Abstract

The Red Hat Hardware Certification Program Policy Guide covers the procedural, technical and policy requirements for achieving a Red Hat Hardware Certification. Last updated: June 28, 2021.
Table of Contents

PART I. MAKING OPEN SOURCE MORE INCLUSIVE .. 4

CHAPTER 1. INTRODUCTION TO HARDWARE PROGRAM POLICIES 5

1.1. AUDIENCE 5
1.2. OVERVIEW OF THE PROGRAM .. 5
1.3. CERTIFICATION PREREQUISITES ... 5

CHAPTER 2. OVERVIEW OF CERTIFICATION PROCESS 7

CHAPTER 3. HARDWARE CERTIFICATION POLICIES 8

3.1. PROGRAM POLICIES 8
 3.1.1. Policy changes ... 8
 3.1.2. Certification lifecycle ... 8
 3.1.3. Submission window ... 8
 3.1.4. Original certifications .. 9
 3.1.5. Unpublished certifications .. 9
 3.1.6. Component Leveraging .. 10
 3.1.7. Component Leverage Pools .. 10
 3.1.8. System Pass-Through certifications 10
 3.1.9. Component Pass-Through certifications 11
 3.1.10. Recertification .. 11
 3.1.11. Known issues ... 12
 3.1.12. Sample Hardware ... 12
3.2. HARDWARE POLICY FOR RHEL 8 .. 12
 3.2.1. Supported RHEL version and architecture 12
 3.2.2. Component certification ... 13
 3.2.3. System Certification .. 13
 3.2.4. Certification and feature publication 14
 3.2.5. Catalog search results ... 14
3.3. HARDWARE POLICY FOR RHEL 7 AND LAYERED PRODUCTS 14
 3.3.1. Red Hat Enterprise Linux .. 14
 3.3.2. Red Hat Enterprise Linux OpenStack Platform Compute 15
 3.3.3. Red Hat Enterprise Linux for Real-Time (RHEL7 and RHEL8) 15
 3.3.4. Red Hat OpenStack Platform for Real-Time Applications 15
 3.3.5. Red Hat Gluster Storage for On-Premise 16
 3.3.6. Red Hat Virtualization ... 17
3.4. SOFTWARE POLICIES ... 17
 3.4.1. Test Suite Versions ... 17
 3.4.2. Red Hat Enterprise Linux Versions 17
 3.4.3. Red Hat Enterprise Linux for Real-Time Versions 18
 3.4.4. Unmodified Red Hat Enterprise Linux 18
 3.4.5. Kernel boot parameters ... 18
 3.4.6. Kernel taint values .. 18
 3.4.7. Drivers ... 18
 3.4.8. SELinux (Red Hat Enterprise Linux 7, and 8) 20
 3.4.9. Red Hat Enterprise Linux as a host 20
 3.4.10. Red Hat Enterprise Linux as a guest 20
3.5. BIOS AND FIRMWARE POLICIES .. 20
 3.5.1. Production level ... 20
 3.5.2. Changes ... 20
 3.5.3. Settings ... 20
 3.5.4. OS Loaded ... 21
3.5.5. Hardware Health subtest
3.6. HARDWARE POLICIES
 3.6.1. Stand-Alone
 3.6.2. Components and peripherals
 3.6.3. Production level
 3.6.4. Changes
 3.6.5. Configuration limits
 3.6.6. Performance minimums
 3.6.7. External industry standards and certifications

CHAPTER 4. CREATING A TEST PLAN

4.1. OVERVIEW OF TEST PLAN
4.2. MODELS
4.3. OPTIONS
 4.3.1. Integrated hardware
 4.3.2. Optional hardware
 4.3.3. Special cases
4.4. NON-OS FEATURES AND UNINTENTIONAL FEATURES
4.5. MINIMUM TEST SET
4.6. INSTALLATION, BOOT, AND KDUMP REQUIREMENTS
4.7. HARDWARE CLASS REQUIREMENTS
 4.7.1. Compute
 4.7.2. Management
 4.7.3. Network
 4.7.4. Storage
4.8. ADDITIONAL MANUAL TESTING
 4.8.1. External storage and multipath HBAs
PART I. MAKING OPEN SOURCE MORE INCLUSIVE

Red Hat is committed to replacing problematic language in our code and documentation. We are beginning with these four terms: master, slave, blacklist, and whitelist. Due to the enormity of this endeavor, these changes will be gradually implemented over upcoming releases. For more details on making our language more inclusive, see our CTO Chris Wright’s message.
CHAPTER 1. INTRODUCTION TO HARDWARE PROGRAM POLICIES

Use this guide to understand the certification process, the policies pertaining to hardware certification, and the process followed by the Red Hat Hardware Certification Team to create hardware test plans.

1.1. AUDIENCE

The Red Hat Hardware Certification Program Policy Guide is intended for hardware vendors interested in certifying hardware with Red Hat. A strong working knowledge of Red Hat Enterprise Linux is required. A Red Hat Certified Engineer accreditation is preferred and suggested before participating.

1.2. OVERVIEW OF THE PROGRAM

The Red Hat Hardware Certification Program provides a formal means for you to work with Red Hat to establish official support for your hardware. Certified hardware is supported by Red Hat’s Global Support Services (GSS) and is published in the Red Hat Certification Ecosystem Catalog.

During the certification process, Red Hat engineers create a test plan that defines the hardware criteria required to achieve certification. Red Hat engineers follow the process described in Overview of test plan to create a test plan suitable for your hardware specifications.

A description of the hardware certification process can be found in the Overview of certification process.

1.3. CERTIFICATION PREREQUISITES

To verify that you are eligible to join the Hardware Certification Program, a summary of the most important policies are as follows:

- Red Hat certifies hardware models, but not specific configurations of a model. It is expected to test all optional hardware configurations that are designated as part of the same model.

- Testing must be performed with a standard installation of Red Hat Enterprise Linux without special configuration or additional software, including drivers that are not provided by Red Hat.

- Certifications are currently available for:
 - Red Hat Enterprise Linux version 7.x and version 8.x for 64-bit x86, IBM Power Big/Little-Endian, Power9 (LE), IBM System z, and ARM.
 - Red Hat Enterprise Linux OpenStack Platform Compute 16 and 17.
 - Red Hat Gluster Storage 3.x.
 - Red Hat Hyperconverged Infrastructure 1.
 - Red Hat Enterprise Linux for Real Time 7 and 8.
 - Red Hat OpenStack Platform Hardware Bare Metal
 - Red Hat Virtualization
IMPORTANT

The IBM Power9 (LE) and ARM architectures require an approved collaborative partnership to have been established to be eligible for certification. Your Engineering Partner Manager (EPM) should be consulted for further details, and discussion.

Additional resources

- For more information about certification policies, see Certification policies.
CHAPTER 2. OVERVIEW OF CERTIFICATION PROCESS

Prerequisites

- Establish a certification relationship with Red Hat.
- Establish a test environment consisting of your product and the Red Hat product combination to be certified.
- Perform preliminary testing to ensure this combination works well.
- Install the redhat-certification tool.

Procedure

1. Create a certification request for a specific system or hardware component using redhat-certification.
2. Red Hat's certification team applies the certification policies to the hardware specifications to create the official test plan.
3. Run the tests specified in the official test plan and submit results using redhat-certification to Red Hat for analysis.
4. The certification team analyzes the test results and marking credit as appropriate and communicating any required retesting.
5. Provide Red Hat with a representative hardware sample that covers the items that are being certified.

When all tests have passing results, the certification is complete and the entry is made visible to the public on the external Red Hat Hardware Certification website at Certifications.

Additional resources

For more information about hardware certification process, see Hardware Certification Process Summary section of the Hardware Certification Test Suite User Guide.
CHAPTER 3. HARDWARE CERTIFICATION POLICIES

3.1. PROGRAM POLICIES

3.1.1. Policy changes

Typically, Red Hat limits major revisions in the certification tests and criteria to major releases of Red Hat Enterprise Linux.

Red Hat might also release updates to the Hardware Certification policy, criteria, and/or test suite(s) at any point, including at minor OS releases, where new hardware support features are introduced, or any other point as deemed necessary.

Only a single version of the policy is active at any one time. This current policy is effective upon its release and supersedes all previous versions.

NOTE

The Policy Guide version applied during the certification process will be recorded in certifications upon successful completion.

Changes to the policy or criteria will be sent as a notification to the hwcert-announce-list@redhat.com mailing list. Subscribe to the list via the web interface (https://www.redhat.com/mailman/listinfo/hwcert-announce-list).

Changes to the test suite will also be documented in the test suite errata notification and package changelog.

3.1.2. Certification lifecycle

Hardware certification entries for all products will not be posted publicly until the General Availability (GA) release of that product.

A Red Hat Hardware Certification is valid for the posted release and any subsequent minor updates. For example, a 64-bit certification granted on Red Hat Enterprise Linux 7.1 is also valid for 7.2, 7.3 and so on.

Certifications do not apply to past or future major Red Hat Enterprise Linux versions nor additional or alternate architectures of Red Hat Enterprise Linux, such as Red Hat Enterprise Linux 8 or Red Hat Enterprise Linux 7 for Intel 64 and AMD64 in relation to the previous example. These certifications must be obtained separately.

Once a hardware model has been certified, the hardware will retain its certification until

a. Recertification is required,

b. Red Hat no longer supports that version of Red Hat Enterprise Linux OR

c. The vendor ceases participation in the Hardware Program.

This life cycle policy also applies to Red Hat Enterprise for Real Time, Red Hat Gluster Storage, Red Hat Hyperconverged Infrastructure, and Red Hat OpenStack optional certifications.

3.1.3. Submission window
New hardware certifications for a given, major release of Red Hat Enterprise Linux can typically be submitted until the 2nd, subsequent major version of Red Hat Enterprise Linux is released.

A notice will typically be sent to the hwcert-announce@redhat.com mailing list 30 days in advance announcing the upcoming closing of the window. Planning for each of these window closures should be done in coordination with your Enterprise Partner Manager.

Certification requests that fall outside of the normal window must be raised with your Enterprise Partner Manager.

These requests are reviewed on a case-by-case basis. Certification requests beyond the submission window must not require additional updates to the operating system.

NOTE

During the period leading up to the release of a new major version of Red Hat Enterprise Linux, partners may elect to begin certification testing using the release candidate media. This option allows these vendors to potentially have systems certified at the launch of the new product.

Further testing may be required if significant changes exist between the release candidate and general availability versions. This option is only available for major versions (7.0, 8.0 etc.) and is not available for update releases (7.1, 8.1 etc.).

3.1.4. Original certifications

Partner support of certified hardware is a fundamental part of Red Hat Hardware Certification. All requests and information about the hardware to be certified must be submitted by the original hardware manufacturer to Red Hat.

Hardware partners can use their own outside partners for any portion of their hardware and testing but all benefits and additional costs are the responsibility of the partner.

Red Hat will only interact with the partner who submitted the certification request and will only post original certifications with a vendor+make+model value easily identifiable by Red Hat as the submitting partner.

3.1.5. Unpublished certifications

All hardware certification requests submitted to Red Hat are presumed to be requests for published entries on the Hardware Catalog. Certifications can remain unpublished, where the certification is not already published on the Hardware Catalog, upon request by the partner.

Unpublished certifications follow the same policies as published certifications but are not made available on the Internet.

Certification requests that fail to meet the certification criteria will remain unpublished in all cases.

IMPORTANT

Requests to keep a certification unpublished should be made in the comment dialog of the certification request when the certification is initially opened.
NOTE

A comment may be provided within the unpublished certification for content normally provided by a Red Hat Article or Solution.

3.1.6. Component Leveraging

In order to maximize the efficiency of the Hardware Certification testing process, Red Hat allows Hardware Certification Partners to reuse, or leverage, specific test cases for the same (or later minor) release and architecture of Red Hat Enterprise Linux to satisfy test plan requirements where components are reused between similar models.

You are required to have a Red Hat Enterprise Linux quality assurance (QA) process that encompasses all hardware to be certified with leveraging. This QA process is in turn leveraged by Red Hat to offer this feature, as such partners cannot leverage testing of other partners except as described in Component Pass-Through certifications. Additional requirements for leveraging are provided in Hardware class requirements.

3.1.7. Component Leverage Pools

A leverage pool is a series of unpublished component certifications performed by a system vendor for the purpose of establishing a list of components intended for use via leveraging during later system certifications. The following conditions apply to leverage pools:

- Leverage pool certifications certifications are required to pass the regular certification criteria for the component.
- Leverage Pool certifications should be opened using the normal Create page in the Hardware Catalog.
- A comment should be added requesting the type of certification to be set to Leverage Pool.
- Only a single component can be in a leverage pool certification.
- To utilize a leverage pool certification test result in a system certification, the certification ID of the leverage pool certification should be provided in the system certification test plan leverage field.

3.1.8. System Pass-Through certifications

A Pass-Through Certification refers to the ability of a third party system or component to be granted the same certification as hardware previously certified by the original hardware manufacturer.

System manufacturers can extend a certification granted to their systems to another vendor’s system where the original vendor

a. has permission from the third party,

b. has the mechanics to ensure the third party does not alter the hardware in such a way that it would no longer be considered a subset of the original model certified by Red Hat, and

c. extends their responsibilities of support and representative hardware to include situations involving the third party hardware (refer to sections 1.2 and 1.3 of the Hardware Certification Agreement).
The third party cannot then extend their pass-through certification to another vendor. While both vendors are required to be members of the Hardware Certification program, only the original vendor may request pass-through certifications.

Pass-through requests should be opened using the Pass-Through dialog under the Advanced tab in the Hardware Catalog entry of the original certification.

Vendors may also utilize the pass-through process where the same vendor has multiple names for the same hardware.

3.1.9. Component Pass-Through certifications

Component vendors may utilize the pass-through process where the component vendor

(a) has permission from the third party

(b) has the mechanics to ensure the third party does not alter the hardware

(c) extends their responsibilities of support and representative hardware to include situations involving the third party hardware (refer to sections 1.2 and 1.3 of the Hardware Certification Agreement).

Third-party vendors may not extend their pass-through certification to another vendor. While both vendors are required to be members of the Hardware Certification program, only the original component vendor may request pass-through certifications. The original and pass-through certifications may be published or unpublished.

Third-party system vendors may choose to leverage these component certifications in their system certifications for standard PCIe form factor Ethernet, Fibre Channel, Infiniband, iSCSI, SATA, SAS, RAID, CNA, and WLAN option cards.

The regular leverage policies apply to the system certification leveraging the component pass-through certification, including the internal QE process encompasses all hardware to be certified with leveraging. Component pass-through certifications may also follow the leverage pool policies (see Program policies component leveraging pool).

Component pass-through certifications are opened using the Pass-Through dialog under the Advanced tab in the Hardware Catalog entry of the original component certification by the original component vendor.

Upon successful completion, the pass-through certification will be made available to the system vendor. The system vendor may then provide the pass-through certification ID as the leverage value in their system certification test plan.

3.1.10. Recertification

Changes to the model that would alter the original test plan criteria require re-certification. Model changes include hardware, BIOS, or firmware.

Example

An increase to the number of CPUs supported or the addition of new components such as network or storage controllers requires re-certification.

A new supplemental certification should be opened to process the hardware changes.

Additional resources
3.1.11. Known issues

A model must have no known major issues with Red Hat Enterprise Linux. As part of the certification process, Red Hat will investigate to ensure that no significant unresolved customer-impacting issues exist.

3.1.12. Sample Hardware

Representative hardware samples are required by Red Hat Engineering and Support in both self-tested and Red Hat-tested certifications. This hardware is utilized by Red Hat to verify, debug, and fix customer issues and/or in future product testing. Be aware of the following conditions regarding hardware samples:

- Hardware samples should be of configurations that provide full functionality of all model features.
- The prescribed test plan (see Overview of test plan) can be used as a minimum configuration guideline; however, Red Hat Support might request specific configurations depending on the particular hardware, planned customer deployments, and other factors.
- Hardware samples should additionally include any required accessories for proper installation and operation.
- Hardware must be present at a Red Hat location before certification posting.
- Red Hat Support might accept the promise of future delivery of hardware at their discretion.
- Your Technical Account Manager (TAM) or support representative can provide location and configuration details and should be consulted prior to shipment of hardware.

3.2. HARDWARE POLICY FOR RHEL 8

Starting with RHEL 8, hardware certifications will implement a more granular display of certifications published on the Red Hat Certification Catalog. However, all the established procedures and policies that were applied for previous versions of RHEL will be implied to RHEL 8 as well. Implementing granular publishing of certifications will reduce the customer effort required to find and use certified solutions that meet their needs. This additional level of detail includes the certified capabilities (features) of your hardware.

3.2.1. Supported RHEL version and architecture

The hardware certifications are supported on the following RHEL version and architecture.

<table>
<thead>
<tr>
<th>RHEL version</th>
<th>Architecture</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.2.2. Component certification

Red Hat will continue to certify models of system components with RHEL 8. A component is hardware that implements a fixed subset of one or more system features as defined by a specification provided by a partner. Red Hat will also continue to support pass-through, pass-through for leverage, and component leverage pools when certifying component hardware for RHEL 8. The superset of features from the specification will be considered as part of the model definition unless excluded by unique component model names for different feature sets.

Red Hat will create a test plan for the component certification, based on the identified and enabled RHEL 8 hardware features as defined and designated by Red Hat. The test plan for RHEL 8 hardware certification will continue to build and function using the process and criteria of the previous RHEL releases.

Success criteria

- A component can be certified with RHEL 8 when all enabled features are tested and passed in accordance to the Red Hat provided certification test plan.

- A component can also be certified in RHEL 8 when one or more enabled features are tested and passed in accordance to the test plan.

3.2.3. System Certification

Red Hat will continue to certify system models with RHEL 8. A system is a RHEL 8 bootable, installable, and operable collection of component hardware as defined by a specification provided by a partner. Red Hat will also continue to support pass-through, leverage, supplemental, and pass-through with supplemental in hardware certification for RHEL 8.

The specification may define components as standard, or optional. The system model is considered to provide all of the features from the complete collection of standard and optional components unless explicitly excluded by or from the specification.

Red Hat will create a test plan for the system certification, based on the identified and enabled RHEL 8
hardware features as defined and designated by Red Hat. The test plan for RHEL 8 hardware certification will continue to build and function using the process and criteria of the previous RHEL releases.

Success criteria

- A system can be certified with RHEL 8 when all enabled features are tested and passed according to the Red Hat provided certification test plan.
- A system can also be certified with RHEL 8 when at least one available and installable combination of components that are tested and passed provide a minimum set of one compute, management, network, and storage features.

NOTE

To provide clarity to customers a knowledge base entry may be added if the minimum feature set is not provided as standard within the model.

3.2.4. Certification and feature publication

A certification that meets the success criteria can be published. All of the features within the test plan will be listed in the certification catalog when the certification is published. The features will appear with one of the following statuses:

- **Supported**: tested and pass, or tested and pass with condition.
- **Not Supported**: tested and failed, or not tested.

3.2.5. Catalog search results

Certified hardware will appear in the Red Hat certification catalog with a detailed list that includes all of the identified features in the test plan. A customer can search the catalog by the name of your product or by the certified features available to them.

When a customer searches for a product by features, your product will appear in the search results only when a supported feature in your product’s certification matches the features in the search request. This allows customers to find hardware which is certified for their required features. With the modified catalog search experience, kbases applied to the certification can be filtered.

IMPORTANT

Features not tested or that did not pass when the system was first certified can be updated using a supplemental certification for the system. The additional features, if certified, will then be added to the certification catalog.

3.3. HARDWARE POLICY FOR RHEL 7 AND LAYERED PRODUCTS

Following policies are part of RHEL 7 and layered products:

3.3.1. Red Hat Enterprise Linux

Red Hat Hardware Certification is available for the Red Hat Enterprise Linux family of products. Certifications are awarded per version and architecture pair (Red Hat Enterprise Linux 7 for x86_64, for example) and not by variant (Red Hat Enterprise Linux for Desktops).
A critical feature of the Red Hat Enterprise Linux product family is that all family members share a common core (e.g. the kernel, development tool chain, libraries, etc.); therefore, certifications apply to all variants of the same version and architecture.

At this time, Red Hat only accepts hardware test results that have been conducted on Red Hat Enterprise Linux 7.x or 8.x releases.

3.3.2. Red Hat Enterprise Linux OpenStack Platform Compute

Red Hat Enterprise Linux OpenStack Platform Compute delivers the Red Hat OpenStack technology optimized for, and integrated with, Red Hat Enterprise Linux.

Red Hat Enterprise Linux OpenStack Platform Compute consists of additional packages that expand the capabilities of Red Hat Enterprise Linux to quickly scale up to tens of thousands of virtual machines without requiring a unique kernel or specialized hardware support. Because of this common base, additional testing beyond the Red Hat Enterprise Linux certification with Virtualization is not required for servers to receive Red Hat Enterprise Linux OpenStack Platform Compute certification.

This certification is automatically included for all new Intel64 and AMD64 server certifications submitted for Red Hat Enterprise Linux 7 and Red Hat Enterprise Linux 8.

The base Red Hat Enterprise Linux certification is required to be successfully completed, including virtualization testing, and the base certification must be posted before Red Hat Enterprise Linux OpenStack Platform Compute certification is processed.

3.3.3. Red Hat Enterprise Linux for Real-Time (RHEL7 and RHEL8)

Red Hat Enterprise Linux for Real-Time offer predictability, for consistent low-latency system response times. These Real-Time products consist of additional packages that expand Red Hat Enterprise Linux, including a uniquely tuned replacement kernel. These packages add to, but do not modify, the user-space portion of Red Hat Enterprise Linux.

The Hardware Certification Test Suite contains an additional Real-Time test that can be performed to achieve Real-Time certification after completing the base, Red Hat Enterprise Linux certification (see Hardware class requirements). The additional Real-Time packages must be installed and running to perform these tests.

Hardware Certification Partners can create new Real-Time certifications requests in the certification workflow by selecting an existing Red Hat Enterprise Linux 7 or Red Hat Enterprise Linux 8 certification entry, going to the Advanced section, and then filling out the fields under the Create New Layered Product Certification - RHEL Real-Time heading.

The base Red Hat Enterprise Linux certification is required to have been completed and posted before the Real-Time results will be reviewed.

3.3.4. Red Hat OpenStack Platform for Real-Time Applications

Red Hat Openstack Platform for Real-Time Applications is designed to deliver ultra-low latency for performance-sensitive virtual environments. The Red Hat OpenStack Platform for Real-Time Applications products consist of additional packages that expand Red Hat OpenStack Platform, including a uniquely tuned replacement kernel, KVM, and additional tuned profiles. These packages enable Real-Time applications to run in guests virtual machine using RHOSP.

The Red Hat Hardware Certification Test Suite contains an additional fv_real-time test that is to be performed to achieve Red Hat OpenStack Platform for Real-Time Applications certification. This test will be the default test plan for any Red Hat OpenStack Platform for Real-Time Applications certification.
certification. Red Hat OpenStack Platform for Real-Time Applications certifications should be opened after completing the Red Hat Enterprise Linux for Real-Time and Red Hat Enterprise Linux certification. The fv_real-time test will not be automatically planned if the memory per CPU core check does not pass. This test can still be planned manually via CLI.

Hardware Certification Partners can create new Red Hat OpenStack Platform for Real-Time Applications certifications requests in the certification workflow by selecting an existing Red Hat Enterprise Linux 7 or Red Hat Enterprise Linux 8 certification entry, going to the Advanced section, and then filling out the fields under the Create New Layered Product Certification - RHEL Real-Time heading.

You are expected to perform the fv_real-time test from the host RHEL OS with the Real-Time kernel (kernel-rt) running, and the supported full virtualization enabled on the system.

IMPORTANT

The Red Hat Enterprise Linux for Real Time certification is required to have been completed and posted before the Red Hat OpenStack Platform for Real-Time Application results will be reviewed.

3.3.5. Red Hat Gluster Storage for On-Premise

Red Hat Gluster Storage for On-Premise combines reliable Red Hat software with Intel 64 and AMD 64 commodity hardware, eliminating the need for high-cost, proprietary storage systems.

Red Hat Gluster Storage combines additional packages with a Red Hat Enterprise Linux ISO for easy deployment. Because it is based on Red Hat Enterprise Linux, only an additional hardware specification review is required for Red Hat Gluster Storage certification. Additional testing beyond the Red Hat Enterprise Linux 7 certification testing is not required. The review will confirm that the server’s specifications conform to the supported hardware configurations of the Red Hat Gluster Storage image as outlined in the Minimum Hardware Requirements section of the Red Hat Gluster Storage 3.0 Compatible Physical, Virtual Server and Client OS Platforms Knowledge Base article.

Partners have the option to create a corresponding Red Hat Gluster Storage certification when creating a new Red Hat Enterprise Linux 7, server certification request. Partners who want to create a Red Hat Gluster Storage certification entry for an existing Red Hat Enterprise Linux 7 certified server may do so in the Hardware Catalog by going to the Advanced section of the desired Red Hat Enterprise Linux 7, certification and then filling out the fields under the Create New Layered Product Certification - Red Hat Gluster Storage heading. Partners who are not currently able to create Red Hat Gluster Storage certifications but would like to certify Red Hat Gluster storage should review the Red Hat Storage Architectural Review Process for more information.

A successfully completed and posted base Red Hat Enterprise Linux certification is required before the Red Hat Gluster Storage certification is processed.

During the Red Hat Gluster Storage certification process, the system’s specifications are compared to the minimum Red Hat Gluster Storage hardware requirements (see Red Hat Storage Architectural Review Process for specifics).

Systems that fail to meet the requirements are rejected.

If a system meets the necessary requirements, its Red Hat Enterprise Linux certification entry is checked for associated Red Hat Knowledge Base articles. Any applicable Red Hat Knowledge Base entries from the Red Hat Enterprise Linux certification are reviewed to ensure that they provide appropriate and sufficient information for end users. When any necessary Knowledge Base review and updates are completed, the Red Hat Gluster Storage certification can be published.
3.3.6. Red Hat Virtualization

Red Hat Virtualization (RHV) is an enterprise-grade virtualization platform built on Red Hat Enterprise Linux (RHEL). RHV is derived from RHEL kernel, Kernel-based Virtual Machine (KVM) technology, and oVirt virtualization management projects. Because of this common base, additional testing beyond the RHEL certification with virtualization is not required.

Additional testing may be conducted during a RHEL 8 certification for more advanced virtualization features not covered in the regular RHEL 8 virtualization testing. These features cover specific hardware allocation between the guest and the host machine. The additional testing may be done on RHEL 8, however the additional virtualization features only appear on the RHV 4.4 certification entry.

The RHV certification is automatically included for all new Intel64 and AMD64 server certifications. The base RHEL certification is required to be successfully completed, along with the virtualization, and must be posted before the Red Hat Virtualization certification will be processed.

At this time Red Hat Virtualization certification is supported for RHV 4.2, RHV 4.3, and RHV 4.4 and is awarded as follows:

- RHV 4.2 for x86_64 architecture with a base RHEL version between RHEL 7.0 and RHEL 7.4
- RHV 4.2 for x86_64 and ppc64le architectures with a base RHEL version between 7.5 and 7.6
- RHV 4.3 for x86_64 and ppc64le architectures with a base RHEL version of 7.7
- RHV 4.4 for x86_64 and ppc64le architectures with base RHEL version between 8.0 and 8.2

3.4. SOFTWARE POLICIES

3.4.1. Test Suite Versions

Red Hat recommends that the latest version of the test suite packages be used for all testing. When a new version of any test suite package is made available, results created using previous versions will continue to be accepted for a period of three months. At the end of this period the Hardware Catalog will automatically reject result packages created with the older versions and testing will need to be repeated with valid packages. The current valid package versions are displayed on the results package submission form.

IMPORTANT

The test suite should not be modified for certification test runs. The test suite will perform a self check and will fail the info test if modified.

3.4.2. Red Hat Enterprise Linux Versions

The latest minor release of Red Hat Enterprise Linux version is always recommended; however, any release that satisfies the full testing criteria may be used. Testing on the earliest fully-supported release will maximize the potential customer base. If multiple minor releases are used during testing, the newest minor release will be used as the posted release for the model. Depending on the features of a given model a minimum release may be required other than what is desired.

Red Hat Enterprise Linux should not be updated with errata packages except when recommended by the Red Hat Hardware Certification Review team or in accordance with the software driver policies. Any testing performed with unnecessary errata installed may require retesting.
NOTE

The test suite is only tested against Red Hat Enterprise Linux 7 Server, and Red Hat Enterprise Linux 8 Base OS. All variants of Red Hat Enterprise Linux (Workstation, Desktop, etc.) of the same major version share a common core set of packages. Use of these variants is allowed during certification testing, however they may only provide a subset of the required packages which may result in the need for retesting.

Technical assistance during certification is not offered when using these variants.

Configure the OS as explained in the appropriate RHEL kickstart file available at http://people.redhat.com/gcase/rhcert-2/ks/.

3.4.3. Red Hat Enterprise Linux for Real-Time Versions

Red Hat Enterprise Linux for Real-Time test results are only accepted on the current minor release of the Realtime product installed on the current and previous minor release of the corresponding Red Hat Enterprise Linux. When a new Red Hat Enterprise Linux for Real-Time minor release is made available results on the previous minor Realtime release will continue to be accepted for a period of 30 days.

3.4.4. Unmodified Red Hat Enterprise Linux

The Red Hat Hardware Certification Program requires testing on a standard installation of Red Hat Enterprise Linux with-out any modifications. Changes to the default configuration presented by the installer and first boot utilities are allowed when the configuration change can be made using one of the standard system tools and when the default configuration does not create the potential for data loss. Required changes to the default configuration must be documented in a Red Hat Knowledge Base Solution that is associated with the certification listing. A customer purchasing a Red Hat certified system can therefore be confident the system will work as expected with a standard installation of Red Hat Enterprise Linux.

3.4.5. Kernel boot parameters

Additional kernel parameters may be utilized if they (a) are used to correct hardware configuration, (b) do not disable functionality, and (c) do not expose a potential for data loss when not in use. For example, if the kernel parameter `noacpi` is required to boot a system which does not install without that parameter, this would likely be acceptable. If, however, the system would install but corrupts data over time when `noacpi` is not specified, the certification would be suspended until the the situation is resolved.

Additional resources

- For more information about additional kernel parameters utilized during certification, see Red Hat Knowledge Base Solution associated with the certification listing.

3.4.6. Kernel taint values

Red Hat expects partners to conduct hardware certification testing on systems running kernels that have not been tainted (value of 0). Non-zero values of `tainted` kernels may be acceptable when a result of supported and required kernel driver is from the Red Hat Driver Update Program or a cosmetic benign kernel warning. Any non-zero taint value approved during certification will be documented in a Red Hat knowledge base Solution associated with the certification publication.

3.4.7. Drivers
Red Hat may provide drivers as a Technology Preview, granting early access to upcoming product innovations. These drivers are not fully supported and cannot be used to achieve certification (see Technology Preview features support scope). Drivers are designated as technology preview in the release notes of the Red Hat Enterprise Linux product documentation.

Red Hat recognizes that it is not possible for some drivers to be included within Red Hat Enterprise Linux. While use of additional drivers is discouraged, in certain cases such drivers may be used during the certification process. These cases include the following:

- When the driver is included in an official Red Hat Errata and is not required for boot or installation testing (see Hardware class requirements) OR
- When the driver is included in an official Red Hat Enterprise Linux Driver Update Disk OR
- When the driver is for use with optional hardware (see Certification policies) that is not required to be tested to complete the certification.

NOTE

A knowledge base entry will be associated with all certifications where Driver Update Program is used.

Additional drivers not officially shipped by Red Hat that are used in hardware certifications should be built using the standard kmod process as described on kerneldrivers.org, only use approved symbols, must not add subsystems, and must not replace nor conflict with any Red Hat provided driver. Providing hardware support already present in a Red Hat provided driver is considered a conflict. No quality nor source review shall be performed by Red Hat on any additional driver.

Where additional driver use is believe valid, a comment should be added to the certification request including the name of the driver, the hardware which requires the driver, if the above driver construction recommendations are met, the vendor URL address to the driver information and End User Customer Support information (where applicable) when the certification is opened.

IMPORTANT

Technology preview drivers are not supported by Red Hat and may be not be used during certification.

IMPORTANT

Testing must be conducted without the use of the additional and technology preview drivers when possible. The info test will return a failure for all technology preview and non Red Hat provided drivers.

WARNING

Drivers not provided in the Red Hat Enterprise MRG Realtime or Red Hat Enterprise Linux for Realtime kernel are not allowed during Realtime testing, this includes Red Hat provided driver disks, tech preview driver packages, and third party drivers.
NOTE

The above requirements do not themselves preclude vendors from offering or installing alternative open source, proprietary, binary, source code, or other drivers with their certified hardware. The criteria is meant only to apply to Red Hat Hardware Certification testing and listings.

3.4.8. SELinux (Red Hat Enterprise Linux 7, and 8)

Certifications must be run with SELinux enabled using the Targeted Policy and with Enforcing on. The test suite will check for these conditions.

3.4.9. Red Hat Enterprise Linux as a host

Red Hat Enterprise Linux 7, and 8 require testing of KVM Virtualization during certification on 64-bit architectures. See Hardware class requirements - System Virtualization for the specific list of required tests.

3.4.10. Red Hat Enterprise Linux as a guest

Certifications involving Red Hat Enterprise Linux in a virtualized environment may only occur where approved collaborative partnerships have been established (see your Partner Manager for details). All policies and criteria, including recertification, apply to the virtualized hardware as presented to Red Hat Enterprise Linux. Changes to the underlying hardware and/or virtualization layers are the responsibility of the vendor to disclose and test as appropriate.

3.5. BIOS AND FIRMWARE POLICIES

3.5.1. Production level

BIOS/Firmware versions are required to be production-level during testing.

Example

Feature complete without major changes pending.

BIOS/Firmware changes subsequent to testing are required to meet the BIOS/Firmware policy changes criteria. The tested or subsequent revision is required to be available to customers by the posting date of the certification.

3.5.2. Changes

BIOS/Firmware changes that enable or disable features necessitate re-certification. Re-certification is not required for BIOS changes to correct bugs and/or alter superficial items like splash screens. Vendor internal testing of these changes to verify they do not adversely affect the hardware, Red Hat Enterprise Linux, or the certification status is required, but the results of this testing is not required to be submitted to Red Hat.

3.5.3. Settings

Any required BIOS/Firmware configuration information must be provided in a comment in the certification request. Providing suggested and/or default configuration data is encouraged but not required. Vendor provided configuration information may be provided in the certification listing using an
associated Red Hat Knowledge Base Solution. Validating alternate configuration settings do not expose data corruption issues or unexpectedly disrupt functionality is the responsibility of the hardware vendor.

User configurable BIOS settings that enable/disable hardware features and/or functions must be set such that the feature or function is enabled during testing. For example, a setting to control on-board networking must be configured to enable the network interface.

3.5.4. OS Loaded

Firmware that is loaded via supported mechanisms of the OS may be used where they follow the guidelines above and have a perma-link to the supported binary RPM packages. OS Loaded firmware not included with the Red Hat product will be documented in a Red Hat Knowledge Base Solution associated to the certification listing.

3.5.5. Hardware Health subtest

The Hardware Health subtest checks the system’s health by testing if the hardware is supported, meets the requirements, and has any known hardware vulnerabilities. The subtest does the following:

- Checks that the Red Hat Enterprise Linux (RHEL) kernel does not identify hardware as unsupported. When the kernel identifies unsupported hardware, it will display an unsupported hardware message in the system logs and/or trigger an unsupported kernel taint. This subtest prevents customers from possible production risks which may arise from running Red Hat products on unsupported configurations and environments.

 In hypervisor, partitioning, cloud instances, and other virtual machine situations, the kernel may trigger an unsupported hardware message or taint based on the hardware data presented to RHEL by the virtual machine (VM).

- Checks that the system under test (SUT) meets the minimum hardware requirements.

 - RHEL 8: Minimum system RAM should be 1.5GB, per CPU logical core count.

 - RHEL 7: Minimum system RAM should be 1GB, per CPU logical core count.

- Checks if the kernel has reported any known hardware vulnerabilities, if those vulnerabilities have mitigations and if those mitigations have resolved the vulnerability. Many mitigations are automatic to ensure that customers do not need to take active steps to resolve vulnerabilities. In some cases this is not possible; where most of these remaining cases require changes to the configuration of the system BIOS/firmware which may not be modifiable by customers in all situations.

- Confirms the system does not have any offline CPUs.

- Confirms if Simultaneous Multithreading (SMT) is available, enabled, and active in the system.

Failing any of these tests will result in a WARN from the test suite and should be verified by the partner to have correct and intended behavior.

Success criteria

- The kernel does not have the UNSUPPORTEDHARDWARE taint bit set.

- The kernel does not report an unsupported hardware system message.

- The kernel should not report any vulnerabilities with mitigations as vulnerable.
- The kernel does not report the logic core to installed memory ratio as out of range.
- The kernel does not report CPUs in an offline state.

Additional resources

- Minimum required memory
- For more information about hardware support available in RHEL 7 but removed from RHEL 8, see Hardware Enablement.
- For more information about hardware support available in RHEL 6 but removed from RHEL 7, see Changes to Packages, Functionality, and Support.

3.6. HARDWARE POLICIES

3.6.1. Stand-Alone

A model must include all hardware and software to enable full functionality in a Red Hat Enterprise Linux-only environment. For example, a system that requires a management console to boot and/or be configured, would not qualify for certification if the console was only accessible via Internet Explorer on another system.

3.6.2. Components and peripherals

Components and peripherals to be listed independently are required be tested with Virtualization if available on the architecture. Components listed in the hardware catalog carry a generic disclaimer informing customers that while the component has demonstrated compatibility with Red Hat Enterprise Linux, we cannot guarantee that it will work in a specific system and the customer should contact their system vendor to ensure compatibility.

3.6.3. Production level

The Red Hat Hardware Certification Program requires testing with production level hardware. Preproduction hardware which has been upgraded to production level equivalent is also acceptable.

3.6.4. Changes

Certified models may not be altered such that a regression in the certification testing results or change in criteria occurs. Minor changes that do not add or alter features or functionality are expected to be tested by the vendor but are not required to be resubmitted. For example cable length or passive backplane port count changes. Vendors are expected to notify Red Hat of any significant changes including those which add features or functions. If re-certification is required, a new supplemental certification entry should be opened from the original certification. Any additional testing required should be performed using the same Red Hat Enterprise Linux version as the original submissions. Where a version mismatch occurs between the updated testing and the original submission, a Red Hat Knowledge Base article may be associated with the original certification for clarity. Supplemental certifications are processed in queue with other certifications, but are not published.

3.6.5. Configuration limits

Models available in configurations beyond the Red Hat product limits may still be eligible for certification. Testing will need to be performed demonstrating the model within the limits by manual or automatic configuration, for example the kernel automatically ignores memory beyond the limit, or
CPU’s above the limit, etc. Manual configuration follows the standard configuration and kernel parameters policies. A Red Hat Knowledge Base article may be added to the certification listing for clarity.

Vendors are encouraged to work with their Hardware Partner Manager and Partner TAMs on feature requests to raise the relevant Red Hat Enterprise Linux product limits prior the certification effort. Like all Red Hat Enterprise Linux feature requests the required time lines, development, and testing efforts are determined on a case-by-case basis outside of the certification process.

NOTE

The current supported limits for Red Hat Enterprise Linux are listed here: https://access.redhat.com/articles/rhel-limits.

3.6.6. Performance minimums

In general, Red Hat Hardware Certification places the responsibility of performance testing on the hardware vendor; however, major performance issues that are deemed to have significant customer impact may delay certification until a resolution is determined.

3.6.7. External industry standards and certifications

Red Hat expects hardware partners will conduct relevant testing and certifications to meet applicable government, market, and industry standards for their hardware outside of the Red Hardware Certification program. Red Hat will not do a specific evaluation or verification that such standards or certifications have been met or awarded except for how the same relates to the interoperability and functionality of the hardware with Red Hat products.

Standards such as but not limited to PCI-SIG, USB-SIG, ARM Server Ready, CE, FCC, etc. are independent from Red Hat and the responsibility of the hardware partner to archive or obtain as warranted.
CHAPTER 4. CREATING A TEST PLAN

4.1. OVERVIEW OF TEST PLAN

A hardware certification engineer creates a test plan by following these steps:

1. Define the model by its specification.
2. Determine the option.
3. Remove unsupported operating system features and unintentional hardware.
4. Apply the minimum test set criteria.
5. Add the install, boot, and kdump requirements.
6. Add additional policy requirements.

After performing the steps above, the items remaining determine the test plan for your hardware. The Hardware Catalog records the test plan under the Test Plan Progress.

Additional resources

- For more information about defining the testing required for each hardware class item, see Hardware class requirements.

NOTE

Red Hat Hardware Certification Test Plans are not meant to substitute for proper and complete internal quality assurance testing, criteria, and processes. Each vendor is responsible for their own internal shipment criteria and is encouraged to do testing in excess of the required certification test plan items.

4.2. MODELS

The Red Hat Hardware Certification program certifies models, not specific configurations of models. Red Hat defines a model as inclusive of all Integrated Hardware and all Optional Hardware described by the Hardware Partner on the hardware specification. Integrated Hardware is hardware required to be present in all configurations of a model. Optional Hardware is hardware which is present in some configurations of a model. Additional Hardware may also appear on the model specification. Additional Hardware is hardware that can be purchased in addition to but is not included as part of any configuration of the model. Additional Hardware is not required to be tested but must be clearly identifiable as Additional Hardware and not confused with Integrated Hardware or Optional Hardware. A Red Hat Knowledge Base Article may be associated with the certification listing for clarity of Additional Hardware.

Model names are required to be unique and have a particular hardware specification.

Tiered model naming schemes are allowed and supported by the Red Hat Hardware Certification program. A tiered naming scheme is any naming scheme which includes a hierarchical collection of models and submodels. When employing tiered naming schemes for the purposes of certification the specification is considered to include all submodels which would reasonably be represented by the name provided in the certification request. For example; three model names, 3000, 3000a, and 3000s. If 3000 reflects the collection which includes the 3000a and 3000s models and 3000 is submitted, the
specification would include the content of the 3000a and 3000s models. If, however, 3000s was submitted the specification would be limited to only the hardware listed in the 3000s specification. If 3000 is instead a model separate from 3000a and 3000s this would not be a tiered scheme but similar model naming and only the hardware listed in the 3000 specification would be considered.

Red Hat may alter the listed model name for clarity. Example In NUMA and cluster situations when a quantity of systems/nodes alters the specification and a Red Hat Knowledge Base entry is not considered sufficient to avoid customer confusion; e.g. the addition of "(up to 2 nodes)" after a model name.

IMPORTANT

For simplicity, a leverage pool certification model name may utilize the component vendor’s model information in the make and model fields. The model name must be unique within the system vendor’s pool and will remain unpublished.

4.3. OPTIONS

4.3.1. Integrated hardware

All integrated hardware, CPU options, memory options, integrated graphic controllers, integrated displays, and other non field removable hardware of a model must be tested. This includes features integrated into System-on-Chip (SoC), System-in-Package (SiP), and other full or partial integrated systems solution designs.

Specific portions of integrated hardware may be excluded from the certification when they provide features which qualify for exclusion based on the policies outlined in non-os features section or system processor leveraging.

4.3.2. Optional hardware

All Optional Hardware must be tested except when the Optional Hardware is field removable, does not provide a unique function within the model [1], and is clearly noted for use with another operating system [2] or marked to disclose any Service Level impacts as appropriate on at least one of the model specification or the model support URL and on all materials using the Red Hat Hardware Certification marks in association with the model.

4.3.3. Special cases

The Hardware Changes policy [see Hardware policy changes] may be utilized when Optional Hardware or a (series of) CPU(s) causes a higher than desired minor release to be required during an original certification. This may allow the model to be tested and posted with the desired release with an associated Red Hat Knowledge Base Article to reflect the higher release required by the Optional Hardware or CPU(s).

4.4. NON-OS FEATURES AND UNINTENTIONAL FEATURES

Hardware feature classes not offered by the operating system are not required to be tested if the remaining hardware continues to be fully functional. A Red Hat Knowledge Base Article may be added to the certification listing for clarity.

An Unintentional Feature is defined as any feature offered on integrated or optional hardware that is not intentionally included by the hardware partner. This feature must not be mentioned in the hardware
specification unless it is called out as not supported. Unintentional features can not be supported by the hardware partner on any OS. Unintentional features are not required to be tested if the remaining hardware continues to be fully functional, even if the provided feature is unique. We recommend that unintentional features are masked from end users where possible, i.e. by disabling or removing features from the BIOS, not providing power, not including connectors, headers, etc. to minimize confusion. A Red Hat Knowledge Base Article may be added to add clarity. Changes to unintentional features are considered to be hardware changes and subject to the hardware changes policies and requirements. Unintentional features can also cover items that are not available on all architectures.

Example

If an Infiniband storage controller were supported by a system vendor on the Intel 64 and AMD64 architecture only, the controller could be considered an unintentional feature for the system’s i386 certification. The feature must not be supported on any i386 architecture operating system for the unintentional feature status to be granted.

4.5. MINIMUM TEST SET

The Red Hat Hardware Certification program encourages testing with all configurations including the maximum and minimum supported configuration of your hardware. It is also recognized that resourcing these configuration can be difficult due to availability, cost, timing, and other constraints.

For these reasons we have defined a minimum requirements policy by hardware class in the Hardware class requirements. This column in combination with Component, Component leveraging pool and Component Pass-Through certifications.

The minimum testing requirements are not intended as product release criteria and it is expected that internal Red Hat Enterprise Linux and other Red Hat product interoperability, and qualification testing is conducted in addition to and prior to certification testing.

WARNING

All hardware used during testing is required to be part of the model specification. Similar hardware that might otherwise qualify as part of the minimum test set if it were part of the model is not accepted. For example, only those CPUs which appear in the model specification may be used. Results from other members of the same CPU product family are not accepted.

The maximum supported limits for Red Hat Enterprise Linux are defined at https://access.redhat.com/articles/rhel-limits.

4.6. INSTALLATION, BOOT, AND KDUMP REQUIREMENTS

The installation of Red Hat Enterprise Linux may require testing via a number of mediums (Optical Media and Network for example). Additionally, all boot devices must be tested to ensure a successful boot of Red Hat Enterprise Linux. The Hardware class requirements table shows the hardware that requires installation and boot testing. A complete installation is not required to fulfill the boot testing requirement.
For increased testing efficiency, we recommend combining boot and install testing where possible. For example, booting from the Red Hat Enterprise Linux installation media on a CD and performing a full installation fulfills the CD boot and installation testing requirement.

Kdump is a common feature of both Red Hat Enterprise Linux 7, and 8. Kdump utilizes the Linux kernel kexec feature to boot a kernel without a hardware reset in the event of a crash and capture the state of the previous kernel. This feature is enabled by default and must be tested to ensure this critical debug information can be captured properly. The kdump test will automatically be planned when the kdump service is enabled.

Kdump testing is required on an integrated storage controller and an integrated network adapter when these items are available in the model. These requirements apply to all Red Hat Enterprise Linux 7, and 8 certifications on the 64-bit Intel and AMD systems, and 64-bit IBM PowerPC architectures. Additionally, Red Hat Enterprise Linux allows testing of Kdump on IBM System z architectures.

4.7. HARDWARE CLASS REQUIREMENTS

Hardware Requirements by Class

The Hardware Class Requirements are categorized in Compute, Management, Network, and Storage.

4.7.1. Compute

The hardware features that are included in Compute are:

- Table 4.1, “System Processors”
- Table 4.2, “System Memory”
- Table 4.3, “System Elements”
- Table 4.4, “Sound”
- Table 4.5, “Thunderbolt Ports”
- Table 4.6, “USB Ports”

Table 4.1. System Processors

<table>
<thead>
<tr>
<th>Hardware Class</th>
<th>Catalog Features</th>
<th>Required Tests</th>
<th>Required Hardware</th>
<th>Install, Boot, kdump</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Processors, System-on-Chip (SoC), System-in-Package (SiP)</td>
<td>System Processor (Maximum quantity of Cores)</td>
<td>CPUSCALING, INTEL_SST [a], CORE, HW_PROFILER or SW_PROFILER</td>
<td>Maximum number of logical cores[b] and feature set from available CPUs.</td>
<td>Install, Boot</td>
</tr>
<tr>
<td>Realtime System</td>
<td>REALTIME</td>
<td>REALTIME [c]</td>
<td>Maximum number of logical cores and feature set from available CPUs with the realtime kernel. [d]</td>
<td></td>
</tr>
<tr>
<td>Hardware Class</td>
<td>Catalog Features</td>
<td>Required Tests</td>
<td>Required Hardware</td>
<td>Install, Boot, kdump</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---------------------------</td>
<td>-------------------------------------</td>
<td>--</td>
<td>----------------------</td>
</tr>
<tr>
<td>System Virtualization</td>
<td>INFO and CORE and MEMORY on the guest</td>
<td>INFO and CORE and MEMORY on the guest, FV_CORE and FV_MEMORY</td>
<td>Run on a fully virtualized guest environment. Run on the host machine.</td>
<td></td>
</tr>
</tbody>
</table>

[a] Available in RHEL versions 8.3 and later

[b] The Core clock speed, FSB speed, cache size, cache depth and manufacturing size are not considered for feature set review.

[c] These tests are used to certify the Red Hat (Red Hat Enterprise Linux for Real-Time and Red Hat OpenStack Platform for Real-Time Applications) products.

[d] The memory per CPU core check has been added as per the RHEL minimum requirement memory standards, as a planning condition for the hardware certification tests namely memory, core, realtime, and all the full-virtualization tests, for RHEL7 as well as RHEL8. If the memory per CPU core check does not pass, the above tests will not be added to the test plans automatically. However, they can be planned manually via CLI.

[e] These features appear only on Red Hat Virtualization certifications.

- **Leverage Notes:** Equal or lesser feature set within a model. Processor/core count downward on scaling designs. Feature set and core count upgrades to existing certifications. Processor upgrades are defined as field installable physical packages and may require field installable BIOS/firmware upgrades Section 3.5.3, “Settings”.

Table 4.2. System Memory
<table>
<thead>
<tr>
<th>Hardware Class</th>
<th>Catalog Features</th>
<th>Required Tests</th>
<th>Required Hardware</th>
<th>Install, Boot, Kdump</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Memory</td>
<td>Maximum supported System memory</td>
<td>Memory</td>
<td>Minimum of the lower of 1GB (RHEL 7) / 1.5GB (RHEL 8) per logical CPU, system limit, or OS limit[a][b]</td>
<td>Install, Boot</td>
</tr>
<tr>
<td>NVDIMM - Memory Mode</td>
<td>NVDIMM - Memory Mode[c]</td>
<td>Memory[d]</td>
<td>Any size NVDIMM</td>
<td>Install, Boot</td>
</tr>
<tr>
<td>NVDIMM - App Direct</td>
<td>NVDIMM - AppDirect Mode[e]</td>
<td>NVDIMM[f]</td>
<td>Any size NVDIMM</td>
<td>Install, Boot, Kdump</td>
</tr>
</tbody>
</table>

[a] The current maximum memory listed in RHEL limits article will require additional testing when the maximum system memory is greater than the current maximum memory.

[b] Additional testing may be required when the maximum system memory requires the use of NVDIMM(s).

[c] Available in RHEL versions 7.6 and later.

[d] Additional EET testing is also required for NVDIMM - Memory Mode.

[e] Available in RHEL versions 7.3 and later.

[f] The NVDIMM test utilizes sector.

- **Leverage Notes**: Equal or lesser quantities where RAM type and memory controller match.

- **Leverage Notes for NVDIMM Hardware Class**: The storage mode is only for identical implementations with smaller or greater capacity within the OS limits.

Table 4.3. System Elements

<table>
<thead>
<tr>
<th>Hardware Class</th>
<th>Catalog Features</th>
<th>Required Tests</th>
<th>Required Hardware</th>
<th>Install, Boot, Kdump</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mainboard, Chassis, I/O Chassis, Docking Stations, Port Expanders</td>
<td>Applicable class for the integrated and optional hardware.</td>
<td>Applicable class tests for the integrated and optional hardware. hardware.</td>
<td>Applicable test for each function as required by the device class(es)</td>
<td>Install, Boot</td>
</tr>
<tr>
<td>Multi-Function/Multi-Port Adapters</td>
<td>Applicable class for each function/port</td>
<td>Applicable class testing for each function/port</td>
<td>Applicable test for each function as required by the device class(es)</td>
<td>Install, Boot</td>
</tr>
</tbody>
</table>
Unusable ports need to be tested

To create multiple ports on a removable card, identical chips are replicated. Leverage may enclose multi-port.

Table 4.4. Sound

<table>
<thead>
<tr>
<th>Hardware Class</th>
<th>Catalog Features</th>
<th>Required Tests</th>
<th>Required Hardware</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sound Cards</td>
<td>Stereo Audio Playback, and Stereo Audio Record</td>
<td>Audio</td>
<td>Stereo record and playback as applicable</td>
</tr>
<tr>
<td>HDMI Audio</td>
<td>HDMI Audio Playback</td>
<td>Audio</td>
<td>HDMI Port</td>
</tr>
</tbody>
</table>

- **Leverage Notes**: Identical integrated chipsets+codec and removable adapters.

Table 4.5. Thunderbolt Ports

<table>
<thead>
<tr>
<th>Hardware Class</th>
<th>Catalog Features</th>
<th>Required Tests</th>
<th>Required Hardware</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thunderbolt 3, Thunderbolt 4</td>
<td>Thunderbolt 3, Thunderbolt 4</td>
<td>Thunderbolt 3, Thunderbolt 4</td>
<td>Each port with a device with the equivalent capability hotplug</td>
</tr>
</tbody>
</table>

Table 4.6. USB Ports

<table>
<thead>
<tr>
<th>Hardware Class</th>
<th>Catalog Features</th>
<th>Required Tests</th>
<th>Required Hardware</th>
</tr>
</thead>
<tbody>
<tr>
<td>USB 2, USB 3 (5 Gigabit), USB C (5 Gigabit), USB 3 (10 Gigabit), USB C (10 Gigabit), USB 3 (20 Gigabit), USB C (20 Gigabit), USB 4 (20 Gigabit), USB 4 (40 Gigabit)</td>
<td>USB 2 Ports, USB 3 (5 Gigabit) Ports, USB C (5 Gigabit) Ports, USB 3 (10 Gigabit) Ports, USB C (10 Gigabit) Ports, USB 3 (20 Gigabit) Ports, USB C (20 Gigabit) Ports, USB 4 (20 Gigabit) Ports, USB 4 (40 Gigabit) Ports</td>
<td>USB2, USB3, USB3_5Gbps, USB3_10Gbps, USB3_20Gbps, USB4, USB4_20Gbps, or USB4_40Gbps</td>
<td>Each port with a device with the equivalent capability hotplug. [a][b][c][d]</td>
</tr>
</tbody>
</table>
In all RHEL 7.x certifications, USB 3.1 gen2 ports require testing with RHEL 7.3 or higher.

USB 3.1 gen2 ports that are tested only with the gen1 devices can be certified.

USB 3.1 Gen2 at 10Gbps is supported in later versions of RHEL 7.

USB 3.1 Gen2 ports are supported/tested at 5Gbps only, prior to RHEL 7.5 or later and RHEL 7.4 (EUS).

4.7.2. Management

The hardware features that are included in Management are:

- Table 4.7, “Console”
- Table 4.8, “Power Control”

Table 4.7. Console

<table>
<thead>
<tr>
<th>Hardware Class</th>
<th>Catalog Features</th>
<th>Required Tests</th>
<th>Required Hardware</th>
<th>Install, Boot, kdump</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display Adapters, and Virtual Consoles</td>
<td>Graphic Console</td>
<td>Video[a]</td>
<td>The lower of VRAM/VBIOS limits, panel capabilities, or 1024x768 at 24 or 32 BPP</td>
<td>Install[b], Boot</td>
</tr>
<tr>
<td>Laptop Panels</td>
<td>Graphic Console</td>
<td>Video [LID][c]</td>
<td>Native resolution[d][e] at adaptive or native color depths with available display + graphics controller combinations[f][g]</td>
<td>Install</td>
</tr>
</tbody>
</table>

[a] 3D acceleration and GPGPU support are not currently tested
[b] Native resolutions not required during install
[c] Backlight must respond to lid switch if present.
[d] Compensation/Stretching does not qualify as native testing.
[e] A horizontal resolution of 1360 may be used on 1366 native panels.
[f] Optional graphics controllers excluded by other policies are not required to be tested. At least one display + controller combination is required for each display.
[g] Display and graphics controller combinations may be clarified in a Red Hat Knowledge Base Article entry to avoid confusion.
- **Leverage Notes**: Identical removable cards or integrated chips without shared memory, processor-integrated. Decreases in video memory.

Table 4.8. Power Control

<table>
<thead>
<tr>
<th>Hardware Class</th>
<th>Catalog Features</th>
<th>Required Tests</th>
<th>Required Hardware</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Management, Battery</td>
<td>Suspend to Disk, Suspend to Memory, Battery Monitoring</td>
<td>Battery, Lid and Suspend</td>
<td>Required for all models capable of running from battery power.</td>
</tr>
</tbody>
</table>

4.7.3. Network

The hardware features that are included in Network are:

- Table 4.9, “Ethernet”
- Table 4.10, “Fibre Channel”
- Table 4.11, “Fibre Channel over Ethernet (FCoE)”
- Table 4.12, “iSCSI”
- Table 4.13, “Infiniband”
- Table 4.14, “iWarp”
- Table 4.15, “Omnipath”
- Table 4.16, “RDMA over Converged Ethernet (RoCE)”
- Table 4.17, “WiFi”

Table 4.9. Ethernet

<table>
<thead>
<tr>
<th>Hardware Class</th>
<th>Catalog Features</th>
<th>Required Tests</th>
<th>Required Hardware</th>
<th>Install, Boot, kdump</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet</td>
<td>1Gigabit Ethernet, 2.5 Gigabit Ethernet, 5 Gigabit Ethernet, 10 Gigabit Ethernet, 20 Gigabit Ethernet, 25 Gigabit Ethernet, 40 Gigabit Ethernet, 50 Gigabit Ethernet, 100 Gigabit Ethernet, 200 Gigabit Ethernet</td>
<td>1GigEthernet, 2.5GigEthernet, 5GigEthernet, 10GigEthernet, 20GigEthernet, 25GigEthernet, 40GigEthernet, 50GigEthernet, 100GigEthernet, 200GigEthernet</td>
<td>Each interface at maximum connection speed[a]</td>
<td>Install, Boot, kdump</td>
</tr>
</tbody>
</table>
Devices that support network partitioning are required to demonstrate both the complete bandwidth and a single partition in one or more test runs.

- **Leverage Notes:** Identical integrated chipsets and removable adapters.

Table 4.10. Fibre Channel

<table>
<thead>
<tr>
<th>Hardware Class</th>
<th>Catalog Features</th>
<th>Required Tests</th>
<th>Required Hardware</th>
<th>Install, Boot, kdump</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fibre Channel</td>
<td>16 Gigabit Fibre Channel, 32 Gigabit Fibre Channel, 64 Gigabit Fibre Channel, 128 Gigabit Fibre Channel</td>
<td>Network or Storage[a]</td>
<td>Each interface at maximum connection speed</td>
<td>Install, Boot, kdump</td>
</tr>
</tbody>
</table>

[a] Nominal connection speed is considered a feature. Remote attached storage devices may require additional testing.

- **Leverage Notes:** Identical integrated chipsets, removable adapters, drivers, and arrays.

Table 4.11. Fibre Channel over Ethernet (FCoE)

<table>
<thead>
<tr>
<th>Hardware Class</th>
<th>Catalog Features</th>
<th>Required Tests</th>
<th>Required Hardware</th>
<th>Install, Boot, kdump</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCoE adapters</td>
<td>FCoE</td>
<td>Storage[a]</td>
<td>Each interface at the maximum connection speed</td>
<td>Install, Boot, kdump</td>
</tr>
</tbody>
</table>

[a] Nominal connection speed is considered a feature. Remote attached storage devices may require additional testing.

- **Leverage Notes:** Identical integrated chipsets, removable adapters, drivers, and arrays.

Table 4.12. iSCSI

<table>
<thead>
<tr>
<th>Hardware Class</th>
<th>Catalog Features</th>
<th>Required Tests</th>
<th>Required Hardware</th>
<th>Install, Boot, kdump</th>
</tr>
</thead>
<tbody>
<tr>
<td>iSCSI Adapters</td>
<td>iSCSI</td>
<td>Network and Storage[a]</td>
<td>Each interface at maximum connection speed</td>
<td>Install, Boot, kdump</td>
</tr>
</tbody>
</table>

[a] Remote attached storage devices may require additional testing.
Nominal connection speed is considered a feature. Remote attached storage devices may require additional testing.

Table 4.13. Infiniband

<table>
<thead>
<tr>
<th>Hardware Class</th>
<th>Catalog Features</th>
<th>Required Tests</th>
<th>Required Hardware</th>
<th>Install, Boot, kdump</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infiniband[a]</td>
<td>QDR Infiniband,</td>
<td>Infiniband_QDR,</td>
<td>Each interface at</td>
<td>Install, Boot, kdump</td>
</tr>
<tr>
<td></td>
<td>FDR Infiniband,</td>
<td>FDR Infiniband,</td>
<td>maximum connection</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EDR Infiniband,</td>
<td>EDR Infiniband,</td>
<td>speed[b][c]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HDR Infiniband,</td>
<td>HDR Infiniband,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Socket Direct</td>
<td>Socket Direct</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[a] Multiple hosts to be connected into a single adapter by separating the PCIe interface into multiple and independent interfaces.

[b] Implements a connection in hardware for efficient data delivery with minimal latency.

[c] Devices that support network partitioning are required to demonstrate both the complete bandwidth and a single partition in one or more test runs.

Leverage Notes: Identical integrated chipsets, removable adapters, drivers, and arrays.

Table 4.14. iWarp

<table>
<thead>
<tr>
<th>Hardware Class</th>
<th>Catalog Features</th>
<th>Required Tests</th>
<th>Required Hardware</th>
</tr>
</thead>
<tbody>
<tr>
<td>iWarp</td>
<td>10 Gigabit iWarp,</td>
<td>10GigiWarp,</td>
<td>Each interface with</td>
</tr>
<tr>
<td></td>
<td>20 Gigabit iWarp,</td>
<td>20GigiWarp,</td>
<td>the corresponding test</td>
</tr>
<tr>
<td></td>
<td>25 Gigabit iWarp,</td>
<td>25GigiWarp,</td>
<td>for the maximum claimed</td>
</tr>
<tr>
<td></td>
<td>40 Gigabit iWarp,</td>
<td>40GigiWarp,</td>
<td>connection speed[a].</td>
</tr>
<tr>
<td></td>
<td>50 Gigabit iWarp,</td>
<td>50GigiWarp,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100 Gigabit iWarp</td>
<td>100GigiWarp,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>200 Gigabit iWarp</td>
<td>200GigiWarp</td>
<td></td>
</tr>
</tbody>
</table>

[a] Devices that support network partitioning are required to demonstrate both the complete bandwidth and a single partition in one or more test runs.

Leverage Notes: Identical integrated chipsets and removable adapters.

Table 4.15. Omnipath
- **Leverage Notes:** Identical integrated chipsets, processors, and removable adapters.

Table 4.16. RDMA over Converged Ethernet (RoCE)

<table>
<thead>
<tr>
<th>Hardware Class</th>
<th>Catalog Features</th>
<th>Required Tests</th>
<th>Required Hardware</th>
</tr>
</thead>
<tbody>
<tr>
<td>RoCE</td>
<td>2.5 Gigabit RoCE, 5 Gigabit RoCE, 10 Gigabit RoCE, 20 Gigabit RoCE, 25 Gigabit RoCE, 40 Gigabit RoCE, 50 Gigabit RoCE, 100 Gigabit RoCE, 200 Gigabit RoCE</td>
<td>2.5 GigRoCE, 5 GigRoCE, 10GigRoCE, 20GigRoCE, 25GigRoCE, 40GigRoCE, 50GigRoCE, 100GigRoCE, 200GigRoCE</td>
<td>Each interface with the corresponding test for the maximum claimed connection speed. [a]</td>
</tr>
</tbody>
</table>

[a] Devices that support network partitioning are required to demonstrate both the complete bandwidth and a single partition in one or more test runs.

- **Leverage Notes:** Identical integrated chipsets, processors, and removable adapters.

Table 4.17. WiFi

<table>
<thead>
<tr>
<th>Hardware Class</th>
<th>Catalog Features</th>
<th>Required Tests</th>
<th>Required Hardware</th>
<th>Install, Boot, kdump</th>
</tr>
</thead>
</table>

[a] Red Hat Enterprise Linux 7.0 only supports 802.11ac devices at 802.11n speeds. Results will be accepted from the WirelessN test on 802.11ac devices until an erratum that provides full 802.11ac connection speeds to Red Hat Enterprise Linux 7.0 is available.

- **Leverage Notes:** Identical integrated chipsets, processors, and removable adapters.

4.7.4. Storage

The hardware features that are included in Storage are:

- **Table 4.18, “HBA, HDD, and SDD”**
- **Table 4.19, “Tape”**
- **Table 4.20, “Memory Cards or Readers”**
- **Table 4.21, “Optical”**

Table 4.18. HBA, HDD, and SDD

<table>
<thead>
<tr>
<th>Hardware Class</th>
<th>Catalog Features</th>
<th>Required Tests</th>
<th>Required Hardware</th>
<th>Install, Boot, kdump</th>
</tr>
</thead>
<tbody>
<tr>
<td>M.2 NVMe, M.2 SATA, PCIe NVMe, SAS SSD, SAS SSD, U.2 NVMe, U.2 SATA</td>
<td>M.2 NVMe, M.2 SATA, NVMe, SATA SSD, SAS SSD, U.2 NVMe, U.2 SATA</td>
<td>M2_NVMe, M2_SATA, NVMe, SATA, SATA_SSD, SAS, SAS SSD, U2_NVMe (PCI Express), U2_SATA</td>
<td>Any capacity[^b] drive[^c] attached to the controller or the maximum storage capacity of local attach arrays if greater than OS limit</td>
<td>Install, Boot, kdump</td>
</tr>
<tr>
<td>RAID Controllers</td>
<td>Storage</td>
<td>Storage</td>
<td>Each OS code path (e.g. where multiple drivers are used) for each interface. Maximum storage capacity of arrays if greater than OS limit.</td>
<td>Install, Boot, kdump</td>
</tr>
</tbody>
</table>

[^a]: SAS Controllers require testing with SAS drives.

[^b]: Drive capacity is not tracked in the context of a system.

[^c]: SSD features require SSD drives to be tested.

- **Leverage Notes**: Identical integrated chipsets, removable adapters, drives, and arrays.

- **Leverage Notes for RAID Controllers**: Identical integrated chipsets, removable adapters, drives and arrays following type criteria. Reduced RAID levels, changes in memory amounts or battery presence.

Table 4.19. Tape

<table>
<thead>
<tr>
<th>Hardware Class</th>
<th>Catalog Features</th>
<th>Required Tests</th>
<th>Required Hardware</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tape Drives and Changers[^a]</td>
<td>Tape drive, Tape changer</td>
<td>TAPE</td>
<td>Each drive</td>
</tr>
</tbody>
</table>

[^a]: Changers require manual testing with test description and results report
- **Leverage Notes:** Identical drives and changers. Internal and external versions of the same drives. Models with the same host interface, hardware and firmware designs including reduced features, capacity, media size and/or total slots and drive count in changers/libraries.

Table 4.20. Memory Cards or Readers

<table>
<thead>
<tr>
<th>Hardware Class</th>
<th>Catalog Features</th>
<th>Required Tests</th>
<th>Required Hardware</th>
<th>Install, Boot, kdump</th>
</tr>
</thead>
<tbody>
<tr>
<td>eMMC, PCIE SD Card Reader, SD Card, USB Flash Key, USB SD Card Reader[^a]</td>
<td>eMMC, PCIE SD Card Reader, SD Card, USB Flash Key, USB SD Card Reader</td>
<td>Storage</td>
<td>The maximum storage capacity and format feature set</td>
<td>Install, Boot</td>
</tr>
</tbody>
</table>

[^a]: Including variants for each (e.g., mini, micro, etc.).

- **Leverage Notes:** Identical integrated chipsets, removable adapters. Identical, smaller capacity or feature cards and sticks.

NOTE

Multi-Readers follow the Multi-Port Adapter criteria.

Table 4.21. Optical

<table>
<thead>
<tr>
<th>Hardware Class</th>
<th>Catalog Features</th>
<th>Required Tests</th>
<th>Required Hardware</th>
<th>Install, Boot, kdump</th>
</tr>
</thead>
</table>

[^a]: “+” and “-” are considered equal for feature review.

[^b]: The hardware partner is required to support all drives that are part of the model regardless of the specific drive or number of drives used during testing. Equivalent production cycle drive changes are required to be tested internally by the hardware partner. The production cycle drive change test results are not required to be submitted to Red Hat.
• **Leverage Notes:** Drives with identical or lesser media support on the storage controller following the storage controller leveraging policies.

4.8. ADDITIONAL MANUAL TESTING

The additional manual testing consists of the external storage and multipath HBAs.

4.8.1. External storage and multipath HBAs

In addition to the base requirements for storage controllers/devices; vendors must verify that their internal quality assurance processes have tested full functionality with Red Hat Enterprise Linux under the following scenarios as appropriate:

- multi-controllers/single host
- multi-host/single controller
- multi-controller/multi-host
- with/without multi-path
- with/without LUN masking (i.e., dedicating LUNs to specific hosts)
- a short cable pull (remove cable and restore prior to failure detection)
- any special features listed as supported on Red Hat Enterprise Linux

Testing result packages are not required to be submitted to Red Hat for the above testing.

[1] Quantity of a function is not considered unique; for example, a dual and a quad Ethernet adapter with all other capabilities being the same are considered to provide the same function.

[2] Notes must be in the positive tone (e.g. "for use with...") and not the negative (e.g. "not for use with...").