
Red Hat Fuse 7.1

Tooling Tutorials

Tooling Tutorials

Last Updated: 2018-10-08

Red Hat Fuse 7.1 Tooling Tutorials

Tooling Tutorials

Legal Notice

Copyright © 2018 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide contains a number of simple tutorials that demonstrate how to use the tooling provided
by Red Hat Fuse Tooling to develop and test applications.

. .

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. ABOUT THE FUSE TOOLING TUTORIALS
PREREQUISITES
OVERVIEW OF THE FUSE TOOLING TUTORIALS
ABOUT THE SAMPLE APPLICATION
ABOUT THE RESOURCE FILES

CHAPTER 2. SETTING UP YOUR ENVIRONMENT
GOALS
BEFORE YOUR BEGIN
CREATING A FUSE INTEGRATION PROJECT
SETTING COMPONENT LABELS TO DISPLAY ID VALUES
DOWNLOADING TEST MESSAGES FOR YOUR PROJECT
VIEWING THE TEST MESSAGES
NEXT STEPS

CHAPTER 3. DEFINING A ROUTE
GOALS
BEFORE YOU BEGIN
CONFIGURING THE SOURCE ENDPOINT
CONFIGURING THE SINK ENDPOINT
NEXT STEPS

CHAPTER 4. RUNNING A ROUTE
GOALS
PREREQUISITES
RUNNING THE ROUTE
VERIFYING THE ROUTE
NEXT STEPS

CHAPTER 5. ADDING A CONTENT-BASED ROUTER
GOALS
PREREQUISITES
ADDING AND CONFIGURING A CONTENT-BASED ROUTER
ADDING AND CONFIGURING LOGGING
ADDING AND CONFIGURING MESSAGE HEADERS
ADDING AND CONFIGURING A BRANCH TO HANDLE VALID ORDERS
VERIFYING THE CBR
NEXT STEPS

CHAPTER 6. ADDING ANOTHER ROUTE TO THE ROUTING CONTEXT
GOALS
PREREQUISITES
RECONFIGURING THE EXISTING ROUTE’S ENDPOINT
ADDING THE SECOND ROUTE
CONFIGURING A CHOICE BRANCH TO PROCESS USA ORDERS
CONFIGURING AN OTHERWISE BRANCH TO PROCESS GERMANY ORDERS
VERIFYING THE SECOND ROUTE
NEXT STEPS

CHAPTER 7. DEBUGGING A ROUTING CONTEXT
GOALS
PREREQUISITES
SETTING BREAKPOINTS

4
4
4
5
5

6
6
6
6

12
13
14
15

16
16
16
16
17
19

20
20
20
20
22
22

23
23
23
23
27
29
32
38
39

41
41
41
41
42
43
50
54
58

59
59
59
59

Table of Contents

1

. .

. .

. .

STEPPING THROUGH THE ROUTING CONTEXT
CHANGING THE VALUE OF A VARIABLE
NARROWING THE CAMEL DEBUGGER’S FOCUS
VERIFYING THE EFFECT OF CHANGING A MESSAGE VARIABLE VALUE
NEXT STEPS

CHAPTER 8. TRACING A MESSAGE THROUGH A ROUTE
GOALS
PREREQUISITES
SETTING UP YOUR FUSE INTEGRATION PERSPECTIVE
STARTING MESSAGE TRACING
DROPPING MESSAGES ON THE RUNNING ZOOORDERAPP PROJECT
CONFIGURING MESSAGES VIEW
STEPPING THROUGH MESSAGE TRACES
NEXT STEPS

CHAPTER 9. TESTING A ROUTE WITH JUNIT
OVERVIEW
GOALS
PREREQUISITES
CREATING THE SRC/TEST FOLDER
CREATING THE JUNIT TEST CASE
MODIFYING THE BLUEPRINTXMLTEST FILE
MODIFYING THE POM.XML FILE
RUNNING THE JUNIT TEST
FURTHER READING
NEXT STEPS

CHAPTER 10. PUBLISHING YOUR PROJECT TO RED HAT FUSE
GOALS
PREREQUISITES
DEFINING A RED HAT FUSE SERVER
CONFIGURING THE PUBLISHING OPTIONS
CONNECTING TO THE RUNTIME SERVER
UNINSTALLING THE ZOOORDERAPP PROJECT

60
65
69
71
72

73
73
73
73
76
79
80
81
84

85
85
85
85
86
88
92
96
96
97
98

99
99
99
99

103
108
109

Red Hat Fuse 7.1 Tooling Tutorials

2

Table of Contents

3

CHAPTER 1. ABOUT THE FUSE TOOLING TUTORIALS
The Red Hat Fuse Tooling tutorials provide a hands-on introduction to using the Fuse Tooling to develop,
run, test, and deploy an Apache Camel application.

PREREQUISITES

Before you begin, you should be familiar with the following software:

Apache Camel

Apache Maven

OVERVIEW OF THE FUSE TOOLING TUTORIALS

Here is a summary of the tutorials and what you accomplish in each one:

Chapter 2, Setting up your environment
Create a Fuse Integration project and set up the tutorial resource files (example messages and
routing context files). When you create a project, it auto-creates a routing context and a
preliminary route.

Chapter 3, Defining a Route
Define the endpoints for a simple route that retrieves messages from a folder and copies them to
another folder.

Chapter 4, Running a Route
View the test messages. Run the route and verify that it works by seeing that the test messages
were copied from the source folder to the target folder.

Chapter 5, Adding a Content-Based Router
Add a content-based router that filters the messages and copies them to different target folders
based on content in the messages.

Chapter 6, Adding another route to the routing context
Add another route that further filters the messages and copies them to different target folders
based on content in the messages.

Chapter 7, Debugging a routing context
Use the Camel debugger to set breakpoints and then step through a route to examine route and
message variables.

Chapter 8, Tracing a message through a route
Drop messages onto the route and track them through all route nodes.

Chapter 9, Testing a route with JUnit
Create a JUnit test case for the route and then test the route.

Chapter 10, Publishing your project to Red Hat Fuse
Walk through the process of publishing an Apache Camel project to Red Hat Fuse: define a local
server, configure publishing options, start the server, publish the project, connect to the server,
and verify that the project was successfully built and published.

For more details on Fuse Tooling features, see the Tooling User Guide.

Red Hat Fuse 7.1 Tooling Tutorials

4

http://camel.apache.org/index.html
https://maven.apache.org
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.1/html-single/tooling_user_guide/index

ABOUT THE SAMPLE APPLICATION

The sample application that you build in the Fuse Tooling tutorials simulates a simple order application
for zoos to order animals. Sample XML messages are provided - each XML message includes customer
information (the name, city, and country of the zoo) and order information (the type and number of
animals requested, and the maximum number of animals allowed).

Using the Fuse Tooling, you create a Blueprint project that takes incoming sample messages, filters them
based on their content (valid versus invalid orders), and then further sorts the valid orders by the location
(country) of the zoo. In the later tutorials, you use the sample application to debug a routing context,
trace a message through a route, test a route with JUnit, and finally to publish a Fuse project.

ABOUT THE RESOURCE FILES

Each tutorial builds upon the previous one. The code generated by one tutorial is the starting point for
the next tutorial so that you can complete the tutorials in sequence. Alternately, after you complete the
first tutorial, you can do any other tutorial out of sequence by using one of the provided context files as a
starting point.

The tutorials rely on resource files provided in the Fuse-tooling-tutorials-jbds-10.3.zip file
located here. This zip file contains two folders:

Messages

This folder contains six message files named message1.xml, message2.xml, … ,
message6.xml. In the first tutorial, Chapter 2, Setting up your environment, you create the directory
in which to store these message files and you also view their contents. You need these message files
for all tutorials.

blueprintContexts

This folder contains three routing context files:

Blueprint1.xml - This is the solution routing context resulting from completing the
Chapter 3, Defining a Route tutorial. You can use it as the starting point for the following
tutorials:

Chapter 4, Running a Route

Chapter 5, Adding a Content-Based Router

Blueprint2.xml - This is the solution context file for the Chapter 5, Adding a Content-
Based Router tutorial. You can use blueprint2.xml as the starting point for the Chapter 6,
Adding another route to the routing context tutorial.

Blueprint3.xml - This is the solution context file for the Chapter 6, Adding another route to
the routing context tutorial. You can use blueprint3.xml as the starting point for these
tutorials:

Chapter 7, Debugging a routing context

Chapter 8, Tracing a message through a route

Chapter 9, Testing a route with JUnit

Chapter 10, Publishing your project to Red Hat Fuse

CHAPTER 1. ABOUT THE FUSE TOOLING TUTORIALS

5

https://github.com/FuseByExample/fuse-tooling-tutorials/archive/jbds-10.3.zip

CHAPTER 2. SETTING UP YOUR ENVIRONMENT
This tutorial walks you through the process of creating a Fuse Integration project. The project includes an
initial route and a default CamelContext. A route is a chain of processors through which a message
travels. A CamelContext is a single routing rule base that defines the context for configuring routes, and
specifies the policies to use during message exchanges between endpoints (message sources and
targets).

You must complete this tutorial before you follow any of the other tutorials.

GOALS

In this tutorial you complete the following tasks:

Create a Fuse Integration project

Download test messages (XML files) for your project

View the test messages

BEFORE YOUR BEGIN

Before you can set up a Fuse Integration project, you must install Red Hat Developer Studio with Fuse
Tooling. For information on how to install Developer Studio, go to the Red Hat customer portal for the
installation guide for your platform.

Before you can follow the steps in the Chapter 10, Publishing your project to Red Hat Fuse tutorial, you
must install Java 8.

CREATING A FUSE INTEGRATION PROJECT

1. Open Red Hat Developer Studio.
When you start Developer Studio for the first time, it opens in the JBoss perspective:

Red Hat Fuse 7.1 Tooling Tutorials

6

https://access.redhat.com/documentation/en-us/red_hat_jboss_fuse/

Otherwise, it opens in the perspective that you were using in your previous Developer Studio
session.

2. From the menu , select File → New → Fuse Integration Project to open the New Fuse
Integration Project wizard:

3. In the Project Name field, enter ZooOrderApp.
Leave the Use default workspace location option checked.

CHAPTER 2. SETTING UP YOUR ENVIRONMENT

7

4. Click Next to open the Select a Target Runtime page:

5. Select Standalone for the deployment platform.

6. Choose Karaf/Fuse on Karaf and accept None selected for the runtime.

NOTE

You add the runtime later in the Chapter 10, Publishing your project to Red Hat
Fuse tutorial .

7. Accept the default Apache Camel version.

Red Hat Fuse 7.1 Tooling Tutorials

8

8. Click Next to open the Advanced Project Setup page, and then select the Empty - Blueprint
DSL template:

CHAPTER 2. SETTING UP YOUR ENVIRONMENT

9

9. Click Finish.
Fuse Tooling starts downloading-from the Maven repository-all of the files that it needs to build
the project, and then it adds the new project to the Project Explorer view.

If Developer Studio is not already showing the Fuse Integration perspective, it asks whether
you want to switch to it now:

10. Click Yes.
The new ZooOrderApp project opens in the Fuse Integration perspective:

Red Hat Fuse 7.1 Tooling Tutorials

10

The ZooOrderApp project contains all of the files that you need to create and run routes,
including:

ZooOrderApp/pom.xml — A Maven project file.

CHAPTER 2. SETTING UP YOUR ENVIRONMENT

11

ZooOrderApp/src/main/resources/OSGI-INF/blueprint/blueprint.xml — A
Blueprint XML file that contains a Camel routing context and an initial empty route.

11. To view the preliminary routing context, open the blueprint.xml file in the Editor view, and
then click the Source tab.

SETTING COMPONENT LABELS TO DISPLAY ID VALUES

To ensure that the labels of the patterns and components that you place on the Design canvas are the
same as the labels shown in the Tooling Tutorials:

1. Open the Editor preferences page:

On Linux and Windows machines, select Windows → Preferences → Fuse Tooling →
Editor.

On OS X, select Developer Studio → Preferences → Fuse Tooling → Editor.

2. Check the Use ID values for all component labels option.

Red Hat Fuse 7.1 Tooling Tutorials

12

3. Click Apply and Close .

DOWNLOADING TEST MESSAGES FOR YOUR PROJECT

Sample XML message files are provided so that you can test your ZooOrderApp project as you work
through the Tooling Tutorials. The messages contain order information for zoo animals. For example, an
order of five wombats for the Chicago zoo.

To download and copy the provided test messages (XML files) to your project:

1. In the Developer Studio Project Explorer view, create a folder to contain the test messages:

a. Right-click the ZooOrderApp/src folder and then select New → Folder. The New Folder
wizard opens.

b. For Folder name, type data.

c. Click Finish.

2. Click here to open a web browser to the location of the provided Tooling Tutorial resource Fuse-
tooling-tutorials-jbds-10.3.zip file.
Download the Fuse-tooling-tutorials-jbds-10.3.zip file to a convenient location that
is external to the ZooOrderApp project’s workspace, and then unzip it. It contains two folders as
described in Chapter 1, About the Fuse Tooling Tutorials.

CHAPTER 2. SETTING UP YOUR ENVIRONMENT

13

https://github.com/FuseByExample/fuse-tooling-tutorials/archive/jbds-10.3.zip

3. From the messages folder, copy the six XML files to your ZooOrderApp project’s src/data
folder.

NOTE

You can safely ignore the on the XML files.

VIEWING THE TEST MESSAGES

Each XML message file contains an order from a zoo (a customer) for a quantity of animals. For
example, the 'message1.xml' file contains an order from the Brooklyn Zoo for 12 wombats.

You can open any of the message XML files in the Editor view to examine the contents.

1. In the Project Explorer view, right-click a message file.

2. From the popup menu, select Open.

Red Hat Fuse 7.1 Tooling Tutorials

14

3. Click the Source tab.
The XML file opens in the Editor view.

For example, the contents of the message1.xml file shows an order from the Bronx Zoo for 12
wombats:

<?xml version="1.0" encoding="UTF-8"?>

<order>
 <customer>
 <name>Bronx Zoo</name>
 <city>Bronx NY</city>
 <country>USA</country>
 </customer>
 <orderline>
 <animal>wombat</animal>
 <quantity>12</quantity>
 </orderline>
</order>

NOTE

You can safely ignore the on the first line of the newly created message1.xml file,
which advises you that there are no grammar constraints (DTD or XML Schema)
referenced by the document.

The following table provides a summary of the contents of all six message files:

Table 2.1. Provided test messages

msg# <name> <city> <country> <animal> <quantity>

1 Bronx Zoo Bronx NY USA wombat 12

2 San Diego Zoo San Diego CA USA giraffe 3

3 Sea Life
Centre

Munich Germany penguin 15

4 Berlin Zoo Berlin Germany emu 6

5 Philadelphia
Zoo

Philapelphia
PA

USA giraffe 2

6 St Louis Zoo St Loius MO USA penguin 10

NEXT STEPS

Now that you have set up your Developer Studio project, you can continue to the Chapter 3, Defining a
Route tutorial in which you define the route that processes the XML messages.

CHAPTER 2. SETTING UP YOUR ENVIRONMENT

15

CHAPTER 3. DEFINING A ROUTE
This tutorial walks you through adding and configuring endpoints to a route. Endpoints define the source
and sink for messages traveling through the route. For your ZooOrderApp project, the starting (source)
endpoint is the folder containing the XML message files. The sink (finishing) endpoint is another folder
that you specify in your project.

GOALS

In this tutorial you complete the following tasks:

Add source and sink endpoints to the route

Configure the endpoints

Connect the endpoints

BEFORE YOU BEGIN

Before you start this tutorial:

1. You must set up your workspace environment, as described in the Chapter 2, Setting up your
environment tutorial.

2. In Developer Studio, open your ZooOrderApp project’s /src/main/resources/OSGI-
INF/blueprint/blueprint.xml file in the Editor view.

3. If needed, click the Design tab at the bottom of the Editor view to see the graphic display of the
initial route, labeled Route_route1.

CONFIGURING THE SOURCE ENDPOINT

Follow these steps to configure the src/data folder as the route’s source endpoint:

1. Drag a File component () from the Palette's Components drawer to the canvas, and drop
it in the Route_route1 container node.
The File component changes to a From _from1 node inside the Route_route1 container
node.

2. On the canvas, select the From _from1 node.
The Properties view, located below the canvas, displays the node’s property fields for editing.

3. To specify the source directory for the message files, in the Properties view, click the
Advanced tab:

Red Hat Fuse 7.1 Tooling Tutorials

16

4. In the Directory Name field, enter src/data:

The path src/data is relative to the project’s directory.

5. On the Consumer tab, enable the Noop option by clicking its check box.
The Noop option prevents the message#.xml files from being deleted from the src/data
folder, and it enables idempotency to ensure that each message#.xml file is consumed only
once.

6. Select the Details tab to open the file node’s Details page.
Notice that the tooling automatically populates the Uri field with the Directory Name and Noop
properties you configured on the Advanced tab. It also populates the Id field with an
autogenerated ID (_from1):

NOTE

The tooling prefixes autogenerated ID values with an underscore (_). You can
optionally change the ID value. The underscore prefix is not a requirement.

Leave the autogenerated Id as is.

7. Select File → Save to save the route.

CONFIGURING THE SINK ENDPOINT

To add and configure the route’s sink (target) endpoint:

1. Drag another File component from the Palette's Components drawer and drop it in the
Route_route1 container node.
The File component changes to a To_to1 node inside the Route_route1 container node.

2. On the canvas, select the To_to1 node.
The Properties view, located below the canvas, displays the node’s property fields for editing.

3. On the Details tab:

a. In the Uri field, type file:target/messages/received.

CHAPTER 3. DEFINING A ROUTE

17

b. In the Id field, type _Received.

NOTE

The tooling will create the target/messages/received folder at runtime.

4. In the Route_route1 container, select the From _from1 node and drag its connector arrow (

) over the To_Received node, and then release it:

NOTE

The two file nodes are connected and aligned on the canvas according to the
route editor’s layout direction preference setting. The choices are Down (the
default) and Right.

To access the route editor 's layout preference options:

On Linux and Windows machines, select Windows → Preferences → Fuse
Tooling → Editor → Choose the layout direction for the diagram editor.

On OS X, select Developer Studio → Preferences → Fuse Tooling →
Editor → Choose the layout direction for the diagram editor.

Red Hat Fuse 7.1 Tooling Tutorials

18

NOTE

If you do not connect the nodes before you close the project, the tooling
automatically connects them when you reopen it.

5. Save the route.

6. Click the Source tab at the bottom of the canvas to display the XML for the route:

<?xml version="1.0" encoding="UTF-8"?>

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.osgi.org/xmlns/blueprint/v1.0.0
 https://www.osgi.org/xmlns/blueprint/v1.0.0/blueprint.xsd
 http://camel.apache.org/schema/blueprint
 http://camel.apache.org/schema/blueprint/camel-blueprint.xsd">

 <camelContext id="_context1"
xmlns="http://camel.apache.org/schema/blueprint">
 <route id="_route1">
 <from id="_from1" uri="file:src/data?noop=true"/>
 <to id="_Received" uri="file:target/messages/received"/>
 </route>
 </camelContext>
</blueprint>

NEXT STEPS

Now that you have added and configured endpoints in the route, you can run the route as described in
the Chapter 4, Running a Route tutorial.

CHAPTER 3. DEFINING A ROUTE

19

CHAPTER 4. RUNNING A ROUTE
This tutorial walks you through the process of running a route to verify that the route correctly transfers
messages from the source endpoint to the sink endpoint.

GOALS

In this tutorial you complete the following tasks:

Run a route as a local Camel context (without tests since you have not set up a test yet)

Send messages through the route

Examine the messages received by the sink endpoint to make sure that the route correctly
processed the test messages

PREREQUISITES

To start this tutorial, you need the ZooOrderApp project resulting from:

1. Completing the Chapter 2, Setting up your environment tutorial.

2. One of the following:

Completing the Chapter 3, Defining a Route tutorial.
or

Replacing your project’s blueprint.xml file with the provided
blueprintContexts/blueprint1.xml file, as described in the section called “About
the resource files”.

RUNNING THE ROUTE

To run the route:

1. Open the ZooOrderApp project.

2. In Project Explorer, select ZooOrderApp/Camel Contexts/blueprint.xml :

Red Hat Fuse 7.1 Tooling Tutorials

20

3. Right-click the blueprint.xml, and then select Run As → Local Camel Context (without
tests).

NOTE

If you select Local Camel Context instead, the tooling automatically tries to run
the routing context against a supplied JUnit test. Because a JUnit test does not
exist, the tooling reverts to running the routing context without tests. In the
Chapter 9, Testing a route with JUnit tutorial, you create a JUnit test case to test
the ZooOrderApp project.

The Console panel opens to display log messages that reflect the progress of the project’s
execution. At the beginning, Maven downloads the resources necessary to update the local
Maven repository. The Maven download process can take a few minutes.

4. Wait for messages (similar to the following) to appear at the end of the output. These messages
indicate that the route executed successfully:

...
[Blueprint Event Dispatcher: 1] BlueprintCamelContext INFO Route:
_route1 started and consuming from:Endpoint[file://src/data?
noop=true]
[Blueprint Event Dispatcher: 1] BlueprintCamelContext INFO Total 1
routes, of which 1 are started.
[Blueprint Event Dispatcher: 1]BlueprintCamelContext INFO Apache
Camel 2.21.0.redhat-3 (CamelContext: ...) started in 0.163 seconds
[Blueprint Event Dispatcher: 1] BlueprintCamelContext INFO Apache
Camel 2.21.0.redhat-3 (CamelContext: ...) started in 0.918 seconds

5. To shutdown the route, click located at the top of the Console view.

CHAPTER 4. RUNNING A ROUTE

21

VERIFYING THE ROUTE

To verify that the route executed properly, you check to see whether the message XML files were copied
from the source folder (src/data) to the target folder (target/messages/received).

1. In Project Explorer, select ZooOrderApp.

2. Right-click and then select Refresh.

3. In Project Explorer, locate the target/messages/ folder and expand it to verify that the
target/messages/received folder contains the six message files, message1.xml through
message6.xml:

4. Double-click message1.xml to open it in the route editor’s Design tab, and then select the
Source tab to see the XML code:

NEXT STEPS

In the Chapter 5, Adding a Content-Based Router tutorial you add a Content-Based Router that uses the
content of a message to determine its destination.

<?xml version="1.0" encoding="UTF-8"?>

<order>
 <customer>
 <name>Bronx Zoo</name>
 <city>Bronx NY</city>
 <country>USA</country>
 </customer>
 <orderline>
 <animal>wombat</animal>
 <quantity>12</quantity>
 </orderline>
</order>

Red Hat Fuse 7.1 Tooling Tutorials

22

CHAPTER 5. ADDING A CONTENT-BASED ROUTER
This tutorial shows how to add a Content-Based Router (CBR) and logging to a route.

A CBR routes a message to a destination based on its content. In this tutorial, the CBR that you create
routes messages to different folders (valid or invalid) based on the value of each message’s quantity
field (the number of animals in the order). The maximum value of animals for each order is 10. The CBR
routes the messages to different folders, depending on whether the quantity is greater than 10. For
example, if a zoo orders five zebras and only three zebras are available, the order is copied to the invalid
order target folder.

GOALS

In this tutorial you complete the following tasks:

Add a Content-Based Router to your route

Configure the Content-Based Router:

Add a log endpoint to each output branch of the content-based router

Add a Set Header EIP after each log endpoint

Add an Otherwise branch to the content-based router

PREREQUISITES

To start this tutorial, you need the ZooOrderApp project resulting from one of the following:

Completing the Chapter 4, Running a Route tutorial.
or

Completing the Chapter 2, Setting up your environment tutorial and replacing your project’s
blueprint.xml file with the provided blueprintContexts/blueprint1.xml file, as
described in the section called “About the resource files”.

ADDING AND CONFIGURING A CONTENT-BASED ROUTER

To add and configure a Content-Based Router for your route:

1. In Project Explorer, double-click ZooOrderApp/src/main/resources/OSGI-
INF/blueprint/blueprint.xml to open it in the Editor view.

2. On the Design canvas, select the To_Received node and then select the trash can icon to
delete it.

3. In the Palette, open the Routing drawer, click a Choice () pattern, and then (in the
Design canvas) click the From_from1 node.

CHAPTER 5. ADDING A CONTENT-BASED ROUTER

23

The Route_route1 container expands to accommodate the Choice_choice1 node. The
error icon indicates that the Choice_choice1 node requires a child node, which you add next.

4. From the Routing drawer, click the When () pattern and then, in the canvas, click the
Choice_choice1 node.
The Choice_choice1 container expands to accommodate the When_when1 node:

Red Hat Fuse 7.1 Tooling Tutorials

24

The decorating the When_when1 node indicates that one or more required property values
must be set.

NOTE

The tooling prevents you from adding a pattern to an invalid drop point in a Route
container.

5. On the canvas, select the When_when1 node, to open its properties in the Properties view:

6. Click the button in the Expression field to open the list of available options.

7. Select xpath (for the XML query language) because the test messages are written in XML.

CHAPTER 5. ADDING A CONTENT-BASED ROUTER

25

NOTE

Once you select the Expression language, the Properties view displays its
properties in an indented list directly below the Expression field. The Id property
in this indented list sets the ID of the expression. The Id property following the
Description field sets the ID of the When node.

8. In the indented Expression field, type: /order/orderline/quantity/text() > 10
This expression specifies that only messages in which the value of the quantity field is greater
than 10 travel this path in the route (to the invalidOrders folder).

9. Leave each of the remaining properties as they are.

NOTE

The Trim option (enabled by default) removes any leading or trailing white
spaces and line breaks from the message.

10. Save the routing context file.

11. Click the Source tab to view the XML for the route:

Red Hat Fuse 7.1 Tooling Tutorials

26

ADDING AND CONFIGURING LOGGING

For the ZooOrder application example, you add a log message so that you can track an XML message
as it passes through the route. When you run the route, the log message appears in the Console view.

Follow these steps to add logging to your CBR route:

1. In the Design tab’s Palette, open the Components drawer and click the Log component (
).

2. In the canvas, click the When_when1 node.
The When_when1 container expands to accommodate the Log_log1 node:

CHAPTER 5. ADDING A CONTENT-BASED ROUTER

27

3. On the canvas, select the Log_log1 node to open its properties in the Properties view.

4. In the Message field, type: The quantity requested exceeds the maximum allowed
- contact customer.

Leave the remaining properties as they are.

+

Red Hat Fuse 7.1 Tooling Tutorials

28

NOTE

The tooling auto-generates a log node id value. In the Fuse Integration perspective’s
Messages view, the tooling inserts the contents of the log node’s Id field in the Trace
Node Id column for message instances, when tracing is enabled on the route (see the
Chapter 8, Tracing a message through a route tutorial). In the Console, it adds the
contents of the log node’s Message field to the log data whenever the route runs.

1. Save the routing context file.

ADDING AND CONFIGURING MESSAGE HEADERS

A message header contains information to process a message.

To add and configure message headers:

1. In the Palette, open the Transformation drawer and then click the Set Header () pattern.

2. In the canvas, click the Log_log1 node.
The When_when1 container expands to accommodate the SetHeader_setHeader1 node:

3. On the canvas, select the SetHeader_setHeader1 node to open its properties in the
Properties view:

CHAPTER 5. ADDING A CONTENT-BASED ROUTER

29

4. Click the button in the Expression field to open the list of available languages, and then
select constant.

5. In the indented Expression field, type Invalid.

6. In the Header Name field, type Destination.

7. Leave the remaining properties as they are.

8. In the Palette, open the Components drawer and then click the File () component.

9. In the canvas, click the SetHeader_setHeader1 node.
The When_when1 container expands to accommodate the To_to1 node.

Red Hat Fuse 7.1 Tooling Tutorials

30

10. On the canvas, select the To_to1 node to open its properties in the Properties view:

11. On the Details tab, replace directoryName with target/messages/invalidOrders in the
Uri field, and type _Invalid in the Id field:

CHAPTER 5. ADDING A CONTENT-BASED ROUTER

31

12. Save the routing context file.

13. Click the Source tab to view the XML for the route:

ADDING AND CONFIGURING A BRANCH TO HANDLE VALID ORDERS

So far, the CBR handles messages that contain invalid orders (orders where the quantity value is greater
than 10).

To add and configure an otherwise branch of your route to handle valid orders (that is, any XML
messages that do not match the XPath expression set for the When_when1 node):

1. In the Palette, open the Routing drawer and click the Otherwise () pattern.

2. In the canvas, click the Choice_choice1 container:

The Choice_choice1 container expands to accommodate the Otherwise_otherwise1
node.

Red Hat Fuse 7.1 Tooling Tutorials

32

3. On the canvas, select the Otherwise_otherwise1 node to open its properties in the
Properties view.

4. In the Id field, change _otherwise1 to _elseValid:

To configure logging for the otherwise branch:

1. In the Palette, open the Components drawer and and then click the Log () component.

2. In the canvas, click the Otherwise_elseValid node:
The Otherwise-elseValid container expands to accommodate the Log_log2 node.

3. On the canvas, select the Log_log2 node to open its properties in the Properties view.

4. In the Message field, type This is a valid order - OK to process.

CHAPTER 5. ADDING A CONTENT-BASED ROUTER

33

Leave the remaining properties as they are.

5. Save the route.

To configure a message header for the otherwise branch:

1. In the Palette, open the Transformation drawer and then click the Set Header pattern.

2. In the canvas, click the Log_log2 node.
The Otherwise_elseValid container expands to accommodate the
SetHeader_setHeader2 node.

Red Hat Fuse 7.1 Tooling Tutorials

34

NOTE

You can collapse containers to free up space when the diagram becomes
congested. To do so, select the container you want to collapse, and then click its

 button:

To reopen the container, select it and then click its button:

Collapsing and expanding containers in the Design tab does not affect the
routing context file. It remains unchanged.

3. On the canvas, select the SetHeader_setHeader2 node to open its properties in the
Properties view.

4. Click the button in the Expression field to open the list of available languages, and select
constant.

5. In the indented Expression field, type ReadyForDispatcher.

6. In the Header Name field, type Destination.

7. Leave the remaining properties as they are.

CHAPTER 5. ADDING A CONTENT-BASED ROUTER

35

To specify the target folder for the valid messages:

1. In the Palette, open the Components drawer and then select the File () component.

2. In the canvas, click the SetHeader_setHeader2 node.
The Otherwise_elseValid container expands to accommodate the To_to1 node.

3. On the canvas, select the To_to1 node to open its properties in the Properties view.

4. In the URI field, replace directoryName with target/messages/validOrders, and in the Id
field, type _Valid.

Red Hat Fuse 7.1 Tooling Tutorials

36

5. Save the routing context file.
The completed content-based router should look like this:

6. Click the Source tab at the bottom, left of the canvas to display the XML for the route.

<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.osgi.org/xmlns/blueprint/v1.0.0
 https://www.osgi.org/xmlns/blueprint/v1.0.0/blueprint.xsd
 http://camel.apache.org/schema/blueprint
 http://camel.apache.org/schema/blueprint/camel-blueprint.xsd">

<camelContext id="_context1"
xmlns="http://camel.apache.org/schema/blueprint">
 <route id="_route1">

CHAPTER 5. ADDING A CONTENT-BASED ROUTER

37

 <from id="_from1" uri="file:src/data?noop=true"/>
 <choice id="_choice1">
 <when id="_when1">
 <xpath>/order/orderline/quantity/text() >
10</xpath>
 <log id="_log1" message="The quantity requested
exceeds the maximum allowed - contact customer."/>
 <setHeader headerName="Destination"
id="_setHeader1">
 <constant>Invalid</constant>
 </setHeader>
 <to id="_Invalid"
uri="file:target/messages/invalidOrders"/>
 </when>
 <otherwise id="_elseValid">
 <log id="_log2" message="This is a valid order
- OK to process."/>
 <setHeader headerName="Destination"
id="_setHeader2">
 <constant>ReadyForDispatcher</constant>
 </setHeader>
 <to id="_Valid"
uri="file:target/messages/validOrders"/>
 </otherwise>
 </choice>
 </route>
 </camelContext>
</blueprint>

VERIFYING THE CBR

You can run the new route as described in the the section called “Running the route” tutorial and look at
the Console view to see the log messages.

After you run it, to verify whether the route executed properly, check the target destination folders in the
Project Explorer:

1. Select ZooOrderApp.

2. Right-click it to open the context menu, and then select Refresh.

3. Under the project root node (ZooOrderApp), locate the target/messages/ folder and
expand it.

Red Hat Fuse 7.1 Tooling Tutorials

38

4. Check that the target/messages/invalidOrders folder contains message1.xml and
message3.xml.
In these messages, the value of the quantity element exceeds 10.

5. Check that the target/messages/validOrders folder contains the four message files that
contain valid orders:

message2.xml

message4.xml

message5.xml

message6.xml

In these messages, the value of the quantity element is less than or equal to 10.

NOTE

To view message content, double-click each message to open it in the route
editor’s XML editor.

NEXT STEPS

CHAPTER 5. ADDING A CONTENT-BASED ROUTER

39

In the next tutorial, Chapter 6, Adding another route to the routing context, you add a second route that
further processes valid order messages.

Red Hat Fuse 7.1 Tooling Tutorials

40

CHAPTER 6. ADDING ANOTHER ROUTE TO THE ROUTING
CONTEXT

This tutorial shows you how to add a second route to the camel context in the ZooOrderApp project’s
blueprint.xml file. The second route:

Takes messages (valid orders) directly from the terminal end of the first route’s otherwise
branch.

Sorts the valid messages according to the customer’s country.

Sends each message to the corresponding country folder in the
ZooOrderApp/target/messages folder. For example, an order from the Chicago zoo is
copied to the USA folder.

GOALS

In this tutorial you complete the following tasks:

Reconfigure the existing route for direct connection to a second route

Add a second route to your Camel context

Configure the second route to take messages directly from the otherwise branch of the first route

Add a content-based router to the second route

Add and configure a message header, logging, and target destination to each output branch of
the second route’s content-based router

PREREQUISITES

To start this tutorial, you need the ZooOrderApp project resulting from one of the following:

Complete the Chapter 5, Adding a Content-Based Router tutorial.
or

Complete the Chapter 2, Setting up your environment tutorial and replace your project’s
blueprint.xml file with the provided blueprintContexts/blueprint2.xml file, as
described in the section called “About the resource files”.

RECONFIGURING THE EXISTING ROUTE’S ENDPOINT

The existing route sends all valid orders to the target/messages/validOrders folder.

In this section, you reconfigure the endpoint of the existing route’s Otherwise _elseValid branch to
instead connect to a second route (which you create in the next section).

To configure the existing route for direct connection with the second route:

1. Open your ZooOrderApp/src/main/resources/OSGI-INF/blueprint/blueprint.xml
in the route editor.

2. On the canvas, select the Route_route1 container to open its properties in the Properties view.

CHAPTER 6. ADDING ANOTHER ROUTE TO THE ROUTING CONTEXT

41

3. Scroll down to the Shutdown Route property and then select Default.

4. On the canvas, select the terminal file node To_Valid to display its properties in the Properties
view.

5. In the Uri field, delete the existing text, and then enter direct:OrderFulfillment.

6. In the Id field, enter _Fulfill.

NOTE

Instead of repurposing the existing To_Valid terminal file node, you could have replaced
it with a Components → Direct component, configuring it with the same property values
as the repurposed To_Valid node.

To learn more about the Direct component see the Apache Camel Component
Reference.

ADDING THE SECOND ROUTE

To add another route to the routing context:

1. In the Palette, open the Routing drawer and then click the Route () pattern.

2. In the canvas, click to the right of the Route_route1 container:

The Route pattern becomes the Route_route2 container node on the canvas.

3. Click the Route_route2 container node to display its properties in the Properties view. Leave
the properties as they are.

4. Save the file.

Red Hat Fuse 7.1 Tooling Tutorials

42

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.1/html-single/apache_camel_component_reference/index

NOTE

As your routing context grows in complexity, you might want to focus the route editor on
an individual route while you work on it. To do so, in Project Explorer, double-click the
route that you want the route editor to display on the canvas; for example
Route_route2:

To display all routes in the routing context on the canvas, double-click the project’s .xml
context file entry (src/main/resources/OSGI-INF/…) at the top of the Camel
Contexts folder.

CONFIGURING A CHOICE BRANCH TO PROCESS USA ORDERS

In this section, you add a Choice branch to the route and configure the route to send USA orders to a
new target/messages/validOrders/USA folder. You also set a message header and a log file
component.

1. In the Palette, open the Components drawer and then select the Direct component ().

2. In the canvas, click the Route_route2 container:
The Route_route2 container expands to accommodate the Direct component (the
From_from2 node):

3. On the canvas, click the From_from2 node to open its properties in the Properties view.

4. In the Uri field, replace name (following direct:) with OrderFulfillment, and in the Id field,
enter _direct:OrderFulfillment.

CHAPTER 6. ADDING ANOTHER ROUTE TO THE ROUTING CONTEXT

43

5. In the Palette, open the Routing drawer and then select the Choice () pattern.

6. In the canvas, click the From _direct:OrderFulfillment node.
The Route_route2 container expands to accommodate the Choice_choice2 node:

In the Properties view, leave the Choice_choice2 node’s properties as they are.

7. In the Palette, open the Routing drawer and then select the When () pattern.

8. In the canvas, click the Choice_choice2 node.
The Choice_choice2 container expands to accommodate the When_when2 node.

Red Hat Fuse 7.1 Tooling Tutorials

44

9. On the canvas, select the When_when2 node to open its properties in the Properties view.

10. Set the When_when2 node’s properties as follows:

Select xpath from the Expression drop-down list.

In the indented Expression field, type /order/customer/country = 'USA'.

Leave Trim enabled.

In the second Id field, type _when/usa

11. In the Palette, open the Components drawer and then select the File component ().

12. In the canvas, click the When_when/usa container.
The When_when/usa container expands to accommodate the To_to1 node.

13. In the Properties view:

CHAPTER 6. ADDING ANOTHER ROUTE TO THE ROUTING CONTEXT

45

In the Uri field, replace directoryName with target/messages/validOrders/USA .

In the Id field, type _US.

14. Save the file.

To set a message header and add a log component:

1. In the Palette, open the Transformation drawer and then select the Set Header pattern.

2. In the canvas, click the When_when/usa node.
The When_when/usa container expands to accommodate the SetHeader_setHeader3 node:

Red Hat Fuse 7.1 Tooling Tutorials

46

3. On the canvas, select the SetHeader_setHeader3 node to open its properties in the
Properties view.

4. Set the node’s properties as follows:

From the Expression drop-down menu, select constant.

In the indented Expression field, type: USA

Leave Trim enabled.

In the Header Name field, type: Destination

In the second Id field, type: _setHead_usa

CHAPTER 6. ADDING ANOTHER ROUTE TO THE ROUTING CONTEXT

47

5. In the Palette, open the Components drawer and then select the Log component ().

6. In the canvas, click above the SetHeader node.
The When_when/usa container expands to accommodate the Log_log3 node.

7. On the canvas, select the Log_log3 node to open its properties in the Properties view:

Red Hat Fuse 7.1 Tooling Tutorials

48

8. In the Properties view:

In the Message field, type Valid order - ship animals to USA customer .

In the Id field, type _usa.

Leave Logging Level as is.

9. Save the file.
The USA branch of Route_route2 should look like this:

CHAPTER 6. ADDING ANOTHER ROUTE TO THE ROUTING CONTEXT

49

CONFIGURING AN OTHERWISE BRANCH TO PROCESS GERMANY
ORDERS

With Route_route2 displayed on the canvas:

1. In the Palette, open the Routing drawer and then select the Otherwise pattern ().

2. In the canvas, click the Choice_choice2 container.
The Choice_choice2 container expands to accommodate the Otherwise_otherwise1
node.

Red Hat Fuse 7.1 Tooling Tutorials

50

3. Select the Otherwise_otherwise1 node to open its properties in the Properties view.

4. In the Properties view, enter _else/ger for the Id field.

5. In the Palette, open the Transformation drawer and then select the Set Header pattern (
).

6. In the canvas, click the Otherwise_else/ger node.
The Otherwise_else/ger container expands to accommodate the
SetHeader_setHeader3 node.

CHAPTER 6. ADDING ANOTHER ROUTE TO THE ROUTING CONTEXT

51

7. On the canvas, select the SetHeader_setHeader3 node to open its properties in the
Properties view.

8. In the Properties view:

From the Expression drop-down list, select constant.

In the second Expression field, type Germany.

Leave Trim as is.

In the Header Name field, type Destination.

In the second Id field, type _setHead_ger.

9. In the Palette, open the Components drawer and then select the Log pattern ().

10. In the canvas, click below the SetHeader_setHead_ger node.
The Otherwise_else/ger container expands to accommodate the Log_log3 node. If
needed, drag the connector error from the Log_log3 node to the SetHeader_setHead_ger
node:

11. On the canvas, select the Log_log3 node to open its properties in the Properties view.

12. In the Properties view:

In the Message field, type Valid order - ship animals to Germany customer.

In the Id field, type _ger.

Red Hat Fuse 7.1 Tooling Tutorials

52

Leave the Logging Level as is.

13. In the Components drawer, select a File pattern () and then click below the Log_ger
node.
The Otherwise_else/ger container expands to accommodate the To_to1 node. If needed,
drag the connector error from the SetHeader_setHead_ger node to the To_to1 node:

14. On the canvas, select the To_to1 node to open its properties in the Properties view.

15. In the Properties view:

In the Uri field, replace directoryName with
target/messages/validOrders/Germany

In the Id field, type _GER.

16. Save the file.

The Germany branch of Route_route2 should look like this:

CHAPTER 6. ADDING ANOTHER ROUTE TO THE ROUTING CONTEXT

53

VERIFYING THE SECOND ROUTE

The routes on the canvas should look like this:

Completed route1

Red Hat Fuse 7.1 Tooling Tutorials

54

Completed route2

CHAPTER 6. ADDING ANOTHER ROUTE TO THE ROUTING CONTEXT

55

In the Source tab at the bottom of the canvas, the XML for the camelContext element should look like
that shown in Example 6.1, “XML for dual-route content-based router”:

Example 6.1. XML for dual-route content-based router

<?xml version="1.0" encoding="UTF-8"?>

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.osgi.org/xmlns/blueprint/v1.0.0
 https://www.osgi.org/xmlns/blueprint/v1.0.0/blueprint.xsd
 http://camel.apache.org/schema/blueprint
 http://camel.apache.org/schema/blueprint/camel-blueprint.xsd">

 <camelContext id="_context1"
xmlns="http://camel.apache.org/schema/blueprint">
 <route id="_route1" shutdownRoute="Default">
 <from id="_from1" uri="file:src/data?noop=true"/>
 <choice id="_choice1">
 <when id="_when1">
 <xpath>/order/orderline/quantity/text() >
10</xpath>
 <log id="_log1" message="The quantity requested
exceeds the maximum allowed - contact customer."/>
 <setHeader headerName="Destination"
id="_setHeader1">
 <constant>Invalid</constant>

Red Hat Fuse 7.1 Tooling Tutorials

56

 </setHeader>
 <to id="_Invalid"
uri="file:target/messages/invalidOrders"/>
 </when>
 <otherwise id="_elseValid">
 <log id="_log2" message="This is a valid order - OK
to process."/>
 <setHeader headerName="Destination"
id="_setHeader2">
 <constant>ReadyForDispatcher</constant>
 </setHeader>
 <to id="_Fulfill" uri="direct:OrderFulfillment"/>
 </otherwise>
 </choice>
 </route>
 <route id="_route2">
 <from id="_direct:OrderFulfillment"
uri="direct:OrderFulfillment"/>
 <choice id="_choice2">
 <when id="when/usa">
 <xpath>/order/customer/country = 'USA'</xpath>
 <log id="_usa" message="Valid order - ship animals
to USA customer"/>
 <setHeader headerName="Destination"
id="_setHead_usa">
 <constant>USA</constant>
 </setHeader>
 <to id="_US"
uri="file:target/messages/validOrders/USA"/>
 </when>
 <otherwise id="_else/ger">
 <log id="_ger" message="Valid order - ship animals
to Germany customer"/>
 <setHeader headerName="Destination"
id="_setHead_ger">
 <constant>Germany</constant>
 </setHeader>
 <to id="_GER"
uri="file:target/messages/validOrders/Germany"/>
 </otherwise>
 </choice>
 </route>
 </camelContext>
</blueprint>

IMPORTANT

If the tooling added the attribute shutdownRoute=" " to the second route element
(<route id="route2">), delete that attribute. Otherwise, the ZooOrderApp project
might fail to run.

To make sure that your updated project works as expected, follow these steps:

CHAPTER 6. ADDING ANOTHER ROUTE TO THE ROUTING CONTEXT

57

1. Run the ZooOrderApp/Camel Contexts/blueprint.xml as a local Camel Context
(without tests).

2. Check the end of the Console’s output. You should see these lines:

3. Check the target destination folders to verify that the routes executed properly:

a. In Project Explorer, right-click ZooOrderApp and then select Refresh.

b. Expand the target/messages/ folder.
The message*.xml files should be dispersed in your the destinations as shown:

Figure 6.1. Target message destinations in Project Explorer

NEXT STEPS

In the next tutorial, Chapter 7, Debugging a routing context, you learn how to use the Fuse Tooling
debugger.

Red Hat Fuse 7.1 Tooling Tutorials

58

CHAPTER 7. DEBUGGING A ROUTING CONTEXT
This tutorial shows how to use the Camel debugger to find logic errors for a locally running routing
context.

GOALS

In this tutorial you complete the following tasks:

Set breakpoints on the nodes of interest in the two routes

In the Debug perspective, step through the routes and examine the values of message variables

Step through the routes again, changing the value of a message variable and observing the
effect

PREREQUISITES

To start this tutorial, you need the ZooOrderApp project resulting from one of the following:

Complete the Chapter 6, Adding another route to the routing context tutorial.
or

Complete the Chapter 2, Setting up your environment tutorial and replace your project’s
blueprint.xml file with the provided blueprintContexts/blueprint3.xml file, as
described in the section called “About the resource files”.

SETTING BREAKPOINTS

In the Debugger, you can set both conditional and unconditional breakpoints. In this tutorial, you only set
unconditional breakpoints. To learn how to set conditional breakpoints (that are triggered when a specific
condition is met during the debugging session), see the Tooling User Guide.

To set unconditional breakpoints:

1. If necessary, open your ZooOrderApp/src/main/resources/OSGI-
INF/blueprint/blueprint.xml in the route editor.

2. In Project Explorer, expand Camel Contexts → src/main/resources/OSGI-
INF/blueprint/blueprint.xml to expose both route entries.

3. Double-click the Route_route1 entry to switch focus to Route_route1 in the Design tab.

4. On the canvas, select the Choice_choice1 node, and then click its icon to set an
unconditional breakpoint:

CHAPTER 7. DEBUGGING A ROUTING CONTEXT

59

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.1/html-single/tooling_user_guide/index

NOTE

In the route editor, you can disable or delete a specific breakpoint by clicking the

node’s icon or its icon, respectively. You can delete all set breakpoints
by right-clicking the canvas and selecting Delete all breakpoints.

5. Set unconditional breakpoints on the following Route_Route1 nodes:

Log_log1

SetHeader_setHeader1

To_Invalid

Log_log2

SetHeader_setHeader2

To_Fulfill

6. In Project Explorer, double-click Route_route2 under src/main/resources/OSGI-
INF/blueprint to open Route_route2 on the canvas.

7. Set unconditional breakpoints on the following Route_Route2 nodes:

Choice_choice2

SetHeader_setHead_usa

Log_usa

To_US

SetHeader_setHead_ger

Log_ger

To_GER

STEPPING THROUGH THE ROUTING CONTEXT

You can step through the routing context in two ways:

Step over () - Jumps to the next node of execution in the routing context, regardless of
breakpoints.

Red Hat Fuse 7.1 Tooling Tutorials

60

Resume () - Jumps to the next active breakpoint in the routing context.

1. In Project Explorer, expand the ZooOrderApp project’s Camel Contexts folder to
expose the blueprint.xml file.

2. Right-click the blueprint.xml file to open its context menu, and then click Debug As →
Local Camel Context (without tests).
The Camel debugger suspends execution at the first breakpoint it encounters and asks
whether you want to open the Debug perspective now:

3. Click Yes.

NOTE

If you click No, the confirmation pane appears several more times. After the
third refusal, it disappears, and the Camel debugger resumes execution. To
interact with the debugger at this point, you need to open the Debug
perspective by clicking Window → Open Perspective → > Debug.

The Debug perspective opens with the routing context suspended at _choice1 in
_route1 [blueprint.xml] as shown in the Debug view:

CHAPTER 7. DEBUGGING A ROUTING CONTEXT

61

NOTE

Breakpoints are held for a maximum of five minutes before the debugger
automatically resumes, moving on to the next breakpoint or to the end of the
routing context, whichever comes next.

4. In the Variables view, expand the nodes to expose the variables and values available for
each node.
As you step through the routing context, the variables whose values have changed since the
last breakpoint are highlighted in yellow. You might need to expand the nodes at each
breakpoint to reveal variables that have changed.

5. Click to step to the next breakpoint, _log2 in _route1 [blueprint.xml]:

6. Expand the nodes in the Variables view to examine the variables that have changed since
the last breakpoint at _choice1 in Route1 [blueprintxt.xml].

7. Click to step to the next breakpoint, _setHeader2 in Route1 [blueprint.xml].
Examine the variables that changed (highlighted in yellow) since the breakpoint at _log2
in Route1 [blueprint.xml].

8. In the Debug view, click _log2 in _route1 [blueprint.xml] to populate the
Variables view with the variable values from the breakpoint _log2 in _route1
[blueprint.xml] for a quick comparison.

Red Hat Fuse 7.1 Tooling Tutorials

62

In the Debug view, you can switch between breakpoints within the same message flow to
quickly compare and monitor changing variable values in the Variables view.

NOTE

Message flows can vary in length. For messages that transit the
InvalidOrders branch of Route_route1, the message flow is short. For
messages that transit the ValidOrders branch of Route_route1, which
continues on to Route_route2, the message flow is longer.

9. Continue stepping through the routing context. When one message completes the routing
context and the next message enters it, the new message flow appears in the Debug view,
tagged with a new breadcrumb ID:

In this case, ID-janemurpheysmbp-home-55846-1471374645179-0-3 identifies the
second message flow, corresponding to message2.xml having entered the routing context.
Breadcrumb IDs are incremented by 2.

NOTE

Exchange and Message IDs are identical and remain unchanged throughout
a message’s passage through the routing context. Their IDs are constructed
from the message flow’s breadcrumb ID, and incremented by 1. So, in the
case of message2.xml, its ExchangeId and MessageId are ID-
janemurpheysmbp-home-55846-1471374645179-0-4.

10. When message3.xml enters the breakpoint _choice1 in _route_route1
[blueprint.xml], examine the Processor variables. The values displayed are the
metrics accumulated for message1.xml and message2.xml, which previously transited
the routing context:

CHAPTER 7. DEBUGGING A ROUTING CONTEXT

63

Timing metrics are in milliseconds.

11. Continue stepping each message through the routing context, examining variables and
console output at each processing step. When message6.xml enters the breakpoint
To_GER in Route2 [blueprint.xml], the debugger begins shutting down the
breadcrumb threads.

12. In the Menu bar, click to terminate the Camel debugger. The Console terminates, but
you must manually clear the output.

NOTE

With a thread or endpoint selected under the Camel Context node in the

Debug view, you must click twice - first to terminate the thread or
endpoint and second to terminate the Camel Context, thus the session.

13. In the Menu bar, right-click to open the context menu, and then select Close to
close Debug perspective.
Developer Studio automatically returns to the perspective from which you launched the
Camel debugger.

14. In Project Explorer, right-click the project and then select Refresh to refresh the display.

Red Hat Fuse 7.1 Tooling Tutorials

64

NOTE

If you terminated the session prematurely, before all messages transited the
routing context, you might see, under the ZooOrderApp/src/data folder, a
message like this: message3.xml.camelLock. You need to remove it
before you run the debugger on the project again. To do so, double-click the
.camelLock message to open its context menu, and then select Delete.
When asked, click OK to confirm deletion.

15. Expand the ZooOrderApp/target/messages/ directories to check that the messages
were delivered to their expected destinations:

Leave the routing context as is, with all breakpoints set and enabled.

CHANGING THE VALUE OF A VARIABLE

In this section, you add variables to a watch list to easily check how their values change as messages
pass through the routing context. You change the value of a variable in the body of a message and then
observe how the change affects the message’s route through the routing context.

1. To rerun the Camel debugger on the ZooOrderApp project, right-click the blueprint.xml file
and then click Debug As → Local Camel Context (without tests).

2. With message1 stopped at the first breakpoint, _choice1 in _route1 [blueprint.xml],
add the variables NodeId and RouteId (in the Exchange category) and MessageBody and
CamelFileName (in the Message category) to the watch list.
For each of the four variables:

a. In the Variables view, expand the appropriate category to expose the target variable:

CHAPTER 7. DEBUGGING A ROUTING CONTEXT

65

b. Right-click the variable (in this case, NodeId in the Exchange category) to open the context
menu and select Watch:

The Expressions tab opens, listing the variable you selected to watch:

NOTE

Creating a watch list makes it easy for you to quickly check the current value
of multiple variables of interest.

3. Step message1 through the routing context until it reaches the fourth breakpoint, _Fulfill in
_route1 [blueprint.xml].

4. In the Variables view, expand the Message category.

5. Add the variable Destination to the watch list.
The Expressions view should now contain these variables:

Red Hat Fuse 7.1 Tooling Tutorials

66

NOTE

The pane below the list of variables displays the value of the selected
variable.

The Expressions view retains all variables that you add to the list until you
explicitly remove them.

6. Step message1 through the rest of the routing context and then step message2 all of the way
through.

7. Stop message3 at _choice1 in _route1 [blueprint.xml].

8. In the Variables view, expand the Message category to expose the MessageBody variable.

9. Right-click MessageBody to open its context menu, and select Change Value:

10. Change the value of quantity from 15 to 10 (to change it from an invalid order to a valid order):

CHAPTER 7. DEBUGGING A ROUTING CONTEXT

67

This changes the in-memory value only (it does not edit the message3.xml file).

11. Click OK.

12. Switch to the Expressions view, and select the MessageBody variable.
The pane below the list of variables displays the entire body of message3, making it easy to
check the current value of order items:

Red Hat Fuse 7.1 Tooling Tutorials

68

13. Click to step to the next breakpoint.
Instead of following the branch leading to To_Invalid, message3 now follows the branch
leading toTo_Fulfill and Route_route2.

NARROWING THE CAMEL DEBUGGER’S FOCUS

You can temporarily narrow and then re-expand the debugger’s focus by disabling and re-enabling
breakpoints:

1. Step message4 through the routing context, checking the Debug view, the Variables view, and
the Console output at each step.

2. Stop message4 at _choice1 in _route1 [blueprint.xml].

3. Switch to the Breakpoints view, and clear each check box next to the breakpoints listed below
_choice1. Clearing the check box of a breakpoint temporarily disables it.

CHAPTER 7. DEBUGGING A ROUTING CONTEXT

69

4. Click to step to the next breakpoint:

The debugger skips over the disabled breakpoints and jumps to _FulFill in _route1
[blueprint.xml].

5. Click again to step to the next breakpoint:

The debugger jumps to _GER in _route2 [blueprint.xml].

6. Click repeatedly to quickly step message5 and message6 through the routing context.

7. Switch to the Breakpoints view, and check the boxes next to all breakpoints to reenable them.

Red Hat Fuse 7.1 Tooling Tutorials

70

VERIFYING THE EFFECT OF CHANGING A MESSAGE VARIABLE
VALUE

To stop the debugger and check the results of changing the value of `message1’s quantity variable:

1. In the tool bar, click to terminate the Camel debugger:

2. Click the Console’s button to clear the output.

3. Close the Debug perspective and return to the perspective from which you launched the Camel
debugger.

4. In Project Explorer, refresh the display.

5. Expand the ZooOrderApp/target/messages/ directories to check whether the messages
were delivered as expected:

You should see that only message1 was sent to the invalidOrders and that message3.xml
appears in the validOrders/Germany folder.

CHAPTER 7. DEBUGGING A ROUTING CONTEXT

71

NEXT STEPS

In the Chapter 8, Tracing a message through a route tutorial, you trace messages through your routing
context to determine where you can optimize and fine tune your routing context’s performance.

Red Hat Fuse 7.1 Tooling Tutorials

72

CHAPTER 8. TRACING A MESSAGE THROUGH A ROUTE
Tracing allows you to intercept a message as it is routed from one node to another. You can trace
messages through your routing context to see where you can optimize and fine tune your routing
context’s performance. This tutorial shows you how to trace a message through a route.

GOALS

In this tutorial you complete the following tasks:

Run the ZooOrderApp in the Fuse Integration perspective

Enable tracing on the ZooOrderApp

Drop messages onto the ZooOrderApp and track them through all route nodes

PREREQUISITES

To start this tutorial, you need the ZooOrderApp project resulting from one of the following:

Complete the Chapter 6, Adding another route to the routing context tutorial.
or

Complete the Chapter 2, Setting up your environment tutorial and replace your project’s
blueprint.xml file with the provided blueprintContexts/blueprint3.xml file, as
described in the section called “About the resource files”.

SETTING UP YOUR FUSE INTEGRATION PERSPECTIVE

To set up your workspace to facilitate message tracing:

1. Click the button on the right side of the tool bar, and then select Fuse Integration from the
list:

CHAPTER 8. TRACING A MESSAGE THROUGH A ROUTE

73

The Fuse Integration perspective opens in the default layout:

Red Hat Fuse 7.1 Tooling Tutorials

74

2. Drag the JMX Navigator tab to the far right of the Terminal tab and drop it there:

This arrangement provides more space for Diagram View to display the routing context’s nodes
graphically, which makes it easier for you to visually trace the path that messages take in
traversing the routing context.

CHAPTER 8. TRACING A MESSAGE THROUGH A ROUTE

75

NOTE

To make it easy to access a routing context .xml file, especially when a project
consists of multiple contexts, the tooling lists them under the Camel Contexts
folder in Project Explorer.

Additionally, all routes in a routing context are displayed as icons directly under
their context file entry. To display a single route in the routing context on the
canvas, double-click its icon in Project Explorer. To display all routes in the
routing context, double-click the context file entry.

STARTING MESSAGE TRACING

To start message tracing on the ZooOrderApp project:

1. In Project Explorer, expand the ZooOrderApp project to expose
src/main/resources/OSGI-INF/blueprint/blueprint.xml.

2. Right-click src/main/resources/OSGI-INF/blueprint/blueprint.xml to open the
context menu.

3. Select Run As → Local Camel Context (without tests).

Red Hat Fuse 7.1 Tooling Tutorials

76

NOTE

If you select Local Camel Context, the tooling reverts to running without tests
because you have not yet created a JUnit test for the ZooOrderApp project. You
will do that later in Chapter 9, Testing a route with JUnit.

4. In JMX Navigator, expand Local Processes.

5. Right-click the maven [ID] node and then select Connect.

6. Expand the elements of your route:

7. Right-click the Routes node and then select Start Tracing:

CHAPTER 8. TRACING A MESSAGE THROUGH A ROUTE

77

The tooling displays a graphical representation of your routing context in Diagram View:

Red Hat Fuse 7.1 Tooling Tutorials

78

To see all message flow paths clearly, you probably need to rearrange the nodes by dragging
them to fit neatly in the Diagram View tab. You may also need to adjust the size of the other
views and tabs in Red Hat JBoss Developer Studio to allow the Diagram View tab to expand.

DROPPING MESSAGES ON THE RUNNING ZOOORDERAPP PROJECT

To drop messages on the running ZooOrderApp project:

1. In Project Explorer, expand ZooOrderApp/src/data, so that you can access the message
files (message1.xml through message6.xml):

2. Drag message1.xml and drop it on the _context1>Endpoints>file>src/data?
noop=true node in JMX Navigator:

As the message traverses the route, the tooling traces and records its passage at each step.

CHAPTER 8. TRACING A MESSAGE THROUGH A ROUTE

79

CONFIGURING MESSAGES VIEW

You must refresh the Messages View before it will display message traces. You also need to configure
the columns in Messages View if you want them to persist across all message traces.

1. Open the Messages View.

2. Click the (Refresh button) on top, right of the panel’s menu bar to populate the view with
message1.xml's message traces.

3. Click the icon on the panel’s menu bar, and select Configure Columns to open the
Configure Columns wizard:

Red Hat Fuse 7.1 Tooling Tutorials

80

NOTE

Notice that the message header, Destination, which you set for the messages in
your routing context, appears in the list.

You can include or exclude items from Messages View by selecting or deselecting them. You
can rearrange the columnar order in which items appear in Messages View by highlighting
individual, selected items and moving them up or down in the list.

4. In the Configure Columns wizard, select and order the columns this way:

These columns and their order will persist in Messages View until you change them again.

NOTE

You can control columnar layout in all of the tooling’s tables. Use the drag method to
temporarily rearrange tabular format. For example, drag a column’s border rule to expand
or contract its width. To hide a column, totally contract its borders. Drag the column
header to relocate a column within the table. For your arrangement to persist, you must
use the View → Configure Columns method instead.

STEPPING THROUGH MESSAGE TRACES

CHAPTER 8. TRACING A MESSAGE THROUGH A ROUTE

81

To step through the message traces:

1. Drag message2.xml and drop it on the _context1>Endpoints>file>src/data?
noop=true node in JMX Navigator.

2. Switch from Console to Messages View.

3. In Messages View, click the (Refresh button) to populate the view with message2.xml
message traces.
Each time you drop a message on in JMX Navigator, you need to refresh Messages View to
populate it with the message traces.

4. Click one of the message traces to see more details about it in Properties view:

The tooling displays the details about a message trace (including message headers when they
are set) in the top half of the Properties view and the contents of the message instance in the
bottom half of the Properties view. So, if your application sets headers at any step within a
route, you can check the Message Details to see whether they were set as expected.

You can step through the message instances by highlighting each one to see how a particular
message traversed the route and whether it was processed as expected at each step in the
route.

5. Open Diagram View, to see that the associated step in the route is highlighted:

Red Hat Fuse 7.1 Tooling Tutorials

82

The tooling draws the route in Diagram View, tagging paths exiting a processing step with
timing and performance metrics (in milliseconds). Only the metric Total exchanges is displayed
in the diagram.

6. Hover the mouse pointer over the displayed metrics to reveal additional metrics about message
flow:

Mean time the step took to process a message

CHAPTER 8. TRACING A MESSAGE THROUGH A ROUTE

83

Maximum time the step took to process a message

Minimum time the step took to process a message

7. Optionally, you can drag and drop the remaining messages in ZooOrderApp/src/data/ into
the _context1>Endpoints>file>src/data?noop=true node in JMX Navigator at any
time, as long as tracing remains enabled.

On each subsequent drop, remember to click the (Refresh button) to populate Messages
View with the new message traces.

8. When done:

In JMX Navigator, right-click _context1 and select Stop Tracing Context.

Open the Console and click the button in the upper right of the panel to stop the Console.

Then click the button to clear console output.

NEXT STEPS

In the Chapter 9, Testing a route with JUnit tutorial, you create a JUnit test case for your project and run
your project as a Local Camel Context.

Red Hat Fuse 7.1 Tooling Tutorials

84

CHAPTER 9. TESTING A ROUTE WITH JUNIT
This tutorial shows you how to use the New Camel Test Case wizard to create a test case for your route
and then test the route.

OVERVIEW

The New Camel Test Case wizard generates a boilerplate JUnit test case. When you create or modify a
route (for example, adding more processors to it), you should create or modify the generated test case to
add expectations and assertions specific to the route that you created or updated. This ensures that the
test is valid for the route.

GOALS

In this tutorial you complete the following tasks:

Create the /src/test/ folder to store the JUnit test case

Generate the JUnit test case for the ZooOrderApp project

Modify the newly generated JUnit test case

Modify the ZooOrderApp project’s pom.xml file

Run the ZooOrderApp with the new JUnit test case

Observe the output

PREREQUISITES

1. To start this tutorial, you need the ZooOrderApp project resulting from one of the following:

Complete the Chapter 8, Tracing a message through a route tutorial.
or

Complete the Chapter 2, Setting up your environment tutorial and replace your project’s
blueprint.xml file with the provided blueprintContexts/blueprint3.xml file, as
described in the section called “About the resource files”.

2. Delete any trace-generated messages from the ZooOrderApp project’s /src/data/ directory
and /target/messages/ subdirectories in Project Explorer. Trace-generated messages
begin with the ID- prefix. For example, Figure 9.1, “Trace-generated messages” shows eight
trace-generated messages:

CHAPTER 9. TESTING A ROUTE WITH JUNIT

85

Figure 9.1. Trace-generated messages

Select all trace-generated messages in batch, right-click and then select Delete.

CREATING THE SRC/TEST FOLDER

Before you create a JUnit test case for the ZooOrderApp project, you must create a folder for it that is
included in the build path:

1. In Project Explorer, right-click the ZooOrderApp project and then select New → Folder.

2. In the New Folder dialog, in the project tree pane, expand the ZooOrderApp node and select
the src folder.
Make sure ZooOrderApp/src appears in the Enter or select the parent folder field.

3. In Folder name, enter /test/java:

Red Hat Fuse 7.1 Tooling Tutorials

86

4. Click Finish.
In Project Explorer, the new src/test/java folder appears under the
src/main/resources folder:

CHAPTER 9. TESTING A ROUTE WITH JUNIT

87

5. Verify that the new /src/test/java folder is included in the build path.

a. In Project Explorer, right-click the /src/test/java folder to open the context menu.

b. Select Build Path to see the menu options:
The menu option Remove from Build Path verifies that the /src/test/java folder is
currently included in the build path:

CREATING THE JUNIT TEST CASE

To create a JUnit test case for the ZooOrderApp project:

1. In Project Explorer, select src/test/java.

2. Right-click and then select New → Camel Test Case.

Red Hat Fuse 7.1 Tooling Tutorials

88

3. In the Camel JUnit Test Case wizard, make sure the Source folder field contains

ZooOrderApp/src/test/java. To find the proper folder, click .

4. In the Package field, enter tutorial.zooapp.route. This package will include the new test
case.

5. In the Camel XML file under test field, click to open a file explorer configured
to filter for XML files, and then select the ZooOrderApp project’s blueprint.xml file:

CHAPTER 9. TESTING A ROUTE WITH JUNIT

89

6. Click OK. The Name field defaults to BlueprintXmlTest.

Red Hat Fuse 7.1 Tooling Tutorials

90

7. Click Next to open the Test Endpoints page.
By default, all endpoints are selected and will be included in the test case.

8. Click Finish.

NOTE

If prompted, add JUnit to the build path.

The artifacts for the test are added to your project and appear in Project Explorer under
src/test/java. The class implementing the test case opens in the tooling’s Java editor:

package tutorial.zooapp.route;

import org.apache.camel.EndpointInject;
import org.apache.camel.Produce;
import org.apache.camel.ProducerTemplate;
import org.apache.camel.builder.RouteBuilder;
import org.apache.camel.component.mock.MockEndpoint;
import org.apache.camel.test.blueprint.CamelBlueprintTestSupport;
import org.junit.Test;

public class BlueprintXmlTest extends CamelBlueprintTestSupport {

 // TODO Create test message bodies that work for the route(s) being
tested
 // Expected message bodies
 protected Object[] expectedBodies = { "<something
id='1'>expectedBody1</something>",
 "<something id='2'>expectedBody2</something>" };
 // Templates to send to input endpoints
 @Produce(uri = "file:src/data?noop=true")
 protected ProducerTemplate inputEndpoint;
 @Produce(uri = "direct:OrderFulfillment")
 protected ProducerTemplate input2Endpoint;
 // Mock endpoints used to consume messages from the output endpoints and
then perform assertions
 @EndpointInject(uri = "mock:output")
 protected MockEndpoint outputEndpoint;
 @EndpointInject(uri = "mock:output2")
 protected MockEndpoint output2Endpoint;
 @EndpointInject(uri = "mock:output3")
 protected MockEndpoint output3Endpoint;
 @EndpointInject(uri = "mock:output4")
 protected MockEndpoint output4Endpoint;

 @Test
 public void testCamelRoute() throws Exception {
 // Create routes from the output endpoints to our mock endpoints so we
can assert expectations
 context.addRoutes(new RouteBuilder() {
 @Override
 public void configure() throws Exception {
 from("file:target/messages/invalidOrders").to(outputEndpoint);
 from("file:target/messages/validOrders/USA").to(output3Endpoint);

CHAPTER 9. TESTING A ROUTE WITH JUNIT

91

 from("file:target/messages/validOrders/Germany").to(output4Endpoint);
 }
 });

 // Define some expectations

 // TODO Ensure expectations make sense for the route(s) we're testing
 outputEndpoint.expectedBodiesReceivedInAnyOrder(expectedBodies);

 // Send some messages to input endpoints
 for (Object expectedBody : expectedBodies) {
 inputEndpoint.sendBody(expectedBody);
 }

 // Validate our expectations
 assertMockEndpointsSatisfied();
 }

 @Override
 protected String getBlueprintDescriptor() {
 return "OSGI-INF/blueprint/blueprint.xml";
 }

}

This generated JUnit test case is insufficient for the ZooOrderApp project, and it will fail to run
successfully. You need to modify it and the project’s pom.xml, as described in the section called
“Modifying the BlueprintXmlTest file” and the section called “Modifying the pom.xml file”.

MODIFYING THE BLUEPRINTXMLTEST FILE

You must modify the BlueprintXmlTest.java file to:

Import several classes that support required file functions

Create variables for holding the content of the various source .xml files

Read the content of the source .xml files

Define appropriate expectations

Follow these steps to modify the BlueprintXmlTest.java file:

1. In Project Explorer, expand the ZooOrderApp project to expose the
BlueprintXmlTest.java file:

Red Hat Fuse 7.1 Tooling Tutorials

92

2. Open the BlueprintXmlTest.java file.

3. In the Java editor, click the expand button next to import
org.apache.camel.EndpointInject; to expand the list.

4. Add the two lines shown in bold text. Adding the first line causes an error that will be resolved
when you update the pom.xml file as instructed in the next section.

package tutorial.zooapp.route;

import org.apache.camel.EndpointInject;
import org.apache.camel.Produce;
import org.apache.camel.ProducerTemplate;
import org.apache.camel.builder.RouteBuilder;
import org.apache.camel.component.mock.MockEndpoint;
import org.apache.camel.test.blueprint.CamelBlueprintTestSupport;
import org.apache.commons.io.FileUtils;
import org.junit.Test;
import java.io.File;

CHAPTER 9. TESTING A ROUTE WITH JUNIT

93

5. Scroll down to the lines that follow directly after // Expected message bodies.

6. Replace those lines — protected Object[] expectedBodies={ … …
expectedBody2</something>"}; —  with these protected String body#; lines:

protected String body1; protected String body2; protected String
body3; protected String body4; protected String body5; protected
String body6;

7. Scroll down to the line public void testCamelRoute() throws Exception {, and
insert directly after it the lines body# = FileUtils.readFileToString(new
File("src/data/message#.xml"), "UTF-8"); shown below. These lines will indicate an
error until you update the pom.xml file as instructed in the next section.

// Valid orders body2 = FileUtils.readFileToString(new
File("src/data/message2.xml"), "UTF-8"); body4 =
FileUtils.readFileToString(new File("src/data/message4.xml"), "UTF-
8"); body5 = FileUtils.readFileToString(new
File("src/data/message5.xml"), "UTF-8"); body6 =
FileUtils.readFileToString(new File("src/data/message6.xml"), "UTF-
8"); // Invalid orders body1 = FileUtils.readFileToString(new
File("src/data/message1.xml"), "UTF-8"); body3 =
FileUtils.readFileToString(new File("src/data/message3.xml"), "UTF-
8");

8. Scroll down to the lines that follow directly after // TODO Ensure expectations make
sense for the route(s) we’re testing.

9. Replace the block of code that begins with
outputEndpoint.expectedBodiesReceivedInAnyOrder(expectedBodies); and
ends with … inputEndpoint.sendBody(expectedBody); } with the lines shown here:

// Invalid orders outputEndpoint.expectedBodiesReceived(body1,
body3); // Valid orders for USA
output3Endpoint.expectedBodiesReceived(body2, body5, body6); //
Valid order for Germany
output4Endpoint.expectedBodiesReceived(body4);

Leave the remaining code as is.

10. Save the file.

11. Check that your updated BlueprintXmlTest.java file has the required modifications. It
should look something like this:

package tutorial.zooapp.route;

import org.apache.camel.EndpointInject;
import org.apache.camel.Produce;
import org.apache.camel.ProducerTemplate;
import org.apache.camel.builder.RouteBuilder;
import org.apache.camel.component.mock.MockEndpoint;
import org.apache.camel.test.blueprint.CamelBlueprintTestSupport;
import org.apache.commons.io.FileUtils;

Red Hat Fuse 7.1 Tooling Tutorials

94

import org.junit.Test;
import java.io.file;

public class BlueprintXmlTest extends CamelBlueprintTestSupport {

 // TODO Create test message bodies that work for the route(s) being
tested
 // Expected message bodies
 protected String body1;
 protected String body2;
 protected String body3;
 protected String body4;
 protected String body5;
 protected String body6;
 // Templates to send to input endpoints
 @Produce(uri = "file:src/data?noop=true")
 protected ProducerTemplate inputEndpoint;
 @Produce(uri = "direct:OrderFulfillment")
 protected ProducerTemplate input2Endpoint;
 // Mock endpoints used to consume messages from the output
endpoints and then perform assertions
 @EndpointInject(uri = "mock:output")
 protected MockEndpoint outputEndpoint;
 @EndpointInject(uri = "mock:output2")
 protected MockEndpoint output2Endpoint;
 @EndpointInject(uri = "mock:output3")
 protected MockEndpoint output3Endpoint;
 @EndpointInject(uri = "mock:output4")
 protected MockEndpoint output4Endpoint;

 @Test
 public void testCamelRoute() throws Exception {
 // Create routes from the output endpoints to our mock endpoints
so we can assert expectations
 context.addRoutes(new RouteBuilder() {
 @Override
 public void configure() throws Exception {
 // Valid orders
 body2 = FileUtils.readFileToString(new
File("src/data/message2.xml"), "UTF-8");
 body4 = FileUtils.readFileToString(new
File("src/data/message4.xml"), "UTF-8");
 body5 = FileUtils.readFileToString(new
File("src/data/message5.xml"), "UTF-8");
 body6 = FileUtils.readFileToString(new
File("src/data/message6.xml"), "UTF-8");

 // Invalid orders
 body1 = FileUtils.readFileToString(new
File("src/data/message1.xml"), "UTF-8");
 body3 = FileUtils.readFileToString(new
File("src/data/message3.xml"), "UTF-8");

 from("file:target/messages/invalidOrders").to(outputEndpoint);

from("file:target/messages/validOrders/USA").to(output3Endpoint);

CHAPTER 9. TESTING A ROUTE WITH JUNIT

95

from("file:target/messages/validOrders/Germany").to(output4Endpoint)
;
 from("direct:OrderFulfillment").to(output2Endpoint);
 }
 });

 // Define some expectations

 // TODO Ensure expectations make sense for the route(s) we're
testing
 // Invalid orders
 outputEndpoint.expectedBodiesReceived(body1, body3);

 // Valid orders for USA
 output3Endpoint.expectedBodiesReceived(body2, body5, body6);

 // Valid order for Germany
 output4Endpoint.expectedBodiesReceived(body4);

 // Validate our expectations
 assertMockEndpointsSatisfied();
 }

 @Override
 protected String getBlueprintDescriptor() {
 return "OSGI-INF/blueprint/blueprint.xml";
 }

}

MODIFYING THE POM.XML FILE

You need to add a dependency on the commons-io project to the ZooOrderApp project’s pom.xml file:

1. In Project Explorer, select the pom.xml, located below the target folder, and open it in the
tooling’s XML editor.

2. Click the pom.xml tab at the bottom of the page to open the file for editing.

3. Add these lines to the end of the <dependencies> section:

<dependency>
 <groupId>commons-io</groupId>
 <artifactId>commons-io</artifactId>
 <version>2.5</version>
 <scope>test</scope>
</dependency>

4. Save the file.

RUNNING THE JUNIT TEST

To run the test:

Red Hat Fuse 7.1 Tooling Tutorials

96

1. Switch to the JBoss perspective to free up more workspace.

2. In the Project Explorer, right-click the ZooOrderApp project.

3. Select Run As → JUnit Test.
By default, the JUnit view opens in the sidebar. (To provide a better view, drag it to the bottom,
right panel that displays the Console, Servers, and Properties tabs.)

NOTE

Sometimes the test fails the first time JUnit is run on a project. Rerunning the test
ususally results in a successful outcome.

If the test runs successfully, you’ll see something like this:

When the test does fail, you’ll see something like this:

NOTE

JUnit will fail if your execution environment is not set to Java SE 8. The message
bar at the top of the JUnit tab will display an error message indicating that it
cannot find the correct SDK.

To resolve the issue, open the project’s context menu, and select Run As → Run
Configurations → JRE. Click the Environments] button next to the
*Execution environment field to locate and select a Java SE 8 environment.

4. Examine the output and take action to resolve any test failures.

To see more of the errors displayed in the JUnit panel, click on the panel’s menu bar to
maximize the view.

Before you run the JUnit test case again, delete any JUnit-generated test messages from the
ZooOrderApp project’s /src/data folder in Project Explorer (see Figure 9.1, “Trace-
generated messages”).

FURTHER READING

CHAPTER 9. TESTING A ROUTE WITH JUNIT

97

To learn more about JUnit testing see JUnit.

NEXT STEPS

In the Chapter 10, Publishing your project to Red Hat Fuse tutorial, you learn how to publish your Apache
Camel project to Red Hat Fuse.

Red Hat Fuse 7.1 Tooling Tutorials

98

http://www.junit.org

CHAPTER 10. PUBLISHING YOUR PROJECT TO RED HAT
FUSE

This tutorial walks you through the process of publishing your project to Red Hat Fuse. It assumes that
you have an instance of Red Hat Fuse installed on the same machine on which you are running the Red
Hat Fuse Tooling.

GOALS

In this tutorial you complete the following tasks:

Define a Red Hat Fuse server

Configure the publishing options

Start up the Red Hat Fuse server and publish the ZooOrderApp project

Connect to the Red Hat Fuse server

Verify whether the ZooOrderApp project’s bundle was successfully built and published

Uninstall the ZooOrderApp project

PREREQUISITES

Before you start this tutorial you need:

Access to a Red Hat Fuse instance

Java 8 installed on your computer

The ZooOrderApp project resulting from one of the following:

Complete the Chapter 9, Testing a route with JUnit tutorial.
or

Complete the Chapter 2, Setting up your environment tutorial and replace your project’s
blueprint.xml file with the provided blueprintContexts/blueprint3.xml file, as
described in the section called “About the resource files”.

DEFINING A RED HAT FUSE SERVER

To define a server:

1. Open the Fuse Integration perspective.

2. Click the Servers tab in the lower, right panel to open the Servers view.

3. Click the No servers are available. Click this link to create a new server… link to open the
Define a New Server page.

CHAPTER 10. PUBLISHING YOUR PROJECT TO RED HAT FUSE

99

NOTE

To define a new server when one is already defined, right-click inside the Servers
view and then select New → Server.

4. Expand the Red Hat JBoss Middleware node to expose the available server options:

5. Select a Red Hat Fuse server.

6. Accept the defaults for Server’s host name (localhost) and Server name (Fuse n.n Runtime
Server), and then click Next to open the Runtime page:

Red Hat Fuse 7.1 Tooling Tutorials

100

NOTE

If you do not have Fuse already installed, you can download it now using the
Download and install runtime link.

If you have already defined a server, the tooling skips this page, and instead
displays the configuration details page.

7. Accept the default for Name.

8. Click Browse next to the Home Directory field, to navigate to the installation and select it.

9. Select the runtime JRE from the drop-down menu next to Execution Environment.
Select JavaSE-1.8 (recommended). If necessary, click the Environments button to select it
from the list.

CHAPTER 10. PUBLISHING YOUR PROJECT TO RED HAT FUSE

101

NOTE

The Fuse server requires Java 8 (recommended). To select it for the Execution
Environment, you must have previously installed it.

10. Leave the Alternate JRE option as is.

11. Click Next to save the runtime definition for the Fuse Server and open the Fuse server
configuration details page:

12. Accept the default for SSH Port (8101).
The runtime uses the SSH port to connect to the server’s Karaf shell. If this default is incorrect,
you can discover the correct port number by looking in the Red Hat Fuse
installDir/etc/org.apache.karaf.shell.cfg file.

13. In User Name, enter the name used to log into the server.
This is a user name stored in the Red Hat Fuse installDir`/etc/users.properties` file.

NOTE

If the default user has been activated (uncommented) in the
/etc/users.properties file, the tooling autofills User Name and Password
with the default user’s name and password.

If one has not been set, you can either add one to that file using the format
user=password,role (for example, joe=secret,Administrator), or you can set one
using the karaf jaas command set:

jaas:realms — to list the realms

jaas:manage --index 1 — to edit the first (server) realm

jaas:useradd <username> <password> — to add a user and associated password

jaas:roleadd <username> Administrator — to specify the new user’s role

Red Hat Fuse 7.1 Tooling Tutorials

102

jaas:update — to update the realm with the new user information
If a jaas realm has already been selected for the server, you can discover the user name by
issuing the command JBossFuse:karaf@root>jaas:users.

14. In Password, type the password required for User name to log into the server.
This is the password set either in Red Hat Fuse’s installDir/etc/users.properties file
or by the karaf jaas commands.

15. Click Finish.
Runtime Server [stopped, Synchronized] appears in the Servers view.

16. In the Servers view, expand the Runtime Server:

JMX[Disconnected] appears as a node under the Runtime Server [stopped, Synchronized]
entry.

CONFIGURING THE PUBLISHING OPTIONS

Using publishing options, you can configure how and when your ZooOrderApp project is published to a
running server:

Automatically, immediately upon saving changes made to the project

Automatically, at configured intervals after you have changed and saved the project

Manually, when you select a publish operation

In this tutorial, you configure immediate publishing upon saving changes to the ZooOrderApp project.
To do so:

1. In the Servers view, double-click the Runtime Server [stopped, Synchronized] entry to display
its overview.

2. On the server’s Overview page, expand the Publishing section to expose the options.

CHAPTER 10. PUBLISHING YOUR PROJECT TO RED HAT FUSE

103

Make sure that the option Automatically publish when resources change is enabled.

Optionally, change the value of Publishing interval to speed up or delay publishing the project
when changes have been made.

3. In the Servers view, click .

4. Wait a few seconds for the server to start. When it does:

The Terminal view displays the splash screen:

The Servers view displays:

Red Hat Fuse 7.1 Tooling Tutorials

104

The JMX Navigator displays n.n Runtime Server[Disconnected:

5. In the Servers view, right-click n.n Runtime Server [Started] and then select Add and Remove
to open the Add and Remove page:

CHAPTER 10. PUBLISHING YOUR PROJECT TO RED HAT FUSE

105

Make sure the option If server is started, publish changes immediately is checked.

6. Select ZooOrderApp and click Add to assign it to the Fuse server:

Red Hat Fuse 7.1 Tooling Tutorials

106

7. Click Finish.
The Servers view should show the following:

Runtime Server [Started, Synchronized]

CHAPTER 10. PUBLISHING YOUR PROJECT TO RED HAT FUSE

107

NOTE

For a server, synchronized means that all modules published on the server
are identical to their local counterparts.

ZooOrderApp [Started, Synchronized]

NOTE

For a module, synchronized means that the published module is identical to
its local counterpart. Because automatic publishing is enabled, changes
made to the ZooOrderApp project are published in seconds (according to the
value of the Publishing interval).

JMX[Disconnected]

CONNECTING TO THE RUNTIME SERVER

After you connect to the runtime server, you can see the published elements of your ZooOrderApp
project and interact with them.

1. In the Servers view, double-click JMX[Disconnected] to connect to the runtime server.

2. In the JMX Navigator, expand the Camel folder to expose the elements of the ZooOrderApp.

3. Click the Bundles node to populate the Properties view with the list of bundles installed on the
runtime server:

Red Hat Fuse 7.1 Tooling Tutorials

108

4. In the Search field, type ZooOrderApp. The corresponding bundle is shown:

NOTE

Alternatively, you can issue the osgi:list command in the Terminal view to
see a generated list of bundles installed on the server runtime. The tooling uses a
different naming scheme for OSGi bundles displayed by the osgi:list
command. In this case, the command returns Camel Blueprint Quickstart,
which appears at the end of the list of installed bundles.

In the <build> section of project’s pom.xml file, you can find the bundle’s
symbolic name and its bundle name (OSGi) listed in the maven-bundle-
plugin entry:

UNINSTALLING THE ZOOORDERAPP PROJECT

CHAPTER 10. PUBLISHING YOUR PROJECT TO RED HAT FUSE

109

NOTE

You do not need to disconnect the JMX connection or stop the server to uninstall a
published resource.

To remove the ZooOrderApp resource from the runtime server:

1. In the Servers view, right-click n.n Runtime Server to open the context menu.

2. Select Add and Remove:

3. In the Configured column, select ZooOrderApp, and then click Remove to move the
ZooOrderApp resource to the Available column.

4. Click Finish.

Red Hat Fuse 7.1 Tooling Tutorials

110

5. In the Servers view, right-click JMX[Connected] and then click Refresh.
The Camel tree under JMX[Connected] disappears.

NOTE

In JMX Navigator, the Camel tree under Server Connections > n.n Runtime
Server[Connected] also disappears.

6. With the Bundles page displayed in the Properties view, scroll down to the end of the list to
verify that the ZooOrderApp’s bundle is no longer listed.

CHAPTER 10. PUBLISHING YOUR PROJECT TO RED HAT FUSE

111

	Table of Contents
	CHAPTER 1. ABOUT THE FUSE TOOLING TUTORIALS
	PREREQUISITES
	OVERVIEW OF THE FUSE TOOLING TUTORIALS
	ABOUT THE SAMPLE APPLICATION
	ABOUT THE RESOURCE FILES

	CHAPTER 2. SETTING UP YOUR ENVIRONMENT
	GOALS
	BEFORE YOUR BEGIN
	CREATING A FUSE INTEGRATION PROJECT
	SETTING COMPONENT LABELS TO DISPLAY ID VALUES
	DOWNLOADING TEST MESSAGES FOR YOUR PROJECT
	VIEWING THE TEST MESSAGES
	NEXT STEPS

	CHAPTER 3. DEFINING A ROUTE
	GOALS
	BEFORE YOU BEGIN
	CONFIGURING THE SOURCE ENDPOINT
	CONFIGURING THE SINK ENDPOINT
	NEXT STEPS

	CHAPTER 4. RUNNING A ROUTE
	GOALS
	PREREQUISITES
	RUNNING THE ROUTE
	VERIFYING THE ROUTE
	NEXT STEPS

	CHAPTER 5. ADDING A CONTENT-BASED ROUTER
	GOALS
	PREREQUISITES
	ADDING AND CONFIGURING A CONTENT-BASED ROUTER
	ADDING AND CONFIGURING LOGGING
	ADDING AND CONFIGURING MESSAGE HEADERS
	ADDING AND CONFIGURING A BRANCH TO HANDLE VALID ORDERS
	VERIFYING THE CBR
	NEXT STEPS

	CHAPTER 6. ADDING ANOTHER ROUTE TO THE ROUTING CONTEXT
	GOALS
	PREREQUISITES
	RECONFIGURING THE EXISTING ROUTE’S ENDPOINT
	ADDING THE SECOND ROUTE
	CONFIGURING A CHOICE BRANCH TO PROCESS USA ORDERS
	CONFIGURING AN OTHERWISE BRANCH TO PROCESS GERMANY ORDERS
	VERIFYING THE SECOND ROUTE
	NEXT STEPS

	CHAPTER 7. DEBUGGING A ROUTING CONTEXT
	GOALS
	PREREQUISITES
	SETTING BREAKPOINTS
	STEPPING THROUGH THE ROUTING CONTEXT
	CHANGING THE VALUE OF A VARIABLE
	NARROWING THE CAMEL DEBUGGER’S FOCUS
	VERIFYING THE EFFECT OF CHANGING A MESSAGE VARIABLE VALUE
	NEXT STEPS

	CHAPTER 8. TRACING A MESSAGE THROUGH A ROUTE
	GOALS
	PREREQUISITES
	SETTING UP YOUR FUSE INTEGRATION PERSPECTIVE
	STARTING MESSAGE TRACING
	DROPPING MESSAGES ON THE RUNNING ZOOORDERAPP PROJECT
	CONFIGURING MESSAGES VIEW
	STEPPING THROUGH MESSAGE TRACES
	NEXT STEPS

	CHAPTER 9. TESTING A ROUTE WITH JUNIT
	OVERVIEW
	GOALS
	PREREQUISITES
	CREATING THE SRC/TEST FOLDER
	CREATING THE JUNIT TEST CASE
	MODIFYING THE BLUEPRINTXMLTEST FILE
	MODIFYING THE POM.XML FILE
	RUNNING THE JUNIT TEST
	FURTHER READING
	NEXT STEPS

	CHAPTER 10. PUBLISHING YOUR PROJECT TO RED HAT FUSE
	GOALS
	PREREQUISITES
	DEFINING A RED HAT FUSE SERVER
	CONFIGURING THE PUBLISHING OPTIONS
	CONNECTING TO THE RUNTIME SERVER
	UNINSTALLING THE ZOOORDERAPP PROJECT

