Red Hat Enterprise Linux 8

Using the desktop environment in RHEL 8

Configuring and customizing the GNOME 3 desktop environment on RHEL 8
Red Hat Enterprise Linux 8 Using the desktop environment in RHEL 8

Configuring and customizing the GNOME 3 desktop environment on RHEL 8
Abstract

This document describes how to customize and use GNOME 3, which is the only desktop environment available in RHEL 8. The basics of using GNOME Shell and displaying the graphics are given, as well as the instructions for system administrators for configuring GNOME on a low level and customizing the desktop environment for multiple users. The documentation also describes how to handle selected system administration tasks using the desktop environment.
Table of Contents

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION .. 5

CHAPTER 1. STARTING USING GNO​ME .. 6
 1.1. WHAT GNO​ME 3 IS .. 6
 1.2. GNO​ME ENVIRONMENTS .. 6
 1.2.1. GNO​ME Standard .. 6
 1.2.2. GNO​ME Classic .. 8
 1.2.3. Enabling window overview in GNO​ME Classic 9
 1.3. DISABLING THE HOT CORNER FUNCTIONALITY ON GNO​ME SHELL 11
 1.3.1. Disabling the hot corner functionality for a single user 11
 1.3.1.1. Disabling hot corner using dconf Editor 11
 1.3.1.2. Disabling hot corner using gsettings 13
 1.3.2. Disabling the hot corner functionality for all users 13
 1.4. SELECTING GNO​ME ENVIRONMENT AND DISPLAY PROTOCOL 14
 1.5. LAUNCHING APPLICATIONS .. 15
 1.6. INSTALLING APPLICATIONS ... 17
 1.7. DESKTOP ICONS .. 20
 Desktop icons in GNO​ME Classic ... 21
 Desktop icons in GNO​ME Standard 21
 1.8. HANDLING SOUND ... 21
 1.9. HANDLING GRAPHICS AND PHOTOS 24
 1.10. HANDLING PRINTING .. 25
 1.10.1. Starting GNOME control center for setting up printing 25
 1.10.2. Adding a new printer in GNOME Control center 26
 1.10.3. Configuring a printer in GNOME Control center 29
 Displaying printer’s settings menu 29
 Displaying and modifying printer’s details 29
 Setting the default printer .. 30
 Removing a printer ... 31
 1.10.4. Printing a test page in GNOME Control Center 31
 1.10.5. Setting print options using GNOME Control center 32
 1.11. SHARING MEDIA BETWEEN APPLICATIONS 32
 1.12. CUSTOMIZING GNO​ME SHELL ENVIRONMENT WITH THE TWEAKS TOOL 33

CHAPTER 2. DISPLAYING GRAPHICS .. 35
 2.1. KEY DIFFERENCES BETWEEN THE WAYLAND AND X11 PROTOCOL 35
 2.1.1. X11 Applications .. 35
 2.1.2. libinput ... 36
 2.1.2.1. Mice, touchscreens, trackballs, pointing sticks 36
 2.1.2.2. Touchpads .. 36
 2.1.2.3. Graphics tablets ... 36
 2.1.2.4. Other input devices 36
 2.1.3. Gestures .. 36
 2.2. CURRENT WAYLAND LIMITATIONS ... 37
 2.2.1. Nvidia drivers .. 37
 2.2.2. Remote desktop .. 37
 2.2.3. X Display Manager .. 37
 2.2.4. Additional Limitations .. 37

CHAPTER 3. CONFIGURING GNO​ME AT LOW LEVEL 38
 3.1. INTRODUCTION TO CONFIGURING GNO​ME 38
 3.2. MANAGING USER AND SYSTEM GNO​ME SETTINGS 38
3.3. DISPLAYING GSETTINGS VALUES FOR DESKTOP APPLICATIONS
 3.3.1. Using dconf-editor and gsettings utility
 3.3.2. Additional information
3.4. USING DCONF PROFILES
 3.4.1. Introduction to dconf profiles
 3.4.2. Selecting a dconf profile
3.5. CONFIGURING CUSTOM DEFAULT VALUES
 3.5.1. Locking down specific settings
3.6. STORING USER SETTINGS OVER NFS
3.7. SETTING GSETTINGS KEYS PROPERTIES
3.8. WORKING WITH GSETTINGS KEYS ON COMMAND LINE
 3.8.1. Setting key value
 3.8.2. Monitoring key changes
 3.8.3. Checking whether key is writable
 3.8.4. Checking key valid values
 3.8.5. Checking description of valid key values
 3.8.6. Querying key value
 3.8.7. Resetting key value
 3.8.8. Resetting schema
 3.8.9. Listing installed non-relocatable schemas
 3.8.10. Listing schema keys
 3.8.11. Listing schema children
 3.8.12. Listing schema’s keys and values
3.9. ACKNOWLEDGEMENTS

CHAPTER 4. CUSTOMIZING DESKTOP APPEARANCE
4.1. CUSTOMIZING DESKTOP BACKGROUNDS
 4.1.1. Customizing the default desktop background
 4.1.2. Adding extra backgrounds
 Example implementation of org.gnome.desktop.background GSettings keys
 4.1.3. Setting the screen shield
 Troubleshooting
4.2. USING GNOME SHELL EXTENSIONS TO CUSTOMIZE DESKTOP ENVIRONMENT
 4.2.1. Overview of GNOME Shell extensions
 4.2.2. Enabling machine-wide extensions
 4.2.3. Locking down enabled extensions
 4.2.4. Setting up mandatory extensions

CHAPTER 5. CUSTOMIZING GNOME DESKTOP FEATURES
5.1. ENABLING THE CTRL+ALT+BACKSPACE SHORTCUT
5.2. DISABLING COMMAND-LINE ACCESS
 5.2.1. Setting the org.gnome.desktop.lockdown.disable-command-line Key
 5.2.2. Disabling virtual terminal switching on X.Org
5.3. PREVENTING THE COMPUTER FROM SUSPENDING WHEN CLOSING THE LID
5.4. CHANGING BEHAVIOR WHEN PRESSING THE POWER BUTTON IN GRAPHICAL TARGET MODE

CHAPTER 6. LOCKING DOWN SELECTED TASKS
6.1. LOCKING DOWN PRINTING
6.2. LOCKING FILE SAVING ON DISK
6.3. LOCKING REPARTITIONING
6.4. LOCKING DOWN USER LOGOUT AND USER SWITCHING

CHAPTER 7. MANAGING USER SESSIONS
7.1. WHAT GDM IS
PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

We appreciate your input on our documentation. Please let us know how we could make it better. To do so:

- For simple comments on specific passages, make sure you are viewing the documentation in the Multi-page HTML format. Highlight the part of text that you want to comment on. Then, click the Add Feedback pop-up that appears below the highlighted text, and follow the displayed instructions.

- For submitting more complex feedback, create a Bugzilla ticket:
 1. Go to the Bugzilla website.
 2. As the Component, use Documentation.
 3. Fill in the Description field with your suggestion for improvement. Include a link to the relevant part(s) of documentation.
 4. Click Submit Bug.
CHAPTER 1. STARTING USING GNOME

1.1. WHAT GNOME 3 IS

Red Hat Enterprise Linux 8 is shipped with the default desktop environment GNOME 3.

 GNOME 3 represents a presentation layer that provides a graphical user interface as well as the focused working environment, which enables you to access all your work from one place.

1.2. GNOME ENVIRONMENTS

 GNOME 3 provides two essential environments:

- GNOME Standard
- GNOME Classic

Both environments can use two different protocols to build a graphical user interface:

- The X11 protocol, which uses X.Org as the display server.
- The Wayland protocol, which uses GNOME Shell as the Wayland compositor and display server.
 This solution of display server is further referred as GNOME Shell on Wayland

 NOTE

 Note that the graphics based on the Wayland protocol are not available for virtual machines that use the qxl driver.

 You can find the current list of environments for which Wayland-based graphics are unavailable in the /usr/lib/udev/rules.d/61-gdm.rules file.

The default combination in Red Hat Enterprise Linux 8 is GNOME Standard environment using GNOME Shell on Wayland as the display server.

However, due to Section 2.2, “Current Wayland limitations”, you may want to switch the graphics protocol stack.

You may also want to switch from GNOME Standard to GNOME Classic.

For more information about graphics based on the Wayland protocol, see Section 2.1, “Key differences between the Wayland and X11 protocol”.

For information on how to switch the environments, see Selecting GNOME environment.

1.2.1. GNOME Standard

 GNOME Standard user interface includes these major components:

- **Top bar**
 The horizontal bar at the top of the screen provides access to some of the basic functions of GNOME Standard, such as the Activities Overview, clock and calendar, system status icons, and the system menu.
• **System menu**
 The **system menu** is located in the top right corner, and enables you:
 - Updating settings
 - Controlling the sound bar
 - Finding information about your Wi-Fi connection
 - Switching user
 - Logging out
 - Turning off the computer

• **Activities Overview**
 The **Activities Overview** features windows and applications views that let the user run applications and windows and switch between them.

 The **search entry** at the top allows for searching various items available on the desktop, including applications, documents, files, and configuration tools.

 The vertical bar on the left side contains a list of favorite and running applications. You can add or remove applications from the default list of favorites according to your needs.

 The workspace list displayed on the right side allows the user to switch between multiple workspaces, or move applications and windows from one workspace to another.

• **Message tray**
 The **message tray** provides access to pending notifications. The **message tray** shows when the user presses **Super+M**.

The GNOME 3 Standard Desktop
1.2.2. GNOME Classic

GNOME Classic represents a mode for users who prefer a more traditional desktop experience that is similar to GNOME 2 environment used with Red Hat Enterprise Linux 6. It is based on GNOME 3 technologies, and at the same time it includes multiple features similar to GNOME 2.

GNOME Classic user interface consists of these major components:

- **Applications and Places**
 The *Applications* menu is displayed at the top left of the screen. It gives the user access to applications organized into categories. If you enable window overview, you can also open the *Activities Overview* from that menu.

 The *Places* menu is displayed next to the *Applications* menu on the top bar. It gives the user quick access to important folders, for example *Downloads* or *Pictures*.

- **Taskbar**
 The *taskbar* is displayed at the bottom of the screen, and features:
 - A window list
 - A notification icon displayed next to the window list
 - A short identifier for the current workspace and total number of available workspaces displayed next to the notification icon

- **Four available workspaces**
 In GNOME Classic, the number of workspaces available to the user is by default set to 4.

- **Minimize and maximize buttons**
 Window titlebars in GNOME Classic feature the minimize and maximize buttons that let the user quickly minimize the windows to the window list, or maximize them to take up all of the space on the desktop.

- **A traditional Super+Tab window switcher**
 In GNOME Classic, windows in the *Super+Tab* window switcher are not grouped by application.

- **System menu**
 The *system menu* is located in the top right corner, and enables you:
 - Updating settings
 - Controlling the sound bar
 - Finding information about your Wi-Fi connection
 - Switching user
 - Logging out
 - Turning off the computer

The GNOME 3 Classic Desktop with the Rhythmbox application and the Favorites submenu of the Applications menu
In GNOME Classic, the overview of windows that are open is not available by default. You can see the list of all open windows in the taskbar at the bottom of the screen. However, you can enable the windows overview similar to what is by default available in GNOME Standard by changing the default settings of the GNOME Classic environment as described in Section 1.2.3, “Enabling window overview in GNOME Classic”.

1.2.3. Enabling window overview in GNOME Classic

In GNOME Classic, the overview of open windows is not available by default. This procedure enables the window overview for all users on the system.

IMPORTANT

Enabling the window overview by this procedure is not a permanent change. Each update of the gnome-classic-session package overwrites the configuration file to the default settings, which disable the window overview.

To keep the window overview enabled, apply the procedure after each update of gnome-classic-session.

Procedure

1. Open the /usr/share/gnome-shell/modes/classic.json file as the root user.

2. Find the following line in the file:

 "hasOverview": false

3. Change the line to the following:

 "hasOverview": true

4. Save changes, and close the /usr/share/gnome-shell/modes/classic.json file.

5. Restart the user session.
Verification steps

1. In your GNOME Classic session, open multiple windows.

2. Press the Super key to open the window overview.

3. In the overview, check that:
 - The Dash (the vertical panel on the left side of the screen) is displayed.
 - The bottom panel is not displayed.
 - The workspace switcher is displayed on the right side of the screen.

 Window overview with "hasOverview": true

 ![Window overview with "hasOverview": true]

With the default settings ("hasOverview": false), the overview has the following features:

- The Dash is not displayed.
- The bottom panel is displayed. It includes the Window picker button in its left part and the workspace switcher in its right part.

 Window overview with "hasOverview": false
1.3. DISABLING THE HOT CORNER FUNCTIONALITY ON GNOME SHELL

The GNOME environment provides the hot corner functionality, which is enabled by default. This means that when you move the cursor to the area of the top left corner and press the cursor in this area, the Activities Overview menu opens automatically.

However, you may want to disable this feature to not open Activities Overview unintentionally.

To do so, you can use the following tools:

- The dconf Editor application
- The gsettings command-line utility
- The No topleft hot corner extension

The selection of the tool might depend on whether you want to disable the hot corner functionality for a single user or for all users on the system. By using dconf Editor or gsettings, you can disable hot corner only for a single user. To disable hot corner system-wide, use the No topleft hot corner extension.

1.3.1. Disabling the hot corner functionality for a single user

To disable the hot corner functionality for a single user, you can use either the dconf Editor application or the gsettings command-line utility.

1.3.1.1. Disabling hot corner using dconf Editor

To disable the hot corner functionality using the dconf Editor application, follow this procedure.

Prerequisites

- The dconf Editor application is installed on the system:
yum install dconf-editor

Procedure

1. Open the dconf Editor application.

2. Choose the org.gnome.desktop.interface menu.

3. Find the **enable-hot-corners** option. This option is by default set to **On**.

Default settings of enable-hot-corners

![Configuration settings](image)

4. Set **enable-hot-corners** to **False**. You can do this either by:
 - Setting **enable-hot-corners** to **Off** in the same window.
 - Clicking the line with **enable-hot-corners**, and proceeding to a new window. In the new window, you can switch the hot corner feature off.

 Switching the hot corner functionality off
For more information on dconf Editor application, see Section 3.3, "Displaying GSettings values for desktop applications".

1.3.1.2. Disabling hot corner using gsettings

To disable the hot corner functionality using the gsettings command-line utility, follow this procedure.

Procedure

- Enter the following command to disable the hot corner feature:

  ```
  $ gsettings set org.gnome.desktop.interface enable-hot-corners false
  ```

Verification steps

- Optionally, verify that the hot corner feature is disabled:

  ```
  $ gsettings get org.gnome.desktop.interface enable-hot-corners
  false
  ```

1.3.2. Disabling the hot corner functionality for all users

With the GNOME Shell extension called No topleft hot corner provided by the gnome-shell-extension-no-hot-corner package, you can disable the hot corner feature system-wide.

Prerequisites

- The gnome-shell-extension-no-hot-corner package is installed on the system:

  ```
  # yum install gnome-shell-extension-no-hot-corner
  ```

Procedure
1. Enable the No topleft hot corner extension by switching it on in the Tweaks tool. For more information on how to use Tweaks, see Section 1.12, “Customizing GNOME Shell environment with the Tweaks tool”.

2. Log out, and restart the user session so that the extension can take effect.

1.4. SELECTING GNOME ENVIRONMENT AND DISPLAY PROTOCOL

The default desktop environment for Red Hat Enterprise Linux 8 is GNOME Standard with GNOME Shell on Wayland as the display server.

However, due to Section 2.2, “Current Wayland limitations”, you may want to switch the graphics protocol stack.

You may also want to switch from GNOME Standard to GNOME Classic. See Section 1.2, “GNOME environments” for differences between these two environments.

For switching between various combinations of GNOME environment and graphics protocol stacks, use the following procedure.

Procedure

1. From the login screen (GDM), click the cogwheel next to the Sign In button.

 NOTE

 You cannot access this option from the lock screen. The login screen appears when you first start Red Hat Enterprise Linux 8 or when you log out of your current session.
2. From the drop-down menu that appears, select the option that you prefer.

NOTE

Note that in the menu that appears on the login screen, the X.Org display server is marked as X11 display server.

IMPORTANT

The change of GNOME environment and graphics protocol stack resulting from the above procedure is persistent across user logouts, and also when powering off or rebooting the computer.

1.5. LAUNCHING APPLICATIONS

This section describes various approaches that you can use to launch available applications in GNOME 3.

Procedure

1. Press Alt+F2 to make the **Enter a Command** screen appear.

2. Write the name of the executable into the **Enter a Command** screen:
This approach works both in GNOME Standard and GNOME Classic environment.

Procedure

- In GNOME Standard, go to **Activities Overview** and click on the **Show Applications** icon in the vertical bar on the left side. Note that you can choose between displaying all or just the frequent applications by using the **Frequent/All** switch at the bottom of the screen.

Alternatively, you can also start typing the name of the required application in the **search entry**.
Procedure

1. In GNOME Classic, go to Applications menu.

2. Choose the required application from one of the available categories. The available categories include:
 - Favorites
 - Accessories
 - Internet
 - Office
 - Sound & Video
 - Sundry
 - System Tools
 - Utilities

Procedure

1. Open a terminal.

2. Type the name of the required application on the command line.

This approach works both in GNOME Standard and GNOME Classic environment.

1.6. INSTALLING APPLICATIONS

This section describes various approaches that you can use to install a new application in GNOME 3.

Procedure

1. Use one of the approaches described in Launching applications to launch GNOME Software.

 NOTE
 GNOME Software is a utility, which enables you to install and update applications and gnome-shell extensions through a graphical environment. This utility is based on the PackageKit technology, which serves as its back end. GNOME Software offers mainly the desktop applications, which are the applications that include the *.desktop file. The available applications are grouped into multiple categories according to their purpose.

2. Choose the application to be installed from one of the available categories.
 - Audio & Video
 - Communication & News
 - Productivity
3. Click the selected application, and then click the **Install** button.
Add-ons include for example GNOME Shell extensions, codecs or fonts.

Procedure

1. Start opening a file that is associated with an application or applications that are currently not installed on your system.

2. GNOME will automatically identify suitable application in which the file can be opened, and will offer to download the application.

Procedure

1. Download the required rpm package.

2. Open the directory that includes the downloaded rpm in the Nautilus file manager.

NOTE

The downloads are by default stored in the /home/user/Downloads directory.

3. Double-click the icon of the rpm to install it.

Procedure

1. Start typing the name of the required application in the search entry.
GNOME will automatically find the application in a respective repository, and will display the application’s icon.

1. Click the application’s icon that automatically appears to open GNOME Software.

2. Click again the icon of the application and finish the installation in GNOME Software as described above.

Procedure

1. Open a terminal.

2. Run the `yum install` command with the name of the required application:

   ```
   ~]# yum install <application_name>
   ```

1.7. DESKTOP ICONS
In RHEL 8, the Desktop icons functionality is no longer provided by the Nautilus file manager, but by the desktop icons gnome-shell extension available in the gnome-shell-extension-desktop-icons package.

Desktop icons in GNOME Classic
The GNOME Classic environment includes the gnome-shell-extension-desktop-icons package by default. Desktop icons are always on, and cannot be turned off. If you want to create a desktop icon for a file, you just need to put this file into the /Desktop directory, and the icon appears automatically.

Desktop icons in GNOME Standard
If you have only the GNOME Standard environment available, and not GNOME Classic, you must install gnome-shell-extension-desktop-icons.

After the package has been installed, you can switch the desktop icons on or off by using the Tweaks application:

1. Go to Tweaks, and select Extensions - Desktop icons, and switch it on.

 2. Put the required file into the /Desktop directory, and the icon appears automatically on your desktop.

1.8. HANDLING SOUND

In Red Hat Enterprise Linux 8, sound is handled by the PulseAudio sound server that lets programs output the audio using the Pulseaudio daemon.

For more information on PulseAudio, see the pulseaudio man page.

To handle sound, you can use one of these two graphical applications in GNOME:

- System menu
- **Tweaks** tool
- **GNOME Control Center**

System menu is located in the top right corner, and it only enables you to set the intensity of the sound output or sound input through the sound bar. The sound bar for input sound is available only if you are running an application that is supposed to use an internal microphone (built-in audio), such as some teleconference tools.

Tweaks tool only enables you to configure the Over-Amplification.
GNOME Control Center provides more options to configure sound. You can launch this tool by using one of the approaches described in *Launching applications*. Moreover, you can also launch it from the **System menu** by clicking on its icon.

When **GNOME Control Center** opens, choose **Sound** from the left vertical bar.
Through GNOME Control Center - Sound, you can configure the following:

- **Output** sound
- **Input** sound
- **Sound effects**
- **Applications**

The **Output** and **Input** menus show only the built-in audio devices unless you connect any external device that can handle sound.

The **Output** menu enables you to select the required profile from available analog or digital profiles that are displayed depending on available output devices.

The **Applications** menu shows all currently running applications that can process sound, and allows you to amplify or lower the sound of a particular application.

1.9. HANDLING GRAPHICS AND PHOTOS

GNOME Shell provides multiple tools to handle graphics and photography.

You can check the available tools under the **Graphics & Photography** menu in GNOME Software:

1. Open the GNOME software.
2. Go to Graphics & Photography.

The available tools include:

- **Photos**
 For accessing, organizing and sharing your photos.

- **GNU Image Manipulation Program**
 For creating images and editing photographs.

- **Inkscape**
 For creating and editing scalable vector graphics images.

- **XSane**
 For scanning images with a scanner.

- **LibreOffice Draw**
 For creating and editing drawings, flow charts, and logos.

1.10. HANDLING PRINTING

In GNOME Shell, printing can be set up using the **GNOME Control center** GUI.

1.10.1. Starting GNOME control center for setting up printing
Procedure

1. Use one of the approaches described in Section 1.5, “Launching applications" to start the GNOME Control center GUI. Moreover, you can also start the GNOME Control center from the system menu in the top right corner by clicking on the “Settings” icon.

2. When the GNOME Control center GUI appears, go to:

Devices → Printers

Figure 1.1. GNOME Control center configuration tool

1.10.2. Adding a new printer in GNOME Control center
This section describes how to add a new printer using the GNOME Control center GUI.

Prerequisites

To be able to add a new printer using the GNOME Control center GUI, you must click on Unlock, which appears on the right side of the top bar, and authenticate as one of the following users:

- Superuser
- Any user with the administrative access provided by `sudo` (users listed within `/etc/sudoers`)
- Any user belonging to the `printadmin` group in `/etc/group`

Procedure

1. Open the Add Printer dialog.
2. Select one of the available printers (including also network printers), or enter printer IP address or the hostname of a printer server.
1.10.3. Configuring a printer in GNOME Control center

This section describes how to configure a new printer, and how to maintain a configuration of a printer using the GNOME Control center GUI.

Displaying printer’s settings menu

Procedure

- Click the "settings" button on the right to display a settings menu for the selected printer:

![Image of GNOME Control Center with printers menu]

Displaying and modifying printer’s details

Procedure

- Click **Printer Details** to display and modify selected printer’s settings:
With this menu you can:

- **Search for Drivers**
 GNOME Control Center communicates with PackageKit that searches for a suitable driver suitable in available repositories.

- **Select from Database**
 This option enables you to select a suitable driver from databases that have already been installed on the system.

- **Install PPD File**
 This option enables you to select from a list of available postscript printer description (PPD) files that can be used as a driver for your printer.

Setting the default printer

Procedure
Click **Use Printer by Default** to set the selected printer as the default printer:

Removing a printer

Procedure

- Click **Remove Printer** to remove the selected printer:

1.10.4. Printing a test page in GNOME Control Center

This section describes how to print a test page to make sure that the printer functions properly.

You might want to print a test page if one of the below prerequisites is met.

Prerequisites

- A printer has been set up.
- A printer configuration has been changed.
Procedure

1. Click the "settings" button on the right to display a settings menu for the selected printer:

2. Click **Printing Options → Test Page**

1.10.5. Setting print options using GNOME Control center

This section describes how to set print options using the **GNOME Control center** GUI.

Procedure

1. Click the "settings" button on the right to display a settings menu for the selected printer:

2. Click **Printing Options**

1.11. SHARING MEDIA BETWEEN APPLICATIONS

Red Hat Enterprise Linux 8 includes the PipeWire media server, which ensures access to multimedia devices and media sharing between applications.

When running a remote desktop session on **GNOME Shell on Wayland**, PipeWire and the VNC server is used. The functionality of remote desktop session is provided by the **gnome-remote-desktop** and **pipewire** packages.
On **X.Org**, just VNC is needed to run a remote desktop session. This functionality on **X.Org** is provided by the **vino** package.

PipeWire is used also with teleconference tools such as BlueJeans when running on **GNOME Shell on Wayland**. In such case, the **pipewire service** is activated automatically when you start sharing your screen within the teleconference tool.

To check the status of the **pipewire service**, run:

```
~]$ systemctl --user status pipewire
```

1.12. CUSTOMIZING GNOME SHELL ENVIRONMENT WITH THE TWEAKS TOOL

You can customize the GNOME Shell environment for a particular user by using the **Tweaks** tool.

To open **Tweaks**, use one of the approaches described in **Section 1.5, “Launching applications”**.

To choose the required item that you want to customize, use the vertical menu on the left. For example you can choose the applications to start automatically when you log in by using the **Startup Applications** menu, or you can customize your top bar appearance by using the **Top Bar** menu.

The Tweaks tool

The **Tweaks** tool allows you to customize various aspects of your GNOME Shell environment, such as:

- **Appearance**:
 - Animations
 - Themes
 - Applications
 - Cursor
 - Icons
 - Shell
 - Background
 - Image
 - Adjustment
 - Lock Screen
 - Image
 - Adjustment

Customizing startup applications in Tweaks
Customizing the appearance of your top bar in Tweaks

- **Appearance**
 - Application Menu
 - Battery Percentage

- **Clock**
- **Date**
- **Seconds**

- **Calendar**
 - Week Numbers

- **Top Bar**

- **Extensions**
- **Fonts**
- **Keyboard & Mouse**
- **Power**
- **Sound**
- **Startup Applications**
- **Windows**
- **Workspaces**
CHAPTER 2. DISPLAYING GRAPHICS

In Red Hat Enterprise Linux 8, you can choose between two protocols to build a graphical user interface:

- X11
- Wayland

The X11 protocol uses X.Org as the display server. Displaying graphics based on this protocol works the same way as in Red Hat Enterprise Linux 7, where this was the only option.

The Wayland protocol on Red Hat Enterprise Linux 8 uses GNOME Shell as its compositor and display server, which is further referred as GNOME Shell on Wayland. Displaying graphics based on the Wayland protocol has some differences and limitation compared to X11. For more information, see Key differences between the Wayland and X11 protocol and Current Wayland limitations.

New installations of Red Hat Enterprise Linux 8 automatically select GNOME Shell on Wayland. However, you can switch to X.Org, or select the required combination of GNOME environment and display server as described in Section 1.4, “Selecting GNOME environment and display protocol”.

Note that there are also a few environments where X.Org is preferred over GNOME Shell on Wayland, such as:

- Cirrus graphics used in a VM environment
- Matrox graphics
- Aspeed graphics
- QXL graphics used in a VM environment
- Nvidia graphics when used with the proprietary driver

IMPORTANT

The Nvidia graphics by default use Nouveau, which is an open source driver. Nouveau is supported on Wayland, hence you can use Nvidia graphics with Nouveau on GNOME Shell on Wayland without any limitations. However, using Nvidia graphics with proprietary Nvidia binary drivers is not supported on GNOME Shell on Wayland. In this case, you need to switch to X.Org as described in Section 1.4, “Selecting GNOME environment and display protocol”.

NOTE

You can find the current list of environments for which Wayland is not available in the /usr/lib/udev/rules.d/61-gdm.rules file.

For additional information on the Wayland project, see Wayland documentation.

2.1. KEY DIFFERENCES BETWEEN THE WAYLAND AND X11 PROTOCOL

2.1.1. X11 Applications
Client applications need to be ported to the Wayland protocol or use a graphical toolkit that has a Wayland backend, such as GTK, to be able to work natively with the compositor and display server based on Wayland.

Legacy X11 applications that cannot be ported to Wayland automatically use Xwayland as a proxy between the X11 legacy clients and the Wayland compositor. Xwayland functions both as an X11 server and a Wayland client. The role of Xwayland is to translate the X11 protocol into the Wayland protocol and reversely, so that X11 legacy applications can work with the display server based on Wayland.

On GNOME Shell on Wayland Xwayland is started automatically at startup, which ensures that most X11 legacy applications work as expected when using GNOME Shell on Wayland. However, the X11 and Wayland protocols are different, and hence some clients relying on X11-specific features may behave differently under Xwayland. For such specific clients, you can switch to the X.Org display server as described in Section 1.4, "Selecting GNOME environment and display protocol".

2.1.2. libinput

Red Hat Enterprise Linux 8 uses a new unified input stack, libinput, which manages all common device types, such as mice, touchpads, touchscreens, tablets, trackballs and pointing sticks. This unified stack is used both by the X.Org and by the GNOME Shell on Wayland compositor.

 GNOME Shell on Wayland uses libinput directly for all devices, and no switchable driver support is available. Under X.Org, libinput is implemented as the X.Org libinput driver, and driver support is outlined below.

2.1.2.1. Mice, touchscreens, trackballs, pointing sticks

Red Hat Enterprise Linux 8 uses the X.Org libinput driver for these devices. The X.Org evdev driver, which was used in Red Hat Enterprise Linux 7, is available as fallback where required.

2.1.2.2. Touchpads

Red Hat Enterprise Linux 8 uses the X.Org libinput driver for touchpads. The X.Org synaptics driver, which was used for touchpads in Red Hat Enterprise Linux 7, is no longer available.

2.1.2.3. Graphics tablets

Red Hat Enterprise Linux 8 continues using the X.Org wacom driver, which was used for tablet devices in Red Hat Enterprise Linux 7. However, the X.Org libinput driver is available where required.

2.1.2.4. Other input devices

Red Hat Enterprise Linux 7 used the X.Org evdev driver for other input devices that are not included not in the above categories. Red Hat Enterprise Linux 8 uses the X.Org libinput driver by default but can fall back to the X.Org evdev driver if a device is incompatible with libinput.

2.1.3. Gestures

 GNOME Shell on Wayland supports new touchpad and touchscreen gestures. These gestures include:

- Switching workspaces by dragging up or down with four fingers.
- Opening the Activities Overview by bringing three fingers closer together.
2.2. CURRENT WAYLAND LIMITATIONS

2.2.1. Nvidia drivers

Proprietary Nvidia binary drivers are not supported with GNOME Shell on Wayland. To avoid any complications while using the Nvidia GPU, GNOME Shell automatically falls back to X.Org, which means that the login screen does not provide any option based on the Wayland protocol.

NOTE

The Nouveau driver is still supported and is the default driver for Nvidia graphics.

2.2.2. Remote desktop

With GNOME Shell on Wayland VNC support is provided by the gnome-remote-desktop package. Remote access using VNC via gnome-remote-desktop currently requires an already logged in session, and only the primary monitor is accessible. Screen sharing with GNOME Shell on Wayland is possible using the PipeWire media server. For more details on the PipeWire media server, see PipeWire project.

For more advanced VNC usage, you need to switch to X.org, where traditional VNC tools are available.

2.2.3. X Display Manager

The X Display Manager Control Protocol (XDMCP) is not supported with GNOME Shell on Wayland.

Hence, it is not possible to use the X display manager to start a session on the X.Org display server from the same or another computer.

2.2.4. Additional Limitations

The following additional limitations related to the Wayland protocol should be noted:

- X.Org screen manipulation utilities are not available.
- The xrandr utility is not supported because Wayland handles layout, rotations, and resolutions differently.
- The GNOME Shell cannot be restarted using the ALT+F2/r method.
- Due to stability issues, using X11 instead of Wayland is recommended in virtual environments.
- Wayland does not support the custom or niche devices that cannot be handled by the libinput driver.
CHAPTER 3. CONFIGURING GNOOME AT LOW LEVEL

3.1. INTRODUCTION TO CONFIGURING GNOOME

To be able to configure the GNOOME Desktop Environment, you need to understand these basic terms:

- dconf
- GSettings
- gsettings

dconf has two different meanings.

Firstly, **dconf** is a key-based Binary Large Object (BLOB) database for storing GNOOME configurations. **dconf** manages user settings such as GDM, application, and proxy settings, and serves as the back end for **GSettings**.

Secondly, **dconf** is a command-line utility which is used for reading and writing individual values or entire directories from and to a dconf database.

GSettings is a high-level API for application settings which serves as the front end for dconf.

gsettings is a command-line tool which is used to view and change user settings.

3.2. MANAGING USER AND SYSTEM GNOOME SETTINGS

dconf allows system administrators and users several levels of control over GNOOME configuration:

- Administrators can define default settings that apply to all users.
- Users can override the defaults with their own settings.
- Administrators can also lock settings to prevent users from overriding them.

3.3. DISPLAYING GSETTINGS VALUES FOR DESKTOP APPLICATIONS

3.3.1. Using dconf-editor and gsettings utility

Viewing and editing of the **GSettings** values can be achieved with one of the following tools:

- dconf-editor GUI tool
- gsettings command-line utility

NOTE

The **dconf-editor** is not installed on the system by default. To install it, run the following command as the **root** user:

```
~$ yum install dconf-editor
```

The **dconf-editor** and **gsettings utility** has the following in common:
allow browsing and changing options for system and application preferences

allow to change preferences

can be run by regular users, because both tools are intended to browse and modify the current user’s GSettings database

The **dconf-editor** provides a GUI for browsing the settings and their editing. It presents the hierarchy of settings in a tree-view and also displays additional information about each setting, including the description, type and default value.

The **gsettings** utility can be used to display and set dconf values. **gsettings** utility supports Bash completion for commands and settings. This tool also allows you to automate configuration in shell scripts.

Figure 3.1. dconf-editor showing org.gnome.desktop.background GSettings keys

3.3.2. Additional information

- For more information on the **dconf-editor** tool, see the **dconf-editor(1)** man page and the **dconf-editor Project documentation**.

- For more information on the **gsettings** utility, see the **gsettings(1)** man page.

3.4. USING DCONF PROFILES

3.4.1. Introduction to dconf profiles
A dconf profile is a list of system’s hardware and software configuration databases, which the dconf system collects.

The dconf profiles allow you to compare identical systems to troubleshoot hardware or software problems.

The dconf system stores its profiles in the text files which can be located either within the /etc/dconf/profile/ directory or elsewhere. The $DCONF_PROFILE environment variable can specify a relative path to the file from /etc/dconf/profile/, or an absolute path, such as in a user’s home directory.

Note that key pairs which are set in a dconf profile override the default settings.

3.4.2. Selecting a dconf profile

On startup, dconf consults the $DCONF_PROFILE environment to find the name of the dconf profile to open. The result depends on whether the variable is set or not:

- If set, dconf attempts to open the profile named in the variable and aborts if this step fails.
- If not set, dconf attempts to open the profile named user and uses an internal hard-wired configuration if this step fails.

Each line in a dconf profile specifies one dconf database.

The first line indicates the database used to write changes. The remaining lines show read-only databases.

The following is a sample profile stored in /etc/dconf/profile/user:

```
user-db:user
system-db:local
system-db:site
```

In this example, the dconf profile specifies three databases. user is the name of the user database which can be found in ~/.config/dconf, and local and site are system databases, located in /etc/dconf/db/.

NOTE

To apply a new dconf user profile to the user’s session, you need to log out and log in, because the dconf profile for a session is determined at login.

WARNING

As a user or application developer, do not manipulate dconf directly. To manipulate dconf, always use the dconf-editor or the gsettings utility. The only exception to use dconf directly is when setting system-wide default configurations, because the aforementioned tools do not allow to manipulate such configurations.

3.5. CONFIGURING CUSTOM DEFAULT VALUES

Red Hat Enterprise Linux 8 Using the desktop environment in RHEL 8
Machine-wide default settings can be set by providing a default for a key in a dconf profile. These defaults can be overridden by the user.

Setting a default for a key has two prerequisites:

- the user profile exists
- the value for the key was added to a dconf database

For example, to set the default background:

1. Create the user profile in `/etc/dconf/profile/user`:

   ```
   user-db:user
   system-db:local
   ```

 where `local` is the name of a dconf database.

2. Create a keyfile for the local database in `/etc/dconf/db/local.d/01-background`, which contains the following default settings:

   ```
   ~]# dconf path
   [org/gnome/desktop/background]
   
   # GSettings key names and their corresponding values
   picture-uri='file:///usr/local/share/backgrounds/wallpaper.jpg'
   picture-options='scaled'
   primary-color='000000'
   secondary-color='FFFFFF'
   ```

 In the default setting of the keyfile, the following GSettings keys are used:

 Table 3.1. org.gnome.desktop.background schemas GSettings Keys

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Possible Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>picture-options</td>
<td>"none", "wallpaper", "centered", "scaled", "stretched", "zoom", "spanned"</td>
<td>Determines how the image set by wallpaper_filename is rendered.</td>
</tr>
<tr>
<td>picture-uri</td>
<td>filename with the path</td>
<td>URI to use for the background image. Note that the backend only supports local file:// URIs.</td>
</tr>
<tr>
<td>primary-color</td>
<td>default: 000000</td>
<td>Left or Top color when drawing gradients, or the solid color.</td>
</tr>
<tr>
<td>secondary-color</td>
<td>default: FFFFFFFF</td>
<td>Right or Bottom color when drawing gradients, not used for solid color.</td>
</tr>
</tbody>
</table>

1. Edit the keyfile according to your preferences.
For more information, see Section 3.3, "Displaying GSettings values for desktop applications".

2. Update the system databases:

```bash
~]# dconf update
```

When the user profile is created or changed, the user needs to log out and log in again before the changes will be applied.

If you want to avoid creating a user profile, you can use the `dconf command-line utility` to read and write individual values or entire directories from and to a dconf database. For more information, see the `dconf(1)` man page.

3.5.1. Locking down specific settings

By using the lockdown mode in dconf, you can prevent users from changing specific settings.

To lock down a GSettings key:

1. Create a locks subdirectory in the keyfile directory such as `/etc/dconf/db/local.d/locks/`.

2. Add any number of files with keys that you want to lock into this directory.

Without enforcing the system settings using a lockdown, any settings that users make take precedence over the system settings. Users can thus override the system settings with their own.

For example, to lock settings for the default wallpaper:

1. Set a default wallpaper.

2. Create a new `/etc/dconf/db/local.d/locks/` directory.

3. Create a new file in `/etc/dconf/db/local.d/locks/00-default-wallpaper` with the following contents, listing one key per line:

```bash
# Prevent users from changing values for the following keys:
/org/gnome/desktop/background/picture-uri
/org/gnome/desktop/background/picture-options
/org/gnome/desktop/background/primary-color
/org/gnome/desktop/background/secondary-color
```

4. Update the system databases:

```bash
~]# dconf update
```

3.6. STORING USER SETTINGS OVER NFS

For `dconf` to work correctly when using Network File System (NFS) home directories, the `dconf keyfile back end` must be used.

Note that `dconf keyfile back end` only works properly if the `glib2-fam` package is installed. Without this package, notifications on configuration changes made on remote machines are not displayed properly.

With Red Hat Enterprise Linux 8, `glib2-fam` is available in the BaseOs repository.
To set the dconf keyfile back end

1. Ensure that the glib2-fam package is installed on the system.
 To verify whether the package is installed on the system:

   ```
   ~]# yum list installed
   ```
 If glib2-fam is not in the list of installed packages, install it by running:

   ```
   ~]# yum install glib2-fam
   ```

2. Create or edit the /etc/dconf/profile/user file on every client.

3. At the very beginning of /etc/dconf/profile/user file, add the following line:

   ```
   service-db:keyfile/user
   ```

The dconf keyfile back end takes effect the next time that the user logs in. It polls the keyfile to determine whether updates have been made, so settings may not be updated immediately.

3.7. SETTING GSETTINGS KEYS PROPERTIES

This section describes how to set GSettings keys properties for a single-logged user.

Each GSettings key can have only one value in a dconf database. Setting the same key to a different value at a different place of the dconf database overrides the previous value.

Values of some keys are of array type. For array type, you can specify the value of the key as a list of multiple elements separated by a comma.

To set a GSettings key of array type, follow this syntax:

```
key=['option1', 'option2']
```

The following example shows setting of the `org.gnome.desktop.input-sources.xkb-options` GSettings key whose value is of array type:

Example settings of the org.gnome.desktop.input-sources.xkb-options GSettings Key

```
[org/gnome/desktop/input-sources]
# Enable Ctrl-Alt-Backspace for all users
# Set the Right Alt key as the Compose key and enable it
xkb-options=['terminate:ctrl_alt_bksp', 'compose:ralt']
```

3.8. WORKING WITH GSETTINGS KEYS ON COMMAND LINE

This section focuses on using of the `gsettings` command to configure, manipulate and manage the GSettings keys. The most frequent use cases that can be resolved by using the `gsettings` command are shown.

3.8.1. Setting key value
To set a value of a key:

\[\text{gsettings set SCHEMA [:PATH] KEY} \]

Note that the value is specified as a serialised GVariant.

Example 3.1. Adding selected applications into the favorite applications key

To add selected applications among your favorite applications:

If the operation succeeds, no return code is shown. As a result, all listed applications are added to favorite applications. The change is valid immediately.

3.8.2. Monitoring key changes

To monitor a key for changes and print values that changed:

\[\text{gsettings monitor SCHEMA [:PATH] [KEY]} \]

Note that if the KEY argument is not specified, all keys in the schema are monitored. Monitoring continues until the process is terminated.

Example 3.2. Monitoring changes of the favorite applications key

To monitor the changes of the `favorite applications` key, open two terminals and run:

In the first terminal:

\[\$ \text{gsettings monitor org.gnome.shell favorite-apps} \]

In the second terminal:

As a result, a notification whether and how `favorite applications` changed is displayed in the first terminal:

```
```

3.8.3. Checking whether key is writable
To check whether a key is writable:

```
gsettings writable SCHEMA [:PATH] KEY
```

Example 3.3. Checking whether the favorite applications key is writable

To check whether the `favorite applications` key is writable:

```
$ gsettings writable org.gnome.shell favorite-apps
```

As a result, the return code shows `True`.

3.8.4. Checking key valid values

To check the range of valid values for a key:

```
gsettings range SCHEMA [:PATH] KEY
```

Example 3.4. Checking the range of valid values for the remember-mount-password key

To check valid values for the `remember-mount-password` key:

```
$ gsettings range org.gnome.shell remember-mount-password
```

As a result, the return code displays type of the key value, which is `type b` in this particular case. For more information, see [GNOME developer](#).

3.8.5. Checking description of valid key values

To check the description of valid values for a key:

```
gsettings describe SCHEMA [:PATH] KEY
```

Example 3.5. Checking the description of valid values for the picture-uri key

To check the description of valid values for the `picture-uri` key:

```
$ gsettings describe org.gnome.desktop.screensaver picture-uri
```

As a result, the following output is displayed:

```
URI to use for the background image. Note that the backend only supports local file:// URIs.
```

3.8.6. Querying key value

To get the value of a key:
gsettings get SCHEMA [:PATH] KEY VALUE

Note that the value is displayed as a serialised GVariant.

Example 3.6. Querying value of the remember-mount-password key

To get value of the remember-mount-password key:

```bash
$ gsettings get org.gnome.shell remember-mount-password
```

As a result, the return code displays `false`.

3.8.7. Resetting key value

To reset the value of a key:

```
gsettings reset SCHEMA [:PATH] KEY
```

If resetting succeeds, no return code is displayed. Default values are in stored dconf and gsettings-desktop-schemas files.

Example 3.7. Resetting the lock-delay key to its default value

The default value of the lock-delay key is 0, and it is stored in the `/usr/share/glib-2.0/schemas/org.gnome.desktop.screensaver.gschematic.xml` file.

Users can set the value of lock-delay as needed.

For example, to set the lock-delay key for screensaver to 200:

```bash
$ gsettings set org.gnome.desktop.screensaver lock-delay 200
```

To reset the lock-delay key for screensaver to its default value:

```bash
$ gsettings reset org.gnome.desktop.screensaver lock-delay
```

As a result, the value of lock-delay value is set to 0.

3.8.8. Resetting schema

To reset a schema:

```
gsettings reset-recursively SCHEMA [:PATH]
```

Example 3.8. Resetting the org.gnome.desktop.screensaver schema to its defaults

To reset the org.gnome.desktop.screensaver schema to its defaults:

```bash
$ gsettings reset-recursively org.gnome.desktop.screensaver
```
As a result, the **lock-delay** value is reset to 0, and other keys within the `org.gnome.desktop.screensaver` schema that were changed by user are reset to their defaults as well.

3.8.9. Listing installed non-relocatable schemas

To list installed schemas that are non-relocatable:
```
gsettings list-schemas [--print-paths]
```

If the `--print-paths` argument is specified, the path where each schema is mapped is printed as well.

Example 3.9. Listing installed non-relocatable schemas

To list all schemas installed on your system that are non-relocatable:
```
$ gsettings list-schemas
```

As a result, a full list of schemas is returned. The following list is truncated.

```
org.gnome.rhythmbox.library
org.gnome.shell.overrides
org.gnome.system.proxy.https
org.gnome.clocks
org.gnome.eog.fullscreen
org.gnome.login-screen
org.gnome.eog.view
```

3.8.10. Listing schema keys

To list the keys that are in the selected schema:
```
gsettings list-keys SCHEMA [:PATH]
```

Example 3.10. Listing keys in the org.gnome.shell schema

To list keys in the `org.gnome.shell` schema:
```
$ gsettings list-keys org.gnome.shell
```

As a result, a list of keys is returned. The following list is truncated.

```
enabled-extensions
command-history
remember-mount-password
always-show-log-out
had-bluetooth-devices-setup
looking-glass-history
disable-user-extensions
app-picker-view
```
3.8.11. Listing schema children

To list children of a selected schema:

```
gsettings list-children SCHEMA [:PATH]
```

Note that the list is empty if there are no children.

Example 3.11. Listing children of the org.gnome.shell schema

To list children of the `org.gnome.shell` schema:

```
$ gsettings list-children org.gnome.shell
```

As a result, the following output is returned:

```
keyboard org.gnome.shell.keyboard
keybindings org.gnome.shell.keybindings
```

3.8.12. Listing schema’s keys and values

To list keys and values of a selected schema recursively:

```
gsettings list-recursively [SCHEMA [:PATH]]
```

Note that if the schema whose keys you want to list is not specified, all keys within all schemas are listed.

Example 3.12. Listing keys and values recursively

To list keys and values in all schemas recursively:

```
$ gsettings list-recursively
```

As a result, all key and values in all schemas on system are listed, as shown below. Note that the following list is truncated.

```
org.gnome.nautilus.desktop network-icon-visible false
org.gnome.nautilus.desktop font "
org.gnome.nautilus.desktop network-icon-name 'Network Servers'
org.gnome.nautilus.desktop home-icon-name 'Home'
org.gnome.nautilus.desktop volumes-visible true
org.gnome.Vinagre always-enable-listening false
org.gnome.Vinagre always-show-tabs false
org.gnome.Vinagre show-accels false
org.gnome.Vinagre history-size 15
org.gnome.Vinagre shared-flag true
```
3.9. ACKNOWLEDGEMENTS

Certain portions of this text first appeared in the GNOME Desktop System Administration Guide. Copyright © 2014 The GNOME Project, Michael Hill, Jim Campbell, Jeremy Bicha, Ekaterina Gerasimova, minnie_eg, Aruna Sankaranarayanan, Sindhu S, Shobha Tyagi, Shaun McCance, David King, and others. Licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.

The editors of this Red Hat Enterprise Linux 8 documentation would like to thank the GNOME community members for their valuable contributions to the GNOME Desktop System Administration Guide.
CHAPTER 4. CUSTOMIZING DESKTOP APPEARANCE

This section explains how system administrators can customize appearance of the desktop environment for different users of the system.

4.1. CUSTOMIZING DESKTOP BACKGROUNDS

As a system administrator, you can configure the default desktop background, add extra backgrounds, or add multiple backgrounds using the `dconf` utility.

If the users of the system are not permitted to change background from the defaults, system administrator needs to lock the settings using the `locks` directory. Otherwise, each user can customize the background according to their preferences.

4.1.1. Customizing the default desktop background

You can configure the default desktop background and its appearance by setting the relevant `GSettings` keys in the `org.gnome.desktop.background` schema.

For more information about `GSettings`, see Section 3.1, “Introduction to configuring GNOME”.

Use the following procedure to set the default background:

Procedure

1. Create a local database for machine-wide settings in `/etc/dconf/db/local.d/00-background`:

   ```
   # Specify the dconf path
   [org/gnome/desktop/background]

   # Specify the path to the desktop background image file
   picture-uri='file:///usr/local/share/backgrounds/wallpaper.jpg'

   # Specify one of the rendering options for the background image:
   # 'none', 'wallpaper', 'centered', 'scaled', 'stretched', 'zoom', 'spanned'
   picture-options='scaled'

   # Specify the left or top color when drawing gradients or the solid color
   primary-color='000000'

   # Specify the right or bottom color when drawing gradients
   secondary-color='FFFFFF'
   ```

2. Optionally, if you want an user to not be able to change the default background, override the user’s setting in the `/etc/dconf/db/local.d/locks/background` file:

   ```
   # List the keys used to configure the desktop background
   /org/gnome/desktop/background/picture-uri
   /org/gnome/desktop/background/picture-options
   /org/gnome/desktop/background/primary-color
   /org/gnome/desktop/background/secondary-color
   ```

3. Update the system databases:

   ```
   # dconf update
   ```

4. Users must log out and back in again before the system-wide settings take effect.
4.1.2. Adding extra backgrounds

You can make extra backgrounds available to users on your system.

Procedure

1. Use the `org.gnome.desktop.background` schemas to create a file in the `xml` format specifying your extra background’s appearance.

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Possible Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>picture-options</td>
<td>"none", "wallpaper", "centered", "scaled", "stretched", "zoom", "spanned"</td>
<td>Determines how the image set by wallpaper_filename is rendered.</td>
</tr>
<tr>
<td>color-shading-type</td>
<td>"horizontal", "vertical", and "solid"</td>
<td>Determines shade the background color.</td>
</tr>
<tr>
<td>primary-color</td>
<td>default: #023c88</td>
<td>Left or Top color when drawing gradients, or the solid color.</td>
</tr>
<tr>
<td>secondary-color</td>
<td>default: #5789ca</td>
<td>Right or Bottom color when drawing gradients, not used for solid color.</td>
</tr>
</tbody>
</table>

The full range of options can be found in the `dconf-editor` GUI or the `gsettings` command-line utility. For more information, see Section 3.3, “Displaying GSettings values for desktop applications”.

2. Store the *.xml file under the `/usr/share/gnome-background-properties/` directory.

When the user clicks their name in the top right corner, chooses **Settings**, and in the **Personal** section of the table selects **Background**, they will see the new background available.

Example implementation of org.gnome.desktop.background GSettings keys

An example extra backgrounds file with one `<wallpaper>` element

```xml
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE wallpapers SYSTEM "gnome-wp-list.dtd">
<wallpapers>
  <wallpaper deleted="false">
    <name>Company Background</name>
    <name xml:lang="de">Firmenhintergrund</name>
    <filename>/usr/local/share/backgrounds/company-wallpaper.jpg</filename>
    <options>zoom</options>
    <shade_type>solid</shade_type>
    <pcolor>#ffffff</pcolor>
    <scolor>#000000</scolor>
  </wallpaper>
</wallpapers>
```
In one configuration file, you can specify multiple `<wallpaper>` elements to add more backgrounds as shown in the following example with two `<wallpaper>` elements, adding two different backgrounds.

An example extra backgrounds file with two `<wallpaper>` elements

```xml
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE wallpapers SYSTEM "gnome-wp-list.dtd">
<wallpapers>
  <wallpaper deleted="false">
    <name>Company Background</name>
    <name xml:lang="de">Firmenhintergrund</name>
    <filename>/usr/local/share/backgrounds/company-wallpaper.jpg</filename>
    <options>zoom</options>
    <shade_type>solid</shade_type>
    <pcolor>#ffffff</pcolor>
    <scolor>#000000</scolor>
  </wallpaper>
  <wallpaper deleted="false">
    <name>Company Background 2</name>
    <name xml:lang="de">Firmenhintergrund 2</name>
    <filename>/usr/local/share/backgrounds/company-wallpaper-2.jpg</filename>
    <options>zoom</options>
    <shade_type>solid</shade_type>
    <pcolor>#ff0000</pcolor>
    <scolor>#00ffff</scolor>
  </wallpaper>
</wallpapers>
```

4.1.3. Setting the screen shield

Screen shield is the screen that quickly slides down when the system is locked. It is controlled by the `org.gnome.desktop.screensaver.picture-uri` GSettings key. GDM uses its own dconf profile, so you can set the default background by changing the settings in that profile.

For more information on GSettings and dconf, see Section 3.1, “Introduction to configuring GNOME”.

Procedure

1. Create a gdm database for machine–wide settings in `/etc/dconf/db/gdm.d/01-screensaver`:

   ```
   [org/gnome/desktop/screensaver]
   picture-uri='file:///opt/corp/background.jpg'
   ```

 Replace `/opt/corp/background.jpg` with the path to the image file you want to use as the screen shield. Supported formats are PNG, JPG, JPEG, and TGA. Note that the image will be scaled if necessary to fit the screen.

2. Update the system databases:

   ```
   # dconf update
   ```

3. Users must log out and back in again before the system–wide settings take effect.

Troubleshooting
If the screen shield does not update, you can:

1. Make sure that you have updated the system databases by running the `dconf update` command as the `root` user.

2. Try restarting GDM.

4.2. USING GNOME SHELL EXTENSIONS TO CUSTOMIZE DESKTOP ENVIRONMENT

GNOME Shell extensions allow for the customization of the default GNOME Shell interface and its parts, such as window management and application launching.

IMPORTANT

Before deploying third-party GNOME Shell extensions on Red Hat Enterprise Linux, make sure to read the following document to learn about the Red Hat support policy for third-party software: [How does Red Hat Global Support Services handle third-party software, drivers, and/or uncertified hardware/hypervisors?](#)

4.2.1. Overview of GNOME Shell extensions

This section provides an overview of GNOME Shell extensions available on RHEL 8, including the name of the package providing a particular extension, and the description of what each extension does.

Table 4.2. Overview of available GNOME Shell extensions

<table>
<thead>
<tr>
<th>Package name</th>
<th>Extension name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>gnome-shell-extension-apps-menu</td>
<td>apps-menu</td>
<td>Applications menu for GNOME Shell</td>
</tr>
<tr>
<td>gnome-shell-extension-top-icons</td>
<td>Top Icons</td>
<td>Show legacy icons on top</td>
</tr>
<tr>
<td>gnome-shell-extension-user-theme</td>
<td>user-theme</td>
<td>Support for custom themes in GNOME Shell</td>
</tr>
<tr>
<td>gnome-shell-extension-drive-menu</td>
<td>drive-menu</td>
<td>Drive status menu for GNOME Shell</td>
</tr>
<tr>
<td>gnome-shell-extension-window-list</td>
<td>window-list</td>
<td>Display a window list at the bottom of the screen in GNOME Shell</td>
</tr>
<tr>
<td>gnome-shell-extension-dash-to-dock</td>
<td>Dash to Dock</td>
<td>Dock for the Gnome Shell by micxgx.gmail.com</td>
</tr>
<tr>
<td>gnome-shell-extension-desktop-icons</td>
<td>Desktop Icons</td>
<td>Desktop icons support for the GNOME Classic experience</td>
</tr>
<tr>
<td>gnome-shell-extension-no-hot-corner</td>
<td>nohotcorner</td>
<td>Disable the hot corner in GNOME Shell</td>
</tr>
<tr>
<td>Package name</td>
<td>Extension name</td>
<td>Description</td>
</tr>
<tr>
<td>---------------</td>
<td>----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>gnome-shell-extension-systemMonitor</td>
<td>systemMonitor</td>
<td>System Monitor for GNOME Shell</td>
</tr>
<tr>
<td>gnome-shell-extension-updates-dialog</td>
<td>Updates Dialog</td>
<td>Show a modal dialog when there are software updates</td>
</tr>
<tr>
<td>gnome-shell-extension-window-grouper</td>
<td>window-grouper</td>
<td>Keep windows that belong to the same process on the same workspace</td>
</tr>
<tr>
<td>gnome-shell-extension-panel-favorites</td>
<td>panel-favorites</td>
<td>Favorite launchers in GNOME Shell’s top bar</td>
</tr>
<tr>
<td>gnome-shell-extension-windowsNavigator</td>
<td>windowNavigator</td>
<td>Support for keyboard selection of windows and workspaces in GNOME shell</td>
</tr>
<tr>
<td>gnome-shell-extension-auto-move-windows</td>
<td>Autom Move Windows</td>
<td>Assign specific workspaces to applications in GNOME Shell</td>
</tr>
<tr>
<td>gnome-shell-extension-launch-new-instance</td>
<td>launch-new-instance</td>
<td>Always launch a new application instance for GNOME Shell</td>
</tr>
<tr>
<td>gnome-shell-extension-workspace-indicator</td>
<td>workspace-indicator</td>
<td>Workspace indicator for GNOME Shell</td>
</tr>
<tr>
<td>gnome-shell-extension-disable-screenshield</td>
<td>Disable Screen Shield</td>
<td>Disable GNOME Shell screen shield if lock is disabled</td>
</tr>
<tr>
<td>gnome-shell-extension-native-window-placement</td>
<td>native-window-placement</td>
<td>Native window placement for GNOME Shell</td>
</tr>
<tr>
<td>gnome-shell-extension-screenshot-window-sizer</td>
<td>screenshot-window-sizer</td>
<td>Screenshot window sizer for GNOME Shell</td>
</tr>
<tr>
<td>gnome-shell-extension-horizontal-workspaces</td>
<td>horizontal-workspaces</td>
<td>Desktop icons support for the GNOME Classic experience</td>
</tr>
<tr>
<td>gnome-shell-extension-places-menu</td>
<td>places-menu</td>
<td>Places status menu for GNOME Shell</td>
</tr>
<tr>
<td>gnome-classic-session</td>
<td>-</td>
<td>GNOME Classic mode session</td>
</tr>
</tbody>
</table>

4.2.2. Enabling machine-wide extensions
Prerequisites

To make extensions available to all users on the system, install them in the `/usr/share/gnome-shell/extensions` directory.

Procedure

1. Create a local database file for machine-wide settings in `/etc/dconf/db/local.d/00-extensions`:

   ```
   [org/gnome/shell]
   # List all extensions that you want to have enabled for all users
   enabled-extensions=['myextension1@myname.example.com',
                       'myextension2@myname.example.com']
   ```

 The `enabled-extensions` key specifies the enabled extensions using the extensions’ uuid (myextension1@myname.example.com and myextension2@myname.example.com).

2. Update the system databases:

   ```
   # dconf update
   ```

3. Users must log out and back in again before the system-wide settings take effect.

 NOTE

 There is currently no way to enable additional extensions for users who have already logged in. This does not apply for existing users who have installed and enabled their own GNOME extensions.

4.2.3. Locking down enabled extensions

You can prevent the user from enabling or disabling extensions by locking down the `org.gnome.shell.enabled-extensions` key.

Procedure

1. Create a local database file for machine-wide settings in `/etc/dconf/db/local.d/00-extensions`:

   ```
   [org/gnome/shell]
   # List all extensions that you want to have enabled for all users
   enabled-extensions=['myextension1@myname.example.com',
                       'myextension2@myname.example.com']
   ```

 The `enabled-extensions` key specifies the enabled extensions using the extensions’ uuid (myextension1@myname.example.com and myextension2@myname.example.com).

2. Override the user’s setting and prevent the user from changing it in `/etc/dconf/db/local.d/locks/extensions`:

   ```
   # Lock the list of mandatory extensions
   /org/gnome/shell/enabled-extensions
   ```

3. Update the system databases:
4. Users must log out and back in again before the system-wide settings take effect.

After locking down the `org.gnome.shell.enabled-extensions`, any extensions installed in
`~/.local/share/gnome-shell/extensions` or `/usr/share/gnome-shell/extensions` that are not listed in
the `org.gnome.shell.enabled-extensions` key will not be loaded by GNOME Shell, thus preventing the
user from using them.

4.2.4. Setting up mandatory extensions

In GNOME Shell, you can provide a set of extensions that the user has to use.

Prerequisites

The extensions must be installed under the `/usr/share/gnome-shell/extensions` directory.

Procedure

1. Create a local database file for machine-wide settings in `/etc/dconf/db/local.d/00-extensions-mandatory`:

   ```
   [org/gnome/shell]
   # List all mandatory extensions
   enabled-extensions=['myextension1@myname.example.com', 'myextension2@myname.example.com']
   ```

 The `enabled-extensions` key specifies the enabled extensions using the extensions’ uuid
(`myextension1@myname.example.com` and `myextension2@myname.example.com`).

2. Override the user’s setting and prevent the user from changing it in
 `/etc/dconf/db/local.d/locks/extensions-mandatory`:

   ```
   # Lock the list of mandatory extensions
   /org/gnome/shell/enabled-extensions
   ```

3. Update the system databases:

   ```
   # dconf update
   ```

4. Users must log out and back in again before the system-wide settings take effect.
5.1. ENABLING THE CTRL+ALT+BACKSPACE SHORTCUT

The Ctrl+Alt+Backspace shortcut key combination is used for terminating the X.Org display server. You might want to terminate X.Org especially when:

- A program caused X.Org to stop working.
- You need to switch from your logged-in session quickly.
- You have launched a program that failed.
- You cannot operate in the current session.
- Your screen freezes.

To enable the Ctrl+Alt+Backspace shortcut to forcibly terminate X.Org by default for all users, you need to set the org.gnome.desktop.input-sources.xkb-options GSettings key.

Procedure

1. Create a local database for machine-wide settings in /etc/dconf/db/local.d/00-input-sources:

   ```
   [org/gnome/desktop/input-sources]
   # Enable Ctrl-Alt-Backspace for all users
   xkb-options=['terminate:ctrl_alt_bksp']
   ```

2. Override the user’s setting, and prevent the user from changing it in /etc/dconf/db/local.d/locks/input-sources:

   ```
   # Lock the list of enabled XKB options
   /org/gnome/desktop/input-sources/xkb-options
   ```

3. Update the system databases for the changes to take effect:

   ```
   # dconf update
   ```

4. Users must log out and back in again before the system-wide settings take effect.

If the Ctrl+Alt+Backspace key combination is enabled, all users can terminate X.Org, which brings them back to the login prompt.

5.2. DISABLING COMMAND-LINE ACCESS

To disable command-line access for a desktop user, you need to make configuration changes in a number of different contexts:

- Section 5.2.1, “Setting the org.gnome.desktop.lockdown.disable-command-line Key”
- Section 5.2.2, “Disabling virtual terminal switching on X.Org”
- Remove **Terminal** and any other application that provides access to the terminal from the **Applications menu** and **Activities Overview** in GNOME Shell. This is done by removing menu items for those applications.

NOTE

The following steps do not remove the desktop user’s permissions to access a command line, but rather remove the ways that the desktop user could access command line.

5.2.1. Setting the org.gnome.desktop.lockdown.disable-command-line Key

This approach prevents the user from:

- Accessing the terminal
- Specifying a command line to be executed by using the **Alt+F2** command prompt

Procedure

1. Create a local database for machine-wide settings in `/etc/dconf/db/local.d/00-lockdown`:

```
[org/gnome/desktop/lockdown]
# Disable command-line access
disable-command-line=true
```

2. Override the user’s setting and prevent the user from changing it in `/etc/dconf/db/local.d/locks/lockdown`:

```
# Lock the disabled command-line access
/org/gnome/desktop/lockdown
```

3. Update the system databases:

```
# dconf update
```

4. Users must log out and back in again before the system-wide settings take effect.

5.2.2. Disabling virtual terminal switching on X.Org

With the **X.Org** display server, users can normally use the **Ctrl+Alt+function** key shortcuts to switch from the GNOME Desktop and **X.Org** to a virtual terminal. You can disable access to all virtual terminals by modifying the **X.Org** configuration. The **X.Org** configuration should be modified by adding the **DontVTSwitch** option to the **Serverflags** section of an X configuration file in the `/etc/X11/xorg.conf.d/` directory, as shown by the following procedure.

IMPORTANT

You cannot apply the procedure if **GNOME Shell on Wayland** is used as the display server.

Procedure

1. Create or edit an X configuration file in the `/etc/X11/xorg.conf.d/` directory:
NOTE

By convention, these host-specific configuration file names start with two digits and a hyphen and always have the .conf extension. Thus, the following file name can be /etc/X11/xorg.conf.d/10-xorg.conf.

Section "Serverflags"

Option "DontVTSwitch" "yes"

EndSection

2. Restart the X.Org display server for the changes to take effect.

5.3. PREVENTING THE COMPUTER FROM SUSPENDING WHEN CLOSING THE LID

When closing the lid of your laptop, the computer by default suspends in order to save power. You can prevent the computer from suspending when closing the lid by changing the setting for that behavior.

WARNING

Some laptops can overheat if they are left running with the lid closed, especially if they are in a confined place. Therefore, consider whether changing the default setting from suspend to another option is beneficial in your case.

Procedure

1. Open the /etc/systemd/logind.conf file for editing.

2. Find the HandleLidSwitch=suspend line in the file.
 If it is quoted out with the # character at the start, unquote it by removing #.
 If the line is not present in the file, add it.

3. Replace the default suspend parameter with:

 - lock for the screen to lock
 - ignore for nothing to happen
 - poweroff for the computer to switch off

 For example:

 [Login]
 HandleLidSwitch=lock

4. Save your changes, and close the editor.
5. Run the following command so that your changes preserve the next restart of the system:

```
# systemctl restart systemd-logind.service
```

WARNING

Restarting the service forcibly interrupts any currently running GNOME session of any desktop user who is logged in. This can result in users losing unsaved data.

For more information on the `/etc/systemd/logind.conf` file, see the `logind.conf` man page.

5.4. Changing Behavior When Pressing the Power Button in Graphical Target Mode

When the machine is booted to a graphical login screen or user session, hitting the `power` button makes the machine suspend by default. This happens both in cases when the user presses the `power` button physically or when pressing a virtual `power` button from a remote console. To achieve a different behavior when pressing the `power` button, set the function of this button with `dconf`.

For example, if you want the system to shutdown after pressing the `power` button, use the following procedure:

Procedure

1. Create a local database for system-wide settings in the `/etc/dconf/db/local.d/01-power` file:

   ```
   [org/gnome/settings-daemon/plugins/power]
   power-button-action='interactive'
   ```

2. Override the user’s setting, and prevent the user from changing it in the `/etc/dconf/db/local.d/locks/01-power` file:

   ```
   /org/gnome/settings-daemon/plugins/power/power-button-action
   ```

3. Update the system databases:

   ```
   # dconf update
   ```

4. Log out and back in again before the system-wide settings take effect.

This configuration initiates a system shutdown after pressing the `power` button. To configure the system differently, you can set the behavior of particular buttons.

Options for particular buttons:

- nothing

 does nothing
• suspend
 suspends the system

• hibernate
 hibernates the system

• interactive
 shows a pop-up query asking the user what to do

With interactive mode, the system powers off automatically after 60 seconds when hitting the power button. However, you can choose a different behavior from the pop-up query as shown in the figure below.

Pop-up query for interactive mode
CHAPTER 6. LOCKING DOWN SELECTED TASKS

This section describes how to lock down for users the following tasks:

- Printing
- File saving on disk
- Repartitioning
- User logout and user switching

6.1. LOCKING DOWN PRINTING

You can disable the print dialog from being shown to users. This can be useful if you are giving temporary access to a user or you do not want the user to print to network printers.

IMPORTANT

The feature only works in applications which support it. Not all GNOME and third party applications have this feature enabled. The changes do not have effect on applications which do not support this feature.

To prevent applications from printing, lock down the `org.gnome.desktop.lockdown.disable-printing` key:

Procedure

1. Create the user profile in `/etc/dconf/profile/user` unless it already exists:

   ```
   user-db:user
   system-db:local
   ```

2. Create a local database for machine-wide settings in the `/etc/dconf/db/local.d/00-lockdown` file:

   ```
   [org/gnome/desktop/lockdown]
   # Prevent applications from printing
   disable-printing=true
   ```

3. Override the user’s setting and prevent the user from changing it in the `/etc/dconf/db/local.d/locks/lockdown` file:

   ```
   # List the keys used to configure lockdown
   /org/gnome/desktop/lockdown/disable-printing
   ```

4. Update the system databases:

   ```
   # dconf update
   ```

Having followed these steps, applications supporting this lockdown key, such as Evolution, Evince, or Gedit, will disable printing.
6.2. LOCKING FILE SAVING ON DISK

You can disable the Save and Save As dialogs. This can be useful if you are giving temporary access to a user or you do not want the user to save files to the computer.

IMPORTANT

The feature only works in applications which support it. Not all GNOME and third party applications have this feature enabled. The changes will have no effect on applications which do not support this feature.

To prevent applications from file saving, lock down the `org.gnome.desktop.lockdown.disable-save-to-disk` key:

Procedure

1. Create the user profile in `/etc/dconf/profile/user` unless it already exists:

   ```
   user-db:user
   system-db:local
   ```

2. Create a local database for machine-wide settings in the `/etc/dconf/db/local.d/00-lockdown` file:

   ```
   [org/gnome/desktop/lockdown]
   # Prevent the user from saving files on disk
   disable-save-to-disk=true
   ```

3. Override the user’s setting and prevent the user from changing it in the `/etc/dconf/db/local.d/locks/lockdown` file:

   ```
   # Lock this key to disable saving files on disk
   /org/gnome/desktop/lockdown/disable-save-to-disk
   ```

4. Update the system databases:

   ```
   # dconf update
   ```

Having followed these steps, applications supporting this lockdown key, for example Videos, Image Viewer, Evolution, Document Viewer, or GNOME Shell, will disable their Save As dialogs.

6.3. LOCKING REPARTITIONING

`polkit` enables you to set permissions for individual operations. For `udisks2`, the utility for disk management services, the configuration is located at `/usr/share/polkit-1/actions/org.freedesktop.udisks2.policy`. This file contains a set of actions and default values, which can be overridden by system administrator.
IMPORTANT

polkit configuration stored in /etc overrides the configuration shipped by packages in /usr/share/.

Procedure

1. Create a file with the same content as in /usr/share/polkit-1/actions/org.freedesktop.udisks2.policy:

```bash
cp /usr/share/polkit-1/actions/org.freedesktop.udisks2.policy /etc/share/polkit-1/actions/org.freedesktop.udisks2.policy
```

Do not change the /usr/share/polkit-1/actions/org.freedesktop.udisks2.policy file, your changes will be overwritten by the next package update.

2. Delete the action you do not need, and add the following lines to the /etc/polkit-1/actions/org.freedesktop.udisks2.policy file:

```xml
<action id="org.freedesktop.udisks2.modify-device">
  <message>Authentication is required to modify the disks settings</message>
  <defaults>
    <allow_any>no</allow_any>
    <allow_inactive>no</allow_inactive>
    <allow_active>yes</allow_active>
  </defaults>
</action>
```

Replace no by auth_admin if you want to ensure only the root user is able to perform the action.

3. Save the changes.

When the user tries to change the disks settings, the following message is returned:

Authentication is required to modify the disks settings.

6.4. LOCKING DOWN USER LOGOUT AND USER SWITCHING

To prevent the user from logging out, use the following procedure.

Procedure

1. Create the /etc/dconf/profile/user profile, which contains the following lines:

```bash
user-db:user
system-db:local
```

where local is the name of a dconf database

2. Create the /etc/dconf/db/local.d/ directory if it does not already exist.

3. Create the /etc/dconf/db/local.d/00-logout key file to provide information for the local database:
[org/gnome/desktop/lockdown]
Prevent the user from user switching
disable-log-out=true

4. Override the user’s setting, and prevent the user from changing it in the
/etc/dconf/db/local.d/locks/lockdown file:

Lock this key to disable user logout
/org/gnome/desktop/lockdown/disable-log-out

5. Update the system databases:

dconf update

6. Users must log out and back in again before the system-wide settings take effect.

IMPORTANT

Users can evade the logout lockdown by switching to a different user. To prevent such scenario, lock down user switching as well.

To lock down user switching, use the following procedure:

Procedure

1. Create the /etc/dconf/profile/user profile, which contains the following lines:

 user-db:user
 system-db:local

 where *local* is the name of a dconf database

2. Create the /etc/dconf/db/local.d/ directory if it does not already exist.

3. Create the /etc/dconf/db/local.d/00-user-switching key file to provide information for the local database:

 [org/gnome/desktop/lockdown]
 # Prevent the user from user switching
disable-user-switching=true

4. Override the user’s setting, and prevent the user from changing it in the
/etc/dconf/db/local.d/locks/lockdown file:

 # Lock this key to disable user switching
 /org/gnome/desktop/lockdown/disable-user-switching

5. Update the system databases:

 # dconf update

6. Users must log out and back in again before the system-wide settings take effect.
CHAPTER 7. MANAGING USER SESSIONS

7.1. WHAT GDM IS

The GNOME Display Manager (GDM) is a graphical login program running in the background that runs and manages the X.Org display servers for both local and remote logins.

GDM is a replacement for XDM, the X Display Manager. However, GDM is not derived from XDM and does not contain any original XDM code. In addition, there is no support for a graphical configuration tool in GDM, so editing the /etc/gdm/custom.conf configuration file is necessary to change the GDM settings.

7.2. RESTARTING GDM

When you make changes to the system configuration such as setting up the login screen banner message, login screen logo, or login screen background, restart GDM for your changes to take effect.

WARNING

Restarting the service forcibly interrupts any currently running GNOME session of any desktop user who is logged in. This can result in users losing unsaved data.

Procedure

- To restart the GDM service, run the following command:

 # systemctl restart gdm.service

Procedure

- To display results of the GDM configuration, run the following command:

 $ DCONF_PROFILE=gdm gsettings list-recursively org.gnome.login-screen

7.3. ADDING AN AUTOSTART APPLICATION FOR ALL USERS

To start an application automatically when the user logs in, create a .desktop file for that application in the /etc/xdg/autostart/ directory. To manage autostart applications for individual users, use the gnome-session-properties application.

Procedure

1. Create a .desktop file in the /etc/xdg/autostart/ directory:

 [Desktop Entry]
 Type=Application
 Name=Files
7.4. CONFIGURING AUTOMATIC LOGIN

As an administrator, you can enable automatic login from the Users panel in GNOME Settings, or you can set up automatic login manually in the GDM custom configuration file, as follows.

Run the following procedure to set up automatic login for a user john.

Procedure

- Edit the /etc/gdm/custom.conf file, and make sure that the [daemon] section in the file specifies the following:

```
[daemon]
AutomaticLoginEnable=True
AutomaticLogin=john
```

Replace john with the user that you want to be automatically logged in.

7.5. CONFIGURING AUTOMATIC LOGOUT

User sessions that have been idle for a specific period of time can be ended automatically. You can set different behavior based on whether the machine is running from a battery or from mains power by setting the corresponding GSettings key, then locking it.

WARNING

Users can potentially lose unsaved data if an idle session is automatically ended.

To set automatic logout for a mains powered machine:

Procedure

1. Create a local database for machine-wide settings in the /etc/dconf/db/local.d/00-autologout file:

```
[org/gnome/settings-daemon/plugins/power]
```
Set the timeout to 900 seconds when on mains power
sleep-inactive-ac-timeout=900
Set action after timeout to be logout when on mains power
sleep-inactive-ac-type='logout'

2. Override the user’s setting, and prevent the user from changing it in the
/etc/dconf/db/local.d/locks/autologout file:

Lock automatic logout settings
/org/gnome/settings-daemon/plugins/power/sleep-inactive-ac-timeout
/org/gnome/settings-daemon/plugins/power/sleep-inactive-ac-type

3. Update the system databases:

dconf update

4. Users must log out and back in again before the system-wide settings take effect.

The following GSettings keys are of interest:

- org.gnome.settings-daemon.plugins.power.sleep-inactive-ac-timeout
 The number of seconds that the computer needs to be inactive before it goes to sleep if it is
 running from AC power.

- org.gnome.settings-daemon.plugins.power.sleep-inactive-ac-type
 What should happen when the timeout has passed if the computer is running from AC power.

- org.gnome.settings-daemon.plugins.power.sleep-inactive-battery-timeout
 The number of seconds that the computer needs to be inactive before it goes to sleep if it is
 running from power.

- org.gnome.settings-daemon.plugins.power.sleep-inactive-battery-type
 What should happen when the timeout has passed if the computer is running from battery
 power.

If you want to list available values for a key, use the following procedure:

Procedure

- Run the `gsettings range` command on the required key. For example:

```bash
$ gsettings range org.gnome.settings-daemon.plugins.power sleep-inactive-ac-type
enum 'blank' 'suspend' 'shutdown' 'hibernate' 'interactive' 'nothing' 'logout'
```

7.6. SETTING SCREEN BRIGHTNESS AND IDLE TIME

This section describes how to:
Configure the drop in the brightness level
Set brightness level
Set idle time

Configuring the drop in the brightness level
To set the drop in the brightness level when the device has been idle for some time:

Procedure
1. Create a local database for machine-wide settings in the `etc/dconf/db/local.d/00-power` file including these lines:
   ```
   [org/gnome/settings-daemon/plugins/power]
   idle-dim=true
   ```
2. Update the system databases:
   ```
   # dconf update
   ```
3. Users must log out and back in again before the system-wide settings take effect.

Setting brightness level
To set brightness level:

Procedure
1. Create a local database for machine-wide settings in the `etc/dconf/db/local.d/00-power` file, as in the following example:
   ```
   [org/gnome/settings-daemon/plugins/power]
   idle-brightness=30
   ```
 Replace 30 with the integer value you want to use.
2. Update the system databases:
   ```
   # dconf update
   ```
3. Users must log out and back in again before the system-wide settings take effect.

Setting idle time
To set idle time after which the screen is blanked and the default screensaver is displayed:

Procedure
1. Create a local database for machine-wide settings in `etc/dconf/db/local.d/00-session`, as in the following example:
   ```
   [org/gnome/desktop/session]
   idle-delay=uint32 900
   ```
 Replace 900 with the integer value you want to use.
7.7. LOCKING THE SCREEN WHEN THE USER IS IDLE

To enable the screensaver and make the screen lock automatically when the user is idle, follow this procedure:

Procedure

1. Create a local database for system-wide settings in the `etc/dconf/db/local.d/00-screensaver` file:

   ```
   [org/gnome/desktop/session]
   # Set the lock time out to 180 seconds before the session is considered idle
   idle-delay=uint32 180
   [org/gnome/desktop/screensaver]
   # Set this to true to lock the screen when the screensaver activates
   lock-enabled=true
   # Set the lock timeout to 180 seconds after the screensaver has been activated
   lock-delay=uint32 180
   ```

 You must include the `uint32` along with the integer key values as shown.

2. Override the user’s setting, and prevent the user from changing it in the `/etc/dconf/db/local.d/locks/screensaver` file:

   ```
   # Lock desktop screensaver settings
   /org/gnome/desktop/session/idle-delay
   /org/gnome/desktop/screensaver/lock-enabled
   /org/gnome/desktop/screensaver/lock-delay
   ```

3. Update the system databases:

   ```
   # dconf update
   ```

4. Users must log out and back in again before the system-wide settings take effect.

7.8. SCREENCAST RECORDING

GNOME Shell features a built-in screencast recorder. The recorder allows users to record desktop or application activity during their session and distribute the recordings as high-resolution video files in the `webm` format.

To make a screencast:

Procedure
1. To start the recording, press Ctrl+Alt+Shift+R shortcut. When the recorder is capturing the screen activity, it displays a red circle in the bottom-right corner of the screen.

2. To stop the recording, press Ctrl+Alt+Shift+R shortcut. The red circle in the bottom-right corner of the screen disappears.

3. Navigate to the ~/Videos directory where you can find the recorded video with a file name that starts with Screencast and includes the date and time of the recording.

NOTE

The built-in recorder always captures the entire screen, including all monitors in multi-monitor setups.
CHAPTER 8. CONFIGURING THE DESKTOP ENVIRONMENT FOR ACCESSIBILITY

This section explains how a system administrator can configure a system with the desktop environment to support users with a visual impairment.

Accessibility in Red Hat Enterprise Linux 8 desktop for the blind users is ensured by the Orca screen reader, which is included in the default installation of the operating system.

Orca reads information from the screen and communicates it to the user using:

- Speech synthesizer - provides a speech output
- Braille display - provides a tactile output

For more information on Orca settings, see Orca’s help page.

For Orca’s communication outputs to function properly, the system administrator must:

- Configure the brltty service
- Switch on the Always Show Universal Access Menu
- Enable the Festival speech synthesizer

8.1. CONFIGURING THE BRLTTY SERVICE

The Braille display is a device that uses the brltty service to provide tactile output for visually impaired users.

In order that a Braille display works correctly, system administrators must:

- Enable the brltty service
- Authorize users of a Braille display device
- Set the driver for a Braille display device
- Configure a Braille display device

8.1.1. Enabling the brltty service

The Braille display cannot work unless the brltty service is running. By default, brltty is disabled.

To enable brltty to be started on boot, use the following procedure.

Procedure

- To enable the brltty service on boot, run:

 # systemctl enable brltty

Verification steps
1. Reboot the system.

2. Make sure that the `brltty` service is running:

```bash
# systemctl status brltty
● brltty.service - Braille display driver for Linux/Unix
   Loaded: loaded (/usr/lib/systemd/system/brltty.service; enabled; vendor pres>
   Active: active (running) since Tue 2019-09-10 14:13:02 CEST; 39s ago
   Process: 905 ExecStart=/usr/bin/brltty (code=exited, status=0/SUCCESS)
   Main PID: 914 (brltty)
   Tasks: 3 (limit: 11360)
   Memory: 4.6M
   CGroup: /system.slice/brltty.service
         └─ 914 /usr/bin/brltty
```

8.1.2. Authorizing users of a Braille display device

To set the users who are authorized to use a Braille display device, you can choose one of the following methods, which have an equal effect:

- **Authorizing users of a Braille display device with `brltty.conf`**
- **Authorizing users of a Braille display device with `brlapi.key`**

Authorization using the `/etc/brlapi.key` file is suitable only for the file systems where users or groups can be assigned to a file.

Authorization using the `/etc/brltty.conf` file is suitable even for the file systems where users or groups cannot be assigned to a file.

8.1.2.1. Authorizing users of a Braille display device with `brltty.conf`

Procedure

1. Open the `/etc/brltty.conf` file, and find the section called *Application Programming Interface Parameters*.

2. Specify the users.

 - To specify one or more individual users, list the users on the following line:
     ```
     api-parameters Auth=user:user_1, user_2, … # Allow some local user
     ```

 - To specify a user group, enter its name on the following line:
     ```
     api-parameters Auth=group:group # Allow some local group
     ```

8.1.2.2. Authorizing users of a Braille display device with `brlapi.key`

Authorization using the `/etc/brlapi.key` file is suitable only for the file systems where users or groups can be assigned to a file.

Prerequisites
• Your system must use a file system where users or groups can be assigned to a file.

Procedure

1. Create the `/etc/brlapi.key` file.

   ```
   # mcookie > /etc/brlapi.key
   ```

2. Change ownership of the `/etc/brlapi.key` to particular user or group.

 • To specify an individual user:
     ```
     # chown user_1 /etc/brlapi.key
     ```

 • To specify a group:
     ```
     # chown group_1 /etc/brlapi.key
     ```

3. Adjust the content of `/etc/brltty.conf` by including the following line:
   ```
   api-parameters Auth=keyfile:/etc/brlapi.key
   ```

8.1.3. Setting the driver for a Braille display device

The `braille-driver` directive in `/etc/brltty.conf` file specifies a two-letter driver identification code of the driver for the Braille display device.

Procedure

• Decide whether you want to use the autodetection for finding the appropriate driver for your Braille display device.

 • To use autodetection, use the default option as follows:
    ```
    braille-driver auto # autodetect
    ```

 ![WARNING]

 Autodetection tries all drivers. Therefore, it might take a long time or even fail. For this reason, setting up a particular driver is recommended.

• If you do not want to use the autodetection, specify the identification code of the required driver in the `braille-driver` directive.
 Choose the identification code of required driver from the list provided in `/etc/brltty.conf`, for example:
  ```
  braille-driver xw # XWindow
  ```
You can also set multiple drivers, separated by commas, and autodetection is then performed among them.

8.1.4. Configuring a Braille display device

The **braille-device** directive in the `/etc/brltty.conf` file specifies the device to which the Braille display device is connected.

8.1.4.1. Supported types of Braille display device

This section describes which types of Braille display devices are supported.

Table 8.1. Braille display device types and the corresponding syntax

<table>
<thead>
<tr>
<th>Braille device type</th>
<th>Syntax of the type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serial device</td>
<td>serial:path [a]</td>
</tr>
<tr>
<td>USB device</td>
<td>[serial-number] [b]</td>
</tr>
<tr>
<td>Bluetooth device</td>
<td>bluetooth:address</td>
</tr>
</tbody>
</table>

[a] Relative paths are at `/dev`.

[b] The brackets ([]) here indicate optionality.

Example settings for particular Braille display devices:

```
braille-device serial:ttys0  # First serial device
braille-device usb:          # First USB device matching braille driver
braille-device usb:nnnnnn    # Specific USB device by serial number
braille-device bluetooth:xx:xx:xx:xx:xx:xx # Specific Bluetooth device by address
```

You can also set multiple devices, separated by commas, and each of them will be probed in turn.

IMPORTANT

If the device is connected by a serial-to-USB adapter, setting **braille-device** to **usb**: does not work. In this case, identify the virtual serial device that the kernel has created for the adapter. The virtual serial device can look like this:

```
serial:ttysUSB0
```

You can find the actual device name in the kernel messages on the device plug with the following command:

```
# dmesg | fgrep ttysUSB0
```

8.1.4.2. Setting specific parameters for Braille display devices
To set specific parameters for particular Braille display devices, use the `braille-parameters` directive in `/etc/brltty.conf` file. The `braille-parameters` directive passes non-generic parameters through to the braille driver. Choose the required parameters from the list in `/etc/brltty.conf`.

8.1.4.2.1. Setting the text table

The `text-table` directive in `/etc/brltty.conf` specifies which text table is used to encode the symbols. Relative paths to text tables are stored within the `/etc/brltty/Text` directory.

Procedure

1. Decide whether you want to use the autoselection for finding the appropriate text table.

2. If you want to use the autoselection, leave `text-table` specified to `auto`, which is the default option.

   ```text
   text-table auto  # locale-based autoselection
   ```

 This ensures that local-based autoselection with fallback to `en-nabcc` is performed.

 For example, to use the text table for American English:

   ```text
   text-table en_US  # English (United States)
   ```

8.1.4.2.2. Setting the contraction table

The `contraction-table` directive in the `/etc/brltty.conf` file specifies which table is used to encode the abbreviations. Relative paths to particular contraction tables are stored within the `/etc/brltty/Contraction` directory.

Procedure

- Choose the required contraction-table from the list in `/etc/brltty.conf`.

 For example, to use the contraction table for American English, grade 2:

  ```text
  contraction-table en-us-g2  # English (US, grade 2)
  ```

WARNING

If not specified, no contraction table is used.

8.2. SWITCHING ON THE ALWAYS SHOW UNIVERSAL ACCESS MENU

To activate the *Orca* screen reader, switch on **Always Show Universal Access Menu** as described in the following procedure.

Procedure
1. Open the Gnome Settings menu, and click Universal Access.

2. Switch on Always Show Universal Access Menu.

Switching on the Always Show Universal Access Menu in GNOME Settings

![Universal Access Settings](image)

Verification steps

- Optionally, verify that the Universal Access Menu icon is displayed on the top bar even if all options from this menu are switched off.

Alternatively, you can switch the Orca screen reader on by pressing the Super+Alt+S key combination. As a result, the Universal Access Menu icon is displayed on the top bar.
8.3. ENABLING THE FESTIVAL SPEECH SYNTHESIS SYSTEM

By default, Orca uses the eSpeak speech synthesizer, but it also supports the Festival Speech Synthesis System (Festival). Both eSpeak and Festival synthesize voice differently. Some users might prefer Festival to the default eSpeak synthesizer.

8.3.1. Enabling Festival

To enable Festival to be automatically started on boot, follow this procedure.

Prerequisites

- All packages that are necessary for the Festival stack are installed on the system:

 # yum install festival festival-freebsoft-utils

Procedure

1. Create a new systemd unit file in the /etc/systemd/system/ directory, and make the file executable:

 # touch /etc/systemd/system/festival.service
 # chmod 664 /etc/systemd/system/festival.service

2. Ensure that the script in the /usr/bin/festival_server file is used to run Festival by adding the following content to the /etc/systemd/system/festival.service file:

 [Unit]
 Description=Festival speech synthesis server
 [Service]
 ExecStart=/usr/bin/festival_server
 Type=simple

3. Notify systemd that a new festival.service file exists:

 # systemctl daemon-reload
 # systemctl start festival.service

 # systemctl start festival.service
4. Enable the `festival` service:

```bash
# systemctl enable festival
```

8.3.2. Enabling the required voice

`Festival` offers multiple voices provided in these packages:

- `festvox-awb-arctic-hts`
- `festvox-bdl-arctic-hts`
- `festvox-clb-arctic-hts`
- `festvox-kal-diphone`
- `festvox-rms-arctic-hts`
- `festvox-slt-arctic-hts`
- `hispavoces-pal-diphone`
- `hispavoces-sfl-diphone`

To make a particular voice or voices that users require available, follow this procedure.

Prerequisites

- You know which voices are available and which voices the users of the system prefer. For detailed information about a particular voice, run:

```bash
# yum info package_name
```

Procedure

1. To make the required voice available, install the package with this voice:

```bash
# yum install package_name
```

2. Reboot the system to apply changes:

```bash
# reboot
```
CHAPTER 9. TABLETS

To manage Wacom tablets connected to your system, use the following tools:

- The `gnome-settings-daemon` service
- The Wacom Tablet settings panel in the GNOME environment

The Wacom Tablet settings panel for a tablet

The Wacom Tablet settings panel for a grip pen

Both these tools, as well as the `libinput` stack, use the `libwacom` tablet client library, which stores the data about Wacom tablets.

If you want to add support for a new tablet into the `libwacom` library, you must ensure that a definition file for this new tablet exists.

9.1. PREPARING A TABLET DEFINITION FILE

The `libwacom` tablet client library needs a definition file for the tablet that you want to add.

To ensure that the tablet definition file exists, follow this procedure.
Prerequisites

- Make sure that your device is recognized by `libwacom`:

 `libwacom-list-local-devices`

 The `libwacom-list-local-devices` tool lists all local devices recognized by `libwacom`.

 If your device is not listed, the device is missing from `libwacom`'s database. However, the device might still be visible as an event device in the kernel under `/proc/bus/input/devices`, and if you use the X.Org display server, in the X session on the `xinput` list.

Procedure

1. Make sure that the `libwacom-data` package is installed. Most tablet definition files are included in this package. If the package is installed, the tablet definition files are locally available in the `/usr/share/libwacom/` directory.

2. Check whether the definition file is available in the `/usr/share/libwacom/` directory. To use the screen mapping correctly, support for your tablet must be included in the `libwacom` database and in the udev rules file.

 IMPORTANT

 A common indicator that a device is not supported by `libwacom` is that it works normally in a GNOME session, but the device is not correctly mapped to the screen.

3. If the definition file for your device is not available in `/usr/share/libwacom/`, you have these options:

 - The required definition file may already be available in the `linuxwacom/libwacom` upstream repository. So you can try to find the definition file there. If you find your tablet model in the list, it is sufficient to copy the file to the local machine.

 - You can create a new tablet definition file. Use the `data/wacom.example` file below, and edit particular lines based on the characteristics of your device.

```
# Example model file description for a tablet
[Device]

# The product is the product name announced by the kernel
Product=Intuos 4 WL 6x9

# Vendor name of this tablet
Vendor=Wacom

# DeviceMatch includes the bus (usb, serial), the vendor ID and the actual
# product ID
DeviceMatch=usb:056a:00bc

# Class of the tablet. Valid classes include Intuos3, Intuos4, Graphire, Bamboo, Cintiq
Class=Intuos4

# Exact model of the tablet, not including the size.
Model=Intuos 4 Wireless
```
Width in inches, as advertised by the manufacturer
Width=9

Height in inches, as advertised by the manufacturer
Height=6

Optional features that this tablet supports
Some features are dependent on the actual tool used, e.g. not all styli
have an eraser and some styli have additional custom axes (e.g. the
airbrush pen). These features describe those available on the tablet.
#
Features not set in a file default to false/0

[Features]
This tablet supports styli (and erasers, if present on the actual stylus)
Stylus=true

This tablet supports touch.
Touch=false

This tablet has a touch ring (Intuos4 and Cintiq 24HD)
Ring=true
This tablet has a second touch ring (Cintiq 24HD)
Ring2=false

This tablet has a vertical/horizontal scroll strip
VStrip=false
HStrip=false

Number of buttons on the tablet
Buttons=9

This tablet is built-in (most serial tablets, Cintiqs)
BuiltIn=false

9.2. ADDING SUPPORT FOR A NEW TABLET

To add support for a new tablet into the libwacom tablet information client library, follow this procedure.

Prerequisites

- The definition file for the tablet that you want to add exists.
 For more information on ensuring that the definition file exists, see Section 9.1, “Preparing a tablet definition file”.

Procedure

1. Add and install the definition file with the .tablet suffix:

 cp the-new-file.tablet /usr/share/libwacom/
Once installed, the tablet is part of libwacom’s database. The tablet is then available through `libwacom-list-local-devices`.

2. Create a new `/etc/udev/rules/99-libwacom-override.rules` file with the following content so that your settings are not overwritten:

   ```
   ACTION="add|change", GOTO="libwacom_end"
   KERNEL="event[0-9]"*, GOTO="libwacom_end"
   [new tablet match entries go here]
   LABEL="libwacom_end"
   ```

3. Reboot your system.

9.3. WHERE IS THE WACOM TABLET CONFIGURATION STORED

Configuration for your Wacom tablet is stored in GSettings in the `/org/gnome/settings-daemon/peripherals/wacom/machine-id-device-id` key, where `machine-id` is a D-Bus machine ID, and `device-id` is a tablet device ID.

The configuration schema for the tablet is `org.gnome.settings-daemon.peripherals.wacom`.

Stylus configuration is stored in the `/org/gnome/settings-daemon/peripherals/wacom/device-id/tool-id` key, where `tool-id` is the identifier for the stylus used for professional ranges. For the consumer ranges with no support for `tool-id`, a generic identifier is used instead.

The configuration schema for the stylus is `org.gnome.settings-daemon.peripherals.wacom.stylus`. The configuration schema for the eraser is `org.gnome.settings-daemon.peripherals.wacom.eraser`.

9.4. LISTING AVAILABLE WACOM TABLET CONFIGURATION PATHS

To get the full list of tablet configuration paths used on a particular machine, use the `gsd-list-wacom` tool, which is provided by the `gnome-settings-daemon` package.

Prerequisites

- Make sure that the `gnome-settings-daemon` package is installed on your system.

  ```
  # yum install gnome-settings-daemon
  ```

Procedure

- To get the full list of tablet configuration paths used on your machine, run the following command:

  ```
  $ /usr/libexec/gsd-list-wacom
  ```
IMPORTANT

Using **machine-id**, **device-id**, and **tool-id** in configuration paths allows for shared home directories with independent tablet configuration per machine. However, when sharing home directories between Machines, the Wacom settings apply only to one machine. This is because the **machine-id** for your Wacom tablet is included in the configuration path of the `/org/gnome/settings-daemon/peripherals/wacom/machine-id-device-id` GSettings key, which stores your tablet settings.