
Red Hat Enterprise Linux 9

Administration and configuration tasks using
System Roles in RHEL

Consistent and repeatable configuration of RHEL deployments across multiple hosts
with Red Hat Ansible Automation Platform playbooks

Last Updated: 2023-05-09

Red Hat Enterprise Linux 9 Administration and configuration tasks using
System Roles in RHEL

Consistent and repeatable configuration of RHEL deployments across multiple hosts with Red Hat
Ansible Automation Platform playbooks

Legal Notice

Copyright © 2023 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

The Red Hat Enterprise Linux (RHEL) System Roles are a collection of Ansible roles, modules, and
playbooks that help automate the consistent and repeatable administration of RHEL systems. With
RHEL System Roles, you can efficiently manage large inventories of systems by running
configuration playbooks from a single system.

. .

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

CHAPTER 1. PREPARING A CONTROL NODE AND MANAGED NODES TO USE RHEL SYSTEM ROLES
1.1. INTRODUCTION TO RHEL SYSTEM ROLES
1.2. RHEL SYSTEM ROLES TERMINOLOGY
1.3. PREPARING A CONTROL NODE
1.4. PREPARING A MANAGED NODE
1.5. VERIFYING ACCESS FROM THE CONTROL NODE TO MANAGED NODES

CHAPTER 2. UPDATING PACKAGES TO ENABLE AUTOMATION FOR RHEL SYSTEM ROLES
2.1. DIFFERENCES BETWEEN ANSIBLE ENGINE AND ANSIBLE CORE
2.2. MIGRATING FROM ANSIBLE ENGINE TO ANSIBLE CORE

CHAPTER 3. INSTALLING AND USING COLLECTIONS
3.1. INTRODUCTION TO ANSIBLE COLLECTIONS
3.2. COLLECTIONS STRUCTURE
3.3. INSTALLING COLLECTIONS BY USING THE CLI
3.4. INSTALLING COLLECTIONS FROM AUTOMATION HUB
3.5. DEPLOYING THE TLOG RHEL SYSTEM ROLE USING COLLECTIONS

CHAPTER 4. ANSIBLE IPMI MODULES IN RHEL
4.1. THE RHEL_MGMT COLLECTION
4.2. INSTALLING THE RHEL MGMT COLLECTION USING THE CLI
4.3. EXAMPLE USING THE IPMI_BOOT MODULE
4.4. EXAMPLE USING THE IPMI_POWER MODULE

CHAPTER 5. THE REDFISH MODULES IN RHEL
5.1. THE REDFISH MODULES
5.2. REDFISH MODULES PARAMETERS
5.3. USING THE REDFISH_INFO MODULE
5.4. USING THE REDFISH_COMMAND MODULE
5.5. USING THE REDFISH_CONFIG MODULE

CHAPTER 6. USING ANSIBLE ROLES TO PERMANENTLY CONFIGURE KERNEL PARAMETERS
6.1. INTRODUCTION TO THE KERNEL_SETTINGS ROLE
6.2. APPLYING SELECTED KERNEL PARAMETERS USING THE KERNEL_SETTINGS ROLE

CHAPTER 7. CONFIGURING NETWORK SETTINGS BY USING RHEL SYSTEM ROLES
7.1. CONFIGURING AN ETHERNET CONNECTION WITH A STATIC IP ADDRESS BY USING THE NETWORK
RHEL SYSTEM ROLE WITH AN INTERFACE NAME
7.2. CONFIGURING AN ETHERNET CONNECTION WITH A STATIC IP ADDRESS BY USING THE NETWORK
RHEL SYSTEM ROLE WITH A DEVICE PATH
7.3. CONFIGURING AN ETHERNET CONNECTION WITH A DYNAMIC IP ADDRESS BY USING THE NETWORK
RHEL SYSTEM ROLE WITH AN INTERFACE NAME
7.4. CONFIGURING AN ETHERNET CONNECTION WITH A DYNAMIC IP ADDRESS BY USING THE NETWORK
RHEL SYSTEM ROLE WITH A DEVICE PATH
7.5. CONFIGURING VLAN TAGGING BY USING THE NETWORK RHEL SYSTEM ROLE
7.6. CONFIGURING A NETWORK BRIDGE BY USING THE NETWORK RHEL SYSTEM ROLE
7.7. CONFIGURING A NETWORK BOND BY USING THE NETWORK RHEL SYSTEM ROLE
7.8. CONFIGURING AN IPOIB CONNECTION BY USING THE NETWORK RHEL SYSTEM ROLE
7.9. ROUTING TRAFFIC FROM A SPECIFIC SUBNET TO A DIFFERENT DEFAULT GATEWAY BY USING THE
NETWORK RHEL SYSTEM ROLE

6

7

8
8
8
9
11

12

14
14
14

16
16
16
17
18
19

21
21
22
22
23

25
25
25
26
27
28

29
29
30

34

34

35

37

38
39
41

42
44

45

Table of Contents

1

. .

. .

. .

. .

. .

. .

. .

7.10. CONFIGURING A STATIC ETHERNET CONNECTION WITH 802.1X NETWORK AUTHENTICATION BY
USING THE NETWORK RHEL SYSTEM ROLE
7.11. CONFIGURING A WIFI CONNECTION WITH 802.1X NETWORK AUTHENTICATION BY USING THE
NETWORK RHEL SYSTEM ROLE
7.12. SETTING THE DEFAULT GATEWAY ON AN EXISTING CONNECTION BY USING THE NETWORK RHEL
SYSTEM ROLE
7.13. CONFIGURING A STATIC ROUTE BY USING THE NETWORK RHEL SYSTEM ROLE
7.14. CONFIGURING AN ETHTOOL OFFLOAD FEATURE BY USING THE NETWORK RHEL SYSTEM ROLE
7.15. CONFIGURING AN ETHTOOL COALESCE SETTINGS BY USING THE NETWORK RHEL SYSTEM ROLE

7.16. NETWORK STATES FOR THE NETWORK RHEL SYSTEM ROLE

CHAPTER 8. CONFIGURING FIREWALLD USING SYSTEM ROLES
8.1. INTRODUCTION TO THE FIREWALL RHEL SYSTEM ROLE
8.2. RESETTING THE FIREWALLD SETTINGS USING THE FIREWALL RHEL SYSTEM ROLE
8.3. FORWARDING INCOMING TRAFFIC FROM ONE LOCAL PORT TO A DIFFERENT LOCAL PORT
8.4. CONFIGURING PORTS USING SYSTEM ROLES
8.5. CONFIGURING A DMZ FIREWALLD ZONE BY USING THE FIREWALLD RHEL SYSTEM ROLE

CHAPTER 9. VARIABLES OF THE POSTFIX ROLE IN SYSTEM ROLES
9.1. ADDITIONAL RESOURCES

CHAPTER 10. CONFIGURING SELINUX USING SYSTEM ROLES
10.1. INTRODUCTION TO THE SELINUX SYSTEM ROLE
10.2. USING THE SELINUX SYSTEM ROLE TO APPLY SELINUX SETTINGS ON MULTIPLE SYSTEMS

CHAPTER 11. USING THE LOGGING SYSTEM ROLE
11.1. THE LOGGING SYSTEM ROLE
11.2. LOGGING SYSTEM ROLE PARAMETERS
11.3. APPLYING A LOCAL LOGGING SYSTEM ROLE
11.4. FILTERING LOGS IN A LOCAL LOGGING SYSTEM ROLE
11.5. APPLYING A REMOTE LOGGING SOLUTION USING THE LOGGING SYSTEM ROLE
11.6. USING THE LOGGING SYSTEM ROLE WITH TLS

11.6.1. Configuring client logging with TLS
11.6.2. Configuring server logging with TLS

11.7. USING THE LOGGING SYSTEM ROLES WITH RELP
11.7.1. Configuring client logging with RELP
11.7.2. Configuring server logging with RELP

11.8. ADDITIONAL RESOURCES

CHAPTER 12. CONFIGURING SECURE COMMUNICATION WITH THE SSH SYSTEM ROLES
12.1. SSH SERVER SYSTEM ROLE VARIABLES
12.2. CONFIGURING OPENSSH SERVERS USING THE SSHD SYSTEM ROLE
12.3. SSH SYSTEM ROLE VARIABLES
12.4. CONFIGURING OPENSSH CLIENTS USING THE SSH SYSTEM ROLE
12.5. USING THE SSHD SYSTEM ROLE FOR NON-EXCLUSIVE CONFIGURATION

CHAPTER 13. CONFIGURING VPN CONNECTIONS WITH IPSEC BY USING THE VPN RHEL SYSTEM ROLE

13.1. CREATING A HOST-TO-HOST VPN WITH IPSEC USING THE VPN SYSTEM ROLE
13.2. CREATING AN OPPORTUNISTIC MESH VPN CONNECTION WITH IPSEC BY USING THE VPN SYSTEM
ROLE
13.3. ADDITIONAL RESOURCES

CHAPTER 14. SETTING A CUSTOM CRYPTOGRAPHIC POLICY ACROSS SYSTEMS
14.1. CRYPTO_POLICIES SYSTEM ROLE VARIABLES AND FACTS

49

51

53
54
56

58
60

62
62
62
63
64
65

68
69

70
70
71

73
73
73
74
76
78
81
81

83
84
85
87
88

89
89
91

94
96
97

100
100

102
104

105
105

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

2

. .

. .

. .

. .

. .

. .

14.2. SETTING A CUSTOM CRYPTOGRAPHIC POLICY USING THE CRYPTO_POLICIES SYSTEM ROLE
14.3. ADDITIONAL RESOURCES

CHAPTER 15. USING THE NBDE_CLIENT AND NBDE_SERVER SYSTEM ROLES
15.1. INTRODUCTION TO THE NBDE_CLIENT AND NBDE_SERVER SYSTEM ROLES (CLEVIS AND TANG)
15.2. USING THE NBDE_SERVER SYSTEM ROLE FOR SETTING UP MULTIPLE TANG SERVERS
15.3. USING THE NBDE_CLIENT SYSTEM ROLE FOR SETTING UP MULTIPLE CLEVIS CLIENTS

CHAPTER 16. REQUESTING CERTIFICATES USING RHEL SYSTEM ROLES
16.1. THE CERTIFICATE SYSTEM ROLE
16.2. REQUESTING A NEW SELF-SIGNED CERTIFICATE USING THE CERTIFICATE SYSTEM ROLE
16.3. REQUESTING A NEW CERTIFICATE FROM IDM CA USING THE CERTIFICATE SYSTEM ROLE
16.4. SPECIFYING COMMANDS TO RUN BEFORE OR AFTER CERTIFICATE ISSUANCE USING THE
CERTIFICATE SYSTEM ROLE

CHAPTER 17. CONFIGURING KDUMP USING RHEL SYSTEM ROLES
17.1. THE KDUMP RHEL SYSTEM ROLE
17.2. KDUMP ROLE PARAMETERS
17.3. CONFIGURING KDUMP USING RHEL SYSTEM ROLES

CHAPTER 18. MANAGING LOCAL STORAGE USING RHEL SYSTEM ROLES
18.1. INTRODUCTION TO THE STORAGE RHEL SYSTEM ROLE
18.2. PARAMETERS THAT IDENTIFY A STORAGE DEVICE IN THE STORAGE RHEL SYSTEM ROLE
18.3. EXAMPLE ANSIBLE PLAYBOOK TO CREATE AN XFS FILE SYSTEM ON A BLOCK DEVICE
18.4. EXAMPLE ANSIBLE PLAYBOOK TO PERSISTENTLY MOUNT A FILE SYSTEM
18.5. EXAMPLE ANSIBLE PLAYBOOK TO MANAGE LOGICAL VOLUMES
18.6. EXAMPLE ANSIBLE PLAYBOOK TO ENABLE ONLINE BLOCK DISCARD
18.7. EXAMPLE ANSIBLE PLAYBOOK TO CREATE AND MOUNT AN EXT4 FILE SYSTEM
18.8. EXAMPLE ANSIBLE PLAYBOOK TO CREATE AND MOUNT AN EXT3 FILE SYSTEM
18.9. EXAMPLE ANSIBLE PLAYBOOK TO RESIZE AN EXISTING EXT4 OR EXT3 FILE SYSTEM USING THE
STORAGE RHEL SYSTEM ROLE
18.10. EXAMPLE ANSIBLE PLAYBOOK TO RESIZE AN EXISTING FILE SYSTEM ON LVM USING THE STORAGE
RHEL SYSTEM ROLE
18.11. EXAMPLE ANSIBLE PLAYBOOK TO CREATE A SWAP VOLUME USING THE STORAGE
RHEL SYSTEM ROLE
18.12. CONFIGURING A RAID VOLUME USING THE STORAGE SYSTEM ROLE
18.13. CONFIGURING AN LVM POOL WITH RAID USING THE STORAGE RHEL SYSTEM ROLE
18.14. EXAMPLE ANSIBLE PLAYBOOK TO COMPRESS AND DEDUPLICATE A VDO VOLUME ON LVM USING
THE STORAGE RHEL SYSTEM ROLE
18.15. CREATING A LUKS ENCRYPTED VOLUME USING THE STORAGE RHEL SYSTEM ROLE
18.16. EXAMPLE ANSIBLE PLAYBOOK TO EXPRESS POOL VOLUME SIZES AS PERCENTAGE USING THE
STORAGE RHEL SYSTEM ROLE
18.17. ADDITIONAL RESOURCES

CHAPTER 19. CONFIGURING TIME SYNCHRONIZATION USING RHEL SYSTEM ROLES
19.1. THE TIMESYNC RHEL SYSTEM ROLE
19.2. APPLYING THE TIMESYNC SYSTEM ROLE FOR A SINGLE POOL OF SERVERS
19.3. APPLYING THE TIMESYNC SYSTEM ROLE ON CLIENT SERVERS
19.4. TIMESYNC SYSTEM ROLES VARIABLES

CHAPTER 20. MONITORING PERFORMANCE USING RHEL SYSTEM ROLES
20.1. INTRODUCTION TO THE METRICS SYSTEM ROLE
20.2. USING THE METRICS SYSTEM ROLE TO MONITOR YOUR LOCAL SYSTEM WITH VISUALIZATION
20.3. USING THE METRICS SYSTEM ROLE TO SETUP A FLEET OF INDIVIDUAL SYSTEMS TO MONITOR
THEMSELVES

105
107

108
108
109
110

112
112
112
114

115

117
117
117
117

119
119
119

120
121
121
122
123
123

124

125

126
127
128

129
130

131
132

133
133
133
134
135

137
137
138

138

Table of Contents

3

. .

. .

. .

. .

20.4. USING THE METRICS SYSTEM ROLE TO MONITOR A FLEET OF MACHINES CENTRALLY VIA YOUR
LOCAL MACHINE
20.5. SETTING UP AUTHENTICATION WHILE MONITORING A SYSTEM USING THE METRICS SYSTEM ROLE

20.6. USING THE METRICS SYSTEM ROLE TO CONFIGURE AND ENABLE METRICS COLLECTION FOR SQL
SERVER

CHAPTER 21. CONFIGURING A SYSTEM FOR SESSION RECORDING USING THE TLOG RHEL SYSTEM ROLE

21.1. THE TLOG SYSTEM ROLE
21.2. COMPONENTS AND PARAMETERS OF THE TLOG SYSTEM ROLE
21.3. DEPLOYING THE TLOG RHEL SYSTEM ROLE
21.4. DEPLOYING THE TLOG RHEL SYSTEM ROLE FOR EXCLUDING LISTS OF GROUPS OR USERS
21.5. RECORDING A SESSION USING THE DEPLOYED TLOG SYSTEM ROLE IN THE CLI
21.6. WATCHING A RECORDED SESSION USING THE CLI

CHAPTER 22. CONFIGURING A HIGH-AVAILABILITY CLUSTER USING SYSTEM ROLES
22.1. HA_CLUSTER SYSTEM ROLE VARIABLES
22.2. SPECIFYING AN INVENTORY FOR THE HA_CLUSTER SYSTEM ROLE

22.2.1. Configuring node names and addresses in an inventory
22.2.2. Configuring watchdog and SBD devices in an inventory (RHEL 9.1 and later)

22.3. CONFIGURING A HIGH AVAILABILITY CLUSTER RUNNING NO RESOURCES
22.4. CONFIGURING A HIGH AVAILABILITY CLUSTER WITH FENCING AND RESOURCES
22.5. CONFIGURING A HIGH AVAILABILITY CLUSTER WITH RESOURCE CONSTRAINTS
22.6. CONFIGURING COROSYNC VALUES IN A HIGH AVAILABILITY CLUSTER
22.7. CONFIGURING A HIGH AVAILABILITY CLUSTER WITH SBD NODE FENCING
22.8. CONFIGURING AN APACHE HTTP SERVER IN A HIGH AVAILABILITY CLUSTER WITH THE HA_CLUSTER
SYSTEM ROLE
22.9. ADDITIONAL RESOURCES

CHAPTER 23. INSTALLING AND CONFIGURING WEB CONSOLE WITH THE COCKPIT RHEL SYSTEM ROLE

23.1. THE COCKPIT SYSTEM ROLE
23.2. VARIABLES FOR THE COCKPIT RHEL SYSTEM ROLE
23.3. INSTALLING WEB CONSOLE BY USING THE COCKPIT RHEL SYSTEM ROLE
23.4. SETTING UP A NEW CERTIFICATE BY USING THE CERTIFICATE RHEL SYSTEM ROLE

CHAPTER 24. MANAGING CONTAINERS BY USING THE PODMAN RHEL SYSTEM ROLE
24.1. THE PODMAN RHEL SYSTEM ROLE
24.2. VARIABLES FOR THE PODMAN RHEL SYSTEM ROLE
24.3. ADDITIONAL RESOURCES

139

140

141

143
143
143
143
145
146
147

149
149
163
163
164
164
165
168
171

173

174
178

179
179
179
179
181

182
182
182
186

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

4

Table of Contents

5

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

6

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
We appreciate your feedback on our documentation. Let us know how we can improve it.

Submitting comments on specific passages

1. View the documentation in the Multi-page HTML format and ensure that you see the
Feedback button in the upper right corner after the page fully loads.

2. Use your cursor to highlight the part of the text that you want to comment on.

3. Click the Add Feedback button that appears near the highlighted text.

4. Add your feedback and click Submit.

Submitting feedback through Bugzilla (account required)

1. Log in to the Bugzilla website.

2. Select the correct version from the Version menu.

3. Enter a descriptive title in the Summary field.

4. Enter your suggestion for improvement in the Description field. Include links to the relevant
parts of the documentation.

5. Click Submit Bug.

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

7

https://bugzilla.redhat.com/enter_bug.cgi?product=Red Hat Enterprise Linux 9&component=Documentation

CHAPTER 1. PREPARING A CONTROL NODE AND MANAGED
NODES TO USE RHEL SYSTEM ROLES

Before you can use individual RHEL System Roles to manage services and settings, prepare the involved
hosts.

1.1. INTRODUCTION TO RHEL SYSTEM ROLES

RHEL System Roles is a collection of Ansible roles and modules. RHEL System Roles provide a
configuration interface to remotely manage multiple RHEL systems. The interface enables managing
system configurations across multiple versions of RHEL, as well as adopting new major releases.

On Red Hat Enterprise Linux 9, the interface currently consists of the following roles:

Certificate Issuance and Renewal

Kernel Settings (kernel_settings)

Metrics (metrics)

Network Bound Disk Encryption client and Network Bound Disk Encryption server (nbde_client
and nbde_server)

Networking (network)

Postfix (postfix)

SSH client (ssh)

SSH server (sshd)

System-wide Cryptographic Policies (crypto_policies)

Terminal Session Recording (tlog)

All these roles are provided by the rhel-system-roles package available in the AppStream repository.

Additional resources

Red Hat Enterprise Linux (RHEL) System Roles

/usr/share/doc/rhel-system-roles/ provided by the rhel-system-roles package.

1.2. RHEL SYSTEM ROLES TERMINOLOGY

You can find the following terms across this documentation:

Ansible playbook

Playbooks are Ansible’s configuration, deployment, and orchestration language. They can describe a
policy you want your remote systems to enforce, or a set of steps in a general IT process.

Control node

Any machine with Ansible installed. You can run commands and playbooks, invoking /usr/bin/ansible
or /usr/bin/ansible-playbook, from any control node. You can use any computer that has Python
installed on it as a control node - laptops, shared desktops, and servers can all run Ansible. However,

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

8

https://access.redhat.com/articles/3050101

you cannot use a Windows machine as a control node. You can have multiple control nodes.

Inventory

A list of managed nodes. An inventory file is also sometimes called a “hostfile”. Your inventory can
specify information like IP address for each managed node. An inventory can also organize managed
nodes, creating and nesting groups for easier scaling. To learn more about inventory, see the
Working with Inventory section.

Managed nodes

The network devices, servers, or both that you manage with Ansible. Managed nodes are also
sometimes called “hosts”. Ansible is not installed on managed nodes.

1.3. PREPARING A CONTROL NODE

RHEL includes Ansible Core in the AppStream repository with a limited scope of support. If you require
additional support for Ansible, contact Red Hat to learn more about the Ansible Automation Platform
subscription.

Prerequisites

You registered the system to the Customer Portal.

You attached a Red Hat Enterprise Linux Server subscription to the system.

If available in your Customer Portal account, you attached an Ansible Automation Platform
subscription to the system.

Procedure

1. Install the rhel-system-roles package:

[root@control-node]# dnf install rhel-system-roles

This command installs Ansible Core as a dependency.

2. Create a user that you later use to manage and execute playbooks:

[root@control-node]# useradd ansible

3. Switch to the newly created ansible user:

[root@control-node]# su - ansible

Perform the rest of the procedure as this user.

4. Create an SSH public and private key

[ansible@control-node]$ ssh-keygen
Generating public/private rsa key pair.
Enter file in which to save the key (/home/ansible/.ssh/id_rsa): password
...

Use the suggested default location for the key file.

5. Optional: Configure an SSH agent to prevent Ansible from prompting you for the SSH key

CHAPTER 1. PREPARING A CONTROL NODE AND MANAGED NODES TO USE RHEL SYSTEM ROLES

9

5. Optional: Configure an SSH agent to prevent Ansible from prompting you for the SSH key
password each time you establish a connection.

6. Create the ~/.ansible.cfg file with the following content:

[defaults]
inventory = /home/ansible/inventory
remote_user = ansible

[privilege_escalation]
become = True
become_method = sudo
become_user = root
become_ask_pass = True

With these settings:

Ansible manages hosts in the specified inventory file.

Ansible uses the account set in the remote_user parameter when it establishes SSH
connections to managed nodes.

Ansible uses the sudo utility to execute tasks on managed nodes as the root user.
For security reasons, configure sudo on managed nodes to require entering the password
of the remote user to become root. By specifying the become_ask_pass=True setting in
~/.ansible.cfg, Ansible prompts for this password when you execute a playbook.

Settings in the ~/.ansible.cfg file have a higher priority and override settings from the global
/etc/ansible/ansible.cfg file.

7. Create the ~/inventory file. For example, the following is an inventory file in the INI format with
three hosts and one host group named US:

managed-node-01.example.com

[US]
managed-node-02.example.com ansible_host=192.0.2.100
managed-node-03.example.com

Note that the control node must be able to resolve the hostnames. If the DNS server cannot
resolve certain hostnames, add the ansible_host parameter next to the host entry to specify its
IP address.

Verification

1. Prepare a managed node .

2. Verify access from the control node to managed nodes

Additional resources

Scope of support for the Ansible Core package included in the RHEL 9 and RHEL 8.6 and later
AppStream repositories

How to register and subscribe a system to the Red Hat Customer Portal using subscription-
manager

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

10

https://access.redhat.com/articles/6325611
https://access.redhat.com/solutions/253273

The ssh-keygen(1) man page

Connecting to remote machines with SSH keys using ssh-agent

Ansible configuration settings

How to build your inventory

1.4. PREPARING A MANAGED NODE

Ansible does not use an agent on managed hosts. The only requirements are Python, which is installed by
default on RHEL, and SSH access to the managed host.

However, direct SSH access as the root user can be a security risk. Therefore, when you prepare a
managed node, you create a local user on this node and configure a sudo policy. Ansible on the control
node can then use this account to log in to the managed node and execute playbooks as different users,
such as root.

Prerequisites

You prepared the control node.

Procedure

1. Create a user:

[root@managed-node-01]# useradd ansible

The control node later uses this user to establish an SSH connection to this host.

2. Set a password to the ansible user:

[root@managed-node-01]# passwd ansible
Changing password for user ansible.
New password: password
Retype new password: password
passwd: all authentication tokens updated successfully.

You must enter this password when Ansible uses sudo to perform tasks as the root user.

3. Install the ansible user’s SSH public key on the managed node:

a. Log into the control node as the ansible user, and copy the SSH public key to the managed
node:

[ansible@control-node]$ ssh-copy-id managed-node-01.example.com
/usr/bin/ssh-copy-id: INFO: Source of key(s) to be installed:
"/home/ansible/.ssh/id_rsa.pub"
The authenticity of host 'managed-node-01.example.com (192.0.2.100)' can't be
established.
ECDSA key fingerprint is
SHA256:9bZ33GJNODK3zbNhybokN/6Mq7hu3vpBXDrCxe7NAvo.
Are you sure you want to continue connecting (yes/no/[fingerprint])? yes
/usr/bin/ssh-copy-id: INFO: attempting to log in with the new key(s), to filter out any that
are already installed

CHAPTER 1. PREPARING A CONTROL NODE AND MANAGED NODES TO USE RHEL SYSTEM ROLES

11

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/securing_networks/assembly_using-secure-communications-between-two-systems-with-openssh_securing-networks#connecting-to-remote-machines-with-ssh-keys-using-ssh-agent_assembly_using-secure-communications-between-two-systems-with-openssh
https://docs.ansible.com/ansible/2.9/reference_appendices/config.html
https://docs.ansible.com/ansible/2.9/user_guide/intro_inventory.html

/usr/bin/ssh-copy-id: INFO: 1 key(s) remain to be installed -- if you are prompted now it is
to install the new keys
ansible@managed-node-01.example.com's password: password

Number of key(s) added: 1

Now try logging into the machine, with: "ssh 'managed-node-01.example.com'"
and check to make sure that only the key(s) you wanted were added.

b. Remotely execute a command on the control node to verify the SSH connection:

[ansible@control-node]$ ssh managed-node-01.example.com whoami
ansible

4. Create a sudo configuration for the ansible user:

a. Use the visudo command to create and edit the /etc/sudoers.d/ansible file:

[root@managed-node-01]# visudo /etc/sudoers.d/ansible

The benefit of using visudo over a normal editor is that this utility provides basic sanity
checks and checks for parse errors before installing the file.

b. Configure a sudoers policy in the /etc/sudoers.d/ansible file that meets your
requirements, for example:

To grant permissions to the ansible user to run all commands as any user and group on
this host after entering the ansible user’s password, use:

ansible ALL=(ALL) ALL

To grant permissions to the ansible user to run all commands as any user and group on
this host without entering the ansible user’s password, use:

ansible ALL=(ALL) NOPASSWD: ALL

Alternatively, configure a more fine-granular policy that matches your security requirements.
For further details on sudoers policies, see the sudoers(5) man page.

Additional resources

Preparing the control node

The sudoers(5) man page

1.5. VERIFYING ACCESS FROM THE CONTROL NODE TO MANAGED
NODES

After you configured the control node and prepared managed nodes, test that Ansible can connect to
the managed nodes.

Perform this procedure as the ansible user on the control node.

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

12

Prerequisites

You prepared the control node as described in Preparing a control node .

You prepared at least one managed node as described in Preparing a managed node .

If you want to run playbooks on host groups, the managed node is listed in the inventory file on
the control node.

Procedure

1. Use the Ansible ping module to verify that you can execute commands on an all managed hosts:

[ansible@control-node]$ ansible all -m ping
BECOME password: password
managed-node-01.example.com | SUCCESS => {
 "ansible_facts": {
 "discovered_interpreter_python": "/usr/bin/python3"
 },
 "changed": false,
 "ping": "pong"
}
...

The hard-coded all host group dynamically contains all hosts listed in the inventory file.

2. Use the Ansible command module to run the whoami utility on a managed host:

[ansible@control-node]$ ansible managed-node-01.example.com -m command -a
whoami
BECOME password: password
managed-node-01.example.com | CHANGED | rc=0 >>
root

If the command returns root, you configured sudo on the managed nodes correctly, and
privilege escalation works.

CHAPTER 1. PREPARING A CONTROL NODE AND MANAGED NODES TO USE RHEL SYSTEM ROLES

13

CHAPTER 2. UPDATING PACKAGES TO ENABLE
AUTOMATION FOR RHEL SYSTEM ROLES

As of the RHEL 9.0 release, Ansible Engine is no longer supported. Instead, this and future RHEL
releases include Ansible Core.

You can use Ansible Core in RHEL 9.0 to enable Ansible automation content written or generated by
Red Hat products.

Ansible Core contains Ansible command line tools, such as the ansible-playbook and ansible
commands, and a small set of built-in Ansible plugins .

2.1. DIFFERENCES BETWEEN ANSIBLE ENGINE AND ANSIBLE CORE

In RHEL 8.5 and earlier versions, you had access to a separate Ansible repository that contained Ansible
Engine 2.9 to enable automation based on Ansible to your Red Hat system.

The scope of support, when using Ansible Engine without an Ansible subscription, is limited to running
Ansible playbooks created or generated by Red Hat products, such as RHEL System Roles, Insights
remediation playbooks, and OpenSCAP Ansible remediation playbooks.

In RHEL 8.6 and later versions, Ansible Core replaces Ansible Engine. The ansible-core package is
included in the RHEL 9 AppStream repository to enable automation content provided by Red Hat. The
scope of support for Ansible Core in RHEL remains the same as in earlier RHEL versions:

Support is limited to any Ansible playbooks, roles, modules that are included with or generated
by a Red Hat product, such as RHEL System Roles, or remediation playbooks generated by
Insights.

With Ansible Core, you get all functionality of supported RHEL Ansible content, such as RHEL
System Roles and Insights remediation playbooks.

The Ansible Engine repository is still available in RHEL 8.6; however, it will not receive any security or bug
fix updates and might not be compatible with Ansible automation content included in RHEL 8.6 and
later.

You need an Ansible Automation Platform subscription for additional support for the underlying
platform and Core-maintained modules.

Additional resources

Scope of support for Ansible Core in RHEL

2.2. MIGRATING FROM ANSIBLE ENGINE TO ANSIBLE CORE

Prerequisites

Access and permissions to one or more managed nodes, which are systems you want to
configure with RHEL System Roles.

An inventory file which lists the managed nodes.

Procedure

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

14

https://docs.ansible.com/ansible-core/2.12/collections/ansible/builtin/index.html
https://access.redhat.com/articles/6325611

1. Uninstall Ansible Engine:

dnf remove ansible

2. Disable the ansible-2-for-rhel-8-x86_64-rpms repository:

subscription-manager repos --disable ansible-2-for-rhel-8-x86_64-rpms

3. Install Ansible Core which is available in the RHEL 8 AppStream repository:

dnf install ansible-core

Verification

Check that the ansible-core package is present in your system:

dnf info ansible-core

If the ansible-core package is indeed present in your system, the command output states information
on the package name, version, release, size, and more:

Available Packages
Name : ansible-core
Version : 2.12.2
Release : 1.fc34
Architecture : noarch
Size : 2.4 M
Source : ansible-core-2.12.2-1.fc34.src.rpm
Repository : updates
Summary : A radically simple IT automation system
URL : http://ansible.com

Additional resources

Using Ansible in RHEL 9 .

CHAPTER 2. UPDATING PACKAGES TO ENABLE AUTOMATION FOR RHEL SYSTEM ROLES

15

https://access.redhat.com/articles/6393321

CHAPTER 3. INSTALLING AND USING COLLECTIONS

3.1. INTRODUCTION TO ANSIBLE COLLECTIONS

Ansible Collections are the new way of distributing, maintaining, and consuming automation. By
combining multiple types of Ansible content such as playbooks, roles, modules, and plugins, you can
benefit from improvements in flexibility and scalability.

The Ansible Collections are an option to the traditional RHEL System Roles format. Using the
RHEL System Roles in the Ansible Collection format is almost the same as using it in the traditional
RHEL System Roles format. The difference is that Ansible Collections use the concept of a fully
qualified collection name (FQCN), which consists of a namespace and the collection name. The
namespace we use is redhat and the collection name is rhel_system_roles. So, while the traditional
RHEL System Roles format for the Kernel Settings role is presented as rhel-system-
roles.kernel_settings (with dashes), using the Collection fully qualified collection name for the
Kernel Settings role would be presented as redhat.rhel_system_roles.kernel_settings (with
underscores).

The combination of a namespace and a collection name guarantees that the objects are unique. It also
ensures that objects are shared across the Ansible Collections and namespaces without any conflicts.

Additional resources

To use the Red Hat Certified Collections by accessing the Automation Hub, you must have an
Ansible Automation Platform (AAP subscription).

3.2. COLLECTIONS STRUCTURE

Collections are a package format for Ansible content. The data structure is as below:

docs/: local documentation for the collection, with examples, if the role provides the
documentation

galaxy.yml: source data for the MANIFEST.json that will be part of the Ansible Collection
package

playbooks/: playbooks are available here

tasks/: this holds 'task list files' for include_tasks/import_tasks usage

plugins/: all Ansible plugins and modules are available here, each in its subdirectory

modules/: Ansible modules

modules_utils/: common code for developing modules

lookup/: search for a plugin

filter/: Jinja2 filter plugin

connection/: connection plugins required if not using the default

roles/: directory for Ansible roles

tests/: tests for the collection’s content

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

16

https://console.redhat.com/ansible/automation-hub/repo/published/redhat/rhel_system_roles/docs

3.3. INSTALLING COLLECTIONS BY USING THE CLI

Collections are a distribution format for Ansible content that can include playbooks, roles, modules, and
plugins.

You can install Collections through Ansible Galaxy, through the browser, or by using the command line.

Prerequisites

Access and permissions to one or more managed nodes.

Access and permissions to a control node, which is a system from which Red Hat Ansible Core
configures other systems.
On the control node:

The ansible-core and rhel-system-roles packages are installed.

An inventory file which lists the managed nodes.

Procedure

Install the collection via RPM package:

dnf install rhel-system-roles

After the installation is finished, the roles are available as redhat.rhel_system_roles.<role_name>.
Additionally, you can find the documentation for each role at
/usr/share/ansible/collections/ansible_collections/redhat/rhel_system_roles/roles/<role_name>/R
EADME.md.

Verification steps

To verify the installation, run the kernel_settings role with check mode on your localhost. You must
also use the --become parameter because it is necessary for the Ansible package module. However,
the parameter will not change your system:

1. Run the following command:

$ ansible-playbook -c local -i localhost, --check --become
/usr/share/ansible/collections/ansible_collections/redhat/rhel_system_roles/tests/kernel_settings/t
ests_default.yml

The last line of the command output should contain the value failed=0.

NOTE

The comma after localhost is mandatory. You must add it even if there is only one host
on the list. Without it, ansible-playbook would identify localhost as a file or a directory.

Additional resources

The ansible-playbook man page.

The -i option of the ansible-playbook command

CHAPTER 3. INSTALLING AND USING COLLECTIONS

17

https://docs.ansible.com/ansible/latest/cli/ansible-playbook.html#cmdoption-ansible-playbook-i

3.4. INSTALLING COLLECTIONS FROM AUTOMATION HUB

If you are using the Automation Hub, you can install the RHEL System Roles Collection hosted on the
Automation Hub.

Prerequisites

Access and permissions to one or more managed nodes.

Access and permissions to a control node, which is a system from which Red Hat Ansible Core
configures other systems.
On the control node:

The ansible-core and rhel-system-roles packages are installed.

An inventory file which lists the managed nodes.

Procedure

1. Define Red Hat Automation Hub as the default source for content in the ansible.cfg
configuration file. See Configuring Red Hat Automation Hub as the primary source for content .

2. Install the redhat.rhel_system_roles collection from the Automation Hub:

ansible-galaxy collection install redhat.rhel_system_roles

After the installation is finished, the roles are available as redhat.rhel_system_roles.
<role_name>. Additionally, you can find the documentation for each role at
/usr/share/ansible/collections/ansible_collections/redhat/rhel_system_roles/roles/<role_n
ame>/README.md.

Verification steps

To verify the install, run the kernel_settings role with check mode on your localhost. You must also use
the --become parameter because it is necessary for the Ansible package module. However, the
parameter will not change your system:

1. Run the following command:

$ ansible-playbook -c local -i localhost, --check --become
/usr/share/ansible/collections/ansible_collections/redhat/rhel_system_roles/tests/kernel_settings/t
ests_default.yml

The last line of the command output should contain the value failed=0.

NOTE

The comma after localhost is mandatory. You must add it even if there is only one host
on the list. Without it, ansible-playbook would identify localhost as a file or a directory.

Additional resources

The ansible-playbook man page.

The -i option of the ansible-playbook command

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

18

https://access.redhat.com/documentation/en-us/red_hat_ansible_automation_platform/1.2/html/getting_started_with_red_hat_ansible_automation_hub/proc-configure-automation-hub-server
https://docs.ansible.com/ansible/latest/cli/ansible-playbook.html#cmdoption-ansible-playbook-i

3.5. DEPLOYING THE TLOG RHEL SYSTEM ROLE USING COLLECTIONS

Following is an example using Collections to prepare and apply a playbook to deploy a logging solution
on a set of separate machines.

Prerequisites

A Galaxy collection is installed.

Procedure

1. Create a new playbook.yml file with the following content:

- name: Deploy session recording
 hosts: all
 vars:
 tlog_scope_sssd: some
 tlog_users_sssd:
 - recordeduser

 roles:
 - redhat.rhel-system-roles.tlog

Where,

tlog_scope_sssd:

some specifies you want to record only certain users and groups, not all or none.

tlog_users_sssd:

recordeduser specifies the user you want to record a session from. Note that this does
not add the user for you. You must set the user by yourself.

2. Optionally, verify the playbook syntax.

ansible-playbook --syntax-check playbook.yml

3. Run the playbook on your inventory file:

ansible-playbook -i IP_Address /path/to/file/playbook.yml -v

As a result, the playbook installs the tlog role on the system you specified. It also creates an SSSD
configuration drop file that can be used by the users and groups that you define. SSSD parses and
reads these users and groups to overlay tlog session as the shell user. Additionally, if the cockpit
package is installed on the system, the playbook also installs the cockpit-session-recording package,
which is a Cockpit module that allows you to view and play recordings in the web console interface.

Verification steps

1. Test the syntax of the /etc/rsyslog.conf file:

rsyslogd -N 1
rsyslogd: version 8.1911.0-6.el8, config validation run (level 1), master config

CHAPTER 3. INSTALLING AND USING COLLECTIONS

19

/etc/rsyslog.conf
rsyslogd: End of config validation run. Bye.

2. Verify that the system sends messages to the log:

To verify that the SSSD configuration drop file is created in the system, perform the following steps:

1. Navigate to the folder where the SSSD configuration drop file is created:

cd /etc/sssd/conf.d

2. Check the file content:

cat sssd-session-recording.conf

You can see that the file contains the parameters you set in the playbook.

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

20

CHAPTER 4. ANSIBLE IPMI MODULES IN RHEL

4.1. THE RHEL_MGMT COLLECTION

The Intelligent Platform Management Interface (IPMI) is a specification for a set of standard protocols
to communicate with baseboard management controller (BMC) devices. The IPMI modules allow you to
enable and support hardware management automation. The IPMI modules are available in:

The rhel_mgmt Collection. The package name is ansible-collection-redhat-rhel_mgmt.

The RHEL 8 AppStream, as part of the new ansible-collection-redhat-rhel_mgmt package.

The following IPMI modules are available in the rhel_mgmt collection:

ipmi_boot: Management of boot device order

ipmi_power: Power management for machine

The mandatory parameters used for the IPMI Modules are:

ipmi_boot parameters:

Module name Description

name Hostname or ip address of the BMC

password Password to connect to the BMC

bootdev Device to be used on next boot

* network

* floppy

* hd

* safe

* optical

* setup

* default

User Username to connect to the BMC

ipmi_power parameters:

Module name Description

name BMC Hostname or IP address

CHAPTER 4. ANSIBLE IPMI MODULES IN RHEL

21

password Password to connect to the BMC

user Username to connect to the BMC

State Check if the machine is on the desired status

* on

* off

* shutdown

* reset

* boot

Module name Description

4.2. INSTALLING THE RHEL MGMT COLLECTION USING THE CLI

You can install the rhel_mgmt Collection using the command line.

Prerequisites

The ansible-core package is installed.

Procedure

Install the collection via RPM package:

yum install ansible-collection-redhat-rhel_mgmt

After the installation is finished, the IPMI modules are available in the redhat.rhel_mgmt Ansible
collection.

Additional resources

The ansible-playbook man page.

4.3. EXAMPLE USING THE IPMI_BOOT MODULE

The following example shows how to use the ipmi_boot module in a playbook to set a boot device for
the next boot. For simplicity, the examples use the same host as the Ansible control host and managed
host, thus executing the modules on the same host where the playbook is executed.

Prerequisites

The rhel_mgmt collection is installed.

The pyghmi library in the python3-pyghmi package is installed in one of the following locations:

The host where you execute the playbook.

The managed host. If you use localhost as the managed host, install the python3-pyghmi

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

22

The managed host. If you use localhost as the managed host, install the python3-pyghmi
package on the host where you execute the playbook instead.

The IPMI BMC that you want to control is accessible via network from the host where you
execute the playbook, or the managed host (if not using localhost as the managed host). Note
that the host whose BMC is being configured by the module is generally different from the host
where the module is executing (the Ansible managed host), as the module contacts the BMC
over the network using the IPMI protocol.

You have credentials to access BMC with an appropriate level of access.

Procedure

1. Create a new playbook.yml file with the following content:

- name: Sets which boot device will be used on next boot
 hosts: localhost
 tasks:
 - redhat.rhel_mgmt.ipmi_boot:
 name: bmc.host.example.com
 user: admin_user
 password: basics
 bootdev: hd

2. Execute the playbook against localhost:

ansible-playbook playbook.yml

As a result, the output returns the value “success”.

4.4. EXAMPLE USING THE IPMI_POWER MODULE

This example shows how to use the ipmi_boot module in a playbook to check if the system is turned on.
For simplicity, the examples use the same host as the Ansible control host and managed host, thus
executing the modules on the same host where the playbook is executed.

Prerequisites

The rhel_mgmt collection is installed.

The pyghmi library in the python3-pyghmi package is installed in one of the following locations:

The host where you execute the playbook.

The managed host. If you use localhost as the managed host, install the python3-pyghmi
package on the host where you execute the playbook instead.

The IPMI BMC that you want to control is accessible via network from the host where you
execute the playbook, or the managed host (if not using localhost as the managed host). Note
that the host whose BMC is being configured by the module is generally different from the host
where the module is executing (the Ansible managed host), as the module contacts the BMC
over the network using the IPMI protocol.

You have credentials to access BMC with an appropriate level of access.

CHAPTER 4. ANSIBLE IPMI MODULES IN RHEL

23

Procedure

1. Create a new playbook.yml file with the following content:

- name: Turn the host on
 hosts: localhost
 tasks:
 - redhat.rhel_mgmt.ipmi_power:
 name: bmc.host.example.com
 user: admin_user
 password: basics
 state: on

2. Execute the playbook:

ansible-playbook playbook.yml

The output returns the value “true”.

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

24

CHAPTER 5. THE REDFISH MODULES IN RHEL
The Redfish modules for remote management of devices are now part of the redhat.rhel_mgmt
Ansible collection. With the Redfish modules, you can easily use management automation on bare-
metal servers and platform hardware by getting information about the servers or control them through
an Out-Of-Band (OOB) controller, using the standard HTTPS transport and JSON format.

5.1. THE REDFISH MODULES

The redhat.rhel_mgmt Ansible collection provides the Redfish modules to support hardware
management in Ansible over Redfish. The redhat.rhel_mgmt collection is available in the ansible-
collection-redhat-rhel_mgmt package. To install it, see Installing the redhat.rhel_mgmt Collection
using the CLI.

The following Redfish modules are available in the redhat.rhel_mgmt collection:

1. redfish_info: The redfish_info module retrieves information about the remote Out-Of-Band
(OOB) controller such as systems inventory.

2. redfish_command: The redfish_command module performs Out-Of-Band (OOB) controller
operations like log management and user management, and power operations such as system
restart, power on and off.

3. redfish_config: The redfish_config module performs OOB controller operations such as
changing OOB configuration, or setting the BIOS configuration.

5.2. REDFISH MODULES PARAMETERS

The parameters used for the Redfish modules are:

redfish_info parameters: Description

baseuri (Mandatory) - Base URI of OOB controller.

category (Mandatory) - List of categories to execute on OOB
controller. The default value is ["Systems"].

command (Mandatory) - List of commands to execute on OOB
controller.

username Username for authentication to OOB controller.

password Password for authentication to OOB controller.

redfish_command parameters: Description

baseuri (Mandatory) - Base URI of OOB controller.

category (Mandatory) - List of categories to execute on OOB
controller. The default value is ["Systems"].

CHAPTER 5. THE REDFISH MODULES IN RHEL

25

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/administration_and_configuration_tasks_using_system_roles_in_rhel/index#proc_installing-the-rhel-mgmt-collection-by-using-the-cli_assembly_ansible-ipmi-modules-in-rhel

command (Mandatory) - List of commands to execute on OOB
controller.

username Username for authentication to OOB controller.

password Password for authentication to OOB controller.

redfish_command parameters: Description

redfish_config parameters: Description

baseuri (Mandatory) - Base URI of OOB controller.

category (Mandatory) - List of categories to execute on OOB
controller. The default value is ["Systems"].

command (Mandatory) - List of commands to execute on OOB
controller.

username Username for authentication to OOB controller.

password Password for authentication to OOB controller.

bios_attributes BIOS attributes to update.

5.3. USING THE REDFISH_INFO MODULE

The following example shows how to use the redfish_info module in a playbook to get information
about the CPU inventory. For simplicity, the example uses the same host as the Ansible control host and
managed host, thus executing the modules on the same host where the playbook is executed.

Prerequisites

The redhat.rhel_mgmt collection is installed.

The pyghmi library in the python3-pyghmi package is installed on the managed host. If you use
localhost as the managed host, install the python3-pyghmi package on the host where you
execute the playbook.

OOB controller access details.

Procedure

1. Create a new playbook.yml file with the following content:

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

26

- name: Get CPU inventory
 hosts: localhost
 tasks:
 - redhat.rhel_mgmt.redfish_info:
 baseuri: "{{ baseuri }}"
 username: "{{ username }}"
 password: "{{ password }}"
 category: Systems
 command: GetCpuInventory
 register: result

2. Execute the playbook against localhost:

ansible-playbook playbook.yml

As a result, the output returns the CPU inventory details.

5.4. USING THE REDFISH_COMMAND MODULE

The following example shows how to use the redfish_command module in a playbook to turn on a
system. For simplicity, the example uses the same host as the Ansible control host and managed host,
thus executing the modules on the same host where the playbook is executed.

Prerequisites

The redhat.rhel_mgmt collection is installed.

The pyghmi library in the python3-pyghmi package is installed on the managed host. If you use
localhost as the managed host, install the python3-pyghmi package on the host where you
execute the playbook.

OOB controller access details.

Procedure

1. Create a new playbook.yml file with the following content:

- name: Power on system
 hosts: localhost
 tasks:
 - redhat.rhel_mgmt.redfish_command:
 baseuri: "{{ baseuri }}"
 username: "{{ username }}"
 password: "{{ password }}"
 category: Systems
 command: PowerOn

2. Execute the playbook against localhost:

ansible-playbook playbook.yml

As a result, the system powers on.

CHAPTER 5. THE REDFISH MODULES IN RHEL

27

5.5. USING THE REDFISH_CONFIG MODULE

The following example shows how to use the redfish_config module in a playbook to configure a
system to boot with UEFI. For simplicity, the example uses the same host as the Ansible control host and
managed host, thus executing the modules on the same host where the playbook is executed.

Prerequisites

The redhat.rhel_mgmt collection is installed.

The pyghmi library in the python3-pyghmi package is installed on the managed host. If you use
localhost as the managed host, install the python3-pyghmi package on the host where you
execute the playbook.

OOB controller access details.

Procedure

1. Create a new playbook.yml file with the following content:

- name: "Set BootMode to UEFI"
 hosts: localhost
 tasks:
 - redhat.rhel_mgmt.redfish_config:
 baseuri: "{{ baseuri }}"
 username: "{{ username }}"
 password: "{{ password }}"
 category: Systems
 command: SetBiosAttributes
 bios_attributes:
 BootMode: Uefi

2. Execute the playbook against localhost:

ansible-playbook playbook.yml

As a result, the system boot mode is set to UEFI.

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

28

CHAPTER 6. USING ANSIBLE ROLES TO PERMANENTLY
CONFIGURE KERNEL PARAMETERS

You can use the kernel_settings role to configure kernel parameters on multiple clients at once. This
solution:

Provides a friendly interface with efficient input setting.

Keeps all intended kernel parameters in one place.

After you run the kernel_settings role from the control machine, the kernel parameters are applied to
the managed systems immediately and persist across reboots.

IMPORTANT

Note that RHEL System Role delivered over RHEL channels are available to RHEL
customers as an RPM package in the default AppStream repository. RHEL System Role
are also available as a collection to customers with Ansible subscriptions over Ansible
Automation Hub.

6.1. INTRODUCTION TO THE KERNEL_SETTINGS ROLE

RHEL System Roles is a set of roles that provide a consistent configuration interface to remotely
manage multiple systems.

RHEL System Roles were introduced for automated configurations of the kernel using the
kernel_settings System Role. The rhel-system-roles package contains this system role, and also the
reference documentation.

To apply the kernel parameters on one or more systems in an automated fashion, use the
kernel_settings role with one or more of its role variables of your choice in a playbook. A playbook is a
list of one or more plays that are human-readable, and are written in the YAML format.

With the kernel_settings role you can configure:

The kernel parameters using the kernel_settings_sysctl role variable

Various kernel subsystems, hardware devices, and device drivers using the
kernel_settings_sysfs role variable

The CPU affinity for the systemd service manager and processes it forks using the
kernel_settings_systemd_cpu_affinity role variable

The kernel memory subsystem transparent hugepages using the
kernel_settings_transparent_hugepages and
kernel_settings_transparent_hugepages_defrag role variables

Additional resources

README.md and README.html files in the /usr/share/doc/rhel-system-
roles/kernel_settings/ directory

Working with playbooks

How to build your inventory

CHAPTER 6. USING ANSIBLE ROLES TO PERMANENTLY CONFIGURE KERNEL PARAMETERS

29

https://docs.ansible.com/ansible/latest/user_guide/playbooks.html
https://docs.ansible.com/ansible/latest/user_guide/intro_inventory.html

6.2. APPLYING SELECTED KERNEL PARAMETERS USING THE
KERNEL_SETTINGS ROLE

Follow these steps to prepare and apply an Ansible playbook to remotely configure kernel parameters
with persisting effect on multiple managed operating systems.

Prerequisites

You have root permissions.

Entitled by your RHEL subscription, you installed the ansible-core and rhel-system-roles
packages on the control machine.

An inventory of managed hosts is present on the control machine and Ansible is able to connect
to them.

IMPORTANT

RHEL 8.0 - 8.5 provided access to a separate Ansible repository that contains Ansible
Engine 2.9 for automation based on Ansible. Ansible Engine contains command-line
utilities such as ansible, ansible-playbook; connectors such as docker and podman; and
the entire world of plugins and modules. For information on how to obtain and install
Ansible Engine, refer to How do I Download and Install Red Hat Ansible Engine? .

RHEL 8.6 and 9.0 has introduced Ansible Core (provided as ansible-core RPM), which
contains the Ansible command-line utilities, commands, and a small set of built-in Ansible
plugins. The AppStream repository provides ansible-core, which has a limited scope of
support. You can learn more by reviewing Scope of support for the ansible-core package
included in the RHEL 9 AppStream.

Procedure

1. Optionally, review the inventory file for illustration purposes:

cat /home/jdoe/<ansible_project_name>/inventory
[testingservers]
pdoe@192.168.122.98
fdoe@192.168.122.226

[db-servers]
db1.example.com
db2.example.com

[webservers]
web1.example.com
web2.example.com
192.0.2.42

The file defines the [testingservers] group and other groups. It allows you to run Ansible more
effectively against a specific set of systems.

2. Create a configuration file to set defaults and privilege escalation for Ansible operations.

a. Create a new YAML file and open it in a text editor, for example:

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

30

https://access.redhat.com/articles/3174981
https://access.redhat.com/articles/6325611

vi /home/jdoe/<ansible_project_name>/ansible.cfg

b. Insert the following content into the file:

[defaults]
inventory = ./inventory

[privilege_escalation]
become = true
become_method = sudo
become_user = root
become_ask_pass = true

The [defaults] section specifies a path to the inventory file of managed hosts. The
[privilege_escalation] section defines that user privileges be shifted to root on the
specified managed hosts. This is necessary for successful configuration of kernel
parameters. When Ansible playbook is run, you will be prompted for user password. The user
automatically switches to root by means of sudo after connecting to a managed host.

3. Create an Ansible playbook that uses the kernel_settings role.

a. Create a new YAML file and open it in a text editor, for example:

vi /home/jdoe/<ansible_project_name>/kernel-roles.yml

This file represents a playbook and usually contains an ordered list of tasks, also called plays,
that are run against specific managed hosts selected from your inventory file.

b. Insert the following content into the file:

-
 hosts: testingservers
 name: "Configure kernel settings"
 roles:
 - rhel-system-roles.kernel_settings
 vars:
 kernel_settings_sysctl:
 - name: fs.file-max
 value: 400000
 - name: kernel.threads-max
 value: 65536
 kernel_settings_sysfs:
 - name: /sys/class/net/lo/mtu
 value: 65000
 kernel_settings_transparent_hugepages: madvise

The name key is optional. It associates an arbitrary string with the play as a label and
identifies what the play is for. The hosts key in the play specifies the hosts against which
the play is run. The value or values for this key can be provided as individual names of
managed hosts or as groups of hosts as defined in the inventory file.

The vars section represents a list of variables containing selected kernel parameter names
and values to which they have to be set.

The roles key specifies what system role is going to configure the parameters and values

CHAPTER 6. USING ANSIBLE ROLES TO PERMANENTLY CONFIGURE KERNEL PARAMETERS

31

The roles key specifies what system role is going to configure the parameters and values
mentioned in the vars section.

NOTE

You can modify the kernel parameters and their values in the playbook to fit
your needs.

4. Optionally, verify that the syntax in your play is correct.

ansible-playbook --syntax-check kernel-roles.yml

playbook: kernel-roles.yml

This example shows the successful verification of a playbook.

5. Execute your playbook.

ansible-playbook kernel-roles.yml

...

BECOME password:

PLAY [Configure kernel settings]
**

PLAY RECAP
**
fdoe@192.168.122.226 : ok=10 changed=4 unreachable=0 failed=0 skipped=6
rescued=0 ignored=0
pdoe@192.168.122.98 : ok=10 changed=4 unreachable=0 failed=0 skipped=6
rescued=0 ignored=0

Before Ansible runs your playbook, you are going to be prompted for your password and so that
a user on managed hosts can be switched to root, which is necessary for configuring kernel
parameters.

The recap section shows that the play finished successfully (failed=0) for all managed hosts,
and that 4 kernel parameters have been applied (changed=4).

6. Restart your managed hosts and check the affected kernel parameters to verify that the
changes have been applied and persist across reboots.

Additional resources

Preparing a control node and managed nodes to use RHEL System Roles

README.html and README.md files in the /usr/share/doc/rhel-system-
roles/kernel_settings/ directory

Build Your Inventory

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

32

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/administration_and_configuration_tasks_using_system_roles_in_rhel/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_administration-and-configuration-tasks-using-system-roles-in-rhel
https://docs.ansible.com/ansible/latest/network/getting_started/first_inventory.html

Configuring Ansible

Working With Playbooks

Using Variables

Roles

CHAPTER 6. USING ANSIBLE ROLES TO PERMANENTLY CONFIGURE KERNEL PARAMETERS

33

https://docs.ansible.com/ansible/latest/installation_guide/intro_configuration.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_reuse_roles.html

CHAPTER 7. CONFIGURING NETWORK SETTINGS BY USING
RHEL SYSTEM ROLES

You can automate network-related configuration and management tasks by using the network
RHEL System Role.

7.1. CONFIGURING AN ETHERNET CONNECTION WITH A STATIC IP
ADDRESS BY USING THE NETWORK RHEL SYSTEM ROLE WITH AN
INTERFACE NAME

You can remotely configure an Ethernet connection using the network RHEL System Role.

For example, the procedure below creates a NetworkManager connection profile for the enp7s0 device
with the following settings:

A static IPv4 address - 192.0.2.1 with a /24 subnet mask

A static IPv6 address - 2001:db8:1::1 with a /64 subnet mask

An IPv4 default gateway - 192.0.2.254

An IPv6 default gateway - 2001:db8:1::fffe

An IPv4 DNS server - 192.0.2.200

An IPv6 DNS server - 2001:db8:1::ffbb

A DNS search domain - example.com

Perform this procedure on the Ansible control node.

Prerequisites

You have prepared the control node and the managed nodes .

You are logged in to the control node as a user who can run playbooks on the managed nodes.

The account you use to connect to the managed nodes has sudo permissions on them.

The managed nodes or groups of managed nodes on which you want to run this playbook are
listed in the Ansible inventory file.

A physical or virtual Ethernet device exists in the server’s configuration.

The managed nodes use NetworkManager to configure the network.

Procedure

1. Create a playbook file, for example ~/ethernet-static-IP.yml, with the following content:

- name: Configure the network
 hosts: managed-node-01.example.com
 tasks:

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

34

2. Run the playbook:

ansible-playbook ~/ethernet-static-IP.yml

Additional resources

/usr/share/ansible/roles/rhel-system-roles.network/README.md file

7.2. CONFIGURING AN ETHERNET CONNECTION WITH A STATIC IP
ADDRESS BY USING THE NETWORK RHEL SYSTEM ROLE WITH A
DEVICE PATH

You can remotely configure an Ethernet connection using the network RHEL System Role.

You can identify the device path with the following command:

udevadm info /sys/class/net/<device_name> | grep ID_PATH=

For example, the procedure below creates a NetworkManager connection profile with the following
settings for the device that matches the PCI ID 0000:00:0[1-3].0 expression, but not 0000:00:02.0:

A static IPv4 address - 192.0.2.1 with a /24 subnet mask

A static IPv6 address - 2001:db8:1::1 with a /64 subnet mask

An IPv4 default gateway - 192.0.2.254

An IPv6 default gateway - 2001:db8:1::fffe

An IPv4 DNS server - 192.0.2.200

 - name: Configure an Ethernet connection with static IP
 include_role:
 name: rhel-system-roles.network

 vars:
 network_connections:
 - name: enp7s0
 interface_name: enp7s0
 type: ethernet
 autoconnect: yes
 ip:
 address:
 - 192.0.2.1/24
 - 2001:db8:1::1/64
 gateway4: 192.0.2.254
 gateway6: 2001:db8:1::fffe
 dns:
 - 192.0.2.200
 - 2001:db8:1::ffbb
 dns_search:
 - example.com
 state: up

CHAPTER 7. CONFIGURING NETWORK SETTINGS BY USING RHEL SYSTEM ROLES

35

An IPv6 DNS server - 2001:db8:1::ffbb

A DNS search domain - example.com

Perform this procedure on the Ansible control node.

Prerequisites

You have prepared the control node and the managed nodes .

You are logged in to the control node as a user who can run playbooks on the managed nodes.

The account you use to connect to the managed nodes has sudo permissions on them.

The managed nodes or groups of managed nodes on which you want to run this playbook are
listed in the Ansible inventory file.

A physical or virtual Ethernet device exists in the server’s configuration.

The managed nodes use NetworkManager to configure the network.

Procedure

1. Create a playbook file, for example ~/ethernet-static-IP.yml, with the following content:

The match parameter in this example defines that Ansible applies the play to devices that

- name: Configure the network
 hosts: managed-node-01.example.com
 tasks:
 - name: Configure an Ethernet connection with static IP
 include_role:
 name: rhel-system-roles.network

 vars:
 network_connections:
 - name: example
 match:
 path:
 - pci-0000:00:0[1-3].0
 - &!pci-0000:00:02.0
 type: ethernet
 autoconnect: yes
 ip:
 address:
 - 192.0.2.1/24
 - 2001:db8:1::1/64
 gateway4: 192.0.2.254
 gateway6: 2001:db8:1::fffe
 dns:
 - 192.0.2.200
 - 2001:db8:1::ffbb
 dns_search:
 - example.com
 state: up

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

36

match PCI ID 0000:00:0[1-3].0, but not 0000:00:02.0. For further details about special modifiers
and wild cards you can use, see the match parameter description in the
/usr/share/ansible/roles/rhel-system-roles.network/README.md file.

2. Run the playbook:

ansible-playbook ~/ethernet-static-IP.yml

Additional resources

/usr/share/ansible/roles/rhel-system-roles.network/README.md file

7.3. CONFIGURING AN ETHERNET CONNECTION WITH A DYNAMIC IP
ADDRESS BY USING THE NETWORK RHEL SYSTEM ROLE WITH AN
INTERFACE NAME

You can remotely configure an Ethernet connection using the network RHEL System Role. For
connections with dynamic IP address settings, NetworkManager requests the IP settings for the
connection from a DHCP server.

Perform this procedure on the Ansible control node.

Prerequisites

You have prepared the control node and the managed nodes .

You are logged in to the control node as a user who can run playbooks on the managed nodes.

The account you use to connect to the managed nodes has sudo permissions on them.

The managed nodes or groups of managed nodes on which you want to run this playbook are
listed in the Ansible inventory file.

A physical or virtual Ethernet device exists in the server’s configuration.

A DHCP server is available in the network

The managed nodes use NetworkManager to configure the network.

Procedure

1. Create a playbook file, for example ~/ethernet-dynamic-IP.yml, with the following content:

- name: Configure the network
 hosts: managed-node-01.example.com
 tasks:
 - name: Configure an Ethernet connection with dynamic IP
 include_role:
 name: rhel-system-roles.network

 vars:
 network_connections:
 - name: enp7s0

CHAPTER 7. CONFIGURING NETWORK SETTINGS BY USING RHEL SYSTEM ROLES

37

2. Run the playbook:

ansible-playbook ~/ethernet-dynamic-IP.yml

Additional resources

/usr/share/ansible/roles/rhel-system-roles.network/README.md file

7.4. CONFIGURING AN ETHERNET CONNECTION WITH A DYNAMIC IP
ADDRESS BY USING THE NETWORK RHEL SYSTEM ROLE WITH A
DEVICE PATH

You can remotely configure an Ethernet connection using the network RHEL System Role. For
connections with dynamic IP address settings, NetworkManager requests the IP settings for the
connection from a DHCP server.

You can identify the device path with the following command:

udevadm info /sys/class/net/<device_name> | grep ID_PATH=

Perform this procedure on the Ansible control node.

Prerequisites

You have prepared the control node and the managed nodes .

You are logged in to the control node as a user who can run playbooks on the managed nodes.

The account you use to connect to the managed nodes has sudo permissions on them.

The managed nodes or groups of managed nodes on which you want to run this playbook are
listed in the Ansible inventory file.

A physical or virtual Ethernet device exists in the server’s configuration.

A DHCP server is available in the network.

The managed hosts use NetworkManager to configure the network.

Procedure

1. Create a playbook file, for example ~/ethernet-dynamic-IP.yml, with the following content:

 interface_name: enp7s0
 type: ethernet
 autoconnect: yes
 ip:
 dhcp4: yes
 auto6: yes
 state: up

- name: Configure the network

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

38

The match parameter in this example defines that Ansible applies the play to devices that
match PCI ID 0000:00:0[1-3].0, but not 0000:00:02.0. For further details about special modifiers
and wild cards you can use, see the match parameter description in the
/usr/share/ansible/roles/rhel-system-roles.network/README.md file.

2. Run the playbook:

ansible-playbook ~/ethernet-dynamic-IP.yml

Additional resources

/usr/share/ansible/roles/rhel-system-roles.network/README.md file

7.5. CONFIGURING VLAN TAGGING BY USING THE NETWORK
RHEL SYSTEM ROLE

You can use the network RHEL System Role to configure VLAN tagging. This example adds an
Ethernet connection and a VLAN with ID 10 on top of this Ethernet connection. As the child device, the
VLAN connection contains the IP, default gateway, and DNS configurations.

Depending on your environment, adjust the play accordingly. For example:

To use the VLAN as a port in other connections, such as a bond, omit the ip attribute, and set
the IP configuration in the child configuration.

To use team, bridge, or bond devices in the VLAN, adapt the interface_name and type
attributes of the ports you use in the VLAN.

Perform this procedure on the Ansible control node.

Prerequisites

You have prepared the control node and the managed nodes .

You are logged in to the control node as a user who can run playbooks on the managed nodes.

 hosts: managed-node-01.example.com
 tasks:
 - name: Configure an Ethernet connection with dynamic IP
 include_role:
 name: rhel-system-roles.network

 vars:
 network_connections:
 - name: example
 match:
 path:
 - pci-0000:00:0[1-3].0
 - &!pci-0000:00:02.0
 type: ethernet
 autoconnect: yes
 ip:
 dhcp4: yes
 auto6: yes
 state: up

CHAPTER 7. CONFIGURING NETWORK SETTINGS BY USING RHEL SYSTEM ROLES

39

The account you use to connect to the managed nodes has sudo permissions on them.

The managed nodes or groups of managed nodes on which you want to run this playbook are
listed in the Ansible inventory file.

Procedure

1. Create a playbook file, for example ~/vlan-ethernet.yml, with the following content:

The parent attribute in the VLAN profile configures the VLAN to operate on top of the enp1s0
device.

2. Run the playbook:

ansible-playbook ~/vlan-ethernet.yml

Additional resources

- name: Configure the network
 hosts: managed-node-01.example.com
 tasks:
 - name: Configure a VLAN that uses an Ethernet connection
 include_role:
 name: rhel-system-roles.network

 vars:
 network_connections:
 # Add an Ethernet profile for the underlying device of the VLAN
 - name: enp1s0
 type: ethernet
 interface_name: enp1s0
 autoconnect: yes
 state: up
 ip:
 dhcp4: no
 auto6: no

 # Define the VLAN profile
 - name: enp1s0.10
 type: vlan
 ip:
 address:
 - "192.0.2.1/24"
 - "2001:db8:1::1/64"
 gateway4: 192.0.2.254
 gateway6: 2001:db8:1::fffe
 dns:
 - 192.0.2.200
 - 2001:db8:1::ffbb
 dns_search:
 - example.com
 vlan_id: 10
 parent: enp1s0
 state: up

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

40

/usr/share/ansible/roles/rhel-system-roles.network/README.md file

7.6. CONFIGURING A NETWORK BRIDGE BY USING THE NETWORK
RHEL SYSTEM ROLE

You can use the network RHEL System Role to configure a Linux bridge. For example, use it to
configure a network bridge that uses two Ethernet devices, and sets IPv4 and IPv6 addresses, default
gateways, and DNS configuration.

NOTE

Set the IP configuration on the bridge and not on the ports of the Linux bridge.

Perform this procedure on the Ansible control node.

Prerequisites

You have prepared the control node and the managed nodes .

You are logged in to the control node as a user who can run playbooks on the managed nodes.

The account you use to connect to the managed nodes has sudo permissions on them.

The managed nodes or groups of managed nodes on which you want to run this playbook are
listed in the Ansible inventory file.

Two or more physical or virtual network devices are installed on the server.

Procedure

1. Create a playbook file, for example ~/bridge-ethernet.yml, with the following content:

- name: Configure the network
 hosts: managed-node-01.example.com
 tasks:
 - name: Configure a network bridge that uses two Ethernet ports
 include_role:
 name: rhel-system-roles.network

 vars:
 network_connections:
 # Define the bridge profile
 - name: bridge0
 type: bridge
 interface_name: bridge0
 ip:
 address:
 - "192.0.2.1/24"
 - "2001:db8:1::1/64"
 gateway4: 192.0.2.254
 gateway6: 2001:db8:1::fffe
 dns:
 - 192.0.2.200

CHAPTER 7. CONFIGURING NETWORK SETTINGS BY USING RHEL SYSTEM ROLES

41

2. Run the playbook:

ansible-playbook ~/bridge-ethernet.yml

Additional resources

/usr/share/ansible/roles/rhel-system-roles.network/README.md file

7.7. CONFIGURING A NETWORK BOND BY USING THE NETWORK
RHEL SYSTEM ROLE

You can use the network RHEL System Roles to configure a Linux bond. For example, use it to
configure a network bond in active-backup mode that uses two Ethernet devices, and sets an IPv4 and
IPv6 addresses, default gateways, and DNS configuration.

NOTE

Set the IP configuration on the bond and not on the ports of the Linux bond.

Perform this procedure on the Ansible control node.

Prerequisites

You have prepared the control node and the managed nodes .

You are logged in to the control node as a user who can run playbooks on the managed nodes.

The account you use to connect to the managed nodes has sudo permissions on them.

The managed nodes or groups of managed nodes on which you want to run this playbook are
listed in the Ansible inventory file.

Two or more physical or virtual network devices are installed on the server.

 - 2001:db8:1::ffbb
 dns_search:
 - example.com
 state: up

 # Add an Ethernet profile to the bridge
 - name: bridge0-port1
 interface_name: enp7s0
 type: ethernet
 controller: bridge0
 port_type: bridge
 state: up

 # Add a second Ethernet profile to the bridge
 - name: bridge0-port2
 interface_name: enp8s0
 type: ethernet
 controller: bridge0
 port_type: bridge
 state: up

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

42

Procedure

1. Create a playbook file, for example ~/bond-ethernet.yml, with the following content:

2. Run the playbook:

ansible-playbook ~/bond-ethernet.yml

Additional resources

/usr/share/ansible/roles/rhel-system-roles.network/README.md file

- name: Configure the network
 hosts: managed-node-01.example.com
 tasks:
 - name: Configure a network bond that uses two Ethernet ports
 include_role:
 name: rhel-system-roles.network

 vars:
 network_connections:
 # Define the bond profile
 - name: bond0
 type: bond
 interface_name: bond0
 ip:
 address:
 - "192.0.2.1/24"
 - "2001:db8:1::1/64"
 gateway4: 192.0.2.254
 gateway6: 2001:db8:1::fffe
 dns:
 - 192.0.2.200
 - 2001:db8:1::ffbb
 dns_search:
 - example.com
 bond:
 mode: active-backup
 state: up

 # Add an Ethernet profile to the bond
 - name: bond0-port1
 interface_name: enp7s0
 type: ethernet
 controller: bond0
 state: up

 # Add a second Ethernet profile to the bond
 - name: bond0-port2
 interface_name: enp8s0
 type: ethernet
 controller: bond0
 state: up

CHAPTER 7. CONFIGURING NETWORK SETTINGS BY USING RHEL SYSTEM ROLES

43

7.8. CONFIGURING AN IPOIB CONNECTION BY USING THE NETWORK
RHEL SYSTEM ROLE

You can use the network RHEL System Role to remotely create NetworkManager connection profiles
for IP over InfiniBand (IPoIB) devices. For example, remotely add an InfiniBand connection for the
mlx4_ib0 interface with the following settings by running an Ansible playbook:

An IPoIB device - mlx4_ib0.8002

A partition key p_key - 0x8002

A static IPv4 address - 192.0.2.1 with a /24 subnet mask

A static IPv6 address - 2001:db8:1::1 with a /64 subnet mask

Perform this procedure on the Ansible control node.

Prerequisites

You have prepared the control node and the managed nodes .

You logged in to the control node as a user who can run playbooks on the managed nodes.

The account you use to connect to the managed nodes has sudo permissions on them.

The managed nodes or groups of managed nodes on which you want to run this playbook are
listed in the Ansible inventory file.

An InfiniBand device named mlx4_ib0 is installed in the managed nodes.

The managed nodes use NetworkManager to configure the network.

Procedure

1. Create a playbook file, for example ~/IPoIB.yml, with the following content:

- name: Configure the network
 hosts: managed-node-01.example.com
 tasks:
 - name: Configure IPoIB
 include_role:
 name: rhel-system-roles.network

 vars:
 network_connections:

 # InfiniBand connection mlx4_ib0
 - name: mlx4_ib0
 interface_name: mlx4_ib0
 type: infiniband

 # IPoIB device mlx4_ib0.8002 on top of mlx4_ib0
 - name: mlx4_ib0.8002
 type: infiniband
 autoconnect: yes

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

44

 infiniband:
 p_key: 0x8002
 transport_mode: datagram
 parent: mlx4_ib0
 ip:
 address:
 - 192.0.2.1/24
 - 2001:db8:1::1/64
 state: up

If you set a p_key parameter as in this example, do not set an interface_name parameter on the
IPoIB device.

2. Run the playbook:

ansible-playbook ~/IPoIB.yml

Verification

1. On the managed-node-01.example.com host, display the IP settings of the mlx4_ib0.8002
device:

ip address show mlx4_ib0.8002
...
inet 192.0.2.1/24 brd 192.0.2.255 scope global noprefixroute ib0.8002
 valid_lft forever preferred_lft forever
inet6 2001:db8:1::1/64 scope link tentative noprefixroute
 valid_lft forever preferred_lft forever

2. Display the partition key (P_Key) of the mlx4_ib0.8002 device:

cat /sys/class/net/mlx4_ib0.8002/pkey
0x8002

3. Display the mode of the mlx4_ib0.8002 device:

cat /sys/class/net/mlx4_ib0.8002/mode
datagram

Additional resources

/usr/share/ansible/roles/rhel-system-roles.network/README.md file

7.9. ROUTING TRAFFIC FROM A SPECIFIC SUBNET TO A DIFFERENT
DEFAULT GATEWAY BY USING THE NETWORK RHEL SYSTEM ROLE

You can use policy-based routing to configure a different default gateway for traffic from certain
subnets. For example, you can configure RHEL as a router that, by default, routes all traffic to Internet
provider A using the default route. However, traffic received from the internal workstations subnet is
routed to provider B.

To configure policy-based routing remotely and on multiple nodes, you can use the RHEL network
System Role. Perform this procedure on the Ansible control node.

CHAPTER 7. CONFIGURING NETWORK SETTINGS BY USING RHEL SYSTEM ROLES

45

This procedure assumes the following network topology:

Prerequisites

You have prepared the control node and the managed nodes .

You are logged in to the control node as a user who can run playbooks on the managed nodes.

The account you use to connect to the managed nodes has sudo permissions on the them.

The managed nodes or groups of managed nodes on which you want to run this playbook are
listed in the Ansible inventory file.

The managed nodes uses the NetworkManager and firewalld services.

The managed nodes you want to configure has four network interfaces:

The enp7s0 interface is connected to the network of provider A. The gateway IP in the
provider’s network is 198.51.100.2, and the network uses a /30 network mask.

The enp1s0 interface is connected to the network of provider B. The gateway IP in the
provider’s network is 192.0.2.2, and the network uses a /30 network mask.

The enp8s0 interface is connected to the 10.0.0.0/24 subnet with internal workstations.

The enp9s0 interface is connected to the 203.0.113.0/24 subnet with the company’s
servers.

Hosts in the internal workstations subnet use 10.0.0.1 as the default gateway. In the procedure,
you assign this IP address to the enp8s0 network interface of the router.

Hosts in the server subnet use 203.0.113.1 as the default gateway. In the procedure, you assign
this IP address to the enp9s0 network interface of the router.

Procedure

1. Create a playbook file, for example ~/pbr.yml, with the following content:

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

46

- name: Configuring policy-based routing
 hosts: managed-node-01.example.com
 tasks:
 - name: Routing traffic from a specific subnet to a different default gateway
 include_role:
 name: rhel-system-roles.network

 vars:
 network_connections:
 - name: Provider-A
 interface_name: enp7s0
 type: ethernet
 autoconnect: True
 ip:
 address:
 - 198.51.100.1/30
 gateway4: 198.51.100.2
 dns:
 - 198.51.100.200
 state: up
 zone: external

 - name: Provider-B
 interface_name: enp1s0
 type: ethernet
 autoconnect: True
 ip:
 address:
 - 192.0.2.1/30
 route:
 - network: 0.0.0.0
 prefix: 0
 gateway: 192.0.2.2
 table: 5000
 state: up
 zone: external

 - name: Internal-Workstations
 interface_name: enp8s0
 type: ethernet
 autoconnect: True
 ip:
 address:
 - 10.0.0.1/24
 route:
 - network: 10.0.0.0
 prefix: 24
 table: 5000
 routing_rule:
 - priority: 5
 from: 10.0.0.0/24
 table: 5000
 state: up
 zone: trusted

CHAPTER 7. CONFIGURING NETWORK SETTINGS BY USING RHEL SYSTEM ROLES

47

2. Run the playbook:

ansible-playbook ~/pbr.yml

Verification

1. On a RHEL host in the internal workstation subnet:

a. Install the traceroute package:

dnf install traceroute

b. Use the traceroute utility to display the route to a host on the Internet:

traceroute redhat.com
traceroute to redhat.com (209.132.183.105), 30 hops max, 60 byte packets
 1 10.0.0.1 (10.0.0.1) 0.337 ms 0.260 ms 0.223 ms
 2 192.0.2.1 (192.0.2.1) 0.884 ms 1.066 ms 1.248 ms
 ...

The output of the command displays that the router sends packets over 192.0.2.1, which is
the network of provider B.

2. On a RHEL host in the server subnet:

a. Install the traceroute package:

dnf install traceroute

b. Use the traceroute utility to display the route to a host on the Internet:

traceroute redhat.com
traceroute to redhat.com (209.132.183.105), 30 hops max, 60 byte packets
 1 203.0.113.1 (203.0.113.1) 2.179 ms 2.073 ms 1.944 ms
 2 198.51.100.2 (198.51.100.2) 1.868 ms 1.798 ms 1.549 ms
 ...

The output of the command displays that the router sends packets over 198.51.100.2, which
is the network of provider A.

3. On the RHEL router that you configured using the RHEL System Role:

a. Display the rule list:

 - name: Servers
 interface_name: enp9s0
 type: ethernet
 autoconnect: True
 ip:
 address:
 - 203.0.113.1/24
 state: up
 zone: trusted

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

48

ip rule list
0: from all lookup local
5: from 10.0.0.0/24 lookup 5000
32766: from all lookup main
32767: from all lookup default

By default, RHEL contains rules for the tables local, main, and default.

b. Display the routes in table 5000:

ip route list table 5000
0.0.0.0/0 via 192.0.2.2 dev enp1s0 proto static metric 100
10.0.0.0/24 dev enp8s0 proto static scope link src 192.0.2.1 metric 102

c. Display the interfaces and firewall zones:

firewall-cmd --get-active-zones
external
 interfaces: enp1s0 enp7s0
trusted
 interfaces: enp8s0 enp9s0

d. Verify that the external zone has masquerading enabled:

firewall-cmd --info-zone=external
external (active)
 target: default
 icmp-block-inversion: no
 interfaces: enp1s0 enp7s0
 sources:
 services: ssh
 ports:
 protocols:
 masquerade: yes
 ...

Additional resources

/usr/share/ansible/roles/rhel-system-roles.network/README.md file

7.10. CONFIGURING A STATIC ETHERNET CONNECTION WITH 802.1X
NETWORK AUTHENTICATION BY USING THE NETWORK
RHEL SYSTEM ROLE

Using the network RHEL System Role, you can automate the creation of an Ethernet connection that
uses the 802.1X standard to authenticate the client. For example, remotely add an Ethernet connection
for the enp1s0 interface with the following settings by running an Ansible playbook:

A static IPv4 address - 192.0.2.1 with a /24 subnet mask

A static IPv6 address - 2001:db8:1::1 with a /64 subnet mask

An IPv4 default gateway - 192.0.2.254

CHAPTER 7. CONFIGURING NETWORK SETTINGS BY USING RHEL SYSTEM ROLES

49

An IPv6 default gateway - 2001:db8:1::fffe

An IPv4 DNS server - 192.0.2.200

An IPv6 DNS server - 2001:db8:1::ffbb

A DNS search domain - example.com

802.1X network authentication using the TLS Extensible Authentication Protocol (EAP)

Perform this procedure on the Ansible control node.

Prerequisites

You have prepared the control node and the managed nodes .

You are logged in to the control node as a user who can run playbooks on the managed nodes.

The account you use to connect to the managed nodes has sudo permissions on them.

The managed nodes or groups of managed nodes on which you want to run this playbook are
listed in the Ansible inventory file

The network supports 802.1X network authentication.

The managed nodes uses NetworkManager.

The following files required for TLS authentication exist on the control node:

The client key is stored in the /srv/data/client.key file.

The client certificate is stored in the /srv/data/client.crt file.

The Certificate Authority (CA) certificate is stored in the /srv/data/ca.crt file.

Procedure

1. Create a playbook file, for example ~/enable-802.1x.yml, with the following content:

- name: Configure an Ethernet connection with 802.1X authentication
 hosts: managed-node-01.example.com
 tasks:
 - name: Copy client key for 802.1X authentication
 copy:
 src: "/srv/data/client.key"
 dest: "/etc/pki/tls/private/client.key"
 mode: 0600

 - name: Copy client certificate for 802.1X authentication
 copy:
 src: "/srv/data/client.crt"
 dest: "/etc/pki/tls/certs/client.crt"

 - name: Copy CA certificate for 802.1X authentication
 copy:
 src: "/srv/data/ca.crt"

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

50

2. Run the playbook:

ansible-playbook ~/enable-802.1x.yml

Additional resources

/usr/share/ansible/roles/rhel-system-roles.network/README.md file

7.11. CONFIGURING A WIFI CONNECTION WITH 802.1X NETWORK
AUTHENTICATION BY USING THE NETWORK RHEL SYSTEM ROLE

Using RHEL System Roles, you can automate the creation of a wifi connection. For example, you can
remotely add a wireless connection profile for the wlp1s0 interface using an Ansible playbook. The
created profile uses the 802.1X standard to authenticate the client to a wifi network. The playbook
configures the connection profile to use DHCP. To configure static IP settings, adapt the parameters in
the ip dictionary accordingly.

Perform this procedure on the Ansible control node.

Prerequisites

You have prepared the control node and the managed nodes .

 dest: "/etc/pki/ca-trust/source/anchors/ca.crt"

 - include_role:
 name: rhel-system-roles.network

 vars:
 network_connections:
 - name: enp1s0
 type: ethernet
 autoconnect: yes
 ip:
 address:
 - 192.0.2.1/24
 - 2001:db8:1::1/64
 gateway4: 192.0.2.254
 gateway6: 2001:db8:1::fffe
 dns:
 - 192.0.2.200
 - 2001:db8:1::ffbb
 dns_search:
 - example.com
 ieee802_1x:
 identity: user_name
 eap: tls
 private_key: "/etc/pki/tls/private/client.key"
 private_key_password: "password"
 client_cert: "/etc/pki/tls/certs/client.crt"
 ca_cert: "/etc/pki/ca-trust/source/anchors/ca.crt"
 domain_suffix_match: example.com
 state: up

CHAPTER 7. CONFIGURING NETWORK SETTINGS BY USING RHEL SYSTEM ROLES

51

You are logged in to the control node as a user who can run playbooks on the managed nodes.

The account you use to connect to the managed nodes has sudo permissions on them.

The managed nodes or groups of managed nodes on which you want to run this playbook are
listed in the Ansible inventory file.

The network supports 802.1X network authentication.

You installed the wpa_supplicant package on the managed node.

DHCP is available in the network of the managed node.

The following files required for TLS authentication exist on the control node:

The client key is stored in the /srv/data/client.key file.

The client certificate is stored in the /srv/data/client.crt file.

The CA certificate is stored in the /srv/data/ca.crt file.

Procedure

1. Create a playbook file, for example ~/enable-802.1x.yml, with the following content:

- name: Configure a wifi connection with 802.1X authentication
 hosts: managed-node-01.example.com
 tasks:
 - name: Copy client key for 802.1X authentication
 copy:
 src: "/srv/data/client.key"
 dest: "/etc/pki/tls/private/client.key"
 mode: 0400

 - name: Copy client certificate for 802.1X authentication
 copy:
 src: "/srv/data/client.crt"
 dest: "/etc/pki/tls/certs/client.crt"

 - name: Copy CA certificate for 802.1X authentication
 copy:
 src: "/srv/data/ca.crt"
 dest: "/etc/pki/ca-trust/source/anchors/ca.crt"

 - block:
 - import_role:
 name: linux-system-roles.network
 vars:
 network_connections:
 - name: Configure the Example-wifi profile
 interface_name: wlp1s0
 state: up
 type: wireless
 autoconnect: yes
 ip:
 dhcp4: true

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

52

2. Run the playbook:

ansible-playbook ~/enable-802.1x.yml

Additional resources

/usr/share/ansible/roles/rhel-system-roles.network/README.md file

7.12. SETTING THE DEFAULT GATEWAY ON AN EXISTING
CONNECTION BY USING THE NETWORK RHEL SYSTEM ROLE

You can use the network RHEL System Role to set the default gateway.

IMPORTANT

When you run a play that uses the network RHEL System Role, the system role overrides
an existing connection profile with the same name if the value of settings does not match
the ones specified in the play. Therefore, always specify the whole configuration of the
network connection profile in the play, even if, for example, the IP configuration already
exists. Otherwise, the role resets these values to their defaults.

Depending on whether it already exists, the procedure creates or updates the enp1s0 connection profile
with the following settings:

A static IPv4 address - 198.51.100.20 with a /24 subnet mask

A static IPv6 address - 2001:db8:1::1 with a /64 subnet mask

An IPv4 default gateway - 198.51.100.254

An IPv6 default gateway - 2001:db8:1::fffe

An IPv4 DNS server - 198.51.100.200

An IPv6 DNS server - 2001:db8:1::ffbb

A DNS search domain - example.com

Perform this procedure on the Ansible control node.

Prerequisites

 auto6: true
 wireless:
 ssid: "Example-wifi"
 key_mgmt: "wpa-eap"
 ieee802_1x:
 identity: "user_name"
 eap: tls
 private_key: "/etc/pki/tls/client.key"
 private_key_password: "password"
 private_key_password_flags: none
 client_cert: "/etc/pki/tls/client.pem"
 ca_cert: "/etc/pki/tls/cacert.pem"
 domain_suffix_match: "example.com"

CHAPTER 7. CONFIGURING NETWORK SETTINGS BY USING RHEL SYSTEM ROLES

53

Prerequisites

You have prepared the control node and the managed nodes .

You are logged in to the control node as a user who can run playbooks on the managed nodes.

The account you use to connect to the managed nodes has sudo permissions on them.

The managed nodes or groups of managed nodes on which you want to run this playbook are
listed in the Ansible inventory file.

Procedure

1. Create a playbook file, for example ~/ethernet-connection.yml, with the following content:

2. Run the playbook:

ansible-playbook ~/ethernet-connection.yml

Additional resources

/usr/share/ansible/roles/rhel-system-roles.network/README.md file

7.13. CONFIGURING A STATIC ROUTE BY USING THE NETWORK RHEL
SYSTEM ROLE

You can use the network RHEL System Role to configure static routes.

IMPORTANT

- name: Configure the network
 hosts: managed-node-01.example.com
 tasks:
 - name: Configure an Ethernet connection with static IP and default gateway
 include_role:
 name: rhel-system-roles.network

 vars:
 network_connections:
 - name: enp1s0
 type: ethernet
 autoconnect: yes
 ip:
 address:
 - 198.51.100.20/24
 - 2001:db8:1::1/64
 gateway4: 198.51.100.254
 gateway6: 2001:db8:1::fffe
 dns:
 - 198.51.100.200
 - 2001:db8:1::ffbb
 dns_search:
 - example.com
 state: up

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

54

IMPORTANT

When you run a play that uses the network RHEL System Role, the system role overrides
an existing connection profile with the same name if the value of settings does not match
the ones specified in the play. Therefore, always specify the whole configuration of the
network connection profile in the play, even if, for example, the IP configuration already
exists. Otherwise, the role resets these values to their defaults.

Depending on whether it already exists, the procedure creates or updates the enp7s0 connection profile
with the following settings:

A static IPv4 address - 192.0.2.1 with a /24 subnet mask

A static IPv6 address - 2001:db8:1::1 with a /64 subnet mask

An IPv4 default gateway - 192.0.2.254

An IPv6 default gateway - 2001:db8:1::fffe

An IPv4 DNS server - 192.0.2.200

An IPv6 DNS server - 2001:db8:1::ffbb

A DNS search domain - example.com

Static routes:

198.51.100.0/24 with gateway 192.0.2.10

2001:db8:2::/64 with gateway 2001:db8:1::10

Perform this procedure on the Ansible control node.

Prerequisites

You have prepared the control node and the managed nodes .

You are logged in to the control node as a user who can run playbooks on the managed nodes.

The account you use to connect to the managed nodes has sudo permissions on them.

The managed nodes or groups of managed nodes on which you want to run this playbook are
listed in the Ansible inventory file.

Procedure

1. Create a playbook file, for example ~/add-static-routes.yml, with the following content:

- name: Configure the network
 hosts: managed-node-01.example.com
 tasks:
 - name: Configure an Ethernet connection with static IP and additional routes
 include_role:
 name: rhel-system-roles.network

CHAPTER 7. CONFIGURING NETWORK SETTINGS BY USING RHEL SYSTEM ROLES

55

2. Run the playbook:

ansible-playbook ~/add-static-routes.yml

Verification

1. On the managed nodes:

a. Display the IPv4 routes:

ip -4 route
...
198.51.100.0/24 via 192.0.2.10 dev enp7s0

b. Display the IPv6 routes:

ip -6 route
...
2001:db8:2::/64 via 2001:db8:1::10 dev enp7s0 metric 1024 pref medium

Additional resources

/usr/share/ansible/roles/rhel-system-roles.network/README.md file

7.14. CONFIGURING AN ETHTOOL OFFLOAD FEATURE BY USING THE
NETWORK RHEL SYSTEM ROLE

You can use the network RHEL System Role to configure ethtool features of a NetworkManager

 vars:
 network_connections:
 - name: enp7s0
 type: ethernet
 autoconnect: yes
 ip:
 address:
 - 192.0.2.1/24
 - 2001:db8:1::1/64
 gateway4: 192.0.2.254
 gateway6: 2001:db8:1::fffe
 dns:
 - 192.0.2.200
 - 2001:db8:1::ffbb
 dns_search:
 - example.com
 route:
 - network: 198.51.100.0
 prefix: 24
 gateway: 192.0.2.10
 - network: 2001:db8:2::
 prefix: 64
 gateway: 2001:db8:1::10
 state: up

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

56

You can use the network RHEL System Role to configure ethtool features of a NetworkManager
connection.

IMPORTANT

When you run a play that uses the network RHEL System Role, the system role overrides
an existing connection profile with the same name if the value of settings does not match
the ones specified in the play. Therefore, always specify the whole configuration of the
network connection profile in the play, even if, for example the IP configuration, already
exists. Otherwise the role resets these values to their defaults.

Depending on whether it already exists, the procedure creates or updates the enp1s0 connection profile
with the following settings:

A static IPv4 address - 198.51.100.20 with a /24 subnet mask

A static IPv6 address - 2001:db8:1::1 with a /64 subnet mask

An IPv4 default gateway - 198.51.100.254

An IPv6 default gateway - 2001:db8:1::fffe

An IPv4 DNS server - 198.51.100.200

An IPv6 DNS server - 2001:db8:1::ffbb

A DNS search domain - example.com

ethtool features:

Generic receive offload (GRO): disabled

Generic segmentation offload (GSO): enabled

TX stream control transmission protocol (SCTP) segmentation: disabled

Perform this procedure on the Ansible control node.

Prerequisites

You have prepared the control node and the managed nodes .

You are logged in to the control node as a user who can run playbooks on the managed nodes.

The account you use to connect to the managed nodes has sudo permissions on them.

The managed nodes or groups of managed nodes on which you want to run this playbook are
listed in the Ansible inventory file.

Procedure

1. Create a playbook file, for example ~/configure-ethernet-device-with-ethtool-features.yml,
with the following content:

- name: Configure the network

CHAPTER 7. CONFIGURING NETWORK SETTINGS BY USING RHEL SYSTEM ROLES

57

2. Run the playbook:

ansible-playbook ~/configure-ethernet-device-with-ethtool-features.yml

Additional resources

/usr/share/ansible/roles/rhel-system-roles.network/README.md file

7.15. CONFIGURING AN ETHTOOL COALESCE SETTINGS BY USING
THE NETWORK RHEL SYSTEM ROLE

You can use the network RHEL System Role to configure ethtool coalesce settings of a
NetworkManager connection.

IMPORTANT

When you run a play that uses the network RHEL System Role, the system role overrides
an existing connection profile with the same name if the value of settings does not match
the ones specified in the play. Therefore, always specify the whole configuration of the
network connection profile in the play, even if, for example the IP configuration, already
exists. Otherwise the role resets these values to their defaults.

Depending on whether it already exists, the procedure creates or updates the enp1s0 connection profile
with the following settings:

 hosts: managed-node-01.example.com
 tasks:
 - name: Configure an Ethernet connection with ethtool features
 include_role:
 name: rhel-system-roles.network

 vars:
 network_connections:
 - name: enp1s0
 type: ethernet
 autoconnect: yes
 ip:
 address:
 - 198.51.100.20/24
 - 2001:db8:1::1/64
 gateway4: 198.51.100.254
 gateway6: 2001:db8:1::fffe
 dns:
 - 198.51.100.200
 - 2001:db8:1::ffbb
 dns_search:
 - example.com
 ethtool:
 features:
 gro: "no"
 gso: "yes"
 tx_sctp_segmentation: "no"
 state: up

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

58

A static IPv4 address - 198.51.100.20 with a /24 subnet mask

A static IPv6 address - 2001:db8:1::1 with a /64 subnet mask

An IPv4 default gateway - 198.51.100.254

An IPv6 default gateway - 2001:db8:1::fffe

An IPv4 DNS server - 198.51.100.200

An IPv6 DNS server - 2001:db8:1::ffbb

A DNS search domain - example.com

ethtool coalesce settings:

RX frames: 128

TX frames: 128

Perform this procedure on the Ansible control node.

Prerequisites

You have prepared the control node and the managed nodes .

You are logged in to the control node as a user who can run playbooks on the managed nodes.

The account you use to connect to the managed nodes has sudo permissions on them.

The managed nodes or groups of managed nodes on which you want to run this playbook are
listed in the Ansible inventory file.

Procedure

1. Create a playbook file, for example ~/configure-ethernet-device-with-ethtoolcoalesce-
settings.yml, with the following content:

- name: Configure the network
 hosts: managed-node-01.example.com
 tasks:
 - name: Configure an Ethernet connection with ethtool coalesce settings
 include_role:
 name: rhel-system-roles.network

 vars:
 network_connections:
 - name: enp1s0
 type: ethernet
 autoconnect: yes
 ip:
 address:
 - 198.51.100.20/24
 - 2001:db8:1::1/64
 gateway4: 198.51.100.254
 gateway6: 2001:db8:1::fffe

CHAPTER 7. CONFIGURING NETWORK SETTINGS BY USING RHEL SYSTEM ROLES

59

2. Run the playbook:

ansible-playbook ~/configure-ethernet-device-with-ethtoolcoalesce-settings.yml

Additional resources

/usr/share/ansible/roles/rhel-system-roles.network/README.md file

7.16. NETWORK STATES FOR THE NETWORK RHEL SYSTEM ROLE

The network RHEL system role supports state configurations in playbooks to configure the devices. For
this, use the network_state variable followed by the state configurations.

Benefits of using the network_state variable in a playbook:

Using the declarative method with the state configurations, you can configure interfaces, and
the NetworkManager creates a profile for these interfaces in the background.

With the network_state variable, you can specify the options that you require to change, and all
the other options will remain the same as they are. However, with the network_connections
variable, you must specify all settings to change the network connection profile.

For example, to create an Ethernet connection with dynamic IP address settings, use the following vars
block in your playbook:

Playbook with state configurations Regular playbook

 dns:
 - 198.51.100.200
 - 2001:db8:1::ffbb
 dns_search:
 - example.com
 ethtool:
 coalesce:
 rx_frames: 128
 tx_frames: 128
 state: up

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

60

For example, to only change the connection status of dynamic IP address settings that you created as
above, use the following vars block in your playbook:

Playbook with state configurations Regular playbook

Additional resources

/usr/share/ansible/roles/rhel-system-roles.network/README.md file

Introduction to Nmstate

vars:
 network_state:
 interfaces:
 - name: enp7s0
 type: ethernet
 state: up
 ipv4:
 enabled: true
 auto-dns: true
 auto-gateway: true
 auto-routes: true
 dhcp: true
 ipv6:
 enabled: true
 auto-dns: true
 auto-gateway: true
 auto-routes: true
 autoconf: true
 dhcp: true

vars:
 network_connections:
 - name: enp7s0
 interface_name: enp7s0
 type: ethernet
 autoconnect: yes
 ip:
 dhcp4: yes
 auto6: yes
 state: up

vars:
 network_state:
 interfaces:
 - name: enp7s0
 type: ethernet
 state: down

vars:
 network_connections:
 - name: enp7s0
 interface_name: enp7s0
 type: ethernet
 autoconnect: yes
 ip:
 dhcp4: yes
 auto6: yes
 state: down

CHAPTER 7. CONFIGURING NETWORK SETTINGS BY USING RHEL SYSTEM ROLES

61

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_and_managing_networking/assembly_introduction-to-nmstate_configuring-and-managing-networking

CHAPTER 8. CONFIGURING FIREWALLD USING SYSTEM ROLES

You can use the firewall System Role to configure settings of the firewalld service on multiple clients
at once. This solution:

Provides an interface with efficient input settings.

Keeps all intended firewalld parameters in one place.

After you run the firewall role on the control node, the System Role applies the firewalld parameters to
the managed node immediately and makes them persistent across reboots.

8.1. INTRODUCTION TO THE FIREWALL RHEL SYSTEM ROLE

RHEL System Roles is a set of contents for the Ansible automation utility. This content together with
the Ansible automation utility provides a consistent configuration interface to remotely manage multiple
systems.

The rhel-system-roles.firewall role from the RHEL System Roles was introduced for automated
configurations of the firewalld service. The rhel-system-roles package contains this System Role, and
also the reference documentation.

To apply the firewalld parameters on one or more systems in an automated fashion, use the firewall
System Role variable in a playbook. A playbook is a list of one or more plays that is written in the text-
based YAML format.

You can use an inventory file to define a set of systems that you want Ansible to configure.

With the firewall role you can configure many different firewalld parameters, for example:

Zones.

The services for which packets should be allowed.

Granting, rejection, or dropping of traffic access to ports.

Forwarding of ports or port ranges for a zone.

Additional resources

README.md and README.html files in the /usr/share/doc/rhel-system-roles/firewall/
directory

Working with playbooks

How to build your inventory

8.2. RESETTING THE FIREWALLD SETTINGS USING THE FIREWALL
RHEL SYSTEM ROLE

With the firewall RHEL system role, you can reset the firewalld settings to their default state. If you add
the previous:replaced parameter to the variable list, the System Role removes all existing user-defined
settings and resets firewalld to the defaults. If you combine the previous:replaced parameter with
other settings, the firewall role removes all existing settings before applying new ones.

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

62

https://docs.ansible.com/ansible/latest/user_guide/playbooks.html
https://docs.ansible.com/ansible/latest/user_guide/intro_inventory.html

Perform this procedure on the Ansible control node.

Prerequisites

You have prepared the control node and the managed nodes .

You are logged in to the control node as a user who can run playbooks on the managed nodes.

The account you use to connect to the managed nodes has sudo permissions on the them.

The managed nodes or groups of managed nodes on which you want to run this playbook are
listed in the Ansible inventory file.

Procedure

1. Create a playbook file, for example ~/reset-firewalld.yml, with the following content:

2. Run the playbook:

ansible-playbook ~/configuring-a-dmz.yml

Verification

Run this command as root on the managed node to check all the zones:

firewall-cmd --list-all-zones

Additional resources

/usr/share/ansible/roles/rhel-system-roles.firewall/README.md

ansible-playbook(1)

firewalld(1)

8.3. FORWARDING INCOMING TRAFFIC FROM ONE LOCAL PORT TO A
DIFFERENT LOCAL PORT

With the firewall role you can remotely configure firewalld parameters with persisting effect on
multiple managed hosts.

- name: Reset firewalld example
 hosts: managed-node-01.example.com
 tasks:
 - name: Reset firewalld
 include_role:
 name: rhel-system-roles.firewall

 vars:
 firewall:
 - previous: replaced

CHAPTER 8. CONFIGURING FIREWALLD USING SYSTEM ROLES

63

Perform this procedure on the Ansible control node.

Prerequisites

You have prepared the control node and the managed nodes .

You are logged in to the control node as a user who can run playbooks on the managed nodes.

The account you use to connect to the managed nodes has sudo permissions on the them.

The managed nodes or groups of managed nodes on which you want to run this playbook are
listed in the Ansible inventory file.

Procedure

1. Create a playbook file, for example ~/port_forwarding.yml, with the following content:

2. Run the playbook:

ansible-playbook ~/port_forwarding.yml

Verification

On the managed host, display the firewalld settings:

firewall-cmd --list-forward-ports

Additional resources

/usr/share/ansible/roles/rhel-system-roles.firewall/README.md

8.4. CONFIGURING PORTS USING SYSTEM ROLES

You can use the RHEL firewall System Role to open or close ports in the local firewall for incoming
traffic and make the new configuration persist across reboots. For example you can configure the
default zone to permit incoming traffic for the HTTPS service.

Perform this procedure on the Ansible control node.

Prerequisites

- name: Configure firewalld
 hosts: managed-node-01.example.com
 tasks:
 - name: Forward incoming traffic on port 8080 to 443
 include_role:
 name: rhel-system-roles.firewall

 vars:
 firewall:
 - { forward_port: 8080/tcp;443;, state: enabled, runtime: true, permanent: true }

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

64

You have prepared the control node and the managed nodes .

You are logged in to the control node as a user who can run playbooks on the managed nodes.

The account you use to connect to the managed nodes has sudo permissions on the them.

The managed nodes or groups of managed nodes on which you want to run this playbook are
listed in the Ansible inventory file.

Procedure

1. Create a playbook file, for example ~/opening-a-port.yml, with the following content:

The permanent: true option makes the new settings persistent across reboots.

2. Run the playbook:

ansible-playbook ~/opening-a-port.yml

Verification

On the managed node, verify that the 443/tcp port associated with the HTTPS service is open:

firewall-cmd --list-ports
443/tcp

Additional resources

/usr/share/ansible/roles/rhel-system-roles.firewall/README.md

8.5. CONFIGURING A DMZ FIREWALLD ZONE BY USING THE FIREWALLD

RHEL SYSTEM ROLE

As a system administrator, you can use the firewall System Role to configure a dmz zone on the enp1s0
interface to permit HTTPS traffic to the zone. In this way, you enable external users to access your web
servers.

- name: Configure firewalld
 hosts: managed-node-01.example.com
 tasks:
 - name: Allow incoming HTTPS traffic to the local host
 include_role:
 name: rhel-system-roles.firewall

 vars:
 firewall:
 - port: 443/tcp
 service: http
 state: enabled
 runtime: true
 permanent: true

CHAPTER 8. CONFIGURING FIREWALLD USING SYSTEM ROLES

65

Perform this procedure on the Ansible control node.

Prerequisites

You have prepared the control node and the managed nodes .

You are logged in to the control node as a user who can run playbooks on the managed nodes.

The account you use to connect to the managed nodes has sudo permissions on the them.

The managed nodes or groups of managed nodes on which you want to run this playbook are
listed in the Ansible inventory file.

Procedure

1. Create a playbook file, for example ~/configuring-a-dmz.yml, with the following content:

2. Run the playbook:

ansible-playbook ~/configuring-a-dmz.yml

Verification

On the managed node, view detailed information about the dmz zone:

firewall-cmd --zone=dmz --list-all
dmz (active)
 target: default
 icmp-block-inversion: no
 interfaces: enp1s0
 sources:
 services: https ssh
 ports:
 protocols:
 forward: no
 masquerade: no

- name: Configure firewalld
 hosts: managed-node-01.example.com
 tasks:
 - name: Creating a DMZ with access to HTTPS port and masquerading for hosts in DMZ
 include_role:
 name: rhel-system-roles.firewall

 vars:
 firewall:
 - zone: dmz
 interface: enp1s0
 service: https
 state: enabled
 runtime: true
 permanent: true

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

66

 forward-ports:
 source-ports:
 icmp-blocks:

Additional resources

/usr/share/ansible/roles/rhel-system-roles.firewall/README.md

CHAPTER 8. CONFIGURING FIREWALLD USING SYSTEM ROLES

67

CHAPTER 9. VARIABLES OF THE POSTFIX ROLE IN SYSTEM
ROLES

The postfix role variables allow the user to install, configure, and start the postfix Mail Transfer Agent
(MTA).

The following role variables are defined in this section:

postfix_conf: It includes key/value pairs of all the supported postfix configuration parameters.
By default, the postfix_conf does not have a value.

postfix_conf:
 relayhost: example.com

If your scenario requires removing any existing configuration and apply the desired configuration on top
of a clean postfix installation, specify the previous: replaced option within the postfix_conf dictionary:

An example with the previous: replaced option:

postfix_conf:
 relayhost: example.com
 previous: replaced

postfix_check: It determines if a check has been executed before starting the postfix to verify
the configuration changes. The default value is true.

For example:

postfix_check: true

postfix_backup: It determines whether a single backup copy of the configuration is created. By
default the postfix_backup value is false.

To overwrite any previous backup run the following command:

cp /etc/postfix/main.cf /etc/postfix/main.cf.backup

If the postfix_backup value is changed to true, you must also set the postfix_backup_multiple value
to false.

For example:

postfix_backup: true
postfix_backup_multiple: false

postfix_backup_multiple: It determines if the role will make a timestamped backup copy of the
configuration.

To keep multiple backup copies, run the following command:

cp /etc/postfix/main.cf /etc/postfix/main.cf.$(date -Isec)

By default the value of postfix_backup_multiple is true. The postfix_backup_multiple:true setting

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

68

By default the value of postfix_backup_multiple is true. The postfix_backup_multiple:true setting
overrides postfix_backup. If you want to use postfix_backup you must set the
postfix_backup_multiple:false.

IMPORTANT

The configuration parameters cannot be removed. Before running the postfix role, set
the postfix_conf to all the required configuration parameters and use the file module to
remove /etc/postfix/main.cf

9.1. ADDITIONAL RESOURCES

/usr/share/doc/rhel-system-roles/postfix/README.md

CHAPTER 9. VARIABLES OF THE POSTFIX ROLE IN SYSTEM ROLES

69

CHAPTER 10. CONFIGURING SELINUX USING SYSTEM ROLES

10.1. INTRODUCTION TO THE SELINUX SYSTEM ROLE

RHEL System Roles is a collection of Ansible roles and modules that provide a consistent configuration
interface to remotely manage multiple RHEL systems. The selinux System Role enables the following
actions:

Cleaning local policy modifications related to SELinux booleans, file contexts, ports, and logins.

Setting SELinux policy booleans, file contexts, ports, and logins.

Restoring file contexts on specified files or directories.

Managing SELinux modules.

The following table provides an overview of input variables available in the selinux System Role.

Table 10.1. selinux System Role variables

Role variable Description CLI alternative

selinux_policy Chooses a policy protecting
targeted processes or Multi Level
Security protection.

SELINUXTYPE in
/etc/selinux/config

selinux_state Switches SELinux modes. setenforce and SELINUX in
/etc/selinux/config.

selinux_booleans Enables and disables SELinux
booleans.

setsebool

selinux_fcontexts Adds or removes a SELinux file
context mapping.

semanage fcontext

selinux_restore_dirs Restores SELinux labels in the
file-system tree.

restorecon -R

selinux_ports Sets SELinux labels on ports. semanage port

selinux_logins Sets users to SELinux user
mapping.

semanage login

selinux_modules Installs, enables, disables, or
removes SELinux modules.

semodule

The /usr/share/doc/rhel-system-roles/selinux/example-selinux-playbook.yml example playbook
installed by the rhel-system-roles package demonstrates how to set the targeted policy in enforcing
mode. The playbook also applies several local policy modifications and restores file contexts in the
/tmp/test_dir/ directory.

For a detailed reference on selinux role variables, install the rhel-system-roles package, and see the

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

70

For a detailed reference on selinux role variables, install the rhel-system-roles package, and see the
README.md or README.html files in the /usr/share/doc/rhel-system-roles/selinux/ directory.

Additional resources

Introduction to RHEL System Roles .

10.2. USING THE SELINUX SYSTEM ROLE TO APPLY SELINUX SETTINGS
ON MULTIPLE SYSTEMS

Follow the steps to prepare and apply an Ansible playbook with your verified SELinux settings.

Prerequisites

Access and permissions to one or more managed nodes, which are systems you want to
configure with the selinux System Role.

Access and permissions to a control node, which is a system from which Red Hat Ansible Core
configures other systems.
On the control node:

The ansible-core and rhel-system-roles packages are installed.

An inventory file which lists the managed nodes.

IMPORTANT

RHEL 8.0-8.5 provided access to a separate Ansible repository that contains Ansible
Engine 2.9 for automation based on Ansible. Ansible Engine contains command-line
utilities such as ansible, ansible-playbook, connectors such as docker and podman, and
many plugins and modules. For information on how to obtain and install Ansible Engine,
see the How to download and install Red Hat Ansible Engine Knowledgebase article.

RHEL 8.6 and 9.0 have introduced Ansible Core (provided as the ansible-core package),
which contains the Ansible command-line utilities, commands, and a small set of built-in
Ansible plugins. RHEL provides this package through the AppStream repository, and it
has a limited scope of support. For more information, see the Scope of support for the
Ansible Core package included in the RHEL 9 and RHEL 8.6 and later AppStream
repositories Knowledgebase article.

An inventory file which lists the managed nodes.

Procedure

1. Prepare your playbook. You can either start from the scratch or modify the example playbook
installed as a part of the rhel-system-roles package:

cp /usr/share/doc/rhel-system-roles/selinux/example-selinux-playbook.yml my-selinux-
playbook.yml
vi my-selinux-playbook.yml

2. Change the content of the playbook to fit your scenario. For example, the following part ensures
that the system installs and enables the selinux-local-1.pp SELinux module:

CHAPTER 10. CONFIGURING SELINUX USING SYSTEM ROLES

71

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/administration_and_configuration_tasks_using_system_roles_in_rhel/getting-started-with-rhel-system-roles_administration-and-configuration-tasks-using-system-roles-in-rhel#intro-to-rhel-system-roles_getting-started-with-rhel-system-roles
https://access.redhat.com/articles/3174981
https://access.redhat.com/articles/6325611

selinux_modules:
- { path: "selinux-local-1.pp", priority: "400" }

3. Save the changes, and exit the text editor.

4. Run your playbook on the host1, host2, and host3 systems:

ansible-playbook -i host1,host2,host3 my-selinux-playbook.yml

Additional resources

For more information, install the rhel-system-roles package, and see the /usr/share/doc/rhel-
system-roles/selinux/ and /usr/share/ansible/roles/rhel-system-roles.selinux/ directories.

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

72

CHAPTER 11. USING THE LOGGING SYSTEM ROLE

As a system administrator, you can use the logging System Role to configure a RHEL host as a logging
server to collect logs from many client systems.

11.1. THE LOGGING SYSTEM ROLE

With the logging System Role, you can deploy logging configurations on local and remote hosts.

To apply a logging System Role on one or more systems, you define the logging configuration in a
playbook. A playbook is a list of one or more plays. Playbooks are human-readable, and they are written
in the YAML format. For more information about playbooks, see Working with playbooks in Ansible
documentation.

The set of systems that you want to configure according to the playbook is defined in an inventory file.
For more information on creating and using inventories, see How to build your inventory in Ansible
documentation.

Logging solutions provide multiple ways of reading logs and multiple logging outputs.

For example, a logging system can receive the following inputs:

local files,

systemd/journal,

another logging system over the network.

In addition, a logging system can have the following outputs:

logs stored in the local files in the /var/log directory,

logs sent to Elasticsearch,

logs forwarded to another logging system.

With the logging System Role, you can combine the inputs and outputs to fit your scenario. For
example, you can configure a logging solution that stores inputs from journal in a local file, whereas
inputs read from files are both forwarded to another logging system and stored in the local log files.

11.2. LOGGING SYSTEM ROLE PARAMETERS

In a logging System Role playbook, you define the inputs in the logging_inputs parameter, outputs in
the logging_outputs parameter, and the relationships between the inputs and outputs in the
logging_flows parameter. The logging System Role processes these variables with additional options
to configure the logging system. You can also enable encryption.

NOTE

Currently, the only available logging system in the logging System Role is Rsyslog.

logging_inputs: List of inputs for the logging solution.

name: Unique name of the input. Used in the logging_flows: inputs list and a part of the

CHAPTER 11. USING THE LOGGING SYSTEM ROLE

73

https://docs.ansible.com/ansible/latest/user_guide/playbooks.html
https://docs.ansible.com/ansible/latest/user_guide/intro_inventory.html

name: Unique name of the input. Used in the logging_flows: inputs list and a part of the
generated config file name.

type: Type of the input element. The type specifies a task type which corresponds to a
directory name in roles/rsyslog/{tasks,vars}/inputs/.

basics: Inputs configuring inputs from systemd journal or unix socket.

kernel_message: Load imklog if set to true. Default to false.

use_imuxsock: Use imuxsock instead of imjournal. Default to false.

ratelimit_burst: Maximum number of messages that can be emitted within
ratelimit_interval. Default to 20000 if use_imuxsock is false. Default to 200 if
use_imuxsock is true.

ratelimit_interval: Interval to evaluate ratelimit_burst. Default to 600 seconds if
use_imuxsock is false. Default to 0 if use_imuxsock is true. 0 indicates rate
limiting is turned off.

persist_state_interval: Journal state is persisted every value messages. Default to
10. Effective only when use_imuxsock is false.

files: Inputs configuring inputs from local files.

remote: Inputs configuring inputs from the other logging system over network.

state: State of the configuration file. present or absent. Default to present.

logging_outputs: List of outputs for the logging solution.

files: Outputs configuring outputs to local files.

forwards: Outputs configuring outputs to another logging system.

remote_files: Outputs configuring outputs from another logging system to local files.

logging_flows: List of flows that define relationships between logging_inputs and
logging_outputs. The logging_flows variable has the following keys:

name: Unique name of the flow

inputs: List of logging_inputs name values

outputs: List of logging_outputs name values.

Additional resources

Documentation installed with the rhel-system-roles package in /usr/share/ansible/roles/rhel-
system-roles.logging/README.html

11.3. APPLYING A LOCAL LOGGING SYSTEM ROLE

Prepare and apply an Ansible playbook to configure a logging solution on a set of separate machines.
Each machine records logs locally.

Prerequisites

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

74

Access and permissions to one or more managed nodes, which are systems you want to
configure with the logging System Role.

Access and permissions to a control node, which is a system from which Red Hat Ansible Core
configures other systems.
On the control node:

The ansible-core and rhel-system-roles packages are installed.

IMPORTANT

RHEL 8.0-8.5 provided access to a separate Ansible repository that contains Ansible
Engine 2.9 for automation based on Ansible. Ansible Engine contains command-line
utilities such as ansible, ansible-playbook, connectors such as docker and podman, and
many plugins and modules. For information on how to obtain and install Ansible Engine,
see the How to download and install Red Hat Ansible Engine Knowledgebase article.

RHEL 8.6 and 9.0 have introduced Ansible Core (provided as the ansible-core package),
which contains the Ansible command-line utilities, commands, and a small set of built-in
Ansible plugins. RHEL provides this package through the AppStream repository, and it
has a limited scope of support. For more information, see the Scope of support for the
Ansible Core package included in the RHEL 9 and RHEL 8.6 and later AppStream
repositories Knowledgebase article.

An inventory file which lists the managed nodes.

NOTE

You do not have to have the rsyslog package installed, because the System Role installs
rsyslog when deployed.

Procedure

1. Create a playbook that defines the required role:

a. Create a new YAML file and open it in a text editor, for example:

vi logging-playbook.yml

b. Insert the following content:

- name: Deploying basics input and implicit files output
 hosts: all
 roles:
 - rhel-system-roles.logging
 vars:
 logging_inputs:
 - name: system_input
 type: basics
 logging_outputs:
 - name: files_output
 type: files
 logging_flows:

CHAPTER 11. USING THE LOGGING SYSTEM ROLE

75

https://access.redhat.com/articles/3174981
https://access.redhat.com/articles/6325611

 - name: flow1
 inputs: [system_input]
 outputs: [files_output]

2. Run the playbook on a specific inventory:

ansible-playbook -i inventory-file /path/to/file/logging-playbook.yml

Where:

inventory-file is the inventory file.

logging-playbook.yml is the playbook you use.

Verification

1. Test the syntax of the /etc/rsyslog.conf file:

rsyslogd -N 1
rsyslogd: version 8.1911.0-6.el8, config validation run...
rsyslogd: End of config validation run. Bye.

2. Verify that the system sends messages to the log:

a. Send a test message:

logger test

b. View the /var/log/messages log, for example:

cat /var/log/messages
Aug 5 13:48:31 hostname root[6778]: test

Where `hostname` is the host name of the client system. Note that the log contains the
user name of the user that entered the logger command, in this case root.

11.4. FILTERING LOGS IN A LOCAL LOGGING SYSTEM ROLE

You can deploy a logging solution which filters the logs based on the rsyslog property-based filter.

Prerequisites

Access and permissions to one or more managed nodes, which are systems you want to
configure with the logging System Role.

Access and permissions to a control node, which is a system from which Red Hat Ansible Core
configures other systems.
On the control node:

Red Hat Ansible Core is installed

The rhel-system-roles package is installed

An inventory file which lists the managed nodes.

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

76

NOTE

You do not have to have the rsyslog package installed, because the System Role installs
rsyslog when deployed.

Procedure

1. Create a new playbook.yml file with the following content:

- name: Deploying files input and configured files output
 hosts: all
 roles:
 - linux-system-roles.logging
 vars:
 logging_inputs:
 - name: files_input
 type: basics
 logging_outputs:
 - name: files_output0
 type: files
 property: msg
 property_op: contains
 property_value: error
 path: /var/log/errors.log
 - name: files_output1
 type: files
 property: msg
 property_op: "!contains"
 property_value: error
 path: /var/log/others.log
 logging_flows:
 - name: flow0
 inputs: [files_input]
 outputs: [files_output0, files_output1]

Using this configuration, all messages that contain the error string are logged in
/var/log/errors.log, and all other messages are logged in /var/log/others.log.

You can replace the error property value with the string by which you want to filter.

You can modify the variables according to your preferences.

2. Optional: Verify playbook syntax.

ansible-playbook --syntax-check playbook.yml

3. Run the playbook on your inventory file:

ansible-playbook -i inventory_file /path/to/file/playbook.yml

Verification

1. Test the syntax of the /etc/rsyslog.conf file:

CHAPTER 11. USING THE LOGGING SYSTEM ROLE

77

rsyslogd -N 1
rsyslogd: version 8.1911.0-6.el8, config validation run...
rsyslogd: End of config validation run. Bye.

2. Verify that the system sends messages that contain the error string to the log:

a. Send a test message:

logger error

b. View the /var/log/errors.log log, for example:

cat /var/log/errors.log
Aug 5 13:48:31 hostname root[6778]: error

Where hostname is the host name of the client system. Note that the log contains the user
name of the user that entered the logger command, in this case root.

Additional resources

Documentation installed with the rhel-system-roles package in /usr/share/ansible/roles/rhel-
system-roles.logging/README.html

11.5. APPLYING A REMOTE LOGGING SOLUTION USING THE LOGGING

SYSTEM ROLE

Follow these steps to prepare and apply a Red Hat Ansible Core playbook to configure a remote logging
solution. In this playbook, one or more clients take logs from systemd-journal and forward them to a
remote server. The server receives remote input from remote_rsyslog and remote_files and outputs
the logs to local files in directories named by remote host names.

Prerequisites

Access and permissions to one or more managed nodes, which are systems you want to
configure with the logging System Role.

Access and permissions to a control node, which is a system from which Red Hat Ansible Core
configures other systems.
On the control node:

The ansible-core and rhel-system-roles packages are installed.

An inventory file which lists the managed nodes.

NOTE

You do not have to have the rsyslog package installed, because the System Role installs
rsyslog when deployed.

Procedure

1. Create a playbook that defines the required role:

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

78

a. Create a new YAML file and open it in a text editor, for example:

vi logging-playbook.yml

b. Insert the following content into the file:

- name: Deploying remote input and remote_files output
 hosts: server
 roles:
 - rhel-system-roles.logging
 vars:
 logging_inputs:
 - name: remote_udp_input
 type: remote
 udp_ports: [601]
 - name: remote_tcp_input
 type: remote
 tcp_ports: [601]
 logging_outputs:
 - name: remote_files_output
 type: remote_files
 logging_flows:
 - name: flow_0
 inputs: [remote_udp_input, remote_tcp_input]
 outputs: [remote_files_output]

- name: Deploying basics input and forwards output
 hosts: clients
 roles:
 - rhel-system-roles.logging
 vars:
 logging_inputs:
 - name: basic_input
 type: basics
 logging_outputs:
 - name: forward_output0
 type: forwards
 severity: info
 target: _host1.example.com_
 udp_port: 601
 - name: forward_output1
 type: forwards
 facility: mail
 target: _host1.example.com_
 tcp_port: 601
 logging_flows:
 - name: flows0
 inputs: [basic_input]
 outputs: [forward_output0, forward_output1]

[basic_input]
[forward_output0, forward_output1]

Where host1.example.com is the logging server.

NOTE

CHAPTER 11. USING THE LOGGING SYSTEM ROLE

79

NOTE

You can modify the parameters in the playbook to fit your needs.

WARNING

The logging solution works only with the ports defined in the SELinux
policy of the server or client system and open in the firewall. The
default SELinux policy includes ports 601, 514, 6514, 10514, and 20514.
To use a different port, modify the SELinux policy on the client and
server systems. Configuring the firewall through System Roles is not yet
supported.

2. Create an inventory file that lists your servers and clients:

a. Create a new file and open it in a text editor, for example:

vi inventory.ini

b. Insert the following content into the inventory file:

[servers]
server ansible_host=host1.example.com
[clients]
client ansible_host=host2.example.com

Where:

host1.example.com is the logging server.

host2.example.com is the logging client.

3. Run the playbook on your inventory.

ansible-playbook -i /path/to/file/inventory.ini /path/to/file/_logging-playbook.yml

Where:

inventory.ini is the inventory file.

logging-playbook.yml is the playbook you created.

Verification

1. On both the client and the server system, test the syntax of the /etc/rsyslog.conf file:

rsyslogd -N 1
rsyslogd: version 8.1911.0-6.el8, config validation run (level 1), master config
/etc/rsyslog.conf
rsyslogd: End of config validation run. Bye.

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

80

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/using_selinux/configuring-selinux-for-applications-and-services-with-non-standard-configurations_using-selinux#customizing-the-selinux-policy-for-the-apache-http-server-in-a-non-standard-configuration_configuring-selinux-for-applications-and-services-with-non-standard-configurations

2. Verify that the client system sends messages to the server:

a. On the client system, send a test message:

logger test

b. On the server system, view the /var/log/messages log, for example:

cat /var/log/messages
Aug 5 13:48:31 host2.example.com root[6778]: test

Where host2.example.com is the host name of the client system. Note that the log
contains the user name of the user that entered the logger command, in this case root.

Additional resources

Preparing a control node and managed nodes to use RHEL System Roles

Documentation installed with the rhel-system-roles package in /usr/share/ansible/roles/rhel-
system-roles.logging/README.html

RHEL System Roles KB article

11.6. USING THE LOGGING SYSTEM ROLE WITH TLS

Transport Layer Security (TLS) is a cryptographic protocol designed to securely communicate over the
computer network.

As an administrator, you can use the logging RHEL System Role to configure secure transfer of logs
using Red Hat Ansible Automation Platform.

11.6.1. Configuring client logging with TLS

You can use the logging System Role to configure logging in RHEL systems that are logged on a local
machine and can transfer logs to the remote logging system with TLS by running an Ansible playbook.

This procedure configures TLS on all hosts in the clients group in the Ansible inventory. The TLS
protocol encrypts the message transmission for secure transfer of logs over the network.

Prerequisites

You have permissions to run playbooks on managed nodes on which you want to configure TLS.

The managed nodes are listed in the inventory file on the control node.

The ansible and rhel-system-roles packages are installed on the control node.

Procedure

1. Create a playbook.yml file with the following content:

- name: Deploying files input and forwards output with certs
 hosts: clients

CHAPTER 11. USING THE LOGGING SYSTEM ROLE

81

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/administration_and_configuration_tasks_using_system_roles_in_rhel/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_administration-and-configuration-tasks-using-system-roles-in-rhel
https://access.redhat.com/node/3050101

 roles:
 - rhel-system-roles.logging
 vars:
 logging_pki_files:
 - ca_cert_src: /local/path/to/ca_cert.pem
 cert_src: /local/path/to/cert.pem
 private_key_src: /local/path/to/key.pem
 logging_inputs:
 - name: input_name
 type: files
 input_log_path: /var/log/containers/*.log
 logging_outputs:
 - name: output_name
 type: forwards
 target: your_target_host
 tcp_port: 514
 tls: true
 pki_authmode: x509/name
 permitted_server: 'server.example.com'
 logging_flows:
 - name: flow_name
 inputs: [input_name]
 outputs: [output_name]

The playbook uses the following parameters:

logging_pki_files

Using this parameter you can configure TLS and has to pass ca_cert_src, cert_src, and
private_key_src parameters.

ca_cert

Represents the path to CA certificate. Default path is /etc/pki/tls/certs/ca.pem and the file
name is set by the user.

cert

Represents the path to cert. Default path is /etc/pki/tls/certs/server-cert.pem and the file
name is set by the user.

private_key

Represents the path to private key. Default path is /etc/pki/tls/private/server-key.pem and
the file name is set by the user.

ca_cert_src

Represents local CA cert file path which is copied to the target host. If ca_cert is specified, it
is copied to the location.

cert_src

Represents the local cert file path which is copied to the target host. If cert is specified, it is
copied to the location.

private_key_src

Represents the local key file path which is copied to the target host. If private_key is
specified, it is copied to the location.

tls

Using this parameter ensures secure transfer of logs over the network. If you do not want a
secure wrapper, you can set tls: true.

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

82

2. Verify playbook syntax:

ansible-playbook --syntax-check playbook.yml

3. Run the playbook on your inventory file:

ansible-playbook -i inventory_file playbook.yml

11.6.2. Configuring server logging with TLS

You can use the logging System Role to configure logging in RHEL systems as a server and can receive
logs from the remote logging system with TLS by running an Ansible playbook.

This procedure configures TLS on all hosts in the server group in the Ansible inventory.

Prerequisites

You have permissions to run playbooks on managed nodes on which you want to configure TLS.

The managed nodes are listed in the inventory file on the control node.

The ansible and rhel-system-roles packages are installed on the control node.

Procedure

1. Create a playbook.yml file with the following content:

- name: Deploying remote input and remote_files output with certs
 hosts: server
 roles:
 - rhel-system-roles.logging
 vars:
 logging_pki_files:
 - ca_cert_src: /local/path/to/ca_cert.pem
 cert_src: /local/path/to/cert.pem
 private_key_src: /local/path/to/key.pem
 logging_inputs:
 - name: input_name
 type: remote
 tcp_ports: 514
 tls: true
 permitted_clients: ['clients.example.com']
 logging_outputs:
 - name: output_name
 type: remote_files
 remote_log_path: /var/log/remote/%FROMHOST%/%PROGRAMNAME:::secpath-
replace%.log
 async_writing: true
 client_count: 20
 io_buffer_size: 8192
 logging_flows:

CHAPTER 11. USING THE LOGGING SYSTEM ROLE

83

 - name: flow_name
 inputs: [input_name]
 outputs: [output_name]

The playbook uses the following parameters:

logging_pki_files

Using this parameter you can configure TLS and has to pass ca_cert_src, cert_src, and
private_key_src parameters.

ca_cert

Represents the path to CA certificate. Default path is /etc/pki/tls/certs/ca.pem and the file
name is set by the user.

cert

Represents the path to cert. Default path is /etc/pki/tls/certs/server-cert.pem and the file
name is set by the user.

private_key

Represents the path to private key. Default path is /etc/pki/tls/private/server-key.pem and
the file name is set by the user.

ca_cert_src

Represents local CA cert file path which is copied to the target host. If ca_cert is specified, it
is copied to the location.

cert_src

Represents the local cert file path which is copied to the target host. If cert is specified, it is
copied to the location.

private_key_src

Represents the local key file path which is copied to the target host. If private_key is
specified, it is copied to the location.

tls

Using this parameter ensures secure transfer of logs over the network. If you do not want a
secure wrapper, you can set tls: true.

2. Verify playbook syntax:

ansible-playbook --syntax-check playbook.yml

3. Run the playbook on your inventory file:

ansible-playbook -i inventory_file playbook.yml

11.7. USING THE LOGGING SYSTEM ROLES WITH RELP

Reliable Event Logging Protocol (RELP) is a networking protocol for data and message logging over the
TCP network. It ensures reliable delivery of event messages and you can use it in environments that do
not tolerate any message loss.

The RELP sender transfers log entries in form of commands and the receiver acknowledges them once
they are processed. To ensure consistency, RELP stores the transaction number to each transferred
command for any kind of message recovery.

You can consider a remote logging system in between the RELP Client and RELP Server. The RELP

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

84

You can consider a remote logging system in between the RELP Client and RELP Server. The RELP
Client transfers the logs to the remote logging system and the RELP Server receives all the logs sent by
the remote logging system.

Administrators can use the logging System Role to configure the logging system to reliably send and
receive log entries.

11.7.1. Configuring client logging with RELP

You can use the logging System Role to configure logging in RHEL systems that are logged on a local
machine and can transfer logs to the remote logging system with RELP by running an Ansible playbook.

This procedure configures RELP on all hosts in the clients group in the Ansible inventory. The RELP
configuration uses Transport Layer Security (TLS) to encrypt the message transmission for secure
transfer of logs over the network.

Prerequisites

You have permissions to run playbooks on managed nodes on which you want to configure
RELP.

The managed nodes are listed in the inventory file on the control node.

The ansible and rhel-system-roles packages are installed on the control node.

Procedure

1. Create a playbook.yml file with the following content:

- name: Deploying basic input and relp output
 hosts: clients
 roles:
 - rhel-system-roles.logging
 vars:
 logging_inputs:
 - name: basic_input
 type: basics
 logging_outputs:
 - name: relp_client
 type: relp
 target: _logging.server.com_
 port: 20514
 tls: true
 ca_cert: _/etc/pki/tls/certs/ca.pem_
 cert: _/etc/pki/tls/certs/client-cert.pem_
 private_key: _/etc/pki/tls/private/client-key.pem_
 pki_authmode: name
 permitted_servers:
 - '*.server.example.com'
 logging_flows:
 - name: _example_flow_
 inputs: [basic_input]
 outputs: [relp_client]

CHAPTER 11. USING THE LOGGING SYSTEM ROLE

85

The playbooks uses following settings:

target: This is a required parameter that specifies the host name where the remote logging
system is running.

port: Port number the remote logging system is listening.

tls: Ensures secure transfer of logs over the network. If you do not want a secure wrapper
you can set the tls variable to false. By default tls parameter is set to true while working
with RELP and requires key/certificates and triplets {ca_cert, cert, private_key} and/or
{ca_cert_src, cert_src, private_key_src}.

If {ca_cert_src, cert_src, private_key_src} triplet is set, the default locations
/etc/pki/tls/certs and /etc/pki/tls/private are used as the destination on the managed
node to transfer files from control node. In this case, the file names are identical to the
original ones in the triplet

If {ca_cert, cert, private_key} triplet is set, files are expected to be on the default path
before the logging configuration.

If both the triplets are set, files are transferred from local path from control node to
specific path of the managed node.

ca_cert: Represents the path to CA certificate. Default path is /etc/pki/tls/certs/ca.pem
and the file name is set by the user.

cert: Represents the path to cert. Default path is /etc/pki/tls/certs/server-cert.pem and the
file name is set by the user.

private_key: Represents the path to private key. Default path is /etc/pki/tls/private/server-
key.pem and the file name is set by the user.

ca_cert_src: Represents local CA cert file path which is copied to the target host. If ca_cert
is specified, it is copied to the location.

cert_src: Represents the local cert file path which is copied to the target host. If cert is
specified, it is copied to the location.

private_key_src: Represents the local key file path which is copied to the target host. If
private_key is specified, it is copied to the location.

pki_authmode: Accepts the authentication mode as name or fingerprint.

permitted_servers: List of servers that will be allowed by the logging client to connect and
send logs over TLS.

inputs: List of logging input dictionary.

outputs: List of logging output dictionary.

2. Optional: Verify playbook syntax.

ansible-playbook --syntax-check playbook.yml

3. Run the playbook:

ansible-playbook -i inventory_file playbook.yml

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

86

11.7.2. Configuring server logging with RELP

You can use the logging System Role to configure logging in RHEL systems as a server and can receive
logs from the remote logging system with RELP by running an Ansible playbook.

This procedure configures RELP on all hosts in the server group in the Ansible inventory. The RELP
configuration uses TLS to encrypt the message transmission for secure transfer of logs over the
network.

Prerequisites

You have permissions to run playbooks on managed nodes on which you want to configure
RELP.

The managed nodes are listed in the inventory file on the control node.

The ansible and rhel-system-roles packages are installed on the control node.

Procedure

1. Create a playbook.yml file with the following content:

- name: Deploying remote input and remote_files output
 hosts: server
 roles:
 - rhel-system-roles.logging
 vars:
 logging_inputs:
 - name: relp_server
 type: relp
 port: 20514
 tls: true
 ca_cert: _/etc/pki/tls/certs/ca.pem_
 cert: _/etc/pki/tls/certs/server-cert.pem_
 private_key: _/etc/pki/tls/private/server-key.pem_
 pki_authmode: name
 permitted_clients:
 - '_*example.client.com_'
 logging_outputs:
 - name: _remote_files_output_
 type: _remote_files_
 logging_flows:
 - name: _example_flow_
 inputs: _relp_server_
 outputs: _remote_files_output_

The playbooks uses following settings:

port: Port number the remote logging system is listening.

tls: Ensures secure transfer of logs over the network. If you do not want a secure wrapper
you can set the tls variable to false. By default tls parameter is set to true while working
with RELP and requires key/certificates and triplets {ca_cert, cert, private_key} and/or
{ca_cert_src, cert_src, private_key_src}.

CHAPTER 11. USING THE LOGGING SYSTEM ROLE

87

If {ca_cert_src, cert_src, private_key_src} triplet is set, the default locations
/etc/pki/tls/certs and /etc/pki/tls/private are used as the destination on the managed
node to transfer files from control node. In this case, the file names are identical to the
original ones in the triplet

If {ca_cert, cert, private_key} triplet is set, files are expected to be on the default path
before the logging configuration.

If both the triplets are set, files are transferred from local path from control node to
specific path of the managed node.

ca_cert: Represents the path to CA certificate. Default path is /etc/pki/tls/certs/ca.pem
and the file name is set by the user.

cert: Represents the path to cert. Default path is /etc/pki/tls/certs/server-cert.pem and the
file name is set by the user.

private_key: Represents the path to private key. Default path is /etc/pki/tls/private/server-
key.pem and the file name is set by the user.

ca_cert_src: Represents local CA cert file path which is copied to the target host. If ca_cert
is specified, it is copied to the location.

cert_src: Represents the local cert file path which is copied to the target host. If cert is
specified, it is copied to the location.

private_key_src: Represents the local key file path which is copied to the target host. If
private_key is specified, it is copied to the location.

pki_authmode: Accepts the authentication mode as name or fingerprint.

permitted_clients: List of clients that will be allowed by the logging server to connect and
send logs over TLS.

inputs: List of logging input dictionary.

outputs: List of logging output dictionary.

2. Optional: Verify playbook syntax.

ansible-playbook --syntax-check playbook.yml

3. Run the playbook:

ansible-playbook -i inventory_file playbook.yml

11.8. ADDITIONAL RESOURCES

Preparing a control node and managed nodes to use RHEL System Roles

Documentation installed with the rhel-system-roles package in /usr/share/ansible/roles/rhel-
system-roles.logging/README.html.

RHEL System Roles

ansible-playbook(1) man page.

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

88

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/administration_and_configuration_tasks_using_system_roles_in_rhel/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_administration-and-configuration-tasks-using-system-roles-in-rhel
https://access.redhat.com/node/3050101

CHAPTER 12. CONFIGURING SECURE COMMUNICATION
WITH THE SSH SYSTEM ROLES

As an administrator, you can use the sshd System Role to configure SSH servers and the ssh System
Role to configure SSH clients consistently on any number of RHEL systems at the same time using the
Ansible Core package.

12.1. SSH SERVER SYSTEM ROLE VARIABLES

In an sshd System Role playbook, you can define the parameters for the SSH configuration file
according to your preferences and limitations.

If you do not configure these variables, the System Role produces an sshd_config file that matches the
RHEL defaults.

In all cases, Booleans correctly render as yes and no in sshd configuration. You can define multi-line
configuration items using lists. For example:

sshd_ListenAddress:
 - 0.0.0.0
 - '::'

renders as:

ListenAddress 0.0.0.0
ListenAddress ::

Variables for the sshd System Role

sshd_enable

If set to False, the role is completely disabled. Defaults to True.

sshd_skip_defaults

If set to True, the System Role does not apply default values. Instead, you specify the complete set
of configuration defaults by using either the sshd dict, or sshd_Key variables. Defaults to False.

sshd_manage_service

If set to False, the service is not managed, which means it is not enabled on boot and does not start
or reload. Defaults to True except when running inside a container or AIX, because the Ansible
service module does not currently support enabled for AIX.

sshd_allow_reload

If set to False, sshd does not reload after a change of configuration. This can help with
troubleshooting. To apply the changed configuration, reload sshd manually. Defaults to the same
value as sshd_manage_service except on AIX, where sshd_manage_service defaults to False but
sshd_allow_reload defaults to True.

sshd_install_service

If set to True, the role installs service files for the sshd service. This overrides files provided in the
operating system. Do not set to True unless you are configuring a second instance and you also
change the sshd_service variable. Defaults to False.
The role uses the files pointed by the following variables as templates:

CHAPTER 12. CONFIGURING SECURE COMMUNICATION WITH THE SSH SYSTEM ROLES

89

sshd_service_template_service (default: templates/sshd.service.j2)
sshd_service_template_at_service (default: templates/sshd@.service.j2)
sshd_service_template_socket (default: templates/sshd.socket.j2)

sshd_service

This variable changes the sshd service name, which is useful for configuring a second sshd service
instance.

sshd

A dict that contains configuration. For example:

sshd:
 Compression: yes
 ListenAddress:
 - 0.0.0.0

sshd_OptionName

You can define options by using simple variables consisting of the sshd_ prefix and the option name
instead of a dict. The simple variables override values in the sshd dict.. For example:

sshd_Compression: no

sshd_match and sshd_match_1 to sshd_match_9

A list of dicts or just a dict for a Match section. Note that these variables do not override match
blocks as defined in the sshd dict. All of the sources will be reflected in the resulting configuration
file.

Secondary variables for the sshd System Role

You can use these variables to override the defaults that correspond to each supported platform.

sshd_packages

You can override the default list of installed packages using this variable.

sshd_config_owner, sshd_config_group, and sshd_config_mode

You can set the ownership and permissions for the openssh configuration file that this role produces
using these variables.

sshd_config_file

The path where this role saves the openssh server configuration produced.

sshd_config_namespace

The default value of this variable is null, which means that the role defines the entire content of the
configuration file including system defaults. Alternatively, you can use this variable to invoke this role
from other roles or from multiple places in a single playbook on systems that do not support drop-in
directory. The sshd_skip_defaults variable is ignored and no system defaults are used in this case.
When this variable is set, the role places the configuration that you specify to configuration snippets
in an existing configuration file under the given namespace. If your scenario requires applying the role
several times, you need to select a different namespace for each application.

NOTE

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

90

NOTE

Limitations of the openssh configuration file still apply. For example, only the first
option specified in a configuration file is effective for most of the configuration
options.

Technically, the role places snippets in "Match all" blocks, unless they contain other match blocks, to
ensure they are applied regardless of the previous match blocks in the existing configuration file. This
allows configuring any non-conflicting options from different roles invocations.

sshd_binary

The path to the sshd executable of openssh.

sshd_service

The name of the sshd service. By default, this variable contains the name of the sshd service that
the target platform uses. You can also use it to set the name of the custom sshd service when the
role uses the sshd_install_service variable.

sshd_verify_hostkeys

Defaults to auto. When set to auto, this lists all host keys that are present in the produced
configuration file, and generates any paths that are not present. Additionally, permissions and file
owners are set to default values. This is useful if the role is used in the deployment stage to make
sure the service is able to start on the first attempt. To disable this check, set this variable to an
empty list [].

sshd_hostkey_owner, sshd_hostkey_group, sshd_hostkey_mode

Use these variables to set the ownership and permissions for the host keys from
sshd_verify_hostkeys.

sshd_sysconfig

On RHEL-based systems, this variable configures additional details of the sshd service. If set to
true, this role manages also the /etc/sysconfig/sshd configuration file based on the following
configuration. Defaults to false.

sshd_sysconfig_override_crypto_policy

In RHEL, when set to true, this variable overrides the system-wide crypto policy. Defaults to false.

sshd_sysconfig_use_strong_rng

On RHEL-based systems, this variable can force sshd to reseed the openssl random number
generator with the number of bytes given as the argument. The default is 0, which disables this
functionality. Do not turn this on if the system does not have a hardware random number generator.

12.2. CONFIGURING OPENSSH SERVERS USING THE SSHD SYSTEM
ROLE

You can use the sshd System Role to configure multiple SSH servers by running an Ansible playbook.

NOTE

You can use the sshd System Role with other System Roles that change SSH and SSHD
configuration, for example the Identity Management RHEL System Roles. To prevent the
configuration from being overwritten, make sure that the sshd role uses namespaces
(RHEL 8 and earlier versions) or a drop-in directory (RHEL 9).

Prerequisites

CHAPTER 12. CONFIGURING SECURE COMMUNICATION WITH THE SSH SYSTEM ROLES

91

Access and permissions to one or more managed nodes, which are systems you want to
configure with the sshd System Role.

Access and permissions to a control node, which is a system from which Red Hat Ansible Core
configures other systems.
On the control node:

The ansible-core and rhel-system-roles packages are installed.

IMPORTANT

RHEL 8.0-8.5 provided access to a separate Ansible repository that contains Ansible
Engine 2.9 for automation based on Ansible. Ansible Engine contains command-line
utilities such as ansible, ansible-playbook, connectors such as docker and podman, and
many plugins and modules. For information on how to obtain and install Ansible Engine,
see the How to download and install Red Hat Ansible Engine Knowledgebase article.

RHEL 8.6 and 9.0 have introduced Ansible Core (provided as the ansible-core package),
which contains the Ansible command-line utilities, commands, and a small set of built-in
Ansible plugins. RHEL provides this package through the AppStream repository, and it
has a limited scope of support. For more information, see the Scope of support for the
Ansible Core package included in the RHEL 9 and RHEL 8.6 and later AppStream
repositories Knowledgebase article.

An inventory file which lists the managed nodes.

Procedure

1. Copy the example playbook for the sshd System Role:

cp /usr/share/doc/rhel-system-roles/sshd/example-root-login-playbook.yml path/custom-
playbook.yml

2. Open the copied playbook by using a text editor, for example:

vim path/custom-playbook.yml

- hosts: all
 tasks:
 - name: Configure sshd to prevent root and password login except from particular subnet
 include_role:
 name: rhel-system-roles.sshd
 vars:
 sshd:
 # root login and password login is enabled only from a particular subnet
 PermitRootLogin: no
 PasswordAuthentication: no
 Match:
 - Condition: "Address 192.0.2.0/24"
 PermitRootLogin: yes
 PasswordAuthentication: yes

The playbook configures the managed node as an SSH server configured so that:

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

92

https://access.redhat.com/articles/3174981
https://access.redhat.com/articles/6325611

password and root user login is disabled

password and root user login is enabled only from the subnet 192.0.2.0/24

You can modify the variables according to your preferences. For more details, see SSH Server
System Role variables .

3. Optional: Verify playbook syntax.

ansible-playbook --syntax-check path/custom-playbook.yml

4. Run the playbook on your inventory file:

ansible-playbook -i inventory_file path/custom-playbook.yml

...

PLAY RECAP
**

localhost : ok=12 changed=2 unreachable=0 failed=0
skipped=10 rescued=0 ignored=0

Verification

1. Log in to the SSH server:

$ ssh user1@10.1.1.1

Where:

user1 is a user on the SSH server.

10.1.1.1 is the IP address of the SSH server.

2. Check the contents of the sshd_config file on the SSH server:

$ vim /etc/ssh/sshd_config

Ansible managed
HostKey /etc/ssh/ssh_host_rsa_key
HostKey /etc/ssh/ssh_host_ecdsa_key
HostKey /etc/ssh/ssh_host_ed25519_key
AcceptEnv LANG LC_CTYPE LC_NUMERIC LC_TIME LC_COLLATE LC_MONETARY
LC_MESSAGES
AcceptEnv LC_PAPER LC_NAME LC_ADDRESS LC_TELEPHONE LC_MEASUREMENT
AcceptEnv LC_IDENTIFICATION LC_ALL LANGUAGE
AcceptEnv XMODIFIERS
AuthorizedKeysFile .ssh/authorized_keys
ChallengeResponseAuthentication no
GSSAPIAuthentication yes
GSSAPICleanupCredentials no
PasswordAuthentication no
PermitRootLogin no
PrintMotd no

CHAPTER 12. CONFIGURING SECURE COMMUNICATION WITH THE SSH SYSTEM ROLES

93

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/securing_networks/configuring-secure-communication-with-the-ssh-system-roles_securing-networks#sshd-system-role-variables_configuring-secure-communication-with-the-ssh-system-role

Subsystem sftp /usr/libexec/openssh/sftp-server
SyslogFacility AUTHPRIV
UsePAM yes
X11Forwarding yes
Match Address 192.0.2.0/24
 PasswordAuthentication yes
 PermitRootLogin yes

3. Check that you can connect to the server as root from the 192.0.2.0/24 subnet:

a. Determine your IP address:

$ hostname -I
192.0.2.1

If the IP address is within the 192.0.2.1 - 192.0.2.254 range, you can connect to the server.

b. Connect to the server as root:

$ ssh root@10.1.1.1

Additional resources

/usr/share/doc/rhel-system-roles/sshd/README.md file.

ansible-playbook(1) man page.

12.3. SSH SYSTEM ROLE VARIABLES

In an ssh System Role playbook, you can define the parameters for the client SSH configuration file
according to your preferences and limitations.

If you do not configure these variables, the System Role produces a global ssh_config file that matches
the RHEL defaults.

In all cases, booleans correctly render as yes or no in ssh configuration. You can define multi-line
configuration items using lists. For example:

LocalForward:
 - 22 localhost:2222
 - 403 localhost:4003

renders as:

LocalForward 22 localhost:2222
LocalForward 403 localhost:4003

NOTE

The configuration options are case sensitive.

Variables for the ssh System Role

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

94

ssh_user

You can define an existing user name for which the System Role modifies user-specific
configuration. The user-specific configuration is saved in ~/.ssh/config of the given user. The
default value is null, which modifies global configuration for all users.

ssh_skip_defaults

Defaults to auto. If set to auto, the System Role writes the system-wide configuration file
/etc/ssh/ssh_config and keeps the RHEL defaults defined there. Creating a drop-in configuration
file, for example by defining the ssh_drop_in_name variable, automatically disables the
ssh_skip_defaults variable.

ssh_drop_in_name

Defines the name for the drop-in configuration file, which is placed in the system-wide drop-in
directory. The name is used in the template /etc/ssh/ssh_config.d/{ssh_drop_in_name}.conf to
reference the configuration file to be modified. If the system does not support drop-in directory, the
default value is null. If the system supports drop-in directories, the default value is 00-ansible.

WARNING

If the system does not support drop-in directories, setting this option will make
the play fail.

The suggested format is NN-name, where NN is a two-digit number used for ordering the
configuration files and name is any descriptive name for the content or the owner of the file.

ssh

A dict that contains configuration options and their respective values.

ssh_OptionName

You can define options by using simple variables consisting of the ssh_ prefix and the option name
instead of a dict. The simple variables override values in the ssh dict.

ssh_additional_packages

This role automatically installs the openssh and openssh-clients packages, which are needed for
the most common use cases. If you need to install additional packages, for example, openssh-
keysign for host-based authentication, you can specify them in this variable.

ssh_config_file

The path to which the role saves the configuration file produced. Default value:

If the system has a drop-in directory, the default value is defined by the template
/etc/ssh/ssh_config.d/{ssh_drop_in_name}.conf.

If the system does not have a drop-in directory, the default value is /etc/ssh/ssh_config.

if the ssh_user variable is defined, the default value is ~/.ssh/config.

ssh_config_owner, ssh_config_group, ssh_config_mode

The owner, group and modes of the created configuration file. By default, the owner of the file is
root:root, and the mode is 0644. If ssh_user is defined, the mode is 0600, and the owner and group
are derived from the user name specified in the ssh_user variable.

CHAPTER 12. CONFIGURING SECURE COMMUNICATION WITH THE SSH SYSTEM ROLES

95

12.4. CONFIGURING OPENSSH CLIENTS USING THE SSH SYSTEM ROLE

You can use the ssh System Role to configure multiple SSH clients by running an Ansible playbook.

NOTE

You can use the ssh System Role with other System Roles that change SSH and SSHD
configuration, for example the Identity Management RHEL System Roles. To prevent the
configuration from being overwritten, make sure that the ssh role uses a drop-in
directory (default from RHEL 8).

Prerequisites

Access and permissions to one or more managed nodes, which are systems you want to
configure with the ssh System Role.

Access and permissions to a control node, which is a system from which Red Hat Ansible Core
configures other systems.
On the control node:

The ansible-core and rhel-system-roles packages are installed.

IMPORTANT

RHEL 8.0-8.5 provided access to a separate Ansible repository that contains Ansible
Engine 2.9 for automation based on Ansible. Ansible Engine contains command-line
utilities such as ansible, ansible-playbook, connectors such as docker and podman, and
many plugins and modules. For information on how to obtain and install Ansible Engine,
see the How to download and install Red Hat Ansible Engine Knowledgebase article.

RHEL 8.6 and 9.0 have introduced Ansible Core (provided as the ansible-core package),
which contains the Ansible command-line utilities, commands, and a small set of built-in
Ansible plugins. RHEL provides this package through the AppStream repository, and it
has a limited scope of support. For more information, see the Scope of support for the
Ansible Core package included in the RHEL 9 and RHEL 8.6 and later AppStream
repositories Knowledgebase article.

An inventory file which lists the managed nodes.

Procedure

1. Create a new playbook.yml file with the following content:

- hosts: all
 tasks:
 - name: "Configure ssh clients"
 include_role:
 name: rhel-system-roles.ssh
 vars:
 ssh_user: root
 ssh:
 Compression: true
 GSSAPIAuthentication: no

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

96

https://access.redhat.com/articles/3174981
https://access.redhat.com/articles/6325611

 ControlMaster: auto
 ControlPath: ~/.ssh/.cm%C
 Host:
 - Condition: example
 Hostname: example.com
 User: user1
 ssh_ForwardX11: no

This playbook configures the root user’s SSH client preferences on the managed nodes with the
following configurations:

Compression is enabled.

ControlMaster multiplexing is set to auto.

The example alias for connecting to the example.com host is user1.

The example host alias is created, which represents a connection to the example.com host
the with user1 user name.

X11 forwarding is disabled.

Optionally, you can modify these variables according to your preferences. For more details, see
ssh System Role variables .

2. Optional: Verify playbook syntax.

ansible-playbook --syntax-check path/custom-playbook.yml

3. Run the playbook on your inventory file:

ansible-playbook -i inventory_file path/custom-playbook.yml

Verification

Verify that the managed node has the correct configuration by opening the SSH configuration
file in a text editor, for example:

vi ~root/.ssh/config

After application of the example playbook shown above, the configuration file should have the
following content:

Ansible managed
Compression yes
ControlMaster auto
ControlPath ~/.ssh/.cm%C
ForwardX11 no
GSSAPIAuthentication no
Host example
 Hostname example.com
 User user1

12.5. USING THE SSHD SYSTEM ROLE FOR NON-EXCLUSIVE
CONFIGURATION

CHAPTER 12. CONFIGURING SECURE COMMUNICATION WITH THE SSH SYSTEM ROLES

97

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/securing_networks/configuring-secure-communication-with-the-ssh-system-roles_securing-networks#ref_ssh-system-role-variables_configuring-secure-communication-with-the-ssh-system-roles

CONFIGURATION

Normally, applying the sshd System Role overwrites the entire configuration. This may be problematic if
you have previously adjusted the configuration, for example with a different System Role or playbook.
To apply the sshd System Role for only selected configuration options while keeping other options in
place, you can use the non-exclusive configuration.

In RHEL 8 and earlier, you can apply the non-exclusive configuration with a configuration snippet. For
more information, see Using the SSH Server System Role for non-exclusive configuration in RHEL 9
documentation.

In RHEL 9, you can apply the non-exclusive configuration by using files in a drop-in directory. The
default configuration file is already placed in the drop-in directory as /etc/ssh/sshd_config.d/00-
ansible_system_role.conf.

Prerequisites

Access and permissions to one or more managed nodes, which are systems you want to
configure with the sshd System Role.

Access and permissions to a control node, which is a system from which Red Hat Ansible Core
configures other systems.
On the control node:

The ansible-core package is installed.

An inventory file which lists the managed nodes.

A playbook for a different RHEL System Role.

Procedure

1. Add a configuration snippet with the sshd_config_file variable to the playbook:

- hosts: all
 tasks:
 - name: <Configure sshd to accept some useful environment variables>
 include_role:
 name: rhel-system-roles.sshd
 vars:
 sshd_config_file: /etc/ssh/sshd_config.d/<42-my-application>.conf
 sshd:
 # Environment variables to accept
 AcceptEnv:
 LANG
 LS_COLORS
 EDITOR

In the sshd_config_file variable, define the .conf file into which the sshd System Role writes
the configuration options.

Use a two-digit prefix, for example 42- to specify the order in which the configuration files will
be applied.

When you apply the playbook to the inventory, the role adds the following configuration options

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

98

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/administration_and_configuration_tasks_using_system_roles_in_rhel/configuring-secure-communication-with-the-ssh-system-roles_assembly_updating-packages-to-enable-automation-for-the-rhel-system-roles#proc_using-the-ssh-server-system-role-for-non-exclusive-configuration_configuring-secure-communication-with-the-ssh-system-roles

When you apply the playbook to the inventory, the role adds the following configuration options
to the file defined by the sshd_config_file variable.

Ansible managed
#
AcceptEnv LANG LS_COLORS EDITOR

Verification

Optional: Verify playbook syntax.

ansible-playbook --syntax-check playbook.yml -i inventory_file

Additional resources

/usr/share/doc/rhel-system-roles/sshd/README.md file.

ansible-playbook(1) man page.

CHAPTER 12. CONFIGURING SECURE COMMUNICATION WITH THE SSH SYSTEM ROLES

99

CHAPTER 13. CONFIGURING VPN CONNECTIONS WITH IPSEC
BY USING THE VPN RHEL SYSTEM ROLE

With the vpn System Role, you can configure VPN connections on RHEL systems by using Red Hat
Ansible Automation Platform. You can use it to set up host-to-host, network-to-network, VPN Remote
Access Server, and mesh configurations.

For host-to-host connections, the role sets up a VPN tunnel between each pair of hosts in the list of
vpn_connections using the default parameters, including generating keys as needed. Alternatively, you
can configure it to create an opportunistic mesh configuration between all hosts listed. The role assumes
that the names of the hosts under hosts are the same as the names of the hosts used in the Ansible
inventory, and that you can use those names to configure the tunnels.

NOTE

The vpn RHEL System Role currently supports only Libreswan, which is an IPsec
implementation, as the VPN provider.

13.1. CREATING A HOST-TO-HOST VPN WITH IPSEC USING THE VPN

SYSTEM ROLE

You can use the vpn System Role to configure host-to-host connections by running an Ansible
playbook on the control node, which will configure all the managed nodes listed in an inventory file.

Prerequisites

Access and permissions to one or more managed nodes, which are systems you want to
configure with the vpn System Role.

Access and permissions to a control node, which is a system from which Red Hat Ansible Core
configures other systems.
On the control node:

The ansible-core and rhel-system-roles packages are installed.

IMPORTANT

RHEL 8.0-8.5 provided access to a separate Ansible repository that contains Ansible
Engine 2.9 for automation based on Ansible. Ansible Engine contains command-line
utilities such as ansible, ansible-playbook, connectors such as docker and podman, and
many plugins and modules. For information on how to obtain and install Ansible Engine,
see the How to download and install Red Hat Ansible Engine Knowledgebase article.

RHEL 8.6 and 9.0 have introduced Ansible Core (provided as the ansible-core package),
which contains the Ansible command-line utilities, commands, and a small set of built-in
Ansible plugins. RHEL provides this package through the AppStream repository, and it
has a limited scope of support. For more information, see the Scope of support for the
Ansible Core package included in the RHEL 9 and RHEL 8.6 and later AppStream
repositories Knowledgebase article.

An inventory file which lists the managed nodes.

Procedure

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

100

https://access.redhat.com/articles/3174981
https://access.redhat.com/articles/6325611

Procedure

1. Create a new playbook.yml file with the following content:

- name: Host to host VPN
 hosts: managed_node1, managed_node2
 roles:
 - rhel-system-roles.vpn
 vars:
 vpn_connections:
 - hosts:
 managed_node1:
 managed_node2:

This playbook configures the connection managed_node1-to-managed_node2 using pre-
shared key authentication with keys auto-generated by the system role.

2. Optional: Configure connections from managed hosts to external hosts that are not listed in the
inventory file by adding the following section to the vpn_connections list of hosts:

 vpn_connections:
 - hosts:
 managed_node1:
 managed_node2:
 external_node:
 hostname: 192.0.2.2

This configures two additional connections: managed_node1-to-external_node and
managed_node2-to-external_node.

NOTE

The connections are configured only on the managed nodes and not on the external
node.

1. Optional: You can specify multiple VPN connections for the managed nodes by using additional
sections within vpn_connections, for example a control plane and a data plane:

- name: Multiple VPN
 hosts: managed_node1, managed_node2
 roles:
 - rhel-system-roles.vpn
 vars:
 vpn_connections:
 - name: control_plane_vpn
 hosts:
 managed_node1:
 hostname: 192.0.2.0 # IP for the control plane
 managed_node2:
 hostname: 192.0.2.1
 - name: data_plane_vpn
 hosts:
 managed_node1:
 hostname: 10.0.0.1 # IP for the data plane
 managed_node2:
 hostname: 10.0.0.2

CHAPTER 13. CONFIGURING VPN CONNECTIONS WITH IPSEC BY USING THE VPN RHEL SYSTEM ROLE

101

2. Optional: You can modify the variables according to your preferences. For more details, see the
/usr/share/doc/rhel-system-roles/vpn/README.md file.

3. Optional: Verify playbook syntax.

ansible-playbook --syntax-check /path/to/file/playbook.yml -i /path/to/file/inventory_file

4. Run the playbook on your inventory file:

ansible-playbook -i /path/to/file/inventory_file /path/to/file/playbook.yml

Verification

1. On the managed nodes, confirm that the connection is successfully loaded:

ipsec status | grep connection.name

Replace connection.name with the name of the connection from this node, for example
managed_node1-to-managed_node2.

NOTE

By default, the role generates a descriptive name for each connection it creates from the
perspective of each system. For example, when creating a connection between
managed_node1 and managed_node2, the descriptive name of this connection on
managed_node1 is managed_node1-to-managed_node2 but on managed_node2 the
connection is named managed_node2-to-managed_node1.

1. On the managed nodes, confirm that the connection is successfully started:

ipsec trafficstatus | grep connection.name

2. Optional: If a connection did not successfully load, manually add the connection by entering the
following command. This will provide more specific information indicating why the connection
failed to establish:

ipsec auto --add connection.name

NOTE

Any errors that may have occurred during the process of loading and starting the
connection are reported in the logs, which can be found in /var/log/pluto.log.
Because these logs are hard to parse, try to manually add the connection to
obtain log messages from the standard output instead.

13.2. CREATING AN OPPORTUNISTIC MESH VPN CONNECTION WITH
IPSEC BY USING THE VPN SYSTEM ROLE

You can use the vpn System Role to configure an opportunistic mesh VPN connection that uses
certificates for authentication by running an Ansible playbook on the control node, which will configure
all the managed nodes listed in an inventory file.

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

102

Authentication with certificates is configured by defining the auth_method: cert parameter in the
playbook. The vpn System Role assumes that the IPsec Network Security Services (NSS) crypto library,
which is defined in the /etc/ipsec.d directory, contains the necessary certificates. By default, the node
name is used as the certificate nickname. In this example, this is managed_node1. You can define
different certificate names by using the cert_name attribute in your inventory.

In the following example procedure, the control node, which is the system from which you will run the
Ansible playbook, shares the same classless inter-domain routing (CIDR) number as both of the
managed nodes (192.0.2.0/24) and has the IP address 192.0.2.7. Therefore, the control node falls under
the private policy which is automatically created for CIDR 192.0.2.0/24.

To prevent SSH connection loss during the play, a clear policy for the control node is included in the list
of policies. Note that there is also an item in the policies list where the CIDR is equal to default. This is
because this playbook overrides the rule from the default policy to make it private instead of private-or-
clear.

Prerequisites

Access and permissions to one or more managed nodes, which are systems you want to
configure with the vpn System Role.

On all the managed nodes, the NSS database in the /etc/ipsec.d directory contains all the
certificates necessary for peer authentication. By default, the node name is used as the
certificate nickname.

Access and permissions to a control node, which is a system from which Red Hat Ansible Core
configures other systems.
On the control node:

The ansible-core and rhel-system-roles packages are installed.

IMPORTANT

RHEL 8.0-8.5 provided access to a separate Ansible repository that contains Ansible
Engine 2.9 for automation based on Ansible. Ansible Engine contains command-line
utilities such as ansible, ansible-playbook, connectors such as docker and podman, and
many plugins and modules. For information on how to obtain and install Ansible Engine,
see the How to download and install Red Hat Ansible Engine Knowledgebase article.

RHEL 8.6 and 9.0 have introduced Ansible Core (provided as the ansible-core package),
which contains the Ansible command-line utilities, commands, and a small set of built-in
Ansible plugins. RHEL provides this package through the AppStream repository, and it
has a limited scope of support. For more information, see the Scope of support for the
Ansible Core package included in the RHEL 9 and RHEL 8.6 and later AppStream
repositories Knowledgebase article.

An inventory file which lists the managed nodes.

Procedure

1. Create a new playbook.yml file with the following content:

- name: Mesh VPN
 hosts: managed_node1, managed_node2, managed_node3
 roles:

CHAPTER 13. CONFIGURING VPN CONNECTIONS WITH IPSEC BY USING THE VPN RHEL SYSTEM ROLE

103

https://access.redhat.com/articles/3174981
https://access.redhat.com/articles/6325611

 - rhel-system-roles.vpn
 vars:
 vpn_connections:
 - opportunistic: true
 auth_method: cert
 policies:
 - policy: private
 cidr: default
 - policy: private-or-clear
 cidr: 198.51.100.0/24
 - policy: private
 cidr: 192.0.2.0/24
 - policy: clear
 cidr: 192.0.2.7/32

2. Optional: You can modify the variables according to your preferences. For more details, see the
/usr/share/doc/rhel-system-roles/vpn/README.md file.

3. Optional: Verify playbook syntax.

ansible-playbook --syntax-check playbook.yml

4. Run the playbook on your inventory file:

ansible-playbook -i inventory_file /path/to/file/playbook.yml

13.3. ADDITIONAL RESOURCES

For details about the parameters used in the vpn System Role and additional information about
the role, see the /usr/share/doc/rhel-system-roles/vpn/README.md file.

For details about the ansible-playbook command, see the ansible-playbook(1) man page.

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

104

CHAPTER 14. SETTING A CUSTOM CRYPTOGRAPHIC POLICY
ACROSS SYSTEMS

As an administrator, you can use the crypto_policies RHEL System Role to quickly and consistently
configure custom cryptographic policies across many different systems using the Ansible Core package.

14.1. CRYPTO_POLICIES SYSTEM ROLE VARIABLES AND FACTS

In a crypto_policies System Role playbook, you can define the parameters for the crypto_policies
configuration file according to your preferences and limitations.

If you do not configure any variables, the System Role does not configure the system and only reports
the facts.

Selected variables for the crypto_policies System Role

crypto_policies_policy

Determines the cryptographic policy the System Role applies to the managed nodes. For details
about the different crypto policies, see System-wide cryptographic policies .

crypto_policies_reload

If set to yes, the affected services, currently the ipsec, bind, and sshd services, reload after
applying a crypto policy. Defaults to yes.

crypto_policies_reboot_ok

If set to yes, and a reboot is necessary after the System Role changes the crypto policy, it sets
crypto_policies_reboot_required to yes. Defaults to no.

Facts set by the crypto_policies System Role

crypto_policies_active

Lists the currently selected policy.

crypto_policies_available_policies

Lists all available policies available on the system.

crypto_policies_available_subpolicies

Lists all available subpolicies available on the system.

Additional resources

Creating and setting a custom system-wide cryptographic policy .

14.2. SETTING A CUSTOM CRYPTOGRAPHIC POLICY USING THE
CRYPTO_POLICIES SYSTEM ROLE

You can use the crypto_policies System Role to configure a large number of managed nodes
consistently from a single control node.

Prerequisites

Access and permissions to one or more managed nodes, which are systems you want to
configure with the crypto_policies System Role.

CHAPTER 14. SETTING A CUSTOM CRYPTOGRAPHIC POLICY ACROSS SYSTEMS

105

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/security_hardening/using-the-system-wide-cryptographic-policies_security-hardening
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/security_hardening/using-the-system-wide-cryptographic-policies_security-hardening#creating-and-setting-a-custom-system-wide-cryptographic-policy_using-the-system-wide-cryptographic-policies

Access and permissions to a control node, which is a system from which Red Hat Ansible Core
configures other systems.
On the control node:

The ansible-core and rhel-system-roles packages are installed.

IMPORTANT

RHEL 8.0-8.5 provided access to a separate Ansible repository that contains Ansible
Engine 2.9 for automation based on Ansible. Ansible Engine contains command-line
utilities such as ansible, ansible-playbook, connectors such as docker and podman, and
many plugins and modules. For information on how to obtain and install Ansible Engine,
see the How to download and install Red Hat Ansible Engine Knowledgebase article.

RHEL 8.6 and 9.0 have introduced Ansible Core (provided as the ansible-core package),
which contains the Ansible command-line utilities, commands, and a small set of built-in
Ansible plugins. RHEL provides this package through the AppStream repository, and it
has a limited scope of support. For more information, see the Scope of support for the
Ansible Core package included in the RHEL 9 and RHEL 8.6 and later AppStream
repositories Knowledgebase article.

An inventory file which lists the managed nodes.

Procedure

1. Create a new playbook.yml file with the following content:

- hosts: all
 tasks:
 - name: Configure crypto policies
 include_role:
 name: rhel-system-roles.crypto_policies
 vars:
 - crypto_policies_policy: FUTURE
 - crypto_policies_reboot_ok: true

You can replace the FUTURE value with your preferred crypto policy, for example: DEFAULT,
LEGACY, and FIPS:OSPP.

The crypto_policies_reboot_ok: true variable causes the system to reboot after the System
Role changes the cryptographic policy.

For more details, see crypto_policies System Role variables and facts .

2. Optional: Verify playbook syntax.

ansible-playbook --syntax-check playbook.yml

3. Run the playbook on your inventory file:

ansible-playbook -i inventory_file playbook.yml

Verification

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

106

https://access.redhat.com/articles/3174981
https://access.redhat.com/articles/6325611
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/security_hardening/setting-a-custom-cryptographic-policy-across-systems_security-hardening#crypto-policies-system-role-variables_setting-a-custom-cryptographic-policy-across-systems

1. On the control node, create another playbook named, for example, verify_playbook.yml:

- hosts: all
 tasks:
 - name: Verify active crypto policy
 include_role:
 name: rhel-system-roles.crypto_policies

 - debug:
 var: crypto_policies_active

This playbook does not change any configurations on the system, only reports the active policy
on the managed nodes.

2. Run the playbook on the same inventory file:

ansible-playbook -i inventory_file verify_playbook.yml

TASK [debug] **************************
ok: [host] => {
 "crypto_policies_active": "FUTURE"
}

The "crypto_policies_active": variable shows the policy active on the managed node.

14.3. ADDITIONAL RESOURCES

/usr/share/ansible/roles/rhel-system-roles.crypto_policies/README.md file.

ansible-playbook(1) man page.

Installing RHEL System Roles .

Applying a system role .

CHAPTER 14. SETTING A CUSTOM CRYPTOGRAPHIC POLICY ACROSS SYSTEMS

107

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/administration_and_configuration_tasks_using_system_roles_in_rhel/index#installing-rhel-system-roles_administration-and-configuration-tasks-using-system-roles-in-rhel
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_basic_system_settings/getting-started-with-rhel-system-roles_configuring-basic-system-settings#applying-a-role_getting-started-with-rhel-system-roles

CHAPTER 15. USING THE NBDE_CLIENT AND NBDE_SERVER SYSTEM
ROLES

15.1. INTRODUCTION TO THE NBDE_CLIENT AND NBDE_SERVER SYSTEM
ROLES (CLEVIS AND TANG)

RHEL System Roles is a collection of Ansible roles and modules that provide a consistent configuration
interface to remotely manage multiple RHEL systems.

You can use Ansible roles for automated deployments of Policy-Based Decryption (PBD) solutions
using Clevis and Tang. The rhel-system-roles package contains these system roles, the related
examples, and also the reference documentation.

The nbde_client System Role enables you to deploy multiple Clevis clients in an automated way. Note
that the nbde_client role supports only Tang bindings, and you cannot use it for TPM2 bindings at the
moment.

The nbde_client role requires volumes that are already encrypted using LUKS. This role supports to bind
a LUKS-encrypted volume to one or more Network-Bound (NBDE) servers - Tang servers. You can
either preserve the existing volume encryption with a passphrase or remove it. After removing the
passphrase, you can unlock the volume only using NBDE. This is useful when a volume is initially
encrypted using a temporary key or password that you should remove after you provision the system.

If you provide both a passphrase and a key file, the role uses what you have provided first. If it does not
find any of these valid, it attempts to retrieve a passphrase from an existing binding.

PBD defines a binding as a mapping of a device to a slot. This means that you can have multiple bindings
for the same device. The default slot is slot 1.

The nbde_client role provides also the state variable. Use the present value for either creating a new
binding or updating an existing one. Contrary to a clevis luks bind command, you can use state:
present also for overwriting an existing binding in its device slot. The absent value removes a specified
binding.

Using the nbde_client System Role, you can deploy and manage a Tang server as part of an automated
disk encryption solution. This role supports the following features:

Rotating Tang keys

Deploying and backing up Tang keys

Additional resources

For a detailed reference on Network-Bound Disk Encryption (NBDE) role variables, install the
rhel-system-roles package, and see the README.md and README.html files in the
/usr/share/doc/rhel-system-roles/nbde_client/ and /usr/share/doc/rhel-system-
roles/nbde_server/ directories.

For example system-roles playbooks, install the rhel-system-roles package, and see the
/usr/share/ansible/roles/rhel-system-roles.nbde_server/examples/ directories.

For more information on RHEL System Roles, see Introduction to RHEL System Roles

15.2. USING THE NBDE_SERVER SYSTEM ROLE FOR SETTING UP

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

108

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/administration_and_configuration_tasks_using_system_roles_in_rhel/getting-started-with-rhel-system-roles_administration-and-configuration-tasks-using-system-roles-in-rhel#intro-to-rhel-system-roles_getting-started-with-rhel-system-roles

15.2. USING THE NBDE_SERVER SYSTEM ROLE FOR SETTING UP
MULTIPLE TANG SERVERS

Follow the steps to prepare and apply an Ansible playbook containing your Tang server settings.

Prerequisites

Access and permissions to one or more managed nodes, which are systems you want to
configure with the nbde_server System Role.

Access and permissions to a control node, which is a system from which Red Hat Ansible Core
configures other systems.
On the control node:

The ansible-core and rhel-system-roles packages are installed.

IMPORTANT

RHEL 8.0-8.5 provided access to a separate Ansible repository that contains Ansible
Engine 2.9 for automation based on Ansible. Ansible Engine contains command-line
utilities such as ansible, ansible-playbook, connectors such as docker and podman, and
many plugins and modules. For information on how to obtain and install Ansible Engine,
see the How to download and install Red Hat Ansible Engine Knowledgebase article.

RHEL 8.6 and 9.0 have introduced Ansible Core (provided as the ansible-core package),
which contains the Ansible command-line utilities, commands, and a small set of built-in
Ansible plugins. RHEL provides this package through the AppStream repository, and it
has a limited scope of support. For more information, see the Scope of support for the
Ansible Core package included in the RHEL 9 and RHEL 8.6 and later AppStream
repositories Knowledgebase article.

An inventory file which lists the managed nodes.

Procedure

1. Prepare your playbook containing settings for Tang servers. You can either start from the
scratch, or use one of the example playbooks from the /usr/share/ansible/roles/rhel-system-
roles.nbde_server/examples/ directory.

cp /usr/share/ansible/roles/rhel-system-roles.nbde_server/examples/simple_deploy.yml
./my-tang-playbook.yml

2. Edit the playbook in a text editor of your choice, for example:

vi my-tang-playbook.yml

3. Add the required parameters. The following example playbook ensures deploying of your Tang
server and a key rotation:

- hosts: all

 vars:

CHAPTER 15. USING THE NBDE_CLIENT AND NBDE_SERVER SYSTEM ROLES

109

https://access.redhat.com/articles/3174981
https://access.redhat.com/articles/6325611

 nbde_server_rotate_keys: yes

 roles:
 - rhel-system-roles.nbde_server

4. Apply the finished playbook:

ansible-playbook -i inventory-file my-tang-playbook.yml

Where: * inventory-file is the inventory file. * logging-playbook.yml is the playbook you use.

IMPORTANT

To ensure that networking for a Tang pin is available during early boot by using the
grubby tool on the systems where Clevis is installed:

grubby --update-kernel=ALL --args="rd.neednet=1"

Additional resources

For more information, install the rhel-system-roles package, and see the /usr/share/doc/rhel-
system-roles/nbde_server/ and usr/share/ansible/roles/rhel-system-roles.nbde_server/
directories.

15.3. USING THE NBDE_CLIENT SYSTEM ROLE FOR SETTING UP
MULTIPLE CLEVIS CLIENTS

Follow the steps to prepare and apply an Ansible playbook containing your Clevis client settings.

NOTE

The nbde_client System Role supports only Tang bindings. This means that you cannot
use it for TPM2 bindings at the moment.

Prerequisites

Access and permissions to one or more managed nodes, which are systems you want to
configure with the nbde_client System Role.

Access and permissions to a control node, which is a system from which Red Hat Ansible Core
configures other systems.

The Ansible Core package is installed on the control machine.

The rhel-system-roles package is installed on the system from which you want to run the
playbook.

Procedure

1. Prepare your playbook containing settings for Clevis clients. You can either start from the
scratch, or use one of the example playbooks from the /usr/share/ansible/roles/rhel-system-
roles.nbde_client/examples/ directory.

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

110

cp /usr/share/ansible/roles/rhel-system-roles.nbde_client/examples/high_availability.yml
./my-clevis-playbook.yml

2. Edit the playbook in a text editor of your choice, for example:

vi my-clevis-playbook.yml

3. Add the required parameters. The following example playbook configures Clevis clients for
automated unlocking of two LUKS-encrypted volumes by when at least one of two Tang servers
is available:

- hosts: all

 vars:
 nbde_client_bindings:
 - device: /dev/rhel/root
 encryption_key_src: /etc/luks/keyfile
 servers:
 - http://server1.example.com
 - http://server2.example.com
 - device: /dev/rhel/swap
 encryption_key_src: /etc/luks/keyfile
 servers:
 - http://server1.example.com
 - http://server2.example.com

 roles:
 - rhel-system-roles.nbde_client

4. Apply the finished playbook:

ansible-playbook -i host1,host2,host3 my-clevis-playbook.yml

IMPORTANT

To ensure that networking for a Tang pin is available during early boot by using the
grubby tool on the system where Clevis is installed:

grubby --update-kernel=ALL --args="rd.neednet=1"

Additional resources

For details about the parameters and additional information about the NBDE Client System
Role, install the rhel-system-roles package, and see the /usr/share/doc/rhel-system-
roles/nbde_client/ and /usr/share/ansible/roles/rhel-system-roles.nbde_client/ directories.

CHAPTER 15. USING THE NBDE_CLIENT AND NBDE_SERVER SYSTEM ROLES

111

CHAPTER 16. REQUESTING CERTIFICATES USING
RHEL SYSTEM ROLES

You can use the certificate System Role to issue and manage certificates.

This chapter covers the following topics:

The certificate System Role

Requesting a new self-signed certificate using the certificate System Role

Requesting a new certificate from IdM CA using the certificate System Role

16.1. THE CERTIFICATE SYSTEM ROLE

Using the certificate System Role, you can manage issuing and renewing TLS and SSL certificates using
Ansible Core.

The role uses certmonger as the certificate provider, and currently supports issuing and renewing self-
signed certificates and using the IdM integrated certificate authority (CA).

You can use the following variables in your Ansible playbook with the certificate System Role:

certificate_wait

to specify if the task should wait for the certificate to be issued.

certificate_requests

to represent each certificate to be issued and its parameters.

Additional resources

See the /usr/share/ansible/roles/rhel-system-roles.certificate/README.md file.

Preparing a control node and managed nodes to use RHEL System Roles

16.2. REQUESTING A NEW SELF-SIGNED CERTIFICATE USING THE
CERTIFICATE SYSTEM ROLE

With the certificate System Role, you can use Ansible Core to issue self-signed certificates.

This process uses the certmonger provider and requests the certificate through the getcert command.

NOTE

By default, certmonger automatically tries to renew the certificate before it expires. You
can disable this by setting the auto_renew parameter in the Ansible playbook to no.

Prerequisites

The Ansible Core package is installed on the control machine.

You have the rhel-system-roles package installed on the system from which you want to run
the playbook.

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

112

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/administration_and_configuration_tasks_using_system_roles_in_rhel/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_administration-and-configuration-tasks-using-system-roles-in-rhel

Procedure

1. Optional: Create an inventory file, for example inventory.file:

$ *touch inventory.file*

2. Open your inventory file and define the hosts on which you want to request the certificate, for
example:

[webserver]
server.idm.example.com

3. Create a playbook file, for example request-certificate.yml:

Set hosts to include the hosts on which you want to request the certificate, such as
webserver.

Set the certificate_requests variable to include the following:

Set the name parameter to the desired name of the certificate, such as mycert.

Set the dns parameter to the domain to be included in the certificate, such as
*.example.com.

Set the ca parameter to self-sign.

Set the rhel-system-roles.certificate role under roles.
This is the playbook file for this example:

- hosts: webserver

 vars:
 certificate_requests:
 - name: mycert
 dns: "*.example.com"
 ca: self-sign

 roles:
 - rhel-system-roles.certificate

4. Save the file.

5. Run the playbook:

$ *ansible-playbook -i inventory.file request-certificate.yml*

Additional resources

See the /usr/share/ansible/roles/rhel-system-roles.certificate/README.md file.

See the ansible-playbook(1) man page.

16.3. REQUESTING A NEW CERTIFICATE FROM IDM CA USING THE

CHAPTER 16. REQUESTING CERTIFICATES USING RHEL SYSTEM ROLES

113

16.3. REQUESTING A NEW CERTIFICATE FROM IDM CA USING THE
CERTIFICATE SYSTEM ROLE

With the certificate System Role, you can use anible-core to issue certificates while using an IdM server
with an integrated certificate authority (CA). Therefore, you can efficiently and consistently manage the
certificate trust chain for multiple systems when using IdM as the CA.

This process uses the certmonger provider and requests the certificate through the getcert command.

NOTE

By default, certmonger automatically tries to renew the certificate before it expires. You
can disable this by setting the auto_renew parameter in the Ansible playbook to no.

Prerequisites

The Ansible Core package is installed on the control machine.

You have the rhel-system-roles package installed on the system from which you want to run
the playbook.

Procedure

1. Optional: Create an inventory file, for example inventory.file:

$ *touch inventory.file*

2. Open your inventory file and define the hosts on which you want to request the certificate, for
example:

[webserver]
server.idm.example.com

3. Create a playbook file, for example request-certificate.yml:

Set hosts to include the hosts on which you want to request the certificate, such as
webserver.

Set the certificate_requests variable to include the following:

Set the name parameter to the desired name of the certificate, such as mycert.

Set the dns parameter to the domain to be included in the certificate, such as
www.example.com.

Set the principal parameter to specify the Kerberos principal, such as
HTTP/www.example.com@EXAMPLE.COM.

Set the ca parameter to ipa.

Set the rhel-system-roles.certificate role under roles.
This is the playbook file for this example:

- hosts: webserver

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

114

 vars:
 certificate_requests:
 - name: mycert
 dns: www.example.com
 principal: HTTP/www.example.com@EXAMPLE.COM
 ca: ipa

 roles:
 - rhel-system-roles.certificate

4. Save the file.

5. Run the playbook:

$ *ansible-playbook -i inventory.file request-certificate.yml*

Additional resources

See the /usr/share/ansible/roles/rhel-system-roles.certificate/README.md file.

See the ansible-playbook(1) man page.

16.4. SPECIFYING COMMANDS TO RUN BEFORE OR AFTER
CERTIFICATE ISSUANCE USING THE CERTIFICATE SYSTEM ROLE

With the certificate Role, you can use Ansible Core to execute a command before and after a certificate
is issued or renewed.

In the following example, the administrator ensures stopping the httpd service before a self-signed
certificate for www.example.com is issued or renewed, and restarting it afterwards.

NOTE

By default, certmonger automatically tries to renew the certificate before it expires. You
can disable this by setting the auto_renew parameter in the Ansible playbook to no.

Prerequisites

The Ansible Core package is installed on the control machine.

You have the rhel-system-roles package installed on the system from which you want to run
the playbook.

Procedure

1. Optional: Create an inventory file, for example inventory.file:

$ *touch inventory.file*

2. Open your inventory file and define the hosts on which you want to request the certificate, for
example:

CHAPTER 16. REQUESTING CERTIFICATES USING RHEL SYSTEM ROLES

115

[webserver]
server.idm.example.com

3. Create a playbook file, for example request-certificate.yml:

Set hosts to include the hosts on which you want to request the certificate, such as
webserver.

Set the certificate_requests variable to include the following:

Set the name parameter to the desired name of the certificate, such as mycert.

Set the dns parameter to the domain to be included in the certificate, such as
www.example.com.

Set the ca parameter to the CA you want to use to issue the certificate, such as self-
sign.

Set the run_before parameter to the command you want to execute before this
certificate is issued or renewed, such as systemctl stop httpd.service.

Set the run_after parameter to the command you want to execute after this certificate
is issued or renewed, such as systemctl start httpd.service.

Set the rhel-system-roles.certificate role under roles.
This is the playbook file for this example:

- hosts: webserver
 vars:
 certificate_requests:
 - name: mycert
 dns: www.example.com
 ca: self-sign
 run_before: systemctl stop httpd.service
 run_after: systemctl start httpd.service

 roles:
 - rhel-system-roles.certificate

4. Save the file.

5. Run the playbook:

$ *ansible-playbook -i inventory.file request-certificate.yml*

Additional resources

See the /usr/share/ansible/roles/rhel-system-roles.certificate/README.md file.

See the ansible-playbook(1) man page.

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

116

CHAPTER 17. CONFIGURING KDUMP USING
RHEL SYSTEM ROLES

To manage kdump using Ansible, you can use the kdump role, which is one of the RHEL System Roles
available in RHEL 8.

Using the kdump role enables you to specify where to save the contents of the system’s memory for
later analysis.

For more information about RHEL System Roles and how to apply them, see Introduction to
RHEL System Roles.

17.1. THE KDUMP RHEL SYSTEM ROLE

The kdump System Role enables you to set basic kernel dump parameters on multiple systems.

17.2. KDUMP ROLE PARAMETERS

The parameters used for the kdump RHEL System Roles are:

Role Variable Description

kdump_path The path to which vmcore is written. If
kdump_target is not null, path is relative to that
dump target. Otherwise, it must be an absolute path
in the root file system.

Additional resources

The makedumpfile(8) man page.

For details about the parameters used in kdump and additional information about the kdump
System Role, see the /usr/share/ansible/roles/rhel-system-roles.tlog/README.md file.

17.3. CONFIGURING KDUMP USING RHEL SYSTEM ROLES

You can set basic kernel dump parameters on multiple systems using the kdump System Role by
running an Ansible playbook.

WARNING

The kdump role replaces the kdump configuration of the managed hosts entirely by
replacing the /etc/kdump.conf file. Additionally, if the kdump role is applied, all
previous kdump settings are also replaced, even if they are not specified by the role
variables, by replacing the /etc/sysconfig/kdump file.

CHAPTER 17. CONFIGURING KDUMP USING RHEL SYSTEM ROLES

117

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_basic_system_settings/getting-started-with-rhel-system-roles_configuring-basic-system-settings

Prerequisites

The Ansible Core package is installed on the control machine.

You have the rhel-system-roles package installed on the system from which you want to run
the playbook.

You have an inventory file which lists the systems on which you want to deploy kdump.

Procedure

1. Create a new playbook.yml file with the following content:

- hosts: kdump-test
 vars:
 kdump_path: /var/crash
 roles:
 - rhel-system-roles.kdump

2. Optional: Verify playbook syntax.

ansible-playbook --syntax-check playbook.yml

3. Run the playbook on your inventory file:

ansible-playbook -i inventory_file /path/to/file/playbook.yml

Additional resources

For a detailed reference on kdump role variables, see the README.md or README.html files in
the /usr/share/doc/rhel-system-roles/kdump directory.

See Preparing the control node and managed nodes to use RHEL System Roles

Documentation installed with the rhel-system-roles package /usr/share/ansible/roles/rhel-
system-roles.kdump/README.html

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

118

CHAPTER 18. MANAGING LOCAL STORAGE USING
RHEL SYSTEM ROLES

To manage LVM and local file systems (FS) using Ansible, you can use the storage role, which is one of
the RHEL System Roles available in RHEL 9.

Using the storage role enables you to automate administration of file systems on disks and logical
volumes on multiple machines and across all versions of RHEL starting with RHEL 7.7.

For more information about RHEL System Roles and how to apply them, see Introduction to
RHEL System Roles.

18.1. INTRODUCTION TO THE STORAGE RHEL SYSTEM ROLE

The storage role can manage:

File systems on disks which have not been partitioned

Complete LVM volume groups including their logical volumes and file systems

MD RAID volumes and their file systems

With the storage role, you can perform the following tasks:

Create a file system

Remove a file system

Mount a file system

Unmount a file system

Create LVM volume groups

Remove LVM volume groups

Create logical volumes

Remove logical volumes

Create RAID volumes

Remove RAID volumes

Create LVM volume groups with RAID

Remove LVM volume groups with RAID

Create encrypted LVM volume groups

Create LVM logical volumes with RAID

18.2. PARAMETERS THAT IDENTIFY A STORAGE DEVICE IN THE
STORAGE RHEL SYSTEM ROLE

CHAPTER 18. MANAGING LOCAL STORAGE USING RHEL SYSTEM ROLES

119

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_basic_system_settings/getting-started-with-rhel-system-roles_configuring-basic-system-settings#intro-to-rhel-system-roles_getting-started-with-rhel-system-roles

Your storage role configuration affects only the file systems, volumes, and pools that you list in the
following variables.

storage_volumes

List of file systems on all unpartitioned disks to be managed.
storage_volumes can also include raid volumes.

Partitions are currently unsupported.

storage_pools

List of pools to be managed.
Currently the only supported pool type is LVM. With LVM, pools represent volume groups (VGs).
Under each pool there is a list of volumes to be managed by the role. With LVM, each volume
corresponds to a logical volume (LV) with a file system.

18.3. EXAMPLE ANSIBLE PLAYBOOK TO CREATE AN XFS FILE
SYSTEM ON A BLOCK DEVICE

This section provides an example Ansible playbook. This playbook applies the storage role to create an
XFS file system on a block device using the default parameters.

WARNING

The storage role can create a file system only on an unpartitioned, whole disk or a
logical volume (LV). It cannot create the file system on a partition.

Example 18.1. A playbook that creates XFS on /dev/sdb

- hosts: all
 vars:
 storage_volumes:
 - name: barefs
 type: disk
 disks:
 - sdb
 fs_type: xfs
 roles:
 - rhel-system-roles.storage

The volume name (barefs in the example) is currently arbitrary. The storage role identifies
the volume by the disk device listed under the disks: attribute.

You can omit the fs_type: xfs line because XFS is the default file system in RHEL 9.

To create the file system on an LV, provide the LVM setup under the disks: attribute,

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

120

To create the file system on an LV, provide the LVM setup under the disks: attribute,
including the enclosing volume group. For details, see Example Ansible playbook to manage
logical volumes.
Do not provide the path to the LV device.

Additional resources

The /usr/share/ansible/roles/rhel-system-roles.storage/README.md file.

18.4. EXAMPLE ANSIBLE PLAYBOOK TO PERSISTENTLY MOUNT A
FILE SYSTEM

This section provides an example Ansible playbook. This playbook applies the storage role to
immediately and persistently mount an XFS file system.

Example 18.2. A playbook that mounts a file system on /dev/sdb to /mnt/data

- hosts: all
 vars:
 storage_volumes:
 - name: barefs
 type: disk
 disks:
 - sdb
 fs_type: xfs
 mount_point: /mnt/data
 roles:
 - rhel-system-roles.storage

This playbook adds the file system to the /etc/fstab file, and mounts the file system
immediately.

If the file system on the /dev/sdb device or the mount point directory do not exist, the
playbook creates them.

Additional resources

The /usr/share/ansible/roles/rhel-system-roles.storage/README.md file.

18.5. EXAMPLE ANSIBLE PLAYBOOK TO MANAGE LOGICAL
VOLUMES

This section provides an example Ansible playbook. This playbook applies the storage role to create an
LVM logical volume in a volume group.

Example 18.3. A playbook that creates a mylv logical volume in the myvg volume group

- hosts: all
 vars:

CHAPTER 18. MANAGING LOCAL STORAGE USING RHEL SYSTEM ROLES

121

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_and_managing_logical_volumes/managing-lvm-logical-volumes_configuring-and-managing-logical-volumes#an-example-playbook-to-manage-logical-volumes_managing-lvm-logical-volumes-using-rhel-system-roles

 storage_pools:
 - name: myvg
 disks:
 - sda
 - sdb
 - sdc
 volumes:
 - name: mylv
 size: 2G
 fs_type: ext4
 mount_point: /mnt/data
 roles:
 - rhel-system-roles.storage

The myvg volume group consists of the following disks:

/dev/sda

/dev/sdb

/dev/sdc

If the myvg volume group already exists, the playbook adds the logical volume to the volume
group.

If the myvg volume group does not exist, the playbook creates it.

The playbook creates an Ext4 file system on the mylv logical volume, and persistently
mounts the file system at /mnt.

Additional resources

The /usr/share/ansible/roles/rhel-system-roles.storage/README.md file.

18.6. EXAMPLE ANSIBLE PLAYBOOK TO ENABLE ONLINE BLOCK
DISCARD

This section provides an example Ansible playbook. This playbook applies the storage role to mount an
XFS file system with online block discard enabled.

Example 18.4. A playbook that enables online block discard on /mnt/data/

- hosts: all
 vars:
 storage_volumes:
 - name: barefs
 type: disk
 disks:
 - sdb
 fs_type: xfs
 mount_point: /mnt/data

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

122

 mount_options: discard
 roles:
 - rhel-system-roles.storage

Additional resources

Example Ansible playbook to persistently mount a file system

The /usr/share/ansible/roles/rhel-system-roles.storage/README.md file.

18.7. EXAMPLE ANSIBLE PLAYBOOK TO CREATE AND MOUNT AN
EXT4 FILE SYSTEM

This section provides an example Ansible playbook. This playbook applies the storage role to create and
mount an Ext4 file system.

Example 18.5. A playbook that creates Ext4 on /dev/sdb and mounts it at /mnt/data

- hosts: all
 vars:
 storage_volumes:
 - name: barefs
 type: disk
 disks:
 - sdb
 fs_type: ext4
 fs_label: label-name
 mount_point: /mnt/data
 roles:
 - rhel-system-roles.storage

The playbook creates the file system on the /dev/sdb disk.

The playbook persistently mounts the file system at the /mnt/data directory.

The label of the file system is label-name.

Additional resources

The /usr/share/ansible/roles/rhel-system-roles.storage/README.md file.

18.8. EXAMPLE ANSIBLE PLAYBOOK TO CREATE AND MOUNT AN
EXT3 FILE SYSTEM

This section provides an example Ansible playbook. This playbook applies the storage role to create and
mount an Ext3 file system.

Example 18.6. A playbook that creates Ext3 on /dev/sdb and mounts it at /mnt/data

CHAPTER 18. MANAGING LOCAL STORAGE USING RHEL SYSTEM ROLES

123

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_file_systems/managing-local-storage-using-rhel-system-roles_managing-file-systems#an-example-ansible-playbook-to-persistently-mount-a-file-system_managing-local-storage-using-rhel-system-roles

- hosts: all
 vars:
 storage_volumes:
 - name: barefs
 type: disk
 disks:
 - sdb
 fs_type: ext3
 fs_label: label-name
 mount_point: /mnt/data
 roles:
 - rhel-system-roles.storage

The playbook creates the file system on the /dev/sdb disk.

The playbook persistently mounts the file system at the /mnt/data directory.

The label of the file system is label-name.

Additional resources

The /usr/share/ansible/roles/rhel-system-roles.storage/README.md file.

18.9. EXAMPLE ANSIBLE PLAYBOOK TO RESIZE AN EXISTING EXT4
OR EXT3 FILE SYSTEM USING THE STORAGE RHEL SYSTEM ROLE

This section provides an example Ansible playbook. This playbook applies the storage role to resize an
existing Ext4 or Ext3 file system on a block device.

Example 18.7. A playbook that set up a single volume on a disk

- name: Create a disk device mounted on /opt/barefs
- hosts: all
 vars:
 storage_volumes:
 - name: barefs
 type: disk
 disks:
 - /dev/sdb
 size: 12 GiB
 fs_type: ext4
 mount_point: /opt/barefs
 roles:
 - rhel-system-roles.storage

If the volume in the previous example already exists, to resize the volume, you need to run the
same playbook, just with a different value for the parameter size. For example:

Example 18.8. A playbook that resizes ext4 on /dev/sdb

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

124

- name: Create a disk device mounted on /opt/barefs
- hosts: all
 vars:
 storage_volumes:
 - name: barefs
 type: disk
 disks:
 - /dev/sdb
 size: 10 GiB
 fs_type: ext4
 mount_point: /opt/barefs
 roles:
 - rhel-system-roles.storage

The volume name (barefs in the example) is currently arbitrary. The Storage role identifies
the volume by the disk device listed under the disks: attribute.

NOTE

Using the Resizing action in other file systems can destroy the data on the device you
are working on.

Additional resources

The /usr/share/ansible/roles/rhel-system-roles.storage/README.md file.

18.10. EXAMPLE ANSIBLE PLAYBOOK TO RESIZE AN EXISTING FILE
SYSTEM ON LVM USING THE STORAGE RHEL SYSTEM ROLE

This section provides an example Ansible playbook. This playbook applies the storage
RHEL System Role to resize an LVM logical volume with a file system.

WARNING

Using the Resizing action in other file systems can destroy the data on the device
you are working on.

Example 18.9. A playbook that resizes existing mylv1 and myvl2 logical volumes in the myvg
volume group

- hosts: all
 vars:
 storage_pools:
 - name: myvg

CHAPTER 18. MANAGING LOCAL STORAGE USING RHEL SYSTEM ROLES

125

 disks:
 - /dev/sda
 - /dev/sdb
 - /dev/sdc
 volumes:
 - name: mylv1
 size: 10 GiB
 fs_type: ext4
 mount_point: /opt/mount1
 - name: mylv2
 size: 50 GiB
 fs_type: ext4
 mount_point: /opt/mount2

- name: Create LVM pool over three disks
 include_role:
 name: rhel-system-roles.storage

This playbook resizes the following existing file systems:

The Ext4 file system on the mylv1 volume, which is mounted at /opt/mount1, resizes to
10 GiB.

The Ext4 file system on the mylv2 volume, which is mounted at /opt/mount2, resizes to
50 GiB.

Additional resources

The /usr/share/ansible/roles/rhel-system-roles.storage/README.md file.

18.11. EXAMPLE ANSIBLE PLAYBOOK TO CREATE A SWAP VOLUME
USING THE STORAGE RHEL SYSTEM ROLE

This section provides an example Ansible playbook. This playbook applies the storage role to create a
swap volume, if it does not exist, or to modify the swap volume, if it already exist, on a block device using
the default parameters.

Example 18.10. A playbook that creates or modify an existing XFS on /dev/sdb

- name: Create a disk device with swap
- hosts: all
 vars:
 storage_volumes:
 - name: swap_fs
 type: disk
 disks:
 - /dev/sdb
 size: 15 GiB
 fs_type: swap
 roles:
 - rhel-system-roles.storage

The volume name (swap_fs in the example) is currently arbitrary. The storage role identifies

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

126

The volume name (swap_fs in the example) is currently arbitrary. The storage role identifies
the volume by the disk device listed under the disks: attribute.

Additional resources

The /usr/share/ansible/roles/rhel-system-roles.storage/README.md file.

18.12. CONFIGURING A RAID VOLUME USING THE STORAGE SYSTEM
ROLE

With the storage System Role, you can configure a RAID volume on RHEL using Red Hat Ansible
Automation Platform and Ansible-Core. Create an Ansible playbook with the parameters to configure a
RAID volume to suit your requirements.

Prerequisites

The Ansible Core package is installed on the control machine.

You have the rhel-system-roles package installed on the system from which you want to run
the playbook.

You have an inventory file detailing the systems on which you want to deploy a RAID volume
using the storage System Role.

Procedure

1. Create a new playbook.yml file with the following content:

- name: Configure the storage
 hosts: managed-node-01.example.com
 tasks:
 - name: Create a RAID on sdd, sde, sdf, and sdg
 include_role:
 name: rhel-system-roles.storage
 vars:
 storage_safe_mode: false
 storage_volumes:
 - name: data
 type: raid
 disks: [sdd, sde, sdf, sdg]
 raid_level: raid0
 raid_chunk_size: 32 KiB
 mount_point: /mnt/data
 state: present

CHAPTER 18. MANAGING LOCAL STORAGE USING RHEL SYSTEM ROLES

127

WARNING

Device names might change in certain circumstances, for example, when
you add a new disk to a system. Therefore, to prevent data loss, do not use
specific disk names in the playbook.

2. Optional: Verify the playbook syntax:

ansible-playbook --syntax-check playbook.yml

3. Run the playbook:

ansible-playbook -i inventory.file /path/to/file/playbook.yml

Additional resources

The /usr/share/ansible/roles/rhel-system-roles.storage/README.md file

Preparing a control node and managed nodes to use RHEL System Roles

18.13. CONFIGURING AN LVM POOL WITH RAID USING THE STORAGE

RHEL SYSTEM ROLE

With the storage System Role, you can configure an LVM pool with RAID on RHEL using Red Hat
Ansible Automation Platform. In this section you will learn how to set up an Ansible playbook with the
available parameters to configure an LVM pool with RAID.

Prerequisites

The Ansible Core package is installed on the control machine.

You have the rhel-system-roles package installed on the system from which you want to run
the playbook.

You have an inventory file detailing the systems on which you want to configure an LVM pool
with RAID using the storage System Role.

Procedure

1. Create a new playbook.yml file with the following content:

- hosts: all
 vars:
 storage_safe_mode: false
 storage_pools:
 - name: my_pool
 type: lvm
 disks: [sdh, sdi]
 raid_level: raid1

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

128

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_basic_system_settings/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_configuring-basic-system-settings

 volumes:
 - name: my_pool
 size: "1 GiB"
 mount_point: "/mnt/app/shared"
 fs_type: xfs
 state: present
 roles:
 - name: rhel-system-roles.storage

NOTE

To create an LVM pool with RAID, you must specify the RAID type using the
raid_level parameter.

2. Optional. Verify playbook syntax.

ansible-playbook --syntax-check playbook.yml

3. Run the playbook on your inventory file:

ansible-playbook -i inventory.file /path/to/file/playbook.yml

Additional resources

The /usr/share/ansible/roles/rhel-system-roles.storage/README.md file.

18.14. EXAMPLE ANSIBLE PLAYBOOK TO COMPRESS AND
DEDUPLICATE A VDO VOLUME ON LVM USING THE STORAGE

RHEL SYSTEM ROLE

This section provides an example Ansible playbook. This playbook applies the storage
RHEL System Role to enable compression and deduplication of Logical Volumes (LVM) using Virtual
Data Optimizer (VDO).

Example 18.11. A playbook that creates a mylv1 LVM VDO volume in the myvg volume group

- name: Create LVM VDO volume under volume group 'myvg'
 hosts: all
 roles:
 -rhel-system-roles.storage
 vars:
 storage_pools:
 - name: myvg
 disks:
 - /dev/sdb
 volumes:
 - name: mylv1
 compression: true
 deduplication: true

CHAPTER 18. MANAGING LOCAL STORAGE USING RHEL SYSTEM ROLES

129

 vdo_pool_size: 10 GiB
 size: 30 GiB
 mount_point: /mnt/app/shared

In this example, the compression and deduplication pools are set to true, which specifies that the VDO
is used. The following describes the usage of these parameters:

The deduplication is used to deduplicate the duplicated data stored on the storage volume.

The compression is used to compress the data stored on the storage volume, which results in
more storage capacity.

The vdo_pool_size specifies the actual size the volume takes on the device. The virtual size of
VDO volume is set by the size parameter. NOTE: Because of the Storage role use of LVM VDO,
only one volume per pool can use the compression and deduplication.

18.15. CREATING A LUKS ENCRYPTED VOLUME USING THE STORAGE

RHEL SYSTEM ROLE

You can use the storage role to create and configure a volume encrypted with LUKS by running an
Ansible playbook.

Prerequisites

Access and permissions to one or more managed nodes, which are systems you want to
configure with the crypto_policies System Role.

Access and permissions to a control node, which is a system from which Red Hat Ansible Core
configures other systems.
On the control node:

The ansible-core and rhel-system-roles packages are installed.

IMPORTANT

RHEL 8.0-8.5 provided access to a separate Ansible repository that contains Ansible
Engine 2.9 for automation based on Ansible. Ansible Engine contains command-line
utilities such as ansible, ansible-playbook, connectors such as docker and podman, and
many plugins and modules. For information on how to obtain and install Ansible Engine,
see the How to download and install Red Hat Ansible Engine Knowledgebase article.

RHEL 8.6 and 9.0 have introduced Ansible Core (provided as the ansible-core package),
which contains the Ansible command-line utilities, commands, and a small set of built-in
Ansible plugins. RHEL provides this package through the AppStream repository, and it
has a limited scope of support. For more information, see the Scope of support for the
Ansible Core package included in the RHEL 9 and RHEL 8.6 and later AppStream
repositories Knowledgebase article.

An inventory file which lists the managed nodes.

Procedure

1. Create a new playbook.yml file with the following content:

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

130

https://access.redhat.com/articles/3174981
https://access.redhat.com/articles/6325611

- hosts: all
 vars:
 storage_volumes:
 - name: barefs
 type: disk
 disks:
 - sdb
 fs_type: xfs
 fs_label: label-name
 mount_point: /mnt/data
 encryption: true
 encryption_password: your-password
 roles:
 - rhel-system-roles.storage

2. Optional: Verify playbook syntax:

ansible-playbook --syntax-check playbook.yml

3. Run the playbook on your inventory file:

ansible-playbook -i inventory.file /path/to/file/playbook.yml

Additional resources

/usr/share/ansible/roles/rhel-system-roles.storage/README.md file

18.16. EXAMPLE ANSIBLE PLAYBOOK TO EXPRESS POOL VOLUME
SIZES AS PERCENTAGE USING THE STORAGE RHEL SYSTEM ROLE

This section provides an example Ansible playbook. This playbook applies the storage System Role to
enable you to express Logical Manager Volumes (LVM) volume sizes as a percentage of the pool’s total
size.

Example 18.12. A playbook that express volume sizes as a percentage of the pool’s total size

- name: Express volume sizes as a percentage of the pool's total size
 hosts: all
 roles
 - rhel-system-roles.storage
 vars:
 storage_pools:
 - name: myvg
 disks:
 - /dev/sdb
 volumes:
 - name: data
 size: 60%
 mount_point: /opt/mount/data
 - name: web
 size: 30%
 mount_point: /opt/mount/web

CHAPTER 18. MANAGING LOCAL STORAGE USING RHEL SYSTEM ROLES

131

 - name: cache
 size: 10%
 mount_point: /opt/cache/mount

This example specifies the size of LVM volumes as a percentage of the pool size, for example: "60%".
Additionally, you can also specify the size of LVM volumes as a percentage of the pool size in a human-
readable size of the file system, for example, "10g" or "50 GiB".

18.17. ADDITIONAL RESOURCES

/usr/share/doc/rhel-system-roles/storage/

/usr/share/ansible/roles/rhel-system-roles.storage/

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

132

CHAPTER 19. CONFIGURING TIME SYNCHRONIZATION USING
RHEL SYSTEM ROLES

With the timesync RHEL System Role, you can manage time synchronization on multiple target
machines on RHEL using Red Hat Ansible Automation Platform.

19.1. THE TIMESYNC RHEL SYSTEM ROLE

You can manage time synchronization on multiple target machines using the timesync
RHEL System Role.

The timesync role installs and configures an NTP or PTP implementation to operate as an NTP client or
PTP replica in order to synchronize the system clock with NTP servers or grandmasters in PTP domains.

Note that using the timesync role also facilitates the migration to chrony, because you can use the
same playbook on all versions of Red Hat Enterprise Linux starting with RHEL 6 regardless of whether
the system uses ntp or chrony to implement the NTP protocol.

19.2. APPLYING THE TIMESYNC SYSTEM ROLE FOR A SINGLE POOL OF
SERVERS

The following example shows how to apply the timesync role in a situation with just one pool of servers.

WARNING

The timesync role replaces the configuration of the given or detected provider
service on the managed host. Previous settings are lost, even if they are not
specified in the role variables. The only preserved setting is the choice of provider if
the timesync_ntp_provider variable is not defined.

Prerequisites

The Ansible Core package is installed on the control machine.

You have the rhel-system-roles package installed on the system from which you want to run
the playbook.

You have an inventory file which lists the systems on which you want to deploy timesync
System Role.

Procedure

1. Create a new playbook.yml file with the following content:

- hosts: timesync-test
 vars:
 timesync_ntp_servers:

CHAPTER 19. CONFIGURING TIME SYNCHRONIZATION USING RHEL SYSTEM ROLES

133

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/configuring_basic_system_settings/index#migrating-to-chrony_using-chrony-to-configure-ntp

 - hostname: 2.rhel.pool.ntp.org
 pool: yes
 iburst: yes
 roles:
 - rhel-system-roles.timesync

2. Optional: Verify playbook syntax.

ansible-playbook --syntax-check playbook.yml

3. Run the playbook on your inventory file:

ansible-playbook -i inventory_file /path/to/file/playbook.yml

19.3. APPLYING THE TIMESYNC SYSTEM ROLE ON CLIENT SERVERS

You can use the timesync role to enable Network Time Security (NTS) on NTP clients. Network Time
Security (NTS) is an authentication mechanism specified for Network Time Protocol (NTP). It verifies
that NTP packets exchanged between the server and client are not altered.

WARNING

The timesync role replaces the configuration of the given or detected provider
service on the managed host. Previous settings are lost even if they are not
specified in the role variables. The only preserved setting is the choice of provider if
the timesync_ntp_provider variable is not defined.

Prerequisites

You do not have to have Red Hat Ansible Automation Platform installed on the systems on
which you want to deploy the timesync solution.

You have the rhel-system-roles package installed on the system from which you want to run
the playbook.

You have an inventory file which lists the systems on which you want to deploy the timesync
System Role.

The chrony NTP provider version is 4.0 or later.

Procedure

1. Create a playbook.yml file with the following content:

- hosts: timesync-test
 vars:
 timesync_ntp_servers:
 - hostname: ptbtime1.ptb.de

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

134

 iburst: yes
 nts: yes
 roles:
 - rhel-system-roles.timesync

ptbtime1.ptb.de is an example of public server. You may want to use a different public server or
your own server.

2. Optional: Verify playbook syntax.

ansible-playbook --syntax-check playbook.yml

3. Run the playbook on your inventory file:

ansible-playbook -i inventory_file /path/to/file/playbook.yml

Verification

1. Perform a test on the client machine:

chronyc -N authdata

Name/IP address Mode KeyID Type KLen Last Atmp NAK Cook CLen
===
ptbtime1.ptb.de NTS 1 15 256 157 0 0 8 100

2. Check that the number of reported cookies is larger than zero.

Additional resources

chrony.conf(5) man page

19.4. TIMESYNC SYSTEM ROLES VARIABLES

You can pass the following variable to the timesync role:

timesync_ntp_servers:

Role variable settings Description

hostname: host.example.com Hostname or address of the server

minpoll: number Minimum polling interval. Default: 6

maxpoll: number Maximum polling interval. Default: 10

iburst: yes Flag enabling fast initial synchronization. Default: no

pool: yes Flag indicating that each resolved address of the
hostname is a separate NTP server. Default: no

CHAPTER 19. CONFIGURING TIME SYNCHRONIZATION USING RHEL SYSTEM ROLES

135

nts: yes Flag to enable Network Time Security (NTS). Default:
no. Supported only with chrony >= 4.0.

Role variable settings Description

Additional resources

For a detailed reference on timesync role variables, install the rhel-system-roles package, and
see the README.md or README.html files in the /usr/share/doc/rhel-system-roles/timesync
directory.

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

136

CHAPTER 20. MONITORING PERFORMANCE USING
RHEL SYSTEM ROLES

As a system administrator, you can use the metrics RHEL System Role to monitor the performance of a
system.

20.1. INTRODUCTION TO THE METRICS SYSTEM ROLE

RHEL System Roles is a collection of Ansible roles and modules that provide a consistent configuration
interface to remotely manage multiple RHEL systems. The metrics System Role configures
performance analysis services for the local system and, optionally, includes a list of remote systems to
be monitored by the local system. The metrics System Role enables you to use pcp to monitor your
systems performance without having to configure pcp separately, as the set-up and deployment of pcp
is handled by the playbook.

Table 20.1. metrics system role variables

Role variable Description Example usage

metrics_monitored_hosts List of remote hosts to be
analyzed by the target host.
These hosts will have metrics
recorded on the target host, so
ensure enough disk space exists
below /var/log for each host.

metrics_monitored_hosts:
["webserver.example.com",
"database.example.com"]

metrics_retention_days Configures the number of days
for performance data retention
before deletion.

metrics_retention_days: 14

metrics_graph_service A boolean flag that enables the
host to be set up with services for
performance data visualization via
pcp and grafana. Set to false by
default.

metrics_graph_service: no

metrics_query_service A boolean flag that enables the
host to be set up with time series
query services for querying
recorded pcp metrics via redis.
Set to false by default.

metrics_query_service: no

metrics_provider Specifies which metrics collector
to use to provide metrics.
Currently, pcp is the only
supported metrics provider.

metrics_provider: "pcp"

NOTE

CHAPTER 20. MONITORING PERFORMANCE USING RHEL SYSTEM ROLES

137

NOTE

For details about the parameters used in metrics_connections and additional
information about the metrics System Role, see the /usr/share/ansible/roles/rhel-
system-roles.metrics/README.md file.

20.2. USING THE METRICS SYSTEM ROLE TO MONITOR YOUR LOCAL
SYSTEM WITH VISUALIZATION

This procedure describes how to use the metrics RHEL System Role to monitor your local system while
simultaneously provisioning data visualization via Grafana.

Prerequisites

The Ansible Core package is installed on the control machine.

You have the rhel-system-roles package installed on the machine you want to monitor.

Procedure

1. Configure localhost in the /etc/ansible/hosts Ansible inventory by adding the following content
to the inventory:

localhost ansible_connection=local

2. Create an Ansible playbook with the following content:

- hosts: localhost
 vars:
 metrics_graph_service: yes
 roles:
 - rhel-system-roles.metrics

3. Run the Ansible playbook:

ansible-playbook name_of_your_playbook.yml

NOTE

Since the metrics_graph_service boolean is set to value="yes", Grafana is
automatically installed and provisioned with pcp added as a data source.

4. To view visualization of the metrics being collected on your machine, access the grafana web
interface as described in Accessing the Grafana web UI .

20.3. USING THE METRICS SYSTEM ROLE TO SETUP A FLEET OF
INDIVIDUAL SYSTEMS TO MONITOR THEMSELVES

This procedure describes how to use the metrics System Role to set up a fleet of machines to monitor
themselves.

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

138

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/monitoring_and_managing_system_status_and_performance/setting-up-graphical-representation-of-pcp-metrics_monitoring-and-managing-system-status-and-performance#accessing-the-grafana-web-UI_setting-up-graphical-representation-of-pcp-metrics

Prerequisites

The Ansible Core package is installed on the control machine.

You have the rhel-system-roles package installed on the machine you want to use to run the
playbook.

You have the SSH connection established.

Procedure

1. Add the name or IP of the machines you wish to monitor via the playbook to the
/etc/ansible/hosts Ansible inventory file under an identifying group name enclosed in brackets:

[remotes]
webserver.example.com
database.example.com

2. Create an Ansible playbook with the following content:

- hosts: remotes
 vars:
 metrics_retention_days: 0
 roles:
 - rhel-system-roles.metrics

3. Run the Ansible playbook:

ansible-playbook name_of_your_playbook.yml -k

Where the -k prompt for password to connect to remote system.

20.4. USING THE METRICS SYSTEM ROLE TO MONITOR A FLEET OF
MACHINES CENTRALLY VIA YOUR LOCAL MACHINE

This procedure describes how to use the metrics System Role to set up your local machine to centrally
monitor a fleet of machines while also provisioning visualization of the data via grafana and querying of
the data via redis.

Prerequisites

The Ansible Core package is installed on the control machine.

You have the rhel-system-roles package installed on the machine you want to use to run the
playbook.

Procedure

1. Create an Ansible playbook with the following content:

- hosts: localhost

CHAPTER 20. MONITORING PERFORMANCE USING RHEL SYSTEM ROLES

139

 vars:
 metrics_graph_service: yes
 metrics_query_service: yes
 metrics_retention_days: 10
 metrics_monitored_hosts: ["database.example.com", "webserver.example.com"]
 roles:
 - rhel-system-roles.metrics

2. Run the Ansible playbook:

ansible-playbook name_of_your_playbook.yml

NOTE

Since the metrics_graph_service and metrics_query_service booleans are set
to value="yes", grafana is automatically installed and provisioned with pcp added
as a data source with the pcp data recording indexed into redis, allowing the
pcp querying language to be used for complex querying of the data.

3. To view graphical representation of the metrics being collected centrally by your machine and to
query the data, access the grafana web interface as described in Accessing the Grafana web UI .

20.5. SETTING UP AUTHENTICATION WHILE MONITORING A SYSTEM
USING THE METRICS SYSTEM ROLE

PCP supports the scram-sha-256 authentication mechanism through the Simple Authentication
Security Layer (SASL) framework. The metrics RHEL System Role automates the steps to setup
authentication using the scram-sha-256 authentication mechanism. This procedure describes how to
setup authentication using the metrics RHEL System Role.

Prerequisites

The Ansible Core package is installed on the control machine.

You have the rhel-system-roles package installed on the machine you want to use to run the
playbook.

Procedure

1. Include the following variables in the Ansible playbook you want to setup authentication for:

 vars:
 metrics_username: your_username
 metrics_password: your_password

2. Run the Ansible playbook:

ansible-playbook name_of_your_playbook.yml

Verification steps

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

140

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/monitoring_and_managing_system_status_and_performance/setting-up-graphical-representation-of-pcp-metrics_monitoring-and-managing-system-status-and-performance#accessing-the-grafana-web-UI_setting-up-graphical-representation-of-pcp-metrics

Verify the sasl configuration:

pminfo -f -h "pcp://ip_adress?username=your_username" disk.dev.read
Password:
disk.dev.read
inst [0 or "sda"] value 19540

ip_adress should be replaced by the IP address of the host.

20.6. USING THE METRICS SYSTEM ROLE TO CONFIGURE AND ENABLE
METRICS COLLECTION FOR SQL SERVER

This procedure describes how to use the metrics RHEL System Role to automate the configuration and
enabling of metrics collection for Microsoft SQL Server via pcp on your local system.

Prerequisites

The Ansible Core package is installed on the control machine.

You have the rhel-system-roles package installed on the machine you want to monitor.

You have installed Microsoft SQL Server for Red Hat Enterprise Linux and established a
'trusted' connection to an SQL server. See Install SQL Server and create a database on Red Hat .

You have installed the Microsoft ODBC driver for SQL Server for Red Hat Enterprise Linux. See
Red Hat Enterprise Server and Oracle Linux .

Procedure

1. Configure localhost in the /etc/ansible/hosts Ansible inventory by adding the following content
to the inventory:

localhost ansible_connection=local

2. Create an Ansible playbook that contains the following content:

- hosts: localhost
 roles:
 - role: rhel-system-roles.metrics
 vars:
 metrics_from_mssql: yes

3. Run the Ansible playbook:

ansible-playbook name_of_your_playbook.yml

Verification steps

Use the pcp command to verify that SQL Server PMDA agent (mssql) is loaded and running:

pcp
platform: Linux rhel82-2.local 4.18.0-167.el8.x86_64 #1 SMP Sun Dec 15 01:24:23 UTC

CHAPTER 20. MONITORING PERFORMANCE USING RHEL SYSTEM ROLES

141

https://docs.microsoft.com/en-us/sql/linux/quickstart-install-connect-red-hat?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/connect/odbc/linux-mac/installing-the-microsoft-odbc-driver-for-sql-server?view=sql-server-ver15#redhat17

2019 x86_64
 hardware: 2 cpus, 1 disk, 1 node, 2770MB RAM
 timezone: PDT+7
 services: pmcd pmproxy
 pmcd: Version 5.0.2-1, 12 agents, 4 clients
 pmda: root pmcd proc pmproxy xfs linux nfsclient mmv kvm mssql
 jbd2 dm
 pmlogger: primary logger: /var/log/pcp/pmlogger/rhel82-2.local/20200326.16.31
 pmie: primary engine: /var/log/pcp/pmie/rhel82-2.local/pmie.log

Additional resources

For more information about using Performance Co-Pilot for Microsoft SQL Server, see this Red
Hat Developers Blog post.

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

142

https://www.redhat.com/en/blog/performance-co-pilot-microsoft-sql-server-rhel-82

CHAPTER 21. CONFIGURING A SYSTEM FOR SESSION
RECORDING USING THE TLOG RHEL SYSTEM ROLE

With the tlog RHEL System Role, you can configure a system for terminal session recording on RHEL
using Red Hat Ansible Automation Platform.

21.1. THE TLOG SYSTEM ROLE

You can configure a RHEL system for terminal session recording on RHEL using the tlog
RHEL System Role.

You can configure the recording to take place per user or user group by means of the SSSD service.

Additional resources

For more details on session recording in RHEL, see Recording Sessions.

21.2. COMPONENTS AND PARAMETERS OF THE TLOG SYSTEM ROLE

The Session Recording solution has the following components:

The tlog utility

System Security Services Daemon (SSSD)

Optional: The web console interface

The parameters used for the tlog RHEL System Role are:

Role Variable Description

tlog_use_sssd (default: yes) Configure session recording with SSSD, the
preferred way of managing recorded users or groups

tlog_scope_sssd (default: none) Configure SSSD recording scope - all / some / none

tlog_users_sssd (default: []) YAML list of users to be recorded

tlog_groups_sssd (default: []) YAML list of groups to be recorded

For details about the parameters used in tlog and additional information about the tlog System
Role, see the /usr/share/ansible/roles/rhel-system-roles.tlog/README.md file.

21.3. DEPLOYING THE TLOG RHEL SYSTEM ROLE

Follow these steps to prepare and apply an Ansible playbook to configure a RHEL system to log session
recording data to the systemd journal.

Prerequisites

You have set SSH keys for access from the control node to the target system where the tlog

CHAPTER 21. CONFIGURING A SYSTEM FOR SESSION RECORDING USING THE TLOG RHEL SYSTEM ROLE

143

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/recording_sessions/index

You have set SSH keys for access from the control node to the target system where the tlog
System Role will be configured.

You have at least one system that you want to configure the tlog System Role.

The Ansible Core package is installed on the control machine.

The rhel-system-roles package is installed on the control machine.

Procedure

1. Create a new playbook.yml file with the following content:

- name: Deploy session recording
 hosts: all
 vars:
 tlog_scope_sssd: some
 tlog_users_sssd:
 - recorded-user

 roles:
 - rhel-system-roles.tlog

Where,

tlog_scope_sssd:

some specifies you want to record only certain users and groups, not all or none.

tlog_users_sssd:

recorded-user specifies the user you want to record a session from. Note that this does
not add the user for you. You must set the user by yourself.

2. Optionally, verify the playbook syntax.

ansible-playbook --syntax-check playbook.yml

3. Run the playbook on your inventory file:

ansible-playbook -i IP_Address /path/to/file/playbook.yml -v

As a result, the playbook installs the tlog RHEL System Role on the system you specified. The role
includes tlog-rec-session, a terminal session I/O logging program, that acts as the login shell for a user.
It also creates an SSSD configuration drop file that can be used by the users and groups that you define.
SSSD parses and reads these users and groups, and replaces their user shell with tlog-rec-session.
Additionally, if the cockpit package is installed on the system, the playbook also installs the cockpit-
session-recording package, which is a Cockpit module that allows you to view and play recordings in
the web console interface.

Verification steps

To verify that the SSSD configuration drop file is created in the system, perform the following steps:

1. Navigate to the folder where the SSSD configuration drop file is created:

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

144

cd /etc/sssd/conf.d

2. Check the file content:

cat /etc/sssd/conf.d/sssd-session-recording.conf

You can see that the file contains the parameters you set in the playbook.

21.4. DEPLOYING THE TLOG RHEL SYSTEM ROLE FOR EXCLUDING
LISTS OF GROUPS OR USERS

You can use the tlog System Role to support the SSSD session recording configuration options
exclude_users and exclude_groups. Follow these steps to prepare and apply an Ansible playbook to
configure a RHEL system to exclude users or groups from having their sessions recorded and logged in
the systemd journal.

Prerequisites

You have set SSH keys for access from the control node to the target system on which you
want to configure the tlog System Role.

You have at least one system on which you want to configure the tlog System Role.

The Ansible Core package is installed on the control machine.

The rhel-system-roles package is installed on the control machine.

Procedure

1. Create a new playbook.yml file with the following content:

- name: Deploy session recording excluding users and groups
 hosts: all
 vars:
 tlog_scope_sssd: all
 tlog_exclude_users_sssd:
 - jeff
 - james
 tlog_exclude_groups_sssd:
 - admins

 roles:
 - rhel-system-roles.tlog

Where,

tlog_scope_sssd:

all: specifies that you want to record all users and groups.

tlog_exclude_users_sssd:

user names: specifies the user names of the users you want to exclude from the session

CHAPTER 21. CONFIGURING A SYSTEM FOR SESSION RECORDING USING THE TLOG RHEL SYSTEM ROLE

145

user names: specifies the user names of the users you want to exclude from the session
recording.

tlog_exclude_groups_sssd:

admins specifies the group you want to exclude from the session recording.

2. Optionally, verify the playbook syntax;

ansible-playbook --syntax-check playbook.yml

3. Run the playbook on your inventory file:

ansible-playbook -i IP_Address /path/to/file/playbook.yml -v

As a result, the playbook installs the tlog RHEL System Role on the system you specified. The role
includes tlog-rec-session, a terminal session I/O logging program, that acts as the login shell for a user.
It also creates an /etc/sssd/conf.d/sssd-session-recording.conf SSSD configuration drop file that can
be used by users and groups except those that you defined as excluded. SSSD parses and reads these
users and groups, and replaces their user shell with tlog-rec-session. Additionally, if the cockpit
package is installed on the system, the playbook also installs the cockpit-session-recording package,
which is a Cockpit module that allows you to view and play recordings in the web console interface.

Verification steps

To verify that the SSSD configuration drop file is created in the system, perform the following steps:

1. Navigate to the folder where the SSSD configuration drop file is created:

cd /etc/sssd/conf.d

2. Check the file content:

cat sssd-session-recording.conf

You can see that the file contains the parameters you set in the playbook.

Additional resources

See the /usr/share/doc/rhel-system-roles/tlog/ and /usr/share/ansible/roles/rhel-system-
roles.tlog/ directories.

The Recording a session using the deployed Terminal Session Recording System Role in the CLI .

21.5. RECORDING A SESSION USING THE DEPLOYED TLOG SYSTEM
ROLE IN THE CLI

After you have deployed the tlog System Role in the system you have specified, you are able to record a
user terminal session using the command-line interface (CLI).

Prerequisites

You have deployed the tlog System Role in the target system.

The SSSD configuration drop file was created in the /etc/sssd/conf.d directory. See Deploying

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

146

The SSSD configuration drop file was created in the /etc/sssd/conf.d directory. See Deploying
the Terminal Session Recording RHEL System Role.

Procedure

1. Create a user and assign a password for this user:

useradd recorded-user
passwd recorded-user

2. Log in to the system as the user you just created:

ssh recorded-user@localhost

3. Type "yes" when the system prompts you to type yes or no to authenticate.

4. Insert the recorded-user’s password.
The system displays a message about your session being recorded.

ATTENTION! Your session is being recorded!

5. After you have finished recording the session, type:

exit

The system logs out from the user and closes the connection with the localhost.

As a result, the user session is recorded, stored and you can play it using a journal.

Verification steps

To view your recorded session in the journal, do the following steps:

1. Run the command below:

journalctl -o verbose -r

2. Search for the MESSAGE field of the tlog-rec recorded journal entry.

journalctl -xel _EXE=/usr/bin/tlog-rec-session

21.6. WATCHING A RECORDED SESSION USING THE CLI

You can play a user session recording from a journal using the command-line interface (CLI).

Prerequisites

You have recorded a user session. See Recording a session using the deployed tlog System Role
in the CLI .

Procedure

1. On the CLI terminal, play the user session recording:

CHAPTER 21. CONFIGURING A SYSTEM FOR SESSION RECORDING USING THE TLOG RHEL SYSTEM ROLE

147

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/administration_and_configuration_tasks_using_system_roles_in_rhel/index#recording-a-session-using-the-deployed-tlog-system-role_configuring-a-system-for-session-recording-using-the-tlog-rhel-system-roles

journalctl -o verbose -r

2. Search for the tlog recording:

$ /tlog-rec

You can see details such as:

The username for the user session recording

The out_txt field, a raw output encode of the recorded session

The identifier number TLOG_REC=ID_number

3. Copy the identifier number TLOG_REC=ID_number.

4. Playback the recording using the identifier number TLOG_REC=ID_number.

tlog-play -r journal -M TLOG_REC=ID_number

As a result, you can see the user session recording terminal output being played back.

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

148

CHAPTER 22. CONFIGURING A HIGH-AVAILABILITY CLUSTER
USING SYSTEM ROLES

With the ha_cluster System Role, you can configure and manage a high-availability cluster that uses
the Pacemaker high availability cluster resource manager.

22.1. HA_CLUSTER SYSTEM ROLE VARIABLES

In an ha_cluster System Role playbook, you define the variables for a high availability cluster according
to the requirements of your cluster deployment.

The variables you can set for an ha_cluster System Role are as follows.

ha_cluster_enable_repos

A boolean flag that enables the repositories containing the packages that are needed by the
ha_cluster System Role. When this is set to yes, the default value of this variable, you must have
active subscription coverage for RHEL and the RHEL High Availability Add-On on the systems that
you will use as your cluster members or the system role will fail.

ha_cluster_cluster_present

A boolean flag which, if set to yes, determines that HA cluster will be configured on the hosts
according to the variables passed to the role. Any cluster configuration not specified in the role and
not supported by the role will be lost.
If ha_cluster_cluster_present is set to no, all HA cluster configuration will be removed from the
target hosts.

The default value of this variable is yes.

The following example playbook removes all cluster configuration on node1 and node2

- hosts: node1 node2
 vars:
 ha_cluster_cluster_present: no

 roles:
 - rhel-system-roles.ha_cluster

ha_cluster_start_on_boot

A boolean flag that determines whether cluster services will be configured to start on boot. The
default value of this variable is yes.

ha_cluster_fence_agent_packages

List of fence agent packages to install. The default value of this variable is fence-agents-all, fence-
virt.

ha_cluster_extra_packages

List of additional packages to be installed. The default value of this variable is no packages.
This variable can be used to install additional packages not installed automatically by the role, for
example custom resource agents.

It is possible to specify fence agents as members of this list. However,
ha_cluster_fence_agent_packages is the recommended role variable to use for specifying fence
agents, so that its default value is overridden.

CHAPTER 22. CONFIGURING A HIGH-AVAILABILITY CLUSTER USING SYSTEM ROLES

149

ha_cluster_hacluster_password

A string value that specifies the password of the hacluster user. The hacluster user has full access
to a cluster. It is recommended that you vault encrypt the password, as described in Encrypting
content with Ansible Vault. There is no default password value, and this variable must be specified.

ha_cluster_corosync_key_src

The path to Corosync authkey file, which is the authentication and encryption key for Corosync
communication. It is highly recommended that you have a unique authkey value for each cluster. The
key should be 256 bytes of random data.
If you specify a key for this variable, it is recommended that you vault encrypt the key, as described in
Encrypting content with Ansible Vault .

If no key is specified, a key already present on the nodes will be used. If nodes do not have the same
key, a key from one node will be distributed to other nodes so that all nodes have the same key. If no
node has a key, a new key will be generated and distributed to the nodes.

If this variable is set, ha_cluster_regenerate_keys is ignored for this key.

The default value of this variable is null.

ha_cluster_pacemaker_key_src

The path to the Pacemaker authkey file, which is the authentication and encryption key for
Pacemaker communication. It is highly recommended that you have a unique authkey value for each
cluster. The key should be 256 bytes of random data.
If you specify a key for this variable, it is recommended that you vault encrypt the key, as described in
Encrypting content with Ansible Vault .

If no key is specified, a key already present on the nodes will be used. If nodes do not have the same
key, a key from one node will be distributed to other nodes so that all nodes have the same key. If no
node has a key, a new key will be generated and distributed to the nodes.

If this variable is set, ha_cluster_regenerate_keys is ignored for this key.

The default value of this variable is null.

ha_cluster_fence_virt_key_src

The path to the fence-virt or fence-xvm pre-shared key file, which is the location of the
authentication key for the fence-virt or fence-xvm fence agent.
If you specify a key for this variable, it is recommended that you vault encrypt the key, as described in
Encrypting content with Ansible Vault .

If no key is specified, a key already present on the nodes will be used. If nodes do not have the same
key, a key from one node will be distributed to other nodes so that all nodes have the same key. If no
node has a key, a new key will be generated and distributed to the nodes. If the ha_cluster System
Role generates a new key in this fashion, you should copy the key to your nodes' hypervisor to ensure
that fencing works.

If this variable is set, ha_cluster_regenerate_keys is ignored for this key.

The default value of this variable is null.

ha_cluster_pcsd_public_key_srcr, ha_cluster_pcsd_private_key_src

The path to the pcsd TLS certificate and private key. If this is not specified, a certificate-key pair
already present on the nodes will be used. If a certificate-key pair is not present, a random new one
will be generated.

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

150

https://docs.ansible.com/ansible/latest/user_guide/vault.html
https://docs.ansible.com/ansible/latest/user_guide/vault.html
https://docs.ansible.com/ansible/latest/user_guide/vault.html
https://docs.ansible.com/ansible/latest/user_guide/vault.html

If you specify a private key value for this variable, it is recommended that you vault encrypt the key,
as described in Encrypting content with Ansible Vault .

If these variables are set, ha_cluster_regenerate_keys is ignored for this certificate-key pair.

The default value of these variables is null.

ha_cluster_regenerate_keys

A boolean flag which, when set to yes, determines that pre-shared keys and TLS certificates will be
regenerated. For more information on when keys and certificates will be regenerated, see the
descriptions of the ha_cluster_corosync_key_src, ha_cluster_pacemaker_key_src,
ha_cluster_fence_virt_key_src, ha_cluster_pcsd_public_key_src, and
ha_cluster_pcsd_private_key_src variables.
The default value of this variable is no.

ha_cluster_pcs_permission_list

Configures permissions to manage a cluster using pcsd. The items you configure with this variable
are as follows:

type - user or group

name - user or group name

allow_list - Allowed actions for the specified user or group:

read - View cluster status and settings

write - Modify cluster settings except permissions and ACLs

grant - Modify cluster permissions and ACLs

full - Unrestricted access to a cluster including adding and removing nodes and access
to keys and certificates

The structure of the ha_cluster_pcs_permission_list variable and its default values are as follows:

ha_cluster_pcs_permission_list:
 - type: group
 name: hacluster
 allow_list:
 - grant
 - read
 - write

ha_cluster_cluster_name

The name of the cluster. This is a string value with a default of my-cluster.

ha_cluster_transport

(RHEL 9.1 and later) Sets the cluster transport method. The items you configure with this variable are
as follows:

type (optional) - Transport type: knet, udp, or udpu. The udp and udpu transport types
support only one link. Encryption is always disabled for udp and udpu. Defaults to knet if not
specified.

CHAPTER 22. CONFIGURING A HIGH-AVAILABILITY CLUSTER USING SYSTEM ROLES

151

https://docs.ansible.com/ansible/latest/user_guide/vault.html

options (optional) - List of name-value dictionaries with transport options.

links (optional) - List of list of name-value dictionaries. Each list of name-value dictionaries
holds options for one Corosync link. It is recommended that you set the linknumber value for
each link. Otherwise, the first list of dictionaries is assigned by default to the first link, the
second one to the second link, and so on.

compression (optional) - List of name-value dictionaries configuring transport
compression. Supported only with the knet transport type.

crypto (optional) - List of name-value dictionaries configuring transport encryption. By
default, encryption is enabled. Supported only with the knet transport type.
For a list of allowed options, see the pcs -h cluster setup help page or the setup
description in the cluster section of the pcs(8) man page. For more detailed descriptions,
see the corosync.conf(5) man page.

The structure of the ha_cluster_transport variable is as follows:

ha_cluster_transport:
 type: knet
 options:
 - name: option1_name
 value: option1_value
 - name: option2_name
 value: option2_value
 links:
 -
 - name: option1_name
 value: option1_value
 - name: option2_name
 value: option2_value
 -
 - name: option1_name
 value: option1_value
 - name: option2_name
 value: option2_value
 compression:
 - name: option1_name
 value: option1_value
 - name: option2_name
 value: option2_value
 crypto:
 - name: option1_name
 value: option1_value
 - name: option2_name
 value: option2_value

For an example ha_cluster System Role playbook that configures a transport method, see
Configuring Corosync values in a high availability cluster .

ha_cluster_totem

(RHEL 9.1 and later) Configures Corosync totem. For a list of allowed options, see the pcs -h cluster
setup help page or the setup description in the cluster section of the pcs(8) man page. For a more
detailed description, see the corosync.conf(5) man page.
The structure of the ha_cluster_totem variable is as follows:

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

152

ha_cluster_totem:
 options:
 - name: option1_name
 value: option1_value
 - name: option2_name
 value: option2_value

For an example ha_cluster System Role playbook that configures a Corosync totem, see
Configuring Corosync values in a high availability cluster .

ha_cluster_quorum

(RHEL 9.1 and later) Configures cluster quorum. You can configure the auto_tie_breaker,
last_man_standing, last_man_standing_window, and wait_for_all quorum options. For
information on quorum options, see the votequorum(5) man page.
The structure of the ha_cluster_quorum variable is as follows:

ha_cluster_quorum:
 options:
 - name: option1_name
 value: option1_value
 - name: option2_name
 value: option2_value

For an example ha_cluster System Role playbook that configures cluster quorum, see Configuring
Corosync values in a high availability cluster.

ha_cluster_sbd_enabled

(RHEL 9.1 and later) A boolean flag which determines whether the cluster can use the SBD node
fencing mechanism. The default value of this variable is no.
For an example ha_cluster System Role playbook that enables SBD, see Configuring a high
availability cluster with SBD node fencing.

ha_cluster_sbd_options

(RHEL 9.1 and later) List of name-value dictionaries specifying SBD options. Supported options are:

delay-start - defaults to no

startmode - defaults to always

timeout-action - defaults to flush,reboot

watchdog-timeout - defaults to 5
For information on these options, see the Configuration via environment section of the
sbd(8) man page.

For an example ha_cluster System Role playbook that configures SBD options, see
Configuring a high availability cluster with SBD node fencing .

When using SBD, you can optionally configure watchdog and SBD devices for each node in an
inventory. For information on configuring watchdog and SBD devices in an inventory file, see
Specifying an inventory for the ha_cluster System Role .

ha_cluster_cluster_properties

CHAPTER 22. CONFIGURING A HIGH-AVAILABILITY CLUSTER USING SYSTEM ROLES

153

List of sets of cluster properties for Pacemaker cluster-wide configuration. Only one set of cluster
properties is supported.
The structure of a set of cluster properties is as follows:

ha_cluster_cluster_properties:
 - attrs:
 - name: property1_name
 value: property1_value
 - name: property2_name
 value: property2_value

By default, no properties are set.

The following example playbook configures a cluster consisting of node1 and node2 and sets the
stonith-enabled and no-quorum-policy cluster properties.

- hosts: node1 node2
 vars:
 ha_cluster_cluster_name: my-new-cluster
 ha_cluster_hacluster_password: password
 ha_cluster_cluster_properties:
 - attrs:
 - name: stonith-enabled
 value: 'true'
 - name: no-quorum-policy
 value: stop

 roles:
 - rhel-system-roles.ha_cluster

ha_cluster_resource_primitives

This variable defines pacemaker resources configured by the System Role, including stonith
resources, including stonith resources. The items you can configure for each resource are as follows:

id (mandatory) - ID of a resource.

agent (mandatory) - Name of a resource or stonith agent, for example
ocf:pacemaker:Dummy or stonith:fence_xvm. It is mandatory to specify stonith: for
stonith agents. For resource agents, it is possible to use a short name, such as Dummy,
instead of ocf:pacemaker:Dummy. However, if several agents with the same short name
are installed, the role will fail as it will be unable to decide which agent should be used.
Therefore, it is recommended that you use full names when specifying a resource agent.

instance_attrs (optional) - List of sets of the resource’s instance attributes. Currently, only
one set is supported. The exact names and values of attributes, as well as whether they are
mandatory or not, depend on the resource or stonith agent.

meta_attrs (optional) - List of sets of the resource’s meta attributes. Currently, only one set
is supported.

operations (optional) - List of the resource’s operations.

action (mandatory) - Operation action as defined by pacemaker and the resource or
stonith agent.

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

154

attrs (mandatory) - Operation options, at least one option must be specified.

The structure of the resource definition that you configure with the ha_cluster System Role is as
follows.

 - id: resource-id
 agent: resource-agent
 instance_attrs:
 - attrs:
 - name: attribute1_name
 value: attribute1_value
 - name: attribute2_name
 value: attribute2_value
 meta_attrs:
 - attrs:
 - name: meta_attribute1_name
 value: meta_attribute1_value
 - name: meta_attribute2_name
 value: meta_attribute2_value
 operations:
 - action: operation1-action
 attrs:
 - name: operation1_attribute1_name
 value: operation1_attribute1_value
 - name: operation1_attribute2_name
 value: operation1_attribute2_value
 - action: operation2-action
 attrs:
 - name: operation2_attribute1_name
 value: operation2_attribute1_value
 - name: operation2_attribute2_name
 value: operation2_attribute2_value

By default, no resources are defined.

For an example ha_cluster System Role playbook that includes resource configuration, see
Configuring a high availability cluster with fencing and resources

.

ha_cluster_resource_groups

This variable defines pacemaker resource groups configured by the System Role. The items you can
configure for each resource group are as follows:

id (mandatory) - ID of a group.

resources (mandatory) - List of the group’s resources. Each resource is referenced by its ID
and the resources must be defined in the ha_cluster_resource_primitives variable. At least
one resource must be listed.

meta_attrs (optional) - List of sets of the group’s meta attributes. Currently, only one set is
supported.

The structure of the resource group definition that you configure with the ha_cluster System Role is
as follows.

CHAPTER 22. CONFIGURING A HIGH-AVAILABILITY CLUSTER USING SYSTEM ROLES

155

ha_cluster_resource_groups:
 - id: group-id
 resource_ids:
 - resource1-id
 - resource2-id
 meta_attrs:
 - attrs:
 - name: group_meta_attribute1_name
 value: group_meta_attribute1_value
 - name: group_meta_attribute2_name
 value: group_meta_attribute2_value

By default, no resource groups are defined.

For an example ha_cluster System Role playbook that includes resource group configuration, see
Configuring a high availability cluster with fencing and resources

.

ha_cluster_resource_clones

This variable defines pacemaker resource clones configured by the System Role. The items you can
configure for a resource clone are as follows:

resource_id (mandatory) - Resource to be cloned. The resource must be defined in the
ha_cluster_resource_primitives variable or the ha_cluster_resource_groups variable.

promotable (optional) - Indicates whether the resource clone to be created is a promotable
clone, indicated as yes or no.

id (optional) - Custom ID of the clone. If no ID is specified, it will be generated. A warning will
be displayed if this option is not supported by the cluster.

meta_attrs (optional) - List of sets of the clone’s meta attributes. Currently, only one set is
supported.

The structure of the resource clone definition that you configure with the ha_cluster System Role is
as follows.

ha_cluster_resource_clones:
 - resource_id: resource-to-be-cloned
 promotable: yes
 id: custom-clone-id
 meta_attrs:
 - attrs:
 - name: clone_meta_attribute1_name
 value: clone_meta_attribute1_value
 - name: clone_meta_attribute2_name
 value: clone_meta_attribute2_value

By default, no resource clones are defined.

For an example ha_cluster System Role playbook that includes resource clone configuration, see
Configuring a high availability cluster with fencing and resources

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

156

.

ha_cluster_constraints_location

This variable defines resource location constraints. Resource location constraints indicate which
nodes a resource can run on. You can specify a resources specified by a resource ID or by a pattern,
which can match more than one resource. You can specify a node by a node name or by a rule.
The items you can configure for a resource location constraint are as follows:

resource (mandatory) - Specification of a resource the constraint applies to.

node (mandatory) - Name of a node the resource should prefer or avoid.

id (optional) - ID of the constraint. If not specified, it will be autogenerated.

options (optional) - List of name-value dictionaries.

score - Sets the weight of the constraint.

A positive score value means the resource prefers running on the node.

A negative score value means the resource should avoid running on the node.

A score value of -INFINITY means the resource must avoid running on the node.

If score is not specified, the score value defaults to INFINITY.

By default no resource location constraints are defined.
The structure of a resource location constraint specifying a resource ID and node name is as follows:

ha_cluster_constraints_location:
 - resource:
 id: resource-id
 node: node-name
 id: constraint-id
 options:
 - name: score
 value: score-value
 - name: option-name
 value: option-value

The items that you configure for a resource location constraint that specifies a resource pattern are
the same items that you configure for a resource location constraint that specifies a resource ID,
with the exception of the resource specification itself. The item that you specify for the resource
specification is as follows:

pattern (mandatory) - POSIX extended regular expression resource IDs are matched
against.

The structure of a resource location constraint specifying a resource pattern and node name is as
follows:

ha_cluster_constraints_location:
 - resource:
 pattern: resource-pattern
 node: node-name
 id: constraint-id

CHAPTER 22. CONFIGURING A HIGH-AVAILABILITY CLUSTER USING SYSTEM ROLES

157

 options:
 - name: score
 value: score-value
 - name: resource-discovery
 value: resource-discovery-value

The items you can configure for a resource location constraint that specifies a resource ID and a rule
are as follows:

resource (mandatory) - Specification of a resource the constraint applies to.

id (mandatory) - Resource ID.

role (optional) - The resource role to which the constraint is limited: Started,
Unpromoted, Promoted.

rule (mandatory) - Constraint rule written using pcs syntax. For further information, see the
constraint location section of the pcs(8) man page.

Other items to specify have the same meaning as for a resource constraint that does not
specify a rule.

The structure of a resource location constraint that specifies a resource ID and a rule is as follows:

ha_cluster_constraints_location:
 - resource:
 id: resource-id
 role: resource-role
 rule: rule-string
 id: constraint-id
 options:
 - name: score
 value: score-value
 - name: resource-discovery
 value: resource-discovery-value

The items that you configure for a resource location constraint that specifies a resource pattern and
a rule are the same items that you configure for a resource location constraint that specifies a
resource ID and a rule, with the exception of the resource specification itself. The item that you
specify for the resource specification is as follows:

pattern (mandatory) - POSIX extended regular expression resource IDs are matched
against.

The structure of a resource location constraint that specifies a resource pattern and a rule is as
follows:

ha_cluster_constraints_location:
 - resource:
 pattern: resource-pattern
 role: resource-role
 rule: rule-string
 id: constraint-id
 options:
 - name: score

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

158

 value: score-value
 - name: resource-discovery
 value: resource-discovery-value

For an example ha_cluster system role playbook that creates a cluster with resource constraints, see
Configuring a high availability cluster with resource constraints

.

ha_cluster_constraints_colocation

This variable defines resource colocation constraints. Resource colocation constraints indicate that
the location of one resource depends on the location of another one. There are two types of
colocation constraints: a simple colocation constraint for two resources, and a set colocation
constraint for multiple resources.
The items you can configure for a simple resource colocation constraint are as follows:

resource_follower (mandatory) - A resource that should be located relative to
resource_leader.

id (mandatory) - Resource ID.

role (optional) - The resource role to which the constraint is limited: Started,
Unpromoted, Promoted.

resource_leader (mandatory) - The cluster will decide where to put this resource first and
then decide where to put resource_follower.

id (mandatory) - Resource ID.

role (optional) - The resource role to which the constraint is limited: Started,
Unpromoted, Promoted.

id (optional) - ID of the constraint. If not specified, it will be autogenerated.

options (optional) - List of name-value dictionaries.

score - Sets the weight of the constraint.

Positive score values indicate the resources should run on the same node.

Negative score values indicate the resources should run on different nodes.

A score value of +INFINITY indicates the resources must run on the same node.

A score value of -INFINITY indicates the resources must run on different nodes.

If score is not specified, the score value defaults to INFINITY.

By default no resource colocation constraints are defined.
The structure of a simple resource colocation constraint is as follows:

ha_cluster_constraints_colocation:
 - resource_follower:
 id: resource-id1
 role: resource-role1
 resource_leader:

CHAPTER 22. CONFIGURING A HIGH-AVAILABILITY CLUSTER USING SYSTEM ROLES

159

 id: resource-id2
 role: resource-role2
 id: constraint-id
 options:
 - name: score
 value: score-value
 - name: option-name
 value: option-value

The items you can configure for a resource set colocation constraint are as follows:

resource_sets (mandatory) - List of resource sets.

resource_ids (mandatory) - List of resources in a set.

options (optional) - List of name-value dictionaries fine-tuning how resources in the
sets are treated by the constraint.

id (optional) - Same values as for a simple colocation constraint.

options (optional) - Same values as for a simple colocation constraint.

The structure of a resource set colocation constraint is as follows:

ha_cluster_constraints_colocation:
 - resource_sets:
 - resource_ids:
 - resource-id1
 - resource-id2
 options:
 - name: option-name
 value: option-value
 id: constraint-id
 options:
 - name: score
 value: score-value
 - name: option-name
 value: option-value

For an example ha_cluster system role playbook that creates a cluster with resource constraints, see
Configuring a high availability cluster with resource constraints

.

ha_cluster_constraints_order

This variable defines resource order constraints. Resource order constraints indicate the order in
which certain resource actions should occur. There are two types of resource order constraints: a
simple order constraint for two resources, and a set order constraint for multiple resources.
The items you can configure for a simple resource order constraint are as follows:

resource_first (mandatory) - Resource that the resource_then resource depends on.

id (mandatory) - Resource ID.

action (optional) - The action that must complete before an action can be initiated for

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

160

action (optional) - The action that must complete before an action can be initiated for
the resource_then resource. Allowed values: start, stop, promote, demote.

resource_then (mandatory) - The dependent resource.

id (mandatory) - Resource ID.

action (optional) - The action that the resource can execute only after the action on the
resource_first resource has completed. Allowed values: start, stop, promote, demote.

id (optional) - ID of the constraint. If not specified, it will be autogenerated.

options (optional) - List of name-value dictionaries.

By default no resource order constraints are defined.
The structure of a simple resource order constraint is as follows:

ha_cluster_constraints_order:
 - resource_first:
 id: resource-id1
 action: resource-action1
 resource_then:
 id: resource-id2
 action: resource-action2
 id: constraint-id
 options:
 - name: score
 value: score-value
 - name: option-name
 value: option-value

The items you can configure for a resource set order constraint are as follows:

resource_sets (mandatory) - List of resource sets.

resource_ids (mandatory) - List of resources in a set.

options (optional) - List of name-value dictionaries fine-tuning how resources in the
sets are treated by the constraint.

id (optional) - Same values as for a simple order constraint.

options (optional) - Same values as for a simple order constraint.

The structure of a resource set order constraint is as follows:

ha_cluster_constraints_order:
 - resource_sets:
 - resource_ids:
 - resource-id1
 - resource-id2
 options:
 - name: option-name
 value: option-value
 id: constraint-id
 options:

CHAPTER 22. CONFIGURING A HIGH-AVAILABILITY CLUSTER USING SYSTEM ROLES

161

 - name: score
 value: score-value
 - name: option-name
 value: option-value

For an example ha_cluster system role playbook that creates a cluster with resource constraints, see
Configuring a high availability cluster with resource constraints

.

ha_cluster_constraints_ticket

This variable defines resource ticket constraints. Resource ticket constraints indicate the resources
that depend on a certain ticket. There are two types of resource ticket constraints: a simple ticket
constraint for one resource, and a ticket order constraint for multiple resources.
The items you can configure for a simple resource ticket constraint are as follows:

resource (mandatory) - Specification of a resource the constraint applies to.

id (mandatory) - Resource ID.

role (optional) - The resource role to which the constraint is limited: Started,
Unpromoted, Promoted.

ticket (mandatory) - Name of a ticket the resource depends on.

id (optional) - ID of the constraint. If not specified, it will be autogenerated.

options (optional) - List of name-value dictionaries.

loss-policy (optional) - Action to perform on the resource if the ticket is revoked.

By default no resource ticket constraints are defined.
The structure of a simple resource ticket constraint is as follows:

ha_cluster_constraints_ticket:
 - resource:
 id: resource-id
 role: resource-role
 ticket: ticket-name
 id: constraint-id
 options:
 - name: loss-policy
 value: loss-policy-value
 - name: option-name
 value: option-value

The items you can configure for a resource set ticket constraint are as follows:

resource_sets (mandatory) - List of resource sets.

resource_ids (mandatory) - List of resources in a set.

options (optional) - List of name-value dictionaries fine-tuning how resources in the
sets are treated by the constraint.

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

162

ticket (mandatory) - Same value as for a simple ticket constraint.

id (optional) - Same value as for a simple ticket constraint.

options (optional) - Same values as for a simple ticket constraint.

The structure of a resource set ticket constraint is as follows:

ha_cluster_constraints_ticket:
 - resource_sets:
 - resource_ids:
 - resource-id1
 - resource-id2
 options:
 - name: option-name
 value: option-value
 ticket: ticket-name
 id: constraint-id
 options:
 - name: option-name
 value: option-value

For an example ha_cluster system role playbook that creates a cluster with resource constraints, see
Configuring a high availability cluster with resource constraints

.

22.2. SPECIFYING AN INVENTORY FOR THE HA_CLUSTER SYSTEM ROLE

When configuring an HA cluster using the ha_cluster System Role playbook, you configure the names
and addresses of the nodes for the cluster in an inventory.

22.2.1. Configuring node names and addresses in an inventory

For each node in an inventory, you can optionally specify the following items:

node_name - the name of a node in a cluster.

pcs_address - an address used by pcs to communicate with the node. It can be a name, FQDN
or an IP address and it can include a port number.

corosync_addresses - list of addresses used by Corosync. All nodes which form a particular
cluster must have the same number of addresses and the order of the addresses matters.

The following example shows an inventory with targets node1 and node2. node1 and node2 must be
either fully qualified domain names or must otherwise be able to connect to the nodes as when, for
example, the names are resolvable through the /etc/hosts file.

all:
 hosts:
 node1:
 ha_cluster:
 node_name: node-A
 pcs_address: node1-address

CHAPTER 22. CONFIGURING A HIGH-AVAILABILITY CLUSTER USING SYSTEM ROLES

163

 corosync_addresses:
 - 192.168.1.11
 - 192.168.2.11
 node2:
 ha_cluster:
 node_name: node-B
 pcs_address: node2-address:2224
 corosync_addresses:
 - 192.168.1.12
 - 192.168.2.12

22.2.2. Configuring watchdog and SBD devices in an inventory (RHEL 9.1 and later)

When using SBD, you can optionally configure watchdog and SBD devices for each node in an inventory.
Even though all SBD devices must be shared to and accesible from all nodes, each node can use
different names for the devices. Watchdog devices can be different for each node as well. For
information on the SBD variables you can set in a system role playbook, see the entries for
ha_cluster_sbd_enabled and ha_cluster_sbd_options in ha_cluster System Role variables .

For each node in an inventory, you can optionally specify the following items:

sbd_watchdog - Watchdog device to be used by SBD. Defaults to /dev/watchdog if not set.

sbd_devices - Devices to use for exchanging SBD messages and for monitoring. Defaults to
empty list if not set.

The following example shows an inventory that configures watchdog and SBD devices for targets
node1 and node2.

all:
 hosts:
 node1:
 ha_cluster:
 sbd_watchdog: /dev/watchdog2
 sbd_devices:
 - /dev/vdx
 - /dev/vdy
 node2:
 ha_cluster:
 sbd_watchdog: /dev/watchdog1
 sbd_devices:
 - /dev/vdw
 - /dev/vdz

22.3. CONFIGURING A HIGH AVAILABILITY CLUSTER RUNNING NO
RESOURCES

The following procedure uses the ha_cluster System Role, to create a high availability cluster with no
fencing configured and which runs no resources.

Prerequisites

You have ansible-core installed on the node from which you want to run the playbook.

NOTE

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

164

NOTE

You do not need to have ansible-core installed on the cluster member nodes.

You have the rhel-system-roles package installed on the system from which you want to run
the playbook.

The systems that you will use as your cluster members must have active subscription coverage
for RHEL and the RHEL High Availability Add-On.

WARNING

The ha_cluster System Role replaces any existing cluster configuration on the
specified nodes. Any settings not specified in the role will be lost.

Procedure

1. Create an inventory file specifying the nodes in the cluster, as described in Specifying an
inventory for the ha_cluster System Role

2. Create a playbook file, for example new-cluster.yml.

NOTE

When creating your playbook file for production, it is recommended that you
vault encrypt the password, as described in Encrypting content with Ansible Vault .

The following example playbook file configures a cluster with no fencing configured and which
runs no resources.

- hosts: node1 node2
 vars:
 ha_cluster_cluster_name: my-new-cluster
 ha_cluster_hacluster_password: password

 roles:
 - rhel-system-roles.ha_cluster

3. Save the file.

4. Run the playbook, specifying the path to the inventory file inventory you created in Step 1.

ansible-playbook -i inventory new-cluster.yml

22.4. CONFIGURING A HIGH AVAILABILITY CLUSTER WITH FENCING
AND RESOURCES

The following procedure uses the ha_cluster System Role to create a high availability cluster that

CHAPTER 22. CONFIGURING A HIGH-AVAILABILITY CLUSTER USING SYSTEM ROLES

165

https://docs.ansible.com/ansible/latest/user_guide/vault.html

The following procedure uses the ha_cluster System Role to create a high availability cluster that
includes a fencing device, cluster resources, resource groups, and a cloned resource.

Prerequisites

You have ansible-core installed on the node from which you want to run the playbook.

NOTE

You do not need to have ansible-core installed on the cluster member nodes.

You have the rhel-system-roles package installed on the system from which you want to run
the playbook.

The systems that you will use as your cluster members must have active subscription coverage
for RHEL and the RHEL High Availability Add-On.

WARNING

The ha_cluster System Role replaces any existing cluster configuration on the
specified nodes. Any settings not specified in the role will be lost.

Procedure

1. Create an inventory file specifying the nodes in the cluster, as described in Specifying an
inventory for the ha_cluster System Role

2. Create a playbook file, for example new-cluster.yml.

NOTE

When creating your playbook file for production, it is recommended that you
vault encrypt the password, as described in Encrypting content with Ansible Vault .

The following example playbook file configures a cluster that includes fencing, several
resources, and a resource group. It also includes a resource clone for the resource group.

- hosts: node1 node2
 vars:
 ha_cluster_cluster_name: my-new-cluster
 ha_cluster_hacluster_password: password
 ha_cluster_resource_primitives:
 - id: xvm-fencing
 agent: 'stonith:fence_xvm'
 instance_attrs:
 - attrs:
 - name: pcmk_host_list
 value: node1 node2
 - id: simple-resource

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

166

https://docs.ansible.com/ansible/latest/user_guide/vault.html

 agent: 'ocf:pacemaker:Dummy'
 - id: resource-with-options
 agent: 'ocf:pacemaker:Dummy'
 instance_attrs:
 - attrs:
 - name: fake
 value: fake-value
 - name: passwd
 value: passwd-value
 meta_attrs:
 - attrs:
 - name: target-role
 value: Started
 - name: is-managed
 value: 'true'
 operations:
 - action: start
 attrs:
 - name: timeout
 value: '30s'
 - action: monitor
 attrs:
 - name: timeout
 value: '5'
 - name: interval
 value: '1min'
 - id: dummy-1
 agent: 'ocf:pacemaker:Dummy'
 - id: dummy-2
 agent: 'ocf:pacemaker:Dummy'
 - id: dummy-3
 agent: 'ocf:pacemaker:Dummy'
 - id: simple-clone
 agent: 'ocf:pacemaker:Dummy'
 - id: clone-with-options
 agent: 'ocf:pacemaker:Dummy'
 ha_cluster_resource_groups:
 - id: simple-group
 resource_ids:
 - dummy-1
 - dummy-2
 meta_attrs:
 - attrs:
 - name: target-role
 value: Started
 - name: is-managed
 value: 'true'
 - id: cloned-group
 resource_ids:
 - dummy-3
 ha_cluster_resource_clones:
 - resource_id: simple-clone
 - resource_id: clone-with-options
 promotable: yes
 id: custom-clone-id
 meta_attrs:

CHAPTER 22. CONFIGURING A HIGH-AVAILABILITY CLUSTER USING SYSTEM ROLES

167

 - attrs:
 - name: clone-max
 value: '2'
 - name: clone-node-max
 value: '1'
 - resource_id: cloned-group
 promotable: yes

 roles:
 - rhel-system-roles.ha_cluster

3. Save the file.

4. Run the playbook, specifying the path to the inventory file inventory you created in Step 1.

ansible-playbook -i inventory new-cluster.yml

22.5. CONFIGURING A HIGH AVAILABILITY CLUSTER WITH RESOURCE
CONSTRAINTS

The following procedure uses the ha_cluster system role to create a high availability cluster that
includes resource location constraints, resource colocation constraints, resource order constraints, and
resource ticket constraints.

Prerequisites

You have ansible-core installed on the node from which you want to run the playbook.

NOTE

You do not need to have ansible-core installed on the cluster member nodes.

You have the rhel-system-roles package installed on the system from which you want to run
the playbook.

The systems that you will use as your cluster members must have active subscription coverage
for RHEL and the RHEL High Availability Add-On.

WARNING

The ha_cluster system role replaces any existing cluster configuration on the
specified nodes. Any settings not specified in the role will be lost.

Procedure

1. Create an inventory file specifying the nodes in the cluster, as described in Specifying an
inventory for the ha_cluster system role

2. Create a playbook file, for example new-cluster.yml.

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

168

NOTE

When creating your playbook file for production, it is recommended that you
vault encrypt the password, as described in Encrypting content with Ansible Vault .

The following example playbook file configures a cluster that includes resource location
constraints, resource colocation constraints, resource order constraints, and resource ticket
constraints.

- hosts: node1 node2
 vars:
 ha_cluster_cluster_name: my-new-cluster
 ha_cluster_hacluster_password: password
 # In order to use constraints, we need resources the constraints will apply
 # to.
 ha_cluster_resource_primitives:
 - id: xvm-fencing
 agent: 'stonith:fence_xvm'
 instance_attrs:
 - attrs:
 - name: pcmk_host_list
 value: node1 node2
 - id: dummy-1
 agent: 'ocf:pacemaker:Dummy'
 - id: dummy-2
 agent: 'ocf:pacemaker:Dummy'
 - id: dummy-3
 agent: 'ocf:pacemaker:Dummy'
 - id: dummy-4
 agent: 'ocf:pacemaker:Dummy'
 - id: dummy-5
 agent: 'ocf:pacemaker:Dummy'
 - id: dummy-6
 agent: 'ocf:pacemaker:Dummy'
 # location constraints
 ha_cluster_constraints_location:
 # resource ID and node name
 - resource:
 id: dummy-1
 node: node1
 options:
 - name: score
 value: 20
 # resource pattern and node name
 - resource:
 pattern: dummy-\d+
 node: node1
 options:
 - name: score
 value: 10
 # resource ID and rule
 - resource:
 id: dummy-2
 rule: '#uname eq node2 and date in_range 2022-01-01 to 2022-02-28'
 # resource pattern and rule

CHAPTER 22. CONFIGURING A HIGH-AVAILABILITY CLUSTER USING SYSTEM ROLES

169

https://docs.ansible.com/ansible/latest/user_guide/vault.html

 - resource:
 pattern: dummy-\d+
 rule: node-type eq weekend and date-spec weekdays=6-7
 # colocation constraints
 ha_cluster_constraints_colocation:
 # simple constraint
 - resource_leader:
 id: dummy-3
 resource_follower:
 id: dummy-4
 options:
 - name: score
 value: -5
 # set constraint
 - resource_sets:
 - resource_ids:
 - dummy-1
 - dummy-2
 - resource_ids:
 - dummy-5
 - dummy-6
 options:
 - name: sequential
 value: "false"
 options:
 - name: score
 value: 20
 # order constraints
 ha_cluster_constraints_order:
 # simple constraint
 - resource_first:
 id: dummy-1
 resource_then:
 id: dummy-6
 options:
 - name: symmetrical
 value: "false"
 # set constraint
 - resource_sets:
 - resource_ids:
 - dummy-1
 - dummy-2
 options:
 - name: require-all
 value: "false"
 - name: sequential
 value: "false"
 - resource_ids:
 - dummy-3
 - resource_ids:
 - dummy-4
 - dummy-5
 options:
 - name: sequential
 value: "false"
 # ticket constraints

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

170

 ha_cluster_constraints_ticket:
 # simple constraint
 - resource:
 id: dummy-1
 ticket: ticket1
 options:
 - name: loss-policy
 value: stop
 # set constraint
 - resource_sets:
 - resource_ids:
 - dummy-3
 - dummy-4
 - dummy-5
 ticket: ticket2
 options:
 - name: loss-policy
 value: fence

 roles:
 - linux-system-roles.ha_cluster

3. Save the file.

4. Run the playbook, specifying the path to the inventory file inventory you created in Step 1.

ansible-playbook -i inventory new-cluster.yml

22.6. CONFIGURING COROSYNC VALUES IN A HIGH AVAILABILITY
CLUSTER

(RHEL 9.1 and later) The following procedure uses the ha_cluster System Role to create a high
availability cluster that configures Corosync values.

Prerequisites

You have ansible-core installed on the node from which you want to run the playbook.

NOTE

You do not need to have ansible-core installed on the cluster member nodes.

You have the rhel-system-roles package installed on the system from which you want to run
the playbook.

The systems that you will use as your cluster members have active subscription coverage for
RHEL and the RHEL High Availability Add-On.

CHAPTER 22. CONFIGURING A HIGH-AVAILABILITY CLUSTER USING SYSTEM ROLES

171

WARNING

The ha_cluster System Role replaces any existing cluster configuration on the
specified nodes. Any settings not specified in the role will be lost.

Procedure

1. Create an inventory file specifying the nodes in the cluster, as described in Specifying an
inventory for the ha_cluster System Role.

2. Create a playbook file, for example new-cluster.yml.

NOTE

When creating your playbook file for production, it is recommended that you
vault encrypt the password, as described in Encrypting content with Ansible Vault .

The following example playbook file configures a cluster that configures Corosync properties.

- hosts: node1 node2
 vars:
 ha_cluster_cluster_name: my-new-cluster
 ha_cluster_hacluster_password: password
 ha_cluster_transport:
 type: knet
 options:
 - name: ip_version
 value: ipv4-6
 - name: link_mode
 value: active
 links:
 -
 - name: linknumber
 value: 1
 - name: link_priority
 value: 5
 -
 - name: linknumber
 value: 0
 - name: link_priority
 value: 10
 compression:
 - name: level
 value: 5
 - name: model
 value: zlib
 crypto:
 - name: cipher
 value: none
 - name: hash
 value: none

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

172

https://docs.ansible.com/ansible/latest/user_guide/vault.html

 ha_cluster_totem:
 options:
 - name: block_unlisted_ips
 value: 'yes'
 - name: send_join
 value: 0
 ha_cluster_quorum:
 options:
 - name: auto_tie_breaker
 value: 1
 - name: wait_for_all
 value: 1

 roles:
 - linux-system-roles.ha_cluster

3. Save the file.

4. Run the playbook, specifying the path to the inventory file inventory you created in Step 1.

ansible-playbook -i inventory new-cluster.yml

22.7. CONFIGURING A HIGH AVAILABILITY CLUSTER WITH SBD NODE
FENCING

(RHEL 9.1 and later) The following procedure uses the ha_cluster System Role to create a high
availability cluster that uses SBD node fencing.

Prerequisites

You have ansible-core installed on the node from which you want to run the playbook.

NOTE

You do not need to have ansible-core installed on the cluster member nodes.

You have the rhel-system-roles package installed on the system from which you want to run
the playbook.

The systems that you will use as your cluster members must have active subscription coverage
for RHEL and the RHEL High Availability Add-On.

WARNING

The ha_cluster System Role replaces any existing cluster configuration on the
specified nodes. Any settings not specified in the role will be lost.

Procedure

CHAPTER 22. CONFIGURING A HIGH-AVAILABILITY CLUSTER USING SYSTEM ROLES

173

1. Create an inventory file specifying the nodes in the cluster, as described in Specifying an
inventory for the ha_cluster System Role
You can optionally configure watchdog and SBD devices for each node in the cluster in an
inventory file.

2. Create a playbook file, for example new-cluster.yml.

NOTE

When creating your playbook file for production, it is recommended that you
vault encrypt the password, as described in Encrypting content with Ansible Vault .

The following example playbook file configures a cluster that uses SBD fencing.

- hosts: node1 node2
 vars:
 ha_cluster_cluster_name: my-new-cluster
 ha_cluster_hacluster_password: password
 ha_cluster_sbd_enabled: yes
 ha_cluster_sbd_options:
 - name: delay-start
 value: 'no'
 - name: startmode
 value: always
 - name: timeout-action
 value: 'flush,reboot'
 - name: watchdog-timeout
 value: 5

 roles:
 - linux-system-roles.ha_cluster

3. Save the file.

4. Run the playbook, specifying the path to the inventory file inventory you created in Step 1.

ansible-playbook -i inventory new-cluster.yml

22.8. CONFIGURING AN APACHE HTTP SERVER IN A HIGH
AVAILABILITY CLUSTER WITH THE HA_CLUSTER SYSTEM ROLE

This procedure configures an active/passive Apache HTTP server in a two-node Red Hat Enterprise
Linux High Availability Add-On cluster using the ha_cluster System Role.

Prerequisites

You have ansible-core installed on the node from which you want to run the playbook.

NOTE

You do not need to have ansible-core installed on the cluster member nodes.

You have the rhel-system-roles package installed on the system from which you want to run

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

174

https://docs.ansible.com/ansible/latest/user_guide/vault.html

You have the rhel-system-roles package installed on the system from which you want to run
the playbook.

The systems that you will use as your cluster members must have active subscription coverage
for RHEL and the RHEL High Availability Add-On.

Your system includes a public virtual IP address, required for Apache.

Your system includes shared storage for the nodes in the cluster, using iSCSI, Fibre Channel, or
other shared network block device.

You have configured an LVM logical volume with an XFS file system, as described in Configuring
an LVM volume with an XFS file system in a Pacemaker cluster.

You have configured an Apache HTTP server, as described in Configuring an Apache HTTP
Server.

Your system includes an APC power switch that will be used to fence the cluster nodes.

WARNING

The ha_cluster System Role replaces any existing cluster configuration on the
specified nodes. Any settings not specified in the role will be lost.

Procedure

1. Create an inventory file specifying the nodes in the cluster, as described in Specifying an
inventory for the ha_cluster System Role

2. Create a playbook file, for example http-cluster.yml.

NOTE

When creating your playbook file for production, it is recommended that you
vault encrypt the password, as described in Encrypting content with Ansible Vault .

The following example playbook file configures a previously-created Apache HTTP server in an
active/passive two-node HA cluster

This example uses an APC power switch with a host name of zapc.example.com. If the cluster
does not use any other fence agents, you can optionally list only the fence agents your cluster
requires when defining the ha_cluster_fence_agent_packages variable, as in this example.

- hosts: z1.example.com z2.example.com
 roles:
 - rhel-system-roles.ha_cluster
 vars:
 ha_cluster_hacluster_password: password
 ha_cluster_cluster_name: my_cluster
 ha_cluster_fence_agent_packages:
 - fence-agents-apc-snmp

CHAPTER 22. CONFIGURING A HIGH-AVAILABILITY CLUSTER USING SYSTEM ROLES

175

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_and_managing_high_availability_clusters/assembly_configuring-active-passive-http-server-in-a-cluster-configuring-and-managing-high-availability-clusters#proc_configuring-lvm-volume-with-ext4-file-system-configuring-ha-http
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_and_managing_high_availability_clusters/assembly_configuring-active-passive-http-server-in-a-cluster-configuring-and-managing-high-availability-clusters#proc_configuring-apache-http-web-server-configuring-ha-http
https://docs.ansible.com/ansible/latest/user_guide/vault.html

 ha_cluster_resource_primitives:
 - id: myapc
 agent: stonith:fence_apc_snmp
 instance_attrs:
 - attrs:
 - name: ipaddr
 value: zapc.example.com
 - name: pcmk_host_map
 value: z1.example.com:1;z2.example.com:2
 - name: login
 value: apc
 - name: passwd
 value: apc
 - id: my_lvm
 agent: ocf:heartbeat:LVM-activate
 instance_attrs:
 - attrs:
 - name: vgname
 value: my_vg
 - name: vg_access_mode
 value: system_id
 - id: my_fs
 agent: Filesystem
 instance_attrs:
 - attrs:
 - name: device
 value: /dev/my_vg/my_lv
 - name: directory
 value: /var/www
 - name: fstype
 value: xfs
 - id: VirtualIP
 agent: IPaddr2
 instance_attrs:
 - attrs:
 - name: ip
 value: 198.51.100.3
 - name: cidr_netmask
 value: 24
 - id: Website
 agent: apache
 instance_attrs:
 - attrs:
 - name: configfile
 value: /etc/httpd/conf/httpd.conf
 - name: statusurl
 value: http://127.0.0.1/server-status
 ha_cluster_resource_groups:
 - id: apachegroup
 resource_ids:
 - my_lvm
 - my_fs
 - VirtualIP
 - Website

3. Save the file.

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

176

4. Run the playbook, specifying the path to the inventory file inventory you created in Step 1.

ansible-playbook -i inventory http-cluster.yml

5. When you use the apache resource agent to manage Apache, it does not use systemd.
Because of this, you must edit the logrotate script supplied with Apache so that it does not use
systemctl to reload Apache.
Remove the following line in the /etc/logrotate.d/httpd file on each node in the cluster.

/bin/systemctl reload httpd.service > /dev/null 2>/dev/null || true

Replace the line you removed with the following three lines, specifying
/var/run/httpd-website.pid as the PID file path where website is the name of the Apache
resource. In this example, the Apache resource name is Website.

/usr/bin/test -f /var/run/httpd-Website.pid >/dev/null 2>/dev/null &&
/usr/bin/ps -q $(/usr/bin/cat /var/run/httpd-Website.pid) >/dev/null 2>/dev/null &&
/usr/sbin/httpd -f /etc/httpd/conf/httpd.conf -c "PidFile /var/run/httpd-Website.pid" -k graceful >
/dev/null 2>/dev/null || true

Verification steps

1. From one of the nodes in the cluster, check the status of the cluster. Note that all four
resources are running on the same node, z1.example.com.
If you find that the resources you configured are not running, you can run the pcs resource
debug-start resource command to test the resource configuration.

[root@z1 ~]# pcs status
Cluster name: my_cluster
Last updated: Wed Jul 31 16:38:51 2013
Last change: Wed Jul 31 16:42:14 2013 via crm_attribute on z1.example.com
Stack: corosync
Current DC: z2.example.com (2) - partition with quorum
Version: 1.1.10-5.el7-9abe687
2 Nodes configured
6 Resources configured

Online: [z1.example.com z2.example.com]

Full list of resources:
 myapc (stonith:fence_apc_snmp): Started z1.example.com
 Resource Group: apachegroup
 my_lvm (ocf::heartbeat:LVM-activate): Started z1.example.com
 my_fs (ocf::heartbeat:Filesystem): Started z1.example.com
 VirtualIP (ocf::heartbeat:IPaddr2): Started z1.example.com
 Website (ocf::heartbeat:apache): Started z1.example.com

2. Once the cluster is up and running, you can point a browser to the IP address you defined as the
IPaddr2 resource to view the sample display, consisting of the simple word "Hello".

Hello

3. To test whether the resource group running on z1.example.com fails over to node

CHAPTER 22. CONFIGURING A HIGH-AVAILABILITY CLUSTER USING SYSTEM ROLES

177

3. To test whether the resource group running on z1.example.com fails over to node
z2.example.com, put node z1.example.com in standby mode, after which the node will no
longer be able to host resources.

[root@z1 ~]# pcs node standby z1.example.com

4. After putting node z1 in standby mode, check the cluster status from one of the nodes in the
cluster. Note that the resources should now all be running on z2.

[root@z1 ~]# pcs status
Cluster name: my_cluster
Last updated: Wed Jul 31 17:16:17 2013
Last change: Wed Jul 31 17:18:34 2013 via crm_attribute on z1.example.com
Stack: corosync
Current DC: z2.example.com (2) - partition with quorum
Version: 1.1.10-5.el7-9abe687
2 Nodes configured
6 Resources configured

Node z1.example.com (1): standby
Online: [z2.example.com]

Full list of resources:

 myapc (stonith:fence_apc_snmp): Started z1.example.com
 Resource Group: apachegroup
 my_lvm (ocf::heartbeat:LVM-activate): Started z2.example.com
 my_fs (ocf::heartbeat:Filesystem): Started z2.example.com
 VirtualIP (ocf::heartbeat:IPaddr2): Started z2.example.com
 Website (ocf::heartbeat:apache): Started z2.example.com

The web site at the defined IP address should still display, without interruption.

5. To remove z1 from standby mode, enter the following command.

[root@z1 ~]# pcs node unstandby z1.example.com

NOTE

Removing a node from standby mode does not in itself cause the resources to
fail back over to that node. This will depend on the resource-stickiness value for
the resources. For information about the resource-stickiness meta attribute,
see Configuring a resource to prefer its current node .

22.9. ADDITIONAL RESOURCES

Preparing a control node and managed nodes to use RHEL System Roles

Documentation installed with the rhel-system-roles package in /usr/share/ansible/roles/rhel-
system-roles.logging/README.html

RHEL System Roles KB article

The ansible-playbook(1) man page.

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

178

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_and_managing_high_availability_clusters/assembly_determining-which-node-a-resource-runs-on-configuring-and-managing-high-availability-clusters#proc_setting-resource-stickiness-determining-which-node-a-resource-runs-on
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/administration_and_configuration_tasks_using_system_roles_in_rhel/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_administration-and-configuration-tasks-using-system-roles-in-rhel
https://access.redhat.com/node/3050101

CHAPTER 23. INSTALLING AND CONFIGURING WEB
CONSOLE WITH THE COCKPIT RHEL SYSTEM ROLE

With the cockpit RHEL System Role, you can install and configure the web console in your system.

23.1. THE COCKPIT SYSTEM ROLE

You can use the cockpit System Role to automatically deploy and enable the web console and thus be
able to manage your RHEL systems from a web browser.

23.2. VARIABLES FOR THE COCKPIT RHEL SYSTEM ROLE

The parameters used for the cockpit RHEL System Roles are:

Role Variable Description

cockpit_packages: (default: default) Set one of the predefined package sets: default,
minimal, or full.

* cockpit_packages: (default: default) - most
common pages and on-demand install UI

* cockpit_packages: (default: minimal) - just the
Overview, Terminal, Logs, Accounts, and Metrics
pages; minimal dependencies

* cockpit_packages: (default: full) - all available
pages

Optionally, specify your own selection of cockpit
packages you want to install.

cockpit_enabled: (default:yes) Configure if web console web server is enabled to
start automatically at boot

cockpit_started: (default:yes) Configure if web console should be started

cockpit_config: (default: nothing) You can apply settings in the
/etc/cockpit/cockpit.conf file. NOTE: The
previous settings file will be lost.

Additional resources

The /usr/share/ansible/roles/rhel-system-roles.cockpit/README.md file.

The Cockpit configuration file man page.

23.3. INSTALLING WEB CONSOLE BY USING THE COCKPIT RHEL
SYSTEM ROLE

CHAPTER 23. INSTALLING AND CONFIGURING WEB CONSOLE WITH THE COCKPIT RHEL SYSTEM ROLE

179

https://cockpit-project.org/guide/latest/cockpit.conf.5.html

Follow the below steps to install web console in your system and make the services accessible in it.

Prerequisites

Access and permissions to one or more managed nodes, which are systems you want to
configure with the vpn System Role.

Access and permissions to a control node, which is a system from which Red Hat Ansible Core
configures other systems.
On the control node:

The ansible-core and rhel-system-roles packages are installed.

An inventory file which lists the managed nodes.

Procedure

1. Create a new playbook.yml file with the following content:

- hosts: all
 tasks:
 - name: Install RHEL web console
 include_role:
 name: rhel-system-roles.cockpit
 vars:
 cockpit_packages: default
 #cockpit_packages: minimal
 #cockpit_packages: full

 - name: Configure Firewall for web console
 include_role:
 name: rhel-system-roles.firewall
 vars:
 firewall:
 service: cockpit
 state: enabled

NOTE

The cockpit port is open by default in firewalld, so the "Configure Firewall for web
console" task only applies if the system administrator customized this.

2. Optional: Verify playbook syntax.

ansible-playbook --syntax-check -i inventory_file playbook.yml

3. Run the playbook on your inventory file:

ansible-playbook -i inventory_file /path/to/file/playbook.yml

Additional resources

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

180

Installing and enabling the web console .

23.4. SETTING UP A NEW CERTIFICATE BY USING THE CERTIFICATE

RHEL SYSTEM ROLE

By default, web console creates a self-signed certificate on first startup. You can customize the self-
signed certificate for security reasons. To generate a new certificate, you can use the certificate role.
For that, follow the steps:

Prerequisites

Access and permissions to one or more managed nodes, which are systems you want to
configure with the vpn System Role.

Access and permissions to a control node, which is a system from which Red Hat Ansible Core
configures other systems.
On the control node:

The ansible-core and rhel-system-roles packages are installed.

An inventory file which lists the managed nodes.

Procedure

1. Create a new playbook2.yml file with the following content:

- hosts: all
 tasks:
 - name: Generate Cockpit web server certificate
 include_role:
 name: rhel-system-roles.certificate
 vars:
 certificate_requests:
 - name: /etc/cockpit/ws-certs.d/01-certificate
 dns: ['localhost', 'www.example.com']
 ca: ipa
 group: cockpit-ws

2. Optional: Verify playbook syntax.

ansible-playbook --syntax-check -i inventory_file playbook2.yml

3. Run the playbook on your inventory file:

ansible-playbook -i inventory_file /path/to/file/playbook2.yml

Additional resources

Requesting certificates using RHEL System Roles .

CHAPTER 23. INSTALLING AND CONFIGURING WEB CONSOLE WITH THE COCKPIT RHEL SYSTEM ROLE

181

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/getting-started-with-the-rhel-8-web-console_system-management-using-the-rhel-8-web-console#installing-the-web-console_getting-started-with-the-rhel-8-web-console
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/administration_and_configuration_tasks_using_system_roles_in_rhel/index#requesting-certificates-using-rhel-system-roles_administration-and-configuration-tasks-using-system-roles-in-rhel

CHAPTER 24. MANAGING CONTAINERS BY USING THE
PODMAN RHEL SYSTEM ROLE

Beginning with Podman 4.2, you can use the podman RHEL System Role to manage Podman
configuration, containers, and systemd services which run Podman containers.

24.1. THE PODMAN RHEL SYSTEM ROLE

You can use the podman RHEL System Role to manage Podman configuration, containers, and
systemd services which run Podman containers.

Additional resources

Installing RHEL System Roles

For details about the parameters used in podman and additional information about the
podman RHEL System Role, see the /usr/share/ansible/roles/rhel-system-
roles.podman/README.md file.

24.2. VARIABLES FOR THE PODMAN RHEL SYSTEM ROLE

The parameters used for the podman RHEL System Role are:

Variable Description

podman_kube_spec Describes a podman pod and corresponding systemd
unit to manage.

state: (default: created) - denotes an
operation to be executed with systemd
services and pods:

created: create the pods and
systemd service, but do not run them

started: create the pods and systemd
services and start them

absent: remove the pods and
systemd services

run_as_user: (default:
podman_run_as_user) - a per-pod user.
If not specified, root is used.

NOTE

The user must already exist.

run_as_group (default:
podman_run_as_group) - a per-pod
group. If not specified, root is used.

NOTE

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

182

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/administration_and_configuration_tasks_using_system_roles_in_rhel/index#installing-rhel-system-roles_administration-and-configuration-tasks-using-system-roles-in-rhel

NOTE

The group must already
exist.

systemd_unit_scope (default:
podman_systemd_unit_scope) -
scope to use for the systemd unit. If not
specified, system is used for root
containers and user for user containers.

kube_file_src - name of a Kubernetes
YAML file on the controller node which will
be copied to kube_file on the managed
node

NOTE

Do not specify the
kube_file_src variable if
you specify
kube_file_content
variable. The
kube_file_content takes
precedence over
kube_file_src.

kube_file_content - string in Kubernetes
YAML format or a dict in Kubernetes YAML
format. It specifies the contents of
kube_file on the managed node.

NOTE

Do not specify the
kube_file_content
variable if you specify
kube_file_src variable.
The kube_file_content
takes precedence over
kube_file_src.

kube_file - a name of a file on the
managed node that contains the
Kubernetes specification of the container or
pod. You typically do not have to specify the
kube_file variable unless you need to copy
the kube_file file to the managed node
outside of the role. If you specify either
kube_file_src or kube_file_content,
you do not have to specify this.

NOTE

It is highly recommended to
omit kube_file and instead
specify either
kube_file_src or
kube_file_content and
let the role manage the file
path and name.

Variable Description

CHAPTER 24. MANAGING CONTAINERS BY USING THE PODMAN RHEL SYSTEM ROLE

183

The file basename will be the
metadata.name value from the K8s
yaml, with a .yml suffix appended to it.

The directory is
/etc/containers/ansible-
kubernetes.d for system services.

The directory is
$HOME/.config/containers/ansibl
e-kubernetes.d for user services.

This will be copied to the file
/etc/containers/ansible-
kubernetes.d/<application_name>
.yml on the managed node.

podman_create_host_directories If true, the role ensures host directories specified in
host mounts in volumes.hostPath specifications in
the Kubernetes YAML given in
podman_kube_specs. The default value is false.

NOTE

Directories must be specified as
absolute paths (for root containers),
or paths relative to the home
directory (for non-root containers),
in order for the role to manage them.
Anything else is ignored.

The role applies its default ownership or permissions
to the directories. If you need to set ownership or
permissions, see podman_host_directories.

podman_host_directories It is a dict. If using
podman_create_host_directories to tell the role
to create host directories for volume mounts, and
you need to specify permissions or ownership that
apply to these created host directories, use
podman_host_directories. Each key is the
absolute path of the host directory to manage. The
value is in the format of the parameters to the file
module. If you do not specify a value, the role will use
its built-in default values. If you want to specify a
value to be used for all host directories, use the
special key DEFAULT.

podman_firewall It is a list of dict. Specifies ports that you want the
role to manage in the firewall. This uses the same
format as used by the firewall RHEL System Role.

Variable Description

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

184

podman_selinux_ports It is a list of dict. Specifies ports that you want the
role to manage the SELinux policy for ports used by
the role. This uses the same format as used by the
selinux RHEL System Role.

podman_run_as_user Specifies the name of the user to use for all rootless
containers. You can also specify per-container
username with run_as_user in
podman_kube_specs.

NOTE

The user must already exist.

podman_run_as_group Specifies the name of the group to use for all
rootless containers. You can also specify a per-
container group name with run_as_group in
podman_kube_specs.

NOTE

The group must already exist.

podman_systemd_unit_scope Defines the systemd scope to use by default for all
systemd units. You can also specify per-container
scope with systemd_unit_scope in
podman_kube_specs. By default, rootless
containers use user and root containers use
system.

podman_containers_conf Defines the containers.conf(5) settings as a dict.
The setting is provided in a drop-in file in the
containers.conf.d directory. If running as root (see
podman_run_as_user), the system settings are
managed. Otherwise, the user settings are managed.
See the containers.conf man page for the
directory locations.

podman_registries_conf Defines the containers-registries.conf(5)
settings as a dict. The setting is provided in a drop-in
file in the registries.conf.d directory. If running as
root (see podman_run_as_user), the system
settings are managed. Otherwise, the user settings
are managed. See the registries.conf man page for
the directory locations.

Variable Description

CHAPTER 24. MANAGING CONTAINERS BY USING THE PODMAN RHEL SYSTEM ROLE

185

podman_storage_conf Defines the containers-storage.conf(5) settings
as a dict. If running as root (see
podman_run_as_user), the system settings are
managed. Otherwise, the user settings are managed.
See the storage.conf man page for the directory
locations.

podman_policy_json Defines the containers-policy.conf(5) settings as
a dict. If running as root (see
podman_run_as_user), the system settings are
managed. Otherwise, the user settings are managed.
See the policy.json man page for the directory
locations.

Variable Description

Additional resources

Installing RHEL System Roles

For details about the parameters used in podman and additional information about the
podman RHEL System Role, see the /usr/share/ansible/roles/rhel-system-
roles.podman/README.md file.

24.3. ADDITIONAL RESOURCES

For details about the parameters used in podman and additional information about the
podman RHEL System Role, see the /usr/share/ansible/roles/rhel-system-
roles.podman/README.md file.

For details about the ansible-playbook command, see the ansible-playbook(1) man page.

Red Hat Enterprise Linux 9 Administration and configuration tasks using System Roles in RHEL

186

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/administration_and_configuration_tasks_using_system_roles_in_rhel/index#installing-rhel-system-roles_administration-and-configuration-tasks-using-system-roles-in-rhel

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. PREPARING A CONTROL NODE AND MANAGED NODES TO USE RHEL SYSTEM ROLES
	1.1. INTRODUCTION TO RHEL SYSTEM ROLES
	1.2. RHEL SYSTEM ROLES TERMINOLOGY
	1.3. PREPARING A CONTROL NODE
	1.4. PREPARING A MANAGED NODE
	1.5. VERIFYING ACCESS FROM THE CONTROL NODE TO MANAGED NODES

	CHAPTER 2. UPDATING PACKAGES TO ENABLE AUTOMATION FOR RHEL SYSTEM ROLES
	2.1. DIFFERENCES BETWEEN ANSIBLE ENGINE AND ANSIBLE CORE
	2.2. MIGRATING FROM ANSIBLE ENGINE TO ANSIBLE CORE

	CHAPTER 3. INSTALLING AND USING COLLECTIONS
	3.1. INTRODUCTION TO ANSIBLE COLLECTIONS
	3.2. COLLECTIONS STRUCTURE
	3.3. INSTALLING COLLECTIONS BY USING THE CLI
	3.4. INSTALLING COLLECTIONS FROM AUTOMATION HUB
	3.5. DEPLOYING THE TLOG RHEL SYSTEM ROLE USING COLLECTIONS

	CHAPTER 4. ANSIBLE IPMI MODULES IN RHEL
	4.1. THE RHEL_MGMT COLLECTION
	4.2. INSTALLING THE RHEL MGMT COLLECTION USING THE CLI
	4.3. EXAMPLE USING THE IPMI_BOOT MODULE
	4.4. EXAMPLE USING THE IPMI_POWER MODULE

	CHAPTER 5. THE REDFISH MODULES IN RHEL
	5.1. THE REDFISH MODULES
	5.2. REDFISH MODULES PARAMETERS
	5.3. USING THE REDFISH_INFO MODULE
	5.4. USING THE REDFISH_COMMAND MODULE
	5.5. USING THE REDFISH_CONFIG MODULE

	CHAPTER 6. USING ANSIBLE ROLES TO PERMANENTLY CONFIGURE KERNEL PARAMETERS
	6.1. INTRODUCTION TO THE KERNEL_SETTINGS ROLE
	6.2. APPLYING SELECTED KERNEL PARAMETERS USING THE KERNEL_SETTINGS ROLE

	CHAPTER 7. CONFIGURING NETWORK SETTINGS BY USING RHEL SYSTEM ROLES
	7.1. CONFIGURING AN ETHERNET CONNECTION WITH A STATIC IP ADDRESS BY USING THE NETWORK RHEL SYSTEM ROLE WITH AN INTERFACE NAME
	7.2. CONFIGURING AN ETHERNET CONNECTION WITH A STATIC IP ADDRESS BY USING THE NETWORK RHEL SYSTEM ROLE WITH A DEVICE PATH
	7.3. CONFIGURING AN ETHERNET CONNECTION WITH A DYNAMIC IP ADDRESS BY USING THE NETWORK RHEL SYSTEM ROLE WITH AN INTERFACE NAME
	7.4. CONFIGURING AN ETHERNET CONNECTION WITH A DYNAMIC IP ADDRESS BY USING THE NETWORK RHEL SYSTEM ROLE WITH A DEVICE PATH
	7.5. CONFIGURING VLAN TAGGING BY USING THE NETWORK RHEL SYSTEM ROLE
	7.6. CONFIGURING A NETWORK BRIDGE BY USING THE NETWORK RHEL SYSTEM ROLE
	7.7. CONFIGURING A NETWORK BOND BY USING THE NETWORK RHEL SYSTEM ROLE
	7.8. CONFIGURING AN IPOIB CONNECTION BY USING THE NETWORK RHEL SYSTEM ROLE
	7.9. ROUTING TRAFFIC FROM A SPECIFIC SUBNET TO A DIFFERENT DEFAULT GATEWAY BY USING THE NETWORK RHEL SYSTEM ROLE
	7.10. CONFIGURING A STATIC ETHERNET CONNECTION WITH 802.1X NETWORK AUTHENTICATION BY USING THE NETWORK RHEL SYSTEM ROLE
	7.11. CONFIGURING A WIFI CONNECTION WITH 802.1X NETWORK AUTHENTICATION BY USING THE NETWORK RHEL SYSTEM ROLE
	7.12. SETTING THE DEFAULT GATEWAY ON AN EXISTING CONNECTION BY USING THE NETWORK RHEL SYSTEM ROLE
	7.13. CONFIGURING A STATIC ROUTE BY USING THE NETWORK RHEL SYSTEM ROLE
	7.14. CONFIGURING AN ETHTOOL OFFLOAD FEATURE BY USING THE NETWORK RHEL SYSTEM ROLE
	7.15. CONFIGURING AN ETHTOOL COALESCE SETTINGS BY USING THE NETWORK RHEL SYSTEM ROLE
	7.16. NETWORK STATES FOR THE NETWORK RHEL SYSTEM ROLE

	CHAPTER 8. CONFIGURING FIREWALLD USING SYSTEM ROLES
	8.1. INTRODUCTION TO THE FIREWALL RHEL SYSTEM ROLE
	8.2. RESETTING THE FIREWALLD SETTINGS USING THE FIREWALL RHEL SYSTEM ROLE
	8.3. FORWARDING INCOMING TRAFFIC FROM ONE LOCAL PORT TO A DIFFERENT LOCAL PORT
	8.4. CONFIGURING PORTS USING SYSTEM ROLES
	8.5. CONFIGURING A DMZ FIREWALLD ZONE BY USING THE FIREWALLD RHEL SYSTEM ROLE

	CHAPTER 9. VARIABLES OF THE POSTFIX ROLE IN SYSTEM ROLES
	9.1. ADDITIONAL RESOURCES

	CHAPTER 10. CONFIGURING SELINUX USING SYSTEM ROLES
	10.1. INTRODUCTION TO THE SELINUX SYSTEM ROLE
	10.2. USING THE SELINUX SYSTEM ROLE TO APPLY SELINUX SETTINGS ON MULTIPLE SYSTEMS

	CHAPTER 11. USING THE LOGGING SYSTEM ROLE
	11.1. THE LOGGING SYSTEM ROLE
	11.2. LOGGING SYSTEM ROLE PARAMETERS
	11.3. APPLYING A LOCAL LOGGING SYSTEM ROLE
	11.4. FILTERING LOGS IN A LOCAL LOGGING SYSTEM ROLE
	11.5. APPLYING A REMOTE LOGGING SOLUTION USING THE LOGGING SYSTEM ROLE
	11.6. USING THE LOGGING SYSTEM ROLE WITH TLS
	11.6.1. Configuring client logging with TLS
	11.6.2. Configuring server logging with TLS

	11.7. USING THE LOGGING SYSTEM ROLES WITH RELP
	11.7.1. Configuring client logging with RELP
	11.7.2. Configuring server logging with RELP

	11.8. ADDITIONAL RESOURCES

	CHAPTER 12. CONFIGURING SECURE COMMUNICATION WITH THE SSH SYSTEM ROLES
	12.1. SSH SERVER SYSTEM ROLE VARIABLES
	12.2. CONFIGURING OPENSSH SERVERS USING THE SSHD SYSTEM ROLE
	12.3. SSH SYSTEM ROLE VARIABLES
	12.4. CONFIGURING OPENSSH CLIENTS USING THE SSH SYSTEM ROLE
	12.5. USING THE SSHD SYSTEM ROLE FOR NON-EXCLUSIVE CONFIGURATION

	CHAPTER 13. CONFIGURING VPN CONNECTIONS WITH IPSEC BY USING THE VPN RHEL SYSTEM ROLE
	13.1. CREATING A HOST-TO-HOST VPN WITH IPSEC USING THE VPN SYSTEM ROLE
	13.2. CREATING AN OPPORTUNISTIC MESH VPN CONNECTION WITH IPSEC BY USING THE VPN SYSTEM ROLE
	13.3. ADDITIONAL RESOURCES

	CHAPTER 14. SETTING A CUSTOM CRYPTOGRAPHIC POLICY ACROSS SYSTEMS
	14.1. CRYPTO_POLICIES SYSTEM ROLE VARIABLES AND FACTS
	14.2. SETTING A CUSTOM CRYPTOGRAPHIC POLICY USING THE CRYPTO_POLICIES SYSTEM ROLE
	14.3. ADDITIONAL RESOURCES

	CHAPTER 15. USING THE NBDE_CLIENT AND NBDE_SERVER SYSTEM ROLES
	15.1. INTRODUCTION TO THE NBDE_CLIENT AND NBDE_SERVER SYSTEM ROLES (CLEVIS AND TANG)
	15.2. USING THE NBDE_SERVER SYSTEM ROLE FOR SETTING UP MULTIPLE TANG SERVERS
	15.3. USING THE NBDE_CLIENT SYSTEM ROLE FOR SETTING UP MULTIPLE CLEVIS CLIENTS

	CHAPTER 16. REQUESTING CERTIFICATES USING RHEL SYSTEM ROLES
	16.1. THE CERTIFICATE SYSTEM ROLE
	16.2. REQUESTING A NEW SELF-SIGNED CERTIFICATE USING THE CERTIFICATE SYSTEM ROLE
	16.3. REQUESTING A NEW CERTIFICATE FROM IDM CA USING THE CERTIFICATE SYSTEM ROLE
	16.4. SPECIFYING COMMANDS TO RUN BEFORE OR AFTER CERTIFICATE ISSUANCE USING THE CERTIFICATE SYSTEM ROLE

	CHAPTER 17. CONFIGURING KDUMP USING RHEL SYSTEM ROLES
	17.1. THE KDUMP RHEL SYSTEM ROLE
	17.2. KDUMP ROLE PARAMETERS
	17.3. CONFIGURING KDUMP USING RHEL SYSTEM ROLES

	CHAPTER 18. MANAGING LOCAL STORAGE USING RHEL SYSTEM ROLES
	18.1. INTRODUCTION TO THE STORAGE RHEL SYSTEM ROLE
	18.2. PARAMETERS THAT IDENTIFY A STORAGE DEVICE IN THE STORAGE RHEL SYSTEM ROLE
	18.3. EXAMPLE ANSIBLE PLAYBOOK TO CREATE AN XFS FILE SYSTEM ON A BLOCK DEVICE
	18.4. EXAMPLE ANSIBLE PLAYBOOK TO PERSISTENTLY MOUNT A FILE SYSTEM
	18.5. EXAMPLE ANSIBLE PLAYBOOK TO MANAGE LOGICAL VOLUMES
	18.6. EXAMPLE ANSIBLE PLAYBOOK TO ENABLE ONLINE BLOCK DISCARD
	18.7. EXAMPLE ANSIBLE PLAYBOOK TO CREATE AND MOUNT AN EXT4 FILE SYSTEM
	18.8. EXAMPLE ANSIBLE PLAYBOOK TO CREATE AND MOUNT AN EXT3 FILE SYSTEM
	18.9. EXAMPLE ANSIBLE PLAYBOOK TO RESIZE AN EXISTING EXT4 OR EXT3 FILE SYSTEM USING THE STORAGE RHEL SYSTEM ROLE
	18.10. EXAMPLE ANSIBLE PLAYBOOK TO RESIZE AN EXISTING FILE SYSTEM ON LVM USING THE STORAGE RHEL SYSTEM ROLE
	18.11. EXAMPLE ANSIBLE PLAYBOOK TO CREATE A SWAP VOLUME USING THE STORAGE RHEL SYSTEM ROLE
	18.12. CONFIGURING A RAID VOLUME USING THE STORAGE SYSTEM ROLE
	18.13. CONFIGURING AN LVM POOL WITH RAID USING THE STORAGE RHEL SYSTEM ROLE
	18.14. EXAMPLE ANSIBLE PLAYBOOK TO COMPRESS AND DEDUPLICATE A VDO VOLUME ON LVM USING THE STORAGE RHEL SYSTEM ROLE
	18.15. CREATING A LUKS ENCRYPTED VOLUME USING THE STORAGE RHEL SYSTEM ROLE
	18.16. EXAMPLE ANSIBLE PLAYBOOK TO EXPRESS POOL VOLUME SIZES AS PERCENTAGE USING THE STORAGE RHEL SYSTEM ROLE
	18.17. ADDITIONAL RESOURCES

	CHAPTER 19. CONFIGURING TIME SYNCHRONIZATION USING RHEL SYSTEM ROLES
	19.1. THE TIMESYNC RHEL SYSTEM ROLE
	19.2. APPLYING THE TIMESYNC SYSTEM ROLE FOR A SINGLE POOL OF SERVERS
	19.3. APPLYING THE TIMESYNC SYSTEM ROLE ON CLIENT SERVERS
	19.4. TIMESYNC SYSTEM ROLES VARIABLES

	CHAPTER 20. MONITORING PERFORMANCE USING RHEL SYSTEM ROLES
	20.1. INTRODUCTION TO THE METRICS SYSTEM ROLE
	20.2. USING THE METRICS SYSTEM ROLE TO MONITOR YOUR LOCAL SYSTEM WITH VISUALIZATION
	20.3. USING THE METRICS SYSTEM ROLE TO SETUP A FLEET OF INDIVIDUAL SYSTEMS TO MONITOR THEMSELVES
	20.4. USING THE METRICS SYSTEM ROLE TO MONITOR A FLEET OF MACHINES CENTRALLY VIA YOUR LOCAL MACHINE
	20.5. SETTING UP AUTHENTICATION WHILE MONITORING A SYSTEM USING THE METRICS SYSTEM ROLE
	20.6. USING THE METRICS SYSTEM ROLE TO CONFIGURE AND ENABLE METRICS COLLECTION FOR SQL SERVER

	CHAPTER 21. CONFIGURING A SYSTEM FOR SESSION RECORDING USING THE TLOG RHEL SYSTEM ROLE
	21.1. THE TLOG SYSTEM ROLE
	21.2. COMPONENTS AND PARAMETERS OF THE TLOG SYSTEM ROLE
	21.3. DEPLOYING THE TLOG RHEL SYSTEM ROLE
	21.4. DEPLOYING THE TLOG RHEL SYSTEM ROLE FOR EXCLUDING LISTS OF GROUPS OR USERS
	21.5. RECORDING A SESSION USING THE DEPLOYED TLOG SYSTEM ROLE IN THE CLI
	21.6. WATCHING A RECORDED SESSION USING THE CLI

	CHAPTER 22. CONFIGURING A HIGH-AVAILABILITY CLUSTER USING SYSTEM ROLES
	22.1. HA_CLUSTER SYSTEM ROLE VARIABLES
	22.2. SPECIFYING AN INVENTORY FOR THE HA_CLUSTER SYSTEM ROLE
	22.2.1. Configuring node names and addresses in an inventory
	22.2.2. Configuring watchdog and SBD devices in an inventory (RHEL 9.1 and later)

	22.3. CONFIGURING A HIGH AVAILABILITY CLUSTER RUNNING NO RESOURCES
	22.4. CONFIGURING A HIGH AVAILABILITY CLUSTER WITH FENCING AND RESOURCES
	22.5. CONFIGURING A HIGH AVAILABILITY CLUSTER WITH RESOURCE CONSTRAINTS
	22.6. CONFIGURING COROSYNC VALUES IN A HIGH AVAILABILITY CLUSTER
	22.7. CONFIGURING A HIGH AVAILABILITY CLUSTER WITH SBD NODE FENCING
	22.8. CONFIGURING AN APACHE HTTP SERVER IN A HIGH AVAILABILITY CLUSTER WITH THE HA_CLUSTER SYSTEM ROLE
	22.9. ADDITIONAL RESOURCES

	CHAPTER 23. INSTALLING AND CONFIGURING WEB CONSOLE WITH THE COCKPIT RHEL SYSTEM ROLE
	23.1. THE COCKPIT SYSTEM ROLE
	23.2. VARIABLES FOR THE COCKPIT RHEL SYSTEM ROLE
	23.3. INSTALLING WEB CONSOLE BY USING THE COCKPIT RHEL SYSTEM ROLE
	23.4. SETTING UP A NEW CERTIFICATE BY USING THE CERTIFICATE RHEL SYSTEM ROLE

	CHAPTER 24. MANAGING CONTAINERS BY USING THE PODMAN RHEL SYSTEM ROLE
	24.1. THE PODMAN RHEL SYSTEM ROLE
	24.2. VARIABLES FOR THE PODMAN RHEL SYSTEM ROLE
	24.3. ADDITIONAL RESOURCES

