables URI decoding.
									

									
	
										List<PathSegment>getPathSegments
									

									 	
										
									

									
										Returns the decoded path as a list of javax.ws.rs.core.PathSegment objects. Each portion of the path, including matrix parameters, is placed into a unique entry in the list.
									

									
										For example the resource path box/round#tall would result in a list with three entries: box, round, and tall.
									

									
	
										List<PathSegment>getPathSegmentsbooleandecode
									

									 	
										
									

									
										Returns the path as a list of javax.ws.rs.core.PathSegment objects. Each portion of the path, including matrix parameters, is placed into a unique entry in the list. Specifying false disables URI decoding.
									

									
										For example the resource path box#tall/round would result in a list with three entries: box, tall, and round.
									

									

Getting the full request URI

						Table 52.4, “Methods for accessing the full request URI” describes the methods that return the full request URI. You have the option of returning the request URI or the absolute path of the resource. The difference is that the request URI includes the any query parameters appended to the URI and the absolute path does not include the query parameters.
					
Table 52.4. Methods for accessing the full request URI
	Method	Desription
	
										URIgetRequestUri
									

									 	
										Returns the complete request URI, including query parameters and matrix parameters, as a java.net.URI object.
									

									
	
										 UriBuildergetRequestUriBuilder
									

									 	
										Returns the complete request URI, including query parameters and matrix parameters, as a javax.ws.rs.UriBuilder object. The UriBuilder class is useful for creating URIs for other resources implemented by the service.
									

									
	
										URIgetAbsolutePath
									

									 	
										Returns the complete request URI, including matrix parameters, as a java.net.URI object. The absolute path does not include query parameters.
									

									
	
										 UriBuildergetAbsolutePathBuilder
									

									 	
										Returns the complete request URI, including matrix parameters, as a javax.ws.rs.UriBuilder object. The absolute path does not include query parameters.
									

									

						For a request made using the URI http://fusesource.org/montersforhire/nightstalker?12, the getRequestUri() methods would return http://fusesource.org/montersforhire/nightstalker?12. The getAbsolutePath() method would return http://fusesource.org/montersforhire/nightstalker.
					

Getting the value of URI template variables

						
					
Overview

						As described in the section called “Setting the path”, resource paths can contain variable segments that are bound to values dynamically. Often these variable path segments are used as parameters to a resource method as described in the section called “Getting data from the URI’s path”. You can, however, also access them through the URI context.
					

Methods for getting the path parameters

						The UriInfo interface provides two methods, shown in Example 52.1, “Methods for returning path parameters from the URI context”, that return a list of the path parameters.
					
Example 52.1. Methods for returning path parameters from the URI context

							MultivaluedMap<java.lang.String, java.lang.String>getPathParametersMultivaluedMap<java.lang.String, java.lang.String>getPathParametersbooleandecode
						

						The getPathParameters() method that does not take any parameters automatically decodes the path parameters. If you want to disable URI decoding use getPathParameters(false).
					

						The values are stored in the map using their template identifiers as keys. For example if the URI template for the resource is /{color}/box/{note} the returned map will have two entries with the keys color and note.
					

Example

						Example 52.2, “Extracting path parameters from the URI context” shows code for retrieving the path parameters using the URI context.
					
Example 52.2. Extracting path parameters from the URI context
import javax.ws.rs.Path;
import javax.ws.rs.Get;
import javax.ws.rs.core.Context;
import javax.ws.rs.core.UriInfo;
import javax.ws.rs.core.MultivaluedMap;

@Path("/monstersforhire/")
public class MonsterService

 @GET
 @Path("/{type}/{size}")
 public Monster getMonster(@Context UriInfo uri)
 {
 MultivaluedMap paramMap = uri.getPathParameters();
 String type = paramMap.getFirst("type");
 String size = paramMap.getFirst("size");
 }
}

Chapter 53. Annotation Inheritance

Abstract

					JAX-RS annotations can be inherited by subclasses and classes implementing annotated interfaces. The inheritance mechanism allows for subclasses and implementation classes to override the annotations inherited from its parents.
				

				
			
Overview

				Inheritance is one of the more powerful mechanisms in Java because it allows developers to create generic objects that can then be specialized to meet particular needs. JAX-RS keeps this power by allowing the annotations used in mapping classes to resources to be inherited from super classes.
			

				JAX-RS’s annotation inheritance also extends to support for interfaces. Implementation classes inherit the JAX-RS annotations used in the interface they implement.
			

				The JAX-RS inheritance rules do provide a mechanism for overriding inherited annotations. However, it is not possible to completely remove JAX-RS annotations from a construct that inherits them from a super class or interface.
			

Inheritance rules

				Resource classes inherit any JAX-RS annotations from the interface(s) it implements. Resource classes also inherit any JAX-RS annotations from any super classes they extend. Annotations inherited from a super class take precedence over annotations inherited from am interface.
			

				In the code sample shown in Example 53.1, “Annotation inheritance”, the Kaijin class' getMonster() method inherits the @Path, @GET, and @PathParam annotations from the Kaiju interface.
			
Example 53.1. Annotation inheritance
public interface Kaiju
{
 @GET
 @Path("/{id}")
 public Monster getMonster(@PathParam("id") int id);
 ...
}

@Path("/kaijin")
public class Kaijin implements Kaiju
{
 public Monster getMonster(int id)
 {
 ...
 }
 ...
}

Overriding inherited annotations

				Overriding inherited annotations is as easy as providing new annotations. If the subclass, or implementation class, provides any of its own JAX-RS annotations for a method then all of the JAX-RS annotations for that method are ignored.
			

				In the code sample shown in Example 53.2, “Overriding annotation inheritance”, the Kaijin class' getMonster() method does not inherit any of the annotations from the Kaiju interface. The implementation class overrides the @Produces annotation which causes all of the annotations from the interface to be ignored.
			
Example 53.2. Overriding annotation inheritance
public interface Kaiju
{
 @GET
 @Path("/{id}")
 @Produces("text/xml");
 public Monster getMonster(@PathParam("id") int id);
 ...
}

@Path("/kaijin")
public class Kaijin implements Kaiju
{

 @GET
 @Path("/{id}")
 @Produces("application/octect-stream");
 public Monster getMonster(@PathParam("id") int id)
 {
 ...
 }
 ...
}

Chapter 54. Extending JAX-RS Endpoints with Swagger Support

Abstract

					The CXF Swagger2Feature (org.apache.cxf.jaxrs.swagger.Swagger2Feature) allows you to generate Swagger 2.0 documents by extending published JAX-RS service endpoints with a simple configuration.
				

					The Swagger2Feature is supported in both Spring Boot and Karaf implementations.
				

Swagger2Feature options

					You can use the following options in Swagger2Feature.
				
Table 54.1. Swagger2Feature operations
	Name	Description	Default
	
									basePath
								

								 	
									The context root path+ (see also the usePathBasedConfig option)
								

								 	
									null
								

								
	
									contact
								

								 	
									Your contact information+
								

								 	
									"users@cxf.apache.org"
								

								
	
									description
								

								 	
									A description+
								

								 	
									"The Application"
								

								
	
									filterClass
								

								 	
									A security filter+
								

								 	
									null
								

								
	
									host
								

								 	
									The host and port information+
								

								 	
									null
								

								
	
									ignoreRoutes
								

								 	
									Excludes specific paths when scanning all resources (see the scanAllResources option)++
								

								 	
									null
								

								
	
									license
								

								 	
									The license+
								

								 	
									"Apache 2.0 License"
								

								
	
									licenceUrl
								

								 	
									The license URL+
								

								 	
									http://www.apache.org/licenses/LICENSE-2.0.html
								

								
	
									prettyPrint
								

								 	
									When generating swagger.json, specifies to pretty-print the JSON document+
								

								 	
									false
								

								
	
									resourcePackage
								

								 	
									A list of comma separated package names where resources must be scanned+
								

								 	
									A list of service classes configured at the endpoint
								

								
	
									runAsFilter
								

								 	
									Runs the feature as a filter
								

								 	
									false
								

								
	
									scan
								

								 	
									Generates the swagger documentation+
								

								 	
									true
								

								
	
									scanAllResources
								

								 	
									Scans all resources including non-annotated JAX-RS resources (see also the ignoreRoutes option)++
								

								 	
									false
								

								
	
									schemes
								

								 	
									The protocol schemes+
								

								 	
									null
								

								
	
									swaggerUiConfig
								

								 	
									Swagger UI configuration
								

								 	
									null
								

								
	
									termsOfServiceUrl
								

								 	
									The terms of service URL+
								

								 	
									null
								

								
	
									title
								

								 	
									The title+
								

								 	
									"Sample REST Application"
								

								
	
									usePathBasedConfig
								

								 	
									Prevents Swagger from caching the value of the basePath option.
								

								 	
									false
								

								
	
									version
								

								 	
									The version+
								

								 	
									"1.0.0"
								

								

					+ The option is defined in Swagger’s BeanConfig
				

					++ The option is defined in Swagger’s ReaderConfig
				

Karaf Implementations

					This section describes how to use the Swagger2Feature in which REST services are defined inside JAR files and deployed to a Fuse on Karaf container.
				
Quickstart example

						You can download Red Hat Fuse quickstarts from the Fuse Software Downloads page.
					

						The Quickstart zip file contains a /cxf/rest/ directory for a quickstart that demonstrates how to create a RESTful (JAX-RS) web service using CXF and how to enable Swagger and annotate the JAX-RS endpoints.
					

Enabling Swagger

						Enabling Swagger involves:
					
	
								Modifying the XML file that defines the CXF service by adding the CXF class (org.apache.cxf.jaxrs.swagger.Swagger2Feature) to the <jaxrs:server> definition.
							

								For an example, see Example 55.4 Example XML file.
							

	
								In the REST resource class:
							
	
										Importing the Swagger API annotations for each annotation required by the service:
									
import io.swagger.annotations.*

										where * = Api, ApiOperation, ApiParam, ApiResponse, ApiResponses, and so on.
									

										For details, go to https://github.com/swagger-api/swagger-core/wiki/Annotations.
									

										For an example, see Example 55.5 Example Resource class.
									

	
										Adding Swagger annotations to the JAX-RS annotated endpoints (@PATH, @PUT, @POST, @GET, @Produces, @Consumes, @DELETE, @PathParam, and so on).
									

						For an example, see Example 55.5 Example Resource class.
					

Example 55.4 Example XML file

							

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jaxrs="http://cxf.apache.org/blueprint/jaxrs"
 xmlns:cxf="http://cxf.apache.org/blueprint/core"
 xsi:schemaLocation="
 http://www.osgi.org/xmlns/blueprint/v1.0.0
https://www.osgi.org/xmlns/blueprint/v1.0.0/blueprint.xsd
 http://cxf.apache.org/blueprint/jaxrs
http://cxf.apache.org/schemas/blueprint/jaxrs.xsd
 http://cxf.apache.org/blueprint/core
http://cxf.apache.org/schemas/blueprint/core.xsd">

 <jaxrs:server id="customerService" address="/crm">
 <jaxrs:serviceBeans>
 <ref component-id="customerSvc"/>
 </jaxrs:serviceBeans>
 <jaxrs:providers>
 <bean class="com.fasterxml.jackson.jaxrs.json.JacksonJsonProvider"/>
 </jaxrs:providers>
 <jaxrs:features>
 <bean class="org.apache.cxf.jaxrs.swagger.Swagger2Feature">
 <property name="title" value="Fuse:CXF:Quickstarts - Customer Service" />
 <property name="description" value="Sample REST-based Customer Service" />
 <property name="version" value="${project.version}" />
 </bean>
 </jaxrs:features>
 </jaxrs:server>

 <cxf:bus>
 <cxf:features>
 <cxf:logging />
 </cxf:features>
 <cxf:properties>
 <entry key="skip.default.json.provider.registration" value="true" />
 </cxf:properties>
 </cxf:bus>

 <bean id="customerSvc" class="org.jboss.fuse.quickstarts.cxf.rest.CustomerService"/>

</blueprint>

						

Example 55.5 Example Resource class

							

.
.
.

import javax.ws.rs.Consumes;
import javax.ws.rs.DELETE;
import javax.ws.rs.GET;
import javax.ws.rs.POST;
import javax.ws.rs.PUT;
import javax.ws.rs.Path;
import javax.ws.rs.PathParam;
import javax.ws.rs.Produces;
import javax.ws.rs.core.Context;
import javax.ws.rs.core.Response;

import io.swagger.annotations.Api;
import io.swagger.annotations.ApiOperation;
import io.swagger.annotations.ApiParam;
import io.swagger.annotations.ApiResponse;
import io.swagger.annotations.ApiResponses;

.
.
.

@Path("/customerservice/")
@Api(value = "/customerservice", description = "Operations about customerservice")
public class CustomerService {

 private static final Logger LOG =
 LoggerFactory.getLogger(CustomerService.class);

 private MessageContext jaxrsContext;
 private long currentId = 123;
 private Map<Long, Customer> customers = new HashMap<>();
 private Map<Long, Order> orders = new HashMap<>();

 public CustomerService() {
 init();
 }

 @GET
 @Path("/customers/{id}/")
 @Produces("application/xml")
 @ApiOperation(value = "Find Customer by ID", notes = "More notes about this
 method", response = Customer.class)
 @ApiResponses(value = {
 @ApiResponse(code = 500, message = "Invalid ID supplied"),
 @ApiResponse(code = 204, message = "Customer not found")
 })
 public Customer getCustomer(@ApiParam(value = "ID of Customer to fetch",
 required = true) @PathParam("id") String id) {
 LOG.info("Invoking getCustomer, Customer id is: {}", id);
 long idNumber = Long.parseLong(id);
 return customers.get(idNumber);
 }

 @PUT
 @Path("/customers/")
 @Consumes({ "application/xml", "application/json" })
 @ApiOperation(value = "Update an existing Customer")
 @ApiResponses(value = {
 @ApiResponse(code = 500, message = "Invalid ID supplied"),
 @ApiResponse(code = 204, message = "Customer not found")
 })
 public Response updateCustomer(@ApiParam(value = "Customer object that needs
 to be updated", required = true) Customer customer) {
 LOG.info("Invoking updateCustomer, Customer name is: {}", customer.getName());
 Customer c = customers.get(customer.getId());
 Response r;
 if (c != null) {
 customers.put(customer.getId(), customer);
 r = Response.ok().build();
 } else {
 r = Response.notModified().build();
 }

 return r;
 }

 @POST
 @Path("/customers/")
 @Consumes({ "application/xml", "application/json" })
 @ApiOperation(value = "Add a new Customer")
 @ApiResponses(value = { @ApiResponse(code = 500, message = "Invalid ID
 supplied"), })
 public Response addCustomer(@ApiParam(value = "Customer object that needs to
 be updated", required = true) Customer customer) {
 LOG.info("Invoking addCustomer, Customer name is: {}", customer.getName());
 customer.setId(++currentId);

 customers.put(customer.getId(), customer);
 if (jaxrsContext.getHttpHeaders().getMediaType().getSubtype().equals("json"))
 {
 return Response.ok().type("application/json").entity(customer).build();
 } else {
 return Response.ok().type("application/xml").entity(customer).build();
 }
 }

 @DELETE
 @Path("/customers/{id}/")
 @ApiOperation(value = "Delete Customer")
 @ApiResponses(value = {
 @ApiResponse(code = 500, message = "Invalid ID supplied"),
 @ApiResponse(code = 204, message = "Customer not found")
 })
 public Response deleteCustomer(@ApiParam(value = "ID of Customer to delete",
 required = true) @PathParam("id") String id) {
 LOG.info("Invoking deleteCustomer, Customer id is: {}", id);
 long idNumber = Long.parseLong(id);
 Customer c = customers.get(idNumber);

 Response r;
 if (c != null) {
 r = Response.ok().build();
 customers.remove(idNumber);
 } else {
 r = Response.notModified().build();
 }

 return r;
 }

.
.
.

}

						

Spring Boot Implementations

					This section describes how to use the Swagger2Feature in Spring Boot.
				
Quickstart example

						The Quickstart example (https://github.com/fabric8-quickstarts/spring-boot-cxf-jaxrs) demonstrates how you can use Apache CXF with Spring Boot. The Quickstart uses Spring Boot to configure an application that includes a CXF JAX-RS endpoint with Swagger enabled.
					

Enabling Swagger

						Enabling Swagger involves:
					
	
								In the REST application:
							
	
										Importing Swagger2Feature:
									
import org.apache.cxf.jaxrs.swagger.Swagger2Feature;

	
										Adding Swagger2Feature to a CXF endpoint:
									
endpoint.setFeatures(Arrays.asList(new Swagger2Feature()));

										For an example, see Example 55.1 Example REST application.
									

	
								In the Java implementation file, importing the Swagger API annotations for each annotation required by the service:
							
import io.swagger.annotations.*

								where * = Api, ApiOperation, ApiParam, ApiResponse, ApiResponses, and so on.
							

								For details, see https://github.com/swagger-api/swagger-core/wiki/Annotations.
							

								For an example, see Example 55.2 Example Java implementation file.
							

	
								In the Java file, adding Swagger annotations to the JAX-RS annotated endpoints (@PATH, @PUT, @POST, @GET, @Produces, @Consumes, @DELETE, @PathParam, and so on).
							

								For an example, see Example 55.3 Example Java file.
							

Example 55.1 Example REST application

							

package io.fabric8.quickstarts.cxf.jaxrs;

import java.util.Arrays;

import org.apache.cxf.Bus;
import org.apache.cxf.endpoint.Server;
import org.apache.cxf.jaxrs.JAXRSServerFactoryBean;
import org.apache.cxf.jaxrs.swagger.Swagger2Feature;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;

@SpringBootApplication
public class SampleRestApplication {

 @Autowired
 private Bus bus;

 public static void main(String[] args) {
 SpringApplication.run(SampleRestApplication.class, args);
 }

 @Bean
 public Server rsServer() {
 // setup CXF-RS
 JAXRSServerFactoryBean endpoint = new JAXRSServerFactoryBean();
 endpoint.setBus(bus);
 endpoint.setServiceBeans(Arrays.<Object>asList(new HelloServiceImpl()));
 endpoint.setAddress("/");
 endpoint.setFeatures(Arrays.asList(new Swagger2Feature()));
 return endpoint.create();
 }
}

						

Example 55.2 Example Java implementation file

							

import io.swagger.annotations.Api;

@Api("/sayHello")
public class HelloServiceImpl implements HelloService {

 public String welcome() {
 return "Welcome to the CXF RS Spring Boot application, append /{name} to call the hello service";
 }

 public String sayHello(String a) {
 return "Hello " + a + ", Welcome to CXF RS Spring Boot World!!!";
 }

}

						

Example 55.3 Example Java file

							

package io.fabric8.quickstarts.cxf.jaxrs;

import javax.ws.rs.GET;
import javax.ws.rs.Path;
import javax.ws.rs.PathParam;
import javax.ws.rs.Produces;
import javax.ws.rs.core.MediaType;

import org.springframework.stereotype.Service;

@Path("/sayHello")
@Service
public interface HelloService {

 @GET
 @Path("")
 @Produces(MediaType.TEXT_PLAIN)
 String welcome();

 @GET
 @Path("/{a}")
 @Produces(MediaType.TEXT_PLAIN)
 String sayHello(@PathParam("a") String a);

}

						

Accessing Swagger Documents

					When Swagger is enabled by Swagger2Feature, the Swagger documents are available at the location URL constructed of the service endpoint location followed by /swagger.json or /swagger.yaml.
				

					For example, for a JAX-RS endpoint that is published at http://host:port/context/services/ where context is a web application context and /services is a servlet URL, its Swagger documents are available at http://host:port/context/services/swagger.json and http://host:port/context/services/swagger.yaml.
				

					If Swagger2Feature is active, the CXF Services page links to Swagger documents.
				

					In the above example, you would go to http://host:port/context/services/services and then follow a Swagger link which returns a Swagger JSON document.
				

					If CORS support is needed to access the definition from a Swagger UI on another host, you can add the CrossOriginResourceSharingFilter from cxf-rt-rs-security-cors.
				

Accessing Swagger through a reverse proxy

					If you want to access a Swagger JSON document or a Swagger UI through a reverse proxy, set the following options:
				
	
							Set the CXFServlet use-x-forwarded-headers init parameter to true.
						
	
									In Spring Boot, prefix the parameter name with cxf.servlet.init:
								
cxf.servlet.init.use-x-forwarded-headers=true

	
									In Karaf, add the following line to the installDir/etc/org.apache.cxf.osgi.cfg configuration file:
								
cxf.servlet.init.use-x-forwarded-headers=true

									Note: If you do not already have an org.apache.cxf.osgi.cfg file in your etc directory, you can create one.
								

	
							If you specify a value for the Swagger2Feature basePath option and you want to prevent Swagger from caching the basePath value, set the Swagger2Feature usePathBasedConfig option to TRUE:
						
<bean class="org.apache.cxf.jaxrs.swagger.Swagger2Feature">
 <property name="usePathBasedConfig" value="TRUE" />
</bean>

Part VII. Developing Apache CXF Interceptors

				This guide describes how to write Apache CXF interceptors that can perform pre and post processing on messages.
			

Chapter 55. Interceptors in the Apache CXF Runtime

Abstract

					Most of the functionality in the Apache CXF runtime is implemented by interceptors. Every endpoint created by the Apache CXF runtime has three potential interceptor chains for processing messages. The interceptors in the these chains are responsible for transforming messages between the raw data transported across the wire and the Java objects handled by the endpoint’s implementation code. The interceptors are organized into phases to ensure that processing happens on the proper order.
				

Overview

				A large part of what Apache CXF does entails processing messages. When a consumer makes a invocation on a remote service the runtime needs to marshal the data into a message the service can consume and place it on the wire. The service provider must unmarshal the message, execute its business logic, and marshal the response into the appropriate message format. The consumer must then unmarshal the response message, correlate it to the proper request, and pass it back to the consumer’s application code. In addition to the basic marshaling and unmarshaling, the Apache CXF runtime may do a number of other things with the message data. For example, if WS-RM is activated, the runtime must process the message chunks and acknowledgement messages before marshaling and unmarshaling the message. If security is activated, the runtime must validate the message’s credentials as part of the message processing sequence.
			

				Figure 55.1, “Apache CXF interceptor chains” shows the basic path that a request message takes when it is received by a service provider.
			
Figure 55.1. Apache CXF interceptor chains
[image: depiction of an endpoint with in and out interceptor chains]

Message processing in Apache CXF

				When a Apache CXF developed consumer invokes a remote service the following message processing sequence is started:
			
	
						The Apache CXF runtime creates an outbound interceptor chain to process the request.
					
	
						If the invocation starts a two-way message exchange, the runtime creates an inbound interceptor chain and a fault processing interceptor chain.
					
	
						The request message is passed sequentially through the outbound interceptor chain.
					

						Each interceptor in the chain performs some processing on the message. For example, the Apache CXF supplied SOAP interceptors package the message in a SOAP envelope.
					

	
						If any of the interceptors on the outbound chain create an error condition the chain is unwound and control is returned to the application level code.
					

						An interceptor chain is unwound by calling the fault processing method on all of the previously invoked interceptors.
					

	
						The request is dispatched to the appropriate service provider.
					
	
						When the response is received, it is passed sequentially through the inbound interceptor chain.
					
Note

							If the response is an error message, it is passed into the fault processing interceptor chain.
						

	
						If any of the interceptors on the inbound chain create an error condition, the chain is unwound.
					
	
						When the message reaches the end of the inbound interceptor chain, it is passed back to the application code.
					

				When a Apache CXF developed service provider receives a request from a consumer, a similar process takes place:
			
	
						The Apache CXF runtime creates an inbound interceptor chain to process the request message.
					
	
						If the request is part of a two-way message exchange, the runtime also creates an outbound interceptor chain and a fault processing interceptor chain.
					
	
						The request is passed sequentially through the inbound interceptor chain.
					
	
						If any of the interceptors on the inbound chain create an error condition, the chain is unwound and a fault is dispatched to the consumer.
					

						An interceptor chain is unwound by calling the fault processing method on all of the previously invoked interceptors.
					

	
						When the request reaches the end of the inbound interceptor chain, it is passed to the service implementation.
					
	
						When the response is ready it is passed sequentially through the outbound interceptor chain.
					
Note

							If the response is an exception, it is passed through the fault processing interceptor chain.
						

	
						If any of the interceptors on the outbound chain create an error condition, the chain is unwound and a fault message is dispatched.
					
	
						Once the request reaches the end of the outbound chain, it is dispatched to the consumer.
					

Interceptors

				 All of the message processing in the Apache CXF runtime is done by interceptors. Interceptors are POJOs that have access to the message data before it is passed to the application layer. They can do a number of things including: transforming the message, stripping headers off of the message, or validating the message data. For example, an interceptor could read the security headers off of a message, validate the credentials against an external security service, and decide if message processing can continue.
			

				The message data available to an interceptor is determined by several factors:
			
	
						the interceptor’s chain
					
	
						the interceptor’s phase
					
	
						the other interceptors that occur earlier in the chain
					

Phases

				 Interceptors are organized into phases. A phase is a logical grouping of interceptors with common functionality. Each phase is responsible for a specific type of message processing. For example, interceptors that process the marshaled Java objects that are passed to the application layer would all occur in the same phase.
			

Interceptor chains

				 Phases are aggregated into interceptor chains. An interceptor chain is a list of interceptor phases that are ordered based on whether messages are inbound or outbound.
			

				Each endpoint created using Apache CXF has three interceptor chains:
			
	
						a chain for inbound messages
					
	
						a chain for outbound messages
					
	
						a chain for error messages
					

				Interceptor chains are primarily constructed based on the choose of binding and transport used by the endpoint. Adding other runtime features, such as security or logging, also add interceptors to the chains. Developers can also add custom interceptors to a chain using configuration.
			

Developing interceptors

				Developing an interceptor, regardless of its functionality, always follows the same basic procedure:
			
	
						Chapter 56, The Interceptor APIs
					

						Apache CXF provides a number of abstract interceptors to make it easier to develop custom interceptors.
					

	
						the section called “Specifying an interceptor’s phase”
					

						Interceptors require certain parts of a message to be available and require the data to be in a certain format. The contents of the message and the format of the data is partially determined by an interceptor’s phase.
					

	
						the section called “Constraining an interceptors placement in a phase”
					

						In general, the ordering of interceptors within a phase is not important. However, in certain situations it may be important to ensure that an interceptor is executed before, or after, other interceptors in the same phase.
					

	
						the section called “Processing messages”
					
	
						the section called “Unwinding after an error”
					

						If an error occurs in the active interceptor chain after the interceptor has executed, its fault processing logic is invoked.
					

	
						Chapter 59, Configuring Endpoints to Use Interceptors
					

Chapter 56. The Interceptor APIs

Abstract

					Interceptors implement the PhaseInterceptor interface which extends the base Interceptor interface. This interface defines a number of methods used by the Apache CXF’s runtime to control interceptor execution and are not appropriate for application developers to implement. To simplify interceptor development, Apache CXF provides a number of abstract interceptor implementations that can be extended.
				

Interfaces

				 All of the interceptors in Apache CXF implement the base Interceptor interface shown in Example 56.1, “Base interceptor interface”.
			
Example 56.1. Base interceptor interface
package org.apache.cxf.interceptor;

public interface Interceptor<T extends Message>
{

 void handleMessage(T message) throws Fault;

 void handleFault(T message);

}

				The Interceptor interface defines the two methods that a developer needs to implement for a custom interceptor:
			
	handleMessage()
	
							The handleMessage() method does most of the work in an interceptor. It is called on each interceptor in a message chain and receives the contents of the message being processed. Developers implement the message processing logic of the interceptor in this method. For detailed information about implementing the handleMessage() method, see the section called “Processing messages”.
						
	handleFault()
	
							The handleFault() method is called on an interceptor when normal message processing has been interrupted. The runtime calls the handleFault() method of each invoked interceptor in reverse order as it unwinds an interceptor chain. For detailed information about implementing the handleFault() method, see the section called “Unwinding after an error”.
						

				Most interceptors do not directly implement the Interceptor interface. Instead, they implement the PhaseInterceptor interface shown in Example 56.2, “The phase interceptor interface”. The PhaseInterceptor interface adds four methods that allow an interceptor the participate in interceptor chains.
			
Example 56.2. The phase interceptor interface
package org.apache.cxf.phase;
...

public interface PhaseInterceptor<T extends Message> extends Interceptor<T>
{

 Set<String> getAfter();

 Set<String> getBefore();

 String getId();

 String getPhase();

}

Abstract interceptor class

				 Instead of directly implementing the PhaseInterceptor interface, developers should extend the AbstractPhaseInterceptor class. This abstract class provides implementations for the phase management methods of the PhaseInterceptor interface. The AbstractPhaseInterceptor class also provides a default implementation of the handleFault() method.
			

				Developers need to provide an implementation of the handleMessage() method. They can also provide a different implementation for the handleFault() method. The developer-provided implementations can manipulate the message data using the methods provided by the generic org.apache.cxf.message.Message interface.
			

				For applications that work with SOAP messages, Apache CXF provides an AbstractSoapInterceptor class. Extending this class provides the handleMessage() method and the handleFault() method with access to the message data as an org.apache.cxf.binding.soap.SoapMessage object. SoapMessage objects have methods for retrieving the SOAP headers, the SOAP envelope, and other SOAP metadata from the message.
			

Chapter 57. Determining When the Interceptor is Invoked

Abstract

					Interceptors are organized into phases. The phase in which an interceptor runs determines what portions of the message data it can access. An interceptor can determine its location in relationship to the other interceptors in the same phase. The interceptor’s phase and its location within the phase are set as part of the interceptor’s constructor logic.
				

Specifying the Interceptor Location

					When developing a custom interceptor, the first thing to consider is where in the message processing chain the interceptor belongs. The developer can control an interceptor’s position in the message processing chain in one of two ways:
				
	
							Specifying the interceptor’s phase
						
	
							Specifying constraints on the location of the interceptor within the phase
						

					Typically, the code specifying an interceptor’s location is placed in the interceptor’s constructor. This makes it possible for the runtime to instantiate the interceptor and put in the proper place in the interceptor chain without any explicit action in the application level code.
				

Specifying an interceptor’s phase

Overview

					Interceptors are organized into phases. An interceptor’s phase determines when in the message processing sequence it is called. Developers specify an interceptor’s phase its constructor. Phases are specified using constant values provided by the framework.
				

Phase

					Phases are a logical collection of interceptors. As shown in Figure 57.1, “An interceptor phase”, the interceptors within a phase are called sequentially.
				
Figure 57.1. An interceptor phase
[image: Interceptors are linked together into phases.]

					The phases are linked together in an ordered list to form an interceptor chain and provide defined logical steps in the message processing procedure. For example, a group of interceptors in the RECEIVE phase of an inbound interceptor chain processes transport level details using the raw message data picked up from the wire.
				

					There is, however, no enforcement of what can be done in any of the phases. It is recommended that interceptors within a phase adhere to tasks that are in the spirit of the phase.
				

					The complete list of phases defined by Apache CXF can be found in Chapter 62, Apache CXF Message Processing Phases.
				

Specifying a phase

					 Apache CXF provides the org.apache.cxf.Phase class to use for specifying a phase. The class is a collection of constants. Each phase defined by Apache CXF has a corresponding constant in the Phase class. For example, the RECEIVE phase is specified by the value Phase.RECEIVE.
				

Setting the phase

					 An interceptor’s phase is set in the interceptor’s constructor. The AbstractPhaseInterceptor class defines three constructors for instantiating an interceptor:
				
	
							public AbstractPhaseInterceptor(String phase)—sets the phase of the interceptor to the specified phase and automatically sets the interceptor’s id to the interceptor’s class name.
						

							This constructor will satisfy most use cases.
						

	
							public AbstractPhaseInterceptor(String id, String phase)—sets the interceptor’s id to the string passed in as the first parameter and the interceptor’s phase to the second string.
						
	
							public AbstractPhaseInterceptor(String phase, boolean uniqueId)—specifies if the interceptor should use a unique, system generated id. If the uniqueId parameter is true, the interceptor’s id will be calculated by the system. If the uniqueId parameter is false the interceptor’s id is set to the interceptor’s class name.
						

					The recommended way to set a custom interceptor’s phase is to pass the phase to the AbstractPhaseInterceptor constructor using the super() method as shown in Example 57.1, “Setting an interceptor’s phase”.
				
Example 57.1. Setting an interceptor’s phase
import org.apache.cxf.message.Message;
import org.apache.cxf.phase.AbstractPhaseInterceptor;
import org.apache.cxf.phase.Phase;

public class StreamInterceptor extends AbstractPhaseInterceptor<Message>
 {

 public StreamInterceptor()
 {
 super(Phase.PRE_STREAM);
 }
}

					The StreamInterceptor interceptor shown in Example 57.1, “Setting an interceptor’s phase” is placed into the PRE_STREAM phase.
				

Constraining an interceptors placement in a phase

Overview

					Placing an interceptor into a phase may not provide fine enough control over its placement to ensure that the interceptor works properly. For example, if an interceptor needed to inspect the SOAP headers of a message using the SAAJ APIs, it would need to run after the interceptor that converts the message into a SAAJ object. There may also be cases where one interceptor consumes a part of the message needed by another interceptor. In these cases, a developer can supply a list of interceptors that must be executed before their interceptor. A developer can also supply a list of interceptors that must be executed after their interceptor.
				
Important

						The runtime can only honor these lists within the interceptor’s phase. If a developer places an interceptor from an earlier phase in the list of interceptors that must execute after the current phase, the runtime will ignore the request.
					

Add to the chain before

					 One issue that arises when developing an interceptor is that the data required by the interceptor is not always present. This can occur when one interceptor in the chain consumes message data required by a later interceptor. Developers can control what a custom interceptor consumes and possibly fix the problem by modifying their interceptors. However, this is not always possible because a number of interceptors are used by Apache CXF and a developer cannot modify them.
				

					An alternative solution is to ensure that a custom interceptor is placed before any interceptors that will consume the message data the custom interceptor requires. The easiest way to do that would be to place it in an earlier phase, but that is not always possible. For cases where an interceptor needs to be placed before one or more other interceptors the Apache CXF’s AbstractPhaseInterceptor class provides two addBefore() methods.
				

					As shown in Example 57.2, “Methods for adding an interceptor before other interceptors”, one takes a single interceptor id and the other takes a collection of interceptor ids. You can make multiple calls to continue adding interceptors to the list.
				
Example 57.2. Methods for adding an interceptor before other interceptors

						publicaddBeforeStringipublicaddBeforeCollection<String>i
					

					As shown in Example 57.3, “Specifying a list of interceptors that must run after the current interceptor”, a developer calls the addBefore() method in the constuctor of a custom interceptor.
				
Example 57.3. Specifying a list of interceptors that must run after the current interceptor
public class MyPhasedOutInterceptor extends AbstractPhaseInterceptor
{

 public MyPhasedOutInterceptor() {
 super(Phase.PRE_LOGICAL);
 addBefore(HolderOutInterceptor.class.getName());
 }

...

}

					Most interceptors use their class name for an interceptor id.
				

Add to the chain after

					 Another reason the data required by the interceptor is not present is that the data has not been placed in the message object. For example, an interceptor may want to work with the message data as a SOAP message, but it will not work if it is placed in the chain before the message is turned into a SOAP message. Developers can control what a custom interceptor consumes and possibly fix the problem by modifying their interceptors. However, this is not always possible because a number of interceptors are used by Apache CXF and a developer cannot modify them.
				

					An alternative solution is to ensure that a custom interceptor is placed after the interceptor, or interceptors, that generate the message data the custom interceptor requires. The easiest way to do that would be to place it in a later phase, but that is not always possible. The AbstractPhaseInterceptor class provides two addAfter() methods for cases where an interceptor needs to be placed after one or more other interceptors.
				

					As shown in Example 57.4, “Methods for adding an interceptor after other interceptors”, one method takes a single interceptor id and the other takes a collection of interceptor ids. You can make multiple calls to continue adding interceptors to the list.
				
Example 57.4. Methods for adding an interceptor after other interceptors

						publicaddAfterStringipublicaddAfterCollection<String>i
					

					As shown in Example 57.5, “Specifying a list of interceptors that must run before the current interceptor”, a developer calls the addAfter() method in the constuctor of a custom interceptor.
				
Example 57.5. Specifying a list of interceptors that must run before the current interceptor
public class MyPhasedOutInterceptor extends AbstractPhaseInterceptor
{

 public MyPhasedOutInterceptor() {
 super(Phase.PRE_LOGICAL);
 addAfter(StartingOutInterceptor.class.getName());
 }

...

}

					Most interceptors use their class name for an interceptor id.
				

Chapter 58. Implementing the Interceptors Processing Logic

Abstract

					Interceptors are straightforward to implement. The bulk of their processing logic is in the handleMessage() method. This method receives the message data and manipulates it as needed. Developers may also want to add some special logic to handle fault processing cases.
				

Interceptor Flow

					Figure 58.1, “Flow through an interceptor” shows the process flow through an interceptor.
				
Figure 58.1. Flow through an interceptor
[image: interceptor1]

					In normal message processing, only the handleMessage() method is called. The handleMessage() method is where the interceptor’s message processing logic is placed.
				

					If an error occurs in the handleMessage() method of the interceptor, or any subsequent interceptor in the interceptor chain, the handleFault() method is called. The handleFault() method is useful for cleaning up after an interceptor in the event of an error. It can also be used to alter the fault message.
				

Processing messages

					
				
Overview

					In normal message processing, an interceptor’s handleMessage() method is invoked. It receives that message data as a Message object. Along with the actual contents of the message, the Message object may contain a number of properties related to the message or the message processing state. The exact contents of the Message object depends on the interceptors preceding the current interceptor in the chain.
				

Getting the message contents

					 The Message interface provides two methods that can be used in extracting the message contents:
				
	
							public<T> TgetContentjava.lang.Class<T> format The getContent() method returns the content of the message in an object of the specified class. If the contents are not available as an instance of the specified class, null is returned. The list of available content types is determined by the interceptor’s location on the interceptor chain and the direction of the interceptor chain.
						
	
							publicCollection<Attachment>getAttachments The getAttachments() method returns a Java Collection object containing any binary attachments associated with the message. The attachments are stored in org.apache.cxf.message.Attachment objects. Attachment objects provide methods for managing the binary data.
						
Important

								Attachments are only available after the attachment processing interceptors have executed.
							

Determining the message’s direction

					 The direction of a message can be determined by querying the message exchange. The message exchange stores the inbound message and the outbound message in separate properties.[3]
				

					The message exchange associated with a message is retrieved using the message’s getExchange() method. As shown in Example 58.1, “Getting the message exchange”, getExchange() does not take any parameters and returns the message exchange as a org.apache.cxf.message.Exchange object.
				
Example 58.1. Getting the message exchange

						ExchangegetExchange
					

					The Exchange object has four methods, shown in Example 58.2, “Getting messages from a message exchange”, for getting the messages associated with an exchange. Each method will either return the message as a org.apache.cxf.Message object or it will return null if the message does not exist.
				
Example 58.2. Getting messages from a message exchange

						MessagegetInMessageMessagegetInFaultMessageMessagegetOutMessageMessagegetOutFaultMessage
					

					Example 58.3, “Checking the direction of a message chain” shows code for determining if the current message is outbound. The method gets the message exchange and checks to see if the current message is the same as the exchange’s outbound message. It also checks the current message against the exchanges outbound fault message to error messages on the outbound fault interceptor chain.
				
Example 58.3. Checking the direction of a message chain
public static boolean isOutbound()
{
 Exchange exchange = message.getExchange();
 return message != null
 && exchange != null
 && (message == exchange.getOutMessage()
 || message == exchange.getOutFaultMessage());
}

Example

					Example 58.4, “Example message processing method” shows code for an interceptor that processes zip compressed messages. It checks the direction of the message and then performs the appropriate actions.
				
Example 58.4. Example message processing method
import java.io.IOException;
import java.io.InputStream;
import java.util.zip.GZIPInputStream;

import org.apache.cxf.message.Message;
import org.apache.cxf.phase.AbstractPhaseInterceptor;
import org.apache.cxf.phase.Phase;

public class StreamInterceptor extends AbstractPhaseInterceptor<Message>
{

 ...

 public void handleMessage(Message message)
 {

 boolean isOutbound = false;
 isOutbound = message == message.getExchange().getOutMessage()
 || message == message.getExchange().getOutFaultMessage();

 if (!isOutbound)
 {
 try
 {
 InputStream is = message.getContent(InputStream.class);
 GZIPInputStream zipInput = new GZIPInputStream(is);
 message.setContent(InputStream.class, zipInput);
 }
 catch (IOException ioe)
 {
 ioe.printStackTrace();
 }
 }
 else
 {
 // zip the outbound message
 }
 }
 ...
}

Unwinding after an error

					
				
Overview

					When an error occurs during the execution of an interceptor chain, the runtime stops traversing the interceptor chain and unwinds the chain by calling the handleFault() method of any interceptors in the chain that have already been executed.
				

					The handleFault() method can be used to clean up any resources used by an interceptor during normal message processing. It can also be used to rollback any actions that should only stand if message processing completes successfully. In cases where the fault message will be passed on to an outbound fault processing interceptor chain, the handleFault() method can also be used to add information to the fault message.
				

Getting the message payload

					The handleFault() method receives the same Message object as the handleMessage() method used in normal message processing. Getting the message contents from the Message object is described in the section called “Getting the message contents”.
				

Example

					Example 58.5, “Handling an unwinding interceptor chain” shows code used to ensure that the original XML stream is placed back into the message when the interceptor chain is unwound.
				
Example 58.5. Handling an unwinding interceptor chain
@Override
public void handleFault(SoapMessage message)
{
 super.handleFault(message);
 XMLStreamWriter writer = (XMLStreamWriter)message.get(ORIGINAL_XML_WRITER);
 if (writer != null)
 {
 message.setContent(XMLStreamWriter.class, writer);
 }
}

[3]
						It also stores inbound and outbound faults separately.
					

Chapter 59. Configuring Endpoints to Use Interceptors

Abstract

					Interceptors are added to an endpoint when it is included in a message exchange. The endpoint’s interceptor chains are constructed from a the interceptor chains of a number of components in the Apache CXF runtime. Interceptors are specified in either the endpoint’s configuration or the configuration of one of the runtime components. Interceptors can be added using either the configuration file or the interceptor API.
				

Deciding where to attach interceptors

Overview

					There are a number of runtime objects that host interceptor chains. These include:
				
	
							the endpoint object
						
	
							the service object
						
	
							the proxy object
						
	
							the factory object used to create the endpoint or the proxy
						
	
							the binding
						
	
							the central Bus object
						

					A developer can attach their own interceptors to any of these objects. The most common objects to attach interceptors are the bus and the individual endpoints. Choosing the correct object requires understanding how these runtime objects are combined to make an endpoint. As per the design, each cxf related bundle has its own cxf bus. Hence, if the interceptors are configured in the bus and the service at the same Blueprint context is imported or created into another bundle, the interceptor won’t be processed. Instead you can configure the interceptors directly into the JAXWS client or endpoint in the imported service.
				

Endpoints and proxies

					Attaching interceptors to either the endpoint or the proxy is the most fine grained way to place an interceptor. Any interceptors attached directly to an endpoint or a proxy only effect the specific endpoint or proxy. This is a good place to attach interceptors that are specific to a particular incarnation of a service. For example, if a developer wants to expose one instance of a service that converts units from metric to imperial they could attach the interceptors directly to one endpoint.
				

Factories

					Using the Spring configuration to attach interceptors to the factories used to create an endpoint or a proxy has the same effect as attaching the interceptors directly to the endpoint or proxy. However, when interceptors are attached to a factory programmatically the interceptors attached to the factory are propagated to every endpoint or proxy created by the factory.
				

Bindings

					Attaching interceptors to the binding allows the developer to specify a set of interceptors that are applied to all endpoints that use the binding. For example, if a developer wants to force all endpoints that use the raw XML binding to include a special ID element, they could attach the interceptor responsible for adding the element to the XML binding.
				

Buses

					The most general place to attach interceptors is the bus. When interceptors are attached to the bus, the interceptors are propagated to all of the endpoints managed by that bus. Attaching interceptors to the bus is useful in applications that create multiple endpoints that share a similar set of interceptors.
				

Combining attachment points

					Because an endpoint’s final set of interceptor chains is an amalgamation of the interceptor chains contributed by the listed objects, several of the listed object can be combined in a single endpoint’s configuration. For example, if an application spawned multiple endpoints that all required an interceptor that checked for a validation token, that interceptor would be attached to the application’s bus. If one of those endpoints also required an interceptor that converted Euros into dollars, the conversion interceptor would be attached directly to the specific endpoint.
				

Adding interceptors using configuration

					
				
Overview

					The easiest way to attach interceptors to an endpoint is using the configuration file. Each interceptor to be attached to an endpoint is configured using a standard Spring bean. The interceptor’s bean can then be added to the proper interceptor chain using Apache CXF configuration elements.
				

					Each runtime component that has an associated interceptor chain is configurable using specialized Spring elements. Each of the component’s elements have a standard set of children for specifying their interceptor chains. There is one child for each interceptor chain associated with the component. The children list the beans for the interceptors to be added to the chain.
				

Configuration elements

					Table 59.1, “Interceptor chain configuration elements” describes the four configuration elements for attaching interceptors to a runtime component.
				
Table 59.1. Interceptor chain configuration elements
	Element	Description
	
									 inInterceptors
								

								 	
									Contains a list of beans configuring interceptors to add to an endpoint’s inbound interceptor chain.
								

								
	
									 outInterceptors
								

								 	
									Contains a list of beans configuring interceptors to add to an endpoint’s outbound interceptor chain.
								

								
	
									 inFaultInterceptors
								

								 	
									Contains a list of beans configuring interceptors to add to an endpoint’s inbound fault processing interceptor chain.
								

								
	
									 outFaultInterceptors
								

								 	
									Contains a list of beans configuring interceptors to add to an endpoint’s outbound fault processing interceptor chain.
								

								

					All of the interceptor chain configuration elements take a list child element. The list element has one child for each of the interceptors being attached to the chain. Interceptors can be specified using either a bean element directly configuring the interceptor or a ref element that refers to a bean element that configures the interceptor.
				

Examples

					Example 59.1, “Attaching interceptors to the bus” shows configuration for attaching interceptors to a bus' inbound interceptor chain.
				
Example 59.1. Attaching interceptors to the bus
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:cxf="http://cxf.apache.org/core"
 xmlns:http="http://cxf.apache.org/transports/http/configuration"
 xsi:schemaLocation="
 http://cxf.apache.org/core http://cxf.apache.org/schemas/core.xsd
 http://cxf.apache.org/transports/http/configuration http://cxf.apache.org/schemas/configuration/http-conf.xsd
 http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd">
 ...
 <bean id="GZIPStream" class="demo.stream.interceptor.StreamInterceptor"/>

 <cxf:bus>
 *<cxf:inInterceptors>
 <list>
 <ref bean="GZIPStream"/>
 </list>
 </cxf:inInterceptors>*
 </cxf:bus>
</beans>

					Example 59.2, “Attaching interceptors to a JAX-WS service provider” shows configuration for attaching an interceptor to a JAX-WS service’s outbound interceptor chain.
				
Example 59.2. Attaching interceptors to a JAX-WS service provider
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 xmlns:wsa="http://cxf.apache.org/ws/addressing"
 xsi:schemaLocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

 <jaxws:endpoint ...>
 *<jaxws:outInterceptors>
 <list>
 <bean id="GZIPStream" class="demo.stream.interceptor.StreamInterceptor" />
 </list>
 </jaxws:outInterceptors>*
 </jaxws:endpoint>
</beans>

More information

					For more information about configuring endpoints using the Spring configuration see Part IV, “Configuring Web Service Endpoints”.
				

Adding interceptors programmatically

					
				
Approaches to Adding Interceptors

						Interceptors can be attached to endpoints programmatically using either one of two approaches:
					
	
								the InterceptorProvider API
							
	
								Java annotations
							

						Using the InterceptorProvider API allows the developer to attach interceptors to any of the runtime components that have interceptor chains, but it requires working with the underlying Apache CXF classes. The Java annotations can only be added to service interfaces or service implementations, but they allow developers to stay within the JAX-WS API or the JAX-RS API.
					

Using the interceptor provider API

Overview

						Interceptors can be registered with any component that implements the InterceptorProvider interface shown in The interceptor provider interface.
					

The interceptor provider interface

							

package org.apache.cxf.interceptor;

import java.util.List;

public interface InterceptorProvider
{
 List<Interceptor<? extends Message>> getInInterceptors();

 List<Interceptor<? extends Message>> getOutInterceptors();

 List<Interceptor<? extends Message>> getInFaultInterceptors();

 List<Interceptor<? extends Message>> getOutFaultInterceptors();
}

						

						The four methods in the interface allow you to retrieve each of an endpoint’s interceptor chains as a Java List object. Using the methods offered by the Java List object, developers can add and remove interceptors to any of the chains.
					

Procedure

						To use the InterceptorProvider API to attach an interceptor to a runtime component’s interceptor chain, you must:
					
	
								Get access to the runtime component with the chain to which the interceptor is being attached.
							

								Developers must use Apache CXF specific APIs to access the runtime components from standard Java application code. The runtime components are usually accessible by casting the JAX-WS or JAX-RS artifacts into the underlying Apache CXF objects.
							

	
								Create an instance of the interceptor.
							
	
								Use the proper get method to retrieve the desired interceptor chain.
							
	
								Use the List object’s add() method to attach the interceptor to the interceptor chain.
							

								This step is usually combined with retrieving the interceptor chain.
							

Attaching an interceptor to a consumer

						Attaching an interceptor to a consumer programmatically shows code for attaching an interceptor to the inbound interceptor chain of a JAX-WS consumer.
					

Attaching an interceptor to a consumer programmatically

							

package com.fusesource.demo;

import java.io.File;
import java.net.URL;
import javax.xml.namespace.QName;
import javax.xml.ws.Service;

import org.apache.cxf.endpoint.Client;

public class Client
{
 public static void main(String args[])
 {
 QName serviceName = new QName("http://demo.eric.org", "stockQuoteReporter");
 Service s = Service.create(serviceName);

 QName portName = new QName("http://demo.eric.org", "stockQuoteReporterPort");
 s.addPort(portName, "http://schemas.xmlsoap.org/soap/", "http://localhost:9000/EricStockQuote");

 quoteReporter proxy = s.getPort(portName, quoteReporter.class);

 Client cxfClient = (Client) proxy;

 ValidateInterceptor validInterceptor = new ValidateInterceptor();
 cxfClient.getInInterceptor().add(validInterceptor);

 ...
 }
}

						

						The code in Attaching an interceptor to a consumer programmatically does the following:
					

						Creates a JAX-WS Service object for the consumer.
					

						Adds a port to the Service object that provides the consumer’s target address.
					

						Creates the proxy used to invoke methods on the service provider.
					

						Casts the proxy to the org.apache.cxf.endpoint.Client type.
					

						Creates an instance of the interceptor.
					

						Attaches the interceptor to the inbound interceptor chain.
					

Attaching an interceptor to a service provider

						Attaching an interceptor to a service provider programmatically shows code for attaching an interceptor to a service provider’s outbound interceptor chain.
					

Attaching an interceptor to a service provider programmatically

							

package com.fusesource.demo;
import java.util.*;

import org.apache.cxf.endpoint.Server;
import org.apache.cxf.frontend.ServerFactoryBean;
import org.apache.cxf.frontend.EndpointImpl;

public class stockQuoteReporter implements quoteReporter
{
 ...
 public stockQuoteReporter()
 {
 ServerFactoryBean sfb = new ServerFactoryBean();
 Server server = sfb.create();
 EndpointImpl endpt = server.getEndpoint();

 AuthTokenInterceptor authInterceptor = new AuthTokenInterceptor();

 endpt.getOutInterceptor().add(authInterceptor);
 }
}

						

						The code in Attaching an interceptor to a service provider programmatically does the following:
					

						Creates a ServerFactoryBean object that will provide access to the underlying Apache CXF objects.
					

						Gets the Server object that Apache CXF uses to represent the endpoint.
					

						Gets the Apache CXF EndpointImpl object for the service provider.
					

						Creates an instance of the interceptor.
					

						Attaches the interceptor to the endpoint;s outbound interceptor chain.
					

Attaching an interceptor to a bus

						Attaching an interceptor to a bus shows code for attaching an interceptor to a bus' inbound interceptor chain.
					

Attaching an interceptor to a bus

							

import org.apache.cxf.BusFactory;
org.apache.cxf.Bus;

...

Bus bus = BusFactory.getDefaultBus();

WatchInterceptor watchInterceptor = new WatchInterceptor();

bus..getInInterceptor().add(watchInterceptor);

...

						

						The code in Attaching an interceptor to a bus does the following:
					

						Gets the default bus for the runtime instance.
					

						Creates an instance of the interceptor.
					

						Attaches the interceptor to the inbound interceptor chain.
					

						The WatchInterceptor will be attached to the inbound interceptor chain of all endpoints created by the runtime instance.
					

Using Java annotations

Overview

						Apache CXF provides four Java annotations that allow a developer to specify the interceptor chains used by an endpoint. Unlike the other means of attaching interceptors to endpoints, the annotations are attached to application-level artifacts. The artifact that is used determines the scope of the annotation’s effect.
					

Where to place the annotations

						The annotations can be placed on the following artifacts:
					
	
								the service endpoint interface(SEI) defining the endpoint
							

								If the annotations are placed on an SEI, all of the service providers that implement the interface and all of the consumers that use the SEI to create proxies will be affected.
							

	
								a service implementation class
							

								If the annotations are placed on an implementation class, all of the service providers using the implementation class will be affected.
							

The annotations

						The annotations are all in the org.apache.cxf.interceptor package and are described in Table 59.2, “Interceptor chain annotations”.
					
Table 59.2. Interceptor chain annotations
	Annotation	Description
	
										 InInterceptors
									

									 	
										Specifies the interceptors for the inbound interceptor chain.
									

									
	
										 OutInterceptors
									

									 	
										Specifies the interceptors for the outbound interceptor chain.
									

									
	
										 InFaultInterceptors
									

									 	
										Specifies the interceptors for the inbound fault interceptor chain.
									

									
	
										 OutFaultInterceptors
									

									 	
										Specifies the interceptors for the outbound fault interceptor chain.
									

									

Listing the interceptors

						The list of interceptors is specified as a list of fully qualified class names using the syntax shown in Syntax for listing interceptors in a chain annotation.
					

Syntax for listing interceptors in a chain annotation

							

interceptors={"interceptor1", "interceptor2", ..., "interceptorN"}

						

Example

						Attaching interceptors to a service implementation shows annotations that attach two interceptors to the inbound interceptor chain of endpoints that use the logic provided by SayHiImpl.
					

Attaching interceptors to a service implementation

							

import org.apache.cxf.interceptor.InInterceptors;

@InInterceptors(interceptors={"com.sayhi.interceptors.FirstLast", "com.sayhi.interceptors.LogName"})
public class SayHiImpl implements SayHi
{
 ...
}

						

Chapter 60. Manipulating Interceptor Chains on the Fly

Abstract

					Interceptors can reconfigure an endpoint’s interceptor chain as part of its message processing logic. It can add new interceptors, remove interceptors, reorder interceptors, and even suspend the interceptor chain. Any on-the-fly manipulation is invocation-specific, so the original chain is used each time an endpoint is involved in a message exchange.
				

Overview

				Interceptor chains only live as long as the message exchange that sparked their creation. Each message contains a reference to the interceptor chain responsible for processing it. Developers can use this reference to alter the message’s interceptor chain. Because the chain is per-exchange, any changes made to a message’s interceptor chain will not effect other message exchanges.
			

Chain life-cycle

				 Interceptor chains and the interceptors in the chain are instantiated on a per-invocation basis. When an endpoint is invoked to participate in a message exchange, the required interceptor chains are instantiated along with instances of its interceptors. When the message exchange that caused the creation of the interceptor chain is completed, the chain and its interceptor instances are destroyed.
			

				This means that any changes you make to the interceptor chain or to the fields of an interceptor do not persist across message exchanges. So, if an interceptor places another interceptor in the active chain only the active chain is effected. Any future message exchanges will be created from a pristine state as determined by the endpoint’s configuration. It also means that a developer cannot set flags in an interceptor that will alter future message processing.
			

				If an interceptor needs to pass information along to future instances, it can set a property in the message context. The context does persist across message exchanges.
			

Getting the interceptor chain

				 The first step in changing a message’s interceptor chain is getting the interceptor chain. This is done using the Message.getInterceptorChain() method shown in Example 60.1, “Method for getting an interceptor chain”. The interceptor chain is returned as a org.apache.cxf.interceptor.InterceptorChain object.
			
Example 60.1. Method for getting an interceptor chain

					InterceptorChaingetInterceptorChain
				

Adding interceptors

				 The InterceptorChain object has two methods, shown in Example 60.2, “Methods for adding interceptors to an interceptor chain”, for adding interceptors to an interceptor chain. One allows you to add a single interceptor and the other allows you to add multiple interceptors.
			
Example 60.2. Methods for adding interceptors to an interceptor chain

					addInterceptor<? extends Message>iaddCollection<Interceptor<? extends Message>>i
				

				Example 60.3, “Adding an interceptor to an interceptor chain on-the-fly” shows code for adding a single interceptor to a message’s interceptor chain.
			
Example 60.3. Adding an interceptor to an interceptor chain on-the-fly
void handleMessage(Message message)
{
 ...
 AddledIntereptor addled = new AddledIntereptor();
 InterceptorChain chain = message.getInterceptorChain();
 chain.add(addled);
 ...
}

				The code in Example 60.3, “Adding an interceptor to an interceptor chain on-the-fly” does the following:
			

				Instantiates a copy of the interceptor to be added to the chain.
			
Important

					The interceptor being added to the chain should be in either the same phase as the current interceptor or a latter phase than the current interceptor.
				

				Gets the interceptor chain for the current message.
			

				Adds the new interceptor to the chain.
			

Removing interceptors

				 The InterceptorChain object has one method, shown in Example 60.4, “Methods for removing interceptors from an interceptor chain”, for removing an interceptor from an interceptor chain.
			
Example 60.4. Methods for removing interceptors from an interceptor chain

					removeInterceptor<? extends Message>i
				

				Example 60.5, “Removing an interceptor from an interceptor chain on-the-fly” shows code for removing an interceptor from a message’s interceptor chain.
			
Example 60.5. Removing an interceptor from an interceptor chain on-the-fly
void handleMessage(Message message)
{
 ...
 Iterator<Interceptor<? extends Message>> iterator =
 message.getInterceptorChain().iterator();
 Interceptor<?> removeInterceptor = null;
 for (; iterator.hasNext();) {
 Interceptor<?> interceptor = iterator.next();
 if (interceptor.getClass().getName().equals("InterceptorClassName")) {
 removeInterceptor = interceptor;
 break;
 }
 }

 if (removeInterceptor != null) {
 log.debug("Removing interceptor {}",removeInterceptor.getClass().getName());
 message.getInterceptorChain().remove(removeInterceptor);
 }
 ...
}

				Where InterceptorClassName is the class name of the interceptor you want to remove from the chain.
			

Chapter 61. JAX-RS 2.0 Filters and Interceptors

Abstract

					JAX-RS 2.0 defines standard APIs and semantics for installing filters and interceptors in the processing pipeline for REST invocations. Filters and interceptors are typically used to provide such capabilities as logging, authentication, authorization, message compression, message encryption, and so on.
				

Introduction to JAX-RS Filters and Interceptors

Overview

					This section provides an overview of the processing pipeline for JAX-RS filters and interceptors, highlighting the extension points where it is possible to install a filter chain or an interceptor chain.
				

Filters

					A JAX-RS 2.0 filter is a type of plug-in that gives a developer access to all of the JAX-RS messages passing through a CXF client or server. A filter is suitable for processing the metadata associated with a message: HTTP headers, query parameters, media type, and other metadata. Filters have the capability to abort a message invocation (useful for security plug-ins, for example).
				

					If you like, you can install multiple filters at each extension point, in which case the filters are executed in a chain (the order of execution is undefined, however, unless you specify a priority value for each installed filter).
				

Interceptors

					A JAX-RS 2.0 interceptor is a type of plug-in that gives a developer access to a message body as it is being read or written. Interceptors are wrapped around either the MessageBodyReader.readFrom method invocation (for reader interceptors) or the MessageBodyWriter.writeTo method invocation (for writer interceptors).
				

					If you like, you can install multiple interceptors at each extension point, in which case the interceptors are executed in a chain (the order of execution is undefined, however, unless you specify a priority value for each installed interceptor).
				

Server processing pipeline

					Figure 61.1, “Server-Side Filter and Interceptor Extension Points” shows an outline of the processing pipeline for JAX-RS filters and interceptors installed on the server side.
				
Figure 61.1. Server-Side Filter and Interceptor Extension Points
[image: jaxrs20filters 01]

Server extension points

					In the server processing pipeline, you can add a filter (or interceptor) at any of the following extension points:
				
	
							PreMatchContainerRequest filter
						
	
							ContainerRequest filter
						
	
							ReadInterceptor
						
	
							ContainerResponse filter
						
	
							WriteInterceptor
						

					Note that the PreMatchContainerRequest extension point is reached before resource matching has occurred, so some of the context metadata will not be available at this point.
				

Client processing pipeline

					Figure 61.2, “Client-Side Filter and Interceptor Extension Points” shows an outline of the processing pipeline for JAX-RS filters and interceptors installed on the client side.
				
Figure 61.2. Client-Side Filter and Interceptor Extension Points
[image: jaxrs20filters 02]

Client extension points

					In the client processing pipeline, you can add a filter (or interceptor) at any of the following extension points:
				
	
							ClientRequest filter
						
	
							WriteInterceptor
						
	
							ClientResponse filter
						
	
							ReadInterceptor
						

Filter and interceptor order

					If you install multiple filters or interceptors at the same extension point, the execution order of the filters depends on the priority assigned to them (using the @Priority annotation in the Java source). A priority is represented as an integer value. In general, a filter with a higher priority number is placed closer to the resource method invocation on the server side; while a filter with a lower priority number is placed closer to the client invocation. In other words, the filters and interceptors acting on a request message are executed in ascending order of priority number; while the filters and interceptors acting on a response message are executed in descending order of priority number.
				

Filter classes

					The following Java interfaces can be implemented in order to create custom REST message filters:
				
	
							javax.ws.rs.container.ContainerRequestFilter
						
	
							javax.ws.rs.container.ContainerResponseFilter
						
	
							javax.ws.rs.client.ClientRequestFilter
						
	
							javax.ws.rs.client.ClientResponseFilter
						

Interceptor classes

					The following Java interfaces can be implemented in order to create custom REST message interceptors:
				
	
							javax.ws.rs.ext.ReaderInterceptor
						
	
							javax.ws.rs.ext.WriterInterceptor
						

Container Request Filter

Overview

					This section explains how to implement and register a container request filter, which is used to intercept an incoming request message on the server (container) side. Container request filters are often used to process headers on the server side and can be used for any kind of generic request processing (that is, processing that is independent of the particular resource method called).
				

					Moreover, the container request filter is something of a special case, because it can be installed at two distinct extension points: PreMatchContainerRequest (before the resource matching step); and ContainerRequest (after the resource matching step).
				

ContainerRequestFilter interface

					The javax.ws.rs.container.ContainerRequestFilter interface is defined as follows:
				
// Java
...
package javax.ws.rs.container;

import java.io.IOException;

public interface ContainerRequestFilter {
 public void filter(ContainerRequestContext requestContext) throws IOException;
}

					By implementing the ContainerRequestFilter interface, you can create a filter for either of the following extension points on the server side:
				
	
							PreMatchContainerRequest
						
	
							ContainerRequest
						

ContainerRequestContext interface

					The filter method of ContainerRequestFilter receives a single argument of type javax.ws.rs.container.ContainerRequestContext, which can be used to access the incoming request message and its related metadata. The ContainerRequestContext interface is defined as follows:
				
// Java
...
package javax.ws.rs.container;

import java.io.InputStream;
import java.net.URI;
import java.util.Collection;
import java.util.Date;
import java.util.List;
import java.util.Locale;
import java.util.Map;

import javax.ws.rs.core.Cookie;
import javax.ws.rs.core.MediaType;
import javax.ws.rs.core.MultivaluedMap;
import javax.ws.rs.core.Request;
import javax.ws.rs.core.Response;
import javax.ws.rs.core.SecurityContext;
import javax.ws.rs.core.UriInfo;

public interface ContainerRequestContext {

 public Object getProperty(String name);

 public Collection getPropertyNames();

 public void setProperty(String name, Object object);

 public void removeProperty(String name);

 public UriInfo getUriInfo();

 public void setRequestUri(URI requestUri);

 public void setRequestUri(URI baseUri, URI requestUri);

 public Request getRequest();

 public String getMethod();

 public void setMethod(String method);

 public MultivaluedMap getHeaders();

 public String getHeaderString(String name);

 public Date getDate();

 public Locale getLanguage();

 public int getLength();

 public MediaType getMediaType();

 public List getAcceptableMediaTypes();

 public List getAcceptableLanguages();

 public Map getCookies();

 public boolean hasEntity();

 public InputStream getEntityStream();

 public void setEntityStream(InputStream input);

 public SecurityContext getSecurityContext();

 public void setSecurityContext(SecurityContext context);

 public void abortWith(Response response);
}

Sample implementation for PreMatchContainerRequest filter

					To implement a container request filter for the PreMatchContainerRequest extension point (that is, where the filter is executed prior to resource matching), define a class that implements the ContainerRequestFilter interface, making sure to annotate the class with the @PreMatching annotation (to select the PreMatchContainerRequest extension point).
				

					For example, the following code shows an example of a simple container request filter that gets installed in the PreMatchContainerRequest extension point, with a priority of 20:
				
// Java
package org.jboss.fuse.example;

import javax.ws.rs.container.ContainerRequestContext;
import javax.ws.rs.container.ContainerRequestFilter;
import javax.ws.rs.container.PreMatching;
import javax.annotation.Priority;
import javax.ws.rs.ext.Provider;

@PreMatching
@Priority(value = 20)
@Provider
public class SamplePreMatchContainerRequestFilter implements
 ContainerRequestFilter {

 public SamplePreMatchContainerRequestFilter() {
 System.out.println("SamplePreMatchContainerRequestFilter starting up");
 }

 @Override
 public void filter(ContainerRequestContext requestContext) {
 System.out.println("SamplePreMatchContainerRequestFilter.filter() invoked");
 }
}

Sample implementation for ContainerRequest filter

					To implement a container request filter for the ContainerRequest extension point (that is, where the filter is executed after resource matching), define a class that implements the ContainerRequestFilter interface, without the @PreMatching annotation.
				

					For example, the following code shows an example of a simple container request filter that gets installed in the ContainerRequest extension point, with a priority of 30:
				
// Java
package org.jboss.fuse.example;

import javax.ws.rs.container.ContainerRequestContext;
import javax.ws.rs.container.ContainerRequestFilter;
import javax.ws.rs.ext.Provider;
import javax.annotation.Priority;

@Provider
@Priority(value = 30)
public class SampleContainerRequestFilter implements ContainerRequestFilter {

 public SampleContainerRequestFilter() {
 System.out.println("SampleContainerRequestFilter starting up");
 }

 @Override
 public void filter(ContainerRequestContext requestContext) {
 System.out.println("SampleContainerRequestFilter.filter() invoked");
 }
}

Injecting ResourceInfo

					At the ContainerRequest extension point (that is, after resource matching has occurred), it is possible to access the matched resource class and resource method by injecting the ResourceInfo class. For example, the following code shows how to inject the ResourceInfo class as a field of the ContainerRequestFilter class:
				
// Java
package org.jboss.fuse.example;

import javax.ws.rs.container.ContainerRequestContext;
import javax.ws.rs.container.ContainerRequestFilter;
import javax.ws.rs.container.ResourceInfo;
import javax.ws.rs.ext.Provider;
import javax.annotation.Priority;
import javax.ws.rs.core.Context;

@Provider
@Priority(value = 30)
public class SampleContainerRequestFilter implements ContainerRequestFilter {

 @Context
 private ResourceInfo resinfo;

 public SampleContainerRequestFilter() {
 ...
 }

 @Override
 public void filter(ContainerRequestContext requestContext) {
 String resourceClass = resinfo.getResourceClass().getName();
 String methodName = resinfo.getResourceMethod().getName();
 System.out.println("REST invocation bound to resource class: " + resourceClass);
 System.out.println("REST invocation bound to resource method: " + methodName);
 }
}

Aborting the invocation

					It is possible to abort a server-side invocation by creating a suitable implementation of a container request filter. Typically, this is useful for implementing security features on the server side: for example, to implement an authentication feature or an authorization feature. If an incoming request fails to authenticate successfully, you could abort the invocation from within the container request filter.
				

					For example, the following pre-matching feature attempts to extract a username and password from the URI’s query parameters and calls an authenticate method to check the username and password credentials. If the authentication fails, the invocation is aborted by calling abortWith on the ContainerRequestContext object, passing the error response that is to be returned to the client.
				
// Java
package org.jboss.fuse.example;

import javax.annotation.Priority;
import javax.ws.rs.container.ContainerRequestContext;
import javax.ws.rs.container.ContainerRequestFilter;
import javax.ws.rs.container.PreMatching;
import javax.ws.rs.core.Response;
import javax.ws.rs.core.Response.ResponseBuilder;
import javax.ws.rs.core.Response.Status;
import javax.ws.rs.ext.Provider;

@PreMatching
@Priority(value = 20)
@Provider
public class SampleAuthenticationRequestFilter implements
 ContainerRequestFilter {

 public SampleAuthenticationRequestFilter() {
 System.out.println("SampleAuthenticationRequestFilter starting up");
 }

 @Override
 public void filter(ContainerRequestContext requestContext) {
 ResponseBuilder responseBuilder = null;
 Response response = null;

 String userName = requestContext.getUriInfo().getQueryParameters().getFirst("UserName");
 String password = requestContext.getUriInfo().getQueryParameters().getFirst("Password");
 if (authenticate(userName, password) == false) {
 responseBuilder = Response.serverError();
 response = responseBuilder.status(Status.BAD_REQUEST).build();
 requestContext.abortWith(response);
 }
 }

 public boolean authenticate(String userName, String password) {
 // Perform authentication of 'user'
 ...
 }
}

Binding the server request filter

					To bind a server request filter (that is, to install it into the Apache CXF runtime), perform the following steps:
				
	
							Add the @Provider annotation to the container request filter class, as shown in the following code fragment:
						
// Java
package org.jboss.fuse.example;

import javax.ws.rs.container.ContainerRequestContext;
import javax.ws.rs.container.ContainerRequestFilter;
import javax.ws.rs.ext.Provider;
import javax.annotation.Priority;

@Provider
@Priority(value = 30)
public class SampleContainerRequestFilter implements ContainerRequestFilter {
 ...
}

							When the container request filter implementation is loaded into the Apache CXF runtime, the REST implementation automatically scans the loaded classes to search for the classes marked with the @Provider annotation (the scanning phase).
						

	
							When defining a JAX-RS server endpoint in XML (for example, see the section called “Configuring JAX-RS Server Endpoints”), add the server request filter to the list of providers in the jaxrs:providers element.
						
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jaxrs="http://cxf.apache.org/blueprint/jaxrs"
 xmlns:cxf="http://cxf.apache.org/blueprint/core"
 ...
>
 ...
 <jaxrs:server id="customerService" address="/customers">
 ...
 <jaxrs:providers>
 <ref bean="filterProvider" />
 </jaxrs:providers>
 <bean id="filterProvider" class="org.jboss.fuse.example.SampleContainerRequestFilter"/>

 </jaxrs:server>

</blueprint>
Note

								This step is a non-standard requirement of Apache CXF. Strictly speaking, according to the JAX-RS standard, the @Provider annotation should be all that is required to bind the filter. But in practice, the standard approach is somewhat inflexible and can lead to clashing providers when many libraries are included in a large project.
							

Container Response Filter

Overview

					This section explains how to implement and register a container response filter, which is used to intercept an outgoing response message on the server side. Container response filters can be used to populate headers automatically in a response message and, in general, can be used for any kind of generic response processing.
				

ContainerResponseFilter interface

					The javax.ws.rs.container.ContainerResponseFilter interface is defined as follows:
				
// Java
...
package javax.ws.rs.container;

import java.io.IOException;

public interface ContainerResponseFilter {
 public void filter(ContainerRequestContext requestContext, ContainerResponseContext responseContext)
 throws IOException;
}

					By implementing the ContainerResponseFilter, you can create a filter for the ContainerResponse extension point on the server side, which filters the response message after the invocation has executed.
				
Note

						The container response filter gives you access both to the request message (through the requestContext argument) and the response message (through the responseContext message), but only the response can be modified at this stage.
					

ContainerResponseContext interface

					The filter method of ContainerResponseFilter receives two arguments: an argument of type javax.ws.rs.container.ContainerRequestContext (see the section called “ContainerRequestContext interface”); and an argument of type javax.ws.rs.container.ContainerResponseContext, which can be used to access the outgoing response message and its related metadata.
				

					The ContainerResponseContext interface is defined as follows:
				
// Java
...
package javax.ws.rs.container;

import java.io.OutputStream;
import java.lang.annotation.Annotation;
import java.lang.reflect.Type;
import java.net.URI;
import java.util.Date;
import java.util.Locale;
import java.util.Map;
import java.util.Set;

import javax.ws.rs.core.EntityTag;
import javax.ws.rs.core.Link;
import javax.ws.rs.core.MediaType;
import javax.ws.rs.core.MultivaluedMap;
import javax.ws.rs.core.NewCookie;
import javax.ws.rs.core.Response;
import javax.ws.rs.ext.MessageBodyWriter;

public interface ContainerResponseContext {

 public int getStatus();

 public void setStatus(int code);

 public Response.StatusType getStatusInfo();

 public void setStatusInfo(Response.StatusType statusInfo);

 public MultivaluedMap<String, Object> getHeaders();

 public abstract MultivaluedMap<String, String> getStringHeaders();

 public String getHeaderString(String name);

 public Set<String> getAllowedMethods();

 public Date getDate();

 public Locale getLanguage();

 public int getLength();

 public MediaType getMediaType();

 public Map<String, NewCookie> getCookies();

 public EntityTag getEntityTag();

 public Date getLastModified();

 public URI getLocation();

 public Set<Link> getLinks();

 boolean hasLink(String relation);

 public Link getLink(String relation);

 public Link.Builder getLinkBuilder(String relation);

 public boolean hasEntity();

 public Object getEntity();

 public Class<?> getEntityClass();

 public Type getEntityType();

 public void setEntity(final Object entity);

 public void setEntity(
 final Object entity,
 final Annotation[] annotations,
 final MediaType mediaType);

 public Annotation[] getEntityAnnotations();

 public OutputStream getEntityStream();

 public void setEntityStream(OutputStream outputStream);
}

Sample implementation

					To implement a container response filter for the ContainerResponse extension point (that is, where the filter is executed after the invocation has been executed on the server side), define a class that implements the ContainerResponseFilter interface.
				

					For example, the following code shows an example of a simple container response filter that gets installed in the ContainerResponse extension point, with a priority of 10:
				
// Java
package org.jboss.fuse.example;

import javax.annotation.Priority;
import javax.ws.rs.container.ContainerRequestContext;
import javax.ws.rs.container.ContainerResponseContext;
import javax.ws.rs.container.ContainerResponseFilter;
import javax.ws.rs.ext.Provider;

@Provider
@Priority(value = 10)
public class SampleContainerResponseFilter implements ContainerResponseFilter {

 public SampleContainerResponseFilter() {
 System.out.println("SampleContainerResponseFilter starting up");
 }

 @Override
 public void filter(
 ContainerRequestContext requestContext,
 ContainerResponseContext responseContext
)
 {
 // This filter replaces the response message body with a fixed string
 if (responseContext.hasEntity()) {
 responseContext.setEntity("New message body!");
 }
 }
}

Binding the server response filter

					To bind a server response filter (that is, to install it into the Apache CXF runtime), perform the following steps:
				
	
							Add the @Provider annotation to the container response filter class, as shown in the following code fragment:
						
// Java
package org.jboss.fuse.example;

import javax.annotation.Priority;
import javax.ws.rs.container.ContainerRequestContext;
import javax.ws.rs.container.ContainerResponseContext;
import javax.ws.rs.container.ContainerResponseFilter;
import javax.ws.rs.ext.Provider;

@Provider
@Priority(value = 10)
public class SampleContainerResponseFilter implements ContainerResponseFilter {
 ...
}

							When the container response filter implementation is loaded into the Apache CXF runtime, the REST implementation automatically scans the loaded classes to search for the classes marked with the @Provider annotation (the scanning phase).
						

	
							When defining a JAX-RS server endpoint in XML (for example, see the section called “Configuring JAX-RS Server Endpoints”), add the server response filter to the list of providers in the jaxrs:providers element.
						
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jaxrs="http://cxf.apache.org/blueprint/jaxrs"
 xmlns:cxf="http://cxf.apache.org/blueprint/core"
 ...
>
 ...
 <jaxrs:server id="customerService" address="/customers">
 ...
 <jaxrs:providers>
 <ref bean="filterProvider" />
 </jaxrs:providers>
 <bean id="filterProvider" class="org.jboss.fuse.example.SampleContainerResponseFilter"/>

 </jaxrs:server>

</blueprint>
Note

								This step is a non-standard requirement of Apache CXF. Strictly speaking, according to the JAX-RS standard, the @Provider annotation should be all that is required to bind the filter. But in practice, the standard approach is somewhat inflexible and can lead to clashing providers when many libraries are included in a large project.
							

Client Request Filter

Overview

					This section explains how to implement and register a client request filter, which is used to intercept an outgoing request message on the client side. Client request filters are often used to process headers and can be used for any kind of generic request processing.
				

ClientRequestFilter interface

					The javax.ws.rs.client.ClientRequestFilter interface is defined as follows:
				
// Java
package javax.ws.rs.client;
...
import javax.ws.rs.client.ClientRequestFilter;
import javax.ws.rs.client.ClientRequestContext;
...
public interface ClientRequestFilter {
 void filter(ClientRequestContext requestContext) throws IOException;
}

					By implementing the ClientRequestFilter, you can create a filter for the ClientRequest extension point on the client side, which filters the request message before sending the message to the server.
				

ClientRequestContext interface

					The filter method of ClientRequestFilter receives a single argument of type javax.ws.rs.client.ClientRequestContext, which can be used to access the outgoing request message and its related metadata. The ClientRequestContext interface is defined as follows:
				
// Java
...
package javax.ws.rs.client;

import java.io.OutputStream;
import java.lang.annotation.Annotation;
import java.lang.reflect.Type;
import java.net.URI;
import java.util.Collection;
import java.util.Date;
import java.util.List;
import java.util.Locale;
import java.util.Map;

import javax.ws.rs.core.Configuration;
import javax.ws.rs.core.Cookie;
import javax.ws.rs.core.MediaType;
import javax.ws.rs.core.MultivaluedMap;
import javax.ws.rs.core.Response;
import javax.ws.rs.ext.MessageBodyWriter;

public interface ClientRequestContext {

 public Object getProperty(String name);

 public Collection<String> getPropertyNames();

 public void setProperty(String name, Object object);

 public void removeProperty(String name);

 public URI getUri();

 public void setUri(URI uri);

 public String getMethod();

 public void setMethod(String method);

 public MultivaluedMap<String, Object> getHeaders();

 public abstract MultivaluedMap<String, String> getStringHeaders();

 public String getHeaderString(String name);

 public Date getDate();

 public Locale getLanguage();

 public MediaType getMediaType();

 public List<MediaType> getAcceptableMediaTypes();

 public List<Locale> getAcceptableLanguages();

 public Map<String, Cookie> getCookies();

 public boolean hasEntity();

 public Object getEntity();

 public Class<?> getEntityClass();

 public Type getEntityType();

 public void setEntity(final Object entity);

 public void setEntity(
 final Object entity,
 final Annotation[] annotations,
 final MediaType mediaType);

 public Annotation[] getEntityAnnotations();

 public OutputStream getEntityStream();

 public void setEntityStream(OutputStream outputStream);

 public Client getClient();

 public Configuration getConfiguration();

 public void abortWith(Response response);
}

Sample implementation

					To implement a client request filter for the ClientRequest extension point (that is, where the filter is executed prior to sending the request message), define a class that implements the ClientRequestFilter interface.
				

					For example, the following code shows an example of a simple client request filter that gets installed in the ClientRequest extension point, with a priority of 20:
				
// Java
package org.jboss.fuse.example;

import javax.ws.rs.client.ClientRequestContext;
import javax.ws.rs.client.ClientRequestFilter;
import javax.annotation.Priority;

@Priority(value = 20)
public class SampleClientRequestFilter implements ClientRequestFilter {

 public SampleClientRequestFilter() {
 System.out.println("SampleClientRequestFilter starting up");
 }

 @Override
 public void filter(ClientRequestContext requestContext) {
 System.out.println("ClientRequestFilter.filter() invoked");
 }
}

Aborting the invocation

					It is possible to abort a client-side invocation by implementing a suitable client request filter. For example, you might implement a client-side filter to check whether a request is correctly formatted and, if necessary, abort the request.
				

					The following test code always aborts the request, returning the BAD_REQUEST HTTP status to the client calling code:
				
// Java
package org.jboss.fuse.example;

import javax.ws.rs.client.ClientRequestContext;
import javax.ws.rs.client.ClientRequestFilter;
import javax.ws.rs.core.Response;
import javax.ws.rs.core.Response.Status;
import javax.annotation.Priority;

@Priority(value = 10)
public class TestAbortClientRequestFilter implements ClientRequestFilter {

 public TestAbortClientRequestFilter() {
 System.out.println("TestAbortClientRequestFilter starting up");
 }

 @Override
 public void filter(ClientRequestContext requestContext) {
 // Test filter: aborts with BAD_REQUEST status
 requestContext.abortWith(Response.status(Status.BAD_REQUEST).build());
 }
}

Registering the client request filter

					Using the JAX-RS 2.0 client API, you can register a client request filter directly on a javax.ws.rs.client.Client object or on a javax.ws.rs.client.WebTarget object. Effectively, this means that the client request filter can optionally be applied to different scopes, so that only certain URI paths are affected by the filter.
				

					For example, the following code shows how to register the SampleClientRequestFilter filter so that it applies to all invocations made using the client object; and how to register the TestAbortClientRequestFilter filter, so that it applies only to sub-paths of rest/TestAbortClientRequest.
				
// Java
...
import javax.ws.rs.client.Client;
import javax.ws.rs.client.ClientBuilder;
import javax.ws.rs.client.Invocation;
import javax.ws.rs.client.WebTarget;
import javax.ws.rs.core.Response;
...
Client client = ClientBuilder.newClient();
client.register(new SampleClientRequestFilter());
WebTarget target = client
 .target("http://localhost:8001/rest/TestAbortClientRequest");
target.register(new TestAbortClientRequestFilter());

Client Response Filter

Overview

					This section explains how to implement and register a client response filter, which is used to intercept an incoming response message on the client side. Client response filters can be used for any kind of generic response processing on the client side.
				

ClientResponseFilter interface

					The javax.ws.rs.client.ClientResponseFilter interface is defined as follows:
				
// Java
package javax.ws.rs.client;
...
import java.io.IOException;

public interface ClientResponseFilter {
 void filter(ClientRequestContext requestContext, ClientResponseContext responseContext)
 throws IOException;
}

					By implementing the ClientResponseFilter, you can create a filter for the ClientResponse extension point on the client side, which filters the response message after it is received from the server.
				

ClientResponseContext interface

					The filter method of ClientResponseFilter receives two arguments: an argument of type javax.ws.rs.client.ClientRequestContext (see the section called “ClientRequestContext interface”); and an argument of type javax.ws.rs.client.ClientResponseContext, which can be used to access the outgoing response message and its related metadata.
				

					The ClientResponseContext interface is defined as follows:
				
// Java
...
package javax.ws.rs.client;

import java.io.InputStream;
import java.net.URI;
import java.util.Date;
import java.util.Locale;
import java.util.Map;
import java.util.Set;

import javax.ws.rs.core.EntityTag;
import javax.ws.rs.core.Link;
import javax.ws.rs.core.MediaType;
import javax.ws.rs.core.MultivaluedMap;
import javax.ws.rs.core.NewCookie;
import javax.ws.rs.core.Response;

public interface ClientResponseContext {

 public int getStatus();

 public void setStatus(int code);

 public Response.StatusType getStatusInfo();

 public void setStatusInfo(Response.StatusType statusInfo);

 public MultivaluedMap<String, String> getHeaders();

 public String getHeaderString(String name);

 public Set<String> getAllowedMethods();

 public Date getDate();

 public Locale getLanguage();

 public int getLength();

 public MediaType getMediaType();

 public Map<String, NewCookie> getCookies();

 public EntityTag getEntityTag();

 public Date getLastModified();

 public URI getLocation();

 public Set<Link> getLinks();

 boolean hasLink(String relation);

 public Link getLink(String relation);

 public Link.Builder getLinkBuilder(String relation);

 public boolean hasEntity();

 public InputStream getEntityStream();

 public void setEntityStream(InputStream input);
}

Sample implementation

					To implement a client response filter for the ClientResponse extension point (that is, where the filter is executed after receiving a response message from the server), define a class that implements the ClientResponseFilter interface.
				

					For example, the following code shows an example of a simple client response filter that gets installed in the ClientResponse extension point, with a priority of 20:
				
// Java
package org.jboss.fuse.example;

import javax.ws.rs.client.ClientRequestContext;
import javax.ws.rs.client.ClientResponseContext;
import javax.ws.rs.client.ClientResponseFilter;
import javax.annotation.Priority;

@Priority(value = 20)
public class SampleClientResponseFilter implements ClientResponseFilter {

 public SampleClientResponseFilter() {
 System.out.println("SampleClientResponseFilter starting up");
 }

 @Override
 public void filter(
 ClientRequestContext requestContext,
 ClientResponseContext responseContext
)
 {
 // Add an extra header on the response
 responseContext.getHeaders().putSingle("MyCustomHeader", "my custom data");
 }
}

Registering the client response filter

					Using the JAX-RS 2.0 client API, you can register a client response filter directly on a javax.ws.rs.client.Client object or on a javax.ws.rs.client.WebTarget object. Effectively, this means that the client request filter can optionally be applied to different scopes, so that only certain URI paths are affected by the filter.
				

					For example, the following code shows how to register the SampleClientResponseFilter filter so that it applies to all invocations made using the client object:
				
// Java
...
import javax.ws.rs.client.Client;
import javax.ws.rs.client.ClientBuilder;
import javax.ws.rs.client.Invocation;
import javax.ws.rs.client.WebTarget;
import javax.ws.rs.core.Response;
...
Client client = ClientBuilder.newClient();
client.register(new SampleClientResponseFilter());

Entity Reader Interceptor

Overview

					This section explains how to implement and register an entity reader interceptor, which enables you to intercept the input stream when reading a message body either on the client side or on the server side. This is typically useful for generic transformations of the request body, such as encryption and decryption, or compressing and decompressing.
				

ReaderInterceptor interface

					The javax.ws.rs.ext.ReaderInterceptor interface is defined as follows:
				
// Java
...
package javax.ws.rs.ext;

public interface ReaderInterceptor {
 public Object aroundReadFrom(ReaderInterceptorContext context)
 throws java.io.IOException, javax.ws.rs.WebApplicationException;
}

					By implementing the ReaderInterceptor interface, you can intercept the message body (Entity object) as it is being read either on the server side or the client side. You can use an entity reader interceptor in either of the following contexts:
				
	
							Server side—if bound as a server-side interceptor, the entity reader interceptor intercepts the request message body when it is accessed by the application code (in the matched resource). Depending on the semantics of the REST request, the message body might not be accessed by the matched resource, in which case the reader interceptor is not called.
						
	
							Client side—if bound as a client-side interceptor, the entity reader interceptor intercepts the response message body when it is accessed by the client code. If the client code does not explicitly access the response message (for example, by calling the Response.getEntity method), the reader interceptor is not called.
						

ReaderInterceptorContext interface

					The aroundReadFrom method of ReaderInterceptor receives one argument of type javax.ws.rs.ext.ReaderInterceptorContext, which can be used to access both the message body (Entity object) and message metadata.
				

					The ReaderInterceptorContext interface is defined as follows:
				
// Java
...
package javax.ws.rs.ext;

import java.io.IOException;
import java.io.InputStream;

import javax.ws.rs.WebApplicationException;
import javax.ws.rs.core.MultivaluedMap;

public interface ReaderInterceptorContext extends InterceptorContext {

 public Object proceed() throws IOException, WebApplicationException;

 public InputStream getInputStream();

 public void setInputStream(InputStream is);

 public MultivaluedMap<String, String> getHeaders();
}

InterceptorContext interface

					The ReaderInterceptorContext interface also supports the methods inherited from the base InterceptorContext interface.
				

					The InterceptorContext interface is defined as follows:
				
// Java
...
package javax.ws.rs.ext;

import java.lang.annotation.Annotation;
import java.lang.reflect.Type;
import java.util.Collection;

import javax.ws.rs.core.MediaType;

public interface InterceptorContext {

 public Object getProperty(String name);

 public Collection<String> getPropertyNames();

 public void setProperty(String name, Object object);

 public void removeProperty(String name);

 public Annotation[] getAnnotations();

 public void setAnnotations(Annotation[] annotations);

 Class<?> getType();

 public void setType(Class<?> type);

 Type getGenericType();

 public void setGenericType(Type genericType);

 public MediaType getMediaType();

 public void setMediaType(MediaType mediaType);
}

Sample implementation on the client side

					To implement an entity reader interceptor for the client side, define a class that implements the ReaderInterceptor interface.
				

					For example, the following code shows an example of an entity reader interceptor for the client side (with a priority of 10), which replaces all instances of COMPANY_NAME by Red Hat in the message body of the incoming response:
				
// Java
package org.jboss.fuse.example;

import java.io.ByteArrayInputStream;
import java.io.IOException;
import java.io.InputStream;

import javax.annotation.Priority;
import javax.ws.rs.WebApplicationException;
import javax.ws.rs.ext.ReaderInterceptor;
import javax.ws.rs.ext.ReaderInterceptorContext;

@Priority(value = 10)
public class SampleClientReaderInterceptor implements ReaderInterceptor {

 @Override
 public Object aroundReadFrom(ReaderInterceptorContext interceptorContext)
 throws IOException, WebApplicationException
 {
 InputStream inputStream = interceptorContext.getInputStream();
 byte[] bytes = new byte[inputStream.available()];
 inputStream.read(bytes);
 String responseContent = new String(bytes);
 responseContent = responseContent.replaceAll("COMPANY_NAME", "Red Hat");
 interceptorContext.setInputStream(new ByteArrayInputStream(responseContent.getBytes()));

 return interceptorContext.proceed();
 }
}

Sample implementation on the server side

					To implement an entity reader interceptor for the server side, define a class that implements the ReaderInterceptor interface and annotate it with the @Provider annotation.
				

					For example, the following code shows an example of an entity reader interceptor for the server side (with a priority of 10), which replaces all instances of COMPANY_NAME by Red Hat in the message body of the incoming request:
				
// Java
package org.jboss.fuse.example;

import java.io.ByteArrayInputStream;
import java.io.IOException;
import java.io.InputStream;

import javax.annotation.Priority;
import javax.ws.rs.WebApplicationException;
import javax.ws.rs.ext.Provider;
import javax.ws.rs.ext.ReaderInterceptor;
import javax.ws.rs.ext.ReaderInterceptorContext;

@Priority(value = 10)
@Provider
public class SampleServerReaderInterceptor implements ReaderInterceptor {

 @Override
 public Object aroundReadFrom(ReaderInterceptorContext interceptorContext)
 throws IOException, WebApplicationException {
 InputStream inputStream = interceptorContext.getInputStream();
 byte[] bytes = new byte[inputStream.available()];
 inputStream.read(bytes);
 String requestContent = new String(bytes);
 requestContent = requestContent.replaceAll("COMPANY_NAME", "Red Hat");
 interceptorContext.setInputStream(new ByteArrayInputStream(requestContent.getBytes()));

 return interceptorContext.proceed();
 }
}

Binding a reader interceptor on the client side

					Using the JAX-RS 2.0 client API, you can register an entity reader interceptor directly on a javax.ws.rs.client.Client object or on a javax.ws.rs.client.WebTarget object. Effectively, this means that the reader interceptor can optionally be applied to different scopes, so that only certain URI paths are affected by the interceptor.
				

					For example, the following code shows how to register the SampleClientReaderInterceptor interceptor so that it applies to all invocations made using the client object:
				
// Java
...
import javax.ws.rs.client.Client;
import javax.ws.rs.client.ClientBuilder;
import javax.ws.rs.client.Invocation;
import javax.ws.rs.client.WebTarget;
import javax.ws.rs.core.Response;
...
Client client = ClientBuilder.newClient();
client.register(SampleClientReaderInterceptor.class);

					For more details about registering interceptors with a JAX-RS 2.0 client, see the section called “Configuring the Client Endpoint”.
				

Binding a reader interceptor on the server side

					To bind a reader interceptor on the server side (that is, to install it into the Apache CXF runtime), perform the following steps:
				
	
							Add the @Provider annotation to the reader interceptor class, as shown in the following code fragment:
						
// Java
package org.jboss.fuse.example;
...
import javax.annotation.Priority;
import javax.ws.rs.WebApplicationException;
import javax.ws.rs.ext.Provider;
import javax.ws.rs.ext.ReaderInterceptor;
import javax.ws.rs.ext.ReaderInterceptorContext;

@Priority(value = 10)
@Provider
public class SampleServerReaderInterceptor implements ReaderInterceptor {
 ...
}

							When the reader interceptor implementation is loaded into the Apache CXF runtime, the REST implementation automatically scans the loaded classes to search for the classes marked with the @Provider annotation (the scanning phase).
						

	
							When defining a JAX-RS server endpoint in XML (for example, see the section called “Configuring JAX-RS Server Endpoints”), add the reader interceptor to the list of providers in the jaxrs:providers element.
						
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jaxrs="http://cxf.apache.org/blueprint/jaxrs"
 xmlns:cxf="http://cxf.apache.org/blueprint/core"
 ...
>
 ...
 <jaxrs:server id="customerService" address="/customers">
 ...
 <jaxrs:providers>
 <ref bean="interceptorProvider" />
 </jaxrs:providers>
 <bean id="interceptorProvider" class="org.jboss.fuse.example.SampleServerReaderInterceptor"/>

 </jaxrs:server>

</blueprint>
Note

								This step is a non-standard requirement of Apache CXF. Strictly speaking, according to the JAX-RS standard, the @Provider annotation should be all that is required to bind the interceptor. But in practice, the standard approach is somewhat inflexible and can lead to clashing providers when many libraries are included in a large project.
							

Entity Writer Interceptor

Overview

					This section explains how to implement and register an entity writer interceptor, which enables you to intercept the output stream when writing a message body either on the client side or on the server side. This is typically useful for generic transformations of the request body, such as encryption and decryption, or compressing and decompressing.
				

WriterInterceptor interface

					The javax.ws.rs.ext.WriterInterceptor interface is defined as follows:
				
// Java
...
package javax.ws.rs.ext;

public interface WriterInterceptor {
 void aroundWriteTo(WriterInterceptorContext context)
 throws java.io.IOException, javax.ws.rs.WebApplicationException;
}

					By implementing the WriterInterceptor interface, you can intercept the message body (Entity object) as it is being written either on the server side or the client side. You can use an entity writer interceptor in either of the following contexts:
				
	
							Server side—if bound as a server-side interceptor, the entity writer interceptor intercepts the response message body just before it is marshalled and sent back to the client.
						
	
							Client side—if bound as a client-side interceptor, the entity writer interceptor intercepts the request message body just before it is marshalled and sent out to the server.
						

WriterInterceptorContext interface

					The aroundWriteTo method of WriterInterceptor receives one argument of type javax.ws.rs.ext.WriterInterceptorContext, which can be used to access both the message body (Entity object) and message metadata.
				

					The WriterInterceptorContext interface is defined as follows:
				
// Java
...
package javax.ws.rs.ext;

import java.io.IOException;
import java.io.OutputStream;

import javax.ws.rs.WebApplicationException;
import javax.ws.rs.core.MultivaluedMap;

public interface WriterInterceptorContext extends InterceptorContext {

 void proceed() throws IOException, WebApplicationException;

 Object getEntity();

 void setEntity(Object entity);

 OutputStream getOutputStream();

 public void setOutputStream(OutputStream os);

 MultivaluedMap<String, Object> getHeaders();
}

InterceptorContext interface

					The WriterInterceptorContext interface also supports the methods inherited from the base InterceptorContext interface. For the definition of InterceptorContext, see the section called “InterceptorContext interface”.
				

Sample implementation on the client side

					To implement an entity writer interceptor for the client side, define a class that implements the WriterInterceptor interface.
				

					For example, the following code shows an example of an entity writer interceptor for the client side (with a priority of 10), which appends an extra line of text to the message body of the outgoing request:
				
// Java
package org.jboss.fuse.example;

import java.io.IOException;
import java.io.OutputStream;

import javax.ws.rs.WebApplicationException;
import javax.ws.rs.ext.WriterInterceptor;
import javax.ws.rs.ext.WriterInterceptorContext;
import javax.annotation.Priority;

@Priority(value = 10)
public class SampleClientWriterInterceptor implements WriterInterceptor {

 @Override
 public void aroundWriteTo(WriterInterceptorContext interceptorContext)
 throws IOException, WebApplicationException {
 OutputStream outputStream = interceptorContext.getOutputStream();
 String appendedContent = "\nInterceptors always get the last word in.";
 outputStream.write(appendedContent.getBytes());
 interceptorContext.setOutputStream(outputStream);

 interceptorContext.proceed();
 }
}

Sample implementation on the server side

					To implement an entity writer interceptor for the server side, define a class that implements the WriterInterceptor interface and annotate it with the @Provider annotation.
				

					For example, the following code shows an example of an entity writer interceptor for the server side (with a priority of 10), which appends an extra line of text to the message body of the outgoing request:
				
// Java
package org.jboss.fuse.example;

import java.io.IOException;
import java.io.OutputStream;

import javax.ws.rs.WebApplicationException;
import javax.ws.rs.ext.Provider;
import javax.ws.rs.ext.WriterInterceptor;
import javax.ws.rs.ext.WriterInterceptorContext;
import javax.annotation.Priority;

@Priority(value = 10)
@Provider
public class SampleServerWriterInterceptor implements WriterInterceptor {

 @Override
 public void aroundWriteTo(WriterInterceptorContext interceptorContext)
 throws IOException, WebApplicationException {
 OutputStream outputStream = interceptorContext.getOutputStream();
 String appendedContent = "\nInterceptors always get the last word in.";
 outputStream.write(appendedContent.getBytes());
 interceptorContext.setOutputStream(outputStream);

 interceptorContext.proceed();
 }
}

Binding a writer interceptor on the client side

					Using the JAX-RS 2.0 client API, you can register an entity writer interceptor directly on a javax.ws.rs.client.Client object or on a javax.ws.rs.client.WebTarget object. Effectively, this means that the writer interceptor can optionally be applied to different scopes, so that only certain URI paths are affected by the interceptor.
				

					For example, the following code shows how to register the SampleClientReaderInterceptor interceptor so that it applies to all invocations made using the client object:
				
// Java
...
import javax.ws.rs.client.Client;
import javax.ws.rs.client.ClientBuilder;
import javax.ws.rs.client.Invocation;
import javax.ws.rs.client.WebTarget;
import javax.ws.rs.core.Response;
...
Client client = ClientBuilder.newClient();
client.register(SampleClientReaderInterceptor.class);

					For more details about registering interceptors with a JAX-RS 2.0 client, see the section called “Configuring the Client Endpoint”.
				

Binding a writer interceptor on the server side

					To bind a writer interceptor on the server side (that is, to install it into the Apache CXF runtime), perform the following steps:
				
	
							Add the @Provider annotation to the writer interceptor class, as shown in the following code fragment:
						
// Java
package org.jboss.fuse.example;
...
import javax.ws.rs.WebApplicationException;
import javax.ws.rs.ext.Provider;
import javax.ws.rs.ext.WriterInterceptor;
import javax.ws.rs.ext.WriterInterceptorContext;
import javax.annotation.Priority;

@Priority(value = 10)
@Provider
public class SampleServerWriterInterceptor implements WriterInterceptor {
 ...
}

							When the writer interceptor implementation is loaded into the Apache CXF runtime, the REST implementation automatically scans the loaded classes to search for the classes marked with the @Provider annotation (the scanning phase).
						

	
							When defining a JAX-RS server endpoint in XML (for example, see the section called “Configuring JAX-RS Server Endpoints”), add the writer interceptor to the list of providers in the jaxrs:providers element.
						
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jaxrs="http://cxf.apache.org/blueprint/jaxrs"
 xmlns:cxf="http://cxf.apache.org/blueprint/core"
 ...
>
 ...
 <jaxrs:server id="customerService" address="/customers">
 ...
 <jaxrs:providers>
 <ref bean="interceptorProvider" />
 </jaxrs:providers>
 <bean id="interceptorProvider" class="org.jboss.fuse.example.SampleServerWriterInterceptor"/>

 </jaxrs:server>

</blueprint>
Note

								This step is a non-standard requirement of Apache CXF. Strictly speaking, according to the JAX-RS standard, the @Provider annotation should be all that is required to bind the interceptor. But in practice, the standard approach is somewhat inflexible and can lead to clashing providers when many libraries are included in a large project.
							

Dynamic Binding

Overview

					The standard approach to binding container filters and container interceptors to resources is to annotate the filters and interceptors with the @Provider annotation. This ensures that the binding is global: that is, the filters and interceptors are bound to every resource class and resource method on the server side.
				

					Dynamic binding is an alternative approach to binding on the server side, which enables you to pick and choose which resource methods your interceptors and filters are applied to. To enable dynamic binding for your filters and interceptors, you must implement a custom DynamicFeature interface, as described here.
				

DynamicFeature interface

					The DynamicFeature interface is defined in the javax.ws.rx.container package, as follows:
				
// Java
package javax.ws.rs.container;

import javax.ws.rs.core.FeatureContext;
import javax.ws.rs.ext.ReaderInterceptor;
import javax.ws.rs.ext.WriterInterceptor;

public interface DynamicFeature {
 public void configure(ResourceInfo resourceInfo, FeatureContext context);
}

Implementing a dynamic feature

					You implement a dynamic feature, as follows:
				
	
							Implement one or more container filters or container interceptors, as described previously. But do not annotate them with the @Provider annotation (otherwise, they would be bound globally, making the dynamic feature effectively irrelevant).
						
	
							Create your own dynamic feature by implementing the DynamicFeature class, overriding the configure method.
						
	
							In the configure method, you can use the resourceInfo argument to discover which resource class and which resource method this feature is being called for. You can use this information as the basis for deciding whether or not to register some of the filters or interceptors.
						
	
							If you decide to register a filter or an interceptor with the current resource method, you can do so by invoking one of the context.register methods.
						
	
							Remember to annotate your dynamic feature class with the @Provider annotation, to ensure that it gets picked up during the scanning phase of deployment.
						

Example dynamic feature

					The following example shows you how to define a dynamic feature that registers the LoggingFilter filter for any method of the MyResource class (or subclass) that is annotated with @GET:
				
// Java
...
import javax.ws.rs.container.DynamicFeature;
import javax.ws.rs.container.ResourceInfo;
import javax.ws.rs.core.FeatureContext;
import javax.ws.rs.ext.Provider;

@Provider
public class DynamicLoggingFilterFeature implements DynamicFeature {
 @Override
 void configure(ResourceInfo resourceInfo, FeatureContext context) {
 if (MyResource.class.isAssignableFrom(resourceInfo.getResourceClass())
 && resourceInfo.getResourceMethod().isAnnotationPresent(GET.class)) {
 context.register(new LoggingFilter());
 }
}

Dynamic binding process

					The JAX-RS standard requires that the DynamicFeature.configure method is called exactly once for each resource method. This means that every resource method could potentially have filters or interceptors installed by the dynamic feature, but it is up to the dynamic feature to decide whether to register the filters or interceptors in each case. In other words, the granularity of binding supported by the dynamic feature is at the level of individual resource methods.
				

FeatureContext interface

					The FeatureContext interface (which enables you to register filters and interceptors in the configure method) is defined as a sub-interface of Configurable<>, as follows:
				
// Java
package javax.ws.rs.core;

public interface FeatureContext extends Configurable<FeatureContext> {
}

					The Configurable<> interface defines a variety of methods for registering filters and interceptors on a single resource method, as follows:
				
// Java
...
package javax.ws.rs.core;

import java.util.Map;

public interface Configurable<C extends Configurable> {
 public Configuration getConfiguration();
 public C property(String name, Object value);
 public C register(Class<?> componentClass);
 public C register(Class<?> componentClass, int priority);
 public C register(Class<?> componentClass, Class<?>... contracts);
 public C register(Class<?> componentClass, Map<Class<?>, Integer> contracts);
 public C register(Object component);
 public C register(Object component, int priority);
 public C register(Object component, Class<?>... contracts);
 public C register(Object component, Map<Class<?>, Integer> contracts);
}

Chapter 62. Apache CXF Message Processing Phases

Inbound phases

				Table 62.1, “Inbound message processing phases” lists the phases available in inbound interceptor chains.
			
Table 62.1. Inbound message processing phases
	Phase	Description
	
								RECEIVE
							

							 	
								Performs transport specific processing, such as determining MIME boundaries for binary attachments.
							

							
	
								PRE_STREAM
							

							 	
								Processes the raw data stream received by the transport.
							

							
	
								USER_STREAM
							

							
	
								POST_STREAM
							

							
	
								READ
							

							 	
								Determines if a request is a SOAP or XML message and builds adds the proper interceptors. SOAP message headers are also processed in this phase.
							

							
	
								PRE_PROTOCOL
							

							 	
								Performs protocol level processing. This includes processing of WS-* headers and processing of the SOAP message properties.
							

							
	
								USER_PROTOCOL
							

							
	
								POST_PROTOCOL
							

							
	
								UNMARSHAL
							

							 	
								Unmarshals the message data into the objects used by the application level code.
							

							
	
								PRE_LOGICAL
							

							 	
								Processes the unmarshalled message data.
							

							
	
								USER_LOGICAL
							

							
	
								POST_LOGICAL
							

							
	
								PRE_INVOKE
							

							
	
								INVOKE
							

							 	
								Passes the message to the application code. On the server side, the service implementation is invoked in this phase. On the client side, the response is handed back to the application.
							

							
	
								POST_INVOKE
							

							 	
								Invokes the outbound interceptor chain.
							

							

Outbound phases

				Table 62.2, “Inbound message processing phases” lists the phases available in inbound interceptor chains.
			
Table 62.2. Inbound message processing phases
	Phase	Description
	
								SETUP
							

							 	
								Performs any set up that is required by later phases in the chain.
							

							
	
								PRE_LOGICAL
							

							 	
								Performs processing on the unmarshalled data passed from the application level.
							

							
	
								USER_LOGICAL
							

							
	
								POST_LOGICAL
							

							
	
								PREPARE_SEND
							

							 	
								Opens the connection for writing the message on the wire.
							

							
	
								PRE_STREAM
							

							 	
								Performs processing required to prepare the message for entry into a data stream.
							

							
	
								PRE_PROTOCOL
							

							 	
								Begins processing protocol specific information.
							

							
	
								WRITE
							

							 	
								Writes the protocol message.
							

							
	
								PRE_MARSHAL
							

							 	
								Marshals the message.
							

							
	
								MARSHAL
							

							
	
								POST_MARSHAL
							

							
	
								USER_PROTOCOL
							

							 	
								Process the protocol message.
							

							
	
								POST_PROTOCOL
							

							
	
								USER_STREAM
							

							 	
								Process the byte-level message.
							

							
	
								POST_STREAM
							

							
	
								SEND
							

							 	
								Sends the message and closes the transport stream.
							

							

Important

					Outbound interceptor chains have a mirror set of ending phases whose names are appended with _ENDING. The ending phases are used interceptors that require some terminal action to occur before data is written on the wire.
				

Chapter 63. Apache CXF Provided Interceptors

Core Apache CXF Interceptors

Inbound

					Table 63.1, “Core inbound interceptors” lists the core inbound interceptors that are added to all Apache CXF endpoints.
				
Table 63.1. Core inbound interceptors
	Class	Phase	Description
	
									ServiceInvokerInterceptor
								

								 	
									INVOKE
								

								 	
									Invokes the proper method on the service.
								

								

Outbound

					The Apache CXF does not add any core interceptors to the outbound interceptor chain by default. The contents of an endpoint’s outbound interceptor chain depend on the features in use.
				

Front-Ends

JAX-WS

					Table 63.2, “Inbound JAX-WS interceptors” lists the interceptors added to a JAX-WS endpoint’s inbound message chain.
				
Table 63.2. Inbound JAX-WS interceptors
	Class	Phase	Description
	
									HolderInInterceptor
								

								 	
									PRE_INVOKE
								

								 	
									Creates holder objects for any out or in/out parameters in the message.
								

								
	
									WrapperClassInInterceptor
								

								 	
									POST_LOGICAL
								

								 	
									Unwraps the parts of a wrapped doc/literal message into the appropriate array of objects.
								

								
	
									LogicalHandlerInInterceptor
								

								 	
									PRE_PROTOCOL
								

								 	
									Passes message processing to the JAX-WS logical handlers used by the endpoint. When the JAX-WS handlers complete, the message is passed along to the next interceptor on the inbound chain.
								

								
	
									SOAPHandlerInterceptor
								

								 	
									PRE_PROTOCOL
								

								 	
									Passes message processing to the JAX-WS SOAP handlers used by the endpoint. When the SOAP handlers finish with the message, the message is passed along to the next interceptor in the chain.
								

								

					Table 63.3, “Outbound JAX-WS interceptors” lists the interceptors added to a JAX-WS endpoint’s outbound message chain.
				
Table 63.3. Outbound JAX-WS interceptors
	Class	Phase	Description
	
									HolderOutInterceptor
								

								 	
									PRE_LOGICAL
								

								 	
									Removes the values of any out and in/out parameters from their holder objects and adds the values to the message’s parameter list.
								

								
	
									WebFaultOutInterceptor
								

								 	
									PRE_PROTOCOL
								

								 	
									Processes outbound fault messages.
								

								
	
									WrapperClassOutInterceptor
								

								 	
									PRE_LOGICAL
								

								 	
									Makes sure that wrapped doc/literal messages and rpc/literal messages are properly wrapped before being added to the message.
								

								
	
									LogicalHandlerOutInterceptor
								

								 	
									PRE_MARSHAL
								

								 	
									Passes message processing to the JAX-WS logical handlers used by the endpoint. When the JAX-WS handlers complete, the message is passed along to the next interceptor on the outbound chain.
								

								
	
									SOAPHandlerInterceptor
								

								 	
									PRE_PROTOCOL
								

								 	
									Passes message processing to the JAX-WS SOAP handlers used by the endpoint. When the SOAP handlers finish processing the message, it is passed along to the next interceptor in the chain.
								

								
	
									MessageSenderInterceptor
								

								 	
									PREPARE_SEND
								

								 	
									Calls back to the Destination object to have it setup the output streams, headers, etc. to prepare the outgoing transport.
								

								

JAX-RS

					Table 63.4, “Inbound JAX-RS interceptors” lists the interceptors added to a JAX-RS endpoint’s inbound message chain.
				
Table 63.4. Inbound JAX-RS interceptors
	Class	Phase	Description
	
									JAXRSInInterceptor
								

								 	
									PRE_STREAM
								

								 	
									Selects the root resource class, invokes any configured JAX-RS request filters, and determines the method to invoke on the root resource.
								

								

Important

						The inbound chain for a JAX-RS endpoint skips straight to the ServiceInvokerInInterceptor interceptor. No other interceptors will be invoked after the JAXRSInInterceptor.
					

					Table 63.5, “Outbound JAX-RS interceptors” lists the interceptors added to a JAX-RS endpoint’s outbound message chain.
				
Table 63.5. Outbound JAX-RS interceptors
	Class	Phase	Description
	
									JAXRSOutInterceptor
								

								 	
									MARSHAL
								

								 	
									Marshals the response into the proper format for transmission.
								

								

Message bindings

SOAP

					Table 63.6, “Inbound SOAP interceptors” lists the interceptors added to a endpoint’s inbound message chain when using the SOAP Binding.
				
Table 63.6. Inbound SOAP interceptors
	Class	Phase	Description
	
									CheckFaultInterceptor
								

								 	
									POST_PROTOCOL
								

								 	
									Checks if the message is a fault message. If the message is a fault message, normal processing is aborted and fault processing is started.
								

								
	
									MustUnderstandInterceptor
								

								 	
									PRE_PROTOCOL
								

								 	
									Processes the must understand headers.
								

								
	
									RPCInInterceptor
								

								 	
									UNMARSHAL
								

								 	
									Unmarshals rpc/literal messages. If the message is bare, the message is passed to a BareInInterceptor object to deserialize the message parts.
								

								
	
									ReadsHeadersInterceptor
								

								 	
									READ
								

								 	
									Parses the SOAP headers and stores them in the message object.
								

								
	
									SoapActionInInterceptor
								

								 	
									READ
								

								 	
									Parses the SOAP action header and attempts to find a unique operation for the action.
								

								
	
									SoapHeaderInterceptor
								

								 	
									UNMARSHAL
								

								 	
									Binds the SOAP headers that map to operation parameters to the appropriate objects.
								

								
	
									AttachmentInInterceptor
								

								 	
									RECEIVE
								

								 	
									Parses the mime headers for mime boundaries, finds the root part and resets the input stream to it, and stores the other parts in a collection of Attachment objects.
								

								
	
									DocLiteralInInterceptor
								

								 	
									UNMARSHAL
								

								 	
									Examines the first element in the SOAP body to determine the appropriate operation and calls the data binding to read in the data.
								

								
	
									StaxInInterceptor
								

								 	
									POST_STREAM
								

								 	
									Creates an XMLStreamReader object from the message.
								

								
	
									URIMappingInterceptor
								

								 	
									UNMARSHAL
								

								 	
									Handles the processing of HTTP GET methods.
								

								
	
									SwAInInterceptor
								

								 	
									PRE_INVOKE
								

								 	
									Creates the required MIME handlers for binary SOAP attachments and adds the data to the parameter list.
								

								

					Table 63.7, “Outbound SOAP interceptors” lists the interceptors added to a endpoint’s outbound message chain when using the SOAP Binding.
				
Table 63.7. Outbound SOAP interceptors
	Class	Phase	Description
	
									RPCOutInterceptor
								

								 	
									MARSHAL
								

								 	
									Marshals rpc style messages for transmission.
								

								
	
									SoapHeaderOutFilterInterceptor
								

								 	
									PRE_LOGICAL
								

								 	
									Removes all SOAP headers that are marked as inbound only.
								

								
	
									SoapPreProtocolOutInterceptor
								

								 	
									POST_LOGICAL
								

								 	
									Sets up the SOAP version and the SOAP action header.
								

								
	
									AttachmentOutInterceptor
								

								 	
									PRE_STREAM
								

								 	
									Sets up the attachment marshalers and the mime stuff required to process any attachments that might be in the message.
								

								
	
									BareOutInterceptor
								

								 	
									MARSHAL
								

								 	
									Writes the message parts.
								

								
	
									StaxOutInterceptor
								

								 	
									PRE_STREAM
								

								 	
									Creates an XMLStreamWriter object from the message.
								

								
	
									WrappedOutInterceptor
								

								 	
									MARSHAL
								

								 	
									Wraps the outbound message parameters.
								

								
	
									SoapOutInterceptor
								

								 	
									WRITE
								

								 	
									Writes the soap:envelope element and the elements for the header blocks in the message. Also writes an empty soap:body element for the remaining interceptors to populate.
								

								
	
									SwAOutInterceptor
								

								 	
									PRE_LOGICAL
								

								 	
									Removes any binary data that will be packaged as a SOAP attachment and stores it for later processing.
								

								

XML

					Table 63.8, “Inbound XML interceptors” lists the interceptors added to a endpoint’s inbound message chain when using the XML Binding.
				
Table 63.8. Inbound XML interceptors
	Class	Phase	Description
	
									AttachmentInInterceptor
								

								 	
									RECEIVE
								

								 	
									Parses the mime headers for mime boundaries, finds the root part and resets the input stream to it, and then stores the other parts in a collection of Attachment objects.
								

								
	
									DocLiteralInInterceptor
								

								 	
									UNMARSHAL
								

								 	
									Examines the first element in the message body to determine the appropriate operation and then calls the data binding to read in the data.
								

								
	
									StaxInInterceptor
								

								 	
									POST_STREAM
								

								 	
									Creates an XMLStreamReader object from the message.
								

								
	
									URIMappingInterceptor
								

								 	
									UNMARSHAL
								

								 	
									Handles the processing of HTTP GET methods.
								

								
	
									XMLMessageInInterceptor
								

								 	
									UNMARSHAL
								

								 	
									Unmarshals the XML message.
								

								

					Table 63.9, “Outbound XML interceptors” lists the interceptors added to a endpoint’s outbound message chain when using the XML Binding.
				
Table 63.9. Outbound XML interceptors
	Class	Phase	Description
	
									StaxOutInterceptor
								

								 	
									PRE_STREAM
								

								 	
									Creates an XMLStreamWriter objects from the message.
								

								
	
									WrappedOutInterceptor
								

								 	
									MARSHAL
								

								 	
									Wraps the outbound message parameters.
								

								
	
									XMLMessageOutInterceptor
								

								 	
									MARSHAL
								

								 	
									Marshals the message for transmission.
								

								

CORBA

					Table 63.10, “Inbound CORBA interceptors” lists the interceptors added to a endpoint’s inbound message chain when using the CORBA Binding.
				
Table 63.10. Inbound CORBA interceptors
	Class	Phase	Description
	
									CorbaStreamInInterceptor
								

								 	
									PRE_STREAM
								

								 	
									Deserializes the CORBA message.
								

								
	
									BareInInterceptor
								

								 	
									UNMARSHAL
								

								 	
									Deserializes the message parts.
								

								

					Table 63.11, “Outbound CORBA interceptors” lists the interceptors added to a endpoint’s outbound message chain when using the CORBA Binding.
				
Table 63.11. Outbound CORBA interceptors
	Class	Phase	Description
	
									CorbaStreamOutInterceptor
								

								 	
									PRE_STREAM
								

								 	
									Serializes the message.
								

								
	
									BareOutInterceptor
								

								 	
									MARSHAL
								

								 	
									Writes the message parts.
								

								
	
									CorbaStreamOutEndingInterceptor
								

								 	
									USER_STREAM
								

								 	
									Creates a streamable object for the message and stores it in the message context.
								

								

Other features

Logging

					Table 63.12, “Inbound logging interceptors” lists the interceptors added to a endpoint’s inbound message chain to support logging.
				
Table 63.12. Inbound logging interceptors
	Class	Phase	Description
	
									LoggingInInterceptor
								

								 	
									RECEIVE
								

								 	
									Writes the raw message data to the logging system.
								

								

					Table 63.13, “Outbound logging interceptors” lists the interceptors added to a endpoint’s outbound message chain to support logging.
				
Table 63.13. Outbound logging interceptors
	Class	Phase	Description
	
									LoggingOutInterceptor
								

								 	
									PRE_STREAM
								

								 	
									Writes the outbound message to the logging system.
								

								

					For more information about logging see Chapter 19, Apache CXF Logging.
				

WS-Addressing

					Table 63.14, “Inbound WS-Addressing interceptors” lists the interceptors added to a endpoint’s inbound message chain when using WS-Addressing.
				
Table 63.14. Inbound WS-Addressing interceptors
	Class	Phase	Description
	
									MAPCodec
								

								 	
									PRE_PROTOCOL
								

								 	
									Decodes the message addressing properties.
								

								

					Table 63.15, “Outbound WS-Addressing interceptors” lists the interceptors added to a endpoint’s outbound message chain when using WS-Addressing.
				
Table 63.15. Outbound WS-Addressing interceptors
	Class	Phase	Description
	
									MAPAggregator
								

								 	
									PRE_LOGICAL
								

								 	
									Aggregates the message addressing properties for a message.
								

								
	
									MAPCodec
								

								 	
									PRE_PROTOCOL
								

								 	
									Encodes the message addressing properties.
								

								

					For more information about WS-Addressing see Chapter 20, Deploying WS-Addressing.
				

WS-RM

Important

						WS-RM relies on WS-Addressing so all of the WS-Addressing interceptors will also be added to the interceptor chains.
					

					Table 63.16, “Inbound WS-RM interceptors” lists the interceptors added to a endpoint’s inbound message chain when using WS-RM.
				
Table 63.16. Inbound WS-RM interceptors
	Class	Phase	Description
	
									RMInInterceptor
								

								 	
									PRE_LOGICAL
								

								 	
									Handles the aggregation of message parts and acknowledgement messages.
								

								
	
									RMSoapInterceptor
								

								 	
									PRE_PROTOCOL
								

								 	
									Encodes and decodes the WS-RM properties from messages.
								

								

					Table 63.17, “Outbound WS-RM interceptors” lists the interceptors added to a endpoint’s outbound message chain when using WS-RM.
				
Table 63.17. Outbound WS-RM interceptors
	Class	Phase	Description
	
									RMOutInterceptor
								

								 	
									PRE_LOGICAL
								

								 	
									Handles the chunking of messages and the transmission of the chunks. Also handles the processing of acknowledgements and resend requests.
								

								
	
									RMSoapInterceptor
								

								 	
									PRE_PROTOCOL
								

								 	
									Encodes and decodes the WS-RM properties from messages.
								

								

					For more information about WS-RM see Chapter 21, Enabling Reliable Messaging.
				

Chapter 64. Interceptor Providers

Overview

				Interceptor providers are objects in the Apache CXF runtime that have interceptor chains attached to them. They all implement the org.apache.cxf.interceptor.InterceptorProvider interface. Developers can attach their own interceptors to any interceptor provider.
			

List of providers

				The following objects are interceptor providers:
			
	
						AddressingPolicyInterceptorProvider
					
	
						ClientFactoryBean
					
	
						ClientImpl
					
	
						ClientProxyFactoryBean
					
	
						CorbaBinding
					
	
						CXFBusImpl
					
	
						org.apache.cxf.jaxws.EndpointImpl
					
	
						org.apache.cxf.endpoint.EndpointImpl
					
	
						ExtensionManagerBus
					
	
						JAXRSClientFactoryBean
					
	
						JAXRSServerFactoryBean
					
	
						JAXRSServiceImpl
					
	
						JaxWsClientEndpointImpl
					
	
						JaxWsClientFactoryBean
					
	
						JaxWsEndpointImpl
					
	
						JaxWsProxyFactoryBean
					
	
						JaxWsServerFactoryBean
					
	
						JaxwsServiceBuilder
					
	
						MTOMPolicyInterceptorProvider
					
	
						NoOpPolicyInterceptorProvider
					
	
						ObjectBinding
					
	
						RMPolicyInterceptorProvider
					
	
						ServerFactoryBean
					
	
						ServiceImpl
					
	
						SimpleServiceBuilder
					
	
						SoapBinding
					
	
						WrappedEndpoint
					
	
						WrappedService
					
	
						XMLBinding
					

Part VIII. Apache CXF Features

				This guide describes how to enable various advanced features of Apache CXF.
			

Chapter 65. Bean Validation

Abstract

					Bean validation is a Java standard that enables you to define runtime constraints by adding Java annotations to service classes or interfaces. Apache CXF uses interceptors to integrate this feature with Web service method invocations.
				

Introduction

Overview

					Bean Validation 1.1 (JSR-349)—which is an evolution of the original Bean Validation 1.0 (JSR-303) standard—enables you to declare constraints that can be checked at run time, using Java annotations. You can use annotations to define constraints on the following parts of the Java code:
				
	
							Fields in a bean class.
						
	
							Method and constructor parameters.
						
	
							Method return values.
						

Example of annotated class

					The following example shows a Java class annotated with some standard bean validation constraints:
				
// Java
import javax.validation.constraints.NotNull;
import javax.validation.constraints.Max;
import javax.validation.Valid;
...
public class Person {
 @NotNull private String firstName;
 @NotNull private String lastName;
 @Valid @NotNull private Person boss;

 public @NotNull String saveItem(@Valid @NotNull Person person, @Max(23) BigDecimal age) {
 // ...
 }
}

Bean validation or schema validation?

					In some respects, bean validation and schema validation are quite similar. Configuring an endpoint with an XML schema is a well established way to validate messages at run time on a Web services endpoint. An XML schema can check many of the same constraints as bean validation on incoming and outgoing messages. Nevertheless, bean validation can sometimes be a useful alternative for one or more of the following reasons:
				
	
							Bean validation enables you to define constraints independently of the XML schema (which is useful, for example, in the case of code-first service development).
						
	
							If your current XML schema is too lax, you can use bean validation to define stricter constraints.
						
	
							Bean validation lets you define custom constraints, which might be impossible to define using XML schema language.
						

Dependencies

					The Bean Validation 1.1 (JSR-349) standard defines just the API, not the implementation. Dependencies must therefore be provided in two parts:
				
	
							Core dependencies—provide the bean validation 1.1 API, Java unified expression language API and implementation.
						
	
							Hibernate Validator dependencies—provides the implementation of bean validation 1.1.
						

Core dependencies

					To use bean validation, you must add the following core dependencies to your project’s Maven pom.xml file:
				
<dependency>
 <groupId>javax.validation</groupId>
 <artifactId>validation-api</artifactId>
 <version>1.1.0.Final</version>
</dependency>
<dependency>
 <groupId>javax.el</groupId>
 <artifactId>javax.el-api</artifactId>
 <!-- use 3.0-b02 version for Java 6 -->
 <version>3.0.0</version>
</dependency>
<dependency>
 <groupId>org.glassfish</groupId>
 <artifactId>javax.el</artifactId>
 <!-- use 3.0-b01 version for Java 6 -->
 <version>3.0.0</version>
</dependency>
Note

						The javax.el/javax.el-api and org.glassfish/javax.el dependencies provide the API and implementation of Java’s unified expression language. This expression language is used internally by bean validation, but is not important at the application programming level.
					

Hibernate Validator dependencies

					To use the Hibernate Validator implementation of bean validation, you must add the following additional dependencies to your project’s Maven pom.xml file:
				
<dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-validator</artifactId>
 <version>5.0.3.Final</version>
</dependency>

Resolving the validation provider in an OSGi environment

					The default mechanism for resolving a validation provider involves scanning the classpath to find the provider resource. In the case of an OSGi (Apache Karaf) environment, however, this mechanism does not work, because the validation provider (for example, the Hibernate validator) is packaged in a separate bundle and is thus not automatically available in your application classpath. In the context of OSGi, the Hibernate validator needs to be wired to your application bundle, and OSGi needs a bit of help to do this successfully.
				

Configuring the validation provider explicitly in OSGi

					In the context of OSGi, you need to configure the validation provider explicitly, instead of relying on automatic discovery. For example, if you are using the common validation feature (see the section called “Bean validation feature”) to enable bean validation, you must configure it with a validation provider, as follows:
				
<bean id="commonValidationFeature" class="org.apache.cxf.validation.BeanValidationFeature">
 <property name="provider" ref="beanValidationProvider"/>
</bean>

<bean id="beanValidationProvider" class="org.apache.cxf.validation.BeanValidationProvider">
 <constructor-arg ref="validationProviderResolver"/>
</bean>

<bean id="validationProviderResolver" class="org.example.HibernateValidationProviderResolver"/>

					Where the HibernateValidationProviderResolver is a custom class that wraps the Hibernate validation provider.
				

Example HibernateValidationProviderResolver class

					The following code example shows how to define a custom HibernateValidationProviderResolver, which resolves the Hibernate validator:
				
// Java
package org.example;

import static java.util.Collections.singletonList;
import org.hibernate.validator.HibernateValidator;
import javax.validation.ValidationProviderResolver;
import java.util.List;

/**
 * OSGi-friendly implementation of {@code javax.validation.ValidationProviderResolver} returning
 * {@code org.hibernate.validator.HibernateValidator} instance.
 *
 */
public class HibernateValidationProviderResolver implements ValidationProviderResolver {

 @Override
 public List getValidationProviders() {
 return singletonList(new HibernateValidator());
 }
}

					When you build the preceding class in a Maven build system, which is configured to use the Maven bundle plug-in, your application will be wired to the Hibernate validator bundle at deploy time (assuming you have already deployed the Hibernate validator bundle to the OSGi container).
				

Developing Services with Bean Validation

Annotating a Service Bean

Overview

						The first step in developing a service with bean validation is to apply the relevant validation annotations to the Java classes or interfaces that represent your services. The validation annotations enable you to apply constraints to method parameters, return values, and class fields, which are then checked at run time, every time the service is invoked.
					

Validating simple input parameters

						To validate the parameters of a service method—where the parameters are simple Java types—you can apply any of the constraint annotations from the bean validation API (javax.validation.constraints package). For example, the following code example tests both parameters for nullness (@NotNull annotation), whether the id string matches the \\d+ regular expression (@Pattern annotation), and whether the length of the name string lies in the range 1 to 50:
					
import javax.validation.constraints.NotNull;
import javax.validation.constraints.Pattern;
import javax.validation.constraints.Size;
...
@POST
@Path("/books")
public Response addBook(
 @NotNull @Pattern(regexp = "\\d+") @FormParam("id") String id,
 @NotNull @Size(min = 1, max = 50) @FormParam("name") String name) {
 // do some work
 return Response.created().build();
}

Validating complex input parameters

						To validate complex input parameters (object instances), apply the @Valid annotation to the parameter, as shown in the following example:
					
import javax.validation.Valid;
...
@POST
@Path("/books")
public Response addBook(@Valid Book book) {
 // do some work
 return Response.created().build();
}

						The @Valid annotation does not specify any constraints by itself. When you annotate the Book parameter with @Valid, you are effectively telling the validation engine to look inside the definition of the Book class (recursively) to look for validation constraints. In this example, the Book class is defined with validation constraints on its id and name fields, as follows:
					
import javax.validation.constraints.NotNull;
import javax.validation.constraints.Pattern;
import javax.validation.constraints.Size;
...
public class Book {
 @NotNull @Pattern(regexp = "\\d+") private String id;
 @NotNull @Size(min = 1, max = 50) private String name;

 // ...
}

Validating return values (non-Response)

						To apply validation to regular method return values (non-Response), add the annotations in front of the method signature. For example, to test the return value for nullness (@NotNull annotation) and to test validation constraints recursively (@Valid annotation), annotate the getBook method as follows:
					
import javax.validation.constraints.NotNull;
import javax.validation.Valid;
...
@GET
@Path("/books/{bookId}")
@Override
@NotNull @Valid
public Book getBook(@PathParam("bookId") String id) {
 return new Book(id);
}

Validating return values (Response)

						To apply validation to a method that returns a javax.ws.rs.core.Response object, you can use the same annotations as in the non-Response case. For example:
					
import javax.validation.constraints.NotNull;
import javax.validation.Valid;
import javax.ws.rs.core.Response;
...
@GET
@Path("/books/{bookId}")
@Valid @NotNull
public Response getBookResponse(@PathParam("bookId") String id) {
 return Response.ok(new Book(id)).build();
}

Standard Annotations

Bean validation constraints

						Table 65.1, “Standard Annotations for Bean Validation” shows the standard annotations defined in the Bean Validation specification, which can be used to define constraints on fields and on method return values and parameters (none of the standard annotations can be applied at the class level).
					
Table 65.1. Standard Annotations for Bean Validation
	Annotation	Applicable to	Description
	
										@AssertFalse
									

									 	
										Boolean, boolean
									

									 	
										Checks that the annotated element is false.
									

									
	
										@AssertTrue
									

									 	
										Boolean, boolean
									

									 	
										Checks that the annotated element is true.
									

									
	
										@DecimalMax(value=, inclusive=)
									

									 	
										BigDecimal, BigInteger, CharSequence, byte, short, int, long and primitive type wrappers
									

									 	
										When inclusive=false, checks that the annotated value is less than the specified maximum. Otherwise, checks that the value is less than or equal to the specified maximum. The value parameter specifies the maximum in BigDecimal string format.
									

									
	
										@DecimalMin(value=, inclusive=)
									

									 	
										BigDecimal, BigInteger, CharSequence, byte, short, int, long and primitive type wrappers
									

									 	
										When inclusive=false, checks that the annotated value is greater than the specified minimum. Otherwise, checks that the value is greater than or equal to the specified minimum. The value parameter specifies the minimum in BigDecimal string format.
									

									
	
										@Digits(integer=, fraction=)
									

									 	
										BigDecimal, BigInteger, CharSequence, byte, short, int, long and primitive type wrappers
									

									 	
										Checks whether the annotated value is a number having up to integer digits and fraction fractional digits.
									

									
	
										@Future
									

									 	
										java.util.Date, java.util.Calendar
									

									 	
										Checks whether the annotated date is in the future.
									

									
	
										@Max(value=)
									

									 	
										BigDecimal, BigInteger, CharSequence, byte, short, int, long and primitive type wrappers
									

									 	
										Checks whether the annotated value is less than or equal to the specified maximum.
									

									
	
										@Min(value=)
									

									 	
										BigDecimal, BigInteger, CharSequence, byte, short, int, long and primitive type wrappers
									

									 	
										Checks whether the annotated value is greater than or equal to the specified minimum.
									

									
	
										@NotNull
									

									 	
										Any type
									

									 	
										Checks that the annotated value is not null.
									

									
	
										@Null
									

									 	
										Any type
									

									 	
										Checks that the annotated value is null.
									

									
	
										@Past
									

									 	
										java.util.Date, java.util.Calendar
									

									 	
										Checks whether the annotated date is in the past.
									

									
	
										@Pattern(regex=, flag=)
									

									 	
										CharSequence
									

									 	
										Checks whether the annotated string matches the regular expression regex considering the given flag match.
									

									
	
										@Size(min=, max=)
									

									 	
										CharSequence, Collection, Map and arrays
									

									 	
										Checks whether the size of the annotated collection, map, or array lies between min and max (inclusive).
									

									
	
										@Valid
									

									 	
										Any non-primitive type
									

									 	
										Performs validation recursively on the annotated object. If the object is a collection or an array, the elements are validated recursively. If the object is a map, the value elements are validated recursively.
									

									

Custom Annotations

Defining custom constraints in Hibernate

						It is possible to define your own custom constraints annotations with the bean validation API. For details of how to do this in the Hibernate validator implementation, see the Creating custom constraints chapter of the Hibernate Validator Reference Guide.
					

Configuring Bean Validation

JAX-WS Configuration

Overview

						This section describes how to enable bean validation on a JAX-WS service endpoint, which is defined either in Blueprint XML or in Spring XML. The interceptors used to perform bean validation are common to both JAX-WS endpoints and JAX-RS 1.1 endpoints (JAX-RS 2.0 endpoints use different interceptor classes, however).
					

Namespaces

						In the XML examples shown in this section, you must remember to map the jaxws namespace prefix to the appropriate namespace, either for Blueprint or Spring, as shown in the following table:
					
	XML Language	Namespace
	
										Blueprint
									

									 	
										http://cxf.apache.org/blueprint/jaxws
									

									
	
										Spring
									

									 	
										http://cxf.apache.org/jaxws
									

									

Bean validation feature

						The simplest way to enable bean validation on a JAX-WS endpoint is to add the bean validation feature to the endpoint. The bean validation feature is implemented by the following class:
					
	org.apache.cxf.validation.BeanValidationFeature
	
									By adding an instance of this feature class to the JAX-WS endpoint (either through the Java API or through the jaxws:features child element of jaxws:endpoint in XML), you can enable bean validation on the endpoint. This feature installs two interceptors: an In interceptor that validates incoming message data; and an Out interceptor that validates return values (where the interceptors are created with default configuration parameters).
								

Sample JAX-WS configuration with bean validation feature

						The following XML example shows how to enable bean validation functionality in a JAX-WS endpoint, by adding the commonValidationFeature bean to the endpoint as a JAX-WS feature:
					
<jaxws:endpoint xmlns:s="http://bookworld.com"
 serviceName="s:BookWorld"
 endpointName="s:BookWorldPort"
 implementor="#bookWorldValidation"
 address="/bwsoap">
 <jaxws:features>
 <ref bean="commonValidationFeature" />
 </jaxws:features>
</jaxws:endpoint>

<bean id="bookWorldValidation" class="org.apache.cxf.systest.jaxrs.validation.spring.BookWorldImpl"/>

<bean id="commonValidationFeature" class="org.apache.cxf.validation.BeanValidationFeature">
 <property name="provider" ref="beanValidationProvider"/>
</bean>

<bean id="beanValidationProvider" class="org.apache.cxf.validation.BeanValidationProvider">
 <constructor-arg ref="validationProviderResolver"/>
</bean>

<bean id="validationProviderResolver" class="org.example.HibernateValidationProviderResolver"/>

						For a sample implementation of the HibernateValidationProviderResolver class, see the section called “Example HibernateValidationProviderResolver class”. It is only necessary to configure the beanValidationProvider in the context of an OSGi environment (Apache Karaf).
					
Note

							Remember to map the jaxws prefix to the appropriate XML namespace for either Blueprint or Spring, depending on the context.
						

Common bean validation 1.1 interceptors

						If you want to have more fine-grained control over the configuration of the bean validation, you can install the interceptors individually, instead of using the bean validation feature. In place of the bean validation feature, you can configure one or both of the following interceptors:
					
	org.apache.cxf.validation.BeanValidationInInterceptor
	
									When installed in a JAX-WS (or JAX-RS 1.1) endpoint, validates resource method parameters against validation constraints. If validation fails, raises the javax.validation.ConstraintViolationException exception. To install this interceptor, add it to the endpoint through the jaxws:inInterceptors child element in XML (or the jaxrs:inInterceptors child element in XML).
								
	org.apache.cxf.validation.BeanValidationOutInterceptor
	
									When installed in a JAX-WS (or JAX-RS 1.1) endpoint, validates response values against validation constraints. If validation fails, raises the javax.validation.ConstraintViolationException exception. To install this interceptor, add it to the endpoint through the jaxws:outInterceptors child element in XML (or the jaxrs:outInterceptors child element in XML).
								

Sample JAX-WS configuration with bean validation interceptors

						The following XML example shows how to enable bean validation functionality in a JAX-WS endpoint, by explicitly adding the relevant In interceptor bean and Out interceptor bean to the endpoint:
					
<jaxws:endpoint xmlns:s="http://bookworld.com"
 serviceName="s:BookWorld"
 endpointName="s:BookWorldPort"
 implementor="#bookWorldValidation"
 address="/bwsoap">
 <jaxws:inInterceptors>
 <ref bean="validationInInterceptor" />
 </jaxws:inInterceptors>

 <jaxws:outInterceptors>
 <ref bean="validationOutInterceptor" />
 </jaxws:outInterceptors>
</jaxws:endpoint>

<bean id="bookWorldValidation" class="org.apache.cxf.systest.jaxrs.validation.spring.BookWorldImpl"/>

<bean id="validationInInterceptor" class="org.apache.cxf.validation.BeanValidationInInterceptor">
 <property name="provider" ref="beanValidationProvider"/>
</bean>
<bean id="validationOutInterceptor" class="org.apache.cxf.validation.BeanValidationOutInterceptor">
 <property name="provider" ref="beanValidationProvider"/>
</bean>

<bean id="beanValidationProvider" class="org.apache.cxf.validation.BeanValidationProvider">
 <constructor-arg ref="validationProviderResolver"/>
</bean>

<bean id="validationProviderResolver" class="org.example.HibernateValidationProviderResolver"/>

						For a sample implementation of the HibernateValidationProviderResolver class, see the section called “Example HibernateValidationProviderResolver class”. It is only necessary to configure the beanValidationProvider in the context of an OSGi environment (Apache Karaf).
					

Configuring a BeanValidationProvider

						The org.apache.cxf.validation.BeanValidationProvider is a simple wrapper class that wraps the bean validation implementation (validation provider). By overriding the default BeanValidationProvider class, you can customize the implementation of bean validation. The BeanValidationProvider bean enables you to override one or more of the following provider classes:
					
	javax.validation.ParameterNameProvider
	
									Provides names for method and constructor parameters. Note that this class is needed, because the Java reflection API does not give you access to the names of method parameters or constructor parameters.
								
	javax.validation.spi.ValidationProvider<T>
	
									Provides an implementation of bean validation for the specified type, T. By implementing your own ValidationProvider class, you can define custom validation rules for your own classes. This mechanism effectively enables you to extend the bean validation framework.
								
	javax.validation.ValidationProviderResolver
	
									Implements a mechanism for discovering ValidationProvider classes and returns a list of the discovered classes. The default resolver looks for a META-INF/services/javax.validation.spi.ValidationProvider file on the classpath, which should contain a list of ValidationProvider classes.
								
	javax.validation.ValidatorFactory
	
									A factory that returns javax.validation.Validator instances.
								
	org.apache.cxf.validation.ValidationConfiguration
	
									A CXF wrapper class that enables you override more classes from the validation provider layer.
								

						To customize the BeanValidationProvider, pass a custom BeanValidationProvider instance to the constructor of the validation In interceptor and to the constructor of the validation Out interceptor. For example:
					
<bean id="validationProvider" class="org.apache.cxf.validation.BeanValidationProvider" />

<bean id="validationInInterceptor" class="org.apache.cxf.validation.BeanValidationInInterceptor">
 <property name="provider" ref="validationProvider" />
</bean>

<bean id="validationOutInterceptor" class="org.apache.cxf.validation.BeanValidationOutInterceptor">
 <property name="provider" ref="validationProvider" />
</bean>

JAX-RS Configuration

Overview

						This section describes how to enable bean validation on a JAX-RS service endpoint, which is defined either in Blueprint XML or in Spring XML. The interceptors used to perform bean validation are common to both JAX-WS endpoints and JAX-RS 1.1 endpoints (JAX-RS 2.0 endpoints use different interceptor classes, however).
					

Namespaces

						In the XML examples shown in this section, you must remember to map the jaxws namespace prefix to the appropriate namespace, either for Blueprint or Spring, as shown in the following table:
					
	XML Language	Namespace
	
										Blueprint
									

									 	
										http://cxf.apache.org/blueprint/jaxws
									

									
	
										Spring
									

									 	
										http://cxf.apache.org/jaxws
									

									

Bean validation feature

						The simplest way to enable bean validation on a JAX-RS endpoint is to add the bean validation feature to the endpoint. The bean validation feature is implemented by the following class:
					
	org.apache.cxf.validation.BeanValidationFeature
	
									By adding an instance of this feature class to the JAX-RS endpoint (either through the Java API or through the jaxrs:features child element of jaxrs:server in XML), you can enable bean validation on the endpoint. This feature installs two interceptors: an In interceptor that validates incoming message data; and an Out interceptor that validates return values (where the interceptors are created with default configuration parameters).
								

Validation exception mapper

						A JAX-RS endpoint also requires you to configure a validation exception mapper, which is responsible for mapping validation exceptions to HTTP error responses. The following class implements validation exception mapping for JAX-RS:
					
	org.apache.cxf.jaxrs.validation.ValidationExceptionMapper
	
									Implements validation exception mapping in accordance with the JAX-RS 2.0 specification: any input parameter validation violations are mapped to HTTP status code 400 Bad Request; and any return value validation violation (or internal validation violation) is mapped to HTTP status code 500 Internal Server Error.
								

Sample JAX-RS configuration

						The following XML example shows how to enable bean validation functionality in a JAX-RS endpoint, by adding the commonValidationFeature bean as a JAX-RS feature and by adding the exceptionMapper bean as a JAX-RS provider:
					
<jaxrs:server address="/bwrest">
 <jaxrs:serviceBeans>
 <ref bean="bookWorldValidation"/>
 </jaxrs:serviceBeans>
 <jaxrs:providers>
 <ref bean="exceptionMapper"/>
 </jaxrs:providers>
 <jaxrs:features>
 <ref bean="commonValidationFeature" />
 </jaxrs:features>
</jaxrs:server>

<bean id="bookWorldValidation" class="org.apache.cxf.systest.jaxrs.validation.spring.BookWorldImpl"/>
<beanid="exceptionMapper"class="org.apache.cxf.jaxrs.validation.ValidationExceptionMapper"/>

<bean id="commonValidationFeature" class="org.apache.cxf.validation.BeanValidationFeature">
 <property name="provider" ref="beanValidationProvider"/>
</bean>

<bean id="beanValidationProvider" class="org.apache.cxf.validation.BeanValidationProvider">
 <constructor-arg ref="validationProviderResolver"/>
</bean>

<bean id="validationProviderResolver" class="org.example.HibernateValidationProviderResolver"/>

						For a sample implementation of the HibernateValidationProviderResolver class, see the section called “Example HibernateValidationProviderResolver class”. It is only necessary to configure the beanValidationProvider in the context of an OSGi environment (Apache Karaf).
					
Note

							Remember to map the jaxrs prefix to the appropriate XML namespace for either Blueprint or Spring, depending on the context.
						

Common bean validation 1.1 interceptors

						Instead of using the bean validation feature, you can optionally install bean validation interceptors to get more fine-grained control over the validation implementation. JAX-RS uses the same interceptors as JAX-WS for this purpose—see the section called “Common bean validation 1.1 interceptors”
					

Sample JAX-RS configuration with bean validation interceptors

						The following XML example shows how to enable bean validation functionality in a JAX-RS endpoint, by explicitly adding the relevant In interceptor bean and Out interceptor bean to the server endpoint:
					
<jaxrs:server address="/">
 <jaxrs:inInterceptors>
 <ref bean="validationInInterceptor" />
 </jaxrs:inInterceptors>

 <jaxrs:outInterceptors>
 <ref bean="validationOutInterceptor" />
 </jaxrs:outInterceptors>

 <jaxrs:serviceBeans>
 ...
 </jaxrs:serviceBeans>

 <jaxrs:providers>
 <ref bean="exceptionMapper"/>
 </jaxrs:providers>
</jaxrs:server>

<bean id="exceptionMapper" class="org.apache.cxf.jaxrs.validation.ValidationExceptionMapper"/>

<bean id="validationInInterceptor" class="org.apache.cxf.validation.BeanValidationInInterceptor">
 <property name="provider" ref="beanValidationProvider" />
</bean>

<bean id="validationOutInterceptor" class="org.apache.cxf.validation.BeanValidationOutInterceptor">
 <property name="provider" ref="beanValidationProvider" />
</bean>

<bean id="beanValidationProvider" class="org.apache.cxf.validation.BeanValidationProvider">
 <constructor-arg ref="validationProviderResolver"/>
</bean>

<bean id="validationProviderResolver" class="org.example.HibernateValidationProviderResolver"/>

						For a sample implementation of the HibernateValidationProviderResolver class, see the section called “Example HibernateValidationProviderResolver class”. It is only necessary to configure the beanValidationProvider in the context of an OSGi environment (Apache Karaf).
					

Configuring a BeanValidationProvider

						You can inject a custom BeanValidationProvider instance into the validation interceptors, as described in the section called “Configuring a BeanValidationProvider”.
					

JAX-RS 2.0 Configuration

Overview

						Unlike JAX-RS 1.1 (which shares common validation interceptors with JAX-WS), the JAX-RS 2.0 configuration relies on dedicated validation interceptor classes that are specific to JAX-RS 2.0.
					

Bean validation feature

						For JAX-RS 2.0, there is a dedicated bean validation feature, which is implemented by the following class:
					
	org.apache.cxf.validation.JAXRSBeanValidationFeature
	
									By adding an instance of this feature class to the JAX-RS endpoint (either through the Java API or through the jaxrs:features child element of jaxrs:server in XML), you can enable bean validation on a JAX-RS 2.0 server endpoint. This feature installs two interceptors: an In interceptor that validates incoming message data; and an Out interceptor that validates return values (where the interceptors are created with default configuration parameters).
								

Validation exception mapper

						JAX-RS 2.0 uses the same validation exception mapper class as JAX-RS 1.x:
					
	org.apache.cxf.jaxrs.validation.ValidationExceptionMapper
	
									Implements validation exception mapping in accordance with the JAX-RS 2.0 specification: any input parameter validation violations are mapped to HTTP status code 400 Bad Request; and any return value validation violation (or internal validation violation) is mapped to HTTP status code 500 Internal Server Error.
								

Bean validation invoker

						If you configure the JAX-RS service with a non-default lifecycle policy (for example, using Spring lifecycle management), you should also register a org.apache.cxf.jaxrs.validation.JAXRSBeanValidationInvoker instance—using the jaxrs:invoker element in the endpoint configuration—with the service endpoint, to ensure that bean validation is invoked correctly.
					

						For more details about JAX-RS service lifecycle management, see the section called “Lifecycle management in Spring XML”.
					

Sample JAX-RS 2.0 configuration with bean validation feature

						The following XML example shows how to enable bean validation functionality in a JAX-RS 2.0 endpoint, by adding the jaxrsValidationFeature bean as a JAX-RS feature and by adding the exceptionMapper bean as a JAX-RS provider:
					
<jaxrs:server address="/">
 <jaxrs:serviceBeans>
 ...
 </jaxrs:serviceBeans>
 <jaxrs:providers>
 <ref bean="exceptionMapper"/>
 </jaxrs:providers>
 <jaxrs:features>
 <ref bean="jaxrsValidationFeature" />
 </jaxrs:features>
</jaxrs:server>

<bean id="exceptionMapper" class="org.apache.cxf.jaxrs.validation.ValidationExceptionMapper"/>
<bean id="jaxrsValidationFeature" class="org.apache.cxf.validation.JAXRSBeanValidationFeature">
 <property name="provider" ref="beanValidationProvider"/>
</bean>

<bean id="beanValidationProvider" class="org.apache.cxf.validation.BeanValidationProvider">
 <constructor-arg ref="validationProviderResolver"/>
</bean>

<bean id="validationProviderResolver" class="org.example.HibernateValidationProviderResolver"/>

						For a sample implementation of the HibernateValidationProviderResolver class, see the section called “Example HibernateValidationProviderResolver class”. It is only necessary to configure the beanValidationProvider in the context of an OSGi environment (Apache Karaf).
					
Note

							Remember to map the jaxrs prefix to the appropriate XML namespace for either Blueprint or Spring, depending on the context.
						

Common bean validation 1.1 interceptors

						If you want to have more fine-grained control over the configuration of the bean validation, you can install the JAX-RS interceptors individually, instead of using the bean validation feature. Configure one or both of the following JAX-RS interceptors:
					
	org.apache.cxf.validation.JAXRSBeanValidationInInterceptor
	
									When installed in a JAX-RS 2.0 server endpoint, validates resource method parameters against validation constraints. If validation fails, raises the javax.validation.ConstraintViolationException exception. To install this interceptor, add it to the endpoint through the jaxrs:inInterceptors child element in XML.
								
	org.apache.cxf.validation.JAXRSBeanValidationOutInterceptor
	
									When installed in a JAX-RS 2.0 endpoint, validates response values against validation constraints. If validation fails, raises the javax.validation.ConstraintViolationException exception. To install this interceptor, add it to the endpoint through the jaxrs:inInterceptors child element in XML.
								

Sample JAX-RS 2.0 configuration with bean validation interceptors

						The following XML example shows how to enable bean validation functionality in a JAX-RS 2.0 endpoint, by explicitly adding the relevant In interceptor bean and Out interceptor bean to the server endpoint:
					
<jaxrs:server address="/">
 <jaxrs:inInterceptors>
 <ref bean="validationInInterceptor" />
 </jaxrs:inInterceptors>

 <jaxrs:outInterceptors>
 <ref bean="validationOutInterceptor" />
 </jaxrs:outInterceptors>

 <jaxrs:serviceBeans>
 ...
 </jaxrs:serviceBeans>

 <jaxrs:providers>
 <ref bean="exceptionMapper"/>
 </jaxrs:providers>
</jaxrs:server>

<bean id="exceptionMapper" class="org.apache.cxf.jaxrs.validation.ValidationExceptionMapper"/>

<bean id="validationInInterceptor" class="org.apache.cxf.jaxrs.validation.JAXRSBeanValidationInInterceptor">
 <property name="provider" ref="beanValidationProvider" />
</bean>

<bean id="validationOutInterceptor" class="org.apache.cxf.jaxrs.validation.JAXRSBeanValidationOutInterceptor">
 <property name="provider" ref="beanValidationProvider" />
</bean>

<bean id="beanValidationProvider" class="org.apache.cxf.validation.BeanValidationProvider">
 <constructor-arg ref="validationProviderResolver"/>
</bean>

<bean id="validationProviderResolver" class="org.example.HibernateValidationProviderResolver"/>

						For a sample implementation of the HibernateValidationProviderResolver class, see the section called “Example HibernateValidationProviderResolver class”. It is only necessary to configure the beanValidationProvider in the context of an OSGi environment (Apache Karaf).
					

Configuring a BeanValidationProvider

						You can inject a custom BeanValidationProvider instance into the validation interceptors, as described in the section called “Configuring a BeanValidationProvider”.
					

Configuring a JAXRSParameterNameProvider

						The org.apache.cxf.jaxrs.validation.JAXRSParameterNameProvider class is an implementation of the javax.validation.ParameterNameProvider interface, which can be used to provide the names for method and constructor parameters in the context of JAX-RS 2.0 endpoints.
					

OEBPS/Common_Content/images/18.png

OEBPS/Common_Content/icons/redhat-books-icons-a2efd68d1f13be356c9c4e5c29a64e69.eot

OEBPS/Common_Content/images/dot2.png

OEBPS/Common_Content/images/documentation.png

OEBPS/Common_Content/fonts/redhat/text/RedHatText-Medium.woff2

OEBPS/Common_Content/fonts/redhat/text/RedHatText-MediumItalic.woff2

OEBPS/Common_Content/images/26.png

OEBPS/Common_Content/fonts/overpass_light-web.woff

OEBPS/Common_Content/fonts/redhat/text/RedHatText-Regular.woff

OEBPS/Common_Content/fonts/redhat/text/RedHatText-Bold.woff

OEBPS/Common_Content/fonts/redhat/text/RedHatText-Medium.eot

OEBPS/Common_Content/fonts/overpass_regular-web.eot

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-BlackItalic.woff

OEBPS/Common_Content/images/rhlogo.png
& RedHat

OEBPS/images/topics/interceptors/images/jaxrs20filters_01.gif
Request

PreMatch
ContainerRequest

Request

Matthing [—>>| ContainerRequest

]
]
—>: ReadInterceptor

Response
<—

Writelnterceptor

le«———————ContainerResponse|

s-sss--------------priority order---------

Method
invocation

OEBPS/Common_Content/fonts/redhat/text/RedHatText-RegularItalic.eot

OEBPS/Common_Content/images/34.png

OEBPS/Common_Content/images/dot.png

OEBPS/Common_Content/images/30.png

OEBPS/Common_Content/images/22.png

OEBPS/Common_Content/images/5.png

OEBPS/images/topics/jaxws/images/handler1.jpg

OEBPS/Common_Content/images/note.png

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-BoldItalic.woff

OEBPS/Common_Content/fonts/redhat/text/RedHatText-Bold.woff2

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-MediumItalic.woff2

OEBPS/images/topics/jaxws/images/handler2.jpg

OEBPS/Common_Content/images/11.png

OEBPS/Common_Content/images/37.png

OEBPS/Common_Content/images/9.png

OEBPS/Common_Content/fonts/overpass_regular-web.woff

OEBPS/Common_Content/images/green.png

OEBPS/Common_Content/fonts/overpass_light-web.ttf

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-Regular.woff2

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-Bold.woff2

OEBPS/Common_Content/images/17.png

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-BoldItalic.eot

OEBPS/Common_Content/images/yellow.png

OEBPS/Common_Content/images/27.png

OEBPS/Common_Content/scripts/highlight.js/README.ru.md
Highlight.js

Highlight.js — это подсветчик синтаксиса, написанный на JavaScript. Он работает
и в браузере, и на сервере. Он работает с практически любой HTML разметкой, не
зависит от каких-либо фреймворков и умеет автоматически определять язык.

Начало работы

Минимум, что нужно сделать для использования highlight.js на веб-странице — это
подключить библиотеку, CSS-стили и вызывать [`initHighlightingOnLoad`][1]:

```html
<link rel="stylesheet" href="/path/to/styles/default.css">
<script src="/path/to/highlight.pack.js"></script>
<script>hljs.initHighlightingOnLoad();</script>
```

Библиотека найдёт и раскрасит код внутри тегов `<pre><code>`, попытавшись
автоматически определить язык. Когда автоопределение не срабатывает, можно явно
указать язык в атрибуте class:

```html
<pre><code class="html">...</code></pre>
```

Список поддерживаемых классов языков доступен в [справочнике по классам][8].
Класс также можно предваоить префиксами `language-` или `lang-`.

Чтобы отключить подсветку для какого-то блока, используйте класс `nohighlight`:

```html
<pre><code class="nohighlight">...</code></pre>
```

Инициализация вручную

Чтобы иметь чуть больше контроля за инициализацией подсветки, вы можете
использовать функции [`highlightBlock`][2] и [`configure`][3]. Таким образом
можно управлять тем, *что* подсвечивать и *когда*.

Вот пример инициализация, эквивалентной вызову [`initHighlightingOnLoad`][1], но
с использованием jQuery:

```javascript
$(document).ready(function() {
  $('pre code').each(function(i, block) {
    hljs.highlightBlock(block);
  });
});
```

Вы можете использовать любые теги разметки вместо `<pre><code>`. Если
используете контейнер, не сохраняющий переводы строк, вам нужно сказать
highlight.js использовать для них тег `
`:

```javascript
hljs.configure({useBR: true});

$('div.code').each(function(i, block) {
  hljs.highlightBlock(block);
});
```

Другие опции можно найти в документации функции [`configure`][3].

Установка библиотеки

Highlight.js можно использовать в браузере прямо с CDN хостинга или скачать
индивидуальную сборку, а также установив модуль на сервере. На
[страница загрузки][4] подробно описаны все варианты.

Обратите внимание, что библиотека не предназначена для использования в виде
исходного кода на GitHub, а требует отдельной сборки. Если вам не подходит ни
один из готовых вариантов, читайте [документацию по сборке][5].

Лицензия

Highlight.js распространяется под лицензией BSD. Подробнее читайте файл
[LICENSE][10].

Ссылки

Официальный сайт билиотеки расположен по адресу <https://highlightjs.org/>.

Более подробная документация по API и другим темам расположена на
<http://highlightjs.readthedocs.org/>.

Авторы и контрибьютора перечислена в файле [AUTHORS.ru.txt][9] file.

[1]: http://highlightjs.readthedocs.org/en/latest/api.html#inithighlightingonload
[2]: http://highlightjs.readthedocs.org/en/latest/api.html#highlightblock-block
[3]: http://highlightjs.readthedocs.org/en/latest/api.html#configure-options
[4]: https://highlightjs.org/download/
[5]: http://highlightjs.readthedocs.org/en/latest/building-testing.html
[8]: http://highlightjs.readthedocs.org/en/latest/css-classes-reference.html
[9]: https://github.com/isagalaev/highlight.js/blob/master/AUTHORS.ru.txt
[10]: https://github.com/isagalaev/highlight.js/blob/master/LICENSE

OEBPS/Common_Content/images/stock-go-back.png

OEBPS/Common_Content/fonts/redhat/text/RedHatText-Bold.eot

OEBPS/images/topics/interceptors/images/interceptorphase.png
©0

Interceptor Phase

@@

18

L

F

® O

OEBPS/images/topics/rest/images/exceptions_01.gif
WebApplicationException

ClientErrorException ServerErrorException RedirectionException

BadRequestException InternalServerErrorException
ForbiddenException ServiceUnavailableException
NotAcceptableException
NotAllowedException
NotAuthorizedException
NotFoundException

NotSupportedException

OEBPS/Common_Content/scripts/jquery-1.7.1.min.js
/*! jQuery v1.7.1 jquery.com | jquery.org/license */
(function(a,b){function cy(a){return f.isWindow(a)?a:a.nodeType===9?a.defaultView||a.parentWindow:!1}function cv(a){if(!ck[a]){var b=c.body,d=f("<"+a+">").appendTo(b),e=d.css("display");d.remove();if(e==="none"||e===""){cl||(cl=c.createElement("iframe"),cl.frameBorder=cl.width=cl.height=0),b.appendChild(cl);if(!cm||!cl.createElement)cm=(cl.contentWindow||cl.contentDocument).document,cm.write((c.compatMode==="CSS1Compat"?"<!doctype html>":"")+"<html><body>"),cm.close();d=cm.createElement(a),cm.body.appendChild(d),e=f.css(d,"display"),b.removeChild(cl)}ck[a]=e}return ck[a]}function cu(a,b){var c={};f.each(cq.concat.apply([],cq.slice(0,b)),function(){c[this]=a});return c}function ct(){cr=b}function cs(){setTimeout(ct,0);return cr=f.now()}function cj(){try{return new a.ActiveXObject("Microsoft.XMLHTTP")}catch(b){}}function ci(){try{return new a.XMLHttpRequest}catch(b){}}function cc(a,c){a.dataFilter&&(c=a.dataFilter(c,a.dataType));var d=a.dataTypes,e={},g,h,i=d.length,j,k=d[0],l,m,n,o,p;for(g=1;g<i;g++){if(g===1)for(h in a.converters)typeof h=="string"&&(e[h.toLowerCase()]=a.converters[h]);l=k,k=d[g];if(k==="*")k=l;else if(l!=="*"&&l!==k){m=l+" "+k,n=e[m]||e["* "+k];if(!n){p=b;for(o in e){j=o.split(" ");if(j[0]===l||j[0]==="*"){p=e[j[1]+" "+k];if(p){o=e[o],o===!0?n=p:p===!0&&(n=o);break}}}}!n&&!p&&f.error("No conversion from "+m.replace(" "," to ")),n!==!0&&(c=n?n(c):p(o(c)))}}return c}function cb(a,c,d){var e=a.contents,f=a.dataTypes,g=a.responseFields,h,i,j,k;for(i in g)i in d&&(c[g[i]]=d[i]);while(f[0]==="*")f.shift(),h===b&&(h=a.mimeType||c.getResponseHeader("content-type"));if(h)for(i in e)if(e[i]&&e[i].test(h)){f.unshift(i);break}if(f[0]in d)j=f[0];else{for(i in d){if(!f[0]||a.converters[i+" "+f[0]]){j=i;break}k||(k=i)}j=j||k}if(j){j!==f[0]&&f.unshift(j);return d[j]}}function ca(a,b,c,d){if(f.isArray(b))f.each(b,function(b,e){c||bE.test(a)?d(a,e):ca(a+"["+(typeof e=="object"||f.isArray(e)?b:"")+"]",e,c,d)});else if(!c&&b!=null&&typeof b=="object")for(var e in b)ca(a+"["+e+"]",b[e],c,d);else d(a,b)}function b_(a,c){var d,e,g=f.ajaxSettings.flatOptions||{};for(d in c)c[d]!==b&&((g[d]?a:e||(e={}))[d]=c[d]);e&&f.extend(!0,a,e)}function b$(a,c,d,e,f,g){f=f||c.dataTypes[0],g=g||{},g[f]=!0;var h=a[f],i=0,j=h?h.length:0,k=a===bT,l;for(;i<j&&(k||!l);i++)l=h[i](c,d,e),typeof l=="string"&&(!k||g[l]?l=b:(c.dataTypes.unshift(l),l=b$(a,c,d,e,l,g)));(k||!l)&&!g["*"]&&(l=b$(a,c,d,e,"*",g));return l}function bZ(a){return function(b,c){typeof b!="string"&&(c=b,b="*");if(f.isFunction(c)){var d=b.toLowerCase().split(bP),e=0,g=d.length,h,i,j;for(;e<g;e++)h=d[e],j=/^\+/.test(h),j&&(h=h.substr(1)||"*"),i=a[h]=a[h]||[],i[j?"unshift":"push"](c)}}}function bC(a,b,c){var d=b==="width"?a.offsetWidth:a.offsetHeight,e=b==="width"?bx:by,g=0,h=e.length;if(d>0){if(c!=="border")for(;g<h;g++)c||(d-=parseFloat(f.css(a,"padding"+e[g]))||0),c==="margin"?d+=parseFloat(f.css(a,c+e[g]))||0:d-=parseFloat(f.css(a,"border"+e[g]+"Width"))||0;return d+"px"}d=bz(a,b,b);if(d<0||d==null)d=a.style[b]||0;d=parseFloat(d)||0;if(c)for(;g<h;g++)d+=parseFloat(f.css(a,"padding"+e[g]))||0,c!=="padding"&&(d+=parseFloat(f.css(a,"border"+e[g]+"Width"))||0),c==="margin"&&(d+=parseFloat(f.css(a,c+e[g]))||0);return d+"px"}function bp(a,b){b.src?f.ajax({url:b.src,async:!1,dataType:"script"}):f.globalEval((b.text||b.textContent||b.innerHTML||"").replace(bf,"/*$0*/")),b.parentNode&&b.parentNode.removeChild(b)}function bo(a){var b=c.createElement("div");bh.appendChild(b),b.innerHTML=a.outerHTML;return b.firstChild}function bn(a){var b=(a.nodeName||"").toLowerCase();b==="input"?bm(a):b!=="script"&&typeof a.getElementsByTagName!="undefined"&&f.grep(a.getElementsByTagName("input"),bm)}function bm(a){if(a.type==="checkbox"||a.type==="radio")a.defaultChecked=a.checked}function bl(a){return typeof a.getElementsByTagName!="undefined"?a.getElementsByTagName("*"):typeof a.querySelectorAll!="undefined"?a.querySelectorAll("*"):[]}function bk(a,b){var c;if(b.nodeType===1){b.clearAttributes&&b.clearAttributes(),b.mergeAttributes&&b.mergeAttributes(a),c=b.nodeName.toLowerCase();if(c==="object")b.outerHTML=a.outerHTML;else if(c!=="input"||a.type!=="checkbox"&&a.type!=="radio"){if(c==="option")b.selected=a.defaultSelected;else if(c==="input"||c==="textarea")b.defaultValue=a.defaultValue}else a.checked&&(b.defaultChecked=b.checked=a.checked),b.value!==a.value&&(b.value=a.value);b.removeAttribute(f.expando)}}function bj(a,b){if(b.nodeType===1&&!!f.hasData(a)){var c,d,e,g=f._data(a),h=f._data(b,g),i=g.events;if(i){delete h.handle,h.events={};for(c in i)for(d=0,e=i[c].length;d<e;d++)f.event.add(b,c+(i[c][d].namespace?".":"")+i[c][d].namespace,i[c][d],i[c][d].data)}h.data&&(h.data=f.extend({},h.data))}}function bi(a,b){return f.nodeName(a,"table")?a.getElementsByTagName("tbody")[0]||a.appendChild(a.ownerDocument.createElement("tbody")):a}function U(a){var b=V.split("|"),c=a.createDocumentFragment();if(c.createElement)while(b.length)c.createElement(b.pop());return c}function T(a,b,c){b=b||0;if(f.isFunction(b))return f.grep(a,function(a,d){var e=!!b.call(a,d,a);return e===c});if(b.nodeType)return f.grep(a,function(a,d){return a===b===c});if(typeof b=="string"){var d=f.grep(a,function(a){return a.nodeType===1});if(O.test(b))return f.filter(b,d,!c);b=f.filter(b,d)}return f.grep(a,function(a,d){return f.inArray(a,b)>=0===c})}function S(a){return!a||!a.parentNode||a.parentNode.nodeType===11}function K(){return!0}function J(){return!1}function n(a,b,c){var d=b+"defer",e=b+"queue",g=b+"mark",h=f._data(a,d);h&&(c==="queue"||!f._data(a,e))&&(c==="mark"||!f._data(a,g))&&setTimeout(function(){!f._data(a,e)&&!f._data(a,g)&&(f.removeData(a,d,!0),h.fire())},0)}function m(a){for(var b in a){if(b==="data"&&f.isEmptyObject(a[b]))continue;if(b!=="toJSON")return!1}return!0}function l(a,c,d){if(d===b&&a.nodeType===1){var e="data-"+c.replace(k,"-$1").toLowerCase();d=a.getAttribute(e);if(typeof d=="string"){try{d=d==="true"?!0:d==="false"?!1:d==="null"?null:f.isNumeric(d)?parseFloat(d):j.test(d)?f.parseJSON(d):d}catch(g){}f.data(a,c,d)}else d=b}return d}function h(a){var b=g[a]={},c,d;a=a.split(/\s+/);for(c=0,d=a.length;c<d;c++)b[a[c]]=!0;return b}var c=a.document,d=a.navigator,e=a.location,f=function(){function J(){if(!e.isReady){try{c.documentElement.doScroll("left")}catch(a){setTimeout(J,1);return}e.ready()}}var e=function(a,b){return new e.fn.init(a,b,h)},f=a.jQuery,g=a.$,h,i=/^(?:[^#<]*(<[\w\W]+>)[^>]*$|#([\w\-]*)$)/,j=/\S/,k=/^\s+/,l=/\s+$/,m=/^<(\w+)\s*\/?>(?:<\/\1>)?$/,n=/^[\],:{}\s]*$/,o=/\\(?:["\\\/bfnrt]|u[0-9a-fA-F]{4})/g,p=/"[^"\\\n\r]*"|true|false|null|-?\d+(?:\.\d*)?(?:[eE][+\-]?\d+)?/g,q=/(?:^|:|,)(?:\s*\[)+/g,r=/(webkit)[\/]([\w.]+)/,s=/(opera)(?:.*version)?[\/]([\w.]+)/,t=/(msie) ([\w.]+)/,u=/(mozilla)(?:.*? rv:([\w.]+))?/,v=/-([a-z]|[0-9])/ig,w=/^-ms-/,x=function(a,b){return(b+"").toUpperCase()},y=d.userAgent,z,A,B,C=Object.prototype.toString,D=Object.prototype.hasOwnProperty,E=Array.prototype.push,F=Array.prototype.slice,G=String.prototype.trim,H=Array.prototype.indexOf,I={};e.fn=e.prototype={constructor:e,init:function(a,d,f){var g,h,j,k;if(!a)return this;if(a.nodeType){this.context=this[0]=a,this.length=1;return this}if(a==="body"&&!d&&c.body){this.context=c,this[0]=c.body,this.selector=a,this.length=1;return this}if(typeof a=="string"){a.charAt(0)!=="<"||a.charAt(a.length-1)!==">"||a.length<3?g=i.exec(a):g=[null,a,null];if(g&&(g[1]||!d)){if(g[1]){d=d instanceof e?d[0]:d,k=d?d.ownerDocument||d:c,j=m.exec(a),j?e.isPlainObject(d)?(a=[c.createElement(j[1])],e.fn.attr.call(a,d,!0)):a=[k.createElement(j[1])]:(j=e.buildFragment([g[1]],[k]),a=(j.cacheable?e.clone(j.fragment):j.fragment).childNodes);return e.merge(this,a)}h=c.getElementById(g[2]);if(h&&h.parentNode){if(h.id!==g[2])return f.find(a);this.length=1,this[0]=h}this.context=c,this.selector=a;return this}return!d||d.jquery?(d||f).find(a):this.constructor(d).find(a)}if(e.isFunction(a))return f.ready(a);a.selector!==b&&(this.selector=a.selector,this.context=a.context);return e.makeArray(a,this)},selector:"",jquery:"1.7.1",length:0,size:function(){return this.length},toArray:function(){return F.call(this,0)},get:function(a){return a==null?this.toArray():a<0?this[this.length+a]:this[a]},pushStack:function(a,b,c){var d=this.constructor();e.isArray(a)?E.apply(d,a):e.merge(d,a),d.prevObject=this,d.context=this.context,b==="find"?d.selector=this.selector+(this.selector?" ":"")+c:b&&(d.selector=this.selector+"."+b+"("+c+")");return d},each:function(a,b){return e.each(this,a,b)},ready:function(a){e.bindReady(),A.add(a);return this},eq:function(a){a=+a;return a===-1?this.slice(a):this.slice(a,a+1)},first:function(){return this.eq(0)},last:function(){return this.eq(-1)},slice:function(){return this.pushStack(F.apply(this,arguments),"slice",F.call(arguments).join(","))},map:function(a){return this.pushStack(e.map(this,function(b,c){return a.call(b,c,b)}))},end:function(){return this.prevObject||this.constructor(null)},push:E,sort:[].sort,splice:[].splice},e.fn.init.prototype=e.fn,e.extend=e.fn.extend=function(){var a,c,d,f,g,h,i=arguments[0]||{},j=1,k=arguments.length,l=!1;typeof i=="boolean"&&(l=i,i=arguments[1]||{},j=2),typeof i!="object"&&!e.isFunction(i)&&(i={}),k===j&&(i=this,--j);for(;j<k;j++)if((a=arguments[j])!=null)for(c in a){d=i[c],f=a[c];if(i===f)continue;l&&f&&(e.isPlainObject(f)||(g=e.isArray(f)))?(g?(g=!1,h=d&&e.isArray(d)?d:[]):h=d&&e.isPlainObject(d)?d:{},i[c]=e.extend(l,h,f)):f!==b&&(i[c]=f)}return i},e.extend({noConflict:function(b){a.$===e&&(a.$=g),b&&a.jQuery===e&&(a.jQuery=f);return e},isReady:!1,readyWait:1,holdReady:function(a){a?e.readyWait++:e.ready(!0)},ready:function(a){if(a===!0&&!--e.readyWait||a!==!0&&!e.isReady){if(!c.body)return setTimeout(e.ready,1);e.isReady=!0;if(a!==!0&&--e.readyWait>0)return;A.fireWith(c,[e]),e.fn.trigger&&e(c).trigger("ready").off("ready")}},bindReady:function(){if(!A){A=e.Callbacks("once memory");if(c.readyState==="complete")return setTimeout(e.ready,1);if(c.addEventListener)c.addEventListener("DOMContentLoaded",B,!1),a.addEventListener("load",e.ready,!1);else if(c.attachEvent){c.attachEvent("onreadystatechange",B),a.attachEvent("onload",e.ready);var b=!1;try{b=a.frameElement==null}catch(d){}c.documentElement.doScroll&&b&&J()}}},isFunction:function(a){return e.type(a)==="function"},isArray:Array.isArray||function(a){return e.type(a)==="array"},isWindow:function(a){return a&&typeof a=="object"&&"setInterval"in a},isNumeric:function(a){return!isNaN(parseFloat(a))&&isFinite(a)},type:function(a){return a==null?String(a):I[C.call(a)]||"object"},isPlainObject:function(a){if(!a||e.type(a)!=="object"||a.nodeType||e.isWindow(a))return!1;try{if(a.constructor&&!D.call(a,"constructor")&&!D.call(a.constructor.prototype,"isPrototypeOf"))return!1}catch(c){return!1}var d;for(d in a);return d===b||D.call(a,d)},isEmptyObject:function(a){for(var b in a)return!1;return!0},error:function(a){throw new Error(a)},parseJSON:function(b){if(typeof b!="string"||!b)return null;b=e.trim(b);if(a.JSON&&a.JSON.parse)return a.JSON.parse(b);if(n.test(b.replace(o,"@").replace(p,"]").replace(q,"")))return(new Function("return "+b))();e.error("Invalid JSON: "+b)},parseXML:function(c){var d,f;try{a.DOMParser?(f=new DOMParser,d=f.parseFromString(c,"text/xml")):(d=new ActiveXObject("Microsoft.XMLDOM"),d.async="false",d.loadXML(c))}catch(g){d=b}(!d||!d.documentElement||d.getElementsByTagName("parsererror").length)&&e.error("Invalid XML: "+c);return d},noop:function(){},globalEval:function(b){b&&j.test(b)&&(a.execScript||function(b){a.eval.call(a,b)})(b)},camelCase:function(a){return a.replace(w,"ms-").replace(v,x)},nodeName:function(a,b){return a.nodeName&&a.nodeName.toUpperCase()===b.toUpperCase()},each:function(a,c,d){var f,g=0,h=a.length,i=h===b||e.isFunction(a);if(d){if(i){for(f in a)if(c.apply(a[f],d)===!1)break}else for(;g<h;)if(c.apply(a[g++],d)===!1)break}else if(i){for(f in a)if(c.call(a[f],f,a[f])===!1)break}else for(;g<h;)if(c.call(a[g],g,a[g++])===!1)break;return a},trim:G?function(a){return a==null?"":G.call(a)}:function(a){return a==null?"":(a+"").replace(k,"").replace(l,"")},makeArray:function(a,b){var c=b||[];if(a!=null){var d=e.type(a);a.length==null||d==="string"||d==="function"||d==="regexp"||e.isWindow(a)?E.call(c,a):e.merge(c,a)}return c},inArray:function(a,b,c){var d;if(b){if(H)return H.call(b,a,c);d=b.length,c=c?c<0?Math.max(0,d+c):c:0;for(;c<d;c++)if(c in b&&b[c]===a)return c}return-1},merge:function(a,c){var d=a.length,e=0;if(typeof c.length=="number")for(var f=c.length;e<f;e++)a[d++]=c[e];else while(c[e]!==b)a[d++]=c[e++];a.length=d;return a},grep:function(a,b,c){var d=[],e;c=!!c;for(var f=0,g=a.length;f<g;f++)e=!!b(a[f],f),c!==e&&d.push(a[f]);return d},map:function(a,c,d){var f,g,h=[],i=0,j=a.length,k=a instanceof e||j!==b&&typeof j=="number"&&(j>0&&a[0]&&a[j-1]||j===0||e.isArray(a));if(k)for(;i<j;i++)f=c(a[i],i,d),f!=null&&(h[h.length]=f);else for(g in a)f=c(a[g],g,d),f!=null&&(h[h.length]=f);return h.concat.apply([],h)},guid:1,proxy:function(a,c){if(typeof c=="string"){var d=a[c];c=a,a=d}if(!e.isFunction(a))return b;var f=F.call(arguments,2),g=function(){return a.apply(c,f.concat(F.call(arguments)))};g.guid=a.guid=a.guid||g.guid||e.guid++;return g},access:function(a,c,d,f,g,h){var i=a.length;if(typeof c=="object"){for(var j in c)e.access(a,j,c[j],f,g,d);return a}if(d!==b){f=!h&&f&&e.isFunction(d);for(var k=0;k<i;k++)g(a[k],c,f?d.call(a[k],k,g(a[k],c)):d,h);return a}return i?g(a[0],c):b},now:function(){return(new Date).getTime()},uaMatch:function(a){a=a.toLowerCase();var b=r.exec(a)||s.exec(a)||t.exec(a)||a.indexOf("compatible")<0&&u.exec(a)||[];return{browser:b[1]||"",version:b[2]||"0"}},sub:function(){function a(b,c){return new a.fn.init(b,c)}e.extend(!0,a,this),a.superclass=this,a.fn=a.prototype=this(),a.fn.constructor=a,a.sub=this.sub,a.fn.init=function(d,f){f&&f instanceof e&&!(f instanceof a)&&(f=a(f));return e.fn.init.call(this,d,f,b)},a.fn.init.prototype=a.fn;var b=a(c);return a},browser:{}}),e.each("Boolean Number String Function Array Date RegExp Object".split(" "),function(a,b){I["[object "+b+"]"]=b.toLowerCase()}),z=e.uaMatch(y),z.browser&&(e.browser[z.browser]=!0,e.browser.version=z.version),e.browser.webkit&&(e.browser.safari=!0),j.test(" ")&&(k=/^[\s\xA0]+/,l=/[\s\xA0]+$/),h=e(c),c.addEventListener?B=function(){c.removeEventListener("DOMContentLoaded",B,!1),e.ready()}:c.attachEvent&&(B=function(){c.readyState==="complete"&&(c.detachEvent("onreadystatechange",B),e.ready())});return e}(),g={};f.Callbacks=function(a){a=a?g[a]||h(a):{};var c=[],d=[],e,i,j,k,l,m=function(b){var d,e,g,h,i;for(d=0,e=b.length;d<e;d++)g=b[d],h=f.type(g),h==="array"?m(g):h==="function"&&(!a.unique||!o.has(g))&&c.push(g)},n=function(b,f){f=f||[],e=!a.memory||[b,f],i=!0,l=j||0,j=0,k=c.length;for(;c&&l<k;l++)if(c[l].apply(b,f)===!1&&a.stopOnFalse){e=!0;break}i=!1,c&&(a.once?e===!0?o.disable():c=[]:d&&d.length&&(e=d.shift(),o.fireWith(e[0],e[1])))},o={add:function(){if(c){var a=c.length;m(arguments),i?k=c.length:e&&e!==!0&&(j=a,n(e[0],e[1]))}return this},remove:function(){if(c){var b=arguments,d=0,e=b.length;for(;d<e;d++)for(var f=0;f<c.length;f++)if(b[d]===c[f]){i&&f<=k&&(k--,f<=l&&l--),c.splice(f--,1);if(a.unique)break}}return this},has:function(a){if(c){var b=0,d=c.length;for(;b<d;b++)if(a===c[b])return!0}return!1},empty:function(){c=[];return this},disable:function(){c=d=e=b;return this},disabled:function(){return!c},lock:function(){d=b,(!e||e===!0)&&o.disable();return this},locked:function(){return!d},fireWith:function(b,c){d&&(i?a.once||d.push([b,c]):(!a.once||!e)&&n(b,c));return this},fire:function(){o.fireWith(this,arguments);return this},fired:function(){return!!e}};return o};var i=[].slice;f.extend({Deferred:function(a){var b=f.Callbacks("once memory"),c=f.Callbacks("once memory"),d=f.Callbacks("memory"),e="pending",g={resolve:b,reject:c,notify:d},h={done:b.add,fail:c.add,progress:d.add,state:function(){return e},isResolved:b.fired,isRejected:c.fired,then:function(a,b,c){i.done(a).fail(b).progress(c);return this},always:function(){i.done.apply(i,arguments).fail.apply(i,arguments);return this},pipe:function(a,b,c){return f.Deferred(function(d){f.each({done:[a,"resolve"],fail:[b,"reject"],progress:[c,"notify"]},function(a,b){var c=b[0],e=b[1],g;f.isFunction(c)?i[a](function(){g=c.apply(this,arguments),g&&f.isFunction(g.promise)?g.promise().then(d.resolve,d.reject,d.notify):d[e+"With"](this===i?d:this,[g])}):i[a](d[e])})}).promise()},promise:function(a){if(a==null)a=h;else for(var b in h)a[b]=h[b];return a}},i=h.promise({}),j;for(j in g)i[j]=g[j].fire,i[j+"With"]=g[j].fireWith;i.done(function(){e="resolved"},c.disable,d.lock).fail(function(){e="rejected"},b.disable,d.lock),a&&a.call(i,i);return i},when:function(a){function m(a){return function(b){e[a]=arguments.length>1?i.call(arguments,0):b,j.notifyWith(k,e)}}function l(a){return function(c){b[a]=arguments.length>1?i.call(arguments,0):c,--g||j.resolveWith(j,b)}}var b=i.call(arguments,0),c=0,d=b.length,e=Array(d),g=d,h=d,j=d<=1&&a&&f.isFunction(a.promise)?a:f.Deferred(),k=j.promise();if(d>1){for(;c<d;c++)b[c]&&b[c].promise&&f.isFunction(b[c].promise)?b[c].promise().then(l(c),j.reject,m(c)):--g;g||j.resolveWith(j,b)}else j!==a&&j.resolveWith(j,d?[a]:[]);return k}}),f.support=function(){var b,d,e,g,h,i,j,k,l,m,n,o,p,q=c.createElement("div"),r=c.documentElement;q.setAttribute("className","t"),q.innerHTML=" <link/><table></table>a<input type='checkbox'/>",d=q.getElementsByTagName("*"),e=q.getElementsByTagName("a")[0];if(!d||!d.length||!e)return{};g=c.createElement("select"),h=g.appendChild(c.createElement("option")),i=q.getElementsByTagName("input")[0],b={leadingWhitespace:q.firstChild.nodeType===3,tbody:!q.getElementsByTagName("tbody").length,htmlSerialize:!!q.getElementsByTagName("link").length,style:/top/.test(e.getAttribute("style")),hrefNormalized:e.getAttribute("href")==="/a",opacity:/^0.55/.test(e.style.opacity),cssFloat:!!e.style.cssFloat,checkOn:i.value==="on",optSelected:h.selected,getSetAttribute:q.className!=="t",enctype:!!c.createElement("form").enctype,html5Clone:c.createElement("nav").cloneNode(!0).outerHTML!=="<:nav></:nav>",submitBubbles:!0,changeBubbles:!0,focusinBubbles:!1,deleteExpando:!0,noCloneEvent:!0,inlineBlockNeedsLayout:!1,shrinkWrapBlocks:!1,reliableMarginRight:!0},i.checked=!0,b.noCloneChecked=i.cloneNode(!0).checked,g.disabled=!0,b.optDisabled=!h.disabled;try{delete q.test}catch(s){b.deleteExpando=!1}!q.addEventListener&&q.attachEvent&&q.fireEvent&&(q.attachEvent("onclick",function(){b.noCloneEvent=!1}),q.cloneNode(!0).fireEvent("onclick")),i=c.createElement("input"),i.value="t",i.setAttribute("type","radio"),b.radioValue=i.value==="t",i.setAttribute("checked","checked"),q.appendChild(i),k=c.createDocumentFragment(),k.appendChild(q.lastChild),b.checkClone=k.cloneNode(!0).cloneNode(!0).lastChild.checked,b.appendChecked=i.checked,k.removeChild(i),k.appendChild(q),q.innerHTML="",a.getComputedStyle&&(j=c.createElement("div"),j.style.width="0",j.style.marginRight="0",q.style.width="2px",q.appendChild(j),b.reliableMarginRight=(parseInt((a.getComputedStyle(j,null)||{marginRight:0}).marginRight,10)||0)===0);if(q.attachEvent)for(o in{submit:1,change:1,focusin:1})n="on"+o,p=n in q,p||(q.setAttribute(n,"return;"),p=typeof q[n]=="function"),b[o+"Bubbles"]=p;k.removeChild(q),k=g=h=j=q=i=null,f(function(){var a,d,e,g,h,i,j,k,m,n,o,r=c.getElementsByTagName("body")[0];!r||(j=1,k="position:absolute;top:0;left:0;width:1px;height:1px;margin:0;",m="visibility:hidden;border:0;",n="style='"+k+"border:5px solid #000;padding:0;'",o="<div "+n+"><div></div></div>"+"<table "+n+" cellpadding='0' cellspacing='0'>"+"<tr><td></td></tr></table>",a=c.createElement("div"),a.style.cssText=m+"width:0;height:0;position:static;top:0;margin-top:"+j+"px",r.insertBefore(a,r.firstChild),q=c.createElement("div"),a.appendChild(q),q.innerHTML="<table><tr><td style='padding:0;border:0;display:none'></td><td>t</td></tr></table>",l=q.getElementsByTagName("td"),p=l[0].offsetHeight===0,l[0].style.display="",l[1].style.display="none",b.reliableHiddenOffsets=p&&l[0].offsetHeight===0,q.innerHTML="",q.style.width=q.style.paddingLeft="1px",f.boxModel=b.boxModel=q.offsetWidth===2,typeof q.style.zoom!="undefined"&&(q.style.display="inline",q.style.zoom=1,b.inlineBlockNeedsLayout=q.offsetWidth===2,q.style.display="",q.innerHTML="<div style='width:4px;'></div>",b.shrinkWrapBlocks=q.offsetWidth!==2),q.style.cssText=k+m,q.innerHTML=o,d=q.firstChild,e=d.firstChild,h=d.nextSibling.firstChild.firstChild,i={doesNotAddBorder:e.offsetTop!==5,doesAddBorderForTableAndCells:h.offsetTop===5},e.style.position="fixed",e.style.top="20px",i.fixedPosition=e.offsetTop===20||e.offsetTop===15,e.style.position=e.style.top="",d.style.overflow="hidden",d.style.position="relative",i.subtractsBorderForOverflowNotVisible=e.offsetTop===-5,i.doesNotIncludeMarginInBodyOffset=r.offsetTop!==j,r.removeChild(a),q=a=null,f.extend(b,i))});return b}();var j=/^(?:\{.*\}|\[.*\])$/,k=/([A-Z])/g;f.extend({cache:{},uuid:0,expando:"jQuery"+(f.fn.jquery+Math.random()).replace(/\D/g,""),noData:{embed:!0,object:"clsid:D27CDB6E-AE6D-11cf-96B8-444553540000",applet:!0},hasData:function(a){a=a.nodeType?f.cache[a[f.expando]]:a[f.expando];return!!a&&!m(a)},data:function(a,c,d,e){if(!!f.acceptData(a)){var g,h,i,j=f.expando,k=typeof c=="string",l=a.nodeType,m=l?f.cache:a,n=l?a[j]:a[j]&&j,o=c==="events";if((!n||!m[n]||!o&&!e&&!m[n].data)&&k&&d===b)return;n||(l?a[j]=n=++f.uuid:n=j),m[n]||(m[n]={},l||(m[n].toJSON=f.noop));if(typeof c=="object"||typeof c=="function")e?m[n]=f.extend(m[n],c):m[n].data=f.extend(m[n].data,c);g=h=m[n],e||(h.data||(h.data={}),h=h.data),d!==b&&(h[f.camelCase(c)]=d);if(o&&!h[c])return g.events;k?(i=h[c],i==null&&(i=h[f.camelCase(c)])):i=h;return i}},removeData:function(a,b,c){if(!!f.acceptData(a)){var d,e,g,h=f.expando,i=a.nodeType,j=i?f.cache:a,k=i?a[h]:h;if(!j[k])return;if(b){d=c?j[k]:j[k].data;if(d){f.isArray(b)||(b in d?b=[b]:(b=f.camelCase(b),b in d?b=[b]:b=b.split(" ")));for(e=0,g=b.length;e<g;e++)delete d[b[e]];if(!(c?m:f.isEmptyObject)(d))return}}if(!c){delete j[k].data;if(!m(j[k]))return}f.support.deleteExpando||!j.setInterval?delete j[k]:j[k]=null,i&&(f.support.deleteExpando?delete a[h]:a.removeAttribute?a.removeAttribute(h):a[h]=null)}},_data:function(a,b,c){return f.data(a,b,c,!0)},acceptData:function(a){if(a.nodeName){var b=f.noData[a.nodeName.toLowerCase()];if(b)return b!==!0&&a.getAttribute("classid")===b}return!0}}),f.fn.extend({data:function(a,c){var d,e,g,h=null;if(typeof a=="undefined"){if(this.length){h=f.data(this[0]);if(this[0].nodeType===1&&!f._data(this[0],"parsedAttrs")){e=this[0].attributes;for(var i=0,j=e.length;i<j;i++)g=e[i].name,g.indexOf("data-")===0&&(g=f.camelCase(g.substring(5)),l(this[0],g,h[g]));f._data(this[0],"parsedAttrs",!0)}}return h}if(typeof a=="object")return this.each(function(){f.data(this,a)});d=a.split("."),d[1]=d[1]?"."+d[1]:"";if(c===b){h=this.triggerHandler("getData"+d[1]+"!",[d[0]]),h===b&&this.length&&(h=f.data(this[0],a),h=l(this[0],a,h));return h===b&&d[1]?this.data(d[0]):h}return this.each(function(){var b=f(this),e=[d[0],c];b.triggerHandler("setData"+d[1]+"!",e),f.data(this,a,c),b.triggerHandler("changeData"+d[1]+"!",e)})},removeData:function(a){return this.each(function(){f.removeData(this,a)})}}),f.extend({_mark:function(a,b){a&&(b=(b||"fx")+"mark",f._data(a,b,(f._data(a,b)||0)+1))},_unmark:function(a,b,c){a!==!0&&(c=b,b=a,a=!1);if(b){c=c||"fx";var d=c+"mark",e=a?0:(f._data(b,d)||1)-1;e?f._data(b,d,e):(f.removeData(b,d,!0),n(b,c,"mark"))}},queue:function(a,b,c){var d;if(a){b=(b||"fx")+"queue",d=f._data(a,b),c&&(!d||f.isArray(c)?d=f._data(a,b,f.makeArray(c)):d.push(c));return d||[]}},dequeue:function(a,b){b=b||"fx";var c=f.queue(a,b),d=c.shift(),e={};d==="inprogress"&&(d=c.shift()),d&&(b==="fx"&&c.unshift("inprogress"),f._data(a,b+".run",e),d.call(a,function(){f.dequeue(a,b)},e)),c.length||(f.removeData(a,b+"queue "+b+".run",!0),n(a,b,"queue"))}}),f.fn.extend({queue:function(a,c){typeof a!="string"&&(c=a,a="fx");if(c===b)return f.queue(this[0],a);return this.each(function(){var b=f.queue(this,a,c);a==="fx"&&b[0]!=="inprogress"&&f.dequeue(this,a)})},dequeue:function(a){return this.each(function(){f.dequeue(this,a)})},delay:function(a,b){a=f.fx?f.fx.speeds[a]||a:a,b=b||"fx";return this.queue(b,function(b,c){var d=setTimeout(b,a);c.stop=function(){clearTimeout(d)}})},clearQueue:function(a){return this.queue(a||"fx",[])},promise:function(a,c){function m(){--h||d.resolveWith(e,[e])}typeof a!="string"&&(c=a,a=b),a=a||"fx";var d=f.Deferred(),e=this,g=e.length,h=1,i=a+"defer",j=a+"queue",k=a+"mark",l;while(g--)if(l=f.data(e[g],i,b,!0)||(f.data(e[g],j,b,!0)||f.data(e[g],k,b,!0))&&f.data(e[g],i,f.Callbacks("once memory"),!0))h++,l.add(m);m();return d.promise()}});var o=/[\n\t\r]/g,p=/\s+/,q=/\r/g,r=/^(?:button|input)$/i,s=/^(?:button|input|object|select|textarea)$/i,t=/^a(?:rea)?$/i,u=/^(?:autofocus|autoplay|async|checked|controls|defer|disabled|hidden|loop|multiple|open|readonly|required|scoped|selected)$/i,v=f.support.getSetAttribute,w,x,y;f.fn.extend({attr:function(a,b){return f.access(this,a,b,!0,f.attr)},removeAttr:function(a){return this.each(function(){f.removeAttr(this,a)})},prop:function(a,b){return f.access(this,a,b,!0,f.prop)},removeProp:function(a){a=f.propFix[a]||a;return this.each(function(){try{this[a]=b,delete this[a]}catch(c){}})},addClass:function(a){var b,c,d,e,g,h,i;if(f.isFunction(a))return this.each(function(b){f(this).addClass(a.call(this,b,this.className))});if(a&&typeof a=="string"){b=a.split(p);for(c=0,d=this.length;c<d;c++){e=this[c];if(e.nodeType===1)if(!e.className&&b.length===1)e.className=a;else{g=" "+e.className+" ";for(h=0,i=b.length;h<i;h++)~g.indexOf(" "+b[h]+" ")||(g+=b[h]+" ");e.className=f.trim(g)}}}return this},removeClass:function(a){var c,d,e,g,h,i,j;if(f.isFunction(a))return this.each(function(b){f(this).removeClass(a.call(this,b,this.className))});if(a&&typeof a=="string"||a===b){c=(a||"").split(p);for(d=0,e=this.length;d<e;d++){g=this[d];if(g.nodeType===1&&g.className)if(a){h=(" "+g.className+" ").replace(o," ");for(i=0,j=c.length;i<j;i++)h=h.replace(" "+c[i]+" "," ");g.className=f.trim(h)}else g.className=""}}return this},toggleClass:function(a,b){var c=typeof a,d=typeof b=="boolean";if(f.isFunction(a))return this.each(function(c){f(this).toggleClass(a.call(this,c,this.className,b),b)});return this.each(function(){if(c==="string"){var e,g=0,h=f(this),i=b,j=a.split(p);while(e=j[g++])i=d?i:!h.hasClass(e),h[i?"addClass":"removeClass"](e)}else if(c==="undefined"||c==="boolean")this.className&&f._data(this,"__className__",this.className),this.className=this.className||a===!1?"":f._data(this,"__className__")||""})},hasClass:function(a){var b=" "+a+" ",c=0,d=this.length;for(;c<d;c++)if(this[c].nodeType===1&&(" "+this[c].className+" ").replace(o," ").indexOf(b)>-1)return!0;return!1},val:function(a){var c,d,e,g=this[0];{if(!!arguments.length){e=f.isFunction(a);return this.each(function(d){var g=f(this),h;if(this.nodeType===1){e?h=a.call(this,d,g.val()):h=a,h==null?h="":typeof h=="number"?h+="":f.isArray(h)&&(h=f.map(h,function(a){return a==null?"":a+""})),c=f.valHooks[this.nodeName.toLowerCase()]||f.valHooks[this.type];if(!c||!("set"in c)||c.set(this,h,"value")===b)this.value=h}})}if(g){c=f.valHooks[g.nodeName.toLowerCase()]||f.valHooks[g.type];if(c&&"get"in c&&(d=c.get(g,"value"))!==b)return d;d=g.value;return typeof d=="string"?d.replace(q,""):d==null?"":d}}}}),f.extend({valHooks:{option:{get:function(a){var b=a.attributes.value;return!b||b.specified?a.value:a.text}},select:{get:function(a){var b,c,d,e,g=a.selectedIndex,h=[],i=a.options,j=a.type==="select-one";if(g<0)return null;c=j?g:0,d=j?g+1:i.length;for(;c<d;c++){e=i[c];if(e.selected&&(f.support.optDisabled?!e.disabled:e.getAttribute("disabled")===null)&&(!e.parentNode.disabled||!f.nodeName(e.parentNode,"optgroup"))){b=f(e).val();if(j)return b;h.push(b)}}if(j&&!h.length&&i.length)return f(i[g]).val();return h},set:function(a,b){var c=f.makeArray(b);f(a).find("option").each(function(){this.selected=f.inArray(f(this).val(),c)>=0}),c.length||(a.selectedIndex=-1);return c}}},attrFn:{val:!0,css:!0,html:!0,text:!0,data:!0,width:!0,height:!0,offset:!0},attr:function(a,c,d,e){var g,h,i,j=a.nodeType;if(!!a&&j!==3&&j!==8&&j!==2){if(e&&c in f.attrFn)return f(a)[c](d);if(typeof a.getAttribute=="undefined")return f.prop(a,c,d);i=j!==1||!f.isXMLDoc(a),i&&(c=c.toLowerCase(),h=f.attrHooks[c]||(u.test(c)?x:w));if(d!==b){if(d===null){f.removeAttr(a,c);return}if(h&&"set"in h&&i&&(g=h.set(a,d,c))!==b)return g;a.setAttribute(c,""+d);return d}if(h&&"get"in h&&i&&(g=h.get(a,c))!==null)return g;g=a.getAttribute(c);return g===null?b:g}},removeAttr:function(a,b){var c,d,e,g,h=0;if(b&&a.nodeType===1){d=b.toLowerCase().split(p),g=d.length;for(;h<g;h++)e=d[h],e&&(c=f.propFix[e]||e,f.attr(a,e,""),a.removeAttribute(v?e:c),u.test(e)&&c in a&&(a[c]=!1))}},attrHooks:{type:{set:function(a,b){if(r.test(a.nodeName)&&a.parentNode)f.error("type property can't be changed");else if(!f.support.radioValue&&b==="radio"&&f.nodeName(a,"input")){var c=a.value;a.setAttribute("type",b),c&&(a.value=c);return b}}},value:{get:function(a,b){if(w&&f.nodeName(a,"button"))return w.get(a,b);return b in a?a.value:null},set:function(a,b,c){if(w&&f.nodeName(a,"button"))return w.set(a,b,c);a.value=b}}},propFix:{tabindex:"tabIndex",readonly:"readOnly","for":"htmlFor","class":"className",maxlength:"maxLength",cellspacing:"cellSpacing",cellpadding:"cellPadding",rowspan:"rowSpan",colspan:"colSpan",usemap:"useMap",frameborder:"frameBorder",contenteditable:"contentEditable"},prop:function(a,c,d){var e,g,h,i=a.nodeType;if(!!a&&i!==3&&i!==8&&i!==2){h=i!==1||!f.isXMLDoc(a),h&&(c=f.propFix[c]||c,g=f.propHooks[c]);return d!==b?g&&"set"in g&&(e=g.set(a,d,c))!==b?e:a[c]=d:g&&"get"in g&&(e=g.get(a,c))!==null?e:a[c]}},propHooks:{tabIndex:{get:function(a){var c=a.getAttributeNode("tabindex");return c&&c.specified?parseInt(c.value,10):s.test(a.nodeName)||t.test(a.nodeName)&&a.href?0:b}}}}),f.attrHooks.tabindex=f.propHooks.tabIndex,x={get:function(a,c){var d,e=f.prop(a,c);return e===!0||typeof e!="boolean"&&(d=a.getAttributeNode(c))&&d.nodeValue!==!1?c.toLowerCase():b},set:function(a,b,c){var d;b===!1?f.removeAttr(a,c):(d=f.propFix[c]||c,d in a&&(a[d]=!0),a.setAttribute(c,c.toLowerCase()));return c}},v||(y={name:!0,id:!0},w=f.valHooks.button={get:function(a,c){var d;d=a.getAttributeNode(c);return d&&(y[c]?d.nodeValue!=="":d.specified)?d.nodeValue:b},set:function(a,b,d){var e=a.getAttributeNode(d);e||(e=c.createAttribute(d),a.setAttributeNode(e));return e.nodeValue=b+""}},f.attrHooks.tabindex.set=w.set,f.each(["width","height"],function(a,b){f.attrHooks[b]=f.extend(f.attrHooks[b],{set:function(a,c){if(c===""){a.setAttribute(b,"auto");return c}}})}),f.attrHooks.contenteditable={get:w.get,set:function(a,b,c){b===""&&(b="false"),w.set(a,b,c)}}),f.support.hrefNormalized||f.each(["href","src","width","height"],function(a,c){f.attrHooks[c]=f.extend(f.attrHooks[c],{get:function(a){var d=a.getAttribute(c,2);return d===null?b:d}})}),f.support.style||(f.attrHooks.style={get:function(a){return a.style.cssText.toLowerCase()||b},set:function(a,b){return a.style.cssText=""+b}}),f.support.optSelected||(f.propHooks.selected=f.extend(f.propHooks.selected,{get:function(a){var b=a.parentNode;b&&(b.selectedIndex,b.parentNode&&b.parentNode.selectedIndex);return null}})),f.support.enctype||(f.propFix.enctype="encoding"),f.support.checkOn||f.each(["radio","checkbox"],function(){f.valHooks[this]={get:function(a){return a.getAttribute("value")===null?"on":a.value}}}),f.each(["radio","checkbox"],function(){f.valHooks[this]=f.extend(f.valHooks[this],{set:function(a,b){if(f.isArray(b))return a.checked=f.inArray(f(a).val(),b)>=0}})});var z=/^(?:textarea|input|select)$/i,A=/^([^\.]*)?(?:\.(.+))?$/,B=/\bhover(\.\S+)?\b/,C=/^key/,D=/^(?:mouse|contextmenu)|click/,E=/^(?:focusinfocus|focusoutblur)$/,F=/^(\w*)(?:#([\w\-]+))?(?:\.([\w\-]+))?$/,G=function(a){var b=F.exec(a);b&&(b[1]=(b[1]||"").toLowerCase(),b[3]=b[3]&&new RegExp("(?:^|\\s)"+b[3]+"(?:\\s|$)"));return b},H=function(a,b){var c=a.attributes||{};return(!b[1]||a.nodeName.toLowerCase()===b[1])&&(!b[2]||(c.id||{}).value===b[2])&&(!b[3]||b[3].test((c["class"]||{}).value))},I=function(a){return f.event.special.hover?a:a.replace(B,"mouseenter$1 mouseleave$1")};
f.event={add:function(a,c,d,e,g){var h,i,j,k,l,m,n,o,p,q,r,s;if(!(a.nodeType===3||a.nodeType===8||!c||!d||!(h=f._data(a)))){d.handler&&(p=d,d=p.handler),d.guid||(d.guid=f.guid++),j=h.events,j||(h.events=j={}),i=h.handle,i||(h.handle=i=function(a){return typeof f!="undefined"&&(!a||f.event.triggered!==a.type)?f.event.dispatch.apply(i.elem,arguments):b},i.elem=a),c=f.trim(I(c)).split(" ");for(k=0;k<c.length;k++){l=A.exec(c[k])||[],m=l[1],n=(l[2]||"").split(".").sort(),s=f.event.special[m]||{},m=(g?s.delegateType:s.bindType)||m,s=f.event.special[m]||{},o=f.extend({type:m,origType:l[1],data:e,handler:d,guid:d.guid,selector:g,quick:G(g),namespace:n.join(".")},p),r=j[m];if(!r){r=j[m]=[],r.delegateCount=0;if(!s.setup||s.setup.call(a,e,n,i)===!1)a.addEventListener?a.addEventListener(m,i,!1):a.attachEvent&&a.attachEvent("on"+m,i)}s.add&&(s.add.call(a,o),o.handler.guid||(o.handler.guid=d.guid)),g?r.splice(r.delegateCount++,0,o):r.push(o),f.event.global[m]=!0}a=null}},global:{},remove:function(a,b,c,d,e){var g=f.hasData(a)&&f._data(a),h,i,j,k,l,m,n,o,p,q,r,s;if(!!g&&!!(o=g.events)){b=f.trim(I(b||"")).split(" ");for(h=0;h<b.length;h++){i=A.exec(b[h])||[],j=k=i[1],l=i[2];if(!j){for(j in o)f.event.remove(a,j+b[h],c,d,!0);continue}p=f.event.special[j]||{},j=(d?p.delegateType:p.bindType)||j,r=o[j]||[],m=r.length,l=l?new RegExp("(^|\\.)"+l.split(".").sort().join("\\.(?:.*\\.)?")+"(\\.|$)"):null;for(n=0;n<r.length;n++)s=r[n],(e||k===s.origType)&&(!c||c.guid===s.guid)&&(!l||l.test(s.namespace))&&(!d||d===s.selector||d==="**"&&s.selector)&&(r.splice(n--,1),s.selector&&r.delegateCount--,p.remove&&p.remove.call(a,s));r.length===0&&m!==r.length&&((!p.teardown||p.teardown.call(a,l)===!1)&&f.removeEvent(a,j,g.handle),delete o[j])}f.isEmptyObject(o)&&(q=g.handle,q&&(q.elem=null),f.removeData(a,["events","handle"],!0))}},customEvent:{getData:!0,setData:!0,changeData:!0},trigger:function(c,d,e,g){if(!e||e.nodeType!==3&&e.nodeType!==8){var h=c.type||c,i=[],j,k,l,m,n,o,p,q,r,s;if(E.test(h+f.event.triggered))return;h.indexOf("!")>=0&&(h=h.slice(0,-1),k=!0),h.indexOf(".")>=0&&(i=h.split("."),h=i.shift(),i.sort());if((!e||f.event.customEvent[h])&&!f.event.global[h])return;c=typeof c=="object"?c[f.expando]?c:new f.Event(h,c):new f.Event(h),c.type=h,c.isTrigger=!0,c.exclusive=k,c.namespace=i.join("."),c.namespace_re=c.namespace?new RegExp("(^|\\.)"+i.join("\\.(?:.*\\.)?")+"(\\.|$)"):null,o=h.indexOf(":")<0?"on"+h:"";if(!e){j=f.cache;for(l in j)j[l].events&&j[l].events[h]&&f.event.trigger(c,d,j[l].handle.elem,!0);return}c.result=b,c.target||(c.target=e),d=d!=null?f.makeArray(d):[],d.unshift(c),p=f.event.special[h]||{};if(p.trigger&&p.trigger.apply(e,d)===!1)return;r=[[e,p.bindType||h]];if(!g&&!p.noBubble&&!f.isWindow(e)){s=p.delegateType||h,m=E.test(s+h)?e:e.parentNode,n=null;for(;m;m=m.parentNode)r.push([m,s]),n=m;n&&n===e.ownerDocument&&r.push([n.defaultView||n.parentWindow||a,s])}for(l=0;l<r.length&&!c.isPropagationStopped();l++)m=r[l][0],c.type=r[l][1],q=(f._data(m,"events")||{})[c.type]&&f._data(m,"handle"),q&&q.apply(m,d),q=o&&m[o],q&&f.acceptData(m)&&q.apply(m,d)===!1&&c.preventDefault();c.type=h,!g&&!c.isDefaultPrevented()&&(!p._default||p._default.apply(e.ownerDocument,d)===!1)&&(h!=="click"||!f.nodeName(e,"a"))&&f.acceptData(e)&&o&&e[h]&&(h!=="focus"&&h!=="blur"||c.target.offsetWidth!==0)&&!f.isWindow(e)&&(n=e[o],n&&(e[o]=null),f.event.triggered=h,e[h](),f.event.triggered=b,n&&(e[o]=n));return c.result}},dispatch:function(c){c=f.event.fix(c||a.event);var d=(f._data(this,"events")||{})[c.type]||[],e=d.delegateCount,g=[].slice.call(arguments,0),h=!c.exclusive&&!c.namespace,i=[],j,k,l,m,n,o,p,q,r,s,t;g[0]=c,c.delegateTarget=this;if(e&&!c.target.disabled&&(!c.button||c.type!=="click")){m=f(this),m.context=this.ownerDocument||this;for(l=c.target;l!=this;l=l.parentNode||this){o={},q=[],m[0]=l;for(j=0;j<e;j++)r=d[j],s=r.selector,o[s]===b&&(o[s]=r.quick?H(l,r.quick):m.is(s)),o[s]&&q.push(r);q.length&&i.push({elem:l,matches:q})}}d.length>e&&i.push({elem:this,matches:d.slice(e)});for(j=0;j<i.length&&!c.isPropagationStopped();j++){p=i[j],c.currentTarget=p.elem;for(k=0;k<p.matches.length&&!c.isImmediatePropagationStopped();k++){r=p.matches[k];if(h||!c.namespace&&!r.namespace||c.namespace_re&&c.namespace_re.test(r.namespace))c.data=r.data,c.handleObj=r,n=((f.event.special[r.origType]||{}).handle||r.handler).apply(p.elem,g),n!==b&&(c.result=n,n===!1&&(c.preventDefault(),c.stopPropagation()))}}return c.result},props:"attrChange attrName relatedNode srcElement altKey bubbles cancelable ctrlKey currentTarget eventPhase metaKey relatedTarget shiftKey target timeStamp view which".split(" "),fixHooks:{},keyHooks:{props:"char charCode key keyCode".split(" "),filter:function(a,b){a.which==null&&(a.which=b.charCode!=null?b.charCode:b.keyCode);return a}},mouseHooks:{props:"button buttons clientX clientY fromElement offsetX offsetY pageX pageY screenX screenY toElement".split(" "),filter:function(a,d){var e,f,g,h=d.button,i=d.fromElement;a.pageX==null&&d.clientX!=null&&(e=a.target.ownerDocument||c,f=e.documentElement,g=e.body,a.pageX=d.clientX+(f&&f.scrollLeft||g&&g.scrollLeft||0)-(f&&f.clientLeft||g&&g.clientLeft||0),a.pageY=d.clientY+(f&&f.scrollTop||g&&g.scrollTop||0)-(f&&f.clientTop||g&&g.clientTop||0)),!a.relatedTarget&&i&&(a.relatedTarget=i===a.target?d.toElement:i),!a.which&&h!==b&&(a.which=h&1?1:h&2?3:h&4?2:0);return a}},fix:function(a){if(a[f.expando])return a;var d,e,g=a,h=f.event.fixHooks[a.type]||{},i=h.props?this.props.concat(h.props):this.props;a=f.Event(g);for(d=i.length;d;)e=i[--d],a[e]=g[e];a.target||(a.target=g.srcElement||c),a.target.nodeType===3&&(a.target=a.target.parentNode),a.metaKey===b&&(a.metaKey=a.ctrlKey);return h.filter?h.filter(a,g):a},special:{ready:{setup:f.bindReady},load:{noBubble:!0},focus:{delegateType:"focusin"},blur:{delegateType:"focusout"},beforeunload:{setup:function(a,b,c){f.isWindow(this)&&(this.onbeforeunload=c)},teardown:function(a,b){this.onbeforeunload===b&&(this.onbeforeunload=null)}}},simulate:function(a,b,c,d){var e=f.extend(new f.Event,c,{type:a,isSimulated:!0,originalEvent:{}});d?f.event.trigger(e,null,b):f.event.dispatch.call(b,e),e.isDefaultPrevented()&&c.preventDefault()}},f.event.handle=f.event.dispatch,f.removeEvent=c.removeEventListener?function(a,b,c){a.removeEventListener&&a.removeEventListener(b,c,!1)}:function(a,b,c){a.detachEvent&&a.detachEvent("on"+b,c)},f.Event=function(a,b){if(!(this instanceof f.Event))return new f.Event(a,b);a&&a.type?(this.originalEvent=a,this.type=a.type,this.isDefaultPrevented=a.defaultPrevented||a.returnValue===!1||a.getPreventDefault&&a.getPreventDefault()?K:J):this.type=a,b&&f.extend(this,b),this.timeStamp=a&&a.timeStamp||f.now(),this[f.expando]=!0},f.Event.prototype={preventDefault:function(){this.isDefaultPrevented=K;var a=this.originalEvent;!a||(a.preventDefault?a.preventDefault():a.returnValue=!1)},stopPropagation:function(){this.isPropagationStopped=K;var a=this.originalEvent;!a||(a.stopPropagation&&a.stopPropagation(),a.cancelBubble=!0)},stopImmediatePropagation:function(){this.isImmediatePropagationStopped=K,this.stopPropagation()},isDefaultPrevented:J,isPropagationStopped:J,isImmediatePropagationStopped:J},f.each({mouseenter:"mouseover",mouseleave:"mouseout"},function(a,b){f.event.special[a]={delegateType:b,bindType:b,handle:function(a){var c=this,d=a.relatedTarget,e=a.handleObj,g=e.selector,h;if(!d||d!==c&&!f.contains(c,d))a.type=e.origType,h=e.handler.apply(this,arguments),a.type=b;return h}}}),f.support.submitBubbles||(f.event.special.submit={setup:function(){if(f.nodeName(this,"form"))return!1;f.event.add(this,"click._submit keypress._submit",function(a){var c=a.target,d=f.nodeName(c,"input")||f.nodeName(c,"button")?c.form:b;d&&!d._submit_attached&&(f.event.add(d,"submit._submit",function(a){this.parentNode&&!a.isTrigger&&f.event.simulate("submit",this.parentNode,a,!0)}),d._submit_attached=!0)})},teardown:function(){if(f.nodeName(this,"form"))return!1;f.event.remove(this,"._submit")}}),f.support.changeBubbles||(f.event.special.change={setup:function(){if(z.test(this.nodeName)){if(this.type==="checkbox"||this.type==="radio")f.event.add(this,"propertychange._change",function(a){a.originalEvent.propertyName==="checked"&&(this._just_changed=!0)}),f.event.add(this,"click._change",function(a){this._just_changed&&!a.isTrigger&&(this._just_changed=!1,f.event.simulate("change",this,a,!0))});return!1}f.event.add(this,"beforeactivate._change",function(a){var b=a.target;z.test(b.nodeName)&&!b._change_attached&&(f.event.add(b,"change._change",function(a){this.parentNode&&!a.isSimulated&&!a.isTrigger&&f.event.simulate("change",this.parentNode,a,!0)}),b._change_attached=!0)})},handle:function(a){var b=a.target;if(this!==b||a.isSimulated||a.isTrigger||b.type!=="radio"&&b.type!=="checkbox")return a.handleObj.handler.apply(this,arguments)},teardown:function(){f.event.remove(this,"._change");return z.test(this.nodeName)}}),f.support.focusinBubbles||f.each({focus:"focusin",blur:"focusout"},function(a,b){var d=0,e=function(a){f.event.simulate(b,a.target,f.event.fix(a),!0)};f.event.special[b]={setup:function(){d++===0&&c.addEventListener(a,e,!0)},teardown:function(){--d===0&&c.removeEventListener(a,e,!0)}}}),f.fn.extend({on:function(a,c,d,e,g){var h,i;if(typeof a=="object"){typeof c!="string"&&(d=c,c=b);for(i in a)this.on(i,c,d,a[i],g);return this}d==null&&e==null?(e=c,d=c=b):e==null&&(typeof c=="string"?(e=d,d=b):(e=d,d=c,c=b));if(e===!1)e=J;else if(!e)return this;g===1&&(h=e,e=function(a){f().off(a);return h.apply(this,arguments)},e.guid=h.guid||(h.guid=f.guid++));return this.each(function(){f.event.add(this,a,e,d,c)})},one:function(a,b,c,d){return this.on.call(this,a,b,c,d,1)},off:function(a,c,d){if(a&&a.preventDefault&&a.handleObj){var e=a.handleObj;f(a.delegateTarget).off(e.namespace?e.type+"."+e.namespace:e.type,e.selector,e.handler);return this}if(typeof a=="object"){for(var g in a)this.off(g,c,a[g]);return this}if(c===!1||typeof c=="function")d=c,c=b;d===!1&&(d=J);return this.each(function(){f.event.remove(this,a,d,c)})},bind:function(a,b,c){return this.on(a,null,b,c)},unbind:function(a,b){return this.off(a,null,b)},live:function(a,b,c){f(this.context).on(a,this.selector,b,c);return this},die:function(a,b){f(this.context).off(a,this.selector||"**",b);return this},delegate:function(a,b,c,d){return this.on(b,a,c,d)},undelegate:function(a,b,c){return arguments.length==1?this.off(a,"**"):this.off(b,a,c)},trigger:function(a,b){return this.each(function(){f.event.trigger(a,b,this)})},triggerHandler:function(a,b){if(this[0])return f.event.trigger(a,b,this[0],!0)},toggle:function(a){var b=arguments,c=a.guid||f.guid++,d=0,e=function(c){var e=(f._data(this,"lastToggle"+a.guid)||0)%d;f._data(this,"lastToggle"+a.guid,e+1),c.preventDefault();return b[e].apply(this,arguments)||!1};e.guid=c;while(d<b.length)b[d++].guid=c;return this.click(e)},hover:function(a,b){return this.mouseenter(a).mouseleave(b||a)}}),f.each("blur focus focusin focusout load resize scroll unload click dblclick mousedown mouseup mousemove mouseover mouseout mouseenter mouseleave change select submit keydown keypress keyup error contextmenu".split(" "),function(a,b){f.fn[b]=function(a,c){c==null&&(c=a,a=null);return arguments.length>0?this.on(b,null,a,c):this.trigger(b)},f.attrFn&&(f.attrFn[b]=!0),C.test(b)&&(f.event.fixHooks[b]=f.event.keyHooks),D.test(b)&&(f.event.fixHooks[b]=f.event.mouseHooks)}),function(){function x(a,b,c,e,f,g){for(var h=0,i=e.length;h<i;h++){var j=e[h];if(j){var k=!1;j=j[a];while(j){if(j[d]===c){k=e[j.sizset];break}if(j.nodeType===1){g||(j[d]=c,j.sizset=h);if(typeof b!="string"){if(j===b){k=!0;break}}else if(m.filter(b,[j]).length>0){k=j;break}}j=j[a]}e[h]=k}}}function w(a,b,c,e,f,g){for(var h=0,i=e.length;h<i;h++){var j=e[h];if(j){var k=!1;j=j[a];while(j){if(j[d]===c){k=e[j.sizset];break}j.nodeType===1&&!g&&(j[d]=c,j.sizset=h);if(j.nodeName.toLowerCase()===b){k=j;break}j=j[a]}e[h]=k}}}var a=/((?:\((?:\([^()]+\)|[^()]+)+\)|\[(?:\[[^\[\]]*\]|['"][^'"]*['"]|[^\[\]'"]+)+\]|\\.|[^ >+~,(\[\\]+)+|[>+~])(\s*,\s*)?((?:.|\r|\n)*)/g,d="sizcache"+(Math.random()+"").replace(".",""),e=0,g=Object.prototype.toString,h=!1,i=!0,j=/\\/g,k=/\r\n/g,l=/\W/;[0,0].sort(function(){i=!1;return 0});var m=function(b,d,e,f){e=e||[],d=d||c;var h=d;if(d.nodeType!==1&&d.nodeType!==9)return[];if(!b||typeof b!="string")return e;var i,j,k,l,n,q,r,t,u=!0,v=m.isXML(d),w=[],x=b;do{a.exec(""),i=a.exec(x);if(i){x=i[3],w.push(i[1]);if(i[2]){l=i[3];break}}}while(i);if(w.length>1&&p.exec(b))if(w.length===2&&o.relative[w[0]])j=y(w[0]+w[1],d,f);else{j=o.relative[w[0]]?[d]:m(w.shift(),d);while(w.length)b=w.shift(),o.relative[b]&&(b+=w.shift()),j=y(b,j,f)}else{!f&&w.length>1&&d.nodeType===9&&!v&&o.match.ID.test(w[0])&&!o.match.ID.test(w[w.length-1])&&(n=m.find(w.shift(),d,v),d=n.expr?m.filter(n.expr,n.set)[0]:n.set[0]);if(d){n=f?{expr:w.pop(),set:s(f)}:m.find(w.pop(),w.length===1&&(w[0]==="~"||w[0]==="+")&&d.parentNode?d.parentNode:d,v),j=n.expr?m.filter(n.expr,n.set):n.set,w.length>0?k=s(j):u=!1;while(w.length)q=w.pop(),r=q,o.relative[q]?r=w.pop():q="",r==null&&(r=d),o.relative[q](k,r,v)}else k=w=[]}k||(k=j),k||m.error(q||b);if(g.call(k)==="[object Array]")if(!u)e.push.apply(e,k);else if(d&&d.nodeType===1)for(t=0;k[t]!=null;t++)k[t]&&(k[t]===!0||k[t].nodeType===1&&m.contains(d,k[t]))&&e.push(j[t]);else for(t=0;k[t]!=null;t++)k[t]&&k[t].nodeType===1&&e.push(j[t]);else s(k,e);l&&(m(l,h,e,f),m.uniqueSort(e));return e};m.uniqueSort=function(a){if(u){h=i,a.sort(u);if(h)for(var b=1;b<a.length;b++)a[b]===a[b-1]&&a.splice(b--,1)}return a},m.matches=function(a,b){return m(a,null,null,b)},m.matchesSelector=function(a,b){return m(b,null,null,[a]).length>0},m.find=function(a,b,c){var d,e,f,g,h,i;if(!a)return[];for(e=0,f=o.order.length;e<f;e++){h=o.order[e];if(g=o.leftMatch[h].exec(a)){i=g[1],g.splice(1,1);if(i.substr(i.length-1)!=="\\"){g[1]=(g[1]||"").replace(j,""),d=o.find[h](g,b,c);if(d!=null){a=a.replace(o.match[h],"");break}}}}d||(d=typeof b.getElementsByTagName!="undefined"?b.getElementsByTagName("*"):[]);return{set:d,expr:a}},m.filter=function(a,c,d,e){var f,g,h,i,j,k,l,n,p,q=a,r=[],s=c,t=c&&c[0]&&m.isXML(c[0]);while(a&&c.length){for(h in o.filter)if((f=o.leftMatch[h].exec(a))!=null&&f[2]){k=o.filter[h],l=f[1],g=!1,f.splice(1,1);if(l.substr(l.length-1)==="\\")continue;s===r&&(r=[]);if(o.preFilter[h]){f=o.preFilter[h](f,s,d,r,e,t);if(!f)g=i=!0;else if(f===!0)continue}if(f)for(n=0;(j=s[n])!=null;n++)j&&(i=k(j,f,n,s),p=e^i,d&&i!=null?p?g=!0:s[n]=!1:p&&(r.push(j),g=!0));if(i!==b){d||(s=r),a=a.replace(o.match[h],"");if(!g)return[];break}}if(a===q)if(g==null)m.error(a);else break;q=a}return s},m.error=function(a){throw new Error("Syntax error, unrecognized expression: "+a)};var n=m.getText=function(a){var b,c,d=a.nodeType,e="";if(d){if(d===1||d===9){if(typeof a.textContent=="string")return a.textContent;if(typeof a.innerText=="string")return a.innerText.replace(k,"");for(a=a.firstChild;a;a=a.nextSibling)e+=n(a)}else if(d===3||d===4)return a.nodeValue}else for(b=0;c=a[b];b++)c.nodeType!==8&&(e+=n(c));return e},o=m.selectors={order:["ID","NAME","TAG"],match:{ID:/#((?:[\w\u00c0-\uFFFF\-]|\\.)+)/,CLASS:/\.((?:[\w\u00c0-\uFFFF\-]|\\.)+)/,NAME:/\[name=['"]*((?:[\w\u00c0-\uFFFF\-]|\\.)+)['"]*\]/,ATTR:/\[\s*((?:[\w\u00c0-\uFFFF\-]|\\.)+)\s*(?:(\S?=)\s*(?:(['"])(.*?)\3|(#?(?:[\w\u00c0-\uFFFF\-]|\\.)*)|)|)\s*\]/,TAG:/^((?:[\w\u00c0-\uFFFF*\-]|\\.)+)/,CHILD:/:(only|nth|last|first)-child(?:\(\s*(even|odd|(?:[+\-]?\d+|(?:[+\-]?\d*)?n\s*(?:[+\-]\s*\d+)?))\s*\))?/,POS:/:(nth|eq|gt|lt|first|last|even|odd)(?:\((\d*)\))?(?=[^\-]|$)/,PSEUDO:/:((?:[\w\u00c0-\uFFFF\-]|\\.)+)(?:\((['"]?)((?:\([^\)]+\)|[^\(\)]*)+)\2\))?/},leftMatch:{},attrMap:{"class":"className","for":"htmlFor"},attrHandle:{href:function(a){return a.getAttribute("href")},type:function(a){return a.getAttribute("type")}},relative:{"+":function(a,b){var c=typeof b=="string",d=c&&!l.test(b),e=c&&!d;d&&(b=b.toLowerCase());for(var f=0,g=a.length,h;f<g;f++)if(h=a[f]){while((h=h.previousSibling)&&h.nodeType!==1);a[f]=e||h&&h.nodeName.toLowerCase()===b?h||!1:h===b}e&&m.filter(b,a,!0)},">":function(a,b){var c,d=typeof b=="string",e=0,f=a.length;if(d&&!l.test(b)){b=b.toLowerCase();for(;e<f;e++){c=a[e];if(c){var g=c.parentNode;a[e]=g.nodeName.toLowerCase()===b?g:!1}}}else{for(;e<f;e++)c=a[e],c&&(a[e]=d?c.parentNode:c.parentNode===b);d&&m.filter(b,a,!0)}},"":function(a,b,c){var d,f=e++,g=x;typeof b=="string"&&!l.test(b)&&(b=b.toLowerCase(),d=b,g=w),g("parentNode",b,f,a,d,c)},"~":function(a,b,c){var d,f=e++,g=x;typeof b=="string"&&!l.test(b)&&(b=b.toLowerCase(),d=b,g=w),g("previousSibling",b,f,a,d,c)}},find:{ID:function(a,b,c){if(typeof b.getElementById!="undefined"&&!c){var d=b.getElementById(a[1]);return d&&d.parentNode?[d]:[]}},NAME:function(a,b){if(typeof b.getElementsByName!="undefined"){var c=[],d=b.getElementsByName(a[1]);for(var e=0,f=d.length;e<f;e++)d[e].getAttribute("name")===a[1]&&c.push(d[e]);return c.length===0?null:c}},TAG:function(a,b){if(typeof b.getElementsByTagName!="undefined")return b.getElementsByTagName(a[1])}},preFilter:{CLASS:function(a,b,c,d,e,f){a=" "+a[1].replace(j,"")+" ";if(f)return a;for(var g=0,h;(h=b[g])!=null;g++)h&&(e^(h.className&&(" "+h.className+" ").replace(/[\t\n\r]/g," ").indexOf(a)>=0)?c||d.push(h):c&&(b[g]=!1));return!1},ID:function(a){return a[1].replace(j,"")},TAG:function(a,b){return a[1].replace(j,"").toLowerCase()},CHILD:function(a){if(a[1]==="nth"){a[2]||m.error(a[0]),a[2]=a[2].replace(/^\+|\s*/g,"");var b=/(-?)(\d*)(?:n([+\-]?\d*))?/.exec(a[2]==="even"&&"2n"||a[2]==="odd"&&"2n+1"||!/\D/.test(a[2])&&"0n+"+a[2]||a[2]);a[2]=b[1]+(b[2]||1)-0,a[3]=b[3]-0}else a[2]&&m.error(a[0]);a[0]=e++;return a},ATTR:function(a,b,c,d,e,f){var g=a[1]=a[1].replace(j,"");!f&&o.attrMap[g]&&(a[1]=o.attrMap[g]),a[4]=(a[4]||a[5]||"").replace(j,""),a[2]==="~="&&(a[4]=" "+a[4]+" ");return a},PSEUDO:function(b,c,d,e,f){if(b[1]==="not")if((a.exec(b[3])||"").length>1||/^\w/.test(b[3]))b[3]=m(b[3],null,null,c);else{var g=m.filter(b[3],c,d,!0^f);d||e.push.apply(e,g);return!1}else if(o.match.POS.test(b[0])||o.match.CHILD.test(b[0]))return!0;return b},POS:function(a){a.unshift(!0);return a}},filters:{enabled:function(a){return a.disabled===!1&&a.type!=="hidden"},disabled:function(a){return a.disabled===!0},checked:function(a){return a.checked===!0},selected:function(a){a.parentNode&&a.parentNode.selectedIndex;return a.selected===!0},parent:function(a){return!!a.firstChild},empty:function(a){return!a.firstChild},has:function(a,b,c){return!!m(c[3],a).length},header:function(a){return/h\d/i.test(a.nodeName)},text:function(a){var b=a.getAttribute("type"),c=a.type;return a.nodeName.toLowerCase()==="input"&&"text"===c&&(b===c||b===null)},radio:function(a){return a.nodeName.toLowerCase()==="input"&&"radio"===a.type},checkbox:function(a){return a.nodeName.toLowerCase()==="input"&&"checkbox"===a.type},file:function(a){return a.nodeName.toLowerCase()==="input"&&"file"===a.type},password:function(a){return a.nodeName.toLowerCase()==="input"&&"password"===a.type},submit:function(a){var b=a.nodeName.toLowerCase();return(b==="input"||b==="button")&&"submit"===a.type},image:function(a){return a.nodeName.toLowerCase()==="input"&&"image"===a.type},reset:function(a){var b=a.nodeName.toLowerCase();return(b==="input"||b==="button")&&"reset"===a.type},button:function(a){var b=a.nodeName.toLowerCase();return b==="input"&&"button"===a.type||b==="button"},input:function(a){return/input|select|textarea|button/i.test(a.nodeName)},focus:function(a){return a===a.ownerDocument.activeElement}},setFilters:{first:function(a,b){return b===0},last:function(a,b,c,d){return b===d.length-1},even:function(a,b){return b%2===0},odd:function(a,b){return b%2===1},lt:function(a,b,c){return b<c[3]-0},gt:function(a,b,c){return b>c[3]-0},nth:function(a,b,c){return c[3]-0===b},eq:function(a,b,c){return c[3]-0===b}},filter:{PSEUDO:function(a,b,c,d){var e=b[1],f=o.filters[e];if(f)return f(a,c,b,d);if(e==="contains")return(a.textContent||a.innerText||n([a])||"").indexOf(b[3])>=0;if(e==="not"){var g=b[3];for(var h=0,i=g.length;h<i;h++)if(g[h]===a)return!1;return!0}m.error(e)},CHILD:function(a,b){var c,e,f,g,h,i,j,k=b[1],l=a;switch(k){case"only":case"first":while(l=l.previousSibling)if(l.nodeType===1)return!1;if(k==="first")return!0;l=a;case"last":while(l=l.nextSibling)if(l.nodeType===1)return!1;return!0;case"nth":c=b[2],e=b[3];if(c===1&&e===0)return!0;f=b[0],g=a.parentNode;if(g&&(g[d]!==f||!a.nodeIndex)){i=0;for(l=g.firstChild;l;l=l.nextSibling)l.nodeType===1&&(l.nodeIndex=++i);g[d]=f}j=a.nodeIndex-e;return c===0?j===0:j%c===0&&j/c>=0}},ID:function(a,b){return a.nodeType===1&&a.getAttribute("id")===b},TAG:function(a,b){return b==="*"&&a.nodeType===1||!!a.nodeName&&a.nodeName.toLowerCase()===b},CLASS:function(a,b){return(" "+(a.className||a.getAttribute("class"))+" ").indexOf(b)>-1},ATTR:function(a,b){var c=b[1],d=m.attr?m.attr(a,c):o.attrHandle[c]?o.attrHandle[c](a):a[c]!=null?a[c]:a.getAttribute(c),e=d+"",f=b[2],g=b[4];return d==null?f==="!=":!f&&m.attr?d!=null:f==="="?e===g:f==="*="?e.indexOf(g)>=0:f==="~="?(" "+e+" ").indexOf(g)>=0:g?f==="!="?e!==g:f==="^="?e.indexOf(g)===0:f==="$="?e.substr(e.length-g.length)===g:f==="|="?e===g||e.substr(0,g.length+1)===g+"-":!1:e&&d!==!1},POS:function(a,b,c,d){var e=b[2],f=o.setFilters[e];if(f)return f(a,c,b,d)}}},p=o.match.POS,q=function(a,b){return"\\"+(b-0+1)};for(var r in o.match)o.match[r]=new RegExp(o.match[r].source+/(?![^\[]*\])(?![^\(]*\))/.source),o.leftMatch[r]=new RegExp(/(^(?:.|\r|\n)*?)/.source+o.match[r].source.replace(/\\(\d+)/g,q));var s=function(a,b){a=Array.prototype.slice.call(a,0);if(b){b.push.apply(b,a);return b}return a};try{Array.prototype.slice.call(c.documentElement.childNodes,0)[0].nodeType}catch(t){s=function(a,b){var c=0,d=b||[];if(g.call(a)==="[object Array]")Array.prototype.push.apply(d,a);else if(typeof a.length=="number")for(var e=a.length;c<e;c++)d.push(a[c]);else for(;a[c];c++)d.push(a[c]);return d}}var u,v;c.documentElement.compareDocumentPosition?u=function(a,b){if(a===b){h=!0;return 0}if(!a.compareDocumentPosition||!b.compareDocumentPosition)return a.compareDocumentPosition?-1:1;return a.compareDocumentPosition(b)&4?-1:1}:(u=function(a,b){if(a===b){h=!0;return 0}if(a.sourceIndex&&b.sourceIndex)return a.sourceIndex-b.sourceIndex;var c,d,e=[],f=[],g=a.parentNode,i=b.parentNode,j=g;if(g===i)return v(a,b);if(!g)return-1;if(!i)return 1;while(j)e.unshift(j),j=j.parentNode;j=i;while(j)f.unshift(j),j=j.parentNode;c=e.length,d=f.length;for(var k=0;k<c&&k<d;k++)if(e[k]!==f[k])return v(e[k],f[k]);return k===c?v(a,f[k],-1):v(e[k],b,1)},v=function(a,b,c){if(a===b)return c;var d=a.nextSibling;while(d){if(d===b)return-1;d=d.nextSibling}return 1}),function(){var a=c.createElement("div"),d="script"+(new Date).getTime(),e=c.documentElement;a.innerHTML="",e.insertBefore(a,e.firstChild),c.getElementById(d)&&(o.find.ID=function(a,c,d){if(typeof c.getElementById!="undefined"&&!d){var e=c.getElementById(a[1]);return e?e.id===a[1]||typeof e.getAttributeNode!="undefined"&&e.getAttributeNode("id").nodeValue===a[1]?[e]:b:[]}},o.filter.ID=function(a,b){var c=typeof a.getAttributeNode!="undefined"&&a.getAttributeNode("id");return a.nodeType===1&&c&&c.nodeValue===b}),e.removeChild(a),e=a=null}(),function(){var a=c.createElement("div");a.appendChild(c.createComment("")),a.getElementsByTagName("*").length>0&&(o.find.TAG=function(a,b){var c=b.getElementsByTagName(a[1]);if(a[1]==="*"){var d=[];for(var e=0;c[e];e++)c[e].nodeType===1&&d.push(c[e]);c=d}return c}),a.innerHTML="",a.firstChild&&typeof a.firstChild.getAttribute!="undefined"&&a.firstChild.getAttribute("href")!=="#"&&(o.attrHandle.href=function(a){return a.getAttribute("href",2)}),a=null}(),c.querySelectorAll&&function(){var a=m,b=c.createElement("div"),d="__sizzle__";b.innerHTML="<p class='TEST'></p>";if(!b.querySelectorAll||b.querySelectorAll(".TEST").length!==0){m=function(b,e,f,g){e=e||c;if(!g&&!m.isXML(e)){var h=/^(\w+$)|^\.([\w\-]+$)|^#([\w\-]+$)/.exec(b);if(h&&(e.nodeType===1||e.nodeType===9)){if(h[1])return s(e.getElementsByTagName(b),f);if(h[2]&&o.find.CLASS&&e.getElementsByClassName)return s(e.getElementsByClassName(h[2]),f)}if(e.nodeType===9){if(b==="body"&&e.body)return s([e.body],f);if(h&&h[3]){var i=e.getElementById(h[3]);if(!i||!i.parentNode)return s([],f);if(i.id===h[3])return s([i],f)}try{return s(e.querySelectorAll(b),f)}catch(j){}}else if(e.nodeType===1&&e.nodeName.toLowerCase()!=="object"){var k=e,l=e.getAttribute("id"),n=l||d,p=e.parentNode,q=/^\s*[+~]/.test(b);l?n=n.replace(/'/g,"\\$&"):e.setAttribute("id",n),q&&p&&(e=e.parentNode);try{if(!q||p)return s(e.querySelectorAll("[id='"+n+"'] "+b),f)}catch(r){}finally{l||k.removeAttribute("id")}}}return a(b,e,f,g)};for(var e in a)m[e]=a[e];b=null}}(),function(){var a=c.documentElement,b=a.matchesSelector||a.mozMatchesSelector||a.webkitMatchesSelector||a.msMatchesSelector;if(b){var d=!b.call(c.createElement("div"),"div"),e=!1;try{b.call(c.documentElement,"[test!='']:sizzle")}catch(f){e=!0}m.matchesSelector=function(a,c){c=c.replace(/\=\s*([^'"\]]*)\s*\]/g,"='$1']");if(!m.isXML(a))try{if(e||!o.match.PSEUDO.test(c)&&!/!=/.test(c)){var f=b.call(a,c);if(f||!d||a.document&&a.document.nodeType!==11)return f}}catch(g){}return m(c,null,null,[a]).length>0}}}(),function(){var a=c.createElement("div");a.innerHTML="<div class='test e'></div><div class='test'></div>";if(!!a.getElementsByClassName&&a.getElementsByClassName("e").length!==0){a.lastChild.className="e";if(a.getElementsByClassName("e").length===1)return;o.order.splice(1,0,"CLASS"),o.find.CLASS=function(a,b,c){if(typeof b.getElementsByClassName!="undefined"&&!c)return b.getElementsByClassName(a[1])},a=null}}(),c.documentElement.contains?m.contains=function(a,b){return a!==b&&(a.contains?a.contains(b):!0)}:c.documentElement.compareDocumentPosition?m.contains=function(a,b){return!!(a.compareDocumentPosition(b)&16)}:m.contains=function(){return!1},m.isXML=function(a){var b=(a?a.ownerDocument||a:0).documentElement;return b?b.nodeName!=="HTML":!1};var y=function(a,b,c){var d,e=[],f="",g=b.nodeType?[b]:b;while(d=o.match.PSEUDO.exec(a))f+=d[0],a=a.replace(o.match.PSEUDO,"");a=o.relative[a]?a+"*":a;for(var h=0,i=g.length;h<i;h++)m(a,g[h],e,c);return m.filter(f,e)};m.attr=f.attr,m.selectors.attrMap={},f.find=m,f.expr=m.selectors,f.expr[":"]=f.expr.filters,f.unique=m.uniqueSort,f.text=m.getText,f.isXMLDoc=m.isXML,f.contains=m.contains}();var L=/Until$/,M=/^(?:parents|prevUntil|prevAll)/,N=/,/,O=/^.[^:#\[\.,]*$/,P=Array.prototype.slice,Q=f.expr.match.POS,R={children:!0,contents:!0,next:!0,prev:!0};f.fn.extend({find:function(a){var b=this,c,d;if(typeof a!="string")return f(a).filter(function(){for(c=0,d=b.length;c<d;c++)if(f.contains(b[c],this))return!0});var e=this.pushStack("","find",a),g,h,i;for(c=0,d=this.length;c<d;c++){g=e.length,f.find(a,this[c],e);if(c>0)for(h=g;h<e.length;h++)for(i=0;i<g;i++)if(e[i]===e[h]){e.splice(h--,1);break}}return e},has:function(a){var b=f(a);return this.filter(function(){for(var a=0,c=b.length;a<c;a++)if(f.contains(this,b[a]))return!0})},not:function(a){return this.pushStack(T(this,a,!1),"not",a)},filter:function(a){return this.pushStack(T(this,a,!0),"filter",a)},is:function(a){return!!a&&(typeof a=="string"?Q.test(a)?f(a,this.context).index(this[0])>=0:f.filter(a,this).length>0:this.filter(a).length>0)},closest:function(a,b){var c=[],d,e,g=this[0];if(f.isArray(a)){var h=1;while(g&&g.ownerDocument&&g!==b){for(d=0;d<a.length;d++)f(g).is(a[d])&&c.push({selector:a[d],elem:g,level:h});g=g.parentNode,h++}return c}var i=Q.test(a)||typeof a!="string"?f(a,b||this.context):0;for(d=0,e=this.length;d<e;d++){g=this[d];while(g){if(i?i.index(g)>-1:f.find.matchesSelector(g,a)){c.push(g);break}g=g.parentNode;if(!g||!g.ownerDocument||g===b||g.nodeType===11)break}}c=c.length>1?f.unique(c):c;return this.pushStack(c,"closest",a)},index:function(a){if(!a)return this[0]&&this[0].parentNode?this.prevAll().length:-1;if(typeof a=="string")return f.inArray(this[0],f(a));return f.inArray(a.jquery?a[0]:a,this)},add:function(a,b){var c=typeof a=="string"?f(a,b):f.makeArray(a&&a.nodeType?[a]:a),d=f.merge(this.get(),c);return this.pushStack(S(c[0])||S(d[0])?d:f.unique(d))},andSelf:function(){return this.add(this.prevObject)}}),f.each({parent:function(a){var b=a.parentNode;return b&&b.nodeType!==11?b:null},parents:function(a){return f.dir(a,"parentNode")},parentsUntil:function(a,b,c){return f.dir(a,"parentNode",c)},next:function(a){return f.nth(a,2,"nextSibling")},prev:function(a){return f.nth(a,2,"previousSibling")},nextAll:function(a){return f.dir(a,"nextSibling")},prevAll:function(a){return f.dir(a,"previousSibling")},nextUntil:function(a,b,c){return f.dir(a,"nextSibling",c)},prevUntil:function(a,b,c){return f.dir(a,"previousSibling",c)},siblings:function(a){return f.sibling(a.parentNode.firstChild,a)},children:function(a){return f.sibling(a.firstChild)},contents:function(a){return f.nodeName(a,"iframe")?a.contentDocument||a.contentWindow.document:f.makeArray(a.childNodes)}},function(a,b){f.fn[a]=function(c,d){var e=f.map(this,b,c);L.test(a)||(d=c),d&&typeof d=="string"&&(e=f.filter(d,e)),e=this.length>1&&!R[a]?f.unique(e):e,(this.length>1||N.test(d))&&M.test(a)&&(e=e.reverse());return this.pushStack(e,a,P.call(arguments).join(","))}}),f.extend({filter:function(a,b,c){c&&(a=":not("+a+")");return b.length===1?f.find.matchesSelector(b[0],a)?[b[0]]:[]:f.find.matches(a,b)},dir:function(a,c,d){var e=[],g=a[c];while(g&&g.nodeType!==9&&(d===b||g.nodeType!==1||!f(g).is(d)))g.nodeType===1&&e.push(g),g=g[c];return e},nth:function(a,b,c,d){b=b||1;var e=0;for(;a;a=a[c])if(a.nodeType===1&&++e===b)break;return a},sibling:function(a,b){var c=[];for(;a;a=a.nextSibling)a.nodeType===1&&a!==b&&c.push(a);return c}});var V="abbr|article|aside|audio|canvas|datalist|details|figcaption|figure|footer|header|hgroup|mark|meter|nav|output|progress|section|summary|time|video",W=/ jQuery\d+="(?:\d+|null)"/g,X=/^\s+/,Y=/<(?!area|br|col|embed|hr|img|input|link|meta|param)(([\w:]+)[^>]*)\/>/ig,Z=/<([\w:]+)/,$=/<tbody/i,_=/<|&#?\w+;/,ba=/<(?:script|style)/i,bb=/<(?:script|object|embed|option|style)/i,bc=new RegExp("<(?:"+V+")","i"),bd=/checked\s*(?:[^=]|=\s*.checked.)/i,be=/\/(java|ecma)script/i,bf=/^\s*<!(?:\[CDATA\[|\-\-)/,bg={option:[1,"<select multiple='multiple'>","</select>"],legend:[1,"<fieldset>","</fieldset>"],thead:[1,"<table>","</table>"],tr:[2,"<table><tbody>","</tbody></table>"],td:[3,"<table><tbody><tr>","</tr></tbody></table>"],col:[2,"<table><tbody></tbody><colgroup>","</colgroup></table>"],area:[1,"<map>","</map>"],_default:[0,"",""]},bh=U(c);bg.optgroup=bg.option,bg.tbody=bg.tfoot=bg.colgroup=bg.caption=bg.thead,bg.th=bg.td,f.support.htmlSerialize||(bg._default=[1,"div<div>","</div>"]),f.fn.extend({text:function(a){if(f.isFunction(a))return this.each(function(b){var c=f(this);c.text(a.call(this,b,c.text()))});if(typeof a!="object"&&a!==b)return this.empty().append((this[0]&&this[0].ownerDocument||c).createTextNode(a));return f.text(this)},wrapAll:function(a){if(f.isFunction(a))return this.each(function(b){f(this).wrapAll(a.call(this,b))});if(this[0]){var b=f(a,this[0].ownerDocument).eq(0).clone(!0);this[0].parentNode&&b.insertBefore(this[0]),b.map(function(){var a=this;while(a.firstChild&&a.firstChild.nodeType===1)a=a.firstChild;return a}).append(this)}return this},wrapInner:function(a){if(f.isFunction(a))return this.each(function(b){f(this).wrapInner(a.call(this,b))});return this.each(function(){var b=f(this),c=b.contents();c.length?c.wrapAll(a):b.append(a)})},wrap:function(a){var b=f.isFunction(a);return this.each(function(c){f(this).wrapAll(b?a.call(this,c):a)})},unwrap:function(){return this.parent().each(function(){f.nodeName(this,"body")||f(this).replaceWith(this.childNodes)}).end()},append:function(){return this.domManip(arguments,!0,function(a){this.nodeType===1&&this.appendChild(a)})},prepend:function(){return this.domManip(arguments,!0,function(a){this.nodeType===1&&this.insertBefore(a,this.firstChild)})},before:function(){if(this[0]&&this[0].parentNode)return this.domManip(arguments,!1,function(a){this.parentNode.insertBefore(a,this)});if(arguments.length){var a=f.clean(arguments);a.push.apply(a,this.toArray());return this.pushStack(a,"before",arguments)}},after:function(){if(this[0]&&this[0].parentNode)return this.domManip(arguments,!1,function(a){this.parentNode.insertBefore(a,this.nextSibling)});if(arguments.length){var a=this.pushStack(this,"after",arguments);a.push.apply(a,f.clean(arguments));return a}},remove:function(a,b){for(var c=0,d;(d=this[c])!=null;c++)if(!a||f.filter(a,[d]).length)!b&&d.nodeType===1&&(f.cleanData(d.getElementsByTagName("*")),f.cleanData([d])),d.parentNode&&d.parentNode.removeChild(d);return this},empty:function()
{for(var a=0,b;(b=this[a])!=null;a++){b.nodeType===1&&f.cleanData(b.getElementsByTagName("*"));while(b.firstChild)b.removeChild(b.firstChild)}return this},clone:function(a,b){a=a==null?!1:a,b=b==null?a:b;return this.map(function(){return f.clone(this,a,b)})},html:function(a){if(a===b)return this[0]&&this[0].nodeType===1?this[0].innerHTML.replace(W,""):null;if(typeof a=="string"&&!ba.test(a)&&(f.support.leadingWhitespace||!X.test(a))&&!bg[(Z.exec(a)||["",""])[1].toLowerCase()]){a=a.replace(Y,"<$1></$2>");try{for(var c=0,d=this.length;c<d;c++)this[c].nodeType===1&&(f.cleanData(this[c].getElementsByTagName("*")),this[c].innerHTML=a)}catch(e){this.empty().append(a)}}else f.isFunction(a)?this.each(function(b){var c=f(this);c.html(a.call(this,b,c.html()))}):this.empty().append(a);return this},replaceWith:function(a){if(this[0]&&this[0].parentNode){if(f.isFunction(a))return this.each(function(b){var c=f(this),d=c.html();c.replaceWith(a.call(this,b,d))});typeof a!="string"&&(a=f(a).detach());return this.each(function(){var b=this.nextSibling,c=this.parentNode;f(this).remove(),b?f(b).before(a):f(c).append(a)})}return this.length?this.pushStack(f(f.isFunction(a)?a():a),"replaceWith",a):this},detach:function(a){return this.remove(a,!0)},domManip:function(a,c,d){var e,g,h,i,j=a[0],k=[];if(!f.support.checkClone&&arguments.length===3&&typeof j=="string"&&bd.test(j))return this.each(function(){f(this).domManip(a,c,d,!0)});if(f.isFunction(j))return this.each(function(e){var g=f(this);a[0]=j.call(this,e,c?g.html():b),g.domManip(a,c,d)});if(this[0]){i=j&&j.parentNode,f.support.parentNode&&i&&i.nodeType===11&&i.childNodes.length===this.length?e={fragment:i}:e=f.buildFragment(a,this,k),h=e.fragment,h.childNodes.length===1?g=h=h.firstChild:g=h.firstChild;if(g){c=c&&f.nodeName(g,"tr");for(var l=0,m=this.length,n=m-1;l<m;l++)d.call(c?bi(this[l],g):this[l],e.cacheable||m>1&&l<n?f.clone(h,!0,!0):h)}k.length&&f.each(k,bp)}return this}}),f.buildFragment=function(a,b,d){var e,g,h,i,j=a[0];b&&b[0]&&(i=b[0].ownerDocument||b[0]),i.createDocumentFragment||(i=c),a.length===1&&typeof j=="string"&&j.length<512&&i===c&&j.charAt(0)==="<"&&!bb.test(j)&&(f.support.checkClone||!bd.test(j))&&(f.support.html5Clone||!bc.test(j))&&(g=!0,h=f.fragments[j],h&&h!==1&&(e=h)),e||(e=i.createDocumentFragment(),f.clean(a,i,e,d)),g&&(f.fragments[j]=h?e:1);return{fragment:e,cacheable:g}},f.fragments={},f.each({appendTo:"append",prependTo:"prepend",insertBefore:"before",insertAfter:"after",replaceAll:"replaceWith"},function(a,b){f.fn[a]=function(c){var d=[],e=f(c),g=this.length===1&&this[0].parentNode;if(g&&g.nodeType===11&&g.childNodes.length===1&&e.length===1){e[b](this[0]);return this}for(var h=0,i=e.length;h<i;h++){var j=(h>0?this.clone(!0):this).get();f(e[h])[b](j),d=d.concat(j)}return this.pushStack(d,a,e.selector)}}),f.extend({clone:function(a,b,c){var d,e,g,h=f.support.html5Clone||!bc.test("<"+a.nodeName)?a.cloneNode(!0):bo(a);if((!f.support.noCloneEvent||!f.support.noCloneChecked)&&(a.nodeType===1||a.nodeType===11)&&!f.isXMLDoc(a)){bk(a,h),d=bl(a),e=bl(h);for(g=0;d[g];++g)e[g]&&bk(d[g],e[g])}if(b){bj(a,h);if(c){d=bl(a),e=bl(h);for(g=0;d[g];++g)bj(d[g],e[g])}}d=e=null;return h},clean:function(a,b,d,e){var g;b=b||c,typeof b.createElement=="undefined"&&(b=b.ownerDocument||b[0]&&b[0].ownerDocument||c);var h=[],i;for(var j=0,k;(k=a[j])!=null;j++){typeof k=="number"&&(k+="");if(!k)continue;if(typeof k=="string")if(!_.test(k))k=b.createTextNode(k);else{k=k.replace(Y,"<$1></$2>");var l=(Z.exec(k)||["",""])[1].toLowerCase(),m=bg[l]||bg._default,n=m[0],o=b.createElement("div");b===c?bh.appendChild(o):U(b).appendChild(o),o.innerHTML=m[1]+k+m[2];while(n--)o=o.lastChild;if(!f.support.tbody){var p=$.test(k),q=l==="table"&&!p?o.firstChild&&o.firstChild.childNodes:m[1]==="<table>"&&!p?o.childNodes:[];for(i=q.length-1;i>=0;--i)f.nodeName(q[i],"tbody")&&!q[i].childNodes.length&&q[i].parentNode.removeChild(q[i])}!f.support.leadingWhitespace&&X.test(k)&&o.insertBefore(b.createTextNode(X.exec(k)[0]),o.firstChild),k=o.childNodes}var r;if(!f.support.appendChecked)if(k[0]&&typeof (r=k.length)=="number")for(i=0;i<r;i++)bn(k[i]);else bn(k);k.nodeType?h.push(k):h=f.merge(h,k)}if(d){g=function(a){return!a.type||be.test(a.type)};for(j=0;h[j];j++)if(e&&f.nodeName(h[j],"script")&&(!h[j].type||h[j].type.toLowerCase()==="text/javascript"))e.push(h[j].parentNode?h[j].parentNode.removeChild(h[j]):h[j]);else{if(h[j].nodeType===1){var s=f.grep(h[j].getElementsByTagName("script"),g);h.splice.apply(h,[j+1,0].concat(s))}d.appendChild(h[j])}}return h},cleanData:function(a){var b,c,d=f.cache,e=f.event.special,g=f.support.deleteExpando;for(var h=0,i;(i=a[h])!=null;h++){if(i.nodeName&&f.noData[i.nodeName.toLowerCase()])continue;c=i[f.expando];if(c){b=d[c];if(b&&b.events){for(var j in b.events)e[j]?f.event.remove(i,j):f.removeEvent(i,j,b.handle);b.handle&&(b.handle.elem=null)}g?delete i[f.expando]:i.removeAttribute&&i.removeAttribute(f.expando),delete d[c]}}}});var bq=/alpha\([^)]*\)/i,br=/opacity=([^)]*)/,bs=/([A-Z]|^ms)/g,bt=/^-?\d+(?:px)?$/i,bu=/^-?\d/,bv=/^([\-+])=([\-+.\de]+)/,bw={position:"absolute",visibility:"hidden",display:"block"},bx=["Left","Right"],by=["Top","Bottom"],bz,bA,bB;f.fn.css=function(a,c){if(arguments.length===2&&c===b)return this;return f.access(this,a,c,!0,function(a,c,d){return d!==b?f.style(a,c,d):f.css(a,c)})},f.extend({cssHooks:{opacity:{get:function(a,b){if(b){var c=bz(a,"opacity","opacity");return c===""?"1":c}return a.style.opacity}}},cssNumber:{fillOpacity:!0,fontWeight:!0,lineHeight:!0,opacity:!0,orphans:!0,widows:!0,zIndex:!0,zoom:!0},cssProps:{"float":f.support.cssFloat?"cssFloat":"styleFloat"},style:function(a,c,d,e){if(!!a&&a.nodeType!==3&&a.nodeType!==8&&!!a.style){var g,h,i=f.camelCase(c),j=a.style,k=f.cssHooks[i];c=f.cssProps[i]||i;if(d===b){if(k&&"get"in k&&(g=k.get(a,!1,e))!==b)return g;return j[c]}h=typeof d,h==="string"&&(g=bv.exec(d))&&(d=+(g[1]+1)*+g[2]+parseFloat(f.css(a,c)),h="number");if(d==null||h==="number"&&isNaN(d))return;h==="number"&&!f.cssNumber[i]&&(d+="px");if(!k||!("set"in k)||(d=k.set(a,d))!==b)try{j[c]=d}catch(l){}}},css:function(a,c,d){var e,g;c=f.camelCase(c),g=f.cssHooks[c],c=f.cssProps[c]||c,c==="cssFloat"&&(c="float");if(g&&"get"in g&&(e=g.get(a,!0,d))!==b)return e;if(bz)return bz(a,c)},swap:function(a,b,c){var d={};for(var e in b)d[e]=a.style[e],a.style[e]=b[e];c.call(a);for(e in b)a.style[e]=d[e]}}),f.curCSS=f.css,f.each(["height","width"],function(a,b){f.cssHooks[b]={get:function(a,c,d){var e;if(c){if(a.offsetWidth!==0)return bC(a,b,d);f.swap(a,bw,function(){e=bC(a,b,d)});return e}},set:function(a,b){if(!bt.test(b))return b;b=parseFloat(b);if(b>=0)return b+"px"}}}),f.support.opacity||(f.cssHooks.opacity={get:function(a,b){return br.test((b&&a.currentStyle?a.currentStyle.filter:a.style.filter)||"")?parseFloat(RegExp.$1)/100+"":b?"1":""},set:function(a,b){var c=a.style,d=a.currentStyle,e=f.isNumeric(b)?"alpha(opacity="+b*100+")":"",g=d&&d.filter||c.filter||"";c.zoom=1;if(b>=1&&f.trim(g.replace(bq,""))===""){c.removeAttribute("filter");if(d&&!d.filter)return}c.filter=bq.test(g)?g.replace(bq,e):g+" "+e}}),f(function(){f.support.reliableMarginRight||(f.cssHooks.marginRight={get:function(a,b){var c;f.swap(a,{display:"inline-block"},function(){b?c=bz(a,"margin-right","marginRight"):c=a.style.marginRight});return c}})}),c.defaultView&&c.defaultView.getComputedStyle&&(bA=function(a,b){var c,d,e;b=b.replace(bs,"-$1").toLowerCase(),(d=a.ownerDocument.defaultView)&&(e=d.getComputedStyle(a,null))&&(c=e.getPropertyValue(b),c===""&&!f.contains(a.ownerDocument.documentElement,a)&&(c=f.style(a,b)));return c}),c.documentElement.currentStyle&&(bB=function(a,b){var c,d,e,f=a.currentStyle&&a.currentStyle[b],g=a.style;f===null&&g&&(e=g[b])&&(f=e),!bt.test(f)&&bu.test(f)&&(c=g.left,d=a.runtimeStyle&&a.runtimeStyle.left,d&&(a.runtimeStyle.left=a.currentStyle.left),g.left=b==="fontSize"?"1em":f||0,f=g.pixelLeft+"px",g.left=c,d&&(a.runtimeStyle.left=d));return f===""?"auto":f}),bz=bA||bB,f.expr&&f.expr.filters&&(f.expr.filters.hidden=function(a){var b=a.offsetWidth,c=a.offsetHeight;return b===0&&c===0||!f.support.reliableHiddenOffsets&&(a.style&&a.style.display||f.css(a,"display"))==="none"},f.expr.filters.visible=function(a){return!f.expr.filters.hidden(a)});var bD=/%20/g,bE=/\[\]$/,bF=/\r?\n/g,bG=/#.*$/,bH=/^(.*?):[\t]*([^\r\n]*)\r?$/mg,bI=/^(?:color|date|datetime|datetime-local|email|hidden|month|number|password|range|search|tel|text|time|url|week)$/i,bJ=/^(?:about|app|app\-storage|.+\-extension|file|res|widget):$/,bK=/^(?:GET|HEAD)$/,bL=/^\/\//,bM=/\?/,bN=/<script\b[^<]*(?:(?!<\/script>)<[^<]*)*<\/script>/gi,bO=/^(?:select|textarea)/i,bP=/\s+/,bQ=/([?&])_=[^&]*/,bR=/^([\w\+\.\-]+:)(?:\/\/([^\/?#:]*)(?::(\d+))?)?/,bS=f.fn.load,bT={},bU={},bV,bW,bX=["*/"]+["*"];try{bV=e.href}catch(bY){bV=c.createElement("a"),bV.href="",bV=bV.href}bW=bR.exec(bV.toLowerCase())||[],f.fn.extend({load:function(a,c,d){if(typeof a!="string"&&bS)return bS.apply(this,arguments);if(!this.length)return this;var e=a.indexOf(" ");if(e>=0){var g=a.slice(e,a.length);a=a.slice(0,e)}var h="GET";c&&(f.isFunction(c)?(d=c,c=b):typeof c=="object"&&(c=f.param(c,f.ajaxSettings.traditional),h="POST"));var i=this;f.ajax({url:a,type:h,dataType:"html",data:c,complete:function(a,b,c){c=a.responseText,a.isResolved()&&(a.done(function(a){c=a}),i.html(g?f("<div>").append(c.replace(bN,"")).find(g):c)),d&&i.each(d,[c,b,a])}});return this},serialize:function(){return f.param(this.serializeArray())},serializeArray:function(){return this.map(function(){return this.elements?f.makeArray(this.elements):this}).filter(function(){return this.name&&!this.disabled&&(this.checked||bO.test(this.nodeName)||bI.test(this.type))}).map(function(a,b){var c=f(this).val();return c==null?null:f.isArray(c)?f.map(c,function(a,c){return{name:b.name,value:a.replace(bF,"\r\n")}}):{name:b.name,value:c.replace(bF,"\r\n")}}).get()}}),f.each("ajaxStart ajaxStop ajaxComplete ajaxError ajaxSuccess ajaxSend".split(" "),function(a,b){f.fn[b]=function(a){return this.on(b,a)}}),f.each(["get","post"],function(a,c){f[c]=function(a,d,e,g){f.isFunction(d)&&(g=g||e,e=d,d=b);return f.ajax({type:c,url:a,data:d,success:e,dataType:g})}}),f.extend({getScript:function(a,c){return f.get(a,b,c,"script")},getJSON:function(a,b,c){return f.get(a,b,c,"json")},ajaxSetup:function(a,b){b?b_(a,f.ajaxSettings):(b=a,a=f.ajaxSettings),b_(a,b);return a},ajaxSettings:{url:bV,isLocal:bJ.test(bW[1]),global:!0,type:"GET",contentType:"application/x-www-form-urlencoded",processData:!0,async:!0,accepts:{xml:"application/xml, text/xml",html:"text/html",text:"text/plain",json:"application/json, text/javascript","*":bX},contents:{xml:/xml/,html:/html/,json:/json/},responseFields:{xml:"responseXML",text:"responseText"},converters:{"* text":a.String,"text html":!0,"text json":f.parseJSON,"text xml":f.parseXML},flatOptions:{context:!0,url:!0}},ajaxPrefilter:bZ(bT),ajaxTransport:bZ(bU),ajax:function(a,c){function w(a,c,l,m){if(s!==2){s=2,q&&clearTimeout(q),p=b,n=m||"",v.readyState=a>0?4:0;var o,r,u,w=c,x=l?cb(d,v,l):b,y,z;if(a>=200&&a<300||a===304){if(d.ifModified){if(y=v.getResponseHeader("Last-Modified"))f.lastModified[k]=y;if(z=v.getResponseHeader("Etag"))f.etag[k]=z}if(a===304)w="notmodified",o=!0;else try{r=cc(d,x),w="success",o=!0}catch(A){w="parsererror",u=A}}else{u=w;if(!w||a)w="error",a<0&&(a=0)}v.status=a,v.statusText=""+(c||w),o?h.resolveWith(e,[r,w,v]):h.rejectWith(e,[v,w,u]),v.statusCode(j),j=b,t&&g.trigger("ajax"+(o?"Success":"Error"),[v,d,o?r:u]),i.fireWith(e,[v,w]),t&&(g.trigger("ajaxComplete",[v,d]),--f.active||f.event.trigger("ajaxStop"))}}typeof a=="object"&&(c=a,a=b),c=c||{};var d=f.ajaxSetup({},c),e=d.context||d,g=e!==d&&(e.nodeType||e instanceof f)?f(e):f.event,h=f.Deferred(),i=f.Callbacks("once memory"),j=d.statusCode||{},k,l={},m={},n,o,p,q,r,s=0,t,u,v={readyState:0,setRequestHeader:function(a,b){if(!s){var c=a.toLowerCase();a=m[c]=m[c]||a,l[a]=b}return this},getAllResponseHeaders:function(){return s===2?n:null},getResponseHeader:function(a){var c;if(s===2){if(!o){o={};while(c=bH.exec(n))o[c[1].toLowerCase()]=c[2]}c=o[a.toLowerCase()]}return c===b?null:c},overrideMimeType:function(a){s||(d.mimeType=a);return this},abort:function(a){a=a||"abort",p&&p.abort(a),w(0,a);return this}};h.promise(v),v.success=v.done,v.error=v.fail,v.complete=i.add,v.statusCode=function(a){if(a){var b;if(s<2)for(b in a)j[b]=[j[b],a[b]];else b=a[v.status],v.then(b,b)}return this},d.url=((a||d.url)+"").replace(bG,"").replace(bL,bW[1]+"//"),d.dataTypes=f.trim(d.dataType||"*").toLowerCase().split(bP),d.crossDomain==null&&(r=bR.exec(d.url.toLowerCase()),d.crossDomain=!(!r||r[1]==bW[1]&&r[2]==bW[2]&&(r[3]||(r[1]==="http:"?80:443))==(bW[3]||(bW[1]==="http:"?80:443)))),d.data&&d.processData&&typeof d.data!="string"&&(d.data=f.param(d.data,d.traditional)),b$(bT,d,c,v);if(s===2)return!1;t=d.global,d.type=d.type.toUpperCase(),d.hasContent=!bK.test(d.type),t&&f.active++===0&&f.event.trigger("ajaxStart");if(!d.hasContent){d.data&&(d.url+=(bM.test(d.url)?"&":"?")+d.data,delete d.data),k=d.url;if(d.cache===!1){var x=f.now(),y=d.url.replace(bQ,"$1_="+x);d.url=y+(y===d.url?(bM.test(d.url)?"&":"?")+"_="+x:"")}}(d.data&&d.hasContent&&d.contentType!==!1||c.contentType)&&v.setRequestHeader("Content-Type",d.contentType),d.ifModified&&(k=k||d.url,f.lastModified[k]&&v.setRequestHeader("If-Modified-Since",f.lastModified[k]),f.etag[k]&&v.setRequestHeader("If-None-Match",f.etag[k])),v.setRequestHeader("Accept",d.dataTypes[0]&&d.accepts[d.dataTypes[0]]?d.accepts[d.dataTypes[0]]+(d.dataTypes[0]!=="*"?", "+bX+"; q=0.01":""):d.accepts["*"]);for(u in d.headers)v.setRequestHeader(u,d.headers[u]);if(d.beforeSend&&(d.beforeSend.call(e,v,d)===!1||s===2)){v.abort();return!1}for(u in{success:1,error:1,complete:1})v[u](d[u]);p=b$(bU,d,c,v);if(!p)w(-1,"No Transport");else{v.readyState=1,t&&g.trigger("ajaxSend",[v,d]),d.async&&d.timeout>0&&(q=setTimeout(function(){v.abort("timeout")},d.timeout));try{s=1,p.send(l,w)}catch(z){if(s<2)w(-1,z);else throw z}}return v},param:function(a,c){var d=[],e=function(a,b){b=f.isFunction(b)?b():b,d[d.length]=encodeURIComponent(a)+"="+encodeURIComponent(b)};c===b&&(c=f.ajaxSettings.traditional);if(f.isArray(a)||a.jquery&&!f.isPlainObject(a))f.each(a,function(){e(this.name,this.value)});else for(var g in a)ca(g,a[g],c,e);return d.join("&").replace(bD,"+")}}),f.extend({active:0,lastModified:{},etag:{}});var cd=f.now(),ce=/(\=)\?(&|$)|\?\?/i;f.ajaxSetup({jsonp:"callback",jsonpCallback:function(){return f.expando+"_"+cd++}}),f.ajaxPrefilter("json jsonp",function(b,c,d){var e=b.contentType==="application/x-www-form-urlencoded"&&typeof b.data=="string";if(b.dataTypes[0]==="jsonp"||b.jsonp!==!1&&(ce.test(b.url)||e&&ce.test(b.data))){var g,h=b.jsonpCallback=f.isFunction(b.jsonpCallback)?b.jsonpCallback():b.jsonpCallback,i=a[h],j=b.url,k=b.data,l="$1"+h+"$2";b.jsonp!==!1&&(j=j.replace(ce,l),b.url===j&&(e&&(k=k.replace(ce,l)),b.data===k&&(j+=(/\?/.test(j)?"&":"?")+b.jsonp+"="+h))),b.url=j,b.data=k,a[h]=function(a){g=[a]},d.always(function(){a[h]=i,g&&f.isFunction(i)&&a[h](g[0])}),b.converters["script json"]=function(){g||f.error(h+" was not called");return g[0]},b.dataTypes[0]="json";return"script"}}),f.ajaxSetup({accepts:{script:"text/javascript, application/javascript, application/ecmascript, application/x-ecmascript"},contents:{script:/javascript|ecmascript/},converters:{"text script":function(a){f.globalEval(a);return a}}}),f.ajaxPrefilter("script",function(a){a.cache===b&&(a.cache=!1),a.crossDomain&&(a.type="GET",a.global=!1)}),f.ajaxTransport("script",function(a){if(a.crossDomain){var d,e=c.head||c.getElementsByTagName("head")[0]||c.documentElement;return{send:function(f,g){d=c.createElement("script"),d.async="async",a.scriptCharset&&(d.charset=a.scriptCharset),d.src=a.url,d.onload=d.onreadystatechange=function(a,c){if(c||!d.readyState||/loaded|complete/.test(d.readyState))d.onload=d.onreadystatechange=null,e&&d.parentNode&&e.removeChild(d),d=b,c||g(200,"success")},e.insertBefore(d,e.firstChild)},abort:function(){d&&d.onload(0,1)}}}});var cf=a.ActiveXObject?function(){for(var a in ch)ch[a](0,1)}:!1,cg=0,ch;f.ajaxSettings.xhr=a.ActiveXObject?function(){return!this.isLocal&&ci()||cj()}:ci,function(a){f.extend(f.support,{ajax:!!a,cors:!!a&&"withCredentials"in a})}(f.ajaxSettings.xhr()),f.support.ajax&&f.ajaxTransport(function(c){if(!c.crossDomain||f.support.cors){var d;return{send:function(e,g){var h=c.xhr(),i,j;c.username?h.open(c.type,c.url,c.async,c.username,c.password):h.open(c.type,c.url,c.async);if(c.xhrFields)for(j in c.xhrFields)h[j]=c.xhrFields[j];c.mimeType&&h.overrideMimeType&&h.overrideMimeType(c.mimeType),!c.crossDomain&&!e["X-Requested-With"]&&(e["X-Requested-With"]="XMLHttpRequest");try{for(j in e)h.setRequestHeader(j,e[j])}catch(k){}h.send(c.hasContent&&c.data||null),d=function(a,e){var j,k,l,m,n;try{if(d&&(e||h.readyState===4)){d=b,i&&(h.onreadystatechange=f.noop,cf&&delete ch[i]);if(e)h.readyState!==4&&h.abort();else{j=h.status,l=h.getAllResponseHeaders(),m={},n=h.responseXML,n&&n.documentElement&&(m.xml=n),m.text=h.responseText;try{k=h.statusText}catch(o){k=""}!j&&c.isLocal&&!c.crossDomain?j=m.text?200:404:j===1223&&(j=204)}}}catch(p){e||g(-1,p)}m&&g(j,k,m,l)},!c.async||h.readyState===4?d():(i=++cg,cf&&(ch||(ch={},f(a).unload(cf)),ch[i]=d),h.onreadystatechange=d)},abort:function(){d&&d(0,1)}}}});var ck={},cl,cm,cn=/^(?:toggle|show|hide)$/,co=/^([+\-]=)?([\d+.\-]+)([a-z%]*)$/i,cp,cq=[["height","marginTop","marginBottom","paddingTop","paddingBottom"],["width","marginLeft","marginRight","paddingLeft","paddingRight"],["opacity"]],cr;f.fn.extend({show:function(a,b,c){var d,e;if(a||a===0)return this.animate(cu("show",3),a,b,c);for(var g=0,h=this.length;g<h;g++)d=this[g],d.style&&(e=d.style.display,!f._data(d,"olddisplay")&&e==="none"&&(e=d.style.display=""),e===""&&f.css(d,"display")==="none"&&f._data(d,"olddisplay",cv(d.nodeName)));for(g=0;g<h;g++){d=this[g];if(d.style){e=d.style.display;if(e===""||e==="none")d.style.display=f._data(d,"olddisplay")||""}}return this},hide:function(a,b,c){if(a||a===0)return this.animate(cu("hide",3),a,b,c);var d,e,g=0,h=this.length;for(;g<h;g++)d=this[g],d.style&&(e=f.css(d,"display"),e!=="none"&&!f._data(d,"olddisplay")&&f._data(d,"olddisplay",e));for(g=0;g<h;g++)this[g].style&&(this[g].style.display="none");return this},_toggle:f.fn.toggle,toggle:function(a,b,c){var d=typeof a=="boolean";f.isFunction(a)&&f.isFunction(b)?this._toggle.apply(this,arguments):a==null||d?this.each(function(){var b=d?a:f(this).is(":hidden");f(this)[b?"show":"hide"]()}):this.animate(cu("toggle",3),a,b,c);return this},fadeTo:function(a,b,c,d){return this.filter(":hidden").css("opacity",0).show().end().animate({opacity:b},a,c,d)},animate:function(a,b,c,d){function g(){e.queue===!1&&f._mark(this);var b=f.extend({},e),c=this.nodeType===1,d=c&&f(this).is(":hidden"),g,h,i,j,k,l,m,n,o;b.animatedProperties={};for(i in a){g=f.camelCase(i),i!==g&&(a[g]=a[i],delete a[i]),h=a[g],f.isArray(h)?(b.animatedProperties[g]=h[1],h=a[g]=h[0]):b.animatedProperties[g]=b.specialEasing&&b.specialEasing[g]||b.easing||"swing";if(h==="hide"&&d||h==="show"&&!d)return b.complete.call(this);c&&(g==="height"||g==="width")&&(b.overflow=[this.style.overflow,this.style.overflowX,this.style.overflowY],f.css(this,"display")==="inline"&&f.css(this,"float")==="none"&&(!f.support.inlineBlockNeedsLayout||cv(this.nodeName)==="inline"?this.style.display="inline-block":this.style.zoom=1))}b.overflow!=null&&(this.style.overflow="hidden");for(i in a)j=new f.fx(this,b,i),h=a[i],cn.test(h)?(o=f._data(this,"toggle"+i)||(h==="toggle"?d?"show":"hide":0),o?(f._data(this,"toggle"+i,o==="show"?"hide":"show"),j[o]()):j[h]()):(k=co.exec(h),l=j.cur(),k?(m=parseFloat(k[2]),n=k[3]||(f.cssNumber[i]?"":"px"),n!=="px"&&(f.style(this,i,(m||1)+n),l=(m||1)/j.cur()*l,f.style(this,i,l+n)),k[1]&&(m=(k[1]==="-="?-1:1)*m+l),j.custom(l,m,n)):j.custom(l,h,""));return!0}var e=f.speed(b,c,d);if(f.isEmptyObject(a))return this.each(e.complete,[!1]);a=f.extend({},a);return e.queue===!1?this.each(g):this.queue(e.queue,g)},stop:function(a,c,d){typeof a!="string"&&(d=c,c=a,a=b),c&&a!==!1&&this.queue(a||"fx",[]);return this.each(function(){function h(a,b,c){var e=b[c];f.removeData(a,c,!0),e.stop(d)}var b,c=!1,e=f.timers,g=f._data(this);d||f._unmark(!0,this);if(a==null)for(b in g)g[b]&&g[b].stop&&b.indexOf(".run")===b.length-4&&h(this,g,b);else g[b=a+".run"]&&g[b].stop&&h(this,g,b);for(b=e.length;b--;)e[b].elem===this&&(a==null||e[b].queue===a)&&(d?e[b](!0):e[b].saveState(),c=!0,e.splice(b,1));(!d||!c)&&f.dequeue(this,a)})}}),f.each({slideDown:cu("show",1),slideUp:cu("hide",1),slideToggle:cu("toggle",1),fadeIn:{opacity:"show"},fadeOut:{opacity:"hide"},fadeToggle:{opacity:"toggle"}},function(a,b){f.fn[a]=function(a,c,d){return this.animate(b,a,c,d)}}),f.extend({speed:function(a,b,c){var d=a&&typeof a=="object"?f.extend({},a):{complete:c||!c&&b||f.isFunction(a)&&a,duration:a,easing:c&&b||b&&!f.isFunction(b)&&b};d.duration=f.fx.off?0:typeof d.duration=="number"?d.duration:d.duration in f.fx.speeds?f.fx.speeds[d.duration]:f.fx.speeds._default;if(d.queue==null||d.queue===!0)d.queue="fx";d.old=d.complete,d.complete=function(a){f.isFunction(d.old)&&d.old.call(this),d.queue?f.dequeue(this,d.queue):a!==!1&&f._unmark(this)};return d},easing:{linear:function(a,b,c,d){return c+d*a},swing:function(a,b,c,d){return(-Math.cos(a*Math.PI)/2+.5)*d+c}},timers:[],fx:function(a,b,c){this.options=b,this.elem=a,this.prop=c,b.orig=b.orig||{}}}),f.fx.prototype={update:function(){this.options.step&&this.options.step.call(this.elem,this.now,this),(f.fx.step[this.prop]||f.fx.step._default)(this)},cur:function(){if(this.elem[this.prop]!=null&&(!this.elem.style||this.elem.style[this.prop]==null))return this.elem[this.prop];var a,b=f.css(this.elem,this.prop);return isNaN(a=parseFloat(b))?!b||b==="auto"?0:b:a},custom:function(a,c,d){function h(a){return e.step(a)}var e=this,g=f.fx;this.startTime=cr||cs(),this.end=c,this.now=this.start=a,this.pos=this.state=0,this.unit=d||this.unit||(f.cssNumber[this.prop]?"":"px"),h.queue=this.options.queue,h.elem=this.elem,h.saveState=function(){e.options.hide&&f._data(e.elem,"fxshow"+e.prop)===b&&f._data(e.elem,"fxshow"+e.prop,e.start)},h()&&f.timers.push(h)&&!cp&&(cp=setInterval(g.tick,g.interval))},show:function(){var a=f._data(this.elem,"fxshow"+this.prop);this.options.orig[this.prop]=a||f.style(this.elem,this.prop),this.options.show=!0,a!==b?this.custom(this.cur(),a):this.custom(this.prop==="width"||this.prop==="height"?1:0,this.cur()),f(this.elem).show()},hide:function(){this.options.orig[this.prop]=f._data(this.elem,"fxshow"+this.prop)||f.style(this.elem,this.prop),this.options.hide=!0,this.custom(this.cur(),0)},step:function(a){var b,c,d,e=cr||cs(),g=!0,h=this.elem,i=this.options;if(a||e>=i.duration+this.startTime){this.now=this.end,this.pos=this.state=1,this.update(),i.animatedProperties[this.prop]=!0;for(b in i.animatedProperties)i.animatedProperties[b]!==!0&&(g=!1);if(g){i.overflow!=null&&!f.support.shrinkWrapBlocks&&f.each(["","X","Y"],function(a,b){h.style["overflow"+b]=i.overflow[a]}),i.hide&&f(h).hide();if(i.hide||i.show)for(b in i.animatedProperties)f.style(h,b,i.orig[b]),f.removeData(h,"fxshow"+b,!0),f.removeData(h,"toggle"+b,!0);d=i.complete,d&&(i.complete=!1,d.call(h))}return!1}i.duration==Infinity?this.now=e:(c=e-this.startTime,this.state=c/i.duration,this.pos=f.easing[i.animatedProperties[this.prop]](this.state,c,0,1,i.duration),this.now=this.start+(this.end-this.start)*this.pos),this.update();return!0}},f.extend(f.fx,{tick:function(){var a,b=f.timers,c=0;for(;c<b.length;c++)a=b[c],!a()&&b[c]===a&&b.splice(c--,1);b.length||f.fx.stop()},interval:13,stop:function(){clearInterval(cp),cp=null},speeds:{slow:600,fast:200,_default:400},step:{opacity:function(a){f.style(a.elem,"opacity",a.now)},_default:function(a){a.elem.style&&a.elem.style[a.prop]!=null?a.elem.style[a.prop]=a.now+a.unit:a.elem[a.prop]=a.now}}}),f.each(["width","height"],function(a,b){f.fx.step[b]=function(a){f.style(a.elem,b,Math.max(0,a.now)+a.unit)}}),f.expr&&f.expr.filters&&(f.expr.filters.animated=function(a){return f.grep(f.timers,function(b){return a===b.elem}).length});var cw=/^t(?:able|d|h)$/i,cx=/^(?:body|html)$/i;"getBoundingClientRect"in c.documentElement?f.fn.offset=function(a){var b=this[0],c;if(a)return this.each(function(b){f.offset.setOffset(this,a,b)});if(!b||!b.ownerDocument)return null;if(b===b.ownerDocument.body)return f.offset.bodyOffset(b);try{c=b.getBoundingClientRect()}catch(d){}var e=b.ownerDocument,g=e.documentElement;if(!c||!f.contains(g,b))return c?{top:c.top,left:c.left}:{top:0,left:0};var h=e.body,i=cy(e),j=g.clientTop||h.clientTop||0,k=g.clientLeft||h.clientLeft||0,l=i.pageYOffset||f.support.boxModel&&g.scrollTop||h.scrollTop,m=i.pageXOffset||f.support.boxModel&&g.scrollLeft||h.scrollLeft,n=c.top+l-j,o=c.left+m-k;return{top:n,left:o}}:f.fn.offset=function(a){var b=this[0];if(a)return this.each(function(b){f.offset.setOffset(this,a,b)});if(!b||!b.ownerDocument)return null;if(b===b.ownerDocument.body)return f.offset.bodyOffset(b);var c,d=b.offsetParent,e=b,g=b.ownerDocument,h=g.documentElement,i=g.body,j=g.defaultView,k=j?j.getComputedStyle(b,null):b.currentStyle,l=b.offsetTop,m=b.offsetLeft;while((b=b.parentNode)&&b!==i&&b!==h){if(f.support.fixedPosition&&k.position==="fixed")break;c=j?j.getComputedStyle(b,null):b.currentStyle,l-=b.scrollTop,m-=b.scrollLeft,b===d&&(l+=b.offsetTop,m+=b.offsetLeft,f.support.doesNotAddBorder&&(!f.support.doesAddBorderForTableAndCells||!cw.test(b.nodeName))&&(l+=parseFloat(c.borderTopWidth)||0,m+=parseFloat(c.borderLeftWidth)||0),e=d,d=b.offsetParent),f.support.subtractsBorderForOverflowNotVisible&&c.overflow!=="visible"&&(l+=parseFloat(c.borderTopWidth)||0,m+=parseFloat(c.borderLeftWidth)||0),k=c}if(k.position==="relative"||k.position==="static")l+=i.offsetTop,m+=i.offsetLeft;f.support.fixedPosition&&k.position==="fixed"&&(l+=Math.max(h.scrollTop,i.scrollTop),m+=Math.max(h.scrollLeft,i.scrollLeft));return{top:l,left:m}},f.offset={bodyOffset:function(a){var b=a.offsetTop,c=a.offsetLeft;f.support.doesNotIncludeMarginInBodyOffset&&(b+=parseFloat(f.css(a,"marginTop"))||0,c+=parseFloat(f.css(a,"marginLeft"))||0);return{top:b,left:c}},setOffset:function(a,b,c){var d=f.css(a,"position");d==="static"&&(a.style.position="relative");var e=f(a),g=e.offset(),h=f.css(a,"top"),i=f.css(a,"left"),j=(d==="absolute"||d==="fixed")&&f.inArray("auto",[h,i])>-1,k={},l={},m,n;j?(l=e.position(),m=l.top,n=l.left):(m=parseFloat(h)||0,n=parseFloat(i)||0),f.isFunction(b)&&(b=b.call(a,c,g)),b.top!=null&&(k.top=b.top-g.top+m),b.left!=null&&(k.left=b.left-g.left+n),"using"in b?b.using.call(a,k):e.css(k)}},f.fn.extend({position:function(){if(!this[0])return null;var a=this[0],b=this.offsetParent(),c=this.offset(),d=cx.test(b[0].nodeName)?{top:0,left:0}:b.offset();c.top-=parseFloat(f.css(a,"marginTop"))||0,c.left-=parseFloat(f.css(a,"marginLeft"))||0,d.top+=parseFloat(f.css(b[0],"borderTopWidth"))||0,d.left+=parseFloat(f.css(b[0],"borderLeftWidth"))||0;return{top:c.top-d.top,left:c.left-d.left}},offsetParent:function(){return this.map(function(){var a=this.offsetParent||c.body;while(a&&!cx.test(a.nodeName)&&f.css(a,"position")==="static")a=a.offsetParent;return a})}}),f.each(["Left","Top"],function(a,c){var d="scroll"+c;f.fn[d]=function(c){var e,g;if(c===b){e=this[0];if(!e)return null;g=cy(e);return g?"pageXOffset"in g?g[a?"pageYOffset":"pageXOffset"]:f.support.boxModel&&g.document.documentElement[d]||g.document.body[d]:e[d]}return this.each(function(){g=cy(this),g?g.scrollTo(a?f(g).scrollLeft():c,a?c:f(g).scrollTop()):this[d]=c})}}),f.each(["Height","Width"],function(a,c){var d=c.toLowerCase();f.fn["inner"+c]=function(){var a=this[0];return a?a.style?parseFloat(f.css(a,d,"padding")):this[d]():null},f.fn["outer"+c]=function(a){var b=this[0];return b?b.style?parseFloat(f.css(b,d,a?"margin":"border")):this[d]():null},f.fn[d]=function(a){var e=this[0];if(!e)return a==null?null:this;if(f.isFunction(a))return this.each(function(b){var c=f(this);c[d](a.call(this,b,c[d]()))});if(f.isWindow(e)){var g=e.document.documentElement["client"+c],h=e.document.body;return e.document.compatMode==="CSS1Compat"&&g||h&&h["client"+c]||g}if(e.nodeType===9)return Math.max(e.documentElement["client"+c],e.body["scroll"+c],e.documentElement["scroll"+c],e.body["offset"+c],e.documentElement["offset"+c]);if(a===b){var i=f.css(e,d),j=parseFloat(i);return f.isNumeric(j)?j:i}return this.css(d,typeof a=="string"?a:a+"px")}}),a.jQuery=a.$=f,typeof define=="function"&&define.amd&&define.amd.jQuery&&define("jquery",[],function(){return f})})(window);

OEBPS/Common_Content/fonts/overpass_bold-web.eot

OEBPS/Common_Content/fonts/portal/nimbus/iconfont.eot

OEBPS/Common_Content/fonts/redhat/text/RedHatText-MediumItalic.woff

OEBPS/Common_Content/scripts/highlight.js/CHANGES.md
Version 8.4

We've got the new [demo page][]! The obvious new feature is the new look, but
apart from that it's got smarter: by presenting languages in groups it avoids
running 10000 highlighting attempts after first load which was slowing it down
and giving bad overall impression. It is now also being generated from test
code snippets so the authors of new languages don't have to update both tests
and the demo page with the same thing.

Other notable changes:

- The `template_comment` class is gone in favor of the more general `comment`.
- Number parsing unified and improved across languages.
- C++, Java and C# now use unified grammar to highlight titles in
 function/method definitions.
- The browser build is now usable as an AMD module, there's no separate build
 target for that anymore.
- OCaml has got a [comprehensive overhaul][ocaml] by [Mickaël Delahaye][].
- Clojure's data structures and literals are now highlighted outside of lists
 and we can now highlight Clojure's REPL sessions.

New languages:

- *AspectJ* by [Hakan Özler][]
- *STEP Part 21* by [Adam Joseph Cook][]
- *SML* derived by [Edwin Dalorzo][] from OCaml definition
- *Mercury* by [mucaho][]
- *Smali* by [Dennis Titze][]
- *Verilog* by [Jon Evans][]
- *Stata* by [Brian Quistorff][]

[Hakan Özler]: https://github.com/ozlerhakan
[Adam Joseph Cook]: https://github.com/adamjcook
[demo page]: https://highlightjs.org/static/demo/
[Ivan Sagalaev]: https://github.com/isagalaev
[Edwin Dalorzo]: https://github.com/edalorzo
[mucaho]: https://github.com/mucaho
[Dennis Titze]: https://github.com/titze
[Jon Evans]: https://github.com/craftyjon
[Brian Quistorff]: https://github.com/bquistorff
[ocaml]: https://github.com/isagalaev/highlight.js/pull/608#issue-46190207
[Mickaël Delahaye]: https://github.com/polazarus

Version 8.3

We streamlined our tool chain, it is now based entirely on node.js instead of
being a mix of node.js, Python and Java. The build script options and arguments
remained the same, and we've noted all the changes in the [documentation][b].
Apart from reducing complexity, the new build script is also faster from not
having to start Java machine repeatedly. The credits for the work go to [Jeremy
Hull][].

Some notable fixes:

- PHP and JavaScript mixed in HTML now live happily with each other.
- JavaScript regexes now understand ES6 flags "u" and "y".
- `throw` keyword is no longer detected as a method name in Java.
- Fixed parsing of numbers and symbols in Clojure thanks to [input from Ivan
 Kleshnin][ik].

New languages in this release:

- *Less* by [Max Mikhailov][]
- *Stylus* by [Bryant Williams][]
- *Tcl* by [Radek Liska][]
- *Puppet* by [Jose Molina Colmenero][]
- *Processing* by [Erik Paluka][]
- *Twig* templates by [Luke Holder][]
- *PowerShell* by [David Mohundro][], based on [the work of Nicholas
 Blumhardt][ps]
- *XL* by [Christophe de Dinechin][]
- *LiveScript* by [Taneli Vatanen][] and [Jen Evers-Corvina][]
- *ERB* (Ruby in HTML) by [Lucas Mazza][]
- *Roboconf* by [Vincent Zurczak][]

[b]: http://highlightjs.readthedocs.org/en/latest/building-testing.html
[Jeremy Hull]: https://github.com/sourrust
[ik]: https://twitter.com/IvanKleshnin/status/514041599484231680
[Max Mikhailov]: https://github.com/seven-phases-max
[Bryant Williams]: https://github.com/scien
[Radek Liska]: https://github.com/Nindaleth
[Jose Molina Colmenero]: https://github.com/Moliholy
[Erik Paluka]: https://github.com/paluka
[Luke Holder]: https://github.com/lukeholder
[David Mohundro]: https://github.com/drmohundro
[ps]: https://github.com/OctopusDeploy/Library/blob/master/app/shared/presentation/highlighting/powershell.js
[Christophe de Dinechin]: https://github.com/c3d
[Taneli Vatanen]: https://github.com/Daiz-
[Jen Evers-Corvina]: https://github.com/sevvie
[Lucas Mazza]: https://github.com/lucasmazza
[Vincent Zurczak]: https://github.com/vincent-zurczak

Version 8.2

We've finally got [real tests][test] and [continuous testing on Travis][ci]
thanks to [Jeremy Hull][] and [Chris Eidhof][]. The tests designed to cover
everything: language detection, correct parsing of individual language features
and various special cases. This is a very important change that gives us
confidence in extending language definitions and refactoring library core.

We're going to redesign the old [demo/test suite][demo] into an interactive
demo web app. If you're confident front-end developer or designer and want to
help us with it, drop a comment into [the issue][#542] on GitHub.

[test]: https://github.com/isagalaev/highlight.js/tree/master/test
[demo]: https://highlightjs.org/static/test.html
[#542]: https://github.com/isagalaev/highlight.js/issues/542
[ci]: https://travis-ci.org/isagalaev/highlight.js
[Jeremy Hull]: https://github.com/sourrust
[Chris Eidhof]: https://github.com/chriseidhof

As usually there's a handful of new languages in this release:

- *Groovy* by [Guillaume Laforge][]
- *Dart* by [Maxim Dikun][]
- *Dust* by [Michael Allen][]
- *Scheme* by [JP Verkamp][]
- *G-Code* by [Adam Joseph Cook][]
- *Q* from Kx Systems by [Sergey Vidyuk][]

[Guillaume Laforge]: https://github.com/glaforge
[Maxim Dikun]: https://github.com/dikmax
[Michael Allen]: https://github.com/bfui
[JP Verkamp]: https://github.com/jpverkamp
[Adam Joseph Cook]: https://github.com/adamjcook
[Sergey Vidyuk]: https://github.com/sv

Other improvements:

- [Erik Osheim][] heavily reworked Scala definitions making it richer.
- [Lucas Mazza][] fixed Ruby hashes highlighting
- Lisp variants (Lisp, Clojure and Scheme) are unified in regard to naming
 the first symbol in parentheses: it's "keyword" in general case and also
 "built_in" for built-in functions in Clojure and Scheme.

[Erik Osheim]: https://github.com/non
[Lucas Mazza]: https://github.com/lucasmazza

Version 8.1

New languages:

- *Gherkin* by [Sam Pikesley][]
- *Elixir* by [Josh Adams][]
- *NSIS* by [Jan T. Sott][]
- *VIM script* by [Jun Yang][]
- *Protocol Buffers* by [Dan Tao][]
- *Nix* by [Domen Kožar][]
- *x86asm* by [innocenat][]
- *Cap’n Proto* and *Thrift* by [Oleg Efimov][]
- *Monkey* by [Arthur Bikmullin][]
- *TypeScript* by [Panu Horsmalahti][]
- *Nimrod* by [Flaviu Tamas][]
- *Gradle* by [Damian Mee][]
- *Haxe* by [Christopher Kaster][]
- *Swift* by [Chris Eidhof][] and [Nate Cook][]

New styles:

- *Kimbie*, light and dark variants by [Jan T. Sott][]
- *Color brewer* by [Fabrício Tavares de Oliveira][]
- *Codepen.io embed* by [Justin Perry][]
- *Hybrid* by [Nic West][]

[Sam Pikesley]: https://github.com/pikesley
[Sindre Sorhus]: https://github.com/sindresorhus
[Josh Adams]: https://github.com/knewter
[Jan T. Sott]: https://github.com/idleberg
[Jun Yang]: https://github.com/harttle
[Dan Tao]: https://github.com/dtao
[Domen Kožar]: https://github.com/iElectric
[innocenat]: https://github.com/innocenat
[Oleg Efimov]: https://github.com/Sannis
[Arthur Bikmullin]: https://github.com/devolonter
[Panu Horsmalahti]: https://github.com/panuhorsmalahti
[Flaviu Tamas]: https://github.com/flaviut
[Damian Mee]: https://github.com/chester1000
[Christopher Kaster]: http://christopher.kaster.ws
[Fabrício Tavares de Oliveira]: https://github.com/fabriciotav
[Justin Perry]: https://github.com/ourmaninamsterdam
[Nic West]: https://github.com/nicwest
[Chris Eidhof]: https://github.com/chriseidhof
[Nate Cook]: https://github.com/natecook1000

Other improvements:

- The README is heavily reworked and brought up to date by [Jeremy Hull][].
- Added [`listLanguages()`][ll] method in the API.
- Improved C/C++/C# detection.
- Added a bunch of new language aliases, documented the existing ones. Thanks to
 [Sindre Sorhus][] for background research.
- Added phrasal English words to boost relevance in comments.
- Many improvements to SQL definition made by [Heiko August][],
 [Nikolay Lisienko][] and [Travis Odom][].
- The shorter `lang-` prefix for language names in HTML classes supported
 alongside `language-`. Thanks to [Jeff Escalante][].
- Ruby's got support for interactive console sessions. Thanks to
 [Pascal Hurni][].
- Added built-in functions for R language. Thanks to [Artem A. Klevtsov][].
- Rust's got definition for lifetime parameters and improved string syntax.
 Thanks to [Roman Shmatov][].
- Various improvements to Objective-C definition by [Matt Diephouse][].
- Fixed highlighting of generics in Java.

[ll]: http://highlightjs.readthedocs.org/en/latest/api.html#listlanguages
[Sindre Sorhus]: https://github.com/sindresorhus
[Heiko August]: https://github.com/auge8472
[Nikolay Lisienko]: https://github.com/neor-ru
[Travis Odom]: https://github.com/Burstaholic
[Jeff Escalante]: https://github.com/jenius
[Pascal Hurni]: https://github.com/phurni
[Jiyin Yiyong]: https://github.com/jiyinyiyong
[Artem A. Klevtsov]: https://github.com/unikum
[Roman Shmatov]: https://github.com/shmatov
[Jeremy Hull]: https://github.com/sourrust
[Matt Diephouse]: https://github.com/mdiep

Version 8.0

This new major release is quite a big overhaul bringing both new features and
some backwards incompatible changes. However, chances are that the majority of
users won't be affected by the latter: the basic scenario described in the
README is left intact.

Here's what did change in an incompatible way:

- We're now prefixing all classes located in [CSS classes reference][cr] with
 `hljs-`, by default, because some class names would collide with other
 people's stylesheets. If you were using an older version, you might still want
 the previous behavior, but still want to upgrade. To suppress this new
 behavior, you would initialize like so:

  ```html
  <script type="text/javascript">
    hljs.configure({classPrefix: ''});
    hljs.initHighlightingOnLoad();
  </script>
  ```

- `tabReplace` and `useBR` that were used in different places are also unified
 into the global options object and are to be set using `configure(options)`.
 This function is documented in our [API docs][]. Also note that these
 parameters are gone from `highlightBlock` and `fixMarkup` which are now also
 rely on `configure`.

- We removed public-facing (though undocumented) object `hljs.LANGUAGES` which
 was used to register languages with the library in favor of two new methods:
 `registerLanguage` and `getLanguage`. Both are documented in our [API docs][].

- Result returned from `highlight` and `highlightAuto` no longer contains two
 separate attributes contributing to relevance score, `relevance` and
 `keyword_count`. They are now unified in `relevance`.

Another technically compatible change that nonetheless might need attention:

- The structure of the NPM package was refactored, so if you had installed it
 locally, you'll have to update your paths. The usual `require('highlight.js')`
 works as before. This is contributed by [Dmitry Smolin][].

New features:

- Languages now can be recognized by multiple names like "js" for JavaScript or
 "html" for, well, HTML (which earlier insisted on calling it "xml"). These
 aliases can be specified in the class attribute of the code container in your
 HTML as well as in various API calls. For now there are only a few very common
 aliases but we'll expand it in the future. All of them are listed in the
 [class reference][cr].

- Language detection can now be restricted to a subset of languages relevant in
 a given context — a web page or even a single highlighting call. This is
 especially useful for node.js build that includes all the known languages.
 Another example is a StackOverflow-style site where users specify languages
 as tags rather than in the markdown-formatted code snippets. This is
 documented in the [API reference][] (see methods `highlightAuto` and
 `configure`).

- Language definition syntax streamlined with [variants][] and
 [beginKeywords][].

New languages and styles:

- *Oxygene* by [Carlo Kok][]
- *Mathematica* by [Daniel Kvasnička][]
- *Autohotkey* by [Seongwon Lee][]
- *Atelier* family of styles in 10 variants by [Bram de Haan][]
- *Paraíso* styles by [Jan T. Sott][]

Miscellaneous improvements:

- Highlighting `=>` prompts in Clojure.
- [Jeremy Hull][] fixed a lot of styles for consistency.
- Finally, highlighting PHP and HTML [mixed in peculiar ways][php-html].
- Objective C and C# now properly highlight titles in method definition.
- Big overhaul of relevance counting for a number of languages. Please do report
 bugs about mis-detection of non-trivial code snippets!

[API reference]: http://highlightjs.readthedocs.org/en/latest/api.html

[cr]: http://highlightjs.readthedocs.org/en/latest/css-classes-reference.html
[api docs]: http://highlightjs.readthedocs.org/en/latest/api.html
[variants]: https://groups.google.com/d/topic/highlightjs/VoGC9-1p5vk/discussion
[beginKeywords]: https://github.com/isagalaev/highlight.js/commit/6c7fdea002eb3949577a85b3f7930137c7c3038d
[php-html]: https://twitter.com/highlightjs/status/408890903017689088

[Carlo Kok]: https://github.com/carlokok
[Bram de Haan]: https://github.com/atelierbram
[Daniel Kvasnička]: https://github.com/dkvasnicka
[Dmitry Smolin]: https://github.com/dimsmol
[Jeremy Hull]: https://github.com/sourrust
[Seongwon Lee]: https://github.com/dlimpid
[Jan T. Sott]: https://github.com/idleberg

Version 7.5

A catch-up release dealing with some of the accumulated contributions. This one
is probably will be the last before the 8.0 which will be slightly backwards
incompatible regarding some advanced use-cases.

One outstanding change in this version is the addition of 6 languages to the
[hosted script][d]: Markdown, ObjectiveC, CoffeeScript, Apache, Nginx and
Makefile. It now weighs about 6K more but we're going to keep it under 30K.

New languages:

- OCaml by [Mehdi Dogguy][mehdid] and [Nicolas Braud-Santoni][nbraud]
- [LiveCode Server][lcs] by [Ralf Bitter][revig]
- Scilab by [Sylvestre Ledru][sylvestre]
- basic support for Makefile by [Ivan Sagalaev][isagalaev]

Improvements:

- Ruby's got support for characters like `?A`, `?1`, `?\012` etc. and `%r{..}`
 regexps.
- Clojure now allows a function call in the beginning of s-expressions
 `(($filter "myCount") (arr 1 2 3 4 5))`.
- Haskell's got new keywords and now recognizes more things like pragmas,
 preprocessors, modules, containers, FFIs etc. Thanks to [Zena Treep][treep]
 for the implementation and to [Jeremy Hull][sourrust] for guiding it.
- Miscellaneous fixes in PHP, Brainfuck, SCSS, Asciidoc, CMake, Python and F#.

[mehdid]: https://github.com/mehdid
[nbraud]: https://github.com/nbraud
[revig]: https://github.com/revig
[lcs]: http://livecode.com/developers/guides/server/
[sylvestre]: https://github.com/sylvestre
[isagalaev]: https://github.com/isagalaev
[treep]: https://github.com/treep
[sourrust]: https://github.com/sourrust
[d]: http://highlightjs.org/download/

New core developers

The latest long period of almost complete inactivity in the project coincided
with growing interest to it led to a decision that now seems completely obvious:
we need more core developers.

So without further ado let me welcome to the core team two long-time
contributors: [Jeremy Hull][] and [Oleg
Efimov][].

Hope now we'll be able to work through stuff faster!

P.S. The historical commit is [here][1] for the record.

[Jeremy Hull]: https://github.com/sourrust
[Oleg Efimov]: https://github.com/sannis
[1]: https://github.com/isagalaev/highlight.js/commit/f3056941bda56d2b72276b97bc0dd5f230f2473f

Version 7.4

This long overdue version is a snapshot of the current source tree with all the
changes that happened during the past year. Sorry for taking so long!

Along with the changes in code highlight.js has finally got its new home at
<http://highlightjs.org/>, moving from its cradle on Software Maniacs which it
outgrew a long time ago. Be sure to report any bugs about the site to
<mailto:info@highlightjs.org>.

On to what's new…

New languages:

- Handlebars templates by [Robin Ward][]
- Oracle Rules Language by [Jason Jacobson][]
- F# by [Joans Follesø][]
- AsciiDoc and Haml by [Dan Allen][]
- Lasso by [Eric Knibbe][]
- SCSS by [Kurt Emch][]
- VB.NET by [Poren Chiang][]
- Mizar by [Kelley van Evert][]

[Robin Ward]: https://github.com/eviltrout
[Jason Jacobson]: https://github.com/jayce7
[Joans Follesø]: https://github.com/follesoe
[Dan Allen]: https://github.com/mojavelinux
[Eric Knibbe]: https://github.com/EricFromCanada
[Kurt Emch]: https://github.com/kemch
[Poren Chiang]: https://github.com/rschiang
[Kelley van Evert]: https://github.com/kelleyvanevert

New style themes:

- Monokai Sublime by [noformnocontent][]
- Railscasts by [Damien White][]
- Obsidian by [Alexander Marenin][]
- Docco by [Simon Madine][]
- Mono Blue by [Ivan Sagalaev][] (uses a single color hue for everything)
- Foundation by [Dan Allen][]

[noformnocontent]: http://nn.mit-license.org/
[Damien White]: https://github.com/visoft
[Alexander Marenin]: https://github.com/ioncreature
[Simon Madine]: https://github.com/thingsinjars
[Ivan Sagalaev]: https://github.com/isagalaev

Other notable changes:

- Corrected many corner cases in CSS.
- Dropped Python 2 version of the build tool.
- Implemented building for the AMD format.
- Updated Rust keywords (thanks to [Dmitry Medvinsky][]).
- Literal regexes can now be used in language definitions.
- CoffeeScript highlighting is now significantly more robust and rich due to
 input from [Cédric Néhémie][].

[Dmitry Medvinsky]: https://github.com/dmedvinsky
[Cédric Néhémie]: https://github.com/abe33

Version 7.3

- Since this version highlight.js no longer works in IE version 8 and older.
 It's made it possible to reduce the library size and dramatically improve code
 readability and made it easier to maintain. Time to go forward!

- New languages: AppleScript (by [Nathan Grigg][ng] and [Dr. Drang][dd]) and
 Brainfuck (by [Evgeny Stepanischev][bolk]).

- Improvements to existing languages:

 - interpreter prompt in Python (`>>>` and `...`)
 - @-properties and classes in CoffeeScript
 - E4X in JavaScript (by [Oleg Efimov][oe])
 - new keywords in Perl (by [Kirk Kimmel][kk])
 - big Ruby syntax update (by [Vasily Polovnyov][vast])
 - small fixes in Bash

- Also Oleg Efimov did a great job of moving all the docs for language and style
 developers and contributors from the old wiki under the source code in the
 "docs" directory. Now these docs are nicely presented at
 <http://highlightjs.readthedocs.org/>.

[ng]: https://github.com/nathan11g
[dd]: https://github.com/drdrang
[bolk]: https://github.com/bolknote
[oe]: https://github.com/Sannis
[kk]: https://github.com/kimmel
[vast]: https://github.com/vast

Version 7.2

A regular bug-fix release without any significant new features. Enjoy!

Version 7.1

A Summer crop:

- [Marc Fornos][mf] made the definition for Clojure along with the matching
 style Rainbow (which, of course, works for other languages too).
- CoffeeScript support continues to improve getting support for regular
 expressions.
- Yoshihide Jimbo ported to highlight.js [five Tomorrow styles][tm] from the
 [project by Chris Kempson][tm0].
- Thanks to [Casey Duncun][cd] the library can now be built in the popular
 [AMD format][amd].
- And last but not least, we've got a fair number of correctness and consistency
 fixes, including a pretty significant refactoring of Ruby.

[mf]: https://github.com/mfornos
[tm]: http://jmblog.github.com/color-themes-for-highlightjs/
[tm0]: https://github.com/ChrisKempson/Tomorrow-Theme
[cd]: https://github.com/caseman
[amd]: http://requirejs.org/docs/whyamd.html

Version 7.0

The reason for the new major version update is a global change of keyword syntax
which resulted in the library getting smaller once again. For example, the
hosted build is 2K less than at the previous version while supporting two new
languages.

Notable changes:

- The library now works not only in a browser but also with [node.js][]. It is
 installable with `npm install highlight.js`. [API][] docs are available on our
 wiki.

- The new unique feature (apparently) among syntax highlighters is highlighting
 HTTP headers and an arbitrary language in the request body. The most useful
 languages here are *XML* and *JSON* both of which highlight.js does support.
 Here's [the detailed post][p] about the feature.

- Two new style themes: a dark "south" *[Pojoaque][]* by Jason Tate and an
 emulation of*XCode* IDE by [Angel Olloqui][ao].

- Three new languages: *D* by [Aleksandar Ružičić][ar], *R* by [Joe Cheng][jc]
 and *GLSL* by [Sergey Tikhomirov][st].

- *Nginx* syntax has become a million times smaller and more universal thanks to
 remaking it in a more generic manner that doesn't require listing all the
 directives in the known universe.

- Function titles are now highlighted in *PHP*.

- *Haskell* and *VHDL* were significantly reworked to be more rich and correct
 by their respective maintainers [Jeremy Hull][sr] and [Igor Kalnitsky][ik].

And last but not least, many bugs have been fixed around correctness and
language detection.

Overall highlight.js currently supports 51 languages and 20 style themes.

[node.js]: http://nodejs.org/
[api]: http://softwaremaniacs.org/wiki/doku.php/highlight.js:api
[p]: http://softwaremaniacs.org/blog/2012/05/10/http-and-json-in-highlight-js/en/
[pojoaque]: http://web-cms-designs.com/ftopict-10-pojoaque-style-for-highlight-js-code-highlighter.html
[ao]: https://github.com/angelolloqui
[ar]: https://github.com/raleksandar
[jc]: https://github.com/jcheng5
[st]: https://github.com/tikhomirov
[sr]: https://github.com/sourrust
[ik]: https://github.com/ikalnitsky

Version 6.2

A lot of things happened in highlight.js since the last version! We've got nine
new contributors, the discussion group came alive, and the main branch on GitHub
now counts more than 350 followers. Here are most significant results coming
from all this activity:

- 5 (five!) new languages: Rust, ActionScript, CoffeeScript, MatLab and
 experimental support for markdown. Thanks go to [Andrey Vlasovskikh][av],
 [Alexander Myadzel][am], [Dmytrii Nagirniak][dn], [Oleg Efimov][oe], [Denis
 Bardadym][db] and [John Crepezzi][jc].

- 2 new style themes: Monokai by [Luigi Maselli][lm] and stylistic imitation of
 another well-known highlighter Google Code Prettify by [Aahan Krish][ak].

- A vast number of [correctness fixes and code refactorings][log], mostly made
 by [Oleg Efimov][oe] and [Evgeny Stepanischev][es].

[av]: https://github.com/vlasovskikh
[am]: https://github.com/myadzel
[dn]: https://github.com/dnagir
[oe]: https://github.com/Sannis
[db]: https://github.com/btd
[jc]: https://github.com/seejohnrun
[lm]: http://grigio.org/
[ak]: https://github.com/geekpanth3r
[es]: https://github.com/bolknote
[log]: https://github.com/isagalaev/highlight.js/commits/

Version 6.1 — Solarized

[Jeremy Hull][jh] has implemented my dream feature — a port of [Solarized][]
style theme famous for being based on the intricate color theory to achieve
correct contrast and color perception. It is now available for highlight.js in
both variants — light and dark.

This version also adds a new original style Arta. Its author pumbur maintains a
[heavily modified fork of highlight.js][pb] on GitHub.

[jh]: https://github.com/sourrust
[solarized]: http://ethanschoonover.com/solarized
[pb]: https://github.com/pumbur/highlight.js

Version 6.0

New major version of the highlighter has been built on a significantly
refactored syntax. Due to this it's even smaller than the previous one while
supporting more languages!

New languages are:

- Haskell by [Jeremy Hull][sourrust]
- Erlang in two varieties — module and REPL — made collectively by [Nikolay
 Zakharov][desh], [Dmitry Kovega][arhibot] and [Sergey Ignatov][ignatov]
- Objective C by [Valerii Hiora][vhbit]
- Vala by [Antono Vasiljev][antono]
- Go by [Stephan Kountso][steplg]

[sourrust]: https://github.com/sourrust
[desh]: http://desh.su/
[arhibot]: https://github.com/arhibot
[ignatov]: https://github.com/ignatov
[vhbit]: https://github.com/vhbit
[antono]: https://github.com/antono
[steplg]: https://github.com/steplg

Also this version is marginally faster and fixes a number of small long-standing
bugs.

Developer overview of the new language syntax is available in a [blog post about
recent beta release][beta].

[beta]: http://softwaremaniacs.org/blog/2011/04/25/highlight-js-60-beta/en/

P.S. New version is not yet available on a Yandex CDN, so for now you have to
download [your own copy][d].

[d]: /soft/highlight/en/download/

Version 5.14

Fixed bugs in HTML/XML detection and relevance introduced in previous
refactoring.

Also test.html now shows the second best result of language detection by
relevance.

Version 5.13

Past weekend began with a couple of simple additions for existing languages but
ended up in a big code refactoring bringing along nice improvements for language
developers.

For users

- Description of C++ has got new keywords from the upcoming [C++ 0x][] standard.
- Description of HTML has got new tags from [HTML 5][].
- CSS-styles have been unified to use consistent padding and also have lost
 pop-outs with names of detected languages.
- [Igor Kalnitsky][ik] has sent two new language descriptions: CMake & VHDL.

This makes total number of languages supported by highlight.js to reach 35.

Bug fixes:

- Custom classes on `<pre>` tags are not being overridden anymore
- More correct highlighting of code blocks inside non-`<pre>` containers:
 highlighter now doesn't insist on replacing them with its own container and
 just replaces the contents.
- Small fixes in browser compatibility and heuristics.

[c++ 0x]: http://ru.wikipedia.org/wiki/C%2B%2B0x
[html 5]: http://en.wikipedia.org/wiki/HTML5
[ik]: http://kalnitsky.org.ua/

For developers

The most significant change is the ability to include language submodes right
under `contains` instead of defining explicit named submodes in the main array:

 contains: [
 'string',
 'number',
 {begin: '\\n', end: hljs.IMMEDIATE_RE}
]

This is useful for auxiliary modes needed only in one place to define parsing.
Note that such modes often don't have `className` and hence won't generate a
separate `` in the resulting markup. This is similar in effect to
`noMarkup: true`. All existing languages have been refactored accordingly.

Test file test.html has at last become a real test. Now it not only puts the
detected language name under the code snippet but also tests if it matches the
expected one. Test summary is displayed right above all language snippets.

CDN

Fine people at [Yandex][] agreed to host highlight.js on their big fast servers.
[Link up][l]!

[yandex]: http://yandex.com/
[l]: http://softwaremaniacs.org/soft/highlight/en/download/

Version 5.10 — "Paris".

Though I'm on a vacation in Paris, I decided to release a new version with a
couple of small fixes:

- Tomas Vitvar discovered that TAB replacement doesn't always work when used
 with custom markup in code
- SQL parsing is even more rigid now and doesn't step over SmallTalk in tests

Version 5.9

A long-awaited version is finally released.

New languages:

- Andrew Fedorov made a definition for Lua
- a long-time highlight.js contributor [Peter Leonov][pl] made a definition for
 Nginx config
- [Vladimir Moskva][vm] made a definition for TeX

[pl]: http://kung-fu-tzu.ru/
[vm]: http://fulc.ru/

Fixes for existing languages:

- [Loren Segal][ls] reworked the Ruby definition and added highlighting for
 [YARD][] inline documentation
- the definition of SQL has become more solid and now it shouldn't be overly
 greedy when it comes to language detection

[ls]: http://gnuu.org/
[yard]: http://yardoc.org/

The highlighter has become more usable as a library allowing to do highlighting
from initialization code of JS frameworks and in ajax methods (see.
readme.eng.txt).

Also this version drops support for the [WordPress][wp] plugin. Everyone is
welcome to [pick up its maintenance][p] if needed.

[wp]: http://wordpress.org/
[p]: http://bazaar.launchpad.net/~isagalaev/+junk/highlight/annotate/342/src/wp_highlight.js.php

Version 5.8

- Jan Berkel has contributed a definition for Scala. +1 to hotness!
- All CSS-styles are rewritten to work only inside `<pre>` tags to avoid
 conflicts with host site styles.

Version 5.7.

Fixed escaping of quotes in VBScript strings.

Version 5.5

This version brings a small change: now .ini-files allow digits, underscores and
square brackets in key names.

Version 5.4

Fixed small but upsetting bug in the packer which caused incorrect highlighting
of explicitly specified languages. Thanks to Andrew Fedorov for precise
diagnostics!

Version 5.3

The version to fulfil old promises.

The most significant change is that highlight.js now preserves custom user
markup in code along with its own highlighting markup. This means that now it's
possible to use, say, links in code. Thanks to [Vladimir Dolzhenko][vd] for the
[initial proposal][1] and for making a proof-of-concept patch.

Also in this version:

- [Vasily Polovnyov][vp] has sent a GitHub-like style and has implemented
 support for CSS @-rules and Ruby symbols.
- Yura Zaripov has sent two styles: Brown Paper and School Book.
- Oleg Volchkov has sent a definition for [Parser 3][p3].

[1]: http://softwaremaniacs.org/forum/highlightjs/6612/
[p3]: http://www.parser.ru/
[vp]: http://vasily.polovnyov.ru/
[vd]: http://dolzhenko.blogspot.com/

Version 5.2

- at last it's possible to replace indentation TABs with something sensible
 (e.g. 2 or 4 spaces)
- new keywords and built-ins for 1C by Sergey Baranov
- a couple of small fixes to Apache highlighting

Version 5.1

This is one of those nice version consisting entirely of new and shiny
contributions!

- [Vladimir Ermakov][vooon] created highlighting for AVR Assembler
- [Ruslan Keba][rukeba] created highlighting for Apache config file. Also his
 original visual style for it is now available for all highlight.js languages
 under the name "Magula".
- [Shuen-Huei Guan][drake] (aka Drake) sent new keywords for RenderMan
 languages. Also thanks go to [Konstantin Evdokimenko][ke] for his advice on
 the matter.

[vooon]: http://vehq.ru/about/
[rukeba]: http://rukeba.com/
[drake]: http://drakeguan.org/
[ke]: http://k-evdokimenko.moikrug.ru/

Version 5.0

The main change in the new major version of highlight.js is a mechanism for
packing several languages along with the library itself into a single compressed
file. Now sites using several languages will load considerably faster because
the library won't dynamically include additional files while loading.

Also this version fixes a long-standing bug with Javascript highlighting that
couldn't distinguish between regular expressions and division operations.

And as usually there were a couple of minor correctness fixes.

Great thanks to all contributors! Keep using highlight.js.

Version 4.3

This version comes with two contributions from [Jason Diamond][jd]:

- language definition for C# (yes! it was a long-missed thing!)
- Visual Studio-like highlighting style

Plus there are a couple of minor bug fixes for parsing HTML and XML attributes.

[jd]: http://jason.diamond.name/weblog/

Version 4.2

The biggest news is highlighting for Lisp, courtesy of Vasily Polovnyov. It's
somewhat experimental meaning that for highlighting "keywords" it doesn't use
any pre-defined set of a Lisp dialect. Instead it tries to highlight first word
in parentheses wherever it makes sense. I'd like to ask people programming in
Lisp to confirm if it's a good idea and send feedback to [the forum][f].

Other changes:

- Smalltalk was excluded from DEFAULT_LANGUAGES to save traffic
- [Vladimir Epifanov][voldmar] has implemented javascript style switcher for
 test.html
- comments now allowed inside Ruby function definition
- [MEL][] language from [Shuen-Huei Guan][drake]
- whitespace now allowed between `<pre>` and `<code>`
- better auto-detection of C++ and PHP
- HTML allows embedded VBScript (`<% .. %>`)

[f]: http://softwaremaniacs.org/forum/highlightjs/
[voldmar]: http://voldmar.ya.ru/
[mel]: http://en.wikipedia.org/wiki/Maya_Embedded_Language
[drake]: http://drakeguan.org/

Version 4.1

Languages:

- Bash from Vah
- DOS bat-files from Alexander Makarov (Sam)
- Diff files from Vasily Polovnyov
- Ini files from myself though initial idea was from Sam

Styles:

- Zenburn from Vladimir Epifanov, this is an imitation of a
 [well-known theme for Vim][zenburn].
- Ascetic from myself, as a realization of ideals of non-flashy highlighting:
 just one color in only three gradations :-)

In other news. [One small bug][bug] was fixed, built-in keywords were added for
Python and C++ which improved auto-detection for the latter (it was shame that
[my wife's blog][alenacpp] had issues with it from time to time). And lastly
thanks go to Sam for getting rid of my stylistic comments in code that were
getting in the way of [JSMin][].

[zenburn]: http://en.wikipedia.org/wiki/Zenburn
[alenacpp]: http://alenacpp.blogspot.com/
[bug]: http://softwaremaniacs.org/forum/viewtopic.php?id=1823
[jsmin]: http://code.google.com/p/jsmin-php/

Version 4.0

New major version is a result of vast refactoring and of many contributions.

Visible new features:

- Highlighting of embedded languages. Currently is implemented highlighting of
 Javascript and CSS inside HTML.
- Bundled 5 ready-made style themes!

Invisible new features:

- Highlight.js no longer pollutes global namespace. Only one object and one
 function for backward compatibility.
- Performance is further increased by about 15%.

Changing of a major version number caused by a new format of language definition
files. If you use some third-party language files they should be updated.

Version 3.5

A very nice version in my opinion fixing a number of small bugs and slightly
increased speed in a couple of corner cases. Thanks to everybody who reports
bugs in he [forum][f] and by email!

There is also a new language — XML. A custom XML formerly was detected as HTML
and didn't highlight custom tags. In this version I tried to make custom XML to
be detected and highlighted by its own rules. Which by the way include such
things as CDATA sections and processing instructions (`<? ... ?>`).

[f]: http://softwaremaniacs.org/forum/viewforum.php?id=6

Version 3.3

[Vladimir Gubarkov][xonix] has provided an interesting and useful addition.
File export.html contains a little program that shows and allows to copy and
paste an HTML code generated by the highlighter for any code snippet. This can
be useful in situations when one can't use the script itself on a site.

[xonix]: http://xonixx.blogspot.com/

Version 3.2 consists completely of contributions:

- Vladimir Gubarkov has described SmallTalk
- Yuri Ivanov has described 1C
- Peter Leonov has packaged the highlighter as a Firefox extension
- Vladimir Ermakov has compiled a mod for phpBB

Many thanks to you all!

Version 3.1

Three new languages are available: Django templates, SQL and Axapta. The latter
two are sent by [Dmitri Roudakov][1]. However I've almost entirely rewrote an
SQL definition but I'd never started it be it from the ground up :-)

The engine itself has got a long awaited feature of grouping keywords
("keyword", "built-in function", "literal"). No more hacks!

[1]: http://roudakov.ru/

Version 3.0

It is major mainly because now highlight.js has grown large and has become
modular. Now when you pass it a list of languages to highlight it will
dynamically load into a browser only those languages.

Also:

- Konstantin Evdokimenko of [RibKit][] project has created a highlighting for
 RenderMan Shading Language and RenderMan Interface Bytestream. Yay for more
 languages!
- Heuristics for C++ and HTML got better.
- I've implemented (at last) a correct handling of backslash escapes in C-like
 languages.

There is also a small backwards incompatible change in the new version. The
function initHighlighting that was used to initialize highlighting instead of
initHighlightingOnLoad a long time ago no longer works. If you by chance still
use it — replace it with the new one.

[RibKit]: http://ribkit.sourceforge.net/

Version 2.9

Highlight.js is a parser, not just a couple of regular expressions. That said
I'm glad to announce that in the new version 2.9 has support for:

- in-string substitutions for Ruby -- `#{...}`
- strings from from numeric symbol codes (like #XX) for Delphi

Version 2.8

A maintenance release with more tuned heuristics. Fully backwards compatible.

Version 2.7

- Nikita Ledyaev presents highlighting for VBScript, yay!
- A couple of bugs with escaping in strings were fixed thanks to Mickle
- Ongoing tuning of heuristics

Fixed bugs were rather unpleasant so I encourage everyone to upgrade!

Version 2.4

- Peter Leonov provides another improved highlighting for Perl
- Javascript gets a new kind of keywords — "literals". These are the words
 "true", "false" and "null"

Also highlight.js homepage now lists sites that use the library. Feel free to
add your site by [dropping me a message][mail] until I find the time to build a
submit form.

[mail]: mailto:Maniac@SoftwareManiacs.Org

Version 2.3

This version fixes IE breakage in previous version. My apologies to all who have
already downloaded that one!

Version 2.2

- added highlighting for Javascript
- at last fixed parsing of Delphi's escaped apostrophes in strings
- in Ruby fixed highlighting of keywords 'def' and 'class', same for 'sub' in
 Perl

Version 2.0

- Ruby support by [Anton Kovalyov][ak]
- speed increased by orders of magnitude due to new way of parsing
- this same way allows now correct highlighting of keywords in some tricky
 places (like keyword "End" at the end of Delphi classes)

[ak]: http://anton.kovalyov.net/

Version 1.0

Version 1.0 of javascript syntax highlighter is released!

It's the first version available with English description. Feel free to post
your comments and question to [highlight.js forum][forum]. And don't be afraid
if you find there some fancy Cyrillic letters -- it's for Russian users too :-)

[forum]: http://softwaremaniacs.org/forum/viewforum.php?id=6

OEBPS/Common_Content/images/33.png

OEBPS/Common_Content/images/4.png

OEBPS/Common_Content/fonts/overpass_bold-web.woff

OEBPS/images/topics/bind_trans/images/decoupled.gif
Consumer

Provider

OEBPS/Common_Content/images/23.png

OEBPS/Common_Content/images/40.png

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-RegularItalic.woff2

OEBPS/images/topics/jaxws/images/context_over.gif

OEBPS/Common_Content/images/12.png

OEBPS/Common_Content/fonts/redhat/text/RedHatText-BoldItalic.eot

OEBPS/Common_Content/images/38.png

OEBPS/Common_Content/images/bkgrnd_greydots.png

OEBPS/Common_Content/fonts/redhat/text/RedHatText-BoldItalic.woff

OEBPS/Common_Content/images/8.png

OEBPS/Common_Content/icons/redhat-books-icons-a2efd68d1f13be356c9c4e5c29a64e69.woff

OEBPS/Common_Content/fonts/redhat/text/RedHatText-RegularItalic.woff

OEBPS/Common_Content/fonts/redhat/text/RedHatText-Regular.eot

OEBPS/Common_Content/images/h1-bg.png

OEBPS/images/topics/interceptors/images/interceptor1.png
handleMessage

handleFault

OEBPS/Common_Content/scripts/highlight.js/README.md
Highlight.js

[![Build Status](https://travis-ci.org/isagalaev/highlight.js.svg?branch=master)](https://travis-ci.org/isagalaev/highlight.js)

Highlight.js is a syntax highlighter written in JavaScript. It works in the
browser as well as on the server. It works with pretty much any markup,
doesn't depend on any framework and has automatic language detection.

Getting Started

The bare minimum for using highlight.js on a web page is linking to the library
along with one of the styles and calling [`initHighlightingOnLoad`][1]:

```html
<link rel="stylesheet" href="/path/to/styles/default.css">
<script src="/path/to/highlight.pack.js"></script>
<script>hljs.initHighlightingOnLoad();</script>
```

This will find and highlight code inside of `<pre><code>` tags trying to detect
the language automatically. If automatic detection doesn't work for you, you can
specify the language in the class attribute:

```html
<pre><code class="html">...</code></pre>
```

The list of supported language classes is available in the [class reference][8].
Classes can also be prefixed with either `language-` or `lang-`.

To disable highlighting altogether use the `nohighlight` class:

```html
<pre><code class="nohighlight">...</code></pre>
```

Custom Initialization

When you need a bit more control over the initialization of
highlight.js, you can use the [`highlightBlock`][2] and [`configure`][3]
functions. This allows you to control *what* to highlight and *when*.

Here's an equivalent way to calling [`initHighlightingOnLoad`][1] using jQuery:

```javascript
$(document).ready(function() {
  $('pre code').each(function(i, block) {
    hljs.highlightBlock(block);
  });
});
```

You can use any tags instead of `<pre><code>` to mark up your code. If you don't
use a container that preserve line breaks you will need to configure
highlight.js to use the `
` tag:

```javascript
hljs.configure({useBR: true});

$('div.code').each(function(i, block) {
  hljs.highlightBlock(block);
});
```

For other options refer to the documentation for [`configure`][3].

Getting the Library

You can get highlight.js as a hosted or custom-build browser script or as a
server module. Head over to the [download page][4] for all the options.

Note, that the library is not supposed to work straight from the source on
GitHub, it requires building. If none of the pre-packaged options work for you
refer to the [building documentation][5].

License

Highlight.js is released under the BSD License. See [LICENSE][10] file for
details.

Links

The official site for the library is at <https://highlightjs.org/>.

Further in-depth documentation for the API and other topics is at
<http://highlightjs.readthedocs.org/>.

Authors and contributors are listed in the [AUTHORS.en.txt][9] file.

[1]: http://highlightjs.readthedocs.org/en/latest/api.html#inithighlightingonload
[2]: http://highlightjs.readthedocs.org/en/latest/api.html#highlightblock-block
[3]: http://highlightjs.readthedocs.org/en/latest/api.html#configure-options
[4]: https://highlightjs.org/download/
[5]: http://highlightjs.readthedocs.org/en/latest/building-testing.html
[8]: http://highlightjs.readthedocs.org/en/latest/css-classes-reference.html
[9]: https://github.com/isagalaev/highlight.js/blob/master/AUTHORS.en.txt
[10]: https://github.com/isagalaev/highlight.js/blob/master/LICENSE

OEBPS/content.opf
 7.5_idm139728519915488 Apache CXF Development Guide 2023-07-24 Guide to developing Web services using Apache CXF. en

OEBPS/Common_Content/images/shine.png

OEBPS/Common_Content/images/shade.png

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-BoldItalic.woff2

OEBPS/Common_Content/images/36.png

OEBPS/Common_Content/images/stock-home.png

OEBPS/Common_Content/images/image_right.png

OEBPS/Common_Content/images/stock-go-up.png

OEBPS/Common_Content/images/red.png

OEBPS/Common_Content/images/32.png

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-RegularItalic.woff

OEBPS/Common_Content/icons/redhat-books-icons-a2efd68d1f13be356c9c4e5c29a64e69.ttf

OEBPS/Common_Content/scripts/highlight.js/styles/pojoaque.jpg

OEBPS/Common_Content/images/28.png

OEBPS/images/topics/images/ws-rm_overview.gif
Initial Sender

Ultimate Receiver

Application .ﬁ
Source

Ca

Application
Destination

Sond
Seiver
RM M
source | 24 D | estination
Transmit
L PE———
Acknowledae

OEBPS/Common_Content/images/3.png

OEBPS/Common_Content/scripts/highlight.js/styles/brown_papersq.png

OEBPS/Common_Content/fonts/redhat/text/RedHatText-BoldItalic.woff2

OEBPS/images/topics/rest/images/asyncresponse_01.gif
Request Threads

Asynchronous Processing

Executor Thread Pool

OEBPS/Common_Content/images/image_left.png
& RedHat

OEBPS/Common_Content/fonts/overpass_regular-web.ttf

OEBPS/Common_Content/images/16.png

OEBPS/images/topics/interceptors/images/jaxrs20filters_02.gif
—

Writelnterceptor

Request
——

Client invocation

/ ClientRequest

ClientResponse

Response

D —

priority order--------=---= -+ >

OEBPS/Common_Content/scripts/highlight.js/styles/school_book.png

OEBPS/Common_Content/images/13.png

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-BlackItalic.woff2

OEBPS/Common_Content/images/39.png

OEBPS/Common_Content/fonts/redhat/text/RedHatText-MediumItalic.eot

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-Medium.woff2

OEBPS/Common_Content/fonts/overpass_bold-web.ttf

OEBPS/Common_Content/images/bullet_arrowblue.png

OEBPS/Common_Content/fonts/portal/nimbus/iconfont.woff

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-Medium.eot

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-Black.eot

OEBPS/Common_Content/images/24.png

OEBPS/images/topics/interceptors/images/intercept.gif
Application
Logic

In Chain

Phase —s!

out Chain

Phase —

OEBPS/Common_Content/scripts/highlight.js/highlight.pack.js
/*! highlight.js v9.2.0 | BSD3 License | git.io/hljslicense */
!function(e){var n="object"==typeof window&&window||"object"==typeof self&&self;"undefined"!=typeof exports?e(exports):n&&(n.hljs=e({}),"function"==typeof define&&define.amd&&define([],function(){return n.hljs}))}(function(e){function n(e){return e.replace(/&/gm,"&").replace(/</gm,"<").replace(/>/gm,">")}function t(e){return e.nodeName.toLowerCase()}function r(e,n){var t=e&&e.exec(n);return t&&0==t.index}function a(e){return/^(no-?highlight|plain|text)$/i.test(e)}function i(e){var n,t,r,i=e.className+" ";if(i+=e.parentNode?e.parentNode.className:"",t=/\blang(?:uage)?-([\w-]+)\b/i.exec(i))return w(t[1])?t[1]:"no-highlight";for(i=i.split(/\s+/),n=0,r=i.length;r>n;n++)if(w(i[n])||a(i[n]))return i[n]}function o(e,n){var t,r={};for(t in e)r[t]=e[t];if(n)for(t in n)r[t]=n[t];return r}function u(e){var n=[];return function r(e,a){for(var i=e.firstChild;i;i=i.nextSibling)3==i.nodeType?a+=i.nodeValue.length:1==i.nodeType&&(n.push({event:"start",offset:a,node:i}),a=r(i,a),t(i).match(/br|hr|img|input/)||n.push({event:"stop",offset:a,node:i}));return a}(e,0),n}function c(e,r,a){function i(){return e.length&&r.length?e[0].offset!=r[0].offset?e[0].offset<r[0].offset?e:r:"start"==r[0].event?e:r:e.length?e:r}function o(e){function r(e){return" "+e.nodeName+'="'+n(e.value)+'"'}f+="<"+t(e)+Array.prototype.map.call(e.attributes,r).join("")+">"}function u(e){f+="</"+t(e)+">"}function c(e){("start"==e.event?o:u)(e.node)}for(var s=0,f="",l=[];e.length||r.length;){var g=i();if(f+=n(a.substr(s,g[0].offset-s)),s=g[0].offset,g==e){l.reverse().forEach(u);do c(g.splice(0,1)[0]),g=i();while(g==e&&g.length&&g[0].offset==s);l.reverse().forEach(o)}else"start"==g[0].event?l.push(g[0].node):l.pop(),c(g.splice(0,1)[0])}return f+n(a.substr(s))}function s(e){function n(e){return e&&e.source||e}function t(t,r){return new RegExp(n(t),"m"+(e.cI?"i":"")+(r?"g":""))}function r(a,i){if(!a.compiled){if(a.compiled=!0,a.k=a.k||a.bK,a.k){var u={},c=function(n,t){e.cI&&(t=t.toLowerCase()),t.split(" ").forEach(function(e){var t=e.split("|");u[t[0]]=[n,t[1]?Number(t[1]):1]})};"string"==typeof a.k?c("keyword",a.k):Object.keys(a.k).forEach(function(e){c(e,a.k[e])}),a.k=u}a.lR=t(a.l||/\b\w+\b/,!0),i&&(a.bK&&(a.b="\\b("+a.bK.split(" ").join("|")+")\\b"),a.b||(a.b=/\B|\b/),a.bR=t(a.b),a.e||a.eW||(a.e=/\B|\b/),a.e&&(a.eR=t(a.e)),a.tE=n(a.e)||"",a.eW&&i.tE&&(a.tE+=(a.e?"|":"")+i.tE)),a.i&&(a.iR=t(a.i)),void 0===a.r&&(a.r=1),a.c||(a.c=[]);var s=[];a.c.forEach(function(e){e.v?e.v.forEach(function(n){s.push(o(e,n))}):s.push("self"==e?a:e)}),a.c=s,a.c.forEach(function(e){r(e,a)}),a.starts&&r(a.starts,i);var f=a.c.map(function(e){return e.bK?"\\.?("+e.b+")\\.?":e.b}).concat([a.tE,a.i]).map(n).filter(Boolean);a.t=f.length?t(f.join("|"),!0):{exec:function(){return null}}}}r(e)}function f(e,t,a,i){function o(e,n){for(var t=0;t<n.c.length;t++)if(r(n.c[t].bR,e))return n.c[t]}function u(e,n){if(r(e.eR,n)){for(;e.endsParent&&e.parent;)e=e.parent;return e}return e.eW?u(e.parent,n):void 0}function c(e,n){return!a&&r(n.iR,e)}function g(e,n){var t=N.cI?n[0].toLowerCase():n[0];return e.k.hasOwnProperty(t)&&e.k[t]}function p(e,n,t,r){var a=r?"":E.classPrefix,i='<span class="'+a,o=t?"":"";return i+=e+'">',i+n+o}function h(){if(!k.k)return n(M);var e="",t=0;k.lR.lastIndex=0;for(var r=k.lR.exec(M);r;){e+=n(M.substr(t,r.index-t));var a=g(k,r);a?(B+=a[1],e+=p(a[0],n(r[0]))):e+=n(r[0]),t=k.lR.lastIndex,r=k.lR.exec(M)}return e+n(M.substr(t))}function d(){var e="string"==typeof k.sL;if(e&&!R[k.sL])return n(M);var t=e?f(k.sL,M,!0,y[k.sL]):l(M,k.sL.length?k.sL:void 0);return k.r>0&&(B+=t.r),e&&(y[k.sL]=t.top),p(t.language,t.value,!1,!0)}function b(){L+=void 0!==k.sL?d():h(),M=""}function v(e,n){L+=e.cN?p(e.cN,"",!0):"",k=Object.create(e,{parent:{value:k}})}function m(e,n){if(M+=e,void 0===n)return b(),0;var t=o(n,k);if(t)return t.skip?M+=n:(t.eB&&(M+=n),b(),t.rB||t.eB||(M=n)),v(t,n),t.rB?0:n.length;var r=u(k,n);if(r){var a=k;a.skip?M+=n:(a.rE||a.eE||(M+=n),b(),a.eE&&(M=n));do k.cN&&(L+=""),k.skip||(B+=k.r),k=k.parent;while(k!=r.parent);return r.starts&&v(r.starts,""),a.rE?0:n.length}if(c(n,k))throw new Error('Illegal lexeme "'+n+'" for mode "'+(k.cN||"<unnamed>")+'"');return M+=n,n.length||1}var N=w(e);if(!N)throw new Error('Unknown language: "'+e+'"');s(N);var x,k=i||N,y={},L="";for(x=k;x!=N;x=x.parent)x.cN&&(L=p(x.cN,"",!0)+L);var M="",B=0;try{for(var C,j,I=0;;){if(k.t.lastIndex=I,C=k.t.exec(t),!C)break;j=m(t.substr(I,C.index-I),C[0]),I=C.index+j}for(m(t.substr(I)),x=k;x.parent;x=x.parent)x.cN&&(L+="");return{r:B,value:L,language:e,top:k}}catch(O){if(-1!=O.message.indexOf("Illegal"))return{r:0,value:n(t)};throw O}}function l(e,t){t=t||E.languages||Object.keys(R);var r={r:0,value:n(e)},a=r;return t.forEach(function(n){if(w(n)){var t=f(n,e,!1);t.language=n,t.r>a.r&&(a=t),t.r>r.r&&(a=r,r=t)}}),a.language&&(r.second_best=a),r}function g(e){return E.tabReplace&&(e=e.replace(/^((<[^>]+>|\t)+)/gm,function(e,n){return n.replace(/\t/g,E.tabReplace)})),E.useBR&&(e=e.replace(/\n/g,"
")),e}function p(e,n,t){var r=n?x[n]:t,a=[e.trim()];return e.match(/\bhljs\b/)||a.push("hljs"),-1===e.indexOf(r)&&a.push(r),a.join(" ").trim()}function h(e){var n=i(e);if(!a(n)){var t;E.useBR?(t=document.createElementNS("http://www.w3.org/1999/xhtml","div"),t.innerHTML=e.innerHTML.replace(/\n/g,"").replace(/<br[\/]*>/g,"\n")):t=e;var r=t.textContent,o=n?f(n,r,!0):l(r),s=u(t);if(s.length){var h=document.createElementNS("http://www.w3.org/1999/xhtml","div");h.innerHTML=o.value,o.value=c(s,u(h),r)}o.value=g(o.value),e.innerHTML=o.value,e.className=p(e.className,n,o.language),e.result={language:o.language,re:o.r},o.second_best&&(e.second_best={language:o.second_best.language,re:o.second_best.r})}}function d(e){E=o(E,e)}function b(){if(!b.called){b.called=!0;var e=document.querySelectorAll("pre code");Array.prototype.forEach.call(e,h)}}function v(){addEventListener("DOMContentLoaded",b,!1),addEventListener("load",b,!1)}function m(n,t){var r=R[n]=t(e);r.aliases&&r.aliases.forEach(function(e){x[e]=n})}function N(){return Object.keys(R)}function w(e){return e=(e||"").toLowerCase(),R[e]||R[x[e]]}var E={classPrefix:"hljs-",tabReplace:null,useBR:!1,languages:void 0},R={},x={};return e.highlight=f,e.highlightAuto=l,e.fixMarkup=g,e.highlightBlock=h,e.configure=d,e.initHighlighting=b,e.initHighlightingOnLoad=v,e.registerLanguage=m,e.listLanguages=N,e.getLanguage=w,e.inherit=o,e.IR="[a-zA-Z]\\w*",e.UIR="[a-zA-Z_]\\w*",e.NR="\\b\\d+(\\.\\d+)?",e.CNR="(-?)(\\b0[xX][a-fA-F0-9]+|(\\b\\d+(\\.\\d*)?|\\.\\d+)([eE][-+]?\\d+)?)",e.BNR="\\b(0b[01]+)",e.RSR="!|!=|!==|%|%=|&|&&|&=|*|*=|\\+|\\+=|,|-|-=|/=|/|:|;|<<|<<=|<=|<|===|==|=|>>>=|>>=|>=|>>>|>>|>|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~",e.BE={b:"\\\\[\\s\\S]",r:0},e.ASM={cN:"string",b:"'",e:"'",i:"\\n",c:[e.BE]},e.QSM={cN:"string",b:'"',e:'"',i:"\\n",c:[e.BE]},e.PWM={b:/\b(a|an|the|are|I|I'm|isn't|don't|doesn't|won't|but|just|should|pretty|simply|enough|gonna|going|wtf|so|such|will|you|your|like)\b/},e.C=function(n,t,r){var a=e.inherit({cN:"comment",b:n,e:t,c:[]},r||{});return a.c.push(e.PWM),a.c.push({cN:"doctag",b:"(?:TODO|FIXME|NOTE|BUG|XXX):",r:0}),a},e.CLCM=e.C("//","$"),e.CBCM=e.C("/*","*/"),e.HCM=e.C("#","$"),e.NM={cN:"number",b:e.NR,r:0},e.CNM={cN:"number",b:e.CNR,r:0},e.BNM={cN:"number",b:e.BNR,r:0},e.CSSNM={cN:"number",b:e.NR+"(%|em|ex|ch|rem|vw|vh|vmin|vmax|cm|mm|in|pt|pc|px|deg|grad|rad|turn|s|ms|Hz|kHz|dpi|dpcm|dppx)?",r:0},e.RM={cN:"regexp",b:/\//,e:/\/[gimuy]*/,i:/\n/,c:[e.BE,{b:/\[/,e:/\]/,r:0,c:[e.BE]}]},e.TM={cN:"title",b:e.IR,r:0},e.UTM={cN:"title",b:e.UIR,r:0},e.METHOD_GUARD={b:"\\.\\s*"+e.UIR,r:0},e});hljs.registerLanguage("basic",function(E){return{cI:!0,i:"^.",l:"[a-zA-Z][a-zA-Z0-9_$%!#]*",k:{keyword:"ABS ASC AND ATN AUTO|0 BEEP BLOAD|10 BSAVE|10 CALL CALLS CDBL CHAIN CHDIR CHR$|10 CINT CIRCLE CLEAR CLOSE CLS COLOR COM COMMON CONT COS CSNG CSRLIN CVD CVI CVS DATA DATE$ DEFDBL DEFINT DEFSNG DEFSTR DEF|0 SEG USR DELETE DIM DRAW EDIT END ENVIRON ENVIRON$ EOF EQV ERASE ERDEV ERDEV$ ERL ERR ERROR EXP FIELD FILES FIX FOR|0 FRE GET GOSUB|10 GOTO HEX$ IF|0 THEN ELSE|0 INKEY$ INP INPUT INPUT# INPUT$ INSTR IMP INT IOCTL IOCTL$ KEY ON OFF LIST KILL LEFT$ LEN LET LINE LLIST LOAD LOC LOCATE LOF LOG LPRINT USING LSET MERGE MID$ MKDIR MKD$ MKI$ MKS$ MOD NAME NEW NEXT NOISE NOT OCT$ ON OR PEN PLAY STRIG OPEN OPTION BASE OUT PAINT PALETTE PCOPY PEEK PMAP POINT POKE POS PRINT PRINT] PSET PRESET PUT RANDOMIZE READ REM RENUM RESET|0 RESTORE RESUME RETURN|0 RIGHT$ RMDIR RND RSET RUN SAVE SCREEN SGN SHELL SIN SOUND SPACE$ SPC SQR STEP STICK STOP STR$ STRING$ SWAP SYSTEM TAB TAN TIME$ TIMER TROFF TRON TO USR VAL VARPTR VARPTR$ VIEW WAIT WHILE WEND WIDTH WINDOW WRITE XOR"},c:[E.QSM,E.C("REM","$",{r:10}),E.C("'","$",{r:0}),{cN:"symbol",b:"^[0-9]+ ",r:10},{cN:"number",b:"\\b([0-9]+[0-9edED.]*[#!]?)",r:0},{cN:"number",b:"(&[hH][0-9a-fA-F]{1,4})"},{cN:"number",b:"(&[oO][0-7]{1,6})"}]}});hljs.registerLanguage("vbnet",function(e){return{aliases:["vb"],cI:!0,k:{keyword:"addhandler addressof alias and andalso aggregate ansi as assembly auto binary by byref byval call case catch class compare const continue custom declare default delegate dim distinct do each equals else elseif end enum erase error event exit explicit finally for friend from function get global goto group handles if implements imports in inherits interface into is isfalse isnot istrue join key let lib like loop me mid mod module mustinherit mustoverride mybase myclass namespace narrowing new next not notinheritable notoverridable of off on operator option optional or order orelse overloads overridable overrides paramarray partial preserve private property protected public raiseevent readonly redim rem removehandler resume return select set shadows shared skip static step stop structure strict sub synclock take text then throw to try unicode until using when where while widening with withevents writeonly xor",built_in:"boolean byte cbool cbyte cchar cdate cdec cdbl char cint clng cobj csbyte cshort
csng cstr ctype date decimal directcast double gettype getxmlnamespace iif integer long object sbyte short single string trycast typeof uinteger ulong ushort",literal:"true false nothing"},i:"//|{|}|endif|gosub|variant|wend",c:[e.inherit(e.QSM,{c:[{b:'""'}]}),e.C("'","$",{rB:!0,c:[{cN:"doctag",b:"'''|<!--|-->",c:[e.PWM]},{cN:"doctag",b:"</?",e:">",c:[e.PWM]}]}),e.CNM,{cN:"meta",b:"#",e:"$",k:{"meta-keyword":"if else elseif end region externalsource"}}]}});hljs.registerLanguage("dockerfile",function(e){return{aliases:["docker"],cI:!0,k:"from maintainer cmd expose add copy entrypoint volume user workdir onbuild run env label",c:[e.HCM,{k:"run cmd entrypoint volume add copy workdir onbuild label",b:/^ *(onbuild +)?(run|cmd|entrypoint|volume|add|copy|workdir|label) +/,starts:{e:/[^\\]\n/,sL:"bash"}},{k:"from maintainer expose env user onbuild",b:/^ *(onbuild +)?(from|maintainer|expose|env|user|onbuild) +/,e:/[^\\]\n/,c:[e.ASM,e.QSM,e.NM,e.HCM]}]}});hljs.registerLanguage("php",function(e){var c={b:"\\$+[a-zA-Z_�-ÿ][a-zA-Z0-9_�-ÿ]*"},a={cN:"meta",b:/<\?(php)?|\?>/},i={cN:"string",c:[e.BE,a],v:[{b:'b"',e:'"'},{b:"b'",e:"'"},e.inherit(e.ASM,{i:null}),e.inherit(e.QSM,{i:null})]},t={v:[e.BNM,e.CNM]};return{aliases:["php3","php4","php5","php6"],cI:!0,k:"and include_once list abstract global private echo interface as static endswitch array null if endwhile or const for endforeach self var while isset public protected exit foreach throw elseif include __FILE__ empty require_once do xor return parent clone use __CLASS__ __LINE__ else break print eval new catch __METHOD__ case exception default die require __FUNCTION__ enddeclare final try switch continue endfor endif declare unset true false trait goto instanceof insteadof __DIR__ __NAMESPACE__ yield finally",c:[e.HCM,e.C("//","$",{c:[a]}),e.C("/*","*/",{c:[{cN:"doctag",b:"@[A-Za-z]+"}]}),e.C("__halt_compiler.+?;",!1,{eW:!0,k:"__halt_compiler",l:e.UIR}),{cN:"string",b:/<<<['"]?\w+['"]?$/,e:/^\w+;?$/,c:[e.BE,{cN:"subst",v:[{b:/\$\w+/},{b:/\{\$/,e:/\}/}]}]},a,c,{b:/(::|->)+[a-zA-Z_\x7f-\xff][a-zA-Z0-9_\x7f-\xff]*/},{cN:"function",bK:"function",e:/[;{]/,eE:!0,i:"\\$|\\[|%",c:[e.UTM,{cN:"params",b:"\\(",e:"\\)",c:["self",c,e.CBCM,i,t]}]},{cN:"class",bK:"class interface",e:"{",eE:!0,i:/[:\(\$"]/,c:[{bK:"extends implements"},e.UTM]},{bK:"namespace",e:";",i:/[\.']/,c:[e.UTM]},{bK:"use",e:";",c:[e.UTM]},{b:"=>"},i,t]}});hljs.registerLanguage("haml",function(s){return{cI:!0,c:[{cN:"meta",b:"^!!!((5|1\\.1|Strict|Frameset|Basic|Mobile|RDFa|XML\\b.*))?$",r:10},s.C("^\\s*(!=#|=#|-#|/).*$",!1,{r:0}),{b:"^\\s*(-|=|!=)(?!#)",starts:{e:"\\n",sL:"ruby"}},{cN:"tag",b:"^\\s*%",c:[{cN:"selector-tag",b:"\\w+"},{cN:"selector-id",b:"#[\\w-]+"},{cN:"selector-class",b:"\\.[\\w-]+"},{b:"{\\s*",e:"\\s*}",c:[{b:":\\w+\\s*=>",e:",\\s+",rB:!0,eW:!0,c:[{cN:"attr",b:":\\w+"},s.ASM,s.QSM,{b:"\\w+",r:0}]}]},{b:"\\(\\s*",e:"\\s*\\)",eE:!0,c:[{b:"\\w+\\s*=",e:"\\s+",rB:!0,eW:!0,c:[{cN:"attr",b:"\\w+",r:0},s.ASM,s.QSM,{b:"\\w+",r:0}]}]}]},{b:"^\\s*[=~]\\s*"},{b:"#{",starts:{e:"}",sL:"ruby"}}]}});hljs.registerLanguage("perl",function(e){var t="getpwent getservent quotemeta msgrcv scalar kill dbmclose undef lc ma syswrite tr send umask sysopen shmwrite vec qx utime local oct semctl localtime readpipe do return format read sprintf dbmopen pop getpgrp not getpwnam rewinddir qqfileno qw endprotoent wait sethostent bless s|0 opendir continue each sleep endgrent shutdown dump chomp connect getsockname die socketpair close flock exists index shmgetsub for endpwent redo lstat msgctl setpgrp abs exit select print ref gethostbyaddr unshift fcntl syscall goto getnetbyaddr join gmtime symlink semget splice x|0 getpeername recv log setsockopt cos last reverse gethostbyname getgrnam study formline endhostent times chop length gethostent getnetent pack getprotoent getservbyname rand mkdir pos chmod y|0 substr endnetent printf next open msgsnd readdir use unlink getsockopt getpriority rindex wantarray hex system getservbyport endservent int chr untie rmdir prototype tell listen fork shmread ucfirst setprotoent else sysseek link getgrgid shmctl waitpid unpack getnetbyname reset chdir grep split require caller lcfirst until warn while values shift telldir getpwuid my getprotobynumber delete and sort uc defined srand accept package seekdir getprotobyname semop our rename seek if q|0 chroot sysread setpwent no crypt getc chown sqrt write setnetent setpriority foreach tie sin msgget map stat getlogin unless elsif truncate exec keys glob tied closedirioctl socket readlink eval xor readline binmode setservent eof ord bind alarm pipe atan2 getgrent exp time push setgrent gt lt or ne m|0 break given say state when",r={cN:"subst",b:"[$@]\\{",e:"\\}",k:t},s={b:"->{",e:"}"},n={v:[{b:/\$\d/},{b:/[\$%@](\^\w\b|#\w+(::\w+)*|{\w+}|\w+(::\w*)*)/},{b:/[\$%@][^\s\w{]/,r:0}]},i=[e.BE,r,n],o=[n,e.HCM,e.C("^\\=\\w","\\=cut",{eW:!0}),s,{cN:"string",c:i,v:[{b:"q[qwxr]?\\s*\\(",e:"\\)",r:5},{b:"q[qwxr]?\\s*\\[",e:"\\]",r:5},{b:"q[qwxr]?\\s*\\{",e:"\\}",r:5},{b:"q[qwxr]?\\s*\\|",e:"\\|",r:5},{b:"q[qwxr]?\\s*\\<",e:"\\>",r:5},{b:"qw\\s+q",e:"q",r:5},{b:"'",e:"'",c:[e.BE]},{b:'"',e:'"'},{b:"`",e:"`",c:[e.BE]},{b:"{\\w+}",c:[],r:0},{b:"-?\\w+\\s*\\=\\>",c:[],r:0}]},{cN:"number",b:"(\\b0[0-7_]+)|(\\b0x[0-9a-fA-F_]+)|(\\b[1-9][0-9_]*(\\.[0-9_]+)?)|[0_]\\b",r:0},{b:"(\\/\\/|"+e.RSR+"|\\b(split|return|print|reverse|grep)\\b)\\s*",k:"split return print reverse grep",r:0,c:[e.HCM,{cN:"regexp",b:"(s|tr|y)/(\\\\.|[^/])*/(\\\\.|[^/])*/[a-z]*",r:10},{cN:"regexp",b:"(m|qr)?/",e:"/[a-z]*",c:[e.BE],r:0}]},{cN:"function",bK:"sub",e:"(\\s*\\(.*?\\))?[;{]",eE:!0,r:5,c:[e.TM]},{b:"-\\w\\b",r:0},{b:"^__DATA__$",e:"^__END__$",sL:"mojolicious",c:[{b:"^@@.*",e:"$",cN:"comment"}]}];return r.c=o,s.c=o,{aliases:["pl"],k:t,c:o}});hljs.registerLanguage("accesslog",function(T){return{c:[{cN:"number",b:"\\b\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}(:\\d{1,5})?\\b"},{cN:"number",b:"\\b\\d+\\b",r:0},{cN:"string",b:'"(GET|POST|HEAD|PUT|DELETE|CONNECT|OPTIONS|PATCH|TRACE)',e:'"',k:"GET POST HEAD PUT DELETE CONNECT OPTIONS PATCH TRACE",i:"\\n",r:10},{cN:"string",b:/\[/,e:/\]/,i:"\\n"},{cN:"string",b:'"',e:'"',i:"\\n"}]}});hljs.registerLanguage("d",function(e){var t={keyword:"abstract alias align asm assert auto body break byte case cast catch class const continue debug default delete deprecated do else enum export extern final finally for foreach foreach_reverse|10 goto if immutable import in inout int interface invariant is lazy macro mixin module new nothrow out override package pragma private protected public pure ref return scope shared static struct super switch synchronized template this throw try typedef typeid typeof union unittest version void volatile while with __FILE__ __LINE__ __gshared|10 __thread __traits __DATE__ __EOF__ __TIME__ __TIMESTAMP__ __VENDOR__ __VERSION__",built_in:"bool cdouble cent cfloat char creal dchar delegate double dstring float function idouble ifloat ireal long real short string ubyte ucent uint ulong ushort wchar wstring",literal:"false null true"},r="(0|[1-9][\\d_]*)",a="(0|[1-9][\\d_]*|\\d[\\d_]*|[\\d_]+?\\d)",i="0[bB][01_]+",n="([\\da-fA-F][\\da-fA-F_]*|_[\\da-fA-F][\\da-fA-F_]*)",_="0[xX]"+n,c="([eE][+-]?"+a+")",d="("+a+"(\\.\\d*|"+c+")|\\d+\\."+a+a+"|\\."+r+c+"?)",o="(0[xX]("+n+"\\."+n+"|\\.?"+n+")[pP][+-]?"+a+")",s="("+r+"|"+i+"|"+_+")",l="("+o+"|"+d+")",u="\\\\(['\"\\?\\\\abfnrtv]|u[\\dA-Fa-f]{4}|[0-7]{1,3}|x[\\dA-Fa-f]{2}|U[\\dA-Fa-f]{8})|&[a-zA-Z\\d]{2,};",b={cN:"number",b:"\\b"+s+"(L|u|U|Lu|LU|uL|UL)?",r:0},f={cN:"number",b:"\\b("+l+"([fF]|L|i|[fF]i|Li)?|"+s+"(i|[fF]i|Li))",r:0},g={cN:"string",b:"'("+u+"|.)",e:"'",i:"."},h={b:u,r:0},p={cN:"string",b:'"',c:[h],e:'"[cwd]?'},m={cN:"string",b:'[rq]"',e:'"[cwd]?',r:5},w={cN:"string",b:"`",e:"`[cwd]?"},N={cN:"string",b:'x"[\\da-fA-F\\s\\n\\r]*"[cwd]?',r:10},A={cN:"string",b:'q"\\{',e:'\\}"'},F={cN:"meta",b:"^#!",e:"$",r:5},y={cN:"meta",b:"#(line)",e:"$",r:5},L={cN:"keyword",b:"@[a-zA-Z_][a-zA-Z_\\d]*"},v=e.C("\\/\\+","\\+\\/",{c:["self"],r:10});return{l:e.UIR,k:t,c:[e.CLCM,e.CBCM,v,N,p,m,w,A,f,b,g,F,y,L]}});hljs.registerLanguage("csp",function(r){return{cI:!1,l:"[a-zA-Z][a-zA-Z0-9_-]*",k:{keyword:"base-uri child-src connect-src default-src font-src form-action frame-ancestors frame-src img-src media-src object-src plugin-types report-uri sandbox script-src style-src"},c:[{cN:"string",b:"'",e:"'"},{cN:"attribute",b:"^Content",e:":",eE:!0}]}});hljs.registerLanguage("apache",function(e){var r={cN:"number",b:"[\\$%]\\d+"};return{aliases:["apacheconf"],cI:!0,c:[e.HCM,{cN:"section",b:"</?",e:">"},{cN:"attribute",b:/\w+/,r:0,k:{nomarkup:"order deny allow setenv rewriterule rewriteengine rewritecond documentroot sethandler errordocument loadmodule options header listen serverroot servername"},starts:{e:/$/,r:0,k:{literal:"on off all"},c:[{cN:"meta",b:"\\s\\[",e:"\\]$"},{cN:"variable",b:"[\\$%]\\{",e:"\\}",c:["self",r]},r,e.QSM]}}],i:/\S/}});hljs.registerLanguage("prolog",function(c){var b={b:/[a-z][A-Za-z0-9_]*/,r:0},r={cN:"symbol",v:[{b:/[A-Z][a-zA-Z0-9_]*/},{b:/_[A-Za-z0-9_]*/}],r:0},e={b:/\(/,e:/\)/,r:0},n={b:/\[/,e:/\]/},a={cN:"comment",b:/%/,e:/$/,c:[c.PWM]},t={cN:"string",b:/`/,e:/`/,c:[c.BE]},g={cN:"string",b:/0\'(\\\'|.)/},s={cN:"string",b:/0\'\\s/},o={b:/:-/},N=[b,r,e,o,n,a,c.CBCM,c.QSM,c.ASM,t,g,s,c.CNM];return e.c=N,n.c=N,{c:N.concat([{b:/\.$/}])}});hljs.registerLanguage("lisp",function(b){var e="[a-zA-Z_\\-\\+*\\/\\<\\=\\>\\&\\#][a-zA-Z0-9_\\-\\+*\\/\\<\\=\\>\\&\\#!]*",c="\\|[^]*?\\|",r="(\\-|\\+)?\\d+(\\.\\d+|\\/\\d+)?((d|e|f|l|s|D|E|F|L|S)(\\+|\\-)?\\d+)?",a={cN:"meta",b:"^#!",e:"$"},l={cN:"literal",b:"\\b(t{1}|nil)\\b"},n={cN:"number",v:[{b:r,r:0},{b:"#(b|B)[0-1]+(/[0-1]+)?"},{b:"#(o|O)[0-7]+(/[0-7]+)?"},{b:"#(x|X)[0-9a-fA-F]+(/[0-9a-fA-F]+)?"},{b:"#(c|C)\\("+r+" +"+r,e:"\\)"}]},i=b.inherit(b.QSM,{i:null}),t=b.C(";","$",{r:0}),s={b:"*",e:"*"},u={cN:"symbol",b:"[:&]"+e},d={b:e,r:0},f={b:c},m={b:"\\(",e:"\\)",c:["self",l,i,n,d]},o={c:[n,i,s,u,m,d],v:[{b:"['`]\\(",e:"\\)"},{b:"\\(quote
",e:"\\)",k:{name:"quote"}},{b:"'"+c}]},v={v:[{b:"'"+e},{b:"#'"+e+"(::"+e+")*"}]},N={b:"\\(\\s*",e:"\\)"},A={eW:!0,r:0};return N.c=[{cN:"name",v:[{b:e},{b:c}]},A],A.c=[o,v,N,l,n,i,t,s,u,f,d],{i:/\S/,c:[n,a,l,i,t,o,v,N,d]}});hljs.registerLanguage("swift",function(e){var i={keyword:"__COLUMN__ __FILE__ __FUNCTION__ __LINE__ as as! as? associativity break case catch class continue convenience default defer deinit didSet do dynamic dynamicType else enum extension fallthrough false final for func get guard if import in indirect infix init inout internal is lazy left let mutating nil none nonmutating operator optional override postfix precedence prefix private protocol Protocol public repeat required rethrows return right self Self set static struct subscript super switch throw throws true try try! try? Type typealias unowned var weak where while willSet",literal:"true false nil",built_in:"abs advance alignof alignofValue anyGenerator assert assertionFailure bridgeFromObjectiveC bridgeFromObjectiveCUnconditional bridgeToObjectiveC bridgeToObjectiveCUnconditional c contains count countElements countLeadingZeros debugPrint debugPrintln distance dropFirst dropLast dump encodeBitsAsWords enumerate equal fatalError filter find getBridgedObjectiveCType getVaList indices insertionSort isBridgedToObjectiveC isBridgedVerbatimToObjectiveC isUniquelyReferenced isUniquelyReferencedNonObjC join lazy lexicographicalCompare map max maxElement min minElement numericCast overlaps partition posix precondition preconditionFailure print println quickSort readLine reduce reflect reinterpretCast reverse roundUpToAlignment sizeof sizeofValue sort split startsWith stride strideof strideofValue swap toString transcode underestimateCount unsafeAddressOf unsafeBitCast unsafeDowncast unsafeUnwrap unsafeReflect withExtendedLifetime withObjectAtPlusZero withUnsafePointer withUnsafePointerToObject withUnsafeMutablePointer withUnsafeMutablePointers withUnsafePointer withUnsafePointers withVaList zip"},t={cN:"type",b:"\\b[A-Z][\\w']*",r:0},n=e.C("/*","*/",{c:["self"]}),r={cN:"subst",b:/\\\(/,e:"\\)",k:i,c:[]},a={cN:"number",b:"\\b([\\d_]+(\\.[\\deE_]+)?|0x[a-fA-F0-9_]+(\\.[a-fA-F0-9p_]+)?|0b[01_]+|0o[0-7_]+)\\b",r:0},o=e.inherit(e.QSM,{c:[r,e.BE]});return r.c=[a],{k:i,c:[o,e.CLCM,n,t,a,{cN:"function",bK:"func",e:"{",eE:!0,c:[e.inherit(e.TM,{b:/[A-Za-z$_][0-9A-Za-z$_]*/,i:/\(/}),{b:/</,e:/>/,i:/>/},{cN:"params",b:/\(/,e:/\)/,endsParent:!0,k:i,c:["self",a,o,e.CBCM,{b:":"}],i:/["']/}],i:/\[|%/},{cN:"class",bK:"struct protocol class extension enum",k:i,e:"\\{",eE:!0,c:[e.inherit(e.TM,{b:/[A-Za-z$_][0-9A-Za-z$_]*/})]},{cN:"meta",b:"(@warn_unused_result|@exported|@lazy|@noescape|@NSCopying|@NSManaged|@objc|@convention|@required|@noreturn|@IBAction|@IBDesignable|@IBInspectable|@IBOutlet|@infix|@prefix|@postfix|@autoclosure|@testable|@available|@nonobjc|@NSApplicationMain|@UIApplicationMain)"},{bK:"import",e:/$/,c:[e.CLCM,n]}]}});hljs.registerLanguage("java",function(e){var a=e.UIR+"(<"+e.UIR+"(\\s*,\\s*"+e.UIR+")*>)?",t="false synchronized int abstract float private char boolean static null if const for true while long strictfp finally protected import native final void enum else break transient catch instanceof byte super volatile case assert short package default double public try this switch continue throws protected public private",r="\\b(0[bB]([01]+[01_]+[01]+|[01]+)|0[xX]([a-fA-F0-9]+[a-fA-F0-9_]+[a-fA-F0-9]+|[a-fA-F0-9]+)|(([\\d]+[\\d_]+[\\d]+|[\\d]+)(\\.([\\d]+[\\d_]+[\\d]+|[\\d]+))?|\\.([\\d]+[\\d_]+[\\d]+|[\\d]+))([eE][-+]?\\d+)?)[lLfF]?",c={cN:"number",b:r,r:0};return{aliases:["jsp"],k:t,i:/<\/|#/,c:[e.C("/**","*/",{r:0,c:[{b:/\w+@/,r:0},{cN:"doctag",b:"@[A-Za-z]+"}]}),e.CLCM,e.CBCM,e.ASM,e.QSM,{cN:"class",bK:"class interface",e:/[{;=]/,eE:!0,k:"class interface",i:/[:"\[\]]/,c:[{bK:"extends implements"},e.UTM]},{bK:"new throw return else",r:0},{cN:"function",b:"("+a+"\\s+)+"+e.UIR+"\\s*\\(",rB:!0,e:/[{;=]/,eE:!0,k:t,c:[{b:e.UIR+"\\s*\\(",rB:!0,r:0,c:[e.UTM]},{cN:"params",b:/\(/,e:/\)/,k:t,r:0,c:[e.ASM,e.QSM,e.CNM,e.CBCM]},e.CLCM,e.CBCM]},c,{cN:"meta",b:"@[A-Za-z]+"}]}});hljs.registerLanguage("objectivec",function(e){var t={cN:"built_in",b:"(AV|CA|CF|CG|CI|MK|MP|NS|UI|XC)\\w+"},i={keyword:"int float while char export sizeof typedef const struct for union unsigned long volatile static bool mutable if do return goto void enum else break extern asm case short default double register explicit signed typename this switch continue wchar_t inline readonly assign readwrite self @synchronized id typeof nonatomic super unichar IBOutlet IBAction strong weak copy in out inout bycopy byref oneway __strong __weak __block __autoreleasing @private @protected @public @try @property @end @throw @catch @finally @autoreleasepool @synthesize @dynamic @selector @optional @required",literal:"false true FALSE TRUE nil YES NO NULL",built_in:"BOOL dispatch_once_t dispatch_queue_t dispatch_sync dispatch_async dispatch_once"},n=/[a-zA-Z@][a-zA-Z0-9_]*/,o="@interface @class @protocol @implementation";return{aliases:["mm","objc","obj-c"],k:i,l:n,i:"</",c:[t,e.CLCM,e.CBCM,e.CNM,e.QSM,{cN:"string",v:[{b:'@"',e:'"',i:"\\n",c:[e.BE]},{b:"'",e:"[^\\\\]'",i:"[^\\\\][^']"}]},{cN:"meta",b:"#",e:"$",c:[{cN:"meta-string",v:[{b:'"',e:'"'},{b:"<",e:">"}]}]},{cN:"class",b:"("+o.split(" ").join("|")+")\\b",e:"({|$)",eE:!0,k:o,l:n,c:[e.UTM]},{b:"\\."+e.UIR,r:0}]}});hljs.registerLanguage("json",function(e){var i={literal:"true false null"},n=[e.QSM,e.CNM],r={e:",",eW:!0,eE:!0,c:n,k:i},t={b:"{",e:"}",c:[{cN:"attr",b:/"/,e:/"/,c:[e.BE],i:"\\n"},e.inherit(r,{b:/:/})],i:"\\S"},c={b:"\\[",e:"\\]",c:[e.inherit(r)],i:"\\S"};return n.splice(n.length,0,t,c),{c:n,k:i,i:"\\S"}});hljs.registerLanguage("cmake",function(e){return{aliases:["cmake.in"],cI:!0,k:{keyword:"add_custom_command add_custom_target add_definitions add_dependencies add_executable add_library add_subdirectory add_test aux_source_directory break build_command cmake_minimum_required cmake_policy configure_file create_test_sourcelist define_property else elseif enable_language enable_testing endforeach endfunction endif endmacro endwhile execute_process export find_file find_library find_package find_path find_program fltk_wrap_ui foreach function get_cmake_property get_directory_property get_filename_component get_property get_source_file_property get_target_property get_test_property if include include_directories include_external_msproject include_regular_expression install link_directories load_cache load_command macro mark_as_advanced message option output_required_files project qt_wrap_cpp qt_wrap_ui remove_definitions return separate_arguments set set_directory_properties set_property set_source_files_properties set_target_properties set_tests_properties site_name source_group string target_link_libraries try_compile try_run unset variable_watch while build_name exec_program export_library_dependencies install_files install_programs install_targets link_libraries make_directory remove subdir_depends subdirs use_mangled_mesa utility_source variable_requires write_file qt5_use_modules qt5_use_package qt5_wrap_cpp on off true false and or equal less greater strless strgreater strequal matches"},c:[{cN:"variable",b:"\\${",e:"}"},e.HCM,e.QSM,e.NM]}});hljs.registerLanguage("bash",function(e){var t={cN:"variable",v:[{b:/\$[\w\d#@][\w\d_]*/},{b:/\$\{(.*?)}/}]},s={cN:"string",b:/"/,e:/"/,c:[e.BE,t,{cN:"variable",b:/\$\(/,e:/\)/,c:[e.BE]}]},a={cN:"string",b:/'/,e:/'/};return{aliases:["sh","zsh"],l:/-?[a-z\.]+/,k:{keyword:"if then else elif fi for while in do done case esac function",literal:"true false",built_in:"break cd continue eval exec exit export getopts hash pwd readonly return shift test times trap umask unset alias bind builtin caller command declare echo enable help let local logout mapfile printf read readarray source type typeset ulimit unalias set shopt autoload bg bindkey bye cap chdir clone comparguments compcall compctl compdescribe compfiles compgroups compquote comptags comptry compvalues dirs disable disown echotc echoti emulate fc fg float functions getcap getln history integer jobs kill limit log noglob popd print pushd pushln rehash sched setcap setopt stat suspend ttyctl unfunction unhash unlimit unsetopt vared wait whence where which zcompile zformat zftp zle zmodload zparseopts zprof zpty zregexparse zsocket zstyle ztcp",_:"-ne -eq -lt -gt -f -d -e -s -l -a"},c:[{cN:"meta",b:/^#![^\n]+sh\s*$/,r:10},{cN:"function",b:/\w[\w\d_]*\s*\(\s*\)\s*\{/,rB:!0,c:[e.inherit(e.TM,{b:/\w[\w\d_]*/})],r:0},e.HCM,s,a,t]}});hljs.registerLanguage("cs",function(e){var t="abstract as base bool break byte case catch char checked const continue decimal dynamic default delegate do double else enum event explicit extern false finally fixed float for foreach goto if implicit in int interface internal is lock long null when object operator out override params private protected public readonly ref sbyte sealed short sizeof stackalloc static string struct switch this true try typeof uint ulong unchecked unsafe ushort using virtual volatile void while async protected public private internal ascending descending from get group into join let orderby partial select set value var where yield",r=e.IR+"(<"+e.IR+">)?";return{aliases:["csharp"],k:t,i:/::/,c:[e.C("///","$",{rB:!0,c:[{cN:"doctag",v:[{b:"///",r:0},{b:"<!--|-->"},{b:"</?",e:">"}]}]}),e.CLCM,e.CBCM,{cN:"meta",b:"#",e:"$",k:{"meta-keyword":"if else elif endif define undef warning error line region endregion pragma checksum"}},{cN:"string",b:'@"',e:'"',c:[{b:'""'}]},e.ASM,e.QSM,e.CNM,{bK:"class interface",e:/[{;=]/,i:/[^\s:]/,c:[e.TM,e.CLCM,e.CBCM]},{bK:"namespace",e:/[{;=]/,i:/[^\s:]/,c:[e.inherit(e.TM,{b:"[a-zA-Z](\\.?\\w)*"}),e.CLCM,e.CBCM]},{bK:"new return throw
await",r:0},{cN:"function",b:"("+r+"\\s+)+"+e.IR+"\\s*\\(",rB:!0,e:/[{;=]/,eE:!0,k:t,c:[{b:e.IR+"\\s*\\(",rB:!0,c:[e.TM],r:0},{cN:"params",b:/\(/,e:/\)/,eB:!0,eE:!0,k:t,r:0,c:[e.ASM,e.QSM,e.CNM,e.CBCM]},e.CLCM,e.CBCM]}]}});hljs.registerLanguage("livescript",function(e){var t={keyword:"in if for while finally new do return else break catch instanceof throw try this switch continue typeof delete debugger case default function var with then unless until loop of by when and or is isnt not it that otherwise from to til fallthrough super case default function var void const let enum export import native __hasProp __extends __slice __bind __indexOf",literal:"true false null undefined yes no on off it that void",built_in:"npm require console print module global window document"},s="[A-Za-z$_](?:-[0-9A-Za-z$_]|[0-9A-Za-z$_])*",n=e.inherit(e.TM,{b:s}),i={cN:"subst",b:/#\{/,e:/}/,k:t},r={cN:"subst",b:/#[A-Za-z$_]/,e:/(?:\-[0-9A-Za-z$_]|[0-9A-Za-z$_])*/,k:t},c=[e.BNM,{cN:"number",b:"(\\b0[xX][a-fA-F0-9_]+)|(\\b\\d(\\d|_\\d)*(\\.(\\d(\\d|_\\d)*)?)?(_*[eE]([-+]\\d(_\\d|\\d)*)?)?[_a-z]*)",r:0,starts:{e:"(\\s*/)?",r:0}},{cN:"string",v:[{b:/'''/,e:/'''/,c:[e.BE]},{b:/'/,e:/'/,c:[e.BE]},{b:/"""/,e:/"""/,c:[e.BE,i,r]},{b:/"/,e:/"/,c:[e.BE,i,r]},{b:/\\/,e:/(\s|$)/,eE:!0}]},{cN:"regexp",v:[{b:"//",e:"//[gim]*",c:[i,e.HCM]},{b:/\/(?![*])(\\\/|.)*?\/[gim]*(?=\W|$)/}]},{b:"@"+s},{b:"``",e:"``",eB:!0,eE:!0,sL:"javascript"}];i.c=c;var a={cN:"params",b:"\\(",rB:!0,c:[{b:/\(/,e:/\)/,k:t,c:["self"].concat(c)}]};return{aliases:["ls"],k:t,i:/\/*/,c:c.concat([e.C("\\/*","*\\/"),e.HCM,{cN:"function",c:[n,a],rB:!0,v:[{b:"("+s+"\\s*(?:=|:=)\\s*)?(\\(.*\\))?\\s*\\B\\->*?",e:"\\->*?"},{b:"("+s+"\\s*(?:=|:=)\\s*)?!?(\\(.*\\))?\\s*\\B[-~]{1,2}>*?",e:"[-~]{1,2}>*?"},{b:"("+s+"\\s*(?:=|:=)\\s*)?(\\(.*\\))?\\s*\\B!?[-~]{1,2}>*?",e:"!?[-~]{1,2}>*?"}]},{cN:"class",bK:"class",e:"$",i:/[:="\[\]]/,c:[{bK:"extends",eW:!0,i:/[:="\[\]]/,c:[n]},n]},{b:s+":",e:":",rB:!0,rE:!0,r:0}])}});hljs.registerLanguage("makefile",function(e){var a={cN:"variable",b:/\$\(/,e:/\)/,c:[e.BE]};return{aliases:["mk","mak"],c:[e.HCM,{b:/^\w+\s*\W*=/,rB:!0,r:0,starts:{e:/\s*\W*=/,eE:!0,starts:{e:/$/,r:0,c:[a]}}},{cN:"section",b:/^[\w]+:\s*$/},{cN:"meta",b:/^\.PHONY:/,e:/$/,k:{"meta-keyword":".PHONY"},l:/[\.\w]+/},{b:/^\t+/,e:/$/,r:0,c:[e.QSM,a]}]}});hljs.registerLanguage("yaml",function(e){var a={literal:"{ } true false yes no Yes No True False null"},b="^[\\-]*",r="[a-zA-Z_][\\w\\-]*",t={cN:"attr",v:[{b:b+r+":"},{b:b+'"'+r+'":'},{b:b+"'"+r+"':"}]},c={cN:"template-variable",v:[{b:"{{",e:"}}"},{b:"%{",e:"}"}]},l={cN:"string",r:0,v:[{b:/'/,e:/'/},{b:/"/,e:/"/}],c:[e.BE,c]};return{cI:!0,aliases:["yml","YAML","yaml"],c:[t,{cN:"meta",b:"^---s*$",r:10},{cN:"string",b:"[\\|>] *$",rE:!0,c:l.c,e:t.v[0].b},{b:"<%[%=-]?",e:"[%-]?%>",sL:"ruby",eB:!0,eE:!0,r:0},{cN:"type",b:"!!"+e.UIR},{cN:"meta",b:"&"+e.UIR+"$"},{cN:"meta",b:"*"+e.UIR+"$"},{cN:"bullet",b:"^ *-",r:0},l,e.HCM,e.CNM],k:a}});hljs.registerLanguage("dns",function(d){return{aliases:["bind","zone"],k:{keyword:"IN A AAAA AFSDB APL CAA CDNSKEY CDS CERT CNAME DHCID DLV DNAME DNSKEY DS HIP IPSECKEY KEY KX LOC MX NAPTR NS NSEC NSEC3 NSEC3PARAM PTR RRSIG RP SIG SOA SRV SSHFP TA TKEY TLSA TSIG TXT"},c:[d.C(";","$"),{cN:"meta",b:/^\$(TTL|GENERATE|INCLUDE|ORIGIN)\b/},{cN:"number",b:"((([0-9A-Fa-f]{1,4}:){7}([0-9A-Fa-f]{1,4}|:))|(([0-9A-Fa-f]{1,4}:){6}(:[0-9A-Fa-f]{1,4}|((25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)(\\.(25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)){3})|:))|(([0-9A-Fa-f]{1,4}:){5}(((:[0-9A-Fa-f]{1,4}){1,2})|:((25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)(\\.(25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)){3})|:))|(([0-9A-Fa-f]{1,4}:){4}(((:[0-9A-Fa-f]{1,4}){1,3})|((:[0-9A-Fa-f]{1,4})?:((25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)(\\.(25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)){3}))|:))|(([0-9A-Fa-f]{1,4}:){3}(((:[0-9A-Fa-f]{1,4}){1,4})|((:[0-9A-Fa-f]{1,4}){0,2}:((25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)(\\.(25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)){3}))|:))|(([0-9A-Fa-f]{1,4}:){2}(((:[0-9A-Fa-f]{1,4}){1,5})|((:[0-9A-Fa-f]{1,4}){0,3}:((25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)(\\.(25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)){3}))|:))|(([0-9A-Fa-f]{1,4}:){1}(((:[0-9A-Fa-f]{1,4}){1,6})|((:[0-9A-Fa-f]{1,4}){0,4}:((25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)(\\.(25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)){3}))|:))|(:(((:[0-9A-Fa-f]{1,4}){1,7})|((:[0-9A-Fa-f]{1,4}){0,5}:((25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)(\\.(25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)){3}))|:)))\\b"},{cN:"number",b:"((25[0-5]|(2[0-4]|1{0,1}[0-9]){0,1}[0-9]).){3,3}(25[0-5]|(2[0-4]|1{0,1}[0-9]){0,1}[0-9])\\b"},d.inherit(d.NM,{b:/\b\d+[dhwm]?/})]}});hljs.registerLanguage("sql",function(e){var t=e.C("--","$");return{cI:!0,i:/[<>{}*]/,c:[{bK:"begin end start commit rollback savepoint lock alter create drop rename call delete do handler insert load replace select truncate update set show pragma grant merge describe use explain help declare prepare execute deallocate release unlock purge reset change stop analyze cache flush optimize repair kill install uninstall checksum restore check backup revoke",e:/;/,eW:!0,k:{keyword:"abort abs absolute acc acce accep accept access accessed accessible account acos action activate add addtime admin administer advanced advise aes_decrypt aes_encrypt after agent aggregate ali alia alias allocate allow alter always analyze ancillary and any anydata anydataset anyschema anytype apply archive archived archivelog are as asc ascii asin assembly assertion associate asynchronous at atan atn2 attr attri attrib attribu attribut attribute attributes audit authenticated authentication authid authors auto autoallocate autodblink autoextend automatic availability avg backup badfile basicfile before begin beginning benchmark between bfile bfile_base big bigfile bin binary_double binary_float binlog bit_and bit_count bit_length bit_or bit_xor bitmap blob_base block blocksize body both bound buffer_cache buffer_pool build bulk by byte byteordermark bytes cache caching call calling cancel capacity cascade cascaded case cast catalog category ceil ceiling chain change changed char_base char_length character_length characters characterset charindex charset charsetform charsetid check checksum checksum_agg child choose chr chunk class cleanup clear client clob clob_base clone close cluster_id cluster_probability cluster_set clustering coalesce coercibility col collate collation collect colu colum column column_value columns columns_updated comment commit compact compatibility compiled complete composite_limit compound compress compute concat concat_ws concurrent confirm conn connec connect connect_by_iscycle connect_by_isleaf connect_by_root connect_time connection consider consistent constant constraint constraints constructor container content contents context contributors controlfile conv convert convert_tz corr corr_k corr_s corresponding corruption cos cost count count_big counted covar_pop covar_samp cpu_per_call cpu_per_session crc32 create creation critical cross cube cume_dist curdate current current_date current_time current_timestamp current_user cursor curtime customdatum cycle data database databases datafile datafiles datalength date_add date_cache date_format date_sub dateadd datediff datefromparts datename datepart datetime2fromparts day day_to_second dayname dayofmonth dayofweek dayofyear days db_role_change dbtimezone ddl deallocate declare decode decompose decrement decrypt deduplicate def defa defau defaul default defaults deferred defi defin define degrees delayed delegate delete delete_all delimited demand dense_rank depth dequeue des_decrypt des_encrypt des_key_file desc descr descri describ describe descriptor deterministic diagnostics difference dimension direct_load directory disable disable_all disallow disassociate discardfile disconnect diskgroup distinct distinctrow distribute distributed div do document domain dotnet double downgrade drop dumpfile duplicate duration each edition editionable editions element ellipsis else elsif elt empty enable enable_all enclosed encode encoding encrypt end end-exec endian enforced engine engines enqueue enterprise entityescaping eomonth error errors escaped evalname evaluate event eventdata events except exception exceptions exchange exclude excluding execu execut execute exempt exists exit exp expire explain export export_set extended extent external external_1 external_2 externally extract failed failed_login_attempts failover failure far fast feature_set feature_value fetch field fields file file_name_convert filesystem_like_logging final finish first first_value fixed flash_cache flashback floor flush following follows for forall force form forma format found found_rows freelist freelists freepools fresh from from_base64 from_days ftp full function general generated get get_format get_lock getdate getutcdate global global_name globally go goto grant grants greatest group group_concat group_id grouping grouping_id groups gtid_subtract guarantee guard handler hash hashkeys having hea head headi headin heading heap help hex hierarchy high high_priority hosts hour http id ident_current ident_incr ident_seed identified identity idle_time if ifnull ignore iif ilike ilm immediate import in include including increment index indexes indexing indextype indicator indices inet6_aton inet6_ntoa inet_aton inet_ntoa infile initial initialized initially initrans inmemory inner innodb input insert install instance instantiable instr interface interleaved intersect into invalidate invisible is is_free_lock is_ipv4 is_ipv4_compat is_not is_not_null is_used_lock isdate isnull isolation iterate java join json json_exists keep keep_duplicates key keys kill language large last last_day last_insert_id last_value lax lcase lead leading least leaves left len lenght length less level levels library like like2 like4 likec limit lines link list listagg little ln load load_file lob lobs local localtime localtimestamp locate locator lock locked log log10 log2 logfile logfiles logging logical
logical_reads_per_call logoff logon logs long loop low low_priority lower lpad lrtrim ltrim main make_set makedate maketime managed management manual map mapping mask master master_pos_wait match matched materialized max maxextents maximize maxinstances maxlen maxlogfiles maxloghistory maxlogmembers maxsize maxtrans md5 measures median medium member memcompress memory merge microsecond mid migration min minextents minimum mining minus minute minvalue missing mod mode model modification modify module monitoring month months mount move movement multiset mutex name name_const names nan national native natural nav nchar nclob nested never new newline next nextval no no_write_to_binlog noarchivelog noaudit nobadfile nocheck nocompress nocopy nocycle nodelay nodiscardfile noentityescaping noguarantee nokeep nologfile nomapping nomaxvalue nominimize nominvalue nomonitoring none noneditionable nonschema noorder nopr nopro noprom nopromp noprompt norely noresetlogs noreverse normal norowdependencies noschemacheck noswitch not nothing notice notrim novalidate now nowait nth_value nullif nulls num numb numbe nvarchar nvarchar2 object ocicoll ocidate ocidatetime ociduration ociinterval ociloblocator ocinumber ociref ocirefcursor ocirowid ocistring ocitype oct octet_length of off offline offset oid oidindex old on online only opaque open operations operator optimal optimize option optionally or oracle oracle_date oradata ord ordaudio orddicom orddoc order ordimage ordinality ordvideo organization orlany orlvary out outer outfile outline output over overflow overriding package pad parallel parallel_enable parameters parent parse partial partition partitions pascal passing password password_grace_time password_lock_time password_reuse_max password_reuse_time password_verify_function patch path patindex pctincrease pctthreshold pctused pctversion percent percent_rank percentile_cont percentile_disc performance period period_add period_diff permanent physical pi pipe pipelined pivot pluggable plugin policy position post_transaction pow power pragma prebuilt precedes preceding precision prediction prediction_cost prediction_details prediction_probability prediction_set prepare present preserve prior priority private private_sga privileges procedural procedure procedure_analyze processlist profiles project prompt protection public publishingservername purge quarter query quick quiesce quota quotename radians raise rand range rank raw read reads readsize rebuild record records recover recovery recursive recycle redo reduced ref reference referenced references referencing refresh regexp_like register regr_avgx regr_avgy regr_count regr_intercept regr_r2 regr_slope regr_sxx regr_sxy reject rekey relational relative relaylog release release_lock relies_on relocate rely rem remainder rename repair repeat replace replicate replication required reset resetlogs resize resource respect restore restricted result result_cache resumable resume retention return returning returns reuse reverse revoke right rlike role roles rollback rolling rollup round row row_count rowdependencies rowid rownum rows rtrim rules safe salt sample save savepoint sb1 sb2 sb4 scan schema schemacheck scn scope scroll sdo_georaster sdo_topo_geometry search sec_to_time second section securefile security seed segment select self sequence sequential serializable server servererror session session_user sessions_per_user set sets settings sha sha1 sha2 share shared shared_pool short show shrink shutdown si_averagecolor si_colorhistogram si_featurelist si_positionalcolor si_stillimage si_texture siblings sid sign sin size size_t sizes skip slave sleep smalldatetimefromparts smallfile snapshot some soname sort soundex source space sparse spfile split sql sql_big_result sql_buffer_result sql_cache sql_calc_found_rows sql_small_result sql_variant_property sqlcode sqldata sqlerror sqlname sqlstate sqrt square standalone standby start starting startup statement static statistics stats_binomial_test stats_crosstab stats_ks_test stats_mode stats_mw_test stats_one_way_anova stats_t_test_ stats_t_test_indep stats_t_test_one stats_t_test_paired stats_wsr_test status std stddev stddev_pop stddev_samp stdev stop storage store stored str str_to_date straight_join strcmp strict string struct stuff style subdate subpartition subpartitions substitutable substr substring subtime subtring_index subtype success sum suspend switch switchoffset switchover sync synchronous synonym sys sys_xmlagg sysasm sysaux sysdate sysdatetimeoffset sysdba sysoper system system_user sysutcdatetime table tables tablespace tan tdo template temporary terminated tertiary_weights test than then thread through tier ties time time_format time_zone timediff timefromparts timeout timestamp timestampadd timestampdiff timezone_abbr timezone_minute timezone_region to to_base64 to_date to_days to_seconds todatetimeoffset trace tracking transaction transactional translate translation treat trigger trigger_nestlevel triggers trim truncate try_cast try_convert try_parse type ub1 ub2 ub4 ucase unarchived unbounded uncompress under undo unhex unicode uniform uninstall union unique unix_timestamp unknown unlimited unlock unpivot unrecoverable unsafe unsigned until untrusted unusable unused update updated upgrade upped upper upsert url urowid usable usage use use_stored_outlines user user_data user_resources users using utc_date utc_timestamp uuid uuid_short validate validate_password_strength validation valist value values var var_samp varcharc vari varia variab variabl variable variables variance varp varraw varrawc varray verify version versions view virtual visible void wait wallet warning warnings week weekday weekofyear wellformed when whene whenev wheneve whenever where while whitespace with within without work wrapped xdb xml xmlagg xmlattributes xmlcast xmlcolattval xmlelement xmlexists xmlforest xmlindex xmlnamespaces xmlpi xmlquery xmlroot xmlschema xmlserialize xmltable xmltype xor year year_to_month years yearweek",literal:"true false null",built_in:"array bigint binary bit blob boolean char character date dec decimal float int int8 integer interval number numeric real record serial serial8 smallint text varchar varying void"},c:[{cN:"string",b:"'",e:"'",c:[e.BE,{b:"''"}]},{cN:"string",b:'"',e:'"',c:[e.BE,{b:'""'}]},{cN:"string",b:"`",e:"`",c:[e.BE]},e.CNM,e.CBCM,t]},e.CBCM,t]}});hljs.registerLanguage("python",function(e){var r={cN:"meta",b:/^(>>>|\.\.\.) /},b={cN:"string",c:[e.BE],v:[{b:/(u|b)?r?'''/,e:/'''/,c:[r],r:10},{b:/(u|b)?r?"""/,e:/"""/,c:[r],r:10},{b:/(u|r|ur)'/,e:/'/,r:10},{b:/(u|r|ur)"/,e:/"/,r:10},{b:/(b|br)'/,e:/'/},{b:/(b|br)"/,e:/"/},e.ASM,e.QSM]},a={cN:"number",r:0,v:[{b:e.BNR+"[lLjJ]?"},{b:"\\b(0o[0-7]+)[lLjJ]?"},{b:e.CNR+"[lLjJ]?"}]},l={cN:"params",b:/\(/,e:/\)/,c:["self",r,a,b]};return{aliases:["py","gyp"],k:{keyword:"and elif is global as in if from raise for except finally print import pass return exec else break not with class assert yield try while continue del or def lambda async await nonlocal|10 None True False",built_in:"Ellipsis NotImplemented"},i:/(<\/|->|\?)/,c:[r,a,b,e.HCM,{v:[{cN:"function",bK:"def",r:10},{cN:"class",bK:"class"}],e:/:/,i:/[${=;\n,]/,c:[e.UTM,l,{b:/->/,eW:!0,k:"None"}]},{cN:"meta",b:/^[\t]*@/,e:/$/},{b:/\b(print|exec)\(/}]}});hljs.registerLanguage("mercury",function(e){var i={keyword:"module use_module import_module include_module end_module initialise mutable initialize finalize finalise interface implementation pred mode func type inst solver any_pred any_func is semidet det nondet multi erroneous failure cc_nondet cc_multi typeclass instance where pragma promise external trace atomic or_else require_complete_switch require_det require_semidet require_multi require_nondet require_cc_multi require_cc_nondet require_erroneous require_failure",meta:"inline no_inline type_spec source_file fact_table obsolete memo loop_check minimal_model terminates does_not_terminate check_termination promise_equivalent_clauses foreign_proc foreign_decl foreign_code foreign_type foreign_import_module foreign_export_enum foreign_export foreign_enum may_call_mercury will_not_call_mercury thread_safe not_thread_safe maybe_thread_safe promise_pure promise_semipure tabled_for_io local untrailed trailed attach_to_io_state can_pass_as_mercury_type stable will_not_throw_exception may_modify_trail will_not_modify_trail may_duplicate may_not_duplicate affects_liveness does_not_affect_liveness doesnt_affect_liveness no_sharing unknown_sharing sharing",built_in:"some all not if then else true fail false try catch catch_any semidet_true semidet_false semidet_fail impure_true impure semipure"},r=e.C("%","$"),t={cN:"number",b:"0'.\\|0[box][0-9a-fA-F]*"},_=e.inherit(e.ASM,{r:0}),n=e.inherit(e.QSM,{r:0}),a={cN:"subst",b:"\\\\[abfnrtv]\\|\\\\x[0-9a-fA-F]*\\\\\\|%[-+# *.0-9]*[dioxXucsfeEgGp]",r:0};n.c.push(a);var o={cN:"built_in",v:[{b:"<=>"},{b:"<=",r:0},{b:"=>",r:0},{b:"/\\\\"},{b:"\\\\/"}]},l={cN:"built_in",v:[{b:":-\\|-->"},{b:"=",r:0}]};return{aliases:["m","moo"],k:i,c:[o,l,r,e.CBCM,t,e.NM,_,n,{b:/:-/}]}});hljs.registerLanguage("haskell",function(e){var i={v:[e.C("--","$"),e.C("{-","-}",{c:["self"]})]},a={cN:"meta",b:"{-#",e:"#-}"},l={cN:"meta",b:"^#",e:"$"},c={cN:"type",b:"\\b[A-Z][\\w']*",r:0},n={b:"\\(",e:"\\)",i:'"',c:[a,l,{cN:"type",b:"\\b[A-Z][\\w]*(\\((\\.\\.|,|\\w+)\\))?"},e.inherit(e.TM,{b:"[_a-z][\\w']*"}),i]},s={b:"{",e:"}",c:n.c};return{aliases:["hs"],k:"let in if then else case of where do module import hiding qualified type data newtype deriving class instance as default infix infixl infixr foreign export ccall stdcall cplusplus jvm dotnet safe unsafe family forall mdo proc rec",c:[{bK:"module",e:"where",k:"module where",c:[n,i],i:"\\W\\.|;"},{b:"\\bimport\\b",e:"$",k:"import qualified as hiding",c:[n,i],i:"\\W\\.|;"},{cN:"class",b:"^(\\s*)?(class|instance)\\b",e:"where",k:"class family instance where",c:[c,n,i]},{cN:"class",b:"\\b(data|(new)?type)\\b",e:"$",k:"data family type
newtype deriving",c:[a,c,n,s,i]},{bK:"default",e:"$",c:[c,n,i]},{bK:"infix infixl infixr",e:"$",c:[e.CNM,i]},{b:"\\bforeign\\b",e:"$",k:"foreign import export ccall stdcall cplusplus jvm dotnet safe unsafe",c:[c,e.QSM,i]},{cN:"meta",b:"#!\\/usr\\/bin\\/env runhaskell",e:"$"},a,l,e.QSM,e.CNM,c,e.inherit(e.TM,{b:"^[_a-z][\\w']*"}),i,{b:"->|<-"}]}});hljs.registerLanguage("applescript",function(e){var t=e.inherit(e.QSM,{i:""}),r={cN:"params",b:"\\(",e:"\\)",c:["self",e.CNM,t]},i=e.C("--","$"),o=e.C("\\(*","*\\)",{c:["self",i]}),n=[i,o,e.HCM];return{aliases:["osascript"],k:{keyword:"about above after against and around as at back before beginning behind below beneath beside between but by considering contain contains continue copy div does eighth else end equal equals error every exit fifth first for fourth from front get given global if ignoring in into is it its last local me middle mod my ninth not of on onto or over prop property put ref reference repeat returning script second set seventh since sixth some tell tenth that the|0 then third through thru timeout times to transaction try until where while whose with without",literal:"AppleScript false linefeed return pi quote result space tab true",built_in:"alias application boolean class constant date file integer list number real record string text activate beep count delay launch log offset read round run say summarize write character characters contents day frontmost id item length month name paragraph paragraphs rest reverse running time version weekday word words year"},c:[t,e.CNM,{cN:"built_in",b:"\\b(clipboard info|the clipboard|info for|list (disks|folder)|mount volume|path to|(close|open for) access|(get|set) eof|current date|do shell script|get volume settings|random number|set volume|system attribute|system info|time to GMT|(load|run|store) script|scripting components|ASCII (character|number)|localized string|choose (application|color|file|file name|folder|from list|remote application|URL)|display (alert|dialog))\\b|^\\s*return\\b"},{cN:"literal",b:"\\b(text item delimiters|current application|missing value)\\b"},{cN:"keyword",b:"\\b(apart from|aside from|instead of|out of|greater than|isn't|(doesn't|does not) (equal|come before|come after|contain)|(greater|less) than(or equal)?|(starts?|ends|begins?) with|contained by|comes (before|after)|a (ref|reference)|POSIX file|POSIX path|(date|time) string|quoted form)\\b"},{bK:"on",i:"[${=;\\n]",c:[e.UTM,r]}].concat(n),i:"//|->|=>|\\[\\["}});hljs.registerLanguage("scala",function(e){var t={cN:"meta",b:"@[A-Za-z]+"},a={cN:"subst",v:[{b:"\\$[A-Za-z0-9_]+"},{b:"\\${",e:"}"}]},r={cN:"string",v:[{b:'"',e:'"',i:"\\n",c:[e.BE]},{b:'"""',e:'"""',r:10},{b:'[a-z]+"',e:'"',i:"\\n",c:[e.BE,a]},{cN:"string",b:'[a-z]+"""',e:'"""',c:[a],r:10}]},c={cN:"symbol",b:"'\\w[\\w\\d_]*(?!')"},i={cN:"type",b:"\\b[A-Z][A-Za-z0-9_]*",r:0},s={cN:"title",b:/[^0-9\n\t "'(),.`{}\[\]:;][^\n\t "'(),.`{}\[\]:;]+|[^0-9\n\t "'(),.`{}\[\]:;=]/,r:0},n={cN:"class",bK:"class object trait type",e:/[:={\[\n;]/,eE:!0,c:[{bK:"extends with",r:10},{b:/\[/,e:/\]/,eB:!0,eE:!0,r:0,c:[i]},{cN:"params",b:/\(/,e:/\)/,eB:!0,eE:!0,r:0,c:[i]},s]},l={cN:"function",bK:"def",e:/[:={\[(\n;]/,eE:!0,c:[s]};return{k:{literal:"true false null",keyword:"type yield lazy override def with val var sealed abstract private trait object if forSome for while throw finally protected extends import final return else break new catch super class case package default try this match continue throws implicit"},c:[e.CLCM,e.CBCM,r,c,i,l,n,e.CNM,t]}});hljs.registerLanguage("erlang",function(e){var r="[a-z'][a-zA-Z0-9_']*",c="("+r+":"+r+"|"+r+")",b={keyword:"after and andalso|10 band begin bnot bor bsl bzr bxor case catch cond div end fun if let not of orelse|10 query receive rem try when xor",literal:"false true"},i=e.C("%","$"),n={cN:"number",b:"\\b(\\d+#[a-fA-F0-9]+|\\d+(\\.\\d+)?([eE][-+]?\\d+)?)",r:0},a={b:"fun\\s+"+r+"/\\d+"},d={b:c+"\\(",e:"\\)",rB:!0,r:0,c:[{b:c,r:0},{b:"\\(",e:"\\)",eW:!0,rE:!0,r:0}]},o={b:"{",e:"}",r:0},t={b:"\\b_([A-Z][A-Za-z0-9_]*)?",r:0},f={b:"[A-Z][a-zA-Z0-9_]*",r:0},l={b:"#"+e.UIR,r:0,rB:!0,c:[{b:"#"+e.UIR,r:0},{b:"{",e:"}",r:0}]},s={bK:"fun receive if try case",e:"end",k:b};s.c=[i,a,e.inherit(e.ASM,{cN:""}),s,d,e.QSM,n,o,t,f,l];var u=[i,a,s,d,e.QSM,n,o,t,f,l];d.c[1].c=u,o.c=u,l.c[1].c=u;var h={cN:"params",b:"\\(",e:"\\)",c:u};return{aliases:["erl"],k:b,i:"(</|*=|\\+=|-=|/*|*/|\\(*|*\\))",c:[{cN:"function",b:"^"+r+"\\s*\\(",e:"->",rB:!0,i:"\\(|#|//|/*|\\\\|:|;",c:[h,e.inherit(e.TM,{b:r})],starts:{e:";|\\.",k:b,c:u}},i,{b:"^-",e:"\\.",r:0,eE:!0,rB:!0,l:"-"+e.IR,k:"-module -record -undef -export -ifdef -ifndef -author -copyright -doc -vsn -import -include -include_lib -compile -define -else -endif -file -behaviour -behavior -spec",c:[h]},n,e.QSM,l,t,f,o,{b:/\.$/}]}});hljs.registerLanguage("powershell",function(e){var t={b:"`[\\s\\S]",r:0},r={cN:"variable",v:[{b:/\$[\w\d][\w\d_:]*/}]},o={cN:"literal",b:/\$(null|true|false)\b/},a={cN:"string",b:/"/,e:/"/,c:[t,r,{cN:"variable",b:/\$[A-z]/,e:/[^A-z]/}]},i={cN:"string",b:/'/,e:/'/};return{aliases:["ps"],l:/-?[A-z\.\-]+/,cI:!0,k:{keyword:"if else foreach return function do while until elseif begin for trap data dynamicparam end break throw param continue finally in switch exit filter try process catch",built_in:"Add-Content Add-History Add-Member Add-PSSnapin Clear-Content Clear-Item Clear-Item Property Clear-Variable Compare-Object ConvertFrom-SecureString Convert-Path ConvertTo-Html ConvertTo-SecureString Copy-Item Copy-ItemProperty Export-Alias Export-Clixml Export-Console Export-Csv ForEach-Object Format-Custom Format-List Format-Table Format-Wide Get-Acl Get-Alias Get-AuthenticodeSignature Get-ChildItem Get-Command Get-Content Get-Credential Get-Culture Get-Date Get-EventLog Get-ExecutionPolicy Get-Help Get-History Get-Host Get-Item Get-ItemProperty Get-Location Get-Member Get-PfxCertificate Get-Process Get-PSDrive Get-PSProvider Get-PSSnapin Get-Service Get-TraceSource Get-UICulture Get-Unique Get-Variable Get-WmiObject Group-Object Import-Alias Import-Clixml Import-Csv Invoke-Expression Invoke-History Invoke-Item Join-Path Measure-Command Measure-Object Move-Item Move-ItemProperty New-Alias New-Item New-ItemProperty New-Object New-PSDrive New-Service New-TimeSpan New-Variable Out-Default Out-File Out-Host Out-Null Out-Printer Out-String Pop-Location Push-Location Read-Host Remove-Item Remove-ItemProperty Remove-PSDrive Remove-PSSnapin Remove-Variable Rename-Item Rename-ItemProperty Resolve-Path Restart-Service Resume-Service Select-Object Select-String Set-Acl Set-Alias Set-AuthenticodeSignature Set-Content Set-Date Set-ExecutionPolicy Set-Item Set-ItemProperty Set-Location Set-PSDebug Set-Service Set-TraceSource Set-Variable Sort-Object Split-Path Start-Service Start-Sleep Start-Transcript Stop-Process Stop-Service Stop-Transcript Suspend-Service Tee-Object Test-Path Trace-Command Update-FormatData Update-TypeData Where-Object Write-Debug Write-Error Write-Host Write-Output Write-Progress Write-Verbose Write-Warning",nomarkup:"-ne -eq -lt -gt -ge -le -not -like -notlike -match -notmatch -contains -notcontains -in -notin -replace"},c:[e.HCM,e.NM,a,i,o,r]}});hljs.registerLanguage("dust",function(e){var t="if eq ne lt lte gt gte select default math sep";return{aliases:["dst"],cI:!0,sL:"xml",c:[{cN:"template-tag",b:/\{[#\/]/,e:/\}/,i:/;/,c:[{cN:"name",b:/[a-zA-Z\.-]+/,starts:{eW:!0,r:0,c:[e.QSM]}}]},{cN:"template-variable",b:/\{/,e:/\}/,i:/;/,k:t}]}});hljs.registerLanguage("clojure",function(e){var t={"builtin-name":"def defonce cond apply if-not if-let if not not= = < > <= >= == + / * - rem quot neg? pos? delay? symbol? keyword? true? false? integer? empty? coll? list? set? ifn? fn? associative? sequential? sorted? counted? reversible? number? decimal? class? distinct? isa? float? rational? reduced? ratio? odd? even? char? seq? vector? string? map? nil? contains? zero? instance? not-every? not-any? libspec? -> ->> .. . inc compare do dotimes mapcat take remove take-while drop letfn drop-last take-last drop-while while intern condp case reduced cycle split-at split-with repeat replicate iterate range merge zipmap declare line-seq sort comparator sort-by dorun doall nthnext nthrest partition eval doseq await await-for let agent atom send send-off release-pending-sends add-watch mapv filterv remove-watch agent-error restart-agent set-error-handler error-handler set-error-mode! error-mode shutdown-agents quote var fn loop recur throw try monitor-enter monitor-exit defmacro defn defn- macroexpand macroexpand-1 for dosync and or when when-not when-let comp juxt partial sequence memoize constantly complement identity assert peek pop doto proxy defstruct first rest cons defprotocol cast coll deftype defrecord last butlast sigs reify second ffirst fnext nfirst nnext defmulti defmethod meta with-meta ns in-ns create-ns import refer keys select-keys vals key val rseq name namespace promise into transient persistent! conj! assoc! dissoc! pop! disj! use class type num float double short byte boolean bigint biginteger bigdec print-method print-dup throw-if printf format load compile get-in update-in pr pr-on newline flush read slurp read-line subvec with-open memfn time re-find re-groups rand-int rand mod locking assert-valid-fdecl alias resolve ref deref refset swap! reset! set-validator! compare-and-set! alter-meta! reset-meta! commute get-validator alter ref-set ref-history-count ref-min-history ref-max-history ensure sync io! new next conj set! to-array future future-call into-array aset gen-class reduce map filter find empty hash-map hash-set sorted-map sorted-map-by sorted-set sorted-set-by vec vector seq flatten reverse assoc dissoc list disj get union difference intersection extend extend-type extend-protocol int nth delay count concat chunk chunk-buffer chunk-append chunk-first chunk-rest max min dec unchecked-inc-int unchecked-inc unchecked-dec-inc unchecked-dec unchecked-negate unchecked-add-int unchecked-add
unchecked-subtract-int unchecked-subtract chunk-next chunk-cons chunked-seq? prn vary-meta lazy-seq spread list* str find-keyword keyword symbol gensym force rationalize"},r="a-zA-Z_\\-!.?+*=<>&#'",n="["+r+"]["+r+"0-9/;:]*",a="[-+]?\\d+(\\.\\d+)?",o={b:n,r:0},s={cN:"number",b:a,r:0},i=e.inherit(e.QSM,{i:null}),c=e.C(";","$",{r:0}),d={cN:"literal",b:/\b(true|false|nil)\b/},l={b:"[\\[\\{]",e:"[\\]\\}]"},m={cN:"comment",b:"\\^"+n},p=e.C("\\^\\{","\\}"),u={cN:"symbol",b:"[:]"+n},f={b:"\\(",e:"\\)"},h={eW:!0,r:0},y={k:t,l:n,cN:"name",b:n,starts:h},b=[f,i,m,p,c,u,l,s,d,o];return f.c=[e.C("comment",""),y,h],h.c=b,l.c=b,{aliases:["clj"],i:/\S/,c:[f,i,m,p,c,u,l,s,d]}});hljs.registerLanguage("go",function(e){var t={keyword:"break default func interface select case map struct chan else goto package switch const fallthrough if range type continue for import return var go defer bool byte complex64 complex128 float32 float64 int8 int16 int32 int64 string uint8 uint16 uint32 uint64 int uint uintptr rune",literal:"true false iota nil",built_in:"append cap close complex copy imag len make new panic print println real recover delete"};return{aliases:["golang"],k:t,i:"</",c:[e.CLCM,e.CBCM,e.QSM,{cN:"string",b:"'",e:"[^\\\\]'"},{cN:"string",b:"`",e:"`"},{cN:"number",b:e.CNR+"[dflsi]?",r:0},e.CNM]}});hljs.registerLanguage("tcl",function(e){return{aliases:["tk"],k:"after append apply array auto_execok auto_import auto_load auto_mkindex auto_mkindex_old auto_qualify auto_reset bgerror binary break catch cd chan clock close concat continue dde dict encoding eof error eval exec exit expr fblocked fconfigure fcopy file fileevent filename flush for foreach format gets glob global history http if incr info interp join lappend|10 lassign|10 lindex|10 linsert|10 list llength|10 load lrange|10 lrepeat|10 lreplace|10 lreverse|10 lsearch|10 lset|10 lsort|10 mathfunc mathop memory msgcat namespace open package parray pid pkg::create pkg_mkIndex platform platform::shell proc puts pwd read refchan regexp registry regsub|10 rename return safe scan seek set socket source split string subst switch tcl_endOfWord tcl_findLibrary tcl_startOfNextWord tcl_startOfPreviousWord tcl_wordBreakAfter tcl_wordBreakBefore tcltest tclvars tell time tm trace unknown unload unset update uplevel upvar variable vwait while",c:[e.C(";[\\t]*#","$"),e.C("^[\\t]*#","$"),{bK:"proc",e:"[\\{]",eE:!0,c:[{cN:"title",b:"[\\t\\n\\r]+(::)?[a-zA-Z_]((::)?[a-zA-Z0-9_])*",e:"[\\t\\n\\r]",eW:!0,eE:!0}]},{eE:!0,v:[{b:"\\$(\\{)?(::)?[a-zA-Z_]((::)?[a-zA-Z0-9_])*\\(([a-zA-Z0-9_])*\\)",e:"[^a-zA-Z0-9_\\}\\$]"},{b:"\\$(\\{)?(::)?[a-zA-Z_]((::)?[a-zA-Z0-9_])*",e:"(\\))?[^a-zA-Z0-9_\\}\\$]"}]},{cN:"string",c:[e.BE],v:[e.inherit(e.ASM,{i:null}),e.inherit(e.QSM,{i:null})]},{cN:"number",v:[e.BNM,e.CNM]}]}});hljs.registerLanguage("twig",function(e){var t={cN:"params",b:"\\(",e:"\\)"},a="attribute block constant cycle date dump include max min parent random range source template_from_string",r={bK:a,k:{name:a},r:0,c:[t]},c={b:/\|[A-Za-z_]+:?/,k:"abs batch capitalize convert_encoding date date_modify default escape first format join json_encode keys last length lower merge nl2br number_format raw replace reverse round slice sort split striptags title trim upper url_encode",c:[r]},s="autoescape block do embed extends filter flush for if import include macro sandbox set spaceless use verbatim";return s=s+" "+s.split(" ").map(function(e){return"end"+e}).join(" "),{aliases:["craftcms"],cI:!0,sL:"xml",c:[e.C(/\{#/,/#}/),{cN:"template-tag",b:/\{%/,e:/%}/,c:[{cN:"name",b:/\w+/,k:s,starts:{eW:!0,c:[c,r],r:0}}]},{cN:"template-variable",b:/\{\{/,e:/}}/,c:["self",c,r]}]}});hljs.registerLanguage("vhdl",function(e){var r="\\d(_|\\d)*",t="[eE][-+]?"+r,o=r+"(\\."+r+")?("+t+")?",n="\\w+",i=r+"#"+n+"(\\."+n+")?#("+t+")?",a="\\b("+i+"|"+o+")";return{cI:!0,k:{keyword:"abs access after alias all and architecture array assert attribute begin block body buffer bus case component configuration constant context cover disconnect downto default else elsif end entity exit fairness file for force function generate generic group guarded if impure in inertial inout is label library linkage literal loop map mod nand new next nor not null of on open or others out package port postponed procedure process property protected pure range record register reject release rem report restrict restrict_guarantee return rol ror select sequence severity shared signal sla sll sra srl strong subtype then to transport type unaffected units until use variable vmode vprop vunit wait when while with xnor xor",built_in:"boolean bit character severity_level integer time delay_length natural positive string bit_vector file_open_kind file_open_status std_ulogic std_ulogic_vector std_logic std_logic_vector unsigned signed boolean_vector integer_vector real_vector time_vector"},i:"{",c:[e.CBCM,e.C("--","$"),e.QSM,{cN:"number",b:a,r:0},{cN:"literal",b:"'(U|X|0|1|Z|W|L|H|-)'",c:[e.BE]},{cN:"symbol",b:"'[A-Za-z](_?[A-Za-z0-9])*",c:[e.BE]}]}});hljs.registerLanguage("javascript",function(e){return{aliases:["js","jsx"],k:{keyword:"in of if for while finally var new function do return void else break catch instanceof with throw case default try this switch continue typeof delete let yield const export super debugger as async await static import from as",literal:"true false null undefined NaN Infinity",built_in:"eval isFinite isNaN parseFloat parseInt decodeURI decodeURIComponent encodeURI encodeURIComponent escape unescape Object Function Boolean Error EvalError InternalError RangeError ReferenceError StopIteration SyntaxError TypeError URIError Number Math Date String RegExp Array Float32Array Float64Array Int16Array Int32Array Int8Array Uint16Array Uint32Array Uint8Array Uint8ClampedArray ArrayBuffer DataView JSON Intl arguments require module console window document Symbol Set Map WeakSet WeakMap Proxy Reflect Promise"},c:[{cN:"meta",r:10,b:/^\s*['"]use (strict|asm)['"]/},{cN:"meta",b:/^#!/,e:/$/},e.ASM,e.QSM,{cN:"string",b:"`",e:"`",c:[e.BE,{cN:"subst",b:"\\$\\{",e:"\\}"}]},e.CLCM,e.CBCM,{cN:"number",v:[{b:"\\b(0[bB][01]+)"},{b:"\\b(0[oO][0-7]+)"},{b:e.CNR}],r:0},{b:"("+e.RSR+"|\\b(case|return|throw)\\b)\\s*",k:"return throw case",c:[e.CLCM,e.CBCM,e.RM,{b:/</,e:/(\/\w+|\w+\/)>/,sL:"xml",c:[{b:/<\w+\/>/,skip:!0},{b:/<\w+/,e:/(\/\w+|\w+\/)>/,skip:!0,c:["self"]}]}],r:0},{cN:"function",bK:"function",e:/\{/,eE:!0,c:[e.inherit(e.TM,{b:/[A-Za-z$_][0-9A-Za-z$_]*/}),{cN:"params",b:/\(/,e:/\)/,eB:!0,eE:!0,c:[e.CLCM,e.CBCM]}],i:/\[|%/},{b:/\$[(.]/},e.METHOD_GUARD,{cN:"class",bK:"class",e:/[{;=]/,eE:!0,i:/[:"\[\]]/,c:[{bK:"extends"},e.UTM]},{bK:"constructor",e:/\{/,eE:!0}],i:/#(?!!)/}});hljs.registerLanguage("less",function(e){var r="[\\w-]+",t="("+r+"|@{"+r+"})",a=[],c=[],s=function(e){return{cN:"string",b:"~?"+e+".*?"+e}},b=function(e,r,t){return{cN:e,b:r,r:t}},i={b:"\\(",e:"\\)",c:c,r:0};c.push(e.CLCM,e.CBCM,s("'"),s('"'),e.CSSNM,{b:"(url|data-uri)\\(",starts:{cN:"string",e:"[\\)\\n]",eE:!0}},b("number","#[0-9A-Fa-f]+\\b"),i,b("variable","@@?"+r,10),b("variable","@{"+r+"}"),b("built_in","~?`[^`]*?`"),{cN:"attribute",b:r+"\\s*:",e:":",rB:!0,eE:!0},{cN:"meta",b:"!important"});var n=c.concat({b:"{",e:"}",c:a}),o={bK:"when",eW:!0,c:[{bK:"and not"}].concat(c)},u={cN:"attribute",b:t,e:":",eE:!0,c:[e.CLCM,e.CBCM],i:/\S/,starts:{e:"[;}]",rE:!0,c:c,i:"[<=$]"}},C={cN:"keyword",b:"@(import|media|charset|font-face|(-[a-z]+-)?keyframes|supports|document|namespace|page|viewport|host)\\b",starts:{e:"[;{}]",rE:!0,c:c,r:0}},l={cN:"variable",v:[{b:"@"+r+"\\s*:",r:15},{b:"@"+r}],starts:{e:"[;}]",rE:!0,c:n}},p={v:[{b:"[\\.#:&\\[]",e:"[;{}]"},{b:t+"[^;]*{",e:"{"}],rB:!0,rE:!0,i:"[<='$\"]",c:[e.CLCM,e.CBCM,o,b("keyword","all\\b"),b("variable","@{"+r+"}"),b("selector-tag",t+"%?",0),b("selector-id","#"+t),b("selector-class","\\."+t,0),b("selector-tag","&",0),{cN:"selector-attr",b:"\\[",e:"\\]"},{b:"\\(",e:"\\)",c:n},{b:"!important"}]};return a.push(e.CLCM,e.CBCM,C,l,p,u),{cI:!0,i:"[=>'/<($\"]",c:a}});hljs.registerLanguage("q",function(e){var s={keyword:"do while select delete by update from",literal:"0b 1b",built_in:"neg not null string reciprocal floor ceiling signum mod xbar xlog and or each scan over prior mmu lsq inv md5 ltime gtime count first var dev med cov cor all any rand sums prds mins maxs fills deltas ratios avgs differ prev next rank reverse iasc idesc asc desc msum mcount mavg mdev xrank mmin mmax xprev rotate distinct group where flip type key til get value attr cut set upsert raze union inter except cross sv vs sublist enlist read0 read1 hopen hclose hdel hsym hcount peach system ltrim rtrim trim lower upper ssr view tables views cols xcols keys xkey xcol xasc xdesc fkeys meta lj aj aj0 ij pj asof uj ww wj wj1 fby xgroup ungroup ej save load rsave rload show csv parse eval min max avg wavg wsum sin cos tan sum",type:"`float `double int `timestamp `timespan `datetime `time `boolean `symbol `char `byte `short `long `real `month `date `minute `second `guid"};return{aliases:["k","kdb"],k:s,l:/(`?)[A-Za-z0-9_]+\b/,c:[e.CLCM,e.QSM,e.CNM]}});hljs.registerLanguage("gherkin",function(e){return{aliases:["feature"],k:"Feature Background Ability Business Need Scenario Scenarios Scenario Outline Scenario Template Examples Given And Then But When",c:[{cN:"keyword",b:"*"},{cN:"meta",b:"@[^@\\s]+"},{b:"\\|",e:"\\|\\w*$",c:[{cN:"string",b:"[^|]+"}]},{cN:"variable",b:"<",e:">"},e.HCM,{cN:"string",b:'"""',e:'"""'},e.QSM]}});hljs.registerLanguage("nginx",function(e){var r={cN:"variable",v:[{b:/\$\d+/},{b:/\$\{/,e:/}/},{b:"[\\$\\@]"+e.UIR}]},b={eW:!0,l:"[a-z/_]+",k:{literal:"on off yes no true false none blocked debug info notice warn error crit select break last permanent redirect kqueue rtsig epoll poll /dev/poll"},r:0,i:"=>",c:[e.HCM,{cN:"string",c:[e.BE,r],v:[{b:/"/,e:/"/},{b:/'/,e:/'/}]},{b:"([a-z]+):/",e:"\\s",eW:!0,eE:!0,c:[r]},{cN:"regexp",c:[e.BE,r],v:[{b:"\\s\\^",e:"\\s|{|;",rE:!0},{b:"~*?\\s+",e:"\\s|{
;",rE:!0},{b:"*(\\.[a-z\\-]+)+"},{b:"([a-z\\-]+\\.)+*"}]},{cN:"number",b:"\\b\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}(:\\d{1,5})?\\b"},{cN:"number",b:"\\b\\d+[kKmMgGdshdwy]*\\b",r:0},r]};return{aliases:["nginxconf"],c:[e.HCM,{b:e.UIR+"\\s+{",rB:!0,e:"{",c:[{cN:"section",b:e.UIR}],r:0},{b:e.UIR+"\\s",e:";|{",rB:!0,c:[{cN:"attribute",b:e.UIR,starts:b}],r:0}],i:"[^\\s\\}]"}});hljs.registerLanguage("rust",function(e){var t="([uif](8|16|32|64|size))?",r=e.inherit(e.CBCM);r.c.push("self");var n="Copy Send Sized Sync Drop Fn FnMut FnOnce drop Box ToOwned Clone PartialEq PartialOrd Eq Ord AsRef AsMut Into From Default Iterator Extend IntoIterator DoubleEndedIterator ExactSizeIterator Option Result SliceConcatExt String ToString Vec assert! assert_eq! bitflags! bytes! cfg! col! concat! concat_idents! debug_assert! debug_assert_eq! env! panic! file! format! format_args! include_bin! include_str! line! local_data_key! module_path! option_env! print! println! select! stringify! try! unimplemented! unreachable! vec! write! writeln! macro_rules!";return{aliases:["rs"],k:{keyword:"alignof as be box break const continue crate do else enum extern false fn for if impl in let loop match mod mut offsetof once priv proc pub pure ref return self Self sizeof static struct super trait true type typeof unsafe unsized use virtual while where yield int i8 i16 i32 i64 uint u8 u32 u64 float f32 f64 str char bool",literal:"true false Some None Ok Err",built_in:n},l:e.IR+"!?",i:"</",c:[e.CLCM,r,e.inherit(e.QSM,{b:/b?"/,i:null}),{cN:"string",v:[{b:/r(#*)".*?"\1(?!#)/},{b:/b?'\\?(x\w{2}|u\w{4}|U\w{8}|.)'/}]},{cN:"symbol",b:/'[a-zA-Z_][a-zA-Z0-9_]*/},{cN:"number",v:[{b:"\\b0b([01_]+)"+t},{b:"\\b0o([0-7_]+)"+t},{b:"\\b0x([A-Fa-f0-9_]+)"+t},{b:"\\b(\\d[\\d_]*(\\.[0-9_]+)?([eE][+-]?[0-9_]+)?)"+t}],r:0},{cN:"function",bK:"fn",e:"(\\(|<)",eE:!0,c:[e.UTM]},{cN:"meta",b:"#\\!?\\[",e:"\\]",c:[{cN:"meta-string",b:/"/,e:/"/}]},{cN:"class",bK:"type",e:";",c:[e.inherit(e.UTM,{endsParent:!0})],i:"\\S"},{cN:"class",bK:"trait enum struct",e:"{",c:[e.inherit(e.UTM,{endsParent:!0})],i:"[\\w\\d]"},{b:e.IR+"::",k:{built_in:n}},{b:"->"}]}});hljs.registerLanguage("groovy",function(e){return{k:{literal:"true false null",keyword:"byte short char int long boolean float double void def as in assert trait super this abstract static volatile transient public private protected synchronized final class interface enum if else for while switch case break default continue throw throws try catch finally implements extends new import package return instanceof"},c:[e.C("/**","*/",{r:0,c:[{b:/\w+@/,r:0},{cN:"doctag",b:"@[A-Za-z]+"}]}),e.CLCM,e.CBCM,{cN:"string",b:'"""',e:'"""'},{cN:"string",b:"'''",e:"'''"},{cN:"string",b:"\\$/",e:"/\\$",r:10},e.ASM,{cN:"regexp",b:/~?\/[^\/\n]+\//,c:[e.BE]},e.QSM,{cN:"meta",b:"^#!/usr/bin/env",e:"$",i:"\n"},e.BNM,{cN:"class",bK:"class interface trait enum",e:"{",i:":",c:[{bK:"extends implements"},e.UTM]},e.CNM,{cN:"meta",b:"@[A-Za-z]+"},{cN:"string",b:/[^\?]{0}[A-Za-z0-9_$]+ *:/},{b:/\?/,e:/\:/},{cN:"symbol",b:"^\\s*[A-Za-z0-9_$]+:",r:0}],i:/#|<\//}});hljs.registerLanguage("aspectj",function(e){var t="false synchronized int abstract float private char boolean static null if const for true while long throw strictfp finally protected import native final return void enum else extends implements break transient new catch instanceof byte super volatile case assert short package default double public try this switch continue throws privileged aspectOf adviceexecution proceed cflowbelow cflow initialization preinitialization staticinitialization withincode target within execution getWithinTypeName handler thisJoinPoint thisJoinPointStaticPart thisEnclosingJoinPointStaticPart declare parents warning error soft precedence thisAspectInstance",i="get set args call";return{k:t,i:/<\/|#/,c:[e.C("/**","*/",{r:0,c:[{b:/\w+@/,r:0},{cN:"doctag",b:"@[A-Za-z]+"}]}),e.CLCM,e.CBCM,e.ASM,e.QSM,{cN:"class",bK:"aspect",e:/[{;=]/,eE:!0,i:/[:;"\[\]]/,c:[{bK:"extends implements pertypewithin perthis pertarget percflowbelow percflow issingleton"},e.UTM,{b:/\([^\)]*/,e:/[)]+/,k:t+" "+i,eE:!1}]},{cN:"class",bK:"class interface",e:/[{;=]/,eE:!0,r:0,k:"class interface",i:/[:"\[\]]/,c:[{bK:"extends implements"},e.UTM]},{bK:"pointcut after before around throwing returning",e:/[)]/,eE:!1,i:/["\[\]]/,c:[{b:e.UIR+"\\s*\\(",rB:!0,c:[e.UTM]}]},{b:/[:]/,rB:!0,e:/[{;]/,r:0,eE:!1,k:t,i:/["\[\]]/,c:[{b:e.UIR+"\\s*\\(",k:t+" "+i},e.QSM]},{bK:"new throw",r:0},{cN:"function",b:/\w+ +\w+(\.)?\w+\s*\([^\)]*\)\s*((throws)[\w\s,]+)?[\{;]/,rB:!0,e:/[{;=]/,k:t,eE:!0,c:[{b:e.UIR+"\\s*\\(",rB:!0,r:0,c:[e.UTM]},{cN:"params",b:/\(/,e:/\)/,r:0,k:t,c:[e.ASM,e.QSM,e.CNM,e.CBCM]},e.CLCM,e.CBCM]},e.CNM,{cN:"meta",b:"@[A-Za-z]+"}]}});hljs.registerLanguage("actionscript",function(e){var a="[a-zA-Z_$][a-zA-Z0-9_$]*",t="([*]|[a-zA-Z_$][a-zA-Z0-9_$]*)",c={cN:"rest_arg",b:"[.]{3}",e:a,r:10};return{aliases:["as"],k:{keyword:"as break case catch class const continue default delete do dynamic each else extends final finally for function get if implements import in include instanceof interface internal is namespace native new override package private protected public return set static super switch this throw try typeof use var void while with",literal:"true false null undefined"},c:[e.ASM,e.QSM,e.CLCM,e.CBCM,e.CNM,{cN:"class",bK:"package",e:"{",c:[e.TM]},{cN:"class",bK:"class interface",e:"{",eE:!0,c:[{bK:"extends implements"},e.TM]},{cN:"meta",bK:"import include",e:";",k:{"meta-keyword":"import include"}},{cN:"function",bK:"function",e:"[{;]",eE:!0,i:"\\S",c:[e.TM,{cN:"params",b:"\\(",e:"\\)",c:[e.ASM,e.QSM,e.CLCM,e.CBCM,c]},{b:":\\s*"+t}]},e.METHOD_GUARD],i:/#/}});hljs.registerLanguage("diff",function(e){return{aliases:["patch"],c:[{cN:"meta",r:10,v:[{b:/^@@ +\-\d+,\d+ +\+\d+,\d+ +@@$/},{b:/^*** +\d+,\d+ +****$/},{b:/^\-\-\- +\d+,\d+ +\-\-\-\-$/}]},{cN:"comment",v:[{b:/Index: /,e:/$/},{b:/=====/,e:/=====$/},{b:/^\-\-\-/,e:/$/},{b:/^*{3} /,e:/$/},{b:/^\+\+\+/,e:/$/},{b:/*{5}/,e:/*{5}$/}]},{cN:"addition",b:"^\\+",e:"$"},{cN:"deletion",b:"^\\-",e:"$"},{cN:"addition",b:"^\\!",e:"$"}]}});hljs.registerLanguage("ini",function(e){var b={cN:"string",c:[e.BE],v:[{b:"'''",e:"'''",r:10},{b:'"""',e:'"""',r:10},{b:'"',e:'"'},{b:"'",e:"'"}]};return{aliases:["toml"],cI:!0,i:/\S/,c:[e.C(";","$"),e.HCM,{cN:"section",b:/^\s*\[+/,e:/\]+/},{b:/^[a-z0-9\[\]_-]+\s*=\s*/,e:"$",rB:!0,c:[{cN:"attr",b:/[a-z0-9\[\]_-]+/},{b:/=/,eW:!0,r:0,c:[{cN:"literal",b:/\bon|off|true|false|yes|no\b/},{cN:"variable",v:[{b:/\$[\w\d"][\w\d_]*/},{b:/\$\{(.*?)}/}]},b,{cN:"number",b:/([\+\-]+)?[\d]+_[\d_]+/},e.NM]}]}]}});hljs.registerLanguage("fortran",function(e){var t={cN:"params",b:"\\(",e:"\\)"},n={literal:".False. .True.",keyword:"kind do while private call intrinsic where elsewhere type endtype endmodule endselect endinterface end enddo endif if forall endforall only contains default return stop then public subroutine|10 function program .and. .or. .not. .le. .eq. .ge. .gt. .lt. goto save else use module select case access blank direct exist file fmt form formatted iostat name named nextrec number opened rec recl sequential status unformatted unit continue format pause cycle exit c_null_char c_alert c_backspace c_form_feed flush wait decimal round iomsg synchronous nopass non_overridable pass protected volatile abstract extends import non_intrinsic value deferred generic final enumerator class associate bind enum c_int c_short c_long c_long_long c_signed_char c_size_t c_int8_t c_int16_t c_int32_t c_int64_t c_int_least8_t c_int_least16_t c_int_least32_t c_int_least64_t c_int_fast8_t c_int_fast16_t c_int_fast32_t c_int_fast64_t c_intmax_t C_intptr_t c_float c_double c_long_double c_float_complex c_double_complex c_long_double_complex c_bool c_char c_null_ptr c_null_funptr c_new_line c_carriage_return c_horizontal_tab c_vertical_tab iso_c_binding c_loc c_funloc c_associated c_f_pointer c_ptr c_funptr iso_fortran_env character_storage_size error_unit file_storage_size input_unit iostat_end iostat_eor numeric_storage_size output_unit c_f_procpointer ieee_arithmetic ieee_support_underflow_control ieee_get_underflow_mode ieee_set_underflow_mode newunit contiguous recursive pad position action delim readwrite eor advance nml interface procedure namelist include sequence elemental pure integer real character complex logical dimension allocatable|10 parameter external implicit|10 none double precision assign intent optional pointer target in out common equivalence data",built_in:"alog alog10 amax0 amax1 amin0 amin1 amod cabs ccos cexp clog csin csqrt dabs dacos dasin datan datan2 dcos dcosh ddim dexp dint dlog dlog10 dmax1 dmin1 dmod dnint dsign dsin dsinh dsqrt dtan dtanh float iabs idim idint idnint ifix isign max0 max1 min0 min1 sngl algama cdabs cdcos cdexp cdlog cdsin cdsqrt cqabs cqcos cqexp cqlog cqsin cqsqrt dcmplx dconjg derf derfc dfloat dgamma dimag dlgama iqint qabs qacos qasin qatan qatan2 qcmplx qconjg qcos qcosh qdim qerf qerfc qexp qgamma qimag qlgama qlog qlog10 qmax1 qmin1 qmod qnint qsign qsin qsinh qsqrt qtan qtanh abs acos aimag aint anint asin atan atan2 char cmplx conjg cos cosh exp ichar index int log log10 max min nint sign sin sinh sqrt tan tanh print write dim lge lgt lle llt mod nullify allocate deallocate adjustl adjustr all allocated any associated bit_size btest ceiling count cshift date_and_time digits dot_product eoshift epsilon exponent floor fraction huge iand ibclr ibits ibset ieor ior ishft ishftc lbound len_trim matmul maxexponent maxloc maxval merge minexponent minloc minval modulo mvbits nearest pack present product radix random_number random_seed range repeat reshape rrspacing scale scan selected_int_kind selected_real_kind set_exponent shape size spacing spread sum system_clock tiny transpose trim ubound unpack verify achar iachar transfer dble entry dprod cpu_time command_argument_count get_command get_command_argument get_environment_variable is_iostat_end ieee_arithmetic ieee_support_underflow_control
ieee_get_underflow_mode ieee_set_underflow_mode is_iostat_eor move_alloc new_line selected_char_kind same_type_as extends_type_ofacosh asinh atanh bessel_j0 bessel_j1 bessel_jn bessel_y0 bessel_y1 bessel_yn erf erfc erfc_scaled gamma log_gamma hypot norm2 atomic_define atomic_ref execute_command_line leadz trailz storage_size merge_bits bge bgt ble blt dshiftl dshiftr findloc iall iany iparity image_index lcobound ucobound maskl maskr num_images parity popcnt poppar shifta shiftl shiftr this_image"};return{cI:!0,aliases:["f90","f95"],k:n,i:/\/*/,c:[e.inherit(e.ASM,{cN:"string",r:0}),e.inherit(e.QSM,{cN:"string",r:0}),{cN:"function",bK:"subroutine function program",i:"[${=\\n]",c:[e.UTM,t]},e.C("!","$",{r:0}),{cN:"number",b:"(?=\\b|\\+|\\-|\\.)(?=\\.\\d|\\d)(?:\\d+)?(?:\\.?\\d*)(?:[de][+-]?\\d+)?\\b\\.?",r:0}]}});hljs.registerLanguage("tex",function(c){var e={cN:"tag",b:/\\/,r:0,c:[{cN:"name",v:[{b:/[a-zA-Zа-яА-я]+[*]?/},{b:/[^a-zA-Zа-яА-я0-9]/}],starts:{eW:!0,r:0,c:[{cN:"string",v:[{b:/\[/,e:/\]/},{b:/\{/,e:/\}/}]},{b:/\s*=\s*/,eW:!0,r:0,c:[{cN:"number",b:/-?\d*\.?\d+(pt|pc|mm|cm|in|dd|cc|ex|em)?/}]}]}}]};return{c:[e,{cN:"formula",c:[e],r:0,v:[{b:/\$\$/,e:/\$\$/},{b:/\$/,e:/\$/}]},c.C("%","$",{r:0})]}});hljs.registerLanguage("typescript",function(e){var r={keyword:"in if for while finally var new function do return void else break catch instanceof with throw case default try this switch continue typeof delete let yield const class public private protected get set super static implements enum export import declare type namespace abstract",literal:"true false null undefined NaN Infinity",built_in:"eval isFinite isNaN parseFloat parseInt decodeURI decodeURIComponent encodeURI encodeURIComponent escape unescape Object Function Boolean Error EvalError InternalError RangeError ReferenceError StopIteration SyntaxError TypeError URIError Number Math Date String RegExp Array Float32Array Float64Array Int16Array Int32Array Int8Array Uint16Array Uint32Array Uint8Array Uint8ClampedArray ArrayBuffer DataView JSON Intl arguments require module console window document any number boolean string void"};return{aliases:["ts"],k:r,c:[{cN:"meta",b:/^\s*['"]use strict['"]/},e.ASM,e.QSM,{cN:"string",b:"`",e:"`",c:[e.BE,{cN:"subst",b:"\\$\\{",e:"\\}"}]},e.CLCM,e.CBCM,{cN:"number",v:[{b:"\\b(0[bB][01]+)"},{b:"\\b(0[oO][0-7]+)"},{b:e.CNR}],r:0},{b:"("+e.RSR+"|\\b(case|return|throw)\\b)\\s*",k:"return throw case",c:[e.CLCM,e.CBCM,e.RM],r:0},{cN:"function",b:"function",e:/[\{;]/,eE:!0,k:r,c:["self",e.inherit(e.TM,{b:/[A-Za-z$_][0-9A-Za-z$_]*/}),{cN:"params",b:/\(/,e:/\)/,eB:!0,eE:!0,k:r,c:[e.CLCM,e.CBCM],i:/["'\(]/}],i:/\[|%/,r:0},{bK:"constructor",e:/\{/,eE:!0},{bK:"module",e:/\{/,eE:!0},{bK:"interface",e:/\{/,eE:!0,k:"interface extends"},{b:/\$[(.]/},{b:"\\."+e.IR,r:0}]}});hljs.registerLanguage("scss",function(e){var t="[a-zA-Z-][a-zA-Z0-9_-]*",i={cN:"variable",b:"(\\$"+t+")\\b"},r={cN:"number",b:"#[0-9A-Fa-f]+"};({cN:"attribute",b:"[A-Z_\\.\\-]+",e:":",eE:!0,i:"[^\\s]",starts:{eW:!0,eE:!0,c:[r,e.CSSNM,e.QSM,e.ASM,e.CBCM,{cN:"meta",b:"!important"}]}});return{cI:!0,i:"[=/|']",c:[e.CLCM,e.CBCM,{cN:"selector-id",b:"\\#[A-Za-z0-9_-]+",r:0},{cN:"selector-class",b:"\\.[A-Za-z0-9_-]+",r:0},{cN:"selector-attr",b:"\\[",e:"\\]",i:"$"},{cN:"selector-tag",b:"\\b(a|abbr|acronym|address|area|article|aside|audio|b|base|big|blockquote|body|br|button|canvas|caption|cite|code|col|colgroup|command|datalist|dd|del|details|dfn|div|dl|dt|em|embed|fieldset|figcaption|figure|footer|form|frame|frameset|(h[1-6])|head|header|hgroup|hr|html|i|iframe|img|input|ins|kbd|keygen|label|legend|li|link|map|mark|meta|meter|nav|noframes|noscript|object|ol|optgroup|option|output|p|param|pre|progress|q|rp|rt|ruby|samp|script|section|select|small|span|strike|strong|style|sub|sup|table|tbody|td|textarea|tfoot|th|thead|time|title|tr|tt|ul|var|video)\\b",r:0},{b:":(visited|valid|root|right|required|read-write|read-only|out-range|optional|only-of-type|only-child|nth-of-type|nth-last-of-type|nth-last-child|nth-child|not|link|left|last-of-type|last-child|lang|invalid|indeterminate|in-range|hover|focus|first-of-type|first-line|first-letter|first-child|first|enabled|empty|disabled|default|checked|before|after|active)"},{b:"::(after|before|choices|first-letter|first-line|repeat-index|repeat-item|selection|value)"},i,{cN:"attribute",b:"\\b(z-index|word-wrap|word-spacing|word-break|width|widows|white-space|visibility|vertical-align|unicode-bidi|transition-timing-function|transition-property|transition-duration|transition-delay|transition|transform-style|transform-origin|transform|top|text-underline-position|text-transform|text-shadow|text-rendering|text-overflow|text-indent|text-decoration-style|text-decoration-line|text-decoration-color|text-decoration|text-align-last|text-align|tab-size|table-layout|right|resize|quotes|position|pointer-events|perspective-origin|perspective|page-break-inside|page-break-before|page-break-after|padding-top|padding-right|padding-left|padding-bottom|padding|overflow-y|overflow-x|overflow-wrap|overflow|outline-width|outline-style|outline-offset|outline-color|outline|orphans|order|opacity|object-position|object-fit|normal|none|nav-up|nav-right|nav-left|nav-index|nav-down|min-width|min-height|max-width|max-height|mask|marks|margin-top|margin-right|margin-left|margin-bottom|margin|list-style-type|list-style-position|list-style-image|list-style|line-height|letter-spacing|left|justify-content|initial|inherit|ime-mode|image-orientation|image-resolution|image-rendering|icon|hyphens|height|font-weight|font-variant-ligatures|font-variant|font-style|font-stretch|font-size-adjust|font-size|font-language-override|font-kerning|font-feature-settings|font-family|font|float|flex-wrap|flex-shrink|flex-grow|flex-flow|flex-direction|flex-basis|flex|filter|empty-cells|display|direction|cursor|counter-reset|counter-increment|content|column-width|column-span|column-rule-width|column-rule-style|column-rule-color|column-rule|column-gap|column-fill|column-count|columns|color|clip-path|clip|clear|caption-side|break-inside|break-before|break-after|box-sizing|box-shadow|box-decoration-break|bottom|border-width|border-top-width|border-top-style|border-top-right-radius|border-top-left-radius|border-top-color|border-top|border-style|border-spacing|border-right-width|border-right-style|border-right-color|border-right|border-radius|border-left-width|border-left-style|border-left-color|border-left|border-image-width|border-image-source|border-image-slice|border-image-repeat|border-image-outset|border-image|border-color|border-collapse|border-bottom-width|border-bottom-style|border-bottom-right-radius|border-bottom-left-radius|border-bottom-color|border-bottom|border|background-size|background-repeat|background-position|background-origin|background-image|background-color|background-clip|background-attachment|background-blend-mode|background|backface-visibility|auto|animation-timing-function|animation-play-state|animation-name|animation-iteration-count|animation-fill-mode|animation-duration|animation-direction|animation-delay|animation|align-self|align-items|align-content)\\b",i:"[^\\s]"},{b:"\\b(whitespace|wait|w-resize|visible|vertical-text|vertical-ideographic|uppercase|upper-roman|upper-alpha|underline|transparent|top|thin|thick|text|text-top|text-bottom|tb-rl|table-header-group|table-footer-group|sw-resize|super|strict|static|square|solid|small-caps|separate|se-resize|scroll|s-resize|rtl|row-resize|ridge|right|repeat|repeat-y|repeat-x|relative|progress|pointer|overline|outside|outset|oblique|nowrap|not-allowed|normal|none|nw-resize|no-repeat|no-drop|newspaper|ne-resize|n-resize|move|middle|medium|ltr|lr-tb|lowercase|lower-roman|lower-alpha|loose|list-item|line|line-through|line-edge|lighter|left|keep-all|justify|italic|inter-word|inter-ideograph|inside|inset|inline|inline-block|inherit|inactive|ideograph-space|ideograph-parenthesis|ideograph-numeric|ideograph-alpha|horizontal|hidden|help|hand|groove|fixed|ellipsis|e-resize|double|dotted|distribute|distribute-space|distribute-letter|distribute-all-lines|disc|disabled|default|decimal|dashed|crosshair|collapse|col-resize|circle|char|center|capitalize|break-word|break-all|bottom|both|bolder|bold|block|bidi-override|below|baseline|auto|always|all-scroll|absolute|table|table-cell)\\b"},{b:":",e:";",c:[i,r,e.CSSNM,e.QSM,e.ASM,{cN:"meta",b:"!important"}]},{b:"@",e:"[{;]",k:"mixin include extend for if else each while charset import debug media page content font-face namespace warn",c:[i,e.QSM,e.ASM,r,e.CSSNM,{b:"\\s[A-Za-z0-9_.-]+",r:0}]}]}});hljs.registerLanguage("puppet",function(e){var s={keyword:"and case default else elsif false if in import enherits node or true undef unless main settings $string ",literal:"alias audit before loglevel noop require subscribe tag owner ensure group mode name|0 changes context force incl lens load_path onlyif provider returns root show_diff type_check en_address ip_address realname command environment hour monute month monthday special target weekday creates cwd ogoutput refresh refreshonly tries try_sleep umask backup checksum content ctime force ignore links mtime purge recurse recurselimit replace selinux_ignore_defaults selrange selrole seltype seluser source souirce_permissions sourceselect validate_cmd validate_replacement allowdupe attribute_membership auth_membership forcelocal gid ia_load_module members system host_aliases ip allowed_trunk_vlans description device_url duplex encapsulation etherchannel native_vlan speed principals allow_root auth_class auth_type authenticate_user k_of_n mechanisms rule session_owner shared options device fstype enable hasrestart directory present absent link atboot blockdevice device dump pass remounts poller_tag use message withpath adminfile allow_virtual allowcdrom category configfiles flavor install_options instance package_settings platform responsefile status uninstall_options vendor unless_system_user unless_uid binary control flags hasstatus manifest pattern
restart running start stop allowdupe auths expiry gid groups home iterations key_membership keys managehome membership password password_max_age password_min_age profile_membership profiles project purge_ssh_keys role_membership roles salt shell uid baseurl cost descr enabled enablegroups exclude failovermethod gpgcheck gpgkey http_caching include includepkgs keepalive metadata_expire metalink mirrorlist priority protect proxy proxy_password proxy_username repo_gpgcheck s3_enabled skip_if_unavailable sslcacert sslclientcert sslclientkey sslverify mounted",built_in:"architecture augeasversion blockdevices boardmanufacturer boardproductname boardserialnumber cfkey dhcp_servers domain ec2_ ec2_userdata facterversion filesystems ldom fqdn gid hardwareisa hardwaremodel hostname id|0 interfaces ipaddress ipaddress_ ipaddress6 ipaddress6_ iphostnumber is_virtual kernel kernelmajversion kernelrelease kernelversion kernelrelease kernelversion lsbdistcodename lsbdistdescription lsbdistid lsbdistrelease lsbmajdistrelease lsbminordistrelease lsbrelease macaddress macaddress_ macosx_buildversion macosx_productname macosx_productversion macosx_productverson_major macosx_productversion_minor manufacturer memoryfree memorysize netmask metmask_ network_ operatingsystem operatingsystemmajrelease operatingsystemrelease osfamily partitions path physicalprocessorcount processor processorcount productname ps puppetversion rubysitedir rubyversion selinux selinux_config_mode selinux_config_policy selinux_current_mode selinux_current_mode selinux_enforced selinux_policyversion serialnumber sp_ sshdsakey sshecdsakey sshrsakey swapencrypted swapfree swapsize timezone type uniqueid uptime uptime_days uptime_hours uptime_seconds uuid virtual vlans xendomains zfs_version zonenae zones zpool_version"},r=e.C("#","$"),a="([A-Za-z_]|::)(\\w|::)*",i=e.inherit(e.TM,{b:a}),o={cN:"variable",b:"\\$"+a},t={cN:"string",c:[e.BE,o],v:[{b:/'/,e:/'/},{b:/"/,e:/"/}]};return{aliases:["pp"],c:[r,o,t,{bK:"class",e:"\\{|;",i:/=/,c:[i,r]},{bK:"define",e:/\{/,c:[{cN:"section",b:e.IR,endsParent:!0}]},{b:e.IR+"\\s+\\{",rB:!0,e:/\S/,c:[{cN:"keyword",b:e.IR},{b:/\{/,e:/\}/,k:s,r:0,c:[t,r,{b:"[a-zA-Z_]+\\s*=>",rB:!0,e:"=>",c:[{cN:"attr",b:e.IR}]},{cN:"number",b:"(\\b0[0-7_]+)|(\\b0x[0-9a-fA-F_]+)|(\\b[1-9][0-9_]*(\\.[0-9_]+)?)|[0_]\\b",r:0},o]}],r:0}]}});hljs.registerLanguage("cpp",function(t){var e={cN:"keyword",b:"\\b[a-z\\d_]*_t\\b"},r={cN:"string",v:[t.inherit(t.QSM,{b:'((u8?|U)|L)?"'}),{b:'(u8?|U)?R"',e:'"',c:[t.BE]},{b:"'\\\\?.",e:"'",i:"."}]},i={cN:"number",v:[{b:"\\b(\\d+(\\.\\d*)?|\\.\\d+)(u|U|l|L|ul|UL|f|F)"},{b:t.CNR}],r:0},s={cN:"meta",b:"#",e:"$",k:{"meta-keyword":"if else elif endif define undef warning error line pragma ifdef ifndef"},c:[{b:/\\\n/,r:0},{bK:"include",e:"$",k:{"meta-keyword":"include"},c:[t.inherit(r,{cN:"meta-string"}),{cN:"meta-string",b:"<",e:">",i:"\\n"}]},r,t.CLCM,t.CBCM]},a=t.IR+"\\s*\\(",c={keyword:"int float while private char catch export virtual operator sizeof dynamic_cast|10 typedef const_cast|10 const struct for static_cast|10 union namespace unsigned long volatile static protected bool template mutable if public friend do goto auto void enum else break extern using class asm case typeid short reinterpret_cast|10 default double register explicit signed typename try this switch continue inline delete alignof constexpr decltype noexcept static_assert thread_local restrict _Bool complex _Complex _Imaginary atomic_bool atomic_char atomic_schar atomic_uchar atomic_short atomic_ushort atomic_int atomic_uint atomic_long atomic_ulong atomic_llong atomic_ullong",built_in:"std string cin cout cerr clog stdin stdout stderr stringstream istringstream ostringstream auto_ptr deque list queue stack vector map set bitset multiset multimap unordered_set unordered_map unordered_multiset unordered_multimap array shared_ptr abort abs acos asin atan2 atan calloc ceil cosh cos exit exp fabs floor fmod fprintf fputs free frexp fscanf isalnum isalpha iscntrl isdigit isgraph islower isprint ispunct isspace isupper isxdigit tolower toupper labs ldexp log10 log malloc realloc memchr memcmp memcpy memset modf pow printf putchar puts scanf sinh sin snprintf sprintf sqrt sscanf strcat strchr strcmp strcpy strcspn strlen strncat strncmp strncpy strpbrk strrchr strspn strstr tanh tan vfprintf vprintf vsprintf endl initializer_list unique_ptr",literal:"true false nullptr NULL"};return{aliases:["c","cc","h","c++","h++","hpp"],k:c,i:"</",c:[e,t.CLCM,t.CBCM,i,r,s,{b:"\\b(deque|list|queue|stack|vector|map|set|bitset|multiset|multimap|unordered_map|unordered_set|unordered_multiset|unordered_multimap|array)\\s*<",e:">",k:c,c:["self",e]},{b:t.IR+"::",k:c},{bK:"new throw return else",r:0},{cN:"function",b:"("+t.IR+"[*&\\s]+)+"+a,rB:!0,e:/[{;=]/,eE:!0,k:c,i:/[^\w\s*&]/,c:[{b:a,rB:!0,c:[t.TM],r:0},{cN:"params",b:/\(/,e:/\)/,k:c,r:0,c:[t.CLCM,t.CBCM,r,i]},t.CLCM,t.CBCM,s]}]}});hljs.registerLanguage("gradle",function(e){return{cI:!0,k:{keyword:"task project allprojects subprojects artifacts buildscript configurations dependencies repositories sourceSets description delete from into include exclude source classpath destinationDir includes options sourceCompatibility targetCompatibility group flatDir doLast doFirst flatten todir fromdir ant def abstract break case catch continue default do else extends final finally for if implements instanceof native new private protected public return static switch synchronized throw throws transient try volatile while strictfp package import false null super this true antlrtask checkstyle codenarc copy boolean byte char class double float int interface long short void compile runTime file fileTree abs any append asList asWritable call collect compareTo count div dump each eachByte eachFile eachLine every find findAll flatten getAt getErr getIn getOut getText grep immutable inject inspect intersect invokeMethods isCase join leftShift minus multiply newInputStream newOutputStream newPrintWriter newReader newWriter next plus pop power previous print println push putAt read readBytes readLines reverse reverseEach round size sort splitEachLine step subMap times toInteger toList tokenize upto waitForOrKill withPrintWriter withReader withStream withWriter withWriterAppend write writeLine"},c:[e.CLCM,e.CBCM,e.ASM,e.QSM,e.NM,e.RM]}});hljs.registerLanguage("elixir",function(e){var r="[a-zA-Z_][a-zA-Z0-9_]*(\\!|\\?)?",n="[a-zA-Z_]\\w*[!?=]?|[-+~]\\@|<<|>>|=~|===?|<=>|[<>]=?|**|[-/+%^&*~`|]|\\[\\]=?",b="and false then defined module in return redo retry end for true self when next until do begin unless nil break not case cond alias while ensure or include use alias fn quote",c={cN:"subst",b:"#\\{",e:"}",l:r,k:b},a={cN:"string",c:[e.BE,c],v:[{b:/'/,e:/'/},{b:/"/,e:/"/}]},i={cN:"function",bK:"def defp defmacro",e:/\B\b/,c:[e.inherit(e.TM,{b:r,endsParent:!0})]},s=e.inherit(i,{cN:"class",bK:"defmodule defrecord",e:/\bdo\b|$|;/}),l=[a,e.HCM,s,i,{cN:"symbol",b:":",c:[a,{b:n}],r:0},{cN:"symbol",b:r+":",r:0},{cN:"number",b:"(\\b0[0-7_]+)|(\\b0x[0-9a-fA-F_]+)|(\\b[1-9][0-9_]*(\\.[0-9_]+)?)|[0_]\\b",r:0},{cN:"variable",b:"(\\$\\W)|((\\$|\\@\\@?)(\\w+))"},{b:"->"},{b:"("+e.RSR+")\\s*",c:[e.HCM,{cN:"regexp",i:"\\n",c:[e.BE,c],v:[{b:"/",e:"/[a-z]*"},{b:"%r\\[",e:"\\][a-z]*"}]}],r:0}];return c.c=l,{l:r,k:b,c:l}});hljs.registerLanguage("http",function(e){var t="HTTP/[0-9\\.]+";return{aliases:["https"],i:"\\S",c:[{b:"^"+t,e:"$",c:[{cN:"number",b:"\\b\\d{3}\\b"}]},{b:"^[A-Z]+ (.*?) "+t+"$",rB:!0,e:"$",c:[{cN:"string",b:" ",e:" ",eB:!0,eE:!0},{b:t},{cN:"keyword",b:"[A-Z]+"}]},{cN:"attribute",b:"^\\w",e:": ",eE:!0,i:"\\n|\\s|=",starts:{e:"$",r:0}},{b:"\\n\\n",starts:{sL:[],eW:!0}}]}});hljs.registerLanguage("delphi",function(e){var r="exports register file shl array record property for mod while set ally label uses raise not stored class safecall var interface or private static exit index inherited to else stdcall override shr asm far resourcestring finalization packed virtual out and protected library do xorwrite goto near function end div overload object unit begin string on inline repeat until destructor write message program with read initialization except default nil if case cdecl in downto threadvar of try pascal const external constructor type public then implementation finally published procedure",t=[e.CLCM,e.C(/\{/,/\}/,{r:0}),e.C(/\(*/,/*\)/,{r:10})],a={cN:"string",b:/'/,e:/'/,c:[{b:/''/}]},i={cN:"string",b:/(#\d+)+/},c={b:e.IR+"\\s*=\\s*class\\s*\\(",rB:!0,c:[e.TM]},o={cN:"function",bK:"function constructor destructor procedure",e:/[:;]/,k:"function constructor|10 destructor|10 procedure|10",c:[e.TM,{cN:"params",b:/\(/,e:/\)/,k:r,c:[a,i]}].concat(t)};return{aliases:["dpr","dfm","pas","pascal","freepascal","lazarus","lpr","lfm"],cI:!0,k:r,i:/"|\$[G-Zg-z]|\/*|<\/|\|/,c:[a,i,e.NM,c,o].concat(t)}});hljs.registerLanguage("ruby",function(e){var b="[a-zA-Z_]\\w*[!?=]?|[-+~]\\@|<<|>>|=~|===?|<=>|[<>]=?|**|[-/+%^&*~`|]|\\[\\]=?",c="and false then defined module in return redo if BEGIN retry end for true self when next until do begin unless END rescue nil else break undef not super class case require yield alias while ensure elsif or include attr_reader attr_writer attr_accessor",r={cN:"doctag",b:"@[A-Za-z]+"},a={b:"#<",e:">"},s=[e.C("#","$",{c:[r]}),e.C("^\\=begin","^\\=end",{c:[r],r:10}),e.C("^__END__","\\n$")],n={cN:"subst",b:"#\\{",e:"}",k:c},t={cN:"string",c:[e.BE,n],v:[{b:/'/,e:/'/},{b:/"/,e:/"/},{b:/`/,e:/`/},{b:"%[qQwWx]?\\(",e:"\\)"},{b:"%[qQwWx]?\\[",e:"\\]"},{b:"%[qQwWx]?{",e:"}"},{b:"%[qQwWx]?<",e:">"},{b:"%[qQwWx]?/",e:"/"},{b:"%[qQwWx]?%",e:"%"},{b:"%[qQwWx]?-",e:"-"},{b:"%[qQwWx]?\\|",e:"\\|"},{b:/\B\?(\\\d{1,3}|\\x[A-Fa-f0-9]{1,2}|\\u[A-Fa-f0-9]{4}|\\?\S)\b/}]},i={cN:"params",b:"\\(",e:"\\)",endsParent:!0,k:c},d=[t,a,{cN:"class",bK:"class module",e:"$|;",i:/=/,c:[e.inherit(e.TM,{b:"[A-Za-z_]\\w*(::\\w+)*(\\?|\\!)?"}),{b:"<\\s*",c:[{b:"("+e.IR+"::)?"+e.IR}]}].concat(s)},{cN:"function",bK:"def",e:"$
;",c:[e.inherit(e.TM,{b:b}),i].concat(s)},{cN:"symbol",b:e.UIR+"(\\!|\\?)?:",r:0},{cN:"symbol",b:":",c:[t,{b:b}],r:0},{cN:"number",b:"(\\b0[0-7_]+)|(\\b0x[0-9a-fA-F_]+)|(\\b[1-9][0-9_]*(\\.[0-9_]+)?)|[0_]\\b",r:0},{b:"(\\$\\W)|((\\$|\\@\\@?)(\\w+))"},{b:"("+e.RSR+")\\s*",c:[a,{cN:"regexp",c:[e.BE,n],i:/\n/,v:[{b:"/",e:"/[a-z]*"},{b:"%r{",e:"}[a-z]*"},{b:"%r\\(",e:"\\)[a-z]*"},{b:"%r!",e:"![a-z]*"},{b:"%r\\[",e:"\\][a-z]*"}]}].concat(s),r:0}].concat(s);n.c=d,i.c=d;var o="[>?]>",l="[\\w#]+\\(\\w+\\):\\d+:\\d+>",u="(\\w+-)?\\d+\\.\\d+\\.\\d(p\\d+)?[^>]+>",w=[{b:/^\s*=>/,starts:{e:"$",c:d}},{cN:"meta",b:"^("+o+"|"+l+"|"+u+")",starts:{e:"$",c:d}}];return{aliases:["rb","gemspec","podspec","thor","irb"],k:c,i:/\/*/,c:s.concat(w).concat(d)}});hljs.registerLanguage("ceylon",function(e){var a="assembly module package import alias class interface object given value assign void function new of extends satisfies abstracts in out return break continue throw assert dynamic if else switch case for while try catch finally then let this outer super is exists nonempty",t="shared abstract formal default actual variable late native deprecatedfinal sealed annotation suppressWarnings small",s="doc by license see throws tagged",n={cN:"subst",eB:!0,eE:!0,b:/``/,e:/``/,k:a,r:10},r=[{cN:"string",b:'"""',e:'"""',r:10},{cN:"string",b:'"',e:'"',c:[n]},{cN:"string",b:"'",e:"'"},{cN:"number",b:"#[0-9a-fA-F_]+|\\$[01_]+|[0-9_]+(?:\\.[0-9_](?:[eE][+-]?\\d+)?)?[kMGTPmunpf]?",r:0}];return n.c=r,{k:{keyword:a+" "+t,meta:s},i:"\\$[^01]|#[^0-9a-fA-F]",c:[e.CLCM,e.C("/*","*/",{c:["self"]}),{cN:"meta",b:'@[a-z]\\w*(?:\\:"[^"]*")?'}].concat(r)}});hljs.registerLanguage("dts",function(e){var a={cN:"string",v:[e.inherit(e.QSM,{b:'((u8?|U)|L)?"'}),{b:'(u8?|U)?R"',e:'"',c:[e.BE]},{b:"'\\\\?.",e:"'",i:"."}]},c={cN:"number",v:[{b:"\\b(\\d+(\\.\\d*)?|\\.\\d+)(u|U|l|L|ul|UL|f|F)"},{b:e.CNR}],r:0},b={cN:"meta",b:"#",e:"$",k:{"meta-keyword":"if else elif endif define undef ifdef ifndef"},c:[{b:/\\\n/,r:0},{bK:"include",e:"$",k:{"meta-keyword":"include"},c:[e.inherit(a,{cN:"meta-string"}),{cN:"meta-string",b:"<",e:">",i:"\\n"}]},a,e.CLCM,e.CBCM]},i={cN:"variable",b:"\\&[a-z\\d_]*\\b"},r={cN:"meta-keyword",b:"/[a-z][a-z\\d-]*/"},d={cN:"symbol",b:"^\\s*[a-zA-Z_][a-zA-Z\\d_]*:"},n={cN:"params",b:"<",e:">",c:[c,i]},s={cN:"class",b:/[a-zA-Z_][a-zA-Z\d_@]*\s{/,e:/[{;=]/,rB:!0,eE:!0},t={cN:"class",b:"/\\s*{",e:"};",r:10,c:[i,r,d,s,n,e.CLCM,e.CBCM,c,a]};return{k:"",c:[t,i,r,d,s,n,e.CLCM,e.CBCM,c,a,b,{b:e.IR+"::",k:""}]}});hljs.registerLanguage("django",function(e){var t={b:/\|[A-Za-z]+:?/,k:{name:"truncatewords removetags linebreaksbr yesno get_digit timesince random striptags filesizeformat escape linebreaks length_is ljust rjust cut urlize fix_ampersands title floatformat capfirst pprint divisibleby add make_list unordered_list urlencode timeuntil urlizetrunc wordcount stringformat linenumbers slice date dictsort dictsortreversed default_if_none pluralize lower join center default truncatewords_html upper length phone2numeric wordwrap time addslashes slugify first escapejs force_escape iriencode last safe safeseq truncatechars localize unlocalize localtime utc timezone"},c:[e.QSM,e.ASM]};return{aliases:["jinja"],cI:!0,sL:"xml",c:[e.C(/\{%\s*comment\s*%}/,/\{%\s*endcomment\s*%}/),e.C(/\{#/,/#}/),{cN:"template-tag",b:/\{%/,e:/%}/,c:[{cN:"name",b:/\w+/,k:{name:"comment endcomment load templatetag ifchanged endifchanged if endif firstof for endfor ifnotequal endifnotequal widthratio extends include spaceless endspaceless regroup ifequal endifequal ssi now with cycle url filter endfilter debug block endblock else autoescape endautoescape csrf_token empty elif endwith static trans blocktrans endblocktrans get_static_prefix get_media_prefix plural get_current_language language get_available_languages get_current_language_bidi get_language_info get_language_info_list localize endlocalize localtime endlocaltime timezone endtimezone get_current_timezone verbatim"},starts:{eW:!0,k:"in by as",c:[t],r:0}}]},{cN:"template-variable",b:/\{\{/,e:/}}/,c:[t]}]}});hljs.registerLanguage("css",function(e){var c="[a-zA-Z-][a-zA-Z0-9_-]*",t={b:/[A-Z_\.\-]+\s*:/,rB:!0,e:";",eW:!0,c:[{cN:"attribute",b:/\S/,e:":",eE:!0,starts:{eW:!0,eE:!0,c:[{b:/[\w-]+\(/,rB:!0,c:[{cN:"built_in",b:/[\w-]+/},{b:/\(/,e:/\)/,c:[e.ASM,e.QSM]}]},e.CSSNM,e.QSM,e.ASM,e.CBCM,{cN:"number",b:"#[0-9A-Fa-f]+"},{cN:"meta",b:"!important"}]}}]};return{cI:!0,i:/[=\/|'\$]/,c:[e.CBCM,{cN:"selector-id",b:/#[A-Za-z0-9_-]+/},{cN:"selector-class",b:/\.[A-Za-z0-9_-]+/},{cN:"selector-attr",b:/\[/,e:/\]/,i:"$"},{cN:"selector-pseudo",b:/:(:)?[a-zA-Z0-9_\-\+\(\)"'.]+/},{b:"@(font-face|page)",l:"[a-z-]+",k:"font-face page"},{b:"@",e:"[{;]",c:[{cN:"keyword",b:/\S+/},{b:/\s/,eW:!0,eE:!0,r:0,c:[e.ASM,e.QSM,e.CSSNM]}]},{cN:"selector-tag",b:c,r:0},{b:"{",e:"}",i:/\S/,c:[e.CBCM,t]}]}});hljs.registerLanguage("qml",function(r){var e={keyword:"in of on if for while finally var new function do return void else break catch instanceof with throw case default try this switch continue typeof delete let yield const export super debugger as async await",literal:"true false null undefined NaN Infinity",built_in:"eval isFinite isNaN parseFloat parseInt decodeURI decodeURIComponent encodeURI encodeURIComponent escape unescape Object Function Boolean Error EvalError InternalError RangeError ReferenceError StopIteration SyntaxError TypeError URIError Number Math Date String RegExp Array Float32Array Float64Array Int16Array Int32Array Int8Array Uint16Array Uint32Array Uint8Array Uint8ClampedArray ArrayBuffer DataView JSON Intl arguments require module console window document Symbol Set Map WeakSet WeakMap Proxy Reflect Behavior bool color coordinate date double enumeration font geocircle georectangle geoshape int list matrix4x4 parent point quaternion real rect size string url var variant vector2d vector3d vector4dPromise"},t="[a-zA-Z_][a-zA-Z0-9\\._]*",a={cN:"string",b:"(\\b|\"|')",e:"(//|/*|$)",i:"\\n",c:[r.BE]},n={bK:"import",e:"$",starts:{cN:"string",e:"(//|/*|$)",rE:!0},c:[a]},o={cN:"keyword",b:"\\bproperty\\b",starts:{cN:"string",e:"(:|=|;|,|//|/*|$)",rE:!0},r:0},i={cN:"keyword",b:"\\bsignal\\b",starts:{cN:"string",e:"(\\(|:|=|;|,|//|/*|$)",rE:!0},r:10},c={cN:"attribute",b:"\\bid\\s*:",starts:{cN:"emphasis",e:t,rE:!1},r:10},s={b:t+"\\s*:",rB:!0,c:[{cN:"attribute",b:t,includeBegin:!0,e:"\\s*:",eE:!0}],r:0},b={b:t+"\\s*{",rB:!0,c:[{cN:"decorator",k:e,b:t,includeBegin:!0,e:"\\s*{",eE:!0}],r:0};return{aliases:["qt"],cI:!1,k:e,c:[{cN:"pi",b:/^\s*['"]use (strict|asm)['"]/},r.ASM,r.QSM,{cN:"string",b:"`",e:"`",c:[r.BE,{cN:"subst",b:"\\$\\{",e:"\\}"}]},r.CLCM,r.CBCM,{cN:"number",v:[{b:"\\b(0[bB][01]+)"},{b:"\\b(0[oO][0-7]+)"},{b:r.CNR}],r:0},{b:"("+r.RSR+"|\\b(case|return|throw)\\b)\\s*",k:"return throw case",c:[r.CLCM,r.CBCM,r.RM,{b:/</,e:/>\s*[);\]]/,r:0,sL:"xml"}],r:0},n,i,o,{cN:"function",bK:"function",e:/\{/,eE:!0,c:[r.inherit(r.TM,{b:/[A-Za-z$_][0-9A-Za-z$_]*/}),{cN:"params",b:/\(/,e:/\)/,eB:!0,eE:!0,c:[r.CLCM,r.CBCM]}],i:/\[|%/},{b:"\\."+r.IR,r:0},c,s,b],i:/#/}});hljs.registerLanguage("coffeescript",function(e){var c={keyword:"in if for while finally new do return else break catch instanceof throw try this switch continue typeof delete debugger super then unless until loop of by when and or is isnt not",literal:"true false null undefined yes no on off",built_in:"npm require console print module global window document"},n="[A-Za-z$_][0-9A-Za-z$_]*",r={cN:"subst",b:/#\{/,e:/}/,k:c},s=[e.BNM,e.inherit(e.CNM,{starts:{e:"(\\s*/)?",r:0}}),{cN:"string",v:[{b:/'''/,e:/'''/,c:[e.BE]},{b:/'/,e:/'/,c:[e.BE]},{b:/"""/,e:/"""/,c:[e.BE,r]},{b:/"/,e:/"/,c:[e.BE,r]}]},{cN:"regexp",v:[{b:"///",e:"///",c:[r,e.HCM]},{b:"//[gim]*",r:0},{b:/\/(?![*])(\\\/|.)*?\/[gim]*(?=\W|$)/}]},{b:"@"+n},{b:"`",e:"`",eB:!0,eE:!0,sL:"javascript"}];r.c=s;var i=e.inherit(e.TM,{b:n}),t="(\\(.*\\))?\\s*\\B[-=]>",o={cN:"params",b:"\\([^\\(]",rB:!0,c:[{b:/\(/,e:/\)/,k:c,c:["self"].concat(s)}]};return{aliases:["coffee","cson","iced"],k:c,i:/\/*/,c:s.concat([e.C("###","###"),e.HCM,{cN:"function",b:"^\\s*"+n+"\\s*=\\s*"+t,e:"[-=]>",rB:!0,c:[i,o]},{b:/[:\(,=]\s*/,r:0,c:[{cN:"function",b:t,e:"[-=]>",rB:!0,c:[o]}]},{cN:"class",bK:"class",e:"$",i:/[:="\[\]]/,c:[{bK:"extends",eW:!0,i:/[:="\[\]]/,c:[i]},i]},{b:n+":",e:":",rB:!0,rE:!0,r:0}])}});hljs.registerLanguage("vbscript",function(e){return{aliases:["vbs"],cI:!0,k:{keyword:"call class const dim do loop erase execute executeglobal exit for each next function if then else on error option explicit new private property let get public randomize redim rem select case set stop sub while wend with end to elseif is or xor and not class_initialize class_terminate default preserve in me byval byref step resume goto",built_in:"lcase month vartype instrrev ubound setlocale getobject rgb getref string weekdayname rnd dateadd monthname now day minute isarray cbool round formatcurrency conversions csng timevalue second year space abs clng timeserial fixs len asc isempty maths dateserial atn timer isobject filter weekday datevalue ccur isdate instr datediff formatdatetime replace isnull right sgn array snumeric log cdbl hex chr lbound msgbox ucase getlocale cos cdate cbyte rtrim join hour oct typename trim strcomp int createobject loadpicture tan formatnumber mid scriptenginebuildversion scriptengine split scriptengineminorversion cint sin datepart ltrim sqr scriptenginemajorversion time derived eval date formatpercent exp inputbox left ascw chrw regexp server response request cstr err",literal:"true false null nothing empty"},i:"//",c:[e.inherit(e.QSM,{c:[{b:'""'}]}),e.C(/'/,/$/,{r:0}),e.CNM]}});hljs.registerLanguage("fsharp",function(e){var t={b:"<",e:">",c:[e.inherit(e.TM,{b:/'[a-zA-Z0-9_]+/})]};return{aliases:["fs"],k:"abstract and as assert base begin class default delegate do done downcast downto elif else end exception extern false finally for fun function global if in inherit inline interface internal lazy let match member module mutable namespace new null of
open or override private public rec return sig static struct then to true try type upcast use val void when while with yield",i:/\/*/,c:[{cN:"keyword",b:/\b(yield|return|let|do)!/},{cN:"string",b:'@"',e:'"',c:[{b:'""'}]},{cN:"string",b:'"""',e:'"""'},e.C("\\(*","*\\)"),{cN:"class",bK:"type",e:"\\(|=|$",eE:!0,c:[e.UTM,t]},{cN:"meta",b:"\\[<",e:">\\]",r:10},{cN:"symbol",b:"\\B('[A-Za-z])\\b",c:[e.BE]},e.CLCM,e.inherit(e.QSM,{i:null}),e.CNM]}});hljs.registerLanguage("dart",function(e){var t={cN:"subst",b:"\\$\\{",e:"}",k:"true false null this is new super"},r={cN:"string",v:[{b:"r'''",e:"'''"},{b:'r"""',e:'"""'},{b:"r'",e:"'",i:"\\n"},{b:'r"',e:'"',i:"\\n"},{b:"'''",e:"'''",c:[e.BE,t]},{b:'"""',e:'"""',c:[e.BE,t]},{b:"'",e:"'",i:"\\n",c:[e.BE,t]},{b:'"',e:'"',i:"\\n",c:[e.BE,t]}]};t.c=[e.CNM,r];var n={keyword:"assert async await break case catch class const continue default do else enum extends false final finally for if in is new null rethrow return super switch sync this throw true try var void while with yield abstract as dynamic export external factory get implements import library operator part set static typedef",built_in:"print Comparable DateTime Duration Function Iterable Iterator List Map Match Null Object Pattern RegExp Set Stopwatch String StringBuffer StringSink Symbol Type Uri bool double int num document window querySelector querySelectorAll Element ElementList"};return{k:n,c:[r,e.C("/**","*/",{sL:"markdown"}),e.C("///","$",{sL:"markdown"}),e.CLCM,e.CBCM,{cN:"class",bK:"class interface",e:"{",eE:!0,c:[{bK:"extends implements"},e.UTM]},e.CNM,{cN:"meta",b:"@[A-Za-z]+"},{b:"=>"}]}});hljs.registerLanguage("asciidoc",function(e){return{aliases:["adoc"],c:[e.C("^/{4,}\\n","\\n/{4,}$",{r:10}),e.C("^//","$",{r:0}),{cN:"title",b:"^\\.\\w.*$"},{b:"^[=*]{4,}\\n",e:"\\n^[=*]{4,}$",r:10},{cN:"section",r:10,v:[{b:"^(={1,5}) .+?(\\1)?$"},{b:"^[^\\[\\]\\n]+?\\n[=\\-~\\^\\+]{2,}$"}]},{cN:"meta",b:"^:.+?:",e:"\\s",eE:!0,r:10},{cN:"meta",b:"^\\[.+?\\]$",r:0},{cN:"quote",b:"^_{4,}\\n",e:"\\n_{4,}$",r:10},{cN:"code",b:"^[\\-\\.]{4,}\\n",e:"\\n[\\-\\.]{4,}$",r:10},{b:"^\\+{4,}\\n",e:"\\n\\+{4,}$",c:[{b:"<",e:">",sL:"xml",r:0}],r:10},{cN:"bullet",b:"^(*+|\\-+|\\.+|[^\\n]+?::)\\s+"},{cN:"symbol",b:"^(NOTE|TIP|IMPORTANT|WARNING|CAUTION):\\s+",r:10},{cN:"strong",b:"\\B*(?![*\\s])",e:"(\\n{2}|*)",c:[{b:"*\\w",r:0}]},{cN:"emphasis",b:"\\B'(?!['\\s])",e:"(\\n{2}|')",c:[{b:"\\\\'\\w",r:0}],r:0},{cN:"emphasis",b:"_(?![_\\s])",e:"(\\n{2}|_)",r:0},{cN:"string",v:[{b:"``.+?''"},{b:"`.+?'"}]},{cN:"code",b:"(`.+?`|\\+.+?\\+)",r:0},{cN:"code",b:"^[\\t]",e:"$",r:0},{b:"^'{3,}[\\t]*$",r:10},{b:"(link:)?(http|https|ftp|file|irc|image:?):\\S+\\[.*?\\]",rB:!0,c:[{b:"(link|image:?):",r:0},{cN:"link",b:"\\w",e:"[^\\[]+",r:0},{cN:"string",b:"\\[",e:"\\]",eB:!0,eE:!0,r:0}],r:10}]}});hljs.registerLanguage("dos",function(e){var r=e.C(/@?rem\b/,/$/,{r:10}),t={cN:"symbol",b:"^\\s*[A-Za-z._?][A-Za-z0-9_$#@~.?]*(:|\\s+label)",r:0};return{aliases:["bat","cmd"],cI:!0,i:/\/*/,k:{keyword:"if else goto for in do call exit not exist errorlevel defined equ neq lss leq gtr geq",built_in:"prn nul lpt3 lpt2 lpt1 con com4 com3 com2 com1 aux shift cd dir echo setlocal endlocal set pause copy append assoc at attrib break cacls cd chcp chdir chkdsk chkntfs cls cmd color comp compact convert date dir diskcomp diskcopy doskey erase fs find findstr format ftype graftabl help keyb label md mkdir mode more move path pause print popd pushd promt rd recover rem rename replace restore rmdir shiftsort start subst time title tree type ver verify vol ping net ipconfig taskkill xcopy ren del"},c:[{cN:"variable",b:/%%[^]|%[^]+?%|![^]+?!/},{cN:"function",b:t.b,e:"goto:eof",c:[e.inherit(e.TM,{b:"([_a-zA-Z]\\w*\\.)*([_a-zA-Z]\\w*:)?[_a-zA-Z]\\w*"}),r]},{cN:"number",b:"\\b\\d+",r:0},r]}});hljs.registerLanguage("lua",function(e){var t="\\[=*\\[",a="\\]=*\\]",r={b:t,e:a,c:["self"]},n=[e.C("--(?!"+t+")","$"),e.C("--"+t,a,{c:[r],r:10})];return{l:e.UIR,k:{keyword:"and break do else elseif end false for if in local nil not or repeat return then true until while",built_in:"_G _VERSION assert collectgarbage dofile error getfenv getmetatable ipairs load loadfile loadstring module next pairs pcall print rawequal rawget rawset require select setfenv setmetatable tonumber tostring type unpack xpcall coroutine debug io math os package string table"},c:n.concat([{cN:"function",bK:"function",e:"\\)",c:[e.inherit(e.TM,{b:"([_a-zA-Z]\\w*\\.)*([_a-zA-Z]\\w*:)?[_a-zA-Z]\\w*"}),{cN:"params",b:"\\(",eW:!0,c:n}].concat(n)},e.CNM,e.ASM,e.QSM,{cN:"string",b:t,e:a,c:[r],r:5}])}});hljs.registerLanguage("julia",function(e){var r={keyword:"in abstract baremodule begin bitstype break catch ccall const continue do else elseif end export finally for function global if immutable import importall let local macro module quote return try type typealias using while",literal:"true false ARGS CPU_CORES C_NULL DL_LOAD_PATH DevNull ENDIAN_BOM ENV I|0 Inf Inf16 Inf32 InsertionSort JULIA_HOME LOAD_PATH MS_ASYNC MS_INVALIDATE MS_SYNC MergeSort NaN NaN16 NaN32 OS_NAME QuickSort RTLD_DEEPBIND RTLD_FIRST RTLD_GLOBAL RTLD_LAZY RTLD_LOCAL RTLD_NODELETE RTLD_NOLOAD RTLD_NOW RoundDown RoundFromZero RoundNearest RoundToZero RoundUp STDERR STDIN STDOUT VERSION WORD_SIZE catalan cglobal e|0 eu|0 eulergamma golden im nothing pi γ π φ Inf64 NaN64 RoundNearestTiesAway RoundNearestTiesUp ",built_in:"ANY ASCIIString AbstractArray AbstractRNG AbstractSparseArray Any ArgumentError Array Associative Base64Pipe Bidiagonal BigFloat BigInt BitArray BitMatrix BitVector Bool BoundsError Box CFILE Cchar Cdouble Cfloat Char CharString Cint Clong Clonglong ClusterManager Cmd Coff_t Colon Complex Complex128 Complex32 Complex64 Condition Cptrdiff_t Cshort Csize_t Cssize_t Cuchar Cuint Culong Culonglong Cushort Cwchar_t DArray DataType DenseArray Diagonal Dict DimensionMismatch DirectIndexString Display DivideError DomainError EOFError EachLine Enumerate ErrorException Exception Expr Factorization FileMonitor FileOffset Filter Float16 Float32 Float64 FloatRange FloatingPoint Function GetfieldNode GotoNode Hermitian IO IOBuffer IOStream IPv4 IPv6 InexactError Int Int128 Int16 Int32 Int64 Int8 IntSet Integer InterruptException IntrinsicFunction KeyError LabelNode LambdaStaticData LineNumberNode LoadError LocalProcess MIME MathConst MemoryError MersenneTwister Method MethodError MethodTable Module NTuple NewvarNode Nothing Number ObjectIdDict OrdinalRange OverflowError ParseError PollingFileWatcher ProcessExitedException ProcessGroup Ptr QuoteNode Range Range1 Ranges Rational RawFD Real Regex RegexMatch RemoteRef RepString RevString RopeString RoundingMode Set SharedArray Signed SparseMatrixCSC StackOverflowError Stat StatStruct StepRange String SubArray SubString SymTridiagonal Symbol SymbolNode Symmetric SystemError Task TextDisplay Timer TmStruct TopNode Triangular Tridiagonal Type TypeConstructor TypeError TypeName TypeVar UTF16String UTF32String UTF8String UdpSocket Uint Uint128 Uint16 Uint32 Uint64 Uint8 UndefRefError UndefVarError UniformScaling UnionType UnitRange Unsigned Vararg VersionNumber WString WeakKeyDict WeakRef Woodbury Zip AbstractChannel AbstractFloat AbstractString AssertionError Base64DecodePipe Base64EncodePipe BufferStream CapturedException CartesianIndex CartesianRange Channel Cintmax_t CompositeException Cstring Cuintmax_t Cwstring Date DateTime Dims Enum GenSym GlobalRef HTML InitError InvalidStateException Irrational LinSpace LowerTriangular NullException Nullable OutOfMemoryError Pair PartialQuickSort Pipe RandomDevice ReadOnlyMemoryError ReentrantLock Ref RemoteException SegmentationFault SerializationState SimpleVector TCPSocket Text Tuple UDPSocket UInt UInt128 UInt16 UInt32 UInt64 UInt8 UnicodeError Union UpperTriangular Val Void WorkerConfig AbstractMatrix AbstractSparseMatrix AbstractSparseVector AbstractVecOrMat AbstractVector DenseMatrix DenseVecOrMat DenseVector Matrix SharedMatrix SharedVector StridedArray StridedMatrix StridedVecOrMat StridedVector VecOrMat Vector "},t="[A-Za-z_\\u00A1-\\uFFFF][A-Za-z_0-9\\u00A1-\\uFFFF]*",a={l:t,k:r,i:/<\//},n={cN:"type",b:/::/},o={cN:"type",b:/<:/},i={cN:"number",b:/(\b0x[\d_]*(\.[\d_]*)?|0x\.\d[\d_]*)p[-+]?\d+|\b0[box][a-fA-F0-9][a-fA-F0-9_]*|(\b\d[\d_]*(\.[\d_]*)?|\.\d[\d_]*)([eEfF][-+]?\d+)?/,r:0},l={cN:"string",b:/'(.|\\[xXuU][a-zA-Z0-9]+)'/},c={cN:"subst",b:/\$\(/,e:/\)/,k:r},s={cN:"variable",b:"\\$"+t},d={cN:"string",c:[e.BE,c,s],v:[{b:/\w*"""/,e:/"""\w*/,r:10},{b:/\w*"/,e:/"\w*/}]},S={cN:"string",c:[e.BE,c,s],b:"`",e:"`"},u={cN:"meta",b:"@"+t},g={cN:"comment",v:[{b:"#=",e:"=#",r:10},{b:"#",e:"$"}]};return a.c=[i,l,n,o,d,S,u,g,e.HCM],c.c=a.c,a});hljs.registerLanguage("matlab",function(e){var a=[e.CNM,{cN:"string",b:"'",e:"'",c:[e.BE,{b:"''"}]}],s={r:0,c:[{b:/'['\.]*/}]};return{k:{keyword:"break case catch classdef continue else elseif end enumerated events for function global if methods otherwise parfor persistent properties return spmd switch try while",built_in:"sin sind sinh asin asind asinh cos cosd cosh acos acosd acosh tan tand tanh atan atand atan2 atanh sec secd sech asec asecd asech csc cscd csch acsc acscd acsch cot cotd coth acot acotd acoth hypot exp expm1 log log1p log10 log2 pow2 realpow reallog realsqrt sqrt nthroot nextpow2 abs angle complex conj imag real unwrap isreal cplxpair fix floor ceil round mod rem sign airy besselj bessely besselh besseli besselk beta betainc betaln ellipj ellipke erf erfc erfcx erfinv expint gamma gammainc gammaln psi legendre cross dot factor isprime primes gcd lcm rat rats perms nchoosek factorial cart2sph cart2pol pol2cart sph2cart hsv2rgb rgb2hsv zeros ones eye repmat rand randn linspace logspace freqspace meshgrid accumarray size length ndims numel disp isempty isequal isequalwithequalnans cat reshape diag blkdiag tril triu fliplr flipud flipdim rot90 find sub2ind ind2sub bsxfun ndgrid permute ipermute shiftdim circshift squeeze isscalar isvector ans eps realmax realmin pi i inf nan isnan isinf isfinite j why compan
gallery hadamard hankel hilb invhilb magic pascal rosser toeplitz vander wilkinson"},i:'(//|"|#|/*|\\s+/\\w+)',c:[{cN:"function",bK:"function",e:"$",c:[e.UTM,{cN:"params",v:[{b:"\\(",e:"\\)"},{b:"\\[",e:"\\]"}]}]},{b:/[a-zA-Z_][a-zA-Z_0-9]*'['\.]*/,rB:!0,r:0,c:[{b:/[a-zA-Z_][a-zA-Z_0-9]*/,r:0},s.c[0]]},{b:"\\[",e:"\\]",c:a,r:0,starts:s},{b:"\\{",e:/}/,c:a,r:0,starts:s},{b:/\)/,r:0,starts:s},e.C("^\\s*\\%\\{\\s*$","^\\s*\\%\\}\\s*$"),e.C("\\%","$")].concat(a)}});hljs.registerLanguage("markdown",function(e){return{aliases:["md","mkdown","mkd"],c:[{cN:"section",v:[{b:"^#{1,6}",e:"$"},{b:"^.+?\\n[=-]{2,}$"}]},{b:"<",e:">",sL:"xml",r:0},{cN:"bullet",b:"^([*+-]|(\\d+\\.))\\s+"},{cN:"strong",b:"[*_]{2}.+?[*_]{2}"},{cN:"emphasis",v:[{b:"*.+?*"},{b:"_.+?_",r:0}]},{cN:"quote",b:"^>\\s+",e:"$"},{cN:"code",v:[{b:"`.+?`"},{b:"^({4}|)",e:"$",r:0}]},{b:"^[-*]{3,}",e:"$"},{b:"\\[.+?\\][\\(\\[].*?[\\)\\]]",rB:!0,c:[{cN:"string",b:"\\[",e:"\\]",eB:!0,rE:!0,r:0},{cN:"link",b:"\\]\\(",e:"\\)",eB:!0,eE:!0},{cN:"symbol",b:"\\]\\[",e:"\\]",eB:!0,eE:!0}],r:10},{b:"^\\[.+\\]:",rB:!0,c:[{cN:"symbol",b:"\\[",e:"\\]:",eB:!0,eE:!0,starts:{cN:"link",e:"$"}}]}]}});hljs.registerLanguage("vim",function(e){return{l:/[!#@\w]+/,k:{keyword:"N|0 P|0 X|0 a|0 ab abc abo al am an|0 ar arga argd arge argdo argg argl argu as au aug aun b|0 bN ba bad bd be bel bf bl bm bn bo bp br brea breaka breakd breakl bro bufdo buffers bun bw c|0 cN cNf ca cabc caddb cad caddf cal cat cb cc ccl cd ce cex cf cfir cgetb cgete cg changes chd che checkt cl cla clo cm cmapc cme cn cnew cnf cno cnorea cnoreme co col colo com comc comp con conf cope cp cpf cq cr cs cst cu cuna cunme cw delm deb debugg delc delf dif diffg diffo diffp diffpu diffs diffthis dig di dl dell dj dli do doautoa dp dr ds dsp e|0 ea ec echoe echoh echom echon el elsei em en endfo endf endt endw ene ex exe exi exu f|0 files filet fin fina fini fir fix fo foldc foldd folddoc foldo for fu go gr grepa gu gv ha helpf helpg helpt hi hid his ia iabc if ij il im imapc ime ino inorea inoreme int is isp iu iuna iunme j|0 ju k|0 keepa kee keepj lN lNf l|0 lad laddb laddf la lan lat lb lc lch lcl lcs le lefta let lex lf lfir lgetb lgete lg lgr lgrepa lh ll lla lli lmak lm lmapc lne lnew lnf ln loadk lo loc lockv lol lope lp lpf lr ls lt lu lua luad luaf lv lvimgrepa lw m|0 ma mak map mapc marks mat me menut mes mk mks mksp mkv mkvie mod mz mzf nbc nb nbs new nm nmapc nme nn nnoreme noa no noh norea noreme norm nu nun nunme ol o|0 om omapc ome on ono onoreme opt ou ounme ow p|0 profd prof pro promptr pc ped pe perld po popu pp pre prev ps pt ptN ptf ptj ptl ptn ptp ptr pts pu pw py3 python3 py3d py3f py pyd pyf quita qa rec red redi redr redraws reg res ret retu rew ri rightb rub rubyd rubyf rund ru rv sN san sa sal sav sb sbN sba sbf sbl sbm sbn sbp sbr scrip scripte scs se setf setg setl sf sfir sh sim sig sil sl sla sm smap smapc sme sn sni sno snor snoreme sor so spelld spe spelli spellr spellu spellw sp spr sre st sta startg startr star stopi stj sts sun sunm sunme sus sv sw sy synti sync tN tabN tabc tabdo tabe tabf tabfir tabl tabm tabnew tabn tabo tabp tabr tabs tab ta tags tc tcld tclf te tf th tj tl tm tn to tp tr try ts tu u|0 undoj undol una unh unl unlo unm unme uns up ve verb vert vim vimgrepa vi viu vie vm vmapc vme vne vn vnoreme vs vu vunme windo w|0 wN wa wh wi winc winp wn wp wq wqa ws wu wv x|0 xa xmapc xm xme xn xnoreme xu xunme y|0 z|0 ~ Next Print append abbreviate abclear aboveleft all amenu anoremenu args argadd argdelete argedit argglobal arglocal argument ascii autocmd augroup aunmenu buffer bNext ball badd bdelete behave belowright bfirst blast bmodified bnext botright bprevious brewind break breakadd breakdel breaklist browse bunload bwipeout change cNext cNfile cabbrev cabclear caddbuffer caddexpr caddfile call catch cbuffer cclose center cexpr cfile cfirst cgetbuffer cgetexpr cgetfile chdir checkpath checktime clist clast close cmap cmapclear cmenu cnext cnewer cnfile cnoremap cnoreabbrev cnoremenu copy colder colorscheme command comclear compiler continue confirm copen cprevious cpfile cquit crewind cscope cstag cunmap cunabbrev cunmenu cwindow delete delmarks debug debuggreedy delcommand delfunction diffupdate diffget diffoff diffpatch diffput diffsplit digraphs display deletel djump dlist doautocmd doautoall deletep drop dsearch dsplit edit earlier echo echoerr echohl echomsg else elseif emenu endif endfor endfunction endtry endwhile enew execute exit exusage file filetype find finally finish first fixdel fold foldclose folddoopen folddoclosed foldopen function global goto grep grepadd gui gvim hardcopy help helpfind helpgrep helptags highlight hide history insert iabbrev iabclear ijump ilist imap imapclear imenu inoremap inoreabbrev inoremenu intro isearch isplit iunmap iunabbrev iunmenu join jumps keepalt keepmarks keepjumps lNext lNfile list laddexpr laddbuffer laddfile last language later lbuffer lcd lchdir lclose lcscope left leftabove lexpr lfile lfirst lgetbuffer lgetexpr lgetfile lgrep lgrepadd lhelpgrep llast llist lmake lmap lmapclear lnext lnewer lnfile lnoremap loadkeymap loadview lockmarks lockvar lolder lopen lprevious lpfile lrewind ltag lunmap luado luafile lvimgrep lvimgrepadd lwindow move mark make mapclear match menu menutranslate messages mkexrc mksession mkspell mkvimrc mkview mode mzscheme mzfile nbclose nbkey nbsart next nmap nmapclear nmenu nnoremap nnoremenu noautocmd noremap nohlsearch noreabbrev noremenu normal number nunmap nunmenu oldfiles open omap omapclear omenu only onoremap onoremenu options ounmap ounmenu ownsyntax print profdel profile promptfind promptrepl pclose pedit perl perldo pop popup ppop preserve previous psearch ptag ptNext ptfirst ptjump ptlast ptnext ptprevious ptrewind ptselect put pwd py3do py3file python pydo pyfile quit quitall qall read recover redo redir redraw redrawstatus registers resize retab return rewind right rightbelow ruby rubydo rubyfile rundo runtime rviminfo substitute sNext sandbox sargument sall saveas sbuffer sbNext sball sbfirst sblast sbmodified sbnext sbprevious sbrewind scriptnames scriptencoding scscope set setfiletype setglobal setlocal sfind sfirst shell simalt sign silent sleep slast smagic smapclear smenu snext sniff snomagic snoremap snoremenu sort source spelldump spellgood spellinfo spellrepall spellundo spellwrong split sprevious srewind stop stag startgreplace startreplace startinsert stopinsert stjump stselect sunhide sunmap sunmenu suspend sview swapname syntax syntime syncbind tNext tabNext tabclose tabedit tabfind tabfirst tablast tabmove tabnext tabonly tabprevious tabrewind tag tcl tcldo tclfile tearoff tfirst throw tjump tlast tmenu tnext topleft tprevious trewind tselect tunmenu undo undojoin undolist unabbreviate unhide unlet unlockvar unmap unmenu unsilent update vglobal version verbose vertical vimgrep vimgrepadd visual viusage view vmap vmapclear vmenu vnew vnoremap vnoremenu vsplit vunmap vunmenu write wNext wall while winsize wincmd winpos wnext wprevious wqall wsverb wundo wviminfo xit xall xmapclear xmap xmenu xnoremap xnoremenu xunmap xunmenu yank",built_in:"synIDtrans atan2 range matcharg did_filetype asin feedkeys xor argv complete_check add getwinposx getqflist getwinposy screencol clearmatches empty extend getcmdpos mzeval garbagecollect setreg ceil sqrt diff_hlID inputsecret get getfperm getpid filewritable shiftwidth max sinh isdirectory synID system inputrestore winline atan visualmode inputlist tabpagewinnr round getregtype mapcheck hasmapto histdel argidx findfile sha256 exists toupper getcmdline taglist string getmatches bufnr strftime winwidth bufexists strtrans tabpagebuflist setcmdpos remote_read printf setloclist getpos getline bufwinnr float2nr len getcmdtype diff_filler luaeval resolve libcallnr foldclosedend reverse filter has_key bufname str2float strlen setline getcharmod setbufvar index searchpos shellescape undofile foldclosed setqflist buflisted strchars str2nr virtcol floor remove undotree remote_expr winheight gettabwinvar reltime cursor tabpagenr finddir localtime acos getloclist search tanh matchend rename gettabvar strdisplaywidth type abs py3eval setwinvar tolower wildmenumode log10 spellsuggest bufloaded synconcealed nextnonblank server2client complete settabwinvar executable input wincol setmatches getftype hlID inputsave searchpair or screenrow line settabvar histadd deepcopy strpart remote_peek and eval getftime submatch screenchar winsaveview matchadd mkdir screenattr getfontname libcall reltimestr getfsize winnr invert pow getbufline byte2line soundfold repeat fnameescape tagfiles sin strwidth spellbadword trunc maparg log lispindent hostname setpos globpath remote_foreground getchar synIDattr fnamemodify cscope_connection stridx winbufnr indent min complete_add nr2char searchpairpos inputdialog values matchlist items hlexists strridx browsedir expand fmod pathshorten line2byte argc count getwinvar glob foldtextresult getreg foreground cosh matchdelete has char2nr simplify histget searchdecl iconv winrestcmd pumvisible writefile foldlevel haslocaldir keys cos matchstr foldtext histnr tan tempname getcwd byteidx getbufvar islocked escape eventhandler remote_send serverlist winrestview synstack pyeval prevnonblank readfile cindent filereadable changenr exp"},i:/[{:]/,c:[e.NM,e.ASM,{cN:"string",b:/"(\\"|\n\\|[^"\n])*"/},e.C('"',"$"),{cN:"variable",b:/[bwtglsav]:[\w\d_]*/},{cN:"function",bK:"function function!",e:"$",r:0,c:[e.TM,{cN:"params",b:"\\(",e:"\\)"}]},{cN:"symbol",b:/<[\w-]+>/}]}});hljs.registerLanguage("ruleslanguage",function(T){return{k:{keyword:"BILL_PERIOD BILL_START BILL_STOP RS_EFFECTIVE_START RS_EFFECTIVE_STOP RS_JURIS_CODE RS_OPCO_CODE INTDADDATTRIBUTE|5 INTDADDVMSG|5 INTDBLOCKOP|5 INTDBLOCKOPNA|5 INTDCLOSE|5 INTDCOUNT|5 INTDCOUNTSTATUSCODE|5 INTDCREATEMASK|5 INTDCREATEDAYMASK|5 INTDCREATEFACTORMASK|5 INTDCREATEHANDLE|5 INTDCREATEOVERRIDEDAYMASK|5 INTDCREATEOVERRIDEMASK|5 INTDCREATESTATUSCODEMASK|5 INTDCREATETOUPERIOD|5
INTDDELETE|5 INTDDIPTEST|5 INTDEXPORT|5 INTDGETERRORCODE|5 INTDGETERRORMESSAGE|5 INTDISEQUAL|5 INTDJOIN|5 INTDLOAD|5 INTDLOADACTUALCUT|5 INTDLOADDATES|5 INTDLOADHIST|5 INTDLOADLIST|5 INTDLOADLISTDATES|5 INTDLOADLISTENERGY|5 INTDLOADLISTHIST|5 INTDLOADRELATEDCHANNEL|5 INTDLOADSP|5 INTDLOADSTAGING|5 INTDLOADUOM|5 INTDLOADUOMDATES|5 INTDLOADUOMHIST|5 INTDLOADVERSION|5 INTDOPEN|5 INTDREADFIRST|5 INTDREADNEXT|5 INTDRECCOUNT|5 INTDRELEASE|5 INTDREPLACE|5 INTDROLLAVG|5 INTDROLLPEAK|5 INTDSCALAROP|5 INTDSCALE|5 INTDSETATTRIBUTE|5 INTDSETDSTPARTICIPANT|5 INTDSETSTRING|5 INTDSETVALUE|5 INTDSETVALUESTATUS|5 INTDSHIFTSTARTTIME|5 INTDSMOOTH|5 INTDSORT|5 INTDSPIKETEST|5 INTDSUBSET|5 INTDTOU|5 INTDTOURELEASE|5 INTDTOUVALUE|5 INTDUPDATESTATS|5 INTDVALUE|5 STDEV INTDDELETEEX|5 INTDLOADEXACTUAL|5 INTDLOADEXCUT|5 INTDLOADEXDATES|5 INTDLOADEX|5 INTDLOADEXRELATEDCHANNEL|5 INTDSAVEEX|5 MVLOAD|5 MVLOADACCT|5 MVLOADACCTDATES|5 MVLOADACCTHIST|5 MVLOADDATES|5 MVLOADHIST|5 MVLOADLIST|5 MVLOADLISTDATES|5 MVLOADLISTHIST|5 IF FOR NEXT DONE SELECT END CALL ABORT CLEAR CHANNEL FACTOR LIST NUMBER OVERRIDE SET WEEK DISTRIBUTIONNODE ELSE WHEN THEN OTHERWISE IENUM CSV INCLUDE LEAVE RIDER SAVE DELETE NOVALUE SECTION WARN SAVE_UPDATE DETERMINANT LABEL REPORT REVENUE EACH IN FROM TOTAL CHARGE BLOCK AND OR CSV_FILE RATE_CODE AUXILIARY_DEMAND UIDACCOUNT RS BILL_PERIOD_SELECT HOURS_PER_MONTH INTD_ERROR_STOP SEASON_SCHEDULE_NAME ACCOUNTFACTOR ARRAYUPPERBOUND CALLSTOREDPROC GETADOCONNECTION GETCONNECT GETDATASOURCE GETQUALIFIER GETUSERID HASVALUE LISTCOUNT LISTOP LISTUPDATE LISTVALUE PRORATEFACTOR RSPRORATE SETBINPATH SETDBMONITOR WQ_OPEN BILLINGHOURS DATE DATEFROMFLOAT DATETIMEFROMSTRING DATETIMETOSTRING DATETOFLOAT DAY DAYDIFF DAYNAME DBDATETIME HOUR MINUTE MONTH MONTHDIFF MONTHHOURS MONTHNAME ROUNDDATE SAMEWEEKDAYLASTYEAR SECOND WEEKDAY WEEKDIFF YEAR YEARDAY YEARSTR COMPSUM HISTCOUNT HISTMAX HISTMIN HISTMINNZ HISTVALUE MAXNRANGE MAXRANGE MINRANGE COMPIKVA COMPKVA COMPKVARFROMKQKW COMPLF IDATTR FLAG LF2KW LF2KWH MAXKW POWERFACTOR READING2USAGE AVGSEASON MAXSEASON MONTHLYMERGE SEASONVALUE SUMSEASON ACCTREADDATES ACCTTABLELOAD CONFIGADD CONFIGGET CREATEOBJECT CREATEREPORT EMAILCLIENT EXPBLKMDMUSAGE EXPMDMUSAGE EXPORT_USAGE FACTORINEFFECT GETUSERSPECIFIEDSTOP INEFFECT ISHOLIDAY RUNRATE SAVE_PROFILE SETREPORTTITLE USEREXIT WATFORRUNRATE TO TABLE ACOS ASIN ATAN ATAN2 BITAND CEIL COS COSECANT COSH COTANGENT DIVQUOT DIVREM EXP FABS FLOOR FMOD FREPM FREXPN LOG LOG10 MAX MAXN MIN MINNZ MODF POW ROUND ROUND2VALUE ROUNDINT SECANT SIN SINH SQROOT TAN TANH FLOAT2STRING FLOAT2STRINGNC INSTR LEFT LEN LTRIM MID RIGHT RTRIM STRING STRINGNC TOLOWER TOUPPER TRIM NUMDAYS READ_DATE STAGING",built_in:"IDENTIFIER OPTIONS XML_ELEMENT XML_OP XML_ELEMENT_OF DOMDOCCREATE DOMDOCLOADFILE DOMDOCLOADXML DOMDOCSAVEFILE DOMDOCGETROOT DOMDOCADDPI DOMNODEGETNAME DOMNODEGETTYPE DOMNODEGETVALUE DOMNODEGETCHILDCT DOMNODEGETFIRSTCHILD DOMNODEGETSIBLING DOMNODECREATECHILDELEMENT DOMNODESETATTRIBUTE DOMNODEGETCHILDELEMENTCT DOMNODEGETFIRSTCHILDELEMENT DOMNODEGETSIBLINGELEMENT DOMNODEGETATTRIBUTECT DOMNODEGETATTRIBUTEI DOMNODEGETATTRIBUTEBYNAME DOMNODEGETBYNAME"},c:[T.CLCM,T.CBCM,T.ASM,T.QSM,T.CNM,{cN:"literal",v:[{b:"#\\s+[a-zA-Z\\ \\.]*",r:0},{b:"#[a-zA-Z\\ \\.]+"}]}]}});hljs.registerLanguage("xml",function(s){var e="[A-Za-z0-9\\._:-]+",t={eW:!0,i:/</,r:0,c:[{cN:"attr",b:e,r:0},{b:"=",r:0,c:[{cN:"string",v:[{b:/"/,e:/"/},{b:/'/,e:/'/},{b:/[^\s\/>]+/}]}]}]};return{aliases:["html","xhtml","rss","atom","xsl","plist"],cI:!0,c:[{cN:"meta",b:"<!DOCTYPE",e:">",r:10,c:[{b:"\\[",e:"\\]"}]},s.C("<!--","-->",{r:10}),{b:"<\\!\\[CDATA\\[",e:"\\]\\]>",r:10},{b:/<\?(php)?/,e:/\?>/,sL:"php",c:[{b:"/*",e:"*/",skip:!0}]},{cN:"tag",b:"<style(?=\\s|>|$)",e:">",k:{name:"style"},c:[t],starts:{e:"</style>",rE:!0,sL:["css","xml"]}},{cN:"tag",b:"<script(?=\\s|>|$)",e:">",k:{name:"script"},c:[t],starts:{e:"</script>",rE:!0,sL:["actionscript","javascript","handlebars","xml"]}},{cN:"meta",v:[{b:/<\?xml/,e:/\?>/,r:10},{b:/<\?\w+/,e:/\?>/}]},{cN:"tag",b:"</?",e:"/?>",c:[{cN:"name",b:/[^\/><\s]+/,r:0},t]}]}});hljs.registerLanguage("autoit",function(e){var t="ByRef Case Const ContinueCase ContinueLoop Default Dim Do Else ElseIf EndFunc EndIf EndSelect EndSwitch EndWith Enum Exit ExitLoop For Func Global If In Local Next ReDim Return Select Static Step Switch Then To Until Volatile WEnd While With",r="True False And Null Not Or",i="Abs ACos AdlibRegister AdlibUnRegister Asc AscW ASin Assign ATan AutoItSetOption AutoItWinGetTitle AutoItWinSetTitle Beep Binary BinaryLen BinaryMid BinaryToString BitAND BitNOT BitOR BitRotate BitShift BitXOR BlockInput Break Call CDTray Ceiling Chr ChrW ClipGet ClipPut ConsoleRead ConsoleWrite ConsoleWriteError ControlClick ControlCommand ControlDisable ControlEnable ControlFocus ControlGetFocus ControlGetHandle ControlGetPos ControlGetText ControlHide ControlListView ControlMove ControlSend ControlSetText ControlShow ControlTreeView Cos Dec DirCopy DirCreate DirGetSize DirMove DirRemove DllCall DllCallAddress DllCallbackFree DllCallbackGetPtr DllCallbackRegister DllClose DllOpen DllStructCreate DllStructGetData DllStructGetPtr DllStructGetSize DllStructSetData DriveGetDrive DriveGetFileSystem DriveGetLabel DriveGetSerial DriveGetType DriveMapAdd DriveMapDel DriveMapGet DriveSetLabel DriveSpaceFree DriveSpaceTotal DriveStatus EnvGet EnvSet EnvUpdate Eval Execute Exp FileChangeDir FileClose FileCopy FileCreateNTFSLink FileCreateShortcut FileDelete FileExists FileFindFirstFile FileFindNextFile FileFlush FileGetAttrib FileGetEncoding FileGetLongName FileGetPos FileGetShortcut FileGetShortName FileGetSize FileGetTime FileGetVersion FileInstall FileMove FileOpen FileOpenDialog FileRead FileReadLine FileReadToArray FileRecycle FileRecycleEmpty FileSaveDialog FileSelectFolder FileSetAttrib FileSetEnd FileSetPos FileSetTime FileWrite FileWriteLine Floor FtpSetProxy FuncName GUICreate GUICtrlCreateAvi GUICtrlCreateButton GUICtrlCreateCheckbox GUICtrlCreateCombo GUICtrlCreateContextMenu GUICtrlCreateDate GUICtrlCreateDummy GUICtrlCreateEdit GUICtrlCreateGraphic GUICtrlCreateGroup GUICtrlCreateIcon GUICtrlCreateInput GUICtrlCreateLabel GUICtrlCreateList GUICtrlCreateListView GUICtrlCreateListViewItem GUICtrlCreateMenu GUICtrlCreateMenuItem GUICtrlCreateMonthCal GUICtrlCreateObj GUICtrlCreatePic GUICtrlCreateProgress GUICtrlCreateRadio GUICtrlCreateSlider GUICtrlCreateTab GUICtrlCreateTabItem GUICtrlCreateTreeView GUICtrlCreateTreeViewItem GUICtrlCreateUpdown GUICtrlDelete GUICtrlGetHandle GUICtrlGetState GUICtrlRead GUICtrlRecvMsg GUICtrlRegisterListViewSort GUICtrlSendMsg GUICtrlSendToDummy GUICtrlSetBkColor GUICtrlSetColor GUICtrlSetCursor GUICtrlSetData GUICtrlSetDefBkColor GUICtrlSetDefColor GUICtrlSetFont GUICtrlSetGraphic GUICtrlSetImage GUICtrlSetLimit GUICtrlSetOnEvent GUICtrlSetPos GUICtrlSetResizing GUICtrlSetState GUICtrlSetStyle GUICtrlSetTip GUIDelete GUIGetCursorInfo GUIGetMsg GUIGetStyle GUIRegisterMsg GUISetAccelerators GUISetBkColor GUISetCoord GUISetCursor GUISetFont GUISetHelp GUISetIcon GUISetOnEvent GUISetState GUISetStyle GUIStartGroup GUISwitch Hex HotKeySet HttpSetProxy HttpSetUserAgent HWnd InetClose InetGet InetGetInfo InetGetSize InetRead IniDelete IniRead IniReadSection IniReadSectionNames IniRenameSection IniWrite IniWriteSection InputBox Int IsAdmin IsArray IsBinary IsBool IsDeclared IsDllStruct IsFloat IsFunc IsHWnd IsInt IsKeyword IsNumber IsObj IsPtr IsString Log MemGetStats Mod MouseClick MouseClickDrag MouseDown MouseGetCursor MouseGetPos MouseMove MouseUp MouseWheel MsgBox Number ObjCreate ObjCreateInterface ObjEvent ObjGet ObjName OnAutoItExitRegister OnAutoItExitUnRegister Opt Ping PixelChecksum PixelGetColor PixelSearch ProcessClose ProcessExists ProcessGetStats ProcessList ProcessSetPriority ProcessWait ProcessWaitClose ProgressOff ProgressOn ProgressSet Ptr Random RegDelete RegEnumKey RegEnumVal RegRead RegWrite Round Run RunAs RunAsWait RunWait Send SendKeepActive SetError SetExtended ShellExecute ShellExecuteWait Shutdown Sin Sleep SoundPlay SoundSetWaveVolume SplashImageOn SplashOff SplashTextOn Sqrt SRandom StatusbarGetText StderrRead StdinWrite StdioClose StdoutRead String StringAddCR StringCompare StringFormat StringFromASCIIArray StringInStr StringIsAlNum StringIsAlpha StringIsASCII StringIsDigit StringIsFloat StringIsInt StringIsLower StringIsSpace StringIsUpper StringIsXDigit StringLeft StringLen StringLower StringMid StringRegExp StringRegExpReplace StringReplace StringReverse StringRight StringSplit StringStripCR StringStripWS StringToASCIIArray StringToBinary StringTrimLeft StringTrimRight StringUpper Tan TCPAccept TCPCloseSocket TCPConnect TCPListen TCPNameToIP TCPRecv TCPSend TCPShutdown TCPStartup TimerDiff TimerInit ToolTip TrayCreateItem TrayCreateMenu TrayGetMsg TrayItemDelete TrayItemGetHandle TrayItemGetState TrayItemGetText TrayItemSetOnEvent TrayItemSetState TrayItemSetText TraySetClick TraySetIcon TraySetOnEvent TraySetPauseIcon TraySetState TraySetToolTip TrayTip UBound UDPBind UDPCloseSocket UDPOpen UDPRecv UDPSend UDPShutdown UDPStartup VarGetType WinActivate WinActive WinClose WinExists WinFlash WinGetCaretPos WinGetClassList WinGetClientSize WinGetHandle WinGetPos WinGetProcess WinGetState WinGetText WinGetTitle WinKill WinList WinMenuSelectItem WinMinimizeAll WinMinimizeAllUndo WinMove WinSetOnTop WinSetState WinSetTitle WinSetTrans WinWait WinWaitActive WinWaitClose WinWaitNotActive Array1DToHistogram ArrayAdd ArrayBinarySearch ArrayColDelete ArrayColInsert ArrayCombinations ArrayConcatenate ArrayDelete ArrayDisplay ArrayExtract ArrayFindAll ArrayInsert ArrayMax ArrayMaxIndex ArrayMin ArrayMinIndex ArrayPermute ArrayPop ArrayPush ArrayReverse ArraySearch ArrayShuffle ArraySort ArraySwap ArrayToClip ArrayToString ArrayTranspose ArrayTrim ArrayUnique Assert ChooseColor ChooseFont ClipBoard_ChangeChain ClipBoard_Close ClipBoard_CountFormats ClipBoard_Empty ClipBoard_EnumFormats ClipBoard_FormatStr ClipBoard_GetData ClipBoard_GetDataEx
ClipBoard_GetFormatName ClipBoard_GetOpenWindow ClipBoard_GetOwner ClipBoard_GetPriorityFormat ClipBoard_GetSequenceNumber ClipBoard_GetViewer ClipBoard_IsFormatAvailable ClipBoard_Open ClipBoard_RegisterFormat ClipBoard_SetData ClipBoard_SetDataEx ClipBoard_SetViewer ClipPutFile ColorConvertHSLtoRGB ColorConvertRGBtoHSL ColorGetBlue ColorGetCOLORREF ColorGetGreen ColorGetRed ColorGetRGB ColorSetCOLORREF ColorSetRGB Crypt_DecryptData Crypt_DecryptFile Crypt_DeriveKey Crypt_DestroyKey Crypt_EncryptData Crypt_EncryptFile Crypt_GenRandom Crypt_HashData Crypt_HashFile Crypt_Shutdown Crypt_Startup DateAdd DateDayOfWeek DateDaysInMonth DateDiff DateIsLeapYear DateIsValid DateTimeFormat DateTimeSplit DateToDayOfWeek DateToDayOfWeekISO DateToDayValue DateToMonth Date_Time_CompareFileTime Date_Time_DOSDateTimeToArray Date_Time_DOSDateTimeToFileTime Date_Time_DOSDateTimeToStr Date_Time_DOSDateToArray Date_Time_DOSDateToStr Date_Time_DOSTimeToArray Date_Time_DOSTimeToStr Date_Time_EncodeFileTime Date_Time_EncodeSystemTime Date_Time_FileTimeToArray Date_Time_FileTimeToDOSDateTime Date_Time_FileTimeToLocalFileTime Date_Time_FileTimeToStr Date_Time_FileTimeToSystemTime Date_Time_GetFileTime Date_Time_GetLocalTime Date_Time_GetSystemTime Date_Time_GetSystemTimeAdjustment Date_Time_GetSystemTimeAsFileTime Date_Time_GetSystemTimes Date_Time_GetTickCount Date_Time_GetTimeZoneInformation Date_Time_LocalFileTimeToFileTime Date_Time_SetFileTime Date_Time_SetLocalTime Date_Time_SetSystemTime Date_Time_SetSystemTimeAdjustment Date_Time_SetTimeZoneInformation Date_Time_SystemTimeToArray Date_Time_SystemTimeToDateStr Date_Time_SystemTimeToDateTimeStr Date_Time_SystemTimeToFileTime Date_Time_SystemTimeToTimeStr Date_Time_SystemTimeToTzSpecificLocalTime Date_Time_TzSpecificLocalTimeToSystemTime DayValueToDate DebugBugReportEnv DebugCOMError DebugOut DebugReport DebugReportEx DebugReportVar DebugSetup Degree EventLog__Backup EventLog__Clear EventLog__Close EventLog__Count EventLog__DeregisterSource EventLog__Full EventLog__Notify EventLog__Oldest EventLog__Open EventLog__OpenBackup EventLog__Read EventLog__RegisterSource EventLog__Report Excel_BookAttach Excel_BookClose Excel_BookList Excel_BookNew Excel_BookOpen Excel_BookOpenText Excel_BookSave Excel_BookSaveAs Excel_Close Excel_ColumnToLetter Excel_ColumnToNumber Excel_ConvertFormula Excel_Export Excel_FilterGet Excel_FilterSet Excel_Open Excel_PictureAdd Excel_Print Excel_RangeCopyPaste Excel_RangeDelete Excel_RangeFind Excel_RangeInsert Excel_RangeLinkAddRemove Excel_RangeRead Excel_RangeReplace Excel_RangeSort Excel_RangeValidate Excel_RangeWrite Excel_SheetAdd Excel_SheetCopyMove Excel_SheetDelete Excel_SheetList FileCountLines FileCreate FileListToArray FileListToArrayRec FilePrint FileReadToArray FileWriteFromArray FileWriteLog FileWriteToLine FTP_Close FTP_Command FTP_Connect FTP_DecodeInternetStatus FTP_DirCreate FTP_DirDelete FTP_DirGetCurrent FTP_DirPutContents FTP_DirSetCurrent FTP_FileClose FTP_FileDelete FTP_FileGet FTP_FileGetSize FTP_FileOpen FTP_FilePut FTP_FileRead FTP_FileRename FTP_FileTimeLoHiToStr FTP_FindFileClose FTP_FindFileFirst FTP_FindFileNext FTP_GetLastResponseInfo FTP_ListToArray FTP_ListToArray2D FTP_ListToArrayEx FTP_Open FTP_ProgressDownload FTP_ProgressUpload FTP_SetStatusCallback GDIPlus_ArrowCapCreate GDIPlus_ArrowCapDispose GDIPlus_ArrowCapGetFillState GDIPlus_ArrowCapGetHeight GDIPlus_ArrowCapGetMiddleInset GDIPlus_ArrowCapGetWidth GDIPlus_ArrowCapSetFillState GDIPlus_ArrowCapSetHeight GDIPlus_ArrowCapSetMiddleInset GDIPlus_ArrowCapSetWidth GDIPlus_BitmapApplyEffect GDIPlus_BitmapApplyEffectEx GDIPlus_BitmapCloneArea GDIPlus_BitmapConvertFormat GDIPlus_BitmapCreateApplyEffect GDIPlus_BitmapCreateApplyEffectEx GDIPlus_BitmapCreateDIBFromBitmap GDIPlus_BitmapCreateFromFile GDIPlus_BitmapCreateFromGraphics GDIPlus_BitmapCreateFromHBITMAP GDIPlus_BitmapCreateFromHICON GDIPlus_BitmapCreateFromHICON32 GDIPlus_BitmapCreateFromMemory GDIPlus_BitmapCreateFromResource GDIPlus_BitmapCreateFromScan0 GDIPlus_BitmapCreateFromStream GDIPlus_BitmapCreateHBITMAPFromBitmap GDIPlus_BitmapDispose GDIPlus_BitmapGetHistogram GDIPlus_BitmapGetHistogramEx GDIPlus_BitmapGetHistogramSize GDIPlus_BitmapGetPixel GDIPlus_BitmapLockBits GDIPlus_BitmapSetPixel GDIPlus_BitmapUnlockBits GDIPlus_BrushClone GDIPlus_BrushCreateSolid GDIPlus_BrushDispose GDIPlus_BrushGetSolidColor GDIPlus_BrushGetType GDIPlus_BrushSetSolidColor GDIPlus_ColorMatrixCreate GDIPlus_ColorMatrixCreateGrayScale GDIPlus_ColorMatrixCreateNegative GDIPlus_ColorMatrixCreateSaturation GDIPlus_ColorMatrixCreateScale GDIPlus_ColorMatrixCreateTranslate GDIPlus_CustomLineCapClone GDIPlus_CustomLineCapCreate GDIPlus_CustomLineCapDispose GDIPlus_CustomLineCapGetStrokeCaps GDIPlus_CustomLineCapSetStrokeCaps GDIPlus_Decoders GDIPlus_DecodersGetCount GDIPlus_DecodersGetSize GDIPlus_DrawImageFX GDIPlus_DrawImageFXEx GDIPlus_DrawImagePoints GDIPlus_EffectCreate GDIPlus_EffectCreateBlur GDIPlus_EffectCreateBrightnessContrast GDIPlus_EffectCreateColorBalance GDIPlus_EffectCreateColorCurve GDIPlus_EffectCreateColorLUT GDIPlus_EffectCreateColorMatrix GDIPlus_EffectCreateHueSaturationLightness GDIPlus_EffectCreateLevels GDIPlus_EffectCreateRedEyeCorrection GDIPlus_EffectCreateSharpen GDIPlus_EffectCreateTint GDIPlus_EffectDispose GDIPlus_EffectGetParameters GDIPlus_EffectSetParameters GDIPlus_Encoders GDIPlus_EncodersGetCLSID GDIPlus_EncodersGetCount GDIPlus_EncodersGetParamList GDIPlus_EncodersGetParamListSize GDIPlus_EncodersGetSize GDIPlus_FontCreate GDIPlus_FontDispose GDIPlus_FontFamilyCreate GDIPlus_FontFamilyCreateFromCollection GDIPlus_FontFamilyDispose GDIPlus_FontFamilyGetCellAscent GDIPlus_FontFamilyGetCellDescent GDIPlus_FontFamilyGetEmHeight GDIPlus_FontFamilyGetLineSpacing GDIPlus_FontGetHeight GDIPlus_FontPrivateAddFont GDIPlus_FontPrivateAddMemoryFont GDIPlus_FontPrivateCollectionDispose GDIPlus_FontPrivateCreateCollection GDIPlus_GraphicsClear GDIPlus_GraphicsCreateFromHDC GDIPlus_GraphicsCreateFromHWND GDIPlus_GraphicsDispose GDIPlus_GraphicsDrawArc GDIPlus_GraphicsDrawBezier GDIPlus_GraphicsDrawClosedCurve GDIPlus_GraphicsDrawClosedCurve2 GDIPlus_GraphicsDrawCurve GDIPlus_GraphicsDrawCurve2 GDIPlus_GraphicsDrawEllipse GDIPlus_GraphicsDrawImage GDIPlus_GraphicsDrawImagePointsRect GDIPlus_GraphicsDrawImageRect GDIPlus_GraphicsDrawImageRectRect GDIPlus_GraphicsDrawLine GDIPlus_GraphicsDrawPath GDIPlus_GraphicsDrawPie GDIPlus_GraphicsDrawPolygon GDIPlus_GraphicsDrawRect GDIPlus_GraphicsDrawString GDIPlus_GraphicsDrawStringEx GDIPlus_GraphicsFillClosedCurve GDIPlus_GraphicsFillClosedCurve2 GDIPlus_GraphicsFillEllipse GDIPlus_GraphicsFillPath GDIPlus_GraphicsFillPie GDIPlus_GraphicsFillPolygon GDIPlus_GraphicsFillRect GDIPlus_GraphicsFillRegion GDIPlus_GraphicsGetCompositingMode GDIPlus_GraphicsGetCompositingQuality GDIPlus_GraphicsGetDC GDIPlus_GraphicsGetInterpolationMode GDIPlus_GraphicsGetSmoothingMode GDIPlus_GraphicsGetTransform GDIPlus_GraphicsMeasureCharacterRanges GDIPlus_GraphicsMeasureString GDIPlus_GraphicsReleaseDC GDIPlus_GraphicsResetClip GDIPlus_GraphicsResetTransform GDIPlus_GraphicsRestore GDIPlus_GraphicsRotateTransform GDIPlus_GraphicsSave GDIPlus_GraphicsScaleTransform GDIPlus_GraphicsSetClipPath GDIPlus_GraphicsSetClipRect GDIPlus_GraphicsSetClipRegion GDIPlus_GraphicsSetCompositingMode GDIPlus_GraphicsSetCompositingQuality GDIPlus_GraphicsSetInterpolationMode GDIPlus_GraphicsSetPixelOffsetMode GDIPlus_GraphicsSetSmoothingMode GDIPlus_GraphicsSetTextRenderingHint GDIPlus_GraphicsSetTransform GDIPlus_GraphicsTransformPoints GDIPlus_GraphicsTranslateTransform GDIPlus_HatchBrushCreate GDIPlus_HICONCreateFromBitmap GDIPlus_ImageAttributesCreate GDIPlus_ImageAttributesDispose GDIPlus_ImageAttributesSetColorKeys GDIPlus_ImageAttributesSetColorMatrix GDIPlus_ImageDispose GDIPlus_ImageGetDimension GDIPlus_ImageGetFlags GDIPlus_ImageGetGraphicsContext GDIPlus_ImageGetHeight GDIPlus_ImageGetHorizontalResolution GDIPlus_ImageGetPixelFormat GDIPlus_ImageGetRawFormat GDIPlus_ImageGetThumbnail GDIPlus_ImageGetType GDIPlus_ImageGetVerticalResolution GDIPlus_ImageGetWidth GDIPlus_ImageLoadFromFile GDIPlus_ImageLoadFromStream GDIPlus_ImageResize GDIPlus_ImageRotateFlip GDIPlus_ImageSaveToFile GDIPlus_ImageSaveToFileEx GDIPlus_ImageSaveToStream GDIPlus_ImageScale GDIPlus_LineBrushCreate GDIPlus_LineBrushCreateFromRect GDIPlus_LineBrushCreateFromRectWithAngle GDIPlus_LineBrushGetColors GDIPlus_LineBrushGetRect GDIPlus_LineBrushMultiplyTransform GDIPlus_LineBrushResetTransform GDIPlus_LineBrushSetBlend GDIPlus_LineBrushSetColors GDIPlus_LineBrushSetGammaCorrection GDIPlus_LineBrushSetLinearBlend GDIPlus_LineBrushSetPresetBlend GDIPlus_LineBrushSetSigmaBlend GDIPlus_LineBrushSetTransform GDIPlus_MatrixClone GDIPlus_MatrixCreate GDIPlus_MatrixDispose GDIPlus_MatrixGetElements GDIPlus_MatrixInvert GDIPlus_MatrixMultiply GDIPlus_MatrixRotate GDIPlus_MatrixScale GDIPlus_MatrixSetElements GDIPlus_MatrixShear GDIPlus_MatrixTransformPoints GDIPlus_MatrixTranslate GDIPlus_PaletteInitialize GDIPlus_ParamAdd GDIPlus_ParamInit GDIPlus_ParamSize GDIPlus_PathAddArc GDIPlus_PathAddBezier GDIPlus_PathAddClosedCurve GDIPlus_PathAddClosedCurve2 GDIPlus_PathAddCurve GDIPlus_PathAddCurve2 GDIPlus_PathAddCurve3 GDIPlus_PathAddEllipse GDIPlus_PathAddLine GDIPlus_PathAddLine2 GDIPlus_PathAddPath GDIPlus_PathAddPie GDIPlus_PathAddPolygon GDIPlus_PathAddRectangle GDIPlus_PathAddString GDIPlus_PathBrushCreate GDIPlus_PathBrushCreateFromPath GDIPlus_PathBrushGetCenterPoint GDIPlus_PathBrushGetFocusScales GDIPlus_PathBrushGetPointCount GDIPlus_PathBrushGetRect GDIPlus_PathBrushGetWrapMode GDIPlus_PathBrushMultiplyTransform GDIPlus_PathBrushResetTransform GDIPlus_PathBrushSetBlend GDIPlus_PathBrushSetCenterColor GDIPlus_PathBrushSetCenterPoint GDIPlus_PathBrushSetFocusScales GDIPlus_PathBrushSetGammaCorrection GDIPlus_PathBrushSetLinearBlend GDIPlus_PathBrushSetPresetBlend GDIPlus_PathBrushSetSigmaBlend GDIPlus_PathBrushSetSurroundColor
GDIPlus_PathBrushSetSurroundColorsWithCount GDIPlus_PathBrushSetTransform GDIPlus_PathBrushSetWrapMode GDIPlus_PathClone GDIPlus_PathCloseFigure GDIPlus_PathCreate GDIPlus_PathCreate2 GDIPlus_PathDispose GDIPlus_PathFlatten GDIPlus_PathGetData GDIPlus_PathGetFillMode GDIPlus_PathGetLastPoint GDIPlus_PathGetPointCount GDIPlus_PathGetPoints GDIPlus_PathGetWorldBounds GDIPlus_PathIsOutlineVisiblePoint GDIPlus_PathIsVisiblePoint GDIPlus_PathIterCreate GDIPlus_PathIterDispose GDIPlus_PathIterGetSubpathCount GDIPlus_PathIterNextMarkerPath GDIPlus_PathIterNextSubpathPath GDIPlus_PathIterRewind GDIPlus_PathReset GDIPlus_PathReverse GDIPlus_PathSetFillMode GDIPlus_PathSetMarker GDIPlus_PathStartFigure GDIPlus_PathTransform GDIPlus_PathWarp GDIPlus_PathWiden GDIPlus_PathWindingModeOutline GDIPlus_PenCreate GDIPlus_PenCreate2 GDIPlus_PenDispose GDIPlus_PenGetAlignment GDIPlus_PenGetColor GDIPlus_PenGetCustomEndCap GDIPlus_PenGetDashCap GDIPlus_PenGetDashStyle GDIPlus_PenGetEndCap GDIPlus_PenGetMiterLimit GDIPlus_PenGetWidth GDIPlus_PenSetAlignment GDIPlus_PenSetColor GDIPlus_PenSetCustomEndCap GDIPlus_PenSetDashCap GDIPlus_PenSetDashStyle GDIPlus_PenSetEndCap GDIPlus_PenSetLineCap GDIPlus_PenSetLineJoin GDIPlus_PenSetMiterLimit GDIPlus_PenSetStartCap GDIPlus_PenSetWidth GDIPlus_RectFCreate GDIPlus_RegionClone GDIPlus_RegionCombinePath GDIPlus_RegionCombineRect GDIPlus_RegionCombineRegion GDIPlus_RegionCreate GDIPlus_RegionCreateFromPath GDIPlus_RegionCreateFromRect GDIPlus_RegionDispose GDIPlus_RegionGetBounds GDIPlus_RegionGetHRgn GDIPlus_RegionTransform GDIPlus_RegionTranslate GDIPlus_Shutdown GDIPlus_Startup GDIPlus_StringFormatCreate GDIPlus_StringFormatDispose GDIPlus_StringFormatGetMeasurableCharacterRangeCount GDIPlus_StringFormatSetAlign GDIPlus_StringFormatSetLineAlign GDIPlus_StringFormatSetMeasurableCharacterRanges GDIPlus_TextureCreate GDIPlus_TextureCreate2 GDIPlus_TextureCreateIA GetIP GUICtrlAVI_Close GUICtrlAVI_Create GUICtrlAVI_Destroy GUICtrlAVI_IsPlaying GUICtrlAVI_Open GUICtrlAVI_OpenEx GUICtrlAVI_Play GUICtrlAVI_Seek GUICtrlAVI_Show GUICtrlAVI_Stop GUICtrlButton_Click GUICtrlButton_Create GUICtrlButton_Destroy GUICtrlButton_Enable GUICtrlButton_GetCheck GUICtrlButton_GetFocus GUICtrlButton_GetIdealSize GUICtrlButton_GetImage GUICtrlButton_GetImageList GUICtrlButton_GetNote GUICtrlButton_GetNoteLength GUICtrlButton_GetSplitInfo GUICtrlButton_GetState GUICtrlButton_GetText GUICtrlButton_GetTextMargin GUICtrlButton_SetCheck GUICtrlButton_SetDontClick GUICtrlButton_SetFocus GUICtrlButton_SetImage GUICtrlButton_SetImageList GUICtrlButton_SetNote GUICtrlButton_SetShield GUICtrlButton_SetSize GUICtrlButton_SetSplitInfo GUICtrlButton_SetState GUICtrlButton_SetStyle GUICtrlButton_SetText GUICtrlButton_SetTextMargin GUICtrlButton_Show GUICtrlComboBoxEx_AddDir GUICtrlComboBoxEx_AddString GUICtrlComboBoxEx_BeginUpdate GUICtrlComboBoxEx_Create GUICtrlComboBoxEx_CreateSolidBitMap GUICtrlComboBoxEx_DeleteString GUICtrlComboBoxEx_Destroy GUICtrlComboBoxEx_EndUpdate GUICtrlComboBoxEx_FindStringExact GUICtrlComboBoxEx_GetComboBoxInfo GUICtrlComboBoxEx_GetComboControl GUICtrlComboBoxEx_GetCount GUICtrlComboBoxEx_GetCurSel GUICtrlComboBoxEx_GetDroppedControlRect GUICtrlComboBoxEx_GetDroppedControlRectEx GUICtrlComboBoxEx_GetDroppedState GUICtrlComboBoxEx_GetDroppedWidth GUICtrlComboBoxEx_GetEditControl GUICtrlComboBoxEx_GetEditSel GUICtrlComboBoxEx_GetEditText GUICtrlComboBoxEx_GetExtendedStyle GUICtrlComboBoxEx_GetExtendedUI GUICtrlComboBoxEx_GetImageList GUICtrlComboBoxEx_GetItem GUICtrlComboBoxEx_GetItemEx GUICtrlComboBoxEx_GetItemHeight GUICtrlComboBoxEx_GetItemImage GUICtrlComboBoxEx_GetItemIndent GUICtrlComboBoxEx_GetItemOverlayImage GUICtrlComboBoxEx_GetItemParam GUICtrlComboBoxEx_GetItemSelectedImage GUICtrlComboBoxEx_GetItemText GUICtrlComboBoxEx_GetItemTextLen GUICtrlComboBoxEx_GetList GUICtrlComboBoxEx_GetListArray GUICtrlComboBoxEx_GetLocale GUICtrlComboBoxEx_GetLocaleCountry GUICtrlComboBoxEx_GetLocaleLang GUICtrlComboBoxEx_GetLocalePrimLang GUICtrlComboBoxEx_GetLocaleSubLang GUICtrlComboBoxEx_GetMinVisible GUICtrlComboBoxEx_GetTopIndex GUICtrlComboBoxEx_GetUnicode GUICtrlComboBoxEx_InitStorage GUICtrlComboBoxEx_InsertString GUICtrlComboBoxEx_LimitText GUICtrlComboBoxEx_ReplaceEditSel GUICtrlComboBoxEx_ResetContent GUICtrlComboBoxEx_SetCurSel GUICtrlComboBoxEx_SetDroppedWidth GUICtrlComboBoxEx_SetEditSel GUICtrlComboBoxEx_SetEditText GUICtrlComboBoxEx_SetExtendedStyle GUICtrlComboBoxEx_SetExtendedUI GUICtrlComboBoxEx_SetImageList GUICtrlComboBoxEx_SetItem GUICtrlComboBoxEx_SetItemEx GUICtrlComboBoxEx_SetItemHeight GUICtrlComboBoxEx_SetItemImage GUICtrlComboBoxEx_SetItemIndent GUICtrlComboBoxEx_SetItemOverlayImage GUICtrlComboBoxEx_SetItemParam GUICtrlComboBoxEx_SetItemSelectedImage GUICtrlComboBoxEx_SetMinVisible GUICtrlComboBoxEx_SetTopIndex GUICtrlComboBoxEx_SetUnicode GUICtrlComboBoxEx_ShowDropDown GUICtrlComboBox_AddDir GUICtrlComboBox_AddString GUICtrlComboBox_AutoComplete GUICtrlComboBox_BeginUpdate GUICtrlComboBox_Create GUICtrlComboBox_DeleteString GUICtrlComboBox_Destroy GUICtrlComboBox_EndUpdate GUICtrlComboBox_FindString GUICtrlComboBox_FindStringExact GUICtrlComboBox_GetComboBoxInfo GUICtrlComboBox_GetCount GUICtrlComboBox_GetCueBanner GUICtrlComboBox_GetCurSel GUICtrlComboBox_GetDroppedControlRect GUICtrlComboBox_GetDroppedControlRectEx GUICtrlComboBox_GetDroppedState GUICtrlComboBox_GetDroppedWidth GUICtrlComboBox_GetEditSel GUICtrlComboBox_GetEditText GUICtrlComboBox_GetExtendedUI GUICtrlComboBox_GetHorizontalExtent GUICtrlComboBox_GetItemHeight GUICtrlComboBox_GetLBText GUICtrlComboBox_GetLBTextLen GUICtrlComboBox_GetList GUICtrlComboBox_GetListArray GUICtrlComboBox_GetLocale GUICtrlComboBox_GetLocaleCountry GUICtrlComboBox_GetLocaleLang GUICtrlComboBox_GetLocalePrimLang GUICtrlComboBox_GetLocaleSubLang GUICtrlComboBox_GetMinVisible GUICtrlComboBox_GetTopIndex GUICtrlComboBox_InitStorage GUICtrlComboBox_InsertString GUICtrlComboBox_LimitText GUICtrlComboBox_ReplaceEditSel GUICtrlComboBox_ResetContent GUICtrlComboBox_SelectString GUICtrlComboBox_SetCueBanner GUICtrlComboBox_SetCurSel GUICtrlComboBox_SetDroppedWidth GUICtrlComboBox_SetEditSel GUICtrlComboBox_SetEditText GUICtrlComboBox_SetExtendedUI GUICtrlComboBox_SetHorizontalExtent GUICtrlComboBox_SetItemHeight GUICtrlComboBox_SetMinVisible GUICtrlComboBox_SetTopIndex GUICtrlComboBox_ShowDropDown GUICtrlDTP_Create GUICtrlDTP_Destroy GUICtrlDTP_GetMCColor GUICtrlDTP_GetMCFont GUICtrlDTP_GetMonthCal GUICtrlDTP_GetRange GUICtrlDTP_GetRangeEx GUICtrlDTP_GetSystemTime GUICtrlDTP_GetSystemTimeEx GUICtrlDTP_SetFormat GUICtrlDTP_SetMCColor GUICtrlDTP_SetMCFont GUICtrlDTP_SetRange GUICtrlDTP_SetRangeEx GUICtrlDTP_SetSystemTime GUICtrlDTP_SetSystemTimeEx GUICtrlEdit_AppendText GUICtrlEdit_BeginUpdate GUICtrlEdit_CanUndo GUICtrlEdit_CharFromPos GUICtrlEdit_Create GUICtrlEdit_Destroy GUICtrlEdit_EmptyUndoBuffer GUICtrlEdit_EndUpdate GUICtrlEdit_Find GUICtrlEdit_FmtLines GUICtrlEdit_GetCueBanner GUICtrlEdit_GetFirstVisibleLine GUICtrlEdit_GetLimitText GUICtrlEdit_GetLine GUICtrlEdit_GetLineCount GUICtrlEdit_GetMargins GUICtrlEdit_GetModify GUICtrlEdit_GetPasswordChar GUICtrlEdit_GetRECT GUICtrlEdit_GetRECTEx GUICtrlEdit_GetSel GUICtrlEdit_GetText GUICtrlEdit_GetTextLen GUICtrlEdit_HideBalloonTip GUICtrlEdit_InsertText GUICtrlEdit_LineFromChar GUICtrlEdit_LineIndex GUICtrlEdit_LineLength GUICtrlEdit_LineScroll GUICtrlEdit_PosFromChar GUICtrlEdit_ReplaceSel GUICtrlEdit_Scroll GUICtrlEdit_SetCueBanner GUICtrlEdit_SetLimitText GUICtrlEdit_SetMargins GUICtrlEdit_SetModify GUICtrlEdit_SetPasswordChar GUICtrlEdit_SetReadOnly GUICtrlEdit_SetRECT GUICtrlEdit_SetRECTEx GUICtrlEdit_SetRECTNP GUICtrlEdit_SetRectNPEx GUICtrlEdit_SetSel GUICtrlEdit_SetTabStops GUICtrlEdit_SetText GUICtrlEdit_ShowBalloonTip GUICtrlEdit_Undo GUICtrlHeader_AddItem GUICtrlHeader_ClearFilter GUICtrlHeader_ClearFilterAll GUICtrlHeader_Create GUICtrlHeader_CreateDragImage GUICtrlHeader_DeleteItem GUICtrlHeader_Destroy GUICtrlHeader_EditFilter GUICtrlHeader_GetBitmapMargin GUICtrlHeader_GetImageList GUICtrlHeader_GetItem GUICtrlHeader_GetItemAlign GUICtrlHeader_GetItemBitmap GUICtrlHeader_GetItemCount GUICtrlHeader_GetItemDisplay GUICtrlHeader_GetItemFlags GUICtrlHeader_GetItemFormat GUICtrlHeader_GetItemImage GUICtrlHeader_GetItemOrder GUICtrlHeader_GetItemParam GUICtrlHeader_GetItemRect GUICtrlHeader_GetItemRectEx GUICtrlHeader_GetItemText GUICtrlHeader_GetItemWidth GUICtrlHeader_GetOrderArray GUICtrlHeader_GetUnicodeFormat GUICtrlHeader_HitTest GUICtrlHeader_InsertItem GUICtrlHeader_Layout GUICtrlHeader_OrderToIndex GUICtrlHeader_SetBitmapMargin GUICtrlHeader_SetFilterChangeTimeout GUICtrlHeader_SetHotDivider GUICtrlHeader_SetImageList GUICtrlHeader_SetItem GUICtrlHeader_SetItemAlign GUICtrlHeader_SetItemBitmap GUICtrlHeader_SetItemDisplay GUICtrlHeader_SetItemFlags GUICtrlHeader_SetItemFormat GUICtrlHeader_SetItemImage GUICtrlHeader_SetItemOrder GUICtrlHeader_SetItemParam GUICtrlHeader_SetItemText GUICtrlHeader_SetItemWidth GUICtrlHeader_SetOrderArray GUICtrlHeader_SetUnicodeFormat GUICtrlIpAddress_ClearAddress GUICtrlIpAddress_Create GUICtrlIpAddress_Destroy GUICtrlIpAddress_Get GUICtrlIpAddress_GetArray GUICtrlIpAddress_GetEx GUICtrlIpAddress_IsBlank GUICtrlIpAddress_Set GUICtrlIpAddress_SetArray GUICtrlIpAddress_SetEx GUICtrlIpAddress_SetFocus GUICtrlIpAddress_SetFont GUICtrlIpAddress_SetRange GUICtrlIpAddress_ShowHide GUICtrlListBox_AddFile GUICtrlListBox_AddString GUICtrlListBox_BeginUpdate GUICtrlListBox_ClickItem GUICtrlListBox_Create GUICtrlListBox_DeleteString GUICtrlListBox_Destroy GUICtrlListBox_Dir GUICtrlListBox_EndUpdate GUICtrlListBox_FindInText GUICtrlListBox_FindString GUICtrlListBox_GetAnchorIndex GUICtrlListBox_GetCaretIndex GUICtrlListBox_GetCount GUICtrlListBox_GetCurSel GUICtrlListBox_GetHorizontalExtent GUICtrlListBox_GetItemData GUICtrlListBox_GetItemHeight GUICtrlListBox_GetItemRect GUICtrlListBox_GetItemRectEx GUICtrlListBox_GetListBoxInfo
GUICtrlListBox_GetLocale GUICtrlListBox_GetLocaleCountry GUICtrlListBox_GetLocaleLang GUICtrlListBox_GetLocalePrimLang GUICtrlListBox_GetLocaleSubLang GUICtrlListBox_GetSel GUICtrlListBox_GetSelCount GUICtrlListBox_GetSelItems GUICtrlListBox_GetSelItemsText GUICtrlListBox_GetText GUICtrlListBox_GetTextLen GUICtrlListBox_GetTopIndex GUICtrlListBox_InitStorage GUICtrlListBox_InsertString GUICtrlListBox_ItemFromPoint GUICtrlListBox_ReplaceString GUICtrlListBox_ResetContent GUICtrlListBox_SelectString GUICtrlListBox_SelItemRange GUICtrlListBox_SelItemRangeEx GUICtrlListBox_SetAnchorIndex GUICtrlListBox_SetCaretIndex GUICtrlListBox_SetColumnWidth GUICtrlListBox_SetCurSel GUICtrlListBox_SetHorizontalExtent GUICtrlListBox_SetItemData GUICtrlListBox_SetItemHeight GUICtrlListBox_SetLocale GUICtrlListBox_SetSel GUICtrlListBox_SetTabStops GUICtrlListBox_SetTopIndex GUICtrlListBox_Sort GUICtrlListBox_SwapString GUICtrlListBox_UpdateHScroll GUICtrlListView_AddArray GUICtrlListView_AddColumn GUICtrlListView_AddItem GUICtrlListView_AddSubItem GUICtrlListView_ApproximateViewHeight GUICtrlListView_ApproximateViewRect GUICtrlListView_ApproximateViewWidth GUICtrlListView_Arrange GUICtrlListView_BeginUpdate GUICtrlListView_CancelEditLabel GUICtrlListView_ClickItem GUICtrlListView_CopyItems GUICtrlListView_Create GUICtrlListView_CreateDragImage GUICtrlListView_CreateSolidBitMap GUICtrlListView_DeleteAllItems GUICtrlListView_DeleteColumn GUICtrlListView_DeleteItem GUICtrlListView_DeleteItemsSelected GUICtrlListView_Destroy GUICtrlListView_DrawDragImage GUICtrlListView_EditLabel GUICtrlListView_EnableGroupView GUICtrlListView_EndUpdate GUICtrlListView_EnsureVisible GUICtrlListView_FindInText GUICtrlListView_FindItem GUICtrlListView_FindNearest GUICtrlListView_FindParam GUICtrlListView_FindText GUICtrlListView_GetBkColor GUICtrlListView_GetBkImage GUICtrlListView_GetCallbackMask GUICtrlListView_GetColumn GUICtrlListView_GetColumnCount GUICtrlListView_GetColumnOrder GUICtrlListView_GetColumnOrderArray GUICtrlListView_GetColumnWidth GUICtrlListView_GetCounterPage GUICtrlListView_GetEditControl GUICtrlListView_GetExtendedListViewStyle GUICtrlListView_GetFocusedGroup GUICtrlListView_GetGroupCount GUICtrlListView_GetGroupInfo GUICtrlListView_GetGroupInfoByIndex GUICtrlListView_GetGroupRect GUICtrlListView_GetGroupViewEnabled GUICtrlListView_GetHeader GUICtrlListView_GetHotCursor GUICtrlListView_GetHotItem GUICtrlListView_GetHoverTime GUICtrlListView_GetImageList GUICtrlListView_GetISearchString GUICtrlListView_GetItem GUICtrlListView_GetItemChecked GUICtrlListView_GetItemCount GUICtrlListView_GetItemCut GUICtrlListView_GetItemDropHilited GUICtrlListView_GetItemEx GUICtrlListView_GetItemFocused GUICtrlListView_GetItemGroupID GUICtrlListView_GetItemImage GUICtrlListView_GetItemIndent GUICtrlListView_GetItemParam GUICtrlListView_GetItemPosition GUICtrlListView_GetItemPositionX GUICtrlListView_GetItemPositionY GUICtrlListView_GetItemRect GUICtrlListView_GetItemRectEx GUICtrlListView_GetItemSelected GUICtrlListView_GetItemSpacing GUICtrlListView_GetItemSpacingX GUICtrlListView_GetItemSpacingY GUICtrlListView_GetItemState GUICtrlListView_GetItemStateImage GUICtrlListView_GetItemText GUICtrlListView_GetItemTextArray GUICtrlListView_GetItemTextString GUICtrlListView_GetNextItem GUICtrlListView_GetNumberOfWorkAreas GUICtrlListView_GetOrigin GUICtrlListView_GetOriginX GUICtrlListView_GetOriginY GUICtrlListView_GetOutlineColor GUICtrlListView_GetSelectedColumn GUICtrlListView_GetSelectedCount GUICtrlListView_GetSelectedIndices GUICtrlListView_GetSelectionMark GUICtrlListView_GetStringWidth GUICtrlListView_GetSubItemRect GUICtrlListView_GetTextBkColor GUICtrlListView_GetTextColor GUICtrlListView_GetToolTips GUICtrlListView_GetTopIndex GUICtrlListView_GetUnicodeFormat GUICtrlListView_GetView GUICtrlListView_GetViewDetails GUICtrlListView_GetViewLarge GUICtrlListView_GetViewList GUICtrlListView_GetViewRect GUICtrlListView_GetViewSmall GUICtrlListView_GetViewTile GUICtrlListView_HideColumn GUICtrlListView_HitTest GUICtrlListView_InsertColumn GUICtrlListView_InsertGroup GUICtrlListView_InsertItem GUICtrlListView_JustifyColumn GUICtrlListView_MapIDToIndex GUICtrlListView_MapIndexToID GUICtrlListView_RedrawItems GUICtrlListView_RegisterSortCallBack GUICtrlListView_RemoveAllGroups GUICtrlListView_RemoveGroup GUICtrlListView_Scroll GUICtrlListView_SetBkColor GUICtrlListView_SetBkImage GUICtrlListView_SetCallBackMask GUICtrlListView_SetColumn GUICtrlListView_SetColumnOrder GUICtrlListView_SetColumnOrderArray GUICtrlListView_SetColumnWidth GUICtrlListView_SetExtendedListViewStyle GUICtrlListView_SetGroupInfo GUICtrlListView_SetHotItem GUICtrlListView_SetHoverTime GUICtrlListView_SetIconSpacing GUICtrlListView_SetImageList GUICtrlListView_SetItem GUICtrlListView_SetItemChecked GUICtrlListView_SetItemCount GUICtrlListView_SetItemCut GUICtrlListView_SetItemDropHilited GUICtrlListView_SetItemEx GUICtrlListView_SetItemFocused GUICtrlListView_SetItemGroupID GUICtrlListView_SetItemImage GUICtrlListView_SetItemIndent GUICtrlListView_SetItemParam GUICtrlListView_SetItemPosition GUICtrlListView_SetItemPosition32 GUICtrlListView_SetItemSelected GUICtrlListView_SetItemState GUICtrlListView_SetItemStateImage GUICtrlListView_SetItemText GUICtrlListView_SetOutlineColor GUICtrlListView_SetSelectedColumn GUICtrlListView_SetSelectionMark GUICtrlListView_SetTextBkColor GUICtrlListView_SetTextColor GUICtrlListView_SetToolTips GUICtrlListView_SetUnicodeFormat GUICtrlListView_SetView GUICtrlListView_SetWorkAreas GUICtrlListView_SimpleSort GUICtrlListView_SortItems GUICtrlListView_SubItemHitTest GUICtrlListView_UnRegisterSortCallBack GUICtrlMenu_AddMenuItem GUICtrlMenu_AppendMenu GUICtrlMenu_CalculatePopupWindowPosition GUICtrlMenu_CheckMenuItem GUICtrlMenu_CheckRadioItem GUICtrlMenu_CreateMenu GUICtrlMenu_CreatePopup GUICtrlMenu_DeleteMenu GUICtrlMenu_DestroyMenu GUICtrlMenu_DrawMenuBar GUICtrlMenu_EnableMenuItem GUICtrlMenu_FindItem GUICtrlMenu_FindParent GUICtrlMenu_GetItemBmp GUICtrlMenu_GetItemBmpChecked GUICtrlMenu_GetItemBmpUnchecked GUICtrlMenu_GetItemChecked GUICtrlMenu_GetItemCount GUICtrlMenu_GetItemData GUICtrlMenu_GetItemDefault GUICtrlMenu_GetItemDisabled GUICtrlMenu_GetItemEnabled GUICtrlMenu_GetItemGrayed GUICtrlMenu_GetItemHighlighted GUICtrlMenu_GetItemID GUICtrlMenu_GetItemInfo GUICtrlMenu_GetItemRect GUICtrlMenu_GetItemRectEx GUICtrlMenu_GetItemState GUICtrlMenu_GetItemStateEx GUICtrlMenu_GetItemSubMenu GUICtrlMenu_GetItemText GUICtrlMenu_GetItemType GUICtrlMenu_GetMenu GUICtrlMenu_GetMenuBackground GUICtrlMenu_GetMenuBarInfo GUICtrlMenu_GetMenuContextHelpID GUICtrlMenu_GetMenuData GUICtrlMenu_GetMenuDefaultItem GUICtrlMenu_GetMenuHeight GUICtrlMenu_GetMenuInfo GUICtrlMenu_GetMenuStyle GUICtrlMenu_GetSystemMenu GUICtrlMenu_InsertMenuItem GUICtrlMenu_InsertMenuItemEx GUICtrlMenu_IsMenu GUICtrlMenu_LoadMenu GUICtrlMenu_MapAccelerator GUICtrlMenu_MenuItemFromPoint GUICtrlMenu_RemoveMenu GUICtrlMenu_SetItemBitmaps GUICtrlMenu_SetItemBmp GUICtrlMenu_SetItemBmpChecked GUICtrlMenu_SetItemBmpUnchecked GUICtrlMenu_SetItemChecked GUICtrlMenu_SetItemData GUICtrlMenu_SetItemDefault GUICtrlMenu_SetItemDisabled GUICtrlMenu_SetItemEnabled GUICtrlMenu_SetItemGrayed GUICtrlMenu_SetItemHighlighted GUICtrlMenu_SetItemID GUICtrlMenu_SetItemInfo GUICtrlMenu_SetItemState GUICtrlMenu_SetItemSubMenu GUICtrlMenu_SetItemText GUICtrlMenu_SetItemType GUICtrlMenu_SetMenu GUICtrlMenu_SetMenuBackground GUICtrlMenu_SetMenuContextHelpID GUICtrlMenu_SetMenuData GUICtrlMenu_SetMenuDefaultItem GUICtrlMenu_SetMenuHeight GUICtrlMenu_SetMenuInfo GUICtrlMenu_SetMenuStyle GUICtrlMenu_TrackPopupMenu GUICtrlMonthCal_Create GUICtrlMonthCal_Destroy GUICtrlMonthCal_GetCalendarBorder GUICtrlMonthCal_GetCalendarCount GUICtrlMonthCal_GetColor GUICtrlMonthCal_GetColorArray GUICtrlMonthCal_GetCurSel GUICtrlMonthCal_GetCurSelStr GUICtrlMonthCal_GetFirstDOW GUICtrlMonthCal_GetFirstDOWStr GUICtrlMonthCal_GetMaxSelCount GUICtrlMonthCal_GetMaxTodayWidth GUICtrlMonthCal_GetMinReqHeight GUICtrlMonthCal_GetMinReqRect GUICtrlMonthCal_GetMinReqRectArray GUICtrlMonthCal_GetMinReqWidth GUICtrlMonthCal_GetMonthDelta GUICtrlMonthCal_GetMonthRange GUICtrlMonthCal_GetMonthRangeMax GUICtrlMonthCal_GetMonthRangeMaxStr GUICtrlMonthCal_GetMonthRangeMin GUICtrlMonthCal_GetMonthRangeMinStr GUICtrlMonthCal_GetMonthRangeSpan GUICtrlMonthCal_GetRange GUICtrlMonthCal_GetRangeMax GUICtrlMonthCal_GetRangeMaxStr GUICtrlMonthCal_GetRangeMin GUICtrlMonthCal_GetRangeMinStr GUICtrlMonthCal_GetSelRange GUICtrlMonthCal_GetSelRangeMax GUICtrlMonthCal_GetSelRangeMaxStr GUICtrlMonthCal_GetSelRangeMin GUICtrlMonthCal_GetSelRangeMinStr GUICtrlMonthCal_GetToday GUICtrlMonthCal_GetTodayStr GUICtrlMonthCal_GetUnicodeFormat GUICtrlMonthCal_HitTest GUICtrlMonthCal_SetCalendarBorder GUICtrlMonthCal_SetColor GUICtrlMonthCal_SetCurSel GUICtrlMonthCal_SetDayState GUICtrlMonthCal_SetFirstDOW GUICtrlMonthCal_SetMaxSelCount GUICtrlMonthCal_SetMonthDelta GUICtrlMonthCal_SetRange GUICtrlMonthCal_SetSelRange GUICtrlMonthCal_SetToday GUICtrlMonthCal_SetUnicodeFormat GUICtrlRebar_AddBand GUICtrlRebar_AddToolBarBand GUICtrlRebar_BeginDrag GUICtrlRebar_Create GUICtrlRebar_DeleteBand GUICtrlRebar_Destroy GUICtrlRebar_DragMove GUICtrlRebar_EndDrag GUICtrlRebar_GetBandBackColor GUICtrlRebar_GetBandBorders GUICtrlRebar_GetBandBordersEx GUICtrlRebar_GetBandChildHandle GUICtrlRebar_GetBandChildSize GUICtrlRebar_GetBandCount GUICtrlRebar_GetBandForeColor GUICtrlRebar_GetBandHeaderSize GUICtrlRebar_GetBandID GUICtrlRebar_GetBandIdealSize GUICtrlRebar_GetBandLength GUICtrlRebar_GetBandLParam GUICtrlRebar_GetBandMargins GUICtrlRebar_GetBandMarginsEx GUICtrlRebar_GetBandRect GUICtrlRebar_GetBandRectEx GUICtrlRebar_GetBandStyle GUICtrlRebar_GetBandStyleBreak GUICtrlRebar_GetBandStyleChildEdge GUICtrlRebar_GetBandStyleFixedBMP GUICtrlRebar_GetBandStyleFixedSize GUICtrlRebar_GetBandStyleGripperAlways GUICtrlRebar_GetBandStyleHidden GUICtrlRebar_GetBandStyleHideTitle
GUICtrlRebar_GetBandStyleNoGripper GUICtrlRebar_GetBandStyleTopAlign GUICtrlRebar_GetBandStyleUseChevron GUICtrlRebar_GetBandStyleVariableHeight GUICtrlRebar_GetBandText GUICtrlRebar_GetBarHeight GUICtrlRebar_GetBarInfo GUICtrlRebar_GetBKColor GUICtrlRebar_GetColorScheme GUICtrlRebar_GetRowCount GUICtrlRebar_GetRowHeight GUICtrlRebar_GetTextColor GUICtrlRebar_GetToolTips GUICtrlRebar_GetUnicodeFormat GUICtrlRebar_HitTest GUICtrlRebar_IDToIndex GUICtrlRebar_MaximizeBand GUICtrlRebar_MinimizeBand GUICtrlRebar_MoveBand GUICtrlRebar_SetBandBackColor GUICtrlRebar_SetBandForeColor GUICtrlRebar_SetBandHeaderSize GUICtrlRebar_SetBandID GUICtrlRebar_SetBandIdealSize GUICtrlRebar_SetBandLength GUICtrlRebar_SetBandLParam GUICtrlRebar_SetBandStyle GUICtrlRebar_SetBandStyleBreak GUICtrlRebar_SetBandStyleChildEdge GUICtrlRebar_SetBandStyleFixedBMP GUICtrlRebar_SetBandStyleFixedSize GUICtrlRebar_SetBandStyleGripperAlways GUICtrlRebar_SetBandStyleHidden GUICtrlRebar_SetBandStyleHideTitle GUICtrlRebar_SetBandStyleNoGripper GUICtrlRebar_SetBandStyleTopAlign GUICtrlRebar_SetBandStyleUseChevron GUICtrlRebar_SetBandStyleVariableHeight GUICtrlRebar_SetBandText GUICtrlRebar_SetBarInfo GUICtrlRebar_SetBKColor GUICtrlRebar_SetColorScheme GUICtrlRebar_SetTextColor GUICtrlRebar_SetToolTips GUICtrlRebar_SetUnicodeFormat GUICtrlRebar_ShowBand GUICtrlRichEdit_AppendText GUICtrlRichEdit_AutoDetectURL GUICtrlRichEdit_CanPaste GUICtrlRichEdit_CanPasteSpecial GUICtrlRichEdit_CanRedo GUICtrlRichEdit_CanUndo GUICtrlRichEdit_ChangeFontSize GUICtrlRichEdit_Copy GUICtrlRichEdit_Create GUICtrlRichEdit_Cut GUICtrlRichEdit_Deselect GUICtrlRichEdit_Destroy GUICtrlRichEdit_EmptyUndoBuffer GUICtrlRichEdit_FindText GUICtrlRichEdit_FindTextInRange GUICtrlRichEdit_GetBkColor GUICtrlRichEdit_GetCharAttributes GUICtrlRichEdit_GetCharBkColor GUICtrlRichEdit_GetCharColor GUICtrlRichEdit_GetCharPosFromXY GUICtrlRichEdit_GetCharPosOfNextWord GUICtrlRichEdit_GetCharPosOfPreviousWord GUICtrlRichEdit_GetCharWordBreakInfo GUICtrlRichEdit_GetFirstCharPosOnLine GUICtrlRichEdit_GetFont GUICtrlRichEdit_GetLineCount GUICtrlRichEdit_GetLineLength GUICtrlRichEdit_GetLineNumberFromCharPos GUICtrlRichEdit_GetNextRedo GUICtrlRichEdit_GetNextUndo GUICtrlRichEdit_GetNumberOfFirstVisibleLine GUICtrlRichEdit_GetParaAlignment GUICtrlRichEdit_GetParaAttributes GUICtrlRichEdit_GetParaBorder GUICtrlRichEdit_GetParaIndents GUICtrlRichEdit_GetParaNumbering GUICtrlRichEdit_GetParaShading GUICtrlRichEdit_GetParaSpacing GUICtrlRichEdit_GetParaTabStops GUICtrlRichEdit_GetPasswordChar GUICtrlRichEdit_GetRECT GUICtrlRichEdit_GetScrollPos GUICtrlRichEdit_GetSel GUICtrlRichEdit_GetSelAA GUICtrlRichEdit_GetSelText GUICtrlRichEdit_GetSpaceUnit GUICtrlRichEdit_GetText GUICtrlRichEdit_GetTextInLine GUICtrlRichEdit_GetTextInRange GUICtrlRichEdit_GetTextLength GUICtrlRichEdit_GetVersion GUICtrlRichEdit_GetXYFromCharPos GUICtrlRichEdit_GetZoom GUICtrlRichEdit_GotoCharPos GUICtrlRichEdit_HideSelection GUICtrlRichEdit_InsertText GUICtrlRichEdit_IsModified GUICtrlRichEdit_IsTextSelected GUICtrlRichEdit_Paste GUICtrlRichEdit_PasteSpecial GUICtrlRichEdit_PauseRedraw GUICtrlRichEdit_Redo GUICtrlRichEdit_ReplaceText GUICtrlRichEdit_ResumeRedraw GUICtrlRichEdit_ScrollLineOrPage GUICtrlRichEdit_ScrollLines GUICtrlRichEdit_ScrollToCaret GUICtrlRichEdit_SetBkColor GUICtrlRichEdit_SetCharAttributes GUICtrlRichEdit_SetCharBkColor GUICtrlRichEdit_SetCharColor GUICtrlRichEdit_SetEventMask GUICtrlRichEdit_SetFont GUICtrlRichEdit_SetLimitOnText GUICtrlRichEdit_SetModified GUICtrlRichEdit_SetParaAlignment GUICtrlRichEdit_SetParaAttributes GUICtrlRichEdit_SetParaBorder GUICtrlRichEdit_SetParaIndents GUICtrlRichEdit_SetParaNumbering GUICtrlRichEdit_SetParaShading GUICtrlRichEdit_SetParaSpacing GUICtrlRichEdit_SetParaTabStops GUICtrlRichEdit_SetPasswordChar GUICtrlRichEdit_SetReadOnly GUICtrlRichEdit_SetRECT GUICtrlRichEdit_SetScrollPos GUICtrlRichEdit_SetSel GUICtrlRichEdit_SetSpaceUnit GUICtrlRichEdit_SetTabStops GUICtrlRichEdit_SetText GUICtrlRichEdit_SetUndoLimit GUICtrlRichEdit_SetZoom GUICtrlRichEdit_StreamFromFile GUICtrlRichEdit_StreamFromVar GUICtrlRichEdit_StreamToFile GUICtrlRichEdit_StreamToVar GUICtrlRichEdit_Undo GUICtrlSlider_ClearSel GUICtrlSlider_ClearTics GUICtrlSlider_Create GUICtrlSlider_Destroy GUICtrlSlider_GetBuddy GUICtrlSlider_GetChannelRect GUICtrlSlider_GetChannelRectEx GUICtrlSlider_GetLineSize GUICtrlSlider_GetLogicalTics GUICtrlSlider_GetNumTics GUICtrlSlider_GetPageSize GUICtrlSlider_GetPos GUICtrlSlider_GetRange GUICtrlSlider_GetRangeMax GUICtrlSlider_GetRangeMin GUICtrlSlider_GetSel GUICtrlSlider_GetSelEnd GUICtrlSlider_GetSelStart GUICtrlSlider_GetThumbLength GUICtrlSlider_GetThumbRect GUICtrlSlider_GetThumbRectEx GUICtrlSlider_GetTic GUICtrlSlider_GetTicPos GUICtrlSlider_GetToolTips GUICtrlSlider_GetUnicodeFormat GUICtrlSlider_SetBuddy GUICtrlSlider_SetLineSize GUICtrlSlider_SetPageSize GUICtrlSlider_SetPos GUICtrlSlider_SetRange GUICtrlSlider_SetRangeMax GUICtrlSlider_SetRangeMin GUICtrlSlider_SetSel GUICtrlSlider_SetSelEnd GUICtrlSlider_SetSelStart GUICtrlSlider_SetThumbLength GUICtrlSlider_SetTic GUICtrlSlider_SetTicFreq GUICtrlSlider_SetTipSide GUICtrlSlider_SetToolTips GUICtrlSlider_SetUnicodeFormat GUICtrlStatusBar_Create GUICtrlStatusBar_Destroy GUICtrlStatusBar_EmbedControl GUICtrlStatusBar_GetBorders GUICtrlStatusBar_GetBordersHorz GUICtrlStatusBar_GetBordersRect GUICtrlStatusBar_GetBordersVert GUICtrlStatusBar_GetCount GUICtrlStatusBar_GetHeight GUICtrlStatusBar_GetIcon GUICtrlStatusBar_GetParts GUICtrlStatusBar_GetRect GUICtrlStatusBar_GetRectEx GUICtrlStatusBar_GetText GUICtrlStatusBar_GetTextFlags GUICtrlStatusBar_GetTextLength GUICtrlStatusBar_GetTextLengthEx GUICtrlStatusBar_GetTipText GUICtrlStatusBar_GetUnicodeFormat GUICtrlStatusBar_GetWidth GUICtrlStatusBar_IsSimple GUICtrlStatusBar_Resize GUICtrlStatusBar_SetBkColor GUICtrlStatusBar_SetIcon GUICtrlStatusBar_SetMinHeight GUICtrlStatusBar_SetParts GUICtrlStatusBar_SetSimple GUICtrlStatusBar_SetText GUICtrlStatusBar_SetTipText GUICtrlStatusBar_SetUnicodeFormat GUICtrlStatusBar_ShowHide GUICtrlTab_ActivateTab GUICtrlTab_ClickTab GUICtrlTab_Create GUICtrlTab_DeleteAllItems GUICtrlTab_DeleteItem GUICtrlTab_DeselectAll GUICtrlTab_Destroy GUICtrlTab_FindTab GUICtrlTab_GetCurFocus GUICtrlTab_GetCurSel GUICtrlTab_GetDisplayRect GUICtrlTab_GetDisplayRectEx GUICtrlTab_GetExtendedStyle GUICtrlTab_GetImageList GUICtrlTab_GetItem GUICtrlTab_GetItemCount GUICtrlTab_GetItemImage GUICtrlTab_GetItemParam GUICtrlTab_GetItemRect GUICtrlTab_GetItemRectEx GUICtrlTab_GetItemState GUICtrlTab_GetItemText GUICtrlTab_GetRowCount GUICtrlTab_GetToolTips GUICtrlTab_GetUnicodeFormat GUICtrlTab_HighlightItem GUICtrlTab_HitTest GUICtrlTab_InsertItem GUICtrlTab_RemoveImage GUICtrlTab_SetCurFocus GUICtrlTab_SetCurSel GUICtrlTab_SetExtendedStyle GUICtrlTab_SetImageList GUICtrlTab_SetItem GUICtrlTab_SetItemImage GUICtrlTab_SetItemParam GUICtrlTab_SetItemSize GUICtrlTab_SetItemState GUICtrlTab_SetItemText GUICtrlTab_SetMinTabWidth GUICtrlTab_SetPadding GUICtrlTab_SetToolTips GUICtrlTab_SetUnicodeFormat GUICtrlToolbar_AddBitmap GUICtrlToolbar_AddButton GUICtrlToolbar_AddButtonSep GUICtrlToolbar_AddString GUICtrlToolbar_ButtonCount GUICtrlToolbar_CheckButton GUICtrlToolbar_ClickAccel GUICtrlToolbar_ClickButton GUICtrlToolbar_ClickIndex GUICtrlToolbar_CommandToIndex GUICtrlToolbar_Create GUICtrlToolbar_Customize GUICtrlToolbar_DeleteButton GUICtrlToolbar_Destroy GUICtrlToolbar_EnableButton GUICtrlToolbar_FindToolbar GUICtrlToolbar_GetAnchorHighlight GUICtrlToolbar_GetBitmapFlags GUICtrlToolbar_GetButtonBitmap GUICtrlToolbar_GetButtonInfo GUICtrlToolbar_GetButtonInfoEx GUICtrlToolbar_GetButtonParam GUICtrlToolbar_GetButtonRect GUICtrlToolbar_GetButtonRectEx GUICtrlToolbar_GetButtonSize GUICtrlToolbar_GetButtonState GUICtrlToolbar_GetButtonStyle GUICtrlToolbar_GetButtonText GUICtrlToolbar_GetColorScheme GUICtrlToolbar_GetDisabledImageList GUICtrlToolbar_GetExtendedStyle GUICtrlToolbar_GetHotImageList GUICtrlToolbar_GetHotItem GUICtrlToolbar_GetImageList GUICtrlToolbar_GetInsertMark GUICtrlToolbar_GetInsertMarkColor GUICtrlToolbar_GetMaxSize GUICtrlToolbar_GetMetrics GUICtrlToolbar_GetPadding GUICtrlToolbar_GetRows GUICtrlToolbar_GetString GUICtrlToolbar_GetStyle GUICtrlToolbar_GetStyleAltDrag GUICtrlToolbar_GetStyleCustomErase GUICtrlToolbar_GetStyleFlat GUICtrlToolbar_GetStyleList GUICtrlToolbar_GetStyleRegisterDrop GUICtrlToolbar_GetStyleToolTips GUICtrlToolbar_GetStyleTransparent GUICtrlToolbar_GetStyleWrapable GUICtrlToolbar_GetTextRows GUICtrlToolbar_GetToolTips GUICtrlToolbar_GetUnicodeFormat GUICtrlToolbar_HideButton GUICtrlToolbar_HighlightButton GUICtrlToolbar_HitTest GUICtrlToolbar_IndexToCommand GUICtrlToolbar_InsertButton GUICtrlToolbar_InsertMarkHitTest GUICtrlToolbar_IsButtonChecked GUICtrlToolbar_IsButtonEnabled GUICtrlToolbar_IsButtonHidden GUICtrlToolbar_IsButtonHighlighted GUICtrlToolbar_IsButtonIndeterminate GUICtrlToolbar_IsButtonPressed GUICtrlToolbar_LoadBitmap GUICtrlToolbar_LoadImages GUICtrlToolbar_MapAccelerator GUICtrlToolbar_MoveButton GUICtrlToolbar_PressButton GUICtrlToolbar_SetAnchorHighlight GUICtrlToolbar_SetBitmapSize GUICtrlToolbar_SetButtonBitMap GUICtrlToolbar_SetButtonInfo GUICtrlToolbar_SetButtonInfoEx GUICtrlToolbar_SetButtonParam GUICtrlToolbar_SetButtonSize GUICtrlToolbar_SetButtonState GUICtrlToolbar_SetButtonStyle GUICtrlToolbar_SetButtonText GUICtrlToolbar_SetButtonWidth GUICtrlToolbar_SetCmdID GUICtrlToolbar_SetColorScheme GUICtrlToolbar_SetDisabledImageList GUICtrlToolbar_SetDrawTextFlags GUICtrlToolbar_SetExtendedStyle GUICtrlToolbar_SetHotImageList GUICtrlToolbar_SetHotItem GUICtrlToolbar_SetImageList GUICtrlToolbar_SetIndent GUICtrlToolbar_SetIndeterminate GUICtrlToolbar_SetInsertMark GUICtrlToolbar_SetInsertMarkColor GUICtrlToolbar_SetMaxTextRows GUICtrlToolbar_SetMetrics GUICtrlToolbar_SetPadding GUICtrlToolbar_SetParent GUICtrlToolbar_SetRows GUICtrlToolbar_SetStyle GUICtrlToolbar_SetStyleAltDrag
GUICtrlToolbar_SetStyleCustomErase GUICtrlToolbar_SetStyleFlat GUICtrlToolbar_SetStyleList GUICtrlToolbar_SetStyleRegisterDrop GUICtrlToolbar_SetStyleToolTips GUICtrlToolbar_SetStyleTransparent GUICtrlToolbar_SetStyleWrapable GUICtrlToolbar_SetToolTips GUICtrlToolbar_SetUnicodeFormat GUICtrlToolbar_SetWindowTheme GUICtrlTreeView_Add GUICtrlTreeView_AddChild GUICtrlTreeView_AddChildFirst GUICtrlTreeView_AddFirst GUICtrlTreeView_BeginUpdate GUICtrlTreeView_ClickItem GUICtrlTreeView_Create GUICtrlTreeView_CreateDragImage GUICtrlTreeView_CreateSolidBitMap GUICtrlTreeView_Delete GUICtrlTreeView_DeleteAll GUICtrlTreeView_DeleteChildren GUICtrlTreeView_Destroy GUICtrlTreeView_DisplayRect GUICtrlTreeView_DisplayRectEx GUICtrlTreeView_EditText GUICtrlTreeView_EndEdit GUICtrlTreeView_EndUpdate GUICtrlTreeView_EnsureVisible GUICtrlTreeView_Expand GUICtrlTreeView_ExpandedOnce GUICtrlTreeView_FindItem GUICtrlTreeView_FindItemEx GUICtrlTreeView_GetBkColor GUICtrlTreeView_GetBold GUICtrlTreeView_GetChecked GUICtrlTreeView_GetChildCount GUICtrlTreeView_GetChildren GUICtrlTreeView_GetCount GUICtrlTreeView_GetCut GUICtrlTreeView_GetDropTarget GUICtrlTreeView_GetEditControl GUICtrlTreeView_GetExpanded GUICtrlTreeView_GetFirstChild GUICtrlTreeView_GetFirstItem GUICtrlTreeView_GetFirstVisible GUICtrlTreeView_GetFocused GUICtrlTreeView_GetHeight GUICtrlTreeView_GetImageIndex GUICtrlTreeView_GetImageListIconHandle GUICtrlTreeView_GetIndent GUICtrlTreeView_GetInsertMarkColor GUICtrlTreeView_GetISearchString GUICtrlTreeView_GetItemByIndex GUICtrlTreeView_GetItemHandle GUICtrlTreeView_GetItemParam GUICtrlTreeView_GetLastChild GUICtrlTreeView_GetLineColor GUICtrlTreeView_GetNext GUICtrlTreeView_GetNextChild GUICtrlTreeView_GetNextSibling GUICtrlTreeView_GetNextVisible GUICtrlTreeView_GetNormalImageList GUICtrlTreeView_GetParentHandle GUICtrlTreeView_GetParentParam GUICtrlTreeView_GetPrev GUICtrlTreeView_GetPrevChild GUICtrlTreeView_GetPrevSibling GUICtrlTreeView_GetPrevVisible GUICtrlTreeView_GetScrollTime GUICtrlTreeView_GetSelected GUICtrlTreeView_GetSelectedImageIndex GUICtrlTreeView_GetSelection GUICtrlTreeView_GetSiblingCount GUICtrlTreeView_GetState GUICtrlTreeView_GetStateImageIndex GUICtrlTreeView_GetStateImageList GUICtrlTreeView_GetText GUICtrlTreeView_GetTextColor GUICtrlTreeView_GetToolTips GUICtrlTreeView_GetTree GUICtrlTreeView_GetUnicodeFormat GUICtrlTreeView_GetVisible GUICtrlTreeView_GetVisibleCount GUICtrlTreeView_HitTest GUICtrlTreeView_HitTestEx GUICtrlTreeView_HitTestItem GUICtrlTreeView_Index GUICtrlTreeView_InsertItem GUICtrlTreeView_IsFirstItem GUICtrlTreeView_IsParent GUICtrlTreeView_Level GUICtrlTreeView_SelectItem GUICtrlTreeView_SelectItemByIndex GUICtrlTreeView_SetBkColor GUICtrlTreeView_SetBold GUICtrlTreeView_SetChecked GUICtrlTreeView_SetCheckedByIndex GUICtrlTreeView_SetChildren GUICtrlTreeView_SetCut GUICtrlTreeView_SetDropTarget GUICtrlTreeView_SetFocused GUICtrlTreeView_SetHeight GUICtrlTreeView_SetIcon GUICtrlTreeView_SetImageIndex GUICtrlTreeView_SetIndent GUICtrlTreeView_SetInsertMark GUICtrlTreeView_SetInsertMarkColor GUICtrlTreeView_SetItemHeight GUICtrlTreeView_SetItemParam GUICtrlTreeView_SetLineColor GUICtrlTreeView_SetNormalImageList GUICtrlTreeView_SetScrollTime GUICtrlTreeView_SetSelected GUICtrlTreeView_SetSelectedImageIndex GUICtrlTreeView_SetState GUICtrlTreeView_SetStateImageIndex GUICtrlTreeView_SetStateImageList GUICtrlTreeView_SetText GUICtrlTreeView_SetTextColor GUICtrlTreeView_SetToolTips GUICtrlTreeView_SetUnicodeFormat GUICtrlTreeView_Sort GUIImageList_Add GUIImageList_AddBitmap GUIImageList_AddIcon GUIImageList_AddMasked GUIImageList_BeginDrag GUIImageList_Copy GUIImageList_Create GUIImageList_Destroy GUIImageList_DestroyIcon GUIImageList_DragEnter GUIImageList_DragLeave GUIImageList_DragMove GUIImageList_Draw GUIImageList_DrawEx GUIImageList_Duplicate GUIImageList_EndDrag GUIImageList_GetBkColor GUIImageList_GetIcon GUIImageList_GetIconHeight GUIImageList_GetIconSize GUIImageList_GetIconSizeEx GUIImageList_GetIconWidth GUIImageList_GetImageCount GUIImageList_GetImageInfoEx GUIImageList_Remove GUIImageList_ReplaceIcon GUIImageList_SetBkColor GUIImageList_SetIconSize GUIImageList_SetImageCount GUIImageList_Swap GUIScrollBars_EnableScrollBar GUIScrollBars_GetScrollBarInfoEx GUIScrollBars_GetScrollBarRect GUIScrollBars_GetScrollBarRGState GUIScrollBars_GetScrollBarXYLineButton GUIScrollBars_GetScrollBarXYThumbBottom GUIScrollBars_GetScrollBarXYThumbTop GUIScrollBars_GetScrollInfo GUIScrollBars_GetScrollInfoEx GUIScrollBars_GetScrollInfoMax GUIScrollBars_GetScrollInfoMin GUIScrollBars_GetScrollInfoPage GUIScrollBars_GetScrollInfoPos GUIScrollBars_GetScrollInfoTrackPos GUIScrollBars_GetScrollPos GUIScrollBars_GetScrollRange GUIScrollBars_Init GUIScrollBars_ScrollWindow GUIScrollBars_SetScrollInfo GUIScrollBars_SetScrollInfoMax GUIScrollBars_SetScrollInfoMin GUIScrollBars_SetScrollInfoPage GUIScrollBars_SetScrollInfoPos GUIScrollBars_SetScrollRange GUIScrollBars_ShowScrollBar GUIToolTip_Activate GUIToolTip_AddTool GUIToolTip_AdjustRect GUIToolTip_BitsToTTF GUIToolTip_Create GUIToolTip_Deactivate GUIToolTip_DelTool GUIToolTip_Destroy GUIToolTip_EnumTools GUIToolTip_GetBubbleHeight GUIToolTip_GetBubbleSize GUIToolTip_GetBubbleWidth GUIToolTip_GetCurrentTool GUIToolTip_GetDelayTime GUIToolTip_GetMargin GUIToolTip_GetMarginEx GUIToolTip_GetMaxTipWidth GUIToolTip_GetText GUIToolTip_GetTipBkColor GUIToolTip_GetTipTextColor GUIToolTip_GetTitleBitMap GUIToolTip_GetTitleText GUIToolTip_GetToolCount GUIToolTip_GetToolInfo GUIToolTip_HitTest GUIToolTip_NewToolRect GUIToolTip_Pop GUIToolTip_PopUp GUIToolTip_SetDelayTime GUIToolTip_SetMargin GUIToolTip_SetMaxTipWidth GUIToolTip_SetTipBkColor GUIToolTip_SetTipTextColor GUIToolTip_SetTitle GUIToolTip_SetToolInfo GUIToolTip_SetWindowTheme GUIToolTip_ToolExists GUIToolTip_ToolToArray GUIToolTip_TrackActivate GUIToolTip_TrackPosition GUIToolTip_Update GUIToolTip_UpdateTipText HexToString IEAction IEAttach IEBodyReadHTML IEBodyReadText IEBodyWriteHTML IECreate IECreateEmbedded IEDocGetObj IEDocInsertHTML IEDocInsertText IEDocReadHTML IEDocWriteHTML IEErrorNotify IEFormElementCheckBoxSelect IEFormElementGetCollection IEFormElementGetObjByName IEFormElementGetValue IEFormElementOptionSelect IEFormElementRadioSelect IEFormElementSetValue IEFormGetCollection IEFormGetObjByName IEFormImageClick IEFormReset IEFormSubmit IEFrameGetCollection IEFrameGetObjByName IEGetObjById IEGetObjByName IEHeadInsertEventScript IEImgClick IEImgGetCollection IEIsFrameSet IELinkClickByIndex IELinkClickByText IELinkGetCollection IELoadWait IELoadWaitTimeout IENavigate IEPropertyGet IEPropertySet IEQuit IETableGetCollection IETableWriteToArray IETagNameAllGetCollection IETagNameGetCollection IE_Example IE_Introduction IE_VersionInfo INetExplorerCapable INetGetSource INetMail INetSmtpMail IsPressed MathCheckDiv Max MemGlobalAlloc MemGlobalFree MemGlobalLock MemGlobalSize MemGlobalUnlock MemMoveMemory MemVirtualAlloc MemVirtualAllocEx MemVirtualFree MemVirtualFreeEx Min MouseTrap NamedPipes_CallNamedPipe NamedPipes_ConnectNamedPipe NamedPipes_CreateNamedPipe NamedPipes_CreatePipe NamedPipes_DisconnectNamedPipe NamedPipes_GetNamedPipeHandleState NamedPipes_GetNamedPipeInfo NamedPipes_PeekNamedPipe NamedPipes_SetNamedPipeHandleState NamedPipes_TransactNamedPipe NamedPipes_WaitNamedPipe Net_Share_ConnectionEnum Net_Share_FileClose Net_Share_FileEnum Net_Share_FileGetInfo Net_Share_PermStr Net_Share_ResourceStr Net_Share_SessionDel Net_Share_SessionEnum Net_Share_SessionGetInfo Net_Share_ShareAdd Net_Share_ShareCheck Net_Share_ShareDel Net_Share_ShareEnum Net_Share_ShareGetInfo Net_Share_ShareSetInfo Net_Share_StatisticsGetSvr Net_Share_StatisticsGetWrk Now NowCalc NowCalcDate NowDate NowTime PathFull PathGetRelative PathMake PathSplit ProcessGetName ProcessGetPriority Radian ReplaceStringInFile RunDos ScreenCapture_Capture ScreenCapture_CaptureWnd ScreenCapture_SaveImage ScreenCapture_SetBMPFormat ScreenCapture_SetJPGQuality ScreenCapture_SetTIFColorDepth ScreenCapture_SetTIFCompression Security__AdjustTokenPrivileges Security__CreateProcessWithToken Security__DuplicateTokenEx Security__GetAccountSid Security__GetLengthSid Security__GetTokenInformation Security__ImpersonateSelf Security__IsValidSid Security__LookupAccountName Security__LookupAccountSid Security__LookupPrivilegeValue Security__OpenProcessToken Security__OpenThreadToken Security__OpenThreadTokenEx Security__SetPrivilege Security__SetTokenInformation Security__SidToStringSid Security__SidTypeStr Security__StringSidToSid SendMessage SendMessageA SetDate SetTime Singleton SoundClose SoundLength SoundOpen SoundPause SoundPlay SoundPos SoundResume SoundSeek SoundStatus SoundStop SQLite_Changes SQLite_Close SQLite_Display2DResult SQLite_Encode SQLite_ErrCode SQLite_ErrMsg SQLite_Escape SQLite_Exec SQLite_FastEncode SQLite_FastEscape SQLite_FetchData SQLite_FetchNames SQLite_GetTable SQLite_GetTable2d SQLite_LastInsertRowID SQLite_LibVersion SQLite_Open SQLite_Query SQLite_QueryFinalize SQLite_QueryReset SQLite_QuerySingleRow SQLite_SafeMode SQLite_SetTimeout SQLite_Shutdown SQLite_SQLiteExe SQLite_Startup SQLite_TotalChanges StringBetween StringExplode StringInsert StringProper StringRepeat StringTitleCase StringToHex TCPIpToName TempFile TicksToTime Timer_Diff Timer_GetIdleTime Timer_GetTimerID Timer_Init Timer_KillAllTimers Timer_KillTimer Timer_SetTimer TimeToTicks VersionCompare viClose viExecCommand viFindGpib viGpibBusReset viGTL viInteractiveControl viOpen viSetAttribute viSetTimeout WeekNumberISO WinAPI_AbortPath WinAPI_ActivateKeyboardLayout WinAPI_AddClipboardFormatListener WinAPI_AddFontMemResourceEx WinAPI_AddFontResourceEx WinAPI_AddIconOverlay WinAPI_AddIconTransparency WinAPI_AddMRUString WinAPI_AdjustBitmap WinAPI_AdjustTokenPrivileges WinAPI_AdjustWindowRectEx WinAPI_AlphaBlend WinAPI_AngleArc WinAPI_AnimateWindow WinAPI_Arc WinAPI_ArcTo WinAPI_ArrayToStruct WinAPI_AssignProcessToJobObject
WinAPI_AssocGetPerceivedType WinAPI_AssocQueryString WinAPI_AttachConsole WinAPI_AttachThreadInput WinAPI_BackupRead WinAPI_BackupReadAbort WinAPI_BackupSeek WinAPI_BackupWrite WinAPI_BackupWriteAbort WinAPI_Beep WinAPI_BeginBufferedPaint WinAPI_BeginDeferWindowPos WinAPI_BeginPaint WinAPI_BeginPath WinAPI_BeginUpdateResource WinAPI_BitBlt WinAPI_BringWindowToTop WinAPI_BroadcastSystemMessage WinAPI_BrowseForFolderDlg WinAPI_BufferedPaintClear WinAPI_BufferedPaintInit WinAPI_BufferedPaintSetAlpha WinAPI_BufferedPaintUnInit WinAPI_CallNextHookEx WinAPI_CallWindowProc WinAPI_CallWindowProcW WinAPI_CascadeWindows WinAPI_ChangeWindowMessageFilterEx WinAPI_CharToOem WinAPI_ChildWindowFromPointEx WinAPI_ClientToScreen WinAPI_ClipCursor WinAPI_CloseDesktop WinAPI_CloseEnhMetaFile WinAPI_CloseFigure WinAPI_CloseHandle WinAPI_CloseThemeData WinAPI_CloseWindow WinAPI_CloseWindowStation WinAPI_CLSIDFromProgID WinAPI_CoInitialize WinAPI_ColorAdjustLuma WinAPI_ColorHLSToRGB WinAPI_ColorRGBToHLS WinAPI_CombineRgn WinAPI_CombineTransform WinAPI_CommandLineToArgv WinAPI_CommDlgExtendedError WinAPI_CommDlgExtendedErrorEx WinAPI_CompareString WinAPI_CompressBitmapBits WinAPI_CompressBuffer WinAPI_ComputeCrc32 WinAPI_ConfirmCredentials WinAPI_CopyBitmap WinAPI_CopyCursor WinAPI_CopyEnhMetaFile WinAPI_CopyFileEx WinAPI_CopyIcon WinAPI_CopyImage WinAPI_CopyRect WinAPI_CopyStruct WinAPI_CoTaskMemAlloc WinAPI_CoTaskMemFree WinAPI_CoTaskMemRealloc WinAPI_CoUninitialize WinAPI_Create32BitHBITMAP WinAPI_Create32BitHICON WinAPI_CreateANDBitmap WinAPI_CreateBitmap WinAPI_CreateBitmapIndirect WinAPI_CreateBrushIndirect WinAPI_CreateBuffer WinAPI_CreateBufferFromStruct WinAPI_CreateCaret WinAPI_CreateColorAdjustment WinAPI_CreateCompatibleBitmap WinAPI_CreateCompatibleBitmapEx WinAPI_CreateCompatibleDC WinAPI_CreateDesktop WinAPI_CreateDIB WinAPI_CreateDIBColorTable WinAPI_CreateDIBitmap WinAPI_CreateDIBSection WinAPI_CreateDirectory WinAPI_CreateDirectoryEx WinAPI_CreateEllipticRgn WinAPI_CreateEmptyIcon WinAPI_CreateEnhMetaFile WinAPI_CreateEvent WinAPI_CreateFile WinAPI_CreateFileEx WinAPI_CreateFileMapping WinAPI_CreateFont WinAPI_CreateFontEx WinAPI_CreateFontIndirect WinAPI_CreateGUID WinAPI_CreateHardLink WinAPI_CreateIcon WinAPI_CreateIconFromResourceEx WinAPI_CreateIconIndirect WinAPI_CreateJobObject WinAPI_CreateMargins WinAPI_CreateMRUList WinAPI_CreateMutex WinAPI_CreateNullRgn WinAPI_CreateNumberFormatInfo WinAPI_CreateObjectID WinAPI_CreatePen WinAPI_CreatePoint WinAPI_CreatePolygonRgn WinAPI_CreateProcess WinAPI_CreateProcessWithToken WinAPI_CreateRect WinAPI_CreateRectEx WinAPI_CreateRectRgn WinAPI_CreateRectRgnIndirect WinAPI_CreateRoundRectRgn WinAPI_CreateSemaphore WinAPI_CreateSize WinAPI_CreateSolidBitmap WinAPI_CreateSolidBrush WinAPI_CreateStreamOnHGlobal WinAPI_CreateString WinAPI_CreateSymbolicLink WinAPI_CreateTransform WinAPI_CreateWindowEx WinAPI_CreateWindowStation WinAPI_DecompressBuffer WinAPI_DecryptFile WinAPI_DeferWindowPos WinAPI_DefineDosDevice WinAPI_DefRawInputProc WinAPI_DefSubclassProc WinAPI_DefWindowProc WinAPI_DefWindowProcW WinAPI_DeleteDC WinAPI_DeleteEnhMetaFile WinAPI_DeleteFile WinAPI_DeleteObject WinAPI_DeleteObjectID WinAPI_DeleteVolumeMountPoint WinAPI_DeregisterShellHookWindow WinAPI_DestroyCaret WinAPI_DestroyCursor WinAPI_DestroyIcon WinAPI_DestroyWindow WinAPI_DeviceIoControl WinAPI_DisplayStruct WinAPI_DllGetVersion WinAPI_DllInstall WinAPI_DllUninstall WinAPI_DPtoLP WinAPI_DragAcceptFiles WinAPI_DragFinish WinAPI_DragQueryFileEx WinAPI_DragQueryPoint WinAPI_DrawAnimatedRects WinAPI_DrawBitmap WinAPI_DrawEdge WinAPI_DrawFocusRect WinAPI_DrawFrameControl WinAPI_DrawIcon WinAPI_DrawIconEx WinAPI_DrawLine WinAPI_DrawShadowText WinAPI_DrawText WinAPI_DrawThemeBackground WinAPI_DrawThemeEdge WinAPI_DrawThemeIcon WinAPI_DrawThemeParentBackground WinAPI_DrawThemeText WinAPI_DrawThemeTextEx WinAPI_DuplicateEncryptionInfoFile WinAPI_DuplicateHandle WinAPI_DuplicateTokenEx WinAPI_DwmDefWindowProc WinAPI_DwmEnableBlurBehindWindow WinAPI_DwmEnableComposition WinAPI_DwmExtendFrameIntoClientArea WinAPI_DwmGetColorizationColor WinAPI_DwmGetColorizationParameters WinAPI_DwmGetWindowAttribute WinAPI_DwmInvalidateIconicBitmaps WinAPI_DwmIsCompositionEnabled WinAPI_DwmQueryThumbnailSourceSize WinAPI_DwmRegisterThumbnail WinAPI_DwmSetColorizationParameters WinAPI_DwmSetIconicLivePreviewBitmap WinAPI_DwmSetIconicThumbnail WinAPI_DwmSetWindowAttribute WinAPI_DwmUnregisterThumbnail WinAPI_DwmUpdateThumbnailProperties WinAPI_DWordToFloat WinAPI_DWordToInt WinAPI_EjectMedia WinAPI_Ellipse WinAPI_EmptyWorkingSet WinAPI_EnableWindow WinAPI_EncryptFile WinAPI_EncryptionDisable WinAPI_EndBufferedPaint WinAPI_EndDeferWindowPos WinAPI_EndPaint WinAPI_EndPath WinAPI_EndUpdateResource WinAPI_EnumChildProcess WinAPI_EnumChildWindows WinAPI_EnumDesktops WinAPI_EnumDesktopWindows WinAPI_EnumDeviceDrivers WinAPI_EnumDisplayDevices WinAPI_EnumDisplayMonitors WinAPI_EnumDisplaySettings WinAPI_EnumDllProc WinAPI_EnumFiles WinAPI_EnumFileStreams WinAPI_EnumFontFamilies WinAPI_EnumHardLinks WinAPI_EnumMRUList WinAPI_EnumPageFiles WinAPI_EnumProcessHandles WinAPI_EnumProcessModules WinAPI_EnumProcessThreads WinAPI_EnumProcessWindows WinAPI_EnumRawInputDevices WinAPI_EnumResourceLanguages WinAPI_EnumResourceNames WinAPI_EnumResourceTypes WinAPI_EnumSystemGeoID WinAPI_EnumSystemLocales WinAPI_EnumUILanguages WinAPI_EnumWindows WinAPI_EnumWindowsPopup WinAPI_EnumWindowStations WinAPI_EnumWindowsTop WinAPI_EqualMemory WinAPI_EqualRect WinAPI_EqualRgn WinAPI_ExcludeClipRect WinAPI_ExpandEnvironmentStrings WinAPI_ExtCreatePen WinAPI_ExtCreateRegion WinAPI_ExtFloodFill WinAPI_ExtractIcon WinAPI_ExtractIconEx WinAPI_ExtSelectClipRgn WinAPI_FatalAppExit WinAPI_FatalExit WinAPI_FileEncryptionStatus WinAPI_FileExists WinAPI_FileIconInit WinAPI_FileInUse WinAPI_FillMemory WinAPI_FillPath WinAPI_FillRect WinAPI_FillRgn WinAPI_FindClose WinAPI_FindCloseChangeNotification WinAPI_FindExecutable WinAPI_FindFirstChangeNotification WinAPI_FindFirstFile WinAPI_FindFirstFileName WinAPI_FindFirstStream WinAPI_FindNextChangeNotification WinAPI_FindNextFile WinAPI_FindNextFileName WinAPI_FindNextStream WinAPI_FindResource WinAPI_FindResourceEx WinAPI_FindTextDlg WinAPI_FindWindow WinAPI_FlashWindow WinAPI_FlashWindowEx WinAPI_FlattenPath WinAPI_FloatToDWord WinAPI_FloatToInt WinAPI_FlushFileBuffers WinAPI_FlushFRBuffer WinAPI_FlushViewOfFile WinAPI_FormatDriveDlg WinAPI_FormatMessage WinAPI_FrameRect WinAPI_FrameRgn WinAPI_FreeLibrary WinAPI_FreeMemory WinAPI_FreeMRUList WinAPI_FreeResource WinAPI_GdiComment WinAPI_GetActiveWindow WinAPI_GetAllUsersProfileDirectory WinAPI_GetAncestor WinAPI_GetApplicationRestartSettings WinAPI_GetArcDirection WinAPI_GetAsyncKeyState WinAPI_GetBinaryType WinAPI_GetBitmapBits WinAPI_GetBitmapDimension WinAPI_GetBitmapDimensionEx WinAPI_GetBkColor WinAPI_GetBkMode WinAPI_GetBoundsRect WinAPI_GetBrushOrg WinAPI_GetBufferedPaintBits WinAPI_GetBufferedPaintDC WinAPI_GetBufferedPaintTargetDC WinAPI_GetBufferedPaintTargetRect WinAPI_GetBValue WinAPI_GetCaretBlinkTime WinAPI_GetCaretPos WinAPI_GetCDType WinAPI_GetClassInfoEx WinAPI_GetClassLongEx WinAPI_GetClassName WinAPI_GetClientHeight WinAPI_GetClientRect WinAPI_GetClientWidth WinAPI_GetClipboardSequenceNumber WinAPI_GetClipBox WinAPI_GetClipCursor WinAPI_GetClipRgn WinAPI_GetColorAdjustment WinAPI_GetCompressedFileSize WinAPI_GetCompression WinAPI_GetConnectedDlg WinAPI_GetCurrentDirectory WinAPI_GetCurrentHwProfile WinAPI_GetCurrentObject WinAPI_GetCurrentPosition WinAPI_GetCurrentProcess WinAPI_GetCurrentProcessExplicitAppUserModelID WinAPI_GetCurrentProcessID WinAPI_GetCurrentThemeName WinAPI_GetCurrentThread WinAPI_GetCurrentThreadId WinAPI_GetCursor WinAPI_GetCursorInfo WinAPI_GetDateFormat WinAPI_GetDC WinAPI_GetDCEx WinAPI_GetDefaultPrinter WinAPI_GetDefaultUserProfileDirectory WinAPI_GetDesktopWindow WinAPI_GetDeviceCaps WinAPI_GetDeviceDriverBaseName WinAPI_GetDeviceDriverFileName WinAPI_GetDeviceGammaRamp WinAPI_GetDIBColorTable WinAPI_GetDIBits WinAPI_GetDiskFreeSpaceEx WinAPI_GetDlgCtrlID WinAPI_GetDlgItem WinAPI_GetDllDirectory WinAPI_GetDriveBusType WinAPI_GetDriveGeometryEx WinAPI_GetDriveNumber WinAPI_GetDriveType WinAPI_GetDurationFormat WinAPI_GetEffectiveClientRect WinAPI_GetEnhMetaFile WinAPI_GetEnhMetaFileBits WinAPI_GetEnhMetaFileDescription WinAPI_GetEnhMetaFileDimension WinAPI_GetEnhMetaFileHeader WinAPI_GetErrorMessage WinAPI_GetErrorMode WinAPI_GetExitCodeProcess WinAPI_GetExtended WinAPI_GetFileAttributes WinAPI_GetFileID WinAPI_GetFileInformationByHandle WinAPI_GetFileInformationByHandleEx WinAPI_GetFilePointerEx WinAPI_GetFileSizeEx WinAPI_GetFileSizeOnDisk WinAPI_GetFileTitle WinAPI_GetFileType WinAPI_GetFileVersionInfo WinAPI_GetFinalPathNameByHandle WinAPI_GetFinalPathNameByHandleEx WinAPI_GetFocus WinAPI_GetFontMemoryResourceInfo WinAPI_GetFontName WinAPI_GetFontResourceInfo WinAPI_GetForegroundWindow WinAPI_GetFRBuffer WinAPI_GetFullPathName WinAPI_GetGeoInfo WinAPI_GetGlyphOutline WinAPI_GetGraphicsMode WinAPI_GetGuiResources WinAPI_GetGUIThreadInfo WinAPI_GetGValue WinAPI_GetHandleInformation WinAPI_GetHGlobalFromStream WinAPI_GetIconDimension WinAPI_GetIconInfo WinAPI_GetIconInfoEx WinAPI_GetIdleTime WinAPI_GetKeyboardLayout WinAPI_GetKeyboardLayoutList WinAPI_GetKeyboardState WinAPI_GetKeyboardType WinAPI_GetKeyNameText WinAPI_GetKeyState WinAPI_GetLastActivePopup WinAPI_GetLastError WinAPI_GetLastErrorMessage WinAPI_GetLayeredWindowAttributes WinAPI_GetLocaleInfo WinAPI_GetLogicalDrives WinAPI_GetMapMode WinAPI_GetMemorySize WinAPI_GetMessageExtraInfo WinAPI_GetModuleFileNameEx WinAPI_GetModuleHandle WinAPI_GetModuleHandleEx WinAPI_GetModuleInformation WinAPI_GetMonitorInfo WinAPI_GetMousePos WinAPI_GetMousePosX WinAPI_GetMousePosY WinAPI_GetMUILanguage WinAPI_GetNumberFormat WinAPI_GetObject WinAPI_GetObjectID WinAPI_GetObjectInfoByHandle WinAPI_GetObjectNameByHandle WinAPI_GetObjectType WinAPI_GetOpenFileName
WinAPI_GetOutlineTextMetrics WinAPI_GetOverlappedResult WinAPI_GetParent WinAPI_GetParentProcess WinAPI_GetPerformanceInfo WinAPI_GetPEType WinAPI_GetPhysicallyInstalledSystemMemory WinAPI_GetPixel WinAPI_GetPolyFillMode WinAPI_GetPosFromRect WinAPI_GetPriorityClass WinAPI_GetProcAddress WinAPI_GetProcessAffinityMask WinAPI_GetProcessCommandLine WinAPI_GetProcessFileName WinAPI_GetProcessHandleCount WinAPI_GetProcessID WinAPI_GetProcessIoCounters WinAPI_GetProcessMemoryInfo WinAPI_GetProcessName WinAPI_GetProcessShutdownParameters WinAPI_GetProcessTimes WinAPI_GetProcessUser WinAPI_GetProcessWindowStation WinAPI_GetProcessWorkingDirectory WinAPI_GetProfilesDirectory WinAPI_GetPwrCapabilities WinAPI_GetRawInputBuffer WinAPI_GetRawInputBufferLength WinAPI_GetRawInputData WinAPI_GetRawInputDeviceInfo WinAPI_GetRegionData WinAPI_GetRegisteredRawInputDevices WinAPI_GetRegKeyNameByHandle WinAPI_GetRgnBox WinAPI_GetROP2 WinAPI_GetRValue WinAPI_GetSaveFileName WinAPI_GetShellWindow WinAPI_GetStartupInfo WinAPI_GetStdHandle WinAPI_GetStockObject WinAPI_GetStretchBltMode WinAPI_GetString WinAPI_GetSysColor WinAPI_GetSysColorBrush WinAPI_GetSystemDefaultLangID WinAPI_GetSystemDefaultLCID WinAPI_GetSystemDefaultUILanguage WinAPI_GetSystemDEPPolicy WinAPI_GetSystemInfo WinAPI_GetSystemMetrics WinAPI_GetSystemPowerStatus WinAPI_GetSystemTimes WinAPI_GetSystemWow64Directory WinAPI_GetTabbedTextExtent WinAPI_GetTempFileName WinAPI_GetTextAlign WinAPI_GetTextCharacterExtra WinAPI_GetTextColor WinAPI_GetTextExtentPoint32 WinAPI_GetTextFace WinAPI_GetTextMetrics WinAPI_GetThemeAppProperties WinAPI_GetThemeBackgroundContentRect WinAPI_GetThemeBackgroundExtent WinAPI_GetThemeBackgroundRegion WinAPI_GetThemeBitmap WinAPI_GetThemeBool WinAPI_GetThemeColor WinAPI_GetThemeDocumentationProperty WinAPI_GetThemeEnumValue WinAPI_GetThemeFilename WinAPI_GetThemeFont WinAPI_GetThemeInt WinAPI_GetThemeMargins WinAPI_GetThemeMetric WinAPI_GetThemePartSize WinAPI_GetThemePosition WinAPI_GetThemePropertyOrigin WinAPI_GetThemeRect WinAPI_GetThemeString WinAPI_GetThemeSysBool WinAPI_GetThemeSysColor WinAPI_GetThemeSysColorBrush WinAPI_GetThemeSysFont WinAPI_GetThemeSysInt WinAPI_GetThemeSysSize WinAPI_GetThemeSysString WinAPI_GetThemeTextExtent WinAPI_GetThemeTextMetrics WinAPI_GetThemeTransitionDuration WinAPI_GetThreadDesktop WinAPI_GetThreadErrorMode WinAPI_GetThreadLocale WinAPI_GetThreadUILanguage WinAPI_GetTickCount WinAPI_GetTickCount64 WinAPI_GetTimeFormat WinAPI_GetTopWindow WinAPI_GetUDFColorMode WinAPI_GetUpdateRect WinAPI_GetUpdateRgn WinAPI_GetUserDefaultLangID WinAPI_GetUserDefaultLCID WinAPI_GetUserDefaultUILanguage WinAPI_GetUserGeoID WinAPI_GetUserObjectInformation WinAPI_GetVersion WinAPI_GetVersionEx WinAPI_GetVolumeInformation WinAPI_GetVolumeInformationByHandle WinAPI_GetVolumeNameForVolumeMountPoint WinAPI_GetWindow WinAPI_GetWindowDC WinAPI_GetWindowDisplayAffinity WinAPI_GetWindowExt WinAPI_GetWindowFileName WinAPI_GetWindowHeight WinAPI_GetWindowInfo WinAPI_GetWindowLong WinAPI_GetWindowOrg WinAPI_GetWindowPlacement WinAPI_GetWindowRect WinAPI_GetWindowRgn WinAPI_GetWindowRgnBox WinAPI_GetWindowSubclass WinAPI_GetWindowText WinAPI_GetWindowTheme WinAPI_GetWindowThreadProcessId WinAPI_GetWindowWidth WinAPI_GetWorkArea WinAPI_GetWorldTransform WinAPI_GetXYFromPoint WinAPI_GlobalMemoryStatus WinAPI_GradientFill WinAPI_GUIDFromString WinAPI_GUIDFromStringEx WinAPI_HashData WinAPI_HashString WinAPI_HiByte WinAPI_HideCaret WinAPI_HiDWord WinAPI_HiWord WinAPI_InflateRect WinAPI_InitMUILanguage WinAPI_InProcess WinAPI_IntersectClipRect WinAPI_IntersectRect WinAPI_IntToDWord WinAPI_IntToFloat WinAPI_InvalidateRect WinAPI_InvalidateRgn WinAPI_InvertANDBitmap WinAPI_InvertColor WinAPI_InvertRect WinAPI_InvertRgn WinAPI_IOCTL WinAPI_IsAlphaBitmap WinAPI_IsBadCodePtr WinAPI_IsBadReadPtr WinAPI_IsBadStringPtr WinAPI_IsBadWritePtr WinAPI_IsChild WinAPI_IsClassName WinAPI_IsDoorOpen WinAPI_IsElevated WinAPI_IsHungAppWindow WinAPI_IsIconic WinAPI_IsInternetConnected WinAPI_IsLoadKBLayout WinAPI_IsMemory WinAPI_IsNameInExpression WinAPI_IsNetworkAlive WinAPI_IsPathShared WinAPI_IsProcessInJob WinAPI_IsProcessorFeaturePresent WinAPI_IsRectEmpty WinAPI_IsThemeActive WinAPI_IsThemeBackgroundPartiallyTransparent WinAPI_IsThemePartDefined WinAPI_IsValidLocale WinAPI_IsWindow WinAPI_IsWindowEnabled WinAPI_IsWindowUnicode WinAPI_IsWindowVisible WinAPI_IsWow64Process WinAPI_IsWritable WinAPI_IsZoomed WinAPI_Keybd_Event WinAPI_KillTimer WinAPI_LineDDA WinAPI_LineTo WinAPI_LoadBitmap WinAPI_LoadCursor WinAPI_LoadCursorFromFile WinAPI_LoadIcon WinAPI_LoadIconMetric WinAPI_LoadIconWithScaleDown WinAPI_LoadImage WinAPI_LoadIndirectString WinAPI_LoadKeyboardLayout WinAPI_LoadLibrary WinAPI_LoadLibraryEx WinAPI_LoadMedia WinAPI_LoadResource WinAPI_LoadShell32Icon WinAPI_LoadString WinAPI_LoadStringEx WinAPI_LoByte WinAPI_LocalFree WinAPI_LockDevice WinAPI_LockFile WinAPI_LockResource WinAPI_LockWindowUpdate WinAPI_LockWorkStation WinAPI_LoDWord WinAPI_LongMid WinAPI_LookupIconIdFromDirectoryEx WinAPI_LoWord WinAPI_LPtoDP WinAPI_MAKELANGID WinAPI_MAKELCID WinAPI_MakeLong WinAPI_MakeQWord WinAPI_MakeWord WinAPI_MapViewOfFile WinAPI_MapVirtualKey WinAPI_MaskBlt WinAPI_MessageBeep WinAPI_MessageBoxCheck WinAPI_MessageBoxIndirect WinAPI_MirrorIcon WinAPI_ModifyWorldTransform WinAPI_MonitorFromPoint WinAPI_MonitorFromRect WinAPI_MonitorFromWindow WinAPI_Mouse_Event WinAPI_MoveFileEx WinAPI_MoveMemory WinAPI_MoveTo WinAPI_MoveToEx WinAPI_MoveWindow WinAPI_MsgBox WinAPI_MulDiv WinAPI_MultiByteToWideChar WinAPI_MultiByteToWideCharEx WinAPI_NtStatusToDosError WinAPI_OemToChar WinAPI_OffsetClipRgn WinAPI_OffsetPoints WinAPI_OffsetRect WinAPI_OffsetRgn WinAPI_OffsetWindowOrg WinAPI_OpenDesktop WinAPI_OpenFileById WinAPI_OpenFileDlg WinAPI_OpenFileMapping WinAPI_OpenIcon WinAPI_OpenInputDesktop WinAPI_OpenJobObject WinAPI_OpenMutex WinAPI_OpenProcess WinAPI_OpenProcessToken WinAPI_OpenSemaphore WinAPI_OpenThemeData WinAPI_OpenWindowStation WinAPI_PageSetupDlg WinAPI_PaintDesktop WinAPI_PaintRgn WinAPI_ParseURL WinAPI_ParseUserName WinAPI_PatBlt WinAPI_PathAddBackslash WinAPI_PathAddExtension WinAPI_PathAppend WinAPI_PathBuildRoot WinAPI_PathCanonicalize WinAPI_PathCommonPrefix WinAPI_PathCompactPath WinAPI_PathCompactPathEx WinAPI_PathCreateFromUrl WinAPI_PathFindExtension WinAPI_PathFindFileName WinAPI_PathFindNextComponent WinAPI_PathFindOnPath WinAPI_PathGetArgs WinAPI_PathGetCharType WinAPI_PathGetDriveNumber WinAPI_PathIsContentType WinAPI_PathIsDirectory WinAPI_PathIsDirectoryEmpty WinAPI_PathIsExe WinAPI_PathIsFileSpec WinAPI_PathIsLFNFileSpec WinAPI_PathIsRelative WinAPI_PathIsRoot WinAPI_PathIsSameRoot WinAPI_PathIsSystemFolder WinAPI_PathIsUNC WinAPI_PathIsUNCServer WinAPI_PathIsUNCServerShare WinAPI_PathMakeSystemFolder WinAPI_PathMatchSpec WinAPI_PathParseIconLocation WinAPI_PathRelativePathTo WinAPI_PathRemoveArgs WinAPI_PathRemoveBackslash WinAPI_PathRemoveExtension WinAPI_PathRemoveFileSpec WinAPI_PathRenameExtension WinAPI_PathSearchAndQualify WinAPI_PathSkipRoot WinAPI_PathStripPath WinAPI_PathStripToRoot WinAPI_PathToRegion WinAPI_PathUndecorate WinAPI_PathUnExpandEnvStrings WinAPI_PathUnmakeSystemFolder WinAPI_PathUnquoteSpaces WinAPI_PathYetAnotherMakeUniqueName WinAPI_PickIconDlg WinAPI_PlayEnhMetaFile WinAPI_PlaySound WinAPI_PlgBlt WinAPI_PointFromRect WinAPI_PolyBezier WinAPI_PolyBezierTo WinAPI_PolyDraw WinAPI_Polygon WinAPI_PostMessage WinAPI_PrimaryLangId WinAPI_PrintDlg WinAPI_PrintDlgEx WinAPI_PrintWindow WinAPI_ProgIDFromCLSID WinAPI_PtInRect WinAPI_PtInRectEx WinAPI_PtInRegion WinAPI_PtVisible WinAPI_QueryDosDevice WinAPI_QueryInformationJobObject WinAPI_QueryPerformanceCounter WinAPI_QueryPerformanceFrequency WinAPI_RadialGradientFill WinAPI_ReadDirectoryChanges WinAPI_ReadFile WinAPI_ReadProcessMemory WinAPI_Rectangle WinAPI_RectInRegion WinAPI_RectIsEmpty WinAPI_RectVisible WinAPI_RedrawWindow WinAPI_RegCloseKey WinAPI_RegConnectRegistry WinAPI_RegCopyTree WinAPI_RegCopyTreeEx WinAPI_RegCreateKey WinAPI_RegDeleteEmptyKey WinAPI_RegDeleteKey WinAPI_RegDeleteKeyValue WinAPI_RegDeleteTree WinAPI_RegDeleteTreeEx WinAPI_RegDeleteValue WinAPI_RegDisableReflectionKey WinAPI_RegDuplicateHKey WinAPI_RegEnableReflectionKey WinAPI_RegEnumKey WinAPI_RegEnumValue WinAPI_RegFlushKey WinAPI_RegisterApplicationRestart WinAPI_RegisterClass WinAPI_RegisterClassEx WinAPI_RegisterHotKey WinAPI_RegisterPowerSettingNotification WinAPI_RegisterRawInputDevices WinAPI_RegisterShellHookWindow WinAPI_RegisterWindowMessage WinAPI_RegLoadMUIString WinAPI_RegNotifyChangeKeyValue WinAPI_RegOpenKey WinAPI_RegQueryInfoKey WinAPI_RegQueryLastWriteTime WinAPI_RegQueryMultipleValues WinAPI_RegQueryReflectionKey WinAPI_RegQueryValue WinAPI_RegRestoreKey WinAPI_RegSaveKey WinAPI_RegSetValue WinAPI_ReleaseCapture WinAPI_ReleaseDC WinAPI_ReleaseMutex WinAPI_ReleaseSemaphore WinAPI_ReleaseStream WinAPI_RemoveClipboardFormatListener WinAPI_RemoveDirectory WinAPI_RemoveFontMemResourceEx WinAPI_RemoveFontResourceEx WinAPI_RemoveWindowSubclass WinAPI_ReOpenFile WinAPI_ReplaceFile WinAPI_ReplaceTextDlg WinAPI_ResetEvent WinAPI_RestartDlg WinAPI_RestoreDC WinAPI_RGB WinAPI_RotatePoints WinAPI_RoundRect WinAPI_SaveDC WinAPI_SaveFileDlg WinAPI_SaveHBITMAPToFile WinAPI_SaveHICONToFile WinAPI_ScaleWindowExt WinAPI_ScreenToClient WinAPI_SearchPath WinAPI_SelectClipPath WinAPI_SelectClipRgn WinAPI_SelectObject WinAPI_SendMessageTimeout WinAPI_SetActiveWindow WinAPI_SetArcDirection WinAPI_SetBitmapBits WinAPI_SetBitmapDimensionEx WinAPI_SetBkColor WinAPI_SetBkMode WinAPI_SetBoundsRect WinAPI_SetBrushOrg WinAPI_SetCapture WinAPI_SetCaretBlinkTime WinAPI_SetCaretPos WinAPI_SetClassLongEx WinAPI_SetColorAdjustment WinAPI_SetCompression WinAPI_SetCurrentDirectory WinAPI_SetCurrentProcessExplicitAppUserModelID WinAPI_SetCursor WinAPI_SetDCBrushColor WinAPI_SetDCPenColor WinAPI_SetDefaultPrinter WinAPI_SetDeviceGammaRamp WinAPI_SetDIBColorTable WinAPI_SetDIBits WinAPI_SetDIBitsToDevice
WinAPI_SetDllDirectory WinAPI_SetEndOfFile WinAPI_SetEnhMetaFileBits WinAPI_SetErrorMode WinAPI_SetEvent WinAPI_SetFileAttributes WinAPI_SetFileInformationByHandleEx WinAPI_SetFilePointer WinAPI_SetFilePointerEx WinAPI_SetFileShortName WinAPI_SetFileValidData WinAPI_SetFocus WinAPI_SetFont WinAPI_SetForegroundWindow WinAPI_SetFRBuffer WinAPI_SetGraphicsMode WinAPI_SetHandleInformation WinAPI_SetInformationJobObject WinAPI_SetKeyboardLayout WinAPI_SetKeyboardState WinAPI_SetLastError WinAPI_SetLayeredWindowAttributes WinAPI_SetLocaleInfo WinAPI_SetMapMode WinAPI_SetMessageExtraInfo WinAPI_SetParent WinAPI_SetPixel WinAPI_SetPolyFillMode WinAPI_SetPriorityClass WinAPI_SetProcessAffinityMask WinAPI_SetProcessShutdownParameters WinAPI_SetProcessWindowStation WinAPI_SetRectRgn WinAPI_SetROP2 WinAPI_SetSearchPathMode WinAPI_SetStretchBltMode WinAPI_SetSysColors WinAPI_SetSystemCursor WinAPI_SetTextAlign WinAPI_SetTextCharacterExtra WinAPI_SetTextColor WinAPI_SetTextJustification WinAPI_SetThemeAppProperties WinAPI_SetThreadDesktop WinAPI_SetThreadErrorMode WinAPI_SetThreadExecutionState WinAPI_SetThreadLocale WinAPI_SetThreadUILanguage WinAPI_SetTimer WinAPI_SetUDFColorMode WinAPI_SetUserGeoID WinAPI_SetUserObjectInformation WinAPI_SetVolumeMountPoint WinAPI_SetWindowDisplayAffinity WinAPI_SetWindowExt WinAPI_SetWindowLong WinAPI_SetWindowOrg WinAPI_SetWindowPlacement WinAPI_SetWindowPos WinAPI_SetWindowRgn WinAPI_SetWindowsHookEx WinAPI_SetWindowSubclass WinAPI_SetWindowText WinAPI_SetWindowTheme WinAPI_SetWinEventHook WinAPI_SetWorldTransform WinAPI_SfcIsFileProtected WinAPI_SfcIsKeyProtected WinAPI_ShellAboutDlg WinAPI_ShellAddToRecentDocs WinAPI_ShellChangeNotify WinAPI_ShellChangeNotifyDeregister WinAPI_ShellChangeNotifyRegister WinAPI_ShellCreateDirectory WinAPI_ShellEmptyRecycleBin WinAPI_ShellExecute WinAPI_ShellExecuteEx WinAPI_ShellExtractAssociatedIcon WinAPI_ShellExtractIcon WinAPI_ShellFileOperation WinAPI_ShellFlushSFCache WinAPI_ShellGetFileInfo WinAPI_ShellGetIconOverlayIndex WinAPI_ShellGetImageList WinAPI_ShellGetKnownFolderIDList WinAPI_ShellGetKnownFolderPath WinAPI_ShellGetLocalizedName WinAPI_ShellGetPathFromIDList WinAPI_ShellGetSetFolderCustomSettings WinAPI_ShellGetSettings WinAPI_ShellGetSpecialFolderLocation WinAPI_ShellGetSpecialFolderPath WinAPI_ShellGetStockIconInfo WinAPI_ShellILCreateFromPath WinAPI_ShellNotifyIcon WinAPI_ShellNotifyIconGetRect WinAPI_ShellObjectProperties WinAPI_ShellOpenFolderAndSelectItems WinAPI_ShellOpenWithDlg WinAPI_ShellQueryRecycleBin WinAPI_ShellQueryUserNotificationState WinAPI_ShellRemoveLocalizedName WinAPI_ShellRestricted WinAPI_ShellSetKnownFolderPath WinAPI_ShellSetLocalizedName WinAPI_ShellSetSettings WinAPI_ShellStartNetConnectionDlg WinAPI_ShellUpdateImage WinAPI_ShellUserAuthenticationDlg WinAPI_ShellUserAuthenticationDlgEx WinAPI_ShortToWord WinAPI_ShowCaret WinAPI_ShowCursor WinAPI_ShowError WinAPI_ShowLastError WinAPI_ShowMsg WinAPI_ShowOwnedPopups WinAPI_ShowWindow WinAPI_ShutdownBlockReasonCreate WinAPI_ShutdownBlockReasonDestroy WinAPI_ShutdownBlockReasonQuery WinAPI_SizeOfResource WinAPI_StretchBlt WinAPI_StretchDIBits WinAPI_StrFormatByteSize WinAPI_StrFormatByteSizeEx WinAPI_StrFormatKBSize WinAPI_StrFromTimeInterval WinAPI_StringFromGUID WinAPI_StringLenA WinAPI_StringLenW WinAPI_StrLen WinAPI_StrokeAndFillPath WinAPI_StrokePath WinAPI_StructToArray WinAPI_SubLangId WinAPI_SubtractRect WinAPI_SwapDWord WinAPI_SwapQWord WinAPI_SwapWord WinAPI_SwitchColor WinAPI_SwitchDesktop WinAPI_SwitchToThisWindow WinAPI_SystemParametersInfo WinAPI_TabbedTextOut WinAPI_TerminateJobObject WinAPI_TerminateProcess WinAPI_TextOut WinAPI_TileWindows WinAPI_TrackMouseEvent WinAPI_TransparentBlt WinAPI_TwipsPerPixelX WinAPI_TwipsPerPixelY WinAPI_UnhookWindowsHookEx WinAPI_UnhookWinEvent WinAPI_UnionRect WinAPI_UnionStruct WinAPI_UniqueHardwareID WinAPI_UnloadKeyboardLayout WinAPI_UnlockFile WinAPI_UnmapViewOfFile WinAPI_UnregisterApplicationRestart WinAPI_UnregisterClass WinAPI_UnregisterHotKey WinAPI_UnregisterPowerSettingNotification WinAPI_UpdateLayeredWindow WinAPI_UpdateLayeredWindowEx WinAPI_UpdateLayeredWindowIndirect WinAPI_UpdateResource WinAPI_UpdateWindow WinAPI_UrlApplyScheme WinAPI_UrlCanonicalize WinAPI_UrlCombine WinAPI_UrlCompare WinAPI_UrlCreateFromPath WinAPI_UrlFixup WinAPI_UrlGetPart WinAPI_UrlHash WinAPI_UrlIs WinAPI_UserHandleGrantAccess WinAPI_ValidateRect WinAPI_ValidateRgn WinAPI_VerQueryRoot WinAPI_VerQueryValue WinAPI_VerQueryValueEx WinAPI_WaitForInputIdle WinAPI_WaitForMultipleObjects WinAPI_WaitForSingleObject WinAPI_WideCharToMultiByte WinAPI_WidenPath WinAPI_WindowFromDC WinAPI_WindowFromPoint WinAPI_WordToShort WinAPI_Wow64EnableWow64FsRedirection WinAPI_WriteConsole WinAPI_WriteFile WinAPI_WriteProcessMemory WinAPI_ZeroMemory WinNet_AddConnection WinNet_AddConnection2 WinNet_AddConnection3 WinNet_CancelConnection WinNet_CancelConnection2 WinNet_CloseEnum WinNet_ConnectionDialog WinNet_ConnectionDialog1 WinNet_DisconnectDialog WinNet_DisconnectDialog1 WinNet_EnumResource WinNet_GetConnection WinNet_GetConnectionPerformance WinNet_GetLastError WinNet_GetNetworkInformation WinNet_GetProviderName WinNet_GetResourceInformation WinNet_GetResourceParent WinNet_GetUniversalName WinNet_GetUser WinNet_OpenEnum WinNet_RestoreConnection WinNet_UseConnection Word_Create Word_DocAdd Word_DocAttach Word_DocClose Word_DocExport Word_DocFind Word_DocFindReplace Word_DocGet Word_DocLinkAdd Word_DocLinkGet Word_DocOpen Word_DocPictureAdd Word_DocPrint Word_DocRangeSet Word_DocSave Word_DocSaveAs Word_DocTableRead Word_DocTableWrite Word_Quit",I={
v:[e.C(";","$",{r:0}),e.C("#cs","#ce"),e.C("#comments-start","#comments-end")]},n={b:"\\$[A-z0-9_]+"},l={cN:"string",v:[{b:/"/,e:/"/,c:[{b:/""/,r:0}]},{b:/'/,e:/'/,c:[{b:/''/,r:0}]}]},o={v:[e.BNM,e.CNM]},a={cN:"meta",b:"#",e:"$",k:{"meta-keyword":"include include-once NoTrayIcon OnAutoItStartRegister RequireAdmin pragma Au3Stripper_Ignore_Funcs Au3Stripper_Ignore_Variables Au3Stripper_Off Au3Stripper_On Au3Stripper_Parameters AutoIt3Wrapper_Add_Constants AutoIt3Wrapper_Au3Check_Parameters AutoIt3Wrapper_Au3Check_Stop_OnWarning AutoIt3Wrapper_Aut2Exe AutoIt3Wrapper_AutoIt3 AutoIt3Wrapper_AutoIt3Dir AutoIt3Wrapper_Change2CUI AutoIt3Wrapper_Compile_Both AutoIt3Wrapper_Compression AutoIt3Wrapper_EndIf AutoIt3Wrapper_Icon AutoIt3Wrapper_If_Compile AutoIt3Wrapper_If_Run AutoIt3Wrapper_Jump_To_First_Error AutoIt3Wrapper_OutFile AutoIt3Wrapper_OutFile_Type AutoIt3Wrapper_OutFile_X64 AutoIt3Wrapper_PlugIn_Funcs AutoIt3Wrapper_Res_Comment Autoit3Wrapper_Res_Compatibility AutoIt3Wrapper_Res_Description AutoIt3Wrapper_Res_Field AutoIt3Wrapper_Res_File_Add AutoIt3Wrapper_Res_FileVersion AutoIt3Wrapper_Res_FileVersion_AutoIncrement AutoIt3Wrapper_Res_Icon_Add AutoIt3Wrapper_Res_Language AutoIt3Wrapper_Res_LegalCopyright AutoIt3Wrapper_Res_ProductVersion AutoIt3Wrapper_Res_requestedExecutionLevel AutoIt3Wrapper_Res_SaveSource AutoIt3Wrapper_Run_After AutoIt3Wrapper_Run_Au3Check AutoIt3Wrapper_Run_Au3Stripper AutoIt3Wrapper_Run_Before AutoIt3Wrapper_Run_Debug_Mode AutoIt3Wrapper_Run_SciTE_Minimized AutoIt3Wrapper_Run_SciTE_OutputPane_Minimized AutoIt3Wrapper_Run_Tidy AutoIt3Wrapper_ShowProgress AutoIt3Wrapper_Testing AutoIt3Wrapper_Tidy_Stop_OnError AutoIt3Wrapper_UPX_Parameters AutoIt3Wrapper_UseUPX AutoIt3Wrapper_UseX64 AutoIt3Wrapper_Version AutoIt3Wrapper_Versioning AutoIt3Wrapper_Versioning_Parameters Tidy_Off Tidy_On Tidy_Parameters EndRegion Region"},c:[{b:/\\\n/,r:0},{bK:"include",k:{"meta-keyword":"include"},e:"$",c:[l,{cN:"meta-string",v:[{b:"<",e:">"},{b:/"/,e:/"/,c:[{b:/""/,r:0}]},{b:/'/,e:/'/,c:[{b:/''/,r:0}]}]}]},l,I]},_={cN:"symbol",b:"@[A-z0-9_]+"},G={cN:"function",bK:"Func",e:"$",i:"\\$|\\[|%",c:[e.UTM,{cN:"params",b:"\\(",e:"\\)",c:[n,l,o]}]};return{cI:!0,i:/\/*/,k:{keyword:t,built_in:i,literal:r},c:[I,n,l,o,a,_,G]}});hljs.registerLanguage("r",function(e){var r="([a-zA-Z]|\\.[a-zA-Z.])[a-zA-Z0-9._]*";return{c:[e.HCM,{b:r,l:r,k:{keyword:"function if in break next repeat else for return switch while try tryCatch stop warning require library attach detach source setMethod setGeneric setGroupGeneric setClass ...",literal:"NULL NA TRUE FALSE T F Inf NaN NA_integer_|10 NA_real_|10 NA_character_|10 NA_complex_|10"},r:0},{cN:"number",b:"0[xX][0-9a-fA-F]+[Li]?\\b",r:0},{cN:"number",b:"\\d+(?:[eE][+\\-]?\\d*)?L\\b",r:0},{cN:"number",b:"\\d+\\.(?!\\d)(?:i\\b)?",r:0},{cN:"number",b:"\\d+(?:\\.\\d*)?(?:[eE][+\\-]?\\d*)?i?\\b",r:0},{cN:"number",b:"\\.\\d+(?:[eE][+\\-]?\\d*)?i?\\b",r:0},{b:"`",e:"`",r:0},{cN:"string",c:[e.BE],v:[{b:'"',e:'"'},{b:"'",e:"'"}]}]}});

OEBPS/Common_Content/images/title_logo.png
& RedHat

OEBPS/Common_Content/images/7.png

OEBPS/Common_Content/images/warning.png

OEBPS/Common_Content/fonts/redhat/text/RedHatText-Medium.woff

OEBPS/Common_Content/images/important.png

OEBPS/Common_Content/images/35.png

OEBPS/Common_Content/images/19.png

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-Bold.woff

OEBPS/Common_Content/images/10.png

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-Regular.woff

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-MediumItalic.woff

OEBPS/Common_Content/images/2.png

OEBPS/Common_Content/scripts/highlight.js/LICENSE
Copyright (c) 2006, Ivan Sagalaev
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

 * Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
 * Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.
 * Neither the name of highlight.js nor the names of its contributors
 may be used to endorse or promote products derived from this software
 without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE REGENTS AND CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

OEBPS/Common_Content/images/15.png

OEBPS/Common_Content/images/watermark-draft.png

OEBPS/Common_Content/images/20.png

OEBPS/Common_Content/fonts/overpass_light-web.eot

OEBPS/Common_Content/scripts/utils.js
var work = 1;

function pop(entity) {
	if(entity) {
		var my_parent = entity.parentNode;
		var my_class = my_parent.className;
		my_parent.className = my_class.replace(/popper/,"popped");
	}
}
function unpop(entity) {
	if(entity) {
		var my_parent = entity.parentNode;
		var my_class = my_parent.className;
		my_parent.className = my_class.replace(/popped/,"popper");
	}
}

function siblings(entity){
	var r = [];
	for (var n = entity.parentNode.firstChild; n; n = n.nextSibling)
		if (n.nodeType == 1 && n != entity)
			r.push(n);		
	return r;
}

/* This activates an element and deactivates all it's siblings */
function activateElement(id) {
	var entity = document.getElementById(id);
	if(entity.className.indexOf("active") == -1) {
		entity.className = entity.className + " active";
	}
	var sibs = siblings(entity);

	for(var i=0; i < sibs.length; i++) {
		if(sibs[i].className.indexOf("active") != -1) {
			deactivateElement(sibs[i]);
		}
	}
}

function deactivateElement(entity) {
	if(entity.className.indexOf("active") != -1) {
		 entity.className = entity.className.replace(/[]*active/, '');
	}
}

function getCookie(name) {
	var name_c = window.location.hostname + '-' + name;

	if(document.cookie) {
		var cookies = document.cookie.split(/ *; */);
		for(var i=0; i < cookies.length; i++) {
			var current_c = cookies[i].split("=");
			if(current_c[0] == name_c) {
				return(current_c[1]);
				break;
			}
		}
	}
	return('');
}

function setCookie(name, value, expires, path) {
	name = window.location.hostname + '-' + name;

	var curCookie = name + "=" + value +
		((expires) ? ";expires=" + expires.toGMTString() : "") +
		((path) ? ";path=" + path : "");
	document.cookie = curCookie;
}

function setDefLangCookie(entity) {
	setCookie('switchery', entity.options[entity.selectedIndex].value, '', '/');
}

function initSwitchery() {
	var divs = document.getElementsByTagName('div');
	for(i in divs) {
		if(typeof(divs[i].className) != 'undefined' && divs[i].className.indexOf("switchery") != -1) {
			var lang = getCookie('switchery');
			if(lang != '') {
				var entity = document.getElementById(divs[i].id + '-' + lang);
				if(entity) {
					entity.onclick();
					entity.parentNode.lastChild.value = lang;
				} else {
					divs[i].firstChild.firstChild.onclick();
				}
			} else {
				divs[i].firstChild.firstChild.onclick();
			}
		}
	}

}

function showhide(id) {
	if(work) {
		work = 0;
		var entity = document.getElementById(id);
		if(entity) {
			var my_class = entity.className;
			if(my_class.indexOf("hidden") != -1) {
				entity.className = my_class.replace(/hidden/,"visible");
			}
			else if(my_class.indexOf("visible") != -1) {
				entity.className = my_class.replace(/visible/,"hidden");
			}
		}
	}

	return false;
}

function hide(id) {
	if(work) {
		work = 0;
		var entity = document.getElementById(id);
		if(entity) {
			var my_class = entity.className;
			if(my_class.indexOf("visible") != -1) {
				entity.className = my_class.replace(/visible/,"hidden");
			}
		}
	} else {
		work=1;
	}
}

var preventReset = 0;

function dehighlightTarget(entity) {
	if(preventReset == 0 && entity) {
		var id = entity.href;
		if(id.indexOf("#") != -1) {
			id = id.substr(id.indexOf('#')+1);
		}
		var target = document.getElementById(id);
		if(target) {
			deactivateElement(target);
		}
		}
}

function highlightTarget(entity, norefresh) {
	if(entity) {
		var id = entity.href;
		if(id.indexOf("#") != -1) {
			id = id.substr(id.indexOf('#')+1);
		}
		activateElement(id);
		preventReset = 0;
	}
	if(norefresh == 1) {
		preventReset=1;
	}
}

OEBPS/Common_Content/images/29.png

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-BlackItalic.eot

OEBPS/Common_Content/images/21.png

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-RegularItalic.eot

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-Medium.woff

OEBPS/Common_Content/fonts/redhat/text/RedHatText-Regular.woff2

OEBPS/Common_Content/fonts/portal/nimbus/iconfont.ttf

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-Bold.eot

OEBPS/Common_Content/images/31.png

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-Regular.eot

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-MediumItalic.eot

OEBPS/Common_Content/images/stock-go-forward.png

OEBPS/Common_Content/images/6.png

OEBPS/Common_Content/images/14.png

OEBPS/Common_Content/images/1.png

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-Black.woff2

OEBPS/Common_Content/images/25.png

OEBPS/Common_Content/fonts/redhat/text/RedHatText-RegularItalic.woff2

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-Black.woff

