Red Hat Enterprise Linux 9

Managing systems using the RHEL 9 web console

Server management with a graphical web-based interface
Red Hat Enterprise Linux 9 Managing systems using the RHEL 9 web console

Server management with a graphical web-based interface
Abstract

The RHEL web console is a web-based graphical interface, which is based on the upstream Cockpit project. By using it, you can perform system administration tasks, such as inspecting and controlling systemd services, managing storage, configuring networks, analyzing network issues, and inspecting logs.
Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE .. 7

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION 8

CHAPTER 1. GETTING STARTED USING THE RHEL WEB CONSOLE 9
 1.1. WHAT IS THE RHEL WEB CONSOLE .. 9
 1.2. INSTALLING AND ENABLING THE WEB CONSOLE 9
 1.3. LOGGING IN TO THE WEB CONSOLE 10
 1.4. CHANGING THE DEFAULT STYLE SETTING FOR THE WEB CONSOLE 11
 1.5. DISABLING BASIC AUTHENTICATION IN THE WEB CONSOLE 11
 1.6. CONNECTING TO THE WEB CONSOLE FROM A REMOTE MACHINE 12
 1.7. CONNECTING TO THE WEB CONSOLE FROM A REMOTE MACHINE AS A ROOT USER 13
 1.8. LOGGING IN TO THE WEB CONSOLE USING A ONE-TIME PASSWORD 13
 1.9. REBOOTING THE SYSTEM USING THE WEB CONSOLE 14
 1.10. SHUTTING DOWN THE SYSTEM USING THE WEB CONSOLE 15
 1.11. CONFIGURING TIME SETTINGS USING THE WEB CONSOLE 16
 1.12. DISABLING SMT TO PREVENT CPU SECURITY ISSUES USING THE WEB CONSOLE 18
 1.13. ADDING A BANNER TO THE LOGIN PAGE 18
 1.14. CONFIGURING AUTOMATIC IDLE LOCK IN THE WEB CONSOLE 20

CHAPTER 2. CONFIGURING THE HOST NAME IN THE WEB CONSOLE 22
 2.1. HOST NAME .. 22
 2.2. PRETTY HOST NAME IN THE WEB CONSOLE 22
 2.3. SETTING THE HOST NAME USING THE WEB CONSOLE 22

CHAPTER 3. INSTALLING WEB CONSOLE ADD-ONS AND CREATING CUSTOM PAGES 25
 3.1. ADD-ONS FOR THE RHEL WEB CONSOLE 25
 3.2. CREATING NEW PAGES IN THE WEB CONSOLE 25

CHAPTER 4. OPTIMIZING THE SYSTEM PERFORMANCE USING THE WEB CONSOLE 27
 4.1. PERFORMANCE TUNING OPTIONS IN THE WEB CONSOLE 27
 4.2. SETTING A PERFORMANCE PROFILE IN THE WEB CONSOLE 27
 4.3. MONITORING PERFORMANCE ON THE LOCAL SYSTEM USING THE WEB CONSOLE 28
 4.4. MONITORING PERFORMANCE ON SEVERAL SYSTEMS USING THE WEB CONSOLE AND GRAFANA 30

CHAPTER 5. REVIEWING LOGS IN THE WEB CONSOLE 33
 5.1. REVIEWING LOGS IN THE WEB CONSOLE 33
 5.2. FILTERING LOGS IN THE WEB CONSOLE 33
 5.3. TEXT SEARCH OPTIONS FOR FILTERING LOGS IN THE WEB CONSOLE 35
 5.4. USING A TEXT SEARCH BOX TO FILTER LOGS IN THE WEB CONSOLE 36
 5.5. OPTIONS FOR LOGS FILTERING ... 36

CHAPTER 6. MANAGING USER ACCOUNTS IN THE WEB CONSOLE 39
 6.1. SYSTEM USER ACCOUNTS MANAGED IN THE WEB CONSOLE 39
 6.2. ADDING NEW ACCOUNTS USING THE WEB CONSOLE 39
 6.3. ENFORCING PASSWORD EXPIRATION IN THE WEB CONSOLE 40
 6.4. TERMINATING USER SESSIONS IN THE WEB CONSOLE 41

CHAPTER 7. MANAGING SERVICES IN THE WEB CONSOLE 42
 7.1. ACTIVATING OR DEACTIVATING SYSTEM SERVICES IN THE WEB CONSOLE 42
 7.2. RESTARTING SYSTEM SERVICES IN THE WEB CONSOLE 43
 7.3. OVERRIDING THE MANIFEST SETTINGS IN THE WEB CONSOLE 43

CHAPTER 8. CONFIGURING NETWORK BONDS USING THE WEB CONSOLE 45
8.1. UPSTREAM SWITCH CONFIGURATION DEPENDING ON THE BONDING MODES 45
8.2. BOND MODES 45
8.3. CONFIGURING A NETWORK BOND BY USING THE RHEL WEB CONSOLE 46
8.4. ADDING INTERFACES TO THE BOND USING THE WEB CONSOLE 50
8.5. REMOVING OR DISABLING AN INTERFACE FROM THE BOND USING THE WEB CONSOLE 50
8.6. REMOVING OR DISABLING A BOND USING THE WEB CONSOLE 51

CHAPTER 9. CONFIGURING NETWORK TEAMS USING THE WEB CONSOLE 52
9.1. CONFIGURING A NETWORK TEAM BY USING THE RHEL WEB CONSOLE 52
9.2. ADDING NEW INTERFACES TO THE TEAM USING THE WEB CONSOLE 55
9.3. REMOVING OR DISABLING AN INTERFACE FROM THE TEAM USING THE WEB CONSOLE 56
9.4. REMOVING OR DISABLING A TEAM USING THE WEB CONSOLE 57

CHAPTER 10. CONFIGURING NETWORK BRIDGES IN THE WEB CONSOLE 58
10.1. CONFIGURING A NETWORK BRIDGE BY USING THE RHEL WEB CONSOLE 58
10.2. REMOVING INTERFACES FROM THE BRIDGE USING THE WEB CONSOLE 60
10.3. DELETING BRIDGES IN THE WEB CONSOLE 61

CHAPTER 11. CONFIGURING VLANS IN THE WEB CONSOLE ... 62
11.1. CONFIGURING VLAN TAGGING BY USING THE RHEL WEB CONSOLE 62

CHAPTER 12. SETTING UP A WIREGUARD VPN BY USING THE RHEL WEB CONSOLE 65
12.1. PROTOCOLS AND PRIMITIVES USED BY WIREGUARD 65
12.2. HOW WIREGUARD USES TUNNEL IP ADDRESSES, PUBLIC KEYS, AND REMOTE ENDPOINTS 65
12.3. USING A WIREGUARD CLIENT BEHIND NAT AND FIREWALLS 66
12.4. CONFIGURING A WIREGUARD SERVER BY USING THE RHEL WEB CONSOLE 66
12.5. CONFIGURING FIREWALLD ON A WIREGUARD SERVER BY USING THE RHEL WEB CONSOLE 69
12.6. CONFIGURING A WIREGUARD CLIENT BY USING THE RHEL WEB CONSOLE 70

CHAPTER 13. CONFIGURING THE WEB CONSOLE LISTENING PORT 74
13.1. ALLOWING A NEW PORT ON A SYSTEM WITH ACTIVE SELINUX 74
13.2. ALLOWING A NEW PORT ON A SYSTEM WITH FIREWALLD 74
13.3. CHANGING THE WEB CONSOLE PORT 75

CHAPTER 14. MANAGING FIREWALL USING THE WEB CONSOLE 77
14.1. RUNNING FIREWALL USING THE WEB CONSOLE 77
14.2. STOPPING FIREWALL USING THE WEB CONSOLE 77
14.3. FIREWALL ZONES 78
14.4. ZONES IN THE WEB CONSOLE 80
14.5. ENABLING ZONES USING THE WEB CONSOLE 80
14.6. ENABLING SERVICES ON THE FIREWALL USING THE WEB CONSOLE 82
14.7. CONFIGURING CUSTOM PORTS USING THE WEB CONSOLE 83
14.8. DISABLING ZONES USING THE WEB CONSOLE 85

CHAPTER 15. SETTING UP SYSTEM-WIDE CRYPTOGRAPHIC POLICIES IN THE WEB CONSOLE .. 87

CHAPTER 16. CREATING AN SELINUX CONFIGURATION ANSIBLE PLAYBOOK IN THE WEB CONSOLE 90

CHAPTER 17. MANAGING PARTITIONS USING THE WEB CONSOLE 92
17.1. DISPLAYING PARTITIONS FORMATTED WITH FILE SYSTEMS IN THE WEB CONSOLE 92
17.2. CREATING PARTITIONS IN THE WEB CONSOLE 93
17.3. DELETING PARTITIONS IN THE WEB CONSOLE 95
17.4. MOUNTING AND UNMOUNTING FILE SYSTEMS IN THE WEB CONSOLE 95

CHAPTER 18. MANAGING NFS MOUNTS IN THE WEB CONSOLE 97
18.1. CONNECTING NFS MOUNTS IN THE WEB CONSOLE 97
Chapter 19. Managing RAID in the Web Console

19.1. Creating RAID in the Web Console
19.2. Formatting RAID in the Web Console
19.3. Creating a Partition Table on RAID Using the Web Console
19.4. Creating Partitions on RAID Using the Web Console
19.5. Creating a Volume Group on Top of RAID Using the Web Console
19.6. Additional Resources

Chapter 20. Configuring LVM Logical Volumes Using the Web Console

20.1. Logical Volume Manager in the Web Console
20.2. Creating Volume Groups in the Web Console
20.3. Creating Logical Volumes in the Web Console
20.4. Formatting Logical Volumes in the Web Console
20.5. Resizing Logical Volumes in the Web Console
20.6. Additional Resources

Chapter 21. Configuring Thin Logical Volumes Using the Web Console

21.2. Creating Thinly Provisioned Logical Volumes in the Web Console
21.3. Formatting Logical Volumes in the Web Console
21.4. Creating Thinly-Provisioned Snapshot Volumes with the Web Console

Chapter 22. Changing Physical Drives in Volume Groups Using the Web Console

22.1. Adding Physical Drives to Volume Groups in the Web Console
22.2. Removing Physical Drives from Volume Groups in the Web Console

Chapter 23. Managing Virtual Data Optimizer Volumes Using the Web Console

23.1. VDO Volumes in the Web Console
23.2. Creating VDO Volumes in the Web Console
23.3. Formatting VDO Volumes in the Web Console
23.4. Extending VDO Volumes in the Web Console

24.1. Creating an Unencrypted Stratis Pool Using the Web Console
24.2. Creating an Encrypted Stratis Pool Using the Web Console
24.3. Viewing a Stratis Pool Using the Web Console
24.4. Creating a File System on a Stratis Pool Using the Web Console
24.5. Deleting a File System from a Stratis Pool Using the Web Console
24.6. Renaming a Stratis Pool Using the Web Console
24.7. Adding a Block Device to a Stratis Pool Using the Web Console
24.8. Deleting a Stratis Pool Using the Web Console

Chapter 25. Locking Data with LUKS Password in the RHEL Web Console

25.1. LUKS Disk Encryption
25.2. Configuring the LUKS Passphrase in the Web Console
25.3. Changing the LUKS Passphrase in the Web Console

Chapter 26. Configuring Automated Unlocking by Using a Tang Key in the Web Console

Chapter 27. Managing Software Updates in the Web Console

27.1. Managing Manual Software Updates in the Web Console
27.2. Managing Automatic Software Updates in the Web Console
27.3. Managing On-Demand Restarting After Applying Software Updates in the Web
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>35.7. DELETING CONTAINERS IN THE WEB CONSOLE</td>
<td>204</td>
</tr>
<tr>
<td>35.8. CREATING PODS IN THE WEB CONSOLE</td>
<td>204</td>
</tr>
<tr>
<td>35.9. CREATING CONTAINERS IN THE POD IN THE WEB CONSOLE</td>
<td>205</td>
</tr>
<tr>
<td>35.10. CHANGING THE STATE OF PODS IN THE WEB CONSOLE</td>
<td>207</td>
</tr>
<tr>
<td>35.11. DELETING PODS IN THE WEB CONSOLE</td>
<td>207</td>
</tr>
</tbody>
</table>
Red Hat is committed to replacing problematic language in our code, documentation, and web properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the enormity of this endeavor, these changes will be implemented gradually over several upcoming releases. For more details, see our CTO Chris Wright’s message.
PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

We appreciate your feedback on our documentation. Let us know how we can improve it.

Submitting feedback through Jira (account required)

1. Log in to the Jira website.
2. Click Create in the top navigation bar.
3. Enter a descriptive title in the Summary field.
4. Enter your suggestion for improvement in the Description field. Include links to the relevant parts of the documentation.
5. Click Create at the bottom of the dialogue.
CHAPTER 1. GETTING STARTED USING THE RHEL WEB CONSOLE

Learn how to install the Red Hat Enterprise Linux 9 web console, how to add and manage remote hosts through its convenient graphical interface, and how to monitor the systems managed by the web console.

1.1. WHAT IS THE RHEL WEB CONSOLE

The RHEL web console is a web-based interface designed for managing and monitoring your local system, as well as Linux servers located in your network environment.

The RHEL web console enables you to perform a wide range of administration tasks, including:

- Managing services
- Managing user accounts
- Managing and monitoring system services
- Configuring network interfaces and firewall
- Reviewing system logs
- Managing virtual machines
- Creating diagnostic reports
- Setting kernel dump configuration
- Configuring SELinux
- Updating software
- Managing system subscriptions

The RHEL web console uses the same system APIs as you would use in a terminal, and actions performed in a terminal are immediately reflected in the RHEL web console.

You can monitor the logs of systems in the network environment, as well as their performance, displayed as graphs. In addition, you can change the settings directly in the web console or through the terminal.

1.2. INSTALLING AND ENABLING THE WEB CONSOLE

To access the RHEL web console, first enable the `cockpit.socket` service.

Red Hat Enterprise Linux 9 includes the web console installed by default in many installation variants. If this is not the case on your system, install the `cockpit` package before enabling the `cockpit.socket` service.

Procedure

1. If the web console is not installed by default on your installation variant, manually install the `cockpit` package:
dnf install cockpit

2. Enable and start the `cockpit.socket` service, which runs a web server:

```sh
# systemctl enable --now cockpit.socket
```

3. If the web console was not installed by default on your installation variant and you are using a custom firewall profile, add the `cockpit` service to `firewalld` to open port 9090 in the firewall:

```sh
# firewall-cmd --add-service=cockpit --permanent
# firewall-cmd --reload
```

Verification steps

- To verify the previous installation and configuration, open the web console.

1.3. LOGGING IN TO THE WEB CONSOLE

When the `cockpit.socket` service is running and the corresponding firewall port is open, you can log in to the web console in your browser for the first time.

Prerequisites

- Use one of the following browsers to open the web console:
 - Mozilla Firefox 52 and later
 - Google Chrome 57 and later
 - Microsoft Edge 16 and later
- System user account credentials
 The RHEL web console uses a specific pluggable authentication modules (PAM) stack at `/etc/pam.d/cockpit`. The default configuration allows logging in with the user name and password of any local account on the system.
- Port 9090 is open in your firewall.

Procedure

1. In your web browser, enter the following address to access the web console:

   ```text
   https://localhost:9090
   ```

 NOTE

 This provides a web-console login on your local machine. If you want to log in to the web console of a remote system, see Section 1.6, "Connecting to the web console from a remote machine"

 If you use a self-signed certificate, the browser displays a warning. Check the certificate, and accept the security exception to proceed with the login.
The console loads a certificate from the /etc/cockpit/ws-certs.d directory and uses the last file with a .cert extension in alphabetical order. To avoid having to grant security exceptions, install a certificate signed by a certificate authority (CA).

2. In the login screen, enter your system user name and password.

3. Click Log In.

After successful authentication, the RHEL web console interface opens.

NOTE

To switch between limited and administrative access, click Administrative access or Limited access in the top panel of the web console page. You must provide your user password to gain administrative access.

1.4. CHANGING THE DEFAULT STYLE SETTING FOR THE WEB CONSOLE

By default, the web console adopts its style setting from the setting of your browser. You can override the default style setting from your RHEL 9 web console interface.

Prerequisites

- The web console is installed and accessible. For details, see Installing the web console.

Procedure

1. Log in to the RHEL web console. For details, see Logging in to the web console.

2. In the upper right corner, click the Session button.

3. In the section Style, choose the preferred setting. The Default setting uses the same style setting as your browser.

Verification steps

1. The style setting has changed according to set style.

1.5. DISABLING BASIC AUTHENTICATION IN THE WEB CONSOLE

You can modify the behavior of an authentication scheme by modifying the cockpit.conf file. Use the none action to disable an authentication scheme and only allow authentication through GSSAPI and forms.

Prerequisites

- The web console is installed and accessible. For details, see Installing the web console.

- You have root privileges or permissions to enter administrative commands with sudo.

Procedure
1. Open or create the `cockpit.conf` file in the `/etc/cockpit/` directory in a text editor of your preference, for example:

```
# vi cockpit.conf
```

2. Add the following text:

```
[basic]
action = none
```

3. Save the file.

4. Restart the web console for changes to take effect.

```
# systemctl try-restart cockpit
```

1.6. CONNECTING TO THE WEB CONSOLE FROM A REMOTE MACHINE

You can connect to your web console interface from any client operating system and also from mobile phones or tablets.

Prerequisites

- A device with a supported internet browser, such as:
 - Mozilla Firefox 52 and later
 - Google Chrome 57 and later
 - Microsoft Edge 16 and later
- RHEL 9 server you want to access with an installed and accessible web console.

Procedure

1. Open your web browser.

2. Type the remote server’s address in one of the following formats:
 a. With the server’s host name:
      ```
      https://<server.hostname.example.com>:<port-number>
      ```
 For example:
      ```
      https://example.com:9090
      ```
 b. With the server’s IP address:
      ```
      https://<server.IP_address>:<port-number>
      ```
 For example:
After the login interface opens, log in with your RHEL system credentials.

1.7. CONNECTING TO THE WEB CONSOLE FROM A REMOTE MACHINE AS A ROOT USER

On new installations of RHEL 9.2 or later, the RHEL web console disallows root account logins by default for security reasons. You can allow the root login in the `/etc/cockpit/disallowed-users` file.

Prerequisites

- The RHEL 9 web console is installed and enabled. For details, see [Installing and enabling the web console](#).

Procedure

1. Open the `disallowed-users` file in the `/etc/cockpit/` directory in a text editor of your preference, for example:
   ```
   # vi /etc/cockpit/disallowed-users
   ```
2. Edit the file and remove the line for the root user:
   ```
   # List of users which are not allowed to login to Cockpit root
   ```
3. Save the changes and quit the editor.

Verification

- Log in to the web console as a root user. For details, see [Logging in to the web console](#).

1.8. LOGGING IN TO THE WEB CONSOLE USING A ONE-TIME PASSWORD

If your system is part of an Identity Management (IdM) domain with enabled one-time password (OTP) configuration, you can use an OTP to log in to the RHEL web console.

IMPORTANT

It is possible to log in using a one-time password only if your system is part of an Identity Management (IdM) domain with enabled OTP configuration.

Prerequisites

- The RHEL web console has been installed.
- An Identity Management server with enabled OTP configuration.
- A configured hardware or software device generating OTP tokens.
Procedure

1. Open the RHEL web console in your browser:
 - Locally: https://localhost:PORT_NUMBER
 - Remotely with the server hostname: https://example.com:PORT_NUMBER
 - Remotely with the server IP address: https://EXAMPLE.SERVER.IP.ADDR:PORT_NUMBER
 If you use a self-signed certificate, the browser issues a warning. Check the certificate and accept the security exception to proceed with the login.

 The console loads a certificate from the /etc/cockpit/ws-certs.d directory and uses the last file with a .cert extension in alphabetical order. To avoid having to grant security exceptions, install a certificate signed by a certificate authority (CA).

2. The Login window opens. In the Login window, enter your system user name and password.

3. Generate a one-time password on your device.

4. Enter the one-time password into a new field that appears in the web console interface after you confirm your password.

5. Click Log in.

6. Successful login takes you to the Overview page of the web console interface.

1.9. REBOOTING THE SYSTEM USING THE WEB CONSOLE

You can use the web console to restart a RHEL system that the web console is attached to.

Prerequisites

- The web console is installed and accessible. For details, see Installing the web console.

Procedure

1. Log into the RHEL web console. For details, see Logging in to the web console.

2. In the Overview page, click the Reboot button.
3. If any users are logged in to the system, you can write a message about the restart in the Reboot dialog box.

4. Optional: In the Delay drop-down list, select a time interval for the reboot delay.

5. Click Reboot.

1.10. SHUTTING DOWN THE SYSTEM USING THE WEB CONSOLE

You can use the web console to shut down a RHEL system that the web console is attached to.

Prerequisites

- The web console is installed and accessible.
For details, see Installing the web console.

Procedure

1. Log into the RHEL web console.
 For details, see Logging in to the web console.

2. Click Overview.

3. In the Restart drop-down list, select Shut Down.

4. If any users are logged in to the system, write a reason for the shutdown in the Shut Down dialog box.

5. Optional: In the Delay drop-down list, select a time interval.

6. Click Shut Down.

1.11. CONFIGURING TIME SETTINGS USING THE WEB CONSOLE

You can set a time zone and synchronize the system time with a Network Time Protocol (NTP) server.

Prerequisites

- The web console is installed and accessible.
 For details, see Installing the web console.

Procedure

1. Log in to the RHEL web console.
 For details, see Logging in to the web console.

2. Click the current system time in Overview.
3. Click **System time**.

4. In the **Change System Time** dialog box, change the time zone if necessary.

5. In the **Set Time** drop-down menu, select one of the following:

 Manually

 Use this option if you need to set the time manually, without an NTP server.

 Automatically using NTP server

 This is a default option, which synchronizes time automatically with the preset NTP servers.

 Automatically using specific NTP servers

 Use this option only if you need to synchronize the system with a specific NTP server. Specify the DNS name or the IP address of the server.

6. Click **Change**.

Verification steps
Check the system time displayed in the System tab.

Additional resources

- Using the Chrony suite to configure NTP.

1.12. DISABLING SMT TO PREVENT CPU SECURITY ISSUES USING THE WEB CONSOLE

Disable Simultaneous Multi Threading (SMT) in case of attacks that misuse CPU SMT. Disabling SMT can mitigate security vulnerabilities, such as L1TF or MDS.

IMPORTANT

Disabling SMT might lower the system performance.

Prerequisites

- The web console must be installed and accessible. For details, see "Installing the web console".

Procedure

1. Log in to the RHEL web console. For details, see "Logging in to the web console".
2. In the Overview tab find the System information field and click View hardware details.
3. On the CPU Security line, click Mitigations.
 If this link is not present, it means that your system does not support SMT, and therefore is not vulnerable.
4. In the CPU Security Toggles table, turn on the Disable simultaneous multithreading (nosmt) option.
5. Click the Save and reboot button.

After the system restart, the CPU no longer uses SMT.

Additional resources

1.13. ADDING A BANNER TO THE LOGIN PAGE

You can set the web console to show a content of a banner file on the login screen.

Prerequisites

- The web console is installed and accessible. For details, see "Installing the web console".

- You have root privileges or permissions to enter administrative commands with sudo.
Procedure

1. Open the `/etc/issue.cockpit` file in a text editor of your preference:

 # vi /etc/issue.cockpit

2. Add the content you want to display as the banner to the file, for example:

 This is an example banner for the RHEL web console login page.

 You cannot include any macros in the file, but you can use line breaks and ASCII art.

3. Save the file.

4. Open the `cockpit.conf` file in the `/etc/cockpit/` directory in a text editor of your preference, for example:

 # vi /etc/cockpit/cockpit.conf

5. Add the following text to the file:

 [Session]
 Banner=/etc/issue.cockpit

6. Save the file.

7. Restart the web console for changes to take effect.

 # systemctl try-restart cockpit

Verification steps

- Open the web console login screen again to verify that the banner is now visible:
1.14. CONFIGURING AUTOMATIC IDLE LOCK IN THE WEB CONSOLE

You can enable the automatic idle lock and set the idle timeout for your system through the web console interface.

Prerequisites

- The web console must be installed and accessible. For details, see Installing the web console.
- You have root privileges or permissions to enter administrative commands with sudo.

Procedure

1. Open the cockpit.conf file in the /etc/cockpit/ directory in a text editor of your preference, for example:

```
# vi /etc/cockpit/cockpit.conf
```

2. Add the following text to the file:

```
[Session]
IdleTimeout=<X>
```

Substitute <X> with a number for a time period of your choice in minutes.

3. Save the file.
4. Restart the web console for changes to take effect.

 # systemctl try-restart cockpit

Verification steps

- Check if the session logs you out after a set period of time.
CHAPTER 2. CONFIGURING THE HOST NAME IN THE WEB CONSOLE

Learn how to use the Red Hat Enterprise Linux web console to configure different forms of the host name on the system that the web console is attached to.

2.1. HOST NAME

The host name identifies the system. By default, the host name is set to localhost, but you can change it.

A host name consists of two parts:

Host name
- It is a unique name which identifies a system.

Domain
- Add the domain as a suffix behind the host name when using a system in a network and when using names instead of just IP addresses.

A host name with an attached domain name is called a fully qualified domain name (FQDN). For example: mymachine.example.com.

Host names are stored in the /etc/hostname file.

2.2. PRETTY HOST NAME IN THE WEB CONSOLE

You can configure a pretty host name in the RHEL web console. The pretty host name is a host name with capital letters, spaces, and so on.

The pretty host name displays in the web console, but it does not have to correspond with the host name.

Example 2.1. Host name formats in the web console

<table>
<thead>
<tr>
<th>Pretty host name</th>
<th>Host name</th>
<th>Real host name - fully qualified domain name (FQDN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>My Machine</td>
<td>mymachine</td>
<td>mymachine.idm.company.com</td>
</tr>
</tbody>
</table>

2.3. SETTING THE HOST NAME USING THE WEB CONSOLE

This procedure sets the real host name or the pretty host name in the web console.

Prerequisites

- The web console is installed and accessible.
Procedure

1. Log into the web console.

2. Click Overview.

3. Click edit next to the current host name.

4. In the Change Host Name dialog box, enter the host name in the Pretty Host Name field.

5. The Real Host Name field attaches a domain name to the pretty name. You can change the real host name manually if it does not correspond with the pretty host name.

6. Click Change.

Verification steps

1. Log out from the web console.
2. Reopen the web console by entering an address with the new host name in the address bar of your browser.
CHAPTER 3. INSTALLING WEB CONSOLE ADD-ONS AND CREATING CUSTOM PAGES

Depending on how you want to use your Red Hat Enterprise Linux system, you can add additional available applications to the web console or create custom pages based on your use case.

3.1. ADD-ONS FOR THE RHEL WEB CONSOLE

While the cockpit package is a part of Red Hat Enterprise Linux by default, you can install add-on applications on demand using the following command:

```
# dnf install <add-on>
```

In the previous command, replace `<add-on>` by a package name from the list of available add-on applications for the RHEL web console.

<table>
<thead>
<tr>
<th>Feature name</th>
<th>Package name</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composer</td>
<td>cockpit-composer</td>
<td>Building custom OS images</td>
</tr>
<tr>
<td>Machines</td>
<td>cockpit-machines</td>
<td>Managing libvirt virtual machines</td>
</tr>
<tr>
<td>PackageKit</td>
<td>cockpit-packagekit</td>
<td>Software updates and application installation (usually installed by default)</td>
</tr>
<tr>
<td>PCP</td>
<td>cockpit-pcp</td>
<td>Persistent and more fine-grained performance data (installed on demand from the UI)</td>
</tr>
<tr>
<td>Podman</td>
<td>cockpit-podman</td>
<td>Managing containers and managing container images</td>
</tr>
<tr>
<td>Session Recording</td>
<td>cockpit-session-recording</td>
<td>Recording and managing user sessions</td>
</tr>
<tr>
<td>Storage</td>
<td>cockpit-storaged</td>
<td>Managing storage through udisks</td>
</tr>
</tbody>
</table>

3.2. CREATING NEW PAGES IN THE WEB CONSOLE

If you want to add customized functions to your Red Hat Enterprise Linux web console, you must add the package directory that contains the HTML and JavaScript files for the page that runs the required function.

For detailed information about adding custom pages, see Creating Plugins for the Cockpit User Interface on the Cockpit Project website.

Additional resources
• Cockpit Packages section in the Cockpit Project Developer Guide
Learn how to set a performance profile in the RHEL web console to optimize the performance of the system for a selected task.

4.1. PERFORMANCE TUNING OPTIONS IN THE WEB CONSOLE

Red Hat Enterprise Linux 9 provides several performance profiles that optimize the system for the following tasks:

- Systems using the desktop
- Throughput performance
- Latency performance
- Network performance
- Low power consumption
- Virtual machines

The TuneD service optimizes system options to match the selected profile.

In the web console, you can set which performance profile your system uses.

Additional resources

- Getting started with TuneD

4.2. SETTING A PERFORMANCE PROFILE IN THE WEB CONSOLE

Depending on the task you want to perform, you can use the web console to optimize system performance by setting a suitable performance profile.

Prerequisites

- Make sure the web console is installed and accessible. For details, see Installing the web console.

Procedure

1. Log into the 9 web console. For details, see Logging in to the web console.
2. Click Overview.
3. In the Configuration section, click the current performance profile.
4. In the **Change Performance Profile** dialog box, set the required profile.

5. Click **Change Profile**.

Verification steps

- The **Overview** tab now shows the selected performance profile in the **Configuration** section.

4.3. MONITORING PERFORMANCE ON THE LOCAL SYSTEM USING THE WEB CONSOLE

Red Hat Enterprise Linux web console uses the Utilization Saturation and Errors (USE) Method for troubleshooting. The new performance metrics page has a historical view of your data organized chronologically with the newest data at the top.
In the **Metrics and history** page, you can view events, errors, and graphical representation for resource utilization and saturation.

Prerequisites

- The web console is installed and accessible. For details, see [Installing the web console](#).
- The **cockpit-pcp** package, which enables collecting the performance metrics, is installed:
 - To install the package from the web console interface:
 1. Log in to the web console with administrative privileges. For details, see [Logging in to the web console](#).
 2. In the **Overview** page, click **View metrics and history**.
 3. Click the **Install cockpit-pcp** button.
 4. In the **Install software** dialog window, click **Install**.
 - To install the package from the command-line interface, use:
    ```
    # dnf install cockpit-pcp
    ```
- The Performance Co-Pilot (PCP) service is enabled:
  ```
  # systemctl enable --now pmlogger.service pmproxy.service
  ```

Procedure

1. Log into the 9 web console. For details, see [Logging in to the web console](#).
2. Click **Overview**.
3. In the **Usage** section, click **View metrics and history**.

The **Metrics and history** section opens:
The current system configuration and usage:

![CPU and Memory Usage](image1)

- The performance metrics in a graphical form over a user-specified time interval:

![Graphical Representation](image2)

4.4. MONITORING PERFORMANCE ON SEVERAL SYSTEMS USING THE WEB CONSOLE AND GRAFANA

Grafana enables you to collect data from several systems at once and review a graphical representation of their collected Performance Co-Pilot (PCP) metrics. You can set up performance metrics monitoring and export for several systems in the web console interface.

Prerequisites

- The web console must be installed and accessible. For details, see link: [Installing the web console](#).

- Install the `cockpit-pcp` package.

 1. From the web console interface:

 a. Log in to the web console with administrative privileges. For details, see [Logging in to the web console](#).

 b. In the **Overview** page, click **View details and history**.

 c. Click the **Install cockpit-pcp** button.

 d. In the **Install software** dialog window, click **Install**.
e. Log out and in again to see the metrics history.

2. To install the package from the command-line interface, use:

```
# dnf install cockpit-pcp
```

- Enable the PCP service:

```
# systemctl enable --now pmlogger.service pmproxy.service
```

- Set up Grafana dashboard. For more information, see [Setting up a grafana-server](#).

- Install the **redis** package.

```
# dnf install redis
```

Alternatively, you can install the package from the web console interface later in the procedure.

Procedure

1. In the **Overview** page, click **View metrics and history** in the **Usage** table.

2. Click the **Metrics settings** button.

3. Move the **Export to network** slider to active position.

 Metrics settings

 Performance Co-Pilot collects and analyzes performance metrics from your system. [Read more...](#)

 - [Collect metrics](#) (pmlogger.service)
 - [Export to network](#) (pmproxy.service)

 If you do not have the **redis** package installed, the web console prompts you to install it.

4. To open the **pmproxy** service, select a zone from a drop-down list and click the **Add pmproxy** button.

5. Click **Save**.

Verification

1. Click **Networking**.

2. In the **Firewall** table, click the **Edit rules and zones** button.
3. Search for **pmproxy** in your selected zone.

IMPORTANT

Repeat this procedure on all the systems you want to watch.

Additional resources

- Setting up graphical representation of PCP metrics
CHAPTER 5. REVIEWING LOGS IN THE WEB CONSOLE

Learn how to access, review and filter logs in the RHEL web console.

5.1. REVIEWING LOGS IN THE WEB CONSOLE

The RHEL 9 web console Logs section is a UI for the journalctl utility. You can access system logs in the web console interface.

Prerequisites

- The RHEL 9 web console has been installed.
 For details, see Installing the web console.

Procedure

1. Log in to the RHEL web console.
 For details, see Logging in to the web console.

2. Click Logs.

3. Open log entry details by clicking on your selected log entry in the list.

 NOTE
 You can use the Pause button to pause new log entries from appearing. Once you resume new log entries, the web console will load all log entries that were reported after you used the Pause button.

You can filter the logs by time, priority or identifier. For more information, see Filtering logs in the web console.

5.2. FILTERING LOGS IN THE WEB CONSOLE

You can filter log entries in the web console.

Prerequisites

- The web console interface must be installed and accessible.
 For details, see Installing the web console.
Procedure

1. Log in to the RHEL 9 web console. For details, see Logging in to the web console.

2. Click Logs.

3. By default, web console shows the latest log entries. To filter by a specific time range, click the Time drop-down menu and choose a preferred option.

4. Error and above severity logs list is shown by default. To filter by different priority, click the Error and above drop-down menu and choose a preferred priority.

5. By default, web console shows logs for all identifiers. To filter logs for a particular identifier, click the All drop-down menu and select an identifier.

6. To open a log entry, click on a selected log.
5.3. TEXT SEARCH OPTIONS FOR FILTERING LOGS IN THE WEB CONSOLE

The text search option functionality provides a big variety of options for filtering logs. If you decide to filter logs by using the text search, you can use the predefined options that are defined in the three drop-down menus, or you can type the whole search yourself.

Drop-down menus

There are three drop-down menus that you can use to specify the main parameters of your search:

- **Time**: This drop-down menu contains predefined searches for different time ranges of your search.

- **Priority**: This drop-down menu provides options for different priority levels. It corresponds to the `journalctl --priority` option. The default priority value is **Error and above**. It is set every time you do not specify any other priority.

- **Identifier**: In this drop-down menu, you can select an identifier that you want to filter. Corresponds to the `journalctl --identifier` option.

Quantifiers

There are six quantifiers that you can use to specify your search. They are covered in the Options for filtering logs table.

Log fields

If you want to search for a specific log field, it is possible to specify the field together with its content.

Free-form text search in logs messages

You can filter any text string of your choice in the logs messages. The string can also be in the form of a regular expression.

Advanced logs filtering I

Filter all log messages identified by 'systemd' that happened since October 22, 2020 midnight and journal field 'JOB_TYPE' is either 'start' or 'restart.

1. Type `identifier:systemd since:2020-10-22 JOB_TYPE=start,restart` to search field.

2. Check the results.

Advanced logs filtering II

Filter all log messages that come from 'cockpit.service' systemd unit that happened in the boot before last and the message body contains either "error" or "fail".

1. Type `service:cockpit boot:-1 error|fail` to the search field.

2. Check the results.
5.4. USING A TEXT SEARCH BOX TO FILTER LOGS IN THE WEB CONSOLE

Using the text search box allows you to filter logs according to different parameters. The search combines usage of the filtering drop-down menus, quantifiers, log fields and free-form string search.

Prerequisites

- The web console interface must be installed and accessible.
 For details, see [Installing the web console](#).

Procedure

1. Log in to the RHEL web console.
 For details, see [Logging in to the web console](#).

2. Click Logs.

3. Use the drop-down menus to specify the three main quantifiers - time range, priority, and identifier(s) - you want to filter.
 The Priority quantifier always has to have a value. If you do not specify it, it automatically filters the Error and above priority. Notice that the options you set reflect in the text search box.

4. Specify the log field you want to filter.
 It is possible to add several log fields.

5. You can use a free-form string to search for anything else. The search box also accepts regular expressions.

5.5. OPTIONS FOR LOGS FILTERING

There are several `journalctl` options, which you can use for filtering logs in the web console, that may be useful. Some of these are already covered as part of the drop-down menus in the web console interface.

Table 5.1. Table

<table>
<thead>
<tr>
<th>Option name</th>
<th>Usage</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Option name</td>
<td>Usage</td>
<td>Notes</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>priority</td>
<td>Filter output by message priorities. Takes a single numeric or textual log level. The log levels are the usual syslog log levels. If a single log level is specified, all messages with this log level or a lower (therefore more important) log level are shown.</td>
<td>Covered in the Priority drop-down menu.</td>
</tr>
<tr>
<td>identifier</td>
<td>Show messages for the specified syslog identifier SYSLOG_IDENTIFIER. Can be specified multiple times.</td>
<td>Covered in the Identifier drop-down menu.</td>
</tr>
<tr>
<td>follow</td>
<td>Shows only the most recent journal entries, and continuously prints new entries as they are appended to the journal.</td>
<td>Not covered in a drop-down.</td>
</tr>
<tr>
<td>service</td>
<td>Show messages for the specified systemd unit. Can be specified multiple times.</td>
<td>Is not covered in a drop-down. Correlates to the journalctl --unit parameter.</td>
</tr>
</tbody>
</table>
| boot | Show messages from a specific boot.
A positive integer will look up the boots starting from the beginning of the journal, and an equal-or-less-than zero integer will look up boots starting from the end of the journal. Therefore, 1 means the first boot found in the journal in chronological order, 2 the second and so on; while -0 is the last boot, -1 the boot before last, and so on. | Covered only as Current boot or Previous boot in the Time drop-down menu. Other options need to be written manually. |
Since

<table>
<thead>
<tr>
<th>Option name</th>
<th>Usage</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>since</td>
<td>Start showing entries on or newer than the specified date, or on or older than the specified date, respectively. Date specifications should be of the format "2012-10-30 18:17:16". If the time part is omitted, "00:00:00" is assumed. If only the seconds component is omitted, ":00" is assumed. If the date component is omitted, the current day is assumed. Alternatively the strings "yesterday", "today", "tomorrow" are understood, which refer to 00:00:00 of the day before the current day, the current day, or the day after the current day, respectively. "now" refers to the current time. Finally, relative times may be specified, prefixed with "-" or "+", referring to times before or after the current time, respectively.</td>
<td>Not covered in a drop-down.</td>
</tr>
</tbody>
</table>
CHAPTER 6. MANAGING USER ACCOUNTS IN THE WEB CONSOLE

The RHEL web console offers an interface for adding, editing, and removing system user accounts.

After reading this section, you will know:

- From where the existing accounts come from.
- How to add new accounts.
- How to set password expiration.
- How and when to terminate user sessions.

Prerequisites

- Being logged into the RHEL web console with an account that has administrator permissions assigned. For details, see Logging in to the web console

6.1. SYSTEM USER ACCOUNTS MANAGED IN THE WEB CONSOLE

With user accounts displayed in the RHEL web console you can:

- Authenticate users when accessing the system.
- Set the access rights to the system.

The RHEL web console displays all user accounts located in the system. Therefore, you can see at least one user account just after the first login to the web console.

After logging into the RHEL web console, you can perform the following operations:

- Create new users accounts.
- Change their parameters.
- Lock accounts.
- Terminate user sessions.

6.2. ADDING NEW ACCOUNTS USING THE WEB CONSOLE

You can add user accounts to the system and set administration rights to the accounts through the RHEL web console.

Prerequisites

- The RHEL web console must be installed and accessible. For details, see Installing the web console

Procedure

1. Log in to the RHEL web console.
2. Click Accounts.

3. Click Create New Account.

4. In the Full Name field, enter the full name of the user. The RHEL web console automatically suggests a user name from the full name and fills it in the User Name field. If you do not want to use the original naming convention consisting of the first letter of the first name and the whole surname, update the suggestion.

5. In the Password/Confirm fields, enter the password and retype it for verification that your password is correct. The color bar below the fields shows you the security level of the entered password, which does not allow you to create a user with a weak password.

6. Click Create to save the settings and close the dialog box.

7. Select the newly created account.

8. In the Groups drop-down menu, select the groups that you want to add to the new account.

Now you can see the new account in the Accounts settings and you can use its credentials to connect to the system.

6.3. ENFORCING PASSWORD EXPIRATION IN THE WEB CONSOLE

By default, user accounts have set passwords to never expire. You can set system passwords to expire after a defined number of days. When the password expires, the next login attempt will prompt for a password change.

Procedure

1. Log in to the RHEL 9 web console.

2. Click Accounts.

3. Select the user account for which you want to enforce password expiration.

4. Click edit on the Password line.
5. In the **Password expiration** dialog box, select **Require password change every ... days** and enter a positive whole number representing the number of days after which the password expires.

6. Click **Change**.
 The web console immediately shows the date of the future password change request on the **Password** line.

6.4. TERMINATING USER SESSIONS IN THE WEB CONSOLE

A user creates user sessions when logging into the system. Terminating user sessions means to log the user out from the system. It can be helpful if you need to perform administrative tasks sensitive to configuration changes, for example, system upgrades.

In each user account in the RHEL 9 web console, you can terminate all sessions for the account except for the web console session you are currently using. This prevents you from losing access to your system.

Procedure

1. Log in to the RHEL 9 web console.

2. Click **Accounts**.

3. Click the user account for which you want to terminate the session.

4. Click **Terminate Session**.
 If the **Terminate Session** button is inactive, the user is not logged in to the system.

 The RHEL web console terminates the sessions.
CHAPTER 7. MANAGING SERVICES IN THE WEB CONSOLE

Learn how to manage system services in the RHEL web console interface. You can activate or deactivate services, restart or reload them, or manage their automatic startup.

7.1. ACTIVATING OR DEACTIVATING SYSTEM SERVICES IN THE WEB CONSOLE

This procedure activates or deactivates system services using the web console interface.

Prerequisites

- The RHEL 9 web console has been installed.
 For details, see Installing the web console.

PROCEDURE

You can filter services by name or description and also by Enabled, Disabled, or Static automatic startup. The interface shows the current state of the service and its recent logs.

1. Log in to the RHEL web console with administrator privileges.
 For details, see Logging in to the web console.

2. Click Services in the web console menu on the left.

3. The default tab for Services is System Services. If you want to manage targets, sockets, timers, or paths, switch to the respective tab in the menu on top.

4. To open service settings, click on a selected service from the list. You can tell which services are active or inactive by checking the State column.

5. Activate or deactivate a service:

 - To activate an inactive service, click the Start button.
7.2. RESTARTING SYSTEM SERVICES IN THE WEB CONSOLE

This procedure restarts system services using the web console interface.

Prerequisites

- The RHEL 9 web console has been installed. For details, see Installing the web console.

PROCEDURE

You can filter services by name or description and also by Enabled, Disabled, or Static automatic startup. The interface shows the current state of the service and its recent logs.

1. Log in to the RHEL web console with administrator privileges. For details, see Logging in to the web console.
2. Click Services in the web console menu on the left.
3. The default tab for Services is System Services. If you want to manage targets, sockets, timers, or paths, switch to the respective tab in the menu on top.
4. To open service settings, click on a selected service from the list.
5. To restart a service, click the Restart button.

7.3. OVERRIDING THE MANIFEST SETTINGS IN THE WEB CONSOLE

You can modify the menu of the web console for a particular user and all users of the system. In the cockpit project, a package name is a directory name. A package contains the manifest.json file along with other files. Default settings are present in the manifest.json file. You can override the default cockpit menu settings by creating a <package-name>.override.json file at a specific location for the specified user.
Prerequisites

- The RHEL 9 web console has been installed.
 For details, see Installing the web console.

Procedure

1. Override manifest settings in the `<systemd>.override.json` file in a text editor of your choice, for example:
 a. To edit for all users, enter:
      ```
      # vi /etc/cockpit/<systemd>.override.json
      ```
 b. To edit for a single user, enter:
      ```
      # vi ~/.config/cockpit/<systemd>.override.json
      ```

2. Edit the required file with the following details:

   ```
   {
   "menu": {
   "services": null,
   "logs": {
   "order": -1
   }
   }
   }
   ```

 - The **null** value hides the **services** tab
 - The **-1** value moves the **logs** tab to the first place.

3. Restart the **cockpit** service:

   ```
   # systemctl restart cockpit.service
   ```

Additional resources

- **cockpit(1) man page**
- **Manifest overrides**
CHAPTER 8. CONFIGURING NETWORK BONDS USING THE WEB CONSOLE

Learn how network bonding works and configure network bonds in the RHEL 9 web console.

NOTE

The RHEL 9 web console uses the NetworkManager service for networking-related operations.

Prerequisites

- The RHEL 9 web console installed and enabled. For details, see Installing the web console.

8.1. UPSTREAM SWITCH CONFIGURATION DEPENDING ON THE BONDING MODES

Depending on the bonding mode you want to use, you must configure the ports on the switch:

<table>
<thead>
<tr>
<th>Bonding mode</th>
<th>Configuration on the switch</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - balance-rr</td>
<td>Requires static EtherChannel enabled, not Link Aggregation Control Protocol (LACP)-negotiated.</td>
</tr>
<tr>
<td>1 - active-backup</td>
<td>No configuration required on the switch.</td>
</tr>
<tr>
<td>2 - balance-xor</td>
<td>Requires static EtherChannel enabled, not LACP-negotiated.</td>
</tr>
<tr>
<td>3 - broadcast</td>
<td>Requires static EtherChannel enabled, not LACP-negotiated.</td>
</tr>
<tr>
<td>4 - 802.3ad</td>
<td>Requires LACP-negotiated EtherChannel enabled.</td>
</tr>
<tr>
<td>5 - balance-tlb</td>
<td>No configuration required on the switch.</td>
</tr>
<tr>
<td>6 - balance-alb</td>
<td>No configuration required on the switch.</td>
</tr>
</tbody>
</table>

For details how to configure your switch, see the documentation of the switch.

IMPORTANT

Certain network bonding features, such as the fail-over mechanism, do not support direct cable connections without a network switch. For further details, see the Is bonding supported with direct connection using crossover cables? KCS solution.

8.2. BOND MODES

In RHEL 9 there are several mode options. Each mode option is characterize by specific load balancing and fault tolerance. The behavior of the bonded interfaces depends upon the mode. The bonding modes provide fault tolerance, load balancing or both.
Load balancing modes

- **Round Robin**: Sequentially transmit packets from the first available interface to the last one.

Fault tolerance modes

- **Active Backup**: Only when the primary interface fails, one of a backup interfaces replaces it. Only a MAC address used by active interface is visible.

- **Broadcast**: All transmissions are sent on all interfaces.

 NOTE

 Broadcasting significantly increases network traffic on all the bonded interfaces.

Fault tolerance and load balancing modes

- **XOR**: The destination MAC addresses are distributed equally between interfaces with a modulo hash. Each interface then serves the same group of MAC addresses.

- **802.3ad**: Sets an IEEE 802.3ad dynamic link aggregation policy. Creates aggregation groups that share the same speed and duplex settings. Transmits and receives on all interfaces in the active aggregator.

 NOTE

 This mode requires a switch that is 802.3ad compliant.

- **Adaptive transmit load balancing**: The outgoing traffic is distributed according to the current load on each interface. Incoming traffic is received by the current interface. If the receiving interface fails, another interface takes over the MAC address of the failed one.

- **Adaptive load balancing**: Includes transmit and receive load balancing for IPv4 traffic. Receive load balancing is achieved through Address Resolution Protocol (ARP) negotiation, therefore, it is necessary to set Link Monitoring to **ARP** in the bond’s configuration.

8.3. CONFIGURING A NETWORK BOND BY USING THE RHEL WEB CONSOLE

Use the RHEL web console to configure a network bond if you prefer to manage network settings using a web browser-based interface.

Prerequisites

- You are logged in to the RHEL web console.

- Two or more physical or virtual network devices are installed on the server.

- To use Ethernet devices as members of the bond, the physical or virtual Ethernet devices must be installed on the server.

- To use team, bridge, or VLAN devices as members of the bond, create them in advance as described in:
Configuring a network team by using the RHEL web console
Configuring a network bridge by using the RHEL web console
Configuring VLAN tagging by using the RHEL web console

Procedure

1. Select the Networking tab in the navigation on the left side of the screen.
2. Click Add bond in the Interfaces section.
3. Enter the name of the bond device you want to create.
4. Select the interfaces that should be members of the bond.
5. Select the mode of the bond.
 If you select Active backup, the web console shows the additional field Primary in which you can select the preferred active device.
6. Set the link monitoring mode. For example, when you use the Adaptive load balancing mode, set it to ARP.
7. Optional: Adjust the monitoring interval, link up delay, and link down delay settings. Typically, you only change the defaults for troubleshooting purposes.
8. Click **Apply**.

9. By default, the bond uses a dynamic IP address. If you want to set a static IP address:

 a. Click the name of the bond in the **Interfaces** section.

 b. Click **Edit** next to the protocol you want to configure.

 c. Select **Manual** next to **Addresses**, and enter the IP address, prefix, and default gateway.

 d. In the **DNS** section, click the + button, and enter the IP address of the DNS server. Repeat this step to set multiple DNS servers.

 e. In the **DNS search domains** section, click the + button, and enter the search domain.
f. If the interface requires static routes, configure them in the **Routes** section.

![IPv4 settings](image)

Click **Apply**

Verification

1. Select the **Networking** tab in the navigation on the left side of the screen, and check if there is incoming and outgoing traffic on the interface:

 ![Interfaces table](image)

2. Temporarily remove the network cable from the host.
 Note that there is no method to properly test link failure events using software utilities. Tools that deactivate connections, such as the web console, show only the bonding driver’s ability to handle member configuration changes and not actual link failure events.

3. Display the status of the bond:

   ```bash
   # cat /proc/net/bonding/bond0
   ```
8.4. ADDING INTERFACES TO THE BOND USING THE WEB CONSOLE

Network bonds can include multiple interfaces and you can add or remove any of them at any time. Learn how to add a network interface to an existing bond.

Prerequisites

- Having a bond with multiple interfaces configured as described in Configuring a network bond using the web console

Procedure

1. Log in to the web console. For details, see Logging in to the web console.
2. Open Networking.
3. In the Interfaces table, click on the bond you want to configure.
4. In the bond settings screen, scroll down to the table of members (interfaces).
5. Click the Add member drop-down icon.
6. Select the interface From the drop-down menu and click it.

Verification steps

- Check that the selected interface appeared in the Interface members table in the bond settings screen.

8.5. REMOVING OR DISABLING AN INTERFACE FROM THE BOND USING THE WEB CONSOLE

Network bonds can include multiple interfaces. If you need to change a device, you can remove or disable particular interfaces from the bond, which will work with the rest of the active interfaces.

To stop using an interface included in a bond, you can:

- Remove the interface from the bond.
- Disable the interface temporarily. The interface stays a part of the bond, but the bond will not use it until you enable it again.

Prerequisites

- Having a bond with multiple interfaces configured as described in Configuring a network bond using the web console

Procedure

1. Log in to the RHEL web console. For details, see Logging in to the web console.
2. Open Networking.
3. Click the bond you want to configure.

4. In the bond settings screen, scroll down to the table of ports (interfaces).

5. Select the interface and remove or disable it:
 - To remove the interface, click the - button.
 - To disable or enable the interface, toggle the switch next to the selected interface.

Based on your choice, the web console either removes or disables the interface from the bond and you can see it back in the Networking section as a standalone interface.

8.6. REMOVING OR DISABLING A BOND USING THE WEB CONSOLE

Remove or disable a network bond using the web console. If you disable the bond, the interfaces stay in the bond, but the bond will not be used for network traffic.

Prerequisites
- There is an existing bond in the web console.

Procedure
1. Log in to the web console.
 For details, see Logging in to the web console.

2. Open Networking.

3. Click the bond you want to remove.

4. In the bond settings screen, you can disable or enable the bond by toggling a switcher or click the Delete button to remove the bond permanently.

Verification steps
- Go back to Networking and verify that all the interfaces from the bond are now standalone interfaces.
CHAPTER 9. CONFIGURING NETWORK TEAMS USING THE WEB CONSOLE

Learn how network bonding works, what are the differences between network teams and network bonds, and what are the possibilities of configuration in the web console.

Additionally you can find guidelines for:

- Adding a new network team
- Adding new interfaces to an existing network team
- Removing interfaces from an existing network team
- Removing a network team

IMPORTANT

Network teaming is deprecated in Red Hat Enterprise Linux 9. If you plan to upgrade your server to a future version of RHEL, consider using the kernel bonding driver as an alternative. For details, see Configuring network bonding.

Prerequisites

- The RHEL web console installed and enabled. For details, see Installing the web console.

9.1. CONFIGURING A NETWORK TEAM BY USING THE RHEL WEB CONSOLE

Use the RHEL web console to configure a network team if you prefer to manage network settings using a web browser-based interface.

IMPORTANT

Network teaming is deprecated in Red Hat Enterprise Linux 9. Consider using the network bonding driver as an alternative. For details, see Configuring network bonding.

Prerequisites

- The teamd and NetworkManager-team packages are installed.
- Two or more physical or virtual network devices are installed on the server.
- To use Ethernet devices as ports of the team, the physical or virtual Ethernet devices must be installed on the server and connected to a switch.
- To use bond, bridge, or VLAN devices as ports of the team, create them in advance as described in:
 - Configuring a network bond by using the RHEL web console
 - Configuring a network bridge by using the RHEL web console
Configuring VLAN tagging by using the RHEL web console

Procedure

1. Select the **Networking** tab in the navigation on the left side of the screen.

2. Click **Add team** in the **Interfaces** section.

3. Enter the name of the team device you want to create.

4. Select the interfaces that should be ports of the team.

5. Select the runner of the team.
 - If you select **Load balancing** or **802.3ad LACP**, the web console shows the additional field **Balancer**.

6. Set the link watcher:
 - If you select **Ethtool**, additionally, set a link up and link down delay.
 - If you set **ARP ping** or **NSNA ping**, additionally, set a ping interval and ping target.

7. Click **Apply**.
8. By default, the team uses a dynamic IP address. If you want to set a static IP address:
 a. Click the name of the team in the Interfaces section.
 b. Click Edit next to the protocol you want to configure.
 c. Select Manual next to Addresses, and enter the IP address, prefix, and default gateway.
 d. In the DNS section, click the + button, and enter the IP address of the DNS server. Repeat this step to set multiple DNS servers.
 e. In the DNS search domains section, click the + button, and enter the search domain.
 f. If the interface requires static routes, configure them in the Routes section.
 ![IPv4 settings](image)
 g. Click Apply

Verification

1. Select the Networking tab in the navigation on the left side of the screen, and check if there is incoming and outgoing traffic on the interface.
2. Display the status of the team:

```
# teamdctl team0 state
setup:
  runner: activebackup
ports:
  enp7s0
    link watches:
      link summary: up
      instance[link_watch_0]:
        name: ethtool
        link: up
down count: 0
  enp8s0
    link watches:
      link summary: up
      instance[link_watch_0]:
        name: ethtool
        link: up
down count: 0
runner:
  active port: enp7s0
```

In this example, both ports are up.

Additional resources

- Network team runners

9.2. ADDING NEW INTERFACES TO THE TEAM USING THE WEB CONSOLE

Network teams can include multiple interfaces and it is possible to add or remove any of them at any time. The following section describes how to add a new network interface to an existing team.

Prerequisites

- A network team with is configured.

Procedure

1. Log in to the web console.
 For details, see Logging in to the web console.

2. Switch to the Networking tab.

3. In the Interfaces table, click on the team you want to configure.
4. In the team settings window, scroll down to the Ports table.

5. Click on the + button.

6. Select the interface you want to add from the drop-down list.

 ![Ports Table]

 The RHEL web console adds the interface to the team.

9.3. REMOVING OR DISABLING AN INTERFACE FROM THE TEAM USING THE WEB CONSOLE

Network teams can include multiple interfaces. If you need to change a device, you can remove or disable particular interfaces from the network team, which will work together with the rest of active interfaces.

There are two options how to stop using an interface included in a team:

- Removing the interface from the team
- Temporarily disabling the interface. The interface then stays as part of the team, but the team will not use it until you enable it again.

Prerequisites

- A network team with multiple interfaces exists on the host.

Procedure

1. Log in to the RHEL web console.
 For details, see [Logging in to the web console](#).

2. Switch to the Networking tab.

3. Click the team you want to configure.

4. In the team settings window, scroll down to the table of ports (interfaces).

5. Select an interface and remove or disable it.
 a. Switch the ON/OFF button to Off to disable the interface.
 b. Click the - button to remove the interface.
Based on your choice, the web console either removes or disables the interface. If you remove the interface, it will be available in **Networking** as a standalone interface.

9.4. REMOVING OR DISABLING A TEAM USING THE WEB CONSOLE

Remove or disable a network team using the web console. If you only disable the team, interfaces in the team will stay in it but the team will not be used for network traffic.

Prerequisites

- A network team is configured on the host.

Procedure

1. Log in to the web console.
 For details, see [Logging in to the web console](#).

2. Switch to the **Networking** tab.

3. Click the team you want to remove or disable.

4. Remove or disable the selected team.
 a. You can remove the team by clicking the **Delete** button.
 b. You can disable the team by moving the **ON/OFF** switch to a disabled position.

Verification steps

- If you removed the team, go to **Networking**, and verify that all the interfaces from your team are now listed as standalone interfaces.
CHAPTER 10. CONFIGURING NETWORK BRIDGES IN THE WEB CONSOLE

Network bridges are used to connect multiple interfaces to the one subnet with the same range of IP addresses.

Prerequisites

- The RHEL 9 web console installed and enabled. For details, see Installing the web console.

10.1. CONFIGURING A NETWORK BRIDGE BY USING THE RHEL WEB CONSOLE

Use the RHEL web console to configure a network bridge if you prefer to manage network settings using a web browser-based interface.

Prerequisites

- Two or more physical or virtual network devices are installed on the server.
- To use Ethernet devices as ports of the bridge, the physical or virtual Ethernet devices must be installed on the server.
- To use team, bond, or VLAN devices as ports of the bridge, you can either create these devices while you create the bridge or you can create them in advance as described in:
 - Configuring a network team using the RHEL web console
 - Configuring a network bond using the RHEL web console
 - Configuring VLAN tagging by using the RHEL web console

Procedure

1. Select the Networking tab in the navigation on the left side of the screen.
2. Click Add bridge in the Interfaces section.
3. Enter the name of the bridge device you want to create.
4. Select the interfaces that should be ports of the bridge.
5. Optional: Enable the Spanning tree protocol (STP) feature to avoid bridge loops and broadcast radiation.
6. Click **Apply**.

7. By default, the bridge uses a dynamic IP address. If you want to set a static IP address:

 a. Click the name of the bridge in the **Interfaces** section.

 b. Click **Edit** next to the protocol you want to configure.

 c. Select **Manual** next to **Addresses**, and enter the IP address, prefix, and default gateway.

 d. In the **DNS** section, click the **+** button, and enter the IP address of the DNS server. Repeat this step to set multiple DNS servers.

 e. In the **DNS search domains** section, click the **+** button, and enter the search domain.

 f. If the interface requires static routes, configure them in the **Routes** section.
g. Click **Apply**

Verification

1. Select the **Networking** tab in the navigation on the left side of the screen, and check if there is incoming and outgoing traffic on the interface:

<table>
<thead>
<tr>
<th>Interfaces</th>
<th>Add bond</th>
<th>Add team</th>
<th>Add bridge</th>
<th>Add VLAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>IP address</td>
<td>Sending</td>
<td>Receiving</td>
<td></td>
</tr>
<tr>
<td>bridge0</td>
<td>192.0.2.1/24</td>
<td>1.11 Mbps</td>
<td>612 Mbps</td>
<td></td>
</tr>
</tbody>
</table>

10.2. REMOVING INTERFACES FROM THE BRIDGE USING THE WEB CONSOLE

Network bridges can include multiple interfaces. You can remove them from the bridge. Each removed interface will be automatically changed to the standalone interface.

Learn how to remove a network interface from a software bridge created in the RHEL 9 system.

Prerequisites

- Having a bridge with multiple interfaces in your system.
Procedure

1. Log in to the RHEL web console. For details, see Logging in to the web console.
2. Open Networking.
3. Click the bridge you want to configure.
4. In the bridge settings screen, scroll down to the table of ports (interfaces).
5. Select an interface and click the - button.

Verification steps

- Go to Networking to check that you can see the interface as a standalone interface in the Interface members table.

10.3. DELETING BRIDGES IN THE WEB CONSOLE

You can delete a software network bridge in the RHEL web console. All network interfaces included in the bridge will be changed automatically to standalone interfaces.

Prerequisites

- Having a bridge in your system.

Procedure

1. Log in to the RHEL web console.
 For details, see Logging in to the web console.
2. Open the Networking section.
3. Click the bridge you want to configure.
4. Click Delete.

 bridgeO Bridge 52:54:00:2F:6B:2E
 Delete

Verification steps

- Go back to Networking and verify that all the network interfaces are displayed in the Interface members table.

Some interfaces that were previously part of the bridge can become inactive. If necessary, activate them and set network parameters manually.
CHAPTER 11. CONFIGURING VLANS IN THE WEB CONSOLE

This section describes how to configure Virtual Local Area Network (VLAN). A VLAN is a logical network within a physical network. The VLAN interface tags packets with the VLAN ID as they pass through the interface, and removes tags of returning packets.

11.1. CONFIGURING VLAN TAGGING BY USING THE RHEL WEB CONSOLE

Use the RHEL web console to configure VLAN tagging if you prefer to manage network settings using a web browser-based interface.

Prerequisites

- The interface you plan to use as a parent to the virtual VLAN interface supports VLAN tags.
- If you configure the VLAN on top of a bond interface:
 - The ports of the bond are up.
 - The bond is not configured with the `fail_over_mac=follow` option. A VLAN virtual device cannot change its MAC address to match the parent’s new MAC address. In such a case, the traffic would still be sent with the incorrect source MAC address.
 - The bond is usually not expected to get IP addresses from a DHCP server or IPv6 auto-configuration. Ensure it by disabling the IPv4 and IPv6 protocol creating the bond. Otherwise, if DHCP or IPv6 auto-configuration fails after some time, the interface might be brought down.
 - The switch, the host is connected to, is configured to support VLAN tags. For details, see the documentation of your switch.

Procedure

1. Select the Networking tab in the navigation on the left side of the screen.
2. Click Add VLAN in the Interfaces section.
3. Select the parent device.
4. Enter the VLAN ID.
5. Enter the name of the VLAN device or keep the automatically-generated name.
6. Click **Apply**.

7. By default, the VLAN device uses a dynamic IP address. If you want to set a static IP address:
 a. Click the name of the VLAN device in the **Interfaces** section.
 b. Click **Edit** next to the protocol you want to configure.
 c. Select **Manual** next to **Addresses**, and enter the IP address, prefix, and default gateway.
 d. In the **DNS** section, click the + button, and enter the IP address of the DNS server. Repeat this step to set multiple DNS servers.
 e. In the **DNS search domains** section, click the + button, and enter the search domain.
 f. If the interface requires static routes, configure them in the **Routes** section.

![IPv4 settings](image)

 g. Click **Apply**

Verification

- Select the **Networking** tab in the navigation on the left side of the screen, and check if there is incoming and outgoing traffic on the interface:
<table>
<thead>
<tr>
<th>Interfaces</th>
<th>Add bond</th>
<th>Add team</th>
<th>Add bridge</th>
<th>Add VLAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>IP address</td>
<td>Sending</td>
<td>Receiving</td>
<td></td>
</tr>
<tr>
<td>enp1s0.10</td>
<td>192.0.2.1/24</td>
<td>1.11 Mbps</td>
<td>61.2 Mbps</td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER 12. SETTING UP A WIREGUARD VPN BY USING THE RHEL WEB CONSOLE

WireGuard is a high-performance VPN solution that runs in the Linux kernel. It uses modern cryptography and is easier to configure than many other VPN solutions. Additionally, WireGuard’s small codebase reduces the surface for attacks and, therefore, improves security. For authentication and encryption, WireGuard uses keys similar to SSH.

IMPORTANT

WireGuard is provided as a Technology Preview only. Technology Preview features are not supported with Red Hat production Service Level Agreements (SLAs), might not be functionally complete, and Red Hat does not recommend using them for production. These previews provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.

See Technology Preview Features Support Scope on the Red Hat Customer Portal for information about the support scope for Technology Preview features.

Note that all hosts that participate in a WireGuard VPN are peers. This documentation uses the terms **client** to describe hosts that establish a connection and **server** to describe the host with the fixed hostname or IP address that the clients connect to and optionally route all traffic through this server.

WireGuard operates on the network layer (layer 3). Therefore, you cannot use DHCP and must assign static IP addresses or IPv6 link-local addresses to the tunnel devices on both the server and clients.

IMPORTANT

You can use WireGuard only if the Federal Information Processing Standard (FIPS) mode in RHEL is disabled.

12.1. PROTOCOLS AND PRIMITIVES USED BY WIREGUARD

WireGuard uses the following protocols and primitives:

- ChaCha20 for symmetric encryption, authenticated with Poly1305, using Authenticated Encryption with Associated Data (AEAD) construction as described in RFC7539
- Curve25519 for Elliptic-curve Diffie–Hellman (ECDH) key exchange
- BLAKE2s for hashing and keyed hashing, as described in RFC7693
- SipHash24 for hash table keys
- HKDF for key derivation, as described in RFC5869

12.2. HOW WIREGUARD USES TUNNEL IP ADDRESSES, PUBLIC KEYS, AND REMOTE ENDPOINTS

When WireGuard sends a network packet to a peer:

1. WireGuard reads the destination IP from the packet and compares it to the list of allowed IP addresses in the local configuration. If the peer is not found, WireGuard drops the packet.
2. If the peer is valid, WireGuard encrypts the packet using the peer’s public key.

3. The sending host looks up the most recent Internet IP address of the host and sends the encrypted packet to it.

When WireGuard receives a packet:

1. WireGuard decrypts the packet using the private key of the remote host.

2. WireGuard reads the internal source address from the packet and looks up whether the IP is configured in the list of allowed IP addresses in the settings for the peer on the local host. If the source IP is on the allowlist, WireGuard accepts the packet. If the IP address is not on the list, WireGuard drops the packet.

The association of public keys and allowed IP addresses is called **Cryptokey Routing Table**. This means that the list of IP addresses behaves similar to a routing table when sending packets, and as a kind of access control list when receiving packets.

12.3. USING A WIREGUARD CLIENT BEHIND NAT AND FIREWALLS

WireGuard uses the UDP protocol and transmits data only when a peer sends packets. Stateful firewalls and network address translation (NAT) on routers track connections to enable a peer behind NAT or a firewall to receive packets.

To keep the connection active, WireGuard supports **persistent keepalives**. This means you can set an interval at which WireGuard sends keepalive packets. By default, the persistent keep-alive feature is disabled to reduce network traffic. Enable this feature on the client if you use the client in a network with NAT or if a firewall closes the connection after some time of inactivity.

NOTE

Note that you cannot configure keepalive packets in WireGuard connections by using the RHEL web console. To configure this feature, edit the connection profile by using the `nmcli` utility.

12.4. CONFIGURING A WIREGUARD SERVER BY USING THE RHEL WEB CONSOLE

You can configure a WireGuard server by using the browser-based RHEL web console. Use this method to let NetworkManager manage the WireGuard connection.

Prerequisites

- You are logged in to the RHEL web console.
- You know the following information:
 - The static tunnel IP addresses and subnet masks of both the server and client
 - The public key of the client

Procedure

1. Select the **Networking** tab in the navigation on the left side of the screen.
2. Click Add VPN in the Interfaces section.

3. If the wireguard-tools and systemd-resolved packages are not already installed, the web console displays a corresponding notification. Click Install to install these packages.

4. Enter the name of the WireGuard device that you want to create.

5. Configure the key pair of this host:
 - If you want use the keys that the web console has created:
 i. Keep the pre-selected Generated option in the Private key area.
 ii. Note the Public key value. You require this information when you configure the client.
 - If you want to use an existing private key:
 i. Select Paste existing key in the Private key area.
 ii. Paste the private key into the text field. The web console automatically calculates the corresponding public key.

6. Set a listen port number, such as 51820, for incoming WireGuard connections. Always set a fixed port number on hosts that receive incoming WireGuard connections. If you do not set a port, WireGuard uses a random free port each time you activate the interface.

7. Set the tunnel IPv4 address and subnet mask of the server. To also set an IPv6 address, you must edit the connection after you have created it.

8. Add peer configurations for each client that you want to allow to communicate with this server:
 a. Click Add peer.
 b. Enter the public key of the client.
 c. Leave the Endpoint field empty.
 d. Set the Allowed IPs field to the tunnel IP addresses of the clients that are allowed to send data to this server.
9. Click **Add** to create the WireGuard connection.

10. If you want to also set a tunnel IPv6 address:

a. Click on the WireGuard connection’s name in the **Interfaces** section.

b. Click **edit** next to **IPv6**.

c. Set the **Addresses** field to **Manual**, and enter the tunnel IPv6 address and prefix of the server.

d. Click **Save**.

Next steps

- Configure the firewalld service on the WireGuard server.

Verification

1. Display the interface configuration of the **wg0** device:

   ```bash
   # wg show wg0
   interface: wg0
   public key: UtjqCJ57DeAscYKRp7cFGiQqdONRn69u249Fa406BE=
   private key: (hidden)
   listening port: 51820
   ```
To display the private key in the output, use the \texttt{WG_HIDE_KEYS=never wg show wg0} command.

2. Display the IP configuration of the \texttt{wg0} device:

```
# ip address show wg0
20: wg0: <POINTOPOINT,NOARP,UP,LOWER_UP> mtu 1420 qdisc noqueue state UNKNOWN group default qlen 1000
   link/none
   inet 192.0.2.1/24 brd 192.0.2.255 scope global noprefixroute wg0
       valid_lft forever preferred_lft forever
   inet6 2001:db8:1::1/32 scope global noprefixroute
       valid_lft forever preferred_lft forever
   inet6 fe80::3ef:8863:1ce2:844/64 scope link noprefixroute
       valid_lft forever preferred_lft forever
```

12.5. Configuring Firewalld on a WireGuard Server by Using the RHEL Web Console

You must configure the \texttt{firewalld} service on the WireGuard server to allow incoming connections from clients. Additionally, if clients should be able to use the WireGuard server as the default gateway and route all traffic through the tunnel, you must enable masquerading.

Prerequisites

- You are logged in to the RHEL web console.

Procedure

1. Select the \texttt{Networking} tab in the navigation on the left side of the screen.

2. Click \texttt{Edit rules and zones} in the \texttt{Firewall} section.

3. Enter \texttt{wireguard} into the \texttt{Filter services} field.

4. Select the \texttt{wireguard} entry from the list.
5. Click Add services.

6. If clients should route all traffic through the tunnel and use the WireGuard server as the default gateway, enable masquerading for the public zone:

```
# firewall-cmd --permanent --zone=public --add-masquerade
# firewall-cmd --reload
```

Note that you cannot enable masquerading in firewalld zones in the web console.

Verification

1. Select the Networking tab in the navigation on the left side of the screen.

2. Click Edit rules and zones in the Firewall section.

3. The list contains an entry for the wireguard service and displays the UDP port that you configured in the WireGuard connection profile.

4. To verify that masquerading is enabled in the firewalld public zone, enter:

```
# firewall-cmd --list-all --zone=public
public (active)
... 
ports: 51820/udp
masquerade: yes 
... 
```

12.6. CONFIGURING A WIREGUARD CLIENT BY USING THE RHEL WEB CONSOLE

You can configure a WireGuard client by using the browser-based RHEL web console. Use this method to let NetworkManager manage the WireGuard connection.

Prerequisites

- You are logged in to the RHEL web console.
- You know the following information:
 - The static tunnel IP addresses and subnet masks of both the server and client
 - The public key of the server

Procedure

1. Select the Networking tab in the navigation on the left side of the screen.

2. Click Add VPN in the Interfaces section.

3. If the wireguard-tools and systemd-resolved packages are not already installed, the web console displays a corresponding notification. Click Install to install these packages.

4. Enter the name of the WireGuard device that you want to create.
5. Configure the key pair of this host:
 - If you want to use the keys that the web console has created:
 i. Keep the pre-selected **Generated** option in the **Private key** area.
 ii. Note the **Public key** value. You require this information when you configure the client.
 - If you want to use an existing private key:
 i. Select **Paste existing key** in the **Private key** area.
 ii. Paste the private key into the text field. The web console automatically calculates the corresponding public key.

6. Preserve the **0** value in the **Listen port** field.

7. Set the tunnel IPv4 address and subnet mask of the client.
 To also set an IPv6 address, you must edit the connection after you have created it.

8. Add a peer configuration for the server that you want to allow to communicate with this client:
 a. Click **Add peer**.
 b. Enter the public key of the server.
 c. Set the **Endpoint** field to the hostname or IP address and the port of the server, for example **server.example.com:51820**. The client uses this information to establish the connection.
 d. Set the **Allowed IPs** field to the tunnel IP addresses of the clients that are allowed to send data to this server. For example, set the field to one of the following:
 - The tunnel IP addresses of the server to allow only the server to communicate with this client. The value in the screen capture below configures this scenario.
 - **0.0.0.0/0** to allow any remote IPv4 address to communicate with this client. Use this setting to route all traffic through the tunnel and use the WireGuard server as default gateway.
9. Click Add to create the WireGuard connection.

10. If you want to also set a tunnel IPv6 address:
 a. Click on the WireGuard connection’s name in the **Interfaces** section.
 b. Click edit next to **IPv6**.
 c. Set the **Addresses** field to **Manual**, and enter the tunnel IPv6 address and prefix of the client.
 d. Click **Save**.

Verification

1. Ping the IP addresses of the server:

   ```
   # ping 192.0.2.1
   ```

 WireGuard establishes the connection when you try to send traffic through the tunnel.

2. Display the interface configuration of the **wg0** device:

   ```
   # wg show wg0
   interface: wg0
   public key: bnwfQcC8/g2i4vvEeqcRUM2e6Hi3Nsksk6G9t4r26nFVM=
   private key: (hidden)
   listening port: 45513
   ```
peer: UtjqCJ57DeAsvYKRfp7cFGiQqdONRn69u249Fa4O6BE=
endpoint: server.example.com:51820
allowed ips: 192.0.2.1/32, 2001:db8:1::1/128
latest handshake: 1 minute, 41 seconds ago
transfer: 824 B received, 1.01 KiB sent
persistent keepalive: every 20 seconds

To display the private key in the output, use the `WG_HIDE_KEYS=never wg show wg0` command.

Note that the output has only the latest handshake and transfer entries if you have already sent traffic through the VPN tunnel.

3. Display the IP configuration of the `wg0` device:

```
# ip address show wg0
10: wg0: <POINTOPOINT,NOARP,UP,LOWER_UP> mtu 1420 qdisc noqueue state UNKNOWN group default qlen 1000
   link/none
      inet 192.0.2.2/24 brd 192.0.2.255 scope global noprefixroute wg0
         valid_lft forever preferred_lft forever
      inet6 fe80::73d9:6f51:ea6f:863e/64 scope link noprefixroute
         valid_lft forever preferred_lft forever
      inet6 2001:db8:1::2/32 scope global noprefixroute
         valid_lft forever preferred_lft forever
```
CHAPTER 13. CONFIGURING THE WEB CONSOLE LISTENING PORT

Learn how to allow new ports or change the existing ports using the RHEL 9 web console.

13.1. ALLOWING A NEW PORT ON A SYSTEM WITH ACTIVE SELINUX

Enable the web console to listen on a selected port.

Prerequisites

- The web console must be installed and accessible. For details, see Installing the web console.

Procedure

- For ports that are not defined by any other part of SELinux, run:


  ```bash
  $ sudo semanage port -a -t websm_port_t -p tcp PORT_NUMBER
  ```

- For ports that already are defined by other part of SELinux, run:

  ```bash
  $ sudo semanage port -m -t websm_port_t -p tcp PORT_NUMBER
  ```

The changes should take effect immediately.

13.2. ALLOWING A NEW PORT ON A SYSTEM WITH FIREWALLD

Enable the web console to receive connections on a new port.

Prerequisites

- The web console must be installed and accessible. For details, see Installing the web console.
- The firewall service must be running.

Procedure

1. To add a new port number, run the following command:

   ```bash
   $ sudo firewall-cmd --permanent --service cockpit --add-port=PORT_NUMBER/tcp
   ```

2. To remove the old port number from the cockpit service, run:

   ```bash
   $ sudo firewall-cmd --permanent --service cockpit --remove-port=OLD_PORT_NUMBER/tcp
   ```

 IMPORTANT

 If you only run the `firewall-cmd --service cockpit --add-port=PORT_NUMBER/tcp` without the `--permanent` option, your change will disappear with the next reload of `firewalld` or a system reboot.
13.3. CHANGING THE WEB CONSOLE PORT

Change default transmission control protocol (TCP) on port 9090 to a different one.

Prerequisites

- The web console must be installed and accessible. For details, see Installing the web console.
- With SELinux enabled, modify the policy to allow the web console to listen on a new port. For more information, see Allowing a new port on a system with active SELinux.
- With the firewalld service in the default configuration, you must open the new port for the web console. For more information, see Allowing a new port on a system with firewalld.

Procedure

1. Change the listening port with one of the following methods:
 a. Using the `systemctl edit cockpit.socket` command:
 i. Enter the following command:
         ```
         # systemctl edit cockpit.socket
         ```
 This opens the `/etc/systemd/system/cockpit.socket.d/override.conf` file.
 ii. Modify the content of `override.conf` to contain the following configuration:
         ```
         [Socket]
         ListenStream=
         ListenStream=PORT_NUMBER
         ```
 The `ListenStream` option specifies the desired address and TCP port.

 NOTE
 The first line with an empty value is intentional. systemd allows multiple `ListenStream` directives to be declared in a single socket unit. An empty value in a drop-in file resets the list and disables the default port 9090 from the original unit.
 b. Alternatively, add the previous socket configuration to the `/etc/systemd/system/cockpit.socket.d/listen.conf` file.
 Create the `cockpit.socket.d.` directory and the `listen.conf` file if they do not exist yet.

2. Enter the following commands for changes to take effect:
   ```
   # systemctl daemon-reload
   # systemctl restart cockpit.socket
   ```
 If you used `systemctl edit cockpit.socket` in the previous step, running `systemctl daemon-reload` is not necessary.

Verification steps
To verify that the change was successful, connect to the web console with the new port.
A firewall is a way to protect machines from any unwanted traffic from outside. It enables users to control incoming network traffic on host machines by defining a set of firewall rules. These rules are used to sort the incoming traffic and either block it or allow it through. In RHEL, the `firewalld` service with the `nftables` back end functions as a default firewall. Through the RHEL web console, you can configure `firewalld`.

For details about the `firewalld` service, see [Getting started with firewalld](#).

14.1. RUNNING FIREWALL USING THE WEB CONSOLE

The following steps show where and how to run the RHEL 9 system firewall in the web console.

NOTE

The RHEL 9 web console configures the `firewalld` service.

Procedure

1. Log in to the RHEL 9 web console. For details, see [Logging in to the web console](#).
2. Open the **Networking** section.
3. In the **Firewall** section, click the slider to run the firewall.

 ![Firewall slider](image)

 If you do not see the **Firewall** slider, log in to the web console with the administrative privileges.

At this stage, your firewall is running.

To configure firewall rules, see [Enabling services on the firewall using the web console](#).

14.2. STOPPING FIREWALL USING THE WEB CONSOLE

The following steps show where and how to stop the RHEL 9 system firewall in the web console.

NOTE

The RHEL 9 web console configures the `firewalld` service.

Procedure

1. Log in to the RHEL 9 web console. For details, see [Logging in to the web console](#).
2. Open the **Networking** section.
3. In the **Firewall** section, click the slider to stop the firewall.

If you do not see the **Firewall** slider, log in to the web console with the administrative privileges.

At this stage, the firewall has been stopped and does not secure your system.

14.3. FIREWALL ZONES

You can use the **firewalld** utility to separate networks into different zones according to the level of trust that you have with the interfaces and traffic within that network. A connection can only be part of one zone, but you can use that zone for many network connections.

firewalld follows strict principles in regards to zones:

1. Traffic ingresses only one zone.
2. Traffic egresses only one zone.
3. A zone defines a level of trust.
4. Intrazone traffic (within the same zone) is allowed by default.
5. Interzone traffic (from zone to zone) is denied by default.

Principles 4 and 5 are a consequence of principle 3.

Principle 4 is configurable through the zone option `--remove-forward`. Principle 5 is configurable by adding new policies.

NetworkManager notifies **firewalld** of the zone of an interface. You can assign zones to interfaces with the following utilities:

- **NetworkManager**
- **firewall-config** utility
- **firewall-cmd** utility
- The RHEL web console

The RHEL web console, **firewall-config**, and **firewall-cmd** can only edit the appropriate **NetworkManager** configuration files. If you change the zone of the interface using the web console, **firewall-cmd**, or **firewall-config**, the request is forwarded to **NetworkManager** and is not handled by **firewalld**.

The `/usr/lib/firewalld/zones/` directory stores the predefined zones, and you can instantly apply them to any available network interface. These files are copied to the `/etc/firewalld/zones/` directory only after they are modified. The default settings of the predefined zones are as follows:
block

- Suitable for: Any incoming network connections are rejected with an icmp-host-prohibited message for IPv4 and icmp6-adm-prohibited for IPv6.
- Accepts: Only network connections initiated from within the system.

dmz

- Suitable for: Computers in your DMZ that are publicly-accessible with limited access to your internal network.
- Accepts: Only selected incoming connections.

drop

- Suitable for: Any incoming network packets are dropped without any notification.
- Accepts: Only outgoing network connections.

external

- Suitable for: External networks with masquerading enabled, especially for routers. Situations when you do not trust the other computers on the network.
- Accepts: Only selected incoming connections.

home

- Suitable for: Home environment where you mostly trust the other computers on the network.
- Accepts: Only selected incoming connections.

internal

- Suitable for: Internal networks where you mostly trust the other computers on the network.
- Accepts: Only selected incoming connections.

public

- Suitable for: Public areas where you do not trust other computers on the network.
- Accepts: Only selected incoming connections.

trusted

- Accepts: All network connections.

work

- Suitable for: Work environment where you mostly trust the other computers on the network.
- Accepts: Only selected incoming connections.
One of these zones is set as the default zone. When interface connections are added to NetworkManager, they are assigned to the default zone. On installation, the default zone in firewalld is the public zone. You can change the default zone.

NOTE

Make network zone names self-explanatory to help users understand them quickly.

To avoid any security problems, review the default zone configuration and disable any unnecessary services according to your needs and risk assessments.

Additional resources

- firewalld.zone(5) man page

14.4. ZONES IN THE WEB CONSOLE

The Red Hat Enterprise Linux web console implements major features of the firewalld service and enables you to:

- Add predefined firewall zones to a particular interface or range of IP addresses
- Configure zones with selecting services into the list of enabled services
- Disable a service by removing this service from the list of enabled service
- Remove a zone from an interface

14.5. ENABLING ZONES USING THE WEB CONSOLE

You can apply predefined and existing firewall zones on a particular interface or a range of IP addresses through the RHEL web console.

Prerequisites

- The RHEL 9 web console has been installed. For details, see Installing the web console.
- The firewall must be enabled. For details, see Running firewall using the web console.

Procedure

1. Log in to the RHEL web console with administrative privileges. For details, see Logging in to the web console.

2. Click Networking.

3. Click on the Edit rules and zones button.
If you do not see the **Edit rules and zones** button, log in to the web console with the administrator privileges.

4. In the **Firewall** section, click **Add new zone**.

5. In the **Add zone** dialog box, select a zone from the **Trust level** options. The web console displays all zones predefined in the **firewalld** service.

6. In the **Interfaces** part, select an interface or interfaces on which the selected zone is applied.

7. In the **Allowed Addresses** part, you can select whether the zone is applied on:
 - the whole subnet
 - or a range of IP addresses in the following format:
 - 192.168.1.0
 - 192.168.1.0/24
 - 192.168.1.0/24, 192.168.1.0

8. Click on the **Add zone** button.

Add zone

<table>
<thead>
<tr>
<th>Trust level</th>
<th>Sorted from least to most trusted</th>
<th>Custom zones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public</td>
<td></td>
<td>FedoraServer</td>
</tr>
<tr>
<td>External</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dmz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Work</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Home</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internal</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description

For use in home areas. You mostly trust the other computers on networks to not harm your computer. Only selected incoming connections are accepted.

Included services

ssh, mdns, samba-client, dhcpv6-client

The cockpit service is automatically included

Interfaces

- enp0s20f10u4u1u2
- enp0s31f6
- p2p-dev-wlp6ls0
- tap0
- tun0

Allowed addresses

- **Entire subnet**
- **Range**

Verfication

- Check the configuration in the **Firewall** section:
14.6. ENABLING SERVICES ON THE FIREWALL USING THE WEB CONSOLE

By default, services are added to the default firewall zone. If you use more firewall zones on more network interfaces, you must select a zone first and then add the service with port.

The RHEL 9 web console displays predefined firewalld services and you can add them to active firewall zones.

IMPORTANT

The RHEL 9 web console configures the firewalld service.

The web console does not allow generic firewalld rules which are not listed in the web console.

Prerequisites

- The RHEL 9 web console has been installed. For details, see Installing the web console.
- The firewall must be enabled. For details, see Running firewall using the web console.

Procedure

1. Log in to the RHEL web console with administrator privileges. For details, see Logging in to the web console.
2. Click Networking.
3. Click on the Edit rules and zones button.

 If you do not see the Edit rules and zones button, log in to the web console with the administrator privileges.
4. In the Firewall section, select a zone for which you want to add the service and click Add Services.
5. In the Add Services dialog box, find the service you want to enable on the firewall.

6. Enable services according to your scenario:

 Add services to home zone
 - Services
 - Custom ports

 Filter services freeIPA

 - freeipa-4
 - TCP: 90, 443, 88, 464, 389, 636
 - UDP: 88, 464
 - freeipa-ldap
 - TCP: 90, 443, 88, 464, 389
 - UDP: 88, 464, 123
 - freeipa-ldaps
 - TCP: 90, 443, 88, 464, 636
 - UDP: 88, 464, 123
 - freeipa-replication

 Add services **Cancel**

7. Click Add Services.

At this point, the RHEL 9 web console displays the service in the zone's list of Services.

14.7. CONFIGURING CUSTOM PORTS USING THE WEB CONSOLE

The web console allows you to add:

- Services listening on standard ports: Enabling services on the firewall using the web console
- Services listening on custom ports.

You can add services by configuring custom ports as described.

Prerequisites

- The RHEL 9 web console has been installed. For details, see Installing the web console.
- The firewall must be enabled. For details, see Running firewall using the web console.

Procedure
1. Log in to the RHEL web console with administrator privileges. For details, see Logging in to the web console.

2. Click Networking.

3. Click on the **Edit rules and zones** button.

If you do not see the **Edit rules and zones** button, log in to the web console with the administrative privileges.

4. In the Firewall section, select a zone for which you want to configure a custom port and click **Add Services**.

5. In the **Add services** dialog box, click on the **Custom Ports** radio button.

6. In the TCP and UDP fields, add ports according to examples. You can add ports in the following formats:
 - Port numbers such as 22
 - Range of port numbers such as 5900-5910
 - Aliases such as nfs, rsync

 NOTE
 You can add multiple values into each field. Values must be separated with the comma and without the space, for example: 8080,8081,http

7. After adding the port number in the TCP field, the UDP filed, or both, verify the service name in the Name field.
 The Name field displays the name of the service for which is this port reserved. You can rewrite the name if you are sure that this port is free to use and no server needs to communicate on this port.

8. In the Name field, add a name for the service including defined ports.

9. Click on the **Add Ports** button.
To verify the settings, go to the Firewall page and find the service in the list of zone's Services.

14.8. DISABLING ZONES USING THE WEB CONSOLE

You can disable a firewall zone in your firewall configuration using the web console.

Prerequisites

- The RHEL 9 web console has been installed. For details, see Installing the web console.

Procedure

1. Log in to the RHEL web console with administrator privileges. For details, see Logging in to the web console.

2. Click Networking.

3. Click on the Edit rules and zones button.
If you do not see the **Edit rules and zones** button, log in to the web console with the administrator privileges.

4. **Click on the Options icon at the zone you want to remove.**

5. **Click Delete.**

The zone is now disabled and the interface does not include opened services and ports which were configured in the zone.
CHAPTER 15. SETTING UP SYSTEM-WIDE CRYPTOGRAPHIC POLICIES IN THE WEB CONSOLE

You can set one of system-wide cryptographic policies and subpolicies directly in the RHEL web console interface. Besides the four predefined system-wide cryptographic policies, you can also apply the following combinations of policies and subpolicies through the graphical interface now:

DEFAULT:SHA1
- The **DEFAULT** policy with the SHA-1 algorithm enabled.

LEGACY:AD-SUPPORT
- The **LEGACY** policy with less secure settings that improve interoperability for Active Directory services.

FIPS:OSPP
- The **FIPS** policy with further restrictions required by the Common Criteria for Information Technology Security Evaluation standard.

WARNING

Because the FIPS:OSPP system-wide subpolicy contains further restrictions for cryptographic algorithms required by the Common Criteria (CC) certification, the system is less interoperable after you set it. For example, you cannot use RSA and DH keys shorter than 3072 bits, additional SSH algorithms, and several TLS groups. Setting FIPS:OSPP also prevents connecting to Red Hat Content Delivery Network (CDN) structure. Furthermore, you cannot integrate Active Directory (AD) into the IdM deployments that use FIPS:OSPP, communication between RHEL hosts using FIPS:OSPP and AD domains might not work, or some AD accounts might not be able to authenticate.

Note that your **system is not CC-compliant** after you set the **FIPS:OSPP** cryptographic subpolicy. The only correct way to make your RHEL system compliant with the CC standard is through the installation of the cc-config package. See the Common Criteria section in the Compliance Activities and Government Standards Knowledgebase article for a list of certified RHEL versions, validation reports, and links to CC guides hosted at the National Information Assurance Partnership (NIAP) website.

Prerequisites

- The RHEL 9 web console has been installed. For details, see Installing and enabling the web console.

- You have root privileges or permissions to enter administrative commands with `sudo`.

Procedure

1. Log in to the web console. For more information, see Logging in to the web console.
2. In the **Configuration** card of the **Overview** page, click your current policy value next to **Crypto policy**.

3. In the **Change crypto policy** dialog window, click on the policy you want to start using on your system.

4. Click the **Apply and reboot** button.

Verification

- After the restart, log back in to web console, and check that the **Crypto policy** value corresponds to the one you selected. Alternatively, you can enter the `update-crypto-policies --show` command to display the current system-wide cryptographic policy in your terminal.

Additional resources
• For detailed information about each cryptographic policy, see the System-wide cryptographic policies section in the Security hardening document.
CHAPTER 16. CREATING AN SELINUX CONFIGURATION
ANSIBLE PLAYBOOK IN THE WEB CONSOLE

In the web console, you can generate a shell script or an Ansible playbook of your SELinux configuration. In case of the Ansible playbook, you can conveniently apply the configuration on multiple systems.

Prerequisites

- The web console must be installed and accessible.
 For details, see Installing the web console.

Procedure

1. Click SELinux.
2. Click View the automation script.
 A window with the generated script opens. You can navigate between a shell script and an Ansible playbook generation options tab.

 ![Automation script](image)

 - - name: Allow virt to sandbox use all caps
 command: semanage boolean -m --on virt_sandbox_use_all_caps

 - - name: Allow virt to use nfs
 command: semanage boolean -m --on virt_use_nfs

 - - name: Set up permissive customizations
 shell: |
 semanage permissive -D
 semanage permissive -a rhcad_t

 Create new task file with this content.

 Ansible roles documentation

3. Click the Copy to clipboard button to select the script or playbook and apply it.

As a result, you have an automation script that you can apply to more machines.

Additional resources
• Troubleshooting problems related to SELinux
• Deploying the same SELinux configuration on multiple systems
• `ansible-playbook(1)` man page
CHAPTER 17. MANAGING PARTITIONS USING THE WEB CONSOLE

Learn how to manage file systems on RHEL 9 using the web console.

For details about the available file systems, see the Overview of available file systems.

17.1. DISPLAYING PARTITIONS FORMATTED WITH FILE SYSTEMS IN THE WEB CONSOLE

The Storage section in the web console displays all available file systems in the Filesystems table.

Besides the list of partitions formatted with file systems, you can also use the page for creating new storage.

Prerequisites

- The cockpit-storaged package is installed on your system.
- The web console must be installed and accessible. For details, see Installing the web console.

Procedure

1. Log in to the RHEL 9 web console. For details, see Logging in to the web console.

2. Click the Storage tab. In the Storage table, you can see all available partitions formatted with file systems, their ID, types, locations, sizes, and how much space is available on each partition.

You can also use the drop-down menu in the top-right corner to create new local or networked storage.
17.2. CREATING PARTITIONS IN THE WEB CONSOLE

To create a new partition:

- Use an existing partition table
- Create a partition

Prerequisites

- The `cockpit-storaged` package is installed on your system.
- The web console must be installed and accessible. For details, see Installing the web console.
- An unformatted volume connected to the system is visible in the Storage table of the Storage tab.

Procedure

1. Log in to the RHEL web console. For details, see Logging in to the web console.
2. Click the Storage tab.
3. In the Storage table, click the device which you want to partition to open the page and options for that device.
4. On the device page, click the menu button, ⋮, and select Create partition table.
5. In the Initialize disk dialog box, select the following:
 a. Partitioning:
 - Compatible with all systems and devices (MBR)
 - Compatible with modern system and hard disks > 2TB (GPT)
 - No partitioning
b. **Overwrite:**

- Select the **Overwrite existing data with zeros** checkbox if you want the RHEL web console to rewrite the whole disk with zeros. This option is slower because the program has to go through the whole disk, but it is more secure. Use this option if the disk includes any data and you need to overwrite it.

 If you do not select the **Overwrite existing data with zeros** checkbox, the RHEL web console rewrites only the disk header. This increases the speed of formatting.

6. Click **Initialize**.

7. Click the menu button, ⋮, next to the partition table you created. It is named **Free space** by default.

8. Click **Create partition**.

9. In the **Create partition** dialog box, enter a **Name** for the file system.

10. Add a **Mount point**.

11. In the **Type** drop-down menu, select a file system:

 - **XFS** file system supports large logical volumes, switching physical drives online without outage, and growing an existing file system. Leave this file system selected if you do not have a different strong preference.

 - **ext4** file system supports:
 - Logical volumes
 - Switching physical drives online without outage
 - Growing a file system
 - Shrinking a file system

 Additional option is to enable encryption of partition done by LUKS (Linux Unified Key Setup), which allows you to encrypt the volume with a passphrase.

12. Enter the **Size** of the volume you want to create.

13. Select the **Overwrite existing data with zeros** checkbox if you want the RHEL web console to rewrite the whole disk with zeros. This option is slower because the program has to go through the whole disk, but it is more secure. Use this option if the disk includes any data and you need to overwrite it.

 If you do not select the **Overwrite existing data with zeros** checkbox, the RHEL web console rewrites only the disk header. This increases the speed of formatting.

14. If you want to encrypt the volume, select the type of encryption in the **Encryption** drop-down menu.

 If you do not want to encrypt the volume, select **No encryption**.

15. In the **At boot** drop-down menu, select when you want to mount the volume.

16. In **Mount options** section:

 a. Select the **Mount read only** checkbox if you want the to mount the volume as a read-only logical volume.
b. Select the **Custom mount options** checkbox and add the mount options if you want to change the default mount option.

17. Create the partition:

- If you want to create and mount the partition, click the **Create and mount** button.
- If you want to only create the partition, click the **Create only** button. Formatting can take several minutes depending on the volume size and which formatting options are selected.

Verification steps

- To verify that the partition has been successfully added, switch to the **Storage** tab and check the **Storage** table and verify whether the new partition is listed.

17.3. DELETING PARTITIONS IN THE WEB CONSOLE

You can remove partitions in the web console interface.

Prerequisites

- The **cockpit-storaged** package is installed on your system.
- The web console must be installed and accessible. For details, see [Installing the web console](#).

Procedure

1. Log in to the RHEL web console. For details, see [Logging in to the web console](#).
2. Click the **Storage** tab.
3. Click the device from which you want to delete a partition.
4. On the device page and in the **GPT partitions** section, click the menu button, ⋮ next to the partition you want to delete.
5. From the drop-down menu, select **Delete**. The RHEL web console terminates all processes that are currently using the partition and unmount the partition before deleting it.

Verification steps

- To verify that the partition has been successfully removed, switch to the **Storage** tab and check the **Storage** table.

17.4. MOUNTING AND UNMOUNTING FILE SYSTEMS IN THE WEB CONSOLE

To be able to use partitions on RHEL systems, you need to mount a file system on the partition as a device.
NOTE

You also can unmount a file system and the RHEL system will stop using it. Unmounting the file system enables you to delete, remove, or re-format devices.

Prerequisites

- The **cockpit-storaged** package is installed on your system.
- The web console must be installed and accessible. For details, see Installing the web console.
- If you want to unmount a file system, ensure that the system does not use any file, service, or application stored in the partition.

Procedure

1. Log in to the RHEL web console. For details, see Logging in to the web console.
2. Click the **Storage** tab.
3. In the **Storage** table, select a volume from which you want to delete the partition.
4. In the **GPT partitions** section, click the menu button, next to the partition whose file system you want to mount or unmount.
5. Click **Mount** or **Unmount**.
CHAPTER 18. MANAGING NFS MOUNTS IN THE WEB CONSOLE

The RHEL 9 web console enables you to mount remote directories using the Network File System (NFS) protocol.

NFS makes it possible to reach and mount remote directories located on the network and work with the files as if the directory was located on your physical drive.

Prerequisites

- The RHEL 9 web console has been installed. For details, see Installing the web console.
- The cockpit-storaged package is installed on your system.
- NFS server name or IP address.
- Path to the directory on the remote server.

18.1. CONNECTING NFS MOUNTS IN THE WEB CONSOLE

Connect a remote directory to your file system using NFS.

Prerequisites

- NFS server name or the IP address.
- Path to the directory on the remote server.

Procedure

1. Log in to the RHEL 9 web console. For details, see Logging in to the web console.
2. Click Storage.
3. In the Storage table, click the menu button.
4. From the drop-down menu, select New NFS mount.
5. In the **New NFS Mount** dialog box, enter the server or IP address of the remote server.

6. In the **Path on Server** field, enter the path to the directory that you want to mount.

7. In the **Local Mount Point** field, enter the path to the directory on your local system where you want to mount the NFS.

8. In the **Mount options** check box list, select how you want to mount the NFS. You can select multiple options depending on your requirements.
 - Check the **Mount at boot** box if you want the directory to be reachable even after you restart the local system.
 - Check the **Mount read only** box if you do not want to change the content of the NFS.
 - Check the **Custom mount options** box and add the mount options if you want to change the default mount option. For more information, see *Customizing NFS mount options in the web console*.

9. Click **Add**.

Verification steps
18.2. CUSTOMIZING NFS MOUNT OPTIONS IN THE WEB CONSOLE

Edit an existing NFS mount and add custom mount options.

Custom mount options can help you to troubleshoot the connection or change parameters of the NFS mount such as changing timeout limits or configuring authentication.

Prerequisites

- An NFS mount is added to your system.

Procedure

1. Log in to the RHEL 9 web console. For details, see Logging in to the web console.
2. Click Storage.
3. In the Storage table, click the NFS mount you want to adjust.
4. If the remote directory is mounted, click Unmount. You must unmount the directory during the custom mount options configuration. Otherwise, the web console does not save the configuration and this causes an error.
5. Click Edit.
6. In the NFS Mount dialog box, select Custom mount option.
7. Enter mount options separated by a comma. For example:
 - `nfsvers=4`: The NFS protocol version number
 - `soft`: The type of recovery after an NFS request times out
 - `sec=krb5`: The files on the NFS server can be secured by Kerberos authentication. Both the NFS client and server have to support Kerberos authentication.

 For a complete list of the NFS mount options, enter `man nfs` in the command line.
8. Click Apply.
9. Click Mount.

Verification steps

- Open the mounted directory and verify that the content is accessible.
CHAPTER 19. MANAGING RAID IN THE WEB CONSOLE

Redundant Arrays of Independent Disks (RAID) represents a way how to arrange more disks into one storage for performance and redundancy goals.

RAID uses the following data distribution strategies:

- Mirroring – data are copied to two different locations. If one disk fails, you have a copy and your data is not lost.
- Striping – data are evenly distributed among disks.

Level of protection depends on the RAID level.

The RHEL web console supports the following RAID levels:

- RAID 0 (Stripe)
- RAID 1 (Mirror)
- RAID 4 (Dedicated parity)
- RAID 5 (Distributed parity)
- RAID 6 (Double Distributed Parity)
- RAID 10 (Stripe of Mirrors)

Before you can use disks in RAID, you must:

- Create a RAID.
- Format it with file system.
- Mount the RAID to the system.

Prerequisites

- The RHEL 9 web console is installed and accessible. For details, see Installing the web console.
- The cockpit-storaged package is installed on your system.

19.1. CREATING RAID IN THE WEB CONSOLE

Configure RAID in the RHEL 9 web console.

Prerequisites

- Physical disks connected to the system. Each RAID level requires different amount of disks.

Procedure

1. Open the RHEL 9 web console.
2. Click Storage.
3. In the **Storage** table, click the menu button.

4. From the drop-down menu, select **Create MDRAID device**.

5. In the **Create RAID Device** dialog box, enter a name for the new RAID.

6. In the **RAID Level** drop-down list, select a level of RAID you want to use.

7. From the **Chunk Size** drop-down list, select the size from the list of available options. The **Chunk Size** value specifies how large each block is for data writing. For example, if the chunk size is 512 KiB, the system writes the first 512 KiB to the first disk, the second 512 KiB is written to the second disk, and the third chunk is written to the third disk. If you have three disks in your RAID, the fourth 512 KiB is written to the first disk again.

8. Select the disks you want to use for RAID.

9. Click **Create**.

Verification steps

- Go to the **Storage** section and check that you can see the new RAID in the **RAID devices** box.

You have the following options to format and mount the new RAID in the web console:

- Formatting RAID
- Creating partitions on the partition table
- Creating a volume group on top of the RAID

19.2. FORMATTING RAID IN THE WEB CONSOLE

You can format and mount software RAID devices in the RHEL 9 web console.

Prerequisites

- Physical disks are connected and visible by RHEL 9.
- RAID is created.
- Consider the file system to be used for the RAID.
- Consider creating a partitioning table.

Procedure

1. Open the RHEL 9 web console.
2. Click **Storage**.
3. In the **Storage** table, click the menu button, ⋮, next to the RAID device you want to format.
4. From the drop-down menu, select **Format**.
5. In the **Format** dialog box, enter a name.
6. In the **Mount Point** field, add the mount path.
7. From the **Type** drop-down list, select the type of file system.
8. Select the **Overwrite existing data with zeros** checkbox if you want the RHEL web console to rewrite the whole disk with zeros. This option is slower because the program has to go through the whole disk, but it is more secure. Use this option if the disk includes any data and you need to overwrite it.
 If you do not select the **Overwrite existing data with zeros** checkbox, the RHEL web console rewrites only the disk header. This increases the speed of formatting.
9. If you want to encrypt the volume, select the type of encryption from the **Encryption** drop-down menu.
 If you do not want to encrypt the volume, select **No encryption**.
10. In the **At boot** drop-down menu, select when you want to mount the volume.
11. In the **Mount options** section:
 a. Select the **Mount read only** checkbox if you want to mount the volume as a read-only logical volume.
 b. Select the **Custom mount options** checkbox and add the mount options if you want to change the default mount option. For more information, see Customizing NFS mount options in the web console.
12. Format the RAID partition:
 - If you want to format and mount the partition, click the **Format and mount** button.
 - If you want to only format the partition, click the **Format only** button.
 Formatting can take several minutes depending on the volume size and which formatting options are selected.

Verification

- After the formatting has completed successfully, you can see the details of the formatted logical volume in the **Storage** table on the **Storage** page.
19.3. CREATING A PARTITION TABLE ON RAID USING THE WEB CONSOLE

Format RAID with the partition table on the new software RAID device created in the RHEL 9 interface. RAID requires formatting as any other storage device. You have two options:

- Format the RAID device without partitions
- Create a partition table with partitions

Prerequisites

- Physical disks are connected and visible by .
- RAID is created.
- Consider the file system used for the RAID.
- Consider creating a partitioning table.

Procedure

1. Open the RHEL 9 console.
2. Click Storage.
3. In the Storage table, click the RAID device on which you want to create a partition table.
4. Click the menu button, ⋮ in the MDRAID device section.
5. From the drop-down menu, select Create partition table.
6. In the Initialize disk dialog box, select the following:
 a. Partitioning:
 - Compatible with all systems and devices (MBR)
 - Compatible with modern system and hard disks > 2TB (GPT)
 - No partitioning
 b. Overwrite:
 - Select the Overwrite existing data with zeros checkbox if you want the RHEL web console to rewrite the whole disk with zeros. This option is slower because the program has to go through the whole disk, but it is more secure. Use this option if the disk includes any data and you want to overwrite it.
 If you do not select the Overwrite existing data with zeros checkbox, the RHEL web console rewrites only the disk header. This increases the speed of formatting.
7. Click Initialize.

 The partitioning table is created and you can now create partitions on that table. For more details, see Creating partitions on RAID using the web console.
19.4. CREATING PARTITIONS ON RAID USING THE WEB CONSOLE

Create a partition in the existing partition table.

Prerequisites

- Partition table is created. For details, see Creating a partition table on RAID using the web console

Procedure

1. Open the RHEL 9 web console.
2. Click Storage.
3. In the Storage table, click the RAID device on which you want to create a partition.
4. On the RAID device page, scroll to the GPT partitions section and click the menu button, ⋮, next to the partition table you created. It is named Free space by default.
5. Click Create partition.
6. In the Create partition dialog box, enter a name for the file system. Do not use spaces in the name.
7. In the Mount Point field, add the mount path.
8. In the Type drop-down list, select the type of file system.
9. In the Size field, set the size of the partition.
10. Select the Overwrite existing data with zeros checkbox if you want the RHEL web console to rewrite the whole disk with zeros. This option is slower because the program has to go through the whole disk, but it is more secure. Use this option if the disk includes any data and you want to overwrite it.
 If you do not select the Overwrite existing data with zeros checkbox, the RHEL web console overwrites only the disk header. This increases the speed of formatting.
11. If you want to encrypt the volume, select the type of encryption in the Encryption drop-down menu.
 If you do not want to encrypt the volume, select No encryption.
12. In the At boot drop-down menu, select when you want to mount the volume.
13. In the Mount options section:
 a. Select the Mount read only checkbox if you want the to mount the volume as a read-only logical volume.
 b. Select the Custom mount options checkbox and add the mount options if you want to change the default mount option.
14. Create the partition:
 - If you want to create and mount the partition, click the Create and mount button.
 - If you want to only create the partition, click the Create only button.
Formatting can take several minutes depending on the volume size and which formatting options are selected.

You can create more partitions after the partition is created.

At this point, the system uses mounted and formatted RAID.

Verification

- You can see the details of the formatted logical volume in the **Storage** table on the main storage page.

19.5. CREATING A VOLUME GROUP ON TOP OF RAID USING THE WEB CONSOLE

Build a volume group from software RAID.

Prerequisites

- RAID device that is not formatted and not mounted.

Procedure

1. Open the RHEL 9 web console.
2. Click **Storage**.
3. In the **Storage** table, click the menu button.
4. From the drop-down menu, select **Create LVM2 volume group**.

<table>
<thead>
<tr>
<th>ID</th>
<th>Type</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>sr0</td>
<td>QEMU DVD-ROM</td>
<td>Media drive</td>
</tr>
<tr>
<td>vda</td>
<td>VirtIO Disk</td>
<td>DOS partitions</td>
</tr>
<tr>
<td>vda1</td>
<td>xfs filesystem</td>
<td>/boot</td>
</tr>
<tr>
<td>vda2</td>
<td>LVM2 physical volume (encrypted)</td>
<td>rhel</td>
</tr>
<tr>
<td>rhel</td>
<td>LVM2 logical volumes</td>
<td></td>
</tr>
<tr>
<td>root</td>
<td>xfs filesystem</td>
<td>/</td>
</tr>
<tr>
<td>swap</td>
<td>Swap</td>
<td></td>
</tr>
</tbody>
</table>

5. In the **Create LVM2 volume group** dialog box, enter a name for the new volume group.
6. From the **Disks** list, select a RAID device.
 If you do not see the RAID in the list, unmount the RAID from the system. The RAID device must not be in use by the RHEL 9 system.
7. Click **Create**.

19.6. ADDITIONAL RESOURCES

- To learn more about soft corruption and how you can protect your data when configuring a RAID LV, see *Creating a RAID LV with DM integrity*.
CHAPTER 20. CONFIGURING LVM LOGICAL VOLUMES USING THE WEB CONSOLE

Red Hat Enterprise Linux 9 supports logical volume management (LVM). The RHEL 9 installer automatically creates an LVM2 volume group and installs the system on it during the installation process.

You can use the RHEL web console to manage LVM2 volume groups and volumes as demonstrated on the following example page of an LVM2 group:

Prerequisites

- The RHEL 9 web console has been installed.
 For instructions, see Installing and enabling the web console.
- The cockpit-storaged package is installed on your system.
- Physical drives, RAID devices, or any other type of block device from which you can create the logical volume.

20.1. LOGICAL VOLUME MANAGER IN THE WEB CONSOLE

The RHEL 9 web console provides a graphical interface to create LVM volume groups and logical volumes.

Volume groups create a layer between physical and logical volumes. This layer allows additions or removals of physical volumes without influencing the logical volume itself. Volume groups appear as one drive with capacity consisting of capacities of all physical drives included in the group. You can join physical drives into volume groups in the web console.
The main advantages of logical volumes are:

- Better flexibility than the partitioning system used on your physical drive.
- Ability to connect more physical drives into one volume.
- Possibility of expanding (growing) or reducing (shrinking) capacity of the volume on-line, without restart.
- Ability to create snapshots.

Additional resources

- [Configuring and managing logical volumes](#)

20.2. CREATING VOLUME GROUPS IN THE WEB CONSOLE

Create volume groups from one or more physical drives or other storage devices.

Logical volumes are created from volume groups. Each volume group can include multiple logical volumes.

For details, see [Managing LVM volume groups](#).

Prerequisites

- Physical drives or other types of storage devices from which you want to create volume groups.

Procedure

1. Log in to the RHEL 9 web console.
2. Click **Storage**.
3. In the **Storage** table, click the menu button.
4. From the drop-down menu, select **Create LVM2 volume group**.
5. In the **Name** field, enter a name for the volume group. The name must not include spaces.

6. Select the drives you want to combine to create the volume group.

![Create volume group](image)

```
Create volume group

<table>
<thead>
<tr>
<th>Name</th>
<th>rhel-volume-group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disks</td>
<td></td>
</tr>
<tr>
<td>16 GB RAID device raid-device /dev/md/raid-device</td>
<td></td>
</tr>
<tr>
<td>16 GB VirtIO Disk /dev/vdb</td>
<td></td>
</tr>
</tbody>
</table>

Create Cancel
```

The RHEL web console displays only unused block devices. If you do not see your device in the list, make sure that it is not being used by your system, or format it to be empty and unused. Used devices include, for example:

- Devices formatted with a file system
- Physical volumes in another volume group
- Physical volumes being a member of another software RAID device

7. Click **Create**.
 The volume group is created.

Verification

- On the **Storage** page, check whether the new volume group is listed in the **Storage** table.

20.3. CREATING LOGICAL VOLUMES IN THE WEB CONSOLE

Logical volumes act as physical drives. You can use the RHEL 9 web console to create LVM logical volumes in a volume group.

Prerequisites

- The **cockpit-storaged** package is installed on your system.
- Volume group created. For details, see [Creating volume groups in the web console](#).

Procedure

1. Log in to the RHEL 9 web console.
2. Click **Storage**.
3. In the **Storage** table, click the volume group in which you want to create logical volumes.
4. On the **Logical volume group** page, scroll to the **LVM2 logical volumes** section and click **Create new logical volume**.
5. In the **Name** field, enter a name for the new logical volume. Do not include spaces in the name.

6. In the **Purpose** drop-down menu, select **Block device for filesystems**. This configuration enables you to create a logical volume with the maximum volume size which is equal to the sum of the capacities of all drives included in the volume group.

7. Define the size of the logical volume. Consider:
 - How much space the system using this logical volume will need.
 - How many logical volumes you want to create.

 You do not have to use the whole space. If necessary, you can grow the logical volume later.

8. Click **Create**.

 The logical volume is created. To use the logical volume you must format and mount the volume.

Verification

- On the **Logical volume** page, scroll to the **LVM2 logical volumes** section and verify whether the new logical volume is listed.
20.4. FORMATTING LOGICAL VOLUMES IN THE WEB CONSOLE

Logical volumes act as physical drives. To use them, you must format them with a file system.

WARNING
Formatting logical volumes erases all data on the volume.

The file system you select determines the configuration parameters you can use for logical volumes. For example, the XFS file system does not support shrinking volumes. For details, see Resizing logical volumes in the web console.

Prerequisites
- The cockpit-storaged package is installed on your system.
- Logical volume created. For details, see Creating logical volumes in the web console.
- You have root access privileges to the system.

Procedure
1. Log in to the RHEL 9 web console.
2. Click Storage.
3. In the Storage table, click the volume group in the logical volumes is created.
4. On the Logical volume group page, scroll to the LVM2 logical volumes section.

5. Click the menu button, ⋮, next to the volume group you want to format.

6. From the drop-down menu, select Format.

 ![LVM2 volume group](image)

 - **Name**: Test-VolGrp-0
 - **UUID**: pYf9eO-7nwg-m96-LbM-AFYf-pu8q-jpjetg
 - **Capacity**: 8.01 GB, 7.46 GiB, 8011120640 bytes

 Physical volumes
 - sda Kingston DT 101 II (001372997BD5F941C63402DA) 3.7 / 8.0

 ![LVM2 logical volumes](image)

ID	**Type**	**Location**
 Test-Vol-0 | Unformatted data | 3.70 GB

7. In the Name field, enter a name for the file system.

8. In the Mount Point field, add the mount path.

 ![Format /dev/rhel-volume-group/rhel-logical-volume](image)

 - **Name**: rhel-fs
 - **Mount point**: /media
 - **Type**: XFS (recommended)
 - **Overwrite**: Overwrite existing data with zeros (slower)
 - **Encryption**: No encryption
 - **At boot**: Mount without waiting, ignore failure
 - Mounts in parallel with services
 - Boot still succeeds when filesystem does not mount
 - **Mount options**: Mount read only, Custom mount options

 Formatting erases all data on a storage device.

 - Format and mount
 - Format only
 - Cancel
9. In the **Type** drop-down menu, select a file system:

- **XFS** file system supports large logical volumes, switching physical drives online without outage, and growing an existing file system. Leave this file system selected if you do not have a different strong preference.

 XFS does not support reducing the size of a volume formatted with an XFS file system

- **ext4** file system supports:

 - Logical volumes

 - Switching physical drives online without an outage

 - Growing a file system

 - Shrinking a file system

10. Select the **Overwrite existing data with zeros** checkbox if you want the RHEL web console to rewrite the whole disk with zeros. This option is slower because the program has to go through the whole disk, but it is more secure. Use this option if the disk includes any data and you need to overwrite it.

 If you do not select the **Overwrite existing data with zeros** checkbox, the RHEL web console rewrites only the disk header. This increases the speed of formatting.

11. From the **Encryption** drop-down menu, select the type of encryption if you want to enable it on the logical volume.

 You can select a version with either the LUKS1 (Linux Unified Key Setup) or LUKS2 encryption, which allows you to encrypt the volume with a passphrase.

12. In the **At boot** drop-down menu, select when you want the logical volume to mount after the system boots.

13. Select the required **Mount options**.

14. Format the logical volume:

 - If you want to format the volume and immediately mount it, click **Format and mount**.

 - If you want to format the volume without mounting it, click **Format only**.
 Formatting can take several minutes depending on the volume size and which formatting options are selected.

Verification

1. On the **Logical volume group** page, scroll to the **LVM2 logical volumes** section and click the logical volume to check the details and additional options.
If you selected the **Format only** option, click the menu button at the end of the line of the logical volume, and select **Mount** to use the logical volume.

20.5. RESIZING LOGICAL VOLUMES IN THE WEB CONSOLE

Learn how to extend or reduce logical volumes in the RHEL 9 web console.

Whether you can resize a logical volume depends on which file system you are using. Most file systems enable you to extend (grow) the volume online (without outage).

You can also reduce (shrink) the size of logical volumes, if the logical volume contains a file system which supports shrinking. It should be available, for example, in the ext3/ext4 file systems.

WARNING

You cannot reduce volumes that contains GFS2 or XFS filesystem.

Prerequisites

- Existing logical volume containing a file system that supports resizing logical volumes.

Procedure

The following steps provide the procedure for growing a logical volume without taking the volume offline:

1. Log in to the RHEL web console.
2. Click Storage.

3. In the Storage table, click the volume group in the logical volumes is created.

4. On the Logical volume group page, scroll to the LVM2 logical volumes section and click the menu button, ⋮, next to volume group you want to resize.

5. From the menu, select Grow or Shrink to resize the volume:

 - Growing the Volume:

 a. Select Grow to increase the size of the volume.

 ![LVM2 volume group](image)

 ![Grow logical volume](image)

 b. In the Grow logical volume dialog box, adjust the size of the logical volume.

 ![Grow logical volume](image)

 c. Click Grow.

 LVM grows the logical volume without causing a system outage.

 - Shrinking the Volume:

 a. Select Shrink to reduce the size of the volume.
In the **Shrink logical volume** dialog box, adjust the size of the logical volume.

![Shrink logical volume dialog box]

- **Shrink logical volume**
 - Size: 32.0 GB
 - Shrink
 - Cancel

- Click **Shrink**.
 LVM shrinks the logical volume without causing a system outage.

20.6. ADDITIONAL RESOURCES

- Configuring and managing logical volumes
CHAPTER 21. CONFIGURING THIN LOGICAL VOLUMES USING THE WEB CONSOLE

You can use thin-provisioned logical volumes to allocate more space for designated applications or servers than the actually available physical storage.

For details, see Creating thin-provisioned snapshot volumes.

Prerequisites

- The RHEL 9 web console has been installed. For details, see Installing the web console.
- The cockpit-storaged package is installed on your system.
- Physical drives or other types of storage devices, which you want to use to create volume groups, are attached to your system.

21.1. CREATING POOLS FOR THINLY PROVISIONED VOLUMES IN THE WEB CONSOLE

Create a pool for thinly-provisioned volumes.

Prerequisites

- Volume group created.

Procedure

1. Log in to the RHEL 9 web console.
2. Click Storage.
3. In the Storage table, click the volume group in which you want to create thin volumes.
4. On the Logical volume group page, scroll to the LVM2 logical volumes section and click Create new logical volume.
5. In the Name field, enter a name for the new logical volume. Do not include spaces in the name.
6. In the Purpose drop-down menu, select Pool for thinly provisioned volumes. This configuration enables you to create a logical volume with the maximum volume size which is equal to the sum of the capacities of all drives included in the volume group.
7. Define the size of the logical volume. Consider:
 - How much space the system using this logical volume needs.
 - How many logical volumes you want to create.

You do not have to use the whole space. If necessary, you can grow the logical volume later.

8. Click Create.

The pool for thin volumes is created and you can now add thin volumes to the pool.

21.2. CREATING THINLY PROVISIONED LOGICAL VOLUMES IN THE WEB CONSOLE

You can use the web console to create a thin-provisioned logical volume in the pool. The pool can include multiple thin volumes and each thin volume can be as large as the pool for thin volumes itself.

IMPORTANT

Using thin volumes requires regular checkup of the actual free physical space of the logical volume.

Prerequisites

- A pool for thin volumes created.
For details, see Creating pools for thin logical volumes in the web console.

Procedure

1. Log in to the RHEL 9 web console.
2. Click Storage.
3. In the Storage table, click the menu button volume group in which you want to create thin volumes.
4. On the Logical volume group page, scroll to the LVM2 logical volumes section and click the pool in which you want to create the thin logical volumes.
5. On the Pool for thinly provisioned LVM2 logical volumes page, scroll to the Thinly provisioned LVM2 logical volumes section and click Create new thinly provisioned logical volume.
6. In the Create thin volume dialog box, enter a name for the thin volume. Do not use spaces in the name.
7. Define the size of the thin volume.
8. Click Create.
 The thin logical volume is created. You must format the volume before you can use it.

21.3. FORMATTING LOGICAL VOLUMES IN THE WEB CONSOLE

Logical volumes act as physical drives. To use them, you must format them with a file system.

WARNING

Formatting logical volumes erases all data on the volume.

The file system you select determines the configuration parameters you can use for logical volumes. For example, the XFS file system does not support shrinking volumes. For details, see Resizing logical volumes in the web console.

Prerequisites

- The cockpit-storaged package is installed on your system.
- Logical volume created. For details, see Creating logical volumes in the web console.
- You have root access privileges to the system.

Procedure

1. Log in to the RHEL 9 web console.
2. Click **Storage**.

3. In the **Storage** table, click the volume group in which the logical volumes are created.

4. On the **Logical volume group** page, scroll to the **LVM2 logical volumes** section.

5. Click the menu button, ⋮, next to the volume group you want to format.

6. From the drop-down menu, select **Format**.

7. In the **Name** field, enter a name for the file system.

8. In the **Mount Point** field, add the mount path.
9. In the **Type** drop-down menu, select a file system:

- **XFS** file system supports large logical volumes, switching physical drives online without outage, and growing an existing file system. Leave this file system selected if you do not have a different strong preference. XFS does not support reducing the size of a volume formatted with an XFS file system.

- **ext4** file system supports:
 - Logical volumes
 - Switching physical drives online without an outage
 - Growing a file system
 - Shrinking a file system

10. Select the **Overwrite existing data with zeros** checkbox if you want the RHEL web console to rewrite the whole disk with zeros. This option is slower because the program has to go through the whole disk, but it is more secure. Use this option if the disk includes any data and you need to overwrite it.

 If you do not select the **Overwrite existing data with zeros** checkbox, the RHEL web console rewrites only the disk header. This increases the speed of formatting.

11. From the **Encryption** drop-down menu, select the type of encryption if you want to enable it on the logical volume.

 You can select a version with either the LUKS1 (Linux Unified Key Setup) or LUKS2 encryption, which allows you to encrypt the volume with a passphrase.

12. In the **At boot** drop-down menu, select when you want the logical volume to mount after the system boots.
13. Select the required **Mount options**.

14. Format the logical volume:
 - If you want to format the volume and immediately mount it, click **Format and mount**.
 - If you want to format the volume without mounting it, click **Format only**. Formatting can take several minutes depending on the volume size and which formatting options are selected.

Verification

1. On the **Logical volume group** page, scroll to the **LVM2 logical volumes** section and click the logical volume to check the details and additional options.

2. If you selected the **Format only** option, click the menu button at the end of the line of the logical volume, and select **Mount** to use the logical volume.

21.4. CREATING THINLY-PROVISIONED SNAPSHOT VOLUMES WITH THE WEB CONSOLE

You can create snapshots of thin logical volumes in the RHEL web console to backup changes recorded on the disk from the last snapshot.

Prerequisites

- The web console is installed and accessible. For more information, see Installing and enabling the web console.
- The **cockpit-storaged** package is installed on your system.
A thin-provisioned volume is created. For more information see Configuring thin logical volumes using the web console.

Procedure

1. Log in to the RHEL 9 web console.

2. Click Storage.

3. In the Storage table, click the volume group in which you want to create thin volumes.

4. On the Logical volume group page, scroll to the LVM2 logical volumes section and click the pool in which you want to create the thin logical volumes.

5. On the Pool for thinly provisioned LVM2 logical volumes page, scroll to the Thinly provisioned LVM2 logical volumes section and click the menu button, ..., next to the logical volume.

6. From the drop-down menu, select Create snapshot.

7. In the Name field, enter a snapshot name.

8. Click Create.
9. On the Pool for thinly provisioned LVM2 logical volumes page, scroll to the Thinly provisioned LVM2 logical volumes section and click the menu button, ⋮, next to the newly created snapshot.

10. From the drop-down menu, select Activate to activate the volume.
CHAPTER 22. CHANGING PHYSICAL DRIVES IN VOLUME GROUPS USING THE WEB CONSOLE

Change the drive in a volume group using the RHEL 9 web console.

The change of physical drives consists of the following procedures:

- Adding physical drives from logical volumes.
- Removing physical drives from logical volumes.

Prerequisites

- The RHEL 9 web console has been installed. For details, see Installing the web console.
- The cockpit-storaged package is installed on your system.
- A new physical drive for replacing the old or broken one.
- The configuration expects that physical drives are organized in a volume group.

22.1. ADDING PHYSICAL DRIVES TO VOLUME GROUPS IN THE WEB CONSOLE

The RHEL 9 web console enables you to add a new physical drive or other type of volume to the existing logical volume.

Prerequisites

- A volume group must be created.
- A new drive connected to the machine.

Procedure

1. Log in to the RHEL 9 web console.
2. Click Storage.
3. In the Storage table, click the volume group to which you want to add physical drives.
4. On the LVM2 volume group page, click Add physical volume.
5. In the Add Disks dialog box, select the preferred drives and click Add.

Verification steps

- On the LVM2 volume group page, check the Physical volumes section to verify whether the new physical drives are available in the volume group.

22.2. REMOVING PHYSICAL DRIVES FROM VOLUME GROUPS IN THE WEB CONSOLE
If a logical volume includes multiple physical drives, you can remove one of the physical drives online.

The system moves automatically all data from the drive to be removed to other drives during the removal process. Notice that it can take some time.

The web console also verifies, if there is enough space for removing the physical drive.

Prerequisites

- A volume group with more than one physical drive connected.

Procedure

1. Log in to the RHEL 9 web console.
2. Click Storage.
3. In the Storage table, click the volume group to which you want to add physical drives.
4. On the LVM2 volume group page, scroll to the Physical volumes section.
5. Click the menu button, ⋮, next to the physical volume you want to remove.
6. From the drop-down menu, select Remove.
 The RHEL 9 web console verifies whether the logical volume has enough free space to removing the disk. If there is no free space to transfer the data, you cannot remove the disk and you must first add another disk to increase the capacity of the volume group. For details, see Adding physical drives to logical volumes in the web console.
CHAPTER 23. MANAGING VIRTUAL DATA OPTIMIZER VOLUMES USING THE WEB CONSOLE

Configure the Virtual Data Optimizer (VDO) using the RHEL 9 web console.

You will learn how to:

- Create VDO volumes
- Format VDO volumes
- Extend VDO volumes

Prerequisites

- The RHEL 9 web console is installed and accessible. For details, see Installing the web console.
- The `cockpit-storaged` package is installed on your system.

23.1. VDO VOLUMES IN THE WEB CONSOLE

Red Hat Enterprise Linux 9 supports Virtual Data Optimizer (VDO).

VDO is a block virtualization technology that combines:

Compression
For details, see Enabling or disabling compression in VDO.

Deduplication
For details, see Enabling or disabling compression in VDO.

Thin provisioning
For details, see Creating and managing thin provisioned volumes (thin volumes).

Using these technologies, VDO:

- Saves storage space inline
- Compresses files
- Eliminates duplications
- Enables you to allocate more virtual space than how much the physical or logical storage provides
- Enables you to extend the virtual storage by growing

VDO can be created on top of many types of storage. In the RHEL 9 web console, you can configure VDO on top of:

- LVM

NOTE
It is not possible to configure VDO on top of thinly-provisioned volumes.
Physical volume

Software RAID

For details about placement of VDO in the Storage Stack, see System Requirements.

Additional resources

- For details about VDO, see Deduplicating and compressing storage.

23.2. CREATING VDO VOLUMES IN THE WEB CONSOLE

Create a VDO volume in the RHEL web console.

Prerequisites

- An LVM2 group from which you want to create VDO.

Procedure

1. Log in to the RHEL 9 web console.
 For details, see Logging in to the web console.

2. Click Storage.

3. Click the menu button, ⋮, next to the LVM2 group in which you want to create a VDO volume.

4. Select VDO filesystem volume in the drop-down menu next to the Purpose field.

5. In the Name field, enter a name of the VDO volume without spaces.

6. In the Logical Size bar, set up the size of the VDO volume. You can extend it more than ten times, but consider for what purpose you are creating the VDO volume:

 - For active VMs or container storage, use logical size that is ten times the physical size of the volume.
 - For object storage, use logical size that is three times the physical size of the volume.

 For details, see Deploying VDO.
7. Select the Compression option. This option can efficiently reduce various file formats. For details, see Enabling or disabling compression in VDO.

8. Select the Deduplication option. This option reduces the consumption of storage resources by eliminating multiple copies of duplicate blocks. For details, see Enabling or disabling compression in VDO.

![Create logical volume](image)

Verification steps

- Check that you can see the new VDO volume in the Storage section. Then, you can format it with a file system.

23.3. FORMATTING VDO VOLUMES IN THE WEB CONSOLE

VDO volumes act as physical drives. To use them, you must format them with a file system.

WARNING

Formatting erases all data on the volume.

Prerequisites

- A VDO volume is created. For details, see Creating VDO volumes in the web console.

Procedure

1. Log in to the RHEL 9 web console. For details, see Logging in to the web console.

2. Click Storage.

3. Click the LVM2 volume group containing the VDO volume you want to format.
4. Click the menu button, ⋮, at the end of the line with the VDO volume you want to format.

5. Click **Format**.

6. In the **Name** field, enter the logical volume name.

7. In the **Mount Point** field, add the mount path.

8. By default, the web console rewrites only the disk header after you finish this dialog. The advantage of this option is the speed of formatting. If you check the **Overwrite existing data with zeros** option, the web console rewrites the whole disk with zeros. This option is slower because the program has to go through the whole disk. Use this option if the disk includes any sensitive data and you want to rewrite them.

9. In the **Type** drop-down menu, select a file system:

 - The default option, the **XFS** file system, supports large logical volumes, switching physical drives online without outage, and growing. XFS does not support shrinking volumes. Therefore, you cannot reduce the size of a volume formatted with XFS.

 - The **ext4** file system supports logical volumes, switching physical drives online without outage, growing, and shrinking.

 You can also select a version with the LUKS (Linux Unified Key Setup) encryption, which allows you to encrypt the volume with a passphrase.

10. In the **At boot** drop-down menu, select when you want to mount the volume.

11. Click **Format and mount** or **Format only**.

 Formatting can take several minutes depending on the used formatting options and the volume size.
23.4. EXTENDING VDO VOLUMES IN THE WEB CONSOLE

Extend VDO volumes in the RHEL 9 web console.

Prerequisites

- The cockpit-storaged package is installed on your system.
- The VDO volume created.

Procedure

1. Log in to the RHEL 9 web console.
 For details, see Logging in to the web console.

2. Click Storage.

3. Click your VDO volume in the VDO Devices box.

4. In the VDO volume details, click the Grow button.

5. In the Grow logical size of VDO dialog box, extend the logical size of the VDO volume.
1. Click **Grow**.

Verification steps

- Check the VDO volume details for the new size to verify that your changes have been successful.
Stratis runs as a service to manage pools of physical storage devices, simplifying local storage management with ease of use while helping you set up and manage complex storage configurations.

24.1. CREATING AN UNENCRYPTED STRATIS POOL USING THE WEB CONSOLE

You can use the web console to create an unencrypted Stratis pool from one or more block devices.

Prerequisites

- The RHEL 9 web console is installed and enabled. For details, see Installing the web console.
- Stratis is installed. The web console detects and installs Stratis by default. However, for manually installing Stratis, see Installing Stratis.
- The `stratisd` service is running.
- The block devices on which you are creating a Stratis pool are not in use and are not mounted.
- Each block device on which you are creating a Stratis pool is at least 1 GB.

NOTE

You cannot encrypt an unencrypted Stratis pool after it is created.

Procedure

1. Log in to the RHEL 9 web console.
2. Click **Storage**.
3. In the **Storage** table, click the menu button.
4. From the drop-down menu, select **Create Stratis pool**.
5. In the **Create Stratis pool** dialog box, enter a name for the Stratis pool.

![Create Stratis pool dialog box]

- **Name**: pool0
- **Block devices**: Select the devices from which you want to create the Stratis pool.
- **Options**:
 - Encrypt data with a passphrase
 - Encrypt data with a Tang keyserver
 - Manage filesystem sizes

6. Select the **Block devices** from which you want to create the Stratis pool.

7. **Optional**: If you want to specify the maximum size for each file system that is created in pool, select **Manage filesystem sizes**.

8. Click **Create**.

Verification

- Go to the **Storage** section and verify that you can see the new Stratis pool in the **Devices** table.
24.2. CREATING AN ENCRYPTED STRATIS POOL USING THE WEB CONSOLE

To secure your data, you can use the web console to create an encrypted Stratis pool from one or more block devices.

When creating an encrypted Stratis pool from one or more block devices, note the following:

- Each block device is encrypted using the cryptsetup library and implements the LUKS2 format.
- Each Stratis pool can either have a unique key or share the same key with other pools. These keys are stored in the kernel keyring.
- The block devices that comprise a Stratis pool must be either all encrypted or all unencrypted. It is not possible to have both encrypted and unencrypted block devices in the same Stratis pool.
- Block devices added to the data tier of an encrypted Stratis pool are automatically encrypted.

Prerequisites

- The RHEL 9 web console is installed and enabled. For details, see Installing the web console.
- Stratis v2.1.0 or later is installed. The web console detects and installs Stratis by default. However, for manually installing Stratis, see Installing Stratis.
- The stratisd service is running.
- The block devices on which you are creating a Stratis pool are not in use and are not mounted.
- Each block device on which you are creating a Stratis pool is at least 1 GB.

Procedure

1. Log in to the RHEL 9 web console.
2. Click Storage.
3. In the Storage table, click the menu button.
4. From the drop-down menu, select **Create Stratis pool**

![Storage](image)

5. In the **Create Stratis pool** dialog box, enter a name for the Stratis pool.

![Create Stratis pool](image)

6. Select the **Block devices** from which you want to create the Stratis pool.

7. Select the type of encryption, you can use a passphrase, a Tang keyserver, or both:

 - **Passphrase**:

 i. Enter a passphrase.

 ii. Confirm the passphrase

 - **Tang keyserver**:
Enter the keyserver address. For more information, see Deploying a Tang server with SELinux in enforcing mode.

8. **Optional:** If you want to specify the maximum size for each file system that is created in pool, select **Manage filesystem sizes**.

9. Click **Create**.

Verification

- Go to the **Storage** section and verify that you can see the new Stratis pool in the **Devices** table.

24.3. VIEWING A STRATIS POOL USING THE WEB CONSOLE

You can use the web console to view an existing Stratis pool and the file systems it contains.

Prerequisites

- The RHEL 9 web console is installed and enabled. For details, see **Installing the web console**.
- Stratis is installed. The web console detects and installs Stratis by default. However, for manually installing Stratis, see **Installing Stratis**.
- The **stratisd** service is running.
- You have an existing Stratis pool. See **Creating an unencrypted Stratis pool** or **Creating an encrypted Stratis pool**.

Procedure

1. Log in to the RHEL 9 web console.

2. Click **Storage**.

3. In the **Storage** table, click the Stratis pool you want to view. The Stratis pool page displays all the information about the pool and the file systems that you created in the pool.
24.4. CREATING A FILE SYSTEM ON A STRATIS POOL USING THE WEB CONSOLE

You can use the web console to create a file system on an existing Stratis pool.

Prerequisites

- The RHEL 9 web console is installed and enabled. For details, see Installing the web console.

- Stratis is installed. The web console detects and installs Stratis by default. However, for manually installing Stratis, see Installing Stratis.

- The `stratisd` service is running.

- A Stratis pool is created. See Creating an unencrypted Stratis pool or Creating an encrypted Stratis pool.

Procedure

1. Log in to the RHEL 9 web console.
2. Click Storage.
3. Click the Stratis pool on which you want to create a file system.
4. On the Stratis pool page, scroll to the Stratis filesystems section and click Create new filesystem.
5. In the **Create filesystem** dialog box, enter a **Name** for the file system.

6. Enter the **Mount point** for the file system.

7. Select the **Mount option**.

8. In the **At boot** drop-down menu, select when you want to mount your file system.

9. Create the file system:
 - If you want to create and mount the file system, click **Create and mount**.
 - If you want to only create the file system, click **Create only**.

Verification

- The new file system is visible on the **Stratis pool** page under the **Stratis filesystems** tab.
24.5. DELETING A FILE SYSTEM FROM A STRATIS POOL USING THE WEB CONSOLE

You can use the web console to delete a file system from an existing Stratis pool.

NOTE

Deleting a Stratis pool file system erases all the data it contains.

Prerequisites

- The RHEL 9 web console is installed and enabled. For details, see Installing the web console.
- Stratis is installed. The web console detects and installs Stratis by default. However, for manually installing Stratis, see Installing Stratis.
- The stratisd service is running.
- You have an existing Stratis pool. See Creating an unencrypted Stratis pool or Creating an encrypted Stratis pool.
- You have created a file system on the Stratis pool. See Creating a file system on a Stratis pool.

Procedure

1. Log in to the RHEL 9 web console.
2. Click Storage.
3. In the Storage table, click the Stratis pool from which you want to delete a file system.
4. On the Stratis pool page, scroll to the Stratis filesystems section and click the menu button next to the file system you want to delete.
5. From the drop-down menu, select **delete**.

6. In the **Confirm deletion** dialog box, click **Delete**.

24.6. RENAMING A STRATIS POOL USING THE WEB CONSOLE

You can use the web console to rename an existing Stratis pool.

Prerequisites

- The RHEL 9 web console is installed and enabled. For details, see [Installing the web console](#).
- Stratis is installed.
 - The web console detects and installs Stratis by default. However, for manually installing Stratis, see [Installing Stratis](#).
- The **stratisd** service is running.
- A Stratis pool is created. See [Creating an unencrypted Stratis pool](#) or [Creating an encrypted Stratis pool](#).

Procedure

1. Log in to the RHEL 9 web console.
2. Click **Storage**.
3. In the **Storage** table, click the Stratis pool you want to rename.
4. On the **Stratis pool** page, click **edit** next to the **Name** field.
5. In the **Rename Stratis pool** dialog box, enter a new name.

6. Click **Rename**.

24.7. ADDING A BLOCK DEVICE TO A STRATIS POOL USING THE WEB CONSOLE

You can use the web console to add a block device to an existing Stratis pool. You can also add caches as a block device.

Prerequisites

- The RHEL 9 web console is installed and enabled. For details, see [Installing the web console](#).

- Stratis is installed.
 The web console detects and installs Stratis by default. However, for manually installing Stratis, see [Installing Stratis](#).

- The **stratisd** service is running.

- A Stratis pool is created. See [Creating an unencrypted Stratis pool](#) or [Creating an encrypted Stratis pool](#).

- The block devices on which you are creating a Stratis pool are not in use and are not mounted.

- Each block device on which you are creating a Stratis pool is at least 1 GB.

Procedure

1. Log in to the RHEL 9 web console.

2. Click **Storage**.

3. In the **Storage** table, click the Stratis pool to which you want to add a block device.
4. On the **Stratis pool** page, click **Add block devices**.

5. In the **Add block devices** dialog box, select the **Tier**, whether you want to add a block device as data or cache.

6. **Optional**: If you are adding the block device to a Stratis pool that is encrypted with a passphrase, then you must enter the passphrase.

7. Under **Block devices**, select the devices you want to add to the pool.

8. Click **Add**.

24.8. DELETING A STRATIS POOL USING THE WEB CONSOLE

You can use the web console to delete an existing Stratis pool.

NOTE

Deleting a Stratis pool erases all the data it contains.

Prerequisites

- The RHEL 9 web console is installed and enabled. For details, see [Installing the web console](#).
Stratis is installed. The web console detects and installs Stratis by default. However, for manually installing Stratis, see Installing Stratis.

The `stratisd` service is running.

You have an existing Stratis pool. See Creating an unencrypted Stratis pool or Creating an encrypted Stratis pool.

Procedure

1. Log in to the RHEL 9 web console.
2. Click Storage.
3. In the Storage table, click the menu button, ⋮, next to the Stratis pool you want to delete.
4. From the drop-down menu, select Delete pool.
5. In the Permanently delete pool dialog box, click Delete.
CHAPTER 25. LOCKING DATA WITH LUKS PASSWORD IN THE RHEL WEB CONSOLE

In the web console's Storage tab, you can now create, lock, unlock, resize, and otherwise configure encrypted devices using the LUKS (Linux Unified Key Setup) version 2 format.

This new version of LUKS offers:

- More flexible unlocking policies
- Stronger cryptography
- Better compatibility with future changes

Prerequisites

- The RHEL 9 web console has been installed. For details, see Installing the web console.
- The cockpit-storaged package is installed on your system.

25.1. LUKS DISK ENCRYPTION

Linux Unified Key Setup-on-disk-format (LUKS) provides a set of tools that simplifies managing the encrypted devices. With LUKS, you can encrypt block devices and enable multiple user keys to decrypt a master key. For bulk encryption of the partition, use this master key.

Red Hat Enterprise Linux uses LUKS to perform block device encryption. By default, the option to encrypt the block device is unchecked during the installation. If you select the option to encrypt your disk, the system prompts you for a passphrase every time you boot the computer. This passphrase unlocks the bulk encryption key that decrypts your partition. If you want to modify the default partition table, you can select the partitions that you want to encrypt. This is set in the partition table settings.

Ciphers

The default cipher used for LUKS is aes-xts-plain64. The default key size for LUKS is 512 bits. The default key size for LUKS with Anaconda XTS mode is 512 bits. The following are the available ciphers:

- Advanced Encryption Standard (AES)
- Twofish
- Serpent

Operations performed by LUKS

- LUKS encrypts entire block devices and is therefore well-suited for protecting contents of mobile devices such as removable storage media or laptop disk drives.
- The underlying contents of the encrypted block device are arbitrary, which makes it useful for encrypting swap devices. This can also be useful with certain databases that use specially formatted block devices for data storage.
- LUKS uses the existing device mapper kernel subsystem.
- LUKS provides passphrase strengthening, which protects against dictionary attacks.
• LUKS devices contain multiple key slots, which means you can add backup keys or passphrases.

IMPORTANT

LUKS is not recommended for the following scenarios:

• Disk-encryption solutions such as LUKS protect the data only when your system is off. After the system is on and LUKS has decrypted the disk, the files on that disk are available to anyone who have access to them.

• Scenarios that require multiple users to have distinct access keys to the same device. The LUKS1 format provides eight key slots and LUKS2 provides up to 32 key slots.

• Applications that require file-level encryption.

Additional resources

• LUKS Project Home Page

• LUKS On-Disk Format Specification

• FIPS 197: Advanced Encryption Standard (AES)

25.2. CONFIGURING THE LUKS PASSPHRASE IN THE WEB CONSOLE

If you want to add encryption to an existing logical volume on your system, you can only do so through formatting the volume.

Prerequisites

• The web console must be installed and accessible. For details, see Installing the web console.

• The *cockpit-storaged* package is installed on your system.

• Available existing logical volume without encryption.

Procedure

1. Log in to the RHEL 9 web console. For details, see Logging in to the web console.

2. Click *Storage*.

3. In the *Storage* table, click the menu button, ⋮, next to the storage device you want to encrypt.

4. From the drop-down menu, select *Format*.

5. In the *Encryption field*, select the encryption specification, *LUKS1* or *LUKS2*.

6. Set and confirm your new passphrase.

8. Finalize formatting settings.
25.3. CHANGING THE LUKS PASSPHRASE IN THE WEB CONSOLE

Change a LUKS passphrase on an encrypted disk or partition in the web console.

Prerequisites

- The web console must be installed and accessible. For details, see *Installing the web console*.
- The `cockpit-storaged` package is installed on your system.

Procedure

1. Log in to the web console. For details, see *Logging in to the web console*.
2. Click Storage
3. In the Storage table, select the disk with encrypted data.
4. On the disk page, scroll to the Keys section and click the edit button.

5. In the Change passphrase dialog window:

 a. Enter your current passphrase.
 b. Enter your new passphrase.
 c. Confirm your new passphrase.
6. Click **Save**
CHAPTER 26. CONFIGURING AUTOMATED UNLOCKING BY USING A TANG KEY IN THE WEB CONSOLE

You can configure automated unlocking of a LUKS-encrypted storage device using a key provided by a Tang server.

Prerequisites

- The RHEL 9 web console has been installed. See Installing the web console for details.
- The `cockpit-storaged` and `clevis-luks` packages are installed on your system.
- The `cockpit.socket` service is running at port 9090.
- A Tang server is available. See Deploying a Tang server with SELinux in enforcing mode for details.

Procedure

1. Open the RHEL web console by entering the following address in a web browser:

   ```
   https://<localhost>:9090
   ```

 Replace the `<localhost>` part by the remote server’s hostname or IP address when you connect to a remote system.

2. Provide your credentials and click Storage. In the Storage table, click the disk that contains an encrypted volume you plan to add to unlock automatically.

3. In the following page with details of the selected disk, click + in the Keys section to add a Tang key:
4. Select **Tang keyserver** as **Key source**, provide the address of your Tang server, and a password that unlocks the LUKS-encrypted device. Click **Add** to confirm:

```
Add key

Key source
- Passphrase
○ Tang keyserver

Keyserver address
tangl.example.com:7500

Disk passphrase

Saving a new passphrase requires unlocking the disk. Please provide a current disk passphrase.

Add   Cancel
```

The following dialog window provides a command to verify that the key hash matches.

5. In a terminal on the Tang server, use the **tang-show-keys** command to display the key hash for comparison. In this example, the Tang server is running on the port 7500:

```
# tang-show-keys 7500
x100_1k6GPIoAMIL3WbpCjHOy9ul1bSfdhL3M08wO0
```
6. Click **Trust key** when the key hashes in the web console and in the output of previously listed commands are the same:

Verify key

Check the key hash with the Tang server.

How to check

In a terminal, run: `ssh tang1.com tang-show-keys`

Check that the SHA-256 or SHA-1 hash from the command matches this dialog.

SHA-256

\[x100_1k6GPiD0amLL3WbpCjH0y9u1bSfdhI3M08w00\]

SHA-1

\[hnmNhleYB000ddFs2gICjqJizFI\]

[Trust key] [Cancel]

7. In RHEL 9.2 and later, after you select an encrypted root file system and a Tang server, you can skip adding the `rd.neednet=1` parameter to the kernel command line, installing the `clevis-dracut` package, and regenerating an initial RAM disk (`initrd`). For non-root file systems, the web console now enables the `remote-cryptsetup.target` and `clevis-luks-askpass.path` `systemd` units, installs the `clevis-systemd` package, and adds the `_netdev` parameter to the `fstab` and `crypttab` configuration files.

Verification

1. Check that the newly added Tang key is now listed in the **Keys** section with the **Keyserver** type:

Encryption

<table>
<thead>
<tr>
<th>Encryption type</th>
<th>LUKS2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cleartext device</td>
<td>/dev/mapper/luks-3712c9a-70a2-463f-8d64-9f00acbf0449</td>
</tr>
<tr>
<td>Stored passphrase</td>
<td>none edit</td>
</tr>
<tr>
<td>Options</td>
<td>_netdev</td>
</tr>
</tbody>
</table>

Keys

<table>
<thead>
<tr>
<th>Passphrase</th>
<th>Slot 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keyserver</td>
<td>http://tang1....com/</td>
</tr>
</tbody>
</table>

[edit] [discard]

2. Verify that the bindings are available for the early boot, for example:

```
# lsinitrd | grep clevis-luks
lrwxrwxrwx  1 root  root  48 Jan  4 02:56
/etc/systemd/system/cryptsetup.target.wants/clevis-luks-askpass.path ->
```
Additional resources

- Configuring automated unlocking of encrypted volumes using policy-based decryption
CHAPTER 27. MANAGING SOFTWARE UPDATES IN THE WEB CONSOLE

Learn how to manage software updates in the RHEL 9 web console and ways to automate them.

The Software Updates module in the web console is based on the `dnf` utility. For more information about updating software with `dnf`, see the Updating packages section.

27.1. MANAGING MANUAL SOFTWARE UPDATES IN THE WEB CONSOLE

You can manually update your software using the web console.

Prerequisites

- The web console must be installed and accessible. For details, see Installing the web console.

Procedure

1. Log in to the RHEL 9 web console.
 For details, see Logging in to the web console.

2. Click Software Updates.
 The list of available updates refreshes automatically if the last check happened more than 24 hours ago. To trigger a refresh, click the Check for Updates button.

3. Apply updates. You can watch the update log while the update is running.
 a. To install all available updates, click the Install all updates button.
 b. If you have security updates available, you can install them separately by clicking the Install Security Updates button.
 c. If you have kpatch updates available, you can install them separately by clicking the Install kpatch updates button.

4. Optional: You can turn on the Reboot after completion switch for an automatic restart of your system.
 If you perform this step, you can skip the remaining steps of this procedure.

5. After the system applies updates, you get a recommendation to restart your system.
 We recommend this especially if the update included a new kernel or system services that you do not want to restart individually.

6. Click Ignore to cancel the restart, or Restart Now to proceed with restarting your system.
 After the system restart, log in to the web console and go to the Software Updates page to verify that the update has been successful.

27.2. MANAGING AUTOMATIC SOFTWARE UPDATES IN THE WEB CONSOLE

In the web console, you can choose to apply all updates, or security updates and also manage periodicity and time of your automatic updates.
Prerequisites

- The web console must be installed and accessible. For details, see Installing the web console.

Procedure

1. Log in to RHEL 9 web console. For details, see Logging in to the web console.
2. Click Software Updates.
3. In the Settings table, click the Edit button.
4. Pick one of the types of automatic updates. You can select from Security updates only, or All updates.
5. To modify the day of the automatic update, click on the every day drop-down menu and select a specific day.
6. To modify the time of the automatic update, click into the 6:00 field and select or type a specific time.
7. If you want to disable automatic software updates, select the No updates type.

27.3. MANAGING ON-DEMAND RESTARTING AFTER APPLYING SOFTWARE UPDATES IN THE WEB CONSOLE

The intelligent restarting feature informs the users whether it is necessary to reboot the whole system after you apply a software update or if it is sufficient to only restart certain services.

Prerequisites

- The web console must be installed and accessible. For details, see Installing the web console.

Procedure

1. Log in to the RHEL 9 web console. For details, see Logging in to the web console.
2. Click Software Updates.
3. Apply an update of your system.
4. After a successful update, click Reboot system..., Restart services..., or Ignore
5. If you decide to ignore, you can return to the restart or reboot menu by doing one of the following:
 a. Rebooting:
 i. Click the Reboot system button in the Status field of the Software Updates page.
 ii. (Optional) Write a message to the logged in users.
 iii. Select a delay from the Delay drop-down menu.
 iv. Click Reboot.
b. Restarting services:
 i. Click the **Restart services** button in the **Status** field of the **Software Updates** page. You will see a list of all the services that require a restart.
 ii. Click **Restart services**. Depending on your choice, the system will reboot or your services will restart.

27.4. APPLYING PATCHES WITH KERNEL LIVE PATCHING IN THE WEB CONSOLE

The web console allows users to apply kernel security patches without forcing reboots by using the **kpatch** framework. The following procedure shows how to set up the preferred type of patching.

Prerequisites

- The web console must be installed and accessible. For details, see *Installing the web console*.

Procedure

1. Log in to the web console with administrative privileges. For details, see *Logging in to the web console*.
2. Click **Software Updates**.
3. Check the status of your kernel patching settings.
 a. If the patching is not installed, click **Install**.
 b. To enable kernel patching, click **Enable**.
 c. Check the check box for applying kernel patches.
 d. Select whether you want to apply patches for current and future kernels, or for the current kernel only. If you choose to subscribe to applying patches for future kernels, the system will apply patches also for the upcoming kernel releases.
e. Click **Apply**.

Verification

- Check that the kernel patching is now **Enabled** in the **Settings** table of the **Software updates** section.

Settings

- **Automatic updates**: Disabled
- **Kernel patching**: Enabled

Additional resources

- **Applying patches with kernel live patching**
CHAPTER 28. MANAGING SUBSCRIPTIONS IN THE WEB CONSOLE

Manage your subscription for Red Hat Enterprise Linux 9 from the web console.

To get a subscription for your Red Hat Enterprise Linux, you need to have an account in the Red Hat Customer Portal or an activation key.

This chapter covers:

- Subscription management in the RHEL 9 web console.
- Registering subscriptions for your system in the web console with the Red Hat user name and password.
- Registering subscriptions with the activation key.

Prerequisites

- Purchased subscriptions.
- The system subjected to subscription has to be connected to the internet because the web console needs to communicate with the Red Hat Customer Portal.

28.1. SUBSCRIPTION MANAGEMENT IN THE WEB CONSOLE

The RHEL 9 web console provides an interface for using Red Hat Subscription Manager installed on your local system.

The Subscription Manager connects to the Red Hat Customer Portal and verifies all available:

- Active subscriptions
- Expired subscriptions
- Renewed subscriptions

If you want to renew the subscription or get a different one in Red Hat Customer Portal, you do not have to update the Subscription Manager data manually. The Subscription Manager synchronizes data with Red Hat Customer Portal automatically.

28.2. REGISTERING SUBSCRIPTIONS WITH CREDENTIALS IN THE WEB CONSOLE

Use the following steps to register a newly installed Red Hat Enterprise Linux with account credentials using the RHEL web console.

Prerequisites

- A valid user account on the Red Hat Customer Portal. See the Create a Red Hat Login page.
- Active subscription for your RHEL system.
Procedure

1. Log in to the RHEL web console. For details, see Logging in to the web console.

2. In the Health field in the Overview page, click the Not registered warning, or click Subscriptions in the main menu to move to page with your subscription information.

3. In the Overview field, click Register.

4. In the Register system dialog box, select that you want to register using your account credentials.
5. Enter your username.

6. Enter your password.

7. Optionally, enter your organization’s name or ID.
 If your account belongs to more than one organization on the Red Hat Customer Portal, you have to add the organization name or organization ID. To get the org ID, go to your Red Hat contact point.
 - If you do not want to connect your system to Red Hat Insights, clear the Insights check box.

8. Click the **Register** button.

At this point, your Red Hat Enterprise Linux Enterprise Linux system has been successfully registered.

28.3. REGISTERING SUBSCRIPTIONS WITH ACTIVATION KEYS IN THE WEB CONSOLE

Use the following steps to register a newly installed Red Hat Enterprise Linux with an activation key using the RHEL web console.

Prerequisites

- If you do not have a user account in the portal, your vendor provides you with the activation key.

Procedure

1. Log in to the RHEL web console. For details, see [Logging in to the web console](#).

2. In the **Health** filed in the **Overview** page, click the **Not registered** warning, or click **Subscriptions** in the main menu to move to page with your subscription information.

3. In the **Overview** filed, click **Register**.

![Health](#)

![Overview](#)
4. In the **Register system** dialog box, select that you want to register using an activation key.

![Register System dialog box]

5. Enter your key or keys.

6. Enter your organization's name or ID.
 To get the organization ID, go to your Red Hat contact point.
 - If you do not want to connect your system to Red Hat Insights, clear the **Insights** check box.

7. Click the **Register** button.

At this point, your Red Hat Enterprise Linux system has been successfully registered.
CHAPTER 29. CONFIGURING KDUMP IN THE WEB CONSOLE

You can set up and test the kdump configuration by using the RHEL 9 web console. The web console can enable the kdump service at boot time. Furthermore, the web console enables you to configure the reserved memory for kdump and to select the vmcore saving location in an uncompressed or compressed format.

29.1. CONFIGURING KDUMP MEMORY USAGE AND TARGET LOCATION IN WEB CONSOLE

You can configure the memory reserve for the kdump kernel and also specify the target location to capture the vmcore dump file with the RHEL web console interface.

Prerequisites

- The web console must be installed and accessible.
 For details, see Installing the web console.

Procedure

1. In the web console, open the Kernel dump tab and start the kdump service by setting the Kernel crash dump switch to on.

2. Configure the kdump memory usage in the terminal, for example:

   ```
   $ sudo grubby --update-kernel ALL --args crashkernel=512M
   ```

 Restart the system to apply the changes.

3. In the Kernel dump tab, click Edit at the end of the Crash dump location field.

4. Specify the target directory for saving the vmcore dump file:
• For a local filesystem, select **Local Filesystem** from the drop-down menu.

Crash dump location

- **Location**
 - Local filesystem
- **Directory**
 - /var/crash
- **Compression**
 - Compress crash dumps to save space

[Apply] [Cancel]

• For a remote system by using the SSH protocol, select **Remote over SSH** from the drop-down menu and specify the following fields:
 - In the **Server** field, enter the remote server address.
 - In the **SSH key** field, enter the SSH key location.
 - In the **Directory** field, enter the target directory.

• For a remote system by using the NFS protocol, select **Remote over NFS** from the drop-down menu and specify the following fields:
 - In the **Server** field, enter the remote server address.
 - In the **Export** field, enter the location of the shared folder of an NFS server.
 - In the **Directory** field, enter the target directory.

NOTE

You can reduce the size of the **vmcore** file by selecting the **Compression** checkbox.

5. Optional: Display the automation script by clicking **View automation script**.
 A window with the generated script opens. You can navigate between a shell script and an Ansible playbook generation options tab.

6. Optional: Copy the script by clicking **Copy to clipboard**.
 You can use this script to apply the same configuration on multiple machines.

Verification

1. Click **Test configuration**.
2. Click **Crash system** under **Test kdump settings**.

WARNING

When you initiate the system crash, the kernel operation stops and results in a system crash with data loss.

Additional resources

- Supported kdump targets
CHAPTER 30. MANAGING VIRTUAL MACHINES IN THE WEB CONSOLE

To manage virtual machines in a graphical interface on a RHEL 9 host, you can use the Virtual Machines pane in the RHEL 9 web console.

30.1. OVERVIEW OF VIRTUAL MACHINE MANAGEMENT BY USING THE WEB CONSOLE

The RHEL 9 web console is a web-based interface for system administration. As one of its features, the web console provides a graphical view of virtual machines (VMs) on the host system, and makes it possible to create, access, and configure these VMs.

Note that to use the web console to manage your VMs on RHEL 9, you must first install a web console plug-in for virtualization.

Next steps

- For instructions on enabling VMs management in your web console, see Setting up the web console to manage virtual machines.

- For a comprehensive list of VM management actions that the web console provides, see Virtual machine management features available in the web console.

30.2. SETTING UP THE WEB CONSOLE TO MANAGE VIRTUAL MACHINES

Before using the RHEL 9 web console to manage virtual machines (VMs), you must install the web console virtual machine plug-in on the host.

Prerequisites

- Ensure that the web console is installed and enabled on your machine.

```bash
# systemctl status cockpit.socket
cockpit.socket - Cockpit Web Service Socket
```
If this command returns Unit cockpit.socket could not be found, follow the Installing the web console document to enable the web console.

Procedure

- Install the `cockpit-machines` plug-in.

```
# dnf install cockpit-machines
```

Verification

1. Access the web console, for example by entering the `https://localhost:9090` address in your browser.

2. Log in.

3. If the installation was successful, **Virtual Machines** appears in the web console side menu.

Additional resources

- Managing systems by using the RHEL 9 web console

30.3. RENAMING VIRTUAL MACHINES BY USING THE WEB CONSOLE

You might require renaming an existing virtual machine (VM) to avoid naming conflicts or assign a new unique name based on your use case. To rename the VM, you can use the RHEL web console.

Prerequisites

- The web console VM plug-in is installed on your system.
- The VM is shut down.

Procedure

1. In the **Virtual Machines** interface, click the Menu button of the VM that you want to rename.
A drop-down menu appears with controls for various VM operations.

2. Click Rename.
 The Rename a VM dialog appears.

![Rename VM Grid_v2 dialog]

 New name: Grid_v2

 Rename Cancel

3. In the New name field, enter a name for the VM.

4. Click Rename.

Verification

- Check that the new VM name has appeared in the Virtual Machines interface.

30.4. VIRTUAL MACHINE MANAGEMENT FEATURES AVAILABLE IN THE WEB CONSOLE

By using the RHEL 9 web console, you can perform the following actions to manage the virtual machines (VMs) on your system.

Table 30.1. VM tasks that can be performed in the RHEL 9 web console

<table>
<thead>
<tr>
<th>Task</th>
<th>For details, see:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create a VM and install it with a guest operating system</td>
<td>Creating virtual machines and installing guest operating systems by using the web console</td>
</tr>
<tr>
<td>Delete a VM.</td>
<td>Deleting virtual machines by using the web console</td>
</tr>
<tr>
<td>Start, shut down, and restart the VM</td>
<td>Starting virtual machines by using the web console and Shutting down and restarting virtual machines by using the web console</td>
</tr>
<tr>
<td>Connect to and interact with a VM using a variety of consoles</td>
<td>Interacting with virtual machines by using the web console</td>
</tr>
<tr>
<td>View a variety of information about the VM</td>
<td>Viewing virtual machine information by using the web console</td>
</tr>
<tr>
<td>Adjust the host memory allocated to a VM</td>
<td>Adding and removing virtual machine memory by using the web console</td>
</tr>
<tr>
<td>Task</td>
<td>For details, see:</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Manage network connections for the VM</td>
<td>Using the web console for managing virtual machine network interfaces</td>
</tr>
<tr>
<td>Manage the VM storage available on the host and attach virtual disks to the VM</td>
<td>Managing storage for virtual machines</td>
</tr>
<tr>
<td>Configure the virtual CPU settings of the VM</td>
<td>Managing virtual CPUs by using the web console</td>
</tr>
<tr>
<td>Live migrate a VM</td>
<td>Live migrating a virtual machine by using the web console</td>
</tr>
<tr>
<td>Rename a VM</td>
<td>Renaming virtual machines by using the web console</td>
</tr>
<tr>
<td>Share files between the host and the VM</td>
<td>Sharing files between the host and its virtual machines</td>
</tr>
<tr>
<td>Manage host devices</td>
<td>Managing virtual devices by using the web console</td>
</tr>
<tr>
<td>Manage virtual optical drives</td>
<td>Managing virtual optical drives</td>
</tr>
<tr>
<td>Attach watchdog device</td>
<td>Attaching a watchdog device to a virtual machine by using the web console</td>
</tr>
</tbody>
</table>
CHAPTER 31. MANAGING REMOTE SYSTEMS IN THE WEB CONSOLE

Connect to the remote systems and manage them in the RHEL 9 web console.

The following chapter describes:

- The optimal topology of connected systems.
- How to add and remove remote systems.
- When, why, and how to use SSH keys for remote system authentication.
- How to configure a web console client to allow a user authenticated with a smart card to SSH to a remote host and access services on it.

Prerequisites

- Opened the SSH service on remote systems.

31.1. REMOTE SYSTEM MANAGER IN THE WEB CONSOLE

Using the RHEL 9 web console to manage remote systems in the network requires considering the topology of connected servers.

For optimal security use the following connection setup:

- Configure one system with the web console as a bastion host. The bastion host is a system with opened HTTPS port.
- All other systems communicate through SSH.

With the web interface running on the bastion host, you can reach all other systems through the SSH protocol using port 22 in the default configuration.
31.2. ADDING REMOTE HOSTS TO THE WEB CONSOLE

You can connect other systems with a user name and password.

Prerequisites

- You need to be logged into the web console with administration privileges. For details, see Logging in to the web console.

Procedure

1. In the RHEL 9 web console, click on your `username@hostname` in the top left corner of the Overview page.
2. From the drop-down menu, select the **Add new host** button.
3. In the **Add new host** dialog box, specify the host you want to add.

4. (Optional) Add the user name for the account to which you want to connect.
 You can use any user account of the remote system. However, if you use credentials of a user account without administration privileges, you will not be able to perform administration tasks.

 If you use the same credentials as for your local system, the web console will authenticate remote systems automatically every time you log in. However, using the same credentials on more machines could be a potential security risk.

5. (Optional) Click the **Color** field to change the color of the system.

6. Click **Add**.
The new host will appear in the list of hosts in the username@hostname drop-down menu.

NOTE

The web console does not save passwords used to log in to remote systems which means that you have to log in again after each system restart. Next time you log in, click the Log in button placed on the main screen of the disconnected remote system to open the login dialog.

31.3. REMOVING REMOTE HOSTS FROM THE WEB CONSOLE

You can remove other systems from the web console.

Prerequisites

- Remote systems added.
 For details, see Adding remote hosts to the web console.

- You must be logged into the web console with administrator privileges.
 For details, see Logging in to the web console.

Procedure

1. Log in to the RHEL 9 web console.

2. Click on your username@hostname in the top left corner of the Overview page.
3. Click the **Edit hosts** icon.
4. To remove a host from web console, click the red minus sign - button next to its host name. Note that you cannot remove a host you are currently connected to.
As a result, the server is removed from your web console.

31.4. ENABLING SSH LOGIN FOR A NEW HOST

When you add a new host you can also log in to the host with an SSH key. If you already have an SSH key on your system, the web console uses the existing one; otherwise, the web console can create a key.

Prerequisites
You are logged in to the web console with administration privileges. For details, see Logging in to the web console.

Procedure

1. In the RHEL 9 web console, click on your `username@hostname` in the top left corner of the Overview page.

2. From the drop-down menu, select the Add new host button.
3. In the **Add new host** dialog box, specify the host you want to add.

4. Add the user name for the account to which you want to connect. You can use any user account of the remote system. However, if you use credentials of a user account without administration privileges, you will not be able to perform administration tasks.

5. (Optional) Click the **Color** field to change the color of the system.

6. Click **Add**. A new dialog window will appear asking for a password.

7. Enter the user account password.
8. Check **Authorize ssh key** if you already have an SSH key.

![SSH Key Authorization](image1)

9. Check **Create a new SSH key and authorize it** if you do not have an SSH key. The web console will create it for you.

![Creating SSH Key](image2)

a. Add a password for the SSH key.
b. Confirm the password.

10. Click **Log in**
 The new host will appear in the list of hosts in the `username@hostname` drop-down menu.

Verification steps

1. Log out.
2. Log back in.
3. Click **Log in** in the Not connected to host screen.
4. Select **SSH key** as your authentication option.

5. Enter your key password.

6. Click **Log in**.

Additional resources

- Using secure communications between two systems with OpenSSH

31.5. CONSTRAINED DELEGATION IN IDENTITY MANAGEMENT

The Service for User to Proxy (**S4U2proxy**) extension provides a service that obtains a service ticket to another service on behalf of a user. This feature is known as **constrained delegation**. The second service is typically a proxy performing some work on behalf of the first service, under the authorization context of the user. Using constrained delegation eliminates the need for the user to delegate their full ticket-granting ticket (TGT).
Identity Management (IdM) traditionally uses the Kerberos S4U2proxy feature to allow the web server framework to obtain an LDAP service ticket on the user’s behalf. The IdM-AD trust system also uses constrained delegation to obtain a cifs principal.

You can use the S4U2proxy feature to configure a web console client to allow an IdM user that has authenticated with a smart card to achieve the following:

- Run commands with superuser privileges on the RHEL host on which the web console service is running without being asked to authenticate again.
- Access a remote host using SSH and access services on the host without being asked to authenticate again.

Additional resources

- S4U2proxy
- Service constrained delegation

31.6. CONFIGURING A WEB CONSOLE TO ALLOW A USER AUTHENTICATED WITH A SMART CARD TO SSH TO A REMOTE HOST WITHOUT BEING ASKED TO AUTHENTICATE AGAIN

After you have logged in to a user account on the RHEL web console, as an Identity Management (IdM) system administrator you might need to connect to remote machines by using the SSH protocol. You can use the constrained delegation feature to use SSH without being asked to authenticate again.

Follow this procedure to configure the web console to use constrained delegation. In the example below, the web console session runs on the myhost.idm.example.com host and it is being configured to access the remote.idm.example.com host by using SSH on behalf of the authenticated user.

Prerequisites

- You have obtained an IdM admin ticket-granting ticket (TGT).
- You have root access to remote.idm.example.com.
- The web console service is present in IdM.
- The remote.idm.example.com host is present in IdM.
- The web console has created an S4U2Proxy Kerberos ticket in the user session. To verify that this is the case, log in to the web console as an IdM user, open the Terminal page, and enter:

```
$ klist
Ticket cache: FILE:/run/user/1894000001/cockpit-session-3692.ccache
Default principal: user@IDM.EXAMPLE.COM

Valid starting   Expires       Service principal
07/30/21 09:19:06 07/31/21 09:19:06 HTTP/myhost.idm.example.com@IDM.EXAMPLE.COM
07/30/21 09:19:06 07/31/21 09:19:06 krbtgt/IDM.EXAMPLE.COM@IDM.EXAMPLE.COM
```

for client HTTP/myhost.idm.example.com@IDM.EXAMPLE.COM
Procedure

1. Create a list of the target hosts that can be accessed by the delegation rule:
 a. Create a service delegation target:

      ```
      $ ipa servicedelegationtarget-add cockpit-target
      ```
 b. Add the target host to the delegation target:

      ```
      $ ipa servicedelegationtarget-add-member cockpit-target \
          principals=host/remote.idm.example.com@IDM.EXAMPLE.COM
      ```

2. Allow *cockpit* sessions to access the target host list by creating a service delegation rule and adding the *HTTP* service Kerberos principal to it:
 a. Create a service delegation rule:

      ```
      $ ipa servicedelegationrule-add cockpit-delegation
      ```
 b. Add the web console client to the delegation rule:

      ```
      $ ipa servicedelegationrule-add-member cockpit-delegation \
          principals=HTTP/myhost.idm.example.com@IDM.EXAMPLE.COM
      ```
 c. Add the delegation target to the delegation rule:

      ```
      $ ipa servicedelegationrule-add-target cockpit-delegation \
          servicedelegationtargets=cockpit-target
      ```

3. Enable Kerberos authentication on the *remote.idm.example.com* host:
 a. SSH to *remote.idm.example.com* as root.
 b. Open the `/etc/ssh/sshd_config` file for editing.
 c. Enable `GSSAPIAuthentication` by uncommenting the `GSSAPIAuthentication no` line and replacing it with `GSSAPIAuthentication yes`.

4. Restart the SSH service on *remote.idm.example.com* so that the above changes take effect immediately:

   ```
   $ systemctl try-restart ssdh.service
   ```

Additional resources

- Logging in to the web console with smart cards
- Constrained delegation in Identity Management

31.7. USING ANSIBLE TO CONFIGURE A WEB CONSOLE TO ALLOW A USER AUTHENTICATED WITH A SMART CARD TO SSH TO A REMOTE HOST WITHOUT BEING ASKED TO AUTHENTICATE AGAIN
After you have logged in to a user account on the RHEL web console, as an Identity Management (IdM) system administrator you might need to connect to remote machines by using the SSH protocol. You can use the constrained delegation feature to use SSH without being asked to authenticate again.

Follow this procedure to use the servicedelegationrule and servicedelegationtarget ansible-freeipa modules to configure a web console to use constrained delegation. In the example below, the web console session runs on the myhost.idm.example.com host and it is being configured to access the remote.idm.example.com host by using SSH on behalf of the authenticated user.

Prerequisites

- The IdM admin password.
- root access to remote.idm.example.com.
- The web console service is present in IdM.
- The remote.idm.example.com host is present in IdM.
- The web console has created an S4U2Proxy Kerberos ticket in the user session. To verify that this is the case, log in to the web console as an IdM user, open the Terminal page, and enter:

```
$ klist
```

```
Ticket cache: FILE:/run/user/1894000001/cockpit-session-3692.ccache
Default principal: user@IDM.EXAMPLE.COM

Valid starting     Expires            Service principal
07/30/21 09:19:06 07/31/21 09:19:06 HTTP/myhost.idm.example.com@IDM.EXAMPLE.COM
07/30/21 09:19:06 07/31/21 09:19:06 krbtgt/IDM.EXAMPLE.COM@IDM.EXAMPLE.COM
for client HTTP/myhost.idm.example.com@IDM.EXAMPLE.COM
```

- You have configured your Ansible control node to meet the following requirements:
 - You are using Ansible version 2.14 or later.
 - You have installed the ansible-freeipa package on the Ansible controller.
 - The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible inventory file with the fully-qualified domain name (FQDN) of the IdM server.
 - The example assumes that the secret.yml Ansible vault stores your ipadmin_password.
- The target node, that is the node on which the ansible-freeipa module is executed, is part of the IdM domain as an IdM client, server or replica.

Procedure

1. Navigate to your ~/MyPlaybooks/ directory:

```
$ cd ~/MyPlaybooks/
```

2. Create a web-console-smart-card-ssh.yml playbook with the following content:

 a. Create a task that ensures the presence of a delegation target:

- name: Playbook to create a constrained delegation target
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml

 tasks:
 - name: Ensure servicedelegationtarget web-console-delegation-target is present
 ipaservicedelegationtarget:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: web-console-delegation-target

b. Add a task that adds the target host to the delegation target:

 - name: Ensure servicedelegationtarget web-console-delegation-target member
 principal host/remote.idm.example.com@IDM.EXAMPLE.COM is present
 ipaservicedelegationtarget:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: web-console-delegation-target
 principal: host/remote.idm.example.com@IDM.EXAMPLE.COM
 action: member

c. Add a task that ensures the presence of a delegation rule:

 - name: Ensure servicedelegationrule delegation-rule is present
 ipaservicedelegationrule:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: web-console-delegation-rule

d. Add a task that ensures that the Kerberos principal of the web console client service is a member of the constrained delegation rule:

 - name: Ensure the Kerberos principal of the web console client service is added to the servicedelegationrule web-console-delegation-rule
 ipaservicedelegationrule:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: web-console-delegation-rule
 principal: HTTP/myhost.idm.example.com
 action: member

e. Add a task that ensures that the constrained delegation rule is associated with the web-console-delegation-target delegation target:

 - name: Ensure a constrained delegation rule is associated with a specific delegation target
 ipaservicedelegationrule:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: web-console-delegation-rule
 target: web-console-delegation-target
 action: member

3. Save the file.
4. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the `secret.yml` file, and the inventory file:

```
$ ansible-playbook --vault-password-file=password_file -v -i inventory web-console-smart-card-ssh.yml
```

5. Enable Kerberos authentication on `remote.idm.example.com`:
 a. SSH to `remote.idm.example.com` as `root`.
 b. Open the `/etc/ssh/sshd_config` file for editing.
 c. Enable `GSSAPIAuthentication` by uncommenting the `GSSAPIAuthentication no` line and replacing it with `GSSAPIAuthentication yes`.

Additional resources

- Logging in to the web console with smart cards
- Constrained delegation in Identity Management

- README-servicedelegationrule.md and README-servicedelegationtarget.md in the `/usr/share/doc/ansible-freeipa/` directory

- Sample playbooks in the `/usr/share/doc/ansible-freeipa/playbooks/servicedelegationtarget` and `/usr/share/doc/ansible-freeipa/playbooks/servicedelegationrule` directories
CHAPTER 32. CONFIGURING SINGLE SIGN-ON FOR THE RHEL 9 WEB CONSOLE IN THE IDM DOMAIN

Learn how to use Single Sign-on (SSO) authentication provided by Identity Management (IdM) in the RHEL 9 web console.

Advantages:

- IdM domain administrators can use the RHEL 9 web console to manage local machines.
- Users with a Kerberos ticket in the IdM domain do not need to provide login credentials to access the web console.
- All hosts known to the IdM domain are accessible via SSH from the local instance of the RHEL 9 web console.
- Certificate configuration is not necessary. The console’s web server automatically switches to a certificate issued by the IdM certificate authority and accepted by browsers.

This chapter covers the following steps to configure SSO for logging into the RHEL web console:

1. Add machines to the IdM domain using the RHEL 9 web console.
 For details, see Joining a RHEL 9 system to an IdM domain using the web console.

2. If you want to use Kerberos for authentication, you need to obtain a Kerberos ticket on your machine.
 For details, see Logging in to the web console using Kerberos authentication.

3. Allow administrators on the IdM server to run any command on any host.
 For details, see Enabling admin sudo access to domain administrators on the IdM server

Prerequisites

- The RHEL web console installed on RHEL 9 systems.
 For details, see Installing the web console.

- IdM client installed on systems with the RHEL web console.
 For details, see IdM client installation.

32.1. JOINING A RHEL 9 SYSTEM TO AN IDM DOMAIN USING THE WEB CONSOLE

You can use the web console to join the Red Hat Enterprise Linux 9 system to the Identity Management (IdM) domain.

Prerequisites

- The IdM domain is running and reachable from the client you want to join.

- You have the IdM domain administrator credentials.

Procedure

1. Log into the RHEL web console.
For details, see Logging in to the web console.

2. In the **Configuration** field of the **Overview** tab click **Join Domain**.

3. In the **Join a Domain** dialog box, enter the host name of the IdM server in the **Domain Address** field.

4. In the **Domain administrator name** field, enter the user name of the IdM administration account.

5. In the **Domain administrator password**, add a password.

6. Click **Join**.

Verification steps

1. If the RHEL 9 web console did not display an error, the system has been joined to the IdM domain and you can see the domain name in the **System** screen.

2. To verify that the user is a member of the domain, click the Terminal page and type the **id** command:

   ```
   $ id
   euid=548800004(example_user) gid=548800004(example_user)
   groups=548800004(example_user) context=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023
   ```

Additional resources

- Planning Identity Management
- Installing Identity Management
- Managing IdM users, groups, hosts, and access control rules

32.2. LOGGING IN TO THE WEB CONSOLE USING KERBEROS AUTHENTICATION

The following procedure describes steps on how to set up the RHEL 9 system to use Kerberos authentication.

IMPORTANT

With SSO you usually do not have any administrative privileges in the web console. This only works if you configured passwordless sudo. The web console does not interactively ask for a sudo password.

Prerequisites

- IdM domain running and reachable in your company environment.
 For details, see Joining a RHEL 9 system to an IdM domain using the web console.

- Enable the **cockpit.socket** service on remote systems to which you want to connect and manage them with the RHEL web console.
For details, see Installing the web console.

- If the system does not use a Kerberos ticket managed by the SSSD client, try to request the ticket with the `kinit` utility manually.

Procedure

Log in to the RHEL web console with the following address: https://dns_name:9090.

At this point, you are successfully connected to the RHEL web console and you can start with configuration.

32.3. ENABLING ADMIN SUDO ACCESS TO DOMAIN ADMINISTRATORS ON THE IDM SERVER

You can allow domain administrators to use any command on any host in the Identity Management (IdM) domain by using the RHEL web console.

To accomplish this, enable sudo access to the `admins` user group created automatically during the IdM server installation. All users added to the `admins` group gain sudo access if you run `ipa-advise` script on the group.

Prerequisites

- The server runs IdM 4.7.1 or later.

Procedure

1. Connect to the IdM server.
2. Run the `ipa-advise` script:

   ```bash
   $ ipa-advise enable-admins-sudo | sh -ex
   ```
If the console does not display an error, the **admins** group has sudo permissions on all machines in the IdM domain.
CHAPTER 33. CONFIGURING SMART CARD AUTHENTICATION WITH THE WEB CONSOLE FOR CENTRALLY MANAGED USERS

Configure smart card authentication in the RHEL web console for users who are centrally managed by:

- Identity Management
- Active Directory which is connected in the cross-forest trust with Identity Management

Prerequisites

- The system for which you want to use the smart card authentication must be a member of an Active Directory or Identity Management domain.
- The certificate used for the smart card authentication must be associated with a particular user in Identity Management or Active Directory.
 For more details about associating a certificate with the user in Identity Management, see Adding a certificate to a user entry in the IdM Web UI or Adding a certificate to a user entry in the IdM CLI.

33.1. SMART CARD AUTHENTICATION FOR CENTRALLY MANAGED USERS

A smart card is a physical device, which can provide personal authentication using certificates stored on the card. Personal authentication means that you can use smart cards in the same way as user passwords.

You can store user credentials on the smart card in the form of a private key and a certificate. Special software and hardware is used to access them. You insert the smart card into a reader or a USB socket and supply the PIN code for the smart card instead of providing your password.

Identity Management (IdM) supports smart card authentication with:

- User certificates issued by the IdM certificate authority.
- User certificates issued by the Active Directory Certificate Service (ADCS) certificate authority.

NOTE

If you want to start using smart card authentication, see the hardware requirements: Smart Card support in RHEL8+.

33.2. INSTALLING TOOLS FOR MANAGING AND USING SMART CARDS

Prerequisites

- The gnutls-utils package is installed.
- The opensc package is installed.
- The pcscd service is running.
Before you can configure your smart card, you must install the corresponding tools, which can generate certificates and start the `pcscd` service.

Procedure

1. Install the `opensc` and `gnutls-utils` packages:
   ```bash
   # dnf -y install opensc gnutls-utils
   ``
2. Start the `pcscd` service.
   ```bash
 # systemctl start pcscd
 ``

Verification steps

- Verify that the `pcscd` service is up and running
  ```bash
  # systemctl status pcscd
  ```

33.3. PREPARING YOUR SMART CARD AND UPLOADING YOUR CERTIFICATES AND KEYS TO YOUR SMART CARD

Follow this procedure to configure your smart card with the `pkcs15-init` tool, which helps you to configure:

- Erasing your smart card
- Setting new PINs and optional PIN Unblocking Keys (PUKs)
- Creating a new slot on the smart card
- Storing the certificate, private key, and public key in the slot
- If required, locking the smart card settings as certain smart cards require this type of finalization

NOTE

The `pkcs15-init` tool may not work with all smart cards. You must use the tools that work with the smart card you are using.

Prerequisites

- The `opensc` package, which includes the `pkcs15-init` tool, is installed. For more details, see [Installing tools for managing and using smart cards](#).
- The card is inserted in the reader and connected to the computer.
- You have a private key, a public key, and a certificate to store on the smart card. In this procedure, `testuser.key`, `testuserpublic.key`, and `testuser.crt` are the names used for the private key, public key, and the certificate.
- You have your current smart card user PIN and Security Officer PIN (SO-PIN).
1. Erase your smart card and authenticate yourself with your PIN:

   ```
   $ pkcs15-init --erase-card --use-default-transport-keys
   Using reader with a card: Reader name
   PIN [Security Officer PIN] required.
   Please enter PIN [Security Officer PIN]:
   ```

 The card has been erased.

2. Initialize your smart card, set your user PIN and PUK, and your Security Officer PIN and PUK:

   ```
   $ pkcs15-init --create-pkcs15 --use-default-transport-keys
     --pin 963214 --puk 321478 --so-pin 65498714 --so-puk 784123
   Using reader with a card: Reader name
   ```

 The `pkcs15-init` tool creates a new slot on the smart card.

3. Set a label and the authentication ID for the slot:

   ```
   $ pkcs15-init --store-pin --label testuser --auth-id 01 --so-pin 65498714
   --so-puk 784123 --pin 963214 --puk 321478
   Using reader with a card: Reader name
   ```

 The label is set to a human-readable value, in this case, **testuser**. The auth-id must be two hexadecimal values, in this case it is set to **01**.

4. Store and label the private key in the new slot on the smart card:

   ```
   $ pkcs15-init --store-private-key testuser.key --label testuser_key
     --auth-id 01 --id 01 --pin 963214
   Using reader with a card: Reader name
   ```

 NOTE

 The value you specify for `--id` must be the same when storing your private key and storing your certificate in the next step. Specifying your own value for `--id` is recommended as otherwise a more complicated value is calculated by the tool.

5. Store and label the certificate in the new slot on the smart card:

   ```
   $ pkcs15-init --store-certificate testuser.crt --label testuser_crt
     --auth-id 01 --id 01 --format pem --pin 963214
   Using reader with a card: Reader name
   ```

6. Optional: Store and label the public key in the new slot on the smart card:

   ```
   $ pkcs15-init --store-public-key testuserpublic.key --label testuserpublic_key
     --auth-id 01 --id 01 --pin 963214
   Using reader with a card: Reader name
   ```
NOTE

If the public key corresponds to a private key or certificate, specify the same ID as the ID of the private key or certificate.

7. Optional: Certain smart cards require you to finalize the card by locking the settings:

 $ pkcs15-init -F

 At this stage, your smart card includes the certificate, private key, and public key in the newly created slot. You have also created your user PIN and PUK and the Security Officer PIN and PUK.

33.4. ENABLING SMART CARD AUTHENTICATION FOR THE WEB CONSOLE

To be able to use smart card authentication in the web console, enable smart card authentication in the `cockpit.conf` file.

Additionally, you can disable password authentication in the same file.

Prerequisites

- The RHEL web console has been installed.

Procedure

1. Log in to the RHEL web console with administrator privileges.

2. Click Terminal.

3. In the `/etc/cockpit/cockpit.conf`, set the `ClientCertAuthentication` to `yes`:

   ```
   [WebService]
   ClientCertAuthentication = yes
   ```

4. Optional: Disable password based authentication in `cockpit.conf` with:

   ```
   [Basic]
   action = none
   ```

 This configuration disables password authentication and you must always use the smart card.

5. Restart the web console to ensure that the `cockpit.service` accepts the change:

   ```
   # systemctl restart cockpit
   ```

33.5. LOGGING IN TO THE WEB CONSOLE WITH SMART CARDS

You can use smart cards to log in to the web console.

Prerequisites
- A valid certificate stored in your smart card that is associated to a user account created in an Active Directory or Identity Management domain.
- PIN to unlock the smart card.
- The smart card has been put into the reader.

Procedure

1. Open your web browser and add the web console's address in the address bar. The browser asks you to add the PIN protecting the certificate stored on the smart card.

2. In the **Password Required** dialog box, enter PIN and click **OK**.

3. In the **User Identification Request** dialog box, select the certificate stored in the smart card.

4. Select **Remember this decision**.
 The system does not open this window next time.

 NOTE
 This step does not apply to Google Chrome users.

5. Click **OK**.

You are now connected and the web console displays its content.

33.6. ENABLING PASSWORDLESS SUDO AUTHENTICATION FOR SMART CARD USERS

You can use the web console to configure passwordless authentication to **sudo** and other services for smart card users.

As an alternative, if you use Red Hat Identity Management, you can declare the initial web console certificate authentication as trusted for authenticating to **sudo**, SSH, or other services. For that purpose, the web console automatically creates an S4U2Proxy Kerberos ticket in the user session.

Prerequisites

- Identity Management installed.
- Active Directory connected in the cross-forest trust with Identity Management.
- Smart card set up to log in to the web console. See Configuring smart card authentication with the web console for centrally managed users for more information.

Procedure

1. Set up constraint delegation rules to list which hosts the ticket can access.

 Example 33.1. Setting up constraint delegation rules
 The web console session runs host `host.example.com` and should be trusted to access its own host with `sudo`. Additionally, we are adding second trusted host – `remote.example.com`.
Create the following delegation:

- Run the following commands to add a list of target machines a particular rule can access:

```
# ipa servicedelegationtarget-add cockpit-target
# ipa servicedelegationtarget-add-member cockpit-target -- principals=host/host.example.com@EXAMPLE.COM -- principals=host/remote.example.com@EXAMPLE.COM
```

- To allow the web console sessions (HTTP/principal) to access that host list, use the following commands:

```
# ipa servicedelegationrule-add cockpit-delegation
# ipa servicedelegationrule-add-member cockpit-delegation -- principals=HTTP/host.example.com@EXAMPLE.COM
# ipa servicedelegationrule-add-target cockpit-delegation -- servicedelegationtargets=cockpit-target
```

2. Enable GSS authentication in the corresponding services:

 a. For sudo, enable the `pam_sss_gss` module in the `/etc/sssd/sssd.conf` file:
 i. As root, add an entry for your domain to the `/etc/sssd/sssd.conf` configuration file.
      ```
      [domain/example.com]
      pam_gssapi_services = sudo, sudo-i
      ```
 ii. Enable the module in the `/etc/pam.d/sudo` file on the first line.
      ```
      auth sufficient pam_sss_gss.so
      ```

 b. For SSH, update the `GSSAPIAuthentication` option in the `/etc/ssh/sshd_config` file to `yes`.

WARNING

The delegated S4U ticket is not forwarded to remote SSH hosts when connecting to them from the web console. Authenticating to sudo on a remote host with your ticket will not work.

Verification

1. Log in to the web console using a smart card.

2. Click the **Limited access** button.

3. Authenticate using your smart card.
Alternatively:

- Try to connect to a different host with SSH.

33.7. LIMITING USER SESSIONS AND MEMORY TO PREVENT A DOS ATTACK

A certificate authentication is protected by separating and isolating instances of the `cockpit-ws` web server against attackers who want to impersonate another user. However, this introduces a potential denial of service (DoS) attack: A remote attacker could create a large number of certificates and send a large number of HTTPS requests to `cockpit-ws` each using a different certificate.

To prevent this DoS, the collective resources of these web server instances are limited. By default, limits to the number of connections and to memory usage are set to 200 threads and a 75% (soft) / 90% (hard) memory limit.

The following procedure describes resource protection by limiting the number of connections and memory.

Procedure

1. In the terminal, open the `system-cockpithttps.slice` configuration file:

   ```
   # systemctl edit system-cockpithttps.slice
   ```

2. Limit the `TasksMax` to 100 and `CPUQuota` to 30%:

   ```
   [Slice]
   # change existing value
   TasksMax=100
   # add new restriction
   CPUQuota=30%
   ```

3. To apply the changes, restart the system:

   ```
   # systemctl daemon-reload
   # systemctl stop cockpit
   ```

Now, the new memory and user session limits protect the `cockpit-ws` web server from DoS attacks.
CHAPTER 34. MANAGING CONTAINER IMAGES BY USING THE RHEL WEB CONSOLE

You can use the RHEL web console web-based interface to pull, prune, or delete your container images.

34.1. PULLING CONTAINER IMAGES IN THE WEB CONSOLE

You can download container images to your local system and use them to create your containers.

Prerequisites

- The web console is installed and accessible. For more information, see Installing the web console and Logging in to the web console.
- The `cockpit-podman` add-on is installed:

  ```bash
  # dnf install cockpit-podman
  ```

Procedure

1. Click Podman containers in the main menu.
2. In the Images table, click the overflow menu in the upper-right corner and select Download new image.
3. The Search for an image dialog box appears.
4. In the Search for field, enter the name of the image or specify its description.
5. In the in drop-down list, select the registry from which you want to pull the image.
6. Optional: In the Tag field, enter the tag of the image.
7. Click Download.

Verification

- Click Podman containers in the main menu. You can see the newly downloaded image in the Images table.

NOTE

You can create a container from the downloaded image by clicking the Create container in the Images table. To create the container, follow steps 3-8 in Creating containers in the web console.

34.2. PRUNING CONTAINER IMAGES IN THE WEB CONSOLE

You can remove all unused images that do not have any containers based on it.

Prerequisites

- At least one container image is pulled.
• The web console is installed and accessible. For more information, see Installing the web console and Logging in to the web console.

• The **cockpit-podman** add-on is installed:

```bash
# dnf install cockpit-podman
```

Procedure

1. Click **Podman containers** in the main menu.

2. In the **Images** table, click the overflow menu in the upper-right corner and select **Prune unused images**.

3. The pop-up window with the list of images appears. Click **Prune** to confirm your choice.

Verification

• Click **Podman containers** in the main menu. The deleted images should not be listed in the **Images** table.

34.3. DELETING CONTAINER IMAGES IN THE WEB CONSOLE

You can delete a previously pulled container image using the web console.

Prerequisites

• At least one container image is pulled.

• The web console is installed and accessible. For more information, see Installing the web console and Logging in to the web console.

• The **cockpit-podman** add-on is installed:

```bash
# dnf install cockpit-podman
```

Procedure

1. Click **Podman containers** in the main menu.

2. In the **Images** table, select the image you want to delete and click the overflow menu and select **Delete**.

3. The window appears. Click **Delete tagged images** to confirm your choice.

Verification

• Click the **Podman containers** in the main menu. The deleted container should not be listed in the **Images** table.
CHAPTER 35. MANAGING CONTAINERS BY USING THE RHEL WEB CONSOLE

You can use the Red Hat Enterprise Linux web console to manage your containers and pods. With the web console, you can create containers as a non-root or root user.

- As a root user, you can create system containers with extra privileges and options.
- As a non-root user, you have two options:
 - To only create user containers, you can use the web console in its default mode - Limited access.
 - To create both user and system containers, click Administrative access in the top panel of the web console page.

For details about differences between root and rootless containers, see Special considerations for rootless containers.

35.1. CREATING CONTAINERS IN THE WEB CONSOLE

You can create a container and add port mappings, volumes, environment variables, health checks, and so on.

Prerequisites

- The web console is installed and accessible. For more information, see Installing the web console and Logging in to the web console.
- The cockpit-podman add-on is installed:

```
# dnf install cockpit-podman
```

Procedure

1. Click Podman containers in the main menu.
2. Click Create container.
3. In the Name field, enter the name of your container.
4. Provide desired info in the Details tab.
 - Available only with the administrative access: Select the Owner of the container: System or User.
 - In the Image drop down list select or search the container image in selected registries.
 - Optional: Check the Pull latest image checkbox to pull the latest container image.
 - The Command field specifies the command. You can change the default command if you need.
 - Optional: Check the With terminal checkbox to run your container with a terminal.
● The Memory limit field specifies the memory limit for the container. To change the default memory limit, check the checkbox and specify the limit.

● Available only for system containers: In the CPU shares field, specify the relative amount of CPU time. Default value is 1024. Check the checkbox to modify the default value.

● Available only for system containers: In the Restart policy drop down menu, select one of the following options:
 ○ No (default value): No action.
 ○ On Failure: Restarts a container on failure.
 ○ Always: Restarts a container when exits or after rebooting the system.

5. Provide the required information in the Integration tab.

 ● Click Add port mapping to add port mapping between the container and host system.
 ○ Enter the IP address, Host port, Container port and Protocol.

 ● Click Add volume to add volume.
 ○ Enter the host path, Container path. You can check the Writable option checkbox to create a writable volume. In the SELinux drop down list, select one of the following options: No Label, Shared or Private.

 ● Click Add variable to add environment variable.
 ○ Enter the Key and Value.

6. Provide the required information in the Health check tab.

 ● In the Command fields, enter the 'healthcheck' command.

 ● Specify the healthcheck options:
 ○ Interval (default is 30 seconds)
 ○ Timeout (default is 30 seconds)
 ○ Start period
 ○ Retries (default is 3)

 ○ When unhealthy: Select one of the following options:
 ■ No action (default): Take no action.
 ■ Restart: Restart the container.
 ■ Stop: Stop the container.
 ■ Force stop: Force stops the container, it does not wait for the container to exit.

7. Click Create and run to create and run the container.
NOTE
You can click Create to only create the container.

Verification
- Click Podman containers in the main menu. You can see the newly created container in the Containers table.

35.2. INSPECTING CONTAINERS IN THE WEB CONSOLE
You can display detailed information about a container in the web console.

Prerequisites
- The container was created.
- The web console is installed and accessible. For more information, see Installing the web console and Logging in to the web console.
- The cockpit-podman add-on is installed:
 # dnf install cockpit-podman

Procedure
1. Click Podman containers in the main menu.
2. Click the > arrow icon to see details of the container.
 - In the Details tab, you can see container ID, Image, Command, Created (timestamp when the container was created), and its State.
 - Available only for system containers: You can also see IP address, MAC address, and Gateway address.
 - In the Integration tab, you can see environment variables, port mappings, and volumes.
 - In the Log tab, you can see container logs.
 - In the Console tab, you can interact with the container using the command line.

35.3. CHANGING THE STATE OF CONTAINERS IN THE WEB CONSOLE
In the Red Hat Enterprise Linux web console, you can start, stop, restart, pause, and rename containers on the system.

Prerequisites
- The container was created.
- The web console is installed and accessible. For more information, see Installing the web console and Logging in to the web console.
- The cockpit-podman add-on is installed:
Procedure

1. Click Podman containers in the main menu.

2. In the Containers table, select the container you want to modify and click the overflow menu and select the action you want to perform:
 - Start
 - Stop
 - Force stop
 - Restart
 - Force restart
 - Pause
 - Rename

35.4. COMMITTING CONTAINERS IN THE WEB CONSOLE

You can create a new image based on the current state of the container.

Prerequisites

- The container was created.
- The web console is installed and accessible. For more information, see Installing the web console and Logging in to the web console.
- The cockpit-podman add-on is installed:

```bash
# dnf install cockpit-podman
```

Procedure

1. Click Podman containers in the main menu.

2. In the Containers table, select the container you want to modify and click the overflow menu and select Commit.

3. In the Commit container form, add the following details:
 - In the New image name field, enter the image name.
 - Optional: In the Tag field, enter the tag.
 - Optional: In the Author field, enter your name.
 - Optional: In the Command field, change command if you need.
• Optional: Check the Options you need:
 ○ Pause container when creating image: The container and its processes are paused while the image is committed.
 ○ Use legacy Docker format: if you do not use the Docker image format, the OCI format is used.

4. Click Commit.

Verification

• Click the Podman containers in the main menu. You can see the newly created image in the Images table.

35.5. CREATING A CONTAINER CHECKPOINT IN THE WEB CONSOLE

Using the web console, you can set a checkpoint on a running container or an individual application and store its state to disk.

NOTE

Creating a checkpoint is available only for system containers.

Prerequisites

• The container is running.

• The web console is installed and accessible. For more information, see Installing the web console and Logging in to the web console.

• The cockpit-podman add-on is installed:

 # dnf install cockpit-podman

Procedure

1. Click Podman containers in the main menu.

2. In the Containers table, select the container you want to modify and click the overflow icon menu and select Checkpoint.

3. Optional: In the Checkpoint container form, check the options you need:

 • Keep all temporary checkpoint files: keep all temporary log and statistics files created by CRIU during checkpointing. These files are not deleted if checkpointing fails for further debugging.

 • Leave running after writing checkpoint to disk: leave the container running after checkpointing instead of stopping it.

 • Support preserving established TCP connections

4. Click Checkpoint.
35.6. RESTORING A CONTAINER CHECKPOINT IN THE WEB CONSOLE

You can use data saved to restore the container after a reboot at the same point in time it was checkpointed.

NOTE
Creating a checkpoint is available only for system containers.

Prerequisites
- The container was checkpointed.
- The web console is installed and accessible. For more information, see Installing the web console and Logging in to the web console.
- The cockpit-podman add-on is installed:

```
# dnf install cockpit-podman
```

Procedure
1. Click Podman containers in the main menu.

2. In the Containers table, select the container you want to modify and click the overflow menu and select Restore.

3. Optional: In the Restore container form, check the options you need:
 - **Keep all temporary checkpoint files**: Keep all temporary log and statistics files created by CRIU during checkpointing. These files are not deleted if checkpointing fails for further debugging.
 - **Restore with established TCP connections**
 - **Ignore IP address if set statically**: If the container was started with IP address the restored container also tries to use that IP address and restore fails if that IP address is already in use. This option is applicable if you added port mapping in the Integration tab when you create the container.
 - **Ignore MAC address if set statically**: If the container was started with MAC address the restored container also tries to use that MAC address and restore fails if that MAC address is already in use.

4. Click Restore.

Verification
- Click the Podman containers in the main menu. You can see that the restored container in the Containers table is running.
35.7. DELETING CONTAINERS IN THE WEB CONSOLE

You can delete an existing container using the web console.

Prerequisites

- The container exists on your system.
- The web console is installed and accessible. For more information, see Installing the web console and Logging in to the web console.
- The cockpit-podman add-on is installed:

  ```bash
  # dnf install cockpit-podman
  ```

Procedure

1. Click Podman containers in the main menu.
2. In the Containers table, select the container you want to delete and click the overflow menu and select Delete.
3. The pop-up window appears. Click Delete to confirm your choice.

Verification

- Click the Podman containers in the main menu. The deleted container should not be listed in the Containers table.

35.8. CREATING PODS IN THE WEB CONSOLE

You can create pods in the RHEL web console interface.

Prerequisites

- The web console is installed and accessible. For more information, see Installing the web console and Logging in to the web console.
- The cockpit-podman add-on is installed:

  ```bash
  # dnf install cockpit-podman
  ```

Procedure

1. Click Podman containers in the main menu.
2. Click Create pod.
3. Provide desired information in the Create pod form:
 - Available only with the administrative access: Select the Owner of the container: System or User.
 - In the Name field, enter the name of your container.
• Click Add port mapping to add port mapping between container and host system.
 ○ Enter the IP address, Host port, Container port and Protocol.

• Click Add volume to add volume.
 ○ Enter the host path, Container path. You can check the Writable checkbox to create a writable volume. In the SELinux drop down list, select one of the following options: No Label, Shared or Private.

4. Click Create.

Verification

• Click Podman containers in the main menu. You can see the newly created pod in the Containers table.

35.9. CREATING CONTAINERS IN THE POD IN THE WEB CONSOLE

You can create a container in a pod.

Prerequisites

• The web console is installed and accessible. For more information, see Installing the web console and Logging in to the web console.

• The cockpit-podman add-on is installed:

 # dnf install cockpit-podman

Procedure

1. Click Podman containers in the main menu.

2. Click Create container in pod.

3. In the Name field, enter the name of your container.

4. Provide the required information in the Details tab.

 • Available only with the administrative access: Select the Owner of the container: System or User.

 • In the Image drop down list select or search the container image in selected registries.
 ○ Optional: Check the Pull latest image checkbox to pull the latest container image.

 • The Command field specifies the command. You can change the default command if you need.
 ○ Optional: Check the With terminal checkbox to run your container with a terminal.

 • The Memory limit field specifies the memory limit for the container. To change the default memory limit, check the checkbox and specify the limit.
• Available only for system containers: In the CPU shares field, specify the relative amount of CPU time. Default value is 1024. Check the checkbox to modify the default value.

• Available only for system containers: In the Restart policy drop down menu, select one of the following options:
 ○ No (default value): No action.
 ○ On Failure: Restarts a container on failure.
 ○ Always: Restarts container when exits or after system boot.

5. Provide the required information in the Integration tab.

• Click Add port mapping to add port mapping between the container and host system.
 ○ Enter the IP address, Host port, Container port and Protocol.

• Click Add volume to add volume.
 ○ Enter the host path, Container path. You can check the Writable option checkbox to create a writable volume. In the SELinux drop down list, select one of the following options: No Label, Shared, or Private.

• Click Add variable to add environment variable.
 ○ Enter the Key and Value.

6. Provide the required information in the Health check tab.

• In the Command fields, enter the healthcheck command.

• Specify the healthcheck options:
 ○ Interval (default is 30 seconds)
 ○ Timeout (default is 30 seconds)
 ○ Start period
 ○ Retries (default is 3)
 ○ When unhealthy: Select one of the following options:
 ■ No action (default): Take no action.
 ■ Restart: Restart the container.
 ■ Stop: Stop the container.
 ■ Force stop: Force stops the container, it does not wait for the container to exit.

NOTE

The owner of the container is the same as the owner of the pod.
NOTE
In the pod, you can inspect containers, change the status of containers, commit containers, or delete containers.

Verification
- Click **Podman containers** in the main menu. You can see the newly created container in the pod under the **Containers** table.

35.10. CHANGING THE STATE OF PODS IN THE WEB CONSOLE
You can change the status of the pod.

Prerequisites
- The pod was created.
- The web console is installed and accessible. For more information, see Installing the web console and Logging in to the web console.
- The **cockpit-podman** add-on is installed:

  ```
  # dnf install cockpit-podman
  ```

Procedure
1. Click **Podman containers** in the main menu.
2. In the **Containers** table, select the pod you want to modify and click the overflow menu and select the action you want to perform:
 - Start
 - Stop
 - Force stop
 - Restart
 - Force restart
 - Pause

35.11. DELETING PODS IN THE WEB CONSOLE
You can delete an existing pod using the web console.

Prerequisites
- The pod exists on your system.
- The web console is installed and accessible. For more information, see Installing the web console and Logging in to the web console.
The `cockpit-podman` add-on is installed:

```
# dnf install cockpit-podman
```

Procedure

1. Click **Podman containers** in the main menu.

2. In the **Containers** table, select the pod you want to delete and click the overflow menu and select **Delete**.

3. In the following pop-up window, click **Delete** to confirm your choice.

WARNING

You remove all containers in the pod.

Verification

- Click the **Podman containers** in the main menu. The deleted pod should not be listed in the **Containers** table.