Menu Close

Administration and configuration tasks using System Roles in RHEL

Red Hat Enterprise Linux 9

Applying RHEL System Roles using Red Hat Ansible Automation Platform playbooks to perform system administration tasks

Red Hat Customer Content Services

Abstract

This document describes configuring system roles using Ansible on Red Hat Enterprise Linux 9. The title focuses on: the RHEL System Roles are a collection of Ansible roles, modules, and playbooks that provide a stable and consistent configuration interface to manage and configure Red Hat Enterprise Linux. They are designed to be forward compatible with multiple major release versions of RHEL 9.

Making open source more inclusive

Red Hat is committed to replacing problematic language in our code, documentation, and web properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the enormity of this endeavor, these changes will be implemented gradually over several upcoming releases. For more details, see our CTO Chris Wright’s message.

Providing feedback on Red Hat documentation

We appreciate your input on our documentation. Please let us know how we could make it better.

  • For simple comments on specific passages:

    1. Make sure you are viewing the documentation in the Multi-page HTML format. In addition, ensure you see the Feedback button in the upper right corner of the document.
    2. Use your mouse cursor to highlight the part of text that you want to comment on.
    3. Click the Add Feedback pop-up that appears below the highlighted text.
    4. Follow the displayed instructions.
  • For submitting feedback via Bugzilla, create a new ticket:

    1. Go to the Bugzilla website.
    2. As the Component, use Documentation.
    3. Fill in the Description field with your suggestion for improvement. Include a link to the relevant part(s) of documentation.
    4. Click Submit Bug.

Chapter 1. Getting started with RHEL System Roles

This section explains what RHEL System Roles are. Additionally, it describes how to apply a particular role through an Ansible playbook to perform various system administration tasks.

1.1. Introduction to RHEL System Roles

RHEL System Roles is a collection of Ansible roles and modules. RHEL System Roles provide a configuration interface to remotely manage multiple RHEL systems. The interface enables managing system configurations across multiple versions of RHEL, as well as adopting new major releases.

On Red Hat Enterprise Linux 9, the interface currently consists of the following roles:

  • Certificate Issuance and Renewal
  • Kernel Settings
  • Metrics
  • Network Bound Disk Encryption client and Network Bound Disk Encryption server
  • Networking
  • Postfix
  • SSH client
  • SSH server
  • System-wide Cryptographic Policies
  • Terminal Session Recording

All these roles are provided by the rhel-system-roles package available in the AppStream repository.

Additional resources

1.2. RHEL System Roles terminology

You can find the following terms across this documentation:

Ansible playbook
Playbooks are Ansible’s configuration, deployment, and orchestration language. They can describe a policy you want your remote systems to enforce, or a set of steps in a general IT process.
Control node
Any machine with Ansible installed. You can run commands and playbooks, invoking /usr/bin/ansible or /usr/bin/ansible-playbook, from any control node. You can use any computer that has Python installed on it as a control node - laptops, shared desktops, and servers can all run Ansible. However, you cannot use a Windows machine as a control node. You can have multiple control nodes.
Inventory
A list of managed nodes. An inventory file is also sometimes called a “hostfile”. Your inventory can specify information like IP address for each managed node. An inventory can also organize managed nodes, creating and nesting groups for easier scaling. To learn more about inventory, see the Working with Inventory section.
Managed nodes
The network devices, servers, or both that you manage with Ansible. Managed nodes are also sometimes called “hosts”. Ansible is not installed on managed nodes.

1.3. Applying a role

The following procedure describes how to apply a particular role.

Prerequisites

  • Ensure that the rhel-system-roles package is installed on the system that you want to use as a control node:

    # dnf install rhel-system-roles
    1. Install the Ansible Core package:

      # dnf install ansible-core

      The Ansible Core package provides the ansible-playbook CLI, the Ansible Vault functionality, and the basic modules and filters required by RHEL Ansible content.

  • Ensure that you are able to create an Ansible inventory.

    Inventories represent the hosts, host groups, and some of the configuration parameters used by the Ansible playbooks.

    Playbooks are typically human-readable, and are defined in ini, yaml, json, and other file formats.

  • Ensure that you are able to create an Ansible playbook.

    Playbooks represent Ansible’s configuration, deployment, and orchestration language. By using playbooks, you can declare and manage configurations of remote machines, deploy multiple remote machines or orchestrate steps of any manual ordered process.

    A playbook is a list of one or more plays. Every play can include Ansible variables, tasks, or roles.

    Playbooks are human-readable, and are defined in the yaml format.

Procedure

  1. Create the required Ansible inventory containing the hosts and groups that you want to manage. Here is an example using a file called inventory.ini of a group of hosts called webservers:

    [webservers]
    host1
    host2
    host3
  2. Create an Ansible playbook including the required role. The following example shows how to use roles through the roles: option for a playbook:

    The following example shows how to use roles through the roles: option for a given play:

    ---
    - hosts: webservers
      roles:
    
         - rhel-system-roles.network
         - rhel-system-roles.postfix
    Note

    Every role includes a README file, which documents how to use the role and supported parameter values. You can also find an example playbook for a particular role under the documentation directory of the role. Such documentation directory is provided by default with the rhel-system-roles package, and can be found in the following location:

    /usr/share/doc/rhel-system-roles/SUBSYSTEM/

    Replace SUBSYSTEM with the name of the required role, such as postfix, metrics, network, tlog, or ssh.

  3. To execute the playbook on specific hosts, you must perform one of the following:

    • Edit the playbook to use hosts: host1[,host2,…​], or hosts: all, and execute the command:

      # ansible-playbook name.of.the.playbook
    • Edit the inventory to ensure that the hosts you want to use are defined in a group, and execute the command:

      # ansible-playbook -i name.of.the.inventory name.of.the.playbook
    • Specify all hosts when executing the ansible-playbook command:

      # ansible-playbook -i host1,host2,... name.of.the.playbook
      Important

      Be aware that the -i flag specifies the inventory of all hosts that are available. If you have multiple targeted hosts, but want to select a host against which you want to run the playbook, you can add a variable in the playbook to be able to select a host. For example:

      Ansible Playbook | example-playbook.yml:
      
      
      - hosts: "{{ target_host }}"
        roles:
           - rhel-system-roles.network
           - rhel-system-roles.postfix

      Playbook execution command:

      # ansible-playbook -i host1,..hostn -e target_host=host5 example-playbook.yml

1.4. Additional resources



[1] This documentation is installed automatically with the rhel-system-roles package.

Chapter 2. Installing RHEL System Roles

Before starting to use System Roles, you must install it in your system.

2.1. Installing RHEL System Roles in your system

To use the RHEL System Roles, install the required packages in your system.

Prerequisites

  • The Ansible Core package is installed on the control machine.
  • You have Ansible packages installed in the system you want to use as a control node.

Procedure

  1. Install the rhel-system-roles package on the system that you want to use as a control node:

    # dnf install rhel-system-roles
  2. Install the Ansible Core package:

    # dnf install ansible-core

The Ansible Core package provides the ansible-playbook CLI, the Ansible Vault functionality, and the basic modules and filters required by RHEL Ansible content.

As a result, you are able to create an Ansible playbook.

Additional resources

Chapter 3. Updating packages to enable automation for RHEL System Roles

As of the RHEL 9.0 GA release, Ansible Engine is no longer supported. Instead, this and future RHEL releases include Ansible Core.

You can use Ansible Core in RHEL 9.0 GA to enable Ansible automation content written or generated by Red Hat products.

Ansible Core contains Ansible command line tools, such as the ansible-playbook and ansible commands, and a small set of built-in Ansible plugins.

3.1. Differences between Ansible Engine and Ansible Core

In RHEL 8.5 and earlier versions, you had access to a separate Ansible repository that contained Ansible Engine 2.9 to enable automation based on Ansible to your Red Hat system.

The scope of support, when using Ansible Engine without an Ansible subscription, is limited to running Ansible playbooks created or generated by Red Hat products, such as RHEL System Roles, Insights remediation playbooks, and OpenSCAP Ansible remediation playbooks.

In RHEL 8.6 and later versions, Ansible Core replaces Ansible Engine. The ansible-core package is included in the RHEL 9 AppStream repository to enable automation content provided by Red Hat. The scope of support for Ansible Core in RHEL remains the same as in earlier RHEL versions:

  • Support is limited to any Ansible playbooks, roles, modules that are included with or generated by a Red Hat product, such as RHEL System Roles, or remediation playbooks generated by Insights.
  • With Ansible Core, you get all functionality of supported RHEL Ansible content, such as RHEL System Roles and Insights remediation playbooks.

The Ansible Engine repository is still available in RHEL 8.6; however, it will not receive any security or bug fix updates and might not be compatible with Ansible automation content included in RHEL 8.6 and later.

You need an Ansible Automation Platform subscription for additional support for the underlying platform and Core-maintained modules.

3.2. Migrating from Ansible Engine to Ansible Core

Prerequisites

  • Access and permissions to one or more managed nodes, which are systems you want to configure with RHEL System Roles.

    • An inventory file which lists the managed nodes.

Procedure

  1. Uninstall Ansible Engine:

    # dnf remove ansible
  2. Disable the ansible-2-for-rhel-8-x86_64-rpms repository:

    # subscription-manager repos --disable ansible-2-for-rhel-8-x86_64-rpms
  3. Install Ansible Core which is available in the RHEL 8 AppStream repository:

    # dnf install ansible-core

Verification

  • Check that the ansible-core package is present in your system:

    # dnf info ansible-core

If the ansible-core package is indeed present in your system, the command output states information on the package name, version, release, size, and more:

Available Packages
Name         : ansible-core
Version      : 2.12.2
Release      : 1.fc34
Architecture : noarch
Size         : 2.4 M
Source       : ansible-core-2.12.2-1.fc34.src.rpm
Repository   : updates
Summary      : A radically simple IT automation system
URL          : http://ansible.com

Additional resources

Chapter 4. Installing and Using Collections

4.1. Introduction to Ansible Collections

Ansible Collections are the new way of distributing, maintaining, and consuming automation. By combining multiple types of Ansible content such as playbooks, roles, modules, and plugins, you can benefit from improvements in flexibility and scalability.

The Ansible Collections are an option to the traditional RHEL System Roles format. Using the RHEL System Roles in the Ansible Collection format is almost the same as using it in the traditional RHEL System Roles format. The difference is that Ansible Collections use the concept of a fully qualified collection name (FQCN), which consists of a namespace and the collection name. The namespace we use is redhat and the collection name is rhel_system_roles. So, while the traditional RHEL System Roles format for the Kernel Settings role is presented as rhel-system-roles.kernel_settings, using the Collection fully qualified collection name for the Kernel Settings role would be presented as redhat.rhel_system_roles.kernel_settings.

The combination of a namespace and a collection name guarantees that the objects are unique. It also ensures that objects are shared across the Ansible Collections and namespaces without any conflicts.

Additional resources

  • To use the Red Hat Certified Collections by accessing the Automation Hub, you must have an Ansible Automation Platform (AAP subscription).

4.2. Collections Structure

Collections are a package format for Ansible content. The data structure is as below:

  • docs/: local documentation for the collection, with examples, if the role provides the documentation
  • galaxy.yml: source data for the MANIFEST.json that will be part of the Ansible Collection package
  • playbooks/: playbooks are available here

    • tasks/: this holds 'task list files' for include_tasks/import_tasks usage
  • plugins/: all Ansible plugins and modules are available here, each in its subdirectory

    • modules/: Ansible modules
    • modules_utils/: common code for developing modules
    • lookup/: search for a plugin
    • filter/: Jinja2 filter plugin
    • connection/: connection plugins required if not using the default
  • roles/: directory for Ansible roles
  • tests/: tests for the collection’s content

4.3. Installing Collections by using the CLI

Collections are a distribution format for Ansible content that can include playbooks, roles, modules, and plugins.

You can install Collections through Ansible Galaxy, through the browser, or by using the command line.

Prerequisites

  • Access and permissions to one or more managed nodes.
  • Access and permissions to a control node, which is a system from which Red Hat Ansible Core configures other systems.

    On the control node:

    • The ansible-core and rhel-system-roles packages are installed.
    • An inventory file which lists the managed nodes.

Procedure

  • Install the collection via RPM package:

    # dnf install rhel-system-roles

After the installation is finished, the roles are available as redhat.rhel_system_roles.<role_name>. Additionally, you can find the documentation for each role at /usr/share/ansible/collections/ansible_collections/redhat/rhel_system_roles/roles/<role_name>/README.md.

Verification steps

To verify that the Collections were successfully installed, you can apply the kernel_settings on your localhost:

  1. Copy one of the tests_default.yml to your working directory.

    $ cp /usr/share/ansible/collections/ansible_collections/redhat/rhel_system_roles/tests/kernel_settings/tests_default.yml .
  2. Edit the file, replacing "hosts: all" with "hosts: localhost" to make the playbook run only on the local system.
  3. Run the ansible-playbook in the check mode. This does not change any settings on your system.

    $ ansible-playbook --check tests_default.yml

The command returns the value failed=0.

Additional resources

  • The ansible-playbook man page.

4.4. Installing Collections from Automation Hub

If you are using the Automation Hub, you can install the RHEL System Roles Collection hosted on the Automation Hub.

Prerequisites

  • Access and permissions to one or more managed nodes.
  • Access and permissions to a control node, which is a system from which Red Hat Ansible Core configures other systems.

    On the control node:

    • The ansible-core and rhel-system-roles packages are installed.
    • An inventory file which lists the managed nodes.

Procedure

  1. Define Red Hat Automation Hub as the default source for content in the ansible.cfg configuration file. See Configuring Red Hat Automation Hub as the primary source for content .
  2. Install the redhat.rhel_system_roles collection from the Automation Hub:

    # ansible-galaxy collection install redhat.rhel_system_roles

    After the installation is finished, the roles are available as redhat.rhel_system_roles.<role_name>. Additionally, you can find the documentation for each role at /usr/share/ansible/collections/ansible_collections/redhat/rhel_system_roles/roles/<role_name>/README.md.

Verification steps

To verify that the Collections were successfully installed, you can apply the kernel_settings on your localhost:

  1. Copy one of the tests_default.yml to your working directory.

    $ cp /usr/share/ansible/collections/ansible_collections/redhat/rhel_system_roles/tests/kernel_settings/tests_default.yml .
  2. Edit the file, replacing "hosts: all" with "hosts: localhost" to make the playbook run only on the local system.
  3. Run the ansible-playbook on the check mode. This does not change any settings on your system.

    $ ansible-playbook --check tests_default.yml

    You can see the command returns with the value failed=0.

Additional resources

  • The ansible-playbook man page.

4.5. Deploying the Terminal Session Recording RHEL System Role using Collections

Following is an example using Collections to prepare and apply a playbook to deploy a logging solution on a set of separate machines.

Prerequisites

  • A Galaxy collection is installed.

Procedure

  1. Create a new playbook.yml file with the following content:

    ---
    - name: Deploy session recording
      hosts: all
      vars:
        tlog_scope_sssd: some
        tlog_users_sssd:
          - recordeduser
    
      roles:
        - redhat.rhel-system-roles.tlog

    Where,

    • tlog_scope_sssd:

      • some specifies you want to record only certain users and groups, not all or none.
    • tlog_users_sssd:

      • recordeduser specifies the user you want to record a session from. Note that this does not add the user for you. You must set the user by yourself.
  2. Optionally, verify the playbook syntax.

    # ansible-playbook --syntax-check playbook.yml
  3. Run the playbook on your inventory file:

    # ansible-playbook -i IP_Address /path/to/file/playbook.yml -v

As a result, the playbook installs the Terminal Session Recording role on the system you specified. It also creates an SSSD configuration drop file that can be used by the users and groups that you define. SSSD parses and reads these users and groups to overlay tlog session as the shell user. Additionally, if the cockpit package is installed on the system, the playbook also installs the cockpit-session-recording package, which is a Cockpit module that allows you to view and play recordings in the web console interface.

Verification steps

  1. Test the syntax of the /etc/rsyslog.conf file:

    # rsyslogd -N 1
    rsyslogd: version 8.1911.0-6.el8, config validation run (level 1), master config /etc/rsyslog.conf
    rsyslogd: End of config validation run. Bye.
  2. Verify that the system sends messages to the log:

To verify that the SSSD configuration drop file is created in the system, perform the following steps:

  1. Navigate to the folder where the SSSD configuration drop file is created:

    # cd /etc/sssd/conf.d
  2. Check the file content:

    # cat sssd-session-recording.conf

You can see that the file contains the parameters you set in the playbook.

Chapter 5. Ansible IPMI modules in RHEL

5.1. The rhel_mgmt collection

The Intelligent Platform Management Interface (IPMI) is a specification for a set of standard protocols to communicate with baseboard management controller (BMC) devices. The IPMI modules allow you to enable and support hardware management automation. The IPMI modules are available in:

  • The rhel_mgmt Collection. The package name is ansible-collection-redhat-rhel_mgmt.
  • The RHEL 8 AppStream, as part of the new ansible-collection-redhat-rhel_mgmt package.

The following IPMI modules are available in the rhel_mgmt collection:

  • ipmi_boot: Management of boot device order
  • ipmi_power: Power management for machine

The mandatory parameters used for the IPMI Modules are:

  • ipmi_boot parameters:
Module nameDescription

name

Hostname or ip address of the BMC

password

Password to connect to the BMC

bootdev

Device to be used on next boot

* network

* floppy

* hd

* safe

* optical

* setup

* default

User

Username to connect to the BMC

  • ipmi_power parameters:
Module nameDescription

name

BMC Hostname or IP address

password

Password to connect to the BMC

user

Username to connect to the BMC

State

Check if the machine is on the desired status

* on

* off

* shutdown

* reset

* boot

5.2. Installing the rhel mgmt Collection using the CLI

You can install the rhel_mgmt Collection using the command line.

Prerequisites

  • The ansible-core package is installed.

Procedure

  • Install the collection via RPM package:

    # yum install ansible-collection-redhat-rhel_mgmt

    After the installation is finished, the IPMI modules are available in the redhat.rhel_mgmt Ansible collection.

Additional resources

  • The ansible-playbook man page.

5.3. Example using the ipmi_boot module

The following example shows how to use the ipmi_boot module in a playbook to set a boot device for the next boot. For simplicity, the examples use the same host as the Ansible control host and managed host, thus executing the modules on the same host where the playbook is executed.

Prerequisites

  • The rhel_mgmt collection is installed.
  • The pyghmi library in the python3-pyghmi package is installed in one of the following locations:

    • The host where you execute the playbook.
    • The managed host. If you use localhost as the managed host, install the python3-pyghmi package on the host where you execute the playbook instead.
  • The IPMI BMC that you want to control is accessible via network from the host where you execute the playbook, or the managed host (if not using localhost as the managed host). Note that the host whose BMC is being configured by the module is generally different from the host where the module is executing (the Ansible managed host), as the module contacts the BMC over the network using the IPMI protocol.
  • You have credentials to access BMC with an appropriate level of access.

Procedure

  1. Create a new playbook.yml file with the following content:

    ---
    - name: Sets which boot device will be used on next boot
      hosts: localhost
        tasks:
        - redhat.rhel_mgmt.ipmi_boot:
           name: bmc.host.example.com
             user: admin_user
             password: basics
             bootdev: hd
  2. Execute the playbook against localhost:

    # ansible-playbook playbook.yml

As a result, the output returns the value “success”.

5.4. Example using the ipmi_power module

This example shows how to use the ipmi_boot module in a playbook to check if the system is turned on. For simplicity, the examples use the same host as the Ansible control host and managed host, thus executing the modules on the same host where the playbook is executed.

Prerequisites

  • The rhel_mgmt collection is installed.
  • The pyghmi library in the python3-pyghmi package is installed in one of the following locations:

    • The host where you execute the playbook.
    • The managed host. If you use localhost as the managed host, install the python3-pyghmi package on the host where you execute the playbook instead.
  • The IPMI BMC that you want to control is accessible via network from the host where you execute the playbook, or the managed host (if not using localhost as the managed host). Note that the host whose BMC is being configured by the module is generally different from the host where the module is executing (the Ansible managed host), as the module contacts the BMC over the network using the IPMI protocol.
  • You have credentials to access BMC with an appropriate level of access.

Procedure

  1. Create a new playbook.yml file with the following content:

    ---
    - name: Turn the host on
      hosts: localhost
        tasks:
        - redhat.rhel_mgmt.ipmi_power:
           name: bmc.host.example.com
             user: admin_user
             password: basics
             state: on
  2. Execute the playbook:

    # ansible-playbook playbook.yml

The output returns the value “true”.

Chapter 6. Using Ansible roles to permanently configure kernel parameters

You can use the Kernel Settings role to configure kernel parameters on multiple clients at once. This solution:

  • Provides a friendly interface with efficient input setting.
  • Keeps all intended kernel parameters in one place.

After you run the Kernel Settings role from the control machine, the kernel parameters are applied to the managed systems immediately and persist across reboots.

Important

Note that RHEL System Role delivered over RHEL channels are available to RHEL customers as an RPM package in the default AppStream repository. RHEL System Role are also available as a collection to customers with Ansible subscriptions over Ansible Automation Hub.

6.1. Introduction to the kernel settings role

RHEL System Roles is a set of roles that provide a consistent configuration interface to remotely manage multiple systems.

RHEL System Roles were introduced for automated configurations of the kernel using the Kernel Settings System Role. The rhel-system-roles package contains this system role, and also the reference documentation.

To apply the kernel parameters on one or more systems in an automated fashion, use the Kernel Settings role with one or more of its role variables of your choice in a playbook. A playbook is a list of one or more plays that are human-readable, and are written in the YAML format.

With the Kernel Settings role you can configure:

  • The kernel parameters using the kernel_settings_sysctl role variable
  • Various kernel subsystems, hardware devices, and device drivers using the kernel_settings_sysfs role variable
  • The CPU affinity for the systemd service manager and processes it forks using the kernel_settings_systemd_cpu_affinity role variable
  • The kernel memory subsystem transparent hugepages using the kernel_settings_transparent_hugepages and kernel_settings_transparent_hugepages_defrag role variables

Additional resources

6.2. Applying selected kernel parameters using the Kernel Settings role

Follow these steps to prepare and apply an Ansible playbook to remotely configure kernel parameters with persisting effect on multiple managed operating systems.

Prerequisites

  • You have root permissions.
  • Entitled by your RHEL subscription, you installed the ansible-core and rhel-system-roles packages on the control machine.
  • An inventory of managed hosts is present on the control machine and Ansible is able to connect to them.
Important

RHEL 8.0 - 8.5 provided access to a separate Ansible repository that contains Ansible Engine 2.9 for automation based on Ansible. Ansible Engine contains command-line utilities such as ansible, ansible-playbook; connectors such as docker and podman; and the entire world of plugins and modules. For information on how to obtain and install Ansible Engine, refer to How do I Download and Install Red Hat Ansible Engine?.

RHEL 8.6 and 9.0 has introduced Ansible Core (provided as ansible-core RPM), which contains the Ansible command-line utilities, commands, and a small set of built-in Ansible plugins. The AppStream repository provides ansible-core, which has a limited scope of support. You can learn more by reviewing Scope of support for the ansible-core package included in the RHEL 9 AppStream.

Procedure

  1. Optionally, review the inventory file for illustration purposes:

    #  cat /home/jdoe/<ansible_project_name>/inventory
    [testingservers]
    pdoe@192.168.122.98
    fdoe@192.168.122.226
    
    [db-servers]
    db1.example.com
    db2.example.com
    
    [webservers]
    web1.example.com
    web2.example.com
    192.0.2.42

    The file defines the [testingservers] group and other groups. It allows you to run Ansible more effectively against a specific set of systems.

  2. Create a configuration file to set defaults and privilege escalation for Ansible operations.

    1. Create a new YAML file and open it in a text editor, for example:

      #  vi /home/jdoe/<ansible_project_name>/ansible.cfg
    2. Insert the following content into the file:

      [defaults]
      inventory = ./inventory
      
      [privilege_escalation]
      become = true
      become_method = sudo
      become_user = root
      become_ask_pass = true

      The [defaults] section specifies a path to the inventory file of managed hosts. The [privilege_escalation] section defines that user privileges be shifted to root on the specified managed hosts. This is necessary for successful configuration of kernel parameters. When Ansible playbook is run, you will be prompted for user password. The user automatically switches to root by means of sudo after connecting to a managed host.

  3. Create an Ansible playbook that uses the Kernel Settings role.

    1. Create a new YAML file and open it in a text editor, for example:

      #  vi /home/jdoe/<ansible_project_name>/kernel-roles.yml

      This file represents a playbook and usually contains an ordered list of tasks, also called plays, that are run against specific managed hosts selected from your inventory file.

    2. Insert the following content into the file:

      ---
      -
        hosts: testingservers
        name: "Configure kernel settings"
        roles:
          - rhel-system-roles.kernel_settings
        vars:
          kernel_settings_sysctl:
            - name: fs.file-max
              value: 400000
            - name: kernel.threads-max
              value: 65536
          kernel_settings_sysfs:
            - name: /sys/class/net/lo/mtu
              value: 65000
          kernel_settings_transparent_hugepages: madvise

      The name key is optional. It associates an arbitrary string with the play as a label and identifies what the play is for. The hosts key in the play specifies the hosts against which the play is run. The value or values for this key can be provided as individual names of managed hosts or as groups of hosts as defined in the inventory file.

      The vars section represents a list of variables containing selected kernel parameter names and values to which they have to be set.

      The roles key specifies what system role is going to configure the parameters and values mentioned in the vars section.

      Note

      You can modify the kernel parameters and their values in the playbook to fit your needs.

  4. Optionally, verify that the syntax in your play is correct.

    #  ansible-playbook --syntax-check kernel-roles.yml
    
    playbook: kernel-roles.yml

    This example shows the successful verification of a playbook.

  5. Execute your playbook.

    #  ansible-playbook kernel-roles.yml
    
    ...
    
    BECOME password:
    
    PLAY [Configure kernel settings] **********************************************************************************
    
    
    
    PLAY RECAP ********************************************************************************************************
    fdoe@192.168.122.226       : ok=10   changed=4    unreachable=0    failed=0    skipped=6    rescued=0    ignored=0
    pdoe@192.168.122.98        : ok=10   changed=4    unreachable=0    failed=0    skipped=6    rescued=0    ignored=0

    Before Ansible runs your playbook, you are going to be prompted for your password and so that a user on managed hosts can be switched to root, which is necessary for configuring kernel parameters.

    The recap section shows that the play finished successfully (failed=0) for all managed hosts, and that 4 kernel parameters have been applied (changed=4).

  6. Restart your managed hosts and check the affected kernel parameters to verify that the changes have been applied and persist across reboots.

Additional resources

Chapter 7. Using RHEL System Role to configure network connections

The Networking RHEL System Role enables administrators to automate network-related configuration and management tasks using Ansible.

7.1. Configuring a static Ethernet connection using RHEL System Roles with the interface name

This procedure describes how to use the Networking RHEL System Role to remotely add an Ethernet connection for the enp7s0 interface with the following settings by running an Ansible playbook:

  • A static IPv4 address - 192.0.2.1 with a /24 subnet mask
  • A static IPv6 address - 2001:db8:1::1 with a /64 subnet mask
  • An IPv4 default gateway - 192.0.2.254
  • An IPv6 default gateway - 2001:db8:1::fffe
  • An IPv4 DNS server - 192.0.2.200
  • An IPv6 DNS server - 2001:db8:1::ffbb
  • A DNS search domain - example.com

Run this procedure on the Ansible control node.

Prerequisites

  • The ansible-core and rhel-system-roles packages are installed on the control node.
  • If you use a different remote user than root when you run the playbook, this user has appropriate sudo permissions on the managed node.
  • The host uses NetworkManager to configure the network.

Procedure

  1. If the host on which you want to execute the instructions in the playbook is not yet inventoried, add the IP or name of this host to the /etc/ansible/hosts Ansible inventory file:

    node.example.com
  2. Create the ~/ethernet-static-IP.yml playbook with the following content:

    ---
    - name: Configure an Ethernet connection with static IP
      hosts: node.example.com
      become: true
      tasks:
      - include_role:
          name: rhel-system-roles.network
    
        vars:
          network_connections:
            - name: enp7s0
              interface_name: enp7s0
              type: ethernet
              autoconnect: yes
              ip:
                address:
                  - 192.0.2.1/24
                  - 2001:db8:1::1/64
                gateway4: 192.0.2.254
                gateway6: 2001:db8:1::fffe
                dns:
                  - 192.0.2.200
                  - 2001:db8:1::ffbb
                dns_search:
                  - example.com
              state: up
  3. Run the playbook:

    • To connect as root user to the managed host, enter:

      # ansible-playbook -u root ~/ethernet-static-IP.yml
    • To connect as a user to the managed host, enter:

      # ansible-playbook -u user_name --ask-become-pass ~/ethernet-static-IP.yml

      The --ask-become-pass option makes sure that the ansible-playbook command prompts for the sudo password of the user defined in the -u user_name option.

    If you do not specify the -u user_name option, ansible-playbook connects to the managed host as the user that is currently logged in to the control node.

Additional resources

  • /usr/share/ansible/roles/rhel-system-roles.network/README.md
  • ansible-playbook(1) man page

7.2. Configuring a static Ethernet connection using RHEL System Roles with a device path

This procedure describes how to use RHEL System Roles to remotely add an Ethernet connection with static IP address for devices that match a specific device path by running an Ansible playbook.

You can identify the device path with the following command:

# udevadm info /sys/class/net/<device_name> | grep ID_PATH=

This procedure sets the following settings to the device that matches the PCI ID 0000:00:0[1-3].0 expression, but not 0000:00:02.0:

  • A static IPv4 address - 192.0.2.1 with a /24 subnet mask
  • A static IPv6 address - 2001:db8:1::1 with a /64 subnet mask
  • An IPv4 default gateway - 192.0.2.254
  • An IPv6 default gateway - 2001:db8:1::fffe
  • An IPv4 DNS server - 192.0.2.200
  • An IPv6 DNS server - 2001:db8:1::ffbb
  • A DNS search domain - example.com

Run this procedure on the Ansible control node.

Prerequisites

  • The ansible-core and rhel-system-roles packages are installed on the control node.
  • If you use a different remote user than root when you run the playbook, this user has appropriate sudo permissions on the managed node.
  • The host uses NetworkManager to configure the network.

Procedure

  1. If the host on which you want to execute the instructions in the playbook is not yet inventoried, add the IP or name of this host to the /etc/ansible/hosts Ansible inventory file:

    node.example.com
  2. Create the ~/ethernet-dynamic-IP.yml playbook with the following content:

    ---
    - name: Configure an Ethernet connection with dynamic IP
      hosts: node.example.com
      become: true
      tasks:
      - include_role:
          name: rhel-system-roles.network
    
        vars:
          network_connections:
            - name: example
              match:
                path:
                  - pci-0000:00:0[1-3].0
                  - &!pci-0000:00:02.0
              type: ethernet
              autoconnect: yes
              ip:
                address:
                  - 192.0.2.1/24
                  - 2001:db8:1::1/64
                gateway4: 192.0.2.254
                gateway6: 2001:db8:1::fffe
                dns:
                  - 192.0.2.200
                  - 2001:db8:1::ffbb
                dns_search:
                  - example.com
              state: up

    The match parameter in this example defines that Ansible applies the play to devices that match PCI ID 0000:00:0[1-3].0, but not 0000:00:02.0. For further details about special modifiers and wild cards you can use, see the match parameter description in the /usr/share/ansible/roles/rhel-system-roles.network/README.md file.

  3. Run the playbook:

    • To connect as root user to the managed host, enter:

      # ansible-playbook -u root ~/ethernet-dynamic-IP.yml
    • To connect as a user to the managed host, enter:

      # ansible-playbook -u user_name --ask-become-pass ~/ethernet-dynamic-IP.yml

      The --ask-become-pass option makes sure that the ansible-playbook command prompts for the sudo password of the user defined in the -u user_name option.

    If you do not specify the -u user_name option, ansible-playbook connects to the managed host as the user that is currently logged in to the control node.

Additional resources

  • /usr/share/ansible/roles/rhel-system-roles.network/README.md file
  • ansible-playbook(1) man page

7.3. Configuring a dynamic Ethernet connection using RHEL System Roles with the interface name

This procedure describes how to use RHEL System Roles to remotely add a dynamic Ethernet connection for the enp7s0 interface by running an Ansible playbook. With this setting, the network connection requests the IP settings for this connection from a DHCP server. Run this procedure on the Ansible control node.

Prerequisites

  • A DHCP server is available in the network.
  • The ansible-core and rhel-system-roles packages are installed on the control node.
  • If you use a different remote user than root when you run the playbook, this user has appropriate sudo permissions on the managed node.
  • The host uses NetworkManager to configure the network.

Procedure

  1. If the host on which you want to execute the instructions in the playbook is not yet inventoried, add the IP or name of this host to the /etc/ansible/hosts Ansible inventory file:

    node.example.com
  2. Create the ~/ethernet-dynamic-IP.yml playbook with the following content:

    ---
    - name: Configure an Ethernet connection with dynamic IP
      hosts: node.example.com
      become: true
      tasks:
      - include_role:
          name: rhel-system-roles.network
    
        vars:
          network_connections:
            - name: enp7s0
              interface_name: enp7s0
              type: ethernet
              autoconnect: yes
              ip:
                dhcp4: yes
                auto6: yes
              state: up
  3. Run the playbook:

    • To connect as root user to the managed host, enter:

      # ansible-playbook -u root ~/ethernet-dynamic-IP.yml
    • To connect as a user to the managed host, enter:

      # ansible-playbook -u user_name --ask-become-pass ~/ethernet-dynamic-IP.yml

      The --ask-become-pass option makes sure that the ansible-playbook command prompts for the sudo password of the user defined in the -u user_name option.

    If you do not specify the -u user_name option, ansible-playbook connects to the managed host as the user that is currently logged in to the control node.

Additional resources

  • /usr/share/ansible/roles/rhel-system-roles.network/README.md file
  • ansible-playbook(1) man page

7.4. Configuring a dynamic Ethernet connection using RHEL System Roles with a device path

This procedure describes how to use RHEL System Roles to remotely add a dynamic Ethernet connection for devices that match a specific device path by running an Ansible playbook. With dynamic IP settings, the network connection requests the IP settings for this connection from a DHCP server. Run this procedure on the Ansible control node.

You can identify the device path with the following command:

# udevadm info /sys/class/net/<device_name> | grep ID_PATH=

Prerequisites

  • A DHCP server is available in the network.
  • The ansible-core and rhel-system-roles packages are installed on the control node.
  • If you use a different remote user than root when you run the playbook, this user has appropriate sudo permissions on the managed node.
  • The host uses NetworkManager to configure the network.

Procedure

  1. If the host on which you want to execute the instructions in the playbook is not yet inventoried, add the IP or name of this host to the /etc/ansible/hosts Ansible inventory file:

    node.example.com
  2. Create the ~/ethernet-dynamic-IP.yml playbook with the following content:

    ---
    - name: Configure an Ethernet connection with dynamic IP
      hosts: node.example.com
      become: true
      tasks:
      - include_role:
          name: rhel-system-roles.network
    
        vars:
          network_connections:
            - name: example
              match:
                path:
                  - pci-0000:00:0[1-3].0
                  - &!pci-0000:00:02.0
              type: ethernet
              autoconnect: yes
              ip:
                dhcp4: yes
                auto6: yes
              state: up

    The match parameter in this example defines that Ansible applies the play to devices that match PCI ID 0000:00:0[1-3].0, but not 0000:00:02.0. For further details about special modifiers and wild cards you can use, see the match parameter description in the /usr/share/ansible/roles/rhel-system-roles.network/README.md file.

  3. Run the playbook:

    • To connect as root user to the managed host, enter:

      # ansible-playbook -u root ~/ethernet-dynamic-IP.yml
    • To connect as a user to the managed host, enter:

      # ansible-playbook -u user_name --ask-become-pass ~/ethernet-dynamic-IP.yml

      The --ask-become-pass option makes sure that the ansible-playbook command prompts for the sudo password of the user defined in the -u user_name option.

    If you do not specify the -u user_name option, ansible-playbook connects to the managed host as the user that is currently logged in to the control node.

Additional resources

  • /usr/share/ansible/roles/rhel-system-roles.network/README.md file
  • ansible-playbook(1) man page

7.5. Configuring VLAN tagging using RHEL System Role

You can use the Networking RHEL System Role to configure VLAN tagging. This procedure describes how to add an Ethernet connection and a VLAN with ID 10 on top of this Ethernet connection. As the child device, the VLAN connection contains the IP, default gateway, and DNS configurations.

Depending on your environment, adjust the play accordingly. For example:

  • To use the VLAN as a port in other connections, such as a bond, omit the ip attribute, and set the IP configuration in the child configuration.
  • To use team, bridge, or bond devices in the VLAN, adapt the interface_name and type attributes of the ports you use in the VLAN.

Prerequisites

  • The ansible-core and rhel-system-roles packages are installed on the control node.
  • If you use a different remote user than root when you run the playbook, this user has appropriate sudo permissions on the managed node.

Procedure

  1. If the host on which you want to execute the instructions in the playbook is not yet inventoried, add the IP or name of this host to the /etc/ansible/hosts Ansible inventory file:

    node.example.com
  2. Create the ~/vlan-ethernet.yml playbook with the following content:

    ---
    - name: Configure a VLAN that uses an Ethernet connection
      hosts: node.example.com
      become: true
      tasks:
      - include_role:
          name: rhel-system-roles.network
    
        vars:
          network_connections:
            # Add an Ethernet profile for the underlying device of the VLAN
            - name: enp1s0
              type: ethernet
              interface_name: enp1s0
              autoconnect: yes
              state: up
              ip:
                dhcp4: no
                auto6: no
    
            # Define the VLAN profile
            - name: enp1s0.10
              type: vlan
              ip:
                address:
                  - "192.0.2.1/24"
                  - "2001:db8:1::1/64"
                gateway4: 192.0.2.254
                gateway6: 2001:db8:1::fffe
                dns:
                  - 192.0.2.200
                  - 2001:db8:1::ffbb
                dns_search:
                  - example.com
              vlan_id: 10
              parent: enp1s0
              state: up

    The parent attribute in the VLAN profile configures the VLAN to operate on top of the enp1s0 device.

  3. Run the playbook:

    • To connect as root user to the managed host, enter:

      # ansible-playbook -u root ~/vlan-ethernet.yml
    • To connect as a user to the managed host, enter:

      # ansible-playbook -u user_name --ask-become-pass ~/vlan-ethernet.yml

      The --ask-become-pass option makes sure that the ansible-playbook command prompts for the sudo password of the user defined in the -u user_name option.

    If you do not specify the -u user_name option, ansible-playbook connects to the managed host as the user that is currently logged in to the control node.

Additional resources

  • /usr/share/ansible/roles/rhel-system-roles.network/README.md file
  • ansible-playbook(1) man page

7.6. Configuring a network bridge using RHEL System Roles

You can use the Networking RHEL System Role to configure a Linux bridge. This procedure describes how to configure a network bridge that uses two Ethernet devices, and sets IPv4 and IPv6 addresses, default gateways, and DNS configuration.

Note

Set the IP configuration on the bridge and not on the ports of the Linux bridge.

Prerequisites

  • The ansible-core and rhel-system-roles packages are installed on the control node.
  • If you use a different remote user than root when you run the playbook, this user has appropriate sudo permissions on the managed node.
  • Two or more physical or virtual network devices are installed on the server.

Procedure

  1. If the host on which you want to execute the instructions in the playbook is not yet inventoried, add the IP or name of this host to the /etc/ansible/hosts Ansible inventory file:

    node.example.com
  2. Create the ~/bridge-ethernet.yml playbook with the following content:

    ---
    - name: Configure a network bridge that uses two Ethernet ports
      hosts: node.example.com
      become: true
      tasks:
      - include_role:
          name: rhel-system-roles.network
    
        vars:
          network_connections:
            # Define the bridge profile
            - name: bridge0
              type: bridge
              interface_name: bridge0
              ip:
                address:
                  - "192.0.2.1/24"
                  - "2001:db8:1::1/64"
                gateway4: 192.0.2.254
                gateway6: 2001:db8:1::fffe
                dns:
                  - 192.0.2.200
                  - 2001:db8:1::ffbb
                dns_search:
                  - example.com
              state: up
    
            # Add an Ethernet profile to the bridge
            - name: bridge0-port1
              interface_name: enp7s0
              type: ethernet
              controller: bridge0
              port_type: bridge
              state: up
    
            # Add a second Ethernet profile to the bridge
            - name: bridge0-port2
              interface_name: enp8s0
              type: ethernet
              controller: bridge0
              port_type: bridge
              state: up
  3. Run the playbook:

    • To connect as root user to the managed host, enter:

      # ansible-playbook -u root ~/bridge-ethernet.yml
    • To connect as a user to the managed host, enter:

      # ansible-playbook -u user_name --ask-become-pass ~/bridge-ethernet.yml

      The --ask-become-pass option makes sure that the ansible-playbook command prompts for the sudo password of the user defined in the -u user_name option.

    If you do not specify the -u user_name option, ansible-playbook connects to the managed host as the user that is currently logged in to the control node.

Additional resources

  • /usr/share/ansible/roles/rhel-system-roles.network/README.md file
  • ansible-playbook(1) man page

7.7. Configuring a network bond using RHEL System Roles

You can use the Networking RHEL System Role to configure a network bond. This procedure describes how to configure a bond in active-backup mode that uses two Ethernet devices, and sets an IPv4 and IPv6 addresses, default gateways, and DNS configuration.

Note

Set the IP configuration on the bond and not on the ports of the Linux bond.

Prerequisites

  • The ansible-core package and rhel-system-roles packages are installed on the control node.
  • If you use a different remote user than root when you run the playbook, this user has appropriate sudo permissions on the managed node.
  • Two or more physical or virtual network devices are installed on the server.

Procedure

  1. If the host on which you want to execute the instructions in the playbook is not yet inventoried, add the IP or name of this host to the /etc/ansible/hosts Ansible inventory file:

    node.example.com
  2. Create the ~/bond-ethernet.yml playbook with the following content:

    ---
    - name: Configure a network bond that uses two Ethernet ports
      hosts: node.example.com
      become: true
      tasks:
      - include_role:
          name: rhel-system-roles.network
    
        vars:
          network_connections:
            # Define the bond profile
            - name: bond0
              type: bond
              interface_name: bond0
              ip:
                address:
                  - "192.0.2.1/24"
                  - "2001:db8:1::1/64"
                gateway4: 192.0.2.254
                gateway6: 2001:db8:1::fffe
                dns:
                  - 192.0.2.200
                  - 2001:db8:1::ffbb
                dns_search:
                  - example.com
              bond:
                mode: active-backup
              state: up
    
            # Add an Ethernet profile to the bond
            - name: bond0-port1
              interface_name: enp7s0
              type: ethernet
              controller: bond0
              state: up
    
            # Add a second Ethernet profile to the bond
            - name: bond0-port2
              interface_name: enp8s0
              type: ethernet
              controller: bond0
              state: up
  3. Run the playbook:

    • To connect as root user to the managed host, enter:

      # ansible-playbook -u root ~/bond-ethernet.yml
    • To connect as a user to the managed host, enter:

      # ansible-playbook -u user_name --ask-become-pass ~/bond-ethernet.yml

      The --ask-become-pass option makes sure that the ansible-playbook command prompts for the sudo password of the user defined in the -u user_name option.

    If you do not specify the -u user_name option, ansible-playbook connects to the managed host as the user that is currently logged in to the control node.

Additional resources

  • /usr/share/ansible/roles/rhel-system-roles.network/README.md file
  • ansible-playbook(1) man page

7.8. Configuring a static Ethernet connection with 802.1X network authentication using RHEL System Roles

Using the Networking RHEL System Role, you can automate the creation of an Ethernet connection that uses the 802.1X standard to authenticate the client. This procedure describes how to remotely add an Ethernet connection for the enp1s0 interface with the following settings by running an Ansible playbook:

  • A static IPv4 address - 192.0.2.1 with a /24 subnet mask
  • A static IPv6 address - 2001:db8:1::1 with a /64 subnet mask
  • An IPv4 default gateway - 192.0.2.254
  • An IPv6 default gateway - 2001:db8:1::fffe
  • An IPv4 DNS server - 192.0.2.200
  • An IPv6 DNS server - 2001:db8:1::ffbb
  • A DNS search domain - example.com
  • 802.1X network authentication using the TLS Extensible Authentication Protocol (EAP)

Run this procedure on the Ansible control node.

Prerequisites

  • The ansible-core and rhel-system-roles packages are installed on the control node.
  • If you use a different remote user than root when you run the playbook, you must have appropriate sudo permissions on the managed node.
  • The network supports 802.1X network authentication.
  • The managed node uses NetworkManager.
  • The following files required for TLS authentication exist on the control node:

    • The client key is stored in the /srv/data/client.key file.
    • The client certificate is stored in the /srv/data/client.crt file.
    • The Certificate Authority (CA) certificate is stored in the /srv/data/ca.crt file.

Procedure

  1. If the host on which you want to execute the instructions in the playbook is not yet inventoried, add the IP or name of this host to the /etc/ansible/hosts Ansible inventory file:

    node.example.com
  2. Create the ~/enable-802.1x.yml playbook with the following content:

    ---
    - name: Configure an Ethernet connection with 802.1X authentication
      hosts: node.example.com
      become: true
      tasks:
        - name: Copy client key for 802.1X authentication
          copy:
            src: "/srv/data/client.key"
            dest: "/etc/pki/tls/private/client.key"
            mode: 0600
    
        - name: Copy client certificate for 802.1X authentication
          copy:
            src: "/srv/data/client.crt"
            dest: "/etc/pki/tls/certs/client.crt"
    
        - name: Copy CA certificate for 802.1X authentication
          copy:
            src: "/srv/data/ca.crt"
            dest: "/etc/pki/ca-trust/source/anchors/ca.crt"
    
        - include_role:
            name: rhel-system-roles.network
          vars:
            network_connections:
              - name: enp1s0
                type: ethernet
                autoconnect: yes
                ip:
                  address:
                    - 192.0.2.1/24
                    - 2001:db8:1::1/64
                  gateway4: 192.0.2.254
                  gateway6: 2001:db8:1::fffe
                  dns:
                    - 192.0.2.200
                    - 2001:db8:1::ffbb
                  dns_search:
                    - example.com
                ieee802_1x:
                  identity: user_name
                  eap: tls
                  private_key: "/etc/pki/tls/private/client.key"
                  private_key_password: "password"
                  client_cert: "/etc/pki/tls/certs/client.crt"
                  ca_cert: "/etc/pki/ca-trust/source/anchors/ca.crt"
                  domain_suffix_match: example.com
                state: up
  3. Run the playbook:

    • To connect as root user to the managed host, enter:

      # ansible-playbook -u root ~/enable-802.1x.yml
    • To connect as a user to the managed host, enter:

      # ansible-playbook -u user_name --ask-become-pass ~/ethernet-static-IP.yml

      The --ask-become-pass option makes sure that the ansible-playbook command prompts for the sudo password of the user defined in the -u user_name option.

    If you do not specify the -u user_name option, ansible-playbook connects to the managed host as the user that is currently logged in to the control node.

Additional resources

  • /usr/share/ansible/roles/rhel-system-roles.network/README.md file
  • /usr/share/ansible/roles/rhel-system-roles.network/README.md file
  • ansible-playbook(1) man page

7.9. Setting the default gateway on an existing connection using System Roles

You can use the Networking RHEL System Role to set the default gateway.

Important

When you run a play that uses the Networking RHEL System Role, the system role overrides an existing connection profile with the same name if the value of settings does not match the ones specified in the play. Therefore, always specify the whole configuration of the network connection profile in the play, even if, for example, the IP configuration already exists. Otherwise, the role resets these values to their defaults.

Depending on whether it already exists, the procedure creates or updates the enp1s0 connection profile with the following settings:

  • A static IPv4 address - 198.51.100.20 with a /24 subnet mask
  • A static IPv6 address - 2001:db8:1::1 with a /64 subnet mask
  • An IPv4 default gateway - 198.51.100.254
  • An IPv6 default gateway - 2001:db8:1::fffe
  • An IPv4 DNS server - 198.51.100.200
  • An IPv6 DNS server - 2001:db8:1::ffbb
  • A DNS search domain - example.com

Prerequisites

  • The ansible-core and rhel-system-roles packages are installed on the control node.
  • If you use a different remote user than root when you run the playbook, this user has appropriate sudo permissions on the managed node.

Procedure

  1. If the host on which you want to execute the instructions in the playbook is not yet inventoried, add the IP or name of this host to the /etc/ansible/hosts Ansible inventory file:

    node.example.com
  2. Create the ~/ethernet-connection.yml playbook with the following content:

    ---
    - name: Configure an Ethernet connection with static IP and default gateway
      hosts: node.example.com
      become: true
      tasks:
      - include_role:
          name: rhel-system-roles.network
    
        vars:
          network_connections:
            - name: enp1s0
              type: ethernet
              autoconnect: yes
              ip:
                address:
                  - 198.51.100.20/24
                  - 2001:db8:1::1/64
                gateway4: 198.51.100.254
                gateway6: 2001:db8:1::fffe
                dns:
                  - 198.51.100.200
                  - 2001:db8:1::ffbb
                dns_search:
                  - example.com
              state: up
  3. Run the playbook:

    • To connect as root user to the managed host, enter:

      # ansible-playbook -u root ~/ethernet-connection.yml
    • To connect as a user to the managed host, enter:

      # ansible-playbook -u user_name --ask-become-pass ~/ethernet-connection.yml

      The --ask-become-pass option makes sure that the ansible-playbook command prompts for the sudo password of the user defined in the -u user_name option.

    If you do not specify the -u user_name option, ansible-playbook connects to the managed host as the user that is currently logged in to the control node.

Additional resources

  • /usr/share/ansible/roles/rhel-system-roles.network/README.md
  • ansible-playbook(1) man page

7.10. Configuring a static route using RHEL System Roles

You can use the Networking RHEL System Role to configure static routes.

Important

When you run a play that uses the Networking RHEL System Role, the system role overrides an existing connection profile with the same name if the value of settings does not match the ones specified in the play. Therefore, always specify the whole configuration of the network connection profile in the play, even if, for example, the IP configuration already exists. Otherwise, the role resets these values to their defaults.

Depending on whether it already exists, the procedure creates or updates the enp7s0 connection profile with the following settings:

  • A static IPv4 address - 198.51.100.20 with a /24 subnet mask
  • A static IPv6 address - 2001:db8:1::1 with a /64 subnet mask
  • An IPv4 default gateway - 198.51.100.254
  • An IPv6 default gateway - 2001:db8:1::fffe
  • An IPv4 DNS server - 198.51.100.200
  • An IPv6 DNS server - 2001:db8:1::ffbb
  • A DNS search domain - example.com
  • Static routes:

    • 192.0.2.0/24 with gateway 198.51.100.1
    • 203.0.113.0/24 with gateway 198.51.100.2

Prerequisites

  • The ansible-core and rhel-system-roles packages are installed on the control node.
  • If you use a different remote user than root when you run the playbook, this user has appropriate sudo permissions on the managed node.

Procedure

  1. If the host on which you want to execute the instructions in the playbook is not yet inventoried, add the IP or name of this host to the /etc/ansible/hosts Ansible inventory file:

    node.example.com
  2. Create the ~/add-static-routes.yml playbook with the following content:

    ---
    - name: Configure an Ethernet connection with static IP and additional routes
      hosts: node.example.com
      become: true
      tasks:
      - include_role:
          name: rhel-system-roles.network
    
        vars:
          network_connections:
            - name: enp7s0
              type: ethernet
              autoconnect: yes
              ip:
                address:
                  - 198.51.100.20/24
                  - 2001:db8:1::1/64
                gateway4: 198.51.100.254
                gateway6: 2001:db8:1::fffe
                dns:
                  - 198.51.100.200
                  - 2001:db8:1::ffbb
                dns_search:
                  - example.com
                route:
                  - network: 192.0.2.0
                    prefix: 24
                    gateway: 198.51.100.1
                  - network: 203.0.113.0
                    prefix: 24
                    gateway: 198.51.100.2
              state: up
  3. Run the playbook:

    • To connect as root user to the managed host, enter:

      # ansible-playbook -u root ~/add-static-routes.yml
    • To connect as a user to the managed host, enter:

      # ansible-playbook -u user_name --ask-become-pass ~/add-static-routes.yml

      The --ask-become-pass option makes sure that the ansible-playbook command prompts for the sudo password of the user defined in the -u user_name option.

    If you do not specify the -u user_name option, ansible-playbook connects to the managed host as the user that is currently logged in to the control node.

Verification steps

  • Display the routing table:

    # ip -4 route
    default via 198.51.100.254 dev enp7s0 proto static metric 100
    192.0.2.0/24 via 198.51.100.1 dev enp7s0 proto static metric 100
    203.0.113.0/24 via 198.51.100.2 dev enp7s0 proto static metric 100
    ...

Additional resources

  • /usr/share/ansible/roles/rhel-system-roles.network/README.md file
  • ansible-playbook(1) man page

7.11. Using RHEL System Roles to set ethtool features

You can use the Networking RHEL System Role to configure ethtool features of a NetworkManager connection.

Important

When you run a play that uses the Networking RHEL System Role, the system role overrides an existing connection profile with the same name if the value of settings does not match the ones specified in the play. Therefore, always specify the whole configuration of the network connection profile in the play, even if, for example the IP configuration, already exists. Otherwise the role resets these values to their defaults.

Depending on whether it already exists, the procedure creates or updates the enp1s0 connection profile with the following settings:

  • A static IPv4 address - 198.51.100.20 with a /24 subnet mask
  • A static IPv6 address - 2001:db8:1::1 with a /64 subnet mask
  • An IPv4 default gateway - 198.51.100.254
  • An IPv6 default gateway - 2001:db8:1::fffe
  • An IPv4 DNS server - 198.51.100.200
  • An IPv6 DNS server - 2001:db8:1::ffbb
  • A DNS search domain - example.com
  • ethtool features:

    • Generic receive offload (GRO): disabled
    • Generic segmentation offload (GSO): enabled
    • TX stream control transmission protocol (SCTP) segmentation: disabled

Prerequisites

  • The ansible-core package and rhel-system-roles packages are installed on the control node.
  • If you use a different remote user than root when you run the playbook, this user has appropriate sudo permissions on the managed node.

Procedure

  1. If the host on which you want to execute the instructions in the playbook is not yet inventoried, add the IP or name of this host to the /etc/ansible/hosts Ansible inventory file:

    node.example.com
  2. Create the ~/configure-ethernet-device-with-ethtool-features.yml playbook with the following content:

    ---
    - name: Configure an Ethernet connection with ethtool features
      hosts: node.example.com
      become: true
      tasks:
      - include_role:
          name: rhel-system-roles.network
    
        vars:
          network_connections:
            - name: enp1s0
              type: ethernet
              autoconnect: yes
              ip:
                address:
                  - 198.51.100.20/24
                  - 2001:db8:1::1/64
                gateway4: 198.51.100.254
                gateway6: 2001:db8:1::fffe
                dns:
                  - 198.51.100.200
                  - 2001:db8:1::ffbb
                dns_search:
                  - example.com
              ethtool:
                features:
                  gro: "no"
                  gso: "yes"
                  tx_sctp_segmentation: "no"
              state: up
  3. Run the playbook:

    • To connect as root user to the managed host, enter:

      # ansible-playbook -u root ~/configure-ethernet-device-with-ethtool-features.yml
    • To connect as a user to the managed host, enter:

      # ansible-playbook -u user_name --ask-become-pass ~/configure-ethernet-device-with-ethtool-features.yml

      The --ask-become-pass option makes sure that the ansible-playbook command prompts for the sudo password of the user defined in the -u user_name option.

    If you do not specify the -u user_name option, ansible-playbook connects to the managed host as the user that is currently logged in to the control node.

Additional resources

  • /usr/share/ansible/roles/rhel-system-roles.network/README.md file
  • ansible-playbook(1) man page

7.12. Using RHEL System Roles to configure ethtool coalesce settings

You can use the Networking RHEL System Role to configure ethtool coalesce settings of a NetworkManager connection.

Important

When you run a play that uses the Networking RHEL System Role, the system role overrides an existing connection profile with the same name if the value of settings does not match the ones specified in the play. Therefore, always specify the whole configuration of the network connection profile in the play, even if, for example the IP configuration, already exists. Otherwise the role resets these values to their defaults.

Depending on whether it already exists, the procedure creates or updates the enp1s0 connection profile with the following settings:

  • A static IPv4 address - 198.51.100.20 with a /24 subnet mask
  • A static IPv6 address - 2001:db8:1::1 with a /64 subnet mask
  • An IPv4 default gateway - 198.51.100.254
  • An IPv6 default gateway - 2001:db8:1::fffe
  • An IPv4 DNS server - 198.51.100.200
  • An IPv6 DNS server - 2001:db8:1::ffbb
  • A DNS search domain - example.com
  • ethtool coalesce settings:

    • RX frames: 128
    • TX frames: 128

Prerequisites

  • The ansible-core and rhel-system-roles packages are installed on the control node.
  • If you use a different remote user than root when you run the playbook, this user has appropriate sudo permissions on the managed node.

Procedure

  1. If the host on which you want to execute the instructions in the playbook is not yet inventoried, add the IP or name of this host to the /etc/ansible/hosts Ansible inventory file:

    node.example.com
  2. Create the ~/configure-ethernet-device-with-ethtoolcoalesce-settings.yml playbook with the following content:

    ---
    - name: Configure an Ethernet connection with ethtool coalesce settings
      hosts: node.example.com
      become: true
      tasks:
      - include_role:
          name: rhel-system-roles.network
    
        vars:
          network_connections:
            - name: enp1s0
              type: ethernet
              autoconnect: yes
              ip:
                address:
                  - 198.51.100.20/24
                  - 2001:db8:1::1/64
                gateway4: 198.51.100.254
                gateway6: 2001:db8:1::fffe
                dns:
                  - 198.51.100.200
                  - 2001:db8:1::ffbb
                dns_search:
                  - example.com
              ethtool:
                coalesce:
                  rx_frames: 128
                  tx_frames: 128
              state: up
  3. Run the playbook:

    • To connect as root user to the managed host, enter:

      # ansible-playbook -u root ~/configure-ethernet-device-with-ethtoolcoalesce-settings.yml
    • To connect as a user to the managed host, enter:

      # ansible-playbook -u user_name --ask-become-pass ~/configure-ethernet-device-with-ethtoolcoalesce-settings.yml

      The --ask-become-pass option makes sure that the ansible-playbook command prompts for the sudo password of the user defined in the -u user_name option.

    If you do not specify the -u user_name option, ansible-playbook connects to the managed host as the user that is currently logged in to the control node.

Additional resources

  • /usr/share/ansible/roles/rhel-system-roles.network/README.md
  • ansible-playbook(1) man page

Chapter 8. Postfix role variables in System Roles

The Postfix role variables allow the user to install, configure, and start the Postfix Mail Transfer Agent (MTA).

The following role variables are defined in this section:

  • postfix_conf: It includes key/value pairs of all the supported Postfix configuration parameters. By default, the postfix_conf does not have a value.
For example: `postfix_conf`:
              relayhost: "example.com"
  • postfix_check: It determines if a check has been executed before starting the Postfix to verify the configuration changes. The default value is true.
For example: `postfix_check: true`
  • postfix_backup: It determines if a single backup copy of the configuration is created. By default the postfix_backup value is false.

To overwrite any previous backup run the following command:

cp /etc/postfix/main.cf /etc/postfix/main.cf.backup

If the postfix_backup value is changed to true, you must also set the postfix_backup_multiple value to false.

For example: postfix_backup: true
              postfix_backup_multiple: false
  • postfix_backup_multiple: It determines if the role will make a timestamped backup copy of the configuration.

To keep multiple backup copies, run the following command:

cp /etc/postfix/main.cf /etc/postfix/main.cf.$(date -Isec)

By default the value of postfix_backup_multiple is true. The postfix_backup_multiple:true setting overrides postfix_backup. If you want to use postfix_backup you must set the postfix_backup_multiple:false.

Important

The configuration parameters cannot be removed. Before running the Postfix role, set the postfix_conf to all the required configuration parameters and use the file module to remove /etc/postfix/main.cf

8.1. Additional resources

  • /usr/share/doc/rhel-system-roles/postfix/README.md

Chapter 9. Configuring SElinux using System Roles

9.1. Introduction to the SELinux System Role

RHEL System Roles is a collection of Ansible roles and modules that provide a consistent configuration interface to remotely manage multiple RHEL systems. The SELinux System Role enables the following actions:

  • Cleaning local policy modifications related to SELinux booleans, file contexts, ports, and logins.
  • Setting SELinux policy booleans, file contexts, ports, and logins.
  • Restoring file contexts on specified files or directories.
  • Managing SELinux modules.

The following table provides an overview of input variables available in the SELinux System Role.

Table 9.1. SELinux System Role variables

Role variableDescriptionCLI alternative

selinux_policy

Chooses a policy protecting targeted processes or Multi Level Security protection.

SELINUXTYPE in /etc/selinux/config

selinux_state

Switches SELinux modes.

setenforce and SELINUX in /etc/selinux/config.

selinux_booleans

Enables and disables SELinux booleans.

setsebool

selinux_fcontexts

Adds or removes a SELinux file context mapping.

semanage fcontext

selinux_restore_dirs

Restores SELinux labels in the file-system tree.

restorecon -R

selinux_ports

Sets SELinux labels on ports.

semanage port

selinux_logins

Sets users to SELinux user mapping.

semanage login

selinux_modules

Installs, enables, disables, or removes SELinux modules.

semodule

The /usr/share/doc/rhel-system-roles/selinux/example-selinux-playbook.yml example playbook installed by the rhel-system-roles package demonstrates how to set the targeted policy in enforcing mode. The playbook also applies several local policy modifications and restores file contexts in the /tmp/test_dir/ directory.

For a detailed reference on SELinux role variables, install the rhel-system-roles package, and see the README.md or README.html files in the /usr/share/doc/rhel-system-roles/selinux/ directory.

Additional resources

9.2. Using the SELinux System Role to apply SELinux settings on multiple systems

Follow the steps to prepare and apply an Ansible playbook with your verified SELinux settings.

Prerequisites

  • Access and permissions to one or more managed nodes, which are systems you want to configure with the SELinux System Role.
  • Access and permissions to a control node, which is a system from which Red Hat Ansible Core configures other systems.

    On the control node:

    • The ansible-core and rhel-system-roles packages are installed.
    • An inventory file which lists the managed nodes.
Important

RHEL 8.0-8.5 provided access to a separate Ansible repository that contains Ansible Engine 2.9 for automation based on Ansible. Ansible Engine contains command-line utilities such as ansible, ansible-playbook, connectors such as docker and podman, and many plugins and modules. For information on how to obtain and install Ansible Engine, see the How to download and install Red Hat Ansible Engine Knowledgebase article.

RHEL 8.6 and 9.0 have introduced Ansible Core (provided as the ansible-core package), which contains the Ansible command-line utilities, commands, and a small set of built-in Ansible plugins. RHEL provides this package through the AppStream repository, and it has a limited scope of support. For more information, see the Scope of support for the Ansible Core package included in the RHEL 9 and RHEL 8.6 and later AppStream repositories Knowledgebase article.

  • An inventory file which lists the managed nodes.

Procedure

  1. Prepare your playbook. You can either start from the scratch or modify the example playbook installed as a part of the rhel-system-roles package:

    # cp /usr/share/doc/rhel-system-roles/selinux/example-selinux-playbook.yml my-selinux-playbook.yml
    # vi my-selinux-playbook.yml
  2. Change the content of the playbook to fit your scenario. For example, the following part ensures that the system installs and enables the selinux-local-1.pp SELinux module:

    selinux_modules:
    - { path: "selinux-local-1.pp", priority: "400" }
  3. Save the changes, and exit the text editor.
  4. Run your playbook on the host1, host2, and host3 systems:

    # ansible-playbook -i host1,host2,host3 my-selinux-playbook.yml

Additional resources

  • For more information, install the rhel-system-roles package, and see the /usr/share/doc/rhel-system-roles/selinux/ and /usr/share/ansible/roles/rhel-system-roles.selinux/ directories.

Chapter 10. Using the Logging System Role

As a system administrator, you can use the Logging System Role to configure a RHEL host as a logging server to collect logs from many client systems.

10.1. The Logging System Role

With the Logging System Role, you can deploy logging configurations on local and remote hosts.

To apply a Logging System Role on one or more systems, you define the logging configuration in a playbook. A playbook is a list of one or more plays. Playbooks are human-readable, and they are written in the YAML format. For more information about playbooks, see Working with playbooks in Ansible documentation.

The set of systems that you want to configure according to the playbook is defined in an inventory file. For more information on creating and using inventories, see How to build your inventory in Ansible documentation.

Logging solutions provide multiple ways of reading logs and multiple logging outputs.

For example, a logging system can receive the following inputs:

  • local files,
  • systemd/journal,
  • another logging system over the network.

In addition, a logging system can have the following outputs:

  • logs stored in the local files in the /var/log directory,
  • logs sent to Elasticsearch,
  • logs forwarded to another logging system.

With the Logging System Role, you can combine the inputs and outputs to fit your scenario. For example, you can configure a logging solution that stores inputs from journal in a local file, whereas inputs read from files are both forwarded to another logging system and stored in the local log files.

10.2. Logging System Role parameters

In a Logging System Role playbook, you define the inputs in the logging_inputs parameter, outputs in the logging_outputs parameter, and the relationships between the inputs and outputs in the logging_flows parameter. The Logging System Role processes these variables with additional options to configure the logging system. You can also enable encryption.

Note

Currently, the only available logging system in the Logging System Role is Rsyslog.

  • logging_inputs: List of inputs for the logging solution.

    • name: Unique name of the input. Used in the logging_flows: inputs list and a part of the generated config file name.
    • type: Type of the input element. The type specifies a task type which corresponds to a directory name in roles/rsyslog/{tasks,vars}/inputs/.

      • basics: Inputs configuring inputs from systemd journal or unix socket.

        • kernel_message: Load imklog if set to true. Default to false.
        • use_imuxsock: Use imuxsock instead of imjournal. Default to false.
        • ratelimit_burst: Maximum number of messages that can be emitted within ratelimit_interval. Default to 20000 if use_imuxsock is false. Default to 200 if use_imuxsock is true.
        • ratelimit_interval: Interval to evaluate ratelimit_burst. Default to 600 seconds if use_imuxsock is false. Default to 0 if use_imuxsock is true. 0 indicates rate limiting is turned off.
        • persist_state_interval: Journal state is persisted every value messages. Default to 10. Effective only when use_imuxsock is false.
      • files: Inputs configuring inputs from local files.
      • remote: Inputs configuring inputs from the other logging system over network.
    • state: State of the configuration file. present or absent. Default to present.
  • logging_outputs: List of outputs for the logging solution.

    • files: Outputs configuring outputs to local files.
    • forwards: Outputs configuring outputs to another logging system.
    • remote_files: Outputs configuring outputs from another logging system to local files.
  • logging_flows: List of flows that define relationships between logging_inputs and logging_outputs. The logging_flows variable has the following keys:

    • name: Unique name of the flow
    • inputs: List of logging_inputs name values
    • outputs: List of logging_outputs name values.

Additional resources

  • Documentation installed with the rhel-system-roles package in /usr/share/ansible/roles/rhel-system-roles.logging/README.html

10.3. Applying a local Logging System Role

Follow these steps to prepare and apply an Ansible playbook to configure a logging solution on a set of separate machines. Each machine will record logs locally.

Prerequisites

  • Access and permissions to one or more managed nodes, which are systems you want to configure with the Logging System Role.
  • Access and permissions to a control node, which is a system from which Red Hat Ansible Core configures other systems.

    On the control node:

    • The ansible-core and rhel-system-roles packages are installed.
Important

RHEL 8.0-8.5 provided access to a separate Ansible repository that contains Ansible Engine 2.9 for automation based on Ansible. Ansible Engine contains command-line utilities such as ansible, ansible-playbook, connectors such as docker and podman, and many plugins and modules. For information on how to obtain and install Ansible Engine, see the How to download and install Red Hat Ansible Engine Knowledgebase article.

RHEL 8.6 and 9.0 have introduced Ansible Core (provided as the ansible-core package), which contains the Ansible command-line utilities, commands, and a small set of built-in Ansible plugins. RHEL provides this package through the AppStream repository, and it has a limited scope of support. For more information, see the Scope of support for the Ansible Core package included in the RHEL 9 and RHEL 8.6 and later AppStream repositories Knowledgebase article.

  • An inventory file which lists the managed nodes.
Note

You do not have to have the rsyslog package installed, because the system role installs rsyslog when deployed.

Procedure

  1. Create a playbook that defines the required role:

    1. Create a new YAML file and open it in a text editor, for example:

      # vi logging-playbook.yml
    2. Insert the following content:

      ---
      - name: Deploying basics input and implicit files output
        hosts: all
        roles:
          - rhel-system-roles.logging
        vars:
          logging_inputs:
            - name: system_input
              type: basics
          logging_outputs:
            - name: files_output
              type: files
          logging_flows:
            - name: flow1
              inputs: [system_input]
              outputs: [files_output]
  2. Run the playbook on a specific inventory:

    # ansible-playbook -i inventory-file /path/to/file/logging-playbook.yml

    Where:

    • inventory-file is the inventory file.
    • logging-playbook.yml is the playbook you use.

Verification

  1. Test the syntax of the /etc/rsyslog.conf file:

    # rsyslogd -N 1
    rsyslogd: version 8.1911.0-6.el8, config validation run (level 1), master config /etc/rsyslog.conf
    rsyslogd: End of config validation run. Bye.
  2. Verify that the system sends messages to the log:

    1. Send a test message:

      # logger test
    2. View the /var/log/messages log, for example:

      # cat /var/log/messages
      Aug  5 13:48:31 hostname root[6778]: test

      Where `hostname` is the host name of the client system. Note that the log contains the user name of the user that entered the logger command, in this case root.

10.4. Filtering logs in a local Logging System Role

You can deploy a logging solution which filters the logs based on the rsyslog property-based filter.

Prerequisites

  • Access and permissions to one or more managed nodes, which are systems you want to configure with the Logging System Role.
  • Access and permissions to a control node, which is a system from which Red Hat Ansible Core configures other systems.

    On the control node:

    • Red Hat Ansible Core is installed
    • The rhel-system-roles package is installed
    • An inventory file which lists the managed nodes.
Note

You do not have to have the rsyslog package installed, because the System Role installs rsyslog when deployed.

Procedure

  1. Create a new playbook.yml file with the following content:

    ---
    - name: Deploying files input and configured files output
      hosts: all
      roles:
        - linux-system-roles.logging
      vars:
        logging_inputs:
          - name: files_input
            type: basics
        logging_outputs:
          - name: files_output0
            type: files
            property: msg
            property_op: contains
            property_value: error
            path: /var/log/errors.log
          - name: files_output1
            type: files
            property: msg
            property_op: "!contains"
            property_value: error
            path: /var/log/others.log
        logging_flows:
          - name: flow0
            inputs: [files_input]
            outputs: [files_output0, files_output1]

    Using this configuration, all messages that contain the error string are logged in /var/log/errors.log, and all other messages are logged in /var/log/others.log.

    You can replace the error property value with the string by which you want to filter.

    You can modify the variables according to your preferences.

  2. Optional: Verify playbook syntax.

    # ansible-playbook --syntax-check playbook.yml
  3. Run the playbook on your inventory file:

    # ansible-playbook -i inventory_file /path/to/file/playbook.yml

Verification

  1. Test the syntax of the /etc/rsyslog.conf file:

    # rsyslogd -N 1
    rsyslogd: version 8.1911.0-6.el8, config validation run (level 1), master config /etc/rsyslog.conf
    rsyslogd: End of config validation run. Bye.
  2. Verify that the system sends messages that contain the error string to the log:

    1. Send a test message:

      # logger error
    2. View the /var/log/errors.log log, for example:

      # cat /var/log/errors.log
      Aug  5 13:48:31 hostname root[6778]: error

      Where hostname is the host name of the client system. Note that the log contains the user name of the user that entered the logger command, in this case root.

Additional resources

  • Documentation installed with the rhel-system-roles package in /usr/share/ansible/roles/rhel-system-roles.logging/README.html

10.5. Applying a remote logging solution using the Logging System Role

Follow these steps to prepare and apply a Red Hat Ansible Core playbook to configure a remote logging solution. In this playbook, one or more clients take logs from systemd-journal and forward them to a remote server. The server receives remote input from remote_rsyslog and remote_files and outputs the logs to local files in directories named by remote host names.

Prerequisites

  • Access and permissions to one or more managed nodes, which are systems you want to configure with the Logging System Role.
  • Access and permissions to a control node, which is a system from which Red Hat Ansible Core configures other systems.

    On the control node:

    • The ansible-core and rhel-system-roles packages are installed.
    • An inventory file which lists the managed nodes.
Note

You do not have to have the rsyslog package installed, because the System Role installs rsyslog when deployed.

Procedure

  1. Create a playbook that defines the required role:

    1. Create a new YAML file and open it in a text editor, for example:

      # vi logging-playbook.yml
    2. Insert the following content into the file:

      ---
      - name: Deploying remote input and remote_files output
        hosts: server
        roles:
          - rhel-system-roles.logging
        vars:
          logging_inputs:
            - name: remote_udp_input
              type: remote
              udp_ports: [ 601 ]
            - name: remote_tcp_input
              type: remote
              tcp_ports: [ 601 ]
          logging_outputs:
            - name: remote_files_output
              type: remote_files
          logging_flows:
            - name: flow_0
              inputs: [remote_udp_input, remote_tcp_input]
              outputs: [remote_files_output]
      
      - name: Deploying basics input and forwards output
        hosts: clients
        roles:
          - rhel-system-roles.logging
        vars:
          logging_inputs:
            - name: basic_input
              type: basics
          logging_outputs:
            - name: forward_output0
              type: forwards
              severity: info
              target: _host1.example.com_
              udp_port: 601
            - name: forward_output1
              type: forwards
              facility: mail
              target: _host1.example.com_
              tcp_port: 601
          logging_flows:
            - name: flows0
              inputs: [basic_input]
              outputs: [forward_output0, forward_output1]
      
      [basic_input]
      [forward_output0, forward_output1]

      Where host1.example.com is the logging server.

      Note

      You can modify the parameters in the playbook to fit your needs.

      Warning

      The logging solution works only with the ports defined in the SELinux policy of the server or client system and open in the firewall. The default SELinux policy includes ports 601, 514, 6514, 10514, and 20514. To use a different port, modify the SELinux policy on the client and server systems. Configuring the firewall through System Roles is not yet supported.

  2. Create an inventory file that lists your servers and clients:

    1. Create a new file and open it in a text editor, for example:

      # vi inventory.ini
    2. Insert the following content into the inventory file:

      [servers]
      server ansible_host=host1.example.com
      [clients]
      client ansible_host=host2.example.com

      Where:

      • host1.example.com is the logging server.
      • host2.example.com is the logging client.
  3. Run the playbook on your inventory.

    # ansible-playbook -i /path/to/file/inventory.ini /path/to/file/_logging-playbook.yml

    Where:

    • inventory.ini is the inventory file.
    • logging-playbook.yml is the playbook you created.

Verification

  1. On both the client and the server system, test the syntax of the /etc/rsyslog.conf file:

    # rsyslogd -N 1
    rsyslogd: version 8.1911.0-6.el8, config validation run (level 1), master config /etc/rsyslog.conf
    rsyslogd: End of config validation run. Bye.
  2. Verify that the client system sends messages to the server:

    1. On the client system, send a test message:

      # logger test
    2. On the server system, view the /var/log/messages log, for example:

      # cat /var/log/messages
      Aug  5 13:48:31 host2.example.com root[6778]: test

      Where host2.example.com is the host name of the client system. Note that the log contains the user name of the user that entered the logger command, in this case root.

Additional resources

10.6. Using the Logging System Role with TLS

Transport Layer Security (TLS) is a cryptographic protocol designed to securely communicate over the computer network.

As an administrator, you can use the Logging RHEL System Role to configure secure transfer of logs using Red Hat Ansible Automation Platform.

10.6.1. Configuring client logging with TLS

You can use the Logging System Role to configure logging in RHEL systems that are logged on a local machine and can transfer logs to the remote logging system with TLS by running an Ansible playbook.

This procedure configures TLS on all hosts in the clients group in the Ansible inventory. The TLS protocol encrypts the message transmission for secure transfer of logs over the network.

Prerequisites

  • You have permissions to run playbooks on managed nodes on which you want to configure TLS.
  • The managed nodes are listed in the inventory file on the control node.
  • The ansible and rhel-system-roles packages are installed on the control node.

Procedure

  1. Create a playbook.yml file with the following content:

    ---
    - name: Deploying files input and forwards output with certs
      hosts: clients
      roles:
        - rhel-system-roles.logging
      vars:
        logging_pki_files:
          - ca_cert_src: /local/path/to/ca_cert.pem
            cert_src: /local/path/to/cert.pem
            private_key_src: /local/path/to/key.pem
        logging_inputs:
          - name: input_name
            type: files
            input_log_path: /var/log/containers/*.log
        logging_outputs:
          - name: output_name
            type: forwards
            target: your_target_host
            tcp_port: 514
            tls: true
            pki_authmode: x509/name
            permitted_server: 'server.example.com'
        logging_flows:
          - name: flow_name
            inputs: [input_name]
            outputs: [output_name]

    The playbook uses the following parameters:

    logging_pki_files
    Using this parameter you can configure TLS and has to pass ca_cert_src, cert_src, and private_key_src parameters.
    ca_cert
    Represents the path to CA certificate. Default path is /etc/pki/tls/certs/ca.pem and the file name is set by the user.
    cert
    Represents the path to cert. Default path is /etc/pki/tls/certs/server-cert.pem and the file name is set by the user.
    private_key
    Represents the path to private key. Default path is /etc/pki/tls/private/server-key.pem and the file name is set by the user.
    ca_cert_src
    Represents local CA cert file path which is copied to the target host. If ca_cert is specified, it is copied to the location.
    cert_src
    Represents the local cert file path which is copied to the target host. If cert is specified, it is copied to the location.
    private_key_src
    Represents the local key file path which is copied to the target host. If private_key is specified, it is copied to the location.
    tls
    Using this parameter ensures secure transfer of logs over the network. If you do not want a secure wrapper, you can set tls: true.
  2. Verify playbook syntax:

    # ansible-playbook --syntax-check playbook.yml
  3. Run the playbook on your inventory file:

    # ansible-playbook -i inventory_file playbook.yml

10.6.2. Configuring server logging with TLS

You can use the Logging System Role to configure logging in RHEL systems as a server and can receive logs from the remote logging system with TLS by running an Ansible playbook.

This procedure configures TLS on all hosts in the server group in the Ansible inventory.

Prerequisites

  • You have permissions to run playbooks on managed nodes on which you want to configure TLS.
  • The managed nodes are listed in the inventory file on the control node.
  • The ansible and rhel-system-roles packages are installed on the control node.

Procedure

  1. Create a playbook.yml file with the following content:

    ---
    - name: Deploying remote input and remote_files output with certs
      hosts: server
      roles:
        - rhel-system-roles.logging
      vars:
        logging_pki_files:
          - ca_cert_src: /local/path/to/ca_cert.pem
            cert_src: /local/path/to/cert.pem
            private_key_src: /local/path/to/key.pem
        logging_inputs:
          - name: input_name
            type: remote
            tcp_ports: 514
            tls: true
            permitted_clients: ['clients.example.com']
        logging_outputs:
          - name: output_name
            type: remote_files
            remote_log_path: /var/log/remote/%FROMHOST%/%PROGRAMNAME:::secpath-replace%.log
            async_writing: true
            client_count: 20
            io_buffer_size: 8192
        logging_flows:
          - name: flow_name
            inputs: [input_name]
            outputs: [output_name]

    The playbook uses the following parameters:

    logging_pki_files
    Using this parameter you can configure TLS and has to pass ca_cert_src, cert_src, and private_key_src parameters.
    ca_cert
    Represents the path to CA certificate. Default path is /etc/pki/tls/certs/ca.pem and the file name is set by the user.
    cert
    Represents the path to cert. Default path is /etc/pki/tls/certs/server-cert.pem and the file name is set by the user.
    private_key
    Represents the path to private key. Default path is /etc/pki/tls/private/server-key.pem and the file name is set by the user.
    ca_cert_src
    Represents local CA cert file path which is copied to the target host. If ca_cert is specified, it is copied to the location.
    cert_src
    Represents the local cert file path which is copied to the target host. If cert is specified, it is copied to the location.
    private_key_src
    Represents the local key file path which is copied to the target host. If private_key is specified, it is copied to the location.
    tls
    Using this parameter ensures secure transfer of logs over the network. If you do not want a secure wrapper, you can set tls: true.
  2. Verify playbook syntax:

    # ansible-playbook --syntax-check playbook.yml
  3. Run the playbook on your inventory file:

    # ansible-playbook -i inventory_file playbook.yml

10.7. Using the Logging System Roles with RELP

Reliable Event Logging Protocol (RELP) is a networking protocol for data and message logging over the TCP network. It ensures reliable delivery of event messages and you can use it in environments that do not tolerate any message loss.

The RELP sender transfers log entries in form of commands and the receiver acknowledges them once they are processed. To ensure consistency, RELP stores the transaction number to each transferred command for any kind of message recovery.

You can consider a remote logging system in between the RELP Client and RELP Server. The RELP Client transfers the logs to the remote logging system and the RELP Server receives all the logs sent by the remote logging system.

Administrators can use the Logging System Role to configure the logging system to reliably send and receive log entries.

10.7.1. Configuring client logging with RELP

You can use the Logging System Role to configure logging in RHEL systems that are logged on a local machine and can transfer logs to the remote logging system with RELP by running an Ansible playbook.

This procedure configures RELP on all hosts in the clients group in the Ansible inventory. The RELP configuration uses Transport Layer Security (TLS) to encrypt the message transmission for secure transfer of logs over the network.

Prerequisites

  • You have permissions to run playbooks on managed nodes on which you want to configure RELP.
  • The managed nodes are listed in the inventory file on the control node.
  • The ansible and rhel-system-roles packages are installed on the control node.

Procedure

  1. Create a playbook.yml file with the following content:

    ---
    - name: Deploying basic input and relp output
      hosts: clients
      roles:
        - rhel-system-roles.logging
      vars:
        logging_inputs:
          - name: basic_input
            type: basics
        logging_outputs:
          - name: relp_client
            type: relp
            target: _logging.server.com_
            port: 20514
            tls: true
            ca_cert: _/etc/pki/tls/certs/ca.pem_
            cert: _/etc/pki/tls/certs/client-cert.pem_
            private_key: _/etc/pki/tls/private/client-key.pem_
            pki_authmode: name
            permitted_servers:
              - '*.server.example.com'
        logging_flows:
          - name: _example_flow_
            inputs: [basic_input]
            outputs: [relp_client]

    The playbooks uses following settings:

    • target: This is a required parameter that specifies the host name where the remote logging system is running.
    • port: Port number the remote logging system is listening.
    • tls: Ensures secure transfer of logs over the network. If you do not want a secure wrapper you can set the tls variable to false. By default tls parameter is set to true while working with RELP and requires key/certificates and triplets {ca_cert, cert, private_key} and/or {ca_cert_src, cert_src, private_key_src}.

      • If {ca_cert_src, cert_src, private_key_src} triplet is set, the default locations /etc/pki/tls/certs and /etc/pki/tls/private are used as the destination on the managed node to transfer files from control node. In this case, the file names are identical to the original ones in the triplet
      • If {ca_cert, cert, private_key} triplet is set, files are expected to be on the default path before the logging configuration.
      • If both the triplets are set, files are transferred from local path from control node to specific path of the managed node.
    • ca_cert: Represents the path to CA certificate. Default path is /etc/pki/tls/certs/ca.pem and the file name is set by the user.
    • cert: Represents the path to cert. Default path is /etc/pki/tls/certs/server-cert.pem and the file name is set by the user.
    • private_key: Represents the path to private key. Default path is /etc/pki/tls/private/server-key.pem and the file name is set by the user.
    • ca_cert_src: Represents local CA cert file path which is copied to the target host. If ca_cert is specified, it is copied to the location.
    • cert_src: Represents the local cert file path which is copied to the target host. If cert is specified, it is copied to the location.
    • private_key_src: Represents the local key file path which is copied to the target host. If private_key is specified, it is copied to the location.
    • pki_authmode: Accepts the authentication mode as name or fingerprint.
    • permitted_servers: List of servers that will be allowed by the logging client to connect and send logs over TLS.
    • inputs: List of logging input dictionary.
    • outputs: List of logging output dictionary.
  2. Optional: Verify playbook syntax.

    # ansible-playbook --syntax-check playbook.yml
  3. Run the playbook:

    # ansible-playbook -i inventory_file playbook.yml

10.7.2. Configuring server logging with RELP

You can use the Logging System Role to configure logging in RHEL systems as a server and can receive logs from the remote logging system with RELP by running an Ansible playbook.

This procedure configures RELP on all hosts in the server group in the Ansible inventory. The RELP configuration uses TLS to encrypt the message transmission for secure transfer of logs over the network.

Prerequisites

  • You have permissions to run playbooks on managed nodes on which you want to configure RELP.
  • The managed nodes are listed in the inventory file on the control node.
  • The ansible and rhel-system-roles packages are installed on the control node.

Procedure

  1. Create a playbook.yml file with the following content:

    ---
    - name: Deploying remote input and remote_files output
      hosts: server
      roles:
        - rhel-system-roles.logging
      vars:
        logging_inputs:
          - name: relp_server
            type: relp
            port: 20514
            tls: true
            ca_cert: _/etc/pki/tls/certs/ca.pem_
            cert: _/etc/pki/tls/certs/server-cert.pem_
            private_key: _/etc/pki/tls/private/server-key.pem_
            pki_authmode: name
            permitted_clients:
              - '_*example.client.com_'
        logging_outputs:
          - name: _remote_files_output_
            type: _remote_files_
        logging_flows:
          - name: _example_flow_
            inputs: _relp_server_
            outputs: _remote_files_output_

    The playbooks uses following settings:

    • port: Port number the remote logging system is listening.
    • tls: Ensures secure transfer of logs over the network. If you do not want a secure wrapper you can set the tls variable to false. By default tls parameter is set to true while working with RELP and requires key/certificates and triplets {ca_cert, cert, private_key} and/or {ca_cert_src, cert_src, private_key_src}.

      • If {ca_cert_src, cert_src, private_key_src} triplet is set, the default locations /etc/pki/tls/certs and /etc/pki/tls/private are used as the destination on the managed node to transfer files from control node. In this case, the file names are identical to the original ones in the triplet
      • If {ca_cert, cert, private_key} triplet is set, files are expected to be on the default path before the logging configuration.
      • If both the triplets are set, files are transferred from local path from control node to specific path of the managed node.
    • ca_cert: Represents the path to CA certificate. Default path is /etc/pki/tls/certs/ca.pem and the file name is set by the user.
    • cert: Represents the path to cert. Default path is /etc/pki/tls/certs/server-cert.pem and the file name is set by the user.
    • private_key: Represents the path to private key. Default path is /etc/pki/tls/private/server-key.pem and the file name is set by the user.
    • ca_cert_src: Represents local CA cert file path which is copied to the target host. If ca_cert is specified, it is copied to the location.
    • cert_src: Represents the local cert file path which is copied to the target host. If cert is specified, it is copied to the location.
    • private_key_src: Represents the local key file path which is copied to the target host. If private_key is specified, it is copied to the location.
    • pki_authmode: Accepts the authentication mode as name or fingerprint.
    • permitted_clients: List of clients that will be allowed by the logging server to connect and send logs over TLS.
    • inputs: List of logging input dictionary.
    • outputs: List of logging output dictionary.
  2. Optional: Verify playbook syntax.

    # ansible-playbook --syntax-check playbook.yml
  3. Run the playbook:

    # ansible-playbook -i inventory_file playbook.yml

10.8. Additional resources

Chapter 11. Configuring secure communication with the SSH System Roles

As an administrator, you can use the SSHD System Role to configure SSH servers and the SSH System Role to configure SSH clients consistently on any number of RHEL systems at the same time using the Ansible Core package.

11.1. SSH Server System Role variables

In an SSH Server System Role playbook, you can define the parameters for the SSH configuration file according to your preferences and limitations.

If you do not configure these variables, the System Role produces an sshd_config file that matches the RHEL defaults.

In all cases, Booleans correctly render as yes and no in sshd configuration. You can define multi-line configuration items using lists. For example:

sshd_ListenAddress:
  - 0.0.0.0
  - '::'

renders as:

ListenAddress 0.0.0.0
ListenAddress ::

Variables for the SSH Server System Role

sshd_enable
If set to False, the role is completely disabled. Defaults to True.
sshd_skip_defaults
If set to True, the System Role does not apply default values. Instead, you specify the complete set of configuration defaults by using either the sshd dict, or sshd_Key variables. Defaults to False.
sshd_manage_service
If set to False, the service is not managed, which means it is not enabled on boot and does not start or reload. Defaults to True except when running inside a container or AIX, because the Ansible service module does not currently support enabled for AIX.
sshd_allow_reload
If set to False, sshd does not reload after a change of configuration. This can help with troubleshooting. To apply the changed configuration, reload sshd manually. Defaults to the same value as sshd_manage_service except on AIX, where sshd_manage_service defaults to False but sshd_allow_reload defaults to True.
sshd_install_service

If set to True, the role installs service files for the sshd service. This overrides files provided in the operating system. Do not set to True unless you are configuring a second instance and you also change the sshd_service variable. Defaults to False.

The role uses the files pointed by the following variables as templates:

sshd_service_template_service (default: templates/sshd.service.j2)
sshd_service_template_at_service (default: templates/sshd@.service.j2)
sshd_service_template_socket (default: templates/sshd.socket.j2)
sshd_service
This variable changes the sshd service name, which is useful for configuring a second sshd service instance.
sshd

A dict that contains configuration. For example:

sshd:
  Compression: yes
  ListenAddress:
    - 0.0.0.0
sshd_OptionName

You can define options by using simple variables consisting of the sshd_ prefix and the option name instead of a dict. The simple variables override values in the sshd dict.. For example:

sshd_Compression: no
sshd_match and sshd_match_1 to sshd_match_9
A list of dicts or just a dict for a Match section. Note that these variables do not override match blocks as defined in the sshd dict. All of the sources will be reflected in the resulting configuration file.

Secondary variables for the SSH Server System Role

You can use these variables to override the defaults that correspond to each supported platform.

sshd_packages
You can override the default list of installed packages using this variable.
sshd_config_owner, sshd_config_group, and sshd_config_mode
You can set the ownership and permissions for the openssh configuration file that this role produces using these variables.
sshd_config_file
The path where this role saves the openssh server configuration produced.
sshd_config_namespace

The default value of this variable is null, which means that the role defines the entire content of the configuration file including system defaults. Alternatively, you can use this variable to invoke this role from other roles or from multiple places in a single playbook on systems that do not support drop-in directory. The sshd_skip_defaults variable is ignored and no system defaults are used in this case.

When this variable is set, the role places the configuration that you specify to configuration snippets in an existing configuration file under the given namespace. If your scenario requires applying the role several times, you need to select a different namespace for each application.

Note

Limitations of the openssh configuration file still apply. For example, only the first option specified in a configuration file is effective for most of the configuration options.

Technically, the role places snippets in "Match all" blocks, unless they contain other match blocks, to ensure they are applied regardless of the previous match blocks in the existing configuration file. This allows configuring any non-conflicting options from different roles invocations.

sshd_binary
The path to the sshd executable of openssh.
sshd_service
The name of the sshd service. By default, this variable contains the name of the sshd service that the target platform uses. You can also use it to set the name of the custom sshd service when the role uses the sshd_install_service variable.
sshd_verify_hostkeys
Defaults to auto. When set to auto, this lists all host keys that are present in the produced configuration file, and generates any paths that are not present. Additionally, permissions and file owners are set to default values. This is useful if the role is used in the deployment stage to make sure the service is able to start on the first attempt. To disable this check, set this variable to an empty list [].
sshd_hostkey_owner, sshd_hostkey_group, sshd_hostkey_mode
Use these variables to set the ownership and permissions for the host keys from sshd_verify_hostkeys.
sshd_sysconfig
On RHEL-based systems, this variable configures additional details of the sshd service. If set to true, this role manages also the /etc/sysconfig/sshd configuration file based on the following configuration. Defaults to false.
sshd_sysconfig_override_crypto_policy
In RHEL, when set to true, this variable overrides the system-wide crypto policy. Defaults to false.
sshd_sysconfig_use_strong_rng
On RHEL-based systems, this variable can force sshd to reseed the openssl random number generator with the number of bytes given as the argument. The default is 0, which disables this functionality. Do not turn this on if the system does not have a hardware random number generator.

11.2. Configuring OpenSSH servers using the SSH Server System Role

You can use the SSH Server System Role to configure multiple SSH servers by running an Ansible playbook.

Note

You can use the SSH Server System Role with other System Roles that change SSH and SSHD configuration, for example the Identity Management RHEL System Roles. To prevent the configuration from being overwritten, make sure that the SSH Server role uses namespaces (RHEL 8 and earlier versions) or a drop-in directory (RHEL 9).

Prerequisites

  • Access and permissions to one or more managed nodes, which are systems you want to configure with the SSHD System Role.
  • Access and permissions to a control node, which is a system from which Red Hat Ansible Core configures other systems.

    On the control node:

    • The ansible-core and rhel-system-roles packages are installed.
Important

RHEL 8.0-8.5 provided access to a separate Ansible repository that contains Ansible Engine 2.9 for automation based on Ansible. Ansible Engine contains command-line utilities such as ansible, ansible-playbook, connectors such as docker and podman, and many plugins and modules. For information on how to obtain and install Ansible Engine, see the How to download and install Red Hat Ansible Engine Knowledgebase article.

RHEL 8.6 and 9.0 have introduced Ansible Core (provided as the ansible-core package), which contains the Ansible command-line utilities, commands, and a small set of built-in Ansible plugins. RHEL provides this package through the AppStream repository, and it has a limited scope of support. For more information, see the Scope of support for the Ansible Core package included in the RHEL 9 and RHEL 8.6 and later AppStream repositories Knowledgebase article.

  • An inventory file which lists the managed nodes.

Procedure

  1. Copy the example playbook for the SSH Server System Role:

    # cp /usr/share/doc/rhel-system-roles/sshd/example-root-login-playbook.yml path/custom-playbook.yml
  2. Open the copied playbook by using a text editor, for example:

    # vim path/custom-playbook.yml
    
    ---
    - hosts: all
      tasks:
      - name: Configure sshd to prevent root and password login except from particular subnet
        include_role:
          name: rhel-system-roles.sshd
        vars:
          sshd:
            # root login and password login is enabled only from a particular subnet
            PermitRootLogin: no
            PasswordAuthentication: no
            Match:
            - Condition: "Address 192.0.2.0/24"
              PermitRootLogin: yes
              PasswordAuthentication: yes

    The playbook configures the managed node as an SSH server configured so that:

    • password and root user login is disabled
    • password and root user login is enabled only from the subnet 192.0.2.0/24

    You can modify the variables according to your preferences. For more details, see SSH Server System Role variables .

  3. Optional: Verify playbook syntax.

    # ansible-playbook --syntax-check path/custom-playbook.yml
  4. Run the playbook on your inventory file:

    # ansible-playbook -i inventory_file path/custom-playbook.yml
    
    ...
    
    PLAY RECAP
    **************************************************
    
    localhost : ok=12 changed=2 unreachable=0 failed=0
    skipped=10 rescued=0 ignored=0

Verification

  1. Log in to the SSH server:

    $ ssh user1@10.1.1.1

    Where:

    • user1 is a user on the SSH server.
    • 10.1.1.1 is the IP address of the SSH server.
  2. Check the contents of the sshd_config file on the SSH server:

    $ vim /etc/ssh/sshd_config
    
    # Ansible managed
    HostKey /etc/ssh/ssh_host_rsa_key
    HostKey /etc/ssh/ssh_host_ecdsa_key
    HostKey /etc/ssh/ssh_host_ed25519_key
    AcceptEnv LANG LC_CTYPE LC_NUMERIC LC_TIME LC_COLLATE LC_MONETARY LC_MESSAGES
    AcceptEnv LC_PAPER LC_NAME LC_ADDRESS LC_TELEPHONE LC_MEASUREMENT
    AcceptEnv LC_IDENTIFICATION LC_ALL LANGUAGE
    AcceptEnv XMODIFIERS
    AuthorizedKeysFile .ssh/authorized_keys
    ChallengeResponseAuthentication no
    GSSAPIAuthentication yes
    GSSAPICleanupCredentials no
    PasswordAuthentication no
    PermitRootLogin no
    PrintMotd no
    Subsystem sftp /usr/libexec/openssh/sftp-server
    SyslogFacility AUTHPRIV
    UsePAM yes
    X11Forwarding yes
    Match Address 192.0.2.0/24
      PasswordAuthentication yes
      PermitRootLogin yes
  3. Check that you can connect to the server as root from the 192.0.2.0/24 subnet:

    1. Determine your IP address:

      $ hostname -I
      192.0.2.1

      If the IP address is within the 192.0.2.1 - 192.0.2.254 range, you can connect to the server.

    2. Connect to the server as root:

      $ ssh root@10.1.1.1

Additional resources

  • /usr/share/doc/rhel-system-roles/sshd/README.md file.
  • ansible-playbook(1) man page.

11.3. SSH Client System Role variables

In an SSH Client System Role playbook, you can define the parameters for the client SSH configuration file according to your preferences and limitations.

If you do not configure these variables, the System Role produces a global ssh_config file that matches the RHEL defaults.

In all cases, booleans correctly render as yes or no in ssh configuration. You can define multi-line configuration items using lists. For example:

LocalForward:
  - 22 localhost:2222
  - 403 localhost:4003

renders as:

LocalForward 22 localhost:2222
LocalForward 403 localhost:4003
Note

The configuration options are case sensitive.

Variables for the SSH Client System Role

ssh_user
You can define an existing user name for which the System Role modifies user-specific configuration. The user-specific configuration is saved in ~/.ssh/config of the given user. The default value is null, which modifies global configuration for all users.
ssh_skip_defaults
Defaults to auto. If set to auto, the System Role writes the system-wide configuration file /etc/ssh/ssh_config and keeps the RHEL defaults defined there. Creating a drop-in configuration file, for example by defining the ssh_drop_in_name variable, automatically disables the ssh_skip_defaults variable.
ssh_drop_in_name

Defines the name for the drop-in configuration file, which is placed in the system-wide drop-in directory. The name is used in the template /etc/ssh/ssh_config.d/{ssh_drop_in_name}.conf to reference the configuration file to be modified. If the system does not support drop-in directory, the default value is null. If the system supports drop-in directories, the default value is 00-ansible.

Warning

If the system does not support drop-in directories, setting this option will make the play fail.

The suggested format is NN-name, where NN is a two-digit number used for ordering the configuration files and name is any descriptive name for the content or the owner of the file.

ssh
A dict that contains configuration options and their respective values.
ssh_OptionName
You can define options by using simple variables consisting of the ssh_ prefix and the option name instead of a dict. The simple variables override values in the ssh dict.
ssh_additional_packages
This role automatically installs the openssh and openssh-clients packages, which are needed for the most common use cases. If you need to install additional packages, for example, openssh-keysign for host-based authentication, you can specify them in this variable.
ssh_config_file

The path to which the role saves the configuration file produced. Default value:

  • If the system has a drop-in directory, the default value is defined by the template /etc/ssh/ssh_config.d/{ssh_drop_in_name}.conf.
  • If the system does not have a drop-in directory, the default value is /etc/ssh/ssh_config.
  • if the ssh_user variable is defined, the default value is ~/.ssh/config.
ssh_config_owner, ssh_config_group, ssh_config_mode
The owner, group and modes of the created configuration file. By default, the owner of the file is root:root, and the mode is 0644. If ssh_user is defined, the mode is 0600, and the owner and group are derived from the user name specified in the ssh_user variable.

11.4. Configuring OpenSSH clients using the SSH Client System Role

You can use the SSH Client System Role to configure multiple SSH clients by running an Ansible playbook.

Note

You can use the SSH Client System Role with other system roles that change SSH and SSHD configuration, for example the Identity Management RHEL System Roles. To prevent the configuration from being overwritten, make sure that the SSH Client role uses a drop-in directory (default from RHEL 8).

Prerequisites

  • Access and permissions to one or more managed nodes, which are systems you want to configure with the SSH Client System Role.
  • Access and permissions to a control node, which is a system from which Red Hat Ansible Core configures other systems.

    On the control node:

    • The ansible-core and rhel-system-roles packages are installed.
Important

RHEL 8.0-8.5 provided access to a separate Ansible repository that contains Ansible Engine 2.9 for automation based on Ansible. Ansible Engine contains command-line utilities such as ansible, ansible-playbook, connectors such as docker and podman, and many plugins and modules. For information on how to obtain and install Ansible Engine, see the How to download and install Red Hat Ansible Engine Knowledgebase article.

RHEL 8.6 and 9.0 have introduced Ansible Core (provided as the ansible-core package), which contains the Ansible command-line utilities, commands, and a small set of built-in Ansible plugins. RHEL provides this package through the AppStream repository, and it has a limited scope of support. For more information, see the Scope of support for the Ansible Core package included in the RHEL 9 and RHEL 8.6 and later AppStream repositories Knowledgebase article.

  • An inventory file which lists the managed nodes.

Procedure

  1. Create a new playbook.yml file with the following content:

    ---
    - hosts: all
      tasks:
      - name: "Configure ssh clients"
        include_role:
          name: rhel-system-roles.ssh
        vars:
          ssh_user: root
          ssh:
            Compression: true
            GSSAPIAuthentication: no
            ControlMaster: auto
            ControlPath: ~/.ssh/.cm%C
            Host:
              - Condition: example
                Hostname: example.com
                User: user1
          ssh_ForwardX11: no

    This playbook configures the root user’s SSH client preferences on the managed nodes with the following configurations:

    • Compression is enabled.
    • ControlMaster multiplexing is set to auto.
    • The example alias for connecting to the example.com host is user1.
    • The example host alias is created, which represents a connection to the example.com host the with user1 user name.
    • X11 forwarding is disabled.

    Optionally, you can modify these variables according to your preferences. For more details, see SSH System Role variables .

  2. Optional: Verify playbook syntax.

    # ansible-playbook --syntax-check path/custom-playbook.yml
  3. Run the playbook on your inventory file:

    # ansible-playbook -i inventory_file path/custom-playbook.yml

Verification

  • Verify that the managed node has the correct configuration by opening the SSH configuration file in a text editor, for example:

    # vi ~root/.ssh/config

    After application of the example playbook shown above, the configuration file should have the following content:

    # Ansible managed
    Compression yes
    ControlMaster auto
    ControlPath ~/.ssh/.cm%C
    ForwardX11 no
    GSSAPIAuthentication no
    Host example
      Hostname example.com
      User user1

11.5. Using the SSH Server System Role for non-exclusive configuration

Normally, applying the SSH Server System Role overwrites the entire configuration. This may be problematic if you have previously adjusted the configuration, for example with a different System Role or playbook. To apply the SSH Server System Role for only selected configuration options while keeping other options in place, you can use the non-exclusive configuration.

In RHEL 8 and earlier, you can apply the non-exclusive configuration with a configuration snippet. For more information, see Using the SSH Server System Role for non-exclusive configuration in RHEL 8 documentation.

In RHEL 9, you can apply the non-exclusive configuration by using files in a drop-in directory. The default configuration file is already placed in the drop-in directory as /etc/ssh/sshd_config.d/00-ansible_system_role.conf.

Prerequisites

  • Access and permissions to one or more managed nodes, which are systems you want to configure with the SSH Server System Role.
  • Access and permissions to a control node, which is a system from which Red Hat Ansible Core configures other systems.

    On the control node:

    • The ansible-core package is installed.
    • An inventory file which lists the managed nodes.
    • A playbook for a different RHEL System Role. For additional information, see Applying a role.

Procedure

  1. Add a configuration snippet with the sshd_config_file variable to the playbook:

    ---
    - hosts: all
      tasks:
      - name: <Configure sshd to accept some useful environment variables>
        include_role:
          name: rhel-system-roles.sshd
        vars:
          sshd_config_file: /etc/ssh/sshd_config.d/<42-my-application>.conf
          sshd:
            # Environment variables to accept
            AcceptEnv:
              LANG
              LS_COLORS
              EDITOR

    In the sshd_config_file variable, define the .conf file into which the SSH Server System Role writes the configuration options.

    Use a two-digit prefix, for example 42- to specify the order in which the configuration files will be applied.

    When you apply the playbook to the inventory, the role adds the following configuration options to the file defined by the sshd_config_file variable.

    # Ansible managed
    #
    AcceptEnv LANG LS_COLORS EDITOR

Verification

  • Optional: Verify playbook syntax.

    # ansible-playbook --syntax-check playbook.yml -i inventory_file

Additional resources

  • /usr/share/doc/rhel-system-roles/sshd/README.md file.
  • ansible-playbook(1) man page.

Chapter 12. Configuring VPN connections with IPsec by using the VPN RHEL System Role

With the VPN System Role, you can configure VPN connections on RHEL systems by using Red Hat Ansible Automation Platform. You can use it to set up host-to-host, network-to-network, VPN Remote Access Server, and mesh configurations.

For host-to-host connections, the role sets up a VPN tunnel between each pair of hosts in the list of vpn_connections using the default parameters, including generating keys as needed. Alternatively, you can configure it to create an opportunistic mesh configuration between all hosts listed. The role assumes that the names of the hosts under hosts are the same as the names of the hosts used in the Ansible inventory, and that you can use those names to configure the tunnels.

Note

The VPN RHEL System Role currently supports only Libreswan, which is an IPsec implementation, as the VPN provider.

12.1. Creating a host-to-host VPN with IPsec using the VPN System Role

You can use the VPN System Role to configure host-to-host connections by running an Ansible playbook on the control node, which will configure all the managed nodes listed in an inventory file.

Prerequisites

  • Access and permissions to one or more managed nodes, which are systems you want to configure with the VPN System Role.
  • Access and permissions to a control node, which is a system from which Red Hat Ansible Core configures other systems.

    On the control node:

    • The ansible-core and rhel-system-roles packages are installed.
Important

RHEL 8.0-8.5 provided access to a separate Ansible repository that contains Ansible Engine 2.9 for automation based on Ansible. Ansible Engine contains command-line utilities such as ansible, ansible-playbook, connectors such as docker and podman, and many plugins and modules. For information on how to obtain and install Ansible Engine, see the How to download and install Red Hat Ansible Engine Knowledgebase article.

RHEL 8.6 and 9.0 have introduced Ansible Core (provided as the ansible-core package), which contains the Ansible command-line utilities, commands, and a small set of built-in Ansible plugins. RHEL provides this package through the AppStream repository, and it has a limited scope of support. For more information, see the Scope of support for the Ansible Core package included in the RHEL 9 and RHEL 8.6 and later AppStream repositories Knowledgebase article.

  • An inventory file which lists the managed nodes.

Procedure

  1. Create a new playbook.yml file with the following content:

    - name: Host to host VPN
      hosts: managed_node1, managed_node2
      roles:
        - rhel-system-roles.vpn
      vars:
        vpn_connections:
          - hosts:
              managed_node1:
              managed_node2:

    This playbook configures the connection managed_node1-to-managed_node2 using pre-shared key authentication with keys auto-generated by the system role.

  2. Optional: Configure connections from managed hosts to external hosts that are not listed in the inventory file by adding the following section to the vpn_connections list of hosts:

        vpn_connections:
          - hosts:
              managed_node1:
              managed_node2:
              external_node:
                hostname: 192.0.2.2

    This configures two additional connections: managed_node1-to-external_node and managed_node2-to-external_node.

Note

The connections are configured only on the managed nodes and not on the external node.

  1. Optional: You can specify multiple VPN connections for the managed nodes by using additional sections within vpn_connections, for example a control plane and a data plane:

    - name: Multiple VPN
      hosts: managed_node1, managed_node2
      roles:
        - rhel-system-roles.vpn
      vars:
        vpn_connections:
          - name: control_plane_vpn
            hosts:
              managed_node1:
                hostname: 192.0.2.0 # IP for the control plane
              managed_node2:
                hostname: 192.0.2.1
          - name: data_plane_vpn
            hosts:
              managed_node1:
                hostname: 10.0.0.1 # IP for the data plane
              managed_node2:
                hostname: 10.0.0.2
  2. Optional: You can modify the variables according to your preferences. For more details, see the /usr/share/doc/rhel-system-roles/vpn/README.md file.
  3. Optional: Verify playbook syntax.

    # ansible-playbook --syntax-check /path/to/file/playbook.yml -i /path/to/file/inventory_file
  4. Run the playbook on your inventory file:

    # ansible-playbook -i /path/to/file/inventory_file /path/to/file/playbook.yml

Verification

  1. On the managed nodes, confirm that the connection is successfully loaded:

    # ipsec status | grep connection.name

    Replace connection.name with the name of the connection from this node, for example managed_node1-to-managed_node2.

Note

By default, the role generates a descriptive name for each connection it creates from the perspective of each system. For example, when creating a connection between managed_node1 and managed_node2, the descriptive name of this connection on managed_node1 is managed_node1-to-managed_node2 but on managed_node2 the connection is named managed_node2-to-managed_node1.

  1. On the managed nodes, confirm that the connection is successfully started:

    # ipsec trafficstatus | grep connection.name
  2. Optional: If a connection did not successfully load, manually add the connection by entering the following command. This will provide more specific information indicating why the connection failed to establish:

    # ipsec auto --add connection.name
    Note

    Any errors that may have occurred during the process of loading and starting the connection are reported in the logs, which can be found in /var/log/pluto.log. Because these logs are hard to parse, try to manually add the connection to obtain log messages from the standard output instead.

12.2. Creating an opportunistic mesh VPN connection with IPsec by using the VPN System Role

You can use the VPN System Role to configure an opportunistic mesh VPN connection that uses certificates for authentication by running an Ansible playbook on the control node, which will configure all the managed nodes listed in an inventory file.

Authentication with certificates is configured by defining the auth_method: cert parameter in the playbook. The VPN System Role assumes that the IPsec Network Security Services (NSS) crypto library, which is defined in the /etc/ipsec.d directory, contains the necessary certificates. By default, the node name is used as the certificate nickname. In this example, this is managed_node1. You can define different certificate names by using the cert_name attribute in your inventory.

In the following example procedure, the control node, which is the system from which you will run the Ansible playbook, shares the same classless inter-domain routing (CIDR) number as both of the managed nodes (192.0.2.0/24) and has the IP address 192.0.2.7. Therefore, the control node falls under the private policy which is automatically created for CIDR 192.0.2.0/24.

To prevent SSH connection loss during the play, a clear policy for the control node is included in the list of policies. Note that there is also an item in the policies list where the CIDR is equal to default. This is because this playbook overrides the rule from the default policy to make it private instead of private-or-clear.

Prerequisites

  • Access and permissions to one or more managed nodes, which are systems you want to configure with the VPN System Role.

    • On all the managed nodes, the NSS database in the /etc/ipsec.d directory contains all the certificates necessary for peer authentication. By default, the node name is used as the certificate nickname.
  • Access and permissions to a control node, which is a system from which Red Hat Ansible Core configures other systems.

    On the control node:

    • The ansible-core and rhel-system-roles packages are installed.
Important

RHEL 8.0-8.5 provided access to a separate Ansible repository that contains Ansible Engine 2.9 for automation based on Ansible. Ansible Engine contains command-line utilities such as ansible, ansible-playbook, connectors such as docker and podman, and many plugins and modules. For information on how to obtain and install Ansible Engine, see the How to download and install Red Hat Ansible Engine Knowledgebase article.

RHEL 8.6 and 9.0 have introduced Ansible Core (provided as the ansible-core package), which contains the Ansible command-line utilities, commands, and a small set of built-in Ansible plugins. RHEL provides this package through the AppStream repository, and it has a limited scope of support. For more information, see the Scope of support for the Ansible Core package included in the RHEL 9 and RHEL 8.6 and later AppStream repositories Knowledgebase article.

  • An inventory file which lists the managed nodes.

Procedure

  1. Create a new playbook.yml file with the following content:

    - name: Mesh VPN
      hosts: managed_node1, managed_node2, managed_node3
      roles:
        - rhel-system-roles.vpn
      vars:
        vpn_connections:
          - opportunistic: true
            auth_method: cert
            policies:
              - policy: private
                cidr: default
              - policy: private-or-clear
                cidr: 198.51.100.0/24
              - policy: private
                cidr: 192.0.2.0/24
              - policy: clear
                cidr: 192.0.2.7/32
  2. Optional: You can modify the variables according to your preferences. For more details, see the /usr/share/doc/rhel-system-roles/vpn/README.md file.
  3. Optional: Verify playbook syntax.

    # ansible-playbook --syntax-check playbook.yml
  4. Run the playbook on your inventory file:

    # ansible-playbook -i inventory_file /path/to/file/playbook.yml

12.3. Additional resources

  • For details about the parameters used in the VPN System Role and additional information about the role, see the /usr/share/doc/rhel-system-roles/vpn/README.md file.
  • For details about the ansible-playbook command, see the ansible-playbook(1) man page.

Chapter 13. Setting a custom cryptographic policy across systems

As an administrator, you can use the Cryptographic Policies RHEL System Role to quickly and consistently configure custom cryptographic policies across many different systems using the Ansible Core package.

13.1. Cryptographic Policies System Role variables and facts

In a Cryptographic Policies System Role playbook, you can define the parameters for the crypto policies configuration file according to your preferences and limitations.

If you do not configure any variables, the System Role does not configure the system and only reports the facts.

Selected variables for the Cryptographic Policies System Role

crypto_policies_policy
Determines the cryptographic policy the system role applies to the managed nodes. For details about the different crypto policies, see System-wide cryptographic policies .
crypto_policies_reload
If set to yes, the affected services, currently the ipsec, bind, and sshd services, reload after applying a crypto policy. Defaults to yes.
crypto_policies_reboot_ok
If set to yes, and a reboot is necessary after the system role changes the crypto policy, it sets crypto_policies_reboot_required to yes. Defaults to no.

Facts set by the Cryptographic Policies System Role

crypto_policies_active
Lists the currently selected policy.
crypto_policies_available_policies
Lists all available policies available on the system.
crypto_policies_available_subpolicies
Lists all available subpolicies available on the system.

13.2. Setting a custom cryptographic policy using the Cryptographic Policies System Role

You can use the Cryptographic Policies System Role to configure a large number of managed nodes consistently from a single control node.

Prerequisites

  • Access and permissions to one or more managed nodes, which are systems you want to configure with the Crypto Policies System Role.
  • Access and permissions to a control node, which is a system from which Red Hat Ansible Core configures other systems.

    On the control node:

    • The ansible-core and rhel-system-roles packages are installed.
Important

RHEL 8.0-8.5 provided access to a separate Ansible repository that contains Ansible Engine 2.9 for automation based on Ansible. Ansible Engine contains command-line utilities such as ansible, ansible-playbook, connectors such as docker and podman, and many plugins and modules. For information on how to obtain and install Ansible Engine, see the How to download and install Red Hat Ansible Engine Knowledgebase article.

RHEL 8.6 and 9.0 have introduced Ansible Core (provided as the ansible-core package), which contains the Ansible command-line utilities, commands, and a small set of built-in Ansible plugins. RHEL provides this package through the AppStream repository, and it has a limited scope of support. For more information, see the Scope of support for the Ansible Core package included in the RHEL 9 and RHEL 8.6 and later AppStream repositories Knowledgebase article.

  • An inventory file which lists the managed nodes.

Procedure

  1. Create a new playbook.yml file with the following content:

    ---
    - hosts: all
      tasks:
      - name: Configure crypto policies
        include_role:
          name: rhel-system-roles.crypto_policies
        vars:
          - crypto_policies_policy: FUTURE
          - crypto_policies_reboot_ok: true

    You can replace the FUTURE value with your preferred crypto policy, for example: DEFAULT, LEGACY, and FIPS:OSPP.

    The crypto_policies_reboot_ok: true variable causes the system to reboot after the System Role changes the cryptographic policy.

    For more details, see Crypto Policies System Role variables and facts .

  2. Optional: Verify playbook syntax.

    # ansible-playbook --syntax-check playbook.yml
  3. Run the playbook on your inventory file:

    # ansible-playbook -i inventory_file playbook.yml

Verification

  1. On the control node, create another playbook named, for example, verify_playbook.yml:

    - hosts: all
      tasks:
     - name: Verify active crypto policy
       include_role:
         name: rhel-system-roles.crypto_policies
    
     - debug:
         var: crypto_policies_active

    This playbook does not change any configurations on the system, only reports the active policy on the managed nodes.

  2. Run the playbook on the same inventory file:

    # ansible-playbook -i inventory_file verify_playbook.yml
    
    TASK [debug] **************************
    ok: [host] => {
        "crypto_policies_active": "FUTURE"
    }

    The "crypto_policies_active": variable shows the policy active on the managed node.

13.3. Additional resources

Chapter 14. Using the Clevis and Tang System Roles

14.1. Introduction to the Clevis and Tang system roles

RHEL System Roles is a collection of Ansible roles and modules that provide a consistent configuration interface to remotely manage multiple RHEL systems.

You can use Ansible roles for automated deployments of Policy-Based Decryption (PBD) solutions using Clevis and Tang. The rhel-system-roles package contains these system roles, the related examples, and also the reference documentation.

The Network Bound Disk Encryption Client System Role enables you to deploy multiple Clevis clients in an automated way. Note that the Network Bound Disk Encryption Client role supports only Tang bindings, and you cannot use it for TPM2 bindings at the moment.

The Network Bound Disk Encryption Client role requires volumes that are already encrypted using LUKS. This role supports to bind a LUKS-encrypted volume to one or more Network-Bound (NBDE) servers - Tang servers. You can either preserve the existing volume encryption with a passphrase or remove it. After removing the passphrase, you can unlock the volume only using NBDE. This is useful when a volume is initially encrypted using a temporary key or password that you should remove after you provision the system.

If you provide both a passphrase and a key file, the role uses what you have provided first. If it does not find any of these valid, it attempts to retrieve a passphrase from an existing binding.

PBD defines a binding as a mapping of a device to a slot. This means that you can have multiple bindings for the same device. The default slot is slot 1.

The Network Bound Disk Encryption Client role provides also the state variable. Use the present value for either creating a new binding or updating an existing one. Contrary to a clevis luks bind command, you can use state: present also for overwriting an existing binding in its device slot. The absent value removes a specified binding.

Using the Network Bound Disk Encryption Server System Role, you can deploy and manage a Tang server as part of an automated disk encryption solution. This role supports the following features:

  • Rotating Tang keys
  • Deploying and backing up Tang keys

Additional resources

  • For a detailed reference on Network-Bound Disk Encryption (NBDE) role variables, install the rhel-system-roles package, and see the README.md and README.html files in the /usr/share/doc/rhel-system-roles/nbde_client/ and /usr/share/doc/rhel-system-roles/nbde_server/ directories.
  • For example system-roles playbooks, install the rhel-system-roles package, and see the /usr/share/ansible/roles/rhel-system-roles.nbde_server/examples/ directories.
  • For more information on RHEL System Roles, see Introduction to RHEL System Roles

14.2. Using the NBDE Server System Role for setting up multiple Tang servers

Follow the steps to prepare and apply an Ansible playbook containing your Tang server settings.

Prerequisites

  • Access and permissions to one or more managed nodes, which are systems you want to configure with the NBDE Server System Role.
  • Access and permissions to a control node, which is a system from which Red Hat Ansible Core configures other systems.

    On the control node:

    • The ansible-core and rhel-system-roles packages are installed.
Important

RHEL 8.0-8.5 provided access to a separate Ansible repository that contains Ansible Engine 2.9 for automation based on Ansible. Ansible Engine contains command-line utilities such as ansible, ansible-playbook, connectors such as docker and podman, and many plugins and modules. For information on how to obtain and install Ansible Engine, see the How to download and install Red Hat Ansible Engine Knowledgebase article.

RHEL 8.6 and 9.0 have introduced Ansible Core (provided as the ansible-core package), which contains the Ansible command-line utilities, commands, and a small set of built-in Ansible plugins. RHEL provides this package through the AppStream repository, and it has a limited scope of support. For more information, see the Scope of support for the Ansible Core package included in the RHEL 9 and RHEL 8.6 and later AppStream repositories Knowledgebase article.

  • An inventory file which lists the managed nodes.

Procedure

  1. Prepare your playbook containing settings for Tang servers. You can either start from the scratch, or use one of the example playbooks from the /usr/share/ansible/roles/rhel-system-roles.nbde_server/examples/ directory.

    # cp /usr/share/ansible/roles/rhel-system-roles.nbde_server/examples/simple_deploy.yml ./my-tang-playbook.yml
  2. Edit the playbook in a text editor of your choice, for example:

    # vi my-tang-playbook.yml
  3. Add the required parameters. The following example playbook ensures deploying of your Tang server and a key rotation:

    ---
    - hosts: all
    
      vars:
        nbde_server_rotate_keys: yes
    
      roles:
        - rhel-system-roles.nbde_server
  4. Apply the finished playbook:

    # ansible-playbook -i inventory-file my-tang-playbook.yml

    Where: * inventory-file is the inventory file. * logging-playbook.yml is the playbook you use.

Important

To ensure that networking for a Tang pin is available during early boot by using the grubby tool on the systems where Clevis is installed:

# grubby --update-kernel=ALL --args="rd.neednet=1"

Additional resources

  • For more information, install the rhel-system-roles package, and see the /usr/share/doc/rhel-system-roles/nbde_server/ and usr/share/ansible/roles/rhel-system-roles.nbde_server/ directories.

14.3. Using the NBDE Client System Role for setting up multiple Clevis clients

Follow the steps to prepare and apply an Ansible playbook containing your Clevis client settings.

Note

The NBDE Client System Role supports only Tang bindings. This means that you cannot use it for TPM2 bindings at the moment.

Prerequisites

  • Access and permissions to one or more managed nodes, which are systems you want to configure with the NBDE Client System Role.
  • Access and permissions to a control node, which is a system from which Red Hat Ansible Core configures other systems.
  • The Ansible Core package is installed on the control machine.
  • The rhel-system-roles package is installed on the system from which you want to run the playbook.

Procedure

  1. Prepare your playbook containing settings for Clevis clients. You can either start from the scratch, or use one of the example playbooks from the /usr/share/ansible/roles/rhel-system-roles.nbde_client/examples/ directory.

    # cp /usr/share/ansible/roles/rhel-system-roles.nbde_client/examples/high_availability.yml ./my-clevis-playbook.yml
  2. Edit the playbook in a text editor of your choice, for example:

    # vi my-clevis-playbook.yml
  3. Add the required parameters. The following example playbook configures Clevis clients for automated unlocking of two LUKS-encrypted volumes by when at least one of two Tang servers is available:

    ---
    - hosts: all
    
      vars:
        nbde_client_bindings:
          - device: /dev/rhel/root
            encryption_key_src: /etc/luks/keyfile
            servers:
              - http://server1.example.com
              - http://server2.example.com
          - device: /dev/rhel/swap
            encryption_key_src: /etc/luks/keyfile
            servers:
              - http://server1.example.com
              - http://server2.example.com
    
      roles:
        - rhel-system-roles.nbde_client
  4. Apply the finished playbook:

    # ansible-playbook -i host1,host2,host3 my-clevis-playbook.yml
Important

To ensure that networking for a Tang pin is available during early boot by using the grubby tool on the system where Clevis is installed:

# grubby --update-kernel=ALL --args="rd.neednet=1"

Additional resources

  • For details about the parameters and additional information about the NBDE Client System Role, install the rhel-system-roles package, and see the /usr/share/doc/rhel-system-roles/nbde_client/ and /usr/share/ansible/roles/rhel-system-roles.nbde_client/ directories.

Chapter 15. Requesting certificates using RHEL System Roles

You can use the Certificate Issuance and Renewal System Role to issue and manage certificates.

This chapter covers the following topics:

15.1. The Certificate Issuance and Renewal System Role

Using the Certificate Issuance and Renewal System Role, you can manage issuing and renewing TLS and SSL certificates using Ansible Core.

The role uses certmonger as the certificate provider, and currently supports issuing and renewing self-signed certificates and using the IdM integrated certificate authority (CA).

You can use the following variables in your Ansible playbook with the Certificate Issuance and Renewal System Role:

certificate_wait
to specify if the task should wait for the certificate to be issued.
certificate_requests
to represent each certificate to be issued and its parameters.

Additional resources

15.2. Requesting a new self-signed certificate using the Certificate Issuance and Renewal System Role

With the Certificate Issuance and Renewal System Role, you can use Ansible Core to issue self-signed certificates.

This process uses the certmonger provider and requests the certificate through the getcert command.

Note

By default, certmonger automatically tries to renew the certificate before it expires. You can disable this by setting the auto_renew parameter in the Ansible playbook to no.

Prerequisites

  • The Ansible Core package is installed on the control machine.
  • You have the rhel-system-roles package installed on the system from which you want to run the playbook.

    For details about RHEL System Roles and how to apply them, see Getting started with RHEL System Roles.

Procedure

  1. Optional: Create an inventory file, for example inventory.file:

    $ touch inventory.file
  2. Open your inventory file and define the hosts on which you want to request the certificate, for example:

    [webserver]
    server.idm.example.com
  3. Create a playbook file, for example request-certificate.yml:

    • Set hosts to include the hosts on which you want to request the certificate, such as webserver.
    • Set the certificate_requests variable to include the following:

      • Set the name parameter to the desired name of the certificate, such as mycert.
      • Set the dns parameter to the domain to be included in the certificate, such as *.example.com.
      • Set the ca parameter to self-sign.
    • Set the rhel-system-roles.certificate role under roles.

      This is the playbook file for this example:

      ---
      - hosts: webserver
      
        vars:
          certificate_requests:
            - name: mycert
              dns: "*.example.com"
              ca: self-sign
      
        roles:
          - rhel-system-roles.certificate
  4. Save the file.
  5. Run the playbook:

    $ ansible-playbook -i inventory.file request-certificate.yml

Additional resources

  • See the /usr/share/ansible/roles/rhel-system-roles.certificate/README.md file.
  • See the ansible-playbook(1) man page.

15.3. Requesting a new certificate from IdM CA using the Certificate Issuance and Renewal System Role

With the Certificate Issuance and Renewal System Role, you can use anible-core to issue certificates while using an IdM server with an integrated certificate authority (CA). Therefore, you can efficiently and consistently manage the certificate trust chain for multiple systems when using IdM as the CA.

This process uses the certmonger provider and requests the certificate through the getcert command.

Note

By default, certmonger automatically tries to renew the certificate before it expires. You can disable this by setting the auto_renew parameter in the Ansible playbook to no.

Prerequisites

  • The Ansible Core package is installed on the control machine.
  • You have the rhel-system-roles package installed on the system from which you want to run the playbook.

    For details about RHEL System Roles and how to apply them, see Getting started with RHEL System Roles.

Procedure

  1. Optional: Create an inventory file, for example inventory.file:

    $ touch inventory.file
  2. Open your inventory file and define the hosts on which you want to request the certificate, for example:

    [webserver]
    server.idm.example.com
  3. Create a playbook file, for example request-certificate.yml:

    • Set hosts to include the hosts on which you want to request the certificate, such as webserver.
    • Set the certificate_requests variable to include the following:

      • Set the name parameter to the desired name of the certificate, such as mycert.
      • Set the dns parameter to the domain to be included in the certificate, such as www.example.com.
      • Set the principal parameter to specify the Kerberos principal, such as HTTP/www.example.com@EXAMPLE.COM.
      • Set the ca parameter to ipa.
    • Set the rhel-system-roles.certificate role under roles.

      This is the playbook file for this example:

      ---
      - hosts: webserver
        vars:
          certificate_requests:
            - name: mycert
              dns: www.example.com
              principal: HTTP/www.example.com@EXAMPLE.COM
              ca: ipa
      
        roles:
          - rhel-system-roles.certificate
  4. Save the file.
  5. Run the playbook:

    $ ansible-playbook -i inventory.file request-certificate.yml

Additional resources

  • See the /usr/share/ansible/roles/rhel-system-roles.certificate/README.md file.
  • See the ansible-playbook(1) man page.

15.4. Specifying commands to run before or after certificate issuance using the Certificate Issuance and Renewal System Role

With the Certificate System Issuance and Renewal Role, you can use Ansible Core to execute a command before and after a certificate is issued or renewed.

In the following example, the administrator ensures stopping the httpd service before a self-signed certificate for www.example.com is issued or renewed, and restarting it afterwards.

Note

By default, certmonger automatically tries to renew the certificate before it expires. You can disable this by setting the auto_renew parameter in the Ansible playbook to no.

Prerequisites

  • The Ansible Core package is installed on the control machine.
  • You have the rhel-system-roles package installed on the system from which you want to run the playbook.

    For details about RHEL System Roles and how to apply them, see Getting started with RHEL System Roles.

Procedure

  1. Optional: Create an inventory file, for example inventory.file:

    $ touch inventory.file
  2. Open your inventory file and define the hosts on which you want to request the certificate, for example:

    [webserver]
    server.idm.example.com
  3. Create a playbook file, for example request-certificate.yml:

    • Set hosts to include the hosts on which you want to request the certificate, such as webserver.
    • Set the certificate_requests variable to include the following:

      • Set the name parameter to the desired name of the certificate, such as mycert.
      • Set the dns parameter to the domain to be included in the certificate, such as www.example.com.
      • Set the ca parameter to the CA you want to use to issue the certificate, such as self-sign.
      • Set the run_before parameter to the command you want to execute before this certificate is issued or renewed, such as systemctl stop httpd.service.
      • Set the run_after parameter to the command you want to execute after this certificate is issued or renewed, such as systemctl start httpd.service.
    • Set the rhel-system-roles.certificate role under roles.

      This is the playbook file for this example:

      ---
      - hosts: webserver
        vars:
          certificate_requests:
            - name: mycert
              dns: www.example.com
              ca: self-sign
              run_before: systemctl stop httpd.service
              run_after: systemctl start httpd.service
      
        roles:
          - rhel-system-roles.certificate
  4. Save the file.
  5. Run the playbook:

    $ ansible-playbook -i inventory.file request-certificate.yml

Additional resources

  • See the /usr/share/ansible/roles/rhel-system-roles.certificate/README.md file.
  • See the ansible-playbook(1) man page.

Chapter 16. Configuring kdump using RHEL System Roles

To manage kdump using Ansible, you can use the Kernel Dumps role, which is one of the RHEL System Roles available in RHEL 8.

Using the Kernel Dumps role enables you to specify where to save the contents of the system’s memory for later analysis.

For more information about RHEL System Roles and how to apply them, see Introduction to RHEL System Roles.

16.1. The Kernel Dumps RHEL System Role

The Kernel Dumps System Role enables you to set basic kernel dump parameters on multiple systems.

16.2. Kernel Dumps role parameters

The parameters used for the Kernel Dumps` RHEL System Roles are:

Role VariableDescription

kdump_path

The path to which vmcore is written. If kdump_target is not null, path is relative to that dump target. Otherwise, it must be an absolute path in the root file system.

Additional resources

  • The makedumpfile(8) man page.
  • For details about the parameters used in kdump and additional information about the Kernel Dumps System Role, see the /usr/share/ansible/roles/rhel-system-roles.tlog/README.md file.

16.3. Configuring kdump using RHEL System Roles

You can set basic kernel dump parameters on multiple systems using the Kernel Dumps System Role by running an Ansible playbook.

Warning

The Kernel Dumps role replaces the kdump configuration of the managed hosts entirely by replacing the /etc/kdump.conf file. Additionally, if the Kernel Dumps role is applied, all previous kdump settings are also replaced, even if they are not specified by the role variables, by replacing the /etc/sysconfig/kdump file.

Prerequisites

  • The Ansible Core package is installed on the control machine.
  • You have the rhel-system-roles package installed on the system from which you want to run the playbook.
  • You have an inventory file which lists the systems on which you want to deploy kdump.

Procedure

  1. Create a new playbook.yml file with the following content:

    ---
    - hosts: kdump-test
      vars:
        kdump_path: /var/crash
      roles:
        - rhel-system-roles.kdump
  2. Optional: Verify playbook syntax.

    # ansible-playbook --syntax-check playbook.yml
  3. Run the playbook on your inventory file:

    # ansible-playbook -i inventory_file /path/to/file/playbook.yml

Additional resources

  • For a detailed reference on Kernel Dumps role variables, see the README.md or README.html files in the /usr/share/doc/rhel-system-roles/kdump directory.
  • See Applying a system role.
  • Documentation installed with the rhel-system-roles package /usr/share/ansible/roles/rhel-system-roles.kdump/README.html

Chapter 17. Managing local storage using RHEL System Roles

To manage LVM and local file systems (FS) using Ansible, you can use the Storage role, which is one of the RHEL System Roles available in RHEL 9.

Using the Storage role enables you to automate administration of file systems on disks and logical volumes on multiple machines and across all versions of RHEL starting with RHEL 7.7.

For more information about RHEL System Roles and how to apply them, see Introduction to RHEL System Roles.

17.1. Introduction to the Storage role

The Storage role can manage:

  • File systems on disks which have not been partitioned
  • Complete LVM volume groups including their logical volumes and file systems

With the Storage role you can perform the following tasks:

  • Create a file system
  • Remove a file system
  • Mount a file system
  • Unmount a file system
  • Create LVM volume groups
  • Remove LVM volume groups
  • Create logical volumes
  • Remove logical volumes
  • Create RAID volumes
  • Remove RAID volumes
  • Create LVM pools with RAID
  • Remove LVM pools with RAID

17.2. Parameters that identify a storage device in the Storage System Role

Your Storage role configuration affects only the file systems, volumes, and pools that you list in the following variables.

storage_volumes

List of file systems on all unpartitioned disks to be managed.

Partitions are currently unsupported.

storage_pools

List of pools to be managed.

Currently the only supported pool type is LVM. With LVM, pools represent volume groups (VGs). Under each pool there is a list of volumes to be managed by the role. With LVM, each volume corresponds to a logical volume (LV) with a file system.

17.3. Example Ansible playbook to create an XFS file system on a block device

This section provides an example Ansible playbook. This playbook applies the Storage role to create an XFS file system on a block device using the default parameters.

Warning

The Storage role can create a file system only on an unpartitioned, whole disk or a logical volume (LV). It cannot create the file system on a partition.

Example 17.1. A playbook that creates XFS on /dev/sdb

---
- hosts: all
  vars:
    storage_volumes:
      - name: barefs
        type: disk
        disks:
          - sdb
        fs_type: xfs
  roles:
    - rhel-system-roles.storage
  • The volume name (barefs in the example) is currently arbitrary. The Storage role identifies the volume by the disk device listed under the disks: attribute.
  • You can omit the fs_type: xfs line because XFS is the default file system in RHEL 9.
  • To create the file system on an LV, provide the LVM setup under the disks: attribute, including the enclosing volume group.

    Do not provide the path to the LV device.

Additional resources

  • The /usr/share/ansible/roles/rhel-system-roles.storage/README.md file.

17.4. Example Ansible playbook to persistently mount a file system

This section provides an example Ansible playbook. This playbook applies the Storage role to immediately and persistently mount an XFS file system.

Example 17.2. A playbook that mounts a file system on /dev/sdb to /mnt/data

---
- hosts: all
  vars:
    storage_volumes:
      - name: barefs
        type: disk
        disks:
          - sdb
        fs_type: xfs
        mount_point: /mnt/data
  roles:
    - rhel-system-roles.storage
  • This playbook adds the file system to the /etc/fstab file, and mounts the file system immediately.
  • If the file system on the /dev/sdb device or the mount point directory do not exist, the playbook creates them.

Additional resources

  • The /usr/share/ansible/roles/rhel-system-roles.storage/README.md file.

17.5. Example Ansible playbook to manage logical volumes

This section provides an example Ansible playbook. This playbook applies the Storage role to create an LVM logical volume in a volume group.

Example 17.3. A playbook that creates a mylv logical volume in the myvg volume group

- hosts: all
  vars:
    storage_pools:
      - name: myvg
        disks:
          - sda
          - sdb
          - sdc
        volumes:
          - name: mylv
            size: 2G
            fs_type: ext4
            mount_point: /mnt
  roles:
    - rhel-system-roles.storage
  • The myvg volume group consists of the following disks:

    • /dev/sda
    • /dev/sdb
    • /dev/sdc
  • If the myvg volume group already exists, the playbook adds the logical volume to the volume group.
  • If the myvg volume group does not exist, the playbook creates it.
  • The playbook creates an Ext4 file system on the mylv logical volume, and persistently mounts the file system at /mnt.

Additional resources

  • The /usr/share/ansible/roles/rhel-system-roles.storage/README.md file.

17.6. Example Ansible playbook to enable online block discard

This section provides an example Ansible playbook. This playbook applies the Storage role to mount an XFS file system with online block discard enabled.

Example 17.4. A playbook that enables online block discard on /mnt/data/

---
- hosts: all
  vars:
    storage_volumes:
      - name: barefs
        type: disk
        disks:
          - sdb
        fs_type: xfs
        mount_point: /mnt/data
        mount_options: discard
  roles:
    - rhel-system-roles.storage

Additional resources

17.7. Example Ansible playbook to create and mount an Ext4 file system

This section provides an example Ansible playbook. This playbook applies the Storage role to create and mount an Ext4 file system.

Example 17.5. A playbook that creates Ext4 on /dev/sdb and mounts it at /mnt/data

---
- hosts: all
  vars:
    storage_volumes:
      - name: barefs
        type: disk
        disks:
          - sdb
        fs_type: ext4
        fs_label: label-name
        mount_point: /mnt/data
  roles:
    - rhel-system-roles.storage
  • The playbook creates the file system on the /dev/sdb disk.
  • The playbook persistently mounts the file system at the /mnt/data directory.
  • The label of the file system is label-name.

Additional resources

  • The /usr/share/ansible/roles/rhel-system-roles.storage/README.md file.

17.8. Example Ansible playbook to create and mount an ext3 file system

This section provides an example Ansible playbook. This playbook applies the Storage role to create and mount an Ext3 file system.

Example 17.6. A playbook that creates Ext3 on /dev/sdb and mounts it at /mnt/data

---
- hosts: all
  vars:
    storage_volumes:
      - name: barefs
        type: disk
        disks:
          - sdb
        fs_type: ext3
        fs_label: label-name
        mount_point: /mnt/data
  roles:
    - rhel-system-roles.storage
  • The playbook creates the file system on the /dev/sdb disk.
  • The playbook persistently mounts the file system at the /mnt/data directory.
  • The label of the file system is label-name.

Additional resources

  • The /usr/share/ansible/roles/rhel-system-roles.storage/README.md file.

17.9. Example Ansible playbook to resize an existing Ext4 or Ext3 file system using the Storage RHEL System Role

This section provides an example Ansible playbook. This playbook applies the Storage role to resize an existing Ext4 or Ext3 file system on a block device.

Example 17.7. A playbook that set up a single volume on a disk

---
- name: Create a disk device mounted on /opt/barefs
- hosts: all
  vars:
    storage_volumes:
      - name: barefs
        type: disk
        disks:
          - /dev/sdb
	size: 12 GiB
        fs_type: ext4
        mount_point: /opt/barefs
  roles:
    - rhel-system-roles.storage
  • If the volume in the previous example already exists, to resize the volume, you need to run the same playbook, just with a different value for the parameter size. For example:

Example 17.8. A playbook that resizes ext4 on /dev/sdb

---
- name: Create a disk device mounted on /opt/barefs
- hosts: all
  vars:
    storage_volumes:
      - name: barefs
        type: disk
        disks:
          - /dev/sdb
	size: 10 GiB
        fs_type: ext4
        mount_point: /opt/barefs
  roles:
    - rhel-system-roles.storage
  • The volume name (barefs in the example) is currently arbitrary. The Storage role identifies the volume by the disk device listed under the disks: attribute.
Note

Using the Resizing action in other file systems can destroy the data on the device you are working on.

Additional resources

  • The /usr/share/ansible/roles/rhel-system-roles.storage/README.md file.

17.10. Example Ansible playbook to resize an existing file system on LVM using the Storage RHEL System Role

This section provides an example Ansible playbook. This playbook applies the Storage RHEL System Role to resize an LVM logical volume with a file system.

Warning

Using the Resizing action in other file systems can destroy the data on the device you are working on.

Example 17.9. A playbook that resizes existing mylv1 and myvl2 logical volumes in the myvg volume group

---

- hosts: all
   vars:
    storage_pools:
      - name: myvg
        disks:
          - /dev/sda
          - /dev/sdb
          - /dev/sdc
        volumes:
            - name: mylv1
              size: 10 GiB
              fs_type: ext4
              mount_point: /opt/mount1
            - name: mylv2
              size: 50 GiB
              fs_type: ext4
              mount_point: /opt/mount2

- name: Create LVM pool over three disks
  incude_role:
    name: rhel-system-roles.storage
  • This playbook resizes the following existing file systems:

    • The Ext4 file system on the mylv1 volume, which is mounted at /opt/mount1, resizes to 10 GiB.
    • The Ext4 file system on the mylv2 volume, which is mounted at /opt/mount2, resizes to 50 GiB.

Additional resources

  • The /usr/share/ansible/roles/rhel-system-roles.storage/README.md file.

17.11. Example Ansible playbook to create a swap partition using the Storage RHEL System Role

This section provides an example Ansible playbook. This playbook applies the Storage role to create a swap partition, if it does not exist, or to modify the swap partition, if it already exist, on a block device using the default parameters.

Example 17.10. A playbook that creates or modify an existing XFS on /dev/sdb

---
- name: Create a disk device with swap
- hosts: all
  vars:
    storage_volumes:
      - name: swap_fs
        type: disk
        disks:
          - /dev/sdb
	size: 15 GiB
        fs_type: swap
  roles:
    - rhel-system-roles.storage
  • The volume name (swap_fs in the example) is currently arbitrary. The Storage role identifies the volume by the disk device listed under the disks: attribute.

Additional resources

  • The /usr/share/ansible/roles/rhel-system-roles.storage/README.md file.

17.12. Configuring a RAID volume using the Storage System Role

With the Storage System Role, you can configure a RAID volume on RHEL using Red Hat Ansible Automation Platform. In this section you will learn how to set up an Ansible playbook with the available parameters to configure a RAID volume to suit your requirements.

Prerequisites

  • The Ansible Core package is installed on the control machine.
  • You have the rhel-system-roles package installed on the system from which you want to run the playbook.
  • You have an inventory file detailing the systems on which you want to deploy a RAID volume using the Storage System Role.

Procedure

  1. Create a new playbook.yml file with the following content:

    - hosts: all
      vars:
        storage_safe_mode: false
        storage_volumes:
          - name: data
            type: raid
            disks: [sdd, sde, sdf, sdg]
            raid_level: raid0
            raid_chunk_size: 32 KiB
            mount_point: /mnt/data
            state: present
      roles:
        - name: rhel-system-roles.storage
    Warning

    Device names can change in certain circumstances; for example, when you add a new disk to a system. Therefore, to prevent data loss, we do not recommend using specific disk names in the playbook.

  2. Optional. Verify playbook syntax.

    # ansible-playbook --syntax-check playbook.yml
  3. Run the playbook on your inventory file:

    # ansible-playbook -i inventory.file /path/to/file/playbook.yml

Additional resources

  • The /usr/share/ansible/roles/rhel-system-roles.storage/README.md file.

17.13. Configuring an LVM pool with RAID using the Storage System Role

With the Storage System Role, you can configure an LVM pool with RAID on RHEL using Red Hat Ansible Automation Platform. In this section you will learn how to set up an Ansible playbook with the available parameters to configure an LVM pool with RAID.

Prerequisites

  • The Ansible Core package is installed on the control machine.
  • You have the rhel-system-roles package installed on the system from which you want to run the playbook.
  • You have an inventory file detailing the systems on which you want to configure an LVM pool with RAID using the Storage System Role.

Procedure

  1. Create a new playbook.yml file with the following content:

    - hosts: all
      vars:
        storage_safe_mode: false
        storage_pools:
          - name: my_pool
            type: lvm
            disks: [sdh, sdi]
            raid_level: raid1
            volumes:
              - name: my_pool
                size: "1 GiB"
                mount_point: "/mnt/app/shared"
                fs_type: xfs
                state: present
      roles:
        - name: rhel-system-roles.storage
    Note

    To create an LVM pool with RAID, you must specify the RAID type using the raid_level parameter.

  2. Optional. Verify playbook syntax.

    # ansible-playbook --syntax-check playbook.yml
  3. Run the playbook on your inventory file:

    # ansible-playbook -i inventory.file /path/to/file/playbook.yml

Additional resources

  • The /usr/share/ansible/roles/rhel-system-roles.storage/README.md file.

17.14. Example Ansible playbook to compress and deduplicate a VDO volume on LVM using the Storage RHEL System Role

This section provides an example Ansible playbook. This playbook applies the Storage RHEL System Role to enable compression and deduplication to a Logical Manager Volumes (LVM) using the Virtual Data Optimizer (VDO) volume.

Example 17.11. A playbook that creates a mylv1 LVM VDO volume in the myvg volume group

---
- name: Create LVM VDO volume under volume group 'myvg'
  hosts: all
  roles:
    -rhel-system-roles.storage
  vars:
    storage_pools:
     - name: myvg
       disks:
         - /dev/sdb
       volumes:
         - name: mylv1
           compression: true
           deduplication: true
           vdo_pool_size: 10 GiB
           size: 30 GiB
           mount_point: /mnt/app/shared

In this example, the compression and deduplication pools are set to true, which specifies that the VDO is used. The following describes the usage of these parameters:

  • The deduplication is used to deduplicate the duplicated data stored on the storage volume.
  • The compression is used to compress the data stored on the storage volume, which results in more storage capacity.
  • The vdo_pool_size specifies the actual size the volume takes on the device. The virtual size of VDO volume is set by the size parameter. NOTE: Because of the Storage role use of LVM VDO, only one volume per pool can use the compression and deduplication.

17.15. Creating a LUKS encrypted volume using the Storage System Role

You can use the Storage role to create and configure a volume encrypted with LUKS by running an Ansible playbook.

Prerequisites

  • Access and permissions to one or more managed nodes, which are systems you want to configure with the Crypto Policies System Role.
  • Access and permissions to a control node, which is a system from which Red Hat Ansible Core configures other systems.

    On the control node:

    • The ansible-core and rhel-system-roles packages are installed.
Important

RHEL 8.0-8.5 provided access to a separate Ansible repository that contains Ansible Engine 2.9 for automation based on Ansible. Ansible Engine contains command-line utilities such as ansible, ansible-playbook, connectors such as docker and podman, and many plugins and modules. For information on how to obtain and install Ansible Engine, see the How to download and install Red Hat Ansible Engine Knowledgebase article.

RHEL 8.6 and 9.0 have introduced Ansible Core (provided as the ansible-core package), which contains the Ansible command-line utilities, commands, and a small set of built-in Ansible plugins. RHEL provides this package through the AppStream repository, and it has a limited scope of support. For more information, see the Scope of support for the Ansible Core package included in the RHEL 9 and RHEL 8.6 and later AppStream repositories Knowledgebase article.

  • An inventory file which lists the managed nodes.

Procedure

  1. Create a new playbook.yml file with the following content:

    - hosts: all
      vars:
        storage_volumes:
          - name: barefs
            type: disk
            disks:
             - sdb
            fs_type: xfs
            fs_label: label-name
            mount_point: /mnt/data
            encryption: true
            encryption_password: your-password
      roles:
       - rhel-system-roles.storage
  2. Optional: Verify playbook syntax:

    # ansible-playbook --syntax-check playbook.yml
  3. Run the playbook on your inventory file:

    # ansible-playbook -i inventory.file /path/to/file/playbook.yml

Additional resources

  • /usr/share/ansible/roles/rhel-system-roles.storage/README.md file

17.16. Example Ansible playbook to express pool volume sizes as percentage using the Storage RHEL System Role

This section provides an example Ansible playbook. This playbook applies the Storage System Role to enable you to express Logical Manager Volumes (LVM) volume sizes as a percentage of the pool’s total size.

Example 17.12. A playbook that express volume sizes as a percentage of the pool’s total size

---
- name: Express volume sizes as a percentage of the pool's total size
  hosts: all
  roles
    - rhel-system-roles.storage
  vars:
    storage_pools:
    - name: myvg
      disks:
        - /dev/sdb
      volumes:
        - name: data
          size: 60%
          mount_point: /opt/mount/data
        - name: web
          size: 30%
          mount_point: /opt/mount/web
        - name: cache
          size: 10%
          mount_point: /opt/cache/mount

This example specifies the size of LVM volumes as a percentage of the pool size, for example: "60%". Additionally, you can also specify the size of LVM volumes as a percentage of the pool size in a human-readable size of the file system, for example, "10g" or "50 GiB".

17.17. Additional resources

  • /usr/share/doc/rhel-system-roles/storage/
  • /usr/share/ansible/roles/rhel-system-roles.storage/

Chapter 18. Configuring time synchronization using RHEL System Roles

With the Time Synchronization RHEL System Role, you can manage time synchronization on multiple target machines on RHEL using Red Hat Ansible Automation Platform.

18.1. The Time Synchronization System Role

You can manage time synchronization on multiple target machines using the Time Synchronization RHEL System Role.

The Time Synchronization role installs and configures an NTP or PTP implementation to operate as an NTP client or PTP replica in order to synchronize the system clock with NTP servers or grandmasters in PTP domains.

Note that using the Time Synchronization role also facilitates the migration to chrony, because you can use the same playbook on all versions of Red Hat Enterprise Linux starting with RHEL 6 regardless of whether the system uses ntp or chrony to implement the NTP protocol.

18.2. Applying the Time Synchronization System Role for a single pool of servers

The following example shows how to apply the Time Synchronization role in a situation with just one pool of servers.

Warning

The Time Synchronization role replaces the configuration of the given or detected provider service on the managed host. Previous settings are lost, even if they are not specified in the role variables. The only preserved setting is the choice of provider if the timesync_ntp_provider variable is not defined.

Prerequisites

  • The Ansible Core package is installed on the control machine.
  • You have the rhel-system-roles package installed on the system from which you want to run the playbook.
  • You have an inventory file which lists the systems on which you want to deploy Time Synchronization System Role.

Procedure

  1. Create a new playbook.yml file with the following content:

    ---
    - hosts: timesync-test
      vars:
        timesync_ntp_servers:
          - hostname: 2.rhel.pool.ntp.org
            pool: yes
            iburst: yes
      roles:
        - rhel-system-roles.timesync
  2. Optional: Verify playbook syntax.

    # ansible-playbook --syntax-check playbook.yml
  3. Run the playbook on your inventory file:

    # ansible-playbook -i inventory_file /path/to/file/playbook.yml

18.3. Applying the Time Synchronization System Role on client servers

You can use the Time Synchronization role to enable Network Time Security (NTS) on NTP clients. Network Time Security (NTS) is an authentication mechanism specified for Network Time Protocol (NTP). It verifies that NTP packets exchanged between the server and client are not altered.

Warning

The Time Synchronization role replaces the configuration of the given or detected provider service on the managed host. Previous settings are lost even if they are not specified in the role variables. The only preserved setting is the choice of provider if the timesync_ntp_provider variable is not defined.

Prerequisites

  • You do not have to have Red Hat Ansible Automation Platform installed on the systems on which you want to deploy the timesync solution.
  • You have the rhel-system-roles package installed on the system from which you want to run the playbook.
  • You have an inventory file which lists the systems on which you want to deploy the Time Synchronization System Role.
  • The chrony NTP provider version is 4.0 or later.

Procedure

  1. Create a playbook.yml file with the following content:

    ---
    - hosts: timesync-test
      vars:
        timesync_ntp_servers:
          - hostname: ptbtime1.ptb.de
            iburst: yes
            nts: yes
      roles:
        - rhel-system-roles.timesync

    ptbtime1.ptb.de is an example of public server. You may want to use a different public server or your own server.

  2. Optional: Verify playbook syntax.

    # ansible-playbook --syntax-check playbook.yml
  3. Run the playbook on your inventory file:

    # ansible-playbook -i inventory_file /path/to/file/playbook.yml

Verification

  1. Perform a test on the client machine:

    # chronyc -N authdata
    
    Name/IP address         Mode KeyID Type KLen Last Atmp  NAK Cook CLen
    =====================================================================
    ptbtime1.ptb.de         NTS     1   15  256  157    0    0    8  100
  2. Check that the number of reported cookies is larger than zero.

Additional resources

  • chrony.conf(5) man page

18.4. Time Synchronization System Roles variables

You can pass the following variable to the Time Synchronization role:

  • timesync_ntp_servers:
Role variable settingsDescription

hostname: host.example.com

Hostname or address of the server

minpoll: number

Minimum polling interval. Default: 6

maxpoll: number

Maximum polling interval. Default: 10

iburst: yes

Flag enabling fast initial synchronization. Default: no

pool: yes

Flag indicating that each resolved address of the hostname is a separate NTP server. Default: no

nts: yes

Flag to enable Network Time Security (NTS). Default: no. Supported only with chrony >= 4.0.

Additional resources

  • For a detailed reference on Time Synchronization role variables, install the rhel-system-roles package, and see the README.md or README.html files in the /usr/share/doc/rhel-system-roles/timesync directory.

Chapter 19. Monitoring performance using RHEL System Roles

As a system administrator, you can use the Metrics RHEL System Role to monitor the performance of a system.

19.1. Introduction to the Metrics System Role

RHEL System Roles is a collection of Ansible roles and modules that provide a consistent configuration interface to remotely manage multiple RHEL systems. The Metrics System Role configures performance analysis services for the local system and, optionally, includes a list of remote systems to be monitored by the local system. The Metrics System Role enables you to use pcp to monitor your systems performance without having to configure pcp separately, as the set-up and deployment of pcp is handled by the playbook.

Table 19.1. Metrics system role variables

Role variableDescriptionExample usage

metrics_monitored_hosts

List of remote hosts to be analyzed by the target host. These hosts will have metrics recorded on the target host, so ensure enough disk space exists below /var/log for each host.

metrics_monitored_hosts: ["webserver.example.com", "database.example.com"]

metrics_retention_days

Configures the number of days for performance data retention before deletion.

metrics_retention_days: 14

metrics_graph_service

A boolean flag that enables the host to be set up with services for performance data visualization via pcp and grafana. Set to false by default.

metrics_graph_service: no

metrics_query_service

A boolean flag that enables the host to be set up with time series query services for querying recorded pcp metrics via redis. Set to false by default.

metrics_query_service: no

metrics_provider

Specifies which metrics collector to use to provide metrics. Currently, pcp is the only supported metrics provider.

metrics_provider: "pcp"

Note

For details about the parameters used in metrics_connections and additional information about the Metrics System Role, see the /usr/share/ansible/roles/rhel-system-roles.metrics/README.md file.

19.2. Using the Metrics System Role to monitor your local system with visualization

This procedure describes how to use the Metrics RHEL System Role to monitor your local system while simultaneously provisioning data visualization via Grafana.

Prerequisites

  • The Ansible Core package is installed on the control machine.
  • You have the rhel-system-roles package installed on the machine you want to monitor.

Procedure

  1. Configure localhost in the the /etc/ansible/hosts Ansible inventory by adding the following content to the inventory:

    localhost ansible_connection=local
  2. Create an Ansible playbook with the following content:

    ---
    - hosts: localhost
      vars:
        metrics_graph_service: yes
      roles:
        - rhel-system-roles.metrics
  3. Run the Ansible playbook:

    # ansible-playbook name_of_your_playbook.yml
    Note

    Since the metrics_graph_service boolean is set to value="yes", Grafana is automatically installed and provisioned with pcp added as a data source.

  4. To view visualization of the metrics being collected on your machine, access the grafana web interface as described in Accessing the Grafana web UI.

19.3. Using the Metrics System Role to setup a fleet of individual systems to monitor themselves

This procedure describes how to use the Metrics System Role to set up a fleet of machines to monitor themselves.

Prerequisites

  • The Ansible Core package is installed on the control machine.
  • You have the rhel-system-roles package installed on the machine you want to use to run the playbook.
  • You have the SSH connection established.

Procedure

  1. Add the name or IP of the machines you wish to monitor via the playbook to the /etc/ansible/hosts Ansible inventory file under an identifying group name enclosed in brackets:

    [remotes]
    webserver.example.com
    database.example.com
  2. Create an Ansible playbook with the following content:

    ---
    - hosts: remotes
      vars:
        metrics_retention_days: 0
      roles:
        - rhel-system-roles.metrics
  3. Run the Ansible playbook:

    # ansible-playbook name_of_your_playbook.yml -k

Where the -k prompt for password to connect to remote system.

19.4. Using the Metrics System Role to monitor a fleet of machines centrally via your local machine

This procedure describes how to use the Metrics System Role to set up your local machine to centrally monitor a fleet of machines while also provisioning visualization of the data via grafana and querying of the data via redis.

Prerequisites

  • The Ansible Core package is installed on the control machine.
  • You have the rhel-system-roles package installed on the machine you want to use to run the playbook.

Procedure

  1. Create an Ansible playbook with the following content:

    ---
    - hosts: localhost
      vars:
        metrics_graph_service: yes
        metrics_query_service: yes
        metrics_retention_days: 10
        metrics_monitored_hosts: ["database.example.com", "webserver.example.com"]
      roles:
        - rhel-system-roles.metrics
  2. Run the Ansible playbook:

    # ansible-playbook name_of_your_playbook.yml
    Note

    Since the metrics_graph_service and metrics_query_service booleans are set to value="yes", grafana is automatically installed and provisioned with pcp added as a data source with the pcp data recording indexed into redis, allowing the pcp querying language to be used for complex querying of the data.

  3. To view graphical representation of the metrics being collected centrally by your machine and to query the data, access the grafana web interface as described in Accessing the Grafana web UI.

19.5. Setting up authentication while monitoring a system using the Metrics System Role

PCP supports the scram-sha-256 authentication mechanism through the Simple Authentication Security Layer (SASL) framework. The Metrics RHEL System Role automates the steps to setup authentication using the scram-sha-256 authentication mechanism. This procedure describes how to setup authentication using the Metrics RHEL System Role.

Prerequisites

  • The Ansible Core package is installed on the control machine.
  • You have the rhel-system-roles package installed on the machine you want to use to run the playbook.

Procedure

  1. Include the following variables in the Ansible playbook you want to setup authentication for:

    ---
      vars:
        metrics_username: your_username
        metrics_password: your_password
  2. Run the Ansible playbook:

    # ansible-playbook name_of_your_playbook.yml

Verification steps

  • Verify the sasl configuration:

    # pminfo -f -h "pcp://ip_adress?username=your_username" disk.dev.read
    Password:
    disk.dev.read
    inst [0 or "sda"] value 19540

    ip_adress should be replaced by the IP address of the host.

19.6. Using the Metrics System Role to configure and enable metrics collection for SQL Server

This procedure describes how to use the Metrics RHEL System Role to automate the configuration and enabling of metrics collection for Microsoft SQL Server via pcp on your local system.

Prerequisites

  • The Ansible Core package is installed on the control machine.
  • You have the rhel-system-roles package installed on the machine you want to monitor.
  • You have installed Microsoft SQL Server for Red Hat Enterprise Linux and established a 'trusted' connection to an SQL server. See Install SQL Server and create a database on Red Hat.
  • You have installed the Microsoft ODBC driver for SQL Server for Red Hat Enterprise Linux. See Red Hat Enterprise Server and Oracle Linux.

Procedure

  1. Configure localhost in the the /etc/ansible/hosts Ansible inventory by adding the following content to the inventory:

    localhost ansible_connection=local
  2. Create an Ansible playbook that contains the following content:

    ---
    - hosts: localhost
      roles:
        - role: rhel-system-roles.metrics
          vars:
            metrics_from_mssql: yes
  3. Run the Ansible playbook:

    # ansible-playbook name_of_your_playbook.yml

Verification steps

  • Use the pcp command to verify that SQL Server PMDA agent (mssql) is loaded and running:

    # pcp
    platform: Linux rhel82-2.local 4.18.0-167.el8.x86_64 #1 SMP Sun Dec 15 01:24:23 UTC 2019 x86_64
     hardware: 2 cpus, 1 disk, 1 node, 2770MB RAM
     timezone: PDT+7
     services: pmcd pmproxy
         pmcd: Version 5.0.2-1, 12 agents, 4 clients
         pmda: root pmcd proc pmproxy xfs linux nfsclient mmv kvm mssql
               jbd2 dm
     pmlogger: primary logger: /var/log/pcp/pmlogger/rhel82-2.local/20200326.16.31
         pmie: primary engine: /var/log/pcp/pmie/rhel82-2.local/pmie.log

Chapter 20. Configuring Microsoft SQL Server using Microsoft SQL Server Ansible role

As an administrator, you can use the Microsoft SQL Server Ansible role to install, configure, and start Microsoft SQL Server (SQL Server). The Microsoft SQL Server Ansible role optimizes your operating system to improve performance and throughput for the SQL Server. The role simplifies and automates the configuration of your RHEL host with recommended settings to run the SQL Server workloads.

20.1. Prerequisites

  • 2 GB of RAM
  • root access to the managed node where you want to configure SQL Server
  • Pre-configured firewall

    You must enable the connection on the SQL Server TCP port set with the mssql_tcp_port variable. If you do not define this variable, the role defaults to the TCP port number 1443.

    To add a new port, use:

    # firewall-cmd --add-port=xxxx/tcp --permanent
    # firewall-cmd --reload

    Replace xxxx with the TCP port number then reload the firewall rules.

  • Optional: Create a file with the .sql extension containing the SQL statements and procedures to input them to SQL Server.

20.2. Installing Microsoft SQL Server Ansible role

The Microsoft SQL Server Ansible role is part of the ansible-collection-microsoft-sql package.

Prerequisites

  • root access

Procedure

  1. Install Ansible Core which is available in the RHEL 8 AppStream repository:

    # dnf install ansible-core
  2. Install Microsoft SQL Server Ansible role:

    # dnf install ansible-collection-microsoft-sql

20.3. Installing and configuring SQL server using Microsoft SQL Server Ansible role

You can use the Microsoft SQL Server Ansible role to install and configure SQL server.

Prerequisites

  • The Ansible inventory is created

Procedure

  1. Create a file with the .yml extension. For example, mssql-server.yml.
  2. Add the following content to your .yml file:

    ---
    - hosts: all
      vars:
        mssql_accept_microsoft_odbc_driver_17_for_sql_server_eula: true
        mssql_accept_microsoft_cli_utilities_for_sql_server_eula: true
        mssql_accept_microsoft_sql_server_standard_eula: true
        mssql_password: <password>
        mssql_edition: Developer
        mssql_tcp_port: 1443
      roles:
        - microsoft.sql.server

    Replace <password> with your SQL Server password.

  3. Run the mssql-server.yml ansible playbook:

    # ansible-playbook mssql-server.yml

20.4. TLS variables

The following variables are available for configuring the Transport Level Security (TLS).

Table 20.1. TLS role variables

Role variableDescription

mssql_tls_enable

This variable enables or disables TLS encryption.

The Microsoft SQL Server Ansible role performs following tasks when the variable is set to true:

  • Copies TLS certificate to /etc/pki/tls/certs/ on the SQL Server
  • Copies private key to /etc/pki/tls/private/ on the SQL Server
  • Configures SQL Server to use TLS certificate and private key to encrypt connections
Note

You must have the TLS certificate and private key on the Ansible control node.

When set to false, the TLS encryption is disabled. The role does not remove the existing certificate and private key files.

mssql_tls_cert

To define this variable, enter the path to the TLS certificate file.

mssql_tls_private_key

To define this variable, enter the path to the private key file.

mssql_tls_version

Define this variable to select which TSL version to use.

The default is 1.2

mssql_tls_force

Set this variable to true to replace the certificate and private key files on the host. The files must exist under /etc/pki/tls/certs/ and /etc/pki/tls/private/ directories.

The default is false.

20.5. Accepting EULA for MLServices

You must accept all the EULA for the open-source distributions of Python and R packages to install the required SQL Server Machine Learning Services (MLServices).

See /usr/share/doc/mssql-server for the license terms.

Table 20.2. SQL Server Machine Learning Services EULA variables

Role variableDescription

mssql_accept_microsoft_sql_server_standard_eula

This variable determines whether to accept the terms and conditions for installing the mssql-conf package.

To accept the terms and conditions set this variable to true.

The default is false.

20.6. Accepting EULAs for Microsoft ODBC 17

You must accept all the EULAs to install the Microsoft Open Database Connectivity (ODBC) driver.

See /usr/share/doc/msodbcsql17/LICENSE.txt and /usr/share/doc/mssql-tools/LICENSE.txt for the license terms.

Table 20.3. Microsoft ODBC 17 EULA variables

Role variableDescription

mssql_accept_microsoft_odbc_driver_17_for_sql_server_eula

This variable determines whether to accept the terms and conditions for installing the msodbcsql17 package.

To accept the terms and conditions set this variable to true.

The default is false.

mssql_accept_microsoft_cli_utilities_for_sql_server_eula

This variable determines whether to accept the terms and conditions for installing the mssql-tools package.

To accept the terms and conditions set this variable to true.

The default is false.

Chapter 21. Configuring a system for session recording using the Terminal Session Recording RHEL System Role

With the Terminal Session Recording RHEL System Role, you can configure a system for terminal session recording on RHEL using Red Hat Ansible Automation Platform.

21.1. The Terminal Session Recording System Role

You can configure a RHEL system for terminal session recording on RHEL using the Terminal Session Recording RHEL System Role.

You can configure the recording to take place per user or user group by means of the SSSD service.

Additional resources

21.2. Components and parameters of the Terminal Session Recording System Role

The Session Recording solution has the following components:

  • The tlog utility
  • System Security Services Daemon (SSSD)
  • Optional: The web console interface

The parameters used for the Terminal Session Recording RHEL System Role are:

Role VariableDescription

tlog_use_sssd (default: yes)

Configure session recording with SSSD, the preferred way of managing recorded users or groups

tlog_scope_sssd (default: none)

Configure SSSD recording scope - all / some / none

tlog_users_sssd (default: [])

YAML list of users to be recorded

tlog_groups_sssd (default: [])

YAML list of groups to be recorded

  • For details about the parameters used in tlog and additional information about the Terminal Session Recording System Role, see the /usr/share/ansible/roles/rhel-system-roles.tlog/README.md file.

21.3. Deploying the Terminal Session Recording RHEL System Role

Follow these steps to prepare and apply an Ansible playbook to configure a RHEL system to log session recording data to the systemd journal.

Prerequisites

  • You have set SSH keys for access from the control node to the target system where the Terminal Session Recording System Role will be configured.
  • You have at least one system that you want to configure the Terminal Session Recording System Role.
  • The Ansible Core package is installed on the control machine.
  • The rhel-system-roles package is installed on the control machine.

Procedure

  1. Create a new playbook.yml file with the following content:

    ---
    - name: Deploy session recording
      hosts: all
      vars:
        tlog_scope_sssd: some
        tlog_users_sssd:
          - recorded-user
    
      roles:
        - rhel-system-roles.tlog

    Where,

    • tlog_scope_sssd:

      • some specifies you want to record only certain users and groups, not all or none.
    • tlog_users_sssd:

      • recorded-user specifies the user you want to record a session from. Note that this does not add the user for you. You must set the user by yourself.
  2. Optionally, verify the playbook syntax.

    # ansible-playbook --syntax-check playbook.yml
  3. Run the playbook on your inventory file:

    # ansible-playbook -i IP_Address /path/to/file/playbook.yml -v

As a result, the playbook installs the tlog RHEL System Role on the system you specified. The role includes tlog-rec-session, a terminal session I/O logging program, that acts as the login shell for a user. It also creates an SSSD configuration drop file that can be used by the users and groups that you define. SSSD parses and reads these users and groups, and replaces their user shell with tlog-rec-session. Additionally, if the cockpit package is installed on the system, the playbook also installs the cockpit-session-recording package, which is a Cockpit module that allows you to view and play recordings in the web console interface.

Verification steps

To verify that the SSSD configuration drop file is created in the system, perform the following steps:

  1. Navigate to the folder where the SSSD configuration drop file is created:

    # cd /etc/sssd/conf.d
  2. Check the file content:

    # cat /etc/sssd/conf.d/sssd-session-recording.conf

You can see that the file contains the parameters you set in the playbook.

21.4. Deploying the Terminal Session Recording RHEL System Role for excluding lists of groups or users

You can use the Terminal Session Recording System Role to support the SSSD session recording configuration options exclude_users and exclude_groups. Follow these steps to prepare and apply an Ansible playbook to configure a RHEL system to exclude users or groups from having their sessions recorded and logged in the systemd journal.

Prerequisites

  • You have set SSH keys for access from the control node to the target system on which you want to configure the Terminal Session Recording System Role.
  • You have at least one system on which you want to configure the Terminal Session Recording System Role.
  • The Ansible Core package is installed on the control machine.
  • The rhel-system-roles package is installed on the control machine.

Procedure

  1. Create a new playbook.yml file with the following content:

    ---
    - name: Deploy session recording excluding users and groups
      hosts: all
      vars:
        tlog_scope_sssd: all
        tlog_exclude_users_sssd:
          - jeff
          - james
        tlog_exclude_groups_sssd:
          - admins
    
      roles:
        - rhel-system-roles.tlog

    Where,

    • tlog_scope_sssd:

      • all: specifies that you want to record all users and groups.
    • tlog_exclude_users_sssd:

      • user names: specifies the user names of the users you want to exclude from the session recording.
    • tlog_exclude_groups_sssd:

      • admins specifies the group you want to exclude from the session recording.
  2. Optionally, verify the playbook syntax;

    # ansible-playbook --syntax-check playbook.yml
  3. Run the playbook on your inventory file:

    # ansible-playbook -i IP_Address /path/to/file/playbook.yml -v

As a result, the playbook installs the tlog RHEL System Role on the system you specified. The role includes tlog-rec-session, a terminal session I/O logging program, that acts as the login shell for a user. It also creates an /etc/sssd/conf.d/sssd-session-recording.conf SSSD configuration drop file that can be used by users and groups except those that you defined as excluded. SSSD parses and reads these users and groups, and replaces their user shell with tlog-rec-session. Additionally, if the cockpit package is installed on the system, the playbook also installs the cockpit-session-recording package, which is a Cockpit module that allows you to view and play recordings in the web console interface.

Verification steps

To verify that the SSSD configuration drop file is created in the system, perform the following steps:

  1. Navigate to the folder where the SSSD configuration drop file is created:

    # cd /etc/sssd/conf.d
  2. Check the file content:

    # cat sssd-session-recording.conf

You can see that the file contains the parameters you set in the playbook.

Additional resources

21.5. Recording a session using the deployed Terminal Session Recording System Role in the CLI

After you have deployed the Terminal Session Recording System Role in the system you have specified, you are able to record a user terminal session using the command-line interface (CLI).

Prerequisites

Procedure

  1. Create a user and assign a password for this user:

    # useradd recorded-user
    # passwd recorded-user
  2. Log in to the system as the user you just created:

    # ssh recorded-user@localhost
  3. Type "yes" when the system prompts you to type yes or no to authenticate.
  4. Insert the recorded-user’s password.

    The system displays a message about your session being recorded.

    ATTENTION! Your session is being recorded!
  5. After you have finished recording the session, type:

    # exit

    The system logs out from the user and closes the connection with the localhost.

As a result, the user session is recorded, stored and you can play it using a journal.

Verification steps

To view your recorded session in the journal, do the following steps:

  1. Run the command below:

    # journalctl -o verbose -r
  2. Search for the MESSAGE field of the tlog-rec recorded journal entry.

    # journalctl -xel _EXE=/usr/bin/tlog-rec-session

21.6. Watching a recorded session using the CLI

You can play a user session recording from a journal using the command-line interface (CLI).

Procedure

  1. On the CLI terminal, play the user session recording:

    # journalctl -o verbose -r
  2. Search for the tlog recording:

    $ /tlog-rec

    You can see details such as:

    • The username for the user session recording
    • The out_txt field, a raw output encode of the recorded session
    • The identifier number TLOG_REC=ID_number
  3. Copy the identifier number TLOG_REC=ID_number.
  4. Playback the recording using the identifier number TLOG_REC=ID_number.

    # tlog-play -r journal -M TLOG_REC=ID_number

As a result, you can see the user session recording terminal output being played back.

Chapter 22. Configuring a high-availability cluster using System Roles

With the HA Cluster System Role, you can configure and manage a high-availability cluster that uses the Pacemaker high availability cluster resource manager.

Note

The HA System Role does not currently support SBD.

22.1. HA Cluster System Role variables

In an HA Cluster System Role playbook, you define the variables for a high availability cluster according to the requirements of your cluster deployment.

The variables you can set for an HA Cluster System Role are as follows.

ha_cluster_enable_repos
A boolean flag that enables the repositories containing the packages that are needed by the HA Cluster System Role. When this is set to yes, the default value of this variable, you must have active subscription coverage for RHEL and the RHEL High Availability Add-On on the systems that you will use as your cluster members or the system role will fail.
ha_cluster_cluster_present

A boolean flag which, if set to yes, determines that HA cluster will be configured on the hosts according to the variables passed to the role. Any cluster configuration not specified in the role and not supported by the role will be lost.

If ha_cluster_cluster_present is set to no, all HA cluster configuration will be removed from the target hosts.

The default value of this variable is yes.

The following example playbook removes all cluster configuration on node1 and node2

- hosts: node1 node2
  vars:
    ha_cluster_cluster_present: no

  roles:
    - rhel-system-roles.ha_cluster
ha_cluster_start_on_boot
A boolean flag that determines whether cluster services will be configured to start on boot. The default value of this variable is yes.
ha_cluster_fence_agent_packages
List of fence agent packages to install. The default value of this variable is fence-agents-all, fence-virt.
ha_cluster_extra_packages

List of additional packages to be installed. The default value of this variable is no packages.

This variable can be used to install additional packages not installed automatically by the role, for example custom resource agents.

It is possible to specify fence agents as members of this list. However, ha_cluster_fence_agent_packages is the recommended role variable to use for specifying fence agents, so that its default value is overridden.

ha_cluster_hacluster_password
A string value that specifies the password of the hacluster user. The hacluster user has full access to a cluster. It is recommended that you vault encrypt the password, as described in Encrypting content with Ansible Vault. There is no default password value, and this variable must be specified.
ha_cluster_corosync_key_src

The path to Corosync authkey file, which is the authentication and encryption key for Corosync communication. It is highly recommended that you have a unique authkey value for each cluster. The key should be 256 bytes of random data.

If you specify a key for this variable, it is recommended that you vault encrypt the key, as described in Encrypting content with Ansible Vault.

If no key is specified, a key already present on the nodes will be used. If nodes do not have the same key, a key from one node will be distributed to other nodes so that all nodes have the same key. If no node has a key, a new key will be generated and distributed to the nodes.

If this variable is set, ha_cluster_regenerate_keys is ignored for this key.

The default value of this variable is null.

ha_cluster_pacemaker_key_src

The path to the Pacemaker authkey file, which is the authentication and encryption key for Pacemaker communication. It is highly recommended that you have a unique authkey value for each cluster. The key should be 256 bytes of random data.

If you specify a key for this variable, it is recommended that you vault encrypt the key, as described in Encrypting content with Ansible Vault.

If no key is specified, a key already present on the nodes will be used. If nodes do not have the same key, a key from one node will be distributed to other nodes so that all nodes have the same key. If no node has a key, a new key will be generated and distributed to the nodes.

If this variable is set, ha_cluster_regenerate_keys is ignored for this key.

The default value of this variable is null.

ha_cluster_fence_virt_key_src

The path to the fence-virt or fence-xvm pre-shared key file, which is the location of the authentication key for the fence-virt or fence-xvm fence agent.

If you specify a key for this variable, it is recommended that you vault encrypt the key, as described in Encrypting content with Ansible Vault.

If no key is specified, a key already present on the nodes will be used. If nodes do not have the same key, a key from one node will be distributed to other nodes so that all nodes have the same key. If no node has a key, a new key will be generated and distributed to the nodes. If the HA Cluster System Role generates a new key in this fashion, you should copy the key to your nodes' hypervisor to ensure that fencing works.

If this variable is set, ha_cluster_regenerate_keys is ignored for this key.

The default value of this variable is null.

ha_cluster_pcsd_public_key_srcr, ha_cluster_pcsd_private_key_src

The path to the pcsd TLS certificate and private key. If this is not specified, a certificate-key pair already present on the nodes will be used. If a certificate-key pair is not present, a random new one will be generated.

If you specify a private key value for this variable, it is recommended that you vault encrypt the key, as described in Encrypting content with Ansible Vault.

If these variables are set, ha_cluster_regenerate_keys is ignored for this certificate-key pair.

The default value of these variables is null.

ha_cluster_regenerate_keys

A boolean flag which, when set to yes, determines that pre-shared keys and TLS certificates will be regenerated. For more information on when keys and certificates will be regenerated, see the descriptions of the ha_cluster_corosync_key_src, ha_cluster_pacemaker_key_src, ha_cluster_fence_virt_key_src, ha_cluster_pcsd_public_key_src, and ha_cluster_pcsd_private_key_src variables.

The default value of this variable is no.

ha_cluster_pcs_permission_list

Configures permissions to manage a cluster using pcsd. The items you configure with this variable are as follows:

  • type - user or group
  • name - user or group name
  • allow_list - Allowed actions for the specified user or group:

    • read - View cluster status and settings
    • write - Modify cluster settings except permissions and ACLs
    • grant - Modify cluster permissions and ACLs
    • full - Unrestricted access to a cluster including adding and removing nodes and access to keys and certificates

The structure of the ha_cluster_pcs_permission_list variable and its default values are as follows:

ha_cluster_pcs_permission_list:
  - type: group
    name: hacluster
    allow_list:
      - grant
      - read
      - write
ha_cluster_cluster_name
The name of the cluster. This is a string value with a default of my-cluster.
ha_cluster_cluster_properties

List of sets of cluster properties for Pacemaker cluster-wide configuration. Only one set of cluster properties is supported.

The structure of a set of cluster properties is as follows:

ha_cluster_cluster_properties:
  - attrs:
      - name: property1_name
        value: property1_value
      - name: property2_name
        value: property2_value

By default, no properties are set.

The following example playbook configures a cluster consisting of node1 and node2 and sets the stonith-enabled and no-quorum-policy cluster properties.

- hosts: node1 node2
  vars:
    ha_cluster_cluster_name: my-new-cluster
    ha_cluster_hacluster_password: password
    ha_cluster_cluster_properties:
      - attrs:
          - name: stonith-enabled
            value: 'true'
          - name: no-quorum-policy
            value: stop

  roles:
    - rhel-system-roles.ha_cluster
ha_cluster_resource_primitives

This variable defines pacemaker resources configured by the System Role, including stonith resources, including stonith resources. The items you can configure for each resource are as follows:

  • id (mandatory) - ID of a resource.
  • agent (mandatory) - Name of a resource or stonith agent, for example ocf:pacemaker:Dummy or stonith:fence_xvm. It is mandatory to specify stonith: for stonith agents. For resource agents, it is possible to use a short name, such as Dummy, instead of ocf:pacemaker:Dummy. However, if several agents with the same short name are installed, the role will fail as it will be unable to decide which agent should be used. Therefore, it is recommended that you use full names when specifying a resource agent.
  • instance_attrs (optional) - List of sets of the resource’s instance attributes. Currently, only one set is supported. The exact names and values of attributes, as well as whether they are mandatory or not, depend on the resource or stonith agent.
  • meta_attrs (optional) - List of sets of the resource’s meta attributes. Currently, only one set is supported.
  • operations (optional) - List of the resource’s operations.

    • action (mandatory) - Operation action as defined by pacemaker and the resource or stonith agent.
    • attrs (mandatory) - Operation options, at least one option must be specified.

The structure of the resource definition that you configure with the HA Cluster System Role is as follows.

  - id: resource-id
    agent: resource-agent
    instance_attrs:
      - attrs:
          - name: attribute1_name
            value: attribute1_value
          - name: attribute2_name
            value: attribute2_value
    meta_attrs:
      - attrs:
          - name: meta_attribute1_name
            value: meta_attribute1_value
          - name: meta_attribute2_name
            value: meta_attribute2_value
    operations:
      - action: operation1-action
        attrs:
          - name: operation1_attribute1_name
            value: operation1_attribute1_value
          - name: operation1_attribute2_name
            value: operation1_attribute2_value
      - action: operation2-action
        attrs:
          - name: operation2_attribute1_name
            value: operation2_attribute1_value
          - name: operation2_attribute2_name
            value: operation2_attribute2_value

By default, no resources are defined.

For an example HA Cluster System Role playbook that includes resource configuration, see Configuring a high availability cluster with fencing and resources .

ha_cluster_resource_groups

This variable defines pacemaker resource groups configured by the System Role. The items you can configure for each resource group are as follows:

  • id (mandatory) - ID of a group.
  • resources (mandatory) - List of the group’s resources. Each resource is referenced by its ID and the resources must be defined in the ha_cluster_resource_primitives variable. At least one resource must be listed.
  • meta_attrs (optional) - List of sets of the group’s meta attributes. Currently, only one set is supported.

The structure of the resource group definition that you configure with the HA Cluster System Role is as follows.

ha_cluster_resource_groups:
  - id: group-id
    resource_ids:
      - resource1-id
      - resource2-id
    meta_attrs:
      - attrs:
          - name: group_meta_attribute1_name
            value: group_meta_attribute1_value
          - name: group_meta_attribute2_name
            value: group_meta_attribute2_value

By default, no resource groups are defined.

For an example HA Cluster System Role playbook that includes resource group configuration, see Configuring a high availability cluster with fencing and resources .

ha_cluster_resource_clones

This variable defines pacemaker resource clones configured by the System Role. The items you can configure for a resource clone are as follows:

  • resource_id (mandatory) - Resource to be cloned. The resource must be defined in the ha_cluster_resource_primitives variable or the ha_cluster_resource_groups variable.
  • promotable (optional) - Indicates whether the resource clone to be created is a promotable clone, indicated as yes or no.
  • id (optional) - Custom ID of the clone. If no ID is specified, it will be generated. A warning will be displayed if this option is not supported by the cluster.
  • meta_attrs (optional) - List of sets of the clone’s meta attributes. Currently, only one set is supported.

The structure of the resource clone definition that you configure with the HA Cluster System Role is as follows.

ha_cluster_resource_clones:
  - resource_id: resource-to-be-cloned
    promotable: yes
    id: custom-clone-id
    meta_attrs:
      - attrs:
          - name: clone_meta_attribute1_name
            value: clone_meta_attribute1_value
          - name: clone_meta_attribute2_name
            value: clone_meta_attribute2_value

By default, no resource clones are defined.

For an example HA Cluster System Role playbook that includes resource clone configuration, see Configuring a high availability cluster with fencing and resources .

ha_cluster_constraints_location

This variable defines resource location constraints. Resource location constraints indicate which nodes a resource can run on. You can specify a resources specified by a resource ID or by a pattern, which can match more than one resource. You can specify a node by a node name or by a rule.

The items you can configure for a resource location constraint are as follows:

  • resource (mandatory) - Specification of a resource the constraint applies to.
  • node (mandatory) - Name of a node the resource should prefer or avoid.
  • id (optional) - ID of the constraint. If not specified, it will be autogenerated.
  • options (optional) - List of name-value dictionaries.

    • score - Sets the weight of the constraint.

      • A positive score value means the resource prefers running on the node.
      • A negative score value means the resource should avoid running on the node.
      • A score value of -INFINITY means the resource must avoid running on the node.
      • If score is not specified, the score value defaults to INFINITY.

By default no resource location constraints are defined.

The structure of a resource location constraint specifying a resource ID and node name is as follows:

ha_cluster_constraints_location:
  - resource:
      id: resource-id
    node: node-name
    id: constraint-id
    options:
      - name: score
        value: score-value
      - name: option-name
        value: option-value

The items that you configure for a resource location constraint that specifies a resource pattern are the same items that you configure for a resource location constraint that specifies a resource ID, with the exception of the resource specification itself. The item that you specify for the resource specification is as follows:

  • pattern (mandatory) - POSIX extended regular expression resource IDs are matched against.

The structure of a resource location constraint specifying a resource pattern and node name is as follows:

ha_cluster_constraints_location:
  - resource:
      pattern: resource-pattern
    node: node-name
    id: constraint-id
    options:
      - name: score
        value: score-value
      - name: resource-discovery
        value: resource-discovery-value

The items you can configure for a resource location constraint that specifies a resource ID and a rule are as follows:

  • resource (mandatory) - Specification of a resource the constraint applies to.

    • id (mandatory) - Resource ID.
    • role (optional) - The resource role to which the constraint is limited: Started, Unpromoted, Promoted.
  • rule (mandatory) - Constraint rule written using pcs syntax. For further information, see the constraint location section of the pcs(8) man page.
  • Other items to specify have the same meaning as for a resource constraint that does not specify a rule.

The structure of a resource location constraint that specifies a resource ID and a rule is as follows:

ha_cluster_constraints_location:
  - resource:
      id: resource-id
      role: resource-role
    rule: rule-string
    id: constraint-id
    options:
      - name: score
        value: score-value
      - name: resource-discovery
        value: resource-discovery-value

The items that you configure for a resource location constraint that specifies a resource pattern and a rule are the same items that you configure for a resource location constraint that specifies a resource ID and a rule, with the exception of the resource specification itself. The item that you specify for the resource specification is as follows:

  • pattern (mandatory) - POSIX extended regular expression resource IDs are matched against.

The structure of a resource location constraint that specifies a resource pattern and a rule is as follows:

ha_cluster_constraints_location:
  - resource:
      pattern: resource-pattern
      role: resource-role
    rule: rule-string
    id: constraint-id
    options:
      - name: score
        value: score-value
      - name: resource-discovery
        value: resource-discovery-value

For an example ha_cluster system role playbook that creates a cluster with resource constraints, see Configuring a high availability cluster with resource constraints .

ha_cluster_constraints_colocation

This variable defines resource colocation constraints. Resource colocation constraints indicate that the location of one resource depends on the location of another one. There are two types of colocation constraints: a simple colocation constraint for two resources, and a set colocation constraint for multiple resources.

The items you can configure for a simple resource colocation constraint are as follows:

  • resource_follower (mandatory) - A resource that should be located relative to resource_leader.

    • id (mandatory) - Resource ID.
    • role (optional) - The resource role to which the constraint is limited: Started, Unpromoted, Promoted.
  • resource_leader (mandatory) - The cluster will decide where to put this resource first and then decide where to put resource_follower.

    • id (mandatory) - Resource ID.
    • role (optional) - The resource role to which the constraint is limited: Started, Unpromoted, Promoted.
  • id (optional) - ID of the constraint. If not specified, it will be autogenerated.
  • options (optional) - List of name-value dictionaries.

    • score - Sets the weight of the constraint.

      • Positive score values indicate the resources should run on the same node.
      • Negative score values indicate the resources should run on different nodes.
      • A score value of +INFINITY indicates the resources must run on the same node.
      • A score value of -INFINITY indicates the resources must run on different nodes.
      • If score is not specified, the score value defaults to INFINITY.

By default no resource colocation constraints are defined.

The structure of a simple resource colocation constraint is as follows:

ha_cluster_constraints_colocation:
  - resource_follower:
      id: resource-id1
      role: resource-role1
    resource_leader:
      id: resource-id2
      role: resource-role2
    id: constraint-id
    options:
      - name: score
        value: score-value
      - name: option-name
        value: option-value

The items you can configure for a resource set colocation constraint are as follows:

  • resource_sets (mandatory) - List of resource sets.

    • resource_ids (mandatory) - List of resources in a set.
    • options (optional) - List of name-value dictionaries fine-tuning how resources in the sets are treated by the constraint.
  • id (optional) - Same values as for a simple colocation constraint.
  • options (optional) - Same values as for a simple colocation constraint.

The structure of a resource set colocation constraint is as follows:

ha_cluster_constraints_colocation:
  - resource_sets:
      - resource_ids:
          - resource-id1
          - resource-id2
        options:
          - name: option-name
            value: option-value
    id: constraint-id
    options:
      - name: score
        value: score-value
      - name: option-name
        value: option-value

For an example ha_cluster system role playbook that creates a cluster with resource constraints, see Configuring a high availability cluster with resource constraints .

ha_cluster_constraints_order

This variable defines resource order constraints. Resource order constraints indicate the order in which certain resource actions should occur. There are two types of resource order constraints: a simple order constraint for two resources, and a set order constraint for multiple resources.

The items you can configure for a simple resource order constraint are as follows:

  • resource_first (mandatory) - Resource that the resource_then resource depends on.

    • id (mandatory) - Resource ID.
    • action (optional) - The action that must complete before an action can be initiated for the resource_then resource. Allowed values: start, stop, promote, demote.
  • resource_then (mandatory) - The dependent resource.

    • id (mandatory) - Resource ID.
    • action (optional) - The action that the resource can execute only after the action on the resource_first resource has completed. Allowed values: start, stop, promote, demote.
  • id (optional) - ID of the constraint. If not specified, it will be autogenerated.
  • options (optional) - List of name-value dictionaries.

By default no resource order constraints are defined.

The structure of a simple resource order constraint is as follows:

ha_cluster_constraints_order:
  - resource_first:
      id: resource-id1
      action: resource-action1
    resource_then:
      id: resource-id2
      action: resource-action2
    id: constraint-id
    options:
      - name: score
        value: score-value
      - name: option-name
        value: option-value

The items you can configure for a resource set order constraint are as follows:

  • resource_sets (mandatory) - List of resource sets.

    • resource_ids (mandatory) - List of resources in a set.
    • options (optional) - List of name-value dictionaries fine-tuning how resources in the sets are treated by the constraint.
  • id (optional) - Same values as for a simple order constraint.
  • options (optional) - Same values as for a simple order constraint.

The structure of a resource set order constraint is as follows:

ha_cluster_constraints_order:
  - resource_sets:
      - resource_ids:
          - resource-id1
          - resource-id2
        options:
          - name: option-name
            value: option-value
    id: constraint-id
    options:
      - name: score
        value: score-value
      - name: option-name
        value: option-value

For an example ha_cluster system role playbook that creates a cluster with resource constraints, see Configuring a high availability cluster with resource constraints .

ha_cluster_constraints_ticket

This variable defines resource ticket constraints. Resource ticket constraints indicate the resources that depend on a certain ticket. There are two types of resource ticket constraints: a simple ticket constraint for one resource, and a ticket order constraint for multiple resources.

The items you can configure for a simple resource ticket constraint are as follows:

  • resource (mandatory) - Specification of a resource the constraint applies to.

    • id (mandatory) - Resource ID.
    • role (optional) - The resource role to which the constraint is limited: Started, Unpromoted, Promoted.
  • ticket (mandatory) - Name of a ticket the resource depends on.
  • id (optional) - ID of the constraint. If not specified, it will be autogenerated.
  • options (optional) - List of name-value dictionaries.

    • loss-policy (optional) - Action to perform on the resource if the ticket is revoked.

By default no resource ticket constraints are defined.

The structure of a simple resource ticket constraint is as follows:

ha_cluster_constraints_ticket:
  - resource:
      id: resource-id
      role: resource-role
    ticket: ticket-name
    id: constraint-id
    options:
      - name: loss-policy
        value: loss-policy-value
      - name: option-name
        value: option-value

The items you can configure for a resource set ticket constraint are as follows:

  • resource_sets (mandatory) - List of resource sets.

    • resource_ids (mandatory) - List of resources in a set.
    • options (optional) - List of name-value dictionaries fine-tuning how resources in the sets are treated by the constraint.
  • ticket (mandatory) - Same value as for a simple ticket constraint.
  • id (optional) - Same value as for a simple ticket constraint.
  • options (optional) - Same values as for a simple ticket constraint.

The structure of a resource set ticket constraint is as follows:

ha_cluster_constraints_ticket:
  - resource_sets:
      - resource_ids:
          - resource-id1
          - resource-id2
        options:
          - name: option-name
            value: option-value
    ticket: ticket-name
    id: constraint-id
    options:
      - name: option-name
        value: option-value

For an example ha_cluster system role playbook that creates a cluster with resource constraints, see Configuring a high availability cluster with resource constraints .

22.2. Specifying an inventory for the HA Cluster System Role

When configuring an HA cluster using the HA Cluster System Role playbook, you configure the names and addresses of the nodes for the cluster in an inventory.

For each node in an inventory, you can optionally specify the following items:

  • node_name - the name of a node in a cluster.
  • pcs_address - an address used by pcs to communicate with the node. It can be a name, FQDN or an IP address and it can include a port number.
  • corosync_addresses - list of addresses used by Corosync. All nodes which form a particular cluster must have the same number of addresses and the order of the addresses matters.

The following example shows an inventory with targets node1 and node2. node1 and node2 must be either fully qualified domain names or must otherwise be able to connect to the nodes as when, for example, the names are resolvable through the /etc/hosts file.

all:
  hosts:
    node1:
      ha_cluster:
        node_name: node-A
        pcs_address: node1-address
        corosync_addresses:
          - 192.168.1.11
          - 192.168.2.11
    node2:
      ha_cluster:
        node_name: node-B
        pcs_address: node2-address:2224
        corosync_addresses:
          - 192.168.1.12
          - 192.168.2.12

22.3. Configuring a high availability cluster running no resources

The following procedure uses the HA Cluster System Role, to create a high availability cluster with no fencing configured and which runs no resources.

Prerequisites

  • You have ansible-core installed on the node from which you want to run the playbook.

    Note

    You do not have to have ansible-core installed on the cluster member nodes.

  • You have the rhel-system-roles package installed on the system from which you want to run the playbook.

    For details about RHEL System Roles and how to apply them, see Getting started with RHEL System Roles.

  • The systems running RHEL that you will use as your cluster members must have active subscription coverage for RHEL and the RHEL High Availability Add-On.
Warning

The HA Cluster System Role replaces any existing cluster configuration on the specified nodes. Any settings not specified in the role will be lost.

Procedure

  1. Create an inventory file specifying the nodes in the cluster, as described in Specifying an inventory for the HA Cluster System Role .
  2. Create a playbook file, for example new-cluster.yml.

    The following example playbook file configures a cluster with no fencing configured and which runs no resources. When creating your playbook file for production, it is recommended that you vault encrypt the password, as described in Encrypting content with Ansible Vault.

    - hosts: node1 node2
      vars:
        ha_cluster_cluster_name: my-new-cluster
        ha_cluster_hacluster_password: password
    
      roles:
        - rhel-system-roles.ha_cluster
  3. Save the file.
  4. Run the playbook, specifying the path to the inventory file inventory you created in Step 1.

    # ansible-playbook -i inventory new-cluster.yml

22.4. Configuring a high availability cluster with fencing and resources

The following procedure uses the HA Cluster System Role to create a high availability cluster that includes a fencing device, cluster resources, resource groups, and a cloned resource.

Prerequisites

  • You have ansible-core installed on the node from which you want to run the playbook.

    Note

    You do not have to have ansible-core installed on the cluster member nodes.

  • You have the rhel-system-roles package installed on the system from which you want to run the playbook.

    For details about RHEL System Roles and how to apply them, see Getting started with RHEL System Roles.

  • The systems running RHEL that you will use as your cluster members must have active subscription coverage for RHEL and the RHEL High Availability Add-On.
Warning

The HA Cluster System Role replaces any existing cluster configuration on the specified nodes. Any settings not specified in the role will be lost.

Procedure

  1. Create an inventory file specifying the nodes in the cluster, as described in Specifying an inventory for the HA Cluster System Role .
  2. Create a playbook file, for example new-cluster.yml.

    The following example playbook file configures a cluster that includes fencing, several resources, and a resource group. It also includes a resource clone for the resource group. When creating your playbook file for production, it is recommended that you vault encrypt the password, as described in Encrypting content with Ansible Vault.

    - hosts: node1 node2
      vars:
        ha_cluster_cluster_name: my-new-cluster
        ha_cluster_hacluster_password: password
        ha_cluster_resource_primitives:
          - id: xvm-fencing
            agent: 'stonith:fence_xvm'
            instance_attrs:
              - attrs:
                  - name: pcmk_host_list
                    value: node1 node2
          - id: simple-resource
            agent: 'ocf:pacemaker:Dummy'
          - id: resource-with-options
            agent: 'ocf:pacemaker:Dummy'
            instance_attrs:
              - attrs:
                  - name: fake
                    value: fake-value
                  - name: passwd
                    value: passwd-value
            meta_attrs:
              - attrs:
                  - name: target-role
                    value: Started
                  - name: is-managed
                    value: 'true'
            operations:
              - action: start
                attrs:
                  - name: timeout
                    value: '30s'
              - action: monitor
                attrs:
                  - name: timeout
                    value: '5'
                  - name: interval
                    value: '1min'
          - id: dummy-1
            agent: 'ocf:pacemaker:Dummy'
          - id: dummy-2
            agent: 'ocf:pacemaker:Dummy'
          - id: dummy-3
            agent: 'ocf:pacemaker:Dummy'
          - id: simple-clone
            agent: 'ocf:pacemaker:Dummy'
          - id: clone-with-options
            agent: 'ocf:pacemaker:Dummy'
        ha_cluster_resource_groups:
          - id: simple-group
            resource_ids:
              - dummy-1
              - dummy-2
            meta_attrs:
              - attrs:
                  - name: target-role
                    value: Started
                  - name: is-managed
                    value: 'true'
          - id: cloned-group
            resource_ids:
              - dummy-3
        ha_cluster_resource_clones:
          - resource_id: simple-clone
          - resource_id: clone-with-options
            promotable: yes
            id: custom-clone-id
            meta_attrs:
              - attrs:
                  - name: clone-max
                    value: '2'
                  - name: clone-node-max
                    value: '1'
          - resource_id: cloned-group
            promotable: yes
    
      roles:
        - rhel-system-roles.ha_cluster
  3. Save the file.
  4. Run the playbook, specifying the path to the inventory file inventory you created in Step 1.

    # ansible-playbook -i inventory new-cluster.yml

22.5. Configuring a high availability cluster with resource constraints

The following procedure uses the ha_cluster system role to create a high availability cluster that includes resource location constraints, resource colocation constraints, resource order constraints, and resource ticket constraints.

Prerequisites

  • You have ansible-core installed on the node from which you want to run the playbook.

    Note

    You do not have to have ansible-core installed on the cluster member nodes.

  • You have the rhel-system-roles package installed on the system from which you want to run the playbook.

    For details about RHEL System Roles and how to apply them, see Getting started with RHEL System Roles.

  • The systems running RHEL that you will use as your cluster members must have active subscription coverage for RHEL and the RHEL High Availability Add-On.
Warning

The ha_cluster system role replaces any existing cluster configuration on the specified nodes. Any settings not specified in the role will be lost.

Procedure

  1. Create an inventory file specifying the nodes in the cluster, as described in Specifying an inventory for the ha_cluster system role .
  2. Create a playbook file, for example new-cluster.yml.

    The following example playbook file configures a cluster that includes resource location constraints, resource colocation constraints, resource order constraints, and resource ticket constraints. When creating your playbook file for production, it is recommended that you vault encrypt the password, as described in Encrypting content with Ansible Vault.

    - hosts: node1 node2
      vars:
        ha_cluster_cluster_name: my-new-cluster
        ha_cluster_hacluster_password: password
        # In order to use constraints, we need resources the constraints will apply
        # to.
        ha_cluster_resource_primitives:
          - id: xvm-fencing
            agent: 'stonith:fence_xvm'
            instance_attrs:
              - attrs:
                  - name: pcmk_host_list
                    value: node1 node2
          - id: dummy-1
            agent: 'ocf:pacemaker:Dummy'
          - id: dummy-2
            agent: 'ocf:pacemaker:Dummy'
          - id: dummy-3
            agent: 'ocf:pacemaker:Dummy'
          - id: dummy-4
            agent: 'ocf:pacemaker:Dummy'
          - id: dummy-5
            agent: 'ocf:pacemaker:Dummy'
          - id: dummy-6
            agent: 'ocf:pacemaker:Dummy'
        # location constraints
        ha_cluster_constraints_location:
          # resource ID and node name
          - resource:
              id: dummy-1
            node: node1
            options:
              - name: score
                value: 20
          # resource pattern and node name
          - resource:
              pattern: dummy-\d+
            node: node1
            options:
              - name: score
                value: 10
          # resource ID and rule
          - resource:
              id: dummy-2
            rule: '#uname eq node2 and date in_range 2022-01-01 to 2022-02-28'
          # resource pattern and rule
          - resource:
              pattern: dummy-\d+
            rule: node-type eq weekend and date-spec weekdays=6-7
        # colocation constraints
        ha_cluster_constraints_colocation:
          # simple constraint
          - resource_leader:
              id: dummy-3
            resource_follower:
              id: dummy-4
            options:
              - name: score
                value: -5
          # set constraint
          - resource_sets:
              - resource_ids:
                  - dummy-1
                  - dummy-2
              - resource_ids:
                  - dummy-5
                  - dummy-6
                options:
                  - name: sequential
                    value: "false"
            options:
              - name: score
                value: 20
        # order constraints
        ha_cluster_constraints_order:
          # simple constraint
          - resource_first:
              id: dummy-1
            resource_then:
              id: dummy-6
            options:
              - name: symmetrical
                value: "false"
          # set constraint
          - resource_sets:
              - resource_ids:
                  - dummy-1
                  - dummy-2
                options:
                  - name: require-all
                    value: "false"
                  - name: sequential
                    value: "false"
              - resource_ids:
                  - dummy-3
              - resource_ids:
                  - dummy-4
                  - dummy-5
                options:
                  - name: sequential
                    value: "false"
        # ticket constraints
        ha_cluster_constraints_ticket:
          # simple constraint
          - resource:
              id: dummy-1
            ticket: ticket1
            options:
              - name: loss-policy
                value: stop
          # set constraint
          - resource_sets:
              - resource_ids:
                  - dummy-3
                  - dummy-4
                  - dummy-5
            ticket: ticket2
            options:
              - name: loss-policy
                value: fence
    
      roles:
        - linux-system-roles.ha_cluster
  3. Save the file.
  4. Run the playbook, specifying the path to the inventory file inventory you created in Step 1.

    # ansible-playbook -i inventory new-cluster.yml

22.6. Configuring an Apache HTTP server in a high availability cluster with the HA Cluster System Role

This procedure configures an active/passive Apache HTTP server in a two-node Red Hat Enterprise Linux High Availability Add-On cluster using the HA Cluster System Role.

Prerequisites

  • You have ansible-core installed on the node from which you want to run the playbook.

    Note

    You do not have to have ansible-core installed on the cluster member nodes.

  • You have the rhel-system-roles package installed on the system from which you want to run the playbook.

    For details about RHEL System Roles and how to apply them, see Getting started with RHEL System Roles.

  • The systems running RHEL that you will use as your cluster members must have active subscription coverage for RHEL and the RHEL High Availability Add-On.
  • Your system includes a public virtual IP address, required for Apache.
  • Your system includes shared storage for the nodes in the cluster, using iSCSI, Fibre Channel, or other shared network block device.
  • You have configured an LVM logical volume with an ext4 files system, as described in Configuring an LVM volume with an ext4 file system in a Pacemaker cluster.
  • You have configured an Apache HTTP server, as described in Configuring an Apache HTTP Server.
  • Your system includes an APC power switch that will be used to fence the cluster nodes.
Warning

The HA Cluster System Role replaces any existing cluster configuration on the specified nodes. Any settings not specified in the role will be lost.

Procedure

  1. Create an inventory file specifying the nodes in the cluster, as described in Specifying an inventory for the HA Cluster System Role .
  2. Create a playbook file, for example http-cluster.yml.

    The following example playbook file configures a previously-created Apache HTTP server in an active/passive two-node HA cluster

    This example uses an APC power switch with a host name of zapc.example.com. If the cluster does not use any other fence agents, you can optionally list only the fence agents your cluster requires when defining the ha_cluster_fence_agent_packages variable, as in this example.

    When creating your playbook file for production, it is recommended that you vault encrypt the password, as described in Encrypting content with Ansible Vault.

    - hosts: z1.example.com z2.example.com
      roles:
        - rhel-system-roles.ha_cluster
      vars:
        ha_cluster_hacluster_password: password
        ha_cluster_cluster_name: my_cluster
        ha_cluster_fence_agent_packages:
          - fence-agents-apc-snmp
        ha_cluster_resource_primitives:
          - id: myapc
            agent: stonith:fence_apc_snmp
            instance_attrs:
              - attrs:
                  - name: ipaddr
                    value: zapc.example.com
                  - name: pcmk_host_map
                    value: z1.example.com:1;z2.example.com:2
                  - name: login
                    value: apc
                  - name: passwd
                    value: apc
          - id: my_lvm
            agent: ocf:heartbeat:LVM-activate
            instance_attrs:
              - attrs:
                  - name: vgname
                    value: my_vg
                  - name: vg_access_mode
                    value: system_id
          - id: my_fs
            agent: Filesystem
            instance_attrs:
              - attrs:
                  - name: device
                    value: /dev/my_vg/my_lv
                  - name: directory
                    value: /var/www
                  - name: fstype
                    value: ext4
          - id: VirtualIP
            agent: IPaddr2
            instance_attrs:
              - attrs:
                  - name: ip
                    value: 198.51.100.3
                  - name: cidr_netmask
                    value: 24
          - id: Website
            agent: apache
            instance_attrs:
              - attrs:
                  - name: configfile
                    value: /etc/httpd/conf/httpd.conf
                  - name: statusurl
                    value: http://127.0.0.1/server-status
        ha_cluster_resource_groups:
          - id: apachegroup
            resource_ids:
              - my_lvm
              - my_fs
              - VirtualIP
              - Website
  3. Save the file.
  4. Run the playbook, specifying the path to the inventory file inventory you created in Step 1.

    # ansible-playbook -i inventory http-cluster.yml

Verification steps

  1. From one of the nodes in the cluster, check the status of the cluster. Note that all four resources are running on the same node, z1.example.com.

    If you find that the resources you configured are not running, you can run the pcs resource debug-start resource command to test the resource configuration.

    [root@z1 ~]# pcs status
    Cluster name: my_cluster
    Last updated: Wed Jul 31 16:38:51 2013
    Last change: Wed Jul 31 16:42:14 2013 via crm_attribute on z1.example.com
    Stack: corosync
    Current DC: z2.example.com (2) - partition with quorum
    Version: 1.1.10-5.el7-9abe687
    2 Nodes configured
    6 Resources configured
    
    Online: [ z1.example.com z2.example.com ]
    
    Full list of resources:
     myapc  (stonith:fence_apc_snmp):       Started z1.example.com
     Resource Group: apachegroup
         my_lvm     (ocf::heartbeat:LVM-activate):   Started z1.example.com
         my_fs      (ocf::heartbeat:Filesystem):    Started z1.example.com
         VirtualIP  (ocf::heartbeat:IPaddr2):       Started z1.example.com
         Website    (ocf::heartbeat:apache):        Started z1.example.com
  2. Once the cluster is up and running, you can point a browser to the IP address you defined as the IPaddr2 resource to view the sample display, consisting of the simple word "Hello".

    Hello
  3. To test whether the resource group running on z1.example.com fails over to node z2.example.com, put node z1.example.com in standby mode, after which the node will no longer be able to host resources.

    [root@z1 ~]# pcs node standby z1.example.com
  4. After putting node z1 in standby mode, check the cluster status from one of the nodes in the cluster. Note that the resources should now all be running on z2.

    [root@z1 ~]# pcs status
    Cluster name: my_cluster
    Last updated: Wed Jul 31 17:16:17 2013
    Last change: Wed Jul 31 17:18:34 2013 via crm_attribute on z1.example.com
    Stack: corosync
    Current DC: z2.example.com (2) - partition with quorum
    Version: 1.1.10-5.el7-9abe687
    2 Nodes configured
    6 Resources configured
    
    Node z1.example.com (1): standby
    Online: [ z2.example.com ]
    
    Full list of resources:
    
     myapc  (stonith:fence_apc_snmp):       Started z1.example.com
     Resource Group: apachegroup
         my_lvm     (ocf::heartbeat:LVM-activate):   Started z2.example.com
         my_fs      (ocf::heartbeat:Filesystem):    Started z2.example.com
         VirtualIP  (ocf::heartbeat:IPaddr2):       Started z2.example.com
         Website    (ocf::heartbeat:apache):        Started z2.example.com

    The web site at the defined IP address should still display, without interruption.

  5. To remove z1 from standby mode, enter the following command.

    [root@z1 ~]# pcs node unstandby z1.example.com
    Note

    Removing a node from standby mode does not in itself cause the resources to fail back over to that node. This will depend on the resource-stickiness value for the resources. For information on the resource-stickiness meta attribute, see Configuring a resource to prefer its current node.

22.7. Additional resources

Chapter 23. Installing and configuring web console with the cockpit RHEL System Role

With the cockpit RHEL System Role, you can install and configure the web console in your system.

23.1. The cockpit System Role

You can use the cockpit System Role to automatically deploy and enable the web console and thus be able to manage your RHEL systems from a web browser.

23.2. Variables for the cockpit RHEL System Role

The parameters used for the cockpit RHEL System Roles are:

Role VariableDescription

cockpit_packages: (default: default)

Set one of the predefined package sets: default, minimal, or full.

* cockpit_packages: (default: default) - most common pages and on-demand install UI

* cockpit_packages: (default: minimal) - just the Overview, Terminal, Logs, Accounts, and Metrics pages; minimal dependencies

* cockpit_packages: (default: full) - all available pages

Optionally, specify your own selection of cockpit packages you want to install.

cockpit_enabled: (default:yes)

Configure if web console web server is enabled to start automatically at boot

cockpit_started: (default:yes)

Configure if web console should be started

cockpit_config: (default: nothing)

You can apply settings in the /etc/cockpit/cockpit.conf file. NOTE: The previous settings file will be lost.

Additional resources

23.3. Installing web console by using the cockpit RHEL System Role

Follow the below steps to install web console in your system and make the services accessible in it.

Prerequisites

  • Access and permissions to one or more managed nodes, which are systems you want to configure with the VPN System Role.
  • Access and permissions to a control node, which is a system from which Red Hat Ansible Core configures other systems.

    On the control node:

    • The ansible-core and rhel-system-roles packages are installed.
    • An inventory file which lists the managed nodes.

Procedure

  1. Create a new playbook.yml file with the following content:

    ---
    - hosts: all
      tasks:
        - name: Install RHEL web console
          include_role:
            name: rhel-system-roles.cockpit
          vars:
            cockpit_packages: default
            #cockpit_packages: minimal
            #cockpit_packages: full
    
        - name: Configure Firewall for web console
          include_role:
            name: rhel-system-roles.firewall
          vars:
            firewall:
              service: cockpit
              state: enabled
    Note

    The cockpit port is open by default in firewalld, so the "Configure Firewall for web console" task only applies if the system administrator customized this.

  2. Optional: Verify playbook syntax.

    # ansible-playbook --syntax-check -i inventory_file playbook.yml
  3. Run the playbook on your inventory file:

    # ansible-playbook -i inventory_file /path/to/file/playbook.yml

23.4. Setting up a new certificate by using the certificate RHEL System Role

By default, web console creates a self-signed certificate on first startup. You can customize the self-signed certificate for security reasons. To generate a new certificate, you can use the certificate role. For that, follow the steps:

Prerequisites

  • Access and permissions to one or more managed nodes, which are systems you want to configure with the VPN System Role.
  • Access and permissions to a control node, which is a system from which Red Hat Ansible Core configures other systems.

    On the control node:

    • The ansible-core and rhel-system-roles packages are installed.
    • An inventory file which lists the managed nodes.

Procedure

  1. Create a new playbook2.yml file with the following content:

    ---
    - hosts: all
      tasks:
        - name: Generate Cockpit web server certificate
          include_role:
            name: rhel-system-roles.certificate
          vars:
            certificate_requests:
              - name: /etc/cockpit/ws-certs.d/01-certificate
                dns: ['localhost', 'www.example.com']
                ca: ipa
                group: cockpit-ws
  2. Optional: Verify playbook syntax.

    # ansible-playbook --syntax-check -i inventory_file playbook2.yml
  3. Run the playbook on your inventory file:

    # ansible-playbook -i inventory_file /path/to/file/playbook2.yml

Legal Notice

Copyright © 2022 Red Hat, Inc.
The text of and illustrations in this document are licensed by Red Hat under a Creative Commons Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available at http://creativecommons.org/licenses/by-sa/3.0/. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must provide the URL for the original version.
Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.
Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift, Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.
Linux® is the registered trademark of Linus Torvalds in the United States and other countries.
Java® is a registered trademark of Oracle and/or its affiliates.
XFS® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States and/or other countries.
MySQL® is a registered trademark of MySQL AB in the United States, the European Union and other countries.
Node.js® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the official Joyent Node.js open source or commercial project.
The OpenStack® Word Mark and OpenStack logo are either registered trademarks/service marks or trademarks/service marks of the OpenStack Foundation, in the United States and other countries and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.
All other trademarks are the property of their respective owners.