Menu Close
Chapter 11. Configuring network teaming
This section describes the basics of network teaming, the differences between bonding and teaming, and how to configure a network team on Red Hat Enterprise Linux.
Network teaming is deprecated in Red Hat Enterprise Linux 9. Consider using the network bonding driver as an alternative. For details, see Configuring network bonding.
You can create network teams on different types of devices, such as:
- Physical and virtual Ethernet devices
- Network bonds
- Network bridges
- VLAN devices
11.1. Migrating a network team configuration to network bond
Network teaming is deprecated in Red Hat Enterprise Linux 9. If you already have a working network team configured, for example because you upgraded from an earlier RHEL version, you can migrate the configuration to a network bond that is managed by NetworkManager.
The team2bond
utility only converts the network team configuration to a bond. Afterwards, you must manually configure further settings of the bond, such as IP addresses and DNS configuration.
Prerequisites
-
The
team-team0
NetworkManager connection profile is configured and manages theteam0
device. -
The
teamd
package is installed.
Procedure
Optional: Display the IP configuration of the
team-team0
NetworkManager connection:# nmcli connection show team-team0 | egrep "^ip" ... ipv4.method: manual ipv4.dns: 192.0.2.253 ipv4.dns-search: example.com ipv4.addresses: 192.0.2.1/24 ipv4.gateway: 192.0.2.254 ... ipv6.method: manual ipv6.dns: 2001:db8:1::fffd ipv6.dns-search: example.com ipv6.addresses: 2001:db8:1::1/64 ipv6.gateway: 2001:db8:1::fffe ...
Export the configuration of the
team0
device to a JSON file:# teamdctl team0 config dump actual > /tmp/team0.json
Remove the network team. For example, if you configured the team in NetworkManager, remove the
team-team0
connection profile and the profiles of associated ports:# nmcli connection delete team-team0 # nmcli connection delete team-team0-port1 # nmcli connection delete team-team0-port2
Run the
team2bond
utility in dry-run mode to displaynmcli
commands that set up a network bond with similar settings as the team device:# team2bond --config=/tmp/team0.json --rename=bond0 nmcli con add type bond ifname bond0 bond.options "mode=active-backup,num_grat_arp=1,num_unsol_na=1,resend_igmp=1,miimon=100,miimon=100" nmcli con add type ethernet ifname enp7s0 master bond0 nmcli con add type ethernet ifname enp8s0 master bond0
The first command contains two
miimon
options because the team configuration file contained twolink_watch
entries. Note that this does not affect the creation of the bond.If you bound services to the device name of the team and want to avoid updating or breaking these services, omit the
--rename=bond0
option. In this case,team2bond
uses the same interface name for the bond as for the team.-
Verify that the options for the bond the
team2bond
utility suggested are correct. Create the bond. You can execute the suggested
nmcli
commands or re-run theteam2bond
command with the--exec-cmd
option:# team2bond --config=/tmp/team0.json --rename=bond0 --exec-cmd Connection 'bond-bond0' (0241a531-0c72-4202-80df-73eadfc126b5) successfully added. Connection 'bond-slave-enp7s0' (38489729-b624-4606-a784-1ccf01e2f6d6) successfully added. Connection 'bond-slave-enp8s0' (de97ec06-7daa-4298-9a71-9d4c7909daa1) successfully added.
You require the name of the bond connection profile (
bond-bond0
) in the next steps.Set the IPv4 settings that were previously configured on
team-team0
to thebond-bond0
connection:# nmcli connection modify bond-bond0 ipv4.addresses '192.0.2.1/24' # nmcli connection modify bond-bond0 ipv4.gateway '192.0.2.254' # nmcli connection modify bond-bond0 ipv4.dns '192.0.2.253' # nmcli connection modify bond-bond0 ipv4.dns-search 'example.com' # nmcli connection modify bond-bond0 ipv4.method manual
Set the IPv6 settings that were previously configured on
team-team0
to thebond-bond0
connection:# nmcli connection modify bond-bond0 ipv6.addresses '2001:db8:1::1/64' # nmcli connection modify bond-bond0 ipv6.gateway '2001:db8:1::fffe' # nmcli connection modify bond-bond0 ipv6.dns '2001:db8:1::fffd' # nmcli connection modify bond-bond0 ipv6.dns-search 'example.com' # nmcli connection modify bond-bond0 ipv6.method manual
Activate the connection:
# nmcli connection up bond-bond0
Verification
Display the IP configuration of the
bond-bond0
NetworkManager connection:# nmcli connection show bond-bond0 | egrep "^ip" ... ipv4.method: manual ipv4.dns: 192.0.2.253 ipv4.dns-search: example.com ipv4.addresses: 192.0.2.1/24 ipv4.gateway: 192.0.2.254 ... ipv6.method: manual ipv6.dns: 2001:db8:1::fffd ipv6.dns-search: example.com ipv6.addresses: 2001:db8:1::1/64 ipv6.gateway: 2001:db8:1::fffe ...
Display the status of the bond:
# cat /proc/net/bonding/bond0 Ethernet Channel Bonding Driver: v5.13.0-0.rc7.51.el9.x86_64 Bonding Mode: fault-tolerance (active-backup) Primary Slave: None Currently Active Slave: enp7s0 MII Status: up MII Polling Interval (ms): 100 Up Delay (ms): 0 Down Delay (ms): 0 Peer Notification Delay (ms): 0 Slave Interface: enp7s0 MII Status: up Speed: Unknown Duplex: Unknown Link Failure Count: 0 Permanent HW addr: 52:54:00:bf:b1:a9 Slave queue ID: 0 Slave Interface: enp8s0 MII Status: up Speed: Unknown Duplex: Unknown Link Failure Count: 0 Permanent HW addr: 52:54:00:04:36:0f Slave queue ID: 0
In this example, both ports are up.
To verify that bonding failover works:
- Temporarily remove the network cable from the host. Note that there is no method to properly test link failure events using the command line.
Display the status of the bond:
# cat /proc/net/bonding/bond0
11.2. Understanding network teaming
Network teaming is a feature that combines or aggregates network interfaces to provide a logical interface with higher throughput or redundancy.
Network teaming uses a kernel driver to implement fast handling of packet flows, as well as user-space libraries and services for other tasks. This way, network teaming is an easily extensible and scalable solution for load-balancing and redundancy requirements.
Certain network teaming features, such as the fail-over mechanism, do not support direct cable connections without a network switch. For further details, see Is bonding supported with direct connection using crossover cables?
11.3. Understanding the default behavior of controller and port interfaces
Consider the following default behavior of, when managing or troubleshooting team or bond port interfaces using the NetworkManager
service:
- Starting the controller interface does not automatically start the port interfaces.
- Starting a port interface always starts the controller interface.
- Stopping the controller interface also stops the port interface.
- A controller without ports can start static IP connections.
- A controller without ports waits for ports when starting DHCP connections.
- A controller with a DHCP connection waiting for ports completes when you add a port with a carrier.
- A controller with a DHCP connection waiting for ports continues waiting when you add a port without carrier.
11.4. Understanding the teamd service, runners, and link-watchers
The team service, teamd
, controls one instance of the team driver. This instance of the driver adds instances of a hardware device driver to form a team of network interfaces. The team driver presents a network interface, for example team0
, to the kernel.
The teamd
service implements the common logic to all methods of teaming. Those functions are unique to the different load sharing and backup methods, such as round-robin, and implemented by separate units of code referred to as runners
. Administrators specify runners in JavaScript Object Notation (JSON) format, and the JSON code is compiled into an instance of teamd
when the instance is created. Alternatively, when using NetworkManager
, you can set the runner in the team.runner
parameter, and NetworkManager
auto-creates the corresponding JSON code.
The following runners are available:
-
broadcast
: Transmits data over all ports. -
roundrobin
: Transmits data over all ports in turn. -
activebackup
: Transmits data over one port while the others are kept as a backup. -
loadbalance
: Transmits data over all ports with active Tx load balancing and Berkeley Packet Filter (BPF)-based Tx port selectors. -
random
: Transmits data on a randomly selected port. -
lacp
: Implements the 802.3ad Link Aggregation Control Protocol (LACP).
The teamd
services uses a link watcher to monitor the state of subordinate devices. The following link-watchers are available:
-
ethtool
: Thelibteam
library uses theethtool
utility to watch for link state changes. This is the default link-watcher. -
arp_ping
: Thelibteam
library uses thearp_ping
utility to monitor the presence of a far-end hardware address using Address Resolution Protocol (ARP). -
nsna_ping
: On IPv6 connections, thelibteam
library uses the Neighbor Advertisement and Neighbor Solicitation features from the IPv6 Neighbor Discovery protocol to monitor the presence of a neighbor’s interface.
Each runner can use any link watcher, with the exception of lacp
. This runner can only use the ethtool
link watcher.
11.5. Installing the teamd service
To configure a network team in NetworkManager
, you require the teamd
service and the team plug-in for NetworkManager
. Both are installed on Red Hat Enterprise Linux by default. This section describes how you install the required packages in case that you remove them.
Prerequisites
- An active Red Hat subscription is assigned to the host.
Procedure
Install the
teamd
andNetworkManager-team
packages:# dnf install teamd NetworkManager-team
11.6. Configuring a network team using nmcli commands
This section describes how to configure a network team using nmcli
utility.
Network teaming is deprecated in Red Hat Enterprise Linux 9. Consider using the network bonding driver as an alternative. For details, see Configuring network bonding.
Prerequisites
- Two or more physical or virtual network devices are installed on the server.
- To use Ethernet devices as ports of the team, the physical or virtual Ethernet devices must be installed on the server and connected to a switch.
To use bond, bridge, or VLAN devices as ports of the team, you can either create these devices while you create the team or you can create them in advance as described in:
Procedure
Create a team interface:
# nmcli connection add type team con-name team0 ifname team0 team.runner activebackup
This command creates a network team named
team0
that uses theactivebackup
runner.Optionally, set a link watcher. For example, to set the
ethtool
link watcher in theteam0
connection profile:# nmcli connection modify team0 team.link-watchers "name=ethtool"
Link watchers support different parameters. To set parameters for a link watcher, specify them space-separated in the
name
property. Note that the name property must be surrounded by quotes. For example, to use theethtool
link watcher and set itsdelay-up
parameter to2500
milliseconds (2.5 seconds):# nmcli connection modify team0 team.link-watchers "name=ethtool delay-up=2500"
To set multiple link watchers and each of them with specific parameters, the link watchers must be separated by a comma. The following example sets the
ethtool
link watcher with thedelay-up
parameter and thearp_ping
link watcher with thesource-host
andtarget-host
parameter:# nmcli connection modify team0 team.link-watchers "name=ethtool delay-up=2, name=arp_ping source-host=192.0.2.1 target-host=192.0.2.2"
Display the network interfaces, and note the names of the interfaces you want to add to the team:
# nmcli device status DEVICE TYPE STATE CONNECTION enp7s0 ethernet disconnected -- enp8s0 ethernet disconnected -- bond0 bond connected bond0 bond1 bond connected bond1 ...
In this example:
-
enp7s0
andenp8s0
are not configured. To use these devices as ports, add connection profiles in the next step. Note that you can only use Ethernet interfaces in a team that are not assigned to any connection. -
bond0
andbond1
have existing connection profiles. To use these devices as ports, modify their profiles in the next step.
-
Assign the port interfaces to the team:
If the interfaces you want to assign to the team are not configured, create new connection profiles for them:
# nmcli connection add type ethernet slave-type team con-name team0-port1 ifname enp7s0 master team0 # nmcli connection add type ethernet slave-type team con-name team0-port2 ifname enp8s0 master team0
. These commands create profiles for
enp7s0
andenp8s0
, and add them to theteam0
connection.To assign an existing connection profile to the team, set the
master
parameter of these connections toteam0
:# nmcli connection modify bond0 master team0 # nmcli connection modify bond1 master team0
These commands assign the existing connection profiles named
bond0
andbond1
to theteam0
connection.
Configure the IP settings of the team. Skip this step if you want to use this team as a ports of other devices.
Configure the IPv4 settings. For example, to set a static IPv4 address, network mask, default gateway, DNS server, and DNS search domain the
team0
connection, enter:# nmcli connection modify team0 ipv4.addresses '192.0.2.1/24' # nmcli connection modify team0 ipv4.gateway '192.0.2.254' # nmcli connection modify team0 ipv4.dns '192.0.2.253' # nmcli connection modify team0 ipv4.dns-search 'example.com' # nmcli connection modify team0 ipv4.method manual
Configure the IPv6 settings. For example, to set a static IPv6 address, network mask, default gateway, DNS server, and DNS search domain of the
team0
connection, enter:# nmcli connection modify team0 ipv6.addresses '2001:db8:1::1/64' # nmcli connection modify team0 ipv6.gateway '2001:db8:1::fffe' # nmcli connection modify team0 ipv6.dns '2001:db8:1::fffd' # nmcli connection modify team0 ipv6.dns-search 'example.com' # nmcli connection modify team0 ipv6.method manual
Activate the connection:
# nmcli connection up team0
Verification steps
Display the status of the team:
# teamdctl team0 state setup: runner: activebackup ports: enp7s0 link watches: link summary: up instance[link_watch_0]: name: ethtool link: up down count: 0 enp8s0 link watches: link summary: up instance[link_watch_0]: name: ethtool link: up down count: 0 runner: active port: enp7s0
In this example, both ports are up.
Additional resources
- Testing basic network settings
- Configuring NetworkManager to avoid using a specific profile to provide a default gateway
- Understanding the teamd service, runners, and link-watchers
-
nmcli-examples(7)
man page -
The
team
section in thenm-settings(5)
man page -
teamd.conf(5)
man page
11.7. Configuring a network team using nm-connection-editor
This section describes how you configure a network team using the nm-connection-editor
application.
Note that nm-connection-editor
can add only new ports to a team. To use an existing connection profile as a port, create the team using the nmcli
utility as described in Configuring a network team using nmcli commands.
Network teaming is deprecated in Red Hat Enterprise Linux 9. Consider using the network bonding driver as an alternative. For details, see Configuring network bonding.
Prerequisites
- Two or more physical or virtual network devices are installed on the server.
- To use Ethernet devices as ports of the team, the physical or virtual Ethernet devices must be installed on the server.
- To use team, bond, or VLAN devices as ports of the team, ensure that these devices are not already configured.
Procedure
Open a terminal, and enter
nm-connection-editor
:$
nm-connection-editor
- Click the + button to add a new connection.
-
Select the
Team
connection type, and click Create. In the
Team
tab:-
Optional: Set the name of the team interface in the
Interface name
field. Click the Add button to add a new connection profile for a network interface and adding the profile as a port to the team.
-
Select the connection type of the interface. For example, select
Ethernet
for a wired connection. - Optional: Set a connection name for the port.
-
If you create a connection profile for an Ethernet device, open the
Ethernet
tab, and select in theDevice
field the network interface you want to add as a port to the team. If you selected a different device type, configure it accordingly. Note that you can only use Ethernet interfaces in a team that are not assigned to any connection. - Click Save.
-
Select the connection type of the interface. For example, select
Repeat the previous step for each interface you want to add to the team.
Click the Advanced button to set advanced options to the team connection.
-
In the
Runner
tab, select the runner. -
In the
Link Watcher
tab, set the link watcher and its optional settings. - Click OK.
-
In the
-
Optional: Set the name of the team interface in the
Configure the IP settings of the team. Skip this step if you want to use this team as a port of other devices.
-
In the
IPv4 Settings
tab, configure the IPv4 settings. For example, set a static IPv4 address, network mask, default gateway, DNS server, and DNS search domain: -
In the
IPv6 Settings
tab, configure the IPv6 settings. For example, set a static IPv6 address, network mask, default gateway, DNS server, and DNS search domain:
-
In the
- Save the team connection.
-
Close
nm-connection-editor
.
Verification steps
Display the status of the team:
# teamdctl team0 state setup: runner: activebackup ports: enp7s0 link watches: link summary: up instance[link_watch_0]: name: ethtool link: up down count: 0 enp8s0 link watches: link summary: up instance[link_watch_0]: name: ethtool link: up down count: 0 runner: active port: enp7s0
Additional resources
- Configuring a network bond using nm-connection-editor
- Configuring a network team using nm-connection-editor
- Configuring VLAN tagging using nm-connection-editor
- Testing basic network settings
- Configuring NetworkManager to avoid using a specific profile to provide a default gateway
- Understanding the teamd service, runners, and link-watchers
- NetworkManager duplicates a connection after restart of NetworkManager service