Configuring and using network file services
A guide to configuring and using network file services in Red Hat Enterprise Linux 9.
Abstract
Making open source more inclusive
Red Hat is committed to replacing problematic language in our code, documentation, and web properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the enormity of this endeavor, these changes will be implemented gradually over several upcoming releases. For more details, see our CTO Chris Wright’s message.
Providing feedback on Red Hat documentation
We appreciate your feedback on our documentation. Let us know how we can improve it.
Submitting comments on specific passages
- View the documentation in the Multi-page HTML format and ensure that you see the Feedback button in the upper right corner after the page fully loads.
- Use your cursor to highlight the part of the text that you want to comment on.
- Click the Add Feedback button that appears near the highlighted text.
- Add your feedback and click Submit.
Submitting feedback through Bugzilla (account required)
- Log in to the Bugzilla website.
- Select the correct version from the Version menu.
- Enter a descriptive title in the Summary field.
- Enter your suggestion for improvement in the Description field. Include links to the relevant parts of the documentation.
- Click Submit Bug.
Chapter 1. Using Samba as a server
Samba implements the Server Message Block (SMB) protocol in Red Hat Enterprise Linux. The SMB protocol is used to access resources on a server, such as file shares and shared printers. Additionally, Samba implements the Distributed Computing Environment Remote Procedure Call (DCE RPC) protocol used by Microsoft Windows.
You can run Samba as:
- An Active Directory (AD) or NT4 domain member
- A standalone server
An NT4 Primary Domain Controller (PDC) or Backup Domain Controller (BDC)
NoteRed Hat supports the PDC and BDC modes only in existing installations with Windows versions which support NT4 domains. Red Hat recommends not setting up a new Samba NT4 domain, because Microsoft operating systems later than Windows 7 and Windows Server 2008 R2 do not support NT4 domains.
Red Hat does not support running Samba as an AD domain controller (DC).
Independently of the installation mode, you can optionally share directories and printers. This enables Samba to act as a file and print server.
1.1. Understanding the different Samba services and modes
This section describes the different services included in Samba and the different modes you can configure.
1.1.1. The Samba services
Samba provides the following services:
smbd
This service provides file sharing and printing services using the SMB protocol. Additionally, the service is responsible for resource locking and for authenticating connecting users. For authenticating domain members,
smbd
requireswinbindd
. Thesmb
systemd
service starts and stops thesmbd
daemon.To use the
smbd
service, install thesamba
package.nmbd
This service provides host name and IP resolution using the NetBIOS over IPv4 protocol. Additionally to the name resolution, the
nmbd
service enables browsing the SMB network to locate domains, work groups, hosts, file shares, and printers. For this, the service either reports this information directly to the broadcasting client or forwards it to a local or master browser. Thenmb
systemd
service starts and stops thenmbd
daemon.Note that modern SMB networks use DNS to resolve clients and IP addresses. For Kerberos a working DNS setup is required.
To use the
nmbd
service, install thesamba
package.winbindd
This service provides an interface for the Name Service Switch (NSS) to use AD or NT4 domain users and groups on the local system. This enables, for example, domain users to authenticate to services hosted on a Samba server or to other local services. The
winbind
systemd
service starts and stops thewinbindd
daemon.If you set up Samba as a domain member,
winbindd
must be started before thesmbd
service. Otherwise, domain users and groups are not available to the local system..To use the
winbindd
service, install thesamba-winbind
package.ImportantRed Hat only supports running Samba as a server with the
winbindd
service to provide domain users and groups to the local system. Due to certain limitations, such as missing Windows access control list (ACL) support and NT LAN Manager (NTLM) fallback, SSSD is not supported.
1.1.2. The Samba security services
The security
parameter in the [global]
section in the /etc/samba/smb.conf
file manages how Samba authenticates users that are connecting to the service. Depending on the mode you install Samba in, the parameter must be set to different values:
- On an AD domain member, set
security = ads
In this mode, Samba uses Kerberos to authenticate AD users.
For details about setting up Samba as a domain member, see Setting up Samba as an AD domain member server.
- On a standalone server, set
security = user
In this mode, Samba uses a local database to authenticate connecting users.
For details about setting up Samba as a standalone server, see Setting up Samba as a standalone server.
- On an NT4 PDC or BDC, set
security = user
- In this mode, Samba authenticates users to a local or LDAP database.
- On an NT4 domain member, set
security = domain
In this mode, Samba authenticates connecting users to an NT4 PDC or BDC. You cannot use this mode on AD domain members.
For details about setting up Samba as a domain member, see Setting up Samba as an AD domain member server.
Additional resources
-
security
parameter in thesmb.conf(5)
man page
1.1.3. Scenarios when Samba services and Samba client utilities load and reload their configuration
The following describes when Samba services and utilities load and reload their configuration:
Samba services reload their configuration:
- Automatically every 3 minutes
-
On manual request, for example, when you run the
smbcontrol all reload-config
command.
- Samba client utilities read their configuration only when you start them.
Note that certain parameters, such as security
require a restart of the smb
service to take effect and a reload is not sufficient.
Additional resources
-
The
How configuration changes are applied
section in thesmb.conf(5)
man page -
The
smbd(8)
,nmbd(8)
, andwinbindd(8)
man pages
1.1.4. Editing the Samba configuration in a safe way
Samba services automatically reload their configuration every 3 minutes. This procedure describes how to edit the Samba configuration in a way that prevents the services reload the changes before you have verified the configuration using the testparm
utility.
Prerequisites
- Samba is installed.
Procedure
Create a copy of the
/etc/samba/smb.conf
file:# cp /etc/samba/smb.conf /etc/samba/samba.conf.copy
- Edit the copied file and make the desired changes.
Verify the configuration in the
/etc/samba/samba.conf.copy
file:# testparm -s /etc/samba/samba.conf.copy
If
testparm
reports errors, fix them and run the command again.Override the
/etc/samba/smb.conf
file with the new configuration:# mv /etc/samba/samba.conf.copy /etc/samba/smb.conf
Wait until the Samba services automatically reload their configuration or manually reload the configuration:
# smbcontrol all reload-config
1.2. Verifying the smb.conf file by using the testparm utility
The testparm
utility verifies that the Samba configuration in the /etc/samba/smb.conf
file is correct. The utility detects invalid parameters and values, but also incorrect settings, such as for ID mapping. If testparm
reports no problem, the Samba services will successfully load the /etc/samba/smb.conf
file. Note that testparm
cannot verify that the configured services will be available or work as expected.
Red Hat recommends that you verify the /etc/samba/smb.conf
file by using testparm
after each modification of this file.
Prerequisites
- You installed Samba.
-
The
/etc/samba/smb.conf
file exits.
Procedure
Run the
testparm
utility as theroot
user:#
testparm
Load smb config files from /etc/samba/smb.conf rlimit_max: increasing rlimit_max (1024) to minimum Windows limit (16384) Unknown parameter encountered: "log levell" Processing section "[example_share]" Loaded services file OK. ERROR: The idmap range for the domain * (tdb) overlaps with the range of DOMAIN (ad)! Server role: ROLE_DOMAIN_MEMBER Press enter to see a dump of your service definitions # Global parameters [global] ... [example_share] ...The previous example output reports a non-existent parameter and an incorrect ID mapping configuration.
-
If
testparm
reports incorrect parameters, values, or other errors in the configuration, fix the problem and run the utility again.
1.3. Setting up Samba as a standalone server
You can set up Samba as a server that is not a member of a domain. In this installation mode, Samba authenticates users to a local database instead of to a central DC. Additionally, you can enable guest access to allow users to connect to one or multiple services without authentication.
1.3.1. Setting up the server configuration for the standalone server
This section describes how to set up the server configuration for a Samba standalone server.
Procedure
Install the
samba
package:# dnf install samba
Edit the
/etc/samba/smb.conf
file and set the following parameters:[global] workgroup = Example-WG netbios name = Server security = user log file = /var/log/samba/%m.log log level = 1
This configuration defines a standalone server named
Server
within theExample-WG
work group. Additionally, this configuration enables logging on a minimal level (1
) and log files will be stored in the/var/log/samba/
directory. Samba will expand the%m
macro in thelog file
parameter to the NetBIOS name of connecting clients. This enables individual log files for each client.Optionally, configure file or printer sharing. See:
Verify the
/etc/samba/smb.conf
file:# testparm
If you set up shares that require authentication, create the user accounts.
For details, see Creating and enabling local user accounts.
Open the required ports and reload the firewall configuration by using the
firewall-cmd
utility:# firewall-cmd --permanent --add-service=samba # firewall-cmd --reload
Enable and start the
smb
service:# systemctl enable --now smb
Additional resources
-
smb.conf(5)
man page
1.3.2. Creating and enabling local user accounts
To enable users to authenticate when they connect to a share, you must create the accounts on the Samba host both in the operating system and in the Samba database. Samba requires the operating system account to validate the Access Control Lists (ACL) on file system objects and the Samba account to authenticate connecting users.
If you use the passdb backend = tdbsam
default setting, Samba stores user accounts in the /var/lib/samba/private/passdb.tdb
database.
The procedure in this section describes how to create a local Samba user named example
.
Prerequisites
- Samba is installed and configured as a standalone server.
Procedure
Create the operating system account:
# useradd -M -s /sbin/nologin example
This command adds the
example
account without creating a home directory. If the account is only used to authenticate to Samba, assign the/sbin/nologin
command as shell to prevent the account from logging in locally.Set a password to the operating system account to enable it:
# passwd example Enter new UNIX password:
password
Retype new UNIX password:password
passwd: password updated successfullySamba does not use the password set on the operating system account to authenticate. However, you need to set a password to enable the account. If an account is disabled, Samba denies access if this user connects.
Add the user to the Samba database and set a password to the account:
# smbpasswd -a example New SMB password:
password
Retype new SMB password:password
Added user example.Use this password to authenticate when using this account to connect to a Samba share.
Enable the Samba account:
# smbpasswd -e example Enabled user example.
1.4. Understanding and configuring Samba ID mapping
Windows domains distinguish users and groups by unique Security Identifiers (SID). However, Linux requires unique UIDs and GIDs for each user and group. If you run Samba as a domain member, the winbindd
service is responsible for providing information about domain users and groups to the operating system.
To enable the winbindd
service to provide unique IDs for users and groups to Linux, you must configure ID mapping in the /etc/samba/smb.conf
file for:
- The local database (default domain)
- The AD or NT4 domain the Samba server is a member of
- Each trusted domain from which users must be able to access resources on this Samba server
Samba provides different ID mapping back ends for specific configurations. The most frequently used back ends are:
Back end | Use case |
---|---|
|
The |
| AD domains only |
| AD and NT4 domains |
|
AD, NT4, and the |
1.4.1. Planning Samba ID ranges
Regardless of whether you store the Linux UIDs and GIDs in AD or if you configure Samba to generate them, each domain configuration requires a unique ID range that must not overlap with any of the other domains.
If you set overlapping ID ranges, Samba fails to work correctly.
Example 1.1. Unique ID Ranges
The following shows non-overlapping ID mapping ranges for the default (*
), AD-DOM
, and the TRUST-DOM
domains.
[global] ... idmap config * : backend = tdb idmap config * : range = 10000-999999 idmap config AD-DOM:backend = rid idmap config AD-DOM:range = 2000000-2999999 idmap config TRUST-DOM:backend = rid idmap config TRUST-DOM:range = 4000000-4999999
You can only assign one range per domain. Therefore, leave enough space between the domains ranges. This enables you to extend the range later if your domain grows.
If you later assign a different range to a domain, the ownership of files and directories previously created by these users and groups will be lost.
1.4.2. The * default domain
In a domain environment, you add one ID mapping configuration for each of the following:
- The domain the Samba server is a member of
- Each trusted domain that should be able to access the Samba server
However, for all other objects, Samba assigns IDs from the default domain. This includes:
- Local Samba users and groups
-
Samba built-in accounts and groups, such as
BUILTIN\Administrators
You must configure the default domain as described in this section to enable Samba to operate correctly.
The default domain back end must be writable to permanently store the assigned IDs.
For the default domain, you can use one of the following back ends:
tdb
When you configure the default domain to use the
tdb
back end, set an ID range that is big enough to include objects that will be created in the future and that are not part of a defined domain ID mapping configuration.For example, set the following in the
[global]
section in the/etc/samba/smb.conf
file:idmap config * : backend = tdb idmap config * : range = 10000-999999
For further details, see Using the TDB ID mapping back end.
autorid
When you configure the default domain to use the
autorid
back end, adding additional ID mapping configurations for domains is optional.For example, set the following in the
[global]
section in the/etc/samba/smb.conf
file:idmap config * : backend = autorid idmap config * : range = 10000-999999
For further details, see Using the autorid ID mapping back end.
1.4.3. Using the tdb ID mapping back end
The winbindd
service uses the writable tdb
ID mapping back end by default to store Security Identifier (SID), UID, and GID mapping tables. This includes local users, groups, and built-in principals.
Use this back end only for the *
default domain. For example:
idmap config * : backend = tdb idmap config * : range = 10000-999999
Additional resources
1.4.4. Using the ad ID mapping back end
This section describes how to configure a Samba AD member to use the ad
ID mapping back end.
The ad
ID mapping back end implements a read-only API to read account and group information from AD. This provides the following benefits:
- All user and group settings are stored centrally in AD.
- User and group IDs are consistent on all Samba servers that use this back end.
- The IDs are not stored in a local database which can corrupt, and therefore file ownerships cannot be lost.
The ad
ID mapping back end does not support Active Directory domains with one-way trusts. If you configure a domain member in an Active Directory with one-way trusts, use instead one of the following ID mapping back ends: tdb
, rid
, or autorid
.
The ad back end reads the following attributes from AD:
AD attribute name | Object type | Mapped to |
---|---|---|
| User and group | User or group name, depending on the object |
| User | User ID (UID) |
| Group | Group ID (GID) |
| User | Path to the shell of the user |
| User | Path to the home directory of the user |
| User | Primary group ID |
[a]
Samba only reads this attribute if you set idmap config DOMAIN:unix_nss_info = yes .
[b]
Samba only reads this attribute if you set idmap config DOMAIN:unix_primary_group = yes .
|
Prerequisites
-
Both users and groups must have unique IDs set in AD, and the IDs must be within the range configured in the
/etc/samba/smb.conf
file. Objects whose IDs are outside of the range will not be available on the Samba server. - Users and groups must have all required attributes set in AD. If required attributes are missing, the user or group will not be available on the Samba server. The required attributes depend on your configuration. .Prerequisites
- You installed Samba.
-
The Samba configuration, except ID mapping, exists in the
/etc/samba/smb.conf
file.
Procedure
Edit the
[global]
section in the/etc/samba/smb.conf
file:Add an ID mapping configuration for the default domain (
*
) if it does not exist. For example:idmap config * : backend = tdb idmap config * : range = 10000-999999
Enable the
ad
ID mapping back end for the AD domain:idmap config DOMAIN : backend = ad
Set the range of IDs that is assigned to users and groups in the AD domain. For example:
idmap config DOMAIN : range = 2000000-2999999
ImportantThe range must not overlap with any other domain configuration on this server. Additionally, the range must be set big enough to include all IDs assigned in the future. For further details, see Planning Samba ID ranges.
Set that Samba uses the RFC 2307 schema when reading attributes from AD:
idmap config DOMAIN : schema_mode = rfc2307
To enable Samba to read the login shell and the path to the users home directory from the corresponding AD attribute, set:
idmap config DOMAIN : unix_nss_info = yes
Alternatively, you can set a uniform domain-wide home directory path and login shell that is applied to all users. For example:
template shell = /bin/bash template homedir = /home/%U
By default, Samba uses the
primaryGroupID
attribute of a user object as the user’s primary group on Linux. Alternatively, you can configure Samba to use the value set in thegidNumber
attribute instead:idmap config DOMAIN : unix_primary_group = yes
Verify the
/etc/samba/smb.conf
file:# testparm
Reload the Samba configuration:
# smbcontrol all reload-config
Additional resources
- The * default domain
-
smb.conf(5)
andidmap_ad(8)
man pages -
VARIABLE SUBSTITUTIONS
section in thesmb.conf(5)
man page
1.4.5. Using the rid ID mapping back end
This section describes how to configure a Samba domain member to use the rid
ID mapping back end.
Samba can use the relative identifier (RID) of a Windows SID to generate an ID on Red Hat Enterprise Linux.
The RID is the last part of a SID. For example, if the SID of a user is S-1-5-21-5421822485-1151247151-421485315-30014
, then 30014
is the corresponding RID.
The rid
ID mapping back end implements a read-only API to calculate account and group information based on an algorithmic mapping scheme for AD and NT4 domains. When you configure the back end, you must set the lowest and highest RID in the idmap config DOMAIN : range
parameter. Samba will not map users or groups with a lower or higher RID than set in this parameter.
As a read-only back end, rid
cannot assign new IDs, such as for BUILTIN
groups. Therefore, do not use this back end for the *
default domain.
Benefits of using the rid back end
- All domain users and groups that have an RID within the configured range are automatically available on the domain member.
- You do not need to manually assign IDs, home directories, and login shells.
Drawbacks of using the rid back end
- All domain users get the same login shell and home directory assigned. However, you can use variables.
-
User and group IDs are only the same across Samba domain members if all use the
rid
back end with the same ID range settings. - You cannot exclude individual users or groups from being available on the domain member. Only users and groups outside of the configured range are excluded.
-
Based on the formulas the
winbindd
service uses to calculate the IDs, duplicate IDs can occur in multi-domain environments if objects in different domains have the same RID.
Prerequisites
- You installed Samba.
-
The Samba configuration, except ID mapping, exists in the
/etc/samba/smb.conf
file.
Procedure
Edit the
[global]
section in the/etc/samba/smb.conf
file:Add an ID mapping configuration for the default domain (
*
) if it does not exist. For example:idmap config * : backend = tdb idmap config * : range = 10000-999999
Enable the
rid
ID mapping back end for the domain:idmap config DOMAIN : backend = rid
Set a range that is big enough to include all RIDs that will be assigned in the future. For example:
idmap config DOMAIN : range = 2000000-2999999
Samba ignores users and groups whose RIDs in this domain are not within the range.
ImportantThe range must not overlap with any other domain configuration on this server. Additionally, the range must be set big enough to include all IDs assigned in the future. For further details, see Planning Samba ID ranges.
Set a shell and home directory path that will be assigned to all mapped users. For example:
template shell = /bin/bash template homedir = /home/%U
Verify the
/etc/samba/smb.conf
file:# testparm
Reload the Samba configuration:
# smbcontrol all reload-config
Additional resources
- The * default domain
-
VARIABLE SUBSTITUTIONS
section in thesmb.conf(5)
man page -
Calculation of the local ID from a RID, see the
idmap_rid(8)
man page
1.4.6. Using the autorid ID mapping back end
This section describes how to configure a Samba domain member to use the autorid
ID mapping back end.
The autorid
back end works similar to the rid
ID mapping back end, but can automatically assign IDs for different domains. This enables you to use the autorid
back end in the following situations:
-
Only for the
*
default domain -
For the
*
default domain and additional domains, without the need to create ID mapping configurations for each of the additional domains - Only for specific domains
If you use autorid
for the default domain, adding additional ID mapping configuration for domains is optional.
Parts of this section were adopted from the idmap config autorid documentation published in the Samba Wiki. License: CC BY 4.0. Authors and contributors: See the history tab on the Wiki page.
Benefits of using the autorid back end
- All domain users and groups whose calculated UID and GID is within the configured range are automatically available on the domain member.
- You do not need to manually assign IDs, home directories, and login shells.
- No duplicate IDs, even if multiple objects in a multi-domain environment have the same RID.
Drawbacks
- User and group IDs are not the same across Samba domain members.
- All domain users get the same login shell and home directory assigned. However, you can use variables.
- You cannot exclude individual users or groups from being available on the domain member. Only users and groups whose calculated UID or GID is outside of the configured range are excluded.
Prerequisites
- You installed Samba.
-
The Samba configuration, except ID mapping, exists in the
/etc/samba/smb.conf
file.
Procedure
Edit the
[global]
section in the/etc/samba/smb.conf
file:Enable the
autorid
ID mapping back end for the*
default domain:idmap config * : backend = autorid
Set a range that is big enough to assign IDs for all existing and future objects. For example:
idmap config * : range = 10000-999999
Samba ignores users and groups whose calculated IDs in this domain are not within the range.
WarningAfter you set the range and Samba starts using it, you can only increase the upper limit of the range. Any other change to the range can result in new ID assignments, and thus in losing file ownerships.
Optionally, set a range size. For example:
idmap config * : rangesize = 200000
Samba assigns this number of continuous IDs for each domain’s object until all IDs from the range set in the
idmap config * : range
parameter are taken.NoteIf you set a rangesize, you need to adapt the range accordingly. The range needs to be a multiple of the rangesize.
Set a shell and home directory path that will be assigned to all mapped users. For example:
template shell = /bin/bash template homedir = /home/%U
Optionally, add additional ID mapping configuration for domains. If no configuration for an individual domain is available, Samba calculates the ID using the
autorid
back end settings in the previously configured*
default domain.ImportantThe range must not overlap with any other domain configuration on this server. Additionally, the range must be set big enough to include all IDs assigned in the future. For further details, see Planning Samba ID ranges.
Verify the
/etc/samba/smb.conf
file:# testparm
Reload the Samba configuration:
# smbcontrol all reload-config
Additional resources
-
THE MAPPING FORMULAS
section in theidmap_autorid(8)
man page -
rangesize
parameter description in theidmap_autorid(8)
man page -
VARIABLE SUBSTITUTIONS
section in thesmb.conf(5)
man page
1.5. Setting up Samba as an AD domain member server
If you are running an AD or NT4 domain, use Samba to add your Red Hat Enterprise Linux server as a member to the domain to gain the following:
- Access domain resources on other domain members
-
Authenticate domain users to local services, such as
sshd
- Share directories and printers hosted on the server to act as a file and print server
1.5.1. Joining a RHEL system to an AD domain
Samba Winbind is an alternative to the System Security Services Daemon (SSSD) for connecting a Red Hat Enterprise Linux (RHEL) system with Active Directory (AD). This section describes how to join a RHEL system to an AD domain by using realmd
to configure Samba Winbind.
Procedure
If your AD requires the deprecated RC4 encryption type for Kerberos authentication, enable support for these ciphers in RHEL:
# update-crypto-policies --set DEFAULT:AD-SUPPORT
Install the following packages:
# dnf install realmd oddjob-mkhomedir oddjob samba-winbind-clients \ samba-winbind samba-common-tools samba-winbind-krb5-locator
To share directories or printers on the domain member, install the
samba
package:# dnf install samba
Backup the existing
/etc/samba/smb.conf
Samba configuration file:# mv /etc/samba/smb.conf /etc/samba/smb.conf.bak
Join the domain. For example, to join a domain named
ad.example.com
:# realm join --membership-software=samba --client-software=winbind ad.example.com
Using the previous command, the
realm
utility automatically:-
Creates a
/etc/samba/smb.conf
file for a membership in thead.example.com
domain -
Adds the
winbind
module for user and group lookups to the/etc/nsswitch.conf
file -
Updates the Pluggable Authentication Module (PAM) configuration files in the
/etc/pam.d/
directory -
Starts the
winbind
service and enables the service to start when the system boots
-
Creates a
-
Optionally, set an alternative ID mapping back end or customized ID mapping settings in the
/etc/samba/smb.conf
file.
For details, see Understanding and configuring Samba ID mapping.
Verify that the
winbind
service is running:# systemctl status winbind ... Active: active (running) since Tue 2018-11-06 19:10:40 CET; 15s ago
ImportantTo enable Samba to query domain user and group information, the
winbind
service must be running before you startsmb
.If you installed the
samba
package to share directories and printers, enable and start thesmb
service:# systemctl enable --now smb
-
Optionally, if you are authenticating local logins to Active Directory, enable the
winbind_krb5_localauth
plug-in. See Using the local authorization plug-in for MIT Kerberos.
Verification steps
Display an AD user’s details, such as the AD administrator account in the AD domain:
# getent passwd "AD\administrator" AD\administrator:*:10000:10000::/home/administrator@AD:/bin/bash
Query the members of the domain users group in the AD domain:
# getent group "AD\Domain Users" AD\domain users:x:10000:user1,user2
Optionally, verify that you can use domain users and groups when you set permissions on files and directories. For example, to set the owner of the
/srv/samba/example.txt
file toAD\administrator
and the group toAD\Domain Users
:# chown "AD\administrator":"AD\Domain Users" /srv/samba/example.txt
Verify that Kerberos authentication works as expected:
On the AD domain member, obtain a ticket for the
administrator@AD.EXAMPLE.COM
principal:# kinit administrator@AD.EXAMPLE.COM
Display the cached Kerberos ticket:
# klist Ticket cache: KCM:0 Default principal: administrator@AD.EXAMPLE.COM Valid starting Expires Service principal 01.11.2018 10:00:00 01.11.2018 20:00:00 krbtgt/AD.EXAMPLE.COM@AD.EXAMPLE.COM renew until 08.11.2018 05:00:00
Display the available domains:
# wbinfo --all-domains BUILTIN SAMBA-SERVER AD
Additional resources
- If you do not want to use the deprecated RC4 ciphers, you can enable the AES encryption type in AD. See
- Enabling the AES encryption type in Active Directory using a GPO. Note that this can have an impact on other services in your AD.
-
realm(8)
man page
1.5.2. Using the local authorization plug-in for MIT Kerberos
The winbind
service provides Active Directory users to the domain member. In certain situations, administrators want to enable domain users to authenticate to local services, such as an SSH server, which are running on the domain member. When using Kerberos to authenticate the domain users, enable the winbind_krb5_localauth
plug-in to correctly map Kerberos principals to Active Directory accounts through the winbind
service.
For example, if the sAMAccountName
attribute of an Active Directory user is set to EXAMPLE
and the user tries to log with the user name lowercase, Kerberos returns the user name in upper case. As a consequence, the entries do not match and authentication fails.
Using the winbind_krb5_localauth
plug-in, the account names are mapped correctly. Note that this only applies to GSSAPI authentication and not for getting the initial ticket granting ticket (TGT).
Prerequisites
- Samba is configured as a member of an Active Directory.
- Red Hat Enterprise Linux authenticates log in attempts against Active Directory.
-
The
winbind
service is running.
Procedure
Edit the /etc/krb5.conf
file and add the following section:
[plugins] localauth = { module = winbind:/usr/lib64/samba/krb5/winbind_krb5_localauth.so enable_only = winbind }
Additional resources
-
winbind_krb5_localauth(8)
man page.
1.6. Setting up Samba on an IdM domain member
This section describes how to set up Samba on a host that is joined to a Red Hat Identity Management (IdM) domain. Users from IdM and also, if available, from trusted Active Directory (AD) domains, can access shares and printer services provided by Samba.
Using Samba on an IdM domain member is an unsupported Technology Preview feature and contains certain limitations. For example, IdM trust controllers do not support the Active Directory Global Catalog service, and they do not support resolving IdM groups using the Distributed Computing Environment / Remote Procedure Calls (DCE/RPC) protocols. As a consequence, AD users can only access Samba shares and printers hosted on IdM clients when logged in to other IdM clients; AD users logged into a Windows machine can not access Samba shares hosted on an IdM domain member.
Customers deploying Samba on IdM domain members are encouraged to provide feedback to Red Hat.
Prerequisites
- The host is joined as a client to the IdM domain.
- Both the IdM servers and the client must run on RHEL 9.0 or later.
1.6.1. Preparing the IdM domain for installing Samba on domain members
Before you can set up Samba on an IdM client, you must prepare the IdM domain using the ipa-adtrust-install
utility on an IdM server.
Any system where you run the ipa-adtrust-install
command automatically becomes an AD trust controller. However, you must run ipa-adtrust-install
only once on an IdM server.
Prerequisites
- IdM server is installed.
- You need root privileges to install packages and restart IdM services.
Procedure
Install the required packages:
[root@ipaserver ~]# dnf install ipa-server-trust-ad samba-client
Authenticate as the IdM administrative user:
[root@ipaserver ~]# kinit admin
Run the
ipa-adtrust-install
utility:[root@ipaserver ~]# ipa-adtrust-install
The DNS service records are created automatically if IdM was installed with an integrated DNS server.
If you installed IdM without an integrated DNS server,
ipa-adtrust-install
prints a list of service records that you must manually add to DNS before you can continue.The script prompts you that the
/etc/samba/smb.conf
already exists and will be rewritten:WARNING: The smb.conf already exists. Running ipa-adtrust-install will break your existing Samba configuration. Do you wish to continue? [no]:
yes
The script prompts you to configure the
slapi-nis
plug-in, a compatibility plug-in that allows older Linux clients to work with trusted users:Do you want to enable support for trusted domains in Schema Compatibility plugin? This will allow clients older than SSSD 1.9 and non-Linux clients to work with trusted users. Enable trusted domains support in slapi-nis? [no]:
yes
When prompted, enter the NetBIOS name for the IdM domain or press Enter to accept the name suggested:
Trust is configured but no NetBIOS domain name found, setting it now. Enter the NetBIOS name for the IPA domain. Only up to 15 uppercase ASCII letters, digits and dashes are allowed. Example: EXAMPLE. NetBIOS domain name [IDM]:
You are prompted to run the SID generation task to create a SID for any existing users:
Do you want to run the ipa-sidgen task? [no]:
yes
This is a resource-intensive task, so if you have a high number of users, you can run this at another time.
(Optional) By default, the Dynamic RPC port range is defined as
49152-65535
for Windows Server 2008 and later. If you need to define a different Dynamic RPC port range for your environment, configure Samba to use different ports and open those ports in your firewall settings. The following example sets the port range to55000-65000
.[root@ipaserver ~]# net conf setparm global 'rpc server dynamic port range' 55000-65000 [root@ipaserver ~]# firewall-cmd --add-port=55000-65000/tcp [root@ipaserver ~]# firewall-cmd --runtime-to-permanent
Restart the
ipa
service:[root@ipaserver ~]# ipactl restart
Use the
smbclient
utility to verify that Samba responds to Kerberos authentication from the IdM side:[root@ipaserver ~]#
smbclient -L server.idm.example.com -U user_name --use-kerberos=required
lp_load_ex: changing to config backend registry Sharename Type Comment --------- ---- ------- IPC$ IPC IPC Service (Samba 4.15.2) ...
1.6.2. Enabling the AES encryption type in Active Directory using a GPO
This section describes how to enable the AES encryption type in Active Directory (AD) using a group policy object (GPO). Certain features on RHEL, such as running a Samba server on an IdM client, require this encryption type.
Note that RHEL no longer supports the weak DES and RC4 encryption types.
Prerequisites
- You are logged into AD as a user who can edit group policies.
-
The
Group Policy Management Console
is installed on the computer.
Procedure
-
Open the
Group Policy Management Console
. -
Right-click
Default Domain Policy
, and selectEdit
. TheGroup Policy Management Editor
opens. -
Navigate to
Computer Configuration
→Policies
→Windows Settings
→Security Settings
→Local Policies
→Security Options
. -
Double-click the
Network security: Configure encryption types allowed for Kerberos
policy. -
Select
AES256_HMAC_SHA1
and, optionally,Future encryption types
. - Click OK.
-
Close the
Group Policy Management Editor
. -
Repeat the steps for the
Default Domain Controller Policy
. Wait until the Windows domain controllers (DC) applied the group policy automatically. Alternatively, to apply the GPO manually on a DC, enter the following command using an account that has administrator permissions:
C:\> gpupdate /force /target:computer
1.6.3. Installing and configuring a Samba server on an IdM client
This section describes how to install and configure Samba on a client enrolled in an IdM domain.
Prerequisites
- Both the IdM servers and the client must run on RHEL 9.0 or later.
- The IdM domain is prepared as described in Preparing the IdM domain for installing Samba on domain members.
- If IdM has a trust configured with AD, enable the AES encryption type for Kerberos. For example, use a group policy object (GPO) to enable the AES encryption type. For details, see Enabling AES encryption in Active Directory using a GPO.
Procedure
Install the
ipa-client-samba
package:[root@idm_client]# dnf install ipa-client-samba
Use the
ipa-client-samba
utility to prepare the client and create an initial Samba configuration:[root@idm_client]# ipa-client-samba Searching for IPA server... IPA server: DNS discovery Chosen IPA master: idm_server.idm.example.com SMB principal to be created: cifs/idm_client.idm.example.com@IDM.EXAMPLE.COM NetBIOS name to be used: IDM_CLIENT Discovered domains to use: Domain name: idm.example.com NetBIOS name: IDM SID: S-1-5-21-525930803-952335037-206501584 ID range: 212000000 - 212199999 Domain name: ad.example.com NetBIOS name: AD SID: None ID range: 1918400000 - 1918599999 Continue to configure the system with these values? [no]: yes Samba domain member is configured. Please check configuration at /etc/samba/smb.conf and start smb and winbind services
By default,
ipa-client-samba
automatically adds the[homes]
section to the/etc/samba/smb.conf
file that dynamically shares a user’s home directory when the user connects. If users do not have home directories on this server, or if you do not want to share them, remove the following lines from/etc/samba/smb.conf
:[homes] read only = no
Share directories and printers. For details, see:
Open the ports required for a Samba client in the local firewall:
[root@idm_client]# firewall-cmd --permanent --add-service=samba-client [root@idm_client]# firewall-cmd --reload
Enable and start the
smb
andwinbind
services:[root@idm_client]# systemctl enable --now smb winbind
Verification steps
Run the following verification step on a different IdM domain member that has the samba-client
package installed:
List the shares on the Samba server using Kerberos authentication:
$
smbclient -L idm_client.idm.example.com -U user_name --use-kerberos=required
lp_load_ex: changing to config backend registry Sharename Type Comment --------- ---- ------- example Disk IPC$ IPC IPC Service (Samba 4.15.2) ...
Additional resources
-
ipa-client-samba(1)
man page
1.6.4. Manually adding an ID mapping configuration if IdM trusts a new domain
Samba requires an ID mapping configuration for each domain from which users access resources. On an existing Samba server running on an IdM client, you must manually add an ID mapping configuration after the administrator added a new trust to an Active Directory (AD) domain.
Prerequisites
- You configured Samba on an IdM client. Afterward, a new trust was added to IdM.
- The DES and RC4 encryption types for Kerberos must be disabled in the trusted AD domain. For security reasons, RHEL 9 does not support these weak encryption types.
Procedure
Authenticate using the host’s keytab:
[root@idm_client]# kinit -k
Use the
ipa idrange-find
command to display both the base ID and the ID range size of the new domain. For example, the following command displays the values for thead.example.com
domain:[root@idm_client]# ipa idrange-find --name="AD.EXAMPLE.COM_id_range" --raw --------------- 1 range matched --------------- cn: AD.EXAMPLE.COM_id_range ipabaseid: 1918400000 ipaidrangesize: 200000 ipabaserid: 0 ipanttrusteddomainsid: S-1-5-21-968346183-862388825-1738313271 iparangetype: ipa-ad-trust ---------------------------- Number of entries returned 1 ----------------------------
You need the values from the
ipabaseid
andipaidrangesize
attributes in the next steps.To calculate the highest usable ID, use the following formula:
maximum_range = ipabaseid + ipaidrangesize - 1
With the values from the previous step, the highest usable ID for the
ad.example.com
domain is1918599999
(1918400000 + 200000 - 1).Edit the
/etc/samba/smb.conf
file, and add the ID mapping configuration for the domain to the[global]
section:idmap config AD : range = 1918400000 - 1918599999 idmap config AD : backend = sss
Specify the value from
ipabaseid
attribute as the lowest and the computed value from the previous step as the highest value of the range.Restart the
smb
andwinbind
services:[root@idm_client]# systemctl restart smb winbind
Verification steps
List the shares on the Samba server using Kerberos authentication:
$
smbclient -L idm_client.idm.example.com -U user_name --use-kerberos=required
lp_load_ex: changing to config backend registry Sharename Type Comment --------- ---- ------- example Disk IPC$ IPC IPC Service (Samba 4.15.2) ...
1.6.5. Additional resources
1.7. Setting up a Samba file share that uses POSIX ACLs
As a Linux service, Samba supports shares with POSIX ACLs. They enable you to manage permissions locally on the Samba server using utilities, such as chmod
. If the share is stored on a file system that supports extended attributes, you can define ACLs with multiple users and groups.
If you need to use fine-granular Windows ACLs instead, see Setting up a share that uses Windows ACLs.
Parts of this section were adopted from the Setting up a Share Using POSIX ACLs documentation published in the Samba Wiki. License: CC BY 4.0. Authors and contributors: See the history tab on the Wiki page.
1.7.1. Adding a share that uses POSIX ACLs
This section describes how to create a share named example
that provides the content of the /srv/samba/example/
directory, and uses POSIX ACLs.
Prerequisites
Samba has been set up in one of the following modes:
Procedure
Create the folder if it does not exist. For example:
# mkdir -p /srv/samba/example/
If you run SELinux in
enforcing
mode, set thesamba_share_t
context on the directory:# semanage fcontext -a -t samba_share_t "/srv/samba/example(/.*)?" # restorecon -Rv /srv/samba/example/
Set file system ACLs on the directory. For details, see:
Add the example share to the
/etc/samba/smb.conf
file. For example, to add the share write-enabled:[example] path = /srv/samba/example/ read only = no
NoteRegardless of the file system ACLs; if you do not set
read only = no
, Samba shares the directory in read-only mode.Verify the
/etc/samba/smb.conf
file:# testparm
Open the required ports and reload the firewall configuration using the
firewall-cmd
utility:# firewall-cmd --permanent --add-service=samba # firewall-cmd --reload
Restart the
smb
service:# systemctl restart smb
1.7.2. Setting standard Linux ACLs on a Samba share that uses POSIX ACLs
The standard ACLs on Linux support setting permissions for one owner, one group, and for all other undefined users. You can use the chown
, chgrp
, and chmod
utility to update the ACLs. If you require precise control, then you use the more complex POSIX ACLs, see
Setting extended ACLs on a Samba share that uses POSIX ACLs.
The following procedure sets the owner of the /srv/samba/example/
directory to the root
user, grants read and write permissions to the Domain Users
group, and denies access to all other users.
Prerequisites
- The Samba share on which you want to set the ACLs exists.
Procedure
# chown root:"Domain Users" /srv/samba/example/ # chmod 2770 /srv/samba/example/
Enabling the set-group-ID (SGID) bit on a directory automatically sets the default group for all new files and subdirectories to that of the directory group, instead of the usual behavior of setting it to the primary group of the user who created the new directory entry.
Additional resources
-
chown(1)
andchmod(1)
man pages
1.7.3. Setting extended ACLs on a Samba share that uses POSIX ACLs
If the file system the shared directory is stored on supports extended ACLs, you can use them to set complex permissions. Extended ACLs can contain permissions for multiple users and groups.
Extended POSIX ACLs enable you to configure complex ACLs with multiple users and groups. However, you can only set the following permissions:
- No access
- Read access
- Write access
- Full control
If you require the fine-granular Windows permissions, such as Create folder / append data
, configure the share to use Windows ACLs.
See Setting up a share that uses Windows ACLs.
The following procedure shows how to enable extended ACLs on a share. Additionally, it contains an example about setting extended ACLs.
Prerequisites
- The Samba share on which you want to set the ACLs exists.
Procedure
Enable the following parameter in the share’s section in the
/etc/samba/smb.conf
file to enable ACL inheritance of extended ACLs:inherit acls = yes
For details, see the parameter description in the
smb.conf(5
) man page.Restart the
smb
service:# systemctl restart smb
Set the ACLs on the directory. For example:
Example 1.2. Setting Extended ACLs
The following procedure sets read, write, and execute permissions for the
Domain Admins
group, read, and execute permissions for theDomain Users
group, and deny access to everyone else on the/srv/samba/example/
directory:Disable auto-granting permissions to the primary group of user accounts:
# setfacl -m group::--- /srv/samba/example/ # setfacl -m default:group::--- /srv/samba/example/
The primary group of the directory is additionally mapped to the dynamic
CREATOR GROUP
principal. When you use extended POSIX ACLs on a Samba share, this principal is automatically added and you cannot remove it.Set the permissions on the directory:
Grant read, write, and execute permissions to the
Domain Admins
group:# setfacl -m group:"DOMAIN\Domain Admins":rwx /srv/samba/example/
Grant read and execute permissions to the
Domain Users
group:# setfacl -m group:"DOMAIN\Domain Users":r-x /srv/samba/example/
Set permissions for the
other
ACL entry to deny access to users that do not match the other ACL entries:# setfacl -R -m other::--- /srv/samba/example/
These settings apply only to this directory. In Windows, these ACLs are mapped to the
This folder only
mode.To enable the permissions set in the previous step to be inherited by new file system objects created in this directory:
# setfacl -m default:group:"DOMAIN\Domain Admins":rwx /srv/samba/example/ # setfacl -m default:group:"DOMAIN\Domain Users":r-x /srv/samba/example/ # setfacl -m default:other::--- /srv/samba/example/
With these settings, the
This folder only
mode for the principals is now set toThis folder, subfolders, and files
.
Samba maps the permissions set in the procedure to the following Windows ACLs:
Principal Access Applies to Domain\Domain Admins
Full control
This folder, subfolders, and files
Domain\Domain Users
Read & execute
This folder, subfolders, and files
Everyone
[a]None
This folder, subfolders, and files
owner (Unix User\owner) [b]
Full control
This folder only
primary_group (Unix User\primary_group) [c]
None
This folder only
Full control
Subfolders and files only
None
Subfolders and files only
[a] Samba maps the permissions for this principal from theother
ACL entry.[b] Samba maps the owner of the directory to this entry.[c] Samba maps the primary group of the directory to this entry.[d] On new file system objects, the creator inherits automatically the permissions of this principal.[e] Configuring or removing these principals from the ACLs not supported on shares that use POSIX ACLs.[f] On new file system objects, the creator’s primary group inherits automatically the permissions of this principal.
1.8. Setting permissions on a share that uses POSIX ACLs
Optionally, to limit or grant access to a Samba share, you can set certain parameters in the share’s section in the /etc/samba/smb.conf
file.
Share-based permissions manage if a user, group, or host is able to access a share. These settings do not affect file system ACLs.
Use share-based settings to restrict access to shares, for example, to deny access from specific hosts.
Prerequisites
- A share with POSIX ACLs has been set up.
1.8.1. Configuring user and group-based share access
User and group-based access control enables you to grant or deny access to a share for certain users and groups.
Prerequisites
- The Samba share on which you want to set user or group-based access exists.
Procedure
For example, to enable all members of the
Domain Users
group to access a share while access is denied for theuser
account, add the following parameters to the share’s configuration:valid users = +DOMAIN\"Domain Users" invalid users = DOMAIN\user
The
invalid users
parameter has a higher priority than thevalid users
parameter. For example, if theuser
account is a member of theDomain Users
group, access is denied to this account when you use the previous example.Reload the Samba configuration:
# smbcontrol all reload-config
Additional resources
-
smb.conf(5)
man page
1.8.2. Configuring host-based share access
Host-based access control enables you to grant or deny access to a share based on client’s host names, IP addresses, or IP range.
The following procedure explains how to enable the 127.0.0.1
IP address, the 192.0.2.0/24
IP range, and the client1.example.com
host to access a share, and additionally deny access for the client2.example.com
host:
Prerequisites
- The Samba share on which you want to set host-based access exists.
Procedure
Add the following parameters to the configuration of the share in the
/etc/samba/smb.conf
file:hosts allow = 127.0.0.1 192.0.2.0/24 client1.example.com hosts deny = client2.example.com
The
hosts deny
parameter has a higher priority thanhosts allow
. For example, ifclient1.example.com
resolves to an IP address that is listed in thehosts allow
parameter, access for this host is denied.Reload the Samba configuration:
# smbcontrol all reload-config
Additional resources
-
smb.conf(5)
man page
1.9. Setting up a share that uses Windows ACLs
Samba supports setting Windows ACLs on shares and file system object. This enables you to:
- Use the fine-granular Windows ACLs
- Manage share permissions and file system ACLs using Windows
Alternatively, you can configure a share to use POSIX ACLs.
For details, see Setting up a Samba file share that uses POSIX ACLs.
Parts of this section were adopted from the Setting up a Share Using Windows ACLs documentation published in the Samba Wiki. License: CC BY 4.0. Authors and contributors: See the history tab on the Wiki page.
1.9.1. Granting the SeDiskOperatorPrivilege privilege
Only users and groups having the SeDiskOperatorPrivilege
privilege granted can configure permissions on shares that use Windows ACLs.
Procedure
For example, to grant the
SeDiskOperatorPrivilege
privilege to theDOMAIN\Domain Admins
group:#
net rpc rights grant "DOMAIN\Domain Admins" SeDiskOperatorPrivilege -U "DOMAIN\administrator"
Enter DOMAIN\administrator's password: Successfully granted rights.NoteIn a domain environment, grant
SeDiskOperatorPrivilege
to a domain group. This enables you to centrally manage the privilege by updating a user’s group membership.To list all users and groups having
SeDiskOperatorPrivilege
granted:#
net rpc rights list privileges SeDiskOperatorPrivilege -U "DOMAIN\administrator"
Enter administrator's password: SeDiskOperatorPrivilege: BUILTIN\Administrators DOMAIN\Domain Admins
1.9.2. Enabling Windows ACL support
To configure shares that support Windows ACLs, you must enable this feature in Samba.
Prerequisites
- A user share is configured on the Samba server.
Procedure
To enable it globally for all shares, add the following settings to the
[global]
section of the/etc/samba/smb.conf
file:vfs objects = acl_xattr map acl inherit = yes store dos attributes = yes
Alternatively, you can enable Windows ACL support for individual shares, by adding the same parameters to a share’s section instead.
Restart the
smb
service:#
systemctl restart smb
1.9.3. Adding a share that uses Windows ACLs
This section describes how to create a share named example
, that shares the content of the /srv/samba/example/
directory, and uses Windows ACLs.
Procedure
Create the folder if it does not exists. For example:
#
mkdir -p /srv/samba/example/
If you run SELinux in
enforcing
mode, set thesamba_share_t
context on the directory:#
semanage fcontext -a -t samba_share_t "/srv/samba/example(/.*)?"
#restorecon -Rv /srv/samba/example/
Add the example share to the
/etc/samba/smb.conf
file. For example, to add the share write-enabled:[example] path = /srv/samba/example/ read only = no
NoteRegardless of the file system ACLs; if you do not set
read only = no
, Samba shares the directory in read-only mode.If you have not enabled Windows ACL support in the
[global]
section for all shares, add the following parameters to the[example]
section to enable this feature for this share:vfs objects = acl_xattr map acl inherit = yes store dos attributes = yes
Verify the
/etc/samba/smb.conf
file:#
testparm
Open the required ports and reload the firewall configuration using the
firewall-cmd
utility:#
firewall-cmd --permanent --add-service=samba
#firewall-cmd --reload
Restart the
smb
service:#
systemctl restart smb
1.9.4. Managing share permissions and file system ACLs of a share that uses Windows ACLs
To manage share permissions and file system ACLs on a Samba share that uses Windows ACLs, use a Windows applications, such as Computer Management
. For details, see the Windows documentation. Alternatively, use the smbcacls
utility to manage ACLs.
To modify the file system permissions from Windows, you must use an account that has the SeDiskOperatorPrivilege
privilege granted.
1.10. Managing ACLs on an SMB share using smbcacls
The smbcacls
utility can list, set, and delete ACLs of files and directories stored on an SMB share. You can use smbcacls
to manage file system ACLs:
- On a local or remote Samba server that uses advanced Windows ACLs or POSIX ACLs
- On Red Hat Enterprise Linux to remotely manage ACLs on a share hosted on Windows
1.10.1. Access control entries
Each ACL entry of a file system object contains Access Control Entries (ACE) in the following format:
security_principal:access_right/inheritance_information/permissions
Example 1.3. Access control entries
If the AD\Domain Users
group has Modify
permissions that apply to This folder, subfolders, and files
on Windows, the ACL contains the following ACE:
AD\Domain Users:ALLOWED/OI|CI/CHANGE
An ACE contains the following parts:
- Security principal
- The security principal is the user, group, or SID the permissions in the ACL are applied to.
- Access right
-
Defines if access to an object is granted or denied. The value can be
ALLOWED
orDENIED
. - Inheritance information
The following values exist:
Table 1.1. Inheritance settings
Value Description Maps to OI
Object Inherit
This folder and files
CI
Container Inherit
This folder and subfolders
IO
Inherit Only
The ACE does not apply to the current file or directory
ID
Inherited
The ACE was inherited from the parent directory
Additionally, the values can be combined as follows:
Table 1.2. Inheritance settings combinations
Value combinations Maps to the Windows Applies to
settingOI|CI
This folder, subfolders, and files
OI|CI|IO
Subfolders and files only
CI|IO
Subfolders only
OI|IO
Files only
- Permissions
This value can be either a hex value that represents one or more Windows permissions or an
smbcacls
alias:A hex value that represents one or more Windows permissions.
The following table displays the advanced Windows permissions and their corresponding value in hex format:
Table 1.3. Windows permissions and their corresponding smbcacls value in hex format
Windows permissions Hex values Full control
0x001F01FF
Traverse folder / execute file
0x00100020
List folder / read data
0x00100001
Read attributes
0x00100080
Read extended attributes
0x00100008
Create files / write data
0x00100002
Create folders / append data
0x00100004
Write attributes
0x00100100
Write extended attributes
0x00100010
Delete subfolders and files
0x00100040
Delete
0x00110000
Read permissions
0x00120000
Change permissions
0x00140000
Take ownership
0x00180000
Multiple permissions can be combined as a single hex value using the bit-wise
OR
operation.
For details, see ACE mask calculation.
An
smbcacls
alias. The following table displays the available aliases:Table 1.4. Existing smbcacls aliases and their corresponding Windows permission
smbcacls
aliasMaps to Windows permission R
Read
READ
Read & execute
W
Special:
- Create files / write data
- Create folders / append data
- Write attributes
- Write extended attributes
- Read permissions
D
Delete
P
Change permissions
O
Take ownership
X
Traverse / execute
CHANGE
Modify
FULL
Full control
NoteYou can combine single-letter aliases when you set permissions. For example, you can set
RD
to apply the Windows permissionRead
andDelete
. However, you can neither combine multiple non-single-letter aliases nor combine aliases and hex values.
1.10.2. Displaying ACLs using smbcacls
To display ACLs on an SMB share, use the smbcacls
utility. If you run smbcacls
without any operation parameter, such as --add
, the utility displays the ACLs of a file system object.
Procedure
For example, to list the ACLs of the root directory of the //server/example
share:
# smbcacls //server/example / -U "DOMAIN\administrator"
Enter DOMAIN\administrator's password:
REVISION:1
CONTROL:SR|PD|DI|DP
OWNER:AD\Administrators
GROUP:AD\Domain Users
ACL:AD\Administrator:ALLOWED/OI|CI/FULL
ACL:AD\Domain Users:ALLOWED/OI|CI/CHANGE
ACL:AD\Domain Guests:ALLOWED/OI|CI/0x00100021
The output of the command displays:
-
REVISION
: The internal Windows NT ACL revision of the security descriptor -
CONTROL
: Security descriptor control -
OWNER
: Name or SID of the security descriptor’s owner -
GROUP
: Name or SID of the security descriptor’s group -
ACL
entries. For details, see Access control entries.
1.10.3. ACE mask calculation
In most situations, when you add or update an ACE, you use the smbcacls
aliases listed in Existing smbcacls aliases and their corresponding Windows permission.
However, if you want to set advanced Windows permissions as listed in Windows permissions and their corresponding smbcacls value in hex format, you must use the bit-wise OR
operation to calculate the correct value. You can use the following shell command to calculate the value:
# echo $(printf '0x%X' $(( hex_value_1 | hex_value_2 | ... )))
Example 1.4. Calculating an ACE Mask
You want to set the following permissions:
- Traverse folder / execute file (0x00100020)
- List folder / read data (0x00100001)
- Read attributes (0x00100080)
To calculate the hex value for the previous permissions, enter:
# echo $(printf '0x%X' $(( 0x00100020 | 0x00100001 | 0x00100080 )))
0x1000A1
Use the returned value when you set or update an ACE.
1.10.4. Adding, updating, and removing an ACL using smbcacls
Depending on the parameter you pass to the smbcacls
utility, you can add, update, and remove ACLs from a file or directory.
Adding an ACL
To add an ACL to the root of the //server/example
share that grants CHANGE
permissions for This folder, subfolders, and files
to the AD\Domain Users
group:
# smbcacls //server/example / -U "DOMAIN\administrator --add ACL:"AD\Domain Users":ALLOWED/OI|CI/CHANGE
Updating an ACL
Updating an ACL is similar to adding a new ACL. You update an ACL by overriding the ACL using the --modify
parameter with an existing security principal. If smbcacls
finds the security principal in the ACL list, the utility updates the permissions. Otherwise the command fails with an error:
ACL for SID principal_name not found
For example, to update the permissions of the AD\Domain Users
group and set them to READ
for This folder, subfolders, and files
:
# smbcacls //server/example / -U "DOMAIN\administrator --modify ACL:"AD\Domain Users":ALLOWED/OI|CI/READ
Deleting an ACL
To delete an ACL, pass the --delete
parameter with the exact ACL to the smbcacls
utility. For example:
# smbcacls //server/example / -U "DOMAIN\administrator --delete ACL:"AD\Domain Users":ALLOWED/OI|CI/READ
1.11. Enabling users to share directories on a Samba server
On a Samba server, you can configure that users can share directories without root permissions.
1.11.1. Enabling the user shares feature
Before users can share directories, the administrator must enable user shares in Samba.
For example, to enable only members of the local example
group to create user shares.
Procedure
Create the local
example
group, if it does not exist:# groupadd example
Prepare the directory for Samba to store the user share definitions and set its permissions properly. For example:
Create the directory:
# mkdir -p /var/lib/samba/usershares/
Set write permissions for the
example
group:# chgrp example /var/lib/samba/usershares/ # chmod 1770 /var/lib/samba/usershares/
- Set the sticky bit to prevent users to rename or delete files stored by other users in this directory.
Edit the
/etc/samba/smb.conf
file and add the following to the[global]
section:Set the path to the directory you configured to store the user share definitions. For example:
usershare path = /var/lib/samba/usershares/
Set how many user shares Samba allows to be created on this server. For example:
usershare max shares = 100
If you use the default of
0
for theusershare max shares
parameter, user shares are disabled.Optionally, set a list of absolute directory paths. For example, to configure that Samba only allows to share subdirectories of the
/data
and/srv
directory to be shared, set:usershare prefix allow list = /data /srv
For a list of further user share-related parameters you can set, see the
USERSHARES
section in thesmb.conf(5)
man page.Verify the
/etc/samba/smb.conf
file:# testparm
Reload the Samba configuration:
# smbcontrol all reload-config
Users are now able to create user shares.
1.11.2. Adding a user share
After you enabled the user share feature in Samba, users can share directories on the Samba server without root
permissions by running the net usershare add
command.
Synopsis of the net usershare add
command:
net usershare add
share_name path [[ comment ] | [ ACLs ]] [ guest_ok=y|n ]
If you set ACLs when you create a user share, you must specify the comment parameter prior to the ACLs. To set an empty comment, use an empty string in double quotes.
Note that users can only enable guest access on a user share, if the administrator set usershare allow guests = yes
in the [global]
section in the /etc/samba/smb.conf
file.
Example 1.5. Adding a user share
A user wants to share the /srv/samba/
directory on a Samba server. The share should be named example
, have no comment set, and should be accessible by guest users. Additionally, the share permissions should be set to full access for the AD\Domain Users
group and read permissions for other users. To add this share, run as the user:
$ net usershare add example /srv/samba/ "" "AD\Domain Users":F,Everyone:R guest_ok=yes
1.11.3. Updating settings of a user share
To update settings of a user share, override the share by using the net usershare add
command with the same share name and the new settings.
See Adding a user share.
1.11.4. Displaying information about existing user shares
Users can enter the net usershare info
command on a Samba server to display user shares and their settings.
Prerequisites
- A user share is configured on the Samba server.
Procedure
To display all user shares created by any user:
$ net usershare info -l [share_1] path=/srv/samba/ comment= usershare_acl=Everyone:R,host_name\user:F, guest_ok=y ...
To list only shares created by the user who runs the command, omit the
-l
parameter.To display only the information about specific shares, pass the share name or wild cards to the command. For example, to display the information about shares whose name starts with
share_
:$ net usershare info -l share_*
1.11.5. Listing user shares
If you want to list only the available user shares without their settings on a Samba server, use the net usershare list
command.
Prerequisites
- A user share is configured on the Samba server.
Procedure
To list the shares created by any user:
$ net usershare list -l share_1 share_2 ...
To list only shares created by the user who runs the command, omit the
-l
parameter.To list only specific shares, pass the share name or wild cards to the command. For example, to list only shares whose name starts with
share_
:$ net usershare list -l share_*
1.11.6. Deleting a user share
To delete a user share, use the command net usershare delete
command as the user who created the share or as the root
user.
Prerequisites
- A user share is configured on the Samba server.
Procedure
$ net usershare delete share_name
1.12. Configuring a share to allow access without authentication
In certain situations, you want to share a directory to which users can connect without authentication. To configure this, enable guest access on a share.
Shares that do not require authentication can be a security risk.
1.12.1. Enabling guest access to a share
If guest access is enabled on a share, Samba maps guest connections to the operating system account set in the guest account
parameter. Guest users can access files on this share if at least one of the following conditions is satisfied:
- The account is listed in file system ACLs
-
The POSIX permissions for
other
users allow it
Example 1.6. Guest share permissions
If you configured Samba to map the guest account to nobody
, which is the default, the ACLs in the following example:
-
Allow guest users to read
file1.txt
-
Allow guest users to read and modify
file2.txt
-
Prevent guest users to read or modify
file3.txt
-rw-r--r--. 1 root root 1024 1. Sep 10:00 file1.txt -rw-r-----. 1 nobody root 1024 1. Sep 10:00 file2.txt -rw-r-----. 1 root root 1024 1. Sep 10:00 file3.txt
Procedure
Edit the
/etc/samba/smb.conf
file:If this is the first guest share you set up on this server:
Set
map to guest = Bad User
in the[global]
section:[global] ... map to guest = Bad User
With this setting, Samba rejects login attempts that use an incorrect password unless the user name does not exist. If the specified user name does not exist and guest access is enabled on a share, Samba treats the connection as a guest log in.
By default, Samba maps the guest account to the
nobody
account on Red Hat Enterprise Linux. Alternatively, you can set a different account. For example:[global] ... guest account = user_name
The account set in this parameter must exist locally on the Samba server. For security reasons, Red Hat recommends using an account that does not have a valid shell assigned.
Add the
guest ok = yes
setting to the[example]
share section:[example] ... guest ok = yes
Verify the
/etc/samba/smb.conf
file:# testparm
Reload the Samba configuration:
# smbcontrol all reload-config
1.13. Configuring Samba for macOS clients
The fruit
virtual file system (VFS) Samba module provides enhanced compatibility with Apple server message block (SMB) clients.
1.13.1. Optimizing the Samba configuration for providing file shares for macOS clients
This section describes how to configure the fruit
module for all Samba shares hosted on the server to optimize Samba file shares for macOS clients.
Red Hat recommends enabling the fruit
module globally. Clients using macOS negotiate the server server message block version 2 (SMB2) Apple (AAPL) protocol extensions when the client establishes the first connection to the server. If the client first connects to a share without AAPL extensions enabled, the client does not use the extensions for any share of the server.
Prerequisites
- Samba is configured as a file server.
Procedure
Edit the
/etc/samba/smb.conf
file, and enable thefruit
andstreams_xattr
VFS modules in the[global]
section:vfs objects = fruit streams_xattr
ImportantYou must enable the
fruit
module before enablingstreams_xattr
. Thefruit
module uses alternate data streams (ADS). For this reason, you must also enable thestreams_xattr
module.Optionally, to provide macOS Time Machine support on a share, add the following setting to the share configuration in the
/etc/samba/smb.conf
file:fruit:time machine = yes
Verify the
/etc/samba/smb.conf
file:# testparm
Reload the Samba configuration:
# smbcontrol all reload-config
Additional resources
-
vfs_fruit(8)
man page. Configuring file shares:
1.14. Using the smbclient utility to access an SMB share
The smbclient utility enables you to access file shares on an SMB server, similarly to a command-line FTP client. You can use it, for example, to upload and download files to and from a share.
Prerequisites
-
The
samba-client
package is installed.
1.14.1. How the smbclient interactive mode works
For example, to authenticate to the example
share hosted on server
using the DOMAIN\user
account:
# smbclient -U "DOMAIN\user" //server/example Enter domain\user's password: Try "help" to get a list of possible commands. smb: \>
After smbclient
connected successfully to the share, the utility enters the interactive mode and shows the following prompt:
smb: \>
To display all available commands in the interactive shell, enter:
smb: \> help
To display the help for a specific command, enter:
smb: \> help command_name
Additional resources
-
smbclient(1)
man page
1.14.2. Using smbclient in interactive mode
If you use smbclient
without the -c
parameter, the utility enters the interactive mode. The following procedure shows how to connect to an SMB share and download a file from a subdirectory.
Procedure
Connect to the share:
# smbclient -U "DOMAIN\user_name" //server_name/share_name
Change into the
/example/
directory:smb: \>
d /example/
List the files in the directory:
smb: \example\>
ls
. D 0 Thu Nov 1 10:00:00 2018 .. D 0 Thu Nov 1 10:00:00 2018 example.txt N 1048576 Thu Nov 1 10:00:00 2018 9950208 blocks of size 1024. 8247144 blocks availableDownload the
example.txt
file:smb: \example\>
get example.txt
getting file \directory\subdirectory\example.txt of size 1048576 as example.txt (511975,0 KiloBytes/sec) (average 170666,7 KiloBytes/sec)Disconnect from the share:
smb: \example\>
exit
1.14.3. Using smbclient in scripting mode
If you pass the -c
parameter to smbclient
, you can automatically execute the commands on the remote SMB share. This enables you to use smbclient
in scripts.
The following procedure shows how to connect to an SMB share and download a file from a subdirectory.
Procedure
-
Use the following command to connect to the share, change into the
example
directory, download theexample.txt
file:
# smbclient -U DOMAIN\user_name //server_name/share_name -c "cd /example/ ; get example.txt ; exit"
1.15. Setting up Samba as a print server
If you set up Samba as a print server, clients in your network can use Samba to print. Additionally, Windows clients can, if configured, download the driver from the Samba server.
Parts of this section were adopted from the Setting up Samba as a Print Server documentation published in the Samba Wiki. License: CC BY 4.0. Authors and contributors: See the history tab on the Wiki page.
Prerequisites
Samba has been set up in one of the following modes:
1.15.1. Enabling print server support in Samba
By default, print server support is not enabled in Samba. To use Samba as a print server, you must configure Samba accordingly.
Print jobs and printer operations require remote procedure calls (RPCs). By default, Samba starts the rpcd_spoolss
service on demand to manage RPCs. During the first RPC call, or when you update the printer list in CUPS, Samba retrieves the printer information from CUPS. This can require approximately 1 second per printer. Therefore, if you have more than 50 printers, tune the rpcd_spoolss
settings.
Prerequisites
The printers are configured in a CUPS server.
For details about configuring printers in CUPS, see the documentation provided in the CUPS web console (https://printserver:631/help) on the print server.
Procedure
Edit the
/etc/samba/smb.conf
file:Add the
[printers]
section to enable the printing backend in Samba:[printers] comment = All Printers path = /var/tmp/ printable = yes create mask = 0600
ImportantThe
[printers]
share name is hard-coded and cannot be changed.If the CUPS server runs on a different host or port, specify the setting in the
[printers]
section:cups server = printserver.example.com:631
If you have many printers, set the number of idle seconds to a higher value than the numbers of printers connected to CUPS. For example, if you have 100 printers, set in the
[global]
section:rpcd_spoolss:idle_seconds = 200
If this setting does not scale in your environment, also increase the number of
rpcd_spoolss
workers in the[global]
section:rpcd_spoolss:num_workers = 10
By default,
rpcd_spoolss
starts 5 workers.
Verify the
/etc/samba/smb.conf
file:# testparm
Open the required ports and reload the firewall configuration using the
firewall-cmd
utility:# firewall-cmd --permanent --add-service=samba # firewall-cmd --reload
Restart the
smb
service:# systemctl restart smb
After restarting the service, Samba automatically shares all printers that are configured in the CUPS back end. If you want to manually share only specific printers, see Manually sharing specific printers.
Verification
Submit a print job. For example, to print a PDF file, enter:
# smbclient -Uuser //sambaserver.example.com/printer_name -c "print example.pdf"
1.15.2. Manually sharing specific printers
If you configured Samba as a print server, by default, Samba shares all printers that are configured in the CUPS back end. The following procedure explains how to share only specific printers.
Prerequisites
- Samba is set up as a print server
Procedure
Edit the
/etc/samba/smb.conf
file:In the
[global]
section, disable automatic printer sharing by setting:load printers = no
Add a section for each printer you want to share. For example, to share the printer named
example
in the CUPS back end asExample-Printer
in Samba, add the following section:[Example-Printer] path = /var/tmp/ printable = yes printer name = example
You do not need individual spool directories for each printer. You can set the same spool directory in the
path
parameter for the printer as you set in the[printers]
section.
Verify the
/etc/samba/smb.conf
file:# testparm
Reload the Samba configuration:
# smbcontrol all reload-config
1.16. Setting up automatic printer driver downloads for Windows clients on Samba print servers
If you are running a Samba print server for Windows clients, you can upload drivers and preconfigure printers. If a user connects to a printer, Windows automatically downloads and installs the driver locally on the client. The user does not require local administrator permissions for the installation. Additionally, Windows applies preconfigured driver settings, such as the number of trays.
Parts of this section were adopted from the Setting up Automatic Printer Driver Downloads for Windows Clients documentation published in the Samba Wiki. License: CC BY 4.0. Authors and contributors: See the history tab on the Wiki page.
Prerequisites
- Samba is set up as a print server
1.16.1. Basic information about printer drivers
This section provides general information about printer drivers.
Supported driver model version
Samba only supports the printer driver model version 3 which is supported in Windows 2000 and later, and Windows Server 2000 and later. Samba does not support the driver model version 4, introduced in Windows 8 and Windows Server 2012. However, these and later Windows versions also support version 3 drivers.
Package-aware drivers
Samba does not support package-aware drivers.
Preparing a printer driver for being uploaded
Before you can upload a driver to a Samba print server:
- Unpack the driver if it is provided in a compressed format.
Some drivers require to start a setup application that installs the driver locally on a Windows host. In certain situations, the installer extracts the individual files into the operating system’s temporary folder during the setup runs. To use the driver files for uploading:
- Start the installer.
- Copy the files from the temporary folder to a new location.
- Cancel the installation.
Ask your printer manufacturer for drivers that support uploading to a print server.
Providing 32-bit and 64-bit drivers for a printer to a client
To provide the driver for a printer for both 32-bit and 64-bit Windows clients, you must upload a driver with exactly the same name for both architectures. For example, if you are uploading the 32-bit driver named Example PostScript
and the 64-bit driver named Example PostScript (v1.0)
, the names do not match. Consequently, you can only assign one of the drivers to a printer and the driver will not be available for both architectures.
1.16.2. Enabling users to upload and preconfigure drivers
To be able to upload and preconfigure printer drivers, a user or a group needs to have the SePrintOperatorPrivilege
privilege granted. A user must be added into the printadmin
group. Red Hat Enterprise Linux automatically creates this group when you install the samba
package. The printadmin
group gets assigned the lowest available dynamic system GID that is lower than 1000.
Procedure
For example, to grant the
SePrintOperatorPrivilege
privilege to theprintadmin
group:# net rpc rights grant "printadmin" SePrintOperatorPrivilege -U "DOMAIN\administrator" Enter DOMAIN\administrator's password: Successfully granted rights.
NoteIn a domain environment, grant
SePrintOperatorPrivilege
to a domain group. This enables you to centrally manage the privilege by updating a user’s group membership.To list all users and groups having
SePrintOperatorPrivilege
granted:# net rpc rights list privileges SePrintOperatorPrivilege -U "DOMAIN\administrator" Enter administrator's password: SePrintOperatorPrivilege: BUILTIN\Administrators DOMAIN\printadmin
1.16.3. Setting up the print$ share
Windows operating systems download printer drivers from a share named print$
from a print server. This share name is hard-coded in Windows and cannot be changed.
The following procedure explains how to share the /var/lib/samba/drivers/
directory as print$
, and enable members of the local printadmin
group to upload printer drivers.
Procedure
Add the
[print$]
section to the/etc/samba/smb.conf
file:[print$] path = /var/lib/samba/drivers/ read only = no write list = @printadmin force group = @printadmin create mask = 0664 directory mask = 2775
Using these settings:
-
Only members of the
printadmin
group can upload printer drivers to the share. -
The group of new created files and directories will be set to
printadmin
. -
The permissions of new files will be set to
664
. -
The permissions of new directories will be set to
2775
.
-
Only members of the
To upload only 64-bit drivers for all printers, include this setting in the
[global]
section in the/etc/samba/smb.conf
file:spoolss: architecture = Windows x64
Without this setting, Windows only displays drivers for which you have uploaded at least the 32-bit version.
Verify the
/etc/samba/smb.conf
file:# testparm
Reload the Samba configuration
# smbcontrol all reload-config
Create the
printadmin
group if it does not exists:# groupadd printadmin
Grant the
SePrintOperatorPrivilege
privilege to theprintadmin
group.# net rpc rights grant "printadmin" SePrintOperatorPrivilege -U "DOMAIN\administrator" Enter DOMAIN\administrator's password: Successfully granted rights.
If you run SELinux in
enforcing
mode, set thesamba_share_t
context on the directory:# semanage fcontext -a -t samba_share_t "/var/lib/samba/drivers(/.)?" # *restorecon -Rv /var/lib/samba/drivers/
Set the permissions on the
/var/lib/samba/drivers/
directory:If you use POSIX ACLs, set:
# chgrp -R "printadmin" /var/lib/samba/drivers/ # chmod -R 2775 /var/lib/samba/drivers/
If you use Windows ACLs, set:
Principal Access Apply to CREATOR OWNER
Full control
Subfolders and files only
Authenticated Users
Read & execute, List folder contents, Read
This folder, subfolders, and files
printadmin
Full control
This folder, subfolders, and files
For details about setting ACLs on Windows, see the Windows documentation.
Additional resources
1.16.4. Creating a GPO to enable clients to trust the Samba print server
For security reasons, recent Windows operating systems prevent clients from downloading non-package-aware printer drivers from an untrusted server. If your print server is a member in an AD, you can create a Group Policy Object (GPO) in your domain to trust the Samba server.
Prerequisites
- The Samba print server is a member of an AD domain.
- The Windows computer you are using to create the GPO must have the Windows Remote Server Administration Tools (RSAT) installed. For details, see the Windows documentation.
Procedure
-
Log into a Windows computer using an account that is allowed to edit group policies, such as the AD domain
Administrator
user. -
Open the
Group Policy Management Console
. Right-click to your AD domain and select
Create a GPO in this domain, and Link it here
.-
Enter a name for the GPO, such as
Legacy Printer Driver Policy
and clickOK
. The new GPO will be displayed under the domain entry. -
Right-click to the newly-created GPO and select
Edit
to open theGroup Policy Management Editor
. Navigate to Computer Configuration → Policies → Administrative Templates → Printers.
On the right side of the window, double-click
Point and Print Restriction
to edit the policy:Enable the policy and set the following options:
-
Select
Users can only point and print to these servers
and enter the fully-qualified domain name (FQDN) of the Samba print server to the field next to this option. In both check boxes under
Security Prompts
, selectDo not show warning or elevation prompt
.
-
Select
- Click OK.
Double-click
Package Point and Print - Approved servers
to edit the policy:-
Enable the policy and click the
Show
button. Enter the FQDN of the Samba print server.
-
Close both the
Show Contents
and the policy’s properties window by clickingOK
.
-
Enable the policy and click the
-
Close the
Group Policy Management Editor
. -
Close the
Group Policy Management Console
.
After the Windows domain members applied the group policy, printer drivers are automatically downloaded from the Samba server when a user connects to a printer.
Additional resources
- For using group policies, see the Windows documentation.
1.16.5. Uploading drivers and preconfiguring printers
Use the Print Management
application on a Windows client to upload drivers and preconfigure printers hosted on the Samba print server. For further details, see the Windows documentation.
1.17. Running Samba on a server with FIPS mode enabled
This section provides an overview of the limitations of running Samba with FIPS mode enabled. It also provides the procedure for enabling FIPS mode on a Red Hat Enterprise Linux host running Samba.
1.17.1. Limitations of using Samba in FIPS mode
The following Samba modes and features work in FIPS mode under the indicated conditions:
- Samba as a domain member only in Active Directory (AD) or Red Hat Identity Management (IdM) environments with Kerberos authentication that uses AES ciphers.
- Samba as a file server on an Active Directory domain member. However, this requires that clients use Kerberos to authenticate to the server.
Due to the increased security of FIPS, the following Samba features and modes do not work if FIPS mode is enabled:
- NT LAN Manager (NTLM) authentication because RC4 ciphers are blocked
- The server message block version 1 (SMB1) protocol
- The stand-alone file server mode because it uses NTLM authentication
- NT4-style domain controllers
- NT4-style domain members. Note that Red Hat continues supporting the primary domain controller (PDC) functionality IdM uses in the background.
- Password changes against the Samba server. You can only perform password changes using Kerberos against an Active Directory domain controller.
The following feature is not tested in FIPS mode and, therefore, is not supported by Red Hat:
- Running Samba as a print server
1.17.2. Using Samba in FIPS mode
This section describes how to enable the FIPS mode on a RHEL host that runs Samba.
Prerequisites
- Samba is configured on the Red Hat Enterprise Linux host.
- Samba runs in a mode that is supported in FIPS mode.
Procedure
Enable the FIPS mode on RHEL:
# fips-mode-setup --enable
Reboot the server:
# reboot
Use the
testparm
utility to verify the configuration:# testparm -s
If the command displays any errors or incompatibilities, fix them to ensure that Samba works correctly.
Additional resources
1.18. Tuning the performance of a Samba server
Learn what settings can improve the performance of Samba in certain situations, and which settings can have a negative performance impact.
Parts of this section were adopted from the Performance Tuning documentation published in the Samba Wiki. License: CC BY 4.0. Authors and contributors: See the history tab on the Wiki page.
Prerequisites
- Samba is set up as a file or print server
1.18.1. Setting the SMB protocol version
Each new SMB version adds features and improves the performance of the protocol. The recent Windows and Windows Server operating systems always supports the latest protocol version. If Samba also uses the latest protocol version, Windows clients connecting to Samba benefit from the performance improvements. In Samba, the default value of the server max protocol is set to the latest supported stable SMB protocol version.
To always have the latest stable SMB protocol version enabled, do not set the server max protocol
parameter. If you set the parameter manually, you will need to modify the setting with each new version of the SMB protocol, to have the latest protocol version enabled.
The following procedure explains how to use the default value in the server max protocol
parameter.
Procedure
-
Remove the
server max protocol
parameter from the[global]
section in the/etc/samba/smb.conf
file. Reload the Samba configuration
# smbcontrol all reload-config
1.18.2. Tuning shares with directories that contain a large number of files
Linux supports case-sensitive file names. For this reason, Samba needs to scan directories for uppercase and lowercase file names when searching or accessing a file. You can configure a share to create new files only in lowercase or uppercase, which improves the performance.
Prerequisites
- Samba is configured as a file server
Procedure
Rename all files on the share to lowercase.
NoteUsing the settings in this procedure, files with names other than in lowercase will no longer be displayed.
Set the following parameters in the share’s section:
case sensitive = true default case = lower preserve case = no short preserve case = no
For details about the parameters, see their descriptions in the
smb.conf(5)
man page.Verify the
/etc/samba/smb.conf
file:# testparm
Reload the Samba configuration:
# smbcontrol all reload-config
After you applied these settings, the names of all newly created files on this share use lowercase. Because of these settings, Samba no longer needs to scan the directory for uppercase and lowercase, which improves the performance.
1.18.3. Settings that can have a negative performance impact
By default, the kernel in Red Hat Enterprise Linux is tuned for high network performance. For example, the kernel uses an auto-tuning mechanism for buffer sizes. Setting the socket options
parameter in the /etc/samba/smb.conf
file overrides these kernel settings. As a result, setting this parameter decreases the Samba network performance in most cases.
To use the optimized settings from the Kernel, remove the socket options
parameter from the [global]
section in the /etc/samba/smb.conf
.
1.19. Configuring Samba to be compatible with clients that require an SMB version lower than the default
Samba uses a reasonable and secure default value for the minimum server message block (SMB) version it supports. However, if you have clients that require an older SMB version, you can configure Samba to support it.
1.19.1. Setting the minimum SMB protocol version supported by a Samba server
In Samba, the server min protocol
parameter in the /etc/samba/smb.conf
file defines the minimum server message block (SMB) protocol version the Samba server supports. This section describes how to change the minimum SMB protocol version.
By default, Samba on RHEL 8.2 and later supports only SMB2 and newer protocol versions. Red Hat recommends to not use the deprecated SMB1 protocol. However, if your environment requires SMB1, you can manually set the server min protocol
parameter to NT1
to re-enable SMB1.
Prerequisites
- Samba is installed and configured.
Procedure
Edit the
/etc/samba/smb.conf
file, add theserver min protocol
parameter, and set the parameter to the minimum SMB protocol version the server should support. For example, to set the minimum SMB protocol version toSMB3
, add:server min protocol = SMB3
Restart the
smb
service:# systemctl restart smb
Additional resources
-
smb.conf(5)
man page
1.20. Frequently used Samba command-line utilities
This chapter describes frequently used commands when working with a Samba server.
1.20.1. Using the net ads join and net rpc join commands
Using the join
subcommand of the net
utility, you can join Samba to an AD or NT4 domain. To join the domain, you must create the /etc/samba/smb.conf
file manually, and optionally update additional configurations, such as PAM.
Red Hat recommends using the realm
utility to join a domain. The realm
utility automatically updates all involved configuration files.
Procedure
Manually create the
/etc/samba/smb.conf
file with the following settings:For an AD domain member:
[global] workgroup = domain_name security = ads passdb backend = tdbsam realm = AD_REALM
For an NT4 domain member:
[global] workgroup = domain_name security = user passdb backend = tdbsam
-
Add an ID mapping configuration for the
*
default domain and for the domain you want to join to the[global
] section in the/etc/samba/smb.conf
file. Verify the
/etc/samba/smb.conf
file:# testparm
Join the domain as the domain administrator:
To join an AD domain:
# net ads join -U "DOMAIN\administrator"
To join an NT4 domain:
# net rpc join -U "DOMAIN\administrator"
Append the
winbind
source to thepasswd
andgroup
database entry in the/etc/nsswitch.conf
file:passwd: files
winbind
group: fileswinbind
Enable and start the
winbind
service:# systemctl enable --now winbind
Optionally, configure PAM using the
authselect
utility.For details, see the
authselect(8)
man page.Optionally for AD environments, configure the Kerberos client.
For details, see the documentation of your Kerberos client.
Additional resources
1.20.2. Using the net rpc rights command
In Windows, you can assign privileges to accounts and groups to perform special operations, such as setting ACLs on a share or upload printer drivers. On a Samba server, you can use the net rpc rights
command to manage privileges.
Listing privileges you can set
To list all available privileges and their owners, use the net rpc rights list
command. For example:
# net rpc rights list -U "DOMAIN\administrator" Enter DOMAIN\administrator's password: SeMachineAccountPrivilege Add machines to domain SeTakeOwnershipPrivilege Take ownership of files or other objects SeBackupPrivilege Back up files and directories SeRestorePrivilege Restore files and directories SeRemoteShutdownPrivilege Force shutdown from a remote system SePrintOperatorPrivilege Manage printers SeAddUsersPrivilege Add users and groups to the domain SeDiskOperatorPrivilege Manage disk shares SeSecurityPrivilege System security
Granting privileges
To grant a privilege to an account or group, use the net rpc rights grant
command.
For example, grant the SePrintOperatorPrivilege
privilege to the DOMAIN\printadmin
group:
# net rpc rights grant "DOMAIN\printadmin" SePrintOperatorPrivilege -U "DOMAIN\administrator" Enter DOMAIN\administrator's password: Successfully granted rights.
Revoking privileges
To revoke a privilege from an account or group, use the net rpc rights revoke
command.
For example, to revoke the SePrintOperatorPrivilege
privilege from the DOMAIN\printadmin
group:
# net rpc rights remoke "DOMAIN\printadmin" SePrintOperatorPrivilege -U "DOMAIN\administrator" Enter DOMAIN\administrator's password: Successfully revoked rights.
1.20.3. Using the net rpc share command
The net rpc share
command provides the capability to list, add, and remove shares on a local or remote Samba or Windows server.
Listing shares
To list the shares on an SMB server, use the net rpc share list
command. Optionally, pass the -S server_name
parameter to the command to list the shares of a remote server. For example:
# net rpc share list -U "DOMAIN\administrator" -S server_name Enter DOMAIN\administrator's password: IPC$ share_1 share_2 ...
Shares hosted on a Samba server that have browseable = no
set in their section in the /etc/samba/smb.conf
file are not displayed in the output.
Adding a share
The net rpc share add
command enables you to add a share to an SMB server.
For example, to add a share named example
on a remote Windows server that shares the C:\example\
directory:
# net rpc share add example="C:\example" -U "DOMAIN\administrator" -S server_name
You must omit the trailing backslash in the path when specifying a Windows directory name.
To use the command to add a share to a Samba server:
-
The user specified in the
-U
parameter must have theSeDiskOperatorPrivilege
privilege granted on the destination server. -
You must write a script that adds a share section to the
/etc/samba/smb.conf
file and reloads Samba. The script must be set in theadd share command
parameter in the[global]
section in/etc/samba/smb.conf
. For further details, see theadd share command
description in thesmb.conf(5)
man page.
Removing a share
The net rpc share delete
command enables you to remove a share from an SMB server.
For example, to remove the share named example from a remote Windows server:
# net rpc share delete example -U "DOMAIN\administrator" -S server_name
To use the command to remove a share from a Samba server:
-
The user specified in the
-U
parameter must have theSeDiskOperatorPrivilege
privilege granted. -
You must write a script that removes the share’s section from the
/etc/samba/smb.conf
file and reloads Samba. The script must be set in thedelete share command
parameter in the[global]
section in/etc/samba/smb.conf
. For further details, see thedelete share command
description in thesmb.conf(5)
man page.
1.20.4. Using the net user command
The net user
command enables you to perform the following actions on an AD DC or NT4 PDC:
- List all user accounts
- Add users
- Remove Users
Specifying a connection method, such as ads
for AD domains or rpc
for NT4 domains, is only required when you list domain user accounts. Other user-related subcommands can auto-detect the connection method.
Pass the -U user_name
parameter to the command to specify a user that is allowed to perform the requested action.
Listing domain user accounts
To list all users in an AD domain:
# net ads user -U "DOMAIN\administrator"
To list all users in an NT4 domain:
# net rpc user -U "DOMAIN\administrator"
Adding a user account to the domain
On a Samba domain member, you can use the net user add
command to add a user account to the domain.
For example, add the user
account to the domain:
Add the account:
# net user add user password -U "DOMAIN\administrator" User user added
Optionally, use the remote procedure call (RPC) shell to enable the account on the AD DC or NT4 PDC. For example:
# net rpc shell -U DOMAIN\administrator -S DC_or_PDC_name Talking to domain DOMAIN (S-1-5-21-1424831554-512457234-5642315751) net rpc>
user edit disabled user: no
Set user's disabled flag from [yes] to [no] net rpc>exit
Deleting a user account from the domain
On a Samba domain member, you can use the net user delete
command to remove a user account from the domain.
For example, to remove the user
account from the domain:
# net user delete user -U "DOMAIN\administrator" User user deleted
1.20.5. Using the rpcclient utility
The rpcclient
utility enables you to manually execute client-side Microsoft Remote Procedure Call (MS-RPC) functions on a local or remote SMB server. However, most of the features are integrated into separate utilities provided by Samba. Use rpcclient
only for testing MS-PRC functions.
Prerequisites
-
The
samba-client
package is installed.
Examples
For example, you can use the rpcclient
utility to:
Manage the printer Spool Subsystem (SPOOLSS).
Example 1.7. Assigning a Driver to a Printer
# rpcclient server_name -U "DOMAIN\administrator" -c 'setdriver "printer_name" "driver_name"' Enter DOMAIN\administrators password: Successfully set printer_name to driver driver_name.
Retrieve information about an SMB server.
Example 1.8. Listing all File Shares and Shared Printers
# rpcclient server_name -U "DOMAIN\administrator" -c 'netshareenum' Enter DOMAIN\administrators password: netname: Example_Share remark: path: C:\srv\samba\example_share\ password: netname: Example_Printer remark: path: C:\var\spool\samba\ password:
Perform actions using the Security Account Manager Remote (SAMR) protocol.
Example 1.9. Listing Users on an SMB Server
# rpcclient server_name -U "DOMAIN\administrator" -c 'enumdomusers' Enter DOMAIN\administrators password: user:[user1] rid:[0x3e8] user:[user2] rid:[0x3e9]
If you run the command against a standalone server or a domain member, it lists the users in the local database. Running the command against an AD DC or NT4 PDC lists the domain users.
Additional resources
-
rpcclient(1)
man page
1.20.6. Using the samba-regedit application
Certain settings, such as printer configurations, are stored in the registry on the Samba server. You can use the ncurses-based samba-regedit
application to edit the registry of a Samba server.
Prerequisites
-
The
samba-client
package is installed.
Procedure
To start the application, enter:
# samba-regedit
Use the following keys:
- Cursor up and cursor down: Navigate through the registry tree and the values.
- Enter: Opens a key or edits a value.
-
Tab: Switches between the
Key
andValue
pane. - Ctrl+C: Closes the application.
1.20.7. Using the smbcontrol utility
The smbcontrol
utility enables you to send command messages to the smbd
, nmbd
, winbindd
, or all of these services. These control messages instruct the service, for example, to reload its configuration.
The procedure in this section shows how to to reload the configuration of the smbd
, nmbd
, winbindd
services by sending the reload-config
message type to the all
destination.
Prerequisites
-
The
samba-common-tools
package is installed.
Procedure
# smbcontrol all reload-config
Additional resources
-
smbcontrol(1)
man page
1.20.8. Using the smbpasswd utility
The smbpasswd
utility manages user accounts and passwords in the local Samba database.
Prerequisites
-
The
samba-common-tools
package is installed.
Procedure
If you run the command as a user,
smbpasswd
changes the Samba password of the user who run the command. For example:[user@server ~]$ smbpasswd New SMB password: password Retype new SMB password: password
If you run
smbpasswd
as theroot
user, you can use the utility, for example, to:Create a new user:
[root@server ~]# smbpasswd -a user_name New SMB password:
password
Retype new SMB password:password
Added user user_name.NoteBefore you can add a user to the Samba database, you must create the account in the local operating system. See the Adding a new user from the command line section in the Configuring basic system settings guide.
Enable a Samba user:
[root@server ~]# smbpasswd -e user_name Enabled user user_name.
Disable a Samba user:
[root@server ~]# smbpasswd -x user_name Disabled user user_name
Delete a user:
[root@server ~]# smbpasswd -x user_name Deleted user user_name.
Additional resources
-
smbpasswd(8)
man page
1.20.9. Using the smbstatus utility
The smbstatus
utility reports on:
-
Connections per PID of each
smbd
daemon to the Samba server. This report includes the user name, primary group, SMB protocol version, encryption, and signing information. -
Connections per Samba share. This report includes the PID of the
smbd
daemon, the IP of the connecting machine, the time stamp when the connection was established, encryption, and signing information. - A list of locked files. The report entries include further details, such as opportunistic lock (oplock) types
Prerequisites
-
The
samba
package is installed. -
The
smbd
service is running.
Procedure
# smbstatus Samba version 4.15.2 PID Username Group Machine Protocol Version Encryption Signing ....------------------------------------------------------------------------------------------------------------------------- 963 DOMAIN\administrator DOMAIN\domain users client-pc (ipv4:192.0.2.1:57786) SMB3_02 - AES-128-CMAC Service pid Machine Connected at Encryption Signing: ....--------------------------------------------------------------------------- example 969 192.0.2.1 Thu Nov 1 10:00:00 2018 CEST - AES-128-CMAC Locked files: Pid Uid DenyMode Access R/W Oplock SharePath Name Time ....-------------------------------------------------------------------------------------------------------- 969 10000 DENY_WRITE 0x120089 RDONLY LEASE(RWH) /srv/samba/example file.txt Thu Nov 1 10:00:00 2018
Additional resources
-
smbstatus(1)
man page
1.20.10. Using the smbtar utility
The smbtar
utility backs up the content of an SMB share or a subdirectory of it and stores the content in a tar
archive. Alternatively, you can write the content to a tape device.
Prerequisites
-
The
samba-client
package is installed.
Procedure
Use the following command to back up the content of the
demo
directory on the//server/example/
share and store the content in the/root/example.tar
archive:# smbtar -s server -x example -u user_name -p password -t /root/example.tar
Additional resources
-
smbtar(1)
man page
1.20.11. Using the wbinfo utility
The wbinfo
utility queries and returns information created and used by the winbindd
service.
Prerequisites
-
The
samba-winbind-clients
package is installed.
Procedure
You can use wbinfo
, for example, to:
List domain users:
# wbinfo -u AD\administrator AD\guest ...
List domain groups:
# wbinfo -g AD\domain computers AD\domain admins AD\domain users ...
Display the SID of a user:
# wbinfo --name-to-sid="AD\administrator" S-1-5-21-1762709870-351891212-3141221786-500 SID_USER (1)
Display information about domains and trusts:
# wbinfo --trusted-domains --verbose Domain Name DNS Domain Trust Type Transitive In Out BUILTIN None Yes Yes Yes server None Yes Yes Yes DOMAIN1 domain1.example.com None Yes Yes Yes DOMAIN2 domain2.example.com External No Yes Yes
Additional resources
-
wbinfo(1)
man page
1.21. Additional resources
-
smb.conf(5)
man page -
/usr/share/docs/samba-version/
directory contains general documentation, example scripts, and LDAP schema files, provided by the Samba project - Setting up Samba and the Clustered Trivial Database (CDTB) to share directories stored on an GlusterFS volume
- Mounting an SMB Share on Red Hat Enterprise Linux
Chapter 2. Exporting NFS shares
As a system administrator, you can use the NFS server to share a directory on your system over network.
2.1. Introduction to NFS
This section explains the basic concepts of the NFS service.
A Network File System (NFS) allows remote hosts to mount file systems over a network and interact with those file systems as though they are mounted locally. This enables you to consolidate resources onto centralized servers on the network.
The NFS server refers to the /etc/exports
configuration file to determine whether the client is allowed to access any exported file systems. Once verified, all file and directory operations are available to the user.
2.2. Supported NFS versions
This section lists versions of NFS supported in Red Hat Enterprise Linux and their features.
Currently, Red Hat Enterprise Linux 9 supports the following major versions of NFS:
- NFS version 3 (NFSv3) supports safe asynchronous writes and is more robust at error handling than the previous NFSv2; it also supports 64-bit file sizes and offsets, allowing clients to access more than 2 GB of file data.
-
NFS version 4 (NFSv4) works through firewalls and on the Internet, no longer requires an
rpcbind
service, supports Access Control Lists (ACLs), and utilizes stateful operations.
NFS version 2 (NFSv2) is no longer supported by Red Hat.
Default NFS version
The default NFS version in Red Hat Enterprise Linux 9 is 4.2. NFS clients attempt to mount using NFSv4.2 by default, and fall back to NFSv4.1 when the server does not support NFSv4.2. The mount later falls back to NFSv4.0 and then to NFSv3.
Features of minor NFS versions
Following are the features of NFSv4.2 in Red Hat Enterprise Linux 9:
- Server-side copy
-
Enables the NFS client to efficiently copy data without wasting network resources using the
copy_file_range()
system call. - Sparse files
-
Enables files to have one or more holes, which are unallocated or uninitialized data blocks consisting only of zeroes. The
lseek()
operation in NFSv4.2 supportsseek_hole()
andseek_data()
, which enables applications to map out the location of holes in the sparse file. - Space reservation
-
Permits storage servers to reserve free space, which prohibits servers to run out of space. NFSv4.2 supports the
allocate()
operation to reserve space, thedeallocate()
operation to unreserve space, and thefallocate()
operation to preallocate or deallocate space in a file. - Labeled NFS
- Enforces data access rights and enables SELinux labels between a client and a server for individual files on an NFS file system.
- Layout enhancements
-
Provides the
layoutstats()
operation, which enables some Parallel NFS (pNFS) servers to collect better performance statistics.
Following are the features of NFSv4.1:
- Enhances performance and security of network, and also includes client-side support for pNFS.
- No longer requires a separate TCP connection for callbacks, which allows an NFS server to grant delegations even when it cannot contact the client: for example, when NAT or a firewall interferes.
- Provides exactly once semantics (except for reboot operations), preventing a previous issue whereby certain operations sometimes returned an inaccurate result if a reply was lost and the operation was sent twice.
2.3. The TCP and UDP protocols in NFSv3 and NFSv4
NFSv4 requires the Transmission Control Protocol (TCP) running over an IP network.
NFSv3 could also use the User Datagram Protocol (UDP) in earlier Red Hat Enterprise Linux versions. In Red Hat Enterprise Linux 9, NFS over UDP is no longer supported. By default, UDP is disabled in the NFS server.
2.4. Services required by NFS
This section lists system services that are required for running an NFS server or mounting NFS shares. Red Hat Enterprise Linux starts these services automatically.
Red Hat Enterprise Linux uses a combination of kernel-level support and service processes to provide NFS file sharing. All NFS versions rely on Remote Procedure Calls (RPC) between clients and servers. To share or mount NFS file systems, the following services work together depending on which version of NFS is implemented:
nfsd
- The NFS server kernel module that services requests for shared NFS file systems.
rpcbind
-
Accepts port reservations from local RPC services. These ports are then made available (or advertised) so the corresponding remote RPC services can access them. The
rpcbind
service responds to requests for RPC services and sets up connections to the requested RPC service. This is not used with NFSv4. rpc.mountd
-
This process is used by an NFS server to process
MOUNT
requests from NFSv3 clients. It checks that the requested NFS share is currently exported by the NFS server, and that the client is allowed to access it. If the mount request is allowed, thenfs-mountd
service replies with a Success status and provides the File-Handle for this NFS share back to the NFS client. rpc.nfsd
-
This process enables explicit NFS versions and protocols the server advertises to be defined. It works with the Linux kernel to meet the dynamic demands of NFS clients, such as providing server threads each time an NFS client connects. This process corresponds to the
nfs-server
service. lockd
- This is a kernel thread that runs on both clients and servers. It implements the Network Lock Manager (NLM) protocol, which enables NFSv3 clients to lock files on the server. It is started automatically whenever the NFS server is run and whenever an NFS file system is mounted.
rpc.statd
-
This process implements the Network Status Monitor (NSM) RPC protocol, which notifies NFS clients when an NFS server is restarted without being gracefully brought down. The
rpc-statd
service is started automatically by thenfs-server
service, and does not require user configuration. This is not used with NFSv4. rpc.rquotad
-
This process provides user quota information for remote users. The
rpc-rquotad
service, which is provided by thequota-rpc
package, has to be started by user when thenfs-server
is started. rpc.idmapd
This process provides NFSv4 client and server upcalls, which map between on-the-wire NFSv4 names (strings in the form of
user@domain
) and local UIDs and GIDs. Foridmapd
to function with NFSv4, the/etc/idmapd.conf
file must be configured. At a minimum, theDomain
parameter should be specified, which defines the NFSv4 mapping domain. If the NFSv4 mapping domain is the same as the DNS domain name, this parameter can be skipped. The client and server must agree on the NFSv4 mapping domain for ID mapping to function properly.Only the NFSv4 server uses
rpc.idmapd
, which is started by thenfs-idmapd
service. The NFSv4 client uses the keyring-basednfsidmap
utility, which is called by the kernel on-demand to perform ID mapping. If there is a problem withnfsidmap
, the client falls back to usingrpc.idmapd
.
The RPC services with NFSv4
The mounting and locking protocols have been incorporated into the NFSv4 protocol. The server also listens on the well-known TCP port 2049. As such, NFSv4 does not need to interact with rpcbind
, lockd
, and rpc-statd
services. The nfs-mountd
service is still required on the NFS server to set up the exports, but is not involved in any over-the-wire operations.
Additional resources
2.5. NFS host name formats
This section describes different formats that you can use to specify a host when mounting or exporting an NFS share.
You can specify the host in the following formats:
- Single machine
Either of the following:
- A fully-qualified domain name (that can be resolved by the server)
- Host name (that can be resolved by the server)
- An IP address.
- IP networks
Either of the following formats is valid:
-
a.b.c.d/z
, wherea.b.c.d
is the network andz
is the number of bits in the netmask; for example192.168.0.0/24
. -
a.b.c.d/netmask
, wherea.b.c.d
is the network andnetmask
is the netmask; for example,192.168.100.8/255.255.255.0
.
-
- Netgroups
-
The
@group-name
format , wheregroup-name
is the NIS netgroup name.
2.6. NFS server configuration
This section describes the syntax and options of two ways to configure exports on an NFS server:
-
Manually editing the
/etc/exports
configuration file -
Using the
exportfs
utility on the command line
2.6.1. The /etc/exports configuration file
The /etc/exports
file controls which file systems are exported to remote hosts and specifies options. It follows the following syntax rules:
- Blank lines are ignored.
-
To add a comment, start a line with the hash mark (
#
). -
You can wrap long lines with a backslash (
\
). - Each exported file system should be on its own individual line.
- Any lists of authorized hosts placed after an exported file system must be separated by space characters.
- Options for each of the hosts must be placed in parentheses directly after the host identifier, without any spaces separating the host and the first parenthesis.
Export entry
Each entry for an exported file system has the following structure:
export host(options)
It is also possible to specify multiple hosts, along with specific options for each host. To do so, list them on the same line as a space-delimited list, with each host name followed by its respective options (in parentheses), as in:
export host1(options1) host2(options2) host3(options3)
In this structure:
- export
- The directory being exported
- host
- The host or network to which the export is being shared
- options
- The options to be used for host
Example 2.1. A simple /etc/exports file
In its simplest form, the /etc/exports
file only specifies the exported directory and the hosts permitted to access it:
/exported/directory bob.example.com
Here, bob.example.com
can mount /exported/directory/
from the NFS server. Because no options are specified in this example, NFS uses default options.
The format of the /etc/exports
file is very precise, particularly in regards to use of the space character. Remember to always separate exported file systems from hosts and hosts from one another with a space character. However, there should be no other space characters in the file except on comment lines.
For example, the following two lines do not mean the same thing:
/home bob.example.com(rw) /home bob.example.com (rw)
The first line allows only users from bob.example.com
read and write access to the /home
directory. The second line allows users from bob.example.com
to mount the directory as read-only (the default), while the rest of the world can mount it read/write.
Default options
The default options for an export entry are:
ro
- The exported file system is read-only. Remote hosts cannot change the data shared on the file system. To allow hosts to make changes to the file system (that is, read and write), specify the rw option.
sync
-
The NFS server will not reply to requests before changes made by previous requests are written to disk. To enable asynchronous writes instead, specify the option
async
. wdelay
-
The NFS server will delay writing to the disk if it suspects another write request is imminent. This can improve performance as it reduces the number of times the disk must be accessed by separate write commands, thereby reducing write overhead. To disable this, specify the
no_wdelay
option, which is available only if the default sync option is also specified. root_squash
This prevents root users connected remotely (as opposed to locally) from having root privileges; instead, the NFS server assigns them the user ID
nobody
. This effectively "squashes" the power of the remote root user to the lowest local user, preventing possible unauthorized writes on the remote server. To disable root squashing, specify theno_root_squash
option.To squash every remote user (including root), use the
all_squash
option. To specify the user and group IDs that the NFS server should assign to remote users from a particular host, use theanonuid
andanongid
options, respectively, as in:export host(anonuid=uid,anongid=gid)
Here, uid and gid are user ID number and group ID number, respectively. The
anonuid
andanongid
options enable you to create a special user and group account for remote NFS users to share.
By default, access control lists (ACLs) are supported by NFS under Red Hat Enterprise Linux. To disable this feature, specify the no_acl
option when exporting the file system.
Default and overridden options
Each default for every exported file system must be explicitly overridden. For example, if the rw
option is not specified, then the exported file system is shared as read-only. The following is a sample line from /etc/exports
which overrides two default options:
/another/exported/directory 192.168.0.3(rw,async)
In this example, 192.168.0.3
can mount /another/exported/directory/
read and write, and all writes to disk are asynchronous.
2.6.2. The exportfs utility
The exportfs
utility enables the root user to selectively export or unexport directories without restarting the NFS service. When given the proper options, the exportfs
utility writes the exported file systems to /var/lib/nfs/xtab
. Because the nfs-mountd
service refers to the xtab
file when deciding access privileges to a file system, changes to the list of exported file systems take effect immediately.
Common exportfs options
The following is a list of commonly-used options available for exportfs
:
-r
-
Causes all directories listed in
/etc/exports
to be exported by constructing a new export list in/var/lib/nfs/etab
. This option effectively refreshes the export list with any changes made to/etc/exports
. -a
-
Causes all directories to be exported or unexported, depending on what other options are passed to
exportfs
. If no other options are specified,exportfs
exports all file systems specified in/etc/exports
. -o file-systems
-
Specifies directories to be exported that are not listed in
/etc/exports
. Replace file-systems with additional file systems to be exported. These file systems must be formatted in the same way they are specified in/etc/exports
. This option is often used to test an exported file system before adding it permanently to the list of exported file systems. -i
-
Ignores
/etc/exports
; only options given from the command line are used to define exported file systems. -u
-
Unexports all shared directories. The command
exportfs -ua
suspends NFS file sharing while keeping all NFS services up. To re-enable NFS sharing, useexportfs -r
. -v
-
Verbose operation, where the file systems being exported or unexported are displayed in greater detail when the
exportfs
command is executed.
If no options are passed to the exportfs
utility, it displays a list of currently exported file systems.
Additional resources
2.7. NFS and rpcbind
The rpcbind
service maps Remote Procedure Call (RPC) services to the ports on which they listen. RPC processes notify rpcbind
when they start, registering the ports they are listening on and the RPC program numbers they expect to serve. The client system then contacts rpcbind
on the server with a particular RPC program number. The rpcbind
service redirects the client to the proper port number so it can communicate with the requested service.
The Network File System Version 3 (NFSv3) requires the rpcbind
service.
Because RPC-based services rely on rpcbind
to make all connections with incoming client requests, rpcbind
must be available before any of these services start.
Access control rules for rpcbind
affect all RPC-based services. Alternatively, it is possible to specify access control rules for each of the NFS RPC daemons.
Additional resources
-
rpc.mountd(8)
man page -
rpc.statd(8)
man page
2.8. Installing NFS
This procedure installs all packages necessary to mount or export NFS shares.
Procedure
Install the
nfs-utils
package:# dnf install nfs-utils
2.9. Starting the NFS server
This procedure describes how to start the NFS server, which is required to export NFS shares.
Prerequisites
For servers that support NFSv3 connections, the
rpcbind
service must be running. To verify thatrpcbind
is active, use the following command:$ systemctl status rpcbind
If the service is stopped, start and enable it:
$ systemctl enable --now rpcbind
Procedure
To start the NFS server and enable it to start automatically at boot, use the following command:
# systemctl enable --now nfs-server
Additional resources
2.10. Troubleshooting NFS and rpcbind
Because the rpcbind
service provides coordination between RPC services and the port numbers used to communicate with them, it is useful to view the status of current RPC services using rpcbind
when troubleshooting. The rpcinfo
utility shows each RPC-based service with port numbers, an RPC program number, a version number, and an IP protocol type (TCP or UDP).
Procedure
To make sure the proper NFS RPC-based services are enabled for
rpcbind
, use the following command:# rpcinfo -p
Example 2.2. rpcinfo -p command output
The following is sample output from this command:
program vers proto port service 100000 4 tcp 111 portmapper 100000 3 tcp 111 portmapper 100000 2 tcp 111 portmapper 100000 4 udp 111 portmapper 100000 3 udp 111 portmapper 100000 2 udp 111 portmapper 100005 1 udp 20048 mountd 100005 1 tcp 20048 mountd 100005 2 udp 20048 mountd 100005 2 tcp 20048 mountd 100005 3 udp 20048 mountd 100005 3 tcp 20048 mountd 100024 1 udp 37769 status 100024 1 tcp 49349 status 100003 3 tcp 2049 nfs 100003 4 tcp 2049 nfs 100227 3 tcp 2049 nfs_acl 100021 1 udp 56691 nlockmgr 100021 3 udp 56691 nlockmgr 100021 4 udp 56691 nlockmgr 100021 1 tcp 46193 nlockmgr 100021 3 tcp 46193 nlockmgr 100021 4 tcp 46193 nlockmgr
If one of the NFS services does not start up correctly,
rpcbind
will be unable to map RPC requests from clients for that service to the correct port.In many cases, if NFS is not present in
rpcinfo
output, restarting NFS causes the service to correctly register withrpcbind
and begin working:# systemctl restart nfs-server
Additional resources
2.11. Configuring the NFS server to run behind a firewall
NFS requires the rpcbind
service, which dynamically assigns ports for RPC services and can cause issues for configuring firewall rules. The following sections describe how to configure NFS versions to work behind a firewall if you want to support:
NFSv3
This includes any servers that support NFSv3:
- NFSv3-only servers
- Servers that support both NFSv3 and NFSv4
- NFSv4-only
2.11.1. Configuring the NFSv3-enabled server to run behind a firewall
The following procedure describes how to configure servers that support NFSv3 to run behind a firewall. This includes NFSv3-only servers and servers that support both NFSv3 and NFSv4.
Procedure
To allow clients to access NFS shares behind a firewall, configure the firewall by running the following commands on the NFS server:
firewall-cmd --permanent --add-service mountd firewall-cmd --permanent --add-service rpc-bind firewall-cmd --permanent --add-service nfs
Specify the ports to be used by the RPC service
nlockmgr
in the/etc/nfs.conf
file as follows:[lockd] port=tcp-port-number udp-port=udp-port-number
Alternatively, you can specify
nlm_tcpport
andnlm_udpport
in the/etc/modprobe.d/lockd.conf
file.Open the specified ports in the firewall by running the following commands on the NFS server:
firewall-cmd --permanent --add-port=<lockd-tcp-port>/tcp firewall-cmd --permanent --add-port=<lockd-udp-port>/udp
Add static ports for
rpc.statd
by editing the[statd]
section of the/etc/nfs.conf
file as follows:[statd] port=port-number
Open the added ports in the firewall by running the following commands on the NFS server:
firewall-cmd --permanent --add-port=<statd-tcp-port>/tcp firewall-cmd --permanent --add-port=<statd-udp-port>/udp
Reload the firewall configuration:
firewall-cmd --reload
Restart the
rpc-statd
service first, and then restart thenfs-server
service:# systemctl restart rpc-statd.service # systemctl restart nfs-server.service
Alternatively, if you specified the
lockd
ports in the/etc/modprobe.d/lockd.conf
file:Update the current values of
/proc/sys/fs/nfs/nlm_tcpport
and/proc/sys/fs/nfs/nlm_udpport
:# sysctl -w fs.nfs.nlm_tcpport=<tcp-port> # sysctl -w fs.nfs.nlm_udpport=<udp-port>
Restart the
rpc-statd
andnfs-server
services:# systemctl restart rpc-statd.service # systemctl restart nfs-server.service
2.11.2. Configuring the NFSv4-only server to run behind a firewall
The following procedure describes how to configure the NFSv4-only server to run behind a firewall.
Procedure
To allow clients to access NFS shares behind a firewall, configure the firewall by running the following command on the NFS server:
firewall-cmd --permanent --add-service nfs
Reload the firewall configuration:
firewall-cmd --reload
Restart the nfs-server:
# systemctl restart nfs-server
2.11.3. Configuring an NFSv3 client to run behind a firewall
The procedure to configure an NFSv3 client to run behind a firewall is similar to the procedure to configure an NFSv3 server to run behind a firewall.
If the machine you are configuring is both an NFS client and an NFS server, follow the procedure described in Configuring the NFSv3-enabled server to run behind a firewall.
The following procedure describes how to configure a machine that is an NFS client only to run behind a firewall.
Procedure
To allow the NFS server to perform callbacks to the NFS client when the client is behind a firewall, add the
rpc-bind
service to the firewall by running the following command on the NFS client:firewall-cmd --permanent --add-service rpc-bind
Specify the ports to be used by the RPC service
nlockmgr
in the/etc/nfs.conf
file as follows:[lockd] port=port-number udp-port=upd-port-number
Alternatively, you can specify
nlm_tcpport
andnlm_udpport
in the/etc/modprobe.d/lockd.conf
file.Open the specified ports in the firewall by running the following commands on the NFS client:
firewall-cmd --permanent --add-port=<lockd-tcp-port>/tcp firewall-cmd --permanent --add-port=<lockd-udp-port>/udp
Add static ports for
rpc.statd
by editing the[statd]
section of the/etc/nfs.conf
file as follows:[statd] port=port-number
Open the added ports in the firewall by running the following commands on the NFS client:
firewall-cmd --permanent --add-port=<statd-tcp-port>/tcp firewall-cmd --permanent --add-port=<statd-udp-port>/udp
Reload the firewall configuration:
firewall-cmd --reload
Restart the
rpc-statd
service:# systemctl restart rpc-statd.service
Alternatively, if you specified the
lockd
ports in the/etc/modprobe.d/lockd.conf
file:Update the current values of
/proc/sys/fs/nfs/nlm_tcpport
and/proc/sys/fs/nfs/nlm_udpport
:# sysctl -w fs.nfs.nlm_tcpport=<tcp-port> # sysctl -w fs.nfs.nlm_udpport=<udp-port>
Restart the
rpc-statd
service:# systemctl restart rpc-statd.service
2.11.4. Configuring an NFSv4 client to run behind a firewall
Perform this procedure only if the client is using NFSv4.0. In that case, it is necessary to open a port for NFSv4.0 callbacks.
This procedure is not needed for NFSv4.1 or higher because in the later protocol versions the server performs callbacks on the same connection that was initiated by the client.
Procedure
To allow NFSv4.0 callbacks to pass through firewalls, set
/proc/sys/fs/nfs/nfs_callback_tcpport
and allow the server to connect to that port on the client as follows:# echo "fs.nfs.nfs_callback_tcpport = <callback-port>" >/etc/sysctl.d/90-nfs-callback-port.conf # sysctl -p /etc/sysctl.d/90-nfs-callback-port.conf
Open the specified port in the firewall by running the following command on the NFS client:
firewall-cmd --permanent --add-port=<callback-port>/tcp
Reload the firewall configuration:
firewall-cmd --reload
2.12. Exporting RPC quota through a firewall
If you export a file system that uses disk quotas, you can use the quota Remote Procedure Call (RPC) service to provide disk quota data to NFS clients.
Procedure
Enable and start the
rpc-rquotad
service:# systemctl enable --now rpc-rquotad
NoteThe
rpc-rquotad
service is, if enabled, started automatically after starting the nfs-server service.To make the quota RPC service accessible behind a firewall, the TCP (or UDP, if UDP is enabled) port 875 need to be open. The default port number is defined in the
/etc/services
file.You can override the default port number by appending
-p port-number
to theRPCRQUOTADOPTS
variable in the/etc/sysconfig/rpc-rquotad
file.-
By default, remote hosts can only read quotas. If you want to allow clients to set quotas, append the
-S
option to theRPCRQUOTADOPTS
variable in the/etc/sysconfig/rpc-rquotad
file. Restart
rpc-rquotad
for the changes in the/etc/sysconfig/rpc-rquotad
file to take effect:# systemctl restart rpc-rquotad
2.13. Enabling NFS over RDMA (NFSoRDMA)
In Red Hat Enterprise Linux 9, Remote direct memory access (RDMA) service on RDMA-capable hardware provides Network File System (NFS) protocol support for high-speed file transfer over the network.
Procedure
Install the
rdma-core
package:# dnf install rdma-core
Verify the lines with
xprtrdma
andsvcrdma
are commented out in the/etc/rdma/modules/rdma.conf
file:# NFS over RDMA client support xprtrdma # NFS over RDMA server support svcrdma
On the NFS server, create directory
/mnt/nfsordma
and export it to/etc/exports
:# mkdir /mnt/nfsordma # echo "/mnt/nfsordma *(fsid=0,rw,async,insecure,no_root_squash)" >> /etc/exports
On the NFS client, mount the nfs-share with server IP address, for example,
172.31.0.186
:# mount -o rdma,port=20049 172.31.0.186:/mnt/nfs-share /mnt/nfs
Restart the
nfs-server
service:# systemctl restart nfs-server
Additional resources
2.14. Additional resources
Chapter 3. Securing NFS
To minimize NFS security risks and protect data on the server, consider the following sections when exporting NFS file systems on a server or mounting them on a client.
3.1. NFS security with AUTH_SYS and export controls
NFS provides the following traditional options in order to control access to exported files:
- The server restricts which hosts are allowed to mount which file systems either by IP address or by host name.
-
The server enforces file system permissions for users on NFS clients in the same way it does for local users. Traditionally, NFS does this using the
AUTH_SYS
call message (also calledAUTH_UNIX
), which relies on the client to state the UID and GIDs of the user. Be aware that this means that a malicious or misconfigured client might easily get this wrong and allow a user access to files that it should not.
To limit the potential risks, administrators often limits the access to read-only or squash user permissions to a common user and group ID. Unfortunately, these solutions prevent the NFS share from being used in the way it was originally intended.
Additionally, if an attacker gains control of the DNS server used by the system exporting the NFS file system, they can point the system associated with a particular hostname or fully qualified domain name to an unauthorized machine. At this point, the unauthorized machine is the system permitted to mount the NFS share, because no username or password information is exchanged to provide additional security for the NFS mount.
Wildcards should be used sparingly when exporting directories through NFS, as it is possible for the scope of the wildcard to encompass more systems than intended.
Additional resources
-
To secure NFS and
rpcbind
, use, for example,nftables
andfirewalld
. -
nft(8)
man page -
firewalld-cmd(1)
man page
3.2. NFS security with AUTH_GSS
All version of NFS support RPCSEC_GSS and the Kerberos mechanism.
Unlike AUTH_SYS, with the RPCSEC_GSS Kerberos mechanism, the server does not depend on the client to correctly represent which user is accessing the file. Instead, cryptography is used to authenticate users to the server, which prevents a malicious client from impersonating a user without having that user’s Kerberos credentials. Using the RPCSEC_GSS Kerberos mechanism is the most straightforward way to secure mounts because after configuring Kerberos, no additional setup is needed.
3.3. Configuring an NFS server and client to use Kerberos
Kerberos is a network authentication system that allows clients and servers to authenticate to each other by using symmetric encryption and a trusted third party, the KDC. Red Hat recommends using Identity Management (IdM) for setting up Kerberos.
Prerequisites
-
The Kerberos Key Distribution Centre (
KDC
) is installed and configured.
Procedure
-
Create the
nfs/hostname.domain@REALM
principal on the NFS server side. -
Create the
host/hostname.domain@REALM
principal on both the server and the client side. - Add the corresponding keys to keytabs for the client and server.
-
Create the
On the server side, use the
sec=
option to enable the wanted security flavors. To enable all security flavors as well as non-cryptographic mounts:/export *(sec=sys:krb5:krb5i:krb5p)
Valid security flavors to use with the
sec=
option are:-
sys
: no cryptographic protection, the default -
krb5
: authentication only krb5i
: integrity protection- uses Kerberos V5 for user authentication and performs integrity checking of NFS operations using secure checksums to prevent data tampering.
krb5p
: privacy protection- uses Kerberos V5 for user authentication, integrity checking, and encrypts NFS traffic to prevent traffic sniffing. This is the most secure setting, but it also involves the most performance overhead.
-
On the client side, add
sec=krb5
(orsec=krb5i
, orsec=krb5p
, depending on the setup) to the mount options:# mount -o sec=krb5 server:/export /mnt
Additional resources
- Creating files as root on krb5-secured NFS. Not recommended.
-
exports(5)
man page -
nfs(5)
man page
3.4. NFSv4 security options
NFSv4 includes ACL support based on the Microsoft Windows NT model, not the POSIX model, because of the Microsoft Windows NT model’s features and wide deployment.
Another important security feature of NFSv4 is the removal of the use of the MOUNT
protocol for mounting file systems. The MOUNT
protocol presented a security risk because of the way the protocol processed file handles.
3.5. File permissions on mounted NFS exports
Once the NFS file system is mounted as either read or read and write by a remote host, the only protection each shared file has is its permissions. If two users that share the same user ID value mount the same NFS file system on different client systems, they can modify each others' files. Additionally, anyone logged in as root on the client system can use the su -
command to access any files with the NFS share.
By default, access control lists (ACLs) are supported by NFS under Red Hat Enterprise Linux. Red Hat recommends to keep this feature enabled.
By default, NFS uses root squashing when exporting a file system. This sets the user ID of anyone accessing the NFS share as the root user on their local machine to nobody
. Root squashing is controlled by the default option root_squash
; for more information about this option, see NFS server configuration.
When exporting an NFS share as read-only, consider using the all_squash
option. This option makes every user accessing the exported file system take the user ID of the nobody
user.
Chapter 4. Enabling pNFS SCSI layouts in NFS
You can configure the NFS server and client to use the pNFS SCSI layout for accessing data. pNFS SCSI is beneficial in use cases that involve longer-duration single-client access to a file.
Prerequisites
- Both the client and the server must be able to send SCSI commands to the same block device. That is, the block device must be on a shared SCSI bus.
- The block device must contain an XFS file system.
- The SCSI device must support SCSI Persistent Reservations as described in the SCSI-3 Primary Commands specification.
4.1. The pNFS technology
The pNFS architecture improves the scalability of NFS. When a server implements pNFS, the client is able to access data through multiple servers concurrently. This can lead to performance improvements.
pNFS supports the following storage protocols or layouts on RHEL:
- Files
- Flexfiles
- SCSI
4.2. pNFS SCSI layouts
The SCSI layout builds on the work of pNFS block layouts. The layout is defined across SCSI devices. It contains a sequential series of fixed-size blocks as logical units (LUs) that must be capable of supporting SCSI persistent reservations. The LU devices are identified by their SCSI device identification.
pNFS SCSI performs well in use cases that involve longer-duration single-client access to a file. An example might be a mail server or a virtual machine housing a cluster.
Operations between the client and the server
When an NFS client reads from a file or writes to it, the client performs a LAYOUTGET
operation. The server responds with the location of the file on the SCSI device. The client might need to perform an additional operation of GETDEVICEINFO
to determine which SCSI device to use. If these operations work correctly, the client can issue I/O requests directly to the SCSI device instead of sending READ
and WRITE
operations to the server.
Errors or contention between clients might cause the server to recall layouts or not issue them to the clients. In those cases, the clients fall back to issuing READ
and WRITE
operations to the server instead of sending I/O requests directly to the SCSI device.
To monitor the operations, see Monitoring pNFS SCSI layouts functionality.
Device reservations
pNFS SCSI handles fencing through the assignment of reservations. Before the server issues layouts to clients, it reserves the SCSI device to ensure that only registered clients may access the device. If a client can issue commands to that SCSI device but is not registered with the device, many operations from the client on that device fail. For example, the blkid
command on the client fails to show the UUID of the XFS file system if the server has not given a layout for that device to the client.
The server does not remove its own persistent reservation. This protects the data within the file system on the device across restarts of clients and servers. In order to repurpose the SCSI device, you might need to manually remove the persistent reservation on the NFS server.
4.3. Checking for a SCSI device compatible with pNFS
This procedure checks if a SCSI device supports the pNFS SCSI layout.
Prerequisites
Install the
sg3_utils
package:# dnf install sg3_utils
Procedure
On both the server and client, check for the proper SCSI device support:
# sg_persist --in --report-capabilities --verbose path-to-scsi-device
Ensure that the Persist Through Power Loss Active (
PTPL_A
) bit is set.Example 4.1. A SCSI device that supports pNFS SCSI
The following is an example of
sg_persist
output for a SCSI device that supports pNFS SCSI. ThePTPL_A
bit reports1
.inquiry cdb: 12 00 00 00 24 00 Persistent Reservation In cmd: 5e 02 00 00 00 00 00 20 00 00 LIO-ORG block11 4.0 Peripheral device type: disk Report capabilities response: Compatible Reservation Handling(CRH): 1 Specify Initiator Ports Capable(SIP_C): 1 All Target Ports Capable(ATP_C): 1 Persist Through Power Loss Capable(PTPL_C): 1 Type Mask Valid(TMV): 1 Allow Commands: 1 Persist Through Power Loss Active(PTPL_A): 1 Support indicated in Type mask: Write Exclusive, all registrants: 1 Exclusive Access, registrants only: 1 Write Exclusive, registrants only: 1 Exclusive Access: 1 Write Exclusive: 1 Exclusive Access, all registrants: 1
Additional resources
-
sg_persist(8)
man page
4.4. Setting up pNFS SCSI on the server
This procedure configures an NFS server to export a pNFS SCSI layout.
Procedure
- On the server, mount the XFS file system created on the SCSI device.
Configure the NFS server to export NFS version 4.1 or higher. Set the following option in the
[nfsd]
section of the/etc/nfs.conf
file:[nfsd] vers4.1=y
Configure the NFS server to export the XFS file system over NFS with the
pnfs
option:Example 4.2. An entry in /etc/exports to export pNFS SCSI
The following entry in the
/etc/exports
configuration file exports the file system mounted at/exported/directory/
to theallowed.example.com
client as a pNFS SCSI layout:/exported/directory allowed.example.com(pnfs)
NoteThe exported file system must be created on the whole block device, not only on a partition.
Additional resources
4.5. Setting up pNFS SCSI on the client
This procedure configures an NFS client to mount a pNFS SCSI layout.
Prerequisites
- The NFS server is configured to export an XFS file system over pNFS SCSI. See Setting up pNFS SCSI on the server.
Procedure
On the client, mount the exported XFS file system using NFS version 4.1 or higher:
# mount -t nfs -o nfsvers=4.1 host:/remote/export /local/directory
Do not mount the XFS file system directly without NFS.
Additional resources
4.6. Releasing the pNFS SCSI reservation on the server
This procedure releases the persistent reservation that an NFS server holds on a SCSI device. This enables you to repurpose the SCSI device when you no longer need to export pNFS SCSI.
You must remove the reservation from the server. It cannot be removed from a different IT Nexus.
Prerequisites
Install the
sg3_utils
package:# dnf install sg3_utils
Procedure
Query an existing reservation on the server:
# sg_persist --read-reservation path-to-scsi-device
Example 4.3. Querying a reservation on /dev/sda
# *sg_persist --read-reservation /dev/sda* LIO-ORG block_1 4.0 Peripheral device type: disk PR generation=0x8, Reservation follows: Key=0x100000000000000 scope: LU_SCOPE, type: Exclusive Access, registrants only
Remove the existing registration on the server:
# sg_persist --out \ --release \ --param-rk=reservation-key \ --prout-type=6 \ path-to-scsi-device
Example 4.4. Removing a reservation on /dev/sda
# sg_persist --out \ --release \ --param-rk=0x100000000000000 \ --prout-type=6 \ /dev/sda LIO-ORG block_1 4.0 Peripheral device type: disk
Additional resources
-
sg_persist(8)
man page